FOREWORD BY

/lll MANNING

OSGi in Action

OSGi in Action

CREATING MODULAR APPLICATIONS IN JAVA

RICHARD S. HALL
KARL PAULS

STUART McCULLOCH
DAVID SAVAGE

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901

Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
180 Broad Street, Suite 1323 Copyeditor: Tiffany Taylor
Stamford, CT 06901 Typesetter: Gordan Salinovic

Ilustrator: Martin Murtonen
Cover designer: Marija Tudor

ISBN 9781933988917
Printed in the United States of America

12345678910 - MAL- 16 15 14 13 12 11

http://www.manning.com

brief contents

ParT 1 INTRODUCING OSGI: MODULARITY, LIFECYCLE, AND SERVICES 1

= OSGirevealed 3
= Mastering modularity 24

1
2
3 = Learning lifecycle 69
4 = Studying services 117
5

= Delving deeper into modularity 154

PART 2 O SGI IN PRACTICE « ceeeeeerereecececescscesesessecesessscssessssssssesess 189

6 = Moving toward bundles 191
7 = Testing applications 230
8 = Debugging applications 258
9 = Managing bundles 292

10 = Managing applications 319

PART 3 ADVANCED TOPICS « eeeeecerereecececercscesessssscessssscssesssssssennes 343

11 = Component models and frameworks 345

12 = Advanced component frameworks 373

BRIEF CONTENTS

13 = Launching and embedding an OSGi framework 412
14 = Securing your applications 438
15 = Web applications and web services 477

contents

foreword xiv

preface xvii
acknowledgments xix
about this book xx
about the authors xxv

PArRT 1 INTRODUCING OSGI: MODULARITY, LIFECYCLE,
AND SERVICESI..I..I..I................I..I..I..I..I.1.

OSGi revealed 3

1.1 The what and why of OSGi 4

Java’s modularity limitations 5 = Can OSGi help you? 8
1.2 An architectural overview of OSGi 9

The OSGi framework 9 = Putting it all together 12
1.3 “Hello, world!” examples 12

Module layer example 12 = Lifecycle layer example 14 = Service
layer example 16 = Setting the stage 18

viii CONTENTS

1.4 Putting OSGi in context 19

Java Enterprise Edition 19 = Jini 20 = NetBeans 20 = Java
Management Extensions 20 = Lightweight containers 21 = Java
Business Integration 21 = JSR 277 21 = JSR294 22 = Service
Component Architecture 22 = NET 22

1.5 Summary 23

Mastering modularity 24
2.1 Whatis modularity? 25

Modularity vs. object orientation 25

2.2 Why modularize? 27

2.3 Modularizing a simple paint program 28

2.4 Introducing bundles 31
The bundle’s role in physical modularity 32 = The bundle’s role in
logical modularity 33

2.5 Defining bundles with metadata 34
Human-readable information 35 = Bundle identification 36
Code visibility 39 = Class-search order 48

2.6 Finalizing the paint program design 50
Improving the paint program’s modularization 51 = Launching
the new paint program 52

2.7 OSGi dependency resolution 53
Resolving dependencies automatically 53 = Ensuring consistency
with uses constraints 59

2.8 Reviewing the benefits of the modular paint program 64

2.9 Summary 68

Learning lifecycle 69
3.1 Introducing lifecycle management 70
What is lifecycle management? 70 = Why lifecycle management? 72

3.2 OSGi bundle lifecycle 72
Introducing lifecycle to the paint program 73 = The OSGi
framework’s vole in the lifecycle 75 = The bundle activator manifest
entry 76 = Introducing the lifecycle AP 77 » Lifecycle state
diagram 83 = Bundle cache and framework restarts 84

3.3 Using the lifecycle API in your bundles 85

Configuring bundles 86 = Deploying bundles 88 = Inspecting
Jramework state 92 = Persisting bundle state 93 = Listening for
events 96 = Bundle suicide 99

CONTENTS

3.4 Dynamically extending the paint program 101

3.5 Lifecycle and modularity 108
Resolving bundles 108 = Refreshing bundles 110 = When
updating isn’t updated 114

3.6 Summary 115

Studying services 117
4.1 The what, why, and when of services 118
What is a service? 118 = Why use services? 119 » When to use
services 123 = When not to use services 124 = Still not sure? 124
4.2 OSGi services in action 125
Publishing a service 126 = Finding and binding services 128

4.3 Dealing with dynamics 132
Avoiding common pitfalls 133 = Listening for services 136
Tracking services 141

4.4 Using services in the paint example 143
Defining a shape service 144 = Publishing a shape service 144
Tracking shape services 145

4.5 Relating services to modularity and lifecycle 146

Why can’t I see my service? 147 = Can I provide a bundle-specific
service? 147 = When should I unget a service? 148 = When
should I unregister my service? 148 = Should I bundle interfaces
separately? 149

4.6 Standard services 149
Core services 150 = Compendium services 151

47 Summary 152

Delving deeper into modularity 154

5.1 Managing your exports 155
Importing your exports 155 = Implicit export attributes 158
Mandatory export attributes 160 = Export filtering 161
Duplicate exports 162

5.2 Loosening your imports 164
Optional imports 164 = Dynamic imporls 165 = Optional vs.
dynamic imports 166 = Logging example 167

5.3 Requiring bundles 171

Declaring bundle dependencies 171 = Aggregating split
packages 173 = Issues with bundle dependencies 176

CONTENTS

5.4 Dividing bundles into fragments 177

Understanding fragments 177 = Using fragments for
localization 180

5.5 Dealing with your environment 183

Requiring execution environments 184 = Bundling native
libraries 185

5.6 Summary 187

PART 2 OSGI IN PRACTICE. ceeseeeescccssccsssccsssccssscssscscsscees]l 89

Moving toward bundles 191
6.1 Turning JARs into bundles 192

Choosing an identity 192 = Exporting packages 195
Discovering what to import 199 = Embedding vs. importing 203
Adding lifecycle support 204 = JAR file to bundle cheat sheet 205

6.2 Splitting an application into bundles 206

Making a mega bundle 206 = Slicing code into bundles 216
Loosening things wp 221 = To bundle or not to bundle? 226

6.3 Summary 229

Testing applications 230
7.1 Migrating tests to OSGi 231

In-container testing 231 = Bundling tests 232 = Covering all
the bases 235

7.2 Mocking OSGi 237

Testing expected behavior 237 = Mocking in action 238
Mocking unexpected situations 240 = Coping with multithreaded
lests 241 = Exposing race conditions 243

7.3 Advanced OSGi testing 244

OSGitesttools 245 = Running tests on multiple frameworks 246
Unit testing 250 = Integration testing 251 = Management
testing 254

7.4 Summary 257

Debugging applications 258
8.1 Debugging bundles 259
Debugging in action 261 = Making things right with HotSwap 266

CONTENTS xi

8.2 Solving class-loading issues 271

ClassNotFoundException vs. NoClassDefFoundError 272 = Casting
problems 274 = Using uses constraints 275 = Staying clear of
Class.forName() 278 = Following the Thread Context Class

Loader 280

8.3 Tracking down memory leaks 283
Analyzing OSGi heap dumps 283
8.4 Dangling services 287

Finding a dangling service 287 = Protecting against dangling
services 288

8.5 Summary 290

Managing bundles 292

9.1 Versioning packages and bundles 293

Meaningful versioning 293 = Package versioning 295
Bundle versioning 297

9.2 Configuring bundles 299

Configuration Admin Service 299 = Metatype Service 309
Preferences Service 312

9.3 Starting bundles lazily 314

Understanding activation policies 315 = Using activation
policies 316

9.4 Summary 317

1 Managing applications 319
10.1 Deploying bundles 320

Introducing management agents 320 = OSGi Bundle Repository 321
Deployment Admin 330

10.2 Ordering bundle activation 337

Introducing the Start Level Service 338 = Using the Start Level
Service 339

10.3 Summary 342

PART 3 ADVANCED TOPICS « ceeeesecescesccescossccsscessossccsscessees 34

1 Component models and frameworks 345

11.1 Understanding component orientation 346
What are components? 346 = Why do we want components? 348

CONTENTS

11.2 OSGi and components 349
OSGi’s service-oriented component model 349 = Improving upon
OSGi’s component model 351 = Painting with components 355
11.3 Declarative Services 355
Building Declarative Services components

with Declarative Services
Services

356 = Providing services
357 = Consuming services with Declarative
359 = Declarative Services component lifecycle 364

11.4 Summary 371

1 Advanced component frameworks 373
12.1 Blueprint Container 374
Blueprint architecture 374 = Providing services with Blueprint 375

Consuming services with Blueprint 378 = Blueprint component
lifecycle 382 = Advanced Blueprint features 387

12.2 Apache Felix iPOJO 391
Building iPOJO components 392 = Providing services with iPOJO 393

Consuming services with iPOJO 395 = iPOJO component
lifecycle 400 = Instantiating components with iPOJO 404

12.3 Mix and match 408
12.4 Summary 411

1 Launching and embedding an OSGi framework 412
13.1 Standard launching and embedding 413

Framework API overview 413 = Creating a framework
instance 415 = Configuring a framework 417 = Starting a
Jramework instance 419 = Stopping a framework instance 420

13.2 Launching the framework 421

Determining which bundles to install 422 = Shutting down

cleanly 422 = Configuring, creating, and starting the framework 423
Installing the bundles 424 = Starting the bundles 424 = Starting the
main bundle 425 = Waiting for shutdown 426

13.3 Embedding the framework 427

Inside vs. outside 427 = Who’s in control? 431 = Embedded
Jramework example 432

13.4 Summary 437

1 Securing your applications 438

14.1 To secure or not to secure 439

14.2

14.3

14.4

14.5

14.6
14.7

14.8
14.9

CONTENTS xiii

Security: just do it 440
Java and OSGi security 440

OSGi-specific permissions 444

PackagePermission 444 = BundlePermission 445 = Admin-
Permission 446 = ServicePermission 447 = Relative file
permissions 448

Managing permissions with Conditional Permission
Admin 449

Conditional permissions 449 = Introducing the Conditional
Permission Admin Service 450 » Bundle location condition 451
Using ConditionalPermissionAdmin 452 = Implementing a
policy-file reader 456

Digitally signed bundles 457

Learning the terminology 458 = Creating certificates and signing
bundles 458 = BundleSignerCondition 461

Local permissions 464
Advanced permission management 465

Custom conditions overview 465 = Date-based condition 466
User-input condition 467

Bringing it all back home 471
Summary 475

1 Web applications and web services 477

15.1

15.2

15.3

appendix A
appendix B

Creating web applications 478

Using the HT'TP Service specification 479 = Using the Web
Applications specification 488 = Standard WARs: the Web URL
Handler 492

Providing and consuming web services 493
Providing a web service 494 = Consuming a web service 499
Distributing services 502

Summary 510

Building bundles 513
OSGi standard services 528
index 531

Joreword

It was during the very hot summer of 2003 that I first heard of Richard S. Hall. During
a coffee break, a colleague from Deutsche Telekom told me that the local university
had a teacher who was very much into OSGi. This teacher was the author of Oscar, one
of the first open source OSGi frameworks. In 2003, wholeheartedly adopting OSGi was
rare, so I was intrigued. Also around that time, Eclipse was investigating moving to a
new module system, and I was asked to participate as an OSGi expert. I thought Rich-
ard could be valuable for this, so I asked him to join the Equinox committee. That
innocent invitation started an enormously long email thread that hasn’t ended yet
and, I hope, never will. Richard is often abrasive when specifications aren’t clear, or
worse, when we attempt to violate modular purity. Sometimes I think he physically
feels pain if we have to compromise on a dirty feature. As an invited OSGi researcher,
he has became one of the key people behind the specifications, making sure we don’t
bloat the framework and always follow our principles.

When Manning sent a flattering email proposing an 0SG: in Action book to the key
OSGi people, Richard was among them. This email triggered intense discussions about
collectively writing this book; the idea to write a book had been discussed many times
before. We went into negotiations with Manning, but in the end I withdrew from the
group, urging the others to continue. Why did I bail out? As the editor of the OSGi spec-
ifications, I was aware of how much work it is to write a book in collaboration with other
opinionated people. To extend my day job into the night and weekends for free wasn’t
something I was looking forward to, regardless of how much I liked and appreciated
these guys. Unfortunately, my desertion deflated the effort, and it faltered.

FOREWORD XV

Until the day Richard told me he had picked up the book effort again from where
we had stopped, now with a better team: Karl Pauls, Stuart McCulloch, and David Sav-
age. Each of these authors is a great contributor to the open source world as well as to
the OSGi specifications: Karl for his work on Felix and his testimony to modularity by
doing Felix security as a separate bundle, proving that even the framework architec-
ture is modular; Stuart for his work on the Maven bundle plugin, the popular Ops4]
work, and the Peaberry extension to Guice; and David for the excellent work he is
doing with Sigil at Apache and his work at Paremus. It would be hard to come up with
a team that knows more about how OSGi is used in the real world. All this experience
radiates from the chapters they’ve written in this impressive book.

While this team undertook the Herculean effort to write this book, I was in close
contact with them all along the way—not only because of our work in the OSGi Alli-
ance, but also because authoring a book about OSGi is likely to expose weakness or
deficiencies in the specifications, which then obviously results in another, often
heated argument over Skype or email. Unfortunately, to my chagrin, the team was too
often right.

They also asked me to provide the text about the history of OSGi, an effort that
resulted in probably the highest compression rate ever achieved. Of the 4,356 words I
wrote, I think the word OSGi remained. But this is exactly what I like: the quest for
quality drove this book, not only in its details but also in its form. It isn’t like many
books today, full of listings outlining in minute steps how to achieve a result. No, this
is a book exactly the way I like it: not only showing in detail how to use OSGi, but also
going to great length to point out the rationale. It’s a book that explains.

And such a book is needed today. I understand that OSGi isn’t easy. Although it
builds on an object-oriented foundation, it adds a new set of design primitives to
address the shortcomings of object-oriented design that were uncovered when appli-
cations became humongous assemblies of multiple open source projects and proprie-
tary code. Objects remain an invaluable technique for building software, but the
object-oriented paradigm isn’t well suited to allowing large building blocks (compo-
nents) collaborate without causing too much coupling. We desperately fight objects
with patterns like factories and class-loading hacks, but at a certain scale the work to
prevent coupling becomes a significant part of our efforts. Dependency injection alle-
viated much of the coding pain but moved a lot of the code into XML, a language that
has the most ill-suited syntax imaginable for human programming tasks. Annotations
provide another level of support for dealing with coupling—but cause a coupling
problem in themselves. Many of the painkillers we use to alleviate coupling are largely
cosmetic because boundaries aren’t enforced at execution time in traditional Java.

OSGi is different. It treats an application as a collaboration of peer modules: mod-
ules that can adapt themselves to the environment instead of assuming that the envi-
ronment is adapted to them. Adapting to the environment requires a reification of
that environment, and this is where OSGi has its biggest innovation: pServices.
pServices are the oil between modules that allows modules to evolve over time without

xvi

FOREWORD

affecting other modules. During a recent OSGi community event, David Savage used
the term spiky to describe modules, to indicate how a set of modules causes friction
that makes it hard to change each module. pServices are a design primitive in OSGi
that is so powerful, it’s even possible to update or install modules on the fly without
bringing down the application. They palliate the spikes of modules by reifying the
interconnection between modules.
pServices are a new paradigm that requires a way of thinking that is different from
what is prevalent in Java today. In many ways, OSGi is where object-oriented program-
ming was 25 years ago, providing new design primitives that were ill understood by the
mainstream. Objects required a generation to grow up thinking in terms of design
primitives like polymorphism, inheritance, classes, and objects. OSGi is on the verge of
making a new paradigm shift happen with its bundles and pServices. I believe that
these design primitives will be the next software paradigm after object orientation.
This book is an excellent way to become part of the generation that can really think in
OSGi and reap its full benefits.
PETER KRIENS
OSGi TecHNICAL DIRECTOR

preface

When I started working with OSGi technology back in 2000, I would’ve never guessed
I’d still be working with it a decade later. Back then, OSGi was targeting the embedded
market niche, but that wasn’t my area of interest. I wanted to create highly dynamic,
modular applications, and OSGi gave me the possibility of doing so. At the time, there
weren’t any freely available OSGi framework implementations; so I started working on
my own open source implementation, called Oscar, back in December 2000 while I was
working at Free University Berlin. Oscar moved with me when I moved to Grenoble to
work at Josef Fourier University, where the work really started to flourish.

As OSGi technology began to gain traction, Oscar moved to the ObjectWeb open
source consortium in 2004, and later it evolved into Felix at the Apache Software
Foundation in 2005. I was fortunate enough to be invited by the OSGi Alliance to work
directly on the OSGi specifications for the R4 release cycle in 2004. I've been involved
in the OSGi specification process ever since, initially as an academic researcher and
most recently in industry, when I took a position on the GlassFish team at Sun Micro-
systems (now Oracle Corp.) in 2008. A lot has changed over the last 10 years.

OSGi technology has moved beyond the embedded market into a full-blown module
system for Java. This transformation was significantly helped along in 2004 when the
Eclipse IDE refactored its plugin system to run on top of OSGi, and it has continued with
the adoption of the technology in enterprise circles by Spring and all the major appli-
cation servers. Although the future of Java modularity is still evolving, OSGi technology
looks to play a role for a long time to come. Which brings us back to this book.

xvii

xviii

PREFACE

I’d been kicking around the idea of writing an OSGi book for a couple of years, but
given the enormity of the task and my life-long time deficit, I never got around to it. In
the summer of 2008, I finally got serious and began writing, only to find myself quickly
bogged down. It wasn’t until Karl and Stuart offered to help, and later David, that we
were finally able to slay the beast. Our varied OSGi experience provided just the right
mix. Even then, it’s taken us two years, a few career changes, and the birth of several
children to see it to an end. We hope you’ll find our efforts helpful.

Ricnarp S. HaLL

acknowledgments

We thank Peter Kriens for his in-depth feedback that improved the book and for writ-
ing the foreword. Thanks also to all the early readers of the manuscript and the book
forum posters who provided valuable feedback throughout the writing process.

The following peer reviewers who read the manuscript at various stages of its devel-
opment deserve special thanks for their time and effort: Cheryl Jeroza, David Kemper,
Gabor Paller, Jason Lee, Massimo Perga, Joseph Ottinger, Jeroen Benckhuijsen, Ted
Neward, Denis Kurilenko, Robert “Kebernet” Cooper, Ken Chien, Jason Kolter, Jer-
emy Flowers, Paul King, Erik van Oosten, Jeff Davis, Doug Warren, Peter Johnson,
Costantino Cerbo, Dmitry Sklyut, David Dossot, Mykel Alvis, Eric Swanson, Patrick Ste-
ger, Jeft Addison, Chad Davis, Peter Pavlovich, Ramarao Kanneganti, Steve Gutz, Tijs
Rademakers, John Griffin, and Sivakumar Thyagarajan. Their suggestions made this a
better book. We’d also like to single out Norman Richards for his technical proofread-
ing of the final manuscript during production.

The staff at Manning have been supportive throughout this lengthy ordeal; we’d
especially like to thank our development editor Cynthia Kane for putting up with us;
also Marjan Bace, Michael Stephens, and the production team of Tiffany Taylor, Katie
Tennant, and Gordan Salinovic.

Last, we’d like to thank the Apache Felix community for their contributions to all
the code and discussions over the years.

Individually, Richard thanks his wife and daughter and apologizes for the many
distractions this book caused. Karl thanks his wife Doreen and his children Elisabeth
and Holger for all the love, support, and understanding. Stuart thanks his dear wife
Hayfa for the motivation to finish this book. David thanks his wonderful family, and
especially his wife Imogen, for the support and encouragement to finish this book.

Xix

about this book

The OSGi specifications are well written and elaborate, so if you need to know details
about OSGi technology, the specifications are the place to look. If you do, you’ll dis-
cover that they were written for someone who is going to implement the specifica-
tions, not use them. This book started out as an attempt to remedy this situation by
creating a user-oriented companion guide for the specifications. Our goal wasn’t to
create an OSGi cookbook but to thoroughly describe the important aspects of
OSGi and show how to use them. Our main idea was to more simply explain the
OSGi specifications by ignoring the implementation details and including additional
usage information.

To that end, we’ve tried to limit ourselves to discussing the most common con-
cepts, features, and mechanisms needed to work with OSGi technology throughout
the book. That doesn’t mean we were able to avoid all the esoteric details. As you’ll
find when you begin working with OSGi, it enforces a new level of strictness when it
comes to modularity, which will likely break some of your old practices. In the end,
you need to understand what’s going on under the covers in some places to be able to
effectively debug and diagnose the situations in which you find yourself.

As our writing progressed, the book chapters began to separate naturally into
three parts:

1 Explaining the core OSGi specification
2 Describing how to work with the specification in practice
3 Introducing advanced OSGi-related topics

ABOUT THIS BOOK xxi

In part 1 of the book, we focus on explaining the most common aspects of the OSGi
core specification from the user’s perspective. We introduce OSGi according to its
three-layer architecture: module, lifecycle, and services. This isn’t the only approach
to take in explaining OSGi; most explanations of OSGi start out with a simple bundle
implementing a simple service. The downside of this type of approach, in our view, is
that it cuts across all three OSGi layers at once, which would require us to explain all
three layers at once.

The advantage of following a layered approach is that doing so creates a clear divi-
sion among the concepts we need to discuss. For example, the modularity chapter
focuses on modularity concepts and can largely ignore lifecycle and services. This
approach also creates a natural progression, because modularity is the foundation of
OSGi, lifecycle builds on it, and services are on top of lifecycle. We can also highlight
how to use lower layers of the OSGi architecture without using the upper layers, which
is sometimes worthwhile.

Part 2 of the book takes the knowledge about the OSGi core specification from
part 1 and shows how you can use the technology from a more pragmatic viewpoint.
We look into converting existing JAR files to bundles as well as testing, debugging,
and managing bundles. These first two parts of the book should be of general inter-
est to anyone wanting to learn more about using OSGi.

Part 3 covers various advanced topics, such as service-oriented component models,
framework launching, security, and distributed computing technologies. This last part
serves as a springboard to the world of possibilities available to you in the OSGi universe.

Roadmap

Chapter 1 presents a high-level view of OSGi technology and the issues it’s intended to
address. To keep the chapter from being totally abstract, we present a few “Hello,
world!” examples to illustrate the different layers of the OSGi framework, but the real
meat of our OSGi discussion is in the following chapters. We also look at the state of
modularity support in Java as well as in some related technologies.

Chapter 2 explores the module layer of the OSGi framework. We start with a general
discussion of modularity in computing and then continue by describing OSGi’s module
concept, called a bundle. We present OSGi’s declarative metadata-based approach for
creating modules and show how to use it to modularize a simple paint program. We also
investigate one of the key OSGi tasks: bundle dependency resolution.

Chapter 3 looks at the lifecycle layer of the OSGi framework. We discuss lifecycle
management in general and describe how OSGi provides dynamic lifecycle manage-
ment of bundles. We present OSGi’s lifecycle-related APIs by creating a simple OSGi
shell and also adapt our paint program to make it lifecycle aware.

Chapter 4 examines the services layer of the OSGi framework. We describe what
services are and discuss why and when you need them. We walk you through providing
and using services with some toy examples and then take an iterative approach to
describing how to deal with the unique aspect of service dynamism. We finish our ser-
vice discussion by adapting the paint program, this time to use dynamic services.

xxii

ABOUT THIS BOOK

Chapter 5 returns to the module layer and examines its more advanced or
nuanced capabilities. We describe additional ways for bundles to deal with dependen-
cies and content using bundle-level dependencies and bundle fragments. You also
learn how bundles can deal with execution environments and native libraries.

Chapter 6 gives practical advice for converting JAR files into bundles, including
how to define bundle metadata, package your bundle content, and add lifecycle sup-
port. We also describe how to go about dividing an application into bundles, demon-
strating techniques on an existing open source project.

Chapter 7 shows how to test bundles and OSGi-based applications. We look into
running your existing tests in OSGi and mocking OSGi APIs. In addition to unit and
integration testing, we discuss management testing and explore some tools to help
you along the way.

Chapter 8 follows testing by describing how to debug your bundles. We look into
simple, command-line debugging as well as debugging with the Eclipse IDE. We show
how to set up your development environment to get you up to speed quickly. We also
explain some of the typical issues you encounter when working with OSGi and how to
deal with them.

Chapter 9 switches gears and discusses how to manage your bundles. We explain
how to meaningfully define version numbers for packages and bundles. We look into
managing bundle configuration data and in the process describe a handful of
related OSGi services. We also cover an option for triggering automatic bundle
startup and initialization.

Chapter 10 continues investigating management topics, but moves from single-
bundle issues to multi-bundle ones. We look at a couple of approaches for deploying
bundles and their dependencies. We also explain how you can control bundle
startup order.

Chapter 11 describes how component-oriented programming relates to OSGi. As a
concrete example, we look at a standard OSGi component framework called Declara-
tive Services. We show how Declarative Services allows you to work with POJOs and sim-
plifies some aspects of dealing with service dynamism.

Chapter 12 continues investigating more advanced component frameworks for
OSGi. We look at Blueprint, which is targeted toward enterprise developers familiar
with Spring technology. We also examine the Apache Felix iPOJO component frame-
work. We show that one of the benefits of OSGi-based component frameworks is they
can all work together via services.

Chapter 13 turns away from developing bundles and looks at launching the OSGi
framework. We describe the standard approach for configuring and creating OSGi
frameworks. We also show how you can use the standard API to embed an OSGi frame-
work into an existing application.

Chapter 14 delves into operating OSGi in a secure environment. We describe the
issues involved and approaches to alleviating them. We explain how OSGi extends the
standard Java security architecture to make it more flexible and easier to manage. And

ABOUT THIS BOOK xxiil

we show how to set up an OSGi framework with security enabled and create a secure
example application.

Chapter 15 closes the book with a quick look at using web-related technologies in
OSGi. We discuss using some common web applications technologies, such as servlets,
JSPs, and WAR files. We also look into how to publish and consume web services.

Code

The companion code for the examples in this book is freely available from Manning’s
website, www.manning.com/OSGiinAction.

In the text, Courier typeface is used to denote code as well as JAR file manifest
headers. References to methods generally don’t include the signature, except when
it’s necessary to differentiate. The coding style adopts two-space indents and same-line
braces to keep everything condensed and isn’t otherwise recommended. When pre-
senting command or shell interaction, normal Courier typeface is used to indicate
program output, while bold is used to indicate user input.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

Author Online

Purchase of 0SGi in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/OSGiinAction. This page

provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the book’s forum remains voluntary (and unpaid).
We suggest you try asking them some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated
exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, re-telling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.

www.manning.com/OSGiinAction
www.manning.com/OSGiinAction

XXiv

ABOUT THIS BOOK

Humans learn in action. An essential part of an In Action book is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want, just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration

The figure on the cover of OSGi in Action is a “Soldier.” The illustration is taken from a
collection of costumes of the Ottoman Empire published on January 1, 1802, by William
Miller of Old Bond Street, London. The title page is missing from the collection and we
have been unable to track it down to date. The book’s table of contents identifies the
figures in both English and French, and each illustration bears the names of two artists
who worked on it, both of whom would no doubt be surprised to find their art gracing
the front cover of a computer programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed that
the money be transferred to him by wire and the editor walked out with the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred the funds the next day, and we remain grateful and impressed by
this unknown person’s trust in one of us. It recalls something that might have hap-
pened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically, we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

about the authors

RicHARD S. HALL is an active member of the Apache Felix framework development
team as well as other Felix subprojects. He has been involved in open source OSGi
work since 2000 and directly involved in the OSGi Alliance since 2004. Richard is a
member of the Apache Software Foundation and works for Oracle on the GlassFish
team, helping out out on OSGi issues or anything else, if he can.

KARL PAULS implemented the Apache Felix Framework Security Provider and is an
active member of the Apache Felix framework development team as well as other
Felix subprojects. He is a member of the Apache Software Foundation and is involved
in various Apache and other open source projects. Karl is a fellow at Luminis.

STUART MCCULLOCH is responsible for the maven-bundle-plugin at Apache Felix
and the Pax-Construct tools for rapid OSGi development from OPS4j. He is also the
author of Peaberry, a Guice extension for injecting dynamic services. Stuart is a con-
sultant at Sonatype, working on dependency injection and modularization.

DAVID SAVAGE works for Paremus and has been designing and building OSGi applica-
tions since 2005 in many different areas including build tools, component models,
data persistence, desktop Uls, management, messaging, provisioning, resolvers, and
RPC. He contributes to the Apache Felix project especially in the area of development
tooling via the Sigil subproject. He is also directly involved in developing specifica-
tions for the OSGi Alliance.

XXV

Part 1

Introducing OSGu:
modularity, lifecycle,
and services

Ie OSGi framework defines a dynamic module system for Java. It gives you
better control over the structure of your code, the ability to dynamically manage
your code’s lifecycle, and a loosely coupled approach for code collaboration.
Even better, it’s fully documented in a very elaborate specification. Unfortu-
nately, the specification was written for people who are going to implement it
rather than use it. In the first part of this book, we’ll remedy this situation by
effectively creating a user-oriented companion guide to the OSGi framework
specification. We’ll delve into its details by breaking it into three layers: module,
lifecycle, and services. We’ll explain what you need to understand from the spec-
ification to effectively use OSGi technology.

OSGe revealed

This chapter covers

®m Understanding Java’s built-in support for modularity

®m |ntroducing OSGi technology and how it improves
Java modularity

m Positioning OSGi with respect to other technologies

The Java platform is an unqualified success story. It’s used to develop applications
for everything from small mobile devices to massive enterprise endeavors. This is a
testament to its well-thought-out design and continued evolution. But this success
has come in spite of the fact that Java doesn’t have explicit support for building
modular systems beyond ordinary object-oriented data encapsulation.

What does this mean to you? If Java is a success despite its lack of advanced mod-
ularization support, then you may wonder if that absence is a problem. Most well-
managed projects have to build up a repertoire of project-specific techniques to
compensate for the lack of modularization in Java. These include the following:

= Programming practices to capture logical structure
= Tricks with multiple class loaders

= Serialization between in-process components

1.1

CHAPTER 1 OSGi revealed

But these techniques are inherently brittle and error prone because they aren’t
enforceable via any compile-time or execution-time checks. The end result has detri-
mental impacts on multiple stages of an application’s lifecycle:

= Development—You’'re unable to clearly and explicitly partition development into
independent pieces.

= Deployment—You’re unable to easily analyze, understand, and resolve require-
ments imposed by the independently developed pieces composing a complete
system.

= Execution—You're unable to manage and evolve the constituent pieces of a run-
ning system, nor minimize the impact of doing so.

It’s possible to manage these issues in Java, and lots of projects do so using the custom
techniques mentioned earlier, but it’s much more difficult than it should be. We’re
tying ourselves in knots to work around the lack of a fundamental feature. If Java had
explicit support for modularity, then you’d be freed from such issues and could
concentrate on what you really want to do, which is developing the functionality of
your application.

Welcome to the OSGi Service Platform. The OSGi Service Platform is an industry
standard defined by the OSGi Alliance to specifically address the lack of support for
modularity in the Java platform. As a continuation of its modularity support, it intro-
duces a service-oriented programming model, referred to by some as SOA in a VM, to
help you clearly separate interface from implementation. This chapter will give you an
overview of the OSGi Service Platform and how it helps you create modular and man-
ageable applications using an interface-based development model.

When we’ve finished this chapter, you’ll
understand what role OSGi technology plays
among the arsenal of Java technologies and
why Java and/or other Java-related technolo-
gies don’t address the specific features pro-
vided by OSGi technology.

The what and why of OSGi

The $64,000 question is, “What is OSGi?” The
simplest answer to this question is that it’s a
modularity layer for the Java platform. Of

course, the next question that may spring to

mind is, “What do you mean by modularity?”

. K Module Module
Here we use modularity more or less in the tra- B €
ditional computer-science sense, where the
code of your software application is divided

into logical parts representing separate con-
8 p p § S¢p Figure 1.1 Modularity refers to the

cerns, as shown in figure 1.1. If your software is logical decomposition of a large system
modular, you can simplify development and into smaller collaborating pieces.

111

The what and why of OSGi 5

improve maintainability by enforcing the logical module boundaries; we’ll discuss more
modularity details in chapter 2.

The notion of modularity isn’t new. The concept became fashionable back in
the 1970s. OSGi technology is cropping up all over the place—for example, as the
runtime for the Eclipse IDE and the GlassFish application server. Why is it gaining
popularity now? To better understand why OSGi is an increasingly important Java
technology, it’s worthwhile to understand some of Java’s limitations with respect to
creating modular applications. When you understand that, then you can see why
OSGi technology is important and how it can help.

Java’s modularity limitations

Java provides some aspects of modularity in the form of object orientation, but it was
never intended to support coarse-grained modular programming. Although it’s not
fair to criticize Java for something it wasn’t intended to address, the success of Java has
resulted in difficulty for developers who ultimately have to deal with their need for
better modularity support.

Java is promoted as a platform for building all sorts of applications for domains
ranging from mobile phone to enterprise applications. Most of these endeavors
require, or could at least benefit from, broader support for modularity. Let’s look at
some of Java’s modularity limitations.

LOW-LEVEL CODE VISIBILITY CONTROL
Although Java provides a fair complement of access modifiers to control visibility (such
as public, protected, private, and package private), these tend to address low-level
object-oriented encapsulation and not logical system partitioning. Java has the notion
of a package, which is typically used for partitioning code. For code to be visible from
one Java package to another, the code must be declared public (or protected if using
inheritance). Sometimes, the logical structure of your application calls for specific
code to belong in different packages; but this means any dependencies among the
packages must be exposed as public, which makes them accessible to everyone else,
too. Often, this can expose implementation details, which makes future evolution
more difficult because users may end up with dependencies on your nonpublic API.
To illustrate, let’s consider a trivial “Hello, world!” application that provides a pub-
lic interface in one package, a private implementation in another, and a main class in
yet another.

Listing 1.1 Example of the limitations of Java’s object-orientated encapsulation

package org.foo.hello; Greeting.java
public interface Greeting { Simple
void sayHello() ; interface
}
package org.foo.hello.impl; Greetinglmpl.java

import org.foo.hello.Greeting;

CHAPTER 1 OSGi revealed

public class GreetingImpl implements Greeting {

final String m name; ﬁ Interface

public GreetingImpl (String name) { implementation
m name = name;

1

public void sayHello() {
System.out.println("Hello, " + m _name + "!");
1

}

package org.foo.hello.main; Main.java

import org.foo.hello.Greeting;
import org.foo.hello.impl.GreetingImpl;

public class Main {

public static void main(Stringl[] args) { <}45’ Main
Greeting greet = new GreetingImpl ("Hello World"); method
greet.sayHello() ;

}
}

Listing 1.1’s author may have intended a third party to only interact with the application
via the Greetinginterface @. They may mention this in Javadoc, tutorials, blogs, or even
email rants, but nothing stops a third party from constructing a new Greet ingImpl using
its public constructor @ as is done at €.

You may argue that the constructor shouldn’t be public and that there is no need
to split the application into multiple packages, which could well be true in this trivial
example. But in real-world applications, class-level visibility when combined with pack-
aging turns out to be a crude tool for ensuring API coherency. Because supposedly pri-
vate implementation details can be accessed by third-party developers, you need to
worry about changes to private implementation signatures as well as to public inter-
faces when making updates.

This problem stems from the fact that although Java packages appear to have a log-
ical relationship via nested packages, they don’t. A common misconception for people
first learning Java is to assume that the parent-child package relationship bestows spe-
cial visibility privileges on the involved packages. Two packages involved in a nested
relationship are equivalent to two packages that aren’t. Nested packages are largely
useful for avoiding name clashes, but they provide only partial support for the logical
code partitioning.

What this all means is that, in Java, you're regularly forced to decide between the
following:

1 Impairing your application’s logical structure by lumping unrelated classes into

the same package to avoid exposing nonpublic APIs

2 Keeping your application’s logical structure by using multiple packages at the

expense of exposing nonpublic APIs so they can be accessed by classes in differ-
ent packages

Neither choice is particularly palatable.

The what and why of OSGi 7

ERROR-PRONE CLASS PATH CONCEPT

The Java platform also inhibits good modularity practices. The main culprit is the Java
class path. Why does the class path pose problems for modularity? Largely due to all
the issues it hides, such as code versions, dependencies, and consistency. Applications
are generally composed of various versions of libraries and components. The class
path pays no attention to code versions—it returns the first version it finds. Even if it
did pay attention, there is no way to explicitly specify dependencies. The process of
setting up your class path is largely trial and error; you just keep adding libraries until
the VM stops complaining about missing classes.

Figure 1.2 shows the sort of “class path hell” often found when more than one JAR
file provides a given set of classes. Even though each JAR file may have been compiled
to work as a unit, when they’re merged at execution time, the Java class path pays no
attention to the logical partitioning of the components. This tends to lead to hard-to-
predict errors, such as NoSuchMethodError, when a class from one JAR file interacts
with an incompatible class version from another.

Merged class path

. . A]

JAR1 JAR 2 JAR 3

Figure 1.2 Multiple JARs containing overlapping classes and/or packages are merged based on their
order of appearance in the class path, with no regard to logical coherency among archives.

In large applications created from independently developed components, it isn’t
uncommon to have dependencies on different versions of the same component,
such as logging or XML parsing mechanisms. The class path forces you to choose one
version in such situations, which may not always be possible. Worse, if you have multi-
ple versions of the same package on the class path, either on purpose or accidentally,
they’re treated as split packages by Java and are implicitly merged based on order
of appearance.

Overall, the class path approach lacks any form of consistency checking. You get
whatever classes have been made available by the system administrator, which is likely
only an approximation of what the developer expected.

LIMITED DEPLOYMENT AND MANAGEMENT SUPPORT
Java also lacks support when it comes to deploying and managing your application.
There is no easy way in Java to deploy the proper transitive set of versioned code
dependencies and execute your application. The same is true for evolving your appli-
cation and its components after deployment.

112

CHAPTER 1 OSGi revealed

Consider the common requirement of wanting to support a dynamic plugin mech-
anism. The only way to achieve such a benign request is to use class loaders, which are
low level and error prone. Class loaders were never intended to be a common tool for
application developers, but many of today’s systems require their use. A properly
defined modularity layer for Java can deal with these issues by making the module
concept explicit and raising the level of abstraction for code partitioning.

With this better understanding of Java’s limitations when it comes to modularity,
we can ponder whether OSGi is the right solution for your projects.

Can 0SGi help you?

Nearly all but the simplest of applications can benefit from the modularity features
OSGi provides, so if you’re wondering if OSGi is something you should be interested
in, the answer is most likely, “Yes!” Still not convinced? Here are some common sce-
narios you may have encountered where OSGi can be helpful:

= ClassNotFoundExceptions when starting your application because the class
path wasn’t correct. OSGi can help by ensuring that code dependencies are sat-
isfied before allowing the code to execute.

= Execution-time errors from your application due to the wrong version of a
dependent library on the class path. OSGi verifies that the set of dependencies
are consistent with respect to required versions and other constraints.

= Type inconsistencies when sharing classes among modules: put more con-
cretely, the dreaded appearance of foo instanceof Foo == false. With OSGi,
you don’t have to worry about the constraints implied by hierarchical class-
loading schemes.

= Packaging an application as logically independent JAR files and deploying only
those pieces you need for a given installation. This pretty much describes the
purpose of OSGi.

= Packaging an application as logically independent JAR files, declaring which
code is accessible from each JAR file, and having this visibility enforced. OSGi
enables a new level of code visibility for JAR files that allows you to specify what
is and what isn’t visible externally.

= Defining an extensibility mechanism for an application, like a plugin mecha-
nism. OSGi modularity is particularly suited to providing a powerful extensibil-
ity mechanism, including support for execution-time dynamism.

As you can see, these scenarios cover a lot of use cases, but they’re by no means
exhaustive. The simple and non-intrusive nature of OSGi tends to make you discover
more ways to apply it the more you use it. Having explored some of the limitations of
the standard Java class path, we’ll now properly introduce you to OSGi.

1.2

121

An architectural overview of OSGi 9

An architectural overview of OSGi

The OSGi Service Platform is composed of two parts:

the OSGi framework and OSGi standard services I Standard services I
(depicted in figure 1.3). The framework is the run- Framework

time that implements and provides OSGi functional-

ity. The standard services define reusable APIs for

common tasks, such as Logging and Preferences. Figure 1.3 The 0SGi Service Plat-

The OSGi specifications for the framework and form specification is divided into
standard services are managed by the OSGi Alliance halves, one for the 0SGi framework
X h . . . and one for standard services.

(www.osgi.org/). The OSGi Alliance is an industry-

backed nonprofit corporation founded in March 1999. The framework specification is
now on its fourth major revision and is stable. Technology based on this specification

is in use in a range of large-scale industry applications, including (but not limited to)
automotive, mobile devices, desktop applications, and more recently enterprise appli-
cation servers.

NOTE Once upon a time, the letters OSGi were an acronym that stood for the
Open Services Gateway Initiative. This acronym highlights the lineage of the
technology but has fallen out of favor. After the third specification release,
the OSGi Alliance officially dropped the acronym, and OSGi is now a trade-
mark for the technology.

In the bulk of this book, we’ll discuss the OSGi framework, its capabilities, and how to
use these capabilities. Because there are so many standard services, we’ll discuss only
the most relevant and useful services, where appropriate. For any service we miss, you
can get more information from the OSGi specifications. For now, we’ll continue our
overview of OSGi by introducing the broad features of the OSGi framework.

The 0SGi framework

The OSGi framework plays a central role when you create OSGi-based applications,
because it’s the application’s execution environment. The OSGi Alliance’s framework
specification defines the proper behavior of the framework, which gives you a well-
defined API to program against. The specification also enables the creation of multi-
ple implementations of the core framework to give you some freedom of choice; there
are a handful of well-known open source projects, such as Apache Felix (http://
felix.apache.org/), Eclipse Equinox (www.eclipse.org/equinox/), and Knopflerfish

(www.knopflerfish.org/). This ultimately benefits you, because you aren’t tied to a

particular vendor and can program against the behavior defined in the specification.
It’s sort of like the reassuring feeling you get by knowing you can go into any McDon-
ald’s anywhere in the world and get the same meal!

OSGi technology is starting to pop up everywhere. You may not know it, but if you
use an IDE to do your Java development, it’s possible you already have experience with
OSGi. The Equinox OSGi framework implementation is the underlying runtime for

http://felix.apache.org/
http://felix.apache.org/
www.eclipse.org/equinox/
www.knopflerfish.org/
www.osgi.org/

10

CHAPTER 1 OSGi revealed

the Eclipse IDE. Likewise, if you use the GlassFish v3
application server, you're also using OSGi, because

the Apache Felix OSGi framework implementation is

its runtime. The diversity of use cases attests to the

Lifecycle

value and flexibility provided by the OSGi framework

through three conceptual layers defined in the OSGi

specification (see figure 1.4):

= Module layer—Concerned with packaging and

sharing code

Module

Figure 1.4
0SGi layered architecture

= Lifecycle layer—Concerned with providing execution-time module management
and access to the underlying OSGi framework

= Service layer—Concerned with interaction and communication among modules,
specifically the components contained in them

Like typical layered architectures, each layer is dependent on the layers beneath it.
Therefore, it’s possible for you to use lower OSGi layers without using upper ones, but

not vice versa. The next three chapters discuss these layers in detail, but we’ll give an

overview of each here.

MODULE LAYER

The module layer defines the OSGi module concept, called a bundle, which is a JAR file
with extra metadata (data about data). A bundle contains your class files and their related

resources, as depicted in figure 1.5. Bun-
dles typically aren’t an entire application
packaged into a single JAR file; rather,
they’re the logical modules that combine
to form a given application. Bundles are
more powerful than standard JAR files,
because you can explicitly declare which
contained packages are externally visible
(that is, exported packages). In this sense,
bundles extend the normal access modifi-
ers (public, private, and protected)
associated with the Java language.
Another important advantage of bun-
dles over standard JAR files is the fact that
you can explicitly declare on which exter-
nal packages the bundles depend (that is,
imported packages). The main benefit of
explicitly bundles’
exported and imported packages is that
the OSGi framework can manage and ver-
ify their consistency automatically; this

declaring your

class

Class files
— __
——

Bundle
- =
Resource files
Manifest.mf
Metadata

Figure 1.5 A bundle contains code, resources,
and metadata.

An architectural overview of OSGi 11

process is called bundle resolution and involves matching exported packages to imported
packages. Bundle resolution ensures consistency among bundles with respect to ver-
sions and other constraints, which we’ll discuss in detail in chapter 2.

LIFECYCLE LAYER

The lifecycle layer defines how bundles are dynamically installed and managed in the
OSGi framework. If you were building a house, the module layer would provide the
foundation and structure, and the lifecycle layer would be the electrical wiring. It
makes everything run.

The lifecycle layer serves two different purposes. External to your application, the
lifecycle layer precisely defines the bundle lifecycle operations (install, update, start,
stop, and uninstall). These lifecycle operations allow you to dynamically administer,
manage, and evolve your application in a well-defined way. This means bundles can
be safely added to and removed from the framework without restarting the applica-
tion process.

Internal to your application, the lifecycle layer defines how your bundles gain
access to their execution context, which provides them with a way to interact with the
OSGi framework and the facilities it provides during execution. This overall approach
to the lifecycle layer is powerful because it lets you create externally (and remotely)
managed applications or completely self-managed applications (or any combination).

SERVICE LAYER
Finally, the service layer supports and promotes a flexible application programming
model incorporating concepts popularized by service-oriented computing (although
these concepts were part of the OSGi framework before service-oriented computing
became popular). The main concepts revolve around the service-oriented publish,
find, and bind interaction pattern: service providers publish their services into a ser-
vice registry, while service clients search the registry to find available services to use
(see figure 1.6). Nowadays, this service-oriented architecture (SOA) is largely associ-
ated with web services; but OSGi services are local to a single VM, which is why some
people refer to it as SOA in a VM.

The OSGi service layer is intuitive,
because it promotes an interface-based

development approach, which is gener- f@‘;ﬁ‘;‘;‘;

ally considered good practice. Specifi-

cally, it promotes the separation of Publish Find
interface and implementation. OSGi ser- deii??ﬁon

vices are Java interfaces representing a

conceptual contract between service Service Sarvies
providers and service clients. This makes Rl Interact requester

the service layer lightweight, because ser-

vice pr oviders are just]ava objects Figure 1.6 The service-oriented interaction

. . . . pattern. Providers publish services into a registry
accessed via direct method invocation. \here requesters can discover which services are

Additionally, the service layer expands available for use.

12

1.2.2

1.3

13.1

CHAPTER 1 OSGi revealed

the bundle-based dynamism of the lifecycle layer with service-based dynamism—services
can appear or disappear at any time. The resultis a programming model eschewing the
monolithic and brittle approaches of the past, in favor of being modular and flexible.

This sounds well and good, but you may still be wondering how these three layers
fit together and how you go about using them to create an application on top of them.
In the next couple of sections, we’ll explore how these layers fit together using some
small example programs.

Putting it all together

The OSGi framework is made up of layers, but how do you use these layers in applica-
tion development? We’ll make it clearer by outlining the general approach you’ll use
when creating an OSGi-based application:

1 Design your application by breaking it down into service interfaces (normal
interface-based programming) and clients of those interfaces.

2 Implement your service provider and client components using your preferred
tools and practices.

3 Package your service provider and client components into (usually) separate
JAR files, augmenting each JAR file with the appropriate OSGi metadata.

4 Start the OSGi framework.

5 Install and start all your component JAR files from step 3.

If you’re already following an interface-based approach, the OSGi approach will feel
familiar. The main difference will be how you locate your interface implementations
(that is, your services). Normally, you might instantiate implementations and pass
around references to initialize clients. In the OSGi world, your services will publish
themselves in the service registry, and your clients will look up available services in the
registry. After your bundles are installed and started, your application will start and
execute as normal, but with several advantages. Underneath, the OSGi framework pro-
vides more rigid modularity and consistency checking, and its dynamic nature opens
up a world of possibilities.

Don’t fret if you don’t or can’t use an interfaced-based approach for your develop-
ment. The first two layers of the OSGi framework still provide a lot of functionality; in
truth, the bulk of OSGi framework functionality lies in these first two layers, so keep
reading. Enough talk: let’s look at some code.

“Hello, world!” examples

Because OSGi functionality is divided over the three layers mentioned previously
(modularity, lifecycle, and service), we’ll show you three different “Hello, world!”
examples that illustrate each of these layers.

Module layer example

The module layer isn’t related to code creation as such; rather, it’s related to the pack-
aging of your code into bundles. You need to be aware of certain code-related issues

“Hello, world!” examples 13

when developing, but by and large you prepare code for the module layer by adding
packaging metadata to your project’s generated JAR files. For example, suppose you
want to share the following class.

Listing 1.2 Basic greeting implementation

package org.foo.hello;

public class Greeting
final String m name;

public Greeting(String name) {
m _name = name;

}

public void sayHello() {
System.out.println("Hello, " + m name + "!");

}
}

During the build process, you compile the source code and put the generated class
file into a JAR file. To use the OSGi module layer, you must add some metadata into
your JAR file’s META-INF/MANIFEST.MF file, such as the following:

Bundle-ManifestVersion: 2

Bundle-Name: Greeting API
Bundle-SymbolicName: org.foo.hello
Bundle-Version: 1.0

Export-Package: org.foo.hello;version="1.0"

The first line indicates the OSGi metadata syntax version. Next is the human-readable
name, which isn’t strictly necessary. This is followed by the symbolic name and version
bundle identifier. The last line shares packages with other bundles.

In this example, the bulk of the metadata is related to bundle identification. The
important part is the Export-Package statement, because it extends the functionality
of a typical JAR file with the ability for you to explicitly declare which packages con-
tained in the JAR are visible to its users. In this example, only the contents of the
org.foo.hello package are externally visible; if the example included other pack-
ages, they wouldn’t be externally visible. This means that when you run your applica-
tion, other modules won’t be able to accidentally (or intentionally) depend on
packages your module doesn’t explicitly expose.

To use this shared code in another module, you again add metadata. This time,
you use the Import-Package statement to explicitly declare which external packages
are required by the code contained in the client JAR. The following snippet illustrates:
Bundle-ManifestVersion: 2
Bundle-Name: Greeting Client
Bundle-SymbolicName: org.foo.hello.client

Bundle-Version: 1.0
Import-Package: org.foo.hello;version="[1.0,2.0)"

In this case, the last line specifies a dependency on an external package.

14

1.3.2

CHAPTER 1 OSGi revealed

To see this example in action, go in the chapter01/greeting-example/modularity/
directory in the book’s companion code, and type ant to build it and java -jar
main.jar to run it. Although the example is simple, it illustrates that creating OSGi
bundles out of existing JAR files is a reasonably non-intrusive process. In addition, there
are tools that can help you create your bundle metadata, which we’ll discuss in appendix
A; but in reality, no special tools are required to create a bundle other than what
you normally use to create a JAR file. Chapter 2 will go into all the juicy details of
OSGi modularity.

Lifecycle layer example

In the last subsection, you saw that it’s possible to take advantage of OSGi functionality
in a non-invasive way by adding metadata to your existing JAR files. Such a simple
approach is sufficient for most reusable libraries, but sometimes you need or want to
go further to meet specific requirements or to use additional OSGi features. The life-
cycle layer moves you deeper into the OSGi world.

Perhaps you want to create a module that performs some initialization task, such
as starting a background thread or initializing a driver; the lifecycle layer makes this
possible. Bundles may declare a given class as an activator, which is the bundle’s hook
into its own lifecycle management. We’ll discuss the full lifecycle of a bundle in chap-
ter 3, but first let’s look at a simple example to give you an idea of what we’re talking
about. The following listing extends the previous Greeting class to provide a single-
ton instance.

Listing 1.3 Extended greeting implementation

package org.foo.hello;

public class Greeting ({

static Greeting instance;

final String m name;

Greeting(String name) {
m_name = name;
1 Clients must

use singleton
public static Greeting get() { g

return instance;

public void sayHello() {
System.out.println("Hello, " + m _name + "!");
1

}

Listing 1.4 implements a bundle activator to initialize the Greeting class singleton
when the bundle is started and clear it when it’s stopped. The client can now use the
preconfigured singleton instead of creating its own instance.

“Hello, world!” examples 15

Listing 1.4 OSGi bundle activator for our greeting implementation

package org.foo.hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator ({

public void start (BundleContext ctx) {
Greeting.instance = new Greeting("lifecycle");

}

public void stop (BundleContext ctx) {
Greeting.instance = null;

}

}

A bundle activator must implement a simple OSGi interface, which in this case is com-
posed of the two methods start () and stop (). At execution time, the framework
constructs an instance of this class and invokes the start () method when the bundle
is started and the stop () method when the bundle is stopped. (What we mean by
starting and stopping a bundle will become clearer in chapter 3.) Because the frame-
work uses the same activator instance while the bundle is active, you can share mem-
ber variables between the start () and stop () methods.

You may wonder what the single parameter of type BundleContext in the start ()
and stop () methods is all about. This is how the bundle gets access to the OSGi frame-
work in which it’s executing. From this context object, the module has access to all the
OSGi functionality for modularity, lifecycle, and services. In short, it’s a fairly impor-
tant object for most bundles, but we’ll defer a detailed introduction of it until later
when we discuss the lifecycle layer. The important point to take away from this exam-
ple is that bundles have a simple way to hook into their lifecycle and gain access to the
underlying OSGi framework.

Of course, it isn’t sufficient to just create this bundle activator implementation;
you have to tell the framework about it. Luckily, this is simple. If you have an existing
JAR file you're converting to be a module, you must add the activator implementation
to the existing project so the class is included in the resulting JAR file. If you’re creat-
ing a bundle from scratch, you need to compile the class and put the result in a JAR
file. You must also tell the OSGi framework about the bundle activator by adding
another piece of metadata to the JAR file manifest. For this section’s example, you add
the following metadata to the JAR manifest:

Bundle-Activator: org.foo.hello.Activator

Import-Package: org.osgi.framework

Notice that you also need to import the org.osgi.framework package, because the
bundle activator has a dependency on it. To see this example in action, go to the
chapter01/greeting-example/lifecycle/ directory in the companion code and type
ant to build the example and java -jar main.jar to runit.

16

1.3.3

CHAPTER 1 OSGi revealed

We’ve now introduced how to create OSGi bundles out of existing JAR files using
the module layer and how to make your bundles lifecycle aware so they can use frame-
work functionality. The last example in this section demonstrates the service-oriented
programming approach promoted by OSGi.

Service layer example

If you follow an interfaced-based approach in your development, the OSGi service
approach will feel natural to you. To illustrate, consider the following Greeting
interface:

package org.foo.hello;
public interface Greeting {
void sayHello() ;

}

For any given implementation of the Greeting interface, when the sayHello()
method is invoked, a greeting will be displayed. In general, a service represents a con-
tract between a provider and prospective clients; the semantics of the contract are typ-
ically described in a separate, human-readable document, like a specification. The
previous service interface represents the syntactic contract of all Greeting implemen-
tations. The notion of a contract is necessary so that clients can be assured of getting
the functionality they expect when using a Greeting service.

The precise details of how any given Greeting implementation performs its task
aren’t known to the client. For example, one implementation may print its greeting
textually, whereas another may display its greeting in a GUI dialog box. The following
code depicts a simple text-based implementation.

Listing 1.5 Implementation of the Greeting interface

package org.foo.hello.impl;
import org.foo.hello.Greeting;

public class GreetingImpl implements Greeting {
final String m name;

GreetingImpl (String name) {
m _name = name;

}

public void sayHello() {
System.out.println("Hello, " + m _name + "!");

}

}

Your may be thinking that nothing in the service interface or listing 1.5 indicates that
you’re defining an OSGi service. You’re correct. That’s what makes the OSGi’s service
approach so natural if you're already following an interface-based approach; your
code will largely stay the same. Your development will be a little different in two
places: how you make a service instance available to the rest of your application, and
how the rest of your application discovers the available service.

“Hello, world!” examples 17

All service implementations are ultimately packaged into a bundle, and that bun-
dle must be lifecycle aware in order to register the service. This means you need to
create a bundle activator for the example service, as shown next.

Listing 1.6 OSGi bundle activator with service registration

package org.foo.hello.impl;

import org.foo.hello.Greeting;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator ({

public void start (BundleContext ctx) {
ctx.registerService (Greeting.class.getName (),
new GreetingImpl ("service"), null);
}

public void stop (BundleContext ctx) {}

}
This time, in the start () method, instead of storing the Greeting implementation as
a singleton, you use the provided bundle context to register it as a service in the ser-
vice registry. The first parameter you need to provide is the interface name(s) that the
service implements, followed by the actual service instance, and finally the service
properties. In the stop () method, you could unregister the service implementation
before stopping the bundle; but in practice, you don’t need to do this. The OSGi
framework automatically unregisters any registered services when a bundle stops.

You’ve seen how to register a service, but what about discovering a service? The fol-
lowing listing shows a simplistic client that doesn’t handle missing services and that
suffers from potential race conditions. We’ll discuss a more robust way to access ser-
vices in chapter 4.

Listing 1.7 OSGi bundle activator with service discovery

package org.foo.hello.client;

import org.foo.hello.Greeting;
import org.osgi.framework.*;

public class Client implements BundleActivator {

public void start (BundleContext ctx) { LOOkS.
ServiceReference ref = up service
ctx.getServiceReference (Greeting.class.getName ()) ; reference
((Greeting) ctx.getService (ref)) .sayHello(); Retrieves and
} uses service

public void stop(BundleContext ctx) {}

}

Notice that accessing a service in OSGi is a two-step process. First, an indirect refer-
ence is retrieved from the service registry @. Second, this indirect reference is used to

18

1.34

CHAPTER 1 OSGi revealed

access the service object instance @. The service reference can be safely stored in a
member variable; but in general it isn’t a good idea to hold on to references to service
object instances, because services may be unregistered dynamically, resulting in stale
references that prevent garbage collection of uninstalled bundles.

Both the service implementation and the client should be packaged into separate
bundle JAR files. The metadata for each bundle declares its corresponding activator,
but the service implementation exports the org.foo.hello package, whereas the cli-
ent imports it. Note that the client bundle’s metadata only needs to declare an import
for the Greeting interface package—it has no direct dependency on the service
implementation. This makes it easy to swap service implementations dynamically with-
out restarting the client bundle. To see this example in action, go to the chapter01/
greeting-example/service/ directory in the companion code and type ant to build the
example and java -jar main.jar to run it

Now that you’ve seen some examples, you can better understand how each layer of
the OSGi framework builds on the previous one. Each layer gives you additional capa-
bilities when building your application, but OSGi technology is flexible enough for
you to adopt it according to your specific needs. If you only want better modularity in
your project, use the module layer. If you want a way to initialize modules and interact
with the module layer, use both the module and lifecycle layers. If you want a dynamic,
interface-based development approach, use all three layers. The choice is yours.

Setting the stage

To help introduce the concepts of each layer in the OSGi framework in the next three
chapters, we’ll use a simple paint program,; its user interface is shown in figure 1.7.

St

O A
© L
O

O

Figure 1.7 Simple paint
program user interface

1.4

14.1

Putting OSGi in context 19

The paint program isn’t intended to be independently useful; rather, it’s used to dem-
onstrate common issues and best practices.

From a functionality perspective, the paint program only allows the user to paint
various shapes, such as circles, squares, and triangles. The shapes are painted in pre-
defined colors. Available shapes are displayed as buttons in the main window’s toolbar.
To draw a shape, the user selects it in the toolbar and then clicks anywhere in the can-
vas to draw it. The same shape can be drawn repeatedly by clicking in the canvas
numerous times. The user can drag drawn shapes to reposition them. This sounds
simple enough. The real value of using a visual program for demonstrating these con-
cepts will become evident when we start introducing execution-time dynamism.

We’ve finished our overview of the OSGi framework and are ready to delve into the
details; but before we do, we’ll put OSGi in context by discussing similar or related tech-
nologies. Although no Java technology fills the exact same niche as OSGi, several tread
similar ground, and it’s worth understanding their relevance before moving forward.

Putting OSGi in context

OSGi is often mentioned in the same breath with many other technologies, butit’s in a
fairly unique position in the Java world. Over the years, no single technology has
addressed OSGi’s exact problem space, but there have been overlaps, complements,
and offshoots. Although it isn’t possible to cover how OSGi relates to every conceivable
technology, we’ll address some of the most relevant in roughly chronological order.
After reading this section, you should have a good idea whether OSGi replaces your
familiar technologies or is complementary to them.

Java Enterprise Edition

Java Enterprise Edition (Java EE, formerly J2EE) has roots dating back to 1997. Java EE
and OSGi began targeting opposite ends of the computing spectrum (the enterprise
vs. embedded markets, respectively). Only within the last couple of years has OSGi
technology begun to take root in the enterprise space.

In total, the Java EE API stack isn’t related to OSGi. The Enterprise JavaBeans (E]JB)
specification is probably the closest comparable technology from the Java EE space,
because it defines a component model and packaging format. But its component
model focuses on providing a standard way to implement enterprise applications that
must regularly handle issues of persistence, transactions, and security. The EJB deploy-
ment descriptors and packaging formats are relatively simplistic and don’t address the
full component lifecycle, nor do they support clean modularity concepts.

OSGi is also used in the Java EE domain to provide a more sophisticated module
layer beneath these existing technologies. Because the two ignored each other for so
long, there are some challenges in moving existing Java EE concepts to OSGi, largely
due to different assumptions about how class loading is performed. Still, progress is
being made, and today OSGi plays a role in all major application servers, such as
IBM’s WebSphere, Red Hat’s JBoss, Oracle’s GlassFish, ObjectWeb’s JOnAS, and
Apache’s Geronimo.

20

14.2

143

144

CHAPTER 1 OSGi revealed

Jini

An often-overlooked Java technology is Jini, which is definitely a conceptual sibling of
OSGi. Jini targets OSGi’s original problem space of networked environments with a
variety of connected devices.

Sun began developing Jini in 1998. The goal of Jini is to make it possible to admin-
ister a networked environment as a flexible, dynamic group of services. Jini introduces
the concepts of service providers, service consumers, and a service lookup registry. All
of this sounds completely isomorphic to OSGi; where Jini differs is its focus on distrib-
uted systems. Consumers access clients through some form of proxy using a remote
procedure call mechanism, such as Remote Method Invocation (RMI). The service-
lookup registry is also a remotely accessible, federated service. The Jini model assumes
remote access across multiple VM processes, whereas OSGi assumes everything occurs
in a single VM process. But in stark contrast to OSGi, Jini doesn’t define any modular-
ity mechanisms and relies on the execution-time code-loading features of RMI. The
open source project Newton is an example of combining OSGi and Jini technologies
in a single framework.

NetBeans

NetBeans, an IDE and application platform for Java, has a long history of having a
modular design. Sun purchased NetBeans in 1999 and has continued to evolve it.

The NetBeans platform has a lot in common with OSGi. It defines a fairly sophisti-
cated module layer and also promotes interface-based programming using a lookup
pattern that is similar to the OSGi service registry. Whereas OSGi focused on embed-
ded devices and dynamism, the NetBeans platform was originally an implementation
layer for the IDE. Eventually, the platform was promoted as a separate tool in its own
right, but it focused on being a complete GUI application platform with abstractions
for file systems, windowing systems, and much more. NetBeans has never been seen as
comparable to OSGi, even though it is; perhaps OSGi’s more narrow focus is an asset in
this case.

Java Management Extensions

Java Management Extensions (JMX), released in 2000 through the Java Community
Process (JCP) as JSR 3, was compared to OSGi in the early days. JMX is a technology for
remotely managing and monitoring applications, system objects, and devices; it
defines a server and a component model for this purpose.

JMX isn’t comparable to OSGi; it’s complementary, because it can be used to man-
age and monitor an OSGi framework and its bundles and services. Why did the com-
parisons arise in the first place? There are probably three reasons: the JMX
component model was sufficiently generic that it was possible to use it for building
applications; the specification defined a mechanism for dynamically loading code into
its server; and certain early adopters pushed JMX in this direction. One major perpe-
trator was JBoss, which adopted and extended JMX for use as a module layer in its

145

1.4.6

14.7

Putting OSGi in context 21

application server (since eliminated in JBoss 5). Nowadays, JMX isn’t (and shouldn’t
be) confused with a module system.

Lightweight containers

Around 2003, lightweight or inversion of control (IoC) containers started to appear,
such as PicoContainer, Spring, and Apache Avalon. The main idea behind this crop
of IoC containers was to simplify component configuration and assembly by eliminat-
ing the use of concrete types in favor of interfaces. This was combined with depen-
dency injection techniques, where components depend on interface types and
implementations of the interfaces are injected into the component instance. OSGi
services promote a similar interface-based approach but employ a service-locator pat-
tern to break a component’s dependency on component implementations, similar to
Apache Avalon.

At the same time, the Service Binder project was creating a dependency injection
framework for OSGi components. It’s fairly easy to see why the comparisons arose.
Regardless, OSGi’s use of interface-based services and the service-locator pattern long
predated this trend, and none of these technologies offer a sophisticated dynamic
module layer like OSGi. There is now significant movement from IoC vendors to port
their infrastructures to the OSGi framework, such as the work by VMware (formerly
SpringSource) on the OSGi Blueprint specification (discussed in chapter 12).

Java Business Integration

Java Business Integration (JBI) was developed in the JCP and released in 2005. Its goal
was to create a standard SOA platform for creating enterprise application integration
(EAI) and business-to-business (B2B) integration solutions.

In JBI, plugin components provide and consume services after they're plugged in
to the JBI framework. Components don’t directly interact with services, as in OSGi;
instead, they communicate indirectly using normalized Web Services Description Lan-
guage (WSDL)-based messages.

JBI uses a JMX-based approach to manage component installation and lifecycle and
defines a packaging format for its components. Due to the inherent similarities to
OSGi’s architecture, it was easy to think JBI was competing for a similar role. On the
contrary, its fairly simplistic modularity mechanisms mainly addressed basic compo-
nent integration into the framework. It made more sense for JBI to use OSGi’s more
sophisticated modularity, which is ultimately what happened in Project Fuji from Sun
and ServiceMix from Apache.

JSR 277

In 2005, Sun announced JSR 277 (“Java Module System”) to define a module system
for Java. JSR 277 was intended to define a module framework, packaging format, and
repository system for the Java platform. From the perspective of the OSGi Alliance,
this was a major case of reinventing the wheel, because the effort was starting from
scratch rather than building on the experience gained from OSGi.

22

148

1.4.9

1.4.10

CHAPTER 1 OSGi revealed

In 2006, many OSGi supporters pushed for the introduction of JSR 291 (titled
“Dynamic Component Support for Java”), which was an effort to bring OSGi technol-
ogy properly into JCP standardization. The goal was twofold: to create a bridge
between the two communities and to ensure OSGi technology integration was consid-
ered by JSR 277. The completion of JSR 291 was fairly quick because it started from the
OSGi R4 specification and resulted in the R4.1 specification release. During this
period, OSGi technology continued to gain momentum. JSR 277 continued to make
slow progress through 2008 until it was put on hold indefinitely.

JSR 294

During this time in 2006, JSR 294 (titled “Improved Modularity Support in the Java
Programming Language”) was introduced as an offshoot of JSR 277. Its goal was to
focus on necessary language changes for modularity. The original idea was to intro-
duce the notion of a superpackage into the Java language—a package of packages.

The specification of superpackages got bogged down in details until it was scrapped
in favor of adding a module-access modifier keyword to the language. This simplifica-
tion ultimately led to JSR 294 being dropped and merged back into JSR 277 in 2007. But
when it became apparent in 2008 that JSR 277 would be put on hold, JSR 294 was pulled
back out to address a module-level access modifier.

With JSR 277 on hold, Sun introduced an internal project, called Project Jigsaw, to
modularize the JDK. The details of Jigsaw are still evolving after the acquisition of Sun
by Oracle.

Service Component Architecture

Service Component Architecture (SCA) began as an industry collaboration in 2004
and ultimately resulted in final specifications in 2007. SCA defines a service-oriented
component model similar to OSGi’s, where components provide and require services.
Its component model is more advanced because it defines composite components (com-
ponents made of other components) for a fully recursive component model.

SCA is intended to be a component model for declaratively composing compo-
nents implemented using various technologies (such as Java, Business Process Execu-
tion Language [BPEL], EJB, and C++) and integrated using various bindings (such as
SOAP/HTTP, Java Message Service [JMS], Java EE Connector Architecture [JCA], and
Internet Inter-Orb Protocol [IIOP]). SCA does define a standard packaging format,
but it doesn’t define a sophisticated module layer like OSGi provides. The SCA specifi-
cation leaves open the possibility of other packaging formats, which makes it possible
to use OSGi as a packaging and module layer for Java-based SCA implementations;
Apache Tuscany and Newton are examples of an SCA implementation that use OSGi.
In addition, bundles could be used to implement SCA component types, and SCA
could be used as a mechanism to provide remote access to OSGi services.

.NET

Although Microsoft’s .NET (released in 2002) isn’t a Java technology, it deserves men-
tion because it was largely inspired by Java and did improve on it in ways that are similar

15

Summary 23

to how OSGi improves Java. Microsoft not only learned from Java’s example but also
learned from the company’s own history of dealing with DLL hell. As a result, .NET
includes the notion of an assembly, which has modularity aspects similar to an OSGi bun-
dle. All .NET code is packaged into an assembly, which takes the form of a DLL or EXE
file. Assemblies provide an encapsulation mechanism for the code contained inside of
them; an access modifier, called internal, is used to indicate visibility within an assem-
bly but not external to it. Assemblies also contain metadata describing dependencies on
other assemblies, but the overall model isn’t as flexible as OSGi’s. Because dependen-
cies are on specific assembly versions, the OSGi notion of provider substitutability
isn’t attainable.

At execution time, assemblies are loaded into application domains and can only be
unloaded by unloading the entire application domain. This makes the highly dynamic
and lightweight nature of OSGi hard to achieve, because multiple assemblies loaded
into the same application domain must be unloaded at the same time. It’s possible to
load assemblies into separate domains; but then communication across domains must
use interprocess communication to collaborate, and type sharing is greatly compli-
cated. There have been research efforts to create OSGi-like environments for the .NET
platform, but the innate differences between the .NET and Java platforms results in
the two not having much in common. Regardless, .NET deserves credit for improving
on standard Java in this area.

Summary

In this chapter, we’ve laid the foundation for everything we’ll cover in the rest of the
book. What you’ve learned includes the following:

= The Java platform is great for developing applications, but its support for mod-
ularity is largely limited to fine-grained object-oriented mechanisms, rather
than more coarse-grained modularity features needed for project management.

= The OSGi Service Platform, through the OSGi framework, addresses the modu-
larity shortcomings of Java to create a powerful and flexible solution.

= The declarative, metadata-based approach employed by OSGi provides a non-
invasive way to take advantage of its sophisticated modularity capabilities by
modifying how projects are packaged with few, if any, changes to the code.

= The OSGi framework defines a controlled, dynamic module lifecycle to simplify
management.

= Following good design principles, OSGi promotes an interface-based program-
ming approach to separate interfaces from implementations.

With this high-level understanding of Java’s limitations and OSGi’s capabilities, we can
start our adventure by diving into the details of the module layer in chapter 2. This is
the foundation of everything else in the OSGi world.

Mastering modularity

This chapter covers

® Understanding modularity and why it's desirable

m Using metadata to describe OSGi bundles
(aka modules)

m Explaining how bundle metadata is used to
manage code visibility

m |llustrating how bundles are used to create an
application

In the previous chapter, we took a whistle-stop tour of the OSGi landscape. We
made a number of observations about how standard Java is broken with respect to
modularity and gave you examples where OSGi can help. We also introduced you to
some OSGi concepts, including the core layers of the OSGi framework: module, life-
cycle, and service.

In this chapter, we’ll deal specifically with the module layer, because its features
are the initial attraction for most Java developers to OSGi. The module layer is the
foundation on which everything else rests in the OSGi world. We’ll provide you with
a full understanding of what OSGi modularity is, why modularity is important in a
general sense, and how it can help you in designing, building, and maintaining
Java applications in the future.

24

2.1

211

What is modularity? 25

The goal of this chapter is to get you thinking in terms of modules rather than
JAR files. We’ll teach you about OSGi module metadata, and you’ll learn how to
describe your application’s modularity characteristics with it. To illustrate these con-
cepts, we’ll continue the simple paint program example that we introduced in chap-
ter 1; you’ll convert it from a monolithic application into a modular one. Let’s get
started with modularity.

What is modularity?

Modularity encompasses so many aspects of programming that we often take it for
granted. The more experience you have with system design, the more you know good
designs tend to be modular—but what precisely does that mean? In short, it means
designing a complete system from a set of logi-
cally independent pieces; these logically indepen-
dent pieces are called modules. You may be

thinking, “Is that it?” In the abstract, yes, that is it; Module
but of course there are a lot of details underneath
these simple concepts. Classl

A module defines an enforceable logical Class?
boundary: code either is part of a module (it’s on Class?
the inside) or it isn’t part of a module (it’s on the

) .))) Class4
outside). The internal (implementation) details of Claoob

a module are visible only to code that is part of a

module. For all other code, the only visible details

of amodule are those thatit explicitly exposes (the ~ Figure 2.1 A module defines a

public API), as depicted in figure 2.1. This aspect of logical boundary. The module itself is
. v explicitly in control of which classes

modules makes them an integral part of designing are completely encapsulated and

the logical structure of an application. which are exposed for external use.

Modularity vs. object orientation

You may wonder, “Hey, doesn’t object orientation give you these things?” That’s cor-
rect: object orientation is intended to address these issues too. You'll find that modu-
larity provides many of the same benefits as object orientation. One reason these two
programming concepts are similar is because both are forms of separation of concerns.
The idea behind separation of concerns is you should break down a system into mini-
mally overlapping functionality or concerns, so that each concern can be indepen-
dently reasoned about, designed, implemented, and used. Modularity is one of the
earliest forms of separation of concerns. It gained popularity in the early 1970s,
whereas object orientation gained popularity in the early 1980s.

With that said, you may now be wondering, “If I already have object orientation in
Java, why do I need modularity too?” Another good question. The need for both arises
due to granularity.

26

CHAPTER 2 Mastering modularity

Assume you need some functionality for your application. You sit down and start
writing Java classes to implement the desired functionality. Do you typically imple-
ment all your functionality in a single class? No. If the functionality is even remotely
complicated, you implement it as a set of classes. You may also use existing classes
from other parts of your project or from the JRE. When you’re done, a logical relation-
ship exists among the classes you created—but where is this relationship captured?
Certainly it’s captured in the low-level details of the code, because there are compila-
tion dependencies that won’t be satisfied if all classes aren’t available at compilation
time. Likewise, at execution time, these dependencies will fail if all classes aren’t pres-
ent on the class path when you try to execute your application.

Unfortunately, these relationships among classes can only be known through low-
level source code inspection or trial and error. Classes allow you to encapsulate the state
and behavior of a single, logical concept. But numerous classes are generally necessary
to create a well-designed application. Modules encapsulate classes, allowing you to
express the logical relationship among the classes—or concepts—in your application.
Figure 2.2 illustrates how modules encapsulate classes, and the resulting inter-module
relationships. You may think that Java packages allow you to capture such logical code
relationships. Well, you’re right. Packages are a form of built-in modularity provided by
Java, but they have some limitations, as discussed in section 1.1.1. So packages are a good
starting point in understanding how modularity helps you encapsulate code, but you
need amechanism thatgoes further. In the end, object orientation and modularity serve
different but complementary purposes
(see figure 2.3).] i

When you’re developing in Java, you
can view object orientation as the imple-
mentation approach for modules. As Class! =—= Interface] <&—=— Class2

such, when you’re developing classes,
T— Classd

Figure 2.2 Classes have explicit dependencies
due to the references contained in the code.
Modules have implicit dependencies due to the
code they contain.

Modulel Module2

you're programming in the small, which
means you aren’t thinking about the
overall structure of your application, but
instead are thinking in terms of specific
functionality. After you begin to logi-
cally organize related classes into mod-
ules, then you start to concern yourself
with programming in the large, which
means you're focusing on the larger log-

Visibility
ical pieces of your system and the rela- . Accessbility .
tionships among those pieces. Object —— , = Modularity
. K . orientation Cohesion
In addition to capturing relation- Coupli
oupling

ships among classes via module mem-

bership, modules also capture logical
system structure by explicitly declaring
dependencies on external code. With

Figure 2.3 Even though object orientation and
modularity provide similar capabilities, they
address them at different levels of granularity.

2.2

Why modularize? 27

this in mind, we now have all the pieces in place to more concretely define what we
mean by the term module in the context of this book.

MODULE A set of logically encapsulated implementation classes, an optional
public API based on a subset of the implementation classes, and a set of
dependencies on external code.

Although this definition implies that modules contain classes, at this point this sense
of containment is purely logical. Another aspect of modularity worth understanding is
physical modularity, which refers to the container of module code.

Logical vs. physical modularity

A module defines a logical boundary in your application, which impacts code visibility
in a fashion similar to access modifiers in object-oriented programming. Logical mod-
ularity refers to this form of code visibility. Physical modularity refers to how code is
packaged and/or made available for deployment.

In OSGi, these two concepts are largely conflated; a logical module is referred to as
a bundle, and so is the physical module (that is, the JAR file). Even though these two
concepts are nearly synonymous in OSGi, for modularity in general they aren’t, be-
cause it's possible to have logical modularity without physical modularity or to pack-
age multiple logical modules into a single physical module. Physical modules are
sometimes also referred to as deployment modules or deployment units.

The OSGi module layer allows you to properly express the modularity characteristics
of applications, but it’s not free. Let’s look in more depth at why you should modular-
ize your applications, so you can make up your own mind.

Why modularize?

We’ve talked about what modularity is, but we haven’t gone into great depth about
why you might want to modularize your own applications. In fact, you may be think-
ing, “If modularity has been around for almost 40 years and it’s so important, why isn’t
everyone already doing it?” That’s a great question, and one that probably doesn’t
have any single answer. The computer industry is driven by the next best thing, so we
tend to throw out the old when the new comes along. And in fairness, as we discussed
in the last section, the new technologies and approaches (such as object orientation
and component orientation) do provide some of the same benefits that modularity
was intended to address.

Java also provides another important reason why modularity is once again an
important concern. Traditionally, programming languages were the domain of logical
modularity mechanisms, and operating systems and/or deployment packaging sys-
tems were the domain of physical modularity. Java blurs this distinction because it’s
both a language and a platform. To compare to a similar situation, look at the .NET
platform. Microsoft, given its history of operating system development and the pain of

28

2.3

CHAPTER 2 Mastering modularity

DLL hell, recognized this connection early in .NET, which is why it has a module con-
cept called an assembly. Finally, the size of applications continues to grow, which makes
modularity an important part of managing their complexity—divide and conquer!

This discussion provides some potential explanations for why modularity is coming
back in vogue, but it doesn’t answer this section’s original question: Why should you
modularize your applications? Modularity allows you to reason about the logical struc-
ture of applications. Two key concepts arose from modularity decades ago:

= Cohesion measures how closely aligned a module’s classes are with each other
and with achieving the module’s intended functionality. You should strive for
high cohesion in your modules. For example, a module shouldn’t address many
different concerns (network communication, persistence, XML parsing, and so
on): it should focus on a single concern.

= Coupling, on the other hand, refers to how tightly bound or dependent differ-
ent modules are on each other. You should strive for low coupling among your
modules. For example, you don’t want every module to depend on all other
modules.

As you start to use OSGi to modularize your applications, you can’t avoid these issues.
Modularizing your application will help you see your application in a way that you
couldn’t before.

By keeping these principles of cohesion and coupling in mind, you’ll create more
reusable code, because it’s easier to reuse a module that performs a single function
and doesn’t have a lot of dependencies on other code.

More specifically, by using OSGi to modularize your applications, you’ll be able to
address the Java limitations discussed in section 1.1.1. Additionally, because the mod-
ules you’ll create will explicitly declare their external code dependencies, reuse is fur-
ther simplified because you’ll no longer have to scrounge documentation or resort to
trial and error to figure out what to put on the class path. This results in code that
more readily fits into collaborative, independent development approaches, such as in
multiteam, multilocation projects or in large-scale open source projects.

Now you know what modularity is and why you want it, so let’s begin to focus on
how OSGi provides it and what you need to do to use it in your own applications. The
example paint program will help you understand the concepts.

Modularizing a simple paint program

The functionality provided by OSGi’s module layer is sophisticated and can seem over-
whelming when taken in total. You’ll use a simple paint program, as discussed in
chapter 1, to learn how to use OSGi’s module layer. You’ll start from an existing paint
program, rather than creating one from scratch. The existing implementation follows
an interfaced-based approach with logical package structuring, so it’s amenable to
modularization, but it’s currently packaged as a single JAR file. The following listing
shows the contents of the paint program’s JAR file.

Modularizing a simple paint program 29

Listing 2.1 Contents of existing paint program’s JAR file

META-INF/

META-INF/MANIFEST.MF

org/

org/foo/

org/foo/paint/
org/foo/paint/PaintFramell.class
org/foo/paint/PaintFrame$l.class
org/foo/paint/PaintFrames$ShapeActionListener.class
org/foo/paint/PaintFrame.class
org/foo/paint/SimpleShape.class
org/foo/paint/ShapeComponent.class
org/foo/shape/
org/foo/shape/Circle.class
org/foo/shape/circle.png
org/foo/shape/Square.class
org/foo/shape/square.png
org/foo/shape/Triangle.class
org/foo/shape/triangle.png

The listing begins with a standard manifest file. Then come the application classes,
followed by various shape implementations.
The main classes composing the paint program are described in table 2.1.

Table 2.1 Overview of the classes in the paint program

Class Description

org.foo.paint.PaintFrame The main window of the paint program, which contains the
toolbar and drawing canvas. It also has a static main ()
method to launch the program.

org.foo.paint.SimpleShape An interface representing an abstract shape for painting.

org.foo.paint.ShapeComponent | A GUI component responsible for drawing shapes onto the
drawing canvas.

org.foo.shape.Circle An implementation of SimpleShape for drawing circles.
org.foo.shape.Square An implementation of SimpleShape for drawing squares.
org.foo.shape.Triangle An implementation of SimpleShape for drawing triangles.

For those familiar with Swing, PaintFrame extends JFrame and contains a JToolBar
and a JPanel canvas. PaintFrame maintains a list of available SimpleShape implemen-
tations, which it displays in the toolbar. When the user selects a shape in the toolbar
and clicks in the canvas to draw the shape, a ShapeComponent (which extends JCompo-
nent) is added to the canvas at the location where the user clicked. A ShapeComponent
is associated with a specific SimpleShape implementation by name, which it retrieves
from a reference to its PaintFrame. Figure 2.4 highlights some of the UI elements in
the paint program GUI.

30

CHAPTER 2 Mastering modularity

JFrame

.00 PaintFrame

03] 17
© K ¢
3

-+—— JToolBar

JPanel

© 1
A<_§J60mponent

Figure 2.4 The paint programis
a simple Swing application.

A static main () method on PaintFrame launches the paint program, which creates an
instance of the PaintFrame and each shape implementation, adding each shape
instance to the created PaintFrame instance. For further explanation, figure 2.5
captures the paint program classes and

their interrelationships. . 1 .
. . Faint * Simple

To run thisnonmodular version of the frame > shape
paint program, go into the chapter02/ 14 1 A
paint-nonmodular/ directory of the com- l S
panion code. Type ant to build the pro- 1 .
gram, and then type java -jar main.jar Shape .
torunit. Feel free to click around and see Gomponent WA fviangle

how it works; we won’t go into any more
details of the program’s implementation,
because GUI programming is beyond the
scope of this book. The important point is to understand the structure of the program.
Using this understanding, you’ll divide the program into bundles so you can enhance

Figure 2.5 Paint program class relationships

and enforce its modularity.

Currently, the paint program is packaged as a single JAR file, which we’ll call ver-
sion 1.0.0 of the program. Because everything is in a single JAR file, this implies that
the program isn’t already modularized. Of course, single-JAR-file applications can still
be implemented in a modular way—just because an application is composed of multi-
ple JAR files, that doesn’t mean it’s modular. The paint program example could have
both its logical and physical modularity improved. First, we’ll examine the program’s
logical structure and define modules to enhance this structure. Where do you start?

One low-hanging fruit you can look for is public APIs. It’s good practice in OSGi
(you’ll see why later) to separate your public APIs into packages so they can be easily
shared without worrying about exposing implementation details. The paint program
has a good example of a public API: its SimpleShape interface. This interface makes it

24

Introducing bundles 31

easy to implement new, possibly third-party shapes for use with the program. Unfortu-
nately, SimpleShape is in the same package as the program’s implementation classes.
To remedy this situation, you’ll shuffle the package structure slightly. You’ll move
SimpleShape into the org.foo.shape package and move all shape implementations
into a new package called org.foo.shape.impl. These changes divide the paint pro-
gram into three logical pieces according to the package structure:

= org.foo.shape—The public API for creating shapes
= org.foo.shape.impl—Various shape implementations
= org.foo.paint—The application implementation

Given this structure (logical modularity), you could package each of these packages as
separate JAR files (physical modularity). To have OSGi verify and enforce the modular-
ity, it isn’t sufficient to package the code as JAR files: you must package them as bun-
dles. To do this, you need to understand OSGi’s bundle concept, which is its logical
and physical unit of modularity. Let’s introduce bundles.

Introducing bundles

If you’re going to use OSGi technology, you may as well start getting familiar with the
term bundle, because you’ll hear and say it a lot. Bundleis how OSGi refers to its specific
realization of the concept.
Throughout the remainder of this book,
the terms module and bundle will be used

module

interchangeably; but in most cases we’re
specifically referring to bundles and not class
modularity in general, unless otherwise

noted. Enough fuss about how we’ll use

the term bundle—let’s define it. Class files

BUNDLE A physical unit of modularity
in the form of a JAR file containing
code, resources, and metadata, where
the boundary of the JAR file also serves
as the encapsulation boundary for log-
ical modularity at execution time.

e
———
—_—

Bundle

S——

Resource files

The contents of a bundle are graphically
depicted in figure 2.6. The main thing that
makes a bundle JAR file different than a

Manifest.mf

normal JAR file is its module metadata,
which is used by the OSGi framework to
manage its modularity characteristics. All
JAR files, even if they aren’t bundles, have
a place for metadata, which is in their
manifest file or, more specifically, in the

Metadata

Figure 2.6 A bundle can contain all the usual
artifacts you expect in a standard JAR file. The
only major difference is that the manifest file
contains information describing the bundle’s
modular characteristics.

32

24.1

CHAPTER 2 Mastering modularity

META-INF/MANIFEST.MF entry of the JAR file. This is where OSGi places its module meta-
data. Whenever we refer to a bundle’s manifest file, we’re specifically referring to the
module-related metadata in this standard JAR manifest file.

Note that this definition of a bundle is similar to the definition of a module, except
that it combines both the physical and logical aspects of modularity into one concept.
So before we get into the meat of this chapter, which is defining bundle metadata, let’s
discuss the bundle’s role in physical and logical modularity in more detail.

The bundle’s role in physical modularity

The main function of a bundle with respect to physical modularity is to determine
module membership. No metadata is associated with making a class a member of a
bundle. A given class is a member of a bundle if it’s contained in the bundle JAR file.
The benefit for you is that you don’t need to do anything special to make a class a
member of a bundle: just put it in the bundle JAR file.

This physical containment of classes leads to another important function of bundle
JAR files as a deployment unit. The bundle JAR file is tangible, and it’s the artifact you
share, deploy, and use when working with OSGi. The final important role of the bundle
JAR file is as the container of bundle metadata, because, as we mentioned, the JAR man-
ifest file is used to store it. These aspects of the bundle are shown in figure 2.7. The issue
of metadata placement is part of an ongoing debate, which we address in the sidebar for
those interested in the issue.

blah, blah, blzh,

blah, blah, blah, Manifest
blah, blah, blah

Classl ——
Class2 Bundle A
Class3 — Dgp[oy
S—
Class4 =—
Classb Bundle B
S —
blah, blah, blah, .
blah, blah, blah, Manifest
blah, blah, blah

Figure 2.7 A class is a member of a bundle if it’s packaged in it, the bundle carries its module metadata
inside it as part of its manifest data, and the bundle can be deployed as a unit into a runtime environment.

Where should metadata go?

Is it a good thing to store the module metadata in the physical module and not in the
classes themselves? There are two schools of thought on this subject. One says it's
better to include the metadata alongside the code it’s describing (in the source file
itself), rather than in a separate file where it’s more difficult to see the connection to
the code. This approach is possible with various techniques, such as doclets or the
annotations mechanism introduced in Java 5.

24.2

Introducing bundles

(continued)

33

Annotations are the choice du jour today. Unfortunately, when OSGi work started back
in 1999, annotations weren’t an option because they didn’t exist yet. Besides, there
are some good reasons to keep the metadata in a separate file, which brings us to

the second school of thought.

This school of thought argues that it's better to not bake metadata into the source
code, because it becomes harder to change. Having metadata in a separate file of-
fers you greater flexibility. Consider the following benefits of having separate module

metadata:

= You don’t need to recompile your bundle to make changes to its metadata.

= You don’t need access to the source code to add or modify metadata, which is
sometimes necessary when dealing with legacy or third-party libraries.

= You don’t need to load classes into the JVM to access the associated metadata.

= Your code doesn’t get a compile-time dependency on OSGi API.

= You can use the same code in multiple modules, which is convenient or even
necessary in some situations when packaging your modules.

= You can easily use your code on older or smaller JVMs that don’t support

annotations.

Regardless of whether your preferred approach is annotations, you can see that you
gain a good deal of flexibility by maintaining the module metadata in the manifest file.

The bundle’s role in logical modularity

Similar to how the bundle JAR file physically encapsulates the member classes, the bun-

dle’srole in logical modularity is to logically encapsulate member classes. What precisely

does this mean? It specifically relates to code visibility. Imagine that you have a utility

classin autil package thatisn’t part of your project’s public API. To use this utility class

from different packages in your project, it must be public. Unfortunately, this means

anyone can use the utility class, even though
it’s not part of your public APL

The logical boundary created by a bun-
dle changes this, giving classes inside the
bundle different visibility rules to external
code, as shown in figure 2.8. This means
public classes inside your bundle JAR file
aren’t necessarily externally visible. You may
be thinking, “What?” This isn’t a misstate-
ment: it’s a major differentiator between
bundles and standard JAR files. Only code
explicitly exposed via bundle metadata is vis-
ible externally. This logical boundary effec-
tively extends standard Java access modifiers

Exposed packages

Bundle A Bundle B

N

Private packages

Figure 2.8 Packages (and therefore the class-
es in them) contained in a bundle are private to
that bundle unless explicitly exposed, allowing
them to be shared with other bundles.

34

2.5

CHAPTER 2 Mastering modularity

(public, private, protected, and package private) with module private visibility
(only visible in the module). If you’re familiar with .NET, this is similar to the internal
access modifier, which marks something as being visible in an assembly but private from
other assemblies.

Asyou can see, the bundle concept plays important roles in both physical and logical
modularity. Now we can start to examine how you use metadata to describe bundles.

Defining bundles with metadata

In this section, we’ll discuss OSGi bundle metadata in detail, and you’ll use the paint
program as a use case to understand the theory. The main purpose of bundle meta-
data is to precisely describe the modularity-related characteristics of a bundle so the
OSGi framework can handle it appropriately, such as resolving dependencies and
enforcing encapsulation. The module-related metadata captures the following pieces
of information about the bundle:

= Human-readable information—Optional information intended purely as an aid to
humans who are using the bundle

= Bundle identification—Required information to identify a bundle

= Code visibility—Required information for defining which code is internally visi-
ble and which internal code is externally visible

We’ll look at each of these areas in the following subsections. But because OSGi relies
on the manifest file, we’ve included a sidebar to explain its persnickety syntax details
and OSGi’s extended manifest value syntax. Luckily, there are tools for editing and
generating bundle metadata, so you don’t have to create it manually, but it’s still
worthwhile to understand the syntax details.

JAR file manifest syntax

The JAR file manifest is composed of groups of name-value pairs (attributes). The
general format for an attribute declaration is

name: value

The name isn’t case sensitive and can contain alphanumeric, underscore, and hy-
phen characters. Values can contain any character information except carriage re-
turns and line feeds. The name and the value must be separated by a colon and a
space. A single line can’t exceed 72 characters. If a line must exceed this length, you
must continue it on the next line, which you do by starting the next line with a single
space character followed by the continuation of the value. Manifest lines in OSGi can
grow quite long, so it’s useful to know this.

You define an attribute group by placing attribute declarations on successive lines
(one line after the other) in the manifest file. An empty or blank line between attribute
declarations signifies different attribute groups. OSGi uses the first group of attri-
butes, called the main attributes, for module metadata. The order of attributes in a
group isn’'t important. If you look in a manifest file, you may see something like this:

Defining bundles with metadata 35

(continued)

Manifest-Version: 1.0

Created-By: 1.4 (Sun Microsystems Inc.)

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.api

Bundle-Version: 1.0.0.SNAPSHOT

Bundle-Name: Simple Paint API

Export-Package: org.foo.api

Import-Package: javax.swing,org.foo.api

Bundle-License: http://www.opensource.org/licenses/apache2.0.php

We’ll get into the exact meaning of most of these attributes throughout the remainder
of this section. But for now, we’ll focus on the syntax. Whereas the standard Java
manifest syntax is a name-value pair, OSGi defines a common structure for OSGi-
specified attribute values. Most OSGi manifest attribute values are a list of clauses
separated by commas, such as

Property-Name: clause, clause, clause

Each clause is further broken down into a target and a list of name-value pair param-
eters separated by semicolons:

Property-Name: targetl; parameterl=valuel; parameter2=value2,
target2; parameterl=valuel; parameter2=value2,
target3; parameterl=valuel; parameter2=value2

Parameters are divided into two types, called attributes and directives. Directives al-
ter framework handling of the associated information and are explicitly defined by the
OSGi specification. Attributes are arbitrary name-value pairs. You’ll see how to use
directives and attributes later. Slightly different syntax is used to differentiate direc-
tives (: =) from attributes (=), which looks something like this:

Property-Name: targetl; dirl:=valuel; attrl=value2,
target2; dirl:=valuel; attrl=value2,
target3; dirl:=valuel; attrl=value2

Keep in mind that you can have any number of directives and attributes assigned to
each target, all with different values. Values containing whitespace or separator char-
acters should be quoted to avoid parsing errors. Sometimes you’ll have lots of targets
with the same set of directives and attributes. In such a situation, OSGi provides a
shorthand wayto avoid repeating all the duplicated directives and attributes, as follows:

Property-Name: targetl; target2; dirl:=valuel; attrl=value2

This is equivalent to listing the targets separately with their own directives and attri-
butes. This is pretty much everything you need to understand the structure of OSGi
manifest attributes. Not all OSGi manifest values conform to this common structure,
but the majority do, so it makes sense for you to become familiar with it.

2.5.1 Human-readable information

Most bundle metadata is intended to be read and interpreted by the OSGi framework
in its effort to provide a general module layer for Java. But some bundle metadata
serves no purpose other than helping humans understand what a bundle does and

36

25.2

CHAPTER 2 Mastering modularity

from where it comes. The OSGi specification defines several pieces of metadata for
this purpose, but none of it is required, nor does it have any impact on modularity.
The OSGi framework completely ignores it.

The following code snippet shows human-readable bundle metadata for the paint
program’s org. foo. shape bundle (the other program bundles are described similarly):
Bundle-Name: Simple Paint API
Bundle-Description: Public API for a simple paint program.

Bundle-DocURL: http://www.manning.com/osgi-in-action/

Bundle-Category: example, library

Bundle-Vendor: 0SGi in Action

Bundle-ContactAddress: 1234 Main Street, USA

Bundle-Copyright: OSGi in Action

The Bundle-Name attribute is intended to be a short name for the bundle. You’re free
to name your bundle anything you want. Even though it’s supposed to be a short
name, there’s no enforcement of this; just use your best judgment. The Bundle-
Description attribute lets you be a little more long-winded in describing the purpose
of your bundle. To provide even more documentation about your bundle, Bundle-
DocURL allows you to specify a URL to refer to documentation. Bundle-Category
defines a comma-separated list of category names. OSGi doesn’t define any standard
category names, so you're free to choose your own. The remaining attributes, Bundle-
Vendor, Bundle-ContactAddress, and Bundle-Copyright, provide information about
the bundle vendor.

Human-readable metadata is reasonably straightforward. The fact that the OSGi
framework ignores it means you can pretty much do what you want to with it. But
don’t fall into a laissez-faire approach just yet—the remaining metadata requires more
precision. Next, we’ll look at how you use metadata to uniquely identify bundles.

Bundle identification

The human-readable metadata from the previous subsection helps you understand
what a bundle does and where it comes from. Some of this human-readable metadata
also appears to play a role in identifying a bundle. For example, Bundle-Name seems
like it could be a form of bundle identification. It isn’t. The reason is somewhat histor-
ical. Earlier versions of the OSGi specification didn’t provide any means to uniquely
identify a given bundle. Bundle-Name was purely informational, and therefore no con-
straints were placed on its value. As part of the OSGi R4 specification process, the idea
of a unique bundle identifier was proposed. For backward-compatibility reasons, Bun-
dle-Name couldn’t be commandeered for this purpose because it wouldn’t be possible
to place new constraints on it and maintain backward compatibility. Instead, a new
manifest entry was introduced: Bundle-SymbolicName.

In contrast to Bundle-Name, which is only intended for users, Bundle-SymbolicName
is only intended for the OSGi framework to help uniquely identify a bundle. The value
of the symbolic name follows rules similar to Java package naming: it’s a series of dot-
separated strings, where reverse domain naming is recommended to avoid name

Defining bundles with metadata 37

clashes. Although the dot-separated construction is enforced by the framework, there’s
no way to enforce the reverse-domain-name recommendation. You're free to choose a
differentscheme; butif you do, keep in mind that the main purpose is to provide unique
identification, so try to choose a scheme that won’t lead to name clashes.

IDENTIFYING THE PAINT PROGRAM (PART 1)

The paint program is divided into bundles based on packages, so you can use each
package as the symbolic name, because they already follow a reverse-domain-name
scheme. For the public API bundle, you declare the symbolic name in manifest file as

Bundle-SymbolicName: org.foo.shape

Although it would be possible to solely use Bundle-SymbolicName to uniquely identify
a bundle, it would be awkward to do so over time. Consider what would happen when
you released a second version of your bundle: you’d need to change the symbolic
name to keep it unique, such as org.foo.shapev2. This is possible, but it’s cumber-
some; and worse, this versioning information would be opaque to the OSGi frame-
work, which means the modularity layer couldn’t take advantage of it. To remedy this
situation, a bundle is uniquely identified not only by its Bundle-SymbolicName but
also by its Bundle-Version, whose value conforms to the OSGi version number format
(see the sidebar “OSGi version number format”). This pair of attributes not only forms
an identifier, it also allows the framework to capture the time-ordered relationship
among versions of the same bundle.

IDENTIFYING THE PAINT PROGRAM (PART 2)
For example, the following metadata uniquely identifies the paint program’s public
API bundle:

Bundle-SymbolicName: org.foo.shape

Bundle-Version: 2.0.0

Although technically only Bundle-SymbolicName and Bundle-Version are related to
bundle identification, the Bundle-ManifestVersion attribute also plays a role. Start-
ing with the R4 specification, it became mandatory for bundles to specify Bundle-
SymbolicName. This was a substantial change in philosophy. To maintain backward
compatibility with legacy bundles created before the R4 specification, OSGi intro-
duced the Bundle-ManifestVersion attribute. Currently, the only valid value for this
attribute is 2, which is the value for bundles created for the R4 specification or later.
Any bundles without Bundle-ManifestVersion aren’t required to be uniquely identi-
fied, but bundles with it must be.

IDENTIFYING THE PAINT PROGRAM (PART 3)
The following example shows the complete OSGi R4 metadata to identify the shape
bundle:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0

CHAPTER 2 Mastering modularity

This is the complete identification metadata for the public API bundle. The identifica-
tion metadata for the other paint program bundles are defined in a similar fashion.
Now that bundle identification is out of the way, we’re ready to look at code visibility,
which is perhaps the most important area of metadata.

0SGi version number format

One important concept you’ll visit over and over again in OSGi is a version number,
which appears here in the bundle-identification metadata. The OSGi specification de-
fines a common version number format that’s used in a number of places throughout
the specification. For this reason, it’s worth spending a few paragraphs exploring ex-
actly what a version number is in the OSGi world.

A version number is composed of three separate numerical component values sepa-
rated by dots; for example, 1.0.0 is a valid OSGi version number. The first value is
referred to as the major number, the second value as the minor number, and the third
value as the micro number. These names reflect the relative precedence of each com-
ponent value and are similar to other version-numbering schemes, where version-num-
ber ordering is based on numerical comparison of version-number components in
decreasing order of precedence: in other words, 2.0.0 is newer than 1.2.0,and 1.10.0
is newer than 1.9.9.

A fourth version component is possible, which is called a qualifier. The qualifier can
contain alphanumeric characters; for example, 1.0.0.alpha is a valid OSGi version
number with a qualifier. When comparing version numbers, the qualifier is compared
using string comparison. As the following figure shows, this doesn’t always lead to
intuitive results; for example, although 1.0.0.beta is newer than 1.0.0.alpha, 1.0.0
is older than both.

Higher version

1.0.0 1.0.0.alpha 1.0.0.beta 1.0.1 11.0 111 1.2.0

0SGi versioning semantics can sometimes lead to non-intuitive results.

In places in the metadata where a version is expected, if it’s omitted, it defaults
to 0.0.0. If a numeric component of the version number is omitted, it defaults to 0,
and the qualifier defaults to an empty string. For example, 1.2 is equivalent
to 1.2.0. One tricky aspect is that it isn’t possible to have a qualifier without speci-
fying all the numeric components of the version. So you can’t specify 1.2.build-59;
you must specify 1.2.0.build-59.

OSGi uses this common version-number format for versioning both bundles and Java
packages. In chapter 9, we’ll discuss high-level approaches for managing version
numbers for your packages, bundles, and applications.

253

Defining bundles with metadata 39

Code visibility

Human-readable and bundle-identification metadata are valuable, but they don’t go
far in allowing you to describe your bundle’s modularity characteristics. The OSGi
specification defines metadata for comprehensively describing which code is visible
internally in a bundle and which internal code is visible externally. OSGi metadata for
code visibility captures the following information:

= Internal bundle class path—The code forming the bundle

= LExported internal code—Explicitly exposed code from the bundle class path for
sharing with other bundles

= Imported external code—External code on which the bundle class path code
depends

Each of these areas captures separate but related information about which Java classes
are reachable in your bundle and by your bundle. We’ll cover each in detail; but
before we do that, let’s step back and dissect how you use JAR files and the Java class
path in traditional Java programming. This will give you a basis for comparison to
OSGi’s approach to code visibility.

IMPORTANT! Standard JAR files typically fail as bundles since they were written
under the assumption of global type visibility (i.e., if it’s on the class path, you
can use it). If you’re going to create effective bundles, you have to free yourself
from this old assumption and fully understand and accept that type visibility
for bundles is based purely on the primitives we describe in this section. To
make this point very clear, we’ll go into intricate details about type visibility
rules for standard JAR files versus bundle JAR files. Although this may appear
to be a lesson in the arcane, it’s critical to understand these differences.

CODE VISIBILITY IN STANDARD JAR FILES AND THE CLASS PATH

Generally speaking, you compile Java source files into classes and then use the jar
tool to create a JAR file from the generated classes. If the JAR file has a Main-Class
attribute in the manifest file, you can run the application like this:

java -jar app.jar
If not, you add it to the class path and start the application something like this:
java -cp app.jar org.foo.Main

Figure 2.9 shows the stages the JVM goes through. First it searches for the class speci-
fied in the Main-Class attribute or the one specified on the command line. If it finds
the class, it searches it for a static public void main(String[]) method. If such a
method is found, it invokes it to start the application. As the application executes, any
additional classes needed by the application are found by searching the class path,
which is composed of the application classes in the JAR file and the standard JRE
classes (and anything you may have added to the class path). Classes are loaded as
they’re needed.

CHAPTER 2 Mastering modularity

This represents a high-level under-
standing of how Java executes an appli-
cation from a JAR file. But this high-level
view conceals a few implicit decisions
made by standard JAR file handling, such
as these:

= Where to search inside the JAR file
for a requested class

= Which internal classes should be
externally exposed

With respect to the first decision, a JAR
file has an implicit policy of searching all
directories relative to the root of the JAR
file as if they were package names corre-
sponding to the requested class (for
example, the class org.foo.Bar is in
org/foo/Bar.class inside the JAR file).
With respect to the second decision, JAR
files have an implicit policy of exposing
all classes in root-relative packages to all
requesters. This is a highly decon-
structed view of the behavior of JAR files,
but it helps to illustrate the implicit mod-
ularity decisions of standard JAR files.
These implicit code-visibility decisions
are put into effect when you place a JAR
file on the class path for execution.

While executing, the JVM finds all
needed classes by searching the class
path, as shown in figure 2.10. But what is
the exact purpose of the class path with
respect to modularity? The class path
defines which external classes are visible
to the JAR file’s internal classes. Every
class reachable on the class path is visible
to the application classes, even if they
aren’t needed.

With this view of how standard JAR
files and the class path mechanism work,
let’s look into the details of how OSGi
handles these same code-visibility con-
cepts, which is quite a bit different. We’ll

JYM start
|
Read Main-Class ——— Jar?
manifest entry Yes
| |
QO—— Found? Load main class
No es

|
Success WO
|

Call public static
void main (String [])

No o Yes
on-daemon __ ;
threads? Wait

o

Figure 2.9 Flow diagram showing the steps the
JVM goes through to execute a Java program from
the class path

Find class
ls) Next class path
loaded? No eml;ry
More
class path
entries No
Yes No

Search class path
entry

Contains
class

| Yes

Return class Define class

o

Figure 2.10 Flow diagram showing the steps the
JVM goes through to load a class from the class path

Defining bundles with metadata 41

start with how OSGi searches bundles internally for code, followed by how OSGi exter-
nally exposes internal code, and finally how external code is made visible to internal
bundle code. Let’s get started.

INTERNAL BUNDLE CLASS PATH

Whereas standard JAR files are implicitly searched for internal classes in all directories
from the root of the JAR file as if they were package names, OSGi uses a more explicit
approach called the bundle class path. Like the standard Java class path concept, the
bundle class path is a list of locations to search for classes. The difference is the bun-
dle class path refers to locations inside the bundle JAR file.

BUNDLE-CLASSPATH An ordered, comma-separated list of relative bundle JAR
file locations to be searched for class and resource requests.

When a given bundle class needs another class in the same bundle, the entire bundle
class path of the containing bundle is searched to find the class. Classes in the same
bundle have access to all code reachable on their bundle class path. Let’s examine the
syntax for declaring it.

Bundles declare their internal class path using the Bundle-ClassPath manifest
header. The bundle class path behaves in the same way as the global class path in
terms of the search algorithm, so you can refer to figure 2.10 to see how this behaves;
but in this case, the scope is limited to classes contained in the bundle. With Bundle-
ClassPath, you can specify a list of paths in the bundle where the class loader should
look for classes or resources. For example:

Bundle-ClassPath: .,other-classes/,embedded.jar

This tells the OSGi framework where to search inside the bundle for classes. The
period (.) signifies the bundle JAR file. For this example, the bundle is searched first
for rootrelative packages, then in the folder called other-classes, and finally in the
embedded JAR in the bundle. The ordering is important, because the bundle class
path entries are searched in the declared order.

Bundle-ClassPath is somewhat unique, because OSGi manifest headers don’t nor-
mally have default values. If you don’t specify a value, the framework supplies a default
value of period (.). Why does Bundle-ClassPath have a default value? The answer is
related to how standard JAR files are searched for classes. The bundle class path value
of . corresponds to the internal search policy of standard JAR files. Putting . on your
bundle class path likewise treats all root-relative directories as if they were packages
when searching for classes. Making . the default gives both standard and bundle JAR
files the same default internal search policy.

NOTE It’s important to understand that the default value of Bundle-Class-
Pathis . if and only if there is no specified value, which isn’t the same as say-
ing the value . is included on the bundle class path by default. In other
words, if you specify a value for Bundle-ClassPath, then . is included only if
you explicitly specify it in your comma-separated list of locations. If you spec-
ify a value and don’t include ., then rootrelative directories aren’t searched
when looking for classes in the bundle JAR file.

42

CHAPTER 2 Mastering modularity

As you can see, the internal bundle class path concept is powerful and flexible when it
comes to defining the contents and internal search order of bundles; refer to the side-
bar “Bundle class path flexibility” for some examples of when this flexibility is useful.
Next, you’ll learn how to expose internal code for sharing with other bundles.

Bundle class path flexibility

You may wonder why you’d want to package classes in different directories or embed
JAR files in the bundle JAR file. First, the bundle class path mechanism doesn’t apply
only to classes, but also to resources. A common use case is to place images in an
image/ directory to make it explicit in the JAR file where certain content can be found.
Also, in web applications, nested JAR files are embedded in the JAR file under the
WEB-INF/lib/ directory and classes can be placed in the WEB-INF/classes/ directory.

In other situations, you may have a legacy or proprietary JAR file that you can’t change.
By embedding the JAR file into your bundle and adding bundle metadata, you can use
it without changing the original JAR. It may also be convenient to embed a JAR file
when you want your bundle to have a private copy of some library; this is especially
useful when you want to avoid sharing static library members with other bundles.

Embedding JAR files isn’t strictly necessary, because you can also unpack a standard
JAR file into your bundle to achieve the same effect. As an aside, you can also see a
performance improvement by not embedding JAR files, because OSGi framework im-
plementations must extract the embedded JAR files to access them.

EXPORTING INTERNAL CODE

Bundle-ClassPath affects the visibility of classes in a bundle, but how do you share
classes among bundles? The first stage is to export the packages you wish to share with
others.

Externally useful classes are those composing the public API of the code contained
in the JAR file, whereas non-useful classes form the implementation details. Standard
JAR files don’t provide any mechanism to differentiate externally useful classes from
non-useful ones, but OSGi does. A standard JAR file exposes everything relative to the
root by default, but an OSGi bundle exposes nothing by default. A bundle must use
the Export-Package manifest header to explicitly expose internal classes it wishes to
share with other bundles.

EXPORT-PACKAGE A comma-separated list of internal bundle packages to
expose for sharing with other bundles.

Instead of exposing individual classes, OSGi defines sharing among bundles at the pack-
age level. Although this makes the task of exporting code a little simpler, it can still be
amajor undertaking for large projects; we’ll discuss some tools to simplify this in appen-
dix A. When you include a package in an Export - Package declaration, every public class
contained in the package is exposed to other bundles. A simple example for the paint

Defining bundles with metadata 43

program shape API bundle is as follows (figure 2.11 shows how
we’ll graphically represent exported module packages):

Export-Package: org.foo.shape

Here, you're exporting every class in the org.foo.shape export
package. You’ll likely want to export more than one package org.foo.shape

at a time from .your bund?es. You can export multiple pack- Figure 211 Graphical
ages by separating them with commas: depiction of an exported

package
Export-Package: org.foo.shape,org.foo.other

You can also attach attributes to exported packages. Because it’s possible for different
bundles to export the same packages, a given bundle can use attributes to differenti-
ate its exports from other bundles. For example:

Export-Package: org.foo.shape; vendor="Manning", org.foo.other;
vendor="Manning"
This attaches the vendor attribute with the value "Manning" to the exported packages.
In this particular example, vendor is an arbitrary attribute because it has no special
meaning to the framework—it’s something we made up. When we talk about import-
ing code, you’ll get a better idea of how arbitrary attributes are used in package shar-
ing to differentiate among exported packages. As we mentioned previously in the
sidebar “JAR file manifest syntax,” OSGi also supports a shorthand format when you
want to attach the same attributes to a set of target packages, like this:

Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

This is equivalent to the previous example. This shorthand comes in handy, but it can
be applied only if all attached attributes are the same for all packages. Using arbitrary
attributes allows a bundle to differentiate its exported packages, but there’s a more
meaningful reason to use an attribute for differentiation: version management.

Code is constantly evolving. Packages contain classes that change over time. It’s
important to document such changes using version numbers. Version management
isn’t a part of standard Java development, but it’s inherent in OSGi-based Java develop-
ment. In particular, OSGi supports not only bundle versioning, as discussed previously,
but also package versioning, which means every shared package has a version number.
Attributes are used to associate a version number with a package:

Export-Package: org.foo.shape; org.foo.other; version="2.0.0"

Here, you attach the version attribute with the value "2.0.0" to the exported pack-
ages, using OSGi’s common version-number format. In this case, the attribute isn’t
arbitrary, because this attribute name and value format is defined by the OSGi specifi-
cation. You may have noticed that some of the earlier Export -Package examples don’t
specify a version. In that case, the version defaults to "0.0.0", but it isn’t a good idea
to use this version number. We’ll discuss versioning in more detail in chapter 9.

44

CHAPTER 2 Mastering modularity

With Bundle-ClassPath and Export-Package, you have a pretty good idea how to
define and control the visibility of the bundle’s internal classes; but not all the code
you need will be contained in the bundle JAR file. Next, you’ll learn how to specify the
bundle’s dependencies on external code.

IMPORTING EXTERNAL CODE

Both Bundle-ClassPath and Export-Package deal with the visibility of internal bun-
dle code. Normally, a bundle is also dependent on external code. You need some way
to declare which external classes are needed by the bundle so the OSGi framework can
make them visible to it. Typically, the standard Java class path is used to specify which
external code is visible to classes in your JAR files, but OSGi doesn’t use this mecha-
nism. OSGi requires all bundles to include metadata explicitly declaring their depen-
dencies on external code, referred to as importing.

Importing external code is straightforward, if not tedious. You must declare
imports for all packages required by your bundle but not contained in your bundle.
The only exception to this rule is for classes in the java.* packages, which are auto-
matically made visible to all bundles by the OSGi framework. The manifest header you
use for importing external code is appropriately named Import-Package.

IMPORT-PACKAGE A comma-separated list of packages needed by internal
bundle code from other bundles.

Import-Package VS. import keyword

You may be thinking that you already do imports in your source code with the import
keyword. Conceptually, the import keyword and declaring OSGi imports are similar,
but they serve different purposes. The import keyword in Java is for namespace man-
agement; it allows you to use the short name of the imported classes instead of us-
ing its fully qualified class name (for example, you can refer to SimpleShape rather
than org. foo.shape.SimpleShape). You can import classes from any other pack-
age to use their short name, but it doesn’t grant any visibility. In fact, you never need
to use import, because you can use the fully qualified class name instead. For OSGi,
the metadata for importing external code is important, because it's how the frame-
work knows what your bundle needs.

The value of the Import-Package header follows the common OSGi manifest header
syntax. First, let’s start with the simplest form. Consider the main paint program bun-
dle, which has a dependency on the org. foo.shape package.
It needs to declare an import for this package as follows (fig-
ure 2.12 shows how we’ll graphically represent imported

import
org.foo.shape

module packages):

Import-Package: org.foo.shape

. . . Figure 2.12 Graphical
This specifically tells the OSGi framework that the bundle gepiction of an imported

requires access to org.foo.shape in addition to the internal package

Defining bundles with metadata 45

code visible to it from its bundle class path. Be aware that importing a package doesn’t
import its subpackages; remember, there’s no relationship among nested packages. If
your bundle needs access to org.foo.shape and org.foo.shape.other, it must
import both packages as comma-separated targets, like this:

Import-Package: org.foo.shape,org.foo.shape.other

Your bundles can import any number of packages by listing them on Import-
Package and separating them using commas. It’s not uncommon in larger projects
for the Import-Package declaration to grow large (although you should strive to
minimize this).

Sometimes, you’ll want to narrow your bundle’s package dependencies. Recall how
Export-Package declarations can include attributes to differentiate a bundle’s
exported packages. You can use these export attributes as matching attributes when
importing packages. For example, we previously discussed the following export and
associated attribute:

Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

A bundle with this metadata exports the two packages with the associated vendor attri-
bute and value. It’s possible to narrow your bundle’s imported packages using the
same matching attribute:

Import-Package: org.foo.shape; vendor="Manning"

The bundle with this metadata is declaring a dependency on the package
org.foo.shape with a vendor attribute matching the "Manning" value. The attributes
attached to Export-Package declarations define the attribute’s value, whereas attri-
butes attached to Import-Package declarations define the value to match; essentially,
they act like a filter. The details of how imports and exports are matched and filtered
is something we’ll defer until section 2.7. For now, it’s sufficient to understand that
attributes attached to imported packages are matched against the attributes attached
to exported packages.

For arbitrary attributes, OSGi only supports equality matching. In other words, it
either matches the specified value or it doesn’t. You learned about one non-arbitrary
attribute when we discussed Export-Package and the version attribute. Because this
attribute is defined by the OSGi specification, more flexible matching is supported.
This is an area where OSGi excels. In the simple case, it treats a value as an infinite
range starting from the specified version number. For example:

Import-Package: org.osgi.framework; version="1.3.0"

This statement declares an import for package org.osgi.framework for the version
range of 1.3.0 to infinity, inclusive. This simple form of specifying an imported pack-
age version range implies an expectation that future versions of org.osgi . framework
will always be backward compatible with the lower version. In some cases, such as spec-
ification packages, it’s reasonable to expect backward compatibility. In situations
where you wish to limit your assumptions about backward compatibility, OSGi allows

46

CHAPTER 2 Mastering modularity

you to specify an explicit version range using interval notation, where the characters
[and] indicate inclusive values and the characters (and) indicate exclusive values.
Consider the following example:

Import-Package: org.osgi.framework; version="[1.3.0,2.0.0)"

This statement declares an import for package org.osgi.framework for the version
range including 1.3.0 and up to but excluding 2.0.0 and beyond. Table 2.2 illustrates
the meaning of the various combinations of the version range syntax.

Syntax Meaning

" [min, max)" min < X < max

" [min, max] " min < X < max

" (min, max) " min < X < max

" (min, max] " min < X < max

Toin? min < X Table 2.2 Version range
— syntax and meaning

If you want to specify a precise version range, you must use a version range like
"[1.0.1,1.0.1]". You may wonder why a single value like "1.0.1" is an infinite range
rather than a precise version. The reason is partly historical. In the OSGi specifications
prior to R4, all packages were assumed to be specification packages where backward
compatibility was guaranteed. Because backward compatibility was assumed, it was only
necessary to specify a minimum version. When the R4 specification added support for
sharing implementation packages, it also needed to add support for arbitrary version
ranges. Itwould have been possible at this time to redefine asingle version to be a precise
version, but that would have been unintuitive for existing OSGi programmers. Also, the
specification would have had to define syntax to represent infinity. In the end, the OSGi
Alliance decided it made the most sense to define versions ranges as presented here.

You may have noticed that some of the earlier Import-Package examples didn’t
specify a version range. When no version range is specified, it defaults to the value
"0.0.0", which you may expect from past examples. Of course, the difference here is
that the value "0.0.0" is interpreted as a version range from 0.0.0 to infinity.

Now you understand how to use Import-Package to express dependencies on
external packages and Export-Package to expose internal packages for sharing. The
decision to use packages as the basis for interbundle sharing isn’t an obvious choice to
everyone, so we discuss some arguments for doing so in the sidebar “Depending on
packages, not bundles.”

We’ve now covered the major constituents of the OSGi module layer: Bundle-
ClassPath, Export-Package, and Import-Package. We've discussed these in the con-
text of the paint program you’ll see running in the next section, but the final piece of
the puzzle we need to look at is how these various code-visibility mechanisms fit
together in a running application.

Defining bundles with metadata

Depending on packages, not bundles

Importing packages seems fairly normal for most Java programmers, because you im-
port the classes and packages you use in the source files. But the import state-
ments in the source files are for managing namespaces, not dependencies. 0OSGi's
choice of using package-level granularity for expressing dependencies among bun-
dles is novel, if not controversial, for Java-based module-oriented technologies. Other
approaches typically adopt module-level dependencies, meaning dependencies are
expressed in terms of one module depending on another. The OSGi choice of pack-
age-level dependencies has created some debate about which approach is better.

The main criticisms leveled against package-level dependencies is that they’re too
complicated or fine-grained. Some people believe it's easier for developers to think
in terms of requiring a whole JAR file rather than individual packages. This argument
doesn’t hold water, because a Java developer using any given technology must know
something about its package naming. For example, if you know enough to realize you
want to use the Servlet class in the first place, you probably have some idea about
which package it's in, too.

Package-level dependencies are more fine-grained, which does result in more meta-
data. For example, if a bundle exports 10 packages, only 1 module-level dependen-
cy is needed to express a dependency on all of them, whereas package-level
dependencies require 10. But bundles rarely depend on all exported packages of a
given bundle, and this is more of a condemnation of tooling support. Remember
how much of a nuisance it was to maintain import declarations before IDEs started
doing it for you? This is starting to change for bundles, too; in appendix A, we de-
scribe tools for generating bundle metadata. Let’s look at some of the benefits of
package-level dependencies.

The difference between module- and package-level dependencies is one of who ver-
sus what. Module-level dependencies express which specific module you depend on
(who), whereas package-level dependencies express which specific packages you de-
pend on (what). Module-level dependencies are brittle, because they can only be sat-
isfied by a specific bundle even if another bundle offers the same packages. Some
people argue that this isn’t an issue, because they want the specific bundle they’'ve
tested against, or because the packages are implementation packages and won’t be
provided by another bundle. Although these arguments are reasonable, they usually
break down over time.

For example, if your bundle grows too large over time, you may wish to refactor it
by splitting its various exported packages into multiple bundles. If you use module-
level dependencies, such a refactoring will break existing clients, which tends to be
a real bummer when the clients are from third parties and you can’t easily change
them. This issue goes away when you use package-level dependencies. Also,
a bundle doesn’t usually depend on everything in another bundle, only a subset. As
a result, module-level dependencies are too broad and cause transitive fanout.
You end up needing to deploy a lot of extra bundles you don’t use, just to satisfy
all the dependencies.

47

48

2.5.4

CHAPTER 2 Mastering modularity

(continued)

Package-level dependencies represent a higher-level view of the code’s real class de-
pendencies. It's possible to analyze a bundle’s code and generate its set of imported
packages, similar to how IDEs maintain import declarations in source files. Module-
level dependencies can’t be discovered in such a fashion, because they don’t exist
in the code. Package-level dependencies sound great, right? You may now wonder if
they have any issues.

The main issue is that OSGi must treat a package as an atomic unit. If this assump-
tion weren’t made, then the OSGi framework wouldn’t be free to substitute a package
from one bundle for the same package from another bundle. This means you can’t
split a package across bundles; a single package must be contained in a single bun-
dle. If packages were split across bundles, there would be no easy way for the OSGi
framework to know when a package was complete. Typically, this isn’t a major limi-
tation. Other than this, you can do anything with package-level dependencies that you
can with module-level dependencies. And truth be told, the OSGi specification does
support module-level dependencies and some forms of split packages, but we won't
discuss those until chapter 5.

Class-search order

We’ve talked a lot about code visibility, but in the end all the metadata we’ve discussed
allows the OSGi framework to perform sophisticated searching on behalf of bundles
for their contained and needed classes. Under the covers, when an importing bundle
needs a class from an exported package, it asks the exporting bundle for it. The
framework uses class loaders to do this, but the exact details of how it asks are unim-
portant. Still, it’s important to understand the ordering of this class-search process.

When a bundle needs a class at execution time, the framework searches for the
class in the following order:

1 If the class is from a package starting with java., the parent class loader is asked
for the class. If the class is found, it’s used. If there is no such class, the search
ends with an exception.

2 If the class is from a package imported by the bundle, the framework asks the
exporting bundle for the class. If the class is found, it’s used. If there is no such
class, the search ends with an exception.

3 The bundle class path is searched for the class. If it’s found, it’s used. If there is
no such class, the search ends with an exception.

These steps are important because they also help the framework ensure consis-
tency. Specifically, step 1 ensures that all bundles use the same core Java classes, and
step 2 ensures that imported packages aren’t split across the exporting and import-
ing bundles.

That’s it! We’ve finished the introduction to bundle metadata. We haven’t covered
everything you can possibly do, but we’ve discussed the most important bundle

Defining bundles with metadata 49

metadata for getting started creating bundles; we’ll cover additional modularity issues
in chapter 5. Next, you’ll put all the metadata in place for the paint program and then
step back to review the current design. Before moving on, if you're wondering if it’s
possible to have a JAR file that is both a bundle and an ordinary JAR file, see the side-
bar “Is a bundle a JAR file or a JAR file a bundle?”

Is a bundle a JAR file or a JAR file a bundle?

Maybe you're interested in adding OSGi metadata to your existing JAR files or you want
to create bundles from scratch, but you’d still like to use them in non-0SGi situations
too. We’ve said before that a bundle is just a JAR file with additional module-related
metadata in its manifest file, but how accurate is this statement? Does it mean you
can use any OSGi bundle as a standard JAR file? What about using a standard JAR
file as a bundle? Let’s answer the second question first, because it's easier.

A standard JAR file can be installed into an OSGi framework unchanged. Unfortunate-
ly, it doesn’t do anything useful. Why? The main reason is that a standard JAR file
doesn’t expose any of its content; in OSGi terms, it doesn’t export any packages. The
default Bundle-ClassPath for a JAR file is ., but the default for Export-Package is
nothing. So even though a standard JAR file is a bundle, it isn’t a useful bundle. At a
minimum, you need to add an Export -Package declaration to its manifest file to ex-
plicitly expose some (or all) of its internal content.

What about bundle JAR files? Can they be used as a standard JAR file outside of an
OSGi environment? The answer is, it depends. It’s possible to create bundles that
function equally well in or out of an OSGi environment, but not all bundles can be
used as standard JAR files. It comes down to which features of OSGi your bundle us-
es. Of the metadata features you’ve learned about so far, only one can cause issues:
Bundle-ClassPath. Recall that the internal bundle class path is a comma-separated
list of locations inside the bundle JAR file and may contain

= A . representing the root of the bundle JAR file
= A relative path to an embedded JAR file
= A relative path to an embedded directory

Only bundles with a class path entry of . can be used as standard JAR files. Why?
The OSGi notion of . on the bundle class path is equivalent to standard JAR file class
searching, which is to search from the root of the JAR file as if all relative directories
are package names. If a bundle specifies an embedded JAR file or directory, it re-
quires special handling that’s available only in an OSGi environment. Luckily, it isn’t
too difficult to avoid using embedded JAR files and directories.

It's a good idea to try to keep your bundle JAR files compatible with standard JAR
files if you can, but it’s still best to use them in an OSGi environment. Without
0SGi, you lose dependency checking, consistency checking, and boundary enforce-
ment, not to mention all the cool lifecycle and service stuff we’ll discuss in the
coming chapters.

50

2.6

CHAPTER 2 Mastering modularity

Finalizing the paint program design

So far, you've defined three bundles for the paint program: a shape API bundle, a
shape implementation bundle, and a main paint program bundle. Let’s look at the
complete metadata for each. The shape API bundle is described by the following man-
ifest metadata:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0

Bundle-Name: Paint API

Import-Package: javax.swing

Export-Package: org.foo.shape; version="2.0.0"

The bundle containing the shape implementations is described by the following man-
ifest metadata:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.shape.impl

Bundle-Version: 2.0.0

Bundle-Name: Simple Shape Implementations

Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.shape.impl; version="2.0.0"

And the main paint program bundle is described by the following manifest metadata:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.paint

Bundle-Version: 2.0.0

Bundle-Name: Simple Paint Program

Import-Package: javax.swing, org.foo.shape; org.foo.shape.impl;
version="2.0.0"

As you can see in figure 2.13, these three bundles directly mirror the logical package
structure of the paint program.

This approach is reasonable, but can it be improved? To some degree, you can
answer this question only if you know more about the intended uses of the paint pro-
gram; but let’s look more closely at it anyway.

import
or@p.foo.ehape export Shape

org.foo.shape API

B » -
Paint P 4
i Shape
import Tteeal | . | ,
org.foo.shape.impl el imp o
export import
org.foo.shape.impl org.foo.shape

Figure 2.13 Structure of the paint program’s bundles

26.1

Finalizing the paint program design 51

Improving the paint program’s modularization

In the current design, one aspect that sticks out is the shape-implementation bundle.
Is there a downside to keeping all shape implementations in a single package and a
single bundle? Perhaps it’s better to reverse the question. Is there any advantage to
separating the shape implementations into separate bundles? Imagine use cases
where not all shapes are necessary; for example, small devices may not have enough
resources to support all shape implementations. If you separate the shape implemen-
tations into separate packages and separate bundles, you have more flexibility when it
comes to creating different configurations of the application.

This is a good issue to keep in mind when you’re modularizing applications.
Optional components or components with the potential to have multiple alternative
implementations are good candidates to be in separate bundles. Breaking your appli-
cation into multiple bundles gives you more flexibility, because you’re limited to
deploying configurations of your application based on the granularity of your defined
bundles. Sounds good, right? You may then wonder why you don’t divide your applica-
tions into as many bundles as you can.

You pay a price for the flexibility afforded by dividing an application into multiple
bundles. Lots of bundles mean you have lots of artifacts that are versioning indepen-
dently, creating lots of dependencies and configurations to manage. So it’s probably
not a good idea to create a bundle out of each of your project’s packages, for exam-
ple. You need to analyze and understand your needs for flexibility when deciding how
best to divide an application. There is no single rule for every situation.

Returning to the paint program, let’s assume the ultimate goal is to enable the pos-
sibility for creating different configurations of the application with different sets of
shapes. To accomplish this, you move each shape implementation into its own package
(org.foo.shape.circle, org.foo.shape.square, and org.foo.shape.triangle).
You can now bundle each of these shapes separately. The following metadata captures
the circle bundle:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.shape.circle

Bundle-Version: 2.0.0

Bundle-Name: Circle Implementation

Import-Package: javax.swing, org.foo.shape; version="2.0.0"

Export-Package: org.foo.shape.circle; version="2.0.0"

The metadata for the square and triangle bundles is nearly identical, except with the
correct shape name substituted where appropriate. The shape-implementation bun-
dles have dependencies on Swing and the public API and export their implementa-
tion-specific shape package. These changes also require changes to the program’s
metadata implementation bundle; you modify its metadata as follows:
Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.paint

Bundle-Version: 2.0.0

Bundle-Name: Simple Paint Program

Import-Package: javax.swing, org.foo.shape; org.foo.shape.circle;
org.foo.shape.square; org.foo.shape.triangle; version="2.0.0"

52

2.6.2

CHAPTER 2 Mastering modularity

Triangle S
Square A

Circle ==/ /

Figure 2.14 Logical structure of the paint program with separate modules for each
shape implementation

The paint program implementation bundle depends on Swing, the public API bundle,
and all three shape bundles. Figure 2.14 depicts the new structure of the paint program.

Now you have five bundles (shape API, circle, square, triangle, and paint). Great.
But what do you do with these bundles? The initial version of the paint program had a
static main () method on PaintFrame to launch it; do you still use it to launch the pro-
gram? You could use it by putting all the bundle JAR files on the class path, because all
the example bundles can function as standard JAR files, but this would defeat the pur-
pose of modularizing the application. There’d be no enforcement of modular bound-
aries or consistency checking. To get these benefits, you must launch the paint
program using the OSGi framework. Let’s look at what you need to do.

Launching the new paint program

The focus of this chapter is on using the module layer, but you can’t launch the appli-
cation without a little help from the lifecycle layer. Instead of putting the cart before
the horse and talking about the lifecycle layer now, we created a generic OSGi bundle
launcher to launch the paint program for you. This launcher is simple: you execute it
from the command line and specify a path to a directory containing bundles; it cre-
ates an OSGi framework and deploys all bundles in the specified directory. The cool
part is that this generic launcher hides all the details and OSGi-specific API from you.
We’ll discuss the launcher in detail in chapter 13.

Just deploying the paint bundles into an OSGi framework isn’t sufficient to start
the paint program; you still need some way to kick-start it. You can reuse the paint pro-
gram’s original static main () method to launch the new modular version. To get this
to work with the bundle launcher, you need to add the following metadata from the
original paint program to the paint program bundle manifest:

Main-Class: org.foo.paint.PaintFrame

As in the original paint program, this is standard JAR file metadata for specifying the
class containing the application’s static main () method. Note that this feature isn’t

2.7

271

OSGi dependency resolution 53

defined by the OSGi specification but is a feature of the bundle launcher. To build and
launch the newly modularized paint program, go into the chapter02/paint-modular/
directoryin the companion code and type ant. Doing so compiles all the code and pack-
ages the modules. Typing java -jar launcher.jar bundles/ starts the paint program.

The program starts up as it apparently always has; but underneath, the OSGi frame-
work is resolving the bundles’ dependencies, verifying their consistency, and enforc-
ing their logical boundaries. That’s all there is to it. You’ve now used the OSGi module
layer to create a nicely modular application. OSGi’s metadata-based approach didn’t
require any code changes to the application, although you did move some classes
around to different packages to improve logical and physical modularity.

The goal of the OSGi framework is to shield you from a lot of the complexities; but
sometimes it’s beneficial to peek behind the curtain, such as to help you debug the
OSGi-based applications when things go wrong. In the next section, we’ll look at some
of the work the OSGi framework does for you, to give you a deeper understanding of
how everything fits together. Afterward, we’ll close out the chapter by summarizing
the benefits of modularizing the paint program.

0SGi dependency resolution

You’ve learned how to describe the internal code composing the bundles with Bundle-
ClassPath, expose internal code for sharing with Export-Package, and declare depen-
dencies on external code with Import-Package. Although we hinted at how the OSGi
framework uses the exports from one bundle to satisfy the imports of another, we didn’t
go into detail. The Export-Package and Import-Package metadata declarations
included in bundle manifests form the backbone of the OSGi bundle dependency
model, which is predicated on package sharing among bundles.

In this section, we’ll explain how OSGi resolves bundle package dependencies and
ensures package consistency among bundles. After this section, you’ll have a clear
understanding of how bundle modularity metadata is used by the OSGi framework. You
may wonder why this is necessary, because bundle resolution seems like an OSGi frame-
work implementation detail. Admittedly, this section covers some of the more complex
details of the OSGi specification; but it’s helpful when defining bundle metadata if you
understand a little of what’s going on behind the scenes. Further, this information can
come in handy when you’re debugging OSGi-based applications. Let’s get started.

Resolving dependencies automatically

Adding OSGi metadata to your JAR files represents extra work for you as a developer,
so why do it? The main reason is so you can use the OSGi framework to support and
enforce the bundles’ inherent modularity. One of the most important tasks per-
formed by the OSGi framework is automating dependency management, which is
called bundle dependency resolution.

Abundle’s dependencies must be resolved by the framework before the bundle can
be used, as shown in figure 2.15. The framework’s dependency resolution algorithm is
sophisticated; we’ll get into its gory details, but let’s start with a simple definition.

54

CHAPTER 2 Mastering modularity

Figure 2.15 Transitive dependencies occur when bundle A depends on packages
from bundle B and bundle B in turn depends on packages from bundle C. To use
bundle A, you need to resolve the dependencies of both bundle B and bundle C.

RESOLVING The process of matching a given bundle’s imported packages to
exported packages from other bundles and doing so in a consistent way so
any given bundle only has access to a single version of any type.

Resolving a bundle may cause the framework to resolve other bundles transitively, if
exporting bundles themselves haven’t yet been resolved. The resulting set of resolved
bundles are conceptually wired together in such a fashion that any given imported
package from a bundle is wired to a matching exported package from another bun-
dle, where a wire implies having access to the exported package. The final result is a
graph of all bundles wired together, where all imported package dependencies are sat-
isfied. If any dependency can’t be satisfied, then the resolve fails, and the instigating
bundle can’t be used until its dependencies are satisfied.
This description likely makes you want to ask three questions:

1 When does the framework resolve a bundle’s dependencies?

2 How does the framework gain access to bundles to resolve them in the first
place?

3 What does it mean to wire an importing bundle to an exporting bundle?

The first two questions are related, because they both involve the lifecycle layer, which
we’ll discuss in the next chapter. For the first question, it’s sufficient to say that the
framework resolves a bundle automatically when another bundle attempts to use it. To
answer the second question, we’ll say that all bundles must be installed into the frame-
work in order to be resolved (we’ll discuss bundle installation in more depth in chap-
ter 3). For the discussion in this section, we’ll always be talking about installed
bundles. As for the third question, we won’t answer it fully because the technical
details of wiring bundles together isn’t important; but for the curious, we’ll explain it
briefly before looking into the resolution process in more detail.

At execution time, each OSGi bundle has a class loader associated with it, which is
how the bundle gains access to all the classes to which it should have access (the ones
determined by the resolution process). When an importing bundle is wired to an
exporting bundle, the importing class loader is given a reference to the exporting
class loader so it can delegate requests for classes in the exported package to it. You
don’t need to worry about how this happens—relax and let OSGi worry about it for
you. Now, let’s look at the resolution process in more detail.

OSGi dependency resolution 55

SIMPLE CASES

At first blush, resolving dependencies is fairly straightforward; the framework just
needs to match exports to imports. Let’s consider a snippet from the paint program
example:

Bundle-Name: Simple Paint Program

Import-Package: org.foo.shape

From this, you know that the paint program has a single dependency on the
org.foo.shape package. If only this bundle were installed in the framework, it
wouldn’t be usable, because its dependency wouldn’t be satisfiable. To use the paint
program bundle, you must install the shape API bundle, which contains the follow-
ing metadata:

Bundle-Name: Paint API

Export-Package: org.foo.shape

When the framework tries to resolve the paint program bundle, it knows it must find a
matching export for org. foo.shape. In this case, it finds a candidate in the shape API
bundle. When the framework finds a matching candidate, it must determine whether
the candidate is resolved. If the candidate is already resolved, the candidate can be
chosen to satisfy the dependency. If the candidate isn’t yet resolved, the framework
must resolve it first before it can select it; this is the transitive nature of resolving
dependencies. If the shape API bundle has no dependencies, it can always be success-
fully resolved. But you know from the example that it does have some dependencies,
namely javax.swing:

Bundle-Name: Paint API

Import-Package: javax.swing

Export-Package: org.foo.shape

What happens when the framework tries to resolve the paint program? By default, in
OSGi it wouldn’t succeed, which means the paint program can’t be used. Why?
Because even though the org.foo.shape package from the API bundle satisfies the
main program’s import, there’s no bundle to satisfy the shape API's import of
javax.swing. In general, to resolve this situation, you can conceptually install another
bundle exporting the required package:

Bundle-Name: Swing

Export-Package: javax.swing

Now, when the framework tries to resolve the paint program, it succeeds. The main
paint program bundle’s dependency is satisfied by the shape API bundle, and its
dependency is satisfied by the Swing bundle, which has no dependencies. After resolv-
ing the main paint program bundle, all three bundles are marked as resolved, and the
framework won'’t try to resolve them again (until certain conditions require it, as we’ll
describe in the next chapter). The framework ends up wiring the bundles together, as
shown in figure 2.16.

56

CHAPTER 2 Mastering modularity

import import
Main org.foo.shape API Jjavax.swing Swing
o IELLLLL L > - B sscccccssssssssssssae- > -
export export
org.foo.shape javax.swing

Figure 2.16 Transitive bundle-resolution wiring

What does the wiring in figure 2.16 tell you? It says that when the main bundle needs
a class in package org.foo.shape, it gets it from the shape API bundle. It also says
when the shape API bundle needs a class in package javax.swing, it gets it from the
Swing bundle. Even though this example is simple, it’s largely what the framework
tries to do when it resolves bundle dependencies.

System class path delegation

In actuality, the javax.swing case in the previous example is a little misleading if
you're running your OSGi framework with a JRE that includes javax.swing. In such
a case, you may want bundles to use Swing from the JRE. The framework can pro-
vide access using system class path delegation. We'll look at this area a little in
chapter 13, but this highlights a deficiency with the heavyweight JRE approach. If
it's possible to install a bundle to satisfy the Swing dependencies, why are they
packaged in the JVM by default? Adoption of OSGi patterns could massively trim the
footprint of future JVM implementations.

You've learned that you can have attributes attached to exported and imported pack-
ages. At the time, we said it was sufficient to understand that attributes attached to
imported packages are matched against attributes attached to exported packages.
Now you can more fully understand what this means. Let’s modify the bundle meta-
data snippets to get a deeper understanding of how attributes factor into the resolu-
tion process. Assume you modify the Swing bundle to look like this:

Bundle-Name: Swing

Export-Package: javax.swing; vendor="Sun"

Here, you modify the Swing bundle to export javax.swing with an attribute vendor
with value "Sun". If the other bundles’ metadata aren’t modified and you perform the
resolve process from scratch, what impact does this change have? This minor change
has no impact at all. Everything resolves as it did before, and the vendor attribute
never comes into play. Depending on your perspective, this may or may not seem con-
fusing. As we previously described attributes, imported attributes are matched against
exported attributes. In this case, no import declarations mention the vendor attribute,
so it’s ignored. Let’s revert the change to the Swing bundle and instead change the
API bundle to look like this:

OSGi dependency resolution 57

Bundle-Name: Paint API

Export-Package: org.foo.shape

Import-Package: javax.swing; vendor="Sun"

Attempting to resolve the paint program bundle now fails because no bundle is export-
ing the package with a matching vendor attribute for the API bundle. Putting the
vendor attribute back on the Swing bundle export allows the main paint program bun-
dle to successfully resolve again with the same wiring, as shown earlier in figure 2.16.
Attributes on exported packages have an impact only if imported packages specify
them, in which case the values must match or the resolve fails.

Recall that we also talked about the version attribute. Other than the more
expressive interval notation for specifying ranges, it works the same way as arbitrary
attributes. For example, you can modify the shape API bundle as follows:

Bundle-Name: Paint API

Export-Package: org.foo.shape; vendor="Manning"; version="2.0.0"
Import-Package: javax.swing; vendor="Sun"

And you can modify the paint program bundle as follows:

Bundle-Name: Simple Paint Program
Import-Package: org.foo.shape; vendor="Manning"; version="[2.0.0,3.0.0)"
In this case, the framework can still resolve everything because the shape API bun-
dle’s export matches the paint program bundle’s import; the vendor attributes
match, and 2.0.0 is in the range of 2.0.0 inclusive to 3.0.0 exclusive. This particular
example has multiple matching attributes on the import declaration, which is treated
like a logical AND by the framework. Therefore, if any of the matching attributes on
an import declaration don’t match a given export, the export doesn’t match at all.
Opverall, attributes don’t add much complexity to the resolution process, because
they add additional constraints to the matching of imported and exported package
names already taking place. Next, we’ll look into slightly more complicated bundle-
resolution scenarios.

MULTIPLE MATCHING PACKAGE PROVIDERS

In the previous section, dependency resolution is fairly straightforward because
there’s only one candidate to resolve each dependency. The OSGi framework doesn’t
restrict bundles from exporting the same package. Actually, one of the benefits of the
OSGi framework is its support for side-by-side versions, meaning it’s possible to use dif-
ferent versions of the same package in the same running JVM. In highly collaborative
environments of independently developed bundles, it’s difficult to limit which ver-
sions of packages are used. Likewise, in large systems, it’s possible for different teams
to use different versions of libraries in their subsystems; the use of different XML
parser versions is a prime example.

Let’s consider what happens when multiple candidates are available to resolve the
same dependency. Consider a case in which a web application needs to import the
javax.servlet package and both a servlet API bundle and a Tomcat bundle provide
the package (see figure 2.17).

58

CHAPTER 2 Mastering modularity

export
Jjavax.serviet Serviet
ion="2 4.0"
version 0 APl
import -
Jjavax.serviet
Web version="2.4.0"
application 9
B e »
|
Tomcat
export Figure 2.17 How does the framework
Jjavax.serviet choose between multiple exporters of
version="2.5.0" a package?

When the framework tries to resolve the dependencies of the web application, it sees
that the web application requires javax.servlet with a minimum version of 2.4.0 and
both the servlet API and Tomcat bundles meet this requirement. Because the web
application can be wired to only one version of the package, how does the framework
choose between the candidates? As you may intuitively expect, the framework favors
the highest matching version, so in this case it selects Tomcat to resolve the web appli-
cation’s dependency. Sounds simple enough. What happens if both bundles export
the same version, say 2.4.0?

In this case, the framework chooses between candidates based on the order in
which they’re installed in the framework. Bundles installed earlier are given priority
over bundles installed later; as we mentioned, the next chapter will show you what it
means to install a bundle in the framework. If you assume the servlet API was installed
before Tomcat, the servlet API will be selected to resolve the web application’s depen-
dency. The framework makes one more consideration when prioritizing matching
candidates: maximizing collaboration.

So far, you've been working under the assumption that you start the resolve pro-
cess on a cleanly installed set of bundles. But the OSGi framework allows bundles to
be dynamically installed at any time during execution. In other words, the framework
doesn’t always start from a clean slate. It’s possible for some bundles to be installed,
resolved, and already in use when new bundles are installed. This creates another
means to differentiate among exporters: already-resolved exporters and not-yet-
resolved exporters. The framework gives priority to already-resolved exporters, so if it
must choose between two matching candidates where one is resolved and one isn’t, it
chooses the resolved candidate. Consider again the example with the servlet
API exporting version 2.4.0 of the javax.servlet package and Tomcat exporting ver-
sion 2.5.0. If the servlet API is already resolved, the framework will choose it to resolve
the web application’s dependency, even though it isn’t exporting the highest version,
as shown in figure 2.18. Why?

It has to do with maximizing the potential for collaboration. Bundles can only col-
laborate if they’re using the same version of a shared package. When resolving, the

2.7.2

OSGi dependency resolution 59

pommmm——- Resolved
import '
javax.serviet
Jetty version="2.4.0") export
Jjavax.serviet Serviet
ion="2.4.0"
— e ‘frﬁ'o"' API
_______ >
r"
app‘?i/§:tion Tomeat : .
el Figure 2.18 If a bundle is
m N | already resolved because it’s
. [in use by another bundle, this
import) export LI Installed Y ’
javax.serviet Jjavax.serviet bundle is preferred to bundles
version="2.4.0" version="2.5.0" that are only installed.

framework favors already-resolved packages as a means to minimize the number of dif-
ferent versions of the same package being used. Let’s summarize the priority of
dependency resolution candidate selection:

= Highest priority is given to already-resolved candidates, where multiple matches
of resolved candidates are sorted according to version and then installation
order.

= Next priority is given to unresolved candidates, where multiple matches of unre-
solved candidates are sorted according to version and then installation order.

It looks like we have all the bases covered, right? Not quite. Next, we’ll look at how an
additional level of constraint checking is necessary to ensure that bundle dependency
resolution is consistent.

Ensuring consistency with uses constraints

From the perspective of any given bundle, a set of packages is visible to it, which we’ll
call its class space. Given your current understanding, you can define a bundle’s class
space as its imported packages combined with the packages accessible from its bundle
class path, as shown in figure 2.19.

A bundle’s class space must be consistent,
which means only a single instance of a given
package must be visible to the bundle. Here, Bundle A's Bundle Bs

bundle class path bundle class path

we define instances of a package as those with
the same name, but from different providers.
For example, consider the previous example,
where both the servlet API and Tomcat bun- g

) Imported/Exported
dles exported the javax.servlet package. classes

The OSGi framework strives to ensure that

the class spaces of all bundles remain consis- Figure 2.19 Bundle A’s class space is
Prioritizi h d K defined as the union of its bundle class

tent. Prioritizing how exported packages are path with its imported packages, which

selected for imported packages, as described are provided by bundle B’s exports.

60

CHAPTER 2 Mastering modularity

in the last section, isn’t sufficient. Why not? Let’s consider the simple API in the follow-
ing code snippet:

package org.osgi.service.http;

import javax.servlet.Servlet;

public interface HttpService {
void registerServlet (Sting alias, Servlet servlet, HttpContext ctx);

}

This is a snippet from an API you’ll meet in chapter 15. The details of what it does are
unimportant at the moment; for now, you just need to know its method signature.
Let’s assume the implementation of this API is packaged as a bundle containing the
org.osgi.service.http package but not javax.servlet. This means it has some
metadata in its manifest like this:

Export-Package: org.osgi.service.http; version="1.0.0"

Import-Package: javax.servlet; version="2.3.0"

Let’s assume the framework has the HTTP service bundle and a servlet library bundle
installed, as shown in figure 2.20. Given these two bundles, the framework makes the
only choice available, which is to select the version of javax.servlet provided by the
Servlet API bundle.

import |
javax.servlet
HTTP Jveraion:”Z.aO” Servlet
service API
- T P -
Figure 2.20 HTTP
export export .
org.osgi.service.nttp javax.serviet service-dependency

version="2.3.0" resolution

Now, assume you install two more bundles into the framework: the Tomcat bundle
exporting version 2.4.0 of javax.servlet and a bundle containing a client for the
HTTP service importing version 2.4.0 of javax.servlet. When the framework resolves
these two new bundles, it does so as shown in figure 2.21.

The HTTP client bundle imports org.osgi.service.http and version 2.4.0 of
javax.servlet, which the framework resolves to the HTTP service bundle and the
Tomcat bundle, respectively. It seems that everything is fine: all bundles have their
dependencies resolved, right? Not quite. There’s an issue with these choices for
dependency resolution—can you see what it is?

import import
Tomcat javaxgerviet | yrrp import HTTP = Javaxsendet — © gepylep
version="2.4.0 client org.osgi.service.http caies version="2.2.0 API
- - - | eeeeeemese——— L -— .| eeeee——— - -
export export export
Jjavax.serviet org.osgi.service.http Jjavax.serviet
version="2.4.0" version="2.3.0"

Figure 2.21 Subsequent HTTP client-dependency resolution

OSGi dependency resolution 61

) import] import
Tomcat javaxcerviet EEHpRp | import HTTP Javaxsensb — Serviet
version="2.4.0 client org.osgi.service.nttp service /ereion= 2.2.0 API
- - - - seeesssss——- L - —-— '-.\ -
-, ;
export TTmeal export =" export
Javax.serviet TTTeeenl org.osgiservicenttp =77 Jjavax.serviet
version="2.4.0" s version="2.2.0"

Figure 2.22 Consistent dependency resolution of HTTP service and client bundles

Consider the servlet parameter in the HITPService.registerServlet () method.
Which version of javax.servlet is it? Because the HTTP service bundle is wired to the
Servlet API bundle, its parameter type is version 2.3.0 of javax.servlet.Servlet.
When the HTTP client bundle tries to invoke HTTPService.registerServlet(),
which version of javax.servlet.Servlet is the instance it passes? Because it’s wired
to the Tomcat bundle, it creates a 2.4.0 instance of javax.servlet.Servlet. The class
spaces of the HTTP service and client bundles aren’t consistent; two different versions
of javax.servlet are reachable from both. At execution time, this results in class cast
exceptions when the HTTP service and client bundles interact. What went wrong?

The framework made the best choices at the time it resolved the bundle depen-
dencies; but due to the incremental nature of the resolve process, it couldn’t make the
best overall choice. If you install all four bundles together, the framework resolves the
dependencies in a consistent way using its existing rules. Figure 2.22 shows the depen-
dency resolution when all four bundles are resolved together.

Because only one version of javax.servlet is in use, you know the class spaces of
the HTTP service and client bundles are consistent, allowing them to interact without
issue. But is this a general remedy to class-space inconsistencies? Unfortunately, it
isn’t, as you’ll see in chapter 3, because OSGi allows you to dynamically install and
uninstall bundles at any time. Moreover, inconsistent class spaces don’t only result
from incremental resolving of dependencies. It’s also possible to resolve a static set of
bundles into inconsistent class spaces due to inconsistent constraints. For example,
imagine that the HTTP service bundle requires precisely version 2.3.0 of javax.
servlet, whereas the client bundle requires precisely version 2.4.0. These constraints
are clearly inconsistent, but the framework will happily resolve the example bun-
dles given the current set of dependency resolution rules. Why doesn’t it detect
this inconsistency?

INTER- VS. INTRA-BUNDLE DEPENDENCIES

The difficulty is that Export -Package and Import-Package only capture inter-bundle
dependencies, but class-space consistency conflicts result from intra-bundle dependen-
cies. Recall the org.osgi.service.http.HttpService interface; its register-
Servlet () method takes a parameter of type javax.servlet.Servlet, which means
org.osgi.service.httpuses javax.servlet. Figure 2.23 shows this intra-bundle uses
relationship between the HTTP service bundle’s exported and imported packages.

62

CHAPTER 2 Mastering modularity

How do these uses relationships arise?

The example shows the typical way, which is HTTP jg“v@@ﬁcrm
when the method signatures of classes in an service /oreion="23.0"
exported package expose classes from other _Uses»

packages. This seems obvious, because the export

.. e org.osgi.service.htt
used types are visible, but it isn’t always the F

case. You can also expose a type via a base '8¢ 2.23 Bundle export uses import
class that’s downcast by the consumer. Because these types of uses relationships are

important, how do you capture them in the bundle metadata?

USES DIRECTIVE A directive attached to exported packages whose value is a
comma-delimited list of packages exposed by the associated exported package.

The sidebar “JAR file manifest syntax” in section 2.5 introduced the concept of a direc-
tive, but this is the first example of using one. Directives are additional metadata to alter
how the framework interprets the metadata to which the directives are attached. The syn-
tax for capturing directives is similar to arbitrary attributes. For example, the following
modified metadata for the HTTP service example shows how to use the uses directive:
Export-Package: org.osgi.service.http;

uses:="javax.servlet"; version="1.0.0"
Import-Package: javax.servlet; version="2.3.0"
Notice that directives use the := assignment syntax, but the ordering of the directives
and the attributes isn’t important. This particular example indicates that org.osgi.
service.http uses javax.servlet. How exactly does the framework use this informa-
tion? uses relationships among packages act like grouping constraints for the packages.
In this example, the framework ensures that importers of org.osgi.service.httpalso
use the same javax.servlet used by the HTTP service implementation.

This captures the previously missing intra-bundle package dependency. In this spe-
cific case, the exported package expresses a uses relationship with an imported pack-
age, but it could use other exported packages. These sorts of uses relationships
constrain which choices the framework can make when resolving dependencies, which
is why they’re also referred to as constraints. Abstractly, if package foo uses package bar,
importers of foo are constrained to the same bar if they use bar at all. Figure 2.24
depicts how this would impact the original incremental dependency resolutions.

import import
Tomcat javaxgervlet | TP Import . HTTP Javaxserviet Servlet
version="2.4.0 client org.osgi.service.http service = Version="23.0 API
- ® - | eeeessssee—- - - | eeeeeese———— | o -—
export export export
javax.serviet org.osgi.service.nttp javax.serviet
version="2.4.0" uses: = "javax.serviet” version="2.3.0"

Figure 2.24 Uses constraints detect class-space inconsistencies, so the framework can determine
that it isn’t possible to resolve the HTTP client bundle.

OSGi dependency resolution 63

) im c[)rt) import
Tomcat javaxgerviet - HTP | Import HTTP javaxeener . Servlet
version="2.2.0 client org.osgi.service.http service Yeroion="[2.3.0,23.0] API
- R - Bl eeeeeeeeee—- E - B | eeeesessma—— | -
export) export T export
Javax.serviet "o org.osgiservicehttp .o javax.serviet
version="2.4.0" "mel uses: ='javax.serviet” _..--=""" version="2.2.0"

Figure 2.25 Uses constraints guide dependency resolution.

For the incremental case, the framework can now detect inconsistencies in the class
spaces, and resolution fails when you try to use the client bundle. Early detection is
better than errors at execution time, because it alerts you to inconsistencies in the
deployed set of bundles. In the next chapter, you’ll learn how to cause the framework
to re-resolve the bundle dependencies to remedy this situation.

You can further modify the example, to illustrate how uses constraints help find
proper dependency resolutions. Assume the HTTP service bundle imports precisely
version 2.3.0 of javax.servlet, but the client imports version 2.3.0 or greater. Typi-
cally, the framework tries to select the highest version of a package to resolve a depen-
dency; but due to the uses constraint, the framework ends up selecting a lower
version instead, as shown in figure 2.25.

If you look at the class space of the HTTP client, you can see how the framework ends
up with this solution. The HTTP client’s class space contains both javax.servlet and
org.osgi.service.http, because it imports these packages. From the perspective of
the HTTP client bundle, it can use either version 2.4.0 or 2.3.0 of javax.servlet, but
the framework has only one choice for org.osgi.service.http. Because org.osgi.
service.http from the HTTP service bundle uses javax.servlet, the framework must
choose the same javax.servlet package for any clients. Because the HTTP service
bundle can only use version 2.3.0 of javax.servlet, this eliminates the Tomcat bundle
as a possibility for the client bundle. The end result is a consistent class space where
a lower version of a needed package is correctly selected even though a higher version
is available.

ODDS AND ENDS OF USES CONSTRAINTS

Let’s finish the discussion of uses constraints by touching on some final points. First,
uses constraints are transitive, which means that if a given bundle exports package foo
that uses imported package bar, and the selected exporter of bar uses package baz,
then the associated class space for a bundle importing foo is constrained to have the
same providers for both bar and baz, if they’re used at all.

Also, even though uses constraints are important to capture, you don’t want to cre-
ate blanket uses constraints, because doing so overly constrains dependency resolu-
tion. The framework has more leeway when resolving dependency on packages not
listed in uses constraints, which is necessary to support side-by-side versions. For exam-
ple, in larger applications, it isn’t uncommon for independently developed subsystems

64

2.8

CHAPTER 2 Mastering modularity

to use different versions of the same XML parser. If you specify uses constraints too
broadly, this isn’t possible. Accurate uses constraints are important, but luckily tools
exist for generating them for exported packages.

OK! You made it through the most difficult part and survived. Don’t worry if you
didn’t understand every detail, because some of it may make more sense after you
have more experience creating and using bundles. Let’s turn our attention back to
the paint program to review why you did all this in the first place.

Reviewing the benefits of the modular paint program

Even though the amount of work required to create the modular version of the paint
program wasn’t great, it was still more effort than if you left the paint program as it
was. Why did you create this modular version? Table 2.3 lists some of the benefits.

Table 2.3 Benefits of modularization in the paint program

Benefit Description

Logical boundary | You can keep the implementation details private, because you're only exposing what

enforcement you want to expose in the org. foo. shape public API package.
Reuse The code is more reusable because you explicitly declare what each bundle
improvement depends on via Import -Package statements. This means you know what you

need when using the code in different projects.

Configuration You no longer have to guess if you've deployed the application properly, because OSGi
verification verifies whether all needed pieces are present when launching the application.
Version Similar to configuration verification, OSGi also verifies whether you have the correct
verification versions of all the application pieces when launching the application.

Configuration You can more easily tailor the application to different scenarios by creating new con-
flexibility figurations. Think of this as paint program a la carte.

Some of these benefits are more obvious than others. Some you can demonstrate eas-
ily. For example, assume you forgot to deploy the shape API bundle in the launcher,
which you can simulate by deleting bundles/shape-2.0.jar before launching the paint
program. If you do this, you’ll see an exception like this:
org.osgi.framework.BundleException: Unresolved constraint in bundle 1:
package; (& (package=org.foo.shape) (version>=2.0.0) (! (version>=3.0.0)))

The exact syntax of this message will become familiar to you when you read chapter 4;
but ignoring the syntax, it tells you the application is missing the org. foo. shape pack-
age, which is provided by the API bundle. Due to the on-demand nature of Java class
loading, such errors are typically only discovered during application execution when
the missing classes are used. With OSGi, you can immediately discover such issues with
missing bundles or incorrect versions. In addition to detecting errors, let’s look at how
OSGi modularity helps you create different configurations of the application.

Reviewing the benefits of the modular paint program 65

Creating a different configuration of the paint program is as simple as creating a
new static main () method for the launcher to invoke. Currently, you’re using the orig-
inal staticmain () method provided by PaintFrame. In truth, itisn’t modular to have the
static main() on the implementation class; it’s better to create a separate class so you
don’t need to recompile the implementation classes when you want to change the
application’s configuration. The following listing shows the existing static main ()
method from the PaintFrame class.

Listing 2.2 Existing PaintFrame.main () method implementation

pcublic class PaintFrame extends JFrame
implements MouseListener, MouseMotionListener ({

public static void main(String[] args) throws Exception {
SwingUtilities.invokeAndWait (new Runnable () {
public void run() { J Creates PaintFrame
PaintFrame frame = new PaintFrame () ; instance
frame.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE) ;

frame.addWindowListener (new WindowAdapter () { Adds
public void windowClosing (WindowEvent evt) { listener
System.exit (0) ;
}
1) 43 Injects shape
frame.addShape (new Circle()) ; implementations

(
frame.addShape (new Square()) ;
frame.addShape (new Triangle()) ;

frame.setVisible (true) ;

1
}
The existing static main () is simple. You create a PaintFrame instance @ and add a lis-
tener @ to cause the VM to exit when the PaintFrame window is closed. You inject the
various shape implementations into the paint frame € and make the application win-
dow visible. The important aspect from the point of view of modularity is at €.
Because the configuration decision of which shapes to inject is hardcoded into the
method, if you want to create a different configuration, you must recompile the
implementation bundle.

For example, assume you want to run the paint program on a small device only
capable of supporting a single shape. To do so, you could modify Paint-
Frame.main () to only inject a single shape, but this wouldn’t be sufficient. You’d also
need to modify the metadata for the bundle so it would no longer depend on the
other shapes. Of course, after making these changes, you’d lose the first configura-
tion. These types of issues are arguments why the static main () method should be in
a separate bundle.

Let’s correct this situation in the current implementation. First, delete the Paint-
Frame.main () method and modify its bundle metadata as follows:

66

CHAPTER 2 Mastering modularity

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.paint

Bundle-Version: 2.0.0

Bundle-Name: Simple Paint Program

Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.paint; version="2.0.0"

The main paint program bundle no longer has any dependencies on the various
shape implementations, but it now needs to export the package containing the paint
frame. You can take the existing static main() method body and put it inside a new
class called org.foo.fullpaint.FullPaint, with the following bundle metadata:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.fullpaint

Bundle-Version: 1.0.0

Bundle-Name: Full Paint Program Configuration

Import-Package: javax.swing, org.foo.shape; org.foo.paint;
org.foo.shape.circle; org.foo.shape.square; org.foo.shape.triangle;
version="2.0.0"

Main-Class: org.foo.fullpaint.FullPaint

To launch this full version of the paint program, use the bundle launcher to deploy all
the associated bundles, including this FullPaint bundle. Likewise, you can create a
different bundle containing the org.foo.smallpaint.SmallPaint class in this listing
to launch a small configuration of the paint program containing only the circle shape.

Listing 2.3 New launcher for smaller paint program configuration

package org.foo.smallpaint;

public class SmallPaint
public static void main(String[] args) throws Exception {
SwingUtilities.invokeAndWait (new Runnable()
public void run() {
PaintFrame frame = new PaintFrame () ;
frame.setDefaultCloseOperation (JFrame.DO_NOTHING ON_CLOSE) ;
frame.addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent evt) {
System.exit (0) ;
}

1 Injects only circle shape

frame.addShape (new Circle()); implementation
frame.setVisible (true) ;
1
P

Reviewing the benefits of the modular paint program 67

The metadata for the bundle containing the small paint program configuration is as

follows:

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.smallpaint

Bundle-Version: 1.0.0

Bundle-Name: Reduced Paint Program Configuration

Import-Package: javax.swing, org.foo.shape; org.foo.paint;
org.foo.shape.circle; version="2.0.0"

Main-Class: org.foo.smallpaint.SmallPaint

This small configuration only depends on Swing, the public API, the paint program

implementation, and the circle implementation. When you launch the full configura-
tion, all shape implementations are required; but for the small configuration, only the

circle implementation is required. Now you can deploy the appropriate configuration

of the application based on the target device and have OSGi verify the correctness of it

all. Pretty sweet. For completeness, figure 2.26 shows the before and after views of the

paint program.

Nonmodular
paint program

>

SmallFaint

Figure 2.26 Modular and nonmodular

S versions of the paint program

68

CHAPTER 2 Mastering modularity

2.9 Summary

We’ve covered a lot of ground in this chapter. Some of the highlights include the
following:

Modularity is a form of separation of concerns that provides both logical and
physical encapsulation of classes.

Modularity is desirable because it allows you to break applications into logically
independent pieces that can be independently changed and reasoned about.
Bundle is the name for a module in OSGi. It’s a JAR file containing code,
resources, and modularity metadata.

Modularity metadata details human-readable information, bundle identifica-
tion, and code visibility.

Bundle code visibility is composed of an internal class path, exported packages,
and imported packages, which differs significantly from the global type assump-
tion of standard JAR files.

The OSGi framework uses the metadata about imported and exported packages
to automatically resolve bundle dependencies and ensure type consistency
before a bundle can be used.

Imported and exported packages capture inter-bundle package dependencies,
but uses constraints are necessary to capture intra-bundle package dependen-
cies to ensure complete type consistency.

From here, we’ll move on to the lifecycle layer, where we enter execution time aspects
of OSGi modularity. This chapter was all about describing bundles to the OSGi frame-
work; the lifecycle layer is all about using bundles and the facilities provided by the
OSGi framework at execution time.

Learning Lifecycle

This chapter covers

Understanding software lifecycle management
Introducing the lifecycle of a bundle

Exploring the lifecycle layer API

Extending an application to make it lifecycle aware

Explaining the relationship between the module
and lifecycle layers

In the last chapter, we looked at the OSGi module layer and introduced you to
bundles: a bundle is OSGi terminology for a module, which is a JAR file with the
extra modularity metadata. You use bundles to define both the logical (code
encapsulation and dependencies) and physical (deployable units) modularity of
an application.

The OSGi module layer goes to great lengths to ensure that class loading hap-
pens in a consistent and predictable way. But to avoid putting the cart before the
horse, in chapter 2 we glossed over the details of how you install bundles into an
OSGi framework. No longer: in this chapter, we’ll look at the next layer of the OSGi
stack—the lifecycle layer.

69

70

3.1

3.11

CHAPTER 3 Learning lifecycle

As we mentioned in chapter 2, to use a bundle you install it into a running instance
of the OSGi framework. So creating a bundle is the first half of leveraging OSGi’s mod-
ularity features; the second half is using the OSGi framework as a runtime to manage
and execute bundles. The lifecycle layer is unique in allowing you to create externally
(and remotely) managed applications or completely self-managed applications (or
any combination of the two). It also introduces dynamism that isn’t normally part of
an application.

This chapter will familiarize you with the features of the lifecycle layer and explain
how to effectively use them. In the next section, we’ll take a closer look at what lifecy-
cle management is and why you should care about it, followed by the definition of the
OSGi bundle lifecycle. In subsequent sections, you’ll learn about the API for managing
the lifecycle of bundles. Throughout this chapter, we’ll bring all the points home via
examples of a simple OSGi shell and a lifecycle-aware version of the paint program.

Introducing lifecycle management

The OSGi lifecycle layer provides a management API and a well-defined lifecycle for
bundles at execution time in the OSGi framework. The lifecycle layer serves two differ-
ent purposes:

= External to your application, the lifecycle layer precisely defines the bundle lifecy-
cle operations. These lifecycle operations allow you to manage and evolve your
application by dynamically changing the composition of bundles inside a run-
ning framework.

= Internal to your application, the lifecycle layer defines how your bundles gain access
to their execution context, which provides them with a way to interact with the OSGi
framework and the facilities it provides at execution time.

But let’s take a step back. It’s fine to state what the OSGi lifecycle layer does, but this
won’t necessarily convince you of its worth. Instead, let’s look at a quick example of
how it can improve your applications with a real-world scenario.

What is lifecycle management?

Imagine you have a business application that can report management events via JMX.
Do you always want to enable or even install the JMX layer? Imagine running in a light-
weight configuration and only enabling the JMX notifications on demand. The lifecy-
cle layer allows you to install, start, update, stop, and uninstall different bundles
externally, to customize your application’s configuration at execution time.

Further, imagine that a critical failure event in your application must trigger the
JMX layer to send out a notification regardless of whether the administrator previ-
ously enabled or installed the layer. The lifecycle layer also provides programmatic
access to bundles so they can internally modify their application’s configuration at
execution time.

Introducing lifecycle management 71

Generally speaking, programs (or parts of a
program) are subject to some sort of lifecycle,
which may or may not be explicit. The lifecycle
of software typically has four distinct phases, as
shown in figure 3.1.

If you’re creating an application, think
about the typical lifecycle of the application as a
whole. First you need to install it. Assuming all
its dependencies are satisfied, you can execute
it, which allows it to begin acquiring resources.
When the application is no longer needed, you
stop it, which allows it to release any resources

\(\Q@allatigh
£ Application &
(S -
oL <
3
Updare

Figure 3.1 The four phases of the soft-

ware lifecycle. An application is installed
so you can execute it. Later, you can up-
date it to a newer version or, ultimately,
remove it if you no longer need it.

and perhaps persist any important state. Over time, you may want to update the appli-
cation to a newer version. Ultimately, you may remove the application because you no
longer need it. For nonmodular applications, the lifecycle operates on the application
as a whole; but as you’ll see, for modular applications, fine-grained lifecycle manage-
ment is possible for individual pieces of the application.

The following are two of the more popular models for creating applications in Java

and how they manage software lifecycle:

= Standard Java—For the purposes of this discussion, we’ll equate an application

in standard Java to a JAR file containing the Main-Class header in its manifest,
which allows it to be easily executed. In standard Java development, the lifecycle
of an application is simple. Such a JAR-based Java application is installed when
downloaded. It’s executed when the user launches a JVM process, typically by
double-clicking it. The application is stopped when the program terminates.
Updating is usually done by replacing the JAR with a newer version. Removal is
achieved by deleting the JAR from the file system.

Servlet—In servlet development, the lifecycle of the web application is managed
by the servlet container. The application is installed via a container-specific pro-
cess; sometimes this involves dropping a WAR file containing the application in
a certain directory in the file system or uploading a WAR file via a web-manage-
ment interface. The servlet container calls various lifecycle API methods such as
Servlet.init () and Servlet.destroy() on the WAR file’s subcomponents
during the execution phase of the application’s lifecycle. To update the applica-
tion, a completely new WAR file is generated. The existing WAR must be stopped
and the new WAR file started in its place. The application is removed by a con-
tainer-specific process, again sometimes removing the WAR from the file system
or interacting with a management interface.

As you know, many different lifecycle-management approaches are used in Java today.
In traditional Java applications, the lifecycle is largely managed by the platform-specific
mechanism of the underlying operating system via installers and double-clicking

72

3.1.2

3.2

CHAPTER 3 Learning lifecycle

desktop icons. For modular development approaches, such as servlets, Java EE, and Net-
Beans, each has its own specific mechanism of handling the lifecycle of its components.
This leads us to the question of why you need lifecycle management at all.

Why lifecycle management?

Cast your mind back to the earlier discussion about why you should modularize your
application code into separate bundles. We talked about the benefits of separating dif-
ferent concerns into bundles and avoiding tight coupling among them. The OSGi
module layer provides the necessary means to do this at the class level, but it doesn’t
address when a particular set of classes or objects is needed in an application.

An explicit lifecycle API lets the providing application take care of how to config-
ure, initialize, and maintain a piece of code that’s installed so it can decide how it
should operate at execution time. For example, if a database driver is in use, should it
start any threads or initialize any cache tables to improve performance? If it does any
of these things, when are these resources released? Do they exist for the lifetime of the
application as a whole? And if not, how are they removed? Because the OSGi specifica-
tion provides an explicit lifecycle API, you can take any bundle providing the function-
ality you need and let it worry about how to manage its internal functions. In essence,
it’s a matter of compose versus control.

Because you can architect your application such that parts of it may come and go
at any point in time, the application’s flexibility is greatly increased. You can easily
manage installation, update, and removal of an application and its required modules.
You can configure or tailor applications to suit specific needs, breaking the mono-
lithic approach of standard development approaches. Instead of “you get what you
get,” wouldn’t it be great if you could offer “you get what you need”?

Another great benefit of the standard lifecycle API is that it allows for a diverse set
of management applications that can manage your application. There’s no magic
going on; lifecycle management can be done completely using the provided API.

We hope this discussion has piqued your interest. Now, let’s focus specifically on
defining the OSGi bundle lifecycle and the management API associated with it.

OSGi bundle lifecycle

The OSGi lifecycle layer is how you use the bundles; it’s where the rubber meets the
road. The module metadata from chapter 2 is all well and good, but creating bundles
in and of itself is useful only if you use them. You need to interact with the OSGi lifecy-
cle layer in order to use the bundles. Unlike the module layer, which relies on meta-
data, the lifecycle layer relies on APIs. Because introducing APIs can be a boring
endeavor (Javadoc, anyone?), we’ll move in a top-down fashion and use an example to
show what the lifecycle layer APT allows you to do.

It’s important to note that the OSGi core framework doesn’t mandate any particu-
lar mechanism of interacting with the lifecycle API (such as the command line, a GUI,
or an XML configuration file); the core is purely a Java API. This turns out to be

3.2.1

OSGi bundle lifecycle 73

extremely powerful, because it makes it possible to design as many different ways of
managing the OSGi framework as you can think of; in the end, you’re limited only by
your imagination as a developer.

Because there’s no standard way for users to interact with the lifecycle API, you
could use a framework-specific mechanism. But using this approach here would be a
disservice to you, because it’s a great opportunity for learning. Instead of reusing
someone else’s work in this chapter, we’ll lead you through some basic steps for devel-
oping your own command line interface for interacting with the OSGi framework.
This gives you the perfect tool, alongside the paint program, to explore the rich capa-
bilities provided by the OSGi lifecycle API.

Shells, shells, everywhere

If you have some familiarity with using OSGi frameworks, you're likely aware that
most OSGi framework implementations (such as Apache Felix, Eclipse Equinox, and
Knopflerfish) have their own shells for interacting with a running framework. The OSGi
specification doesn’t define a standard shell (although there has been some work to-
ward this goal recently; see http://felix.apache.org/site/apache-felix-gogo.html), but
shells need not be tied to a specific framework and can be implemented as bundles,
just as you’ll do here.

Introducing lifecycle to the paint program

Enough with the talk—let’s see the lifecycle APT in action by kicking off the shell appli-
cation and using it to install the paint program. To do this, type the following into
your operating system console (Windows users, substitute \ for /):

$ cd chapter03/shell-example/

$ ant

$ java -jar launcher.jar bundles
Bundle: org.foo.shell started with bundle id 1 - listening on port 7070

The shell is created as a bundle that, on starting, begins listening for user input on a
telnet socket. This allows clients to connect and perform install, start, stop, update,
and uninstall actions on bundles. It also provides some basic diagnostic facilities.

Here’s a session that connects to the newly launched framework and uses the shell to
install the paint example:

$ telnet localhost 7070
-> install file:../paint-example/bundles/paint-3.0.jar

Bundle: 2
-> install file:../paint-example/bundles/shape-3.0.jar
Bundle: 3

-> start 2
-> install file:../paint-example/bundles/circle-3.0.jar
Bundle: 4
-> install file:../paint-example/bundles/square-3.0.jar
Bundle: 5

http://felix.apache.org/site/apache-felix-gogo.html

74

CHAPTER 3 Learning lifecycle

-> start 4

-> start 5

-> install file:../paint-example/bundles/triangle-3.0.jar

Bundle: 6

-> start 6

-> stop 4

In figure 3.2, you can see that in step 1, you first install the shape API bundle, and then
you install and start the paint program bundle. This causes an empty paint frame to
appear with no available shapes, which makes sense because you haven’t installed any
other bundles yet. In step 2, you install and start the circle and square bundles. As if by
magic, the two shapes dynamically appear in the paint frame’s toolbar and are avail-
able for drawing. In step 3, you install and start the triangle bundle; then, you draw
some shapes on the paint canvas. What happens if you stop a bundle? In step 4, you
stop the circle bundle, which you see is replaced on the canvas with the placeholder
icon (a construction worker) from DefaultShape.

-> install file:org.foo.shape-3.0.jar

Fa ¥ Bundle: 2 ann PaintFrame
\‘_1:_.'-;' -> install file:org.foo.paint-3.0.jar
Bundle: 3 ‘l:”ll]
-> giart 3
[-YaXa) PaintFrame
-> install file:org.foo shape.circle-
3.0 jar
Bundle: 4
-> install file:org.foo.shape.square-
3.0.jar
Bundle: 5
-> start 4
> start 5
-> install file:org.foo.shape.triangle-3.0.jar
1 | Bundle: 6
et ->start6
ann FPaintFrame Aann PaintFrame

EA Ol A
®© @ © O
JAN
LgD 0 gD

A

Figure 3.2 Execution-time evolution: dynamically adding shapes to and removing shapes from the
paint program as if by magic

3.2.2

OSGi bundle lifecycle 75

This shows you in practice that you can use the lifecycle API to build a highly dynamic
application, but what’s going on in this example? To understand, we’ll take a top-
down approach, using the shell and paint example for context:

In section 3.2.2, we’ll explain the framework’s role in the application’s lifecycle.
In section 3.2.3, we’ll look at the changes you need to make to the bundle man-
ifest to hook the bundles into the OSGi framework.

In section 3.2.4, we’ll investigate the key API interfaces used by the OSGi lifecy-
cle: BundleActivator, BundleContext, and Bundle.

In section 3.2.5, we’ll wrap up with a review of the OSGi lifecycle state diagram.

Let’s get started.

The 0SGi framework’s role in the lifecycle

In standard Java programming, you use JAR files by placing them on the class path.
This isn’t the approach for using bundles. A bundle can only be used when it’s
installed into a running instance of the OSGi framework. Conceptually, you can think
of installing a bundle into the framework as being similar to putting a JAR file on the

class path in standard Java programming.

This simplified view hides some important differences from the standard class
path, as you can see in figure 3.3. One big difference is the fact that the OSGi frame-
work supports full lifecycle management of bundle JAR files, including install, resolve,
start, stop, update, and uninstall. At this point, we’ve only touched on installing bun-
dles and resolving their dependencies. The remainder of this chapter will fully
explain the lifecycle activities and how they’re related to each other. For example,
we’ve already mentioned that the framework doesn’t allow an installed bundle to be
used until its dependencies (Import-Package declarations) are satisfied.

Class path
\m@allatio/7 \{\gf/aﬂat/oh \{\gx,allatfo,7
g o N T
> ~ o N o
Q b3 S %) b3
£ Bundle 8 £ Bundle s £ Bundle 2
o g 3 s o g
5 $ N
Updave Updave Updave

0SGi framework

Figure 3.3 Class path versus 0SGi framework with full lifecycle management

76

3.2.3

CHAPTER 3 Learning lifecycle

Another huge difference from the standard class path is inherent dynamism. The
OSGi framework supports the full bundle lifecycle at execution time. This is similar to
modifying what’s on the class path dynamically.

As part of lifecycle management, the framework maintains a persistent cache of
installed bundles. This means the next time you start the framework, any previously
installed bundles are automatically reloaded from the bundle cache, and the original
JAR files are no longer necessary. Perhaps we can characterize the framework as a fully
manageable, dynamic, and persistent class path. Sounds cool, huh? Let’s move on to how
you have to modify the metadata to allow bundles to hook into the lifecycle layer API.

The bundle activator manifest entry

How do you tell the framework to kick-start the bundles at execution time? The
answer, as with the rest of the modularity information, is via the bundle metadata.
Here’s the JAR file manifest describing the shell bundle you’ll create:
Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-SymbolicName: org.foo.shell

Bundle-Version: 1.0

Bundle-Activator: org.foo.shell.Activator

Import-Package: org.osgi.framework;version="[1.3,2.0)",
org.osgi.service.packageadmin;version="[1.2,2.0)",
org.osgi.service.startlevel;version="[1.1,2.0)"

Bundle-Name: remote_ shell

Bundle-DocURL: http://code.google.com/p/osgi-in-action/

You should already be familiar with most of these headers from chapter 2. But to
recap, most of the entries are related to the class-level modularity of the bundle. This

metadata does the following:

= Defines the bundle’s identity
= Specifies the packages on which this bundle depends
= Declares additional human-readable information

The only new header is Bundle-Activator. This is the first sighting of the OSGi lifecy-
cle API in action! The Bundle-Activator header specifies the name of a reachable
class (that is, either imported or on the bundle class path) implementing the org.
osgi.framework.BundleActivator interface. This interface provides the bundle with
a hook into the lifecycle layer and the ability to customize what happens when it’s
started or stopped.

Is an activator necessary?

Keep in mind that not all bundles need an activator. An activator is necessary only if
you’re creating a bundle and wish to specifically interact with OSGi API or need to per-
form custom initialization/de-initialization actions. If you’re creating a simple library
bundle, it isn’t necessary to give it an activator because it’s possible to share class-
es without one.

3.24

OSGi bundle lifecycle 77

(continued)

This doesn’t mean your bundles won’t be able to do anything. Bundles don’t neces-
sarily need to be started in order to do useful things. Remember the paint program
you created in chapter 2: none of the bundles had activators, nor did any of them
need to be started, but you still created a fully functioning application.

To understand what’s going on in the shell example, we’ll now introduce you to three
interfaces (BundleActivator, BundleContext, and Bundle) that are the heart and
soul of the lifecycle layer APL

Introducing the lifecycle API

The last section described how the shell bundle declares a BundleActivator to hook
into the framework at execution time. We can now look into the details of this inter-
face and the other lifecycle APIs made available from it to the bundle. This is the bun-
dle’s hook into the world of OSGi.

BUNDLE ACTIVATOR

As you’ve seen, adding an activator to the bundle is straightforward, because you only
need to create a class implementing the BundleActivator interface, which looks like
this:

public interface BundleActivator {

public void start (BundleContext context) throws Exception;
public void stop (BundleContext context) throws Exception;

1
For the shell example, the activator allows it to become lifecycle aware and gain access
to framework facilities. The following listing shows the activator for the shell bundle.

Listing 3.1 Simple shell bundle activator

package org.foo.shell;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator { qg!? Declares volatile
private volatile Binding m_binding; member field

public void start (BundleContext context) {
int port = getPort (context) ;
int max = getMaxConnections (context) ; L/
m_binding = getTelnetBinding(context, port, max);

m_binding.start(); Starts Passes context
System.out.println("Bundle " + binding into telnet
context.getBundle () .getSymbolicName () + binding

" started with bundle id" +
context.getBundle () .getBundleId () +
" listening on port " + port);

78

CHAPTER 3 Learning lifecycle

public void stop (BundleContext context) {
m_binding.stop() ;

}

public interface Binding
public void start();
public void stop() throws InterruptedException;

}
This class implements the OSGi BundleActivator interface. When the bundle is
installed and started, the framework constructs an instance of this activator class and
invokes the start () method. When the bundle is stopped, the framework invokes the
stop () method. The start () method is the starting point for your bundle, sort of like
the static main () method in standard Java. After it returns, your bundle is expected to
function until the stop () method is invoked at some later point. The stop () method
should undo anything done by the start () method.

We need to mention a few technical but potentially important details about the
handling of the BundleActivator instance:

= The activator instance on which start () is called is the same instance on which
stop () is called.

= After stop () is called, the activator instance is discarded and isn’t used again.

= If the bundle is subsequently restarted after being stopped, a new activator
instance is created, and the start () and stop () methods are invoked on it as
appropriate.

As you can see, the rest of the activator isn’t complicated. In the start () method, you
get the port on which the bundle listens for connection requests and the number of
allowed concurrent connections. You also create a TelnetBinding, which does the
work of listening on a socket for user input and processes it; the details of creating the
telnet binding are omitted here for reasons of simplicity and brevity. The next step is
to start the binding, which creates a new Thread to run the shell. How this happens is
left to the binding, which you start next @.

The point about the binding starting its own thread is important because the acti-
vator methods shouldn’t do much work. This is best practice as with most callback pat-
terns, which are supposed to return quickly, allowing the framework to carry on
managing other bundles. But it’s also important to point out that the OSGi specifica-
tion doesn’t mandate you start a new thread if your application’s startup doesn’t war-
rant it—the ball is in your court.

For the activator stop () method, all you do is tell the binding to stop listening to user
input and cease to execute. You should make sure it does stop by waiting until its thread
is finished; the binding method waits for its thread to stop. Sometimes, you may have spe-
cial cases for certain situations because, as you’ll see later, the shell thread itself may call

OSGi bundle lifecycle 79

Threading

0SGi is designed around the normal Java thread abstraction. Unlike other, more
heavyweight frameworks, it assumes that you do your own thread management. You
gain a lot of freedom by doing this, but at the same time you have to make sure your
programs are correctly synchronized and thread safe. In this simple example, nothing
special is needed; but in general, it's likely that stop () will be called on a different
thread than start () (for this reason, you make the member at @ volatile).

The OSGi libraries are thread safe, and callbacks are normally done in a way to give
you some guarantees. For example, in the case of the bundle activator, start () and
stop () are guaranteed to be called in order and not concurrently. So, technically, in
this particular case the volatile might not be necessary, but in general your code
must take thread visibility into account.

the stop () method, which will cause the bundle to freeze. We’ll cover these and other
advanced use cases later. In general, if you use threads in your bundles, do so in such
a way that all threads are stopped when the stop () method returns.

Now you’ve seen how you can handle starting and stopping a bundle, but what if
you want to interact with the OSGi framework? We’ll now switch the focus to the
BundleContext object passed into the start () and stop () methods of the activator;
this allows a bundle to interact with the framework and manage other bundles.

BUNDLE CONTEXT

As you learned in the previous section, the framework calls the start () method of a
bundle’s activator when it’s started and the stop () method when it’s stopped. Both
methods receive an instance of the BundleContext interface. The methods of the
BundleContext interface can be roughly divided into two categories:

= The first category is related to deployment and lifecycle management.
= The second category is related to bundle interaction via services.

We’re interested in the first category of methods, because they give you the ability to
install and manage the lifecycle of other bundles, access information about the frame-
work, and retrieve basic configuration properties. This listing captures these methods
from BundleContext.

Listing 3.2 BundleContext methods related to lifecycle management

public interface BundleContext {

String getProperty (String key) ;

Bundle getBundle() ;

Bundle installBundle (String location, InputStream input)
throws BundleException;

Bundle installBundle(String location) throws BundleException;

Bundle getBundle (long id);

Bundle[] getBundles() ;

80

CHAPTER 3 Learning lifecycle

void addBundlelListener (BundleListener listener) ;

void removeBundleListener (BundleListener listener) ;

void addFrameworkListener (FrameworkListener listener) ;
void removeFrameworkListener (FrameworkListener listener);

}

We’ll cover most of these methods in this chapter. The second category of Bundle-
Context methods related to services will be covered in the next chapter.

Unique context

One important aspect of the bundle context object is its role as the unique execution
context of its associated bundle. Because it represents the execution context, it’s
only valid while the associated bundle is active, which is explicitly from the moment
the activator start () method is invoked until the activator stop () method com-
pletes and the entire time in between. Most bundle context methods throw an excep-
tion if used when the associated bundle isn’t active. It’s a unique execution context
because each activated bundle receives its own context object. The framework uses
this context for security and resource allocation purposes for each individual bundle.
Given this capability of BundleContext objects, they should be treated as sensitive
or private objects and not passed freely among bundles.

The shell activator in listing 3.1 uses the bundle context to get its configuration prop-
erty values @. It also passes the context into the telnet binding €, which client con-
nections will use to interact with the running framework. Finally, it uses the context to
obtain the bundle’s Bundle object to access the identification information. We’ll look
at these details shortly, but for now we’ll continue the top-down description by looking
at the final lifecycle layer interface: org.osgi.framework.Bundle.

BUNDLE

For each installed bundle, the framework creates a Bundle object to logically repre-
sent it. The Bundle interface defines the API to manage an installed bundle’s lifecycle;
a portion of the interface is presented in the following listing. As we discuss the
Bundle interface, you’ll see that most lifecycle operations have a corresponding
method in it.

Listing 3.3 Bundle interface methods related to lifecycle management

public interface Bundle ({

BundleContext getBundleContext () ;
long getBundleId() ;

Dictionary getHeaders() ;

Dictionary getHeaders (String locale) ;
String getLocation() ;

int getState();

String getSymbolicName () ;

OSGi bundle lifecycle 81

Version getVersion() ;

void start (int options) throws BundleException;

void start () throws BundleException;

void stop(int options) throws BundleException;

void stop() throws BundleException;

void update (InputStream input) throws BundleException;
void update() throws BundleException;

void uninstall() throws BundleException;

}

Each installed bundle is uniquely identified in the framework by its Bundle object.
From the Bundle object, you can also access two additional forms of bundle identifica-
tion: the bundle identifier and the bundle location. You might be thinking, “Didn’t we
talk about bundle identification metadata back in chapter 2?” Yes, we did, but don’t
get confused. The identification metadata in chapter 2 was for static identification of
the bundle JAR file. The bundle identifier and bundle location are for execution-time
identification, meaning they’re associated with the Bundle object. You may wonder
why you need two different execution-time identifiers.

The main difference between the two is who defines the identifier; see figure 3.4.
The bundle identifier is a Java language long value assigned by the framework in
ascending order as bundles are installed. The bundle location is a String value
assigned by the installer of the bundle.

Both the bundle identifier and location values uniquely identify the Bundle object
and persist across framework executions when the installed bundles are reloaded
from the framework’s cache.

Create bundle
representation

with bundle ID Ihstalled Install file: bundle.jar
bundles
Framework
ldentity defined by framework ldentity defined by user

Figure 3.4 Difference between the bundle identifiers

Bundle location interpretation

The bundle location has a unique characteristic because most OSGi framework im-
plementations interpret it as a URL pointing to the bundle JAR file. The framework
then uses this URL to download the contents of the bundle JAR file during bundle in-
stallation. The specification doesn’t define the location string as an URL, nor is it re-
quired, because you can install bundles from an input stream as well.

82

CHAPTER 3 Learning lifecycle

You may still be thinking, “I'm not convinced that all these identification mechanisms
are necessary. Couldn’t you find the Bundle object using the bundle’s symbolic name
and version from chapter 2?” Yes, you could, because the framework allows only one
bundle with a given symbolic name and version to be installed at a time. This means
the bundle symbolic name and version pair also act as an execution-time identifier.

Why so many forms of identification?

History plays a role here. As mentioned in chapter 2, the notion of using a bundle’s
symbolic name and version to uniquely identify it didn’t exist in versions of the spec-
ification prior to R4. Therefore, prior to R4, it made sense to have internally and ex-
ternally assigned identifiers. Now it makes less sense, because the bundle’s
symbolic name and version pair are externally defined and explicitly recognized inter-
nally by the framework.

There’s still a role for the bundle identifier because in some cases the framework treats
a lower identifier value as being better than a higher one when deciding between two
otherwise equal alternatives, such as when two bundles export the same version of
a given package. The real loser here is the bundle location, which doesn’t serve a
useful purpose other than potentially giving the initial URL of the bundle JAR file.

Although one instance of Bundle exists for each bundle installed into the framework,
at execution time there’s also a special instance of Bundle to represent the framework
itself. This special bundle is called the system bundle; and although the API is the same,
it merits its own discussion.

THE SYSTEM BUNDLE

At execution time, the framework is represented as a bundle with an identifier of 0,
called the system bundle. You don’t install the system bundle—it always exists while the
framework is running.

The system bundle follows the same lifecycle as normal bundles, so you can manip-
ulate it with the same operations as normal bundles. But lifecycle operations per-
formed on the system bundle have special meanings when compared to normal
bundles. One example of the special meaning is evident when you stop the system
bundle. Intuitively, stopping the system bundle shuts down the framework in a well-
behaved manner. It stops all other bundles first and then shuts itself down completely.

With that, we conclude our high-level look at the major API players in the lifecycle
layer (BundleActivator, BundleContext, and Bundle). You now know the following:

= BundleActivator is the entry point for the bundles, much like static main () in
a standard Java application.

= BundleContext provides applications with the methods to manipulate the OSGi
framework at execution time.

= Bundle represents an installed bundle in the framework, allowing state manipu-
lations to be performed on it.

3.2.5

OSGi bundle lifecycle 83

With this knowledge in hand, we’ll complete the top-down approach by defining the
overall bundle lifecycle state diagram and see how these interfaces relate to it.

Lifecycle state diagram

Until now, we’ve been holding off on explicitly describing the complete bundle
lifecycle in favor of getting a high-level view of the API forming the lifecycle layer.
This allowed you to quickly get your hands a little dirty. Now you can better under-
stand how these APIs relate to the complete bundle lifecycle state diagram, shown in
figure 3.5.

The entry point of the bundle lifecycle is the BundleContext.installBundle ()
operation, which creates a bundle in the INSTALLED state. From figure 3.5, you can
see that there’s no direct path from INSTALLED to STARTING. This is because the
framework ensures all dependencies of a bundle are satisfied before it can be used
(that is, no classes can be loaded from it). The transition from the INSTALLED to the
RESOLVED state represents this guarantee. The framework won’t allow a bundle to
transition to RESOLVED unless all its dependencies are satisfied. If it can’t transition
to RESOLVED, by definition it can’t transition to STARTING. Often, the transition to
RESOLVED happens implicitly when the bundle is started or another bundle tries to
load a class from it, but you’ll see later in this chapter that it’s also possible to explic-
itly resolve a bundle.

The transition from the STARTING to the ACTIVE state is always implicit. A bundle is
in the STARTING state while its activator’s start () method executes. Upon successful
completion of the start () method, the bundle’s state transitions to ACTIVE; but if the
activator throws an exception, it transitions back to RESOLVED.

Install
Update
Refresh
— Installed - Starting
Resolve Refresh
Update
Start
Uninstall Resolved Active
lﬁtop
L Uninstalled Stopping

Figure 3.5 O0SGi bundle lifecycle

84

3.2.6

CHAPTER 3 Learning lifecycle

An ACTIVE bundle can be stopped, which also results in a transition back to the
RESOLVED state via the STOPPING state. The STOPPING state is an implicit state like START-
ING, and the bundle is in this state while its activator’s stop () method executes. A
stopped bundle transitions back to RESOLVED instead of INSTALLED because its depen-
dencies are still satisfied and don’t need to be resolved again. It’s possible to force the
framework to resolve a bundle again by refreshing it or updating it, which we’ll discuss
later. Refreshing or updating a bundle transitions it back to the INSTALLED state.

A bundle in the INSTALLED state can be uninstalled, which transitions it to the
UNINSTALLED state. If you uninstall an active bundle, the framework automatically
stops the bundle first, which results in the appropriate state transitions to the
RESOLVED state and then transitions it to the INSTALLED state before uninstalling it.! A
bundle in the UNINSTALLED state remains there as long as it’s still needed (we’ll
explain later what this means), but it can no longer transition to another state. Now
that you understand the complete bundle lifecycle, let’s discuss how these operations
impact the framework’s bundle cache and subsequent restarts of the framework.

Bundle cache and framework restarts

To use bundles, you have to install them into the OSGi framework. Check. But what does
this mean? Technically, you know you must invoke BundleContext .installBundle ()
to install a bundle. In doing so, you must specify a location typically interpreted as a URL
to the bundle JAR file or an input stream from which the bundle JAR file is read. In
either case, the framework reads the bundle JAR file and saves a copy in a private area
known as the bundle cache. This means two things:

= Installing a bundle into the framework is a persistent operation.
= After the bundle is installed, the framework no longer needs the original copy
of the bundle JAR file.

The exact details of the bundle cache are dependent on the framework implementa-
tion; the specification doesn’t dictate the format nor structure other than that it must
be persistent across framework executions. If you start an OSGi framework, install a
bundle, shut down the framework, and then restart it, the bundle you installed will
still be there, as shown in figure 3.6. If you compare this approach to using the class
path, where you manually manage everything, having the framework cache and man-
age the artifacts relieves you of a lot of effort.

In terms of your application, you can think of the bundle cache as the deployed
configuration of the application. This is similar to the chapter 2 discussion of creating
different configurations of the paint program. Your application’s configuration is
whichever bundles you install into the framework. You maintain and manage the con-
figuration using the APIs and techniques discussed in this chapter.

! This is a change in the R4.2 version of the OSGi specification. You can’t go to UNINSTALLED from RESOLVED;
you have to go to INSTALLED first, and only INSTALLED goes to UNINSTALLED. This detail is listed in the R4.2
specification errata.

3.3

Using the lifecycle API in your bundles 85

Framework Framework

\Y\gtallat,'o " \(\gtallatioh
Framework Framework
4 stop restart 5
5 o | 5 o
£ Bundle & Bundle £ Bundle &
o s o g
S 3

Figure 3.6 Bundle cache during framework restarts

Bundle installation isn’t the only lifecycle operation to impact the bundle cache.
When a bundle is started using Bundle.start (), the framework persistently marks the
bundle as started, even if Bundle.start () throws an exception, such as when the bun-
dle can’t be resolved or the bundle’s BundleActivator.start () method throws an
exception. When a bundle is persistently marked as started, subsequent executions of
the framework not only reinstall the bundle but also attempt to start it. From a man-
agement perspective, you deploy a configuration of your application by installing a set
of bundles and activating them. Subsequent framework executions automatically
restart your application. If you stop a bundle using Bundle.stop (), this removes the
persistently started status of the bundle; subsequent framework executions no longer
restart the bundle, although it’s still reinstalled. This is another means of modifying
your application’s configuration.

You may want to ask, “What about updating and uninstalling a bundle? These must
impact the bundle cache, right?” The short answer is, yes, but this isn’t the whole
answer. Bundle.update () and Bundle.uninstall() impact the bundle cache by sav-
ing a new bundle JAR file or removing an existing bundle JAR file, respectively. But
these operations may not affect the cache immediately. We’ll explain these oddities
when we discuss the relationship between the modularity and lifecycle layers in sec-
tion 3.5. Next, we’ll delve into the details of the shell bundle as we more fully explore
how to use the lifecycle layer APL

Using the lifecycle API in your bundles
So far, you haven’t implemented much functionality for the shell—you just created the
activator to startit up and shutit down. In this section, we’ll show you how to implement
the bulk of its functionality. You’ll use a simple command pattern to provide the exe-
cutable actions to let you interactively install, start, stop, update, and uninstall bundles.
You’ll even add a persistent history to keep track of previously executed commands.
A high-level understanding of the approach will be useful before you start.
The main piece is the telnet binding, which listens to the configured port for

86

3.3.1

CHAPTER 3 Learning lifecycle

TelnetBinding <<lListen>> . ‘<<command>> <<args>>

Farse and select
command implementation

Dispatch to command
implementation

Commandimpl
Figure 3.7 TelnetBinding overview

connection requests. It spawns a new thread for each connecting client. The client
sends command lines to its thread, where a command line consists of a command
name and the arguments for the command. The thread parses the command line,
selects the appropriate command, and invokes it with any specified arguments, as
shown in figure 3.7.

Commands process the arguments passed in to them. We won’t discuss the imple-
mentation of the telnet binding and the connection thread, but full source code is
available in the companion code. We’ll dissect the command implementations to illus-
trate how to use Bundle and BundleContext. Let’s get the ball rolling by showing how
you configure the bundle.

Configuring bundles

The shell needs two configuration properties: one for the port and one for the maxi-
mum number of concurrent connections. In traditional Java programming, you’d use
the System.getProperty () method to retrieve them. When creating a bundle, you can
use the BundleContext object to retrieve configuration properties instead. The main
benefit of this approach is that it avoids the global aspect of System.getProperty ()
and allows properties per framework instance.

The OSGi specification doesn’t specify a user-oriented way to set bundle configura-
tion properties, so different frameworks handle this differently; typically, they provide
a configuration file where the properties are set. But the specification does require
bundle-configuration properties to be backed by system properties, so you can still use
system properties in a pinch. Retrieving bundle-configuration property values is stan-
dardized via the BundleContext .getProperty () method, as shown next.

Listing 3.4 Bundle configuration by example

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

Using the lifecycle API in your bundles 87
public class Activator implements BundleContext {

private int getPort (BundleContext context) {
String port = context.getProperty("org.foo.shell.port"); <+
if (port != null) {
return Integer.parselnt (port);
}

return 7070; Ret”e‘fes o
} properties
private int getMaxConnections (BundleContext context) {

String max = context.getProperty ("org.foo.shell.connection.max") ; <+

if (max != null) {

return Integer.parselnt (max) ;

}

return 1;

}

}

This listing continues the activator implementation from listing 3.1; in the activator,
you use these two methods to get configuration properties. Here, the methods use the
BundleContext.getProperty () method to retrieve the properties @. This method
looks in the framework properties to find the value of the specified property. If it can’t
find the property, it searches the system properties, returning null if the property
isn’t found. For the shell, you return default values if no configured value is found.
The OSGi specification also defines some standard framework properties, shown in
table 3.1. If you need to use these standard properties, you can use the constants for
them defined in the org.osgi.framework.Constants class.

Table 3.1 Standard 0SGi framework properties

Property name Description

org.osgi.framework.version 0SGi framework version

org.osgi.framework.vendor Framework implementation vendor
org.osgi.framework.language Language being used; see ISO 639 for possible values
org.osgi.framework.os.name Host computer operating system

org.osgi.framework.os.version | Host computer operating system version number

org.osgi.framework.processor | Host computer processor name

There you have it: your first real interaction with the OSGi framework. This is only a
small part of the API that you can use in your bundles, but we’ll cover a lot of ground
in the next section, so don’t worry. And those of you thinking, “Hey, this configuration
mechanism seems overly simplistic!” are correct. There are other, more sophisticated
ways to configure your bundle, but we won’t discuss them until chapter 9. Bundle prop-
erties are the simplest mechanism available and should only be used for properties that

88

3.3.2

CHAPTER 3 Learning lifecycle

don’t change much. In this regard, they may not be the best choice for the shell, but it
depends on what you want to achieve; for example, it makes it difficult to change the
shell’s port dynamically. For now, we’ll keep things simple, so this is sufficient.

Deploying bundles

Each bundle installed into the framework is represented by a Bundle object and can be
identified by its bundle identifier, location, or symbolic name. For most of the shell
commands you’ll implement, you’ll use the bundle identifier to retrieve a Bundle
object, because the bundle identifier is nice and concise. Most of the commands accept
a bundle identifier as a parameter, so let’s look at how you can use it and the bundle
context to access Bundle objects associated with other bundles. As part of the design,
you create an abstract BasicCommand class to define a shared method, getBundle (), to
retrieve bundles by their identifier, as shown here:

protected volatile BundleContext m_context;

public Bundle getBundle (String id) {
Bundle bundle = m_context.getBundle (Long.parselLong (id.trim()));
if (bundle == null) {
throw new IllegalArgumentException("No such bundle.");
}

return bundle;
}
All you do is call BundleContext.getBundle () on the con-
text object with the parsed bundle identifier, which is
passed in as a String. The only special case you need to

worry about is when no bundle with the given identifier notal
exists. In such a case, you throw an exception.
INSTALL COMMAND

Installed

With this basic functionality in place, you can start the first
command. The next listing shows the implementation of
, 11 d d fi 3.8 ind hich Figure 3.8 The install-
an 1.nsta command, and figure 3.8 reminds you whic related portion of the bundle
portion of the bundle lifecycle is involved. lifecycle state diagram

Listing 3.5 Bundle install command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class InstallCommand extends BasicCommand {
public void exec(String args, PrintStream out, PrintStream err)
throws Exception {
Bundle bundle = m_context.installBundle (args) ;
out.println("Bundle: " + bundle.getBundleId()) ;
}
}

Using the lifecycle API in your bundles 89

You use BundleContext.installBundle() to install a bundle. In most framework
implementations, the argument to installBundle () is conveniently interpreted as a
URL in String form from which the bundle JAR file can be retrieved. Because the user
enters the URL argument as a String, you can use it directly to install the bundle. If
the install succeeds, then a new Bundle object corresponding to the newly installed
bundle is returned. The bundle is uniquely identified by this URL, which is used as its
location. This location value will also be used in the future to determine if the bundle
is already installed. If a bundle is already associated with this location value, the
Bundle object associated with the previously installed bundle is returned instead of
installing it again. If the install operation is successful, the command outputs the
installed bundle’s identifier.

The bundle context also provides an overloaded installBundle () method for
installing a bundle from an input stream. We won’t show this method here, but the
other form of installBundle () accepts a location and an open input stream. When
you use this other form of the method, the location is used purely for identification,
and the bundle JAR file is read from the passed-in

input stream. The framework is responsible for Starting
closing the input stream. * ’ Start +

START COMMAND . Resolved Active

Now you have a command to install bundles, so the

next operation you’ll want to do is start bundles. Figye3.9 The start-related portion

The start command shown in listing 3.6 does just of the bundle lifecycle state diagram

that (see figure 3.9).

Listing 3.6 Bundle start command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class StartCommand extends BasicCommand (
public void exec(String id) throws Exception {
Bundle bundle = getBundle (id) ;

bundle.start () ;

}
}

Again, the implementation is pretty easy. You use the method from the base command
class to get the Bundle object associated with the user-supplied identifier, and then
you invoke Bundle.start () to start the bundle associated with the identifier.

The result of Bundle.start () depends on the current state of the associated bun-
dle. If the bundle is INSTALLED, it transitions to ACTIVE via the RESOLVED and STARTING
states. If the bundle is UNINSTALLED, the method throws an IllegalStateException.
If the bundle is either STARTING or STOPPING, start () blocks until the bundle enters
either ACTIVE or RESOLVED. If the bundle is already ACTIVE, calling start () again has
no effect. A bundle must be resolved before it can be started. You don’t need to

90

CHAPTER 3 Learning lifecycle

explicitly resolve the bundle, because the specification requires the framework to
implicitly resolve the bundle if it’s not already resolved. If the bundle’s dependencies
can’t be resolved, start () throws a BundleException and the bundle can’t be used
until its dependencies are satisfied. If this happens, you’ll typically install additional
bundles to satisfy the missing dependencies and try to start the bundle again.

If the bundle has an activator, the framework invokes the BundleActivator.start ()
method when starting the bundle. Any exceptions thrown from the activator result in
a failed attempt to start the bundle and an exception

being thrown from Bundle. start (). One last case where Peeaives Active
an exception may result is if a bundle tries to start itself; o
]

the specification says attempts to do so should result in ’
an IllegalStateException.
STOP COMMAND .

, . . Figure 3.10 The stop-related
That's it for starting bundles. Now we can look at stop- portion of the bundle lifecycle

ping bundles, which is similar to starting them; see the state diagram
next listing and figure 3.10.

Listing 3.7 Bundle stop command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class StopCommand extends BasicCommand {
public void exec (String id) throws Exception {
Bundle bundle = getBundle(id) ;
bundle.stop () ;

}
}
Like starting a bundle, stopping a bundle takes a simple call to Bundle.stop () on the
Bundle object retrieved from the specified identifier. As before, you must be mindful
of the bundle’s state. If it’s UNINSTALLED, an Illegal-
StateException results. Either STARTING or STOPPING Update
blocks until ACTIVE or RESOLVED is reached, respec-
tively. In the ACTIVE state, the bundle transitions to InstallsdIT—I
RESOLVED via the STOPPING state. If the bundle has an
activator and the activator’s stop () method throws an

exception, a BundleException is thrown. Finally, a Update
bundle isn’t supposed to change its own state; trying to /
do so may result in an I1legalStateException. Resolved

UPDATE CO!VIMAND.) Figure 3.11 The update-related
Let’s continue with the update command in the follow- portion of the bundle lifecycle

ing listing (see figure 3.11). state diagram

Using the lifecycle API in your bundles 91

Listing 3.8 Bundle update command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class UpdateCommand extends BasicCommand {
public void exec(String id) throws Exception {
Bundle bundle = getBundle (id) ;

bundle.update () ;

}
}

By now, you may have noticed the pattern we mentioned in the beginning. Most lifecy-
cle operations are methods on the Bundle and BundleContext objects. The Bundle.
update () method is no exception, as you can see. The update () method is available
in two forms: one with no parameters (shown) and one taking an input stream (not
shown). The update command uses the form without parameters here, which reads
the updated bundle JAR file using the original location value as a source URL. If the
bundle being updated is in the ACTIVE state, it needs to be stopped first, as required
by the bundle lifecycle. You don’t need to do this explicitly, because the framework
does it for you, but it’s still good to understand that this occurs because it impacts the
application’s behavior. The update happens in either the RESOLVED or INSTALLED state
and results in a new revision of the bundle in the INSTALLED state. If the bundle is in
the UNINSTALLED state, an IllegalStateException is thrown. As in the stop com-
mand, a bundle shouldn’t try to update itself.

The Bundle-UpdateLocation anti-pattern

We should point out an anti-practice for updating a bundle. The 0SGi specification
provides a third option for updating bundles based on bundle metadata. A bundle may
declare a piece of metadata in its bundle manifest called Bundle-UpdateLocation.
If it’s present, Bundle.update () with no parameters uses the update location value
specified in the metadata as the URL for retrieving the updated bundle JAR file. Using
this approach is discouraged because it’s confusing if you forget it's set, and it
doesn’t make sense to bake this sort of information into the bundle.

UNINSTALL COMMAND Installed
You can now wrap up the lifecycle operations l 4
by implementing the uninstall command, as S
shown next (see figure 3.12).
To uninstall a bundle, you call the Bundle.
uninstall () method after retrieving the Bun- Uninstalled
dle object associated with the user-supplied
bundle identifier. The framework stops the Figyre3.12 The uninstall-related portion
bundle, if necessary. If the bundle is already of the bundle lifecycle state diagram

92

3.3.3

CHAPTER 3 Learning lifecycle

UNINSTALLED, an IllegalStateException is thrown. As with the other lifecycle opera-
tions, a bundle shouldn’t attempt to uninstall itself.

Listing 3.9 Bundle uninstall command

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class UninstallCommand extends BasicCommand {
public void exec(String id) throws Exception {
Bundle bundle = getBundle (id) ;

bundle.uninstall () ;

}
}
That’s it. You've created a telnet-based shell bundle that you can use in any OSGi
framework. But there is one fly in the ointment. Most of the shell commands require
the bundle identifier to perform their action, but how does the shell user know which
identifier to use? You need some way to inspect the state of the framework’s installed
bundle set. You'll create a command for that next.

Inspecting framework state

You need one more command to display information about the bundles currently
installed in the framework. The next listing shows a simple implementation of a
bundles command.

Listing 3.10 Bundle information example

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;

public class BundlesCommand extends BasicCommand {
public void exec(String args, PrintStream out, PrintStream err)
throws Exception {
Bundle[] bundles = m_context.getBundles() ;

out.println(" ID State Name") ;

for (Bundle bundle : bundles) {

printBundle (
bundle.getBundleId(), getStateString(bundle.getState()),
(String) bundle.getHeaders () .get (Constants.BUNDLE NAME) ,
bundle.getLocation (), bundle.getSymbolicName (), out) ;

}
}

private String getStateString(int state) {
switch (state) ({

3.34

Using the lifecycle API in your bundles 93

case Bundle.INSTALLED:
return "INSTALLED";
case Bundle.RESOLVED:
return "RESOLVED";
case Bundle.STARTING:
return "STARTING";
case Bundle.ACTIVE:
return "ACTIVE";
case Bundle.STOPPING:
return "STOPPING";
default:
return "UNKNOWN";

}
}

private void printBundle (long id, String state, String name,
String location, String symbolicName) {...}

}

The implementation of this command is pretty easy too, because you only need to use
BundleContext.getBundles () to get an array of all bundles currently installed in the
framework. The rest of the implementation loops through the returned array and
prints out information from each Bundle object. Here you print the bundle identifier,
lifecycle state, name, location, and symbolic name for each bundle.

With this command in place, you have everything you need for the simple shell.
You can install, start, stop, update, and uninstall bundles and list the currently
installed bundles. That was fairly simple, wasn’t it? Think about the flexibility at your
fingertips versus the amount of effort needed to create the shell. Now you can create
applications as easily deployable configurations of bundles that you can manage and
evolve as necessary over time.

Before you move back to the paint program, two final lifecycle concepts are worth
exploring in order to fully appreciate the approach you’ll take to make the paint pro-
gram dynamically extensible: persistence and events. We’ll describe them in the con-
text of the shell example; but as you’ll see in the paint example in a couple of pages,
they’re generally useful tools to have in mind when building OSGi applications.

Persisting bundle state

As we mentioned when discussing bundle activators, the framework creates an
instance of a bundle’s activator class and uses the same instance for starting and subse-
quently stopping the bundle. An activator instance is used only once by the framework
to start and stop a bundle, after which it’s discarded. If the bundle is subsequently
restarted, a new activator instance is created. Given this situation, how does a bundle
persist state across stops and restarts? Stepping back even further, we mentioned how
the framework saves installed bundles into a cache so they can be reloaded the next
time the framework starts. How does a bundle persist state across framework sessions?
There are several possibilities.

94

CHAPTER 3 Learning lifecycle

One possibility is to store the information out-
side the framework, such as in a database or a file,
as shown in figure 3.13. The disadvantage of this
approach is that the state isn’t managed by the
framework and may not be cleaned up when the
bundle is uninstalled.

Another possibility is for a bundle to give its
state to another bundle that isn’t being stopped;
then, it can get the state back after it restarts, as
shown in figure 3.14. This is a workable approach,
and in some cases it makes the most sense.

For simplicity, it would be nice to be able to
use files, but have them managed by the frame-
work. Such a possibility exists. The framework
maintains a private data area in the file system for
each installed bundle.

The BundleContext.getDataFile() method
provides access to your bundle’s private data area.
When using the private dataarea, youdon’tneed to
worry about where it is on the file system because
the framework takes care of that for you, as well as
cleaning up in the event of your bundle being unin-
stalled (see figure 3.15). It may seem odd to not
directly use files to store your data; but if you did,
it would be impossible for your bundle to clean up
during an uninstall. This is because a bundle isn’t
notified when it’s uninstalled. Further, this method
simplifies running with security enabled, because
bundles can be granted permission to access their
private area by the framework.

For the shell example, you want to use the pri-

Framework

External
file

Bundle

External
database

Figure 3.13 Storing state externally

Framework

Bundle

Data stored
Bundle = inside another
bundle

Figure 3.14 Storing state with other
bundles

Framework

Bundle cache

— Bundle
bundle

Figure 3.15 Storing state internally

vate area to persistently save the command history. Here’s how the history command
should work; it prints the commands issued via the shell in reverse order:

-> history
bundles
uninstall 2
bundles
update 2
bundles
stop 2
bundles
start 2
bundles
install file:foo.jar
bundles

Using the lifecycle API in your bundles 95

Listing 3.11 shows how you use the bundle’s private storage area to save the command
history. The bundle activator’s start () and stop () methods also need to be modified
to invoke these methods, but these changes aren’t shown here, so please refer to the
companion code for complete implementation details.

Listing 3.11 Bundle persistent storage example

package org.foo.shell;
import java.util.List;

public interface History ({
public List<Strings> get () ;

}

public class Activator implements BundleActivator ({

private void writeHistory (History history, BundleContext context) ({
List<String> list = history.get();

File log = context.getDataFile("log.txt"); <+
if (log == null) { Gets File | <
System.out.println(object

"Unable to persist history - no storage area") ;
}
if (log.exists() && !log.delete())
throw new IOException("Unable to delete previous log file!"); "

; (>

write(list, log) ;
1

private List<Strings> readHistory (BundleContext context) {
List<String> result = new ArrayList<Strings();

File log = context.getDataFile("log.txt"); P

if ((log !'= null) && log.isFile()) { T
read(log, result);

} Handles null result when

return result; bundle requests file

}
}

You use BundleContext.getDataFile() to get a File object in the bundle’s private
storage area @. The method takes a relative path as a String and returns a valid File
object in the storage area. After you get the File object, you can use it normally to cre-
ate the file, make a subdirectory, or do whatever you want. It’s possible for a frame-
work to return null when a bundle requests a file; so as you can see @, you need to
handle this possibility. This can happen because the OSGi framework was designed to
run on a variety of devices, some of which may not support a file system. For the shell,
you ignore it if there’s no file system support, because the history command is non-
critical functionality.

If you want to retrieve a File object for the root directory of your bundle’s storage
area, you can call getDataFile () with an empty string. Your bundle is responsible for
managing the content of its data area, but you don’t need to worry about cleaning up
when it’s uninstalled, because the framework takes care of this.

96

3.3.5

CHAPTER 3 Learning lifecycle

Plan ahead

Keep in mind that your bundle may be updated. Due to this possibility, you should
design your bundles so they properly deal with previously saved state, because
they may start with a private area from an older version of the bundle. The best ap-
proach is for your bundles to seamlessly migrate old state formats to new state
formats if possible. One tricky issue, though, is that the update lifecycle operation
may also be used to downgrade a bundle. In this case, your bundle may have diffi-
culty dealing with the newer state formats, so it's probably best if you implement
your bundles to delete any existing state if they can’t understand it. Otherwise, you
can always uninstall the newer bundle first and then install the older version in-
stead of downgrading.

You could finish the history command, but let’s try to make it a little more inter-
esting by keeping track of what’s going on inside the framework. You can record
not only the issued commands, but also the impact they have on the framework.
The next section shows how you can achieve this using the framework’s event-
notification mechanism.

Listening for events

The OSGi framework is a dynamic execution environment. To create bundles and,
ultimately, applications that are flexible enough to not only cope with but also take
advantage of this dynamism, you need to pay attention to execution-time changes.
The lifecycle layer API provides access to a lot of information, but it isn’t easy to poll
for changes; it’s much more convenient if you can be notified when changes occur. To
make this possible, the OSGi framework supports two types of events: BundleEvents
and FrameworkEvents. The former event type reports changes in the lifecycle of bun-
dles, whereas the latter reports framework-related issues.

You can use the normal Java listener pattern in your bundles to receive these
events. The BundleContext object has methods to register BundleListener and
FrameworkListener objects for receiving BundleEvent and FrameworkEvent notifica-
tions, respectively. The following listing shows how you implement the history
command. You record all executed commands as well as the events they cause dur-
ing execution.

Listing 3.12 Bundle and framework event listener example

package org.foo.shell;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.osgi.framework.BundleEvent;
import org.osgi.framework.BundleListener;

Using the lifecycle API in your bundles 97

import org.osgi.framework.FrameworkEvent;
import org.osgi.framework.FrameworkListener;

public class HistoryDecorator implements Command,

History, FrameworkListener, BundleListener Defines
private final List<String> m history = m_history
Collections.synchronizedList (new ArrayList<String>()); member

private final Command m next;

public HistoryDecorator (Command next, List<String> history) {
m_next = next;
m_history.addAll (history) ;

}

public void exec (String args, PrintStream out, PrintStream err)
throws Exception {

try {
m_next.exec(args, out, err); Forwards command
} finally { execution

m_history.add(args) ;
}
}

public List<String> get() {
return new ArrayList<String>(m_history);

}

public void frameworkEvent (FrameworkEvent event) {
m_history.add("\tFrameworkEvent (type=" + event.getType () +
", bundle=" + event.getBundle() +
", source=" + event.getSource() +
", throwable=" + event.getThrowable() + ")");

}

public void bundleChanged (BundleEvent event) {
m_history.add("\tBundleEvent (type=" + event.getType() +
",bundle=" + event.getBundle() +
", source=" + event.getSource() + ")");

}
}

You use an interceptor pattern to wrap the commands so you can record the issued
commands. The wrapper also records any events in the history by implementing the
BundleListener and FrameworkListener interfaces. You maintain a list of all issued
commands and received events in the m_history member defined at @. The history
wrapper command forwards the command execution to the command ® and stores it
in the history list.

The wrapper implements the single FrameworkListener.frameworkEvent ().
Here, you record the event information in the history list. The most important part of
the event is its type. Framework events are of one of the following types:

= FrameworkEvent.STARTED—Indicates the framework has performed all initial-
ization and has finished starting up.

= FrameworkEvent.INFO—Indicates some information of general interest in vari-
ous situations.

98

CHAPTER 3 Learning lifecycle

= FrameworkEvent .WARNING—Indicates a warning. Not crucial, but may indicate a
potential error.

= FrameworkEvent .ERROR—Indicates an error. Requires immediate attention.

= FrameworkEvent.PACKAGES REFRESHED—Indicates the framework has refreshed
some shared packages. We’ll discuss what this means in section 3.5.

= FrameworkEvent .STARTLEVEL CHANGED—Indicates the framework has changed
its start level. We’ll discuss what this means in chapter 10.

The wrapper also implements the single BundleListener.bundleChanged () method.
Here, you also record the event information in the history list. Bundle events have one
of the following types:

= BundleEvent.INSTALLED—Indicates a bundle was installed

= BundleEvent.RESOLVED—Indicates a bundled was resolved

= BundleEvent.STARTED—Indicates a bundle was started

= BundleEvent.STOPPED—Indicates a bundle was stopped

= BundleEvent.UPDATED—Indicates a bundle was updated

= BundleEvent.UNINSTALLED—Indicates a bundle was uninstalled
= BundleEvent .UNRESOLVED—Indicates a bundle was unresolved

You register the listeners using the bundle context as follows:

private void addListener (BundleContext context,
BundleListener bundlelListener, FrameworkListener frameworkListener) {
context.addBundleListener (bundleListener) ;
context .addFrameworkListener (frameworkListener) ;

}

The example doesn’t show how to remove the listeners, which requires calls to the
removeBundleListener () and removeFrameworkListener () methods on the bundle
context. It’s not necessary to remove the listeners, because the framework will do so
automatically when the bundle is stopped; this makes sense because the bundle con-
text is no longer valid after the bundle is stopped. You only need to explicitly remove
your listeners if you want to stop listening to events while your bundle is active.

For the most part, the framework delivers events asynchronously. It’s possible for
framework implementations to deliver them synchronously, but typically they don’t
because it complicates concurrency handling. Sometimes you need synchronous
delivery because you need to perform an action as the event is happening, so to speak.
This is possible for BundleEvents by registering a listener implementing the Synchro-
nousBundleListener interface instead of BundleListener. The two interfaces look
the same, but the framework delivers events synchronously to SynchronousBundle-
Listeners, meaning the listener is notified during the processing of the event. Syn-
chronous bundle listeners are processed before normal bundle listeners. This allows
you to take action when a certain operation is triggered; for example, you can give
permissions to a bundle at the moment it’s installed. The following event types are
only sent to SynchronousBundleListeners:

3.3.6

Using the lifecycle API in your bundles 99

= BundleEvent.STARTING—Indicates a bundle is about to be started
= BundleEvent.STOPPING—Indicates a bundle is about to be stopped

Synchronous bundle listeners are sometimes necessary (as you’ll see in the paint
example in the next section), but should be used with caution. They can lead to con-
currency issues if you try to do too much in the callback; as always, keep your callbacks
as short and simple as possible and don’t call foreign code while holding a lock. In all
other cases, the thread invoking the listener callback method is undefined. Events
become much more important when you start to write more sophisticated bundles
that take full advantage of the bundle lifecycle.

Bundle suicide

We’ve mentioned it numerous times: a bundle isn’t supposed to change its own state.
But what if a bundle wants to change its own state? Good question. This is one of the
more complicated aspects of the lifecycle layer, and there are potentially negative
issues involved.

The central issue is that if a bundle stops itself, it finds itself in a state it shouldn’t
be in. Its BundleActivator.stop () method has been invoked, which means its bun-
dle context is no longer valid. Additionally, the framework has cleaned up its book-
keeping for the bundle and has released any framework facilities it was using, such as
unregistering all of its event listeners. The situation is even worse if a bundle tries to
uninstall itself, because the framework will likely release its class loader. In short, the
bundle is in a hostile environment, and it may not be able to function properly.

Because its bundle context is no longer valid, a stopped bundle can no longer use
the functionality provided by the framework. Most method calls on an invalid bundle
context will throw IllegalStateExceptions. Even if the bundle’s class loader is
released, this may not pose a serious issue if the bundle doesn’t need any new classes,
because the class loader won’t be garbage collected until the bundle stops using it. But
you’re not guaranteed to be able to load new classes if the bundle was uninstalled. In
this case, the framework may have closed the JAR file associated with the bundle. Already-
loaded classes continue to load, butall bets are off when attempting to load new classes.

Depending on your bundle, you may run into other issues too. If your bundle cre-
ates and uses threads, it’s typically a good idea for it to wait for all of its threads to
complete when its BundleActivator.stop () method is called. If the bundle tries to
stop itself on its own thread, that same thread can end up in a cycle waiting for other
sibling threads to complete. In the end, the thread waits forever. For example, the sim-
ple shell uses a thread to listen for telnet connections and then uses secondary
threads to execute the commands issued on those connections. If one of the second-
ary threads attempts to stop the shell bundle itself, it ends up waiting in the shell bun-
dle’s BundleActivator.stop () method for the connection thread to stop all of the
secondary threads. Because the calling thread is one of the secondary threads, it'll
end up waiting forever for the connection thread to complete. You have to be careful
of these types of situations, and they’re not always obvious.

100

CHAPTER 3 Learning lifecycle

Under normal circumstances, you shouldn’t try to stop, uninstall, or update your
own bundle. OK—that should be enough disclaimers. Let’s look at a case where you
may need to do it anyway. We’ll use the shell as an example, because it provides a
means to update bundles, and it may need to update itself. What do you have to do to
allow a user to update the shell bundle via the shell command line? You must do two
things to be safe:

1 Use a new thread when you stop, update, or uninstall your own bundle.
2 Do nothing in the new thread after calling stop, update, or uninstall.

You need to do this to prevent yourself from waiting forever for the shell thread to
return when you get stopped and to avoid the potential ugliness of the hostile envi-
ronment in which the thread will find itself. The following listing shows the changes
to the implementation of the stop command to accommodate this scenario.

Listing 3.13 Example of how a bundle can stop itself

package org.foo.shell;

import java.io.PrintStream;
import org.osgi.framework.Bundle;
import org.osgi.framework.BundleException;

class StopCommand extends BasicCommand {
public void exec(String args, PrintStream out, PrintStream err)
throws Exception {
Bundle bundle = getBundle (args) ;

if (bundle.equals(m_context.getBundle())) {
new SelfStopThread (bundle) .start () ;
} else {
bundle.stop () ;
1
1

private static final class SelfStopThread extends Thread {
private final Bundle m_self;

Gets reference to
bundle representation

public SelfStopThread(Bundle self) {
m self = self;

}

public void run() {

try { 43 Executes
m_self.stop(); Bundle.stop()

} catch (BundleException e) ({
// Ignore
}

}
}
}
You use the BundleContext.getBundle () method to get a reference to the bundle
representation and compare it to the target bundle @. When the target is the shell

3.4

Dynamically extending the paint program 101

bundle, you need to stop it using a different thread. For this reason, you create and
start a new thread of type SelfStopThread, which executes the Bundle.stop ()
method @. There’s one final point to note in this example: you change the behavior
of stopping a bundle in this case from synchronous to asynchronous. Ultimately, this
shouldn’t matter much, because the bundle will be stopped anyway.

You should also modify the implementation of the update and uninstall com-
mands the same way. Using the shell to stop the framework (the system bundle) also
requires special consideration. Why? Because stopping the system bundle causes the
framework to stop, which stops every other bundle. This means you’ll stop your bun-
dle indirectly, so you should make sure you're using a new thread.

We hope you now have a good understanding of what is possible with OSGi’s lifecy-
cle layer. Next, you’ll apply this knowledge to the paint program.

Dynamically extending the paint program

Let’s look at how you can use the individual parts of the lifecycle layer to dynamically
extend the paint program. As you’ll recall from the last chapter, you first converted a
nonmodular version of the paint program into a modular one using an interface-
based programming approach for the architecture. This is great because you can
reuse the resulting bundles with minimal extra work. The bundles containing the
shape implementations don’t need to change, except for some additional metadata in
their manifest. You just need to modify the paint program to make it possible for
shapes to be added and removed at execution time.

The approach you’ll take is a well-known pattern in the OSGi world, called the
extender pattern. The main idea behind the extender pattern is to model dynamic exten-
sibility on the lifecycle events (installing, resolving, starting, stopping, and so on) of
other bundles. Typically, some bundle in the application acts as the extender: it listens
for bundles being started and/or stopped. When a bundle is started, the extender
probes it to see if it’s an extension bundle. The extender looks in the bundle’s manifest
(using Bundle.getHeaders()) or the bundle’s content (using Bundle.getEntry())
for specific metadata it recognizes. If the bundle does contain an extension, the exten-
sion is described by the metadata. The extender reads the metadata and performs the
necessary tasks on behalf of the extension bundle to integrate it into the application.
The extender also listens for extension bundles to be stopped, in which case it removes
the associated extensions from the application.

That’s the general description of the extender pattern, which is shown in figure 3.16.
Let’s look at how you’ll use it in the paint program.

You’ll treat the shape implementations as extensions. The extension metadata will
be contained in the bundle manifest and will describe which class implements the
shape contained in the shape bundle. The extender will use this information to load
the shape class from the bundle, instantiate it, and inject it into the application when
an extension bundle is activated. If a shape bundle is stopped, the extender will
remove it from the application. Figure 3.17 illustrates this usage scenario.

102 CHAPTER 3 Learning lifecycle

> @) et

bundle
Installed
bundles

Bundle JAR
—)

Register
bundle listener

Bundle start Create logical
event bundle

Tracker 9 Interrogate for metadata resources, classes, and so on
Inject Shape
o Starting shape bundle resolves it Impl
For the reverse, if the shape bundle is stopped,
tracker removes its associated shape
Figure 3.16 Extender pattern overview
Paint Export = Shape

Extension-Name:
Circle

Extension-Class:
org.foo.shape.circle.Circle

Extension-Icon:
org/foo/shapelcircle/circle.png

Figure 3.7 Paint program
as an implementation of the
extender pattern

Let’s dive in and start converting the application. The first thing you need to do is
define the extension metadata for shape bundles to describe their shape implementa-
tion. In the following snippet, you add a couple of constants to the SimpleShape inter-
face for extension metadata property names; it’s not strictly necessary to add these,
but it’s good programming practice to use constants:

package org.foo.shape;

import java.awt.Graphics2D;
import java.awt.Point;

public interface SimpleShape {

public static final String NAME PROPERTY = "Extension-Name";
public static final String ICON_PROPERTY = "Extension-Icon";
public static final String CLASS PROPERTY = "Extension-Class";

public void draw (Graphics2D g2, Point p);

Dynamically extending the paint program 103

The constants indicate the name of the shape, the bundle resource file for the shape’s
icon, and the bundle class name for the shape’s class. The draw () method draws the
shape on the canvas,

From the constants, it’s fairly straightforward to see how you’ll describe a specific
shape implementation. You only need to know the name, an icon, and the class imple-
menting the shape. As an example, for the circle implementation you add the follow-
ing entries to its bundle manifest:

Extension-Name: Circle

Extension-Icon: org/foo/shape/circle/circle.png
Extension-Class: org.foo.shape.circle.Circle

The name is just a string, and the icon

and class refer to a resource file and a Shape Default
class inside the bundle JAR file, respec- iz e | e
tively. You add similar metadata to the 1 1
manifests of all shape implementation 11 11

bundles, which converts them all to
extensions. Next, you need to tweak the Faint Simple
. . frame shape
architecture of the paint program to

make it cope with dynamic addition and 1 T T1

removal of shapes. Figure 3.18 captures 1
the updated design.

Comparing the new design to the Shape
COI’HPOH@HT}

*

Square

original, you add two new classes: Shape- Uizrgle

Tracker and DefaultShape. They help

you dynamically adapt the paint frame to Figure 3.18 Dynamic paint program class

deal with SimpleShape implementations relationships

dynamically appearing and disappearing. In a nutshell, the ShapeTracker is used to
track when extension bundles start or stop, in which case it adds or removes Default-
Shapes to/from the PaintFrame, respectively.

The concrete implementation of the ShapeTracker is a subclass of another class,
called BundleTracker. The latter class is a generic class for tracking when bundles are
started or stopped. Because BundleTracker is somewhat long, we’ll divide it across
multiple listings; the first part is shown next.

Listing 3.14 BundleTracker class declaration and constructor

package org.foo.paint;

import java.util.*;
import org.osgi.framework.*;

public abstract class BundleTracker {
final Set m bundleSet = new HashSet () ;
final BundleContext m_context;
final SynchronousBundleListener m_listener;
boolean m_open;

104 CHAPTER 3 Learning lifecycle

public BundleTracker (BundleContext context) {

m_context = context;
m_listener = new SynchronousBundleListener() { <}_j’ ”nmem?ntsbundhr
public void bundleChanged (BundleEvent evt) { listener’s method

synchronized (BundleTracker.this) ({
if (!m_open) {

Checks if tracking

} return; bundles
if (evt.getType() == BundleEvent.STARTED) {
if (!m bundleSet.contains (evt.getBundle())) {
m_bundleSet.add (evt.getBundle()) ; Adds bundle
addedBundle (evt .getBundle()) ; to list

1
} else if (evt.getType() == BundleEvent.STOPPING) {
if (m_bundleSet.contains(evt.getBundle())) {
m_bundleSet.remove (evt.getBundle()) ;
removedBundle (evt.getBundle()) ;

The bundle tracker is constructed with a BundleContext object, which is used to listen
for bundle lifecycle events. The tracker uses a SynchronousBundleListener to listen
to events because a regular BundleListener doesn’t get notified when a bundle enters
the STOPPING state, only STOPPED. You need to react on the STOPPING event instead of
the STOPPED event because it’s still possible to use the stopping bundle, which hasn’t
been stopped yet; a potential subclass might need to do this if it needed to access the
stopping bundle’s BundleContext object. The bundle listener’s single method @
makes sure the tracker is tracking bundles ®. If so, for started events, it adds the asso-
ciated bundle to its bundle list € and invokes the abstract addedBundle () method.
Likewise, for stopping events, it removes the bundle from its bundle list and invokes
the abstract removedBundle () method.
The following listing shows the next portion of the BundleTracker.

Listing 3.15 Opening and using a BundleTracker

public synchronized void open() {
if (!m open) {
m_open = true;
m_context.addBundleListener (m_listener)
Bundle[] bundles = m_context.getBundles
for (int i = 0; 1 < bundles.length; i++
if (bundles[i] .getState() == ACTIVE)
m_bundleSet.add (bundles[i]) ;
addedBundles (bundles [i]) ;

}

0
)
{

}
}

Dynamically extending the paint program 105

}

public synchronized Bundle[] getBundles() {
return (Bundle[]) m_bundleSet.toArray(
new Bundle[m bundleSet.size()]);
}

protected abstract void addedBundle (Bundle bundle) ;

protected abstract void removedBundle (Bundle bundle) ;

To start a BundleTracker instance tracking bundles, you must invoke its open ()
method. This methods registers a bundle event listener and processes any existing
ACTIVE bundles by adding them to its bundle list and invoking the abstract added-
Bundle () method. The getBundles () method provides access to the current list of
active bundles being tracked. Because BundleTracker is abstract, subclasses must pro-
vide implementations of addedBundle () and removedBundle() to perform custom
processing of added and removed bundles, respectively.
The last portion of the BundleTracker is as follows.

Listing 3.16 Disposing of a BundleTracker

public synchronized void close() {
if (m_open) {
m_open = false;
m_context.removeBundleListener (m_listener) ;

Bundle[] bundles = (Bundlel[])

m_bundleSet.toArray (new Bundle[m_bundleSet.size()]);
for (int i = 0; i < bundles.length; i++) {

if (m_bundleSet.remove (bundles[i]))

removedBundle (bundles [i]) ;

Calling BundleTracker.close () stops it from tracking bundles. This removes its bun-
dle listener, removes each currently tracked bundle from its bundle list, and invokes
the abstract removedBundle () method.

Standardizing bundle trackers
Tracking bundles is a useful building block. It's so useful that the OSGi Alliance de-
cided to create a standard BundleTracker for the R4.2 specification. The R4.2

BundleTracker is more complicated than the one presented here, but it follows the
same basic principles; we’ll discuss it in chapter 15.

Now that you know how the BundleTracker works, let’s return to its subclass, Shape-
Tracker. The heart of this subclass is the processBundle () method shown next, which
processes added and removed bundles.

106 CHAPTER 3 Learning lifecycle

Listing 3.17 Processing shapes in ShapeTracker

private void processBundle (int action, Bundle bundle)
Dictionary dict = bundle.getHeaders() ;

String name = (String) dict.get (SimpleShape.NAME PROPERTY) ; Checks
if (name == null) { if bundle
return; is an
} extension

switch (action) { J Adds shape to
case ADDED: paint frame
String iconPath = (String) dict.get (SimpleShape.ICON_PROPERTY) ;
Icon icon = new ImageIcon (bundle.getResource (iconPath)) ;
String className = (String) dict.get (SimpleShape.CLASS PROPERTY) ;
m_frame.addShape (name, icon,
new DefaultShape (m_context, bundle.getBundleId(), className)) ;
break;
case REMOVED: Removes
m_frame.removeShape (name) ; shape
break;

}

}

ShapeTracker overrides BundleTracker’s addedBundle() and removedBundle ()
abstract methods to invoke processBundle () in either case. You determine whether
the bundle is an extension by probing its manifest for the Extension-Name property @.
Any bundle without this property in its manifest is ignored. If the bundle being added
contains a shape, the code grabs the metadata from the bundle’s manifest headers and
adds the shape to the paint frame wrapped as a DefaultShape @. For the icon meta-
data, you use Bundle.getResource () to load it. If the bundle being removed contains
a shape, you remove the shape from the paint frame @.

DefaultShape, shown in listing 3.18, serves two purposes. It implements the
SimpleShape interface and is responsible for lazily creating the shape implementation
using the Extension-Class metadata. It also serves as a placeholder for the shape if
and when the shape is removed from the application. You didn’t have to deal with this
situation in the original paint program, but now shape implementations can appear
or disappear at any time when bundles are installed, started, stopped, and uninstalled.
In such situations, the DefaultShape draws a placeholder icon on the paint canvas for
any departed shape implementations.

Listing 3.18 DefaultShape example

class DefaultShape implements SimpleShape {
private SimpleShape m_shape;
private ImageIcon m_icon;
private BundleContext m_context;
private long m bundleId;
private String m className; Default

constructor
public DefaultShape() {}

Dynamically extending the paint program 107

public DefaultShape (BundleContext context, long bundleId,
String className) {

Constructor with
m_context = context; extension data
m_bundleId = bundleId;
m_className = className;

}

public void draw(Graphics2D g2, Point p)

if (m_context != null) {
try {
if (m_shape == null) {
Bundle bundle = m_context.getBundle (m bundleId) ; Creates
Class clazz = bundle.loadClass (m_className) ; extension and
m_shape = (SimpleShape) clazz.newInstance () ; delegates to it
} if available

m_shape.draw (g2, p);
return;
} catch (Exception ex) {}

}

if (m_icon == null) ({
try {
m_icon = new ImageIcon(this.getClass() .getResource (
"underc.png")) ;
} catch (Exception ex) ({
ex.printStackTrace() ;
g2.setColor (Color.red) ;
g2.fillRect (0, 0, 60, 60);
return;

}

Draws default
image if no
extension

}

g2.drawImage (m_icon.getImage(), 0, 0, null);

}

}

In summary, when the paint application is started, its activator creates and opens a
ShapeTracker. This tracks STARTED and STOPPED bundle events, interrogating the asso-
ciated bundle for extension metadata. For every started extension bundle, it adds a new
DefaultShape for the bundle to the paint frame, which creates the shape implementa-
tion, if needed, using the extension metadata. When the bundle stops, the Shape-
Tracker removes the shape from the paint frame. When a drawn shape is no longer
available, the DefaultShape is used to draw a placeholder shape on the canvas instead.
If the departed shape reappears, the placeholder is removed and the real shape is
drawn on the canvas again.

Now you have a dynamically extensible paint program, as demonstrated in sec-
tion 3.2.1. Although we didn’t show the activator for the paint program, it’s reasonably
simple and only creates the framework and shape tracker on start and disposes of them
on stop. Overall, this is a good example of how easy it is to make a modularized appli-
cation take advantage of the lifecycle layer to make it dynamically extensible. As a bonus,
you no longer need to export the implementation packages of the shape implementa-
tions. What you’re still missing at this point is a discussion about how the lifecycle and
module layers interact with each other, which we’ll get into next.

108

3.5

3.5.1

CHAPTER 3 Learning lifecycle

Lifecycle and modularity

A two-way relationship exists between OSGi’s lifecycle and module layers. The lifecycle
layer manages which bundles are installed into the framework, which obviously
impacts how the module layer resolves dependencies among bundles. The module
layer uses the metadata in bundles to make sure all their dependencies are satisfied
before they can be used. This symbiotic relationship creates a chicken-and-egg situa-
tion when you want to use your bundles; to use a bundle you have to install it, but to
install a bundle you must have a bundle context, which are only given to bundles. This
close relationship is also obvious in how the framework resolves bundle dependencies,
especially when bundles are dynamically installed and/or removed. Let’s explore this
relationship by first looking into bundle dependency resolution.

Resolving bundles

The act of resolving a bundle happens at the discretion of the framework, as long as it
happens before any classes are loaded from the bundle. Often, when resolving a given
bundle, the framework ends up resolving another bundle to satisfy a dependency of the
original bundle. This can lead to cascading dependency resolution, because in order
for the framework to use a bundle to satisfy the requirements of another bundle, the
satisfying bundle too must be resolved, and so on. Because the framework resolves
dependencies when needed, it’s possible to mostly ignore transitioning bundles to the
RESOLVED state; you can start a bundle and know the framework will resolve it before
starting it, if possible. This is great compared to the standard Java way, where you can
run into missing dependencies at any point during the lifetime of your application.
But what if you want to make sure a given bundle resolves correctly? For example,

maybe you want to know in advance whether an installed bundle can be started. In
this case, there’s a way to ask the framework to resolve the bundle directly, but it’s not
a method on Bundle like most other lifecycle operations. Instead, you use the Package
Admin Service. The Package Admin Service is represented as an interface and is
shown here:
public interface PackageAdmin {

static final int BUNDLE_TYPE_FRAGMENT = 0x00000001;

Bundle getBundle (Class clazz) ;

Bundle[] getBundles (String symbolicName, String versionRange) ;

int getBundleType (Bundle bundle) ;

ExportedPackage getExportedPackage (String name) ;

ExportedPackage [] getExportedPackages (Bundle bundle) ;

ExportedPackage [] getExportedPackages (String name) ;

Bundle[] getFragments (Bundle bundle) ;

RequiredBundle[] getRequiredBundles (String symbolicName) ;

Bundle[] getHosts (Bundle bundle) ;

void refreshPackages (Bundle[] bundles) ;
boolean resolveBundles (Bundle[] bundles) ;

}
You can explicitly resolve a bundle with the resolveBundles () method, which takes
an array of bundles and returns a Boolean flag indicating whether the bundles could

Lifecycle and modularity 109

be resolved. The Package Admin Service can do a bit more than resolving bundles,
and it’s a fairly important part of the framework; it also supports the following opera-
tions, among others:

= Determines which bundle owns a particular class—In rare circumstances, you may
need to know which bundle owns a particular class. You can accomplish this
with the getBundle () method, which takes a Class and returns the Bundle to
which it belongs.

= Introspects how the framework resolves bundle dependencies—You can use the get-
ExportedPackage () family of methods to find out which bundles are import-
ing a given package, whereas other methods inspect other types of depen-
dencies we won’t talk about until chapter 5, such as getRequiredBundles ()
and getFragments ().

= Refreshes the dependency resolution for bundles—Because the installed set of bundles
can evolve over time, sometimes you need to have the framework recalculate
bundle dependencies. You can do this with the refreshBundles () method.

The most important feature of the Package Admin Service isn’t the ability to resolve
bundles or introspect dependencies; it’s the ability to refresh bundle dependencies,
which is another tool needed for managing bundles. But before we get into the details
of refreshing bundles, let’s finish the discussion of explicitly resolving bundles.

To demonstrate how to use the Package Admin Service to explicitly resolve a bun-
dle, you’ll create a new resolve command for the shell to instigate bundle resolution,
as shown next.

Listing 3.19 Bundle resolve command

package org.foo.shell;

import java.io.PrintStream;

import java.util.*;

import org.osgi.framework.Bundle;

import org.osgi.service.packageadmin.PackageAdmin;

public class ResolveCommand extends BasicCommand {

public void exec(String args, PrintStream out, PrintStream err)
throws Exception {
boolean success;
if (args == null) {
success =
getPackageAdminService () .resolveBundles (null) ;
} else {
List<Bundle> bundles = new ArrayList<Bundles>() ;
StringTokenizer tok = new StringTokenizer (args) ;
while (tok.hasMoreTokens())
bundles.add (getBundle (tok.nextToken())) ;
}
success = getPackageAdminService () .resolveBundles (
bundles.toArray (newBundle [bundles.size()])) ;

110

3.5.2

CHAPTER 3 Learning lifecycle

}

out.println(success ? “Success” : “Failure”);

}

private PackageAdmin getPackageAdminService() {...}

}

We won’t discuss the details of how you obtain the Package Admin Service until the
next chapter; for now, you use the getPackageAdminService() method. If the
resolve command is executed with no arguments, you invoke resolveBundles ()
with null, which causes the framework to attempt to resolve all unresolved bundles.
Otherwise, you parse the argument as a list of whitespace-separated bundle identifi-
ers. For each identifier, you get its associated Bundle object and add it to a list. After
you've retrieved the complete list of bundles, you pass them in as an array to
resolveBundles (). The framework attempts to resolve any unresolved bundles of
those specified.

It’s worthwhile to understand that the framework may resolve bundles in addition
to those that were specified. The specified bundles are the root of the framework’s
resolve process; the framework will resolve any additional unresolved bundles neces-
sary to resolve the specified roots.

Resolving a bundle is a fairly easy process, because the framework does all the hard
work for you. You’d think that’d be it. As long as your bundle’s dependencies are
resolved, you have nothing to worry about, right? It turns out the dynamic nature of
the bundle lifecycle makes this an invalid assumption. Sometimes you need to have
the framework recalculate a bundle’s dependencies. You’re probably wondering,
“Why?” We’ll tell you all about it in the next section.

Refreshing bundles

The lifecycle layer allows you to deploy and manage your application’s bundles. Up until
now we’ve focused on installing, resolving, and starting bundles, but there are other
interesting bundle lifecycle operations. How about updating or uninstalling a bundle?
In and of themselves, these operations are as conceptually simple as the other lifecycle
operations. We certainly understand what it means to update or uninstall a bundle. The
details are a little more complicated. When you update or uninstall a resolved bundle,
you stand a good chance of disrupting your system. This is the place where you can start
to see the impact of the framework’s dynamic lifecycle management.

The simple case is updating or uninstalling a self-contained bundle. In this case,
the disruption is limited to the specific bundle. Even if the bundle imports packages
from other bundles, the disruption is limited to the specific bundle being updated or
uninstalled. In either case, the framework stops the bundle if it’s active. In the case of
updating, the framework updates the bundle’s content and restarts it if it was previ-
ously active. Complications arise if other bundles depend on the bundle being
updated or uninstalled. Such dependencies can cause a cascading disruption to your
application, if the dependent bundles also have bundles depending on them.

Lifecycle and modularity 111

Why do dependencies complicate the issue? Consider updating a given bundle.
Other dependent bundles have potentially loaded classes from the old version of the
bundle. They can’t just start loading classes from the new version of the bundle,
because they would see old versions of the classes they already loaded mixed with new
versions of classes loaded after the update. This would be inconsistent. In the case of
an uninstalled bundle, the situation is more dire, because you can’t pull the rug out
from under the dependent bundles.

It’s worthwhile to limit the disruptions caused by bundle updates or uninstalls. The
framework provides such control by making updating and uninstalling bundles a two-
step process. Conceptually, the first step prepares the operation; and the second step,
called refreshing, enacts its. Refreshing recalculates the dependencies of the impacted
bundles. How does this help? It allows you to control when the changeover to the new
bundle version or removal of a bundle occurs for updates and uninstalls, respectively,
as shown in figure 3.19.

We say this is a two-step process, but what happens in the first step? For updates,
the new bundle version is put in place, but the old version is still kept around so bun-
dles depending on it can continue loading classes from it. You may be thinking, “Does
this mean two versions of the bundle are installed at the same time?” Effectively, the
answer is, yes. And each time you perform an update without a refresh, you introduce
yet another version. For uninstalls, the bundle is removed from the installed list of
bundles, but it isn’t removed from memory. Again, the framework keeps it around so
dependent bundles can continue to load classes from it.

For example, imagine you want to update a set of bundles. It would be fairly incon-
venient if the framework refreshed all dependent bundles after each individual
update. With this two-step approach, you can update all bundles in the set and then
trigger one refresh of the framework at the end. You can experience a similar situa-
tion if you install a bundle providing a newer version of a package. Existing resolved
bundles importing an older version of the package won’t be automatically rewired to
the new bundle unless they’re refreshed. Again, it’s nice to be able to control the
point in time when this happens. It’s a fairly common scenario when updating your
application that some of your bundles are updated, some are uninstalled, and some
are installed; so a way to control when these changes are enacted is helpful.

You trigger a refresh by using the Package Admin Service again. To illustrate how
to use it, let’s add a refresh command to the shell, as shown next.

BundleA in BundleA in
revision 1 revision 1 Figure 3.19 Updating
Update 5 . . and refreshing bundles is
bundleA r‘;cidalf)/\n 7 Refresh %Cﬂff\n 7 a two-step process. Most
of the work normally takes
BundieB in BundieB in BundieB in place in the second step
revision 1 revision 1 revision 1 during the framework

refresh operation.

112

CHAPTER 3 Learning lifecycle

Listing 3.20 Bundle refresh command

package org.foo.shell;

import java.io.PrintStream;

import java.util.*;

import org.osgi.framework.Bundle;

import org.osgi.service.packageadmin.PackageAdmin;

public class RefreshCommand extends BasicCommand ({

public void exec(String args, PrintStream out, PrintStream err)

throws Exception {

if (args == null)
getPackageAdminService () .refreshPackages (null) ;

} else {
List<Bundle> bundles = new ArrayList<Bundle> () ;
StringTokenizer tok = new StringTokenizer (args) ;
while (tok.hasMoreTokens ()) { <}4!? Lists bundles to

bundles.add (getBundle (tok.nextToken())) ; be refreshed

}

getPackageAdminService () .refreshPackages (Passes array of
bundles.toArray (new Bundle [bundles.size()])); bundles to Package
} Admin Service

}

private PackageAdmin getPackageAdminService() {...}

}
Just as in the resolve command, you rely on the magic method to get the Package
Admin Service. You use the PackageAdmin.refreshPackages () method to refresh
bundles. If no arguments are given to the command, you pass in null to the Package
Admin Service. This results in the framework refreshing all previously updated and
uninstalled bundles since the last refresh. This captures the update and uninstall cases
presented earlier, but it doesn’t help with the rewiring case. You achieve that by pass-
ing in the specific bundles you want refreshed. For this case, the refresh command
accepts an argument of whitespace-separated bundle identifiers. You parse their iden-
tifiers out of the supplied argument, retrieve their associated Bundle object, and add
them to a list to be refreshed @. You then pass in the array of bundles to refresh to
the Package Admin Service @.

The PackageAdmin.refreshPackages() method updates or removes packages
exported by the bundles being refreshed. The method returns to the caller immedi-
ately and performs the following steps on a separate thread:

1 It computes the graph of affected dependent bundles, starting from the speci-
fied bundles (or from all updated or uninstalled bundles if null is specified).
Any bundle wired to a package currently exported by a bundle in the graph is
added to the graph. The graph is fully constructed when there is no bundle out-
side the graph wired to a bundle in the graph.

2 Each bundle in the graph in the ACTIVE state is stopped, moving it to the
RESOLVED state.

Lifecycle and modularity 113

3 Each bundle in the graph in the RESOLVED state, including those that were
stopped, is unresolved and moved to the INSTALLED state. This means the bun-
dles’ dependencies are no longer resolved.

4 FEach bundle in the graph in the UNINSTALLED state is removed from the graph
and completely removed from the framework (is free to be garbage collected).
You’re back to a fresh starting state for the affected bundles.

5 For the remaining bundles in the graph, the framework restarts any previously
ACTIVE bundles, which resolves them and any bundles on which they depend.

6 When everything is done, the framework fires an event of type Framework-
Event . PACKAGES REFRESHED.

As a result of these steps, it’s possible that some of the previously ACTIVE bundles
can no longer be resolved; maybe a bundle providing a required package was
uninstalled. In such cases, or for any other errors, the framework fires an event of
type FrameworkEvent . ERROR.

The following shell session shows how you can use the resolve and refresh com-
mands in combination to manage a system:

-> install file:foo.jar

Bundle: 2
-> bundles
ID State Name
[0] [ACTIVE] System Bundle

Location: System Bundle
Symbolic-Name: system.bundle

[1] [ACTIVE] Simple Shell
Location: file:org.foo.shell-1.0.jar
Symbolic-Name: org.foo.shell

[2] [INSTALLED] Foo Bundle
Location: file:foo.jar

Symbolic-Name: org.foo.foo J Resolves
-> resolve 2 bundle
-> bundles
ID State Name
[0] [ACTIVE] System Bundle

Location: System Bundle
Symbolic-Name: system.bundle

[1] [ACTIVE] Simple Shell
Location: file:org.foo.shell-1.0.jar
Symbolic-Name: org.foo.shell

[2] [RESOLVED] Foo Bundle
Location: file:foo.jar .
Symbolic-Name: org.foo.foo Transitions bundle
-s> refresh 2 to INSTALLED state

-> bundles
ID State Name
[0] I ACTIVE] System Bundle
Location: System Bundle
Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
Location: file:org.foo.shell-1.0.jar

114

3.5.3

CHAPTER 3 Learning lifecycle

Symbolic-Name: org.foo.shell
[2] [INSTALLED] Foo Bundle

Location: file:foo.jar

Symbolic-Name: org.foo.foo
You install a bundle and resolve it using the resolve command @, which transitions it
to the RESOLVED state. Using the refresh command @, you transition it back to the
INSTALLED state.

At this point, you’ve achieved a lot in understanding the lifecycle layer; but before

you can finish, we need to explain some nuances about updating bundles. Let’s get to it.

When updating isn’t updated

One of the gotchas many people run into when updating a bundle is the fact that it
may or may not use its new classes after the update operation. We said previously
that updating a bundle is a two-step process, where the first step prepares the
operation and the second step enacts it, but this isn’t entirely accurate when you
update a bundle. The specification says the framework should enact the update
immediately, so after the update the bundle should theoretically be using its new
classes; but it doesn’t necessarily start using them immediately. In some situations,
after a bundle is updated, new classes are used; in other situations, old classes are
used. Sounds confusing, doesn’t it? It is. Why not just wait until a refresh to enact
the new revision completely?

The answer, as you might guess, is historical. The original R1 specification defined
the update operation to update a bundle. End of story. There was no Package Admin
Service. With experience, it became clear that the specified definition of update was
insufficient. Too many details were left for framework implementations to decide,
such as when to dispose of old classes and start using new classes. This led to inconsis-
tencies, which made it difficult to manage bundle lifecycles across different frame-
work implementations. This situation resulted in the introduction of the Package
Admin Service in the R2 specification, to resolve the inconsistencies around update
once and for all. Unfortunately, the original behavior of update was left intact, due to
backward-compatibility concerns. These concerns leave you with the less-than-clean
approach to bundle update that we have today, but at least it’s fairly consistent across
framework implementations.

Back to the issue of an updated bundle sometimes using old or new classes. As
arcane as it may be, there is a way to understand what’s going on. Whether your bun-
dle’s new classes or the old classes are used after an update depends on two factors:

= Whether the classes are from a private package or an exported package
= If the classes are from an exported package, whether they’re being used by
another bundle

Regarding the first factor:

= If the classes come from a private bundle package (one that isn’t exported), the
new classes become available immediately no matter what.

3.6

Summary 115

= If they’re from an exported package, their visibility depends on whether other

bundles are using them:

— If no other bundles are using the exported packages, the new classes become
available immediately. The old versions of the classes are no longer needed.

— If any other bundles are using the exported packages, the new classes don’t
become available immediately, because the old version is still required. In
this case, the new classes aren’t made available until the PackageAdmin.
refreshPackages () method is called.

There is yet another nuance. In chapter 5, you’ll learn that bundles can also import
the same packages they export. If a bundle imports a package it exports, and the
imported package from the updated bundle matches the exported package from the
old version, the updated bundle’s import is wired to the old exported packages. This
may work out well in some cases—when you’re fixing a bug in a private package, for
example. But it can potentially lead to odd situations, because the updated bundle is
using new versions of private classes alongside old versions of exported classes. If you
need to avoid this situation, you should specify version ranges when your bundle
imports its own packages.

If the updated bundle imports its own package, but the import doesn’t match the
old version of the exported package, you have a different situation. It’s similar to the
case where the bundle only exports the package. In this case, the new classes from the
exported packages become available immediately to the updated exporting bundle
and for future resolves of other bundles, but not to existing importer bundles, which
continue to see the old version. This situation generally requires Package-
Admin.refreshPackages () to bring the bundles back to a useful state.

You can avoid some of these issues through interface-based programming and
bundle partitioning. For example, if you can separate shared APIs (the APIs through
which bundles interact) into interfaces, and you place those interfaces into a
separate set of packages contained in a separate bundle, you can sometimes simplify
this situation. In such a setup, both the client bundles and the bundles implement-
ing the interfaces have dependencies on the shared API bundle, but not on each
other. In other words, you limit the coupling between clients and the providers of
the functionality.

Summary

In this chapter, you’ve seen that whether your desire is to deploy the bundles needed
to execute your application or to create a sophisticated auto-adaptive system, the life-
cycle layer provides everything you need. Let’s review what you’ve learned:

= A bundle can only be used by installing it into a running instance of the OSGi
framework.

= The lifecycle layer API is composed of three main interfaces: BundleActivator,
BundleContext, and Bundle.

116

CHAPTER 3 Learning lifecycle

A BundleActivator is how a bundle hooks into the lifecycle layer to become
lifecycle aware, which allows it to gain access to all framework facilities for
inspecting and modifying the framework state at execution time.

The framework associates a lifecycle state with each installed bundle, and the
BundleContext and Bundle lifecycle interfaces make it possible to transition
bundles though these states at execution time.

Monitoring bundle lifecycle events is a form of dynamic extensibility available
in the OSGi framework based on the dynamically changing installed set of bun-
dles (also known as the extender pattern).

The lifecycle and module layers have a close relationship, which is witnessed
when bundles are updated and uninstalled. You use the Package Admin Service
to manage this interaction.

Now we’ll move on to the next layer of the OSGi framework: the service layer. Services
promote interface-based programming among bundles and provide another form of
dynamic extensibility.

Studying services

This chapter covers

®m Understanding what services are and why
they’re useful

®m Publishing and using services
®m Dealing with service dynamism
® Modifying an application to use services

®m Relating services to the module and lifecycle
layers

So far, you’ve seen two layers of the OSGi framework. The module layer helps you
separate an application into well-defined, reusable bundles, and the lifecycle layer
builds on the module layer to help you manage and evolve bundles over time. Now
we’ll make things even more dynamic with the third and final layer of OSGi: services.

We’ll start this chapter with a general discussion about services to make sure
we’re all thinking about the same thing. We’ll then look at when you should (and
shouldn’t) use services and walk through an example to demonstrate the OSGi ser-
vice model. At this point, you should understand the basics, so we’ll take a closer
look at how best to handle the dynamics of OSGi services, including common pit-
falls and how to avoid them.

117

118

4.1

411

CHAPTER 4 Studying services

With these techniques in mind, you’ll update the ongoing paint program to use
services and see how the service layer relates to the module and lifecycle layers. We’ll
conclude with a review of standard OSGi framework services and tell you more about
the compendium. As you can see, we have many useful and interesting topics to cover, so
let’s get started and talk about services.

The what, why, and when of services

Before looking at OSGi services, we should first explain what we mean by a service,
because the term can mean different things to different people depending on their
background. When you know the “what,” you also need to know why and when to use
services, so we’ll get to that, too.

What is a service?

You may think a service is something you access across the network, like retrieving
stock quotes or searching Google. But the classical view of a service is something
much simpler: “work done for another.” This definition can easily apply to a simple
method call between two objects, because the callee is doing work for the caller.

How does a service differ from a method call? A service implies a contract between
the provider of the service and its consumers. Consumers typically aren’t worried
about the exact implementation behind a service (or even who provides it) as long as
it follows the agreed contract, suggesting that services are to some extent substitut-
able. Using a service also involves a form of discovery or negotiation, implying that
each service has a set of identifying features (see figure 4.1).

If you think about it, Java interfaces provide part of a contract, and Java class link-
ing is a type of service lookup because it “discovers” methods based on signatures and
class hierarchy. Different method implementations can also be substituted by chang-
ing the JAR files on the class path. So a local method call could easily be seen as a ser-
vice, although it would be even better if you could use a high-level abstraction to find
services or if there was a more dynamic way to switch between implementations at exe-
cution time. Thankfully, OSGi helps with both by recording details of the service con-
tract, such as interface names and metadata, and by providing a registry API to publish

Figure 4.1 Services follow a contract and involve some form of discovery.

4.1.2

The what, why, and when of services 119

and discover services. You’ll hear more about this later, in section 4.2; for now, let’s
continue to look at services in general.

You may be thinking that a Java method call in the same process can’t possibly be a
service, because it doesn’t involve a remote connection or a distributed system. In real-
ity, as you’ll see throughout this chapter, services do not have to be remote, and there
are many benefits to using a service-oriented approach in a purely local application.

Components vs. services

When people discuss services, they often talk about components in the same con-
text, so it’s useful to consider how services and components compare and overlap.
Service-oriented design and component-oriented design are extremely complementa-
ry. The key semantic difference between these two approaches is as follows:

= In a component-oriented approach, the architect focuses on the provider’'s view.
= In a service-oriented approach, the architect focuses on the consumer’s view.

Typically, in a component-oriented approach, the architect is focused on ensuring that
the component they provide is packaged in such a way that it makes their life easier.
You know that when it comes to packaging and deploying Java code, the code will
often be used in a range of different scenarios. For example, a stock-quote program
can be deployed as a console, GUI, or web application by combining different compo-
nents. A component design approach tries to make it as easy as possible for the ar-
chitect to select what functionality they want to deploy without hardcoding this into
their application.

This contrasts with a service-oriented approach, where the architect is focused on
supplying a function or set of functions to consumers who typically have little interest
in how the internals of the individual component are constructed, but have specific
requirements for how they want the function to behave. Examples include acid trans-
actions, low latency, and encrypted data.

You'll see in chapters 11 and 12 that component-oriented approaches can easily be
built on top of the OSGi services model. With this in mind, let’s continue our introduc-
tion to services by considering the benefits of services.

Why use services?

The main drive behind using services is to get others to do work on your behalf, rather
than attempting to do everything yourself. This idea of delegation fits in well with many
object-oriented design techniques, such as Class-Responsibility-Collaboration (CRC)
cards.! CRC cards are a role-playing device used by development teams to think about
what classes they need, as well as which class will be responsible for which piece of work
and how the various classes should collaborate to get work done.? Techniques like CRC

! Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-Oriented Thinking,” http://c2.com/
doc/oopsla89/paper.html.

2 Don Wells, “Design a Simulator for the Coffee Maker,” www.extremeprogramming.org/example/crcsim.html.

http://c2.com/doc/oopsla89/paper.html
http://c2.com/doc/oopsla89/paper.html
www.extremeprogramming.org/example/crcsim.html

120

CHAPTER 4 Studying services

Figure 4.2 Using CRC to place responsibilities can be like playing pass-the-parcel.

cards try to push work out to other components wherever possible, which leads to lean,

well-defined, maintainable components. Think of this like a game of pass-the-parcel

(see figure 4.2), where each developer is trying to pass parcels of work to other devel-

opers—exceptin this game, when the music stops, you want the smallest pile of parcels!
A service-oriented approach also promotes

= Less coupling between providers and consumers, so it’s easier to reuse components
= More emphasis on interfaces (the abstract) rather than superclasses (the concrete)

Clear descriptions of dependencies, so you know how it all fits together

= Supportfor multiple competing implementations, so you can swap partsin and out

In other words, it encourages a plug-and-play approach to software development, which
means much more flexibility during development, testing, deployment, and mainte-
nance. You don’t mind where a service comes from, as long as it does what you want. Still
not convinced? Let’s see how each of these points helps you build a better application.

LESS COUPLING

One of the most important aspects of a service is the contract. Every service needs some
form of contract—otherwise, how could a consumer find it and use it (see figure 4.3)?
The contract should include everything a consumer needs to know about the service,
but no more. Putting too much detail in a contract tightens the coupling between pro-
vider and consumer and limits the possibility of swapping in other implementations

Our robot needs legs! Service contract

A
™
Interface leg '
A
A A

Description: —
Bends at knee
[ete...]

; JdEZE Figure 4.3
u

Why you need contracts

The what, why, and when of services 121

later. To put it in clothing terms, you want it nice and stretchy to give your application
room to breathe.

A good service contract clearly and cleanly defines the boundary between major
components and helps with development and maintenance. After the contract is
defined, you can work on implementing service providers and consumers in parallel
to reduce development time, and you can use scripted or mock services to perform
early testing of key requirements. Contracts are good news for everyone—but how do
you define one in Java?

MORE EMPHASIS ON INTERFACES

Javainterfaces can form part ofaservice con-
tract. They list the various methods that
make up a service along with expected

=19

parameters and return types. After they’re
defined, you can begin programming \
against the agreed-on set of interfaces with-

out having to wait for others to finish their
implementations (see figure 4.4). Interfaces Right leg team Body team Left leg team

/OQ@

(4

/

JEENTH ECEEN

also have several advantages over concrete) . .
. Figure 4.4 Programming to interfaces means

classes. A Java class can implement several teams can work in parallel.

interfaces, whereas it can only extend one

concrete class. This is essential if you want flexibility over how you implement related

services. Interfaces also provide a higher level of encapsulation because you’re forced

to put logic and state in the implementing class, not the interface.

You could stop at this point, assemble your final application by creating the various
components with new, and wire their dependencies manually. Or you could use a
dependency injection framework to do the construction and wiring for you. If you did,
you’d have a pluggable application and all the benefits it entails, but you’d also miss out
on two other benefits of a service-oriented approach: rich metadata and the ability to
switch between implementations at execution time in response to events.

CLEAR DESCRIPTIONS OF DEPENDENCIES
Interfaces alone can’t easily capture certain characteristics of a service, such as the
quality of a particular implementation or configuration settings like supported
locales. Such details are often best recorded as metadata alongside the service inter-
face, and to do this you need some kind of framework. Semantics, which describe what
a service does, are also hard to capture. Simple semantics like pre- and post-conditions
can be recorded using metadata or may even be enforced by the service framework.
Other semantics can only be properly described in documentation, but even here
metadata can help provide a link to the relevant information.

Think about your current application: what characteristics may you want to record
outside of classes and interfaces? To get you started, table 4.1 describes some charac-
teristics from real-world services that could be recorded as metadata.

122

CHAPTER 4 Studying services

Table 4.1 Example characteristics of real-world services

Characteristic Why may you be interested?

Supported locales | A price-checking service may only be available for certain currencies.

Transaction cost You may want to use the cheapest service, even if it takes longer.

Throughput You may want to use the fastest service, regardless of cost.

Security You may only want to use services that are digitally signed by certain
providers.

Persistence You may only want to use a service that guarantees to store your data

characteristics in such a way that it won't be lost if the JVM restarts.

As you can see, metadata can capture fine-grained information about your application
in a structured way. This is helpful when you’re assembling, supporting, and maintain-
ing an application. Recording metadata alongside a service interface also means you
can be more exact about what you need. The service framework can use this metadata
to filter out services you don’t want, without having to load and access the service itself.

But why would you want to do this? Why not just call a method on the service to ask
if it does what you need?

SUPPORT FOR MULTIPLE COMPETING IMPLEMENTATIONS

A single Java interface can have many implementations; one may be fast but use a lot
of memory, another may be slow but conserve memory. How do you know which one
to use when they both implement the same interface? You could add a query method
to the interface that tells you more about the underlying implementation, but that
would lead to bloat and reduce maintainability. What would happen when you added
another implementation that couldn’t be characterized using the existing method?
Using a query method also means you have to find and call each service implementa-
tion before you know whether you want to use it, which isn’t efficient—especially
when you may have hundreds of potential implementations that could be loaded at
execution time.

Because service frameworks help
yourecord metadata alongside services,
they can also help you query and filter
on this metadata when discovering ser-

vices. This is different from classic
dependency injection frameworks,

which look up implementations based ~ Le¢ I/ I/ Leg Leg I/ \&'—5@

solely on the interfaces used at a given Metadata Metadata

dependency point. Figure 4.5 shows \ \ gﬂoerrzlgter \ / iﬂiﬂ?ﬁ!d

how services can help you get exactly AESE dmm=ch a==ion oo
Dependency injection Service discovery

what you want.

We hope that, by now, you agree Figure 4.5 Simple dependency injection vs. service
that services are a good thing—but as discovery

4.1.3

The what, why, and when of services 123

the saying goes, you can have too much of a good thing! How can you know when you
should use a service or when it would be better to use another approach, such as a
static factory method or simple dependency injection?

When to use services

The best way to decide when to use a service is to consider the benefits: less coupling,
programming to interfaces, additional metadata, and multiple implementations. If
you have a situation where any of these make sense or your current design provides
similar benefits, you should use a service.

The most obvious place to use a service is between major components, especially if
you want to replace or upgrade those components over time without having to rewrite
other parts of the application. Similarly, anywhere you look up and choose between
implementations is another candidate for a service, because it means you can replace
your custom logic with a standard, recognized approach.

Services can also be used as a substitute for the classic listener pattern.” With this pat-
tern, one object offers to send events to other objects, known as listeners. The event
source provides methods to subscribe and unsubscribe listeners and is responsible for
maintaining the list of listeners. Each listener implements a known interface to
receive events and is responsible for subscribing to and unsubscribing from the event
source (see figure 4.6).

Implementing the listener pattern involves writing a lot of code to manage and
register listeners, but how can services help? You can see a service as a more general
form of listener, because it can receive all kinds of requests, not just events. Why not
save time and get the service framework to manage listeners for you by registering
them as services?

To find the current list of listeners, the sender queries the service framework for
matching services (see figure 4.7). You can use service metadata to further define and
filter the interesting events for a listener. In OSGi, this is known as the whiteboard
pattern; you’ll use this pattern when you update the paint example to use services in
section 4.4.

Figure 4.6 Listener pattern

*® Brian Goetz, “Java theory and practice: Be a good (event) listener,” www.ibm.com/developerworks/java/
library/j-jtp07265/index.html.

www.ibm.com/developerworks/java/library/j-jtp07265/index.html
www.ibm.com/developerworks/java/library/j-jtp07265/index.html

124

4.1.4

4.1.5

CHAPTER 4 Studying services

Service Listener

registry

Event source

Figure 4.7 Whiteboard pattern

One downside of the whiteboard pattern is that it may not be clear that listeners
should register a particular interface with the registry, but you can solve this by high-
lighting the interface in the event source’s documentation. It also introduces a depen-
dency to the service framework, which you may not want for components that you
want to reuse elsewhere. Finally, the service registry must be able to scale to large
numbers of services, for situations where you have lots of sources and listeners.

When not to use services

Another way to decide if you should use services is to consider when you wouldn’t want
to use them. Depending on the service framework, overhead may be involved when
calling services, so you probably don’t want to use them in performance-critical code.
That said, the overhead when calling a service in OSGi can be next to zero. You may
have a one-time start-up cost, but calling a service is then just a direct method call. You
should also consider the work required to define and maintain the service contract.
There’s no point in using a service between two tightly coupled pieces of code that are
always developed and updated in tandem (unless of course you need to keep choos-
ing between multiple implementations).

Still not sure?

What if you’re still not sure whether to use a service? Fortunately, you can use an
approach that makes development easier and helps you migrate to services later: pro-
gramming to interfaces. If you use interfaces, you’re already more than halfway to using
services, especially if you also take advantage of dependency injection. Of course,
interfaces can be taken to extremes; there’s no point in creating an interface for a
class if there will only ever be one implementation. But for outward-facing interaction
between components, it definitely makes sense to use interfaces wherever possible.

What have you learned? You saw how interfaces reduce coupling and promote faster
development, regardless of whether you end up using services. You also saw how services
help capture and describe dependencies and how they can be used to switch between
different implementations. More importantly, you learned how a service-oriented
approach makes developers think more about where work should be done, rather than
lump code all in one place. And finally, we went through a whole section about services
without once mentioning remote or distributed systems.

Is OSGi just another service model? Should we end the chapter here with an over-
view of the API and move on to other topics? No, because one aspect is unique to the
OSGi service model: services are completely dynamic.

4.2

OSGi services in action 125

0SGi services in action

What do we mean by dynamic? After a bundle has discovered and started using a ser-
vice in OSGi, it can disappear at any time. Perhaps the bundle providing it has been
stopped or even uninstalled, or perhaps a piece of hardware has failed; whatever the
reason, you should be prepared to cope with services coming and going over time.
This is different from many other service frameworks, where after you bind to a ser-
vice it’s fixed and never changes—although it may throw a runtime exception to indi-
cate a problem.

OSGi doesn’t try to hide this dynamism: if a bundle wants to stop providing a ser-
vice, there’s little point in trying to hold it back or pretend the service still exists. This
is similar to many of the failure models used in distributed computing. Hardware
problems in particular should be acknowledged and dealt with promptly rather than
ignored. Fortunately, OSGi provides a number of techniques and utility classes to
build robust yet responsive applications on top of such fluidity; we’ll look more closely
at these in chapters 11 and 12. But before we can discuss the best way to handle
dynamic services, you first need to understand how OSGi services work at the basic
level, and to do that we need to introduce the registry.

The OSGi framework has a centralized service registry that follows a publish-find-
bind model (see figure 4.8). To put this in the perspective of service providers and
consumers,

= A providing bundle can publish Plain Old Java Objects (POJOs) as services.
= A consuming bundle can find and then bind to services.

Framework

Bundle

0SGi
service
registry

Publish

—1~\\\\5Tf_—

Figure4.8 OSGi
service registry

You access the OSGi service registry through the BundleContext interface, which you
saw in section 3.2.4. Back then, we looked at its lifecycle-related methods; now we’ll
look into its service-related methods, as shown in the following listing.

Listing 4.1 BundleContext methods related to services

public interface BundleContext {

void addServicelListener (ServicelListener listener, String filter)
throws InvalidSyntaxException;

void addServiceListener (ServiceListener listener) ;

void removeServicelListener (ServicelListener listener) ;

126

421

CHAPTER 4 Studying services

ServiceRegistration registerService(
String[] clazzes, Object service, Dictionary properties) ;
ServiceRegistration registerService (
String clazz, Object service, Dictionary properties);
ServiceReference[] getServiceReferences (String clazz, String filter)
throws InvalidSyntaxException;
ServiceReference[] getAllServiceReferences(String clazz, String filter)
throws InvalidSyntaxException;
ServiceReference getServiceReference (String clazz) ;
Object getService (ServiceReference reference) ;
boolean ungetService (ServiceReference reference) ;

}

As long as your bundle has a valid context (that is, when it’s active), it can use services.
Let’s see how easy it is to use a bundle’s BundleContext to publish a service.

Publishing a service

Before you can publish a service, you need to describe it so others can find it. In other
words, you need to take details from the implemented contract and record them in
the registry. What details does OSGi need from the contract?

DEFINING A SERVICE

To publish a service in OSGi, you need to provide a single interface name (or an array
of them), the service implementation, and an optional dictionary of metadata (see fig-
ure 4.9). Here’s what you can use for a service that provides both stock listings and
stock charts for the London Stock Exchange (LSE):

String[] interfaces = new Stringl[] {
StockListing.class.getName (), StockChart.class.getName () };

Dictionary metadata = new Properties();
metadata.setProperty("name", "LSE") ;

metadata.setProperty ("currency", Currency.getInstance ("GBP")) ;
metadata.setProperty ("country", "GB");

Class.getName () helps during refactoring. Note that metadata must be in the
Dictionary type and can contain any Java type.

Hi Lo Stock
ctx.registerService ({ a3 FOO }]
18 112 NUL

N

' £)

serviceRegistration

OSGi
service
registry

Figure 4.9 Publishing a service that provides both stock listings and stock charts

OSGi services in action 127

When everything’s ready, you can publish your service by using the bundle context:

ServiceRegistration registration =

bundleContext.registerService (interfaces, new LSE(), metadata);
The registry returns a service registration object for the published service, which you
can use to update the service metadata or to remove the service from the registry.

NOTE Service registrations are private. They shouldn’t be shared with other
bundles, because they’re tied to the lifecycle of the publishing bundle.

The LSE implementation is a POJO. It doesn’t need to extend or implement any spe-
cific OSGi types or use any annotations; it just has to match the provided service
details. There’s no leakage of OSGi types into service implementations. You don’t even
have to use interfaces if you don’t want to—OSGi will accept services registered under
concrete class names, but this isn’t recommended.

UPDATING SERVICE METADATA
After you’ve published a service, you can change its metadata at any time by using its
service registration:

registration.setProperties (newMetadata) ;

This makes it easy for your service to adapt to circumstances and inform consumers
about any such changes by updating its metadata. The only pieces of metadata that
you can’t change are service.id and objectClass, which are maintained by the
framework. Other properties that have special meaning to the OSGi framework are
shown in table 4.2.

Table 4.2 Standard OSGi service properties
Key Type Description

objectClass String[] | Class name the service was registered under. You cant
change it after registration.

service.id Long Unique registration sequence number, assigned by the
framework when registering the service. You can’t choose
or change it.

service.pid String Persistent (unique) service identifier, chosen by you.

service.ranking Integer | Ranking used when discovering services. Defaults to O.

Services are sorted by their ranking (highest first) and then
by their ID (lowest first). Chosen by you.

service.description| String Description of the service, chosen by you.

service.vendor String Name of the vendor providing the service, chosen by you.

REMOVING A SERVICE
The publishing bundle can also remove a published service at any time:

registration.unregister() ;

128

4.2.2

CHAPTER 4 Studying services

What happens if your bundle stops before you’ve removed all your published services?
The framework keeps track of what you’ve registered, and any services that haven’t yet
been removed when a bundle stops are automatically removed by the framework. You
don’t have to explicitly unregister a service when your bundle is stopped, although it’s
prudent to unregister before cleaning up required resources. Otherwise, someone
could attempt to use the service while you’re trying to clean it up.

You’ve successfully published the service in only a few lines of code and without
any use of OSGi types in the service implementation. Now let’s see if it’s just as easy to
discover and use the service.

Finding and binding services

As with publishing, you need to take details from the service contract to discover the
right services in the registry. The simplest query takes a single interface name, which is
the main interface you expect to use as a consumer of the service:

ServiceReference reference =
bundleContext .getServiceReference (StockListing.class.getName()) ;

This time the registry returns a service ref-

erence, which is an indirect reference to

the discovered service (see figure 4.10). |
Direct method calls

This service reference can safely be

shared with other bundles, becauseitisn’t ServiceReference
tied to the lifecycle of the discovering
bundle. But why does the registry return
an indirect reference and not the actual
service implementation?

To make services fully dynamic, the

ctx.getService (

ctx.ungetService (

registry must decouple the use of a ser-

0SGi
service
registry

vice from its implementation. By using an
indirect reference, it can track and con-
trol access to the service, support lazi-
ness, and tell consumers when the service Figure 4.10 Using an 0SGi service
is removed.

CHOOSING THE BEST SERVICE

If multiple services match the given query, the framework chooses what it considers to
be the “best” services. It determines the best service using the ranking property men-
tioned in table 4.2, where a larger numeric value denotes a higher-ranked service. If mul-
tiple services have the same ranking, the framework chooses the service with the lowest
service identifier, also covered in table 4.2. Because the service identifier is an increasing
number assigned by the framework, lower identifiers are associated with older services.
So if multiple services have equal ranks, the framework effectively chooses the oldest ser-
vice, which guarantees some stability and provides an affinity to existing services (see fig-
ure 4.11). Note that this only applies when you use getServiceReference—if you ask

OSGi services in action 129

2 (2]
1 rank:3 4 rank:null 8
k:0 5 rank:2
rank:2 3 ran 7
rank:-1
ranknull rank:3
2 7 1 & 3 4 (2] 5
rank:3 rank:3 rank:2. rank:2 rank:null rank:0 rank:null rank:-1

Figure 4.11 0SGi service ordering (by highest service.ranking and then lowest service.id)

for multiple services using getServiceReferences, the ordering of the returned array

is undefined.

You’ve seen how to find services based on the interfaces they provide, but what if
you want to discover services with certain properties? For example, in figure 4.12, if
you ask for any stock listing service, you get back the first one (NYSE); but what if you
want a UK-based listing? The bundle context provides another query method that
accepts a standard LDAP filter string, described in RFC 1960,* and returns all services

matching the filter.

A quick guide to using LDAP queries
Perform attribute matching:

(name=John Smith)
(age>=20)
(age<=65)

Perform fuzzy matching:

(name~=johnsmith)

Perform wildcard matching;:
(name=Jo*n*Smith*)

Determine if an attribute exists:

(name=*)

Match all the contained clauses:

(& (name=John Smith) (occupation=doctor))
Match at least one of the contained clauses:
(| (name~=John Smith) (name~=Smith John))
Negate the contained clause:

(! (name=John Smith))

4 T. Howes, “A String Representation of LDAP Search Filters,” www.ietf.org/rfc/rfc1960.txt.

www.ietf.org/rfc/rfc1960.txt

130

CHAPTER 4 Studying services

Figure 4.12 Discovering an 0SGi service

Here’s how you can find all stock listing services using the GBP currency:

ServiceReference[] references =
bundleContext.getServiceReferences (StockListing.class.getName (),
" (currency=GBP) ") ;
This returns references to the two LSE services (service.ids 3 and 4 in figure 4.12).
You can also use the objectClass property, mentioned in table 4.2, to query for
services that provide specific additional interfaces. Here, you narrow the search to
those stock listing services that use a currency of GBP and also provide a chart service:
ServiceReference[] references =
bundleContext.getServiceReferences (StockListing.class.getName (),
" (& (currency=GBP) (objectClass=org.example.StockChart))") ;
This returns only one LSE service reference (service.id 4 from figure 4.12) because
the other LSE service provides listings, but not charts.
You can look up all sorts of service references based on your needs, but how do you
use them? You need to dereference each service reference to get the actual service
object.

USING A SERVICE
Before you can use a service, you must bind to the actual implementation from the
registry, like this:
StockListing listing =

(StockListing) bundleContext.getService (reference) ;
The implementation returned is typically exactly the same POJO instance previously
registered with the registry, although the OSGi specification doesn’t prohibit the use
of proxies or wrappers.

OSGi services in action 131

Revisiting the magic method

Recall that in chapter 3, when you implemented the refresh command for the shell,
you had to use the magic getPackageAdminService () method to acquire the Pack-
age Admin Service. Now you have enough knowledge to see what was happening be-
hind the scenes:

private PackageAdmin getPackageAdminService () ({
return (PackageAdmin) m_context.getService (
m_context.getServiceReference (
PackageAdmin.class.getName())) ;

}

This method is simple—probably too simple, as you’ll find out later in section 4.3.1.
You use the BundleContext to find a service implementing the Package Admin Ser-
vice interface. This returns a service reference, which you use to get the service im-
plementation. No more magic!

Each time you call getService (), the registry increments a usage count so it can keep
track of who is using a particular service. To be a good OSGi citizen, you should tell
the registry when you’ve finished with a service:

bundleContext.ungetService (reference) ;
listing = null;

Services aren’t proxies

In general in OSGi, when you're making method calls on a service, you're holding a
reference to the Java object supplied by the providing bundle. For this reason, you
should also remember to null variables referring to the service instance when you're
done using it, so it can be safely garbage collected. The actual service implementa-
tion should generally never be stored in a long-lived variable such as a field; instead,
you should try to access it temporarily via the service reference and expect that the
service may go away at any time.

You’ve now seen how to publish simple Java POJOs as OSGi services, how they can be
discovered, and how the registry tracks their use. But if you remember one thing from
this section, it should be that services can disappear at any time. If you want to write a
robust OSGi-based application, you shouldn’t rely on services always being around or
even appearing in a particular order when starting your application. Of course, we
don’t want to scare you with all this talk of dynamism. It’s important to realize that
dynamism isn’t created or generated by OSGi—it just enables it. A service is never arbi-
trarily removed; either a bundle has decided to remove it or an agent has stopped a
bundle. You have control over how much dynamism you need to deal with, but it’s
always good to code defensively in case things change in the future or your bundles
are used in different scenarios.

132

4.3

CHAPTER 4 Studying services

What’s the best way to cope with potential dynamism? How can you get the most
from dynamic services without continual checking and rechecking? The next section
discusses potential pitfalls and recommended approaches when you’re programming
with dynamic services.

Dealing with dynamics

In the last section, we covered the basics of OSGi services, and you saw how easy it is to
publish and discover services. In this section, we’ll look more closely at the dynamics
of services and techniques to help you write robust OSGi applications. To demon-
strate, you’ll use the OSGi Log Service.

The Log Service is a standard OSGi service, one of the so-called compendium or non-
core services. Compendium services will be covered more in section 4.6.2. For now, all
you need to know is that the Log Service provides a simple logging facade, with vari-
ous flavors of methods accepting a logging level and a message, as shown in the follow-
ing listing.

Listing 4.2 O0SGi Log Service

package org.osgi.service.log;
import org.osgi.framework.ServiceReference;

public interface LogService {

I
NI SR

public static final int LOG_ERROR

public static final int LOG_WARNING
public static final int LOG_INFO =
public static final int LOG_DEBUG =

public void log(int level, String message) ;
public void log(int level, String message,
Throwable exception) ;

public void log(ServiceReference sr, int level, String message) ;
public void log(ServiceReference sr, int level, String message,
Throwable exception) ;
}

With OSGi, you can use any number of possible Log Service implementations in the
example, such as those written by OSGi framework vendors or others written by third-
party bundle vendors. To keep things simple and to help you trace what’s happening
inside the framework, you’