
M A N N I N G

Richard S. Hall
Karl Pauls

Stuart McCulloch
David Savage

FOREWORD BY PETER KRIENS

Creating modular applications in Java

OSGi in Action

OSGi in Action
CREATING MODULAR APPLICATIONS IN JAVA

RICHARD S. HALL

KARL PAULS

STUART McCULLOCH

DAVID SAVAGE

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street, Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Cynthia Kane
180 Broad Street, Suite 1323 Copyeditor: Tiffany Taylor
Stamford, CT 06901 Typesetter: Gordan Salinovic

Illustrator: Martin Murtonen
Cover designer: Marija Tudor

ISBN 9781933988917
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

http://www.manning.com

v

brief contents
PART 1 INTRODUCING OSGI: MODULARITY, LIFECYCLE, AND SERVICES 1

1 ■ OSGi revealed 3

2 ■ Mastering modularity 24

3 ■ Learning lifecycle 69

4 ■ Studying services 117

5 ■ Delving deeper into modularity 154

PART 2 OSGI IN PRACTICE . ..189

6 ■ Moving toward bundles 191

7 ■ Testing applications 230

8 ■ Debugging applications 258

9 ■ Managing bundles 292

10 ■ Managing applications 319

PART 3 ADVANCED TOPICS343

11 ■ Component models and frameworks 345

12 ■ Advanced component frameworks 373

BRIEF CONTENTSvi

13 ■ Launching and embedding an OSGi framework 412

14 ■ Securing your applications 438

15 ■ Web applications and web services 477

vii

contents
foreword xiv
preface xvii
acknowledgments xix
about this book xx
about the authors xxv

PART 1 INTRODUCING OSGI: MODULARITY, LIFECYCLE,
AND SERVICES ..1

1 OSGi revealed 3

1.1 The what and why of OSGi 4

Java’s modularity limitations 5 ■ Can OSGi help you? 8

1.2 An architectural overview of OSGi 9

The OSGi framework 9 ■ Putting it all together 12

1.3 “Hello, world!” examples 12

Module layer example 12 ■ Lifecycle layer example 14 ■ Service
layer example 16 ■ Setting the stage 18

CONTENTSviii

1.4 Putting OSGi in context 19

Java Enterprise Edition 19 ■ Jini 20 ■ NetBeans 20 ■ Java
Management Extensions 20 ■ Lightweight containers 21 ■ Java
Business Integration 21 ■ JSR 277 21 ■ JSR 294 22 ■ Service
Component Architecture 22 ■ .NET 22

1.5 Summary 23

2 Mastering modularity 24

2.1 What is modularity? 25

Modularity vs. object orientation 25

2.2 Why modularize? 27

2.3 Modularizing a simple paint program 28

2.4 Introducing bundles 31

The bundle’s role in physical modularity 32 ■ The bundle’s role in
logical modularity 33

2.5 Defining bundles with metadata 34

Human-readable information 35 ■ Bundle identification 36
Code visibility 39 ■ Class-search order 48

2.6 Finalizing the paint program design 50

Improving the paint program’s modularization 51 ■ Launching
the new paint program 52

2.7 OSGi dependency resolution 53

Resolving dependencies automatically 53 ■ Ensuring consistency
with uses constraints 59

2.8 Reviewing the benefits of the modular paint program 64

2.9 Summary 68

3 Learning lifecycle 69

3.1 Introducing lifecycle management 70

What is lifecycle management? 70 ■ Why lifecycle management? 72

3.2 OSGi bundle lifecycle 72

Introducing lifecycle to the paint program 73 ■ The OSGi
framework’s role in the lifecycle 75 ■ The bundle activator manifest
entry 76 ■ Introducing the lifecycle API 77 ■ Lifecycle state
diagram 83 ■ Bundle cache and framework restarts 84

3.3 Using the lifecycle API in your bundles 85

Configuring bundles 86 ■ Deploying bundles 88 ■ Inspecting
framework state 92 ■ Persisting bundle state 93 ■ Listening for
events 96 ■ Bundle suicide 99

CONTENTS ix

3.4 Dynamically extending the paint program 101

3.5 Lifecycle and modularity 108

Resolving bundles 108 ■ Refreshing bundles 110 ■ When
updating isn’t updated 114

3.6 Summary 115

4 Studying services 117

4.1 The what, why, and when of services 118

What is a service? 118 ■ Why use services? 119 ■ When to use
services 123 ■ When not to use services 124 ■ Still not sure? 124

4.2 OSGi services in action 125

Publishing a service 126 ■ Finding and binding services 128

4.3 Dealing with dynamics 132

Avoiding common pitfalls 133 ■ Listening for services 136
Tracking services 141

4.4 Using services in the paint example 143

Defining a shape service 144 ■ Publishing a shape service 144
Tracking shape services 145

4.5 Relating services to modularity and lifecycle 146

Why can’t I see my service? 147 ■ Can I provide a bundle-specific
service? 147 ■ When should I unget a service? 148 ■ When
should I unregister my service? 148 ■ Should I bundle interfaces
separately? 149

4.6 Standard services 149

Core services 150 ■ Compendium services 151

4.7 Summary 152

5 Delving deeper into modularity 154

5.1 Managing your exports 155

Importing your exports 155 ■ Implicit export attributes 158
Mandatory export attributes 160 ■ Export filtering 161
Duplicate exports 162

5.2 Loosening your imports 164

Optional imports 164 ■ Dynamic imports 165 ■ Optional vs.
dynamic imports 166 ■ Logging example 167

5.3 Requiring bundles 171

Declaring bundle dependencies 171 ■ Aggregating split
packages 173 ■ Issues with bundle dependencies 176

CONTENTSx

5.4 Dividing bundles into fragments 177

Understanding fragments 177 ■ Using fragments for
localization 180

5.5 Dealing with your environment 183

Requiring execution environments 184 ■ Bundling native
libraries 185

5.6 Summary 187

PART 2 OSGI IN PRACTICE...189

6 Moving toward bundles 191

6.1 Turning JARs into bundles 192

Choosing an identity 192 ■ Exporting packages 195
Discovering what to import 199 ■ Embedding vs. importing 203
Adding lifecycle support 204 ■ JAR file to bundle cheat sheet 205

6.2 Splitting an application into bundles 206

Making a mega bundle 206 ■ Slicing code into bundles 216
Loosening things up 221 ■ To bundle or not to bundle? 226

6.3 Summary 229

7 Testing applications 230

7.1 Migrating tests to OSGi 231

In-container testing 231 ■ Bundling tests 232 ■ Covering all
the bases 235

7.2 Mocking OSGi 237

Testing expected behavior 237 ■ Mocking in action 238
Mocking unexpected situations 240 ■ Coping with multithreaded
tests 241 ■ Exposing race conditions 243

7.3 Advanced OSGi testing 244

OSGi test tools 245 ■ Running tests on multiple frameworks 246
Unit testing 250 ■ Integration testing 251 ■ Management
testing 254

7.4 Summary 257

8 Debugging applications 258

8.1 Debugging bundles 259

Debugging in action 261 ■ Making things right with HotSwap 266

CONTENTS xi

8.2 Solving class-loading issues 271

ClassNotFoundException vs. NoClassDefFoundError 272 ■ Casting
problems 274 ■ Using uses constraints 275 ■ Staying clear of
Class.forName() 278 ■ Following the Thread Context Class
Loader 280

8.3 Tracking down memory leaks 283

Analyzing OSGi heap dumps 283

8.4 Dangling services 287

Finding a dangling service 287 ■ Protecting against dangling
services 288

8.5 Summary 290

9 Managing bundles 292

9.1 Versioning packages and bundles 293

Meaningful versioning 293 ■ Package versioning 295
Bundle versioning 297

9.2 Configuring bundles 299

Configuration Admin Service 299 ■ Metatype Service 309
Preferences Service 312

9.3 Starting bundles lazily 314

Understanding activation policies 315 ■ Using activation
policies 316

9.4 Summary 317

10 Managing applications 319

10.1 Deploying bundles 320

Introducing management agents 320 ■ OSGi Bundle Repository 321
Deployment Admin 330

10.2 Ordering bundle activation 337

Introducing the Start Level Service 338 ■ Using the Start Level
Service 339

10.3 Summary 342

PART 3 ADVANCED TOPICS ..343

11 Component models and frameworks 345

11.1 Understanding component orientation 346

What are components? 346 ■ Why do we want components? 348

CONTENTSxii

11.2 OSGi and components 349

OSGi’s service-oriented component model 349 ■ Improving upon
OSGi’s component model 351 ■ Painting with components 355

11.3 Declarative Services 355

Building Declarative Services components 356 ■ Providing services
with Declarative Services 357 ■ Consuming services with Declarative
Services 359 ■ Declarative Services component lifecycle 364

11.4 Summary 371

12 Advanced component frameworks 373

12.1 Blueprint Container 374

Blueprint architecture 374 ■ Providing services with Blueprint 375
Consuming services with Blueprint 378 ■ Blueprint component
lifecycle 382 ■ Advanced Blueprint features 387

12.2 Apache Felix iPOJO 391

Building iPOJO components 392 ■ Providing services with iPOJO 393
Consuming services with iPOJO 395 ■ iPOJO component
lifecycle 400 ■ Instantiating components with iPOJO 404

12.3 Mix and match 408

12.4 Summary 411

13 Launching and embedding an OSGi framework 412

13.1 Standard launching and embedding 413

Framework API overview 413 ■ Creating a framework
instance 415 ■ Configuring a framework 417 ■ Starting a
framework instance 419 ■ Stopping a framework instance 420

13.2 Launching the framework 421

Determining which bundles to install 422 ■ Shutting down
cleanly 422 ■ Configuring, creating, and starting the framework 423
Installing the bundles 424 ■ Starting the bundles 424 ■ Starting the
main bundle 425 ■ Waiting for shutdown 426

13.3 Embedding the framework 427

Inside vs. outside 427 ■ Who’s in control? 431 ■ Embedded
framework example 432

13.4 Summary 437

14 Securing your applications 438

14.1 To secure or not to secure 439

CONTENTS xiii

14.2 Security: just do it 440

Java and OSGi security 440

14.3 OSGi-specific permissions 444

PackagePermission 444 ■ BundlePermission 445 ■ Admin-
Permission 446 ■ ServicePermission 447 ■ Relative file
permissions 448

14.4 Managing permissions with Conditional Permission
Admin 449

Conditional permissions 449 ■ Introducing the Conditional
Permission Admin Service 450 ■ Bundle location condition 451
Using ConditionalPermissionAdmin 452 ■ Implementing a
policy-file reader 456

14.5 Digitally signed bundles 457

Learning the terminology 458 ■ Creating certificates and signing
bundles 458 ■ BundleSignerCondition 461

14.6 Local permissions 464

14.7 Advanced permission management 465

Custom conditions overview 465 ■ Date-based condition 466
User-input condition 467

14.8 Bringing it all back home 471

14.9 Summary 475

15 Web applications and web services 477

15.1 Creating web applications 478

Using the HTTP Service specification 479 ■ Using the Web
Applications specification 488 ■ Standard WARs: the Web URL
Handler 492

15.2 Providing and consuming web services 493

Providing a web service 494 ■ Consuming a web service 499
Distributing services 502

15.3 Summary 510

appendix A Building bundles 513

appendix B OSGi standard services 528

index 531

xiv

foreword
It was during the very hot summer of 2003 that I first heard of Richard S. Hall. During

a coffee break, a colleague from Deutsche Telekom told me that the local university

had a teacher who was very much into OSGi. This teacher was the author of Oscar, one

of the first open source OSGi frameworks. In 2003, wholeheartedly adopting OSGi was

rare, so I was intrigued. Also around that time, Eclipse was investigating moving to a

new module system, and I was asked to participate as an OSGi expert. I thought Rich-

ard could be valuable for this, so I asked him to join the Equinox committee. That

innocent invitation started an enormously long email thread that hasn’t ended yet

and, I hope, never will. Richard is often abrasive when specifications aren’t clear, or

worse, when we attempt to violate modular purity. Sometimes I think he physically

feels pain if we have to compromise on a dirty feature. As an invited OSGi researcher,

he has became one of the key people behind the specifications, making sure we don’t

bloat the framework and always follow our principles.

 When Manning sent a flattering email proposing an OSGi in Action book to the key

OSGi people, Richard was among them. This email triggered intense discussions about

collectively writing this book; the idea to write a book had been discussed many times

before. We went into negotiations with Manning, but in the end I withdrew from the

group, urging the others to continue. Why did I bail out? As the editor of the OSGi spec-

ifications, I was aware of how much work it is to write a book in collaboration with other

opinionated people. To extend my day job into the night and weekends for free wasn’t

something I was looking forward to, regardless of how much I liked and appreciated

these guys. Unfortunately, my desertion deflated the effort, and it faltered.

FOREWORD xv

 Until the day Richard told me he had picked up the book effort again from where

we had stopped, now with a better team: Karl Pauls, Stuart McCulloch, and David Sav-

age. Each of these authors is a great contributor to the open source world as well as to

the OSGi specifications: Karl for his work on Felix and his testimony to modularity by

doing Felix security as a separate bundle, proving that even the framework architec-

ture is modular; Stuart for his work on the Maven bundle plugin, the popular Ops4J

work, and the Peaberry extension to Guice; and David for the excellent work he is

doing with Sigil at Apache and his work at Paremus. It would be hard to come up with

a team that knows more about how OSGi is used in the real world. All this experience

radiates from the chapters they’ve written in this impressive book.

 While this team undertook the Herculean effort to write this book, I was in close

contact with them all along the way—not only because of our work in the OSGi Alli-

ance, but also because authoring a book about OSGi is likely to expose weakness or

deficiencies in the specifications, which then obviously results in another, often

heated argument over Skype or email. Unfortunately, to my chagrin, the team was too

often right.

 They also asked me to provide the text about the history of OSGi, an effort that

resulted in probably the highest compression rate ever achieved. Of the 4,356 words I

wrote, I think the word OSGi remained. But this is exactly what I like: the quest for

quality drove this book, not only in its details but also in its form. It isn’t like many

books today, full of listings outlining in minute steps how to achieve a result. No, this

is a book exactly the way I like it: not only showing in detail how to use OSGi, but also

going to great length to point out the rationale. It’s a book that explains.

 And such a book is needed today. I understand that OSGi isn’t easy. Although it

builds on an object-oriented foundation, it adds a new set of design primitives to

address the shortcomings of object-oriented design that were uncovered when appli-

cations became humongous assemblies of multiple open source projects and proprie-

tary code. Objects remain an invaluable technique for building software, but the

object-oriented paradigm isn’t well suited to allowing large building blocks (compo-

nents) collaborate without causing too much coupling. We desperately fight objects

with patterns like factories and class-loading hacks, but at a certain scale the work to

prevent coupling becomes a significant part of our efforts. Dependency injection alle-

viated much of the coding pain but moved a lot of the code into XML, a language that

has the most ill-suited syntax imaginable for human programming tasks. Annotations

provide another level of support for dealing with coupling-—but cause a coupling

problem in themselves. Many of the painkillers we use to alleviate coupling are largely

cosmetic because boundaries aren’t enforced at execution time in traditional Java.

OSGi is different. It treats an application as a collaboration of peer modules: mod-

ules that can adapt themselves to the environment instead of assuming that the envi-

ronment is adapted to them. Adapting to the environment requires a reification of

that environment, and this is where OSGi has its biggest innovation: µServices.

µServices are the oil between modules that allows modules to evolve over time without

FOREWORDxvi

affecting other modules. During a recent OSGi community event, David Savage used

the term spiky to describe modules, to indicate how a set of modules causes friction

that makes it hard to change each module. µServices are a design primitive in OSGi

that is so powerful, it’s even possible to update or install modules on the fly without

bringing down the application. They palliate the spikes of modules by reifying the

interconnection between modules.

 µServices are a new paradigm that requires a way of thinking that is different from

what is prevalent in Java today. In many ways, OSGi is where object-oriented program-

ming was 25 years ago, providing new design primitives that were ill understood by the

mainstream. Objects required a generation to grow up thinking in terms of design

primitives like polymorphism, inheritance, classes, and objects. OSGi is on the verge of

making a new paradigm shift happen with its bundles and µServices. I believe that

these design primitives will be the next software paradigm after object orientation.

This book is an excellent way to become part of the generation that can really think in

OSGi and reap its full benefits.

 PETER KRIENS

 OSGI TECHNICAL DIRECTOR

xvii

preface
When I started working with OSGi technology back in 2000, I would’ve never guessed

I’d still be working with it a decade later. Back then, OSGi was targeting the embedded

market niche, but that wasn’t my area of interest. I wanted to create highly dynamic,

modular applications, and OSGi gave me the possibility of doing so. At the time, there

weren’t any freely available OSGi framework implementations; so I started working on

my own open source implementation, called Oscar, back in December 2000 while I was

working at Free University Berlin. Oscar moved with me when I moved to Grenoble to

work at Josef Fourier University, where the work really started to flourish.

 As OSGi technology began to gain traction, Oscar moved to the ObjectWeb open

source consortium in 2004, and later it evolved into Felix at the Apache Software

Foundation in 2005. I was fortunate enough to be invited by the OSGi Alliance to work

directly on the OSGi specifications for the R4 release cycle in 2004. I’ve been involved

in the OSGi specification process ever since, initially as an academic researcher and

most recently in industry, when I took a position on the GlassFish team at Sun Micro-

systems (now Oracle Corp.) in 2008. A lot has changed over the last 10 years.

OSGi technology has moved beyond the embedded market into a full-blown module

system for Java. This transformation was significantly helped along in 2004 when the

Eclipse IDE refactored its plugin system to run on top of OSGi, and it has continued with

the adoption of the technology in enterprise circles by Spring and all the major appli-

cation servers. Although the future of Java modularity is still evolving, OSGi technology

looks to play a role for a long time to come. Which brings us back to this book.

PREFACExviii

 I’d been kicking around the idea of writing an OSGi book for a couple of years, but

given the enormity of the task and my life-long time deficit, I never got around to it. In

the summer of 2008, I finally got serious and began writing, only to find myself quickly

bogged down. It wasn’t until Karl and Stuart offered to help, and later David, that we

were finally able to slay the beast. Our varied OSGi experience provided just the right

mix. Even then, it’s taken us two years, a few career changes, and the birth of several

children to see it to an end. We hope you’ll find our efforts helpful.

 RICHARD S. HALL

xix

acknowledgments
We thank Peter Kriens for his in-depth feedback that improved the book and for writ-

ing the foreword. Thanks also to all the early readers of the manuscript and the book

forum posters who provided valuable feedback throughout the writing process.

 The following peer reviewers who read the manuscript at various stages of its devel-

opment deserve special thanks for their time and effort: Cheryl Jeroza, David Kemper,

Gabor Paller, Jason Lee, Massimo Perga, Joseph Ottinger, Jeroen Benckhuijsen, Ted

Neward, Denis Kurilenko, Robert “Kebernet” Cooper, Ken Chien, Jason Kolter, Jer-

emy Flowers, Paul King, Erik van Oosten, Jeff Davis, Doug Warren, Peter Johnson,

Costantino Cerbo, Dmitry Sklyut, David Dossot, Mykel Alvis, Eric Swanson, Patrick Ste-

ger, Jeff Addison, Chad Davis, Peter Pavlovich, Ramarao Kanneganti, Steve Gutz, Tijs

Rademakers, John Griffin, and Sivakumar Thyagarajan. Their suggestions made this a

better book. We’d also like to single out Norman Richards for his technical proofread-

ing of the final manuscript during production.

 The staff at Manning have been supportive throughout this lengthy ordeal; we’d

especially like to thank our development editor Cynthia Kane for putting up with us;

also Marjan Bace, Michael Stephens, and the production team of Tiffany Taylor, Katie

Tennant, and Gordan Salinovic.

 Last, we’d like to thank the Apache Felix community for their contributions to all

the code and discussions over the years.

 Individually, Richard thanks his wife and daughter and apologizes for the many

distractions this book caused. Karl thanks his wife Doreen and his children Elisabeth

and Holger for all the love, support, and understanding. Stuart thanks his dear wife

Hayfa for the motivation to finish this book. David thanks his wonderful family, and

especially his wife Imogen, for the support and encouragement to finish this book.

xx

about this book
The OSGi specifications are well written and elaborate, so if you need to know details

about OSGi technology, the specifications are the place to look. If you do, you’ll dis-

cover that they were written for someone who is going to implement the specifica-

tions, not use them. This book started out as an attempt to remedy this situation by

creating a user-oriented companion guide for the specifications. Our goal wasn’t to

create an OSGi cookbook but to thoroughly describe the important aspects of

OSGi and show how to use them. Our main idea was to more simply explain the

OSGi specifications by ignoring the implementation details and including additional

usage information.

 To that end, we’ve tried to limit ourselves to discussing the most common con-

cepts, features, and mechanisms needed to work with OSGi technology throughout

the book. That doesn’t mean we were able to avoid all the esoteric details. As you’ll

find when you begin working with OSGi, it enforces a new level of strictness when it

comes to modularity, which will likely break some of your old practices. In the end,

you need to understand what’s going on under the covers in some places to be able to

effectively debug and diagnose the situations in which you find yourself.

 As our writing progressed, the book chapters began to separate naturally into

three parts:

1 Explaining the core OSGi specification

2 Describing how to work with the specification in practice

3 Introducing advanced OSGi-related topics

ABOUT THIS BOOK xxi

In part 1 of the book, we focus on explaining the most common aspects of the OSGi

core specification from the user’s perspective. We introduce OSGi according to its

three-layer architecture: module, lifecycle, and services. This isn’t the only approach

to take in explaining OSGi; most explanations of OSGi start out with a simple bundle

implementing a simple service. The downside of this type of approach, in our view, is

that it cuts across all three OSGi layers at once, which would require us to explain all

three layers at once.

 The advantage of following a layered approach is that doing so creates a clear divi-

sion among the concepts we need to discuss. For example, the modularity chapter

focuses on modularity concepts and can largely ignore lifecycle and services. This

approach also creates a natural progression, because modularity is the foundation of

OSGi, lifecycle builds on it, and services are on top of lifecycle. We can also highlight

how to use lower layers of the OSGi architecture without using the upper layers, which

is sometimes worthwhile.

 Part 2 of the book takes the knowledge about the OSGi core specification from

part 1 and shows how you can use the technology from a more pragmatic viewpoint.

We look into converting existing JAR files to bundles as well as testing, debugging,

and managing bundles. These first two parts of the book should be of general inter-

est to anyone wanting to learn more about using OSGi.

 Part 3 covers various advanced topics, such as service-oriented component models,

framework launching, security, and distributed computing technologies. This last part

serves as a springboard to the world of possibilities available to you in the OSGi universe.

Roadmap

Chapter 1 presents a high-level view of OSGi technology and the issues it’s intended to

address. To keep the chapter from being totally abstract, we present a few “Hello,

world!” examples to illustrate the different layers of the OSGi framework, but the real

meat of our OSGi discussion is in the following chapters. We also look at the state of

modularity support in Java as well as in some related technologies.

 Chapter 2 explores the module layer of the OSGi framework. We start with a general

discussion of modularity in computing and then continue by describing OSGi’s module

concept, called a bundle. We present OSGi’s declarative metadata-based approach for

creating modules and show how to use it to modularize a simple paint program. We also

investigate one of the key OSGi tasks: bundle dependency resolution.

 Chapter 3 looks at the lifecycle layer of the OSGi framework. We discuss lifecycle

management in general and describe how OSGi provides dynamic lifecycle manage-

ment of bundles. We present OSGi’s lifecycle-related APIs by creating a simple OSGi

shell and also adapt our paint program to make it lifecycle aware.

 Chapter 4 examines the services layer of the OSGi framework. We describe what

services are and discuss why and when you need them. We walk you through providing

and using services with some toy examples and then take an iterative approach to

describing how to deal with the unique aspect of service dynamism. We finish our ser-

vice discussion by adapting the paint program, this time to use dynamic services.

ABOUT THIS BOOKxxii

 Chapter 5 returns to the module layer and examines its more advanced or

nuanced capabilities. We describe additional ways for bundles to deal with dependen-

cies and content using bundle-level dependencies and bundle fragments. You also

learn how bundles can deal with execution environments and native libraries.

 Chapter 6 gives practical advice for converting JAR files into bundles, including

how to define bundle metadata, package your bundle content, and add lifecycle sup-

port. We also describe how to go about dividing an application into bundles, demon-

strating techniques on an existing open source project.

 Chapter 7 shows how to test bundles and OSGi-based applications. We look into

running your existing tests in OSGi and mocking OSGi APIs. In addition to unit and

integration testing, we discuss management testing and explore some tools to help

you along the way.

 Chapter 8 follows testing by describing how to debug your bundles. We look into

simple, command-line debugging as well as debugging with the Eclipse IDE. We show

how to set up your development environment to get you up to speed quickly. We also

explain some of the typical issues you encounter when working with OSGi and how to

deal with them.

 Chapter 9 switches gears and discusses how to manage your bundles. We explain

how to meaningfully define version numbers for packages and bundles. We look into

managing bundle configuration data and in the process describe a handful of

related OSGi services. We also cover an option for triggering automatic bundle

startup and initialization.

 Chapter 10 continues investigating management topics, but moves from single-

bundle issues to multi-bundle ones. We look at a couple of approaches for deploying

bundles and their dependencies. We also explain how you can control bundle

startup order.

 Chapter 11 describes how component-oriented programming relates to OSGi. As a

concrete example, we look at a standard OSGi component framework called Declara-

tive Services. We show how Declarative Services allows you to work with POJOs and sim-

plifies some aspects of dealing with service dynamism.

 Chapter 12 continues investigating more advanced component frameworks for

OSGi. We look at Blueprint, which is targeted toward enterprise developers familiar

with Spring technology. We also examine the Apache Felix iPOJO component frame-

work. We show that one of the benefits of OSGi-based component frameworks is they

can all work together via services.

 Chapter 13 turns away from developing bundles and looks at launching the OSGi

framework. We describe the standard approach for configuring and creating OSGi

frameworks. We also show how you can use the standard API to embed an OSGi frame-

work into an existing application.

 Chapter 14 delves into operating OSGi in a secure environment. We describe the

issues involved and approaches to alleviating them. We explain how OSGi extends the

standard Java security architecture to make it more flexible and easier to manage. And

ABOUT THIS BOOK xxiii

we show how to set up an OSGi framework with security enabled and create a secure

example application.

 Chapter 15 closes the book with a quick look at using web-related technologies in

OSGi. We discuss using some common web applications technologies, such as servlets,

JSPs, and WAR files. We also look into how to publish and consume web services.

Code

The companion code for the examples in this book is freely available from Manning’s

website, www.manning.com/OSGiinAction.

 In the text, Courier typeface is used to denote code as well as JAR file manifest

headers. References to methods generally don’t include the signature, except when

it’s necessary to differentiate. The coding style adopts two-space indents and same-line

braces to keep everything condensed and isn’t otherwise recommended. When pre-

senting command or shell interaction, normal Courier typeface is used to indicate

program output, while bold is used to indicate user input.

 Code annotations accompany many of the listings, highlighting important con-

cepts. In some cases, numbered bullets link to explanations that follow the listing.

Author Online

Purchase of OSGi in Action includes free access to a private web forum run by Manning

Publications where you can make comments about the book, ask technical questions,

and receive help from the authors and from other users. To access the forum and sub-

scribe to it, point your web browser to www.manning.com/OSGiinAction. This page

provides information on how to get on the forum once you are registered, what kind

of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialog between individual readers and between readers and the authors can take

place. It is not a commitment to any specific amount of participation on the part of

the authors, whose contribution to the book’s forum remains voluntary (and unpaid).

We suggest you try asking them some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are

designed to help learning and remembering. According to research in cognitive sci-

ence, the things people remember are things they discover during self-motivated

exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for

learning to become permanent it must pass through stages of exploration, play, and,

interestingly, re-telling of what is being learned. People understand and remember

new things, which is to say they master them, only after actively exploring them.

www.manning.com/OSGiinAction
www.manning.com/OSGiinAction

ABOUT THIS BOOKxxiv

Humans learn in action. An essential part of an In Action book is that it is example-

driven. It encourages the reader to try things out, to play with new code, and explore

new ideas.

 There is another, more mundane, reason for the title of this book: our readers are

busy. They use books to do a job or solve a problem. They need books that allow them

to jump in and jump out easily and learn just what they want, just when they want it.

They need books that aid them in action. The books in this series are designed for

such readers.

About the cover illustration

The figure on the cover of OSGi in Action is a “Soldier.” The illustration is taken from a

collection of costumes of the Ottoman Empire published on January 1, 1802, by William

Miller of Old Bond Street, London. The title page is missing from the collection and we

have been unable to track it down to date. The book’s table of contents identifies the

figures in both English and French, and each illustration bears the names of two artists

who worked on it, both of whom would no doubt be surprised to find their art gracing

the front cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in

the “Garage” on West 26th Street in Manhattan. The seller was an American based in

Ankara, Turkey, and the transaction took place just as he was packing up his stand for

the day. The Manning editor did not have on his person the substantial amount of

cash that was required for the purchase and a credit card and check were both politely

turned down. With the seller flying back to Ankara that evening the situation was get-

ting hopeless. What was the solution? It turned out to be nothing more than an old-

fashioned verbal agreement sealed with a handshake. The seller simply proposed that

the money be transferred to him by wire and the editor walked out with the bank

information on a piece of paper and the portfolio of images under his arm. Needless

to say, we transferred the funds the next day, and we remain grateful and impressed by

this unknown person’s trust in one of us. It recalls something that might have hap-

pened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear

on our covers, bring to life the richness and variety of dress customs of two centuries

ago. They recall the sense of isolation and distance of that period—and of every other

historic period except our own hyperkinetic present. Dress codes have changed since

then and the diversity by region, so rich at the time, has faded away. It is now often

hard to tell the inhabitant of one continent from another. Perhaps, trying to view it

optimistically, we have traded a cultural and visual diversity for a more varied personal

life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the

computer business with book covers based on the rich diversity of regional life of two

centuries ago‚ brought back to life by the pictures from this collection.

xxv

about the authors
RICHARD S. HALL is an active member of the Apache Felix framework development

team as well as other Felix subprojects. He has been involved in open source OSGi

work since 2000 and directly involved in the OSGi Alliance since 2004. Richard is a

member of the Apache Software Foundation and works for Oracle on the GlassFish

team, helping out out on OSGi issues or anything else, if he can.

KARL PAULS implemented the Apache Felix Framework Security Provider and is an

active member of the Apache Felix framework development team as well as other

Felix subprojects. He is a member of the Apache Software Foundation and is involved

in various Apache and other open source projects. Karl is a fellow at Luminis.

STUART MCCULLOCH is responsible for the maven-bundle-plugin at Apache Felix

and the Pax-Construct tools for rapid OSGi development from OPS4j. He is also the

author of Peaberry, a Guice extension for injecting dynamic services. Stuart is a con-

sultant at Sonatype, working on dependency injection and modularization.

DAVID SAVAGE works for Paremus and has been designing and building OSGi applica-

tions since 2005 in many different areas including build tools, component models,

data persistence, desktop UIs, management, messaging, provisioning, resolvers, and

RPC. He contributes to the Apache Felix project especially in the area of development

tooling via the Sigil subproject. He is also directly involved in developing specifica-

tions for the OSGi Alliance.

Part 1

Introducing OSGi:
 modularity, lifecycle,

 and services

The OSGi framework defines a dynamic module system for Java. It gives you

better control over the structure of your code, the ability to dynamically manage

your code’s lifecycle, and a loosely coupled approach for code collaboration.

Even better, it’s fully documented in a very elaborate specification. Unfortu-

nately, the specification was written for people who are going to implement it

rather than use it. In the first part of this book, we’ll remedy this situation by

effectively creating a user-oriented companion guide to the OSGi framework

specification. We’ll delve into its details by breaking it into three layers: module,

lifecycle, and services. We’ll explain what you need to understand from the spec-

ification to effectively use OSGi technology.

3

OSGi revealed

The Java platform is an unqualified success story. It’s used to develop applications

for everything from small mobile devices to massive enterprise endeavors. This is a

testament to its well-thought-out design and continued evolution. But this success

has come in spite of the fact that Java doesn’t have explicit support for building

modular systems beyond ordinary object-oriented data encapsulation.

 What does this mean to you? If Java is a success despite its lack of advanced mod-

ularization support, then you may wonder if that absence is a problem. Most well-

managed projects have to build up a repertoire of project-specific techniques to

compensate for the lack of modularization in Java. These include the following:

■ Programming practices to capture logical structure

■ Tricks with multiple class loaders

■ Serialization between in-process components

This chapter covers

■ Understanding Java’s built-in support for modularity

■ Introducing OSGi technology and how it improves

Java modularity

■ Positioning OSGi with respect to other technologies

4 CHAPTER 1 OSGi revealed

But these techniques are inherently brittle and error prone because they aren’t

enforceable via any compile-time or execution-time checks. The end result has detri-

mental impacts on multiple stages of an application’s lifecycle:

■ Development—You’re unable to clearly and explicitly partition development into

independent pieces.

■ Deployment—You’re unable to easily analyze, understand, and resolve require-

ments imposed by the independently developed pieces composing a complete

system.

■ Execution—You’re unable to manage and evolve the constituent pieces of a run-

ning system, nor minimize the impact of doing so.

It’s possible to manage these issues in Java, and lots of projects do so using the custom

techniques mentioned earlier, but it’s much more difficult than it should be. We’re

tying ourselves in knots to work around the lack of a fundamental feature. If Java had

explicit support for modularity, then you’d be freed from such issues and could

concentrate on what you really want to do, which is developing the functionality of

your application.

 Welcome to the OSGi Service Platform. The OSGi Service Platform is an industry

standard defined by the OSGi Alliance to specifically address the lack of support for

modularity in the Java platform. As a continuation of its modularity support, it intro-

duces a service-oriented programming model, referred to by some as SOA in a VM, to

help you clearly separate interface from implementation. This chapter will give you an

overview of the OSGi Service Platform and how it helps you create modular and man-

ageable applications using an interface-based development model.

 When we’ve finished this chapter, you’ll

understand what role OSGi technology plays

among the arsenal of Java technologies and

why Java and/or other Java-related technolo-

gies don’t address the specific features pro-

vided by OSGi technology.

1.1 The what and why of OSGi

The $64,000 question is, “What is OSGi?” The

simplest answer to this question is that it’s a

modularity layer for the Java platform. Of

course, the next question that may spring to

mind is, “What do you mean by modularity?”

Here we use modularity more or less in the tra-

ditional computer-science sense, where the

code of your software application is divided

into logical parts representing separate con-

cerns, as shown in figure 1.1. If your software is

modular, you can simplify development and

Module
A

Module
B

Module
C

us
es

uses

uses

Figure 1.1 Modularity refers to the

logical decomposition of a large system

into smaller collaborating pieces.

5The what and why of OSGi

improve maintainability by enforcing the logical module boundaries; we’ll discuss more

modularity details in chapter 2.

 The notion of modularity isn’t new. The concept became fashionable back in

the 1970s. OSGi technology is cropping up all over the place—for example, as the

runtime for the Eclipse IDE and the GlassFish application server. Why is it gaining

popularity now? To better understand why OSGi is an increasingly important Java

technology, it’s worthwhile to understand some of Java’s limitations with respect to

creating modular applications. When you understand that, then you can see why

OSGi technology is important and how it can help.

1.1.1 Java’s modularity limitations

Java provides some aspects of modularity in the form of object orientation, but it was

never intended to support coarse-grained modular programming. Although it’s not

fair to criticize Java for something it wasn’t intended to address, the success of Java has

resulted in difficulty for developers who ultimately have to deal with their need for

better modularity support.

 Java is promoted as a platform for building all sorts of applications for domains

ranging from mobile phone to enterprise applications. Most of these endeavors

require, or could at least benefit from, broader support for modularity. Let’s look at

some of Java’s modularity limitations.

LOW-LEVEL CODE VISIBILITY CONTROL

Although Java provides a fair complement of access modifiers to control visibility (such

as public, protected, private, and package private), these tend to address low-level

object-oriented encapsulation and not logical system partitioning. Java has the notion

of a package, which is typically used for partitioning code. For code to be visible from

one Java package to another, the code must be declared public (or protected if using

inheritance). Sometimes, the logical structure of your application calls for specific

code to belong in different packages; but this means any dependencies among the

packages must be exposed as public, which makes them accessible to everyone else,

too. Often, this can expose implementation details, which makes future evolution

more difficult because users may end up with dependencies on your nonpublic API.

 To illustrate, let’s consider a trivial “Hello, world!” application that provides a pub-

lic interface in one package, a private implementation in another, and a main class in

yet another.

package org.foo.hello; Greeting.java

public interface Greeting {
 void sayHello();
}

package org.foo.hello.impl; GreetingImpl.java

import org.foo.hello.Greeting;

Listing 1.1 Example of the limitations of Java’s object-orientated encapsulation

Simple
interfaceB

6 CHAPTER 1 OSGi revealed

public class GreetingImpl implements Greeting {
 final String m_name;

 public GreetingImpl(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

package org.foo.hello.main; Main.java

import org.foo.hello.Greeting;
import org.foo.hello.impl.GreetingImpl;

public class Main {
 public static void main(String[] args) {
 Greeting greet = new GreetingImpl("Hello World");
 greet.sayHello();
 }
}

Listing 1.1’s author may have intended a third party to only interact with the application

via the Greeting interface B. They may mention this in Javadoc, tutorials, blogs, or even

email rants, but nothing stops a third party from constructing a new GreetingImpl using

its public constructor C as is done at D.

 You may argue that the constructor shouldn’t be public and that there is no need

to split the application into multiple packages, which could well be true in this trivial

example. But in real-world applications, class-level visibility when combined with pack-

aging turns out to be a crude tool for ensuring API coherency. Because supposedly pri-

vate implementation details can be accessed by third-party developers, you need to

worry about changes to private implementation signatures as well as to public inter-

faces when making updates.

 This problem stems from the fact that although Java packages appear to have a log-

ical relationship via nested packages, they don’t. A common misconception for people

first learning Java is to assume that the parent-child package relationship bestows spe-

cial visibility privileges on the involved packages. Two packages involved in a nested

relationship are equivalent to two packages that aren’t. Nested packages are largely

useful for avoiding name clashes, but they provide only partial support for the logical

code partitioning.

 What this all means is that, in Java, you’re regularly forced to decide between the

following:

1 Impairing your application’s logical structure by lumping unrelated classes into

the same package to avoid exposing nonpublic APIs

2 Keeping your application’s logical structure by using multiple packages at the

expense of exposing nonpublic APIs so they can be accessed by classes in differ-

ent packages

Neither choice is particularly palatable.

Interface
implementation

C

Main
method

D

7The what and why of OSGi

ERROR-PRONE CLASS PATH CONCEPT

The Java platform also inhibits good modularity practices. The main culprit is the Java

class path. Why does the class path pose problems for modularity? Largely due to all

the issues it hides, such as code versions, dependencies, and consistency. Applications

are generally composed of various versions of libraries and components. The class

path pays no attention to code versions—it returns the first version it finds. Even if it

did pay attention, there is no way to explicitly specify dependencies. The process of

setting up your class path is largely trial and error; you just keep adding libraries until

the VM stops complaining about missing classes.

 Figure 1.2 shows the sort of “class path hell” often found when more than one JAR

file provides a given set of classes. Even though each JAR file may have been compiled

to work as a unit, when they’re merged at execution time, the Java class path pays no

attention to the logical partitioning of the components. This tends to lead to hard-to-

predict errors, such as NoSuchMethodError, when a class from one JAR file interacts

with an incompatible class version from another.

In large applications created from independently developed components, it isn’t

uncommon to have dependencies on different versions of the same component,

such as logging or XML parsing mechanisms. The class path forces you to choose one

version in such situations, which may not always be possible. Worse, if you have multi-

ple versions of the same package on the class path, either on purpose or accidentally,

they’re treated as split packages by Java and are implicitly merged based on order

of appearance.

 Overall, the class path approach lacks any form of consistency checking. You get

whatever classes have been made available by the system administrator, which is likely

only an approximation of what the developer expected.

LIMITED DEPLOYMENT AND MANAGEMENT SUPPORT

Java also lacks support when it comes to deploying and managing your application.

There is no easy way in Java to deploy the proper transitive set of versioned code

dependencies and execute your application. The same is true for evolving your appli-

cation and its components after deployment.

Merged class path

A

A

B

B

D F

FE

JAR 1 JAR 2 JAR 3

C D

Figure 1.2 Multiple JARs containing overlapping classes and/or packages are merged based on their

order of appearance in the class path, with no regard to logical coherency among archives.

8 CHAPTER 1 OSGi revealed

 Consider the common requirement of wanting to support a dynamic plugin mech-

anism. The only way to achieve such a benign request is to use class loaders, which are

low level and error prone. Class loaders were never intended to be a common tool for

application developers, but many of today’s systems require their use. A properly

defined modularity layer for Java can deal with these issues by making the module

concept explicit and raising the level of abstraction for code partitioning.

 With this better understanding of Java’s limitations when it comes to modularity,

we can ponder whether OSGi is the right solution for your projects.

1.1.2 Can OSGi help you?

Nearly all but the simplest of applications can benefit from the modularity features

OSGi provides, so if you’re wondering if OSGi is something you should be interested

in, the answer is most likely, “Yes!” Still not convinced? Here are some common sce-

narios you may have encountered where OSGi can be helpful:

■ ClassNotFoundExceptions when starting your application because the class

path wasn’t correct. OSGi can help by ensuring that code dependencies are sat-

isfied before allowing the code to execute.

■ Execution-time errors from your application due to the wrong version of a

dependent library on the class path. OSGi verifies that the set of dependencies

are consistent with respect to required versions and other constraints.

■ Type inconsistencies when sharing classes among modules: put more con-

cretely, the dreaded appearance of foo instanceof Foo == false. With OSGi,

you don’t have to worry about the constraints implied by hierarchical class-

loading schemes.

■ Packaging an application as logically independent JAR files and deploying only

those pieces you need for a given installation. This pretty much describes the

purpose of OSGi.

■ Packaging an application as logically independent JAR files, declaring which

code is accessible from each JAR file, and having this visibility enforced. OSGi

enables a new level of code visibility for JAR files that allows you to specify what

is and what isn’t visible externally.

■ Defining an extensibility mechanism for an application, like a plugin mecha-

nism. OSGi modularity is particularly suited to providing a powerful extensibil-

ity mechanism, including support for execution-time dynamism.

As you can see, these scenarios cover a lot of use cases, but they’re by no means

exhaustive. The simple and non-intrusive nature of OSGi tends to make you discover

more ways to apply it the more you use it. Having explored some of the limitations of

the standard Java class path, we’ll now properly introduce you to OSGi.

9An architectural overview of OSGi

1.2 An architectural overview of OSGi

The OSGi Service Platform is composed of two parts:

the OSGi framework and OSGi standard services

(depicted in figure 1.3). The framework is the run-

time that implements and provides OSGi functional-

ity. The standard services define reusable APIs for

common tasks, such as Logging and Preferences.

 The OSGi specifications for the framework and

standard services are managed by the OSGi Alliance

(www.osgi.org/). The OSGi Alliance is an industry-

backed nonprofit corporation founded in March 1999. The framework specification is

now on its fourth major revision and is stable. Technology based on this specification

is in use in a range of large-scale industry applications, including (but not limited to)

automotive, mobile devices, desktop applications, and more recently enterprise appli-

cation servers.

NOTE Once upon a time, the letters OSGi were an acronym that stood for the
Open Services Gateway Initiative. This acronym highlights the lineage of the
technology but has fallen out of favor. After the third specification release,
the OSGi Alliance officially dropped the acronym, and OSGi is now a trade-
mark for the technology.

In the bulk of this book, we’ll discuss the OSGi framework, its capabilities, and how to

use these capabilities. Because there are so many standard services, we’ll discuss only

the most relevant and useful services, where appropriate. For any service we miss, you

can get more information from the OSGi specifications. For now, we’ll continue our

overview of OSGi by introducing the broad features of the OSGi framework.

1.2.1 The OSGi framework

The OSGi framework plays a central role when you create OSGi-based applications,

because it’s the application’s execution environment. The OSGi Alliance’s framework

specification defines the proper behavior of the framework, which gives you a well-

defined API to program against. The specification also enables the creation of multi-

ple implementations of the core framework to give you some freedom of choice; there

are a handful of well-known open source projects, such as Apache Felix (http://

felix.apache.org/), Eclipse Equinox (www.eclipse.org/equinox/), and Knopflerfish

(www.knopflerfish.org/). This ultimately benefits you, because you aren’t tied to a

particular vendor and can program against the behavior defined in the specification.

It’s sort of like the reassuring feeling you get by knowing you can go into any McDon-

ald’s anywhere in the world and get the same meal!

OSGi technology is starting to pop up everywhere. You may not know it, but if you

use an IDE to do your Java development, it’s possible you already have experience with

OSGi. The Equinox OSGi framework implementation is the underlying runtime for

Standard services

Framework

OSGi Service Platform

Figure 1.3 The OSGi Service Plat-

form specification is divided into

halves, one for the OSGi framework

and one for standard services.

http://felix.apache.org/
http://felix.apache.org/
www.eclipse.org/equinox/
www.knopflerfish.org/
www.osgi.org/

10 CHAPTER 1 OSGi revealed

the Eclipse IDE. Likewise, if you use the GlassFish v3

application server, you’re also using OSGi, because

the Apache Felix OSGi framework implementation is

its runtime. The diversity of use cases attests to the

value and flexibility provided by the OSGi framework

through three conceptual layers defined in the OSGi

specification (see figure 1.4):

■ Module layer—Concerned with packaging and

sharing code

■ Lifecycle layer—Concerned with providing execution-time module management

and access to the underlying OSGi framework

■ Service layer—Concerned with interaction and communication among modules,

specifically the components contained in them

Like typical layered architectures, each layer is dependent on the layers beneath it.

Therefore, it’s possible for you to use lower OSGi layers without using upper ones, but

not vice versa. The next three chapters discuss these layers in detail, but we’ll give an

overview of each here.

MODULE LAYER

The module layer defines the OSGi module concept, called a bundle, which is a JAR file

with extra metadata (data about data). A bundle contains your class files and their related

resources, as depicted in figure 1.5. Bun-

dles typically aren’t an entire application

packaged into a single JAR file; rather,

they’re the logical modules that combine

to form a given application. Bundles are

more powerful than standard JAR files,

because you can explicitly declare which

contained packages are externally visible

(that is, exported packages). In this sense,

bundles extend the normal access modifi-

ers (public, private, and protected)

associated with the Java language.

 Another important advantage of bun-

dles over standard JAR files is the fact that

you can explicitly declare on which exter-

nal packages the bundles depend (that is,

imported packages). The main benefit of

explicitly declaring your bundles’

exported and imported packages is that

the OSGi framework can manage and ver-

ify their consistency automatically; this

Service

Lifecycle

Module

Figure 1.4

OSGi layered architecture

Class files

.class

Resource files

Manifest.mf

.xml

.jpg
etc.

Metadata

Bundle

Figure 1.5 A bundle contains code, resources,

and metadata.

11An architectural overview of OSGi

process is called bundle resolution and involves matching exported packages to imported

packages. Bundle resolution ensures consistency among bundles with respect to ver-

sions and other constraints, which we’ll discuss in detail in chapter 2.

LIFECYCLE LAYER

The lifecycle layer defines how bundles are dynamically installed and managed in the

OSGi framework. If you were building a house, the module layer would provide the

foundation and structure, and the lifecycle layer would be the electrical wiring. It

makes everything run.

 The lifecycle layer serves two different purposes. External to your application, the

lifecycle layer precisely defines the bundle lifecycle operations (install, update, start,

stop, and uninstall). These lifecycle operations allow you to dynamically administer,

manage, and evolve your application in a well-defined way. This means bundles can

be safely added to and removed from the framework without restarting the applica-

tion process.

 Internal to your application, the lifecycle layer defines how your bundles gain

access to their execution context, which provides them with a way to interact with the

OSGi framework and the facilities it provides during execution. This overall approach

to the lifecycle layer is powerful because it lets you create externally (and remotely)

managed applications or completely self-managed applications (or any combination).

SERVICE LAYER

Finally, the service layer supports and promotes a flexible application programming

model incorporating concepts popularized by service-oriented computing (although

these concepts were part of the OSGi framework before service-oriented computing

became popular). The main concepts revolve around the service-oriented publish,

find, and bind interaction pattern: service providers publish their services into a ser-

vice registry, while service clients search the registry to find available services to use

(see figure 1.6). Nowadays, this service-oriented architecture (SOA) is largely associ-

ated with web services; but OSGi services are local to a single VM, which is why some

people refer to it as SOA in a VM.

 The OSGi service layer is intuitive,

because it promotes an interface-based

development approach, which is gener-

ally considered good practice. Specifi-

cally, it promotes the separation of

interface and implementation. OSGi ser-

vices are Java interfaces representing a

conceptual contract between service

providers and service clients. This makes

the service layer lightweight, because ser-

vice providers are just Java objects

accessed via direct method invocation.

Additionally, the service layer expands

Service
registry

Service
requester

Publish

Service
description

Interact

Find

Service
provider

Figure 1.6 The service-oriented interaction

pattern. Providers publish services into a registry

where requesters can discover which services are

available for use.

12 CHAPTER 1 OSGi revealed

the bundle-based dynamism of the lifecycle layer with service-based dynamism—services

can appear or disappear at any time. The result is a programming model eschewing the

monolithic and brittle approaches of the past, in favor of being modular and flexible.

 This sounds well and good, but you may still be wondering how these three layers

fit together and how you go about using them to create an application on top of them.

In the next couple of sections, we’ll explore how these layers fit together using some

small example programs.

1.2.2 Putting it all together

The OSGi framework is made up of layers, but how do you use these layers in applica-

tion development? We’ll make it clearer by outlining the general approach you’ll use

when creating an OSGi-based application:

1 Design your application by breaking it down into service interfaces (normal

interface-based programming) and clients of those interfaces.

2 Implement your service provider and client components using your preferred

tools and practices.

3 Package your service provider and client components into (usually) separate

JAR files, augmenting each JAR file with the appropriate OSGi metadata.

4 Start the OSGi framework.

5 Install and start all your component JAR files from step 3.

If you’re already following an interface-based approach, the OSGi approach will feel

familiar. The main difference will be how you locate your interface implementations

(that is, your services). Normally, you might instantiate implementations and pass

around references to initialize clients. In the OSGi world, your services will publish

themselves in the service registry, and your clients will look up available services in the

registry. After your bundles are installed and started, your application will start and

execute as normal, but with several advantages. Underneath, the OSGi framework pro-

vides more rigid modularity and consistency checking, and its dynamic nature opens

up a world of possibilities.

 Don’t fret if you don’t or can’t use an interfaced-based approach for your develop-

ment. The first two layers of the OSGi framework still provide a lot of functionality; in

truth, the bulk of OSGi framework functionality lies in these first two layers, so keep

reading. Enough talk: let’s look at some code.

1.3 “Hello, world!” examples

Because OSGi functionality is divided over the three layers mentioned previously

(modularity, lifecycle, and service), we’ll show you three different “Hello, world!”

examples that illustrate each of these layers.

1.3.1 Module layer example

The module layer isn’t related to code creation as such; rather, it’s related to the pack-

aging of your code into bundles. You need to be aware of certain code-related issues

13“Hello, world!” examples

when developing, but by and large you prepare code for the module layer by adding

packaging metadata to your project’s generated JAR files. For example, suppose you

want to share the following class.

package org.foo.hello;

public class Greeting {
 final String m_name;

 public Greeting(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

During the build process, you compile the source code and put the generated class

file into a JAR file. To use the OSGi module layer, you must add some metadata into

your JAR file’s META-INF/MANIFEST.MF file, such as the following:

Bundle-ManifestVersion: 2
Bundle-Name: Greeting API
Bundle-SymbolicName: org.foo.hello
Bundle-Version: 1.0
Export-Package: org.foo.hello;version="1.0"

The first line indicates the OSGi metadata syntax version. Next is the human-readable

name, which isn’t strictly necessary. This is followed by the symbolic name and version

bundle identifier. The last line shares packages with other bundles.

 In this example, the bulk of the metadata is related to bundle identification. The

important part is the Export-Package statement, because it extends the functionality

of a typical JAR file with the ability for you to explicitly declare which packages con-

tained in the JAR are visible to its users. In this example, only the contents of the

org.foo.hello package are externally visible; if the example included other pack-

ages, they wouldn’t be externally visible. This means that when you run your applica-

tion, other modules won’t be able to accidentally (or intentionally) depend on

packages your module doesn’t explicitly expose.

 To use this shared code in another module, you again add metadata. This time,

you use the Import-Package statement to explicitly declare which external packages

are required by the code contained in the client JAR. The following snippet illustrates:

Bundle-ManifestVersion: 2
Bundle-Name: Greeting Client
Bundle-SymbolicName: org.foo.hello.client
Bundle-Version: 1.0
Import-Package: org.foo.hello;version="[1.0,2.0)"

In this case, the last line specifies a dependency on an external package.

Listing 1.2 Basic greeting implementation

14 CHAPTER 1 OSGi revealed

 To see this example in action, go in the chapter01/greeting-example/modularity/

directory in the book’s companion code, and type ant to build it and java -jar

main.jar to run it. Although the example is simple, it illustrates that creating OSGi

bundles out of existing JAR files is a reasonably non-intrusive process. In addition, there

are tools that can help you create your bundle metadata, which we’ll discuss in appendix

A; but in reality, no special tools are required to create a bundle other than what

you normally use to create a JAR file. Chapter 2 will go into all the juicy details of

OSGi modularity.

1.3.2 Lifecycle layer example

In the last subsection, you saw that it’s possible to take advantage of OSGi functionality

in a non-invasive way by adding metadata to your existing JAR files. Such a simple

approach is sufficient for most reusable libraries, but sometimes you need or want to

go further to meet specific requirements or to use additional OSGi features. The life-

cycle layer moves you deeper into the OSGi world.

 Perhaps you want to create a module that performs some initialization task, such

as starting a background thread or initializing a driver; the lifecycle layer makes this

possible. Bundles may declare a given class as an activator, which is the bundle’s hook

into its own lifecycle management. We’ll discuss the full lifecycle of a bundle in chap-

ter 3, but first let’s look at a simple example to give you an idea of what we’re talking

about. The following listing extends the previous Greeting class to provide a single-

ton instance.

package org.foo.hello;

public class Greeting {
 static Greeting instance;
 final String m_name;

 Greeting(String name) {
 m_name = name;
 }

 public static Greeting get() {
 return instance;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

Listing 1.4 implements a bundle activator to initialize the Greeting class singleton

when the bundle is started and clear it when it’s stopped. The client can now use the

preconfigured singleton instead of creating its own instance.

Listing 1.3 Extended greeting implementation

Clients must
use singleton

15“Hello, world!” examples

package org.foo.hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) {
 Greeting.instance = new Greeting("lifecycle");
 }

 public void stop(BundleContext ctx) {
 Greeting.instance = null;
 }
}

A bundle activator must implement a simple OSGi interface, which in this case is com-

posed of the two methods start() and stop(). At execution time, the framework

constructs an instance of this class and invokes the start() method when the bundle

is started and the stop() method when the bundle is stopped. (What we mean by

starting and stopping a bundle will become clearer in chapter 3.) Because the frame-

work uses the same activator instance while the bundle is active, you can share mem-

ber variables between the start() and stop() methods.

 You may wonder what the single parameter of type BundleContext in the start()

and stop() methods is all about. This is how the bundle gets access to the OSGi frame-

work in which it’s executing. From this context object, the module has access to all the

OSGi functionality for modularity, lifecycle, and services. In short, it’s a fairly impor-

tant object for most bundles, but we’ll defer a detailed introduction of it until later

when we discuss the lifecycle layer. The important point to take away from this exam-

ple is that bundles have a simple way to hook into their lifecycle and gain access to the

underlying OSGi framework.

 Of course, it isn’t sufficient to just create this bundle activator implementation;

you have to tell the framework about it. Luckily, this is simple. If you have an existing

JAR file you’re converting to be a module, you must add the activator implementation

to the existing project so the class is included in the resulting JAR file. If you’re creat-

ing a bundle from scratch, you need to compile the class and put the result in a JAR

file. You must also tell the OSGi framework about the bundle activator by adding

another piece of metadata to the JAR file manifest. For this section’s example, you add

the following metadata to the JAR manifest:

Bundle-Activator: org.foo.hello.Activator
Import-Package: org.osgi.framework

Notice that you also need to import the org.osgi.framework package, because the

bundle activator has a dependency on it. To see this example in action, go to the

chapter01/greeting-example/lifecycle/ directory in the companion code and type

ant to build the example and java -jar main.jar to run it.

Listing 1.4 OSGi bundle activator for our greeting implementation

16 CHAPTER 1 OSGi revealed

 We’ve now introduced how to create OSGi bundles out of existing JAR files using

the module layer and how to make your bundles lifecycle aware so they can use frame-

work functionality. The last example in this section demonstrates the service-oriented

programming approach promoted by OSGi.

1.3.3 Service layer example

If you follow an interfaced-based approach in your development, the OSGi service

approach will feel natural to you. To illustrate, consider the following Greeting

interface:

package org.foo.hello;
public interface Greeting {
 void sayHello();
}

For any given implementation of the Greeting interface, when the sayHello()

method is invoked, a greeting will be displayed. In general, a service represents a con-

tract between a provider and prospective clients; the semantics of the contract are typ-

ically described in a separate, human-readable document, like a specification. The

previous service interface represents the syntactic contract of all Greeting implemen-

tations. The notion of a contract is necessary so that clients can be assured of getting

the functionality they expect when using a Greeting service.

 The precise details of how any given Greeting implementation performs its task

aren’t known to the client. For example, one implementation may print its greeting

textually, whereas another may display its greeting in a GUI dialog box. The following

code depicts a simple text-based implementation.

package org.foo.hello.impl;

import org.foo.hello.Greeting;

public class GreetingImpl implements Greeting {
 final String m_name;

 GreetingImpl(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

Your may be thinking that nothing in the service interface or listing 1.5 indicates that

you’re defining an OSGi service. You’re correct. That’s what makes the OSGi’s service

approach so natural if you’re already following an interface-based approach; your

code will largely stay the same. Your development will be a little different in two

places: how you make a service instance available to the rest of your application, and

how the rest of your application discovers the available service.

Listing 1.5 Implementation of the Greeting interface

17“Hello, world!” examples

 All service implementations are ultimately packaged into a bundle, and that bun-

dle must be lifecycle aware in order to register the service. This means you need to

create a bundle activator for the example service, as shown next.

package org.foo.hello.impl;

import org.foo.hello.Greeting;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) {
 ctx.registerService(Greeting.class.getName(),
 new GreetingImpl("service"), null);
 }

 public void stop(BundleContext ctx) {}
}

This time, in the start() method, instead of storing the Greeting implementation as

a singleton, you use the provided bundle context to register it as a service in the ser-

vice registry. The first parameter you need to provide is the interface name(s) that the

service implements, followed by the actual service instance, and finally the service

properties. In the stop() method, you could unregister the service implementation

before stopping the bundle; but in practice, you don’t need to do this. The OSGi

framework automatically unregisters any registered services when a bundle stops.

 You’ve seen how to register a service, but what about discovering a service? The fol-

lowing listing shows a simplistic client that doesn’t handle missing services and that

suffers from potential race conditions. We’ll discuss a more robust way to access ser-

vices in chapter 4.

package org.foo.hello.client;

import org.foo.hello.Greeting;
import org.osgi.framework.*;

public class Client implements BundleActivator {

 public void start(BundleContext ctx) {
 ServiceReference ref =
 ctx.getServiceReference(Greeting.class.getName());

 ((Greeting) ctx.getService(ref)).sayHello();
 }

 public void stop(BundleContext ctx) {}
}

Notice that accessing a service in OSGi is a two-step process. First, an indirect refer-

ence is retrieved from the service registry B. Second, this indirect reference is used to

Listing 1.6 OSGi bundle activator with service registration

Listing 1.7 OSGi bundle activator with service discovery

Looks
up service
reference

B

Retrieves and
uses serviceC

18 CHAPTER 1 OSGi revealed

access the service object instance C. The service reference can be safely stored in a

member variable; but in general it isn’t a good idea to hold on to references to service

object instances, because services may be unregistered dynamically, resulting in stale

references that prevent garbage collection of uninstalled bundles.

 Both the service implementation and the client should be packaged into separate

bundle JAR files. The metadata for each bundle declares its corresponding activator,

but the service implementation exports the org.foo.hello package, whereas the cli-

ent imports it. Note that the client bundle’s metadata only needs to declare an import

for the Greeting interface package—it has no direct dependency on the service

implementation. This makes it easy to swap service implementations dynamically with-

out restarting the client bundle. To see this example in action, go to the chapter01/

greeting-example/service/ directory in the companion code and type ant to build the

example and java -jar main.jar to run it.

 Now that you’ve seen some examples, you can better understand how each layer of

the OSGi framework builds on the previous one. Each layer gives you additional capa-

bilities when building your application, but OSGi technology is flexible enough for

you to adopt it according to your specific needs. If you only want better modularity in

your project, use the module layer. If you want a way to initialize modules and interact

with the module layer, use both the module and lifecycle layers. If you want a dynamic,

interface-based development approach, use all three layers. The choice is yours.

1.3.4 Setting the stage

To help introduce the concepts of each layer in the OSGi framework in the next three

chapters, we’ll use a simple paint program; its user interface is shown in figure 1.7.

Figure 1.7 Simple paint

program user interface

19Putting OSGi in context

The paint program isn’t intended to be independently useful; rather, it’s used to dem-

onstrate common issues and best practices.

 From a functionality perspective, the paint program only allows the user to paint

various shapes, such as circles, squares, and triangles. The shapes are painted in pre-

defined colors. Available shapes are displayed as buttons in the main window’s toolbar.

To draw a shape, the user selects it in the toolbar and then clicks anywhere in the can-

vas to draw it. The same shape can be drawn repeatedly by clicking in the canvas

numerous times. The user can drag drawn shapes to reposition them. This sounds

simple enough. The real value of using a visual program for demonstrating these con-

cepts will become evident when we start introducing execution-time dynamism.

 We’ve finished our overview of the OSGi framework and are ready to delve into the

details; but before we do, we’ll put OSGi in context by discussing similar or related tech-

nologies. Although no Java technology fills the exact same niche as OSGi, several tread

similar ground, and it’s worth understanding their relevance before moving forward.

1.4 Putting OSGi in context

OSGi is often mentioned in the same breath with many other technologies, but it’s in a

fairly unique position in the Java world. Over the years, no single technology has

addressed OSGi’s exact problem space, but there have been overlaps, complements,

and offshoots. Although it isn’t possible to cover how OSGi relates to every conceivable

technology, we’ll address some of the most relevant in roughly chronological order.

After reading this section, you should have a good idea whether OSGi replaces your

familiar technologies or is complementary to them.

1.4.1 Java Enterprise Edition

Java Enterprise Edition (Java EE, formerly J2EE) has roots dating back to 1997. Java EE

and OSGi began targeting opposite ends of the computing spectrum (the enterprise

vs. embedded markets, respectively). Only within the last couple of years has OSGi

technology begun to take root in the enterprise space.

 In total, the Java EE API stack isn’t related to OSGi. The Enterprise JavaBeans (EJB)

specification is probably the closest comparable technology from the Java EE space,

because it defines a component model and packaging format. But its component

model focuses on providing a standard way to implement enterprise applications that

must regularly handle issues of persistence, transactions, and security. The EJB deploy-

ment descriptors and packaging formats are relatively simplistic and don’t address the

full component lifecycle, nor do they support clean modularity concepts.

OSGi is also used in the Java EE domain to provide a more sophisticated module

layer beneath these existing technologies. Because the two ignored each other for so

long, there are some challenges in moving existing Java EE concepts to OSGi, largely

due to different assumptions about how class loading is performed. Still, progress is

being made, and today OSGi plays a role in all major application servers, such as

IBM’s WebSphere, Red Hat’s JBoss, Oracle’s GlassFish, ObjectWeb’s JOnAS, and

Apache’s Geronimo.

20 CHAPTER 1 OSGi revealed

1.4.2 Jini

An often-overlooked Java technology is Jini, which is definitely a conceptual sibling of

OSGi. Jini targets OSGi’s original problem space of networked environments with a

variety of connected devices.

 Sun began developing Jini in 1998. The goal of Jini is to make it possible to admin-

ister a networked environment as a flexible, dynamic group of services. Jini introduces

the concepts of service providers, service consumers, and a service lookup registry. All

of this sounds completely isomorphic to OSGi; where Jini differs is its focus on distrib-

uted systems. Consumers access clients through some form of proxy using a remote

procedure call mechanism, such as Remote Method Invocation (RMI). The service-

lookup registry is also a remotely accessible, federated service. The Jini model assumes

remote access across multiple VM processes, whereas OSGi assumes everything occurs

in a single VM process. But in stark contrast to OSGi, Jini doesn’t define any modular-

ity mechanisms and relies on the execution-time code-loading features of RMI. The

open source project Newton is an example of combining OSGi and Jini technologies

in a single framework.

1.4.3 NetBeans

NetBeans, an IDE and application platform for Java, has a long history of having a

modular design. Sun purchased NetBeans in 1999 and has continued to evolve it.

 The NetBeans platform has a lot in common with OSGi. It defines a fairly sophisti-

cated module layer and also promotes interface-based programming using a lookup

pattern that is similar to the OSGi service registry. Whereas OSGi focused on embed-

ded devices and dynamism, the NetBeans platform was originally an implementation

layer for the IDE. Eventually, the platform was promoted as a separate tool in its own

right, but it focused on being a complete GUI application platform with abstractions

for file systems, windowing systems, and much more. NetBeans has never been seen as

comparable to OSGi, even though it is; perhaps OSGi’s more narrow focus is an asset in

this case.

1.4.4 Java Management Extensions

Java Management Extensions (JMX), released in 2000 through the Java Community

Process (JCP) as JSR 3, was compared to OSGi in the early days. JMX is a technology for

remotely managing and monitoring applications, system objects, and devices; it

defines a server and a component model for this purpose.

JMX isn’t comparable to OSGi; it’s complementary, because it can be used to man-

age and monitor an OSGi framework and its bundles and services. Why did the com-

parisons arise in the first place? There are probably three reasons: the JMX

component model was sufficiently generic that it was possible to use it for building

applications; the specification defined a mechanism for dynamically loading code into

its server; and certain early adopters pushed JMX in this direction. One major perpe-

trator was JBoss, which adopted and extended JMX for use as a module layer in its

21Putting OSGi in context

application server (since eliminated in JBoss 5). Nowadays, JMX isn’t (and shouldn’t

be) confused with a module system.

1.4.5 Lightweight containers

Around 2003, lightweight or inversion of control (IoC) containers started to appear,

such as PicoContainer, Spring, and Apache Avalon. The main idea behind this crop

of IoC containers was to simplify component configuration and assembly by eliminat-

ing the use of concrete types in favor of interfaces. This was combined with depen-

dency injection techniques, where components depend on interface types and

implementations of the interfaces are injected into the component instance. OSGi

services promote a similar interface-based approach but employ a service-locator pat-

tern to break a component’s dependency on component implementations, similar to

Apache Avalon.

 At the same time, the Service Binder project was creating a dependency injection

framework for OSGi components. It’s fairly easy to see why the comparisons arose.

Regardless, OSGi’s use of interface-based services and the service-locator pattern long

predated this trend, and none of these technologies offer a sophisticated dynamic

module layer like OSGi. There is now significant movement from IoC vendors to port

their infrastructures to the OSGi framework, such as the work by VMware (formerly

SpringSource) on the OSGi Blueprint specification (discussed in chapter 12).

1.4.6 Java Business Integration

Java Business Integration (JBI) was developed in the JCP and released in 2005. Its goal

was to create a standard SOA platform for creating enterprise application integration

(EAI) and business-to-business (B2B) integration solutions.

 In JBI, plugin components provide and consume services after they’re plugged in

to the JBI framework. Components don’t directly interact with services, as in OSGi;

instead, they communicate indirectly using normalized Web Services Description Lan-

guage (WSDL)-based messages.

JBI uses a JMX-based approach to manage component installation and lifecycle and

defines a packaging format for its components. Due to the inherent similarities to

OSGi’s architecture, it was easy to think JBI was competing for a similar role. On the

contrary, its fairly simplistic modularity mechanisms mainly addressed basic compo-

nent integration into the framework. It made more sense for JBI to use OSGi’s more

sophisticated modularity, which is ultimately what happened in Project Fuji from Sun

and ServiceMix from Apache.

1.4.7 JSR 277

In 2005, Sun announced JSR 277 (“Java Module System”) to define a module system

for Java. JSR 277 was intended to define a module framework, packaging format, and

repository system for the Java platform. From the perspective of the OSGi Alliance,

this was a major case of reinventing the wheel, because the effort was starting from

scratch rather than building on the experience gained from OSGi.

22 CHAPTER 1 OSGi revealed

 In 2006, many OSGi supporters pushed for the introduction of JSR 291 (titled

“Dynamic Component Support for Java”), which was an effort to bring OSGi technol-

ogy properly into JCP standardization. The goal was twofold: to create a bridge

between the two communities and to ensure OSGi technology integration was consid-

ered by JSR 277. The completion of JSR 291 was fairly quick because it started from the

OSGi R4 specification and resulted in the R4.1 specification release. During this

period, OSGi technology continued to gain momentum. JSR 277 continued to make

slow progress through 2008 until it was put on hold indefinitely.

1.4.8 JSR 294

During this time in 2006, JSR 294 (titled “Improved Modularity Support in the Java

Programming Language”) was introduced as an offshoot of JSR 277. Its goal was to

focus on necessary language changes for modularity. The original idea was to intro-

duce the notion of a superpackage into the Java language—a package of packages.

 The specification of superpackages got bogged down in details until it was scrapped

in favor of adding a module-access modifier keyword to the language. This simplifica-

tion ultimately led to JSR 294 being dropped and merged back into JSR 277 in 2007. But

when it became apparent in 2008 that JSR 277 would be put on hold, JSR 294 was pulled

back out to address a module-level access modifier.

 With JSR 277 on hold, Sun introduced an internal project, called Project Jigsaw, to

modularize the JDK. The details of Jigsaw are still evolving after the acquisition of Sun

by Oracle.

1.4.9 Service Component Architecture

Service Component Architecture (SCA) began as an industry collaboration in 2004

and ultimately resulted in final specifications in 2007. SCA defines a service-oriented

component model similar to OSGi’s, where components provide and require services.

Its component model is more advanced because it defines composite components (com-

ponents made of other components) for a fully recursive component model.

SCA is intended to be a component model for declaratively composing compo-

nents implemented using various technologies (such as Java, Business Process Execu-

tion Language [BPEL], EJB, and C++) and integrated using various bindings (such as

SOAP/HTTP, Java Message Service [JMS], Java EE Connector Architecture [JCA], and

Internet Inter-Orb Protocol [IIOP]). SCA does define a standard packaging format,

but it doesn’t define a sophisticated module layer like OSGi provides. The SCA specifi-

cation leaves open the possibility of other packaging formats, which makes it possible

to use OSGi as a packaging and module layer for Java-based SCA implementations;

Apache Tuscany and Newton are examples of an SCA implementation that use OSGi.

In addition, bundles could be used to implement SCA component types, and SCA

could be used as a mechanism to provide remote access to OSGi services.

1.4.10 .NET

Although Microsoft’s .NET (released in 2002) isn’t a Java technology, it deserves men-

tion because it was largely inspired by Java and did improve on it in ways that are similar

23Summary

to how OSGi improves Java. Microsoft not only learned from Java’s example but also

learned from the company’s own history of dealing with DLL hell. As a result, .NET

includes the notion of an assembly, which has modularity aspects similar to an OSGi bun-

dle. All .NET code is packaged into an assembly, which takes the form of a DLL or EXE

file. Assemblies provide an encapsulation mechanism for the code contained inside of

them; an access modifier, called internal, is used to indicate visibility within an assem-

bly but not external to it. Assemblies also contain metadata describing dependencies on

other assemblies, but the overall model isn’t as flexible as OSGi’s. Because dependen-

cies are on specific assembly versions, the OSGi notion of provider substitutability

isn’t attainable.

 At execution time, assemblies are loaded into application domains and can only be

unloaded by unloading the entire application domain. This makes the highly dynamic

and lightweight nature of OSGi hard to achieve, because multiple assemblies loaded

into the same application domain must be unloaded at the same time. It’s possible to

load assemblies into separate domains; but then communication across domains must

use interprocess communication to collaborate, and type sharing is greatly compli-

cated. There have been research efforts to create OSGi-like environments for the .NET

platform, but the innate differences between the .NET and Java platforms results in

the two not having much in common. Regardless, .NET deserves credit for improving

on standard Java in this area.

1.5 Summary

In this chapter, we’ve laid the foundation for everything we’ll cover in the rest of the

book. What you’ve learned includes the following:

■ The Java platform is great for developing applications, but its support for mod-

ularity is largely limited to fine-grained object-oriented mechanisms, rather

than more coarse-grained modularity features needed for project management.

■ The OSGi Service Platform, through the OSGi framework, addresses the modu-

larity shortcomings of Java to create a powerful and flexible solution.

■ The declarative, metadata-based approach employed by OSGi provides a non-

invasive way to take advantage of its sophisticated modularity capabilities by

modifying how projects are packaged with few, if any, changes to the code.

■ The OSGi framework defines a controlled, dynamic module lifecycle to simplify

management.

■ Following good design principles, OSGi promotes an interface-based program-

ming approach to separate interfaces from implementations.

With this high-level understanding of Java’s limitations and OSGi’s capabilities, we can

start our adventure by diving into the details of the module layer in chapter 2. This is

the foundation of everything else in the OSGi world.

24

Mastering modularity

In the previous chapter, we took a whistle-stop tour of the OSGi landscape. We

made a number of observations about how standard Java is broken with respect to

modularity and gave you examples where OSGi can help. We also introduced you to

some OSGi concepts, including the core layers of the OSGi framework: module, life-

cycle, and service.

 In this chapter, we’ll deal specifically with the module layer, because its features

are the initial attraction for most Java developers to OSGi. The module layer is the

foundation on which everything else rests in the OSGi world. We’ll provide you with

a full understanding of what OSGi modularity is, why modularity is important in a

general sense, and how it can help you in designing, building, and maintaining

Java applications in the future.

This chapter covers

■ Understanding modularity and why it’s desirable

■ Using metadata to describe OSGi bundles

(aka modules)

■ Explaining how bundle metadata is used to

manage code visibility

■ Illustrating how bundles are used to create an

application

25What is modularity?

 The goal of this chapter is to get you thinking in terms of modules rather than

JAR files. We’ll teach you about OSGi module metadata, and you’ll learn how to

describe your application’s modularity characteristics with it. To illustrate these con-

cepts, we’ll continue the simple paint program example that we introduced in chap-

ter 1; you’ll convert it from a monolithic application into a modular one. Let’s get

started with modularity.

2.1 What is modularity?

Modularity encompasses so many aspects of programming that we often take it for

granted. The more experience you have with system design, the more you know good

designs tend to be modular—but what precisely does that mean? In short, it means

designing a complete system from a set of logi-

cally independent pieces; these logically indepen-

dent pieces are called modules. You may be

thinking, “Is that it?” In the abstract, yes, that is it;

but of course there are a lot of details underneath

these simple concepts.

 A module defines an enforceable logical

boundary: code either is part of a module (it’s on

the inside) or it isn’t part of a module (it’s on the

outside). The internal (implementation) details of

a module are visible only to code that is part of a

module. For all other code, the only visible details

of a module are those that it explicitly exposes (the

public API), as depicted in figure 2.1. This aspect of

modules makes them an integral part of designing

the logical structure of an application.

2.1.1 Modularity vs. object orientation

You may wonder, “Hey, doesn’t object orientation give you these things?” That’s cor-

rect: object orientation is intended to address these issues too. You’ll find that modu-

larity provides many of the same benefits as object orientation. One reason these two

programming concepts are similar is because both are forms of separation of concerns.

The idea behind separation of concerns is you should break down a system into mini-

mally overlapping functionality or concerns, so that each concern can be indepen-

dently reasoned about, designed, implemented, and used. Modularity is one of the

earliest forms of separation of concerns. It gained popularity in the early 1970s,

whereas object orientation gained popularity in the early 1980s.

 With that said, you may now be wondering, “If I already have object orientation in

Java, why do I need modularity too?” Another good question. The need for both arises

due to granularity.

Module

Class2

Class3

Class4

Class1

Class5

Figure 2.1 A module defines a

logical boundary. The module itself is

explicitly in control of which classes

are completely encapsulated and

which are exposed for external use.

26 CHAPTER 2 Mastering modularity

 Assume you need some functionality for your application. You sit down and start

writing Java classes to implement the desired functionality. Do you typically imple-

ment all your functionality in a single class? No. If the functionality is even remotely

complicated, you implement it as a set of classes. You may also use existing classes

from other parts of your project or from the JRE. When you’re done, a logical relation-

ship exists among the classes you created—but where is this relationship captured?

Certainly it’s captured in the low-level details of the code, because there are compila-

tion dependencies that won’t be satisfied if all classes aren’t available at compilation

time. Likewise, at execution time, these dependencies will fail if all classes aren’t pres-

ent on the class path when you try to execute your application.

 Unfortunately, these relationships among classes can only be known through low-

level source code inspection or trial and error. Classes allow you to encapsulate the state

and behavior of a single, logical concept. But numerous classes are generally necessary

to create a well-designed application. Modules encapsulate classes, allowing you to

express the logical relationship among the classes—or concepts—in your application.

Figure 2.2 illustrates how modules encapsulate classes, and the resulting inter-module

relationships. You may think that Java packages allow you to capture such logical code

relationships. Well, you’re right. Packages are a form of built-in modularity provided by

Java, but they have some limitations, as discussed in section 1.1.1. So packages are a good

starting point in understanding how modularity helps you encapsulate code, but you

need a mechanism that goes further. In the end, object orientation and modularity serve

different but complementary purposes

(see figure 2.3).

 When you’re developing in Java, you

can view object orientation as the imple-

mentation approach for modules. As

such, when you’re developing classes,

you’re programming in the small, which

means you aren’t thinking about the

overall structure of your application, but

instead are thinking in terms of specific

functionality. After you begin to logi-

cally organize related classes into mod-

ules, then you start to concern yourself

with programming in the large, which

means you’re focusing on the larger log-

ical pieces of your system and the rela-

tionships among those pieces.

 In addition to capturing relation-

ships among classes via module mem-

bership, modules also capture logical

system structure by explicitly declaring

dependencies on external code. With

Module1 Module2

Class1 Class2Interface1

Class3

Object
orientation

Visibility

Accessbility

Cohesion

Coupling

Modularity

Figure 2.2 Classes have explicit dependencies

due to the references contained in the code.

Modules have implicit dependencies due to the

code they contain.

Figure 2.3 Even though object orientation and

modularity provide similar capabilities, they

address them at different levels of granularity.

27Why modularize?

this in mind, we now have all the pieces in place to more concretely define what we

mean by the term module in the context of this book.

MODULE A set of logically encapsulated implementation classes, an optional
public API based on a subset of the implementation classes, and a set of
dependencies on external code.

Although this definition implies that modules contain classes, at this point this sense

of containment is purely logical. Another aspect of modularity worth understanding is

physical modularity, which refers to the container of module code.

The OSGi module layer allows you to properly express the modularity characteristics

of applications, but it’s not free. Let’s look in more depth at why you should modular-

ize your applications, so you can make up your own mind.

2.2 Why modularize?

We’ve talked about what modularity is, but we haven’t gone into great depth about

why you might want to modularize your own applications. In fact, you may be think-

ing, “If modularity has been around for almost 40 years and it’s so important, why isn’t

everyone already doing it?” That’s a great question, and one that probably doesn’t

have any single answer. The computer industry is driven by the next best thing, so we

tend to throw out the old when the new comes along. And in fairness, as we discussed

in the last section, the new technologies and approaches (such as object orientation

and component orientation) do provide some of the same benefits that modularity

was intended to address.

 Java also provides another important reason why modularity is once again an

important concern. Traditionally, programming languages were the domain of logical

modularity mechanisms, and operating systems and/or deployment packaging sys-

tems were the domain of physical modularity. Java blurs this distinction because it’s

both a language and a platform. To compare to a similar situation, look at the .NET

platform. Microsoft, given its history of operating system development and the pain of

Logical vs. physical modularity

A module defines a logical boundary in your application, which impacts code visibility

in a fashion similar to access modifiers in object-oriented programming. Logical mod-

ularity refers to this form of code visibility. Physical modularity refers to how code is

packaged and/or made available for deployment.

In OSGi, these two concepts are largely conflated; a logical module is referred to as

a bundle, and so is the physical module (that is, the JAR file). Even though these two

concepts are nearly synonymous in OSGi, for modularity in general they aren’t, be-

cause it’s possible to have logical modularity without physical modularity or to pack-

age multiple logical modules into a single physical module. Physical modules are

sometimes also referred to as deployment modules or deployment units.

28 CHAPTER 2 Mastering modularity

DLL hell, recognized this connection early in .NET, which is why it has a module con-

cept called an assembly. Finally, the size of applications continues to grow, which makes

modularity an important part of managing their complexity—divide and conquer!

 This discussion provides some potential explanations for why modularity is coming

back in vogue, but it doesn’t answer this section’s original question: Why should you

modularize your applications? Modularity allows you to reason about the logical struc-

ture of applications. Two key concepts arose from modularity decades ago:

■ Cohesion measures how closely aligned a module’s classes are with each other

and with achieving the module’s intended functionality. You should strive for

high cohesion in your modules. For example, a module shouldn’t address many

different concerns (network communication, persistence, XML parsing, and so

on): it should focus on a single concern.

■ Coupling, on the other hand, refers to how tightly bound or dependent differ-

ent modules are on each other. You should strive for low coupling among your

modules. For example, you don’t want every module to depend on all other

modules.

As you start to use OSGi to modularize your applications, you can’t avoid these issues.

Modularizing your application will help you see your application in a way that you

couldn’t before.

 By keeping these principles of cohesion and coupling in mind, you’ll create more

reusable code, because it’s easier to reuse a module that performs a single function

and doesn’t have a lot of dependencies on other code.

 More specifically, by using OSGi to modularize your applications, you’ll be able to

address the Java limitations discussed in section 1.1.1. Additionally, because the mod-

ules you’ll create will explicitly declare their external code dependencies, reuse is fur-

ther simplified because you’ll no longer have to scrounge documentation or resort to

trial and error to figure out what to put on the class path. This results in code that

more readily fits into collaborative, independent development approaches, such as in

multiteam, multilocation projects or in large-scale open source projects.

 Now you know what modularity is and why you want it, so let’s begin to focus on

how OSGi provides it and what you need to do to use it in your own applications. The

example paint program will help you understand the concepts.

2.3 Modularizing a simple paint program

The functionality provided by OSGi’s module layer is sophisticated and can seem over-

whelming when taken in total. You’ll use a simple paint program, as discussed in

chapter 1, to learn how to use OSGi’s module layer. You’ll start from an existing paint

program, rather than creating one from scratch. The existing implementation follows

an interfaced-based approach with logical package structuring, so it’s amenable to

modularization, but it’s currently packaged as a single JAR file. The following listing

shows the contents of the paint program’s JAR file.

29Modularizing a simple paint program

META-INF/
META-INF/MANIFEST.MF
org/
org/foo/
org/foo/paint/
org/foo/paint/PaintFrame$1$1.class
org/foo/paint/PaintFrame$1.class
org/foo/paint/PaintFrame$ShapeActionListener.class
org/foo/paint/PaintFrame.class
org/foo/paint/SimpleShape.class
org/foo/paint/ShapeComponent.class
org/foo/shape/
org/foo/shape/Circle.class
org/foo/shape/circle.png
org/foo/shape/Square.class
org/foo/shape/square.png
org/foo/shape/Triangle.class
org/foo/shape/triangle.png

The listing begins with a standard manifest file. Then come the application classes,

followed by various shape implementations.

 The main classes composing the paint program are described in table 2.1.

For those familiar with Swing, PaintFrame extends JFrame and contains a JToolBar

and a JPanel canvas. PaintFrame maintains a list of available SimpleShape implemen-

tations, which it displays in the toolbar. When the user selects a shape in the toolbar

and clicks in the canvas to draw the shape, a ShapeComponent (which extends JCompo-

nent) is added to the canvas at the location where the user clicked. A ShapeComponent

is associated with a specific SimpleShape implementation by name, which it retrieves

from a reference to its PaintFrame. Figure 2.4 highlights some of the UI elements in

the paint program GUI.

Listing 2.1 Contents of existing paint program’s JAR file

Table 2.1 Overview of the classes in the paint program

Class Description

org.foo.paint.PaintFrame The main window of the paint program, which contains the

toolbar and drawing canvas. It also has a static main()
method to launch the program.

org.foo.paint.SimpleShape An interface representing an abstract shape for painting.

org.foo.paint.ShapeComponent A GUI component responsible for drawing shapes onto the

drawing canvas.

org.foo.shape.Circle An implementation of SimpleShape for drawing circles.

org.foo.shape.Square An implementation of SimpleShape for drawing squares.

org.foo.shape.Triangle An implementation of SimpleShape for drawing triangles.

30 CHAPTER 2 Mastering modularity

A static main() method on PaintFrame launches the paint program, which creates an

instance of the PaintFrame and each shape implementation, adding each shape

instance to the created PaintFrame instance. For further explanation, figure 2.5

captures the paint program classes and

their interrelationships.

 To run this nonmodular version of the

paint program, go into the chapter02/

paint-nonmodular/ directory of the com-

panion code. Type ant to build the pro-

gram, and then type java -jar main.jar

to run it. Feel free to click around and see

how it works; we won’t go into any more

details of the program’s implementation,

because GUI programming is beyond the

scope of this book. The important point is to understand the structure of the program.

Using this understanding, you’ll divide the program into bundles so you can enhance

and enforce its modularity.

 Currently, the paint program is packaged as a single JAR file, which we’ll call ver-

sion 1.0.0 of the program. Because everything is in a single JAR file, this implies that

the program isn’t already modularized. Of course, single-JAR-file applications can still

be implemented in a modular way—just because an application is composed of multi-

ple JAR files, that doesn’t mean it’s modular. The paint program example could have

both its logical and physical modularity improved. First, we’ll examine the program’s

logical structure and define modules to enhance this structure. Where do you start?

 One low-hanging fruit you can look for is public APIs. It’s good practice in OSGi

(you’ll see why later) to separate your public APIs into packages so they can be easily

shared without worrying about exposing implementation details. The paint program

has a good example of a public API: its SimpleShape interface. This interface makes it

JFrame

JToolBar

JComponent

JPanel

Figure 2.4 The paint program is

a simple Swing application.

Paint
frame

Shape
component Circle Square

Simple
shape

Triangle

1

1 1

1

Figure 2.5 Paint program class relationships

31Introducing bundles

easy to implement new, possibly third-party shapes for use with the program. Unfortu-

nately, SimpleShape is in the same package as the program’s implementation classes.

To remedy this situation, you’ll shuffle the package structure slightly. You’ll move

SimpleShape into the org.foo.shape package and move all shape implementations

into a new package called org.foo.shape.impl. These changes divide the paint pro-

gram into three logical pieces according to the package structure:

■ org.foo.shape—The public API for creating shapes

■ org.foo.shape.impl—Various shape implementations

■ org.foo.paint—The application implementation

Given this structure (logical modularity), you could package each of these packages as

separate JAR files (physical modularity). To have OSGi verify and enforce the modular-

ity, it isn’t sufficient to package the code as JAR files: you must package them as bun-

dles. To do this, you need to understand OSGi’s bundle concept, which is its logical

and physical unit of modularity. Let’s introduce bundles.

2.4 Introducing bundles

If you’re going to use OSGi technology, you may as well start getting familiar with the

term bundle, because you’ll hear and say it a lot. Bundle is how OSGi refers to its specific

realization of the module concept.

Throughout the remainder of this book,

the terms module and bundle will be used

interchangeably; but in most cases we’re

specifically referring to bundles and not

modularity in general, unless otherwise

noted. Enough fuss about how we’ll use

the term bundle—let’s define it.

BUNDLE A physical unit of modularity
in the form of a JAR file containing
code, resources, and metadata, where
the boundary of the JAR file also serves
as the encapsulation boundary for log-
ical modularity at execution time.

The contents of a bundle are graphically

depicted in figure 2.6. The main thing that

makes a bundle JAR file different than a

normal JAR file is its module metadata,

which is used by the OSGi framework to

manage its modularity characteristics. All

JAR files, even if they aren’t bundles, have

a place for metadata, which is in their

manifest file or, more specifically, in the

Class files

.class

Resource files

Manifest.mf

.xml

.jpg
etc.

Metadata

Bundle

Figure 2.6 A bundle can contain all the usual

artifacts you expect in a standard JAR file. The

only major difference is that the manifest file

contains information describing the bundle’s

modular characteristics.

32 CHAPTER 2 Mastering modularity

META-INF/MANIFEST.MF entry of the JAR file. This is where OSGi places its module meta-

data. Whenever we refer to a bundle’s manifest file, we’re specifically referring to the

module-related metadata in this standard JAR manifest file.

 Note that this definition of a bundle is similar to the definition of a module, except

that it combines both the physical and logical aspects of modularity into one concept.

So before we get into the meat of this chapter, which is defining bundle metadata, let’s

discuss the bundle’s role in physical and logical modularity in more detail.

2.4.1 The bundle’s role in physical modularity

The main function of a bundle with respect to physical modularity is to determine

module membership. No metadata is associated with making a class a member of a

bundle. A given class is a member of a bundle if it’s contained in the bundle JAR file.

The benefit for you is that you don’t need to do anything special to make a class a

member of a bundle: just put it in the bundle JAR file.

 This physical containment of classes leads to another important function of bundle

JAR files as a deployment unit. The bundle JAR file is tangible, and it’s the artifact you

share, deploy, and use when working with OSGi. The final important role of the bundle

JAR file is as the container of bundle metadata, because, as we mentioned, the JAR man-

ifest file is used to store it. These aspects of the bundle are shown in figure 2.7. The issue

of metadata placement is part of an ongoing debate, which we address in the sidebar for

those interested in the issue.

Bundle B

Bundle AClass2

Class3

Class4

Class1

Class5

blah, blah, blah,
blah, blah, blah,
blah, blah, blah

blah, blah, blah,
blah, blah, blah,
blah, blah, blah

Manifest

Manifest

Deploy

Application server

Figure 2.7 A class is a member of a bundle if it’s packaged in it, the bundle carries its module metadata

inside it as part of its manifest data, and the bundle can be deployed as a unit into a runtime environment.

Where should metadata go?

Is it a good thing to store the module metadata in the physical module and not in the

classes themselves? There are two schools of thought on this subject. One says it’s

better to include the metadata alongside the code it’s describing (in the source file

itself), rather than in a separate file where it’s more difficult to see the connection to

the code. This approach is possible with various techniques, such as doclets or the

annotations mechanism introduced in Java 5.

33Introducing bundles

2.4.2 The bundle’s role in logical modularity

Similar to how the bundle JAR file physically encapsulates the member classes, the bun-

dle’s role in logical modularity is to logically encapsulate member classes. What precisely

does this mean? It specifically relates to code visibility. Imagine that you have a utility

class in a util package that isn’t part of your project’s public API. To use this utility class

from different packages in your project, it must be public. Unfortunately, this means

anyone can use the utility class, even though

it’s not part of your public API.

 The logical boundary created by a bun-

dle changes this, giving classes inside the

bundle different visibility rules to external

code, as shown in figure 2.8. This means

public classes inside your bundle JAR file

aren’t necessarily externally visible. You may

be thinking, “What?” This isn’t a misstate-

ment: it’s a major differentiator between

bundles and standard JAR files. Only code

explicitly exposed via bundle metadata is vis-

ible externally. This logical boundary effec-

tively extends standard Java access modifiers

(continued)

Annotations are the choice du jour today. Unfortunately, when OSGi work started back

in 1999, annotations weren’t an option because they didn’t exist yet. Besides, there

are some good reasons to keep the metadata in a separate file, which brings us to

the second school of thought.

This school of thought argues that it’s better to not bake metadata into the source

code, because it becomes harder to change. Having metadata in a separate file of-

fers you greater flexibility. Consider the following benefits of having separate module

metadata:

■ You don’t need to recompile your bundle to make changes to its metadata.
■ You don’t need access to the source code to add or modify metadata, which is

sometimes necessary when dealing with legacy or third-party libraries.
■ You don’t need to load classes into the JVM to access the associated metadata.
■ Your code doesn’t get a compile-time dependency on OSGi API.
■ You can use the same code in multiple modules, which is convenient or even

necessary in some situations when packaging your modules.
■ You can easily use your code on older or smaller JVMs that don’t support

annotations.

Regardless of whether your preferred approach is annotations, you can see that you

gain a good deal of flexibility by maintaining the module metadata in the manifest file.

Exposed packages

Private packages

Bundle A Bundle B

Figure 2.8 Packages (and therefore the class-

es in them) contained in a bundle are private to

that bundle unless explicitly exposed, allowing

them to be shared with other bundles.

34 CHAPTER 2 Mastering modularity

(public, private, protected, and package private) with module private visibility

(only visible in the module). If you’re familiar with .NET, this is similar to the internal

access modifier, which marks something as being visible in an assembly but private from

other assemblies.

 As you can see, the bundle concept plays important roles in both physical and logical

modularity. Now we can start to examine how you use metadata to describe bundles.

2.5 Defining bundles with metadata

In this section, we’ll discuss OSGi bundle metadata in detail, and you’ll use the paint

program as a use case to understand the theory. The main purpose of bundle meta-

data is to precisely describe the modularity-related characteristics of a bundle so the

OSGi framework can handle it appropriately, such as resolving dependencies and

enforcing encapsulation. The module-related metadata captures the following pieces

of information about the bundle:

■ Human-readable information—Optional information intended purely as an aid to

humans who are using the bundle

■ Bundle identification—Required information to identify a bundle

■ Code visibility—Required information for defining which code is internally visi-

ble and which internal code is externally visible

We’ll look at each of these areas in the following subsections. But because OSGi relies

on the manifest file, we’ve included a sidebar to explain its persnickety syntax details

and OSGi’s extended manifest value syntax. Luckily, there are tools for editing and

generating bundle metadata, so you don’t have to create it manually, but it’s still

worthwhile to understand the syntax details.

JAR file manifest syntax

The JAR file manifest is composed of groups of name-value pairs (attributes). The

general format for an attribute declaration is

name: value

The name isn’t case sensitive and can contain alphanumeric, underscore, and hy-

phen characters. Values can contain any character information except carriage re-

turns and line feeds. The name and the value must be separated by a colon and a

space. A single line can’t exceed 72 characters. If a line must exceed this length, you

must continue it on the next line, which you do by starting the next line with a single

space character followed by the continuation of the value. Manifest lines in OSGi can

grow quite long, so it’s useful to know this.

You define an attribute group by placing attribute declarations on successive lines

(one line after the other) in the manifest file. An empty or blank line between attribute

declarations signifies different attribute groups. OSGi uses the first group of attri-

butes, called the main attributes, for module metadata. The order of attributes in a

group isn’t important. If you look in a manifest file, you may see something like this:

35Defining bundles with metadata

2.5.1 Human-readable information

Most bundle metadata is intended to be read and interpreted by the OSGi framework

in its effort to provide a general module layer for Java. But some bundle metadata

serves no purpose other than helping humans understand what a bundle does and

(continued)

Manifest-Version: 1.0
Created-By: 1.4 (Sun Microsystems Inc.)
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.api
Bundle-Version: 1.0.0.SNAPSHOT
Bundle-Name: Simple Paint API
Export-Package: org.foo.api
Import-Package: javax.swing,org.foo.api
Bundle-License: http://www.opensource.org/licenses/apache2.0.php

We’ll get into the exact meaning of most of these attributes throughout the remainder

of this section. But for now, we’ll focus on the syntax. Whereas the standard Java

manifest syntax is a name-value pair, OSGi defines a common structure for OSGi-

specified attribute values. Most OSGi manifest attribute values are a list of clauses

separated by commas, such as

Property-Name: clause, clause, clause

Each clause is further broken down into a target and a list of name-value pair param-

eters separated by semicolons:

Property-Name: target1; parameter1=value1; parameter2=value2,
 target2; parameter1=value1; parameter2=value2,
 target3; parameter1=value1; parameter2=value2

Parameters are divided into two types, called attributes and directives. Directives al-

ter framework handling of the associated information and are explicitly defined by the

OSGi specification. Attributes are arbitrary name-value pairs. You’ll see how to use

directives and attributes later. Slightly different syntax is used to differentiate direc-

tives (:=) from attributes (=), which looks something like this:

Property-Name: target1; dir1:=value1; attr1=value2,
 target2; dir1:=value1; attr1=value2,
 target3; dir1:=value1; attr1=value2

Keep in mind that you can have any number of directives and attributes assigned to

each target, all with different values. Values containing whitespace or separator char-

acters should be quoted to avoid parsing errors. Sometimes you’ll have lots of targets

with the same set of directives and attributes. In such a situation, OSGi provides a

shorthand way to avoid repeating all the duplicated directives and attributes, as follows:

Property-Name: target1; target2; dir1:=value1; attr1=value2

This is equivalent to listing the targets separately with their own directives and attri-

butes. This is pretty much everything you need to understand the structure of OSGi

manifest attributes. Not all OSGi manifest values conform to this common structure,

but the majority do, so it makes sense for you to become familiar with it.

36 CHAPTER 2 Mastering modularity

from where it comes. The OSGi specification defines several pieces of metadata for

this purpose, but none of it is required, nor does it have any impact on modularity.

The OSGi framework completely ignores it.

 The following code snippet shows human-readable bundle metadata for the paint

program’s org.foo.shape bundle (the other program bundles are described similarly):

Bundle-Name: Simple Paint API
Bundle-Description: Public API for a simple paint program.
Bundle-DocURL: http://www.manning.com/osgi-in-action/
Bundle-Category: example, library
Bundle-Vendor: OSGi in Action
Bundle-ContactAddress: 1234 Main Street, USA
Bundle-Copyright: OSGi in Action

The Bundle-Name attribute is intended to be a short name for the bundle. You’re free

to name your bundle anything you want. Even though it’s supposed to be a short

name, there’s no enforcement of this; just use your best judgment. The Bundle-

Description attribute lets you be a little more long-winded in describing the purpose

of your bundle. To provide even more documentation about your bundle, Bundle-

DocURL allows you to specify a URL to refer to documentation. Bundle-Category

defines a comma-separated list of category names. OSGi doesn’t define any standard

category names, so you’re free to choose your own. The remaining attributes, Bundle-

Vendor, Bundle-ContactAddress, and Bundle-Copyright, provide information about

the bundle vendor.

 Human-readable metadata is reasonably straightforward. The fact that the OSGi

framework ignores it means you can pretty much do what you want to with it. But

don’t fall into a laissez-faire approach just yet—the remaining metadata requires more

precision. Next, we’ll look at how you use metadata to uniquely identify bundles.

2.5.2 Bundle identification

The human-readable metadata from the previous subsection helps you understand

what a bundle does and where it comes from. Some of this human-readable metadata

also appears to play a role in identifying a bundle. For example, Bundle-Name seems

like it could be a form of bundle identification. It isn’t. The reason is somewhat histor-

ical. Earlier versions of the OSGi specification didn’t provide any means to uniquely

identify a given bundle. Bundle-Name was purely informational, and therefore no con-

straints were placed on its value. As part of the OSGi R4 specification process, the idea

of a unique bundle identifier was proposed. For backward-compatibility reasons, Bun-

dle-Name couldn’t be commandeered for this purpose because it wouldn’t be possible

to place new constraints on it and maintain backward compatibility. Instead, a new

manifest entry was introduced: Bundle-SymbolicName.

 In contrast to Bundle-Name, which is only intended for users, Bundle-SymbolicName

is only intended for the OSGi framework to help uniquely identify a bundle. The value

of the symbolic name follows rules similar to Java package naming: it’s a series of dot-

separated strings, where reverse domain naming is recommended to avoid name

37Defining bundles with metadata

clashes. Although the dot-separated construction is enforced by the framework, there’s

no way to enforce the reverse-domain-name recommendation. You’re free to choose a

different scheme; but if you do, keep in mind that the main purpose is to provide unique

identification, so try to choose a scheme that won’t lead to name clashes.

IDENTIFYING THE PAINT PROGRAM (PART 1)

The paint program is divided into bundles based on packages, so you can use each

package as the symbolic name, because they already follow a reverse-domain-name

scheme. For the public API bundle, you declare the symbolic name in manifest file as

Bundle-SymbolicName: org.foo.shape

Although it would be possible to solely use Bundle-SymbolicName to uniquely identify

a bundle, it would be awkward to do so over time. Consider what would happen when

you released a second version of your bundle: you’d need to change the symbolic

name to keep it unique, such as org.foo.shapeV2. This is possible, but it’s cumber-

some; and worse, this versioning information would be opaque to the OSGi frame-

work, which means the modularity layer couldn’t take advantage of it. To remedy this

situation, a bundle is uniquely identified not only by its Bundle-SymbolicName but

also by its Bundle-Version, whose value conforms to the OSGi version number format

(see the sidebar “OSGi version number format”). This pair of attributes not only forms

an identifier, it also allows the framework to capture the time-ordered relationship

among versions of the same bundle.

IDENTIFYING THE PAINT PROGRAM (PART 2)

For example, the following metadata uniquely identifies the paint program’s public

API bundle:

Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0

Although technically only Bundle-SymbolicName and Bundle-Version are related to

bundle identification, the Bundle-ManifestVersion attribute also plays a role. Start-

ing with the R4 specification, it became mandatory for bundles to specify Bundle-

SymbolicName. This was a substantial change in philosophy. To maintain backward

compatibility with legacy bundles created before the R4 specification, OSGi intro-

duced the Bundle-ManifestVersion attribute. Currently, the only valid value for this

attribute is 2, which is the value for bundles created for the R4 specification or later.

Any bundles without Bundle-ManifestVersion aren’t required to be uniquely identi-

fied, but bundles with it must be.

IDENTIFYING THE PAINT PROGRAM (PART 3)

The following example shows the complete OSGi R4 metadata to identify the shape

bundle:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0

38 CHAPTER 2 Mastering modularity

This is the complete identification metadata for the public API bundle. The identifica-

tion metadata for the other paint program bundles are defined in a similar fashion.

Now that bundle identification is out of the way, we’re ready to look at code visibility,

which is perhaps the most important area of metadata.

OSGi version number format

One important concept you’ll visit over and over again in OSGi is a version number,

which appears here in the bundle-identification metadata. The OSGi specification de-

fines a common version number format that’s used in a number of places throughout

the specification. For this reason, it’s worth spending a few paragraphs exploring ex-

actly what a version number is in the OSGi world.

A version number is composed of three separate numerical component values sepa-

rated by dots; for example, 1.0.0 is a valid OSGi version number. The first value is

referred to as the major number, the second value as the minor number, and the third

value as the micro number. These names reflect the relative precedence of each com-

ponent value and are similar to other version-numbering schemes, where version-num-

ber ordering is based on numerical comparison of version-number components in

decreasing order of precedence: in other words, 2.0.0 is newer than 1.2.0, and 1.10.0

is newer than 1.9.9.

A fourth version component is possible, which is called a qualifier. The qualifier can

contain alphanumeric characters; for example, 1.0.0.alpha is a valid OSGi version

number with a qualifier. When comparing version numbers, the qualifier is compared

using string comparison. As the following figure shows, this doesn’t always lead to

intuitive results; for example, although 1.0.0.beta is newer than 1.0.0.alpha, 1.0.0

is older than both.

In places in the metadata where a version is expected, if it’s omitted, it defaults

to 0.0.0. If a numeric component of the version number is omitted, it defaults to 0,

and the qualifier defaults to an empty string. For example, 1.2 is equivalent

to 1.2.0. One tricky aspect is that it isn’t possible to have a qualifier without speci-

fying all the numeric components of the version. So you can’t specify 1.2.build-59;

you must specify 1.2.0.build-59.

OSGi uses this common version-number format for versioning both bundles and Java

packages. In chapter 9, we’ll discuss high-level approaches for managing version

numbers for your packages, bundles, and applications.

Higher version

1.0.0 1.0.0.alpha 1.0.0.beta 1.0.1 1.1.0 1.1.1 1.2.0

OSGi versioning semantics can sometimes lead to non-intuitive results.

39Defining bundles with metadata

2.5.3 Code visibility

Human-readable and bundle-identification metadata are valuable, but they don’t go

far in allowing you to describe your bundle’s modularity characteristics. The OSGi

specification defines metadata for comprehensively describing which code is visible

internally in a bundle and which internal code is visible externally. OSGi metadata for

code visibility captures the following information:

■ Internal bundle class path—The code forming the bundle

■ Exported internal code—Explicitly exposed code from the bundle class path for

sharing with other bundles

■ Imported external code—External code on which the bundle class path code

depends

Each of these areas captures separate but related information about which Java classes

are reachable in your bundle and by your bundle. We’ll cover each in detail; but

before we do that, let’s step back and dissect how you use JAR files and the Java class

path in traditional Java programming. This will give you a basis for comparison to

OSGi’s approach to code visibility.

IMPORTANT! Standard JAR files typically fail as bundles since they were written
under the assumption of global type visibility (i.e., if it’s on the class path, you
can use it). If you’re going to create effective bundles, you have to free yourself
from this old assumption and fully understand and accept that type visibility
for bundles is based purely on the primitives we describe in this section. To
make this point very clear, we’ll go into intricate details about type visibility
rules for standard JAR files versus bundle JAR files. Although this may appear
to be a lesson in the arcane, it’s critical to understand these differences.

CODE VISIBILITY IN STANDARD JAR FILES AND THE CLASS PATH

Generally speaking, you compile Java source files into classes and then use the jar

tool to create a JAR file from the generated classes. If the JAR file has a Main-Class

attribute in the manifest file, you can run the application like this:

java -jar app.jar

If not, you add it to the class path and start the application something like this:

java -cp app.jar org.foo.Main

Figure 2.9 shows the stages the JVM goes through. First it searches for the class speci-

fied in the Main-Class attribute or the one specified on the command line. If it finds

the class, it searches it for a static public void main(String[]) method. If such a

method is found, it invokes it to start the application. As the application executes, any

additional classes needed by the application are found by searching the class path,

which is composed of the application classes in the JAR file and the standard JRE

classes (and anything you may have added to the class path). Classes are loaded as

they’re needed.

40 CHAPTER 2 Mastering modularity

 This represents a high-level under-

standing of how Java executes an appli-

cation from a JAR file. But this high-level

view conceals a few implicit decisions

made by standard JAR file handling, such

as these:

■ Where to search inside the JAR file

for a requested class

■ Which internal classes should be

externally exposed

With respect to the first decision, a JAR

file has an implicit policy of searching all

directories relative to the root of the JAR

file as if they were package names corre-

sponding to the requested class (for

example, the class org.foo.Bar is in

org/foo/Bar.class inside the JAR file).

With respect to the second decision, JAR

files have an implicit policy of exposing

all classes in root-relative packages to all

requesters. This is a highly decon-

structed view of the behavior of JAR files,

but it helps to illustrate the implicit mod-

ularity decisions of standard JAR files.

These implicit code-visibility decisions

are put into effect when you place a JAR

file on the class path for execution.

 While executing, the JVM finds all

needed classes by searching the class

path, as shown in figure 2.10. But what is

the exact purpose of the class path with

respect to modularity? The class path

defines which external classes are visible

to the JAR file’s internal classes. Every

class reachable on the class path is visible

to the application classes, even if they

aren’t needed.

 With this view of how standard JAR

files and the class path mechanism work,

let’s look into the details of how OSGi

handles these same code-visibility con-

cepts, which is quite a bit different. We’ll

JVM start

Read Main-Class
manifest entry Yes

YesNo
Load main classFound?

Jar?

Call public static
void main (String [])

Non-daemon
threads?

Wait

Success
No

No Yes

Find class

Yes

Yes

No

No

No

Is
loaded?

Return class

Next class path
entry

More
class path

entries

Search class path
entry

Contains
.class

Define class

Figure 2.9 Flow diagram showing the steps the

JVM goes through to execute a Java program from

the class path

Figure 2.10 Flow diagram showing the steps the

JVM goes through to load a class from the class path

41Defining bundles with metadata

start with how OSGi searches bundles internally for code, followed by how OSGi exter-

nally exposes internal code, and finally how external code is made visible to internal

bundle code. Let’s get started.

INTERNAL BUNDLE CLASS PATH

Whereas standard JAR files are implicitly searched for internal classes in all directories

from the root of the JAR file as if they were package names, OSGi uses a more explicit

approach called the bundle class path. Like the standard Java class path concept, the

bundle class path is a list of locations to search for classes. The difference is the bun-

dle class path refers to locations inside the bundle JAR file.

BUNDLE-CLASSPATH An ordered, comma-separated list of relative bundle JAR

file locations to be searched for class and resource requests.

When a given bundle class needs another class in the same bundle, the entire bundle

class path of the containing bundle is searched to find the class. Classes in the same

bundle have access to all code reachable on their bundle class path. Let’s examine the

syntax for declaring it.

 Bundles declare their internal class path using the Bundle-ClassPath manifest

header. The bundle class path behaves in the same way as the global class path in

terms of the search algorithm, so you can refer to figure 2.10 to see how this behaves;

but in this case, the scope is limited to classes contained in the bundle. With Bundle-

ClassPath, you can specify a list of paths in the bundle where the class loader should

look for classes or resources. For example:

Bundle-ClassPath: .,other-classes/,embedded.jar

This tells the OSGi framework where to search inside the bundle for classes. The

period (.) signifies the bundle JAR file. For this example, the bundle is searched first

for root-relative packages, then in the folder called other-classes, and finally in the

embedded JAR in the bundle. The ordering is important, because the bundle class

path entries are searched in the declared order.

Bundle-ClassPath is somewhat unique, because OSGi manifest headers don’t nor-

mally have default values. If you don’t specify a value, the framework supplies a default

value of period (.). Why does Bundle-ClassPath have a default value? The answer is

related to how standard JAR files are searched for classes. The bundle class path value

of . corresponds to the internal search policy of standard JAR files. Putting . on your

bundle class path likewise treats all root-relative directories as if they were packages

when searching for classes. Making . the default gives both standard and bundle JAR

files the same default internal search policy.

NOTE It’s important to understand that the default value of Bundle-Class-
Path is . if and only if there is no specified value, which isn’t the same as say-
ing the value . is included on the bundle class path by default. In other
words, if you specify a value for Bundle-ClassPath, then . is included only if
you explicitly specify it in your comma-separated list of locations. If you spec-
ify a value and don’t include ., then root-relative directories aren’t searched
when looking for classes in the bundle JAR file.

42 CHAPTER 2 Mastering modularity

As you can see, the internal bundle class path concept is powerful and flexible when it

comes to defining the contents and internal search order of bundles; refer to the side-

bar “Bundle class path flexibility” for some examples of when this flexibility is useful.

Next, you’ll learn how to expose internal code for sharing with other bundles.

EXPORTING INTERNAL CODE

Bundle-ClassPath affects the visibility of classes in a bundle, but how do you share

classes among bundles? The first stage is to export the packages you wish to share with

others.

Externally useful classes are those composing the public API of the code contained

in the JAR file, whereas non-useful classes form the implementation details. Standard

JAR files don’t provide any mechanism to differentiate externally useful classes from

non-useful ones, but OSGi does. A standard JAR file exposes everything relative to the

root by default, but an OSGi bundle exposes nothing by default. A bundle must use

the Export-Package manifest header to explicitly expose internal classes it wishes to

share with other bundles.

EXPORT-PACKAGE A comma-separated list of internal bundle packages to
expose for sharing with other bundles.

Instead of exposing individual classes, OSGi defines sharing among bundles at the pack-

age level. Although this makes the task of exporting code a little simpler, it can still be

a major undertaking for large projects; we’ll discuss some tools to simplify this in appen-

dix A. When you include a package in an Export-Package declaration, every public class

contained in the package is exposed to other bundles. A simple example for the paint

Bundle class path flexibility

You may wonder why you’d want to package classes in different directories or embed

JAR files in the bundle JAR file. First, the bundle class path mechanism doesn’t apply

only to classes, but also to resources. A common use case is to place images in an

image/ directory to make it explicit in the JAR file where certain content can be found.

Also, in web applications, nested JAR files are embedded in the JAR file under the

WEB-INF/lib/ directory and classes can be placed in the WEB-INF/classes/ directory.

In other situations, you may have a legacy or proprietary JAR file that you can’t change.

By embedding the JAR file into your bundle and adding bundle metadata, you can use

it without changing the original JAR. It may also be convenient to embed a JAR file

when you want your bundle to have a private copy of some library; this is especially

useful when you want to avoid sharing static library members with other bundles.

Embedding JAR files isn’t strictly necessary, because you can also unpack a standard

JAR file into your bundle to achieve the same effect. As an aside, you can also see a

performance improvement by not embedding JAR files, because OSGi framework im-

plementations must extract the embedded JAR files to access them.

43Defining bundles with metadata

program shape API bundle is as follows (figure 2.11 shows how

we’ll graphically represent exported module packages):

Export-Package: org.foo.shape

Here, you’re exporting every class in the org.foo.shape

package. You’ll likely want to export more than one package

at a time from your bundles. You can export multiple pack-

ages by separating them with commas:

Export-Package: org.foo.shape,org.foo.other

You can also attach attributes to exported packages. Because it’s possible for different

bundles to export the same packages, a given bundle can use attributes to differenti-

ate its exports from other bundles. For example:

Export-Package: org.foo.shape; vendor="Manning", org.foo.other;
 vendor="Manning"

This attaches the vendor attribute with the value "Manning" to the exported packages.

In this particular example, vendor is an arbitrary attribute because it has no special

meaning to the framework—it’s something we made up. When we talk about import-

ing code, you’ll get a better idea of how arbitrary attributes are used in package shar-

ing to differentiate among exported packages. As we mentioned previously in the

sidebar “JAR file manifest syntax,” OSGi also supports a shorthand format when you

want to attach the same attributes to a set of target packages, like this:

Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

This is equivalent to the previous example. This shorthand comes in handy, but it can

be applied only if all attached attributes are the same for all packages. Using arbitrary

attributes allows a bundle to differentiate its exported packages, but there’s a more

meaningful reason to use an attribute for differentiation: version management.

 Code is constantly evolving. Packages contain classes that change over time. It’s

important to document such changes using version numbers. Version management

isn’t a part of standard Java development, but it’s inherent in OSGi-based Java develop-

ment. In particular, OSGi supports not only bundle versioning, as discussed previously,

but also package versioning, which means every shared package has a version number.

Attributes are used to associate a version number with a package:

Export-Package: org.foo.shape; org.foo.other; version="2.0.0"

Here, you attach the version attribute with the value "2.0.0" to the exported pack-

ages, using OSGi’s common version-number format. In this case, the attribute isn’t

arbitrary, because this attribute name and value format is defined by the OSGi specifi-

cation. You may have noticed that some of the earlier Export-Package examples don’t

specify a version. In that case, the version defaults to "0.0.0", but it isn’t a good idea

to use this version number. We’ll discuss versioning in more detail in chapter 9.

export
org.foo.shape

Figure 2.11 Graphical

depiction of an exported

package

44 CHAPTER 2 Mastering modularity

 With Bundle-ClassPath and Export-Package, you have a pretty good idea how to

define and control the visibility of the bundle’s internal classes; but not all the code

you need will be contained in the bundle JAR file. Next, you’ll learn how to specify the

bundle’s dependencies on external code.

IMPORTING EXTERNAL CODE

Both Bundle-ClassPath and Export-Package deal with the visibility of internal bun-

dle code. Normally, a bundle is also dependent on external code. You need some way

to declare which external classes are needed by the bundle so the OSGi framework can

make them visible to it. Typically, the standard Java class path is used to specify which

external code is visible to classes in your JAR files, but OSGi doesn’t use this mecha-

nism. OSGi requires all bundles to include metadata explicitly declaring their depen-

dencies on external code, referred to as importing.

 Importing external code is straightforward, if not tedious. You must declare

imports for all packages required by your bundle but not contained in your bundle.

The only exception to this rule is for classes in the java.* packages, which are auto-

matically made visible to all bundles by the OSGi framework. The manifest header you

use for importing external code is appropriately named Import-Package.

IMPORT-PACKAGE A comma-separated list of packages needed by internal
bundle code from other bundles.

The value of the Import-Package header follows the common OSGi manifest header

syntax. First, let’s start with the simplest form. Consider the main paint program bun-

dle, which has a dependency on the org.foo.shape package.

It needs to declare an import for this package as follows (fig-

ure 2.12 shows how we’ll graphically represent imported

module packages):

Import-Package: org.foo.shape

This specifically tells the OSGi framework that the bundle

requires access to org.foo.shape in addition to the internal

Import-Package vs. import keyword

You may be thinking that you already do imports in your source code with the import
keyword. Conceptually, the import keyword and declaring OSGi imports are similar,

but they serve different purposes. The import keyword in Java is for namespace man-

agement; it allows you to use the short name of the imported classes instead of us-

ing its fully qualified class name (for example, you can refer to SimpleShape rather

than org.foo.shape.SimpleShape). You can import classes from any other pack-

age to use their short name, but it doesn’t grant any visibility. In fact, you never need

to use import, because you can use the fully qualified class name instead. For OSGi,

the metadata for importing external code is important, because it’s how the frame-

work knows what your bundle needs.

import
org.foo.shape

Figure 2.12 Graphical

depiction of an imported

package

45Defining bundles with metadata

code visible to it from its bundle class path. Be aware that importing a package doesn’t

import its subpackages; remember, there’s no relationship among nested packages. If

your bundle needs access to org.foo.shape and org.foo.shape.other, it must

import both packages as comma-separated targets, like this:

Import-Package: org.foo.shape,org.foo.shape.other

Your bundles can import any number of packages by listing them on Import-

Package and separating them using commas. It’s not uncommon in larger projects

for the Import-Package declaration to grow large (although you should strive to

minimize this).

 Sometimes, you’ll want to narrow your bundle’s package dependencies. Recall how

Export-Package declarations can include attributes to differentiate a bundle’s

exported packages. You can use these export attributes as matching attributes when

importing packages. For example, we previously discussed the following export and

associated attribute:

Export-Package: org.foo.shape; org.foo.other; vendor="Manning"

A bundle with this metadata exports the two packages with the associated vendor attri-

bute and value. It’s possible to narrow your bundle’s imported packages using the

same matching attribute:

Import-Package: org.foo.shape; vendor="Manning"

The bundle with this metadata is declaring a dependency on the package

org.foo.shape with a vendor attribute matching the "Manning" value. The attributes

attached to Export-Package declarations define the attribute’s value, whereas attri-

butes attached to Import-Package declarations define the value to match; essentially,

they act like a filter. The details of how imports and exports are matched and filtered

is something we’ll defer until section 2.7. For now, it’s sufficient to understand that

attributes attached to imported packages are matched against the attributes attached

to exported packages.

 For arbitrary attributes, OSGi only supports equality matching. In other words, it

either matches the specified value or it doesn’t. You learned about one non-arbitrary

attribute when we discussed Export-Package and the version attribute. Because this

attribute is defined by the OSGi specification, more flexible matching is supported.

This is an area where OSGi excels. In the simple case, it treats a value as an infinite

range starting from the specified version number. For example:

Import-Package: org.osgi.framework; version="1.3.0"

This statement declares an import for package org.osgi.framework for the version

range of 1.3.0 to infinity, inclusive. This simple form of specifying an imported pack-

age version range implies an expectation that future versions of org.osgi.framework

will always be backward compatible with the lower version. In some cases, such as spec-

ification packages, it’s reasonable to expect backward compatibility. In situations

where you wish to limit your assumptions about backward compatibility, OSGi allows

46 CHAPTER 2 Mastering modularity

you to specify an explicit version range using interval notation, where the characters

[and] indicate inclusive values and the characters (and) indicate exclusive values.

Consider the following example:

Import-Package: org.osgi.framework; version="[1.3.0,2.0.0)"

This statement declares an import for package org.osgi.framework for the version

range including 1.3.0 and up to but excluding 2.0.0 and beyond. Table 2.2 illustrates

the meaning of the various combinations of the version range syntax.

If you want to specify a precise version range, you must use a version range like

"[1.0.1,1.0.1]". You may wonder why a single value like "1.0.1" is an infinite range

rather than a precise version. The reason is partly historical. In the OSGi specifications

prior to R4, all packages were assumed to be specification packages where backward

compatibility was guaranteed. Because backward compatibility was assumed, it was only

necessary to specify a minimum version. When the R4 specification added support for

sharing implementation packages, it also needed to add support for arbitrary version

ranges. It would have been possible at this time to redefine a single version to be a precise

version, but that would have been unintuitive for existing OSGi programmers. Also, the

specification would have had to define syntax to represent infinity. In the end, the OSGi

Alliance decided it made the most sense to define versions ranges as presented here.

 You may have noticed that some of the earlier Import-Package examples didn’t

specify a version range. When no version range is specified, it defaults to the value

"0.0.0", which you may expect from past examples. Of course, the difference here is

that the value "0.0.0" is interpreted as a version range from 0.0.0 to infinity.

 Now you understand how to use Import-Package to express dependencies on

external packages and Export-Package to expose internal packages for sharing. The

decision to use packages as the basis for interbundle sharing isn’t an obvious choice to

everyone, so we discuss some arguments for doing so in the sidebar “Depending on

packages, not bundles.”

 We’ve now covered the major constituents of the OSGi module layer: Bundle-

ClassPath, Export-Package, and Import-Package. We’ve discussed these in the con-

text of the paint program you’ll see running in the next section, but the final piece of

the puzzle we need to look at is how these various code-visibility mechanisms fit

together in a running application.

Syntax Meaning

"[min,max)" min <_ x < max

"[min,max]" min <_ x <_ max

"(min,max)" min < x < max

"(min,max]" min < x <_ max

"min" min <_ x
Table 2.2 Version range

syntax and meaning

47Defining bundles with metadata

Depending on packages, not bundles

Importing packages seems fairly normal for most Java programmers, because you im-

port the classes and packages you use in the source files. But the import state-

ments in the source files are for managing namespaces, not dependencies. OSGi’s

choice of using package-level granularity for expressing dependencies among bun-

dles is novel, if not controversial, for Java-based module-oriented technologies. Other

approaches typically adopt module-level dependencies, meaning dependencies are

expressed in terms of one module depending on another. The OSGi choice of pack-

age-level dependencies has created some debate about which approach is better.

The main criticisms leveled against package-level dependencies is that they’re too

complicated or fine-grained. Some people believe it’s easier for developers to think

in terms of requiring a whole JAR file rather than individual packages. This argument

doesn’t hold water, because a Java developer using any given technology must know

something about its package naming. For example, if you know enough to realize you

want to use the Servlet class in the first place, you probably have some idea about

which package it’s in, too.

Package-level dependencies are more fine-grained, which does result in more meta-

data. For example, if a bundle exports 10 packages, only 1 module-level dependen-

cy is needed to express a dependency on all of them, whereas package-level

dependencies require 10. But bundles rarely depend on all exported packages of a

given bundle, and this is more of a condemnation of tooling support. Remember

how much of a nuisance it was to maintain import declarations before IDEs started

doing it for you? This is starting to change for bundles, too; in appendix A, we de-

scribe tools for generating bundle metadata. Let’s look at some of the benefits of

package-level dependencies.

The difference between module- and package-level dependencies is one of who ver-

sus what. Module-level dependencies express which specific module you depend on

(who), whereas package-level dependencies express which specific packages you de-

pend on (what). Module-level dependencies are brittle, because they can only be sat-

isfied by a specific bundle even if another bundle offers the same packages. Some

people argue that this isn’t an issue, because they want the specific bundle they’ve

tested against, or because the packages are implementation packages and won’t be

provided by another bundle. Although these arguments are reasonable, they usually

break down over time.

For example, if your bundle grows too large over time, you may wish to refactor it

by splitting its various exported packages into multiple bundles. If you use module-

level dependencies, such a refactoring will break existing clients, which tends to be

a real bummer when the clients are from third parties and you can’t easily change

them. This issue goes away when you use package-level dependencies. Also,

a bundle doesn’t usually depend on everything in another bundle, only a subset. As

a result, module-level dependencies are too broad and cause transitive fanout.

You end up needing to deploy a lot of extra bundles you don’t use, just to satisfy

all the dependencies.

48 CHAPTER 2 Mastering modularity

2.5.4 Class-search order

We’ve talked a lot about code visibility, but in the end all the metadata we’ve discussed

allows the OSGi framework to perform sophisticated searching on behalf of bundles

for their contained and needed classes. Under the covers, when an importing bundle

needs a class from an exported package, it asks the exporting bundle for it. The

framework uses class loaders to do this, but the exact details of how it asks are unim-

portant. Still, it’s important to understand the ordering of this class-search process.

 When a bundle needs a class at execution time, the framework searches for the

class in the following order:

1 If the class is from a package starting with java., the parent class loader is asked

for the class. If the class is found, it’s used. If there is no such class, the search

ends with an exception.

2 If the class is from a package imported by the bundle, the framework asks the

exporting bundle for the class. If the class is found, it’s used. If there is no such

class, the search ends with an exception.

3 The bundle class path is searched for the class. If it’s found, it’s used. If there is

no such class, the search ends with an exception.

These steps are important because they also help the framework ensure consis-

tency. Specifically, step 1 ensures that all bundles use the same core Java classes, and

step 2 ensures that imported packages aren’t split across the exporting and import-

ing bundles.

 That’s it! We’ve finished the introduction to bundle metadata. We haven’t covered

everything you can possibly do, but we’ve discussed the most important bundle

(continued)

Package-level dependencies represent a higher-level view of the code’s real class de-

pendencies. It’s possible to analyze a bundle’s code and generate its set of imported

packages, similar to how IDEs maintain import declarations in source files. Module-

level dependencies can’t be discovered in such a fashion, because they don’t exist

in the code. Package-level dependencies sound great, right? You may now wonder if

they have any issues.

The main issue is that OSGi must treat a package as an atomic unit. If this assump-

tion weren’t made, then the OSGi framework wouldn’t be free to substitute a package

from one bundle for the same package from another bundle. This means you can’t

split a package across bundles; a single package must be contained in a single bun-

dle. If packages were split across bundles, there would be no easy way for the OSGi

framework to know when a package was complete. Typically, this isn’t a major limi-

tation. Other than this, you can do anything with package-level dependencies that you

can with module-level dependencies. And truth be told, the OSGi specification does

support module-level dependencies and some forms of split packages, but we won’t

discuss those until chapter 5.

49Defining bundles with metadata

metadata for getting started creating bundles; we’ll cover additional modularity issues

in chapter 5. Next, you’ll put all the metadata in place for the paint program and then

step back to review the current design. Before moving on, if you’re wondering if it’s

possible to have a JAR file that is both a bundle and an ordinary JAR file, see the side-

bar “Is a bundle a JAR file or a JAR file a bundle?”

Is a bundle a JAR file or a JAR file a bundle?

Maybe you’re interested in adding OSGi metadata to your existing JAR files or you want

to create bundles from scratch, but you’d still like to use them in non-OSGi situations

too. We’ve said before that a bundle is just a JAR file with additional module-related

metadata in its manifest file, but how accurate is this statement? Does it mean you

can use any OSGi bundle as a standard JAR file? What about using a standard JAR

file as a bundle? Let’s answer the second question first, because it’s easier.

A standard JAR file can be installed into an OSGi framework unchanged. Unfortunate-

ly, it doesn’t do anything useful. Why? The main reason is that a standard JAR file

doesn’t expose any of its content; in OSGi terms, it doesn’t export any packages. The

default Bundle-ClassPath for a JAR file is ., but the default for Export-Package is

nothing. So even though a standard JAR file is a bundle, it isn’t a useful bundle. At a

minimum, you need to add an Export-Package declaration to its manifest file to ex-

plicitly expose some (or all) of its internal content.

What about bundle JAR files? Can they be used as a standard JAR file outside of an

OSGi environment? The answer is, it depends. It’s possible to create bundles that

function equally well in or out of an OSGi environment, but not all bundles can be

used as standard JAR files. It comes down to which features of OSGi your bundle us-

es. Of the metadata features you’ve learned about so far, only one can cause issues:

Bundle-ClassPath. Recall that the internal bundle class path is a comma-separated

list of locations inside the bundle JAR file and may contain

■ A . representing the root of the bundle JAR file
■ A relative path to an embedded JAR file
■ A relative path to an embedded directory

Only bundles with a class path entry of . can be used as standard JAR files. Why?

The OSGi notion of . on the bundle class path is equivalent to standard JAR file class

searching, which is to search from the root of the JAR file as if all relative directories

are package names. If a bundle specifies an embedded JAR file or directory, it re-

quires special handling that’s available only in an OSGi environment. Luckily, it isn’t

too difficult to avoid using embedded JAR files and directories.

It’s a good idea to try to keep your bundle JAR files compatible with standard JAR

files if you can, but it’s still best to use them in an OSGi environment. Without

OSGi, you lose dependency checking, consistency checking, and boundary enforce-

ment, not to mention all the cool lifecycle and service stuff we’ll discuss in the

coming chapters.

50 CHAPTER 2 Mastering modularity

2.6 Finalizing the paint program design

So far, you’ve defined three bundles for the paint program: a shape API bundle, a

shape implementation bundle, and a main paint program bundle. Let’s look at the

complete metadata for each. The shape API bundle is described by the following man-

ifest metadata:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 2.0.0
Bundle-Name: Paint API
Import-Package: javax.swing
Export-Package: org.foo.shape; version="2.0.0"

The bundle containing the shape implementations is described by the following man-

ifest metadata:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape.impl
Bundle-Version: 2.0.0
Bundle-Name: Simple Shape Implementations
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.shape.impl; version="2.0.0"

And the main paint program bundle is described by the following manifest metadata:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; org.foo.shape.impl;
 version="2.0.0"

As you can see in figure 2.13, these three bundles directly mirror the logical package

structure of the paint program.

 This approach is reasonable, but can it be improved? To some degree, you can

answer this question only if you know more about the intended uses of the paint pro-

gram; but let’s look more closely at it anyway.

export
org.foo.shape

export
org.foo.shape.impl

import
org.foo.shape

import
org.foo.shape.impl

import
org.foo.shape

Shape
API

Paint

Shape
impl

Figure 2.13 Structure of the paint program’s bundles

51Finalizing the paint program design

2.6.1 Improving the paint program’s modularization

In the current design, one aspect that sticks out is the shape-implementation bundle.

Is there a downside to keeping all shape implementations in a single package and a

single bundle? Perhaps it’s better to reverse the question. Is there any advantage to

separating the shape implementations into separate bundles? Imagine use cases

where not all shapes are necessary; for example, small devices may not have enough

resources to support all shape implementations. If you separate the shape implemen-

tations into separate packages and separate bundles, you have more flexibility when it

comes to creating different configurations of the application.

 This is a good issue to keep in mind when you’re modularizing applications.

Optional components or components with the potential to have multiple alternative

implementations are good candidates to be in separate bundles. Breaking your appli-

cation into multiple bundles gives you more flexibility, because you’re limited to

deploying configurations of your application based on the granularity of your defined

bundles. Sounds good, right? You may then wonder why you don’t divide your applica-

tions into as many bundles as you can.

 You pay a price for the flexibility afforded by dividing an application into multiple

bundles. Lots of bundles mean you have lots of artifacts that are versioning indepen-

dently, creating lots of dependencies and configurations to manage. So it’s probably

not a good idea to create a bundle out of each of your project’s packages, for exam-

ple. You need to analyze and understand your needs for flexibility when deciding how

best to divide an application. There is no single rule for every situation.

 Returning to the paint program, let’s assume the ultimate goal is to enable the pos-

sibility for creating different configurations of the application with different sets of

shapes. To accomplish this, you move each shape implementation into its own package

(org.foo.shape.circle, org.foo.shape.square, and org.foo.shape.triangle).

You can now bundle each of these shapes separately. The following metadata captures

the circle bundle:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shape.circle
Bundle-Version: 2.0.0
Bundle-Name: Circle Implementation
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.shape.circle; version="2.0.0"

The metadata for the square and triangle bundles is nearly identical, except with the

correct shape name substituted where appropriate. The shape-implementation bun-

dles have dependencies on Swing and the public API and export their implementa-

tion-specific shape package. These changes also require changes to the program’s

metadata implementation bundle; you modify its metadata as follows:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; org.foo.shape.circle;
 org.foo.shape.square; org.foo.shape.triangle; version="2.0.0"

52 CHAPTER 2 Mastering modularity

The paint program implementation bundle depends on Swing, the public API bundle,

and all three shape bundles. Figure 2.14 depicts the new structure of the paint program.

 Now you have five bundles (shape API, circle, square, triangle, and paint). Great.

But what do you do with these bundles? The initial version of the paint program had a

static main() method on PaintFrame to launch it; do you still use it to launch the pro-

gram? You could use it by putting all the bundle JAR files on the class path, because all

the example bundles can function as standard JAR files, but this would defeat the pur-

pose of modularizing the application. There’d be no enforcement of modular bound-

aries or consistency checking. To get these benefits, you must launch the paint

program using the OSGi framework. Let’s look at what you need to do.

2.6.2 Launching the new paint program

The focus of this chapter is on using the module layer, but you can’t launch the appli-

cation without a little help from the lifecycle layer. Instead of putting the cart before

the horse and talking about the lifecycle layer now, we created a generic OSGi bundle

launcher to launch the paint program for you. This launcher is simple: you execute it

from the command line and specify a path to a directory containing bundles; it cre-

ates an OSGi framework and deploys all bundles in the specified directory. The cool

part is that this generic launcher hides all the details and OSGi-specific API from you.

We’ll discuss the launcher in detail in chapter 13.

 Just deploying the paint bundles into an OSGi framework isn’t sufficient to start

the paint program; you still need some way to kick-start it. You can reuse the paint pro-

gram’s original static main() method to launch the new modular version. To get this

to work with the bundle launcher, you need to add the following metadata from the

original paint program to the paint program bundle manifest:

Main-Class: org.foo.paint.PaintFrame

As in the original paint program, this is standard JAR file metadata for specifying the

class containing the application’s static main() method. Note that this feature isn’t

Shape
API

Paint

Triangle

Square

Circle

Figure 2.14 Logical structure of the paint program with separate modules for each

shape implementation

53OSGi dependency resolution

defined by the OSGi specification but is a feature of the bundle launcher. To build and

launch the newly modularized paint program, go into the chapter02/paint-modular/

directory in the companion code and type ant. Doing so compiles all the code and pack-

ages the modules. Typing java -jar launcher.jar bundles/ starts the paint program.

 The program starts up as it apparently always has; but underneath, the OSGi frame-

work is resolving the bundles’ dependencies, verifying their consistency, and enforc-

ing their logical boundaries. That’s all there is to it. You’ve now used the OSGi module

layer to create a nicely modular application. OSGi’s metadata-based approach didn’t

require any code changes to the application, although you did move some classes

around to different packages to improve logical and physical modularity.

 The goal of the OSGi framework is to shield you from a lot of the complexities; but

sometimes it’s beneficial to peek behind the curtain, such as to help you debug the

OSGi-based applications when things go wrong. In the next section, we’ll look at some

of the work the OSGi framework does for you, to give you a deeper understanding of

how everything fits together. Afterward, we’ll close out the chapter by summarizing

the benefits of modularizing the paint program.

2.7 OSGi dependency resolution

You’ve learned how to describe the internal code composing the bundles with Bundle-

ClassPath, expose internal code for sharing with Export-Package, and declare depen-

dencies on external code with Import-Package. Although we hinted at how the OSGi

framework uses the exports from one bundle to satisfy the imports of another, we didn’t

go into detail. The Export-Package and Import-Package metadata declarations

included in bundle manifests form the backbone of the OSGi bundle dependency

model, which is predicated on package sharing among bundles.

 In this section, we’ll explain how OSGi resolves bundle package dependencies and

ensures package consistency among bundles. After this section, you’ll have a clear

understanding of how bundle modularity metadata is used by the OSGi framework. You

may wonder why this is necessary, because bundle resolution seems like an OSGi frame-

work implementation detail. Admittedly, this section covers some of the more complex

details of the OSGi specification; but it’s helpful when defining bundle metadata if you

understand a little of what’s going on behind the scenes. Further, this information can

come in handy when you’re debugging OSGi-based applications. Let’s get started.

2.7.1 Resolving dependencies automatically

Adding OSGi metadata to your JAR files represents extra work for you as a developer,

so why do it? The main reason is so you can use the OSGi framework to support and

enforce the bundles’ inherent modularity. One of the most important tasks per-

formed by the OSGi framework is automating dependency management, which is

called bundle dependency resolution.

 A bundle’s dependencies must be resolved by the framework before the bundle can

be used, as shown in figure 2.15. The framework’s dependency resolution algorithm is

sophisticated; we’ll get into its gory details, but let’s start with a simple definition.

54 CHAPTER 2 Mastering modularity

RESOLVING The process of matching a given bundle’s imported packages to
exported packages from other bundles and doing so in a consistent way so
any given bundle only has access to a single version of any type.

Resolving a bundle may cause the framework to resolve other bundles transitively, if

exporting bundles themselves haven’t yet been resolved. The resulting set of resolved

bundles are conceptually wired together in such a fashion that any given imported

package from a bundle is wired to a matching exported package from another bun-

dle, where a wire implies having access to the exported package. The final result is a

graph of all bundles wired together, where all imported package dependencies are sat-

isfied. If any dependency can’t be satisfied, then the resolve fails, and the instigating

bundle can’t be used until its dependencies are satisfied.

 This description likely makes you want to ask three questions:

1 When does the framework resolve a bundle’s dependencies?

2 How does the framework gain access to bundles to resolve them in the first

place?

3 What does it mean to wire an importing bundle to an exporting bundle?

The first two questions are related, because they both involve the lifecycle layer, which

we’ll discuss in the next chapter. For the first question, it’s sufficient to say that the

framework resolves a bundle automatically when another bundle attempts to use it. To

answer the second question, we’ll say that all bundles must be installed into the frame-

work in order to be resolved (we’ll discuss bundle installation in more depth in chap-

ter 3). For the discussion in this section, we’ll always be talking about installed

bundles. As for the third question, we won’t answer it fully because the technical

details of wiring bundles together isn’t important; but for the curious, we’ll explain it

briefly before looking into the resolution process in more detail.

 At execution time, each OSGi bundle has a class loader associated with it, which is

how the bundle gains access to all the classes to which it should have access (the ones

determined by the resolution process). When an importing bundle is wired to an

exporting bundle, the importing class loader is given a reference to the exporting

class loader so it can delegate requests for classes in the exported package to it. You

don’t need to worry about how this happens—relax and let OSGi worry about it for

you. Now, let’s look at the resolution process in more detail.

A B C

Figure 2.15 Transitive dependencies occur when bundle A depends on packages

from bundle B and bundle B in turn depends on packages from bundle C. To use

bundle A, you need to resolve the dependencies of both bundle B and bundle C.

55OSGi dependency resolution

SIMPLE CASES

At first blush, resolving dependencies is fairly straightforward; the framework just

needs to match exports to imports. Let’s consider a snippet from the paint program

example:

Bundle-Name: Simple Paint Program
Import-Package: org.foo.shape

From this, you know that the paint program has a single dependency on the

org.foo.shape package. If only this bundle were installed in the framework, it

wouldn’t be usable, because its dependency wouldn’t be satisfiable. To use the paint

program bundle, you must install the shape API bundle, which contains the follow-

ing metadata:

Bundle-Name: Paint API
Export-Package: org.foo.shape

When the framework tries to resolve the paint program bundle, it knows it must find a

matching export for org.foo.shape. In this case, it finds a candidate in the shape API

bundle. When the framework finds a matching candidate, it must determine whether

the candidate is resolved. If the candidate is already resolved, the candidate can be

chosen to satisfy the dependency. If the candidate isn’t yet resolved, the framework

must resolve it first before it can select it; this is the transitive nature of resolving

dependencies. If the shape API bundle has no dependencies, it can always be success-

fully resolved. But you know from the example that it does have some dependencies,

namely javax.swing:

Bundle-Name: Paint API
Import-Package: javax.swing
Export-Package: org.foo.shape

What happens when the framework tries to resolve the paint program? By default, in

OSGi it wouldn’t succeed, which means the paint program can’t be used. Why?

Because even though the org.foo.shape package from the API bundle satisfies the

main program’s import, there’s no bundle to satisfy the shape API’s import of

javax.swing. In general, to resolve this situation, you can conceptually install another

bundle exporting the required package:

Bundle-Name: Swing
Export-Package: javax.swing

Now, when the framework tries to resolve the paint program, it succeeds. The main

paint program bundle’s dependency is satisfied by the shape API bundle, and its

dependency is satisfied by the Swing bundle, which has no dependencies. After resolv-

ing the main paint program bundle, all three bundles are marked as resolved, and the

framework won’t try to resolve them again (until certain conditions require it, as we’ll

describe in the next chapter). The framework ends up wiring the bundles together, as

shown in figure 2.16.

56 CHAPTER 2 Mastering modularity

What does the wiring in figure 2.16 tell you? It says that when the main bundle needs

a class in package org.foo.shape, it gets it from the shape API bundle. It also says

when the shape API bundle needs a class in package javax.swing, it gets it from the

Swing bundle. Even though this example is simple, it’s largely what the framework

tries to do when it resolves bundle dependencies.

You’ve learned that you can have attributes attached to exported and imported pack-

ages. At the time, we said it was sufficient to understand that attributes attached to

imported packages are matched against attributes attached to exported packages.

Now you can more fully understand what this means. Let’s modify the bundle meta-

data snippets to get a deeper understanding of how attributes factor into the resolu-

tion process. Assume you modify the Swing bundle to look like this:

Bundle-Name: Swing
Export-Package: javax.swing; vendor="Sun"

Here, you modify the Swing bundle to export javax.swing with an attribute vendor

with value "Sun". If the other bundles’ metadata aren’t modified and you perform the

resolve process from scratch, what impact does this change have? This minor change

has no impact at all. Everything resolves as it did before, and the vendor attribute

never comes into play. Depending on your perspective, this may or may not seem con-

fusing. As we previously described attributes, imported attributes are matched against

exported attributes. In this case, no import declarations mention the vendor attribute,

so it’s ignored. Let’s revert the change to the Swing bundle and instead change the

API bundle to look like this:

Main API Swing
import
org.foo.shape

import
javax.swing

export
org.foo.shape

export
javax.swing

Figure 2.16 Transitive bundle-resolution wiring

System class path delegation

In actuality, the javax.swing case in the previous example is a little misleading if

you’re running your OSGi framework with a JRE that includes javax.swing. In such

a case, you may want bundles to use Swing from the JRE. The framework can pro-

vide access using system class path delegation. We’ll look at this area a little in

chapter 13, but this highlights a deficiency with the heavyweight JRE approach. If

it’s possible to install a bundle to satisfy the Swing dependencies, why are they

packaged in the JVM by default? Adoption of OSGi patterns could massively trim the

footprint of future JVM implementations.

57OSGi dependency resolution

Bundle-Name: Paint API
Export-Package: org.foo.shape
Import-Package: javax.swing; vendor="Sun"

Attempting to resolve the paint program bundle now fails because no bundle is export-

ing the package with a matching vendor attribute for the API bundle. Putting the

vendor attribute back on the Swing bundle export allows the main paint program bun-

dle to successfully resolve again with the same wiring, as shown earlier in figure 2.16.

Attributes on exported packages have an impact only if imported packages specify

them, in which case the values must match or the resolve fails.

 Recall that we also talked about the version attribute. Other than the more

expressive interval notation for specifying ranges, it works the same way as arbitrary

attributes. For example, you can modify the shape API bundle as follows:

Bundle-Name: Paint API
Export-Package: org.foo.shape; vendor="Manning"; version="2.0.0"
Import-Package: javax.swing; vendor="Sun"

And you can modify the paint program bundle as follows:

Bundle-Name: Simple Paint Program
Import-Package: org.foo.shape; vendor="Manning"; version="[2.0.0,3.0.0)"

In this case, the framework can still resolve everything because the shape API bun-

dle’s export matches the paint program bundle’s import; the vendor attributes

match, and 2.0.0 is in the range of 2.0.0 inclusive to 3.0.0 exclusive. This particular

example has multiple matching attributes on the import declaration, which is treated

like a logical AND by the framework. Therefore, if any of the matching attributes on

an import declaration don’t match a given export, the export doesn’t match at all.

 Overall, attributes don’t add much complexity to the resolution process, because

they add additional constraints to the matching of imported and exported package

names already taking place. Next, we’ll look into slightly more complicated bundle-

resolution scenarios.

MULTIPLE MATCHING PACKAGE PROVIDERS

In the previous section, dependency resolution is fairly straightforward because

there’s only one candidate to resolve each dependency. The OSGi framework doesn’t

restrict bundles from exporting the same package. Actually, one of the benefits of the

OSGi framework is its support for side-by-side versions, meaning it’s possible to use dif-

ferent versions of the same package in the same running JVM. In highly collaborative

environments of independently developed bundles, it’s difficult to limit which ver-

sions of packages are used. Likewise, in large systems, it’s possible for different teams

to use different versions of libraries in their subsystems; the use of different XML

parser versions is a prime example.

 Let’s consider what happens when multiple candidates are available to resolve the

same dependency. Consider a case in which a web application needs to import the

javax.servlet package and both a servlet API bundle and a Tomcat bundle provide

the package (see figure 2.17).

58 CHAPTER 2 Mastering modularity

When the framework tries to resolve the dependencies of the web application, it sees

that the web application requires javax.servlet with a minimum version of 2.4.0 and

both the servlet API and Tomcat bundles meet this requirement. Because the web

application can be wired to only one version of the package, how does the framework

choose between the candidates? As you may intuitively expect, the framework favors

the highest matching version, so in this case it selects Tomcat to resolve the web appli-

cation’s dependency. Sounds simple enough. What happens if both bundles export

the same version, say 2.4.0?

 In this case, the framework chooses between candidates based on the order in

which they’re installed in the framework. Bundles installed earlier are given priority

over bundles installed later; as we mentioned, the next chapter will show you what it

means to install a bundle in the framework. If you assume the servlet API was installed

before Tomcat, the servlet API will be selected to resolve the web application’s depen-

dency. The framework makes one more consideration when prioritizing matching

candidates: maximizing collaboration.

 So far, you’ve been working under the assumption that you start the resolve pro-

cess on a cleanly installed set of bundles. But the OSGi framework allows bundles to

be dynamically installed at any time during execution. In other words, the framework

doesn’t always start from a clean slate. It’s possible for some bundles to be installed,

resolved, and already in use when new bundles are installed. This creates another

means to differentiate among exporters: already-resolved exporters and not-yet-

resolved exporters. The framework gives priority to already-resolved exporters, so if it

must choose between two matching candidates where one is resolved and one isn’t, it

chooses the resolved candidate. Consider again the example with the servlet

API exporting version 2.4.0 of the javax.servlet package and Tomcat exporting ver-

sion 2.5.0. If the servlet API is already resolved, the framework will choose it to resolve

the web application’s dependency, even though it isn’t exporting the highest version,

as shown in figure 2.18. Why?

 It has to do with maximizing the potential for collaboration. Bundles can only col-

laborate if they’re using the same version of a shared package. When resolving, the

Web
application

import
javax.servlet
version="2.4.0"

export
javax.servlet

version="2.4.0"

export
javax.servlet

version="2.5.0"

Servlet
API

?
Tomcat

Figure 2.17 How does the framework

choose between multiple exporters of

a package?

59OSGi dependency resolution

framework favors already-resolved packages as a means to minimize the number of dif-

ferent versions of the same package being used. Let’s summarize the priority of

dependency resolution candidate selection:

■ Highest priority is given to already-resolved candidates, where multiple matches

of resolved candidates are sorted according to version and then installation

order.

■ Next priority is given to unresolved candidates, where multiple matches of unre-

solved candidates are sorted according to version and then installation order.

It looks like we have all the bases covered, right? Not quite. Next, we’ll look at how an

additional level of constraint checking is necessary to ensure that bundle dependency

resolution is consistent.

2.7.2 Ensuring consistency with uses constraints

From the perspective of any given bundle, a set of packages is visible to it, which we’ll

call its class space. Given your current understanding, you can define a bundle’s class

space as its imported packages combined with the packages accessible from its bundle

class path, as shown in figure 2.19.

 A bundle’s class space must be consistent,

which means only a single instance of a given

package must be visible to the bundle. Here,

we define instances of a package as those with

the same name, but from different providers.

For example, consider the previous example,

where both the servlet API and Tomcat bun-

dles exported the javax.servlet package.

The OSGi framework strives to ensure that

the class spaces of all bundles remain consis-

tent. Prioritizing how exported packages are

selected for imported packages, as described

Jetty

import
javax.servlet
version="2.4.0" export

javax.servlet
version="2.4.0"

export
javax.servlet

version="2.5.0"

Servlet
API

TomcatWeb
application

import
javax.servlet
version="2.4.0"

Resolved

Installed

Figure 2.18 If a bundle is

already resolved because it’s

in use by another bundle, this

bundle is preferred to bundles

that are only installed.

Bundle A’s
bundle class path

Bundle B’s
bundle class path

Imported/Exported
classes

Figure 2.19 Bundle A’s class space is

defined as the union of its bundle class

path with its imported packages, which

are provided by bundle B’s exports.

60 CHAPTER 2 Mastering modularity

in the last section, isn’t sufficient. Why not? Let’s consider the simple API in the follow-

ing code snippet:

package org.osgi.service.http;
import javax.servlet.Servlet;
public interface HttpService {
 void registerServlet(Sting alias, Servlet servlet, HttpContext ctx);
}

This is a snippet from an API you’ll meet in chapter 15. The details of what it does are

unimportant at the moment; for now, you just need to know its method signature.

Let’s assume the implementation of this API is packaged as a bundle containing the

org.osgi.service.http package but not javax.servlet. This means it has some

metadata in its manifest like this:

Export-Package: org.osgi.service.http; version="1.0.0"
Import-Package: javax.servlet; version="2.3.0"

Let’s assume the framework has the HTTP service bundle and a servlet library bundle

installed, as shown in figure 2.20. Given these two bundles, the framework makes the

only choice available, which is to select the version of javax.servlet provided by the

Servlet API bundle.

Now, assume you install two more bundles into the framework: the Tomcat bundle

exporting version 2.4.0 of javax.servlet and a bundle containing a client for the

HTTP service importing version 2.4.0 of javax.servlet. When the framework resolves

these two new bundles, it does so as shown in figure 2.21.

 The HTTP client bundle imports org.osgi.service.http and version 2.4.0 of

javax.servlet, which the framework resolves to the HTTP service bundle and the

Tomcat bundle, respectively. It seems that everything is fine: all bundles have their

dependencies resolved, right? Not quite. There’s an issue with these choices for

dependency resolution—can you see what it is?

HTTP
service

Servlet
API

import
javax.servlet
version="2.3.0"

export
javax.servlet

version="2.3.0"

export
org.osgi.service.http

Figure 2.20 HTTP

service-dependency

resolution

HTTP
service

HTTP
client

Tomcat Servlet
API

import
javax.servlet
version="2.3.0"

export
javax.servlet
version="2.4.0"

import
javax.servlet

version="2.4.0"

export
javax.servlet

version="2.3.0"

export
org.osgi.service.http

import
org.osgi.service.http

Figure 2.21 Subsequent HTTP client-dependency resolution

61OSGi dependency resolution

Consider the servlet parameter in the HTTPService.registerServlet() method.

Which version of javax.servlet is it? Because the HTTP service bundle is wired to the

Servlet API bundle, its parameter type is version 2.3.0 of javax.servlet.Servlet.

When the HTTP client bundle tries to invoke HTTPService.registerServlet(),

which version of javax.servlet.Servlet is the instance it passes? Because it’s wired

to the Tomcat bundle, it creates a 2.4.0 instance of javax.servlet.Servlet. The class

spaces of the HTTP service and client bundles aren’t consistent; two different versions

of javax.servlet are reachable from both. At execution time, this results in class cast

exceptions when the HTTP service and client bundles interact. What went wrong?

 The framework made the best choices at the time it resolved the bundle depen-

dencies; but due to the incremental nature of the resolve process, it couldn’t make the

best overall choice. If you install all four bundles together, the framework resolves the

dependencies in a consistent way using its existing rules. Figure 2.22 shows the depen-

dency resolution when all four bundles are resolved together.

 Because only one version of javax.servlet is in use, you know the class spaces of

the HTTP service and client bundles are consistent, allowing them to interact without

issue. But is this a general remedy to class-space inconsistencies? Unfortunately, it

isn’t, as you’ll see in chapter 3, because OSGi allows you to dynamically install and

uninstall bundles at any time. Moreover, inconsistent class spaces don’t only result

from incremental resolving of dependencies. It’s also possible to resolve a static set of

bundles into inconsistent class spaces due to inconsistent constraints. For example,

imagine that the HTTP service bundle requires precisely version 2.3.0 of javax.

servlet, whereas the client bundle requires precisely version 2.4.0. These constraints

are clearly inconsistent, but the framework will happily resolve the example bun-

dles given the current set of dependency resolution rules. Why doesn’t it detect

this inconsistency?

INTER- VS. INTRA-BUNDLE DEPENDENCIES

The difficulty is that Export-Package and Import-Package only capture inter-bundle

dependencies, but class-space consistency conflicts result from intra-bundle dependen-

cies. Recall the org.osgi.service.http.HttpService interface; its register-

Servlet() method takes a parameter of type javax.servlet.Servlet, which means

org.osgi.service.http uses javax.servlet. Figure 2.23 shows this intra-bundle uses

relationship between the HTTP service bundle’s exported and imported packages.

HTTP
service

HTTP
client

Tomcat Servlet
API

import
javax.servlet
version="2.3.0"

export
javax.servlet
version="2.4.0"

import
javax.servlet

version="2.4.0"

export
javax.servlet

version="2.3.0"

export
org.osgi.service.http

import
org.osgi.service.http

Figure 2.22 Consistent dependency resolution of HTTP service and client bundles

62 CHAPTER 2 Mastering modularity

 How do these uses relationships arise?

The example shows the typical way, which is

when the method signatures of classes in an

exported package expose classes from other

packages. This seems obvious, because the

used types are visible, but it isn’t always the

case. You can also expose a type via a base

class that’s downcast by the consumer. Because these types of uses relationships are

important, how do you capture them in the bundle metadata?

USES DIRECTIVE A directive attached to exported packages whose value is a
comma-delimited list of packages exposed by the associated exported package.

The sidebar “JAR file manifest syntax” in section 2.5 introduced the concept of a direc-

tive, but this is the first example of using one. Directives are additional metadata to alter

how the framework interprets the metadata to which the directives are attached. The syn-

tax for capturing directives is similar to arbitrary attributes. For example, the following

modified metadata for the HTTP service example shows how to use the uses directive:

Export-Package: org.osgi.service.http;
 uses:="javax.servlet"; version="1.0.0"
Import-Package: javax.servlet; version="2.3.0"

Notice that directives use the := assignment syntax, but the ordering of the directives

and the attributes isn’t important. This particular example indicates that org.osgi.

service.http uses javax.servlet. How exactly does the framework use this informa-

tion? uses relationships among packages act like grouping constraints for the packages.

In this example, the framework ensures that importers of org.osgi.service.http also

use the same javax.servlet used by the HTTP service implementation.

 This captures the previously missing intra-bundle package dependency. In this spe-

cific case, the exported package expresses a uses relationship with an imported pack-

age, but it could use other exported packages. These sorts of uses relationships

constrain which choices the framework can make when resolving dependencies, which

is why they’re also referred to as constraints. Abstractly, if package foo uses package bar,

importers of foo are constrained to the same bar if they use bar at all. Figure 2.24

depicts how this would impact the original incremental dependency resolutions.

HTTP
service

HTTP
client

Tomcat Servlet
API

import
javax.servlet
version= "2.3.0"

export
javax.servlet
version= "2.4.0"

import
javax.servlet

version= "2.4.0"

export
javax.servlet

version= "2.3.0"

export
org.osgi.service.http

uses: = "javax.servlet"

import
org.osgi.service.http

Figure 2.24 Uses constraints detect class-space inconsistencies, so the framework can determine

that it isn’t possible to resolve the HTTP client bundle.

HTTP
service

import
javax.servlet
version= "2.3.0"

export
org.osgi.service.http

Uses

Figure 2.23 Bundle export uses import

63OSGi dependency resolution

For the incremental case, the framework can now detect inconsistencies in the class

spaces, and resolution fails when you try to use the client bundle. Early detection is

better than errors at execution time, because it alerts you to inconsistencies in the

deployed set of bundles. In the next chapter, you’ll learn how to cause the framework

to re-resolve the bundle dependencies to remedy this situation.

 You can further modify the example, to illustrate how uses constraints help find

proper dependency resolutions. Assume the HTTP service bundle imports precisely

version 2.3.0 of javax.servlet, but the client imports version 2.3.0 or greater. Typi-

cally, the framework tries to select the highest version of a package to resolve a depen-

dency; but due to the uses constraint, the framework ends up selecting a lower

version instead, as shown in figure 2.25.

 If you look at the class space of the HTTP client, you can see how the framework ends

up with this solution. The HTTP client’s class space contains both javax.servlet and

org.osgi.service.http, because it imports these packages. From the perspective of

the HTTP client bundle, it can use either version 2.4.0 or 2.3.0 of javax.servlet, but

the framework has only one choice for org.osgi.service.http. Because org.osgi.

service.http from the HTTP service bundle uses javax.servlet, the framework must

choose the same javax.servlet package for any clients. Because the HTTP service

bundle can only use version 2.3.0 of javax.servlet, this eliminates the Tomcat bundle

as a possibility for the client bundle. The end result is a consistent class space where

a lower version of a needed package is correctly selected even though a higher version

is available.

ODDS AND ENDS OF USES CONSTRAINTS

Let’s finish the discussion of uses constraints by touching on some final points. First,

uses constraints are transitive, which means that if a given bundle exports package foo

that uses imported package bar, and the selected exporter of bar uses package baz,

then the associated class space for a bundle importing foo is constrained to have the

same providers for both bar and baz, if they’re used at all.

 Also, even though uses constraints are important to capture, you don’t want to cre-

ate blanket uses constraints, because doing so overly constrains dependency resolu-

tion. The framework has more leeway when resolving dependency on packages not

listed in uses constraints, which is necessary to support side-by-side versions. For exam-

ple, in larger applications, it isn’t uncommon for independently developed subsystems

HTTP
service

HTTP
client

Tomcat Servlet
API

import
javax.servlet
version="[2.3.0,2.3.0]"

export
javax.servlet
version="2.4.0"

import
javax.servlet

version="2.3.0"

export
javax.servlet

version="2.3.0"

export
org.osgi.service.http

uses: ="javax.servlet"

import
org.osgi.service.http

Figure 2.25 Uses constraints guide dependency resolution.

64 CHAPTER 2 Mastering modularity

to use different versions of the same XML parser. If you specify uses constraints too

broadly, this isn’t possible. Accurate uses constraints are important, but luckily tools

exist for generating them for exported packages.

OK! You made it through the most difficult part and survived. Don’t worry if you

didn’t understand every detail, because some of it may make more sense after you

have more experience creating and using bundles. Let’s turn our attention back to

the paint program to review why you did all this in the first place.

2.8 Reviewing the benefits of the modular paint program

Even though the amount of work required to create the modular version of the paint

program wasn’t great, it was still more effort than if you left the paint program as it

was. Why did you create this modular version? Table 2.3 lists some of the benefits.

Some of these benefits are more obvious than others. Some you can demonstrate eas-

ily. For example, assume you forgot to deploy the shape API bundle in the launcher,

which you can simulate by deleting bundles/shape-2.0.jar before launching the paint

program. If you do this, you’ll see an exception like this:

org.osgi.framework.BundleException: Unresolved constraint in bundle 1:
package; (&(package=org.foo.shape)(version>=2.0.0)(!(version>=3.0.0)))

The exact syntax of this message will become familiar to you when you read chapter 4;

but ignoring the syntax, it tells you the application is missing the org.foo.shape pack-

age, which is provided by the API bundle. Due to the on-demand nature of Java class

loading, such errors are typically only discovered during application execution when

the missing classes are used. With OSGi, you can immediately discover such issues with

missing bundles or incorrect versions. In addition to detecting errors, let’s look at how

OSGi modularity helps you create different configurations of the application.

Table 2.3 Benefits of modularization in the paint program

Benefit Description

Logical boundary

enforcement

You can keep the implementation details private, because you’re only exposing what

you want to expose in the org.foo.shape public API package.

Reuse

improvement

The code is more reusable because you explicitly declare what each bundle

depends on via Import-Package statements. This means you know what you

need when using the code in different projects.

Configuration

verification

You no longer have to guess if you’ve deployed the application properly, because OSGi

verifies whether all needed pieces are present when launching the application.

Version

verification

Similar to configuration verification, OSGi also verifies whether you have the correct

versions of all the application pieces when launching the application.

Configuration

flexibility

You can more easily tailor the application to different scenarios by creating new con-

figurations. Think of this as paint program a la carte.

65Reviewing the benefits of the modular paint program

 Creating a different configuration of the paint program is as simple as creating a

new static main() method for the launcher to invoke. Currently, you’re using the orig-

inal static main() method provided by PaintFrame. In truth, it isn’t modular to have the

static main() on the implementation class; it’s better to create a separate class so you

don’t need to recompile the implementation classes when you want to change the

application’s configuration. The following listing shows the existing static main()

method from the PaintFrame class.

pcublic class PaintFrame extends JFrame
 implements MouseListener, MouseMotionListener {
 ...
 public static void main(String[] args) throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 PaintFrame frame = new PaintFrame();
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 System.exit(0);
 }
 });
 frame.addShape(new Circle());
 frame.addShape(new Square());
 frame.addShape(new Triangle());
 frame.setVisible(true);
 }
 });
 }

The existing static main() is simple. You create a PaintFrame instance B and add a lis-

tener C to cause the VM to exit when the PaintFrame window is closed. You inject the

various shape implementations into the paint frame D and make the application win-

dow visible. The important aspect from the point of view of modularity is at D.

Because the configuration decision of which shapes to inject is hardcoded into the

method, if you want to create a different configuration, you must recompile the

implementation bundle.

 For example, assume you want to run the paint program on a small device only

capable of supporting a single shape. To do so, you could modify Paint-

Frame.main() to only inject a single shape, but this wouldn’t be sufficient. You’d also

need to modify the metadata for the bundle so it would no longer depend on the

other shapes. Of course, after making these changes, you’d lose the first configura-

tion. These types of issues are arguments why the static main() method should be in

a separate bundle.

 Let’s correct this situation in the current implementation. First, delete the Paint-

Frame.main() method and modify its bundle metadata as follows:

Listing 2.2 Existing PaintFrame.main() method implementation

Creates PaintFrame
instance

B

Adds
listenerC

Injects shape
implementations

D

66 CHAPTER 2 Mastering modularity

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 2.0.0
Bundle-Name: Simple Paint Program
Import-Package: javax.swing, org.foo.shape; version="2.0.0"
Export-Package: org.foo.paint; version="2.0.0"

The main paint program bundle no longer has any dependencies on the various

shape implementations, but it now needs to export the package containing the paint

frame. You can take the existing static main() method body and put it inside a new

class called org.foo.fullpaint.FullPaint, with the following bundle metadata:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.fullpaint
Bundle-Version: 1.0.0
Bundle-Name: Full Paint Program Configuration
Import-Package: javax.swing, org.foo.shape; org.foo.paint;
 org.foo.shape.circle; org.foo.shape.square; org.foo.shape.triangle;
 version="2.0.0"
Main-Class: org.foo.fullpaint.FullPaint

To launch this full version of the paint program, use the bundle launcher to deploy all

the associated bundles, including this FullPaint bundle. Likewise, you can create a

different bundle containing the org.foo.smallpaint.SmallPaint class in this listing

to launch a small configuration of the paint program containing only the circle shape.

package org.foo.smallpaint;

public class SmallPaint {
 public static void main(String[] args) throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 PaintFrame frame = new PaintFrame();
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 System.exit(0);
 }
 });
 frame.addShape(new Circle());
 frame.setVisible(true);
 }
 });
 }

Listing 2.3 New launcher for smaller paint program configuration

Injects only circle shape
implementation

67Reviewing the benefits of the modular paint program

The metadata for the bundle containing the small paint program configuration is as

follows:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.smallpaint
Bundle-Version: 1.0.0
Bundle-Name: Reduced Paint Program Configuration
Import-Package: javax.swing, org.foo.shape; org.foo.paint;
 org.foo.shape.circle; version="2.0.0"
Main-Class: org.foo.smallpaint.SmallPaint

This small configuration only depends on Swing, the public API, the paint program

implementation, and the circle implementation. When you launch the full configura-

tion, all shape implementations are required; but for the small configuration, only the

circle implementation is required. Now you can deploy the appropriate configuration

of the application based on the target device and have OSGi verify the correctness of it

all. Pretty sweet. For completeness, figure 2.26 shows the before and after views of the

paint program.

Nonmodular
paint program

FullPaint

PaintFrame

Shape

Circle

Triangle

Square

SmallPaint

API

Figure 2.26 Modular and nonmodular

versions of the paint program

68 CHAPTER 2 Mastering modularity

2.9 Summary

We’ve covered a lot of ground in this chapter. Some of the highlights include the

following:

■ Modularity is a form of separation of concerns that provides both logical and

physical encapsulation of classes.

■ Modularity is desirable because it allows you to break applications into logically

independent pieces that can be independently changed and reasoned about.

■ Bundle is the name for a module in OSGi. It’s a JAR file containing code,

resources, and modularity metadata.

■ Modularity metadata details human-readable information, bundle identifica-

tion, and code visibility.

■ Bundle code visibility is composed of an internal class path, exported packages,

and imported packages, which differs significantly from the global type assump-

tion of standard JAR files.

■ The OSGi framework uses the metadata about imported and exported packages

to automatically resolve bundle dependencies and ensure type consistency

before a bundle can be used.

■ Imported and exported packages capture inter-bundle package dependencies,

but uses constraints are necessary to capture intra-bundle package dependen-

cies to ensure complete type consistency.

From here, we’ll move on to the lifecycle layer, where we enter execution time aspects

of OSGi modularity. This chapter was all about describing bundles to the OSGi frame-

work; the lifecycle layer is all about using bundles and the facilities provided by the

OSGi framework at execution time.

69

Learning lifecycle

In the last chapter, we looked at the OSGi module layer and introduced you to

bundles: a bundle is OSGi terminology for a module, which is a JAR file with the

extra modularity metadata. You use bundles to define both the logical (code

encapsulation and dependencies) and physical (deployable units) modularity of

an application.

 The OSGi module layer goes to great lengths to ensure that class loading hap-

pens in a consistent and predictable way. But to avoid putting the cart before the

horse, in chapter 2 we glossed over the details of how you install bundles into an

OSGi framework. No longer: in this chapter, we’ll look at the next layer of the OSGi

stack—the lifecycle layer.

This chapter covers

■ Understanding software lifecycle management

■ Introducing the lifecycle of a bundle

■ Exploring the lifecycle layer API

■ Extending an application to make it lifecycle aware

■ Explaining the relationship between the module

and lifecycle layers

70 CHAPTER 3 Learning lifecycle

 As we mentioned in chapter 2, to use a bundle you install it into a running instance

of the OSGi framework. So creating a bundle is the first half of leveraging OSGi’s mod-

ularity features; the second half is using the OSGi framework as a runtime to manage

and execute bundles. The lifecycle layer is unique in allowing you to create externally

(and remotely) managed applications or completely self-managed applications (or

any combination of the two). It also introduces dynamism that isn’t normally part of

an application.

 This chapter will familiarize you with the features of the lifecycle layer and explain

how to effectively use them. In the next section, we’ll take a closer look at what lifecy-

cle management is and why you should care about it, followed by the definition of the

OSGi bundle lifecycle. In subsequent sections, you’ll learn about the API for managing

the lifecycle of bundles. Throughout this chapter, we’ll bring all the points home via

examples of a simple OSGi shell and a lifecycle-aware version of the paint program.

3.1 Introducing lifecycle management

The OSGi lifecycle layer provides a management API and a well-defined lifecycle for

bundles at execution time in the OSGi framework. The lifecycle layer serves two differ-

ent purposes:

■ External to your application, the lifecycle layer precisely defines the bundle lifecy-

cle operations. These lifecycle operations allow you to manage and evolve your

application by dynamically changing the composition of bundles inside a run-

ning framework.

■ Internal to your application, the lifecycle layer defines how your bundles gain access

to their execution context, which provides them with a way to interact with the OSGi

framework and the facilities it provides at execution time.

But let’s take a step back. It’s fine to state what the OSGi lifecycle layer does, but this

won’t necessarily convince you of its worth. Instead, let’s look at a quick example of

how it can improve your applications with a real-world scenario.

3.1.1 What is lifecycle management?

Imagine you have a business application that can report management events via JMX.

Do you always want to enable or even install the JMX layer? Imagine running in a light-

weight configuration and only enabling the JMX notifications on demand. The lifecy-

cle layer allows you to install, start, update, stop, and uninstall different bundles

externally, to customize your application’s configuration at execution time.

 Further, imagine that a critical failure event in your application must trigger the

JMX layer to send out a notification regardless of whether the administrator previ-

ously enabled or installed the layer. The lifecycle layer also provides programmatic

access to bundles so they can internally modify their application’s configuration at

execution time.

71Introducing lifecycle management

 Generally speaking, programs (or parts of a

program) are subject to some sort of lifecycle,

which may or may not be explicit. The lifecycle

of software typically has four distinct phases, as

shown in figure 3.1.

 If you’re creating an application, think

about the typical lifecycle of the application as a

whole. First you need to install it. Assuming all

its dependencies are satisfied, you can execute

it, which allows it to begin acquiring resources.

When the application is no longer needed, you

stop it, which allows it to release any resources

and perhaps persist any important state. Over time, you may want to update the appli-

cation to a newer version. Ultimately, you may remove the application because you no

longer need it. For nonmodular applications, the lifecycle operates on the application

as a whole; but as you’ll see, for modular applications, fine-grained lifecycle manage-

ment is possible for individual pieces of the application.

 The following are two of the more popular models for creating applications in Java

and how they manage software lifecycle:

■ Standard Java—For the purposes of this discussion, we’ll equate an application

in standard Java to a JAR file containing the Main-Class header in its manifest,

which allows it to be easily executed. In standard Java development, the lifecycle

of an application is simple. Such a JAR-based Java application is installed when

downloaded. It’s executed when the user launches a JVM process, typically by

double-clicking it. The application is stopped when the program terminates.

Updating is usually done by replacing the JAR with a newer version. Removal is

achieved by deleting the JAR from the file system.

■ Servlet—In servlet development, the lifecycle of the web application is managed

by the servlet container. The application is installed via a container-specific pro-

cess; sometimes this involves dropping a WAR file containing the application in

a certain directory in the file system or uploading a WAR file via a web-manage-

ment interface. The servlet container calls various lifecycle API methods such as

Servlet.init() and Servlet.destroy() on the WAR file’s subcomponents

during the execution phase of the application’s lifecycle. To update the applica-

tion, a completely new WAR file is generated. The existing WAR must be stopped

and the new WAR file started in its place. The application is removed by a con-

tainer-specific process, again sometimes removing the WAR from the file system

or interacting with a management interface.

As you know, many different lifecycle-management approaches are used in Java today.

In traditional Java applications, the lifecycle is largely managed by the platform-specific

mechanism of the underlying operating system via installers and double-clicking

Installation

E
xecution

R
em

ov
al

Application

Update

Figure 3.1 The four phases of the soft-

ware lifecycle. An application is installed

so you can execute it. Later, you can up-

date it to a newer version or, ultimately,

remove it if you no longer need it.

72 CHAPTER 3 Learning lifecycle

desktop icons. For modular development approaches, such as servlets, Java EE, and Net-

Beans, each has its own specific mechanism of handling the lifecycle of its components.

This leads us to the question of why you need lifecycle management at all.

3.1.2 Why lifecycle management?

Cast your mind back to the earlier discussion about why you should modularize your

application code into separate bundles. We talked about the benefits of separating dif-

ferent concerns into bundles and avoiding tight coupling among them. The OSGi

module layer provides the necessary means to do this at the class level, but it doesn’t

address when a particular set of classes or objects is needed in an application.

 An explicit lifecycle API lets the providing application take care of how to config-

ure, initialize, and maintain a piece of code that’s installed so it can decide how it

should operate at execution time. For example, if a database driver is in use, should it

start any threads or initialize any cache tables to improve performance? If it does any

of these things, when are these resources released? Do they exist for the lifetime of the

application as a whole? And if not, how are they removed? Because the OSGi specifica-

tion provides an explicit lifecycle API, you can take any bundle providing the function-

ality you need and let it worry about how to manage its internal functions. In essence,

it’s a matter of compose versus control.

 Because you can architect your application such that parts of it may come and go

at any point in time, the application’s flexibility is greatly increased. You can easily

manage installation, update, and removal of an application and its required modules.

You can configure or tailor applications to suit specific needs, breaking the mono-

lithic approach of standard development approaches. Instead of “you get what you

get,” wouldn’t it be great if you could offer “you get what you need”?

 Another great benefit of the standard lifecycle API is that it allows for a diverse set

of management applications that can manage your application. There’s no magic

going on; lifecycle management can be done completely using the provided API.

 We hope this discussion has piqued your interest. Now, let’s focus specifically on

defining the OSGi bundle lifecycle and the management API associated with it.

3.2 OSGi bundle lifecycle

The OSGi lifecycle layer is how you use the bundles; it’s where the rubber meets the

road. The module metadata from chapter 2 is all well and good, but creating bundles

in and of itself is useful only if you use them. You need to interact with the OSGi lifecy-

cle layer in order to use the bundles. Unlike the module layer, which relies on meta-

data, the lifecycle layer relies on APIs. Because introducing APIs can be a boring

endeavor (Javadoc, anyone?), we’ll move in a top-down fashion and use an example to

show what the lifecycle layer API allows you to do.

 It’s important to note that the OSGi core framework doesn’t mandate any particu-

lar mechanism of interacting with the lifecycle API (such as the command line, a GUI,

or an XML configuration file); the core is purely a Java API. This turns out to be

73OSGi bundle lifecycle

extremely powerful, because it makes it possible to design as many different ways of

managing the OSGi framework as you can think of; in the end, you’re limited only by

your imagination as a developer.

 Because there’s no standard way for users to interact with the lifecycle API, you

could use a framework-specific mechanism. But using this approach here would be a

disservice to you, because it’s a great opportunity for learning. Instead of reusing

someone else’s work in this chapter, we’ll lead you through some basic steps for devel-

oping your own command line interface for interacting with the OSGi framework.

This gives you the perfect tool, alongside the paint program, to explore the rich capa-

bilities provided by the OSGi lifecycle API.

3.2.1 Introducing lifecycle to the paint program

Enough with the talk—let’s see the lifecycle API in action by kicking off the shell appli-

cation and using it to install the paint program. To do this, type the following into

your operating system console (Windows users, substitute \ for /):

$ cd chapter03/shell-example/
$ ant
$ java -jar launcher.jar bundles
Bundle: org.foo.shell started with bundle id 1 - listening on port 7070

The shell is created as a bundle that, on starting, begins listening for user input on a

telnet socket. This allows clients to connect and perform install, start, stop, update,

and uninstall actions on bundles. It also provides some basic diagnostic facilities.

Here’s a session that connects to the newly launched framework and uses the shell to

install the paint example:

$ telnet localhost 7070
-> install file:../paint-example/bundles/paint-3.0.jar
Bundle: 2
-> install file:../paint-example/bundles/shape-3.0.jar
Bundle: 3
-> start 2
-> install file:../paint-example/bundles/circle-3.0.jar
Bundle: 4
-> install file:../paint-example/bundles/square-3.0.jar
Bundle: 5

Shells, shells, everywhere

If you have some familiarity with using OSGi frameworks, you’re likely aware that

most OSGi framework implementations (such as Apache Felix, Eclipse Equinox, and

Knopflerfish) have their own shells for interacting with a running framework. The OSGi

specification doesn’t define a standard shell (although there has been some work to-

ward this goal recently; see http://felix.apache.org/site/apache-felix-gogo.html), but

shells need not be tied to a specific framework and can be implemented as bundles,

just as you’ll do here.

http://felix.apache.org/site/apache-felix-gogo.html

74 CHAPTER 3 Learning lifecycle

-> start 4
-> start 5
-> install file:../paint-example/bundles/triangle-3.0.jar
Bundle: 6
-> start 6
-> stop 4

In figure 3.2, you can see that in step 1, you first install the shape API bundle, and then

you install and start the paint program bundle. This causes an empty paint frame to

appear with no available shapes, which makes sense because you haven’t installed any

other bundles yet. In step 2, you install and start the circle and square bundles. As if by

magic, the two shapes dynamically appear in the paint frame’s toolbar and are avail-

able for drawing. In step 3, you install and start the triangle bundle; then, you draw

some shapes on the paint canvas. What happens if you stop a bundle? In step 4, you

stop the circle bundle, which you see is replaced on the canvas with the placeholder

icon (a construction worker) from DefaultShape.

Figure 3.2 Execution-time evolution: dynamically adding shapes to and removing shapes from the

paint program as if by magic

75OSGi bundle lifecycle

This shows you in practice that you can use the lifecycle API to build a highly dynamic

application, but what’s going on in this example? To understand, we’ll take a top-

down approach, using the shell and paint example for context:

■ In section 3.2.2, we’ll explain the framework’s role in the application’s lifecycle.

■ In section 3.2.3, we’ll look at the changes you need to make to the bundle man-

ifest to hook the bundles into the OSGi framework.

■ In section 3.2.4, we’ll investigate the key API interfaces used by the OSGi lifecy-

cle: BundleActivator, BundleContext, and Bundle.

■ In section 3.2.5, we’ll wrap up with a review of the OSGi lifecycle state diagram.

Let’s get started.

3.2.2 The OSGi framework’s role in the lifecycle

In standard Java programming, you use JAR files by placing them on the class path.

This isn’t the approach for using bundles. A bundle can only be used when it’s

installed into a running instance of the OSGi framework. Conceptually, you can think

of installing a bundle into the framework as being similar to putting a JAR file on the

class path in standard Java programming.

 This simplified view hides some important differences from the standard class

path, as you can see in figure 3.3. One big difference is the fact that the OSGi frame-

work supports full lifecycle management of bundle JAR files, including install, resolve,

start, stop, update, and uninstall. At this point, we’ve only touched on installing bun-

dles and resolving their dependencies. The remainder of this chapter will fully

explain the lifecycle activities and how they’re related to each other. For example,

we’ve already mentioned that the framework doesn’t allow an installed bundle to be

used until its dependencies (Import-Package declarations) are satisfied.

JAR JAR JAR

Class path

OSGi framework

Installation

E
xecution

R
em

ov
al

Update

Bundle

Installation

E
xecution

R
em

ov
al

Update

Bundle

Installation

E
xecution

R
em

ov
al

Update

Bundle

Figure 3.3 Class path versus OSGi framework with full lifecycle management

76 CHAPTER 3 Learning lifecycle

Another huge difference from the standard class path is inherent dynamism. The

OSGi framework supports the full bundle lifecycle at execution time. This is similar to

modifying what’s on the class path dynamically.

 As part of lifecycle management, the framework maintains a persistent cache of

installed bundles. This means the next time you start the framework, any previously

installed bundles are automatically reloaded from the bundle cache, and the original

JAR files are no longer necessary. Perhaps we can characterize the framework as a fully

manageable, dynamic, and persistent class path. Sounds cool, huh? Let’s move on to how

you have to modify the metadata to allow bundles to hook into the lifecycle layer API.

3.2.3 The bundle activator manifest entry

How do you tell the framework to kick-start the bundles at execution time? The

answer, as with the rest of the modularity information, is via the bundle metadata.

Here’s the JAR file manifest describing the shell bundle you’ll create:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.shell
Bundle-Version: 1.0
Bundle-Activator: org.foo.shell.Activator
Import-Package: org.osgi.framework;version="[1.3,2.0)",
 org.osgi.service.packageadmin;version="[1.2,2.0)",
 org.osgi.service.startlevel;version="[1.1,2.0)"
Bundle-Name: remote_shell
Bundle-DocURL: http://code.google.com/p/osgi-in-action/

You should already be familiar with most of these headers from chapter 2. But to

recap, most of the entries are related to the class-level modularity of the bundle. This

metadata does the following:

■ Defines the bundle’s identity

■ Specifies the packages on which this bundle depends

■ Declares additional human-readable information

The only new header is Bundle-Activator. This is the first sighting of the OSGi lifecy-

cle API in action! The Bundle-Activator header specifies the name of a reachable

class (that is, either imported or on the bundle class path) implementing the org.

osgi.framework.BundleActivator interface. This interface provides the bundle with

a hook into the lifecycle layer and the ability to customize what happens when it’s

started or stopped.

Is an activator necessary?

Keep in mind that not all bundles need an activator. An activator is necessary only if

you’re creating a bundle and wish to specifically interact with OSGi API or need to per-

form custom initialization/de-initialization actions. If you’re creating a simple library

bundle, it isn’t necessary to give it an activator because it’s possible to share class-

es without one.

77OSGi bundle lifecycle

To understand what’s going on in the shell example, we’ll now introduce you to three

interfaces (BundleActivator, BundleContext, and Bundle) that are the heart and

soul of the lifecycle layer API.

3.2.4 Introducing the lifecycle API

The last section described how the shell bundle declares a BundleActivator to hook

into the framework at execution time. We can now look into the details of this inter-

face and the other lifecycle APIs made available from it to the bundle. This is the bun-

dle’s hook into the world of OSGi.

BUNDLE ACTIVATOR

As you’ve seen, adding an activator to the bundle is straightforward, because you only

need to create a class implementing the BundleActivator interface, which looks like

this:

public interface BundleActivator {
 public void start(BundleContext context) throws Exception;
 public void stop(BundleContext context) throws Exception;
}

For the shell example, the activator allows it to become lifecycle aware and gain access

to framework facilities. The following listing shows the activator for the shell bundle.

package org.foo.shell;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
 private volatile Binding m_binding;

 public void start(BundleContext context) {
 int port = getPort(context);
 int max = getMaxConnections(context);
 m_binding = getTelnetBinding(context, port, max);
 m_binding.start();
 System.out.println("Bundle " +
 context.getBundle().getSymbolicName() +
 " started with bundle id" +
 context.getBundle().getBundleId() +
 " listening on port " + port);
 }

Listing 3.1 Simple shell bundle activator

(continued)

This doesn’t mean your bundles won’t be able to do anything. Bundles don’t neces-

sarily need to be started in order to do useful things. Remember the paint program

you created in chapter 2: none of the bundles had activators, nor did any of them

need to be started, but you still created a fully functioning application.

Declares volatile
member field

B

Passes context
into telnet
bindingD

Starts
bindingE

78 CHAPTER 3 Learning lifecycle

 public void stop(BundleContext context) {
 m_binding.stop();
 }

 ...
}
...

public interface Binding {
 public void start();
 public void stop() throws InterruptedException;
}

This class implements the OSGi BundleActivator interface. When the bundle is

installed and started, the framework constructs an instance of this activator class and

invokes the start() method. When the bundle is stopped, the framework invokes the

stop() method. The start() method is the starting point for your bundle, sort of like

the static main() method in standard Java. After it returns, your bundle is expected to

function until the stop() method is invoked at some later point. The stop() method

should undo anything done by the start() method.

 We need to mention a few technical but potentially important details about the

handling of the BundleActivator instance:

■ The activator instance on which start() is called is the same instance on which

stop() is called.

■ After stop() is called, the activator instance is discarded and isn’t used again.

■ If the bundle is subsequently restarted after being stopped, a new activator

instance is created, and the start() and stop() methods are invoked on it as

appropriate.

As you can see, the rest of the activator isn’t complicated. In the start() method, you

get the port on which the bundle listens for connection requests and the number of

allowed concurrent connections. You also create a TelnetBinding, which does the

work of listening on a socket for user input and processes it; the details of creating the

telnet binding are omitted here for reasons of simplicity and brevity. The next step is

to start the binding, which creates a new Thread to run the shell. How this happens is

left to the binding, which you start next E.

 The point about the binding starting its own thread is important because the acti-

vator methods shouldn’t do much work. This is best practice as with most callback pat-

terns, which are supposed to return quickly, allowing the framework to carry on

managing other bundles. But it’s also important to point out that the OSGi specifica-

tion doesn’t mandate you start a new thread if your application’s startup doesn’t war-

rant it—the ball is in your court.

 For the activator stop() method, all you do is tell the binding to stop listening to user

input and cease to execute. You should make sure it does stop by waiting until its thread

is finished; the binding method waits for its thread to stop. Sometimes, you may have spe-

cial cases for certain situations because, as you’ll see later, the shell thread itself may call

79OSGi bundle lifecycle

the stop() method, which will cause the bundle to freeze. We’ll cover these and other

advanced use cases later. In general, if you use threads in your bundles, do so in such

a way that all threads are stopped when the stop() method returns.

 Now you’ve seen how you can handle starting and stopping a bundle, but what if

you want to interact with the OSGi framework? We’ll now switch the focus to the

BundleContext object passed into the start() and stop() methods of the activator;

this allows a bundle to interact with the framework and manage other bundles.

BUNDLE CONTEXT

As you learned in the previous section, the framework calls the start() method of a

bundle’s activator when it’s started and the stop() method when it’s stopped. Both

methods receive an instance of the BundleContext interface. The methods of the

BundleContext interface can be roughly divided into two categories:

■ The first category is related to deployment and lifecycle management.

■ The second category is related to bundle interaction via services.

We’re interested in the first category of methods, because they give you the ability to

install and manage the lifecycle of other bundles, access information about the frame-

work, and retrieve basic configuration properties. This listing captures these methods

from BundleContext.

public interface BundleContext {
 ...
 String getProperty(String key);
 Bundle getBundle();
 Bundle installBundle(String location, InputStream input)
 throws BundleException;
 Bundle installBundle(String location) throws BundleException;
 Bundle getBundle(long id);
 Bundle[] getBundles();

Listing 3.2 BundleContext methods related to lifecycle management

Threading

OSGi is designed around the normal Java thread abstraction. Unlike other, more

heavyweight frameworks, it assumes that you do your own thread management. You

gain a lot of freedom by doing this, but at the same time you have to make sure your

programs are correctly synchronized and thread safe. In this simple example, nothing

special is needed; but in general, it’s likely that stop() will be called on a different

thread than start() (for this reason, you make the member at B volatile).

The OSGi libraries are thread safe, and callbacks are normally done in a way to give

you some guarantees. For example, in the case of the bundle activator, start() and

stop() are guaranteed to be called in order and not concurrently. So, technically, in

this particular case the volatile might not be necessary, but in general your code

must take thread visibility into account.

80 CHAPTER 3 Learning lifecycle

 void addBundleListener(BundleListener listener);
 void removeBundleListener(BundleListener listener);
 void addFrameworkListener(FrameworkListener listener);
 void removeFrameworkListener(FrameworkListener listener);
 ...
}

We’ll cover most of these methods in this chapter. The second category of Bundle-

Context methods related to services will be covered in the next chapter.

The shell activator in listing 3.1 uses the bundle context to get its configuration prop-

erty values C. It also passes the context into the telnet binding D, which client con-

nections will use to interact with the running framework. Finally, it uses the context to

obtain the bundle’s Bundle object to access the identification information. We’ll look

at these details shortly, but for now we’ll continue the top-down description by looking

at the final lifecycle layer interface: org.osgi.framework.Bundle.

BUNDLE

For each installed bundle, the framework creates a Bundle object to logically repre-

sent it. The Bundle interface defines the API to manage an installed bundle’s lifecycle;

a portion of the interface is presented in the following listing. As we discuss the

Bundle interface, you’ll see that most lifecycle operations have a corresponding

method in it.

public interface Bundle {
 ...
 BundleContext getBundleContext();
 long getBundleId();
 Dictionary getHeaders();
 Dictionary getHeaders(String locale);
 String getLocation();
 int getState();
 String getSymbolicName();

Listing 3.3 Bundle interface methods related to lifecycle management

Unique context

One important aspect of the bundle context object is its role as the unique execution

context of its associated bundle. Because it represents the execution context, it’s

only valid while the associated bundle is active, which is explicitly from the moment

the activator start() method is invoked until the activator stop() method com-

pletes and the entire time in between. Most bundle context methods throw an excep-

tion if used when the associated bundle isn’t active. It’s a unique execution context

because each activated bundle receives its own context object. The framework uses

this context for security and resource allocation purposes for each individual bundle.

Given this capability of BundleContext objects, they should be treated as sensitive

or private objects and not passed freely among bundles.

81OSGi bundle lifecycle

 Version getVersion();
 void start(int options) throws BundleException;
 void start() throws BundleException;
 void stop(int options) throws BundleException;
 void stop() throws BundleException;
 void update(InputStream input) throws BundleException;
 void update() throws BundleException;
 void uninstall() throws BundleException;
 ...
}

Each installed bundle is uniquely identified in the framework by its Bundle object.

From the Bundle object, you can also access two additional forms of bundle identifica-

tion: the bundle identifier and the bundle location. You might be thinking, “Didn’t we

talk about bundle identification metadata back in chapter 2?” Yes, we did, but don’t

get confused. The identification metadata in chapter 2 was for static identification of

the bundle JAR file. The bundle identifier and bundle location are for execution-time

identification, meaning they’re associated with the Bundle object. You may wonder

why you need two different execution-time identifiers.

 The main difference between the two is who defines the identifier; see figure 3.4.

The bundle identifier is a Java language long value assigned by the framework in

ascending order as bundles are installed. The bundle location is a String value

assigned by the installer of the bundle.

 Both the bundle identifier and location values uniquely identify the Bundle object

and persist across framework executions when the installed bundles are reloaded

from the framework’s cache.

ID=2

Create bundle
representation
with bundle ID Installed

bundles

Identity defined by framework Identity defined by user

Install file: bundle.jar

Framework

Figure 3.4 Difference between the bundle identifiers

Bundle location interpretation

The bundle location has a unique characteristic because most OSGi framework im-

plementations interpret it as a URL pointing to the bundle JAR file. The framework

then uses this URL to download the contents of the bundle JAR file during bundle in-

stallation. The specification doesn’t define the location string as an URL, nor is it re-

quired, because you can install bundles from an input stream as well.

82 CHAPTER 3 Learning lifecycle

You may still be thinking, “I’m not convinced that all these identification mechanisms

are necessary. Couldn’t you find the Bundle object using the bundle’s symbolic name

and version from chapter 2?” Yes, you could, because the framework allows only one

bundle with a given symbolic name and version to be installed at a time. This means

the bundle symbolic name and version pair also act as an execution-time identifier.

Although one instance of Bundle exists for each bundle installed into the framework,

at execution time there’s also a special instance of Bundle to represent the framework

itself. This special bundle is called the system bundle; and although the API is the same,

it merits its own discussion.

THE SYSTEM BUNDLE

At execution time, the framework is represented as a bundle with an identifier of 0,

called the system bundle. You don’t install the system bundle—it always exists while the

framework is running.

 The system bundle follows the same lifecycle as normal bundles, so you can manip-

ulate it with the same operations as normal bundles. But lifecycle operations per-

formed on the system bundle have special meanings when compared to normal

bundles. One example of the special meaning is evident when you stop the system

bundle. Intuitively, stopping the system bundle shuts down the framework in a well-

behaved manner. It stops all other bundles first and then shuts itself down completely.

 With that, we conclude our high-level look at the major API players in the lifecycle

layer (BundleActivator, BundleContext, and Bundle). You now know the following:

■ BundleActivator is the entry point for the bundles, much like static main() in

a standard Java application.

■ BundleContext provides applications with the methods to manipulate the OSGi

framework at execution time.

■ Bundle represents an installed bundle in the framework, allowing state manipu-

lations to be performed on it.

Why so many forms of identification?

History plays a role here. As mentioned in chapter 2, the notion of using a bundle’s

symbolic name and version to uniquely identify it didn’t exist in versions of the spec-

ification prior to R4. Therefore, prior to R4, it made sense to have internally and ex-

ternally assigned identifiers. Now it makes less sense, because the bundle’s

symbolic name and version pair are externally defined and explicitly recognized inter-

nally by the framework.

There’s still a role for the bundle identifier because in some cases the framework treats

a lower identifier value as being better than a higher one when deciding between two

otherwise equal alternatives, such as when two bundles export the same version of

a given package. The real loser here is the bundle location, which doesn’t serve a

useful purpose other than potentially giving the initial URL of the bundle JAR file.

83OSGi bundle lifecycle

With this knowledge in hand, we’ll complete the top-down approach by defining the

overall bundle lifecycle state diagram and see how these interfaces relate to it.

3.2.5 Lifecycle state diagram

Until now, we’ve been holding off on explicitly describing the complete bundle

lifecycle in favor of getting a high-level view of the API forming the lifecycle layer.

This allowed you to quickly get your hands a little dirty. Now you can better under-

stand how these APIs relate to the complete bundle lifecycle state diagram, shown in

figure 3.5.

 The entry point of the bundle lifecycle is the BundleContext.installBundle()

operation, which creates a bundle in the INSTALLED state. From figure 3.5, you can

see that there’s no direct path from INSTALLED to STARTING. This is because the

framework ensures all dependencies of a bundle are satisfied before it can be used

(that is, no classes can be loaded from it). The transition from the INSTALLED to the

RESOLVED state represents this guarantee. The framework won’t allow a bundle to

transition to RESOLVED unless all its dependencies are satisfied. If it can’t transition

to RESOLVED, by definition it can’t transition to STARTING. Often, the transition to

RESOLVED happens implicitly when the bundle is started or another bundle tries to

load a class from it, but you’ll see later in this chapter that it’s also possible to explic-

itly resolve a bundle.

 The transition from the STARTING to the ACTIVE state is always implicit. A bundle is

in the STARTING state while its activator’s start() method executes. Upon successful

completion of the start() method, the bundle’s state transitions to ACTIVE; but if the

activator throws an exception, it transitions back to RESOLVED.

Installed

Install

Uninstalled

Uninstall Resolved

Starting

Active

Stopping

Start

Refresh
Update

Update
Refresh

Resolve

Stop

Figure 3.5 OSGi bundle lifecycle

84 CHAPTER 3 Learning lifecycle

An ACTIVE bundle can be stopped, which also results in a transition back to the

RESOLVED state via the STOPPING state. The STOPPING state is an implicit state like START-

ING, and the bundle is in this state while its activator’s stop() method executes. A

stopped bundle transitions back to RESOLVED instead of INSTALLED because its depen-

dencies are still satisfied and don’t need to be resolved again. It’s possible to force the

framework to resolve a bundle again by refreshing it or updating it, which we’ll discuss

later. Refreshing or updating a bundle transitions it back to the INSTALLED state.

 A bundle in the INSTALLED state can be uninstalled, which transitions it to the

UNINSTALLED state. If you uninstall an active bundle, the framework automatically

stops the bundle first, which results in the appropriate state transitions to the

RESOLVED state and then transitions it to the INSTALLED state before uninstalling it.1 A

bundle in the UNINSTALLED state remains there as long as it’s still needed (we’ll

explain later what this means), but it can no longer transition to another state. Now

that you understand the complete bundle lifecycle, let’s discuss how these operations

impact the framework’s bundle cache and subsequent restarts of the framework.

3.2.6 Bundle cache and framework restarts

To use bundles, you have to install them into the OSGi framework. Check. But what does

this mean? Technically, you know you must invoke BundleContext.installBundle()

to install a bundle. In doing so, you must specify a location typically interpreted as a URL

to the bundle JAR file or an input stream from which the bundle JAR file is read. In

either case, the framework reads the bundle JAR file and saves a copy in a private area

known as the bundle cache. This means two things:

■ Installing a bundle into the framework is a persistent operation.

■ After the bundle is installed, the framework no longer needs the original copy

of the bundle JAR file.

The exact details of the bundle cache are dependent on the framework implementa-

tion; the specification doesn’t dictate the format nor structure other than that it must

be persistent across framework executions. If you start an OSGi framework, install a

bundle, shut down the framework, and then restart it, the bundle you installed will

still be there, as shown in figure 3.6. If you compare this approach to using the class

path, where you manually manage everything, having the framework cache and man-

age the artifacts relieves you of a lot of effort.

 In terms of your application, you can think of the bundle cache as the deployed

configuration of the application. This is similar to the chapter 2 discussion of creating

different configurations of the paint program. Your application’s configuration is

whichever bundles you install into the framework. You maintain and manage the con-

figuration using the APIs and techniques discussed in this chapter.

1 This is a change in the R4.2 version of the OSGi specification. You can’t go to UNINSTALLED from RESOLVED;
you have to go to INSTALLED first, and only INSTALLED goes to UNINSTALLED. This detail is listed in the R4.2
specification errata.

85Using the lifecycle API in your bundles

Bundle installation isn’t the only lifecycle operation to impact the bundle cache.

When a bundle is started using Bundle.start(), the framework persistently marks the

bundle as started, even if Bundle.start() throws an exception, such as when the bun-

dle can’t be resolved or the bundle’s BundleActivator.start() method throws an

exception. When a bundle is persistently marked as started, subsequent executions of

the framework not only reinstall the bundle but also attempt to start it. From a man-

agement perspective, you deploy a configuration of your application by installing a set

of bundles and activating them. Subsequent framework executions automatically

restart your application. If you stop a bundle using Bundle.stop(), this removes the

persistently started status of the bundle; subsequent framework executions no longer

restart the bundle, although it’s still reinstalled. This is another means of modifying

your application’s configuration.

 You may want to ask, “What about updating and uninstalling a bundle? These must

impact the bundle cache, right?” The short answer is, yes, but this isn’t the whole

answer. Bundle.update() and Bundle.uninstall() impact the bundle cache by sav-

ing a new bundle JAR file or removing an existing bundle JAR file, respectively. But

these operations may not affect the cache immediately. We’ll explain these oddities

when we discuss the relationship between the modularity and lifecycle layers in sec-

tion 3.5. Next, we’ll delve into the details of the shell bundle as we more fully explore

how to use the lifecycle layer API.

3.3 Using the lifecycle API in your bundles

So far, you haven’t implemented much functionality for the shell—you just created the

activator to start it up and shut it down. In this section, we’ll show you how to implement

the bulk of its functionality. You’ll use a simple command pattern to provide the exe-

cutable actions to let you interactively install, start, stop, update, and uninstall bundles.

You’ll even add a persistent history to keep track of previously executed commands.

 A high-level understanding of the approach will be useful before you start.

The main piece is the telnet binding, which listens to the configured port for

Framework
stop

Framework
restart

Bundle cache Bundle cacheBundle cache

Framework Framework

Bundle

Installation

E
xecution

R
em

ov
al

Update

Bundle

Installation

E
xecution

R
em

ov
al

Update

Bundle

Figure 3.6 Bundle cache during framework restarts

86 CHAPTER 3 Learning lifecycle

connection requests. It spawns a new thread for each connecting client. The client

sends command lines to its thread, where a command line consists of a command

name and the arguments for the command. The thread parses the command line,

selects the appropriate command, and invokes it with any specified arguments, as

shown in figure 3.7.

 Commands process the arguments passed in to them. We won’t discuss the imple-

mentation of the telnet binding and the connection thread, but full source code is

available in the companion code. We’ll dissect the command implementations to illus-

trate how to use Bundle and BundleContext. Let’s get the ball rolling by showing how

you configure the bundle.

3.3.1 Configuring bundles

The shell needs two configuration properties: one for the port and one for the maxi-

mum number of concurrent connections. In traditional Java programming, you’d use

the System.getProperty() method to retrieve them. When creating a bundle, you can

use the BundleContext object to retrieve configuration properties instead. The main

benefit of this approach is that it avoids the global aspect of System.getProperty()

and allows properties per framework instance.

 The OSGi specification doesn’t specify a user-oriented way to set bundle configura-

tion properties, so different frameworks handle this differently; typically, they provide

a configuration file where the properties are set. But the specification does require

bundle-configuration properties to be backed by system properties, so you can still use

system properties in a pinch. Retrieving bundle-configuration property values is stan-

dardized via the BundleContext.getProperty() method, as shown next.

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

Listing 3.4 Bundle configuration by example

TelnetBinding

Parse and select
command implementation

<<Listen>> <<command>> <<args>>

CommandImpl

Port

Dispatch to command
implementation

Figure 3.7 TelnetBinding overview

87Using the lifecycle API in your bundles

 public class Activator implements BundleContext {
 ...

 private int getPort(BundleContext context) {
 String port = context.getProperty("org.foo.shell.port");
 if (port != null) {
 return Integer.parseInt(port);
 }
 return 7070;
 }

 private int getMaxConnections(BundleContext context) {
 String max = context.getProperty("org.foo.shell.connection.max");
 if (max != null) {
 return Integer.parseInt(max);
 }
 return 1;
 }
}

This listing continues the activator implementation from listing 3.1; in the activator,

you use these two methods to get configuration properties. Here, the methods use the

BundleContext.getProperty() method to retrieve the properties B. This method

looks in the framework properties to find the value of the specified property. If it can’t

find the property, it searches the system properties, returning null if the property

isn’t found. For the shell, you return default values if no configured value is found.

The OSGi specification also defines some standard framework properties, shown in

table 3.1. If you need to use these standard properties, you can use the constants for

them defined in the org.osgi.framework.Constants class.

There you have it: your first real interaction with the OSGi framework. This is only a

small part of the API that you can use in your bundles, but we’ll cover a lot of ground

in the next section, so don’t worry. And those of you thinking, “Hey, this configuration

mechanism seems overly simplistic!” are correct. There are other, more sophisticated

ways to configure your bundle, but we won’t discuss them until chapter 9. Bundle prop-

erties are the simplest mechanism available and should only be used for properties that

Table 3.1 Standard OSGi framework properties

Property name Description

org.osgi.framework.version OSGi framework version

org.osgi.framework.vendor Framework implementation vendor

org.osgi.framework.language Language being used; see ISO 639 for possible values

org.osgi.framework.os.name Host computer operating system

org.osgi.framework.os.version Host computer operating system version number

org.osgi.framework.processor Host computer processor name

Retrieves
properties

B

88 CHAPTER 3 Learning lifecycle

don’t change much. In this regard, they may not be the best choice for the shell, but it

depends on what you want to achieve; for example, it makes it difficult to change the

shell’s port dynamically. For now, we’ll keep things simple, so this is sufficient.

3.3.2 Deploying bundles

Each bundle installed into the framework is represented by a Bundle object and can be

identified by its bundle identifier, location, or symbolic name. For most of the shell

commands you’ll implement, you’ll use the bundle identifier to retrieve a Bundle

object, because the bundle identifier is nice and concise. Most of the commands accept

a bundle identifier as a parameter, so let’s look at how you can use it and the bundle

context to access Bundle objects associated with other bundles. As part of the design,

you create an abstract BasicCommand class to define a shared method, getBundle(), to

retrieve bundles by their identifier, as shown here:

protected volatile BundleContext m_context;
...
public Bundle getBundle(String id) {
 Bundle bundle = m_context.getBundle(Long.parseLong(id.trim()));
 if (bundle == null) {
 throw new IllegalArgumentException("No such bundle.");
 }
 return bundle;
}

All you do is call BundleContext.getBundle() on the con-

text object with the parsed bundle identifier, which is

passed in as a String. The only special case you need to

worry about is when no bundle with the given identifier

exists. In such a case, you throw an exception.

INSTALL COMMAND

With this basic functionality in place, you can start the first

command. The next listing shows the implementation of

an install command, and figure 3.8 reminds you which

portion of the bundle lifecycle is involved.

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

public class InstallCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 Bundle bundle = m_context.installBundle(args);
 out.println("Bundle: " + bundle.getBundleId());
 }
}

Listing 3.5 Bundle install command

Install

Installed

Figure 3.8 The install-

related portion of the bundle

lifecycle state diagram

89Using the lifecycle API in your bundles

You use BundleContext.installBundle() to install a bundle. In most framework

implementations, the argument to installBundle() is conveniently interpreted as a

URL in String form from which the bundle JAR file can be retrieved. Because the user

enters the URL argument as a String, you can use it directly to install the bundle. If

the install succeeds, then a new Bundle object corresponding to the newly installed

bundle is returned. The bundle is uniquely identified by this URL, which is used as its

location. This location value will also be used in the future to determine if the bundle

is already installed. If a bundle is already associated with this location value, the

Bundle object associated with the previously installed bundle is returned instead of

installing it again. If the install operation is successful, the command outputs the

installed bundle’s identifier.

 The bundle context also provides an overloaded installBundle() method for

installing a bundle from an input stream. We won’t show this method here, but the

other form of installBundle() accepts a location and an open input stream. When

you use this other form of the method, the location is used purely for identification,

and the bundle JAR file is read from the passed-in

input stream. The framework is responsible for

closing the input stream.

START COMMAND

Now you have a command to install bundles, so the

next operation you’ll want to do is start bundles.

The start command shown in listing 3.6 does just

that (see figure 3.9).

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class StartCommand extends BasicCommand {
 public void exec(String id) throws Exception {
 Bundle bundle = getBundle(id);
 bundle.start();
 }
}

Again, the implementation is pretty easy. You use the method from the base command

class to get the Bundle object associated with the user-supplied identifier, and then

you invoke Bundle.start() to start the bundle associated with the identifier.

 The result of Bundle.start() depends on the current state of the associated bun-

dle. If the bundle is INSTALLED, it transitions to ACTIVE via the RESOLVED and STARTING

states. If the bundle is UNINSTALLED, the method throws an IllegalStateException.

If the bundle is either STARTING or STOPPING, start() blocks until the bundle enters

either ACTIVE or RESOLVED. If the bundle is already ACTIVE, calling start() again has

no effect. A bundle must be resolved before it can be started. You don’t need to

Listing 3.6 Bundle start command

Starting

Resolved

Start

Active

Figure 3.9 The start-related portion

of the bundle lifecycle state diagram

90 CHAPTER 3 Learning lifecycle

explicitly resolve the bundle, because the specification requires the framework to

implicitly resolve the bundle if it’s not already resolved. If the bundle’s dependencies

can’t be resolved, start() throws a BundleException and the bundle can’t be used

until its dependencies are satisfied. If this happens, you’ll typically install additional

bundles to satisfy the missing dependencies and try to start the bundle again.

 If the bundle has an activator, the framework invokes the BundleActivator.start()

method when starting the bundle. Any exceptions thrown from the activator result in

a failed attempt to start the bundle and an exception

being thrown from Bundle.start(). One last case where

an exception may result is if a bundle tries to start itself;

the specification says attempts to do so should result in

an IllegalStateException.

STOP COMMAND

That’s it for starting bundles. Now we can look at stop-

ping bundles, which is similar to starting them; see the

next listing and figure 3.10.

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class StopCommand extends BasicCommand {
 public void exec(String id) throws Exception {
 Bundle bundle = getBundle(id);
 bundle.stop();
 }
}

Like starting a bundle, stopping a bundle takes a simple call to Bundle.stop() on the

Bundle object retrieved from the specified identifier. As before, you must be mindful

of the bundle’s state. If it’s UNINSTALLED, an Illegal-

StateException results. Either STARTING or STOPPING

blocks until ACTIVE or RESOLVED is reached, respec-

tively. In the ACTIVE state, the bundle transitions to

RESOLVED via the STOPPING state. If the bundle has an

activator and the activator’s stop() method throws an

exception, a BundleException is thrown. Finally, a

bundle isn’t supposed to change its own state; trying to

do so may result in an IllegalStateException.

UPDATE COMMAND

Let’s continue with the update command in the follow-

ing listing (see figure 3.11).

Listing 3.7 Bundle stop command

Stopping

Resolved Active

Stop

Figure 3.10 The stop-related

portion of the bundle lifecycle

state diagram

Resolved

Update

Update

Installed

Figure 3.11 The update-related

portion of the bundle lifecycle

state diagram

91Using the lifecycle API in your bundles

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class UpdateCommand extends BasicCommand {
 public void exec(String id) throws Exception {
 Bundle bundle = getBundle(id);
 bundle.update();
 }
}

By now, you may have noticed the pattern we mentioned in the beginning. Most lifecy-

cle operations are methods on the Bundle and BundleContext objects. The Bundle.

update() method is no exception, as you can see. The update() method is available

in two forms: one with no parameters (shown) and one taking an input stream (not

shown). The update command uses the form without parameters here, which reads

the updated bundle JAR file using the original location value as a source URL. If the

bundle being updated is in the ACTIVE state, it needs to be stopped first, as required

by the bundle lifecycle. You don’t need to do this explicitly, because the framework

does it for you, but it’s still good to understand that this occurs because it impacts the

application’s behavior. The update happens in either the RESOLVED or INSTALLED state

and results in a new revision of the bundle in the INSTALLED state. If the bundle is in

the UNINSTALLED state, an IllegalStateException is thrown. As in the stop com-

mand, a bundle shouldn’t try to update itself.

UNINSTALL COMMAND

You can now wrap up the lifecycle operations

by implementing the uninstall command, as

shown next (see figure 3.12).

 To uninstall a bundle, you call the Bundle.

uninstall() method after retrieving the Bun-

dle object associated with the user-supplied

bundle identifier. The framework stops the

bundle, if necessary. If the bundle is already

Listing 3.8 Bundle update command

The Bundle-UpdateLocation anti-pattern

We should point out an anti-practice for updating a bundle. The OSGi specification

provides a third option for updating bundles based on bundle metadata. A bundle may

declare a piece of metadata in its bundle manifest called Bundle-UpdateLocation.

If it’s present, Bundle.update() with no parameters uses the update location value

specified in the metadata as the URL for retrieving the updated bundle JAR file. Using

this approach is discouraged because it’s confusing if you forget it’s set, and it

doesn’t make sense to bake this sort of information into the bundle.

Uninstall

Installed

Uninstalled

Figure 3.12 The uninstall-related portion

of the bundle lifecycle state diagram

92 CHAPTER 3 Learning lifecycle

UNINSTALLED, an IllegalStateException is thrown. As with the other lifecycle opera-

tions, a bundle shouldn’t attempt to uninstall itself.

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;

 public class UninstallCommand extends BasicCommand {
 public void exec(String id) throws Exception {
 Bundle bundle = getBundle(id);
 bundle.uninstall();
 }
}

That’s it. You’ve created a telnet-based shell bundle that you can use in any OSGi

framework. But there is one fly in the ointment. Most of the shell commands require

the bundle identifier to perform their action, but how does the shell user know which

identifier to use? You need some way to inspect the state of the framework’s installed

bundle set. You’ll create a command for that next.

3.3.3 Inspecting framework state

You need one more command to display information about the bundles currently

installed in the framework. The next listing shows a simple implementation of a

bundles command.

package org.foo.shell;

import org.osgi.framework.Bundle;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;

public class BundlesCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 Bundle[] bundles = m_context.getBundles();

 out.println(" ID State Name");

 for (Bundle bundle : bundles) {
 printBundle(
 bundle.getBundleId(), getStateString(bundle.getState()),
 (String) bundle.getHeaders().get(Constants.BUNDLE_NAME),
 bundle.getLocation(), bundle.getSymbolicName(), out);
 }
 }

 private String getStateString(int state) {
 switch (state) {

Listing 3.9 Bundle uninstall command

Listing 3.10 Bundle information example

93Using the lifecycle API in your bundles

 case Bundle.INSTALLED:
 return "INSTALLED";
 case Bundle.RESOLVED:
 return "RESOLVED";
 case Bundle.STARTING:
 return "STARTING";
 case Bundle.ACTIVE:
 return "ACTIVE";
 case Bundle.STOPPING:
 return "STOPPING";
 default:
 return "UNKNOWN";
 }
 }

 private void printBundle(long id, String state, String name,
 String location, String symbolicName) {...}
}

The implementation of this command is pretty easy too, because you only need to use

BundleContext.getBundles() to get an array of all bundles currently installed in the

framework. The rest of the implementation loops through the returned array and

prints out information from each Bundle object. Here you print the bundle identifier,

lifecycle state, name, location, and symbolic name for each bundle.

 With this command in place, you have everything you need for the simple shell.

You can install, start, stop, update, and uninstall bundles and list the currently

installed bundles. That was fairly simple, wasn’t it? Think about the flexibility at your

fingertips versus the amount of effort needed to create the shell. Now you can create

applications as easily deployable configurations of bundles that you can manage and

evolve as necessary over time.

 Before you move back to the paint program, two final lifecycle concepts are worth

exploring in order to fully appreciate the approach you’ll take to make the paint pro-

gram dynamically extensible: persistence and events. We’ll describe them in the con-

text of the shell example; but as you’ll see in the paint example in a couple of pages,

they’re generally useful tools to have in mind when building OSGi applications.

3.3.4 Persisting bundle state

As we mentioned when discussing bundle activators, the framework creates an

instance of a bundle’s activator class and uses the same instance for starting and subse-

quently stopping the bundle. An activator instance is used only once by the framework

to start and stop a bundle, after which it’s discarded. If the bundle is subsequently

restarted, a new activator instance is created. Given this situation, how does a bundle

persist state across stops and restarts? Stepping back even further, we mentioned how

the framework saves installed bundles into a cache so they can be reloaded the next

time the framework starts. How does a bundle persist state across framework sessions?

There are several possibilities.

94 CHAPTER 3 Learning lifecycle

 One possibility is to store the information out-

side the framework, such as in a database or a file,

as shown in figure 3.13. The disadvantage of this

approach is that the state isn’t managed by the

framework and may not be cleaned up when the

bundle is uninstalled.

 Another possibility is for a bundle to give its

state to another bundle that isn’t being stopped;

then, it can get the state back after it restarts, as

shown in figure 3.14. This is a workable approach,

and in some cases it makes the most sense.

 For simplicity, it would be nice to be able to

use files, but have them managed by the frame-

work. Such a possibility exists. The framework

maintains a private data area in the file system for

each installed bundle.

 The BundleContext.getDataFile() method

provides access to your bundle’s private data area.

When using the private data area, you don’t need to

worry about where it is on the file system because

the framework takes care of that for you, as well as

cleaning up in the event of your bundle being unin-

stalled (see figure 3.15). It may seem odd to not

directly use files to store your data; but if you did,

it would be impossible for your bundle to clean up

during an uninstall. This is because a bundle isn’t

notified when it’s uninstalled. Further, this method

simplifies running with security enabled, because

bundles can be granted permission to access their

private area by the framework.

 For the shell example, you want to use the pri-

vate area to persistently save the command history. Here’s how the history command

should work; it prints the commands issued via the shell in reverse order:

-> history
bundles
uninstall 2
bundles
update 2
bundles
stop 2
bundles
start 2
bundles
install file:foo.jar
bundles

Framework

Bundle

External
file

External
database

Framework

Bundle

Bundle

Data stored
inside another

bundle

Framework

Bundle cache

Bundle
File in

data area
of the
bundle

Figure 3.13 Storing state externally

Figure 3.14 Storing state with other

bundles

Figure 3.15 Storing state internally

95Using the lifecycle API in your bundles

Listing 3.11 shows how you use the bundle’s private storage area to save the command

history. The bundle activator’s start() and stop() methods also need to be modified

to invoke these methods, but these changes aren’t shown here, so please refer to the

companion code for complete implementation details.

package org.foo.shell;

import java.util.List;

public interface History {
 public List<String> get();
}

public class Activator implements BundleActivator {
 ...
 private void writeHistory(History history, BundleContext context) {
 List<String> list = history.get();
 File log = context.getDataFile("log.txt");
 if (log == null) {
 System.out.println(
 "Unable to persist history – no storage area");
 }
 if (log.exists() && !log.delete()) {
 throw new IOException("Unable to delete previous log file!");
 }
 write(list, log);
 }

 private List<String> readHistory(BundleContext context) {
 List<String> result = new ArrayList<String>();
 File log = context.getDataFile("log.txt");
 if ((log != null) && log.isFile()) {
 read(log, result);
 }
 return result;
 }
}

You use BundleContext.getDataFile() to get a File object in the bundle’s private

storage area B. The method takes a relative path as a String and returns a valid File

object in the storage area. After you get the File object, you can use it normally to cre-

ate the file, make a subdirectory, or do whatever you want. It’s possible for a frame-

work to return null when a bundle requests a file; so as you can see C, you need to

handle this possibility. This can happen because the OSGi framework was designed to

run on a variety of devices, some of which may not support a file system. For the shell,

you ignore it if there’s no file system support, because the history command is non-

critical functionality.

 If you want to retrieve a File object for the root directory of your bundle’s storage

area, you can call getDataFile() with an empty string. Your bundle is responsible for

managing the content of its data area, but you don’t need to worry about cleaning up

when it’s uninstalled, because the framework takes care of this.

Listing 3.11 Bundle persistent storage example

Gets File
object

B

Handles null result when
bundle requests file

C

96 CHAPTER 3 Learning lifecycle

You could finish the history command, but let’s try to make it a little more inter-

esting by keeping track of what’s going on inside the framework. You can record

not only the issued commands, but also the impact they have on the framework.

The next section shows how you can achieve this using the framework’s event-

notification mechanism.

3.3.5 Listening for events

The OSGi framework is a dynamic execution environment. To create bundles and,

ultimately, applications that are flexible enough to not only cope with but also take

advantage of this dynamism, you need to pay attention to execution-time changes.

The lifecycle layer API provides access to a lot of information, but it isn’t easy to poll

for changes; it’s much more convenient if you can be notified when changes occur. To

make this possible, the OSGi framework supports two types of events: BundleEvents

and FrameworkEvents. The former event type reports changes in the lifecycle of bun-

dles, whereas the latter reports framework-related issues.

 You can use the normal Java listener pattern in your bundles to receive these

events. The BundleContext object has methods to register BundleListener and

FrameworkListener objects for receiving BundleEvent and FrameworkEvent notifica-

tions, respectively. The following listing shows how you implement the history

command. You record all executed commands as well as the events they cause dur-

ing execution.

package org.foo.shell;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.osgi.framework.BundleEvent;
import org.osgi.framework.BundleListener;

Listing 3.12 Bundle and framework event listener example

Plan ahead

Keep in mind that your bundle may be updated. Due to this possibility, you should

design your bundles so they properly deal with previously saved state, because

they may start with a private area from an older version of the bundle. The best ap-

proach is for your bundles to seamlessly migrate old state formats to new state

formats if possible. One tricky issue, though, is that the update lifecycle operation

may also be used to downgrade a bundle. In this case, your bundle may have diffi-

culty dealing with the newer state formats, so it’s probably best if you implement

your bundles to delete any existing state if they can’t understand it. Otherwise, you

can always uninstall the newer bundle first and then install the older version in-

stead of downgrading.

97Using the lifecycle API in your bundles

import org.osgi.framework.FrameworkEvent;
import org.osgi.framework.FrameworkListener;

public class HistoryDecorator implements Command,
 History, FrameworkListener, BundleListener {
 private final List<String> m_history =
 Collections.synchronizedList(new ArrayList<String>());
 private final Command m_next;

 public HistoryDecorator(Command next, List<String> history) {
 m_next = next;
 m_history.addAll(history);
 }

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 try {
 m_next.exec(args, out, err);
 } finally {
 m_history.add(args);
 }
 }

 public List<String> get() {
 return new ArrayList<String>(m_history);
 }

 public void frameworkEvent(FrameworkEvent event) {
 m_history.add("\tFrameworkEvent(type=" + event.getType() +
 ",bundle=" + event.getBundle() +
 ",source=" + event.getSource() +
 ",throwable=" + event.getThrowable() + ")");
 }

 public void bundleChanged(BundleEvent event) {
 m_history.add("\tBundleEvent(type=" + event.getType() +
 ",bundle=" + event.getBundle() +
 ",source=" + event.getSource() + ")");
 }
}

You use an interceptor pattern to wrap the commands so you can record the issued

commands. The wrapper also records any events in the history by implementing the

BundleListener and FrameworkListener interfaces. You maintain a list of all issued

commands and received events in the m_history member defined at B. The history

wrapper command forwards the command execution to the command C and stores it

in the history list.

 The wrapper implements the single FrameworkListener.frameworkEvent().

Here, you record the event information in the history list. The most important part of

the event is its type. Framework events are of one of the following types:

■ FrameworkEvent.STARTED—Indicates the framework has performed all initial-

ization and has finished starting up.

■ FrameworkEvent.INFO—Indicates some information of general interest in vari-

ous situations.

Defines
m_history
member

B

Forwards command
executionC

98 CHAPTER 3 Learning lifecycle

■ FrameworkEvent.WARNING—Indicates a warning. Not crucial, but may indicate a

potential error.

■ FrameworkEvent.ERROR—Indicates an error. Requires immediate attention.

■ FrameworkEvent.PACKAGES_REFRESHED—Indicates the framework has refreshed

some shared packages. We’ll discuss what this means in section 3.5.

■ FrameworkEvent.STARTLEVEL_CHANGED—Indicates the framework has changed

its start level. We’ll discuss what this means in chapter 10.

The wrapper also implements the single BundleListener.bundleChanged() method.

Here, you also record the event information in the history list. Bundle events have one

of the following types:

■ BundleEvent.INSTALLED—Indicates a bundle was installed

■ BundleEvent.RESOLVED—Indicates a bundled was resolved

■ BundleEvent.STARTED—Indicates a bundle was started

■ BundleEvent.STOPPED—Indicates a bundle was stopped

■ BundleEvent.UPDATED—Indicates a bundle was updated

■ BundleEvent.UNINSTALLED—Indicates a bundle was uninstalled

■ BundleEvent.UNRESOLVED—Indicates a bundle was unresolved

You register the listeners using the bundle context as follows:

private void addListener(BundleContext context,
 BundleListener bundleListener, FrameworkListener frameworkListener) {
 context.addBundleListener(bundleListener);
 context.addFrameworkListener(frameworkListener);
}

The example doesn’t show how to remove the listeners, which requires calls to the

removeBundleListener() and removeFrameworkListener() methods on the bundle

context. It’s not necessary to remove the listeners, because the framework will do so

automatically when the bundle is stopped; this makes sense because the bundle con-

text is no longer valid after the bundle is stopped. You only need to explicitly remove

your listeners if you want to stop listening to events while your bundle is active.

 For the most part, the framework delivers events asynchronously. It’s possible for

framework implementations to deliver them synchronously, but typically they don’t

because it complicates concurrency handling. Sometimes you need synchronous

delivery because you need to perform an action as the event is happening, so to speak.

This is possible for BundleEvents by registering a listener implementing the Synchro-

nousBundleListener interface instead of BundleListener. The two interfaces look

the same, but the framework delivers events synchronously to SynchronousBundle-

Listeners, meaning the listener is notified during the processing of the event. Syn-

chronous bundle listeners are processed before normal bundle listeners. This allows

you to take action when a certain operation is triggered; for example, you can give

permissions to a bundle at the moment it’s installed. The following event types are

only sent to SynchronousBundleListeners:

99Using the lifecycle API in your bundles

■ BundleEvent.STARTING—Indicates a bundle is about to be started

■ BundleEvent.STOPPING—Indicates a bundle is about to be stopped

Synchronous bundle listeners are sometimes necessary (as you’ll see in the paint

example in the next section), but should be used with caution. They can lead to con-

currency issues if you try to do too much in the callback; as always, keep your callbacks

as short and simple as possible and don’t call foreign code while holding a lock. In all

other cases, the thread invoking the listener callback method is undefined. Events

become much more important when you start to write more sophisticated bundles

that take full advantage of the bundle lifecycle.

3.3.6 Bundle suicide

We’ve mentioned it numerous times: a bundle isn’t supposed to change its own state.

But what if a bundle wants to change its own state? Good question. This is one of the

more complicated aspects of the lifecycle layer, and there are potentially negative

issues involved.

 The central issue is that if a bundle stops itself, it finds itself in a state it shouldn’t

be in. Its BundleActivator.stop() method has been invoked, which means its bun-

dle context is no longer valid. Additionally, the framework has cleaned up its book-

keeping for the bundle and has released any framework facilities it was using, such as

unregistering all of its event listeners. The situation is even worse if a bundle tries to

uninstall itself, because the framework will likely release its class loader. In short, the

bundle is in a hostile environment, and it may not be able to function properly.

 Because its bundle context is no longer valid, a stopped bundle can no longer use

the functionality provided by the framework. Most method calls on an invalid bundle

context will throw IllegalStateExceptions. Even if the bundle’s class loader is

released, this may not pose a serious issue if the bundle doesn’t need any new classes,

because the class loader won’t be garbage collected until the bundle stops using it. But

you’re not guaranteed to be able to load new classes if the bundle was uninstalled. In

this case, the framework may have closed the JAR file associated with the bundle. Already-

loaded classes continue to load, but all bets are off when attempting to load new classes.

 Depending on your bundle, you may run into other issues too. If your bundle cre-

ates and uses threads, it’s typically a good idea for it to wait for all of its threads to

complete when its BundleActivator.stop() method is called. If the bundle tries to

stop itself on its own thread, that same thread can end up in a cycle waiting for other

sibling threads to complete. In the end, the thread waits forever. For example, the sim-

ple shell uses a thread to listen for telnet connections and then uses secondary

threads to execute the commands issued on those connections. If one of the second-

ary threads attempts to stop the shell bundle itself, it ends up waiting in the shell bun-

dle’s BundleActivator.stop() method for the connection thread to stop all of the

secondary threads. Because the calling thread is one of the secondary threads, it’ll

end up waiting forever for the connection thread to complete. You have to be careful

of these types of situations, and they’re not always obvious.

100 CHAPTER 3 Learning lifecycle

 Under normal circumstances, you shouldn’t try to stop, uninstall, or update your

own bundle. OK—that should be enough disclaimers. Let’s look at a case where you

may need to do it anyway. We’ll use the shell as an example, because it provides a

means to update bundles, and it may need to update itself. What do you have to do to

allow a user to update the shell bundle via the shell command line? You must do two

things to be safe:

1 Use a new thread when you stop, update, or uninstall your own bundle.

2 Do nothing in the new thread after calling stop, update, or uninstall.

You need to do this to prevent yourself from waiting forever for the shell thread to

return when you get stopped and to avoid the potential ugliness of the hostile envi-

ronment in which the thread will find itself. The following listing shows the changes

to the implementation of the stop command to accommodate this scenario.

package org.foo.shell;

import java.io.PrintStream;
import org.osgi.framework.Bundle;
import org.osgi.framework.BundleException;

class StopCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 Bundle bundle = getBundle(args);

 if (bundle.equals(m_context.getBundle())){
 new SelfStopThread(bundle).start();
 } else {
 bundle.stop();
 }
 }

 private static final class SelfStopThread extends Thread {
 private final Bundle m_self;

 public SelfStopThread(Bundle self) {
 m_self = self;
 }

 public void run() {
 try {
 m_self.stop();
 } catch (BundleException e) {
 // Ignore
 }
 }
 }
}

You use the BundleContext.getBundle() method to get a reference to the bundle

representation and compare it to the target bundle B. When the target is the shell

Listing 3.13 Example of how a bundle can stop itself

Gets reference to
bundle representationB

Executes
Bundle.stop()

C

101Dynamically extending the paint program

bundle, you need to stop it using a different thread. For this reason, you create and

start a new thread of type SelfStopThread, which executes the Bundle.stop()

method C. There’s one final point to note in this example: you change the behavior

of stopping a bundle in this case from synchronous to asynchronous. Ultimately, this

shouldn’t matter much, because the bundle will be stopped anyway.

 You should also modify the implementation of the update and uninstall com-

mands the same way. Using the shell to stop the framework (the system bundle) also

requires special consideration. Why? Because stopping the system bundle causes the

framework to stop, which stops every other bundle. This means you’ll stop your bun-

dle indirectly, so you should make sure you’re using a new thread.

 We hope you now have a good understanding of what is possible with OSGi’s lifecy-

cle layer. Next, you’ll apply this knowledge to the paint program.

3.4 Dynamically extending the paint program

Let’s look at how you can use the individual parts of the lifecycle layer to dynamically

extend the paint program. As you’ll recall from the last chapter, you first converted a

nonmodular version of the paint program into a modular one using an interface-

based programming approach for the architecture. This is great because you can

reuse the resulting bundles with minimal extra work. The bundles containing the

shape implementations don’t need to change, except for some additional metadata in

their manifest. You just need to modify the paint program to make it possible for

shapes to be added and removed at execution time.

 The approach you’ll take is a well-known pattern in the OSGi world, called the

extender pattern. The main idea behind the extender pattern is to model dynamic exten-

sibility on the lifecycle events (installing, resolving, starting, stopping, and so on) of

other bundles. Typically, some bundle in the application acts as the extender: it listens

for bundles being started and/or stopped. When a bundle is started, the extender

probes it to see if it’s an extension bundle. The extender looks in the bundle’s manifest

(using Bundle.getHeaders()) or the bundle’s content (using Bundle.getEntry())

for specific metadata it recognizes. If the bundle does contain an extension, the exten-

sion is described by the metadata. The extender reads the metadata and performs the

necessary tasks on behalf of the extension bundle to integrate it into the application.

The extender also listens for extension bundles to be stopped, in which case it removes

the associated extensions from the application.

 That’s the general description of the extender pattern, which is shown in figure 3.16.

Let’s look at how you’ll use it in the paint program.

 You’ll treat the shape implementations as extensions. The extension metadata will

be contained in the bundle manifest and will describe which class implements the

shape contained in the shape bundle. The extender will use this information to load

the shape class from the bundle, instantiate it, and inject it into the application when

an extension bundle is activated. If a shape bundle is stopped, the extender will

remove it from the application. Figure 3.17 illustrates this usage scenario.

102 CHAPTER 3 Learning lifecycle

Let’s dive in and start converting the application. The first thing you need to do is

define the extension metadata for shape bundles to describe their shape implementa-

tion. In the following snippet, you add a couple of constants to the SimpleShape inter-

face for extension metadata property names; it’s not strictly necessary to add these,

but it’s good programming practice to use constants:

package org.foo.shape;

import java.awt.Graphics2D;
import java.awt.Point;

public interface SimpleShape {
 public static final String NAME_PROPERTY = "Extension-Name";
 public static final String ICON_PROPERTY = "Extension-Icon";
 public static final String CLASS_PROPERTY = "Extension-Class";

 public void draw(Graphics2D g2, Point p);
}

Installed
bundles

Bundle JAR

Install
bundle

Create logical
bundle

Bundle start
event

Interrogate for metadata resources, classes, and so on

Starting shape bundle resolves it
Shape
Impl

Tracker

Inject

Frame

For the reverse, if the shape bundle is stopped,
tracker removes its associated shape

Register
bundle listener

Figure 3.16 Extender pattern overview

Circle

Square

Triangle

ShapeExport
org.foo.shape

Paint

Extension-Name:
 Circle
Extension-Class:
 org.foo.shape.circle.Circle
Extension-Icon:
 org/foo/shape/circle/circle.png

Figure 3.7 Paint program

as an implementation of the

extender pattern

103Dynamically extending the paint program

The constants indicate the name of the shape, the bundle resource file for the shape’s

icon, and the bundle class name for the shape’s class. The draw() method draws the

shape on the canvas,

 From the constants, it’s fairly straightforward to see how you’ll describe a specific

shape implementation. You only need to know the name, an icon, and the class imple-

menting the shape. As an example, for the circle implementation you add the follow-

ing entries to its bundle manifest:

Extension-Name: Circle
Extension-Icon: org/foo/shape/circle/circle.png
Extension-Class: org.foo.shape.circle.Circle

The name is just a string, and the icon

and class refer to a resource file and a

class inside the bundle JAR file, respec-

tively. You add similar metadata to the

manifests of all shape implementation

bundles, which converts them all to

extensions. Next, you need to tweak the

architecture of the paint program to

make it cope with dynamic addition and

removal of shapes. Figure 3.18 captures

the updated design.

 Comparing the new design to the

original, you add two new classes: Shape-

Tracker and DefaultShape. They help

you dynamically adapt the paint frame to

deal with SimpleShape implementations

dynamically appearing and disappearing. In a nutshell, the ShapeTracker is used to

track when extension bundles start or stop, in which case it adds or removes Default-

Shapes to/from the PaintFrame, respectively.

 The concrete implementation of the ShapeTracker is a subclass of another class,

called BundleTracker. The latter class is a generic class for tracking when bundles are

started or stopped. Because BundleTracker is somewhat long, we’ll divide it across

multiple listings; the first part is shown next.

package org.foo.paint;

import java.util.*;
import org.osgi.framework.*;

public abstract class BundleTracker {
 final Set m_bundleSet = new HashSet();
 final BundleContext m_context;
 final SynchronousBundleListener m_listener;
 boolean m_open;

Listing 3.14 BundleTracker class declaration and constructor

Shape
tracker

Paint
frame

Shape
component

Default
shape

Simple
shape

1

1

1

1

1

1

1

Circle Square
Triangle

1

Figure 3.18 Dynamic paint program class

relationships

104 CHAPTER 3 Learning lifecycle

 public BundleTracker(BundleContext context) {

 m_context = context;

 m_listener = new SynchronousBundleListener() {
 public void bundleChanged(BundleEvent evt) {

 synchronized (BundleTracker.this) {

 if (!m_open) {
 return;

 }

 if (evt.getType() == BundleEvent.STARTED) {

 if (!m_bundleSet.contains(evt.getBundle())) {
 m_bundleSet.add(evt.getBundle());

 addedBundle(evt.getBundle());

 }
 } else if (evt.getType() == BundleEvent.STOPPING) {

 if (m_bundleSet.contains(evt.getBundle())) {

 m_bundleSet.remove(evt.getBundle());
 removedBundle(evt.getBundle());

 }

 }
 }

 }

 };
 }

The bundle tracker is constructed with a BundleContext object, which is used to listen

for bundle lifecycle events. The tracker uses a SynchronousBundleListener to listen

to events because a regular BundleListener doesn’t get notified when a bundle enters

the STOPPING state, only STOPPED. You need to react on the STOPPING event instead of

the STOPPED event because it’s still possible to use the stopping bundle, which hasn’t

been stopped yet; a potential subclass might need to do this if it needed to access the

stopping bundle’s BundleContext object. The bundle listener’s single method B
makes sure the tracker is tracking bundles C. If so, for started events, it adds the asso-

ciated bundle to its bundle list D and invokes the abstract addedBundle() method.

Likewise, for stopping events, it removes the bundle from its bundle list and invokes

the abstract removedBundle() method.

 The following listing shows the next portion of the BundleTracker.

 public synchronized void open() {

 if (!m_open) {

 m_open = true;
 m_context.addBundleListener(m_listener);

 Bundle[] bundles = m_context.getBundles();

 for (int i = 0; i < bundles.length; i++) {
 if (bundles[i].getState() == ACTIVE) {

 m_bundleSet.add(bundles[i]);

 addedBundles(bundles[i]);
 }

 }

 }

Listing 3.15 Opening and using a BundleTracker

Implements bundler
listener’s method

B

Checks if tracking
bundlesC

Adds bundle
to listD

105Dynamically extending the paint program

 }

 public synchronized Bundle[] getBundles() {
 return (Bundle[]) m_bundleSet.toArray(
 new Bundle[m_bundleSet.size()]);
 }

 protected abstract void addedBundle(Bundle bundle);

 protected abstract void removedBundle(Bundle bundle);

To start a BundleTracker instance tracking bundles, you must invoke its open()

method. This methods registers a bundle event listener and processes any existing

ACTIVE bundles by adding them to its bundle list and invoking the abstract added-

Bundle() method. The getBundles() method provides access to the current list of

active bundles being tracked. Because BundleTracker is abstract, subclasses must pro-

vide implementations of addedBundle() and removedBundle() to perform custom

processing of added and removed bundles, respectively.

 The last portion of the BundleTracker is as follows.

 public synchronized void close() {
 if (m_open) {
 m_open = false;
 m_context.removeBundleListener(m_listener);
 Bundle[] bundles = (Bundle[])
 m_bundleSet.toArray(new Bundle[m_bundleSet.size()]);
 for (int i = 0; i < bundles.length; i++) {
 if (m_bundleSet.remove(bundles[i])) {
 removedBundle(bundles[i]);
 }
 }
 }
 }
}

Calling BundleTracker.close() stops it from tracking bundles. This removes its bun-

dle listener, removes each currently tracked bundle from its bundle list, and invokes

the abstract removedBundle() method.

Now that you know how the BundleTracker works, let’s return to its subclass, Shape-

Tracker. The heart of this subclass is the processBundle() method shown next, which

processes added and removed bundles.

Listing 3.16 Disposing of a BundleTracker

Standardizing bundle trackers

Tracking bundles is a useful building block. It’s so useful that the OSGi Alliance de-

cided to create a standard BundleTracker for the R4.2 specification. The R4.2

BundleTracker is more complicated than the one presented here, but it follows the

same basic principles; we’ll discuss it in chapter 15.

106 CHAPTER 3 Learning lifecycle

private void processBundle(int action, Bundle bundle) {
 Dictionary dict = bundle.getHeaders();
 String name = (String) dict.get(SimpleShape.NAME_PROPERTY);
 if (name == null) {
 return;
 }

 switch (action) {
 case ADDED:
 String iconPath = (String) dict.get(SimpleShape.ICON_PROPERTY);
 Icon icon = new ImageIcon(bundle.getResource(iconPath));
 String className = (String) dict.get(SimpleShape.CLASS_PROPERTY);
 m_frame.addShape(name, icon,
 new DefaultShape(m_context, bundle.getBundleId(), className));
 break;
 case REMOVED:
 m_frame.removeShape(name);
 break;
 }
}

ShapeTracker overrides BundleTracker’s addedBundle() and removedBundle()

abstract methods to invoke processBundle() in either case. You determine whether

the bundle is an extension by probing its manifest for the Extension-Name property B.

Any bundle without this property in its manifest is ignored. If the bundle being added

contains a shape, the code grabs the metadata from the bundle’s manifest headers and

adds the shape to the paint frame wrapped as a DefaultShape C. For the icon meta-

data, you use Bundle.getResource() to load it. If the bundle being removed contains

a shape, you remove the shape from the paint frame D.

DefaultShape, shown in listing 3.18, serves two purposes. It implements the

SimpleShape interface and is responsible for lazily creating the shape implementation

using the Extension-Class metadata. It also serves as a placeholder for the shape if

and when the shape is removed from the application. You didn’t have to deal with this

situation in the original paint program, but now shape implementations can appear

or disappear at any time when bundles are installed, started, stopped, and uninstalled.

In such situations, the DefaultShape draws a placeholder icon on the paint canvas for

any departed shape implementations.

class DefaultShape implements SimpleShape {
 private SimpleShape m_shape;
 private ImageIcon m_icon;
 private BundleContext m_context;
 private long m_bundleId;
 private String m_className;

 public DefaultShape() {}

Listing 3.17 Processing shapes in ShapeTracker

Listing 3.18 DefaultShape example

Checks
if bundle
is an
extensionB

Adds shape to
paint frame

C

Removes
shapeD

Default
constructor

107Dynamically extending the paint program

 public DefaultShape(BundleContext context, long bundleId,
 String className) {
 m_context = context;
 m_bundleId = bundleId;
 m_className = className;
 }

 public void draw(Graphics2D g2, Point p) {
 if (m_context != null) {
 try {
 if (m_shape == null) {
 Bundle bundle = m_context.getBundle(m_bundleId);
 Class clazz = bundle.loadClass(m_className);
 m_shape = (SimpleShape) clazz.newInstance();
 }
 m_shape.draw(g2, p);
 return;
 } catch (Exception ex) {}
 }

 if (m_icon == null) {
 try {
 m_icon = new ImageIcon(this.getClass().getResource(
 "underc.png"));
 } catch (Exception ex) {
 ex.printStackTrace();
 g2.setColor(Color.red);
 g2.fillRect(0, 0, 60, 60);
 return;
 }
 }
 g2.drawImage(m_icon.getImage(), 0, 0, null);
 }
}

In summary, when the paint application is started, its activator creates and opens a

ShapeTracker. This tracks STARTED and STOPPED bundle events, interrogating the asso-

ciated bundle for extension metadata. For every started extension bundle, it adds a new

DefaultShape for the bundle to the paint frame, which creates the shape implementa-

tion, if needed, using the extension metadata. When the bundle stops, the Shape-

Tracker removes the shape from the paint frame. When a drawn shape is no longer

available, the DefaultShape is used to draw a placeholder shape on the canvas instead.

If the departed shape reappears, the placeholder is removed and the real shape is

drawn on the canvas again.

 Now you have a dynamically extensible paint program, as demonstrated in sec-

tion 3.2.1. Although we didn’t show the activator for the paint program, it’s reasonably

simple and only creates the framework and shape tracker on start and disposes of them

on stop. Overall, this is a good example of how easy it is to make a modularized appli-

cation take advantage of the lifecycle layer to make it dynamically extensible. As a bonus,

you no longer need to export the implementation packages of the shape implementa-

tions. What you’re still missing at this point is a discussion about how the lifecycle and

module layers interact with each other, which we’ll get into next.

Constructor with
extension data

Creates
extension and
delegates to it
if available

Draws default
image if no
extension

108 CHAPTER 3 Learning lifecycle

3.5 Lifecycle and modularity

A two-way relationship exists between OSGi’s lifecycle and module layers. The lifecycle

layer manages which bundles are installed into the framework, which obviously

impacts how the module layer resolves dependencies among bundles. The module

layer uses the metadata in bundles to make sure all their dependencies are satisfied

before they can be used. This symbiotic relationship creates a chicken-and-egg situa-

tion when you want to use your bundles; to use a bundle you have to install it, but to

install a bundle you must have a bundle context, which are only given to bundles. This

close relationship is also obvious in how the framework resolves bundle dependencies,

especially when bundles are dynamically installed and/or removed. Let’s explore this

relationship by first looking into bundle dependency resolution.

3.5.1 Resolving bundles

The act of resolving a bundle happens at the discretion of the framework, as long as it

happens before any classes are loaded from the bundle. Often, when resolving a given

bundle, the framework ends up resolving another bundle to satisfy a dependency of the

original bundle. This can lead to cascading dependency resolution, because in order

for the framework to use a bundle to satisfy the requirements of another bundle, the

satisfying bundle too must be resolved, and so on. Because the framework resolves

dependencies when needed, it’s possible to mostly ignore transitioning bundles to the

RESOLVED state; you can start a bundle and know the framework will resolve it before

starting it, if possible. This is great compared to the standard Java way, where you can

run into missing dependencies at any point during the lifetime of your application.

 But what if you want to make sure a given bundle resolves correctly? For example,

maybe you want to know in advance whether an installed bundle can be started. In

this case, there’s a way to ask the framework to resolve the bundle directly, but it’s not

a method on Bundle like most other lifecycle operations. Instead, you use the Package

Admin Service. The Package Admin Service is represented as an interface and is

shown here:

public interface PackageAdmin {
 static final int BUNDLE_TYPE_FRAGMENT = 0x00000001;
 Bundle getBundle(Class clazz);
 Bundle[] getBundles(String symbolicName, String versionRange);
 int getBundleType(Bundle bundle);
 ExportedPackage getExportedPackage(String name);
 ExportedPackage[] getExportedPackages(Bundle bundle);
 ExportedPackage[] getExportedPackages(String name);
 Bundle[] getFragments(Bundle bundle);
 RequiredBundle[] getRequiredBundles(String symbolicName);
 Bundle[] getHosts(Bundle bundle);
 void refreshPackages(Bundle[] bundles);
 boolean resolveBundles(Bundle[] bundles);
}

You can explicitly resolve a bundle with the resolveBundles() method, which takes

an array of bundles and returns a Boolean flag indicating whether the bundles could

109Lifecycle and modularity

be resolved. The Package Admin Service can do a bit more than resolving bundles,

and it’s a fairly important part of the framework; it also supports the following opera-

tions, among others:

■ Determines which bundle owns a particular class—In rare circumstances, you may

need to know which bundle owns a particular class. You can accomplish this

with the getBundle() method, which takes a Class and returns the Bundle to

which it belongs.

■ Introspects how the framework resolves bundle dependencies—You can use the get-

ExportedPackage() family of methods to find out which bundles are import-

ing a given package, whereas other methods inspect other types of depen-

dencies we won’t talk about until chapter 5, such as getRequiredBundles()

and getFragments().

■ Refreshes the dependency resolution for bundles—Because the installed set of bundles

can evolve over time, sometimes you need to have the framework recalculate

bundle dependencies. You can do this with the refreshBundles() method.

The most important feature of the Package Admin Service isn’t the ability to resolve

bundles or introspect dependencies; it’s the ability to refresh bundle dependencies,

which is another tool needed for managing bundles. But before we get into the details

of refreshing bundles, let’s finish the discussion of explicitly resolving bundles.

 To demonstrate how to use the Package Admin Service to explicitly resolve a bun-

dle, you’ll create a new resolve command for the shell to instigate bundle resolution,

as shown next.

package org.foo.shell;

import java.io.PrintStream;
import java.util.*;
import org.osgi.framework.Bundle;
import org.osgi.service.packageadmin.PackageAdmin;

public class ResolveCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 boolean success;
 if (args == null) {
 success =
 getPackageAdminService().resolveBundles(null);
 } else {
 List<Bundle> bundles = new ArrayList<Bundle>();
 StringTokenizer tok = new StringTokenizer(args);
 while (tok.hasMoreTokens()) {
 bundles.add(getBundle(tok.nextToken()));
 }
 success = getPackageAdminService().resolveBundles(
 bundles.toArray(newBundle[bundles.size()]));

Listing 3.19 Bundle resolve command

110 CHAPTER 3 Learning lifecycle

 }
 out.println(success ? “Success” : “Failure”);
 }

 private PackageAdmin getPackageAdminService() {...}
}

We won’t discuss the details of how you obtain the Package Admin Service until the

next chapter; for now, you use the getPackageAdminService() method. If the

resolve command is executed with no arguments, you invoke resolveBundles()

with null, which causes the framework to attempt to resolve all unresolved bundles.

Otherwise, you parse the argument as a list of whitespace-separated bundle identifi-

ers. For each identifier, you get its associated Bundle object and add it to a list. After

you’ve retrieved the complete list of bundles, you pass them in as an array to

resolveBundles(). The framework attempts to resolve any unresolved bundles of

those specified.

 It’s worthwhile to understand that the framework may resolve bundles in addition

to those that were specified. The specified bundles are the root of the framework’s

resolve process; the framework will resolve any additional unresolved bundles neces-

sary to resolve the specified roots.

 Resolving a bundle is a fairly easy process, because the framework does all the hard

work for you. You’d think that’d be it. As long as your bundle’s dependencies are

resolved, you have nothing to worry about, right? It turns out the dynamic nature of

the bundle lifecycle makes this an invalid assumption. Sometimes you need to have

the framework recalculate a bundle’s dependencies. You’re probably wondering,

“Why?” We’ll tell you all about it in the next section.

3.5.2 Refreshing bundles

The lifecycle layer allows you to deploy and manage your application’s bundles. Up until

now we’ve focused on installing, resolving, and starting bundles, but there are other

interesting bundle lifecycle operations. How about updating or uninstalling a bundle?

In and of themselves, these operations are as conceptually simple as the other lifecycle

operations. We certainly understand what it means to update or uninstall a bundle. The

details are a little more complicated. When you update or uninstall a resolved bundle,

you stand a good chance of disrupting your system. This is the place where you can start

to see the impact of the framework’s dynamic lifecycle management.

 The simple case is updating or uninstalling a self-contained bundle. In this case,

the disruption is limited to the specific bundle. Even if the bundle imports packages

from other bundles, the disruption is limited to the specific bundle being updated or

uninstalled. In either case, the framework stops the bundle if it’s active. In the case of

updating, the framework updates the bundle’s content and restarts it if it was previ-

ously active. Complications arise if other bundles depend on the bundle being

updated or uninstalled. Such dependencies can cause a cascading disruption to your

application, if the dependent bundles also have bundles depending on them.

111Lifecycle and modularity

 Why do dependencies complicate the issue? Consider updating a given bundle.

Other dependent bundles have potentially loaded classes from the old version of the

bundle. They can’t just start loading classes from the new version of the bundle,

because they would see old versions of the classes they already loaded mixed with new

versions of classes loaded after the update. This would be inconsistent. In the case of

an uninstalled bundle, the situation is more dire, because you can’t pull the rug out

from under the dependent bundles.

 It’s worthwhile to limit the disruptions caused by bundle updates or uninstalls. The

framework provides such control by making updating and uninstalling bundles a two-

step process. Conceptually, the first step prepares the operation; and the second step,

called refreshing, enacts its. Refreshing recalculates the dependencies of the impacted

bundles. How does this help? It allows you to control when the changeover to the new

bundle version or removal of a bundle occurs for updates and uninstalls, respectively,

as shown in figure 3.19.

 We say this is a two-step process, but what happens in the first step? For updates,

the new bundle version is put in place, but the old version is still kept around so bun-

dles depending on it can continue loading classes from it. You may be thinking, “Does

this mean two versions of the bundle are installed at the same time?” Effectively, the

answer is, yes. And each time you perform an update without a refresh, you introduce

yet another version. For uninstalls, the bundle is removed from the installed list of

bundles, but it isn’t removed from memory. Again, the framework keeps it around so

dependent bundles can continue to load classes from it.

 For example, imagine you want to update a set of bundles. It would be fairly incon-

venient if the framework refreshed all dependent bundles after each individual

update. With this two-step approach, you can update all bundles in the set and then

trigger one refresh of the framework at the end. You can experience a similar situa-

tion if you install a bundle providing a newer version of a package. Existing resolved

bundles importing an older version of the package won’t be automatically rewired to

the new bundle unless they’re refreshed. Again, it’s nice to be able to control the

point in time when this happens. It’s a fairly common scenario when updating your

application that some of your bundles are updated, some are uninstalled, and some

are installed; so a way to control when these changes are enacted is helpful.

 You trigger a refresh by using the Package Admin Service again. To illustrate how

to use it, let’s add a refresh command to the shell, as shown next.

BundleA in
revision 1

BundleB in
revision 1

BundleB in
revision 1

BundleB in
revision 1

BundleA in
revision 1

BundleA in
revision 2

BundleA in
revision 2

Update
bundleA Refresh

Figure 3.19 Updating

and refreshing bundles is

a two-step process. Most

of the work normally takes

place in the second step

during the framework

refresh operation.

112 CHAPTER 3 Learning lifecycle

package org.foo.shell;

import java.io.PrintStream;
import java.util.*;
import org.osgi.framework.Bundle;
import org.osgi.service.packageadmin.PackageAdmin;

public class RefreshCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 if (args == null) {
 getPackageAdminService().refreshPackages(null);
 } else {
 List<Bundle> bundles = new ArrayList<Bundle>();
 StringTokenizer tok = new StringTokenizer(args);
 while (tok.hasMoreTokens()) {
 bundles.add(getBundle(tok.nextToken()));
 }
 getPackageAdminService().refreshPackages(
 bundles.toArray(new Bundle[bundles.size()]));
 }
 }

 private PackageAdmin getPackageAdminService() {...}
}

Just as in the resolve command, you rely on the magic method to get the Package

Admin Service. You use the PackageAdmin.refreshPackages() method to refresh

bundles. If no arguments are given to the command, you pass in null to the Package

Admin Service. This results in the framework refreshing all previously updated and

uninstalled bundles since the last refresh. This captures the update and uninstall cases

presented earlier, but it doesn’t help with the rewiring case. You achieve that by pass-

ing in the specific bundles you want refreshed. For this case, the refresh command

accepts an argument of whitespace-separated bundle identifiers. You parse their iden-

tifiers out of the supplied argument, retrieve their associated Bundle object, and add

them to a list to be refreshed B. You then pass in the array of bundles to refresh to

the Package Admin Service C.

 The PackageAdmin.refreshPackages() method updates or removes packages

exported by the bundles being refreshed. The method returns to the caller immedi-

ately and performs the following steps on a separate thread:

1 It computes the graph of affected dependent bundles, starting from the speci-

fied bundles (or from all updated or uninstalled bundles if null is specified).

Any bundle wired to a package currently exported by a bundle in the graph is

added to the graph. The graph is fully constructed when there is no bundle out-

side the graph wired to a bundle in the graph.

2 Each bundle in the graph in the ACTIVE state is stopped, moving it to the

RESOLVED state.

Listing 3.20 Bundle refresh command

Lists bundles to
be refreshed

B

Passes array of
bundles to Package
Admin ServiceC

113Lifecycle and modularity

3 Each bundle in the graph in the RESOLVED state, including those that were

stopped, is unresolved and moved to the INSTALLED state. This means the bun-

dles’ dependencies are no longer resolved.

4 Each bundle in the graph in the UNINSTALLED state is removed from the graph

and completely removed from the framework (is free to be garbage collected).

You’re back to a fresh starting state for the affected bundles.

5 For the remaining bundles in the graph, the framework restarts any previously

ACTIVE bundles, which resolves them and any bundles on which they depend.

6 When everything is done, the framework fires an event of type Framework-

Event.PACKAGES_REFRESHED.

As a result of these steps, it’s possible that some of the previously ACTIVE bundles

can no longer be resolved; maybe a bundle providing a required package was

uninstalled. In such cases, or for any other errors, the framework fires an event of

type FrameworkEvent.ERROR.

 The following shell session shows how you can use the resolve and refresh com-

mands in combination to manage a system:

-> install file:foo.jar
Bundle: 2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[2] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> resolve 2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[2] [RESOLVED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> refresh 2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar

Resolves
bundle

B

Transitions bundle
to INSTALLED state

C

114 CHAPTER 3 Learning lifecycle

 Symbolic-Name: org.foo.shell
[2] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo

You install a bundle and resolve it using the resolve command B, which transitions it

to the RESOLVED state. Using the refresh command C, you transition it back to the

INSTALLED state.

 At this point, you’ve achieved a lot in understanding the lifecycle layer; but before

you can finish, we need to explain some nuances about updating bundles. Let’s get to it.

3.5.3 When updating isn’t updated

One of the gotchas many people run into when updating a bundle is the fact that it

may or may not use its new classes after the update operation. We said previously

that updating a bundle is a two-step process, where the first step prepares the

operation and the second step enacts it, but this isn’t entirely accurate when you

update a bundle. The specification says the framework should enact the update

immediately, so after the update the bundle should theoretically be using its new

classes; but it doesn’t necessarily start using them immediately. In some situations,

after a bundle is updated, new classes are used; in other situations, old classes are

used. Sounds confusing, doesn’t it? It is. Why not just wait until a refresh to enact

the new revision completely?

 The answer, as you might guess, is historical. The original R1 specification defined

the update operation to update a bundle. End of story. There was no Package Admin

Service. With experience, it became clear that the specified definition of update was

insufficient. Too many details were left for framework implementations to decide,

such as when to dispose of old classes and start using new classes. This led to inconsis-

tencies, which made it difficult to manage bundle lifecycles across different frame-

work implementations. This situation resulted in the introduction of the Package

Admin Service in the R2 specification, to resolve the inconsistencies around update

once and for all. Unfortunately, the original behavior of update was left intact, due to

backward-compatibility concerns. These concerns leave you with the less-than-clean

approach to bundle update that we have today, but at least it’s fairly consistent across

framework implementations.

 Back to the issue of an updated bundle sometimes using old or new classes. As

arcane as it may be, there is a way to understand what’s going on. Whether your bun-

dle’s new classes or the old classes are used after an update depends on two factors:

■ Whether the classes are from a private package or an exported package

■ If the classes are from an exported package, whether they’re being used by

another bundle

Regarding the first factor:

■ If the classes come from a private bundle package (one that isn’t exported), the

new classes become available immediately no matter what.

115Summary

■ If they’re from an exported package, their visibility depends on whether other

bundles are using them:

– If no other bundles are using the exported packages, the new classes become

available immediately. The old versions of the classes are no longer needed.

– If any other bundles are using the exported packages, the new classes don’t

become available immediately, because the old version is still required. In

this case, the new classes aren’t made available until the PackageAdmin.

refreshPackages() method is called.

There is yet another nuance. In chapter 5, you’ll learn that bundles can also import

the same packages they export. If a bundle imports a package it exports, and the

imported package from the updated bundle matches the exported package from the

old version, the updated bundle’s import is wired to the old exported packages. This

may work out well in some cases—when you’re fixing a bug in a private package, for

example. But it can potentially lead to odd situations, because the updated bundle is

using new versions of private classes alongside old versions of exported classes. If you

need to avoid this situation, you should specify version ranges when your bundle

imports its own packages.

 If the updated bundle imports its own package, but the import doesn’t match the

old version of the exported package, you have a different situation. It’s similar to the

case where the bundle only exports the package. In this case, the new classes from the

exported packages become available immediately to the updated exporting bundle

and for future resolves of other bundles, but not to existing importer bundles, which

continue to see the old version. This situation generally requires Package-

Admin.refreshPackages() to bring the bundles back to a useful state.

 You can avoid some of these issues through interface-based programming and

bundle partitioning. For example, if you can separate shared APIs (the APIs through

which bundles interact) into interfaces, and you place those interfaces into a

separate set of packages contained in a separate bundle, you can sometimes simplify

this situation. In such a setup, both the client bundles and the bundles implement-

ing the interfaces have dependencies on the shared API bundle, but not on each

other. In other words, you limit the coupling between clients and the providers of

the functionality.

3.6 Summary

In this chapter, you’ve seen that whether your desire is to deploy the bundles needed

to execute your application or to create a sophisticated auto-adaptive system, the life-

cycle layer provides everything you need. Let’s review what you’ve learned:

■ A bundle can only be used by installing it into a running instance of the OSGi

framework.

■ The lifecycle layer API is composed of three main interfaces: BundleActivator,

BundleContext, and Bundle.

116 CHAPTER 3 Learning lifecycle

■ A BundleActivator is how a bundle hooks into the lifecycle layer to become

lifecycle aware, which allows it to gain access to all framework facilities for

inspecting and modifying the framework state at execution time.

■ The framework associates a lifecycle state with each installed bundle, and the

BundleContext and Bundle lifecycle interfaces make it possible to transition

bundles though these states at execution time.

■ Monitoring bundle lifecycle events is a form of dynamic extensibility available

in the OSGi framework based on the dynamically changing installed set of bun-

dles (also known as the extender pattern).

■ The lifecycle and module layers have a close relationship, which is witnessed

when bundles are updated and uninstalled. You use the Package Admin Service

to manage this interaction.

Now we’ll move on to the next layer of the OSGi framework: the service layer. Services

promote interface-based programming among bundles and provide another form of

dynamic extensibility.

117

Studying services

So far, you’ve seen two layers of the OSGi framework. The module layer helps you

separate an application into well-defined, reusable bundles, and the lifecycle layer

builds on the module layer to help you manage and evolve bundles over time. Now

we’ll make things even more dynamic with the third and final layer of OSGi: services.

 We’ll start this chapter with a general discussion about services to make sure

we’re all thinking about the same thing. We’ll then look at when you should (and

shouldn’t) use services and walk through an example to demonstrate the OSGi ser-

vice model. At this point, you should understand the basics, so we’ll take a closer

look at how best to handle the dynamics of OSGi services, including common pit-

falls and how to avoid them.

This chapter covers

■ Understanding what services are and why

they’re useful

■ Publishing and using services

■ Dealing with service dynamism

■ Modifying an application to use services

■ Relating services to the module and lifecycle

layers

118 CHAPTER 4 Studying services

 With these techniques in mind, you’ll update the ongoing paint program to use

services and see how the service layer relates to the module and lifecycle layers. We’ll

conclude with a review of standard OSGi framework services and tell you more about

the compendium. As you can see, we have many useful and interesting topics to cover, so

let’s get started and talk about services.

4.1 The what, why, and when of services

Before looking at OSGi services, we should first explain what we mean by a service,

because the term can mean different things to different people depending on their

background. When you know the “what,” you also need to know why and when to use

services, so we’ll get to that, too.

4.1.1 What is a service?

You may think a service is something you access across the network, like retrieving

stock quotes or searching Google. But the classical view of a service is something

much simpler: “work done for another.” This definition can easily apply to a simple

method call between two objects, because the callee is doing work for the caller.

 How does a service differ from a method call? A service implies a contract between

the provider of the service and its consumers. Consumers typically aren’t worried

about the exact implementation behind a service (or even who provides it) as long as

it follows the agreed contract, suggesting that services are to some extent substitut-

able. Using a service also involves a form of discovery or negotiation, implying that

each service has a set of identifying features (see figure 4.1).

 If you think about it, Java interfaces provide part of a contract, and Java class link-

ing is a type of service lookup because it “discovers” methods based on signatures and

class hierarchy. Different method implementations can also be substituted by chang-

ing the JAR files on the class path. So a local method call could easily be seen as a ser-

vice, although it would be even better if you could use a high-level abstraction to find

services or if there was a more dynamic way to switch between implementations at exe-

cution time. Thankfully, OSGi helps with both by recording details of the service con-

tract, such as interface names and metadata, and by providing a registry API to publish

Figure 4.1 Services follow a contract and involve some form of discovery.

119The what, why, and when of services

and discover services. You’ll hear more about this later, in section 4.2; for now, let’s

continue to look at services in general.

 You may be thinking that a Java method call in the same process can’t possibly be a

service, because it doesn’t involve a remote connection or a distributed system. In real-

ity, as you’ll see throughout this chapter, services do not have to be remote, and there

are many benefits to using a service-oriented approach in a purely local application.

4.1.2 Why use services?

The main drive behind using services is to get others to do work on your behalf, rather

than attempting to do everything yourself. This idea of delegation fits in well with many

object-oriented design techniques, such as Class-Responsibility-Collaboration (CRC)

cards.1 CRC cards are a role-playing device used by development teams to think about

what classes they need, as well as which class will be responsible for which piece of work

and how the various classes should collaborate to get work done.2 Techniques like CRC

1 Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-Oriented Thinking,” http://c2.com/
doc/oopsla89/paper.html.

2 Don Wells, “Design a Simulator for the Coffee Maker,” www.extremeprogramming.org/example/crcsim.html.

Components vs. services

When people discuss services, they often talk about components in the same con-

text, so it’s useful to consider how services and components compare and overlap.

Service-oriented design and component-oriented design are extremely complementa-

ry. The key semantic difference between these two approaches is as follows:

■ In a component-oriented approach, the architect focuses on the provider’s view.
■ In a service-oriented approach, the architect focuses on the consumer’s view.

Typically, in a component-oriented approach, the architect is focused on ensuring that

the component they provide is packaged in such a way that it makes their life easier.

You know that when it comes to packaging and deploying Java code, the code will

often be used in a range of different scenarios. For example, a stock-quote program

can be deployed as a console, GUI, or web application by combining different compo-

nents. A component design approach tries to make it as easy as possible for the ar-

chitect to select what functionality they want to deploy without hardcoding this into

their application.

This contrasts with a service-oriented approach, where the architect is focused on

supplying a function or set of functions to consumers who typically have little interest

in how the internals of the individual component are constructed, but have specific

requirements for how they want the function to behave. Examples include acid trans-

actions, low latency, and encrypted data.

You’ll see in chapters 11 and 12 that component-oriented approaches can easily be

built on top of the OSGi services model. With this in mind, let’s continue our introduc-

tion to services by considering the benefits of services.

http://c2.com/doc/oopsla89/paper.html
http://c2.com/doc/oopsla89/paper.html
www.extremeprogramming.org/example/crcsim.html

120 CHAPTER 4 Studying services

cards try to push work out to other components wherever possible, which leads to lean,

well-defined, maintainable components. Think of this like a game of pass-the-parcel

(see figure 4.2), where each developer is trying to pass parcels of work to other devel-

opers—except in this game, when the music stops, you want the smallest pile of parcels!

 A service-oriented approach also promotes

■ Less coupling between providers and consumers, so it’s easier to reuse components

■ More emphasis on interfaces (the abstract) rather than superclasses (the concrete)

■ Clear descriptions of dependencies, so you know how it all fits together

■ Support for multiple competing implementations, so you can swap parts in and out

In other words, it encourages a plug-and-play approach to software development, which

means much more flexibility during development, testing, deployment, and mainte-

nance. You don’t mind where a service comes from, as long as it does what you want. Still

not convinced? Let’s see how each of these points helps you build a better application.

LESS COUPLING

One of the most important aspects of a service is the contract. Every service needs some

form of contract—otherwise, how could a consumer find it and use it (see figure 4.3)?

The contract should include everything a consumer needs to know about the service,

but no more. Putting too much detail in a contract tightens the coupling between pro-

vider and consumer and limits the possibility of swapping in other implementations

Figure 4.2 Using CRC to place responsibilities can be like playing pass-the-parcel.

Our robot needs legs! Service contract

Interface leg

Description:
Bends at knee

[etc…]

?
=

Figure 4.3

Why you need contracts

121The what, why, and when of services

later. To put it in clothing terms, you want it nice and stretchy to give your application

room to breathe.

 A good service contract clearly and cleanly defines the boundary between major

components and helps with development and maintenance. After the contract is

defined, you can work on implementing service providers and consumers in parallel

to reduce development time, and you can use scripted or mock services to perform

early testing of key requirements. Contracts are good news for everyone—but how do

you define one in Java?

MORE EMPHASIS ON INTERFACES

Java interfaces can form part of a service con-

tract. They list the various methods that

make up a service along with expected

parameters and return types. After they’re

defined, you can begin programming

against the agreed-on set of interfaces with-

out having to wait for others to finish their

implementations (see figure 4.4). Interfaces

also have several advantages over concrete

classes. A Java class can implement several

interfaces, whereas it can only extend one

concrete class. This is essential if you want flexibility over how you implement related

services. Interfaces also provide a higher level of encapsulation because you’re forced

to put logic and state in the implementing class, not the interface.

 You could stop at this point, assemble your final application by creating the various

components with new, and wire their dependencies manually. Or you could use a

dependency injection framework to do the construction and wiring for you. If you did,

you’d have a pluggable application and all the benefits it entails, but you’d also miss out

on two other benefits of a service-oriented approach: rich metadata and the ability to

switch between implementations at execution time in response to events.

CLEAR DESCRIPTIONS OF DEPENDENCIES

Interfaces alone can’t easily capture certain characteristics of a service, such as the

quality of a particular implementation or configuration settings like supported

locales. Such details are often best recorded as metadata alongside the service inter-

face, and to do this you need some kind of framework. Semantics, which describe what

a service does, are also hard to capture. Simple semantics like pre- and post-conditions

can be recorded using metadata or may even be enforced by the service framework.

Other semantics can only be properly described in documentation, but even here

metadata can help provide a link to the relevant information.

 Think about your current application: what characteristics may you want to record

outside of classes and interfaces? To get you started, table 4.1 describes some charac-

teristics from real-world services that could be recorded as metadata.

Right leg team Body team Left leg team

Figure 4.4 Programming to interfaces means

teams can work in parallel.

122 CHAPTER 4 Studying services

As you can see, metadata can capture fine-grained information about your application

in a structured way. This is helpful when you’re assembling, supporting, and maintain-

ing an application. Recording metadata alongside a service interface also means you

can be more exact about what you need. The service framework can use this metadata

to filter out services you don’t want, without having to load and access the service itself.

 But why would you want to do this? Why not just call a method on the service to ask

if it does what you need?

SUPPORT FOR MULTIPLE COMPETING IMPLEMENTATIONS

A single Java interface can have many implementations; one may be fast but use a lot

of memory, another may be slow but conserve memory. How do you know which one

to use when they both implement the same interface? You could add a query method

to the interface that tells you more about the underlying implementation, but that

would lead to bloat and reduce maintainability. What would happen when you added

another implementation that couldn’t be characterized using the existing method?

Using a query method also means you have to find and call each service implementa-

tion before you know whether you want to use it, which isn’t efficient—especially

when you may have hundreds of potential implementations that could be loaded at

execution time.

 Because service frameworks help

you record metadata alongside services,

they can also help you query and filter

on this metadata when discovering ser-

vices. This is different from classic

dependency injection frameworks,

which look up implementations based

solely on the interfaces used at a given

dependency point. Figure 4.5 shows

how services can help you get exactly

what you want.

 We hope that, by now, you agree

that services are a good thing—but as

Table 4.1 Example characteristics of real-world services

Characteristic Why may you be interested?

Supported locales A price-checking service may only be available for certain currencies.

Transaction cost You may want to use the cheapest service, even if it takes longer.

Throughput You may want to use the fastest service, regardless of cost.

Security You may only want to use services that are digitally signed by certain

providers.

Persistence

characteristics

You may only want to use a service that guarantees to store your data

in such a way that it won’t be lost if the JVM restarts.

Dependency injection Service discovery

Metadata
color:silver
side:right

Metadata
color:gold
side:left

Leg LegLeg Leg

Figure 4.5 Simple dependency injection vs. service

discovery

123The what, why, and when of services

the saying goes, you can have too much of a good thing! How can you know when you

should use a service or when it would be better to use another approach, such as a

static factory method or simple dependency injection?

4.1.3 When to use services

The best way to decide when to use a service is to consider the benefits: less coupling,

programming to interfaces, additional metadata, and multiple implementations. If

you have a situation where any of these make sense or your current design provides

similar benefits, you should use a service.

 The most obvious place to use a service is between major components, especially if

you want to replace or upgrade those components over time without having to rewrite

other parts of the application. Similarly, anywhere you look up and choose between

implementations is another candidate for a service, because it means you can replace

your custom logic with a standard, recognized approach.

 Services can also be used as a substitute for the classic listener pattern.3 With this pat-

tern, one object offers to send events to other objects, known as listeners. The event

source provides methods to subscribe and unsubscribe listeners and is responsible for

maintaining the list of listeners. Each listener implements a known interface to

receive events and is responsible for subscribing to and unsubscribing from the event

source (see figure 4.6).

 Implementing the listener pattern involves writing a lot of code to manage and

register listeners, but how can services help? You can see a service as a more general

form of listener, because it can receive all kinds of requests, not just events. Why not

save time and get the service framework to manage listeners for you by registering

them as services?

 To find the current list of listeners, the sender queries the service framework for

matching services (see figure 4.7). You can use service metadata to further define and

filter the interesting events for a listener. In OSGi, this is known as the whiteboard

pattern; you’ll use this pattern when you update the paint example to use services in

section 4.4.

3 Brian Goetz, “Java theory and practice: Be a good (event) listener,” www.ibm.com/developerworks/java/
library/j-jtp07265/index.html.

Event source

Listener

Listeners

Subscribe/Unsubscribe

Send events

Sources

Figure 4.6 Listener pattern

www.ibm.com/developerworks/java/library/j-jtp07265/index.html
www.ibm.com/developerworks/java/library/j-jtp07265/index.html

124 CHAPTER 4 Studying services

One downside of the whiteboard pattern is that it may not be clear that listeners

should register a particular interface with the registry, but you can solve this by high-

lighting the interface in the event source’s documentation. It also introduces a depen-

dency to the service framework, which you may not want for components that you

want to reuse elsewhere. Finally, the service registry must be able to scale to large

numbers of services, for situations where you have lots of sources and listeners.

4.1.4 When not to use services

Another way to decide if you should use services is to consider when you wouldn’t want

to use them. Depending on the service framework, overhead may be involved when

calling services, so you probably don’t want to use them in performance-critical code.

That said, the overhead when calling a service in OSGi can be next to zero. You may

have a one-time start-up cost, but calling a service is then just a direct method call. You

should also consider the work required to define and maintain the service contract.

There’s no point in using a service between two tightly coupled pieces of code that are

always developed and updated in tandem (unless of course you need to keep choos-

ing between multiple implementations).

4.1.5 Still not sure?

What if you’re still not sure whether to use a service? Fortunately, you can use an

approach that makes development easier and helps you migrate to services later: pro-

gramming to interfaces. If you use interfaces, you’re already more than halfway to using

services, especially if you also take advantage of dependency injection. Of course,

interfaces can be taken to extremes; there’s no point in creating an interface for a

class if there will only ever be one implementation. But for outward-facing interaction

between components, it definitely makes sense to use interfaces wherever possible.

 What have you learned? You saw how interfaces reduce coupling and promote faster

development, regardless of whether you end up using services. You also saw how services

help capture and describe dependencies and how they can be used to switch between

different implementations. More importantly, you learned how a service-oriented

approach makes developers think more about where work should be done, rather than

lump code all in one place. And finally, we went through a whole section about services

without once mentioning remote or distributed systems.

 Is OSGi just another service model? Should we end the chapter here with an over-

view of the API and move on to other topics? No, because one aspect is unique to the

OSGi service model: services are completely dynamic.

Event source ListenerService
registry

Discover

Figure 4.7 Whiteboard pattern

125OSGi services in action

4.2 OSGi services in action

What do we mean by dynamic? After a bundle has discovered and started using a ser-

vice in OSGi, it can disappear at any time. Perhaps the bundle providing it has been

stopped or even uninstalled, or perhaps a piece of hardware has failed; whatever the

reason, you should be prepared to cope with services coming and going over time.

This is different from many other service frameworks, where after you bind to a ser-

vice it’s fixed and never changes—although it may throw a runtime exception to indi-

cate a problem.

OSGi doesn’t try to hide this dynamism: if a bundle wants to stop providing a ser-

vice, there’s little point in trying to hold it back or pretend the service still exists. This

is similar to many of the failure models used in distributed computing. Hardware

problems in particular should be acknowledged and dealt with promptly rather than

ignored. Fortunately, OSGi provides a number of techniques and utility classes to

build robust yet responsive applications on top of such fluidity; we’ll look more closely

at these in chapters 11 and 12. But before we can discuss the best way to handle

dynamic services, you first need to understand how OSGi services work at the basic

level, and to do that we need to introduce the registry.

 The OSGi framework has a centralized service registry that follows a publish-find-

bind model (see figure 4.8). To put this in the perspective of service providers and

consumers,

■ A providing bundle can publish Plain Old Java Objects (POJOs) as services.

■ A consuming bundle can find and then bind to services.

You access the OSGi service registry through the BundleContext interface, which you

saw in section 3.2.4. Back then, we looked at its lifecycle-related methods; now we’ll

look into its service-related methods, as shown in the following listing.

public interface BundleContext {
 ...

 void addServiceListener(ServiceListener listener, String filter)
 throws InvalidSyntaxException;
 void addServiceListener(ServiceListener listener);
 void removeServiceListener(ServiceListener listener);

Listing 4.1 BundleContext methods related to services

Framework

OSGi
service
registry

Bundle

Publish

Find

Find

Figure 4.8 OSGi

service registry

126 CHAPTER 4 Studying services

 ServiceRegistration registerService(
 String[] clazzes, Object service, Dictionary properties);
 ServiceRegistration registerService(
 String clazz, Object service, Dictionary properties);
 ServiceReference[] getServiceReferences(String clazz, String filter)
 throws InvalidSyntaxException;
 ServiceReference[] getAllServiceReferences(String clazz, String filter)
 throws InvalidSyntaxException;
 ServiceReference getServiceReference(String clazz);
 Object getService(ServiceReference reference);
 boolean ungetService(ServiceReference reference);

 ...
}

As long as your bundle has a valid context (that is, when it’s active), it can use services.

Let’s see how easy it is to use a bundle’s BundleContext to publish a service.

4.2.1 Publishing a service

Before you can publish a service, you need to describe it so others can find it. In other

words, you need to take details from the implemented contract and record them in

the registry. What details does OSGi need from the contract?

DEFINING A SERVICE

To publish a service in OSGi, you need to provide a single interface name (or an array

of them), the service implementation, and an optional dictionary of metadata (see fig-

ure 4.9). Here’s what you can use for a service that provides both stock listings and

stock charts for the London Stock Exchange (LSE):

String[] interfaces = new String[] {
 StockListing.class.getName(), StockChart.class.getName()};

Dictionary metadata = new Properties();
metadata.setProperty("name", "LSE");
metadata.setProperty("currency", Currency.getInstance("GBP"));
metadata.setProperty("country", "GB");

Class.getName() helps during refactoring. Note that metadata must be in the

Dictionary type and can contain any Java type.

OSGi
service
registry

ctx.registerService

serviceRegistration id

}({)LSE

Hi Lo Stock

41/4

111/2

2

18

FOO

NUL

Figure 4.9 Publishing a service that provides both stock listings and stock charts

127OSGi services in action

When everything’s ready, you can publish your service by using the bundle context:

ServiceRegistration registration =
 bundleContext.registerService(interfaces, new LSE(), metadata);

The registry returns a service registration object for the published service, which you

can use to update the service metadata or to remove the service from the registry.

NOTE Service registrations are private. They shouldn’t be shared with other
bundles, because they’re tied to the lifecycle of the publishing bundle.

The LSE implementation is a POJO. It doesn’t need to extend or implement any spe-

cific OSGi types or use any annotations; it just has to match the provided service

details. There’s no leakage of OSGi types into service implementations. You don’t even

have to use interfaces if you don’t want to—OSGi will accept services registered under

concrete class names, but this isn’t recommended.

UPDATING SERVICE METADATA

After you’ve published a service, you can change its metadata at any time by using its

service registration:

registration.setProperties(newMetadata);

This makes it easy for your service to adapt to circumstances and inform consumers

about any such changes by updating its metadata. The only pieces of metadata that

you can’t change are service.id and objectClass, which are maintained by the

framework. Other properties that have special meaning to the OSGi framework are

shown in table 4.2.

REMOVING A SERVICE

The publishing bundle can also remove a published service at any time:

registration.unregister();

Table 4.2 Standard OSGi service properties

Key Type Description

objectClass String[] Class name the service was registered under. You can’t

change it after registration.

service.id Long Unique registration sequence number, assigned by the

framework when registering the service. You can’t choose

or change it.

service.pid String Persistent (unique) service identifier, chosen by you.

service.ranking Integer Ranking used when discovering services. Defaults to 0.

Services are sorted by their ranking (highest first) and then

by their ID (lowest first). Chosen by you.

service.description String Description of the service, chosen by you.

service.vendor String Name of the vendor providing the service, chosen by you.

128 CHAPTER 4 Studying services

What happens if your bundle stops before you’ve removed all your published services?

The framework keeps track of what you’ve registered, and any services that haven’t yet

been removed when a bundle stops are automatically removed by the framework. You

don’t have to explicitly unregister a service when your bundle is stopped, although it’s

prudent to unregister before cleaning up required resources. Otherwise, someone

could attempt to use the service while you’re trying to clean it up.

 You’ve successfully published the service in only a few lines of code and without

any use of OSGi types in the service implementation. Now let’s see if it’s just as easy to

discover and use the service.

4.2.2 Finding and binding services

As with publishing, you need to take details from the service contract to discover the

right services in the registry. The simplest query takes a single interface name, which is

the main interface you expect to use as a consumer of the service:

ServiceReference reference =
 bundleContext.getServiceReference(StockListing.class.getName());

This time the registry returns a service ref-

erence, which is an indirect reference to

the discovered service (see figure 4.10).

This service reference can safely be

shared with other bundles, because it isn’t

tied to the lifecycle of the discovering

bundle. But why does the registry return

an indirect reference and not the actual

service implementation?

 To make services fully dynamic, the

registry must decouple the use of a ser-

vice from its implementation. By using an

indirect reference, it can track and con-

trol access to the service, support lazi-

ness, and tell consumers when the service

is removed.

CHOOSING THE BEST SERVICE

If multiple services match the given query, the framework chooses what it considers to

be the “best” services. It determines the best service using the ranking property men-

tioned in table 4.2, where a larger numeric value denotes a higher-ranked service. If mul-

tiple services have the same ranking, the framework chooses the service with the lowest

service identifier, also covered in table 4.2. Because the service identifier is an increasing

number assigned by the framework, lower identifiers are associated with older services.

So if multiple services have equal ranks, the framework effectively chooses the oldest ser-

vice, which guarantees some stability and provides an affinity to existing services (see fig-

ure 4.11). Note that this only applies when you use getServiceReference—if you ask

Direct method calls

ServiceReference

ctx.getService

ctx.ungetService

OSGi
service
registry

()

()

Figure 4.10 Using an OSGi service

129OSGi services in action

for multiple services using getServiceReferences, the ordering of the returned array

is undefined.

 You’ve seen how to find services based on the interfaces they provide, but what if

you want to discover services with certain properties? For example, in figure 4.12, if

you ask for any stock listing service, you get back the first one (NYSE); but what if you

want a UK-based listing? The bundle context provides another query method that

accepts a standard LDAP filter string, described in RFC 1960,4 and returns all services

matching the filter.

4 T. Howes, “A String Representation of LDAP Search Filters,” www.ietf.org/rfc/rfc1960.txt.

rank:3 rank:3 rank:2 rank:2 rank:0 rank:null rank:null rank:-1

12 3 4 567 8

rank:3

rank:3

rank:2
rank:2rank:0

rank:null

rank:null

rank:-1

1

2

3

4
5

6

7

8

Figure 4.11 OSGi service ordering (by highest service.ranking and then lowest service.id)

A quick guide to using LDAP queries

Perform attribute matching:

(name=John Smith)
(age>=20)
(age<=65)

Perform fuzzy matching:

(name~=johnsmith)

Perform wildcard matching:

(name=Jo*n*Smith*)

Determine if an attribute exists:

(name=*)

Match all the contained clauses:

(&(name=John Smith)(occupation=doctor))

Match at least one of the contained clauses:

(|(name~=John Smith)(name~=Smith John))

Negate the contained clause:

(!(name=John Smith))

www.ietf.org/rfc/rfc1960.txt

130 CHAPTER 4 Studying services

Here’s how you can find all stock listing services using the GBP currency:

ServiceReference[] references =
 bundleContext.getServiceReferences(StockListing.class.getName(),
 "(currency=GBP)");

This returns references to the two LSE services (service.ids 3 and 4 in figure 4.12).

 You can also use the objectClass property, mentioned in table 4.2, to query for

services that provide specific additional interfaces. Here, you narrow the search to

those stock listing services that use a currency of GBP and also provide a chart service:

ServiceReference[] references =
 bundleContext.getServiceReferences(StockListing.class.getName(),
 "(&(currency=GBP)(objectClass=org.example.StockChart))");

This returns only one LSE service reference (service.id 4 from figure 4.12) because

the other LSE service provides listings, but not charts.

 You can look up all sorts of service references based on your needs, but how do you

use them? You need to dereference each service reference to get the actual service

object.

USING A SERVICE

Before you can use a service, you must bind to the actual implementation from the

registry, like this:

StockListing listing =
 (StockListing) bundleContext.getService(reference);

The implementation returned is typically exactly the same POJO instance previously

registered with the registry, although the OSGi specification doesn’t prohibit the use

of proxies or wrappers.

OSGi
service
registry

ctx.getServiceReference ()

NYSE

LSE
DAX

$

£ £
€

KRX

LSE

ServiceReference

b

c

e d
f

Figure 4.12 Discovering an OSGi service

131OSGi services in action

Each time you call getService(), the registry increments a usage count so it can keep

track of who is using a particular service. To be a good OSGi citizen, you should tell

the registry when you’ve finished with a service:

bundleContext.ungetService(reference);
listing = null;

You’ve now seen how to publish simple Java POJOs as OSGi services, how they can be

discovered, and how the registry tracks their use. But if you remember one thing from

this section, it should be that services can disappear at any time. If you want to write a

robust OSGi-based application, you shouldn’t rely on services always being around or

even appearing in a particular order when starting your application. Of course, we

don’t want to scare you with all this talk of dynamism. It’s important to realize that

dynamism isn’t created or generated by OSGi—it just enables it. A service is never arbi-

trarily removed; either a bundle has decided to remove it or an agent has stopped a

bundle. You have control over how much dynamism you need to deal with, but it’s

always good to code defensively in case things change in the future or your bundles

are used in different scenarios.

Revisiting the magic method

Recall that in chapter 3, when you implemented the refresh command for the shell,

you had to use the magic getPackageAdminService() method to acquire the Pack-

age Admin Service. Now you have enough knowledge to see what was happening be-

hind the scenes:

private PackageAdmin getPackageAdminService() {
 return (PackageAdmin) m_context.getService(
 m_context.getServiceReference(
 PackageAdmin.class.getName()));
}

This method is simple—probably too simple, as you’ll find out later in section 4.3.1.

You use the BundleContext to find a service implementing the Package Admin Ser-

vice interface. This returns a service reference, which you use to get the service im-

plementation. No more magic!

Services aren’t proxies

In general in OSGi, when you’re making method calls on a service, you’re holding a

reference to the Java object supplied by the providing bundle. For this reason, you

should also remember to null variables referring to the service instance when you’re

done using it, so it can be safely garbage collected. The actual service implementa-

tion should generally never be stored in a long-lived variable such as a field; instead,

you should try to access it temporarily via the service reference and expect that the

service may go away at any time.

132 CHAPTER 4 Studying services

 What’s the best way to cope with potential dynamism? How can you get the most

from dynamic services without continual checking and rechecking? The next section

discusses potential pitfalls and recommended approaches when you’re programming

with dynamic services.

4.3 Dealing with dynamics

In the last section, we covered the basics of OSGi services, and you saw how easy it is to

publish and discover services. In this section, we’ll look more closely at the dynamics

of services and techniques to help you write robust OSGi applications. To demon-

strate, you’ll use the OSGi Log Service.

 The Log Service is a standard OSGi service, one of the so-called compendium or non-

core services. Compendium services will be covered more in section 4.6.2. For now, all

you need to know is that the Log Service provides a simple logging facade, with vari-

ous flavors of methods accepting a logging level and a message, as shown in the follow-

ing listing.

package org.osgi.service.log;

import org.osgi.framework.ServiceReference;

public interface LogService {

 public static final int LOG_ERROR = 1;
 public static final int LOG_WARNING = 2;
 public static final int LOG_INFO = 3;
 public static final int LOG_DEBUG = 4;

 public void log(int level, String message);
 public void log(int level, String message,
 Throwable exception);

 public void log(ServiceReference sr, int level, String message);
 public void log(ServiceReference sr, int level, String message,
 Throwable exception);
}

With OSGi, you can use any number of possible Log Service implementations in the

example, such as those written by OSGi framework vendors or others written by third-

party bundle vendors. To keep things simple and to help you trace what’s happening

inside the framework, you’ll use your own dummy Log Service that implements only

one method and outputs a variety of debug information about the bundles using it.

NOTE The examples in the next section are intended purely to demonstrate
the proper usage of dynamic OSGi services. To keep these explanatory code
snippets focused and to the point, they occasionally avoid using proper pro-
gramming techniques such as encapsulation. You should be able to join the
dots between the patterns we show you in these examples and real-world OO

design. If you aren’t interested in the gory details of the OSGi service API and
just want a simple, safe way to get services, skip ahead to the tracker example
(section 4.3.3) or look at the component models in chapters 11 and 12.

Listing 4.2 OSGi Log Service

133Dealing with dynamics

You picked up the basics of discovering services in section 4.2.2. In the following sec-

tion, you’ll take that knowledge and use it to look up and call the Log Service; we’ll

point out and help you solve potential problems as we go along.

4.3.1 Avoiding common pitfalls

When people start using OSGi, they often write code that looks similar to the following

listing.

public class Activator implements BundleActivator {

 LogService m_logService;

 public void start(BundleContext context) {
 ServiceReference logServiceRef =
 context.getServiceReference(LogService.class.getName());

 m_logService = (LogService) context.getService(logServiceRef);

 startTestThread();
 }

 public void stop(BundleContext context) {
 stopTestThread();
 }
}

Because you store the Log Service instance in a field, the test code can be simple:

while (Thread.currentThread() == m_logTestThread) {
 m_logService.log(LogService.LOG_INFO, "ping");
 pauseTestThread();
}

But there’s a major problem with the bundle activator. The Log Service implementa-

tion is stored directly in a field, which means the consumer won’t know when the ser-

vice is retracted by its providing bundle. It only finds out when the implementation

starts throwing exceptions after removal, when the implementation becomes unsta-

ble. This hard reference to the implementation also keeps it from being garbage col-

lected while the bundle is active, even if the providing bundle is uninstalled. To fix

this, let’s replace the Log Service field with the indirect service reference, as shown in

the following listing.

public class Activator implements BundleActivator {

 ServiceReference m_logServiceRef;
 BundleContext m_context;

 public void start(BundleContext context) {
 m_logServiceRef =
 context.getServiceReference(LogService.class.getName());

Listing 4.3 Broken lookup example—service instance stored in a field

Listing 4.4 Broken lookup example—service is only discovered on startup

Finds single best
Log Service

Starts
Log Service
test thread

Stores
instance in
field (bad!)

Stores indirect
service reference

134 CHAPTER 4 Studying services

 m_context = context;

 startTestThread();
 }

 public void stop(BundleContext context) {
 stopTestThread();
 }
}

You also need to change the test method to always dereference the service, as in the

following listing.

while (Thread.currentThread() == m_logTestThread) {
 LogService logService =
 (LogService) m_context.getService(m_logServiceRef);

 if (logService != null) {
 logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

This is slightly better, but there’s still a problem with the bundle activator. You discover

the Log Service only once in the start() method, so if there is no Log Service when

the bundle starts, the reference is always null. Similarly, if there is a Log Service at

startup, but it subsequently disappears, the reference always returns null from that

point onward. Perhaps you want this one-off check, so you can revert to another (non-

OSGi) logging approach based on what’s available at startup. But this isn’t flexible. It

would be much better if you could react to changes in the Log Service and always use

the active one.

 A simple way of reacting to potential service changes is to always look up the ser-

vice just before you want to use it, as in the following listing.

while (Thread.currentThread() == m_logTestThread) {
 ServiceReference logServiceRef =
 m_context.getServiceReference(LogService.class.getName());

 if (logServiceRef != null) {
 ((LogService) m_context.getService(logServiceRef)).log(
 LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

Listing 4.5 Broken lookup example—testing the discovered Log Service

Listing 4.6 Broken lookup example—potential race condition

Remembers
context for
later

Needs saved
bundle
contextIf null,

service was
removed

Safe to
dereference—
or is it?

135Dealing with dynamics

With this change, the bundle activator becomes trivial and just records the context:

public class Activator implements BundleActivator {
 BundleContext m_context;
 public void start(BundleContext context) {
 m_context = context;
 startTestThread();
 }
 public void stop(BundleContext context) {
 stopTestThread();
 }
}

Unfortunately, you’re still not done, because there’s a problem in the test method—can

you see what it is? Here’s a clue: remember that services can disappear at any time, and

with a multithreaded application this can even happen between single statements.

 The problem is that between the calls to getServiceReference() and get-

Service(), the Log Service could disappear. The current code assumes that when you

have a reference, you can safely dereference it immediately afterward. This is a com-

mon mistake made when starting with OSGi and an example of what’s more generally

known as a race condition in computing. Let’s make the lookup more robust by adding

a few more checks and a try-catch block, as in the following listing.

while (Thread.currentThread() == m_logTestThread) {
 ServiceReference logServiceRef =
 m_context.getServiceReference(LogService.class.getName());

 if (logServiceRef != null) {
 try {
 LogService logService =
 (LogService) m_context.getService(logServiceRef);

 if (logService != null) {
 logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 } catch (RuntimeException re) {
 alternativeLog("error in LogService " + re);
 } finally {
 m_context.ungetService(logServiceRef);
 }
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

The test method is now robust but not perfect. You react to changes in the Log Ser-

vice and fall back to other logging methods when there are problems finding or using

Listing 4.7 Correct lookup example

If null,
service was
removed

Ungets service
when not used

136 CHAPTER 4 Studying services

a service, but you can still miss Log Service implementations. For example, imagine

that a Log Service is available when you first call getServiceReference(), but it’s

removed, and a different Log Service appears before you can use the original service

reference. The getService() call returns null, and you end up not using any Log

Service, even though a valid replacement is available. This particular race condition

can’t be solved by adding checks or loops because it’s an inherent problem with the

two-stage “find-then-get” discovery process. Instead, you must use another facility pro-

vided by the service layer to avoid this problem: service listeners.

4.3.2 Listening for services

The OSGi framework supports a simple but flexible listener API for service events. We

briefly discussed the listener pattern back in section 4.1.3: one object (in this case, the

framework) offers to send events to other objects, known as listeners. For services,

there are currently three different types of event, shown in figure 4.13:

■ REGISTERED—A service has been registered and can now be used.

■ MODIFIED—Some service metadata has been modified.

■ UNREGISTERING—A service is in the process of being unregistered.

Every service listener must implement this interface in order to receive service events:

public interface ServiceListener extends EventListener {
 public void serviceChanged(ServiceEvent event);
}

How can you use such an interface in the current example? You can use it to cache

service instances on REGISTERED events and avoid the cost of repeatedly looking up

the Log Service, as you did in section 4.3.1. A simple caching implementation may go

something like the following listing.

class LogListener implements ServiceListener {
 public void serviceChanged(ServiceEvent event) {
 switch (event.getType()) {

 case ServiceEvent.REGISTERED:
 m_logService = (LogService)
 m_context.getService(event.getServiceReference());
 break;

Listing 4.8 Broken listener example—caching the latest service instance

OSGi
service
registry

OSGi
service
registry

OSGi
service
registry

ctx.registerService(...) .setProperties(...) .unregister()

Registered Modified Unregistering

regreg reg

Figure 4.13

OSGi service

events

137Dealing with dynamics

 case ServiceEvent.MODIFIED:
 break;

 case ServiceEvent.UNREGISTERING:
 m_logService = null;
 break;

 default:
 break;
 }
 }
}

It’s safe to call the getService() method during the REGISTERED event, because the

framework delivers service events synchronously using the same thread. This means

you know the service won’t disappear, at least from the perspective of the framework,

until the listener method returns. Of course, the service could still throw a runtime

exception at any time, but using getService() with a REGISTERED event always returns

a valid service instance. For the same reason, you should make sure the listener

method is relatively short and won’t block or deadlock; otherwise, you block other ser-

vice events from being processed.

REGISTERING A SERVICE LISTENER

You have the service listener, but how do you tell the framework about it? The answer

is, as usual, via the bundle context, which defines methods to add and remove service

listeners. You must also choose an LDAP filter to restrict events to services implement-

ing the Log Service; otherwise, you can end up receiving events for hundreds of differ-

ent services. The final code looks like the following listing.

public class Activator implements BundleActivator {

 BundleContext m_context;
 volatile LogService m_logService;

 public void start(BundleContext context) throws Exception {
 m_context = context;

 String filter = "(" + Constants.OBJECTCLASS + "=" +
 LogService.class.getName() + ")";

 context.addServiceListener(new LogListener(), filter);

 startTestThread();
 }

 public void stop(BundleContext context) {
 stopTestThread();
 }
}

The LDAP filter matches LogService instances, and you add a listener for future Log

Service events. Notice that you don’t explicitly remove the service listener when you

stop the bundle. This is because the framework keeps track of what listeners you’ve

Listing 4.9 Broken listener example—existing services aren’t seen

Nothing
to do

Stops using service
(see a problem?)

Threads
access field

138 CHAPTER 4 Studying services

added and automatically cleans up any remaining listeners when the bundle stops.

You saw something similar in section 4.2.1 when the framework removed any leftover

service registrations.

 The test method is now simple, because you’re caching the service instance:

while (Thread.currentThread() == m_logTestThread) {
 if (m_logService != null) {
 m_logService.log(LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }
 pauseTestThread();
}

This looks much better, doesn’t it? You don’t have to do as much checking or polling

of the service registry. Instead, you wait for the registry to tell you whenever a Log Ser-

vice appears or disappears. Unfortunately, this code sample has a number of prob-

lems. First, there are some minor issues with the test method; you don’t catch runtime

exceptions when using the service; and because of the caching, you don’t unget the

service when you’re not using it. The cached Log Service could also change between

the non-null test and when you use it.

 More importantly, there’s a significant error in the listener code, because it doesn’t

check that the UNREGISTERING service is the same as the Log Service currently being

used. Imagine that two Log Services (A and B) are available at the same time, where

the test method uses Log Service A. If Log Service B is unregistered, the listener will

clear the cached instance even though Log Service A is still available. Similarly, as new

Log Services are registered, the listener will always choose the newest service regard-

less of whether it has a better service ranking. To make sure you use the highest-

ranked service and to be able to switch to alternative implementations whenever a ser-

vice is removed, you must keep track of the current set of active service references—

not just a single instance.

 The bundle activator in listing 4.9 has another subtle error, which you may not

have noticed at first. This error may never show up in practice, depending on how you

start your application. Think back to how listeners work: the event source sends events

to the listener as they occur. What about events that happened in the past? What

about already-published services? In this case, the service listener doesn’t receive

events that happened in the dim and distant past and remains oblivious to existing

Log Service implementations.

FIXING THE SERVICE LISTENER

You have two problems to fix: you must keep track of the active set of Log Services and

take into account already-registered Log Services. The first problem requires the use

of a sorted set and relies on the natural ordering of service references, as defined in

the specification of the compareTo() method. You’ll also add a helper method to

decide which Log Service to pass to the client, based on the cached set of active ser-

vice references; see the following listing.

139Dealing with dynamics

class LogListener implements ServiceListener {

 SortedSet<ServiceReference> m_logServiceRefs =
 new TreeSet<ServiceReference>();

 public synchronized void serviceChanged(ServiceEvent event) {
 switch (event.getType()) {
 case ServiceEvent.REGISTERED:
 m_logServiceRefs.add(event.getServiceReference());
 break;
 case ServiceEvent.MODIFIED:
 break;
 case ServiceEvent.UNREGISTERING:
 m_logServiceRefs.remove(event.getServiceReference());
 break;
 default:
 break;
 }
 }

 public synchronized LogService getLogService() {
 if (m_logServiceRefs.size() > 0) {
 return (LogService) m_context.getService(
 m_logServiceRefs.last());
 }
 return null;
 }
}

Now the last service reference has the highest ranking.

 You can fix the second problem in the bundle activator by issuing pseudo-registration

events for each existing service, to make it look like the service has only just appeared,

as shown in the following listing.

public class Activator implements BundleActivator {

 BundleContext m_context;
 LogListener m_logListener;

 public void start(BundleContext context) throws Exception {
 m_context = context;

 m_logListener = new LogListener();

 synchronized (m_logListener) {

 String filter = "(" + Constants.OBJECTCLASS + "=" +
 LogService.class.getName() + ")";

 context.addServiceListener(m_logListener, filter);

 ServiceReference[] refs =
 context.getServiceReferences(null, filter);

 if (refs != null) {

Listing 4.10 Correct listener example—keeping track of active Log Services

Listing 4.11 Correct listener example—sending pseudo-registration events

Locks
listener before
changing state

Locks listener
before querying
state

Locks listener
before adding it

Checks for
existing services

140 CHAPTER 4 Studying services

 for (ServiceReference r : refs) {
 m_logListener.serviceChanged(
 new ServiceEvent(ServiceEvent.REGISTERED, r));
 }
 }
 }

 startTestThread();
 }

 public void stop(BundleContext context) {
 m_context.removeServiceListener(m_logListener);

 stopTestThread();
 }
}

You deliberately lock the listener before passing it to the framework, so the pseudo-

registration events are processed first. Otherwise, it would be possible to receive an

UNREGISTERING event for a service before its pseudo-registration. Only when the lis-

tener has been added do you check for existing services, to make sure you don’t miss

any intervening registrations. You could potentially end up with duplicate registra-

tions by doing the checks in this order, but that’s better than missing services. The test

method now only needs to call the helper method to get the best Log Service, as

shown in the following listing.

while (Thread.currentThread() == m_logTestThread) {
 LogService logService = m_logListener.getLogService();

 if (logService != null) {
 try {
 logService.log(LogService.LOG_INFO, "ping");
 } catch (RuntimeException re) {
 alternativeLog("error in LogService " + re);
 }
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
}

You may have noticed that the finished listener example still doesn’t unget the service

after using it; this is left as an exercise for you. Here’s a hint to get you started: think

about moving responsibility for logging into the listener. This will also help you

reduce the time between binding the service and using it.

 Service listeners reduce the need to continually poll the service registry. They let

you react to changes in services as soon as they occur and get around the inherent

race condition of the find-then-get approach. The downside of listeners is the amount

of code you need to write. Imagine having to do this for every service you want to use

and having to repeatedly test for synchronization issues. Why doesn’t OSGi provide a

Listing 4.12 Correct listener example—using the listener to get the best Log Service

Sends
pseudo-
events

141Dealing with dynamics

utility class to do all this for you—a class that has been battle hardened and tested in

many applications, that you can configure and customize as you require? It does, and

the class’s name is ServiceTracker.

4.3.3 Tracking services

The OSGi ServiceTracker class provides a safe way for you to get the benefits of service

listeners without the pain. To show how easy it can be, let’s take the bundle activator

from the last example and adapt it in the following listing to use the service tracker.

public class Activator implements BundleActivator {

 BundleContext m_context;
 ServiceTracker m_logTracker;

 public void start(BundleContext context) {
 m_context = context;

 m_logTracker = new ServiceTracker(context,
 LogService.class.getName(), null);

 m_logTracker.open();

 startTestThread();
 }

 public void stop(BundleContext context) {

 m_logTracker.close();

 stopTestThread();
 }
}

In this example, you use the basic ServiceTracker constructor that takes a bundle

context, the service type you want to track, and a customizer object. We’ll look at cus-

tomizers in a moment; for now, you don’t need any customization, so you pass null. If

you need more control over what services are tracked, there’s another constructor

that accepts a filter.

NOTE Before you can use a tracker, you must open it using the open() method
to register the underlying service listener and initialize the tracked list of ser-
vices. This is often the thing people forget to do when they first use a service
tracker, and then they wonder why they don’t see any services. Similarly, when
you’re finished with the tracker, you must close it. Although the framework
automatically removes the service listener when the bundle stops, it’s best to
explicitly call close() so that all the tracked resources can be properly cleared.

And that’s all you need to do to track instances of the Log Service—you don’t need to

write your own listener or worry about managing long lists of references. When you

need to use the Log Service, you ask the tracker for the current instance:

LogService logService = (LogService) m_logTracker.getService();

Listing 4.13 Standard tracker example

Closes
tracker

142 CHAPTER 4 Studying services

Other tracker methods get all active instances and access the underlying service refer-

ences; there’s even a method that helps you wait until a service appears. Often, a raw

service tracker is all you need, but sometimes you’ll want to extend it. Perhaps you

want to decorate a service with additional behavior, or you need to acquire or release

resources as services appear and disappear. You could extend the ServiceTracker

class, but you’d have to be careful not to break the behavior of any methods you over-

ride. Thankfully, there’s a way to extend a service tracker without subclassing it: with a

customizer object. The ServiceTrackerCustomizer interface shown here provides a

safe way to enhance a tracker by intercepting tracked service instances:

public interface ServiceTrackerCustomizer {
 public Object addingService(ServiceReference reference);
 public void modifiedService(ServiceReference reference,
 Object service);
 public void removedService(ServiceReference reference,
 Object service);
}

Like a service listener, a customizer is based on the three major events in the life of a

service: adding, modifying, and removing. The addingService() method is where

most of the customization normally occurs. The associated tracker calls this whenever

a matching service is added to the OSGi service registry. You’re free to do whatever you

want with the incoming service; you can initialize some resources or wrap it in another

object, for example. The object you return is tied to the service by the tracker and

returned wherever the tracker would normally return the service instance. If you

decide you don’t want to track a particular service instance, return null. The other

two methods in the customizer are typically used for housekeeping tasks like updating

or releasing resources.

 Suppose you want to decorate the Log Service, such as adding some text around

the log messages. The service tracker customizer may look something like the follow-

ing listing.

class LogServiceDecorator implements ServiceTrackerCustomizer {
 private final BundleContext m_context;

 public LogServiceDecorator(BundleContext context) {
 m_context = context;
 }

 public Object addingService(final ServiceReference ref) {
 return new LogService() {

 public void log(int level, String message) {
 ((LogService) m_context.getService(ref)).log(level,
 "<<" + message + ">>");
 }

 public void log(int level, String message,
 Throwable exception) {}

Listing 4.14 Customized tracker example—decorated Log Service

Wraps code
around original
Log Service

143Using services in the paint example

 public void log(ServiceReference sr, int level, String message) {}
 public void log(ServiceReference sr, int level, String message,
 Throwable exception) {}
 };
 }

 public void modifiedService(ServiceReference ref, Object service) {}

 public void removedService(ServiceReference ref, Object service) {}
}

All you have to do to decorate the Log Service is pass the customizer to the tracker:

m_logTracker = new ServiceTracker(context, LogService.class.getName(),
 new LogServiceDecorator());

Now any Log Service returned by this tracker will add angle brackets to the logged

message. This is a trivial example, but we hope you can see how powerful customizers

can be. Service tracker customizers are especially useful in separating code from OSGi-

specific interfaces, because they act as a bridge connecting your application code to

the service registry.

 You’ve seen three different ways to access OSGi services: directly through the bun-

dle context, reactively with service listeners, and indirectly using a service tracker.

Which way should you choose? If you only need to use a service intermittently and

don’t mind using the raw OSGi API, using the bundle context is probably the best

option. At the other end of the spectrum, if you need full control over service dynam-

ics and don’t mind the potential complexity, a service listener is best. In all other situ-

ations, you should use a service tracker, because it helps you handle the dynamics of

OSGi services with the least amount of effort.

Now that you know all about OSGi services and their dynamics, let’s look again at the

paint program and see where it may make sense to use services.

4.4 Using services in the paint example

You last saw the paint example back in section 3.4, where you used an extender pat-

tern to collect shapes. Why don’t you try using a service instead? A shape service

makes a lot of sense, because you can clearly define what responsibilities belong to a

What? No abstractions?

If none of these options suit you, and you prefer to use a higher-level abstraction,

such as components, this is fine too. As we mentioned at the start of this chapter,

it’s possible to build component models on top of these core APIs. This is exactly

what many people have been doing for the past few years, and several service-oriented

component frameworks are based on OSGi; we’ll discuss them in chapters 11 and 12.

But remember, all these component frameworks make subtle but important semantic

choices when mapping components to the OSGi service model. If you need to cut through

these abstractions and get to the real deal, now you know how.

144 CHAPTER 4 Studying services

shape and use metadata to describe various nonfunctional attributes like its name and

icon. Remember that the first thing to define when creating a new service is the con-

tract. What should a shape service look like?

4.4.1 Defining a shape service

Let’s use the previous interface as the basis of the new service contract—but this time,

instead of extension names, you’ll declare service property names. These names will

tell the client where to find additional metadata about the shape:

public interface SimpleShape {

 public static final String NAME_PROPERTY = "simple.shape.name";
 public static final String ICON_PROPERTY = "simple.shape.icon";

 public void draw(Graphics2D g2, Point p);
}

This isn’t much different from the interface defined in section 3.4. You can see how

easy it is to switch over to services when you’re programming with interfaces. With this

contract in hand, you now need to update each shape bundle to publish its implemen-

tation as a service, and update the paint frame bundle to track and consume these

shape services.

4.4.2 Publishing a shape service

Before you can publish a shape implementation as a service, you need a bundle con-

text. To get the bundle context, you need to add a bundle activator to each shape bun-

dle, as shown in the following listing.

public class Activator implements BundleActivator {
 private BundleContext m_context = null;

 public void start(BundleContext context) {
 m_context = context;
 Hashtable dict = new Hashtable();

 dict.put(SimpleShape.NAME_PROPERTY, "Circle");
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));

 m_context.registerService(SimpleShape.class.getName(),
 new Circle(), dict);
 }

 public void stop(BundleContext context) {}
}

You record the name and icon under their correct service properties. The shape bun-

dles will now publish their shape services when they start and remove them when they

stop. To use these shapes when painting, you need to update the paint frame bundle

so it uses services instead of bundles, as shown in figure 4.14.

Listing 4.15 Publishing a shape service

Publishes new
shape service

145Using services in the paint example

4.4.3 Tracking shape services

Remember the DefaultShape class that acted as a simple proxy to an underlying

shape bundle in section 3.4? When the referenced shape bundle was active, the

DefaultShape used its classes and resources to paint the shape. When the shape bun-

dle wasn’t active, the DefaultShape drew a placeholder image instead. You can use the

same approach with services, except that instead of a bundle identifier, you use a ser-

vice reference as shown here:

if (m_context != null) {
 try {
 if (m_shape == null) {
 m_shape = (SimpleShape) m_context.getService(m_ref);
 }
 m_shape.draw(g2, p);
 return;
 } catch (Exception ex) {}
}

This code gets the referenced shape service and draws a shape with a simple method

call. A placeholder image is drawn instead if there’s a problem.

 You can also add a dispose() method to tell the framework when you’re finished

with the service:

public void dispose() {
 if (m_shape != null) {
 m_context.ungetService(m_ref);
 m_context = null;
 m_ref = null;
 m_shape = null;
 }
}

The new DefaultShape is now based on an underlying service reference, but how do

you find such a reference? Remember the advice from section 4.3.3: you want to use

several instances of the same service and react as they appear and disappear, but you

don’t want detailed control—you need a ServiceTracker.

OSGi
service
registry

Publish Discover

Figure 4.14 Painting with services

146 CHAPTER 4 Studying services

 In the previous chapter, you used a BundleTracker to react as shape bundles came

and went. This proved to be a good design choice, because it meant the ShapeTracker

class could process shape events and trigger the necessary Swing actions. All you need

to change is the source of shape events, as shown in the following listing; they now

come from the ServiceTracker methods.

public Object addingService(ServiceReference ref) {
 SimpleShape shape = new DefaultShape(m_context, ref);
 processShapeOnEventThread(ADDED, ref, shape);
 return shape;
}

public void modifiedService(ServiceReference ref, Object svc) {
 processShapeOnEventThread(MODIFIED, ref, (SimpleShape) svc);
}

public void removedService(ServiceReference ref, Object svc) {
 processShapeOnEventThread(REMOVED, ref, (SimpleShape) svc);
 ((DefaultShape) svc).dispose();
}

The processing code also needs to use service properties rather than extension

metadata:

String name = (String) ref.getProperty(SimpleShape.NAME_PROPERTY);
Icon icon = (Icon) ref.getProperty(SimpleShape.ICON_PROPERTY);

And that’s all there is to it. You now have a service-based paint example. To see it in

action, go into the chapter04/paint-example/ directory of the companion code, type

ant to build it, and type java -jar launcher.jar bundles to run it. The fact that you

needed to change only a few files is a testament to the non-intrusiveness of OSGi ser-

vices if you already use an interface-based approach.

 We hope you can also see how easy it would be to do this in reverse and adapt a ser-

vice-based example to use extensions. Imagine being able to decide when and where

to use services in your application, without having to factor them into the initial

design. The OSGi service layer gives you that ability, and the previous layers help you

manage and control it. But how can the module and lifecycle layers help; how do they

relate to the service layer?

4.5 Relating services to modularity and lifecycle

The service layer builds on top of the module and lifecycle layers. You’ve already seen

one example, where the framework automatically unregisters services when their reg-

istering bundle stops. But the layers interact in other ways, such as providing bundle-

specific (also known as factory) services and specifying when you should unget and

unregister services, and how you should bundle up services. But let’s start with how

modularity affects what services you can see.

Listing 4.16 Sending shape events from ServiceTracker methods

Ungets service
and clears fields

147Relating services to modularity and lifecycle

4.5.1 Why can’t I see my service?

Sometimes you may ask yourself this question and wonder why, even though the OSGi

framework shows a particular service as registered, you can’t access it from your bun-

dle. The answer comes back to modularity. Because multiple versions of service inter-

face packages may be installed at any given time, the OSGi framework only shows your

bundle services using the same version. The reasoning behind this is that you should

be able to cast service instances to any of their registered interfaces without causing

a ClassCastException.

 But what if you want to query all services, regardless of what interfaces you can see?

Although this approach isn’t common, it’s useful in management scenarios where you

want to track third-party services even if they aren’t compatible with your bundle. To

support this, the OSGi framework provides a so-called All* variant of the getService-

References() method to return all matching services, regardless of whether their

interfaces are visible to the calling bundle. For example:

ServiceReference[] references =
 bundleContext.getAllServiceReferences(null, null);

This returns references to all services currently registered in the OSGi service registry.

Similarly, for service listeners there’s an All* extension of the ServiceListener inter-

face, which lets you receive all matching service events. The ServiceTracker is

the odd one out, with no All* variant—to ignore visibility, you start the tracker

with open(true).

 You’ve seen that although one bundle can see a service, another bundle with dif-

ferent imports may not. How about two bundles with the same imports? They see the

same service instances. What if you want them to see different instances—is it possible

to customize services for each consumer?

4.5.2 Can I provide a bundle-specific service?

You may have noticed that throughout this chapter, you’ve assumed that service

instances are created first and then published, discovered, and finally used. Or, to put

it another way, creation of service instances isn’t related to their use. But sometimes

you want to create services lazily or customize a service specifically for each bundle

using it. An example is the simple Log Service implementation from section 4.3. None

of the Log Service methods accept a bundle or bundle context, but you may want to

record details of the bundle logging the message. How is this possible in OSGi?

Doesn’t the registerService() method expect a fully constructed service instance?

 The OSGi framework defines a special interface to use when registering a service.

The ServiceFactory interface acts as a marker telling the OSGi framework to treat

the provided instance not as a service, but as a factory that can create service instances

on demand. The OSGi service registry uses this factory to create instances just before

they’re needed, when the consumer first attempts to use the service. A factory can

potentially create a number of instances at the same time, so it must be thread safe:

148 CHAPTER 4 Studying services

public interface ServiceFactory {
 public Object getService(Bundle bundle,
 ServiceRegistration registration);
 public void ungetService(Bundle bundle,
 ServiceRegistration registration, Object service);
}

The framework caches factory-created service instances, so a bundle requesting the

same service twice receives the same instance. This cached instance is removed only

when the bundle has completely finished with a service (that is, the number of calls to

get it match the calls to unget it), when the bundle has stopped, or when the service

factory is unregistered. Should you always unget a service after you use it, like closing

an I/O stream?

4.5.3 When should I unget a service?

You just saw that instances created from service factories are cached until the consum-

ing bundle has finished with the service. This is determined by counting the calls to

getService() compared to ungetService(). Forgetting to call unget can lead to

instances being kept around until the bundle is stopped. Similarly, agents interrogat-

ing the framework will assume the bundle is using the service when it isn’t. Should you

always unget after using a service, perhaps something like the following?

try {
 Service svc = (Service) m_context.getService(svcRef);
 if (svc != null) {
 svc.dispatch(something);
 } else {
 fallback(somethingElse);
 }
} finally {
 m_context.ungetService(svcRef);
}

This code records exactly when you use the service, but what happens if you want to

use it again and again in a short space of time? Services backed by factories will end up

creating and destroying a new instance on every call, which can be costly. You may also

want to keep the instance alive between calls if it contains session-related data. In

these circumstances, it makes more sense to get at the start of the session and unget at

the end of the session. For long-lived sessions, you still need to track the service in case

it’s removed, probably using a service tracker customizer to close the session. In all

other situations, you should unget the service when you’re finished with it.

 But what about the other side of the equation? Should bundles let the framework

unregister their services when they stop, or should they be more proactive and unreg-

ister services as soon as they don’t want to or can’t support them?

4.5.4 When should I unregister my service?

The OSGi framework does a lot of tidying up when a bundle stops—it removes listen-

ers, releases used services, and unregisters published services. It can often feel like you

149Standard services

don’t need to do anything yourself; indeed, many bundle activators have empty

stop() methods. But sometimes it’s prudent to unregister a service yourself. Perhaps

you’ve received a hardware notification and need to tell bundles not to use your ser-

vice. Perhaps you need to perform some processing before shutting down and don’t

want bundles using your service while this is going on. At times like this, remember

that you’re in control, and it’s often better to be explicit than to rely on the frame-

work to clean up after you.

 After that salutary message, let’s finish this section with a modularity topic that

has caused a lot of heated discussion on OSGi mailing lists: where to package service

interfaces.

4.5.5 Should I bundle interfaces separately?

Service interfaces are by definition decoupled from their implementations. Should

they be packaged separately in their own bundle or duplicated inside each implemen-

tation bundle? OSGi supports both options, because as long as the metadata is correct,

it can wire the various bundles together to share the same interface. But why would

you want to copy the interface inside each implementation bundle? Surely that would

lead to duplicated content.

 Think about deploying a set of services into a framework. If each service has both

an API and an implementation bundle, that doubles the number of bundles to man-

age. Putting the interface inside the implementation bundle means you need to pro-

vide only one JAR file. Similarly, users don’t have to remember to install the API—if

they have the implementation, they automatically get the API for free. This sounds

good, so why doesn’t everyone do it?

 It comes down to managing updates. Putting interfaces inside an implementation

bundle means the OSGi framework may decide to use that bundle as the provider of

the API package. If you then want to upgrade and refresh the implementation bundle,

all the consuming bundles will end up being refreshed, causing a wave of restarting

bundles. Similarly, if you decide to uninstall the implementation, the implementation

classes will be unloaded by the garbage collector only when the interface classes are

no longer being used (because they share the same class loader).

 In the end, there’s no single right answer. Each choice has consequences you

should be aware of. Just as with other topics we’ve discussed—service visibility, service

factories, and using unget and unregister—you need to know the possibilities to make

an informed choice. We’ll come back to this topic in the next chapter, because pack-

aging service interfaces with the implementation bundle also requires you to define

the bundle metadata a little differently. Whatever you decide, we can all agree that ser-

vices are an important feature of OSGi.

4.6 Standard services

Services are such an important feature that they’re used throughout the OSGi speci-

fication. By using services to extend the framework, the core API can be kept lean

150 CHAPTER 4 Studying services

and clean. Almost all extensions to OSGi have been specified as optional add-on ser-

vices without requiring any changes to the core specification. These standard OSGi

services are divided into two categories: core and compendium. We’ll take a quick

look at some of the core and compendium services in the next two subsections (see

table 4.3).

4.6.1 Core services

The following core services are generally implemented by the OSGi framework itself,

because they’re intimately tied to framework internals.

PACKAGE ADMIN SERVICE

The OSGi Package Admin Service, which we discussed in chapter 3, provides a selec-

tion of methods to discover details about exported packages and the bundles that

export and/or import them. You can use this service to trace dependencies between

bundles at execution time, which can help when upgrading because you can see what

bundles may be affected by the update. The Package Admin Service also provides

methods to refresh exported packages, which may have been removed or updated

since the last refresh, and to explicitly resolve specific bundles.

START LEVEL SERVICE

The OSGi Start Level Service lets you programmatically query and set the start level for

individual bundles as well as the framework itself, which allows you to control the rela-

tive order of bundle activation. You can use start levels to deploy an application or roll

out a significant update in controlled stages. We’ll discuss this more in chapter 10.

URL HANDLERS SERVICE

The OSGi URL Handlers Service adds a level of dynamism to the standard Java URL

process. The Java specification unfortunately only allows one URLStreamHandler-

Factory to be set during the lifetime of a JVM, so the framework attempts to set its

own implementation at startup. If this is successful, this factory dynamically provides

Table 4.3 Standard OSGi services covered in this section

Service Type Description

Package Admin Core Manages bundle updates and discovers who exports what

Start Level Core Queries and controls framework and bundle start levels

URL Handlers Core Handles dynamic URL streams

Permission Admin Core Manages bundle and service permissions

HTTP Compendium Puts simple servlets and resources onto the web

Event Admin Compendium Provides a topic-based publish-subscribe event model

Configuration Admin Compendium Manages and persists configuration data

User Admin Compendium Performs role-based authentication and authorization

151Standard services

URL stream handlers and content handlers, based on implementations registered with

the OSGi service registry.

(CONDITIONAL) PERMISSION ADMIN SERVICE

Two OSGi services deal with permissions: the Permission Admin Service, which deals

with permissions granted to specific bundles, and the Conditional Permission Admin

Service, which provides a more general-purpose and fine-grained permission model

based on conditions. Both of these services build on the standard Java 2 security archi-

tecture. We’ll discuss security more in chapter 14.

 You now know which core services you can expect to see in an OSGi framework, but

what about the non-core compendium services? What sort of capabilities do they

cover?

4.6.2 Compendium services

In addition to the core services, the OSGi Alliance defines a set of non-core standard

services called the compendium services. Whereas the core services are typically avail-

able by default in a running OSGi framework, the compendium services aren’t. Keep-

ing with the desire for modularity, you wouldn’t want them to be included by default

because this would lead to bloated systems. Instead, these services are provided as sep-

arate bundles by framework implementers or other third parties and typically work on

all frameworks.

 You’ve already seen one example of a compendium service: the Log Service from

section 4.3, which provides a simple logging API. This is one of the better-known com-

pendium services. Let’s take a brief look at other popular examples.

HTTP SERVICE

The OSGi HTTP Service supports registration of servlets and resources under named

aliases. These aliases are matched against incoming URI requests, and the relevant

servlet or resource is used to construct the reply. You can authenticate incoming

requests using standard HTTP/HTTPS, the OSGi User Admin Service, or your own cus-

tom approach. The current HTTP Service is based on version 2.1 of the servlet specifi-

cation,5 which means it doesn’t cover servlet filters, event listeners, or JSPs. Later

versions of the HTTP Service specification should address this, and some implementa-

tions already support these additional features.6 We’ll talk more about the HTTP Ser-

vice and OSGi web applications in chapter 15.

EVENT ADMIN SERVICE

The OSGi Event Admin Service provides a basic publish-subscribe event model. Each

event consists of a topic, which is basically a semistructured string, and a set of proper-

ties. Event handlers are registered as services and can use metadata to describe which

topics and properties they’re interested in. Events can be sent synchronously or asyn-

chronously and are delivered to matching event handlers by using the whiteboard

5 http://java.sun.com/products/servlet/2.1/servlet-2.1.pdf.
6 For example, Pax Web: http://wiki.ops4j.org/display/paxweb.

http://java.sun.com/products/servlet/2.1/servlet-2.1.pdf
http://wiki.ops4j.org/display/paxweb

152 CHAPTER 4 Studying services

pattern, which we discussed in section 4.1.3. Other types of OSGi events (like frame-

work, bundle, service, and log events) are mapped and republished by the Event

Admin Service implementation.

CONFIGURATION ADMIN SERVICE

The OSGi Configuration Admin Service delivers configuration data to those services

with persistent identifiers (service.pid) that implement the ManagedService inter-

face—or ManagedServiceFactory, if they want to create a new service instance per

configuration. These so-called configuration targets accept configuration data in the

form of a dictionary of properties. Management bundles, which have been granted

permission to configure services, can use the Configuration Admin Service to initial-

ize and update configurations for other bundles. Nonmanagement bundles can only

update their own configurations. The Configuration Admin Service is pluggable and

can be extended by registering implementations of the ConfigurationPlugin inter-

face with the OSGi service registry. Chapter 9 provides detailed examples of how to

supply and consume configuration data.

USER ADMIN SERVICE

The OSGi User Admin Service provides a role-based model for authentication

(checking credentials) and authorization (checking access rights). An authenticat-

ing bundle uses the User Admin Service to prepopulate the required roles, groups,

and users along with identifying properties and credentials. This bundle can query

the User Admin Service at a later date to find users, check their credentials, and con-

firm their authorized roles. It can then decide how to proceed based on the results

of these checks.

 This is a short sample of the compendium services; you can find a complete table

in appendix B. You can also read detailed specifications of each service in OSGi Service

Platform Service Compendium.7

4.7 Summary

That was a lot of information to digest, so don’t worry if you got a bit woozy. Let’s sum-

marize this chapter:

■ A service is “work done for another.”

■ Service contracts define responsibilities and match consumers with providers.

■ Services encourage a relaxed, pluggable, interface-based approach to

programming.

■ You don’t need to care where a service comes from as long as it meets the contract.

■ The best place to use services is between replaceable components.

■ Think carefully before using services in tightly coupled or high-performance

code.

■ Services can replace the listener pattern with a much simpler whiteboard pattern.

7 OSGi Alliance, OSGi Service Platform Service Compendium (2009), www.osgi.org/download/r4v42/r4.cmpn.pdf

www.osgi.org/download/r4v42/r4.cmpn.pdf

153Summary

■ OSGi services use a publish-find-bind model.

■ OSGi services are truly dynamic and can appear or disappear at any time.

■ The easiest and safest approach is to use the OSGi ServiceTracker utility class.

■ For higher-level service abstractions, consider the component models in chap-

ters 11 and 12.

■ OSGi services build on and interact with the previous module and lifecycle layers.

■ OSGi defines core framework services and additional compendium services.

Services aren’t limited to distributed or remote applications. There’s a huge benefit to

applying a service-oriented design to a purely local, single-JVM application, and we

hope you get the opportunity to experience this in your next project.

154

Delving deeper
 into modularity

In the preceding chapters, we covered a myriad of details about the three layers of

the OSGi framework. Believe it or not, we didn’t cover everything. Instead, we

focused on explaining the common specification features, best practices, and

framework behavior necessary to get you started with OSGi technology. Depending

on the project, the aforementioned features and best practices may not be suffi-

cient. This can be especially true when it comes to legacy situations, where you’re

not able to make sweeping changes to your existing code base. Sometimes the

clean theory of modularity conflicts with the messiness of reality, so occasionally

compromises are needed to get things moving or to meet objectives.

This chapter covers

■ Exploring advanced aspects of exporting packages

■ Importing optional or unknown packages

■ Requiring bundles instead of packages

■ Splitting bundles into fragments

■ Dealing with platform dependencies and native code

155Managing your exports

 In this chapter, we’ll investigate more aspects of OSGi’s module layer. We’ll look

into simple features, such as making imported packages a little more flexible, and into

more complicated ones, such as splitting Java packages across multiple bundles or

breaking a single bundle into pieces. You probably won’t need to use most of the fea-

tures described in this chapter as often as the preceding ones; if you do, you should

review your design, because it may not be sufficiently modular. With that said, it’s

worthwhile to be aware of these advanced features of the OSGi module layer and the

circumstances under which they’re useful. To assist in this endeavor, we’ll introduce

use cases and examples to help you understand when and how to apply them.

 This chapter isn’t strictly necessary for understanding subsequent chapters, so feel

free to postpone reading it until later. Otherwise, let’s dig in.

5.1 Managing your exports

From what you’ve learned so far, exporting a package from a bundle is fairly simple:

include it in the Export-Package header, and potentially include some attributes.

This doesn’t cover all the details of exporting packages. In the following subsections,

we’ll discuss other aspects, like importing exported packages, implicit attributes, man-

datory attributes, class filtering, and duplicate exports.

5.1.1 Importing your exports

In chapter 2, you learned how Export-Package exposes internal bundle classes and

how Import-Package makes external classes visible to internal bundle classes. This

seems to be a nice division of labor between the two. You may even assume the two are

mutually exclusive. In other words, you may assume a bundle exporting a given pack-

age can’t import it also and vice versa. In many module systems, this would be a rea-

sonable assumption, but for OSGi it’s incorrect. A bundle importing a package it

exports is a special case in OSGi, but what exactly does it mean? The answer to this

question is both philosophical and technical.

 The original vision of the OSGi service platform was to create a lightweight execu-

tion environment where dynamically downloaded bundles collaborate. In an effort to

meet the “lightweight” aspect of this vision, these bundles collaborated by sharing

direct references to service objects. Using direct references means that bundles collab-

orate via normal method calls, which is lightweight. As a byproduct of using direct ref-

erences, bundles must share the Java class associated with shared service objects. As

you’ve learned, OSGi has code sharing covered in spades with Export-Package and

Import-Package. Still, there’s an issue lurking here, so let’s examine a collaboration

scenario more closely.

 Imagine that bundle A wants to use an instance of class javax.servlet.Servlet

from bundle B. As you now understand, in their respective metadata, bundle A will

import package javax.servlet, and bundle B will export it. Makes sense. Now imag-

ine that bundle C also wants to share an instance of class javax.servlet.Servlet

with bundle A. It has two choices at this point:

156 CHAPTER 5 Delving deeper into modularity

■ Don’t include a copy of package javax.servlet in its bundle JAR file, and import

it instead.

■ Include a copy of package javax.servlet in its bundle JAR file, and also export it.

If the approach in option 1 is taken

(see figure 5.1), bundle C can’t be

used unless bundle B is present,

because it has a dependency on pack-

age javax.servlet and only bundle

B provides the package (that is, bun-

dle C isn’t self-contained).

 On the other hand, if the

approach in option 2 is taken (see fig-

ure 5.2), bundle C is self-contained,

and both B and C can be used

independently. But what happens if

you want bundle A to interact with

the javax.servlet.Servlet objects

from bundles B and C at the same time? It can’t do so. Why?

 The answer is technical, so we’ll only briefly explain it. To use a class, Java must

load it into the JVM using a class loader. The identity of a class at execution time is not

only associated with its fully qualified class name, it’s also scoped by the class loader

that loaded it. The exact same class loaded by two different class loaders is loaded

twice by the Java VM and is treated as two different and incompatible types. This

means if you try to cast an instance of one to the other, you receive a ClassCast-

Exception. Combine this knowledge with the fact that the OSGi specification requires

each bundle to have its own class loader for loading its classes, and you begin to

understand the issue with the second option we described.

 If bundles B and C both include and export a copy of the javax.servlet package,

then there are two copies of the javax.servlet.Servlet class. Bundle A can’t use

both instances, because they come from different class loaders and are incompatible.

Due to this incompatibility, the OSGi framework only allows bundle A to see one copy,

which means A can’t collaborate with both B and C at the same time.

export
javax.servlet Two copies of

javax.servlet.Servlet

A

import
javax.servlet

C

.class

export
javax.servlet

B

.class
Figure 5.2 If B and C each have a copy of the

Servlet class, A can only share Servlet
instances with either B or C because it can

only see one definition of a class.

C
B

export
javax.servlet

One copy of
javax.servlet.Servlet

import
javax.servlet

A

import
javax.servlet

.class

Figure 5.1 If bundle C imports from B, both can share

servlet instances with A because there’s only one copy

of the Servlet class; but this creates a dependency for

C on B.

157Managing your exports

It’s not important for you to completely understand these arcane details of Java class

loaders, especially because OSGi technology tries to relieve you from having to worry

about them in the first place. The important point is to understand the issues sur-

rounding the two options: option 1 results in bundle C requiring B to be present,

whereas option 2 results in bundle A not being able to see the shared object instances

from bundles B and C at the same time. This gets us to the crux of OSGi’s special case

for allowing a bundle to import a package it exports.

 Neither of the previous two options

is satisfactory. The solution devised by

the OSGi specification is to allow a bun-

dle to both import and export the same

package (see figure 5.3). In this case,

the bundle contains the given package

and its associated classes, but it may not

end up using its copy. A bundle import-

ing and exporting the same package is

offering the OSGi framework a choice; it

allows the framework to treat it as either

an importer or an exporter of the pack-

age, whichever seems appropriate at the

time the framework makes the decision.

Here’s another way to think about this:

it defines a substitutable export, where

the framework is free to substitute the bundle’s export with an imported package from

another bundle. Returning to the example, both bundles B and C can include a copy

of package javax.servlet, with both importing and exporting it, knowing they’ll work

independently or together.

 Admittedly, this may seem odd; but as the discussion here illustrates, to simplify

the OSGi vision of a collaborative environment, it’s necessary to make sure bundles

use the same class definitions. Up until the OSGi R4 specification, Export-Package

implicitly meant Import-Package, too. The R4 specification removed this implicit-

ness, making it a requirement to have a separate Import-Package to get a substitut-

able export; but this didn’t lessen the importance of doing so in cases where

collaboration is desired. An interesting side effect of this is the possibility of metadata

like this:

Export-Package: javax.servlet; version="2.4.0"
Import-Package: javax.servlet; version="2.3.0"

This isn’t a mistake. A bundle may include a copy of a given package at a specific ver-

sion but may work with a lower range. This can make the bundle useful in a wider

range of scenarios, because it can still work in an environment where an older version

of the package must be used.

export and import
javax.servlet

export and import
javax.servlet

A

import
javax.servlet

C

.class
B

.class

Figure 5.3 B and C can both export and import the

Servlet package, which makes it possible for the

framework to choose to substitute packages so all

bundles use a single class definition.

158 CHAPTER 5 Delving deeper into modularity

Next, we’ll look at implicit export attributes. Unlike importing exported packages,

which gives the framework resolver more flexibility when resolving imports, implicit

export attributes can be used to limit the framework’s options for resolving an import.

5.1.2 Implicit export attributes

Generally speaking, OSGi regards the same package exported by multiple bundles as

being completely equivalent if the package versions are the same. This is beneficial

when it comes to dependency resolution, because it’s possible for the framework to

satisfy an import for a given package from any available matching exporter. In

certain situations, you may not wish to have your bundle’s imports satisfied by an

arbitrary bundle; instead, you may want to import from a specific bundle. For

example, perhaps you patched a bug in a common open source library, and you

don’t want to risk using a nonpatched version. OSGi supports this through implicit

export attributes.

When to import your exports

The question on your mind probably is, “With all these benefits, shouldn’t I make all

my exports substitutable?” Not necessarily. If the packages in question are somehow

coupled to private (non-exported) packages, or all packages are exported, you should

only export them. Conversely, if other bundles can reasonably expect to get the pack-

ages from a different provider, you may want to import and export them. For example,

if you’re embedding and exporting common open source packages, you may want to

import them too, because other bundles may reasonably expect to get them from oth-

er providers; this is especially necessary if your other exported packages have uses
constraints on the common packages.

Importing and exporting a package is also useful when you’re using an interface-

based development approach. In interface-based programming, which is the foun-

dation of the OSGi service approach, you assume there are potentially multiple im-

plementations of well-known interfaces. You may want to package the interfaces

into their implementations to keep them self-contained. In this case, to ensure in-

teroperability, the bundles should import and export the interface packages. Be-

cause the whole point of OSGi services is to foster collaboration among bundles,

the choice between importing only or exporting and importing interface packages is

fairly common.

You do have an alternative approach: to always package your collaborative inter-

face packages into a separate bundle. By never packaging your interfaces in a bun-

dle that provides implementations, you can be sure all implementations can be

used together, because all implementations will import the shared packages. If you

follow this approach, none of your implementations will be self-contained, because

they’ll all have external dependencies on the shared packages. The trade-off is de-

ciding whether you want more bundles with dependencies among them or fewer

self-contained bundles with some content overlap. It’s all about balancing coupling

and cohesion.

159Managing your exports

 Consider the following bundle manifest snippet:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0"

This metadata exports the packages javax.servlet and javax.servlet.http with a

version attribute of the specified value. Additionally, the framework implicitly attaches

the bundle’s symbolic name and version to all packages exported by a bundle. There-

fore, the previous metadata conceptually looks like this (also shown in figure 5.4):

Bundle-ManifestVersion: 2
Bundle-SymbolicName: my.javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0";
bundle-symbolic-name="my.javax.servlet"; bundle-version="1.2.0"

Although this is conceptually what is

happening, don’t try to explicitly

specify the bundle-symbolic-name

and bundle-version attributes on

your exports. These attributes can

only be specified by the framework;

explicitly specifying them results in

an installation exception. With these

implicit attributes, it’s possible for

you limit the framework’s resolution

of an imported package to specific

bundles. For example, an importing

bundle may contain the following

snippet of metadata:

Import-Package: javax.servlet; bundle-symbolic-name="my.javax.servlet";
 bundle-version="[1.2.0,1.2.0]"

In this case, the importer limits its dependency resolution to a specific bundle by spec-

ifying its symbolic name with a precise version range. As you can imagine, this makes the

dependency a lot more brittle, but under certain circumstances this may be desired.

 You may be thinking that implicit export attributes aren’t completely necessary to

control how import dependencies are resolved. You’re correct. You can also use good

old arbitrary attributes to achieve the same effect—just make sure your attribute name

and/or value are sufficiently unique. For example, you can modify your exporting

manifest like this:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: javax.servlet
Bundle-Version: 1.2.0
Export-Package: javax.servlet; javax.servlet.http; version="2.4.0";
 my-provider-attribute="my.value.scheme"

export
javax.servlet.http
version="2.4.0"

export
javax.servlet.http
version="2.4.0"

export
javax.servlet.http
version="2.4.0"
bundle-symbolic-name="my.javax.servlet"
bundle-version="1.2.0"

export
javax.servlet.http
version="2.4.0"
bundle-symbolic-name="my.javax.servlet"
bundle-version="1.2.0"

a) b)

Figure 5.4 a) Your metadata declares explicit

attributes that are attached to your bundle’s

exported packages, but b) the framework also

implicitly attaches attributes explicitly identifying

from which bundle the exports come.

160 CHAPTER 5 Delving deeper into modularity

In this case, the importer needs to specify the corresponding attribute name and

value on its Import-Package declaration. There’s an advantage to using this approach

if you’re in a situation where you must have brittle dependencies: it’s not as brittle as

implicit attributes. You’re able to refactor your exporting bundle without impacting

importing bundles, because these attribute values aren’t tied to the containing bun-

dle. On the downside, arbitrary attributes are easier for other bundles to imitate, even

though there are no guarantees either way.

 In short, it’s best to avoid brittle dependencies, but at least now you understand

how both implicit and arbitrary export attributes allow importing bundles to have a

say in how their dependencies are resolved. Thinking about the flip side, it may also

occasionally be necessary for exporting bundles to have some control over how

importing bundles are resolved. Mandatory attributes can help you here.

5.1.3 Mandatory export attributes

The OSGi framework promotes arbitrary package sharing among bundles. As we dis-

cussed in the last subsection, in some situations this isn’t desired.

 Up until now, the importing bundle appears to be completely in control of this sit-

uation, because it declares the matching constraints for dependency resolution. For

example, consider the following metadata snippet for importing a package:

Import-Package: javax.servlet; version="[2.4.0,2.5.0)"

Such an import declaration matches any provider of javax.servlet as long as it’s in

the specified version range. Now consider the following metadata snippet for export-

ing a package in another bundle:

Export-Package: javax.servlet; version="2.4.1"; private="true"

Will the imported package match this exported package? Yes, it will, as shown in fig-

ure 5.5. The name of the attribute, private, may have tricked you into thinking other-

wise, but it’s just an arbitrary attribute and has no meaning (if it did have meaning to

the framework, it would likely be a directive, not an attribute). When it comes to

matching an import to an export, only the attributes mentioned on the import decla-

ration are compared against the attributes on the export declaration. In this case, the

import mentions the package name and version range, which match the exported

package’s name and version. The private

attribute isn’t even considered.

 In some situations, you may wish to have

a little more control in your exporting bun-

dle. For example, maybe you’re exposing a

package containing a nonpublic API, or

you’ve modified a common open source

library in an incompatible way, and you don’t

want unaware bundles to inadvertently

match your exported packages. The OSGi

specification provides this capability using

BA

import
javax.servlet
version="[2.4.0, 2.5.0)"

export
javax.servlet

version="2.4.0"
private="true"

Figure 5.5 Only attributes mentioned in the

imported package declaration impact

dependency resolution matching. Any

attributes mentioned only in the exported

package declaration are ignored.

161Managing your exports

mandatory export attributes, which you declare using the mandatory export package

directive of the Export-Package manifest header.

MANDATORY DIRECTIVE The mandatory export package directive specifies a
comma-delimited list of attribute names that any importer must match in
order to be wired to the exported package.

To see how mandatory attributes work, let’s modify the previous snippet to export its

package, like this:

Export-Package: javax.servlet; version="2.4.1"; private="true";
 mandatory:="private"

You add the mandatory directive to the

exported package to declare the private

attribute as mandatory. Any export attribute

declared as mandatory places a constraint on

importers. If the importers don’t specify a

matching value for the attribute, then they

don’t match. The export attribute can’t be

ignored, as shown in figure 5.6. The need for

mandatory attributes doesn’t arise often;

you’ll see some other use cases in the coming

sections. Until then, let’s look into another

more fine-grained mechanism that bundles

can use to control what is exposed from their

exported packages.

5.1.4 Export filtering

In chapter 1, we discussed the limitations of Java’s rules for code visibility. There’s no

way to declare module visibility, so you must use public visibility for classes accessed

across packages. This isn’t necessarily problematic if you can keep your public and pri-

vate APIs in separate packages, because bundles have the ability to hide packages by

not exporting them. Unfortunately, this isn’t always possible, and in some cases you

end up with a public implementation class inside a package exported by the bundle.

To cope with this situation, OSGi provides include and exclude export filtering direc-

tives for the Export-Package manifest header to enable fine-grained control over the

classes exposed from your bundle’s exported packages.

EXCLUDE/INCLUDE DIRECTIVES The exclude and include export package
directives specify a comma-delimited list of class names to exclude or include
from the exported package, respectively.

To see how you can use these directives, consider a hypothetical bundle containing a

package (org.foo.service) with a service interface (public class Service), an

implementation of the service (package private class ServiceImpl), and a utility class

(public class Util). In this hypothetical example, the utility class is part of the private

API. It’s included in this package due to dependencies on the service implementation

C
B

A

import
javax.servlet
version="[2.4.0, 2.5.0)"
private="true"

import
javax.servlet
version="[2.4.0, 2.5.0)"

export
javax.servlet
version="2.4.0"
private="true"
mandatory:="private"

Figure 5.6 If an export attribute is

declared as mandatory, importing bundles

must declare the attribute and matching

value; otherwise, it won’t match when the

framework resolves dependencies.

162 CHAPTER 5 Delving deeper into modularity

and is public because it’s used by other packages in the bundle. You need to export the

org.foo.service package, but you don’t want to expose the Util class. In general, you

should avoid such scenarios, but the following metadata snippet illustrates how you can

do this with export filtering:

Export-Package: org.foo.service; version="1.0.0"; exclude:="Util"

This exported package behaves like any normal exported package as far as dependency

resolution is concerned; but at execution time, the framework filters the Util class

from the package so importers can’t access it, as shown in figure 5.7. A bundle attempt-

ing to load the Util class receives a “class not found” exception. The value of the direc-

tive specifies only class names; the package name must not be specified, nor should the

.class portion of the class file name. The * character is also supported as a wildcard, so

it’s possible to exclude all classes with names matching *Impl, for example.

In some cases, it may be easier to specify which classes are allowed instead of which

ones are disallowed. For those situations, the include directive is available. It specifies

which classes the exported package should expose. The default value for the include

directive is *, and the default value for the exclude directive is an empty string. You

can also specify both the include and exclude directive for a given exported package.

A class is visible only if it’s matched by an entry in the include directive and not

matched by any entry in the exclude directive.

 You should definitely strive to separate your public and private APIs into different

packages so these mechanisms aren’t needed, but they’re here to get you out of a

tough spot when you need them. Next, we’ll move on to another mechanism to help

you manage your APIs.

5.1.5 Duplicate exports

A given bundle can see only one version of a given class while it executes. In view of

this, it’s not surprising to learn that bundles aren’t allowed to import the same pack-

age more than once. What you may find surprising is that OSGi allows a bundle to

export the same package more than once. For example, the following snippet of meta-

data is perfectly valid:

Export-Package: javax.servlet; version="2.3.0",
 javax.servlet; version="2.4.0"

public org.foo.service.Service
public org.foo.service.Util
org.foo.service.ServiceImpl

export
org.foo.service
version="1.0.0"
exclude:=Util

Util

import
org.foo.service
version="[1.0.0, 2.0.0)"

BA

Figure 5.7 Bundle A exports the org.foo.service package but excludes the Util
class. When bundle B imports the org.foo.service package from bundle A, it can only

access the public Service class.

163Managing your exports

How is it possible, you ask? The trick is that the bundle doesn’t contain two separate

sets of classes for the two exported packages. The bundle is masquerading the same

set of classes as different packages. Why would it do this? Expounding on the previous

snippet, perhaps you have unmodifiable third-party bundles with explicit dependen-

cies on javax.servlet version 2.3.0 in your application. Because version 2.4.0 is

backward compatible with version 2.3.0, you can use duplicate exports to allow your

bundle to stake a backward compatibility claim. In the end, all bundles requiring

either version of javax.servlet can resolve, but they’ll all use the same set of classes

at execution time, as shown in figure 5.8.

 As with export filtering, this is another mechanism to manage your APIs. You can

take this further and combine it with some of the other mechanisms you’ve learned

about in this section for additional API management techniques. For example, you

generally don’t want to expose your bundle’s implementation details to everyone, but

sometimes you want to expose implementation details to select bundles; this is similar

to the friend concept in C++. A friend is allowed to see implementation details, but

nonfriends aren’t. To achieve something like this in OSGi, you need to combine man-

datory export attributes, export filtering, and duplicate exports.

 To illustrate, let’s return to the example from export filtering:

Export-Package: org.foo.service; version="1.0.0"; exclude:="Util"

In this example, you excluded the Util class, because it was an implementation detail.

This is the exported package your nonfriends should use. For friends, you need to

export the package without filtering:

Export-Package: org.foo.service; version="1.0.0"; exclude:="Util",
 org.foo.service; version="1.0.0"

Now you have one export hiding the Util class and one exposing it. How do you con-

trol who gets access to what? That’s right: mandatory export attributes. The following

complete export metadata gives you what you need:

Export-Package: org.foo.service; version="1.0.0"; exclude:="Util",
 org.foo.service; version="1.0.0"; friend="true"; mandatory:="friend"

Only bundles that explicitly import your package with the friend attribute and

matching value see the Util class. Clearly, this isn’t a strong sense of friendship,

because any bundle can specify the friend attribute; but at least it requires an opt-in

import
javax.servlet
version="[2.3.0, 2.4.0)"

.class

import
javax.servlet
version="[2.4.0, 2.5.0)"

export
javax.servlet
version="2.3.0"

export
javax.servlet
version="2.4.0"

One set of classes
for javax.servlet

.class
.class

B
A

C

Figure 5.8 A bundle can export the

same package multiple times, but this

is only a form of masquerading. Only

one set of classes exists for the

package in the bundle.

164 CHAPTER 5 Delving deeper into modularity

strategy for using implementation details, signaling that the importer is willing to live

with the consequences of potential breaking changes in the future.

 Best practice dictates avoiding the friendship concept, because it weakens modular-

ity. If an API is valuable enough to export, you should consider making it a public API.

 In this section, we’ve covered additional capabilities that OSGi provides for export-

ing packages to help you deal with various uncommon use cases. Likewise, OSGi pro-

vides some additional capabilities for importing packages. In the next section, you’ll

learn how to make importing packages a little more flexible, which again can provide

some wiggle room when you’re trying to get legacy Java applications to work in an

OSGi environment.

5.2 Loosening your imports

Explicitly declared imports are great, because explicit requirements allow you to more

easily reuse code and automate dependency resolution. This gives you the benefit of

being able to detect misconfigurations early rather than receiving various class-load-

ing and class-cast exceptions at execution time. On the other hand, explicitly declared

imports are somewhat constraining, because the framework uses them to strictly con-

trol whether your code can be used; if an imported package can’t be satisfied, the

framework doesn’t allow the associated bundle to transition into the RESOLVED state.

Additionally, to import a package, you must know the name of a package in advance,

but this isn’t always possible.

 What can you do in these situations? The OSGi framework provides two different

mechanisms for dealing with such situations: optional and dynamic imports. Let’s

look into how each of these can help, as well as compare and contrast them.

5.2.1 Optional imports

Sometimes a given package imported by a bundle isn’t strictly necessary for it to func-

tion properly. Consider an imported package for a nonfunctional purpose, like log-

ging. The code in a given bundle may have been programmed to function properly

regardless of whether a logging facility is available. To express this, OSGi provides the

resolution directive for the Import-Package manifest header to mark imported

packages as optional.

RESOLUTION DIRECTIVE The resolution import package directive can have a
value of mandatory or optional to indicate whether the imported package is
required to successfully resolve the bundle.

Consider the following metadata snippet:

Import-Package: javax.servlet; version="2.4.0",
 org.osgi.service.log; version="1.3.0"; resolution:="optional"

This import statement declares dependencies on two packages, javax.servlet and

org.osgi.service.log. The dependency on the logging package is optional, as indi-

cated by the use of the resolution directive with the optional value. This means the

165Loosening your imports

bundle can be successfully resolved even if there isn’t an org.osgi.service.log pack-

age available. Attempts by the bundle to use classes from this package at execution time

result in ClassNotFoundExceptions. All imported packages have a resolution associated

with them, but the default value is mandatory. We’ll look at how this is used in practice

in section 5.2.4, but for now let’s consider the other tool in the box: dynamic imports.

5.2.2 Dynamic imports

Certain Java programming practices make it difficult to know all the packages that a

bundle may need at execution time. A prime example is locating a JDBC driver. Often

the name of the class implementing the JDBC driver is a configuration property or is

supplied by the user at execution time. Because your bundle can only see classes in

packages it imports, how can it import an unknown package? This sort of situation

arises when you deal with service provider interface (SPI) approaches, where a com-

mon interface is known in advance, but not the name of the class implementing it. To

capture this, OSGi has a separate DynamicImport-Package manifest header.

DYNAMICIMPORT-PACKAGE This header is a comma-separated list of packages
needed at execution time by internal bundle code from other bundles, but
not needed at resolve time. Because the package name may be unknown, you
can use a * wildcard (matching all packages) or a trailing .* (matching sub-
packages recursively).

You may have expected from the previous examples that dynamic imports would be

handled using an import directive rather than their own manifest header, but they’re

sufficiently different to warrant a separate header. In the most general sense, a

dynamic import is expressed in the bundle metadata like this:

DynamicImport-Package: *

This snippet dynamically imports any package needed by the bundle. When you use

the wildcard at the end of a package name (for example, org.foo.*), it matches all

subpackages recursively but doesn’t match the specified root package.

 Given the open-ended nature of dynamic imports, it’s important to understand

precisely when in the class search order of a bundle they’re employed. They appear in

the class search order as follows:

1 Requests for classes in java. packages are delegated to the parent class loader;

searching stops with either a success or failure (section 2.5.4).

2 Requests for classes in an imported package are delegated to the exporting

bundle; searching stops with either a success or failure (section 2.5.4).

3 The bundle class path is searched for the class; searching stops if found but con-

tinues to the next step with a failure (section 2.5.4).

4 If the package in question isn’t exported by the bundle, requests matching any

dynamically imported package are delegated to an exporting bundle if one is

found; searching stops with either a success or failure.

166 CHAPTER 5 Delving deeper into modularity

As you can see, dynamic imports are attempted only as a last resort. But when a

dynamically imported package is resolved and associated with the importing bundle,

it behaves just like a statically imported package. Future requests for classes in the

same package are serviced in step 2.

You can also use dynamically imported packages in a fashion more similar to optionally

imported packages by specifying additional attributes like normal imported packages

DynamicImport-Package: javax.servlet.*; version="2.4.0"

or even

DynamicImport-Package: javax.servlet; javax.servlet.http; version="2.4.0"

In the first case, all subpackages of javax.servlet of version 2.4.0 are dynamically

imported, whereas in the second only the explicitly mentioned packages are dynamically

imported. More precise declarations such as these often make less sense when you’re

using dynamic imports, because the general use case is for unknown package names.

 We apparently have two different ways to loosen bundle imports. Let’s compare

and contrast them a little more closely.

5.2.3 Optional vs. dynamic imports

There are intended use cases for both optional and dynamic imports, but the func-

tionality they provide overlaps. To better understand each, we’ll look into their simi-

larities and differences. Let’s start with the similarities.

SIMILARITIES

Both are used to express dependencies on packages that may or may not be available

at execution time. Although this is the specific use case for optional imports, it’s a

byproduct of dynamic imports. Either way, this has the following impact:

■ Optional/dynamic imports never cause a bundle to be unable to resolve.

■ Your bundle code must be prepared to catch ClassNotFoundExceptions for the

optionally/dynamically imported packages.

Only normally imported packages (that is, mandatory imported packages) impact

bundle dependency resolution. If a mandatory imported package can’t be satisfied,

the bundle can’t be resolved or used. Neither optionally nor dynamically imported

Avoid the Siren’s song

Dynamic imports are alluring to new OSGi programmers because they provide behav-

ior similar to that in standard Java programming, where everything available on the

class path is visible to the bundle. Unfortunately, this approach isn’t modular and

doesn’t allow the OSGi framework to verify whether dependencies are satisfied in ad-

vance of using a bundle. As a result, dynamically importing packages should be seen

as bad practice, except for explicitly dealing with legacy SPI approaches.

167Loosening your imports

packages are required to be present when resolving dependencies. For optional

imports, this is the whole point: they’re optional. For dynamic imports, they aren’t

necessarily optional; but because they aren’t known in advance, it’s not possible for

the framework to enforce that they exist.

 Because the packages may not exist in either case, the logical consequence is that

the code in any bundle employing either mechanism must be prepared to catch

ClassNotFoundExceptions when attempting to access classes in the optionally or

dynamically imported packages. This is typically the sort of issue the OSGi framework

tries to help you avoid with explicit dependencies; we shouldn’t be dealing with class-

loading issues as developers.

DIFFERENCES

By now, you must be wondering what the difference is between optional and dynamic

imports. It has to do with when the framework tries to resolve the dependencies.

 The framework attempts to resolve an optionally imported package once when the

associated bundle is resolved. If the import is satisfied, the bundle has access to the

package. If not, the bundle doesn’t and will never have access to the package unless

it’s re-resolved. For a dynamically imported package, the framework attempts to

resolve it at execution time when the bundle’s executing code tries to use a class from

the package.

 Further, the framework keeps trying to resolve the dynamically imported package

each time the bundle’s executing code tries to use classes from it until it’s successfully

resolved. If a bundle providing the dynamically imported package is ever deployed

into the executing framework, the framework eventually will be able to resolve it.

After the resolve is successful, the bundle is wired to the provider of the package; it

behaves like a normal import from that point forward.

 Let’s look at how you can use these mechanisms in a logging example, which is

often an optional activity for bundles.

5.2.4 Logging example

The OSGi specification defines a simple logging service that you may want to use in

your bundles, but you can’t be certain it will always be available. One way to deal with

this uncertainty is to create a simple proxy logger that uses the logging service if avail-

able or prints to standard output if not.

 Our first example uses an optional import for the org.osgi.service.log pack-

age. The simple proxy logger code is shown here.

public class Logger {
 private final BundleContext m_context;
 private final ServiceTracker m_tracker;
 public Logger(BundleContext context) {
 m_context = context;
 m_tracker = init(m_context);

Listing 5.1 Simple proxy logger using optional import

168 CHAPTER 5 Delving deeper into modularity

 }
 private ServiceTracker init(BundleContext context) {
 ServiceTracker tracker = null;
 try {
 tracker = new ServiceTracker(
 context, org.osgi.service.log.LogService.class.getName(), null);
 tracker.open();
 } catch (NoClassDefFoundError error) { }
 return tracker;
 }
 public void close() {
 if (m_tracker != null) {
 m_tracker.close();
 }
 }
 public void log(int level, String msg) {
 boolean logged = false;
 if (m_tracker != null) {
 LogService logger = (LogService) m_tracker.getService();
 if (logger != null) {
 logger.log(level, msg);
 logged = true;
 }
 }
 if (!logged) {
 System.out.println("[" + level + "] " + msg);
 }
 }
}

The proxy logger has a constructor that takes the BundleContext object to track log

services, an init() method to create a ServiceTracker for log services, a close()

method to stop tracking log services, and a log() method for logging messages. Look-

ing more closely at the init() method, you try to use the logging package to create a

ServiceTracker B. Because you’re optionally importing the logging package, you

surround it in a try-catch block. If an exception is thrown, you set your tracker to

null; otherwise, you end up with a valid tracker.

 When a message is logged, you check if you have a valid tracker C. If so, you try to

log to a log service. Even if you have a valid tracker, that doesn’t mean you have a log

service, which is why you verify it D. If you have a log service, you use it; otherwise,

you log to standard output. The important point is that you attempt to probe for the

log package only once, with a single call to init() from the constructor, because an

optional import will never be satisfied later if it’s not satisfied already.

 The bundle activator is shown in the following listing.

public class Activator implements BundleActivator {
 private volatile Logger m_logger = null;
 public void start(BundleContext context) throws Exception {
 m_logger = new Logger(context);

Listing 5.2 Bundle activator creating the proxy logger

Creates
ServiceTracker

B

Checks for
valid tracker

C

Checks for
log serviceD

169Loosening your imports

 m_logger.log(4, "Started");
 …
 }
 public void stop(BundleContext context) {
 m_logger.close();
 }
}

When the bundle is started, you create an instance of your proxy logger that’s used

throughout the bundle for logging. Although not shown here, the bundle passes a ref-

erence or somehow provides access to the logger instance to any internal code need-

ing a logger at execution time. When the bundle is stopped, you invoke close() on

the proxy logger, which stops its internal service tracker, if necessary. The manifest for

your logging bundle is

Bundle-ManifestVersion: 2
Bundle-SymbolicName: example.logger
Bundle-Activator: example.logger.Activator
Import-Package: org.osgi.framework, org.osgi.util.tracker,
 org.osgi.service.log; resolution:=optional

How would this example change if you wanted to treat the logging package as a

dynamic import? The impact to the Logger class is as follows.

public class Logger {
 private final BundleContext m_context;
 private ServiceTracker m_tracker;
 public LoggerImpl(BundleContext context) {
 m_context = context;
 }
 private ServiceTracker init(BundleContext context) {
 ServiceTracker tracker = null;
 try {
 tracker = new ServiceTracker(
 context, org.osgi.service.log.LogService.class.getName(), null);
 tracker.open();
 } catch (NoClassDefFoundError error) { }
 return tracker;
 }
 public synchronized void close() {
 if (m_tracker != null) {
 m_tracker.close();
 }
 }
 public synchronized void log(int level, String msg) {
 boolean logged = false;
 if (m_tracker == null) {
 m_tracker = init(m_context);
 }
 if (m_tracker != null) {
 LogService logger = (LogService) m_tracker.getService();
 if (logger != null) {

Listing 5.3 Simple proxy logger using dynamic import

Synchronizes
entry
methods

B

Tries to create
ServiceTrackerC

170 CHAPTER 5 Delving deeper into modularity

 logger.log(level, msg);
 logged = true;
 }
 }
 if (!logged) {
 System.out.println("[" + level + "] " + msg);
 }
 }
}

You can no longer make your ServiceTracker member variable final, because you

don’t know when it will be created. To make your proxy logger thread safe and avoid

creating more than one ServiceTracker instance, you need to synchronize your entry

methods B. Because the logging package can appear at any time during execution,

you try to create the ServiceTracker instance each time you log a message C until

successful. As before, if all else fails, you log to standard output. The manifest meta-

data is pretty much the same as before, except you use DynamicImport-Package to

import the logging package:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: example.logger
Bundle-Activator: example.logger.Activator
Import-Package: org.osgi.framework, org.osgi.util.tracker
DynamicImport-Package: org.osgi.service.log

These two examples illustrate the differences between these two mechanisms. As you

can see, if you plan to take advantage of the full, dynamic nature of dynamically

imported packages, there’s added complexity with respect to threading and concur-

rency. There’s also potential overhead associated with dynamic imports, not only

because of the synchronization, but also because it can be costly for the framework to

try to find a matching package at execution time. For logging, which happens fre-

quently, this cost can be great.

Optional imports are optional

We should point out that you can use dynamic imports in a fashion similar to optional

imports. In this sense, the use of the optional import package mechanism is itself

optional. For example, you can modify the metadata of the optional logger example

to be a dynamic import instead, but keep the code exactly the same. If you did this,

the two solutions would behave equivalently.

If this is the case, then why choose one over the other? There’s no real reason or

recommendation for doing so. These two concepts overlap for historical reasons.

Dynamic imports have existed since the R2 release of the OSGi specification,

whereas optional imports have only existed since the R4 release. Even though op-

tional imports overlapped dynamic imports, they were added for consistency with

bundle dependencies, which were also added in R4 and can also be declared

as optional.

171Requiring bundles

We’ve finished covering the advanced capabilities for importing packages, but there’s

still a related concept provided by OSGi for declaring dependencies. In some situa-

tions, such as legacy situations where modules are tightly coupled or contain a given

package split across modules, importing a specific package isn’t sufficient. For these

situations, OSGi allows you to declare dependencies on specific bundles. We’ll look at

how this works next.

5.3 Requiring bundles

In section 5.1.2, we discussed how implicit export attributes allow bundles to import

packages from a specific bundle. The OSGi specification also supports a module-level

dependency concept called a required bundle that provides a similar capability. In chap-

ter 2, we discussed a host of reasons why package-level dependencies are preferred

over module-level dependencies, such as them being more flexible and fine-grained.

We won’t rehash those general issues. But there is one particular use case where

requiring bundles may be necessary in OSGi: if you must deal with split packages.

SPLIT PACKAGE A split package is a Java package whose classes aren’t con-
tained in a single JAR but are split across multiple JAR files. In OSGi terms, it’s
a package split across multiple bundles.

In standard Java programming, packages are generally treated as split; the Java class

path approach merges all packages from different JAR files on the class path into one

big soup. This is anathema to OSGi’s modularization model, where packages are

treated as atomic (that is, they can’t be split).

 When migrating to OSGi from a world where split packages are common, we’re

often forced to confront ugly situations. But even in the OSGi world, over time a pack-

age may grow too large and reach a point where you can logically divide it into disjoint

functionality for different clients. Unfortunately, if you break up the existing package

and assign new disjoint package names, you break all existing clients. Splitting the

package allows its disjoint functionality to be used independently; but for existing cli-

ents, you still need an aggregated view of the package.

 This gives you an idea of what a split package is, but how does this relate to requir-

ing bundles? This will become clearer after we discuss what it means to require a bun-

dle and introduce a use case for doing so.

5.3.1 Declaring bundle dependencies

The big difference between importing a package and requiring a bundle is the scope

of the dependency. Whereas an imported package defines a dependency from a bun-

dle to a specific package, a required bundle defines a dependency from a bundle to

every package exported by a specific bundle. To require a bundle, you use the

Require-Bundle manifest header in the requiring bundle’s manifest file.

REQUIRE-BUNDLE This header consists of a comma-separated list of target
bundle symbolic names on which a bundle depends, indicating the need to
access all packages exported by the specifically mentioned target bundles.

172 CHAPTER 5 Delving deeper into modularity

You use the Require-Bundle header to specify a bundle dependency in a manifest,

like this:

Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"

Resolving required bundles is similar to

imported packages. The framework tries

to satisfy each required bundle; if it’s

unable to do so, the bundle can’t be

used. The framework resolves the depen-

dency by searching the installed bundles

for ones matching the specified symbolic

name and version range. Figure 5.9 shows

a resolved bundle dependency.

 To a large degree, requiring bundles

is just a brittle way to import packages,

because it specifies who instead of what. The significant difference is how it fits into the

overall class search order for the bundle, which is as follows:

1 Requests for classes in java. packages are delegated to the parent class loader;

searching stops with either a success or failure (section 2.5.4).

2 Requests for classes in an imported package are delegated to the exporting

bundle; searching stops with either a success or failure (section 2.5.4).

3 Requests for classes in a package from a required bundle are delegated to the

exporting bundle; searching stops if found but continues with the next

required bundle or the next step with a failure.

4 The bundle class path is searched for the class; searching stops if found but con-

tinues to the next step with a failure (section 2.5.4).

5 If the package in question isn’t exported or required, requests matching any

dynamically import package are delegated to an exporting bundle if one is

found; searching stops with either a success or failure (section 5.2.2).

Packages from required bundles are searched only if the class wasn’t found in an

imported package, which means imported packages override packages from required

bundles. Did you notice another important difference between imported packages

and packages from required bundles in the search order? If a class in a package from

a required bundle can’t be found, the search continues to the next required bundle

in declared order or the bundle’s local class path. This is how Require-Bundle sup-

ports split packages, which we’ll discuss in more detail in the next subsection. First,

let’s look at the remaining details of requiring bundles.

 As we briefly mentioned in section 5.2.4, it’s also possible to optionally require a

bundle using the resolution directive:

Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"; resolution:="optional"

The meaning is the same as when you optionally import packages, such as not impact-

ing dependency resolution and the need to catch ClassNotFoundExceptions when

require A
bundle-version="[1.0.0, 2.0.0)"

export
javax.servlet.http
version="2.4.0"

export
javax.servlet
version="2.4.0"

B A
1.0.0

Figure 5.9 Requiring a bundle is similar to

explicitly importing every package exported

by the target bundle.

173Requiring bundles

your bundle attempts to use potentially missing classes. It’s also possible to control

downstream visibility of packages from a required bundle using the visibility direc-

tive, which can be specified as private by default or as reexport. For example:

Require-Bundle: A; bundle-version="[1.0.0,2.0.0)"; visibility:="reexport"

This makes the required bundle dependency transitive. If a bundle contains this, any

bundle requiring it also sees the packages from bundle A (they’re re-exported). Fig-

ure 5.10 provide a pictorial example.

WARNING There are few, if any, good reasons to use Require-Bundle with
reexport visibility. This mechanism isn’t very modular, and using it results in
brittle systems with high coupling.

Now let’s return our attention to how Require-Bundle supports aggregating split

packages.

5.3.2 Aggregating split packages

Avoiding split packages is the recommended approach in OSGi, but occasionally you

may run into a situation where you need to split a package across bundles. Require-

Bundle makes such situations possible. Because class searching doesn’t stop when a

class isn’t found for required bundles, you can use Require-Bundle to search for a class

across a split package by requiring multiple bundles containing its different parts.

 For example, assume you have a package org.foo.bar that’s split across bundles A

and B. Here’s a manifest snippet from bundle A:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: A
Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"

Here is a manifest snippet from bundle B:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: B
Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"

Both bundles claim to export org.foo.bar, even though they each offer only half of

it. (Yes, this is problematic, but we’ll ignore that for now and come back to it shortly.)

require A
bundle-version="[1.0.0, 2.0.0)"
visibility:=reexport

export
javax.servlet.http
version="2.4.0"

export
javax.servlet
version="2.4.0"

export
javax.servlet

version="2.4.0"

export
javax.servlet.http

version="2.4.0"

B A
1.0.0

Figure 5.10 When bundle B

requires bundle A with reexport
visibility, any packages exported

from A become visible to any

bundles requiring B.

174 CHAPTER 5 Delving deeper into modularity

Now, if you have another bundle that wants to use the entire org.foo.bar package, it

has to require both bundles. The bundle metadata may look something like this:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: C
Bundle-Version: 1.0.0
Require-Bundle: A; version="[2.0.0,2.1.0)", B; version="[2.0.0,2.1.0)"

When code from bundle C attempts to load a class from the org.foo.bar package, it

follows these steps:

1 It delegates to bundle A. If the request succeeds, the class is returned; but if it

fails, the code goes to the next step.

2 It delegates to bundle B. If the request succeeds, the class is returned; but if it

fails, the code goes to the next step.

3 It tries to load the class from bundle C’s local class path.

The last step allows org.foo.bar to be split across the required bundles as well as the

requiring bundle. Because searching continues across all required bundles, bundle C

is able to use the whole package.

 What about a bundle wanting to use only one half of the package? Instead of

requiring both bundles, it can require just the bundle containing the portion it needs.

Sounds reasonable; but does this mean that after you split a package, you’re stuck with

using bundle-level dependencies and can no longer use package-level dependencies?

No, it doesn’t, but it does require some best practice recommendations.

HANDLING SPLIT PACKAGES WITH IMPORT-PACKAGE

If another bundle wants to use Import-Package to access the portion of the package

contained in bundle B, it can do something like this:

Import-Package: org.foo.bar; version="2.0.0"; bundle-symbolic-name="B"

This is similar to using Require-Bundle for the specific bundle. If you add an arbitrary

attribute to each exported split package—called split, for example—you can use it

to indicate a part name instead. Assume you set split equal to part1 for bundle A

and part2 for bundle B. You can import the portion from B as follows:

Import-Package: org.foo.bar; version="2.0.0"; split="part2"

This has the benefit of being a little more flexible, because if you later change which

bundle contains which portion of the split package, it won’t break existing clients.

What about existing clients that were using Import-Package to access the entire

org.foo.bar package? Is it still possible? It’s likely that existing client bundles are

doing the following:

Import-Package: org.foo.bar; version="2.0.0"

Will they see the entire package if it’s now split across multiple bundles? No. How can

the framework resolve this dependency? The framework has no understanding of split

packages as far as dependency resolution is concerned. If bundles A and B are

175Requiring bundles

installed and another bundle comes along with the above import declaration, the

framework treats A and B as both being candidates to resolve dependency. It chooses

one following the normal rules of priority for multiple matching candidates. Clearly,

no matter which candidate it chooses, the resulting solution will be incorrect.

 To avoid such situations, you need to ensure that your split package portions aren’t

accidentally used by the framework to resolve an import for the entire package. But

how? Mandatory attributes can help. You can rewrite bundle A’s metadata like so:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: A
Bundle-Version: 2.0.0
Export-Package: org.foo.bar; version="2.0.0"; split="part1";
 mandatory:="split"

Likewise for bundle B, but with split equal to part2. Now for a bundle to import

either part of the split package, they must explicitly mention the part they wish to use.

But what about an existing client bundle wanting to import the whole package?

Because its import doesn’t specify the mandatory attribute, it can’t be resolved. You

need some way to reconstruct the whole package and make it available for importing;

OSGi allows you to create a facade bundle for such a purpose. To make bundle C a

facade bundle, you change its metadata to be

Bundle-ManifestVersion: 2
Bundle-SymbolicName: C
Bundle-Version: 1.0.0
Require-Bundle: A; version="[2.0.0,2.1.0)", B; version="[2.0.0,2.1.0)"
Export-Package: org.foo.bar; version="2.0.0"

The only change is the last line where bundle C exports org.foo.bar, which is

another form of re-exporting a package. In this case, it aggregates the split package by

requiring the bundles containing the different parts, and it re-exports the package

without the mandatory attribute. Now any client importing org.foo.bar will be able

to resolve to bundle C and have access to the whole package.

Admittedly, this isn’t the most intuitive or straightforward way to deal with split pack-

ages. This approach wasn’t intended to make them easy to use, because they’re best

avoided; but it does make it possible in those situations where you have no choice.

Summarizing split package best practices

In short, if you must use a split package, make sure you follow these steps:

■ Always export split packages with a mandatory attribute to avoid unsuspecting

bundles from using them.
■ Use either Require-Bundle or Import-Package plus the mandatory attribute to

access parts of the split packages.
■ To provide access to the whole package, create a facade bundle that requires

the bundles containing the package parts and exports the package in question.

176 CHAPTER 5 Delving deeper into modularity

 Despite these dire-sounding warnings, OSGi provides another way of dealing with

split packages, called bundle fragments. We’ll talk about those shortly, but first we’ll dis-

cuss some of the issues surrounding bundle dependencies and split packages.

5.3.3 Issues with bundle dependencies

Using Import-Package and Export-Package is the preferred way to share code

because they couple the importer and exporter to a lesser degree. Using Require-

Bundle entails much higher coupling and lower cohesion between the importer and

the exporter and suffers from other issues, such as the following:

■ Mutable exports—Requiring bundles are impacted by changes to the exports of

the required bundle, which introduce another form of breaking change to con-

sider. Such changes aren’t always easily apparent because the use of reexport

visibility can result in chains of required bundles where removal of an export in

upstream required bundles breaks all downstream requiring bundles.

■ Shadowing—Because class searching continues across all required bundles and

the requiring bundle’s class path, it’s possible for content in some required

bundles to shadow other required bundle content and the content of the

requiring bundle itself. The implications of this aren’t always obvious, especially

if some bundles are optionally required.

■ Ordering—If a package is split across multiple bundles, but they contain overlap-

ping classes, the declared order of the Require-Bundle header is significant. All

bundles requiring the bundles with overlapping content must declare them in

the same order, or their view of the package will be different. This is similar to

traditional class path ordering issues.

■ Completeness—Even though it’s possible to aggregate split packages using a

facade bundle, the framework has no way to verify whether an aggregated pack-

age is complete. This becomes the responsibility of the bundle developer.

■ Restricted access—An aggregated split package isn’t completely equivalent to the

unsplit package. Each portion of the split package is loaded by its containing

bundle’s class loader. In Java, classes loaded by different class loaders can’t

access package-private members and types, even if they’re in the same package.

This is by no means an exhaustive list of issues, but it gives you some ideas of what to

look out for when using Require-Bundle and (we hope) dissuades you from using it

too much.

 Enough of the scare tactics. So far, we’ve introduced you to some of the more

advanced features of managing OSGi dependencies, including importing exports,

implicit export attributes, mandatory export attributes, export filtering, duplicate

exports, optional and dynamic imports, and requiring bundles. These tools allow you

to solve some of the more complex edge cases found when migrating a classic Java

application to an OSGi environment. That must be it—we must have covered every

possible mechanism of specifying dependencies, right? Not quite. There’s one more

177Dividing bundles into fragments

curve ball to be thrown into the mix: bundle fragments. Fragments are another way to

deal with split packages by allowing the content of a bundle to be split across multiple,

subordinate bundle JAR files.

5.4 Dividing bundles into fragments

Although splitting packages isn’t a good idea, occasionally it does make sense, such as

with Java localization. Java handles localization by using java.util.ResourceBundles

(which have nothing to do with OSGi bundles) as a container to help you turn locale-

neutral keys into locale-specific objects. When a program wants to convert informa-

tion into the user’s preferred locale, it uses a resource bundle to do so. A Resource-

Bundle is created by loading a class or resource from a class loader using a base name,

which ultimately defines the package containing the class or resource for the

ResourceBundle. This approach means you typically package many localizations for

different locales into the same Java package.

 If you have lots of localizations or lots of information to localize, packaging all your

localizations into the same OSGi bundle can result in a large deployment unit. Addi-

tionally, you can’t introduce new localizations or fix mistakes in existing ones without

releasing a new version of the bundle. It would be nice to keep localizations separate;

but unlike the split package support of Require-Bundle, these split packages gener-

ally aren’t useful without the bundle to which they belong. OSGi provides another

approach to managing these sorts of dependencies through bundle fragments. We’ll

come back to localization shortly when we present a more in-depth example, but first

we’ll discuss what fragments are and what you can do with them.

5.4.1 Understanding fragments

If you recall the modularity discussion in chapter 2, you know there’s a difference

between logical modularity and physical modularity. Normally, in OSGi, a logical mod-

ule and a physical module are treated as the same thing; a bundle is a physical module

as a JAR file, but it’s also the logical module at execution time forming an explicit visi-

bility encapsulation boundary. Through fragments, OSGi allows you to break a single

logical module across multiple physical modules. This means you can split a single

logical bundle across multiple bundle JAR files.

 Breaking a bundle into pieces doesn’t result in a handful of peer bundles; instead,

you define one host bundle and one or more subordinate fragment bundles. A host

bundle is technically usable without fragments, but the fragments aren’t usable with-

out a host. Fragments are treated as optional host-bundle dependencies by the OSGi

framework. But the host bundle isn’t aware of its fragments, because it’s the fragments

that declare a dependency on the host using the Fragment-Host manifest header.

FRAGMENT-HOST This header specifies the single symbolic name of the host bundle
on which the fragment depends, along with an optional bundle version range.

A fragment bundle uses the Fragment-Host manifest header like this:

Fragment-Host: org.foo.hostbundle; bundle-version="[1.0.0,1.1.0)"

178 CHAPTER 5 Delving deeper into modularity

The Fragment-Host header is somewhat confusingly named, because it seems to be

declaring the bundle as a host; it should be read as “require fragment host.” Although

this header value follows the common OSGi syntax, you can’t specify multiple symbolic

names. A fragment is limited to belonging to one host bundle, although it may be

applicable to a range of host versions. Note that you don’t need to do anything special

to define a bundle as a host; any bundle without a Fragment-Host header is a poten-

tial host bundle. Likewise, any bundle with a Fragment-Host header is a fragment.

 You now understand the relationship between a host and its fragments, but how do

they work together? When the framework resolves a bundle, it searches the installed

bundles to see if there are any fragments for the bundle being resolved. If so, it merges

the fragments into the host bundle. This merging happens in two different ways:

■ Physically—The content and metadata from the fragments are conceptually

merged with the host’s content and metadata.

■ Logically—Rather than giving each fragment its own class loader, the framework

attaches the fragment content to the host’s class loader.

The first form of merging recombines the split physical pieces of the logical bundle,

and the second form creates a single logical bundle because OSGi uses a single class

loader per logical bundle to achieve encapsulation.

Returning to the discussion about resolving a bundle, if the bundle being resolved has

fragments, the framework merges their metadata with the host’s and resolves the bundle

as normal. Figure 5.11 illustrates the before- and after effects of the merging process.

Fragments and package-private access

As a technical side note, Java only allows package-private access to classes loaded

by the same class loader. Two classes in the same package, but loaded by two dif-

ferent class loaders, can’t access each others’ package-private members. By loading

fragment classes with the host’s class loader, the fragment classes are properly

recombined to avoid this issue. This isn’t true for split packages accessed through

Require-Bundle. This isn’t always important, but the distinction between these two

forms of support for split packages is worth understanding.

Host

Host

Fragment

Fragment
Fragment

a)

b)

Figure 5.11 a) The host and fragment

bundles are deployed as independent

bundles in the framework. b) When the

framework resolves the host, it effectively

merges the fragment’s content and

metadata into the host bundle.

179Dividing bundles into fragments

In addition to merging the exported and imported packages and required bundles,

the bundle class paths are also merged. This impacts the overall class search order for

the bundle, like this:

1 Requests for classes in java. packages are delegated to the parent class loader;

searching stops (section 2.5.4).

2 Requests for classes in an imported package are delegated to the exporting

bundle; searching stops (section 2.5.4).

3 Requests for classes in a package from a required bundle are delegated to the

exporting bundle; searching continues with a failure (section 5.3.1).

4 The host bundle class path is searched for the class; searching continues with a

failure (section 2.5.4).

5 Fragment bundle class paths are searched for the class in the order in which the

fragments were installed. Searching stops if found but continues through all

fragment class paths and then to the next step with a failure.

6 If the package in question isn’t exported or required, requests matching any

dynamically import package are delegated to an exporting bundle if one is

found. Searching stops with either a success or a failure (section 5.2.2).

This is the complete bundle class search order, so you may want to mark this page for

future reference! This search order makes it clear how fragments support split pack-

ages, because the host and all fragment class paths are searched until the class is found.

Fragments and the Bundle-ClassPath

The bundle class path search order seems fairly linear, but fragments do introduce

one exception. When specifying a bundle class path, you can specify embedded JAR

files, such as

Bundle-ClassPath: .,specialized.jar,default.jar

Typically, you’d expect both of these JAR files to be contained in the JAR file of the

bundle declaring them, but this need not be the case. If fragments aren’t involved,

the framework ignores a non-existent JAR file on the bundle class path. But if the bun-

dle has fragments attached to it, the framework searches the fragments for the spec-

ified JAR files if they don’t exist in the host bundle.

In the example, imagine that the host contains default.jar but doesn’t contain spe-

cialized.jar, which is contained in an attached fragment. The effect this has on the

class search order is that the specified fragment content is searched before some of

the host bundle content.

Sometimes this is useful if you want to provide default functionality in the host bun-

dle but be able to override it on platforms where you have specialized classes (for

example, using native code). You can also use this approach to provide a means for

issuing patches to bundles after the fact, but in general it’s better to update the

whole bundle.

180 CHAPTER 5 Delving deeper into modularity

Some final issues regarding fragments: Fragments are allowed to have any metadata a

normal bundle can have except Bundle-Activator. This makes sense because frag-

ments can’t be started or stopped and can only be used when combined with the host

bundle. Attaching a fragment to a host creates a dependency between the two, which is

similar to the dependencies created between two bundles via Import-Package or

Require-Bundle. This means if either bundle is updated or uninstalled, the other bun-

dle is impacted, and any refreshing of the one will likely lead to refreshing of the other.

 We started this foray into fragments discussing localization, because it’s the main use

case for them. Next, we’ll look at an example of how to use fragments for this purpose.

5.4.2 Using fragments for localization

To see how you can use fragments to localize an application, let’s return to the service-

based paint program from chapter 4. The main application window is implemented

by the PaintFrame class. Recall its design: PaintFrame doesn’t have any direct depen-

dencies on the OSGi API. Instead, it uses a ShapeTracker class to track SimpleShape

services in the OSGi service registry and inject them into the PaintFrame instance.

ShapeTracker injects services into the PaintFrame using its addShape() method, as

shown in the following listing.

public void addShape(String name, Icon icon, SimpleShape shape) {
 m_shapes.put(name, new ShapeInfo(name, icon, shape));
 JButton button = new JButton(icon);
 button.setActionCommand(name);
 button.setToolTipText(name);
 button.addActionListener(m_reusableActionListener);

 if (m_selected == null) {
 button.doClick();
 }

 m_toolbar.add(button);
 m_toolbar.validate();
 repaint();
}

The addShape() method is invoked with the name, icon, and service object of the

SimpleShape implementation. The exact details aren’t important, but the shape is

recorded in a data structure, a button is created for it, its name is set as the button’s

tool tip, and, after a few other steps, the associated button is added to the toolbar. The

tool tip is textual information displayed to users when they hover the mouse over the

shape’s toolbar icon. It would be nice if this information could be localized.

 You can take different approaches to localize the shape name. One approach is

to define a new service property that defines the ResourceBundle base name. This

way, shape implementations can define their localization base name, much as they

use service properties to indicate the name and icon. In such an approach, the

Listing 5.4 Method used to inject shapes into PaintFrame object

181Dividing bundles into fragments

PaintFrame.addShape() must be injected with the base name property so it can

perform the localization lookup. This probably isn’t ideal, because it exposes imple-

mentation details.

 Another approach is to focus on where the shape’s name is set in the first place: in

the shape implementation’s bundle activator. The following listing shows the activator

of the circle implementation.

public class Activator implements BundleActivator {
 public void start(BundleContext context) {
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, "Circle");
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));
 context.registerService(
 SimpleShape.class.getName(), new Circle(), dict);
 }

 public void stop(BundleContext context) {}
}

The hardcoded shape name is assigned to the service property dictionary, and the

shape service is registered. The first thing you need to do is change the hardcoded

name into a lookup from a ResourceBundle. This code shows the necessary changes.

public class Activator implements BundleActivator {
 public static final String CIRCLE_NAME = "CIRCLE_NAME";

 public void start(BundleContext context) {
 ResourceBundle rb = ResourceBundle.getBundle(
 "org.foo.shape.circle.resource.Localize");
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, rb.getString(CIRCLE_NAME));
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));
 context.registerService(
 SimpleShape.class.getName(), new Circle(), dict);
 }

 public void stop(BundleContext context) {}
}

You modify the activator to look up the shape name using the key constant defined

at B from a ResourceBundle you create C, whose resulting value is assigned to the

service properties. Even though we won’t go into the complete details of using

ResourceBundle objects, the important part in this example is when you define it. You

specify the base name of org.foo.shape.circle.resource.Localize. By default, this

refers to a Localize.properties file in the org.foo.shape.circle.resource package,

which contains a default mapping for your name key. You need to modify the circle

Listing 5.5 Original circle bundle activator with hardcoded name

Listing 5.6 Modified circle bundle activator with ResourceBundle name lookup

Defines
constantB

Creates
ResourceBundle C

182 CHAPTER 5 Delving deeper into modularity

implementation to have this additional package, and you add the Localize.properties

file to it with the following content:

CIRCLE_NAME=Circle

This is the default mapping for the shape name. If the example was more complicated,

you’d have many more default mappings for other terms. To provide other mappings

to other languages, you need to include them in this same package, but in separate prop-

erty files named after the locales’ country codes. For example, the country code for Ger-

many is DE, so for its localization you create a file called Localize_de.properties with the

following content:

CIRCLE_NAME=Kreis

You do this for each locale you want to support. Then, at execution time, when you

create your ResourceBundle, the correct property file is automatically selected based

on the locale of the user’s computer.

 This all sounds nice; but if you have a lot of information to localize, you need to

include all this information in your bundle, which can greatly increase its size. Fur-

ther, you have no way of adding support for new locales without releasing a new ver-

sion of your bundle. This is where fragments can help, because you can split the

resource package into different fragments. You keep the default localization in your

circle implementation, but all other localizations are put into separate fragments. You

don’t need to change the metadata of your circle bundle, because it’s unaware of frag-

ments, but the content of your circle bundle becomes

META-INF/MANIFEST.MF
META-INF/
org/
org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/Activator.class
org/foo/shape/circle/Circle.class
org/foo/shape/circle/circle.png
org/foo/shape/circle/resource/
org/foo/shape/circle/resource/Localize.properties

For this example, you’ll create a German localization fragment bundle for the circle

using the property file shown earlier. The metadata for this fragment bundle is

Bundle-ManifestVersion: 2
Bundle-Name: circle.resource-de
Bundle-SymbolicName: org.foo.shape.circle.resource-de
Bundle-Version: 5.0
Fragment-Host: org.foo.shape.circle; bundle-version="[5.0,6.0)"

The important part of this metadata is the last line, which declares it as a fragment of

the circle bundle. The content of the fragment bundle is simple:

META-INF/MANIFEST.MF
META-INF/
org/

183Dealing with your environment

org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/resource/
org/foo/shape/circle/resource/Localize_de.properties

It only contains a resource file for the

German translation, which you can see

is a split package with the host bundle.

You can create any number of localiza-

tion fragments following this same pat-

tern for your other shapes (square and

triangle). Figure 5.12 shows the paint

program with the German localization

fragments installed.

 To run this example, go into the

chapter05/paint-example/ directory of

the companion code and type ant to

build and java –Duser.language=de

-jar launcher.jar bundles/ to run it

using a German locale. With this

approach, you only need to deploy the

required localization fragments along

with your shape implementations, and you can create new localizations or update exist-

ing ones without releasing new versions of the shape bundles.

 We’ve now covered all major aspects of the OSGi module layer! As you can see,

tools are available to help you deal with virtually any scenario the Java language can

throw at you. But we have one more trick up our sleeves: the OSGi specification does a

pretty good job of dealing with native code that runs outside of the Java environment.

We’ll look at this and how to deal with general factors relating to the JVM environment

in the next and final section of this chapter.

5.5 Dealing with your environment

Although Java has been fairly successful at attaining its original vision of “write once,

run everywhere,” there are still situations where it’s not entirely able to achieve this

goal. One such situation is the myriad of Java platforms, such as Java ME and the dif-

ferent versions of Java SE. If you develop a bundle with requirements for a specific Java

platform—for example, if you use classes from the java.util.concurrent package—

you need a Java 5.0 JVM or above. Another situation is if you need to natively integrate

with the underlying operating system, as may be necessary if you must communicate

directly with underlying hardware.

 As you may expect, in both these situations the OSGi specification provides mecha-

nisms to explicitly declare these scenarios in your bundles to allow an OSGi framework

to do whatever is necessary at execution time. In this section, we’ll cover both of these

topics, starting with the former.

Figure 5.12 Paint program with installed

German localization fragments

184 CHAPTER 5 Delving deeper into modularity

5.5.1 Requiring execution environments

If you develop a bundle with a dependency on specific Java execution environments,

what happens if this bundle executes in an unintended environment? Most likely,

you’ll get various exceptions for missing classes or methods and/or faulty results. If

you have a bundle with specific execution environment requirements, you must

explicitly declare these requirements to avoid people unknowingly trying to use your

bundle in invalid environments. The OSGi specification defines an execution environ-

ment concept for just this purpose. Like all bundle metadata, you use a manifest

header to define it. In this case, it’s a manifest header with a long name: Bundle-

RequiredExecutionEnvironment.

BUNDLE-REQUIREDEXECUTIONENVIRONMENT This header specifies a comma-
delimited list of supported execution environments.

The OSGi specification defines standard values for the common execution environ-

ments; table 5.1 lists them.

Bundles should list all known execution environments on which they can run, which

may look something like this:

Bundle-RequiredExecutionEnvironment: J2SE-1.4,J2SE-1.5,JavaSE-1.6

This specific example indicates that the bundle runs only on modern Java platforms.

If a bundle lists a limited execution environment, such as CDC-1.1/Foundation-1.1, it

shouldn’t use classes or methods that don’t exist in the declared execution environ-

ment. The framework doesn’t verify this claim; it only ensures that the bundle isn’t

resolvable on incompatible execution environments.

Table 5.1 OSGi defined standard execution environment names

Name Description

CDC-1.1/Foundation-1.1 Equivalent to J2ME Foundation Profile

CDC-1.1/PersonalBasis-1.1 J2ME Personal Basis Profile

CDC-1.1/PersonalJava-1.1 J2ME Personal Java Profile

J2SE-1.2 Java 2 SE 1.2.x

J2SE-1.3 Java 2 SE 1.3.x

J2SE-1.4 Java 2 SE 1.4.x

J2SE-1.5 Java 2 SE 1.5.x

JavaSE-1.6 Java SE 1.6.x

OSGi/Minimum-1.2 Minimal required set of Java API that allows

an OSGi framework implementation

185Dealing with your environment

A given framework implementation can claim to provide more than one execution

environment, because in most cases the Java platform versions are backward compati-

ble. It’s possible to determine the framework’s supported execution environments by

retrieving the org.osgi.framework.executionenvironment property from Bundle-

Context.getProperty().

 Now that you understand how to declare your bundles’ required execution envi-

ronments, let’s look at how to handle bundles with native code.

5.5.2 Bundling native libraries

Java provides a nice platform and language combination, but it’s not always possible to

stay purely in Java. In some situations, you need to create native code for the platform

on which Java is running. Java defined Java Native Interface (JNI) precisely for this

purpose; JNI is how Java code calls code written in other programming languages

(such as C or C++) for specific operating systems (such as Windows or Linux). A com-

plete discussion of how JNI works is outside the scope of this book, but the following

list provides the highlights:

■ Native code is integrated into Java as a special type of method implementation.

A Java class can declare a method as having a native implementation using the

native method modifier.

■ Classes with native code are compiled normally. But after compilation, the

javah command is used to generate C header and stub files, which are used to

create the native method implementations.

■ The native code is compiled into a library in a platform-specific way for its tar-

get operating system.

■ The original Java class with the native method includes code to invoke System.

loadLibrary(), typically in a static initializer, to load the native library when

the class is loaded in the Java VM.

■ Other classes can invoke the native method as if it were a normal method, and

the Java platform takes care of the native invocation details.

Although it’s fairly straightforward to use native code in Java, it’s best to avoid it if pos-

sible. Native code doesn’t benefit from the garbage collector and suffers from the typ-

ical pointer issues associated with all native code. Additionally, it hinders Java’s “write

Resolve-time, not install-time enforcement

Pay special attention to the previous sentence. It’s possible to install a bundle on a

given execution environment even if it’s not compatible with it, but you won’t be able

to resolve it unless its required execution environment matches the current one. This

is tied to the bundle’s resolved state because it’s possible for the execution environ-

ment to change over time. For example, you may switch between different versions

of Java on subsequent executions of the framework. This way, any cached bundles

not matching the current execution environment will essentially be ignored.

186 CHAPTER 5 Delving deeper into modularity

once, run everywhere” goal, because it ties the class to a specific platform. Still, in

those cases where it’s absolutely necessary, it’s nice to know that OSGi supports it. OSGi

even simplifies it a little.

 One of the downsides of native code is the fact that you end up with an additional

artifact to deploy along with your classes. To make matters worse, what you need to do

with the native library differs among operating systems; for example, you typically

need to put native libraries in specific locations in the file system so they can be found

at execution time (for example, somewhere on the binary search path). OSGi native

code support simplifies these issues by

■ Allowing you to embed your native library directly into your bundle JAR file

■ Allowing you to embed multiple native libraries for different target platforms

■ Automatically handling execution-time discovery of native code libraries

When you embed a native library into your bundle, you must tell the OSGi frame-

work about it. As with all other modularity aspects, you do so in the bundle meta-

data using the Bundle-NativeCode manifest header. With this header, you can specify

the set of contained native libraries for each platform your bundle supports. The

grammar is as follows:

Bundle-NativeCode ::= nativecode (',' nativecode)* (',' optional)?
nativecode ::= path (';' path)* (';' parameter)+
optional ::= '*'

The parameter is one of the following:

■ osname—Name of the operating system

■ osversion—Operating system version range

■ processor—Processor architecture

■ language—ISO code for a language

■ selection-filter—LDAP selection filter

For example, if you have a bundle with native libraries for Windows XP, you may have

a native code declaration like this one:

Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 processor=x86

This is a semicolon-delimited list, where the leading entries not containing an = char-

acter are interpreted as file entries in the bundle JAR file and the remaining entries

with an = character are used to determine if the native library clause matches the cur-

rent platform. In this case, you state the bundle has two native libraries for Windows

XP on the x86 architecture.

 If Bundle-NativeCode is specified, there must be a matching header for the plat-

form on which the bundle is executing; otherwise, the framework won’t allow the bun-

dle to resolve. In other words, if a bundle with the previous native code header was

installed on a Linux box, the framework won’t allow the bundle to be used.

187Summary

 If these same libraries also work on Vista, you can specify this as follows:

Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86

In cases where the parameter is repeated, the framework treats this like a logical OR

when matching, so these native libraries match Windows XP or Windows Vista.

 If your bundle also has native libraries for Linux, you can specify that as follows:

Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86, lib/libmath.so; osname=Linux;
 osprocessor=x86

You separate different platforms using a comma instead of a semicolon. Notice also

that the native libraries don’t need to be parallel. In this example, you have two native

libraries for the Windows platform but only one for Linux. This bundle is now usable

on Windows XP, Windows Vista, and Linux on the x86 architecture, but on any other

platform the framework won’t resolve it.

 In some cases, you may have either optional native libraries or a non-optimized

Java implementation for unsupported platforms. You can denote this using the

optional clause, like this:

Bundle-NativeCode: lib/math.dll; lib/md5.dll; osname=WindowsXP;
 osname=WindowsVista; processor=x86, lib/libmath.so; osname=Linux;
 osprocessor=x86, *

The * at the end acts as a separate platform clause that can match any platform, so this

bundle is usable on any platform.

 The process of how native libraries are made available when the classes containing

native methods perform System.loadLibrary() is handled automatically by the

framework, so you don’t need to worry about it. Even though it isn’t often necessary,

it’s fairly easy to use this mechanism to create bundles with native code.

 That’s it! You’ve now been introduced to many of the specialized features of the

OSGi module layer. Let’s review what you’ve learned in this chapter.

5.6 Summary

You learned that the OSGi module layer provides many additional mechanisms to deal

with collaborative, dynamic, and legacy situations, such as the following:

■ A bundle may import a package it exports to make its export substitutable for

purposes of broadening collaboration among bundles.

■ Exported packages have bundle symbolic name and version attributes implicitly

attached to them, which can be useful if you need to import a package from a

specific bundle.

■ Exported packages may have mandatory attributes associated with them, which

must be specified by an importer for it to be wired to the exported package.

188 CHAPTER 5 Delving deeper into modularity

■ It’s possible to export the same package more than once with different attri-

butes, which is sometimes helpful if a bundle wishes to masquerade as more

than one version of a package.

■ The framework ignores optionally imported packages if no exporters are pres-

ent when the importing bundle is resolved.

■ The framework only attempts to resolve dynamically imported packages when

the importing bundle tries to use a class in the dynamically imported package.

Repeated attempts to use a class in the dynamically imported package will result

in repeated attempts to resolve the package until successful.

■ It’s possible to require a bundle, rather than importing specific packages, which

wires you to everything the target bundle exports. This is typically useful when

aggregating split packages.

■ Bundle fragments support splitting a bundle into multiple optional JAR files,

which is helpful in such situations as localization.

■ Bundles with dependencies on specific Java platforms can declare these depen-

dencies with required execution environments.

■ Bundles can include native libraries to integrate platform-specific functionality.

Most of these mechanisms are intended for specific use cases and shouldn’t be over-

used to avoid less modular solutions.

 We’ve now covered all the major functionality of OSGi specification, which closes

out this part of the book. In the next section, we’ll look into more practical matters

that crop up while trying to use and build applications on top of OSGi technology.

Part 2

OSGi in practice

In the first part of the book, we focused on the details and theory behind the

OSGi specifications, which can be a little daunting when you’re first getting

started. In this second part, you’ll put your newfound OSGi knowledge into prac-

tice. We’ll look at approaches for converting JAR files into bundles. After that,

we’ll explore how to test and debug bundles using tried-and-true techniques.

We’ll finish by explaining how to manage different aspects of bundles and OSGi-

based applications, such as versioning, configuring, and deploying them. Upon

completing this part of the book, you should have all the knowledge you need to

successfully use OSGi technology in your own projects.

191

Moving toward bundles

The first part of this book introduced the three layers of OSGi: module, lifecycle,

and service. We’ll now take a more practical look at how you can migrate existing

code to OSGi by using one or more of these layers, beginning with examples of

turning real-world JAR files into bundles. After that, we’ll examine different ways of

migrating a complete application to OSGi and finish up with a short discussion of

situations where you might decide not to bundle.

 By the end of this chapter, you’ll know how to take your current application

and all of its third-party libraries and turn them into bundles, step by step. You’ll

be able to move existing projects to OSGi, plan new projects with OSGi in mind,

and understand when it may not be the right solution for you. In other words, you

should be able to explain in detail to your manager and co-workers how OSGi will

affect your project. But before we reach that stage, we first need to consider a

simple question that often comes up on the OSGi mailing lists: how can you turn

your JAR file into a bundle?

This chapter covers

■ Choosing a bundle identity for a JAR file

■ Determining which packages a bundle should

export and/or import

■ Migrating an application to OSGi

■ Dividing an application into a set of bundles

192 CHAPTER 6 Moving toward bundles

6.1 Turning JARs into bundles

As you saw in chapter 2, a bundle is a JAR file with additional metadata. So to turn a JAR

file into a bundle, you need to add metadata giving it a unique identity and describing

what it imports and exports. Simple, right? For most business-domain JAR files, it is;

but for others (such as third-party GUI or database libraries), you’ll need to think care-

fully about their design. Where is the line between what’s public and what’s private,

which imports are required and which are optional, and which versions are compati-

ble with one another?

 In this section, we’ll help you come up with this metadata by taking a series of com-

mon library JAR files and turning them into working bundles. We’ll also consider

some advanced bundling techniques, such as embedding dependencies inside the

bundle, as well as how to manage external resources and background threads.

 Before you can even load a bun-

dle into an OSGi framework, it must

have an identity. This identity

should be unique, at least among

the set of bundles loaded into the

framework. But how should you

choose such an identity? If you pick

names at random, you may clash

with other projects or other devel-

opers, as shown in figure 6.1.

6.1.1 Choosing an identity

Each bundle installed into an OSGi framework must have a unique identity, made up

of the Bundle-SymbolicName and Bundle-Version. We’ll look into approaches for

defining both of these now.

CHOOSING A SYMBOLIC NAME

One of the first steps in turning a JAR file into a bundle is to decide what symbolic

name to give it. The OSGi specification doesn’t mandate a naming policy but recom-

mends a reverse-domain naming convention. This is the same as Java package nam-

ing: if the bundle is the primary source of a particular package, it makes sense to use it

as the Bundle-SymbolicName.

 Let’s look at a real-world example, the kXML parser (http://kxml.source-

forge.net/). This small JAR file provides two distinct top-level packages: the XmlPull

API org.xmlpull.v1 and the kXML implementation org.kxml2. If this JAR was the only

one expected to provide the org.xmlpull.v1 API, or if it only contained this package, it

would be reasonable to use this as the symbolic name. But this JAR file also provides a

particular implementation of the XmlPull API, so it makes more sense to use the name

of the implementation as the symbolic name because it captures the essence of what

the bundle provides:

Bundle-SymbolicName: org.kxml2

foo 1.0

foo 2.0
foo.bar 2.0

org.foo 1.0

org.bar 1.0

foo.bar 1.0

foo.bar 1.0

Figure 6.1 A bundle must have a unique identity.

http://kxml.sourceforge.net/
http://kxml.sourceforge.net/

193Turning JARs into bundles

Alternatively, you can use the domain of the project that distributes the JAR file. Here,

the domain is http://kxml.sourceforge.net/kxml2/:

Bundle-SymbolicName: net.sourceforge.kxml.kxml2

Or if Maven (http://maven.apache.org/) project metadata is available, you can use

the Maven groupId + artifactId to identify the JAR file:

Bundle-SymbolicName: net.sf.kxml.kxml2

Sometimes, you may decide on a name that doesn’t correspond to a particular pack-

age or distribution. For example, consider two implementations of the same service

API provided by two different bundles. OSGi lets you hide non-exported packages, so

these bundles can have an identical package layout but at the same time provide dif-

ferent implementations. You can still base the symbolic name on the main top-level

package or the distribution domain, but you must add a suffix to ensure that each

implementation has a unique identity. This is the approach that the Simple Logging

Facade for Java (SLF4J; www.slf4j.org/) project used when naming its various logging

implementation bundles:

Bundle-SymbolicName: slf4j.juli
Bundle-SymbolicName: slf4j.log4j
Bundle-SymbolicName: slf4j.jcl

If you’re wrapping a third-party library, you may want to prefix your own domain in

front of the symbolic name. This makes it clear that you’re responsible for the bundle

metadata rather than the original third party. For example, the symbolic name for the

SLF4J API bundle in the SpringSource Enterprise Bundle Repository (www.spring-

source.com/repository/app/) clearly shows that it was modified by SpringSource and

isn’t an official SLF4J JAR:

Bundle-SymbolicName: com.springsource.slf4j.api

Don’t worry too much about naming bundles—in the end, you need to give each bun-

dle a unique enough name for your target deployment. You’re free to rename your

bundle later if you wish, because by default the framework wires import packages to

export packages regardless of bundle symbolic names. It’s only when someone uses

Require-Bundle (see section 5.3) that consistent names become important. That’s

another reason why package dependencies are preferred over module dependencies:

they don’t tie you to a particular symbolic name forever.

CHOOSING A VERSION

After you’ve decided on a symbolic name, the next step is to version your bundle.

Determining the Bundle-Version is more straightforward than choosing the symbolic

name, because pretty much every JAR file distribution is already identified by some

sort of build version or release tag. On the other hand, version-numbering schemes

that don’t match the recognized OSGi format of major.minor.micro.qualifier must be con-

verted before you can use them. Table 6.1 shows some actual project versions and

attempts to map them to OSGi.

All of these
bundles export
org.slf4j.impl

http://kxml.sourceforge.net/kxml2/
http://maven.apache.org/
www.slf4j.org/
www.springsource.com/repository/app/
www.springsource.com/repository/app/

194 CHAPTER 6 Moving toward bundles

Not every version is easily converted to the OSGi format. Look at the last example in

the table; it starts with a number, but this is part of the date rather than the major ver-

sion. This is the problem with free-form version strings—there’s no standard way of

comparing them or breaking them into component parts. OSGi versions, on the other

hand, have standardized structure and well-defined ordering. (Later, you’ll use a tool

called bnd that makes a good attempt at automated mapping based on common-sense

rules, but even bnd has its limits.)

 After you’ve uniquely identified your bundle by name and version, you can

add more information: a human-friendly Bundle-Name, a more detailed Bundle-

Description, license details, vendor details, a link to online documentation, and so

on. Most if not all of these details can be taken from existing project information,

such as the following example from the second release of Google Guice (http://

code.google.com/p/google-guice/):

Bundle-SymbolicName: com.google.inject
Bundle-Version: 2.0
Bundle-Name: guice
Bundle-Copyright: Copyright (C) 2006 Google Inc.
Bundle-Vendor: Google Inc.
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0
Bundle-DocURL: http://code.google.com/p/google-guice/
Bundle-Description: Guice is a lightweight dependency injection
 framework for Java 5 and above

Remember that new OSGi bundles should also have this header:

Bundle-ManifestVersion: 2

This tells the OSGi framework to process your bundle according to the latest specifica-

tion. Although this isn’t mandatory, it’s strongly recommended because it enables

Project version Suggested OSGi equivalent

2.1-alpha-1 2.1.0.alpha-1

1.4-m3 1.4.0.m3

1.0_01-ea 1.0.1.ea

1.0-2 1.0.2

1.0.b2 1.0.0.b2

1.0a1 1.0.0.a1

2.1.7c 2.1.7.c

1.12-SNAPSHOT 1.12.0.SNAPSHOT

0.9.0-incubator-SNAPSHOT 0.9.0.incubator-SNAPSHOT

3.3.0-v20070604 3.3.0.v20070604

4aug2000r7-dev 0.0.0.4aug2000r7-dev
Table 6.1 Mapping real-world

project versions to OSGi

http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/

195Turning JARs into bundles

additional checks and support for advanced modularity features offered by OSGi R4

specifications and beyond.

 After you’ve captured enough bundle details to satisfactorily describe your JAR file,

the next thing to decide is which packages it should export to other bundles in the

framework.

6.1.2 Exporting packages

Most bundles export at least one package, but a bundle doesn’t have to export any.

Bundles providing service implementations via the service registry don’t have to

export any packages if they import their service API from another bundle. This is

because their implementation is shared indirectly via the service registry and accessed

using the shared API, as illustrated in figure 6.2. But what about the package contain-

ing the Bundle-Activator class? Doesn’t that need to be exported? No, you don’t

need to export the package containing the bundle activator unless you want to share it

with other bundles. Best practice is to keep it private. As long as the activator class has

a public modifier, the framework can load it, even if it belongs to an internal, non-

exported package. The question remains: when is it necessary for you to export pack-

ages, and which packages in your JAR file do you need to export?

SELECTING EXPORTED PACKAGES

The classic, non-OSGi approach is to export everything and make the entire con-

tents of the JAR file visible. For API-only JAR files, this is fine; but for implementation

JAR files, you don’t want to expose internal details. Clients might then use and rely

on these internal classes by mistake. As you’ll see in a moment, exporting everything

also increases the chance of conflicts among bundles containing the same package,

particularly when they provide a different set of classes in those packages. When

you’re new to OSGi, exporting everything can look like a reasonable choice to begin

with, especially if you don’t know precisely where the public API begins or ends. On

the contrary: you should try to trim down the list of exported packages as soon as

you have a working bundle.

 Let’s use a real-world example to demonstrate how to select your exports. Here are

some of the packages containing classes and resources inside the core BeanUtils 1.8.0

library from Apache Commons (http://commons.apache.org/beanutils/):

Service
registry

API

Activator

getService

getServiceReference registerService

Impl Impl

Activator

Impl

Figure 6.2 Sharing implementations without exporting their packages

http://commons.apache.org/beanutils/

196 CHAPTER 6 Moving toward bundles

org.apache.commons.beanutils
org.apache.commons.beanutils.converters
org.apache.commons.beanutils.locale
org.apache.commons.beanutils.locale.converters
org.apache.commons.collections

None of these packages seem private; there isn’t an impl or internal package in the list,

but the org.apache.commons.collections package is in fact an implementation detail.

If you look closely at the BeanUtils Javadoc (http://commons.apache.org/beanutils/

v1.8.2/apidocs/index.html), you’ll see that this package contains a subset of the origi-

nal Apache Commons Collections API (http://commons.apache.org/collections/).

BeanUtils uses only a few of the Collections classes; and rather than have an execution-

time dependency on the entire JAR file, the project embeds a copy of what it needs. What

happens when your application requires both the BeanUtils and Collections JAR files?

 This typically isn’t a problem in a non-OSGi environment because the application

class loader exhaustively searches the entire class path to find a class. If both BeanUtils

and Collections were on the same class path, they would be merged together, with

classes in BeanUtils overriding those from Collections or vice versa depending on

their ordering on the class path. Figure 6.3 (based on the class path diagram from

chapter 2) shows an example.

 One important caveat is that this only works if the BeanUtils and Collections ver-

sions are compatible. If you have incompatible versions on your class path, you’ll get

runtime exceptions because the merged set of classes is inconsistent.

OSGi tries to avoid this incompatibility by isolating bundles and only exposing

packages by matching imports with exports. Unfortunately for the current example,

this means that if you export org.apache.commons.collections from the BeanUtils

bundle, and the framework wires another bundle that imports org.apache.commons.

collections to it, it only sees the handful of Collections classes from BeanUtils. It

doesn’t see the complete set of classes sitting in the Commons Collections bundle. To

make sure this doesn’t happen, you must exclude the partial org.apache.commons.

collections package from the BeanUtils exports:

Export-Package: org.apache.commons.beanutils,
 org.apache.commons.beanutils.converters,
 org.apache.commons.beanutils.locale,
 org.apache.commons.beanutils.locale.converters

You can do this because the Collections package doesn’t belong to the main Bean-

Utils API. Now, if it was purely an implementation detail that was never exposed to

Class path

Apache BeanUtils Apache Collections

Figure 6.3 The classic application

class loader merges JAR files into a

single class space.

http://commons.apache.org/beanutils/v1.8.2/apidocs/index.html
http://commons.apache.org/beanutils/v1.8.2/apidocs/index.html
http://commons.apache.org/collections/

197Turning JARs into bundles

clients, your job would be complete. But there’s a hitch: a class from the Collections

package is indirectly exposed to BeanUtils clients via a return type on some depre-

cated methods. What can you do? You need to find a way to guarantee that the Bean-

Utils bundle uses the same Commons Collections provider as its clients. The simplest

solution would be to make this dependency explicit by importing org.apache.

commons.collections into the BeanUtils bundle, but then your bundle wouldn’t

resolve unless the Commons Collections bundle was also installed. Perhaps you could

you use an optional import instead:

Import-Package: org.apache.commons.collections;resolution:=optional

Now, if the full package is available, you’ll import it; but if it’s not available, you can still

use your internal private copy. Will this work? It’s better, but it still isn’t entirely accurate.

 Unfortunately, the only correct way to resolve this situation is to refactor the

BeanUtils bundle to not contain the partial private copy of org.apache.commons.

collections. See the sidebar “Revisiting uses constraints” if you want more details

as to why an optional import won’t work.

Revisiting uses constraints

We hypothesized about modifying the example BeanUtils bundle to optionally import

org.apache.commons.collections. The idea was that your bundle would import it

if an exporter was available, but would use its private copy if not. This doesn’t work,

but why not? It’s all about uses constraints, as discussed in section 2.7.2.

As we mentioned, BeanUtils exposes a type from the Collections package in a return

type of a method in its exported types; this is a uses constraint by definition. To deal

with this situation, you must express it somehow. Let’s assume you follow the op-

tional import case and try to model the uses constraint correctly, like this:

Export-Package:
 org.apache.commons.beanutils;
 uses:="org.apache.commons.collections",
 org.apache.commons.beanutils.converters,
 org.apache.commons.beanutils.locale;
 uses:="org.apache.commons.collections",
 org.apache.commons.beanutils.locale.converters
Import-Package: org.apache.commons.collections;resolution:=optional

This may work in some situations; for example, it would work if you deployed your

BeanUtils bundle, another bundle importing BeanUtils and Collections, and a bundle

exporting the Collections package. In this case, all the bundles would be wired up to

each other, and everyone would be using the correct version of the Collections pack-

ages. Great!

But what would happen if the BeanUtils bundle was installed and resolved by itself

first? In that case, it wouldn’t import the Collections package (because there isn’t

one) and would use its private partial copy instead. Now, if the other bundles were

installed and resolved, you’d end up with the wiring depicted here:

198 CHAPTER 6 Moving toward bundles

A surprising number of third-party libraries include partial packages. Some want to

reuse code from another large library but don’t want to bloat their own JAR file. Some

prefer to ship a single self-contained JAR file that clients can add to their class path

without worrying about conflicting dependencies. Some libraries even use tools such

as Jar Jar Links (http://code.google.com/p/jarjar/) to repackage internal dependen-

cies under different namespaces to avoid potential conflicts. This leads to multiple

copies of the same class all over the place, because Java doesn’t provide modularity

out of the box! Renamed packages also make debugging harder and confuse develop-

ers. OSGi removes the need for renaming and helps you safely share packages while

still allowing you to hide and embed implementation details.

 At this point, you may decide it’s a good time to refactor the API to make it more mod-

ular. Separating interfaces from their implementations can avoid the need for partial (or

so-called split) packages. This helps you reduce the set of packages you need to export

and make your bundle more manageable. Although this may not be an option for third-

party libraries, it’s often worth taking time to contact the original developers to explain

the situation. This happened a few years ago with the SLF4J project, which refactored its

API to great effect (www.slf4j.org/pipermail/dev/2007-February/000750.html). You

should also be careful to avoid accidentally leaking implementation types via method sig-

natures. As you saw with the BeanUtils example, the more internal details are exposed

through your API, the harder it is to modularize your code.

VERSIONING EXPORTED PACKAGES

After you have your list of exported packages, you should consider versioning them.

Which version should you use? The common choice is to use the bundle version,

(continued)

This means the BeanUtils bundle is using its own private copy of the Collections

types, whereas the importing bundle is using its imported collections types, so it will

receive a ClassCastException if it uses any methods from BeanUtils that expose

Collections types. In the end, there’s no way to have a private copy of a package if

its types are exposed via exported packages. As we’ve concluded already, you must

refactor your bundle to export preferably the whole package or to import the package.

Collections Importing
bundle

BeanUtils

export
org.apache.commons.beanutils

export
org.apache.commons.collections

import
org.apache.commons.collections

import
org.apache.commons.beanutils

import
org.apache.collections
resolution:=optional

A uses constraint on an optionally imported package is ignored if the optionally imported

package isn’t wired to an exporter.

http://code.google.com/p/jarjar/
www.slf4j.org/pipermail/dev/2007-February/000750.html

199Turning JARs into bundles

which implies that the packages change at the same rate as the bundle, but some pack-

ages inevitably change faster than others. You may also want to increment the bundle

version because of an implementation fix while the exported API remains at the same

level. Although everything starts out aligned, you’ll probably find that you need a sep-

arate version for each package (or at least each group of tightly coupled packages).

 We’ll take an in-depth look at managing versions in chapter 9, but a classic exam-

ple is the OSGi framework itself, which provides service APIs that have changed at dif-

ferent rates over time:

Export-Package: org.osgi.framework;version="1.4",
 org.osgi.service.packageadmin;version="1.2",
 org.osgi.service.startlevel;version="1.1",
 org.osgi.service.url;version="1.0",
 org.osgi.util.tracker;version="1.3.3"

Knowing which packages to export is only half of the puzzle of turning a JAR into a bun-

dle—you also need to find out what should be imported. This is often the hardest piece

of metadata to define and causes the most problems when people migrate to OSGi.

6.1.3 Discovering what to import

Do you know what packages a given JAR file needs at execution time? Many developers

have tacit or hidden knowledge of what JAR files to put on the class path. Such knowl-

edge is often gained from years of experience getting applications to run, where you

reflexively add JAR files to the class path until any ClassNotFoundExceptions disap-

pear. This leads to situations where an abundance of JAR files is loaded at execution

time, not because they’re all required, but because a developer feels they may be nec-

essary based on past experience.

 The following lines show an example class path for a Java EE client. Can you tell

how these JAR files relate to one another, what packages they provide and use, and

their individual versions?

concurrent.jar:getopt.jar:gnu-regexp.jar:jacorb.jar:\
jbossall-client.jar:jboss-client.jar:jboss-common-client.jar:\
jbosscx-client.jar:jbossha-client.jar:jboss-iiop-client.jar:\
jboss-j2ee.jar:jboss-jaas.jar:jbossjmx-ant.jar:jboss-jsr77-client.jar:\
jbossmq-client.jar:jboss-net-client.jar:jbosssx-client.jar:\
jboss-system-client.jar:jboss-transaction-client.jar:jcert.jar:\
jmx-connector-client-factory.jar:jmx-ejb-connector-client.jar:\
jmx-invoker-adaptor-client.jar:jmx-rmi-connector-client.jar:jnet.jar:\
jnp-client.jar:jsse.jar:log4j.jar:xdoclet-module-jboss-net.jar

With OSGi, you explicitly define which packages your bundle needs, and this knowledge

is then available to any developer who wants it. They no longer have to guess how to com-

pose their class path—the information is readily available in the metadata! It can also

be used by tools such as the OSGi Bundle Repository (OBR; http://felix.apache.org/

site/apache-felix-osgi-bundle-repository.html) to automatically select and validate col-

lections of bundles for deployment.

 This means any developer turning a JAR file into a bundle has a great responsibil-

ity in defining the correct set of imported packages. If this list is incomplete or too

http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html
http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html

200 CHAPTER 6 Moving toward bundles

excessive, it affects all users of the bundle. Unfortunately, standard Java tools don’t

provide an easy way to determine which packages a JAR file may use at execution

time. Manually skimming the source for package names is time consuming and unre-

liable. Byte-code analysis is more reliable and repeatable, which is especially impor-

tant for distributed teams, but it can miss classes that are dynamically loaded by

name. For instance, this could load a class from any package:

String name = someDynamicNameConstruction(someSortOfContext);
Class<?> clazz = someClassLoader.loadClass(name);

The ideal solution is to use a byte-code analysis tool like bnd (http://aqute.biz/

Code/Bnd) followed by a manual review of the generated metadata by project devel-

opers. You can then decide whether to keep generating the list of imported packages

for every build or generate the list once and save it to a version-controlled file some-

where so it can be pulled into later builds. Most tools for generating OSGi manifests

also let you supplement or override the generated list, in case the manual review finds

missing or incorrect packages.

 After you’re happy with the metadata, you should run integration tests on an OSGi

framework to verify that the bundle has the necessary imported packages. You don’t

want to get a ClassNotFoundException in production when an obscure but impor-

tant piece of code runs for the first time and attempts to access a package that hasn’t

been imported!

USING TOOLS TO GENERATE IMPORTS

Let’s continue with the BeanUtils example and use bnd to discover what imports you

need. The bnd tool was developed by the OSGi director of technology, Peter Kriens,

and provides a number of Ant tasks and command-line commands specifically

designed for OSGi. Bnd uses a pull approach to divide a single class path into separate

bundles based on a set of instructions. This means you have to tell bnd what packages

you want to pull in and export, as well as those you want to pull in and keep private.

 Bnd instructions use the same format as OSGi directives, which means you can mix

normal manifest entries along with bnd instructions. In addition to accepting OSGi

manifest headers as instructions, bnd adds some of its own, such as Include-Resource

and Private-Package, to give you more control over exactly what goes into the bun-

dle. These instructions aren’t used by the OSGi framework at execution time.

 The following instructions select the exported and non-exported (or so-called pri-

vate) packages that should be contained in your final BeanUtils bundle. You start by

exporting all of the BeanUtils API, as discussed in section 6.1.2. Remember that you

also want to remove the partial Collections package from the internals and import it

instead. Finally, you let bnd decide what this bundle needs to import. Let’s put these

instructions in a file named beanutils.bnd, which you can find under chapter06/

BeanUtils-example/ in this book’s examples:

Export-Package: org.apache.commons.beanutils.*
Private-Package: !org.apache.commons.collections.*, *
Import-Package: *

http://aqute.biz/Code/Bnd
http://aqute.biz/Code/Bnd

201Turning JARs into bundles

Notice that unlike the standard OSGi headers, bnd package instructions can contain

wildcards and negative patterns. Bnd expands these patterns at build time according

to what it finds in the project byte code on the class path, saving you the hassle of typ-

ing everything in minute detail.

 After you’ve chosen your exported and internal packages, you invoke the bnd

build task by passing it the original BeanUtils JAR file along with your custom bnd

instructions:

$ cd chapter06/BeanUtils-example

$ java -jar ../../lib/bnd-0.0.384.jar \
 build -classpath commons-beanutils-1.8.0.jar beanutils.bnd

Bnd processes the given class path using your instructions and generates a new JAR

alongside the instructions file, called beanutils.jar. You can extract the OSGi-enhanced

manifest from the newly created BeanUtils bundle like so:

$ java -jar ../../lib/bnd-0.0.384.jar \
 print -manifest beanutils.jar

As you can see, it contains the following generated list of imported packages:

Import-Package:
 org.apache.commons.beanutils;version="1.8",
 org.apache.commons.beanutils.converters;version="1.8",
 org.apache.commons.beanutils.expression;version="1.8",
 org.apache.commons.beanutils.locale;version="1.8",
 org.apache.commons.beanutils.locale.converters;version="1.8",
 org.apache.commons.collections,
 org.apache.commons.collections.comparators,
 org.apache.commons.collections.keyvalue,
 org.apache.commons.collections.list,
 org.apache.commons.collections.set,
 org.apache.commons.logging

There are a couple of interesting points about this list. First, bnd has added imports for

all the BeanUtils packages that you want to export. As we discussed in section 5.1.1, this

is usually good practice when exporting an API that has multiple implementations,

because it means that if (for whatever reason) an existing bundle already exports these

packages, you’ll share the same class space for the API. Without these imports, your bun-

dle would sit on its own little island, isolated from any bundles already wired to the pre-

vious package exporter. But if you don’t expect alternative implementations of

Commons Collections, you can always turn off this feature with a special bnd directive:

Export-Package: org.apache.commons.beanutils.*;-noimport:=true

Bnd has also found byte code references to the Apache Collections and Logging pack-

ages, which aren’t contained in the BeanUtils bundle and must therefore be

imported. Just think: you can now tell what packages a JAR file needs at execution

time by checking the imported package list in the manifest. This is extremely useful

for automated deployment of applications. Such a system knows that when deploying

202 CHAPTER 6 Moving toward bundles

BeanUtils, it should also deploy Commons Collections and Commons Logging (or

another bundle that provides the same logging package, like SLF4J). But which partic-

ular version of Logging should it deploy?

IMPORTING THE CORRECT VERSION

Just as with exported packages, you should consider versioning your imports. Chap-

ter 2 explained how versioning helps ensure binary compatibility with other bun-

dles. You should try to use ranges rather than leave versions open-ended, because

doing so protects you against potentially breaking API changes in the future. For

example, consider the following:

Import-Package: org.slf4j;version="1.5.3”

This matches any version of the SLF4J API from 1.5.3 onward, even unforeseen future

releases that could be incompatible with your code.

 One recommended practice is to use a range starting from the minimum accept-

able version up to, but not including, the next major version. (This assumes a change

in major version is used to indicated that the API isn’t binary compatible.) For exam-

ple, if you tested against the 1.5.3 SLF4J API, you might use the following range:

Import-Package: org.slf4j;version="[1.5.3,2)"

This ensures that only versions from the tested level to just before the next major

release are used.

 Not all projects follow this particular versioning scheme—you may need to tweak

the range to narrow or widen the set of compatible versions. The width of the import

range also depends on how you’re using the package. Consider a simple change like

adding a method to an interface, which typically occurs during a point release (such

as 1.1 to 1.2). If you’re just calling the interface, this change doesn’t affect you. If, on

the other hand, you’re implementing the interface, this will definitely break, because

you now need to implement a new method.

 Adding the correct version ranges to imported packages takes time and patience,

but this is often a one-time investment that pays off many times over during the life of

a project. Tools such as bnd can help by detecting existing version metadata from

dependencies on the class path and by automatically applying version ranges accord-

ing to a given policy.

 Unfortunately, tools aren’t perfect. While you’re reviewing the generated list of

imported packages, you may notice a few that aren’t used at execution time. Some

code may only be executed in certain scenarios, such as an Ant build task that’s

shipped with a library JAR file for convenience. Other JAR files may dynamically test

for available packages and adapt their behavior at execution time to match what’s

installed. In such cases, it’s useful to mark these imports as optional to tell the OSGi

framework that the bundle can still work even when these packages aren’t available.

Table 6.2 shows some real-world packages that are often consid-ered optional.

 As you saw back in section 5.2, OSGi provides two ways to mark a package as

optional. You can either mark packages with the resolution:=optional directive or

203Turning JARs into bundles

list them as dynamically imported packages. For packages you never expect to be used

at execution time, like the Ant packages, we suggest that you either use the optional

attribute or remove them from the list of imported packages. Use resolution:=

optional when you know the bundle will always be used the same way after it’s

installed. If you want a more adaptive bundle that reacts to the latest set of available

packages, you should list them as dynamic imports.

 If you’re new to OSGi and unsure exactly what packages your JAR file uses, consider

using

DynamicImport-Package: *

This makes things similar to the classic model, where requests to load a new class

always result in a query to the complete class path. It also allows your bundle to suc-

cessfully resolve regardless of what packages are available. The downside is that you’re

pushing the responsibility of finding the right set of bundles onto users, because you

don’t provide any metadata defining what you need! This approach should only be

considered as a stopgap measure to get you started.

 You’ve now chosen the exports and imports for your new bundle. Every non-

optional, nondynamic package you import (but don’t export) must be provided by

another bundle. Does this mean that for every JAR file you convert into a bundle, you

also need to convert each of its dependencies into bundles? Not necessarily, because

unlike standard JAR files, OSGi supports embedding JAR files inside bundles.

6.1.4 Embedding vs. importing

Sometimes a JAR file has a close dependency on another JAR file. Maybe they only

work together, or the dependency is an implementation detail you want to keep pri-

vate, or you don’t want to share the static member fields in the JAR file with other bun-

dles. In these situations, it makes more sense to embed the dependencies inside the

primary JAR file when you turn it into a bundle. Embedding the JAR file is easier than

converting both JAR files to bundles because you can ignore packages that would oth-

erwise need to be exported and imported between them. The downside of embedding

is that it adds unnecessary weight for non-OSGi users, who can’t use the embedded JAR

file unless the bundle is first unpacked. Figure 6.4a shows how a CGLIB bundle might

embed ASM, a small utility for processing byte code.

Table 6.2 Common optional imported packages found in third-party libraries

Package Used for

javax.swing.* GUI classes (could be interactive tests)

org.apache.tools.ant.* ANT taskdefs (build time)

antlr.* Parsing (maybe build/test related)

sun.misc.* Sun implementation classes (like BASE64)

com.sun.tools.* Sun tool support (javac, debugging, and so on)

204 CHAPTER 6 Moving toward bundles

Alternatively, you can consider creating a new bundle artifact that embeds all the

related JAR files together instead of turning the primary JAR file into a bundle. This

aggregate bundle can then be provided separately to OSGi users without affecting

users of the original JAR files. Figure 6.4b shows how you can use this approach for the

CGLIB library. Although this means you have an extra deliverable to support, it also

gives you an opportunity to override or add classes for better interoperability with

OSGi. You’ll see an example in a moment and also later on in section 6.2.1. This often

happens when libraries use external connections or background threads, which ide-

ally should be managed by the OSGi lifecycle layer. Such libraries are said to have state.

6.1.5 Adding lifecycle support

You may not realize it when you use a third-party library, but a number of them have a

form of state. This state can take the form of a background thread, a file system cache,

or a pool of database connections. Libraries usually provide methods to manage this

state, such as cleaning up resources and shutting down threads. Often, you don’t

bother calling these methods because the life of the library is the same as the life of

your application. In OSGi, this isn’t necessarily the case; your application could still be

running after the library has been stopped, updated, and restarted many times. On

the other hand, the library could still be available in the framework long after your

application has come and gone. You need to tie the library state to its bundle lifecycle;

and to do that, you need to add a bundle activator (see section 3.4.1).

 The original HttpClient library from Apache Commons (http://hc.apache.org/

httpclient-3.x/apidocs/index.html) manages a pool of threads for multithreaded con-

nections. These threads are started lazily so there’s no need to explicitly initialize the

pool, but the library provides a method to shut down and clean everything up:

MultiThreadedHttpConnectionManager.shutdownAll();

To wrap the HttpClient library JAR file up as a bundle, you can add an activator that

shuts down the thread pool whenever the HttpClient bundle is stopped. This

approach is as follows:

package org.apache.commons.httpclient.internal;

import org.apache.commons.httpclient.MultiThreadedHttpConnectionManager;
import org.osgi.framework.*;

public class Activator implements BundleActivator {
 public void start(BundleContext ctx) {}

a) b)Bundle-ClassPath: .,asm.jar Bundle-ClassPath: cglib.jar,asm.jar

CGLIB CGLIB

ASM ASM

Figure 6.4

Embedding tightly

coupled dependen-

cies in a bundle

http://hc.apache.org/httpclient-3.x/apidocs/index.html
http://hc.apache.org/httpclient-3.x/apidocs/index.html

205Turning JARs into bundles

 public void stop(BundleContext ctx) {
 MultiThreadedHttpConnectionManager.shutdownAll();
 }
}

You have to tell OSGi about this activator by adding metadata to the manifest:

Bundle-Activator: org.apache.commons.httpclient.internal.Activator

You can see this in action by building and running the following example:

$ cd chapter06/HttpClient-example

$ ant dist

$ java -jar launcher.jar bundles

You should see it start and attempt to connect to the internet (ignore log4j warnings):

GET http://www.google.com/
GOT 5500 bytes
->

If you use jstack to see what threads are running in the JVM, one of them should be

"MultiThreadedHttpConnectionManager cleanup" daemon

Stop the HttpClient bundle, which should clean up the thread pool, and check again:

-> stop 5

The MultiThreadedHttpConnectionManager thread should now be gone. Unfortu-

nately, this isn’t a complete solution, because if you stop and restart the test bundle,

the thread pool manager reappears—even though the HttpClient bundle is still

stopped! Restricting use of the HttpClient library to the bundle active state would

require all calls to go through some sort of delegating proxy or, ideally, the OSGi ser-

vice registry. Thankfully, the 4.0 release of the HttpClient library makes it much easier

to manage connection threads inside a container such as OSGi and removes the need

for this single static shutdown method.

 Bundle activators are mostly harmless because they don’t interfere with non-OSGi

users of the JAR file. They’re only referenced via the bundle metadata and aren’t con-

sidered part of the public API. They sit there unnoticed and unused in classic Java

applications until the bundle is loaded into an OSGi framework and started. When-

ever you have a JAR file with implicit state or background resources, consider adding

an activator to help OSGi users.

 We’ve now covered most aspects of turning a JAR file into a bundle: identity, exports,

imports, embedding, and lifecycle management. How many best practices can you

remember? Wouldn’t it be great to have them summarized as a one-page cheat sheet?

 Look no further than the following section.

6.1.6 JAR file to bundle cheat sheet

Figure 6.5 presents a cheat sheet that gives you a handy summary of converting JAR

files into bundles.

206 CHAPTER 6 Moving toward bundles

OK, you know how to take a single JAR file and turn it into a bundle, but what about a

complete application? You could take your existing JAR, EAR, and WAR files and turn

them all into bundles; or you could choose to wrap everything up as a single application

bundle. Surely you can do better than that. What techniques can you use to bundle up

an application, and what are the pros and cons? For the answers to this and more, read on.

6.2 Splitting an application into bundles

Most applications are made up of one or more JAR files. One way to migrate an appli-

cation to OSGi is to take these individual JAR files and convert each of them into a

bundle using the techniques discussed in the previous section. Converting lots of JAR

files is time consuming (especially for beginners), so a simpler approach is to take

your complete application and wrap it up as a single bundle. In this section, we’ll show

you how to start from such a single application bundle and suggest ways of dividing it

further into multiple bundles. Along the way, we’ll look at how you can introduce

other OSGi features, such as services, to make your application more flexible. Finally,

we’ll suggest places where it doesn’t make sense to introduce a bundle.

 Let’s start with the single application bundle or so-called mega bundle.

6.2.1 Making a mega bundle

A mega bundle comprises a complete application along with its dependencies. Any-

thing the application needs on top of the standard JDK is embedded inside this bundle

Figure 6.5 JAR-to-bundle cheat sheet

207Splitting an application into bundles

and made available to the application by extending the Bundle-ClassPath (2.5.3). This

is similar to how Java Enterprise applications are constructed. In fact, you can take an

existing web application archive (WAR file) and easily turn it into a bundle by adding an

identity along with Bundle-ClassPath entries for the various classes and libraries con-

tained within it, as shown in figure 6.6.

 The key benefit of a mega bundle is that it drastically reduces the number of pack-

ages you need to import, sometimes down to no packages at all. The only packages you

may need to import are non-java.* packages from the JDK (such as javax.* packages)

or any packages provided by the container itself. Even then, you can choose to access

them via OSGi boot delegation by setting the org.osgi.framework.bootdelegation

framework property to the list of packages you want to inherit from the container class

path. Boot delegation can also avoid certain legacy problems (see section 8.2 for the

gory details). The downside is that it reduces modularity, because you can’t override

boot-delegated packages in OSGi. A mega bundle with boot delegation enabled is close

to the classic Java application model; the only difference is that each application has its

own class loader instead of sharing the single JDK application class loader.

JEDIT MEGA-BUNDLE EXAMPLE

Let’s shelve the theoretical discussion for the moment and create a mega bundle

based on jEdit (www.jedit.org/), a pluggable Java text editor. The sample code for this

book comes with a copy of the jEdit 4.2 source, which you can unpack like so:

$ cd chapter06/jEdit-example

$ ant jEdit.unpack

$ cd jEdit

The jEdit build uses Apache Ant (http://ant.apache.org/), which is good news because

it means you can use bnd’s Ant tasks to generate OSGi manifests. Maven users shouldn’t

feel left out, though: you can use maven-bundle-plugin (http://felix.apache.org/site/

apache-felix-maven-bundle-plugin-bnd.html), which also uses bnd under the covers.

 How exactly do you add bnd to the build? The following listing shows the main tar-

get from the original (non-OSGi) jEdit build.xml.

<target name="dist" depends="compile,compile14"
 description="Compile and package jEdit.">

 <jar jarfile="jedit.jar"

Listing 6.1 Default jEdit build target

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/velocity-1.4.jar,...

lib/velocity-1.4.jar
WEB-INF

… … …

classes

Figure 6.6 Turning a

WAR file into a bundle

http://ant.apache.org/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
www.jedit.org/

208 CHAPTER 6 Moving toward bundles

 manifest="org/gjt/sp/jedit/jedit.manifest"
 compress="false">

 <fileset dir="${build.directory}">
 <include name="bsh/**/*.class"/>
 <include name="com/**/*.class"/>
 <include name="gnu/**/*.class"/>
 <include name="org/**/*.class"/>
 </fileset>

 <fileset dir=".">
 <include name="bsh/commands/*.bsh"/>
 <include name="gnu/regexp/MessagesBundle.properties"/>
 <include name="org/gjt/sp/jedit/**/*.dtd"/>
 <include name="org/gjt/sp/jedit/icons/*.gif"/>
 <include name="org/gjt/sp/jedit/icons/*.jpg"/>
 <include name="org/gjt/sp/jedit/icons/*.png"/>
 <include name="org/gjt/sp/jedit/*.props"/>
 <include name="org/gjt/sp/jedit/actions.xml"/>
 <include name="org/gjt/sp/jedit/browser.actions.xml"/>
 <include name="org/gjt/sp/jedit/dockables.xml"/>
 <include name="org/gjt/sp/jedit/services.xml"/>
 <include name="org/gjt/sp/jedit/default.abbrevs"/>
 </fileset>
 </jar>
</target>

The jar task is configured to take a static manifest file: org/gjt/sp/jedit/jedit.mani-

fest. If you don’t want to change the build process but still want an OSGi-enabled man-

ifest, you can take the jEdit binary, run it through an analyzer like bnd, and add the

generated OSGi headers to this static manifest. As we mentioned back in section 6.1.3,

this approach is fine for existing releases or projects that don’t change much. On the

other hand, integrating a tool such as bnd with your build means you get feedback

about the modularity of your application immediately rather than when you try to

deploy it.

REPLACING THE JAR TASK WITH BND

Let’s make things more dynamic and generate OSGi metadata during the build. This is

the recommended approach because you don’t have to remember to check and regen-

erate the metadata after significant changes to the project source. This is especially use-

ful in the early stages of a project, when responsibilities are still being allocated.

 There are several ways to integrate bnd with a build:

■ Use bnd to generate metadata from classes before creating the JAR file.

■ Create the JAR file as normal and then post-process it with bnd.

■ Use bnd to generate the JAR file instead of using the Ant jar task.

If you need certain features of the jar task, such as indexing, you should use the first

or second option. If you’re post-processing classes or need to filter resources, choose

either the second or third option. Let’s go with the third option to demonstrate how

easy it is to switch your build over to bnd. It will also help you later, in section 6.2.2,

when you start partitioning the application into separate bundles.

209Splitting an application into bundles

 First, comment out the jar task:

<!-- jar jarfile="jedit.jar"
 manifest="org/gjt/sp/jedit/jedit.manifest"
 compress="false">
...
</jar -->

The first line above shows where to put the JAR file, and the second lists fixed manifest

entries.

 Next, add the bnd definition and target task:

<taskdef resource="aQute/bnd/ant/taskdef.properties"
 classpath="../../../lib/bnd-0.0.384.jar" />

<bnd classpath="${build.directory}"
 files="jedit-mega.bnd" />

Here, you first give the location of the bnd JAR file to tell Ant where it can find the

bnd task definition. Then you specify a bnd task to create your bundle JAR file, giving

it the project class path and the file containing your bnd instructions.

 There’s one key difference between the jar and bnd tasks that you must remember:

■ The jar task takes a list of files and directories and copies them all into a single

JAR file.

■ The bnd task takes a class path and a list of instruction files (one file per bun-

dle) that tell it which classes and/or resources to copy from the class path into

each bundle.

If you don’t tell bnd to pull a certain package into the bundle, don’t be surprised if

the package isn’t there. You’re building a single mega bundle, so you need only one

instruction file: call it jedit-mega.bnd. The first thing you must add is an instruction to

tell bnd where to put the generated bundle:

-output: jedit.jar

The bnd task can also copy additional manifest headers into the final manifest, so let’s

ask bnd to include the original jEdit manifest rather than duplicate its content in your

new file:

-include: org/gjt/sp/jedit/jedit.manifest

You could have left the manifest file where it was, added your instructions to it, and

passed that into bnd, but this would make it harder for people to separate out the new

build process from the original. It’s also better to have the bnd instructions at the

project root where they’re more visible. You can now try to build the project from

inside the jEdit directory:

$ ant dist
...
[bnd] Warnings
[bnd] None of Export-Package, Private-Package, -testpackages, or -

exportcontents is set, therefore no packages will be included

210 CHAPTER 6 Moving toward bundles

[bnd] Did not find matching referal for *
[bnd] Errors
[bnd] The JAR is empty

ADDING BND INSTRUCTIONS

What went wrong? You forgot to tell bnd what packages to pull into your new bundle!

Using the JAR-to-bundle cheat sheet from section 6.1.6, add the following bundle

headers to jedit-mega.bnd along with a bnd-specific instruction to pull in all classes

and resources from the build class path and keep them private:

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: *

Getting back to the task at hand, when you rebuild the jEdit project you now see this:

$ ant dist
...
[bnd] # org.gjt.sp.jedit (jedit.jar) 849

Success! Try to run your new JAR file:

$ java -jar jedit.jar

Whoops, something else went wrong:

Uncaught error fetching image:
java.lang.NullPointerException
 at sun.awt.image.URLImageSource.getConnection(Unknown Source)
 at sun.awt.image.URLImageSource.getDecoder(Unknown Source)
 at sun.awt.image.InputStreamImageSource.doFetch(Unknown Source)
 at sun.awt.image.ImageFetcher.fetchloop(Unknown Source)
 at sun.awt.image.ImageFetcher.run(Unknown Source)

ADDING RESOURCE FILES

It seems your JAR file is missing some resources. Can you see why? Look closely at the

jar task in listing 6.1; notice how classes come from ${build.directory}, but the

resource files come from . (the project root). You could write a bnd-specific Include-

Resource instruction to tell bnd to pull in these resources, but there’s an easier solu-

tion that lets you reuse instructions from the jEdit build file. Take the existing

resource file set from the old jar task, and put it inside a copy task to copy matching

resources to the build directory before the bnd task runs:

Take care with wildcards

Remember that bnd supports wildcard package names, so you can use * to represent

the entire project. Although this is useful when creating mega bundles, you should be

careful about using wildcards when separating a class path into multiple, separate

bundles, or when already bundled dependencies appear on the class path. Always

check the content of your bundles to make sure you aren’t pulling in additional pack-

ages by mistake!

211Splitting an application into bundles

<copy todir="${build.directory}">
 <fileset dir=".">
 <include name="bsh/commands/*.bsh"/>
 <!-- and so on... -->
 </fileset>
</copy>

The resource files can now be found on the build class path. Rebuild, and run jEdit

again:

$ ant dist
...
[bnd] # org.gjt.sp.jedit (jedit.jar) 1003

$ java -jar jedit.jar

Bingo! You should see the main jEdit window appear, as shown in figure 6.7.

Your bundle works as a classic JAR file, but will it work as a bundle? Let’s review the

manifest.

Manifest-Version: 1.0
Created-By: 1.6.0_13 (Sun Microsystems Inc.)
Bnd-LastModified: 1250524748304
Tool: Bnd-0.0.384
Main-Class: org.gjt.sp.jedit.jEdit
Bundle-ManifestVersion: 2

Listing 6.2 jEdit mega bundle manifest

Figure 6.7

Main jEdit window

212 CHAPTER 6 Moving toward bundles

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2
Private-Package:
 bsh,
 bsh.collection,
 bsh.commands,
 bsh.reflect,
 com.microstar.xml,
 gnu.regexp,
 installer,
 org.gjt.sp.jedit,
 org.gjt.sp.jedit.browser,
 org.gjt.sp.jedit.buffer,
 org.gjt.sp.jedit.gui,
 org.gjt.sp.jedit.help,
 org.gjt.sp.jedit.icons,
 org.gjt.sp.jedit.io,
 org.gjt.sp.jedit.menu,
 org.gjt.sp.jedit.msg,
 org.gjt.sp.jedit.options,
 org.gjt.sp.jedit.pluginmgr,
 org.gjt.sp.jedit.print,
 org.gjt.sp.jedit.proto.jeditresource,
 org.gjt.sp.jedit.search,
 org.gjt.sp.jedit.syntax,
 org.gjt.sp.jedit.textarea,
 org.gjt.sp.util,
 org.objectweb.asm
Import-Package:
 javax.print.attribute,
 javax.print.attribute.standard,
 javax.swing,
 javax.swing.border,
 javax.swing.event,
 javax.swing.filechooser,
 javax.swing.plaf,
 javax.swing.plaf.basic,
 javax.swing.plaf.metal,
 javax.swing.table,
 javax.swing.text,
 javax.swing.text.html,
 javax.swing.tree

Your jEdit bundle doesn’t export any packages, but it does use packages from Swing.

These should come from the system bundle, which is typically set up to export JDK pack-

ages (although this can be overridden). You may wonder if you should add version

ranges to the packages imported from the JDK. This isn’t required, because most system

bundles don’t version their JDK packages. You only need to version these imports if you

want to use another implementation that’s different from the stock JDK version.

 We should also mention that the final manifest contains some bnd-specific head-

ers that aren’t used by the OSGi framework (such as Private-Package, Tool, and

Bnd-LastModified). They’re left as a useful record of how bnd built the bundle, but

213Splitting an application into bundles

if you don’t want them, you can remove them by adding this bnd instruction to

jedit-mega.bnd:

-removeheaders: Private-Package,Tool,Bnd-LastModified

The new manifest looks correct, but the real test is yet to come. You must now try to

deploy and run your bundle on an actual OSGi framework. Will it work the first time

or fail with an obscure exception?

RUNNING JEDIT WITH OSGI

You can deploy your jEdit bundle by using the same simple launcher used to launch

the earlier paint examples. Remember, this launcher first installs any bundles found

in the directory and then uses the first Main-Class header it finds to bootstrap the

application. Your manifest already has a Main-Class, so you need to point the

launcher at the jEdit directory, like so:

$ cd ..

$ cp ../../launcher/dist/launcher.jar .

$ java -jar launcher.jar jEdit

Unfortunately, something’s not quite right. The bundle installs and the application

starts, but it hangs at the splash screen shown in figure 6.8, and the main jEdit window

never appears.

 If you look closely at the top of the stack trace, you see the following warning

message:

java.net.MalformedURLException: Unknown protocol: jeditresource

Why did this work when the bundle was run as a classic application, but not when the

bundle was installed in an OSGi framework? The answer lies in the URL Handlers Service

we discussed briefly back in section 4.6.1. To implement this service, the OSGi frame-

work installs its own URLStreamHandlerFactory, which delegates requests to handlers

installed via the service registry. Unlike the default URLStreamHandlerFactory, this

implementation doesn’t automatically scan the class path for URL handlers. Instead, all

Figure 6.8 jEdit when

first run as OSGi bundle

214 CHAPTER 6 Moving toward bundles

URL handlers must be registered as OSGi services, which also means the handlers are

tied to their bundle lifecycle.

FIXING THE URL HANDLER ISSUE

Your first thought may be to try to disable the URL Handlers Service so it doesn’t

install this factory. Unfortunately, there’s no standard switch for this; but to disable it

in Felix, you set the felix.service.urlhandlers framework property to false. Turn-

ing off the global URL Handlers Service also has serious implications. It means no

bundle can contribute dynamic protocol handlers, which would break applications

that rely on the URL Handlers Service. It also won’t fix this particular problem

because the jeditresource handler isn’t visible to the default URLStreamHandler-

Factory when you run jEdit as a bundle. The JDK’s URL Handler factory uses

Class.forName() to search the application class path for valid handlers, but your

jeditresource handler is hidden from view inside the jEdit bundle class loader.

 The solution is to register the jeditresource handler as a URLStreamHandler-

Service when the jEdit bundle is started and remove it when the bundle is stopped.

But how can you add OSGi-specific code without affecting classic jEdit users? Cast your

mind back to section 6.1.5, where we talked about using lifecycles to manage external

resources. This is exactly the sort of situation that requires a bundle activator, such as

the one shown next.

package org.gjt.sp.jedit;

import java.io.IOException;
import java.net.*;
import java.util.Properties;

import org.osgi.framework.*;
import org.osgi.service.url.*;

import org.gjt.sp.jedit.proto.jeditresource.Handler;

public class Activator implements BundleActivator {
 private static class JEditResourceHandlerService
 extends AbstractURLStreamHandlerService {
 private Handler jEditResourceHandler = new Handler();

 public URLConnection openConnection(URL url)
 throws IOException {
 return jEditResourceHandler.openConnection(url);
 }
 }

 public void start(BundleContext context) {
 Properties properties = new Properties();
 properties.setProperty(URLConstants.URL_HANDLER_PROTOCOL,
 "jeditresource");

 context.registerService(
 URLStreamHandlerService.class.getName(),
 new JEditResourceHandlerService(),

Listing 6.3 Bundle activator to manage the jeditresource handler

Delegates to
real handler

Publishes URL
handler service

215Splitting an application into bundles

 properties);
 }

 public void stop(BundleContext context) {}
}

After you’ve added this activator class to the build, you must remember to declare it in

the OSGi metadata—otherwise, it will never be called. This is a common cause of

head-scratching for people new to OSGi, because the framework can’t tell when you

accidentally forget a Bundle-Activator header. When you’ve added an activator, but

it’s having no effect, always check your manifest to make sure it’s been declared—it

saves a lot of hair!

Bundle-Activator: org.gjt.sp.jedit.Activator

Your activator code uses OSGi constants and interfaces, so you must add the core OSGi

API to the compilation class path in the jEdit build.xml. Otherwise, your new code

won’t compile:

<javac ... >
 <classpath path="../../../lib/osgi.core.jar"/>
 <!-- the rest of the classpath -->

This API is only required when compiling the source; it isn’t necessary at execution

time unless the activator class is explicitly loaded. One more build, and you now have

a JAR file that can run as a classic Java application or an OSGi bundle! The following

snippet shows the final set of bnd instructions for the jEdit mega bundle:

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: *

Bundle-Activator: org.gjt.sp.jedit.Activator

One last wrinkle: you have to tell jEdit where its installation directory is by using the

jedit.home property. Normally, jEdit can detect the installation directory containing

its JAR file by peeking at the application class path, but this won’t work when running

it as a bundle on OSGi because the JAR file is loaded via a different mechanism:

$ ant dist

$ cd ..

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

With this last piece of configuration in place, you should see jEdit start and the main

window appear, as you saw earlier in figure 6.8. It should also still work as a classic Java

application.

216 CHAPTER 6 Moving toward bundles

REVISITING MEGA BUNDLES

You’ve successfully created a mega bundle for jEdit with a small amount of effort.

What are the downsides of a mega bundle? Well, your application is still one single

unit. You can’t replace or upgrade sections of it without shutting down the complete

application, and doing so may shut down the entire JVM process if the application

calls System.exit(). Because nothing is being shared, you can end up with duplicate

content between applications.

 Effectively, you’re in the same situation as before moving to OSGi, but with a few

additional improvements in isolation and management. This doesn’t mean the mega

bundle approach is useless—as a first step, it can be reassuring to be able to run your

application on an OSGi framework with the minimum of fuss. It also provides a solid

foundation for further separating (or slicing) your application into bundles, which is

the focus of the next section.

6.2.2 Slicing code into bundles

You now have a single mega bundle containing your entire application. The next step

toward a full-fledged flexible OSGi application is to start breaking it into bundles that

can be upgraded independently of one another. How and where should you draw the

lines between bundles?

 Bundles import and export packages in order to share them, so it makes sense to

draw lines that minimize the number of imports and exports. If you have a high-level

design document showing the major components and their boundaries, you can take

each major component and turn it into a bundle. If you don’t have such a document,

you should look for major areas of responsibility such as business logic, data access,

and graphical components. Each major area can be represented by a bundle, as

depicted in figure 6.9.

 Another way to approach this is to review the benefits of modularity (described in

section 2.2) and think about where they make the most sense in your application. For

example, do any areas need to be upgraded or fixed independently? Does the applica-

tion have any optional parts? Are common utilities shared throughout the application?

UI UI

Logic

Data

Logic

Data

Figure 6.9 Slicing

code into bundles

217Splitting an application into bundles

CUTTING ALONG THE DOTTED LINES

Returning to the jEdit example, what areas suggest themselves as potential bundles?

The obvious choice to begin with is to separate the jEdit code from third-party librar-

ies and then try to extract the main top-level package. But how do you go about divid-

ing the project class path into different bundles?

 Recall what we said about bnd back in section 6.1.3, that it uses a pull approach to

assemble bundles from a project class path based on a list of instruction files. All you

need to do is provide your bnd task with different instruction files for each bundle.

The following example divides the class path into three bundles:

<bnd classpath="${build.directory}"
 files="jedit-thirdparty.bnd,jedit-main.bnd,jedit-engine.bnd" />

The first bundle contains all third-party classes—basically, any package from the build

directory that doesn’t start with org.gjt.sp. Bnd makes this easy by allowing negated

packages. For example:

Private-Package: !org.gjt.sp.*, *

This copies all other packages into the bundle and keeps them private.

 Using the earlier jedit-mega.bnd file as a template, you can flesh out the rest to get

the following jedit-thirdparty.bnd file:

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Private-Package: !org.gjt.sp.*, !installer.*, *

You also exclude the installer package because it isn’t required at execution time

and doesn’t belong in the third-party library bundle.

 The second bundle contains the top-level package containing the main jEdit class.

You should also add the org.gjt.sp.jedit.proto package containing the URL han-

dler code because it’s only used by the bundle activator in the top-level package.

Here’s an initial attempt at jedit-main.bnd:

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Private-Package: org.gjt.sp.jedit, org.gjt.sp.jedit.proto.*

Bundle-Activator: org.gjt.sp.jedit.Activator

Notice that the only difference between this file and the mega bundle instructions

shown earlier is the selection of private packages; everything else is exactly the same.

The main bundle also replaces the mega bundle as the executable JAR file.

218 CHAPTER 6 Moving toward bundles

 The third and final bundle contains the rest of the jEdit packages, which we’ll call

the engine for now. It should contain all packages beneath the org.gjt.sp namespace,

except the top-level jEdit package and packages under org.gjt.sp.jedit.proto. The

resulting jedit-engine.bnd file is as follows:

-output: jedit-engine.jar

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Private-Package:\
 !org.gjt.sp.jedit, !org.gjt.sp.jedit.proto.*,\
 org.gjt.sp.*

Notice how the same packages listed in the main instructions are negated in the

engine instructions. Refactoring packages between bundles is as simple as moving

entries from one instruction file to another.

STITCHING THE PIECES TOGETHER

You now have three bundles that together form the original class path, but none of

them share any packages. If you tried to launch the OSGi application at this point, it

would fail because of unsatisfied imports between the three bundles. Should you go

ahead and export everything by switching all Private-Package instructions to

Export-Package? You could, but what would you learn by doing that? Let’s try to

export only what you absolutely need to share, keeping as much as possible private.

 There are three ways you can find out which packages a bundle must export:

■ Gain an understanding of the code base and how the packages relate to one

other. This can involve the use of structural analysis tools such as Structure101

(www.headwaysoftware.com/products/structure101/index.php).

■ Read the Import-Package headers from generated manifests to compile a list of

packages that “someone” needs to export. Ignore JDK packages like

javax.swing. You can use the bnd print command to avoid having to unpack

the manifest.

■ Repeatedly deploy the bundles into a live framework, and use any resulting

error messages and/or diagnostic commands (such as the diag command on

Equinox) to fine-tune the exported packages until all bundles resolve.

The first option requires patience, but the reward is a thorough understanding of the

package structure. It also helps you determine other potential areas that can be

turned into bundles. The third option can be quick if the framework gives you the

complete list of missing packages on the first attempt, but sometimes it feels like an

endless loop of “deploy, test, update.” The second option is a good compromise

between the other two. The bnd tool has already analyzed the code base to come up

with the list of imports, and you already know that the framework will follow the

import constraints listed in the manifest. The structured manifest also means you can

write a script to do the hard work for you.

Excludes main
packages

www.headwaysoftware.com/products/structure101/index.php

219Splitting an application into bundles

 For example, consider this rather obscure command on Linux:

$ java -jar ../../lib/bnd-0.0.384.jar print jEdit/*.jar \
 | awk '/^Import-Package$/ {getline;ok=1} /^[^]/ {ok=0} \
 {if (ok) print $1}' | sort -u

It uses bnd to print a summary of each jEdit bundle, extracts the package names from

the Import-Package part of the summary, and sorts them into a unique list. (You

could also use the bnd print -uses command to get a tabular view of what packages

use other packages.) After you remove the JDK and OSGi framework packages, you get

the following:

bsh
com.microstar.xml
gnu.regexp

org.gjt.sp.jedit

org.gjt.sp.jedit.browser
org.gjt.sp.jedit.buffer
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.help
org.gjt.sp.jedit.io
org.gjt.sp.jedit.menu
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

The first group includes third-party packages, next is the main jEdit package, and the

long group contains other jEdit packages.

 It’s clear that the third-party library bundle needs to export only three packages

and the main jEdit bundle just the top-level package. Unfortunately, the jEdit engine

bundle needs to export almost all of its packages, indicating a tight coupling between

the engine and the top-level jEdit package. This suggests that it would be better to

merge these two bundles back together, unless you were going to refactor the code to

reduce this coupling. Let’s ignore this for now and press on, because this separation

will eventually lead to an interesting class-loading issue that’s worth knowing about.

Anyone who’s curious can skip ahead to section 6.2.4.

 What’s next on the JAR-to-bundle checklist? Ah, yes: versioning. You should version

all the exported jEdit packages with the current bundle version (4.2); but you won’t ver-

sion the individual third-party packages at the moment, because it’s not obvious what

releases are being used. You can always add the appropriate versions in the future, when

you divide the combined third-party bundle into separate library bundles.

 You should also add version ranges to your imports, as suggested back in sec-

tion 6.1.3. Rather than endure the hassle of explicitly writing out all the ranges, you

can take advantage of another bnd feature and compute them:

-versionpolicy: [${version;==;${@}},${version;+;${@}})

220 CHAPTER 6 Moving toward bundles

This instruction (http://aqute.biz/Code/Bnd#versionpolicy) tells bnd to take the

detected version ${@} and turn it into a range containing the current major.minor ver-

sion ${version;==;...} up to but not including the next major version ${version;

+;...}. (See appendix A for more information about the various bnd instructions.)

So if the bnd tool knows that a package has a version of 4.1.8, it applies a version range

of [4.1,5) to any import of that package. You add this to each of your bnd files (you

can also put it in a shared common file) along with the changes to export the neces-

sary packages.

 Following are the final bnd instructions for the jEdit third-party library bundle:

-output: jedit-thirdparty.jar

Bundle-Name: jEdit Third-party Libraries
Bundle-SymbolicName: org.gjt.sp.jedit.libs
Bundle-Version: 4.2

Export-Package: bsh, com.microstar.xml, gnu.regexp
Private-Package: !org.gjt.sp.*, !installer.*, *

-versionpolicy: [${version;==;${@}},${version;+;${@}})

And here are the final bnd instructions for the jEdit engine bundle:

-output: jedit-engine.jar

Bundle-Name: jEdit Engine
Bundle-SymbolicName: org.gjt.sp.jedit.engine
Bundle-Version: 4.2

Export-Package:\
 !org.gjt.sp.jedit,\
 !org.gjt.sp.jedit.proto.*,\
 org.gjt.sp.*;version="4.2"

-versionpolicy: [${version;==;${@}},${version;+;${@}})

You still have one more (non-OSGi) tweak to make to the main jEdit bundle instruc-

tions. Remember that you now create three JAR files in place of the original single JAR

file. Although you can rely on the OSGi framework to piece these together into a sin-

gle application at execution time, this isn’t true of the standard Java launcher. You

need some way to tell it to include the two additional JAR files on the class path when-

ever someone executes:

$ java -jar jedit.jar

Thankfully, there is a way: you need to add the standard Class-Path header to the

main JAR file manifest. The Class-Path header takes a space-separated list of JAR files,

whose locations are relative to the main JAR file. These final main-bundle instructions

allow jEdit to work both as a bundle and an executable JAR:

-output: jedit.jar

-include: org/gjt/sp/jedit/jedit.manifest
Class-Path: jedit-thirdparty.jar jedit-engine.jar

http://aqute.biz/Code/Bnd#versionpolicy

221Splitting an application into bundles

Bundle-Name: jEdit
Bundle-SymbolicName: org.gjt.sp.jedit
Bundle-Version: 4.2

Export-Package:\
 org.gjt.sp.jedit;version="4.2"

Private-Package:\
 org.gjt.sp.jedit.proto.*

-versionpolicy: [${version;==;${@}},${version;+;${@}})

Bundle-Activator: org.gjt.sp.jedit.Activator

Update your three bnd files as shown, and rebuild. Or if you want a shortcut, use this:

$ cd ..

$ ant jEdit.patch dist

Congratulations—you’ve successfully separated jEdit into three JAR files that work with

or without OSGi! The following lines launch jEdit OSGi and jEdit classic, respectively:

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

$ java -jar jEdit/jedit.jar

As we hope this example demonstrates, after you have an application working in OSGi,

it doesn’t take much effort to start slicing it up into smaller, more modularized bun-

dles. But is this all you can do with jEdit on OSGi—keep slicing it into smaller and

smaller pieces?

6.2.3 Loosening things up

So far, we’ve focused on using the first two layers of OSGi: module and lifecycle.

There’s another layer you haven’t yet used in this chapter: service. The service layer is

different from the first two layers in that it can be hard to tell when or where you

should use it, especially when migrating an existing application to OSGi. Often, peo-

ple decide not to use services at all in new bundles, instead relying on sharing pack-

ages to find implementations. But as you saw in chapter 4, services make your

application more flexible and help reduce the coupling between bundles. The good

news is, you can decide to use services at any time; but how will you know when the

time is right?

 There are many ways to share different implementations inside a Java application.

You can construct instances directly, call a factory method, or perhaps apply some

form of dependency injection. When you first move an application to OSGi, you’ll

probably decide to use the same tried-and-tested approach you did before, except that

now some of the packages come from other bundles. As you saw in chapter 4, these

approaches have certain limitations compared to OSGi services. Services in OSGi are

extremely dynamic, support rich metadata, and promote loose coupling between the

consumer and provider.

222 CHAPTER 6 Moving toward bundles

 If you expect to continue to use your application outside of OSGi—for example, as

a classic Java application—you may be worried about using the service layer in case it ties

you to the OSGi runtime. No problem! You can get the benefits of services without being

tied to OSGi by using component-based dependency injection. Chapters 11 and 12 intro-

duce a number of component models that transparently support services without forc-

ing you to depend on the OSGi API. If you already use dependency injection, moving to

these component models is straightforward; sometimes it’s only a matter of reconfigur-

ing the dependency bindings in your original application. If you’re itching to try out

these component models, feel free to skip ahead to chapter 11. But make sure you come

back and read the intervening chapters; they’ll be an invaluable guide when it comes

to managing, testing, and debugging your new OSGi application.

 Let’s get back to discussing services. Where might you use services in jEdit? Well,

jEdit has its own home-grown plugin framework for developers to contribute all sorts

of gadgets, tools, and widgets to the GUI. In addition, jEdit uses its own custom class

loader org.gjt.sp.jedit.JARClassLoader to allow hot deployment and removal of

jEdit plugins. Plugins hook back into jEdit by accessing implementation classes and

calling static methods, such as jEdit.getSettingsDirectory(). These static method

calls are convenient, but they make it hard to mock out (or replace) dependencies for

testing purposes.

 Instead of relying on static methods, you can change jEdit to use dependency injec-

tion. Plugins then have their dependencies injected, rather than call jEdit directly. After

you replace the static methods calls with dependency injection, it’s just another step to

replace the static bindings with dynamic OSGi services (see chapters 11 and 12). This

also simplifies unit testing, because you can swap out the real bindings and put in

stubbed or scripted test implementations. Unfortunately, refactoring jEdit to use

dependency injection throughout is outside the scope of this book, but you can

use chapters 11 and 12 as a general guide. With this in mind, is there a smaller task that

can help bridge the gap between OSGi bundles and jEdit plugins and make it easier to

use services?

 You can consider replacing the jEdit plugin framework with OSGi, much as

Eclipse replaced its original plugin framework. To do this, you have to take the JAR-

ClassLoader and PluginJAR classes and extract a common API that you can then re-

implement using OSGi, as shown in figure 6.10. You use the original jEdit plugin

code when running in classic Java mode and the smaller OSGi mapping layer when

running on an OSGi framework.

 Extracting the common plugin API is left as an interesting exercise for you; one

wrinkle is the fact that jEdit assumes plugins are located in the file system, whereas

OSGi supports bundles installed from opaque input streams. The new plugin API can

have methods to iterate over and query JAR file entries to avoid having to know where

the plugin is located. These methods will map nicely to the resource-entry methods

on the OSGi Bundle interface.

223Splitting an application into bundles

How about being able to register OSGi bundles as jEdit plugins? This is a stepping

stone to using services, because you need a bundle context to access OSGi services.

The main jEdit class provides two static methods to add and remove plugin JAR files:

public static void addPluginJAR(String path);

public static void removePluginJAR(PluginJAR jar, boolean exit);

Following the extender pattern introduced in section 3.4, let’s use a bundle tracker to

look for potential jEdit plugins. The code in the following listing uses a tracker to add

and remove jEdit plugin bundles as they come and go.

package org.foo.jedit.extender;

import java.io.File;
import org.gjt.sp.jedit.*;
import org.osgi.framework.*;

public class Activator implements BundleActivator {

 BundleTracker pluginTracker;

 public void start(final BundleContext ctx) {
 pluginTracker = new BundleTracker(ctx) {

 public void addedBundle(Bundle bundle) {
 String path = getBundlePath(bundle);
 if (path != null && bundle.getResource("actions.xml") != null) {
 jEdit.addPluginJAR(path);
 }
 }

Listing 6.4 Using the extender pattern to install jEdit plugins

jEdit

jEdit

JARClassLoader PluginJAR

JARClassLoader PluginJAR

Common plugin API

OSGi mapping layer Figure 6.10 Extracting a

common jEdit plugin API

Looks for
actions.xml

B

224 CHAPTER 6 Moving toward bundles

 public void removedBundle(Bundle bundle) {
 String path = getBundlePath(bundle);
 if (path != null) {
 PluginJAR jar = jEdit.getPluginJAR(path);
 if (jar != null) {
 jEdit.removePluginJAR(jar, false);
 }
 }
 }
 };

 EditBus.addToBus(new EBComponent() {
 public void handleMessage(EBMessage message) {
 EditBus.removeFromBus(this);
 pluginTracker.open();
 }
 });
 }

 public void stop(BundleContext ctx) {
 pluginTracker.close();
 pluginTracker = null;
 }

 static String getBundlePath(Bundle bundle) {
 String location = bundle.getLocation().trim();

 File jar;
 if (location.startsWith("file:")) {
 jar = new File(location.substring(5));
 } else {
 jar = new File(location);
 }

 if (jar.isFile()) {
 return jar.getAbsolutePath();
 }

 return null;
 }
}

The code identifies jEdit plugins by looking for a file called actions.xml in the bundle

root B. Because the jEdit API only accepts path-based plugins, it ignores bundles whose

locations don’t map to a file E. To remove a plugin bundle, it uses another jEdit

method to map the location back to the installed PluginJAR instance C. The last piece

of the puzzle is to start the bundle tracker only when jEdit is ready to accept new plug-

ins. If you look at the jEdit startup code, you may notice that one of the last things it

does in finishStartup() is send out the initial EditorStarted message on the EditBus

(jEdit’s event-notification mechanism). The code registers a one-shot component that

listens for any message event, deregisters itself, and starts the bundle tracker D.

Maps to PluginJAR
instance

C

Starts bundle
tracker

D

Ignores bundles that
don’t map to file

E

225Splitting an application into bundles

 Let’s see this extender in action:

$ cd chapter06/jEdit-example

$ ant jEdit.patch dist

$ java -Djedit.home=jEdit -jar launcher.jar jEdit

-> install file:test/Calculator.jar

Look in the Plugins menu; no plugins should be available. Now start the calculator

bundle that you just installed:

-> start 9

You should see the calculator in the Plugins menu. Selecting this item opens the win-

dow shown in figure 6.11. If you stop the calculator bundle, this window immediately

disappears, and the Plugins menu once again shows no available plugins:

-> stop 9

Cool—the extender successfully bridges the gap between OSGi bundles and jEdit plug-

ins! You can now use existing OSGi management agents, such as the Apache Felix Web

Console (http://felix.apache.org/site/apache-felix-web-console.html), to manage

jEdit plugins. This small example shows how standards like OSGi can make it much eas-

ier to reuse and assemble existing pieces into new applications.

 Are you eager to start moving your application to OSGi? Wait, not so fast! We have

one last topic to discuss before we close out this chapter, and it’s something you

should keep asking yourself when you’re modularizing applications: is this bundle

adding any value?

Figure 6.11

jEdit calculator plugin

http://felix.apache.org/site/apache-felix-web-console.html

226 CHAPTER 6 Moving toward bundles

6.2.4 To bundle or not to bundle?

Sometimes, you should take a step back and think, do I need another bundle? The more

bundles you create, the more work is required during build, test, and management in

general. Creating a bundle for every individual package is obviously overkill, whereas

putting your entire application inside a single bundle means you’re missing out on mod-

ularity. Some number of bundles in between is best, but where’s the sweet spot?

 One way to tell is to measure the benefit introduced by each bundle. If you find

you’re always upgrading a set of bundles at the same time and you never install them

individually, keeping them as separate bundles isn’t bringing much benefit.

 You can also look at how your current choice affects developers. If a bundle layout

helps developers work in parallel or enforces separation between components, it’s

worth keeping. But if a bundle is getting in the way of development, perhaps for leg-

acy class-loader reasons, you should consider removing it, either by merging it with an

existing bundle or by making it available via boot delegation (we briefly discussed this

option at the start of section 6.2.1). Consider the jEdit example: have you reached the

right balance of bundles?

A BUNDLE TOO FAR

Let’s refresh your memory. Recall the Import-Package discussion back in the section

“Stitching the pieces together.” We mentioned an interesting issue caused by placing

the top-level package in its own bundle, separate from the rest of the jEdit engine. You

can see the problem for yourself by starting the OSGi version of jEdit and selecting

File > Print. A message box pops up (see figure 6.12), describing a failure in a Bean-

Shell script.

 Why did the script fail? The error message suggests a class-loading problem. If you

scroll down through the stack trace, you’ll notice the last jEdit class before the call to

bsh.BshMethod.invoke() is org.gjt.sp.jedit.BeanShell. This is a utility class that

manages BeanShell script execution for jEdit. It’s part of the top-level jEdit package

loaded by the main bundle class loader, and it configures the BeanShell engine to use

a special instance of JARClassLoader (previously discussed in section 6.2.3) that

Figure 6.12 Error attempting to print from jEdit

227Splitting an application into bundles

delegates to each plugin class loader in turn. This is so BeanShell scripts can access

any class in the entire jEdit application. If none of the plugin class loaders can see the

class, this special class loader delegates to its parent class loader. For a classic Java

application, this is the application class loader, which can see all the jEdit classes on

the class path. For your OSGi application, the parent is the class loader for the main

bundle, which can only see the org.gjt.sp.jedit and proto packages it contains as

well as any packages it explicitly imports. One thing you know it can’t see is the

BufferPrinter1_4 class.

 Who owns the BufferPrinter1_4 class? It’s part of the org.gjt.sp.jedit.print

package, belonging to the jEdit engine bundle. You could check the manifest to make

sure this package is being exported as expected; but if you’re using the instructions

from the section “Stitching the pieces together,” then it is. It’s being exported from

the engine bundle, but is it being imported by the main bundle? Without an import,

this package isn’t visible. Let’s avoid cracking open the JAR file and instead use bnd to

see the list of imports.

$ java -jar ../../lib/bnd-0.0.384.jar print -impexp jEdit/jedit.jar

[IMPEXP]
Import-Package
 bsh
 com.microstar.xml
 gnu.regexp
 javax.swing
 javax.swing.border
 javax.swing.event
 javax.swing.plaf
 javax.swing.text
 org.gjt.sp.jedit.browser
 org.gjt.sp.jedit.buffer
 org.gjt.sp.jedit.gui
 org.gjt.sp.jedit.help
 org.gjt.sp.jedit.io
 org.gjt.sp.jedit.menu
 org.gjt.sp.jedit.msg
 org.gjt.sp.jedit.options
 org.gjt.sp.jedit.pluginmgr
 org.gjt.sp.jedit.search
 org.gjt.sp.jedit.syntax
 org.gjt.sp.jedit.textarea
 org.gjt.sp.util
 org.osgi.framework
 org.osgi.service.url
Export-Package
 org.gjt.sp.jedit {version=4.2}

Aha! The main bundle manifest contains no mention of the org.gjt.sp.

jedit.print package, which explains why the BufferPrinter1_4 class wasn’t found

and the script failed. A last question before you try to fix this issue: why didn’t bnd

Listing 6.5 Using bnd to print imported and exported packages

Prints imported and
exported packages

228 CHAPTER 6 Moving toward bundles

pick up the reference to the org.gjt.sp.jedit.print package? Remember that bnd

works primarily on byte code, not source code; it won’t pick up packages referenced

in scripts, arbitrary strings, or runtime configuration files. The only reference to this

package was in a BeanShell script, which wasn’t analyzed by the bnd tool.

 You now have all the answers as to why the script failed, but how should you solve

the problem? Bnd supports adding custom analyzers to process additional content, so

you could write your own BeanShell analyzer for bnd. But what if writing such an ana-

lyzer is outside your expertise? Can you instead fix the class-loading problem at execu-

tion time? There are two approaches to solving this type of class-loading issue:

■ Attempt to use a different class loader to load the class.

■ Add the necessary imports to the bundle doing the loading.

The first approach is only possible when the library provides some way of passing in

the class loader or when it uses the Thread Context Class Loader (TCCL) to load

classes. (You can read more about the TCCL in chapter 8.) The BeanShell library does

provide a method to set the class loader, but jEdit is already using it to pass in the spe-

cial class loader that provides access to all currently installed jEdit plugins. Rather

than mess around with jEdit’s internal JARClassLoader code and potentially break

the jEdit plugin framework, you’ll take the second approach and add the missing

imports to the main bundle. This has the least impact on existing jEdit code—all

you’re doing is updating the OSGi part of the manifest.

 You know that you need to import the org.gjt.sp.jedit.print package, but

what else might you need? To make absolutely sure, you’d have to run through a

range of tests exercising the whole of the jEdit GUI. Although this testing could be

automated to save time, let’s instead try the suggestion from the end of section 6.1.3

and allow the main jEdit bundle to import any package on demand:

DynamicImport-Package: *

Add this to the jedit-main.bnd instruction file, and rebuild one more time. You can

now open the print dialog box without getting the error message. The application will

also continue to work even if you use a more restrictive dynamic import, such as

DynamicImport-Package: org.gjt.sp.*

Why does this work? Well, rather than say up front what you import, you leave it open

to whatever load requests come through the main bundle class loader. As long as

another bundle exports the package, and it matches the given wildcard, you’ll be able

to see it. But is this the right solution? Merging the main and engine bundles back

together would solve the BeanShell problem without the need for dynamic imports. You

already know these bundles are tightly coupled; keeping them apart is causing you fur-

ther trouble. This is a good example of when introducing more bundles doesn’t make

sense. OSGi isn’t a golden hammer, and it won’t magically make code more modular.

 In short, if you’re getting class-loading errors or are sharing lots of packages between

bundles, that could be a sign that you should start merging them back together. You may

229Summary

decide to fall back to classic Java class loading by putting troublesome JAR files back on

the application class path and exposing a selection of their packages via the system bun-

dle with the org.osgi.framework.system.packages.extra property. You can go even

further by adding their packages to the org.osgi.framework.bootdelegation prop-

erty, which makes them automatically available to all bundles without needing to explic-

itly import them.

 This sounds useful, but there’s a catch: if you use boot delegation, you won’t be

able to use multiple versions or dynamically deploy them. But if it avoids tangled class-

loading problems and helps keep your developers sane, you may decide this is a fair

trade. You can often achieve more by concentrating on modularizing your own code.

Leave complex third-party library JAR files on the application class path until you

know how to turn them into bundles or until an OSGi-compatible release is available.

Not everything has to be a bundle. As we often say in this book, you can decide how

much OSGi you want to use: it’s definitely not an all-or-nothing approach!

6.3 Summary

In this chapter, we did the following:

■ Showed how to turn an existing JAR into a bundle (abracadabra!)

■ Turned Apache BeanUtils and HttpClient into example bundles

■ Discussed slicing complete applications into one or more bundles

■ Converted jEdit into an OSGi application that still works outside of OSGi

■ Explained why you should watch for the sweet spot where you get the most

value per bundle

■ Looked at why too few bundles make your application less modular and less

flexible

■ Looked at why too many bundles can lead to exponential test and management

costs

But what is involved in testing bundles? After you’ve split your application into many

independent parts, how do you keep everything consistent, and how do you upgrade

your application without bringing everything down? The next chapter will discuss this

and more, as we look at testing OSGi applications.

230

Testing applications

You’re now just about halfway through this book: congratulations! At this point,

you should have confidence in applying OSGi to new and existing projects. Migrat-

ing applications to OSGi should be especially fresh in your mind from the last chap-

ter. But what can you do to make sure you’re on the right track to modularity and

not turning your applications into tangled spaghetti? As is true for any piece of soft-

ware, the best way to track quality is with regular testing. Testing can confirm that

your modularized code meets the same requirements as your original application.

Testing can verify that your code will continue to work when deployed inside the

target container. It can even help you practice different deployment scenarios in

the safety of your friendly neighborhood test server. Even a simple nonfunctional

test, such as checking the number of shared packages between bundles, can avoid

tangles forming early on in development.

This chapter covers

■ Migrating tests to OSGi for in-container testing

■ Mocking OSGi APIs for bundle testing

■ Performing unit, integration, and management

testing

231Migrating tests to OSGi

 Why wait until the end of a project to discover if your code works in the strict envi-

ronment of an OSGi framework or how well your chosen bundles fit together? Migrate

and modularize your tests along with your code! This chapter will help put this advice

into practice by taking you through three different approaches:

■ Running existing tests on OSGi

■ Mocking out calls to OSGi APIs

■ Advanced OSGi testing

The last section in particular takes a closer look at how unit and integration test con-

cepts relate to modular applications and introduces the idea of management testing.

If you’re eager to learn more about testing modularity and you’re already familiar

with in-container tests and object mocking, feel free to skip ahead to section 7.3.

 By the end of this chapter, you should be comfortable with testing OSGi applica-

tions, which will lead to better quality bundles for everyone. Let’s start by continuing

the theme from chapter 6 and get some existing tests running on an OSGi framework.

7.1 Migrating tests to OSGi

Imagine you have an application that you want to modularize and move to OSGi. You

almost certainly have existing tests that check requirements and expected behavior.

You can use these tests to verify and validate the modularization process, either by

manually running them at key stages or by using an automated build system that runs

tests on a regular schedule—say, whenever people check in code. These tests give you

confidence that your modularized application is to some extent equivalent to the orig-

inal, at least when run with the test framework. But what they don’t tell you is whether

your code behaves the same inside an OSGi container.

 To find out, you need to run your tests twice: inside the target container as well as

outside. Running these tests outside the container is a matter of using your favorite

test framework, like JUnit (http://junit.sourceforge.net/) or TestNG (http://

testng.org/). There are many good books on testing standard Java applications, so we

assume you already know how to write unit tests and run them using Ant, Maven, or

your IDE. But what about testing inside an OSGi container; how does it work in prac-

tice, and is it worth the effort?

7.1.1 In-container testing

Would you develop and deploy a web application without ever testing it inside an

application server? Would you ship a product without testing its installer? Of course

not! It’s important to test code in the right environment. If you expect to use a class

with OSGi, you should test it inside an OSGi framework—how else will you discover

potential class-loading or visibility issues? But before you can run your existing JUnit

or TestNG tests inside the container, you first need to deploy them.

 As you saw in chapter 6, whenever you want to deploy something into an OSGi frame-

work, you must consider packaging and placement. If the test classes are (accidentally)

http://junit.sourceforge.net/
http://testng.org/
http://testng.org/

232 CHAPTER 7 Testing applications

exposed from the external class path, the tests will effectively be running outside of the

container. Does this mean you should bundle tests along with the application code? It

depends on how you expect the code to be used in OSGi. Internal classes can only be

tested from inside the same bundle, but public-facing code can and should be tested

from another bundle to mimic real-world conditions. Testing code inside the same bun-

dle typically means the caller and callee share the same class loader, but many OSGi-

related issues only appear when different class loaders are involved. So, wherever pos-

sible, test from another bundle.

 Figure 7.1 summarizes the four

possible test-deployment options:

■ Boot class path

■ System bundle export

■ Intra-bundle

■ Inter-bundle

We’ll concentrate on the last two op-

tions (intra-bundle and inter-bundle

tests) because it’s much more realistic

to have the test code running inside

the container along with the code

being tested. Bundle testing means

deploying tests in bundles just like

any other piece of code, but how

much effort is involved in getting tests

up and running in an OSGi framework? Let’s find out right now by converting an exist-

ing open source library and its test suite into separate bundles.

7.1.2 Bundling tests

The Apache Commons Pool project (http://commons.apache.org/pool/) provides a

small library for managing object pools. You’ll use the source distribution for Com-

mons Pool 1.5.3, which contains the code for both the library and its test suite:

chapter07/migration-example/commons-pool-1.5.3-src.zip

Begin the example by splitting the Commons Pool library and tests into two bundles.

The main subproject extracts the library source, compiles it, and creates a simple bun-

dle that exports the main package, but hides the implementation (.impl) package.

The test subproject does exactly the same thing for the test source, but it appends

-test to the bundle symbolic name to make sure the bundles are unique.

 The Commons Pool tests are JUnit tests, so you also need access to the JUnit

library. Should it be deployed as a bundle or placed on the external class path? Expos-

ing the packages from the external class path means you don’t have to turn JUnit into

a bundle, but it also means JUnit can’t see test classes unless they’re on the same class

path or explicitly passed in via a method call. You’d have to write your own code to

Boot class path System bundle export

Tests

OSGi

Intra-bundle Inter-bundle

OSGi

Tests

OSGi

Tests

OSGi

Tests

Figure 7.1 Test deployment options

http://commons.apache.org/pool/

233Migrating tests to OSGi

scan bundles for tests and feed the class instances to JUnit, instead of relying on the

standard test runner. We’ll look at a tool that does this in section 7.3. Let’s try the

other approach here: bundling JUnit.

 You can use the bndwrap Ant task from the bnd tool (http://aqute.biz/Code/Bnd)

to quickly wrap the JAR file. The bndwrap task analyzes the JAR and creates a bundle that

exports all packages contained inside it. It also adds optional imports for any packages

that are needed but not contained in the JAR file. Unfortunately, this import list doesn’t

contain your test packages, because JUnit doesn’t know about them yet. To avoid having

to explicitly list your test packages at build time, you can instead use DynamicImport-

Package: * (discussed in section 5.2.2). This dynamic import means JUnit will be able

to see any future test class, as long as some bundle exports them.

 Also add the following Main-Class header:

Main-Class: junit.textui.TestRunner

This tells your example launcher to start the JUnit test

runner after deploying all the bundles. The TestRunner

class expects to receive the name of the primary test

class, so add org.apache.commons.pool.TestAll to the

OSGi launcher command line in build.xml. (Your

launcher will automatically pass any arguments after the

initial bundle directory setting on to the Main-Class.)

 Figure 7.2 shows the test deployment, which is the

inter-bundle option from figure 7.1.

 Let’s try it for real:

$ cd chapter07/migration-example

$ ant clean test.osgi
...
[junit.osgi] Class not found "org.apache.commons.pool.TestAll"
[junit.osgi] Java Result: 1

Hmm...the JUnit bundle couldn’t see the TestAll class even though the test bundle

clearly exports it. If you look closely at the package involved and cast your mind back to

the visibility discussion from section 2.5.3, you should understand why. This is the same

package that’s exported by the main Commons Pool bundle! Remember that packages

can’t be split across bundles unless you use bundle dependencies (section 5.3), and

you’re using package dependencies. You could use Require-Bundle to merge the pack-

ages together and re-export them (see section 5.3.1 for more about re-exporting pack-

ages), but you’d then need to use mandatory attributes to make sure JUnit and other

related test bundles were correctly wired to the merged package. This would lead to a

fragile test structure and cause problems with package-private members (to find out

why, see the discussion near the start of section 5.4.1).

 A better solution is to use fragments (section 5.4) to augment the original bundle

with the extra test classes. To do this, you need to add one line to test/build.properties:

Fragment-Host: ${module}

OSGi

JUnit

Commons Pool

Commons Pool
tests

Figure 7.2 Testing Commons

Pool inside an OSGi framework

http://aqute.biz/Code/Bnd

234 CHAPTER 7 Testing applications

The module property refers to the org.apache.commons.pool package, which you

also use as the symbolic name of the main bundle. This is all you need to declare

your test bundle as a fragment of the main library bundle. With this change in place,

you can rebuild and repeat the test. You should see JUnit run through the complete

Commons Pool test suite, which takes around two minutes:

$ ant clean test.osgi
...
[junit.osgi]
[junit.osgi]
[junit.osgi]
[junit.osgi]
[junit.osgi]
[junit.osgi]
[junit.osgi] Time: 118.127
[junit.osgi]
[junit.osgi] OK (242 tests)

You’re now running all your tests inside the combined library bundle (the intra-

bundle option from figure 7.1) because your test fragment contains both internal and

public-facing tests. You could go one step further and use a plain bundle for public

tests and a fragment for internal tests, but you’d need some way to give JUnit access to

your internal tests. At the moment the public org.apache.commons.pool.TestAll

class loads internal tests from inside the same fragment, but this won’t work when you

separate them. You don’t want to export any internal packages from the fragment

because that would also expose internals from the main bundle, potentially affecting

the test results.

 The least disruptive solution is to keep a single public test class in the fragment that

can be used to load the internal tests. You can move the remaining public-facing tests

to a new package that doesn’t conflict with the library API (such as .test) and deploy

them in a separate bundle. The result is

a combination of both inter-bundle and

intra-bundle testing. Figure 7.3 shows

an example of such a structure for test

ing Commons Pool.

 You can also run the test example

outside of the container by invoking

JUnit with the various bundles on the

standard Java class path. In this case,

you don’t need to start the OSGi

framework. To try this, use the test

build target instead of test.osgi.

You should see the same results as be-

fore:

$ ant clean test
...
[junit] ..
[junit] ...

OSGi

JUnit

org.apache.commons.pool.test

org.apache.commons.pool

org.apache.commons.pool.impl
(test fragment)

Figure 7.3 Recommended test structure for OSGi

bundle tests

235Migrating tests to OSGi

[junit]
[junit]
[junit]
[junit]
[junit] Time: 117.77
[junit]
[junit] OK (242 tests)

You’ve seen how easy it is to run tests both inside and outside of a container, but how

do you know if you’re testing all possible scenarios and edge cases? Most projects use

coverage to measure test effectiveness, although this doesn’t guarantee you have well-

written tests! Given the importance of test coverage, let’s continue with the example

and find out how you can record coverage statistics inside an OSGi container.

7.1.3 Covering all the bases

It’s always good to know how much of your code is being tested. Like test results,

coverage can vary depending on whether you’re testing inside or outside a container.

This makes in-container tests just as important as out-of-container tests when determ-

ining overall test coverage.

 We can break the coverage-gathering process into three stages:

1 Instrument the classes

2 Execute the tests

3 Analyze the results

The first and third stages can be done outside of the OSGi container. This leaves you

with the second stage: testing the instrumented classes inside the chosen container.

You already know you can run the original tests in OSGi, so what difference does

instrumentation make? It obviously introduces some sort of package dependency to

the coverage library, but it also introduces a configuration dependency. The instru-

mented code needs to know where to find the coverage database so it can record

results. You can deal with the package dependency in three ways: wrap the coverage

JAR file up as a bundle, export its packages from the system bundle using

org.osgi.framework.system.packages.extra, or expose them from the boot class

path with org.osgi.framework.bootdelegation. When using boot delegation, you

must make sure coverage packages are excluded from the generated Import-Package

in the library bundle or at least made optional. (Not doing this would lead to a miss-

ing constraint during resolution, because no bundle exports these packages.)

 The simplest approach is to add the coverage JAR file and its dependencies to the

launcher’s class path and update the system packages. Next simplest is boot deleg-

ation: here you have the extra step of removing coverage packages from the Import-

Package of your instrumented bundle. Let’s take the interesting route and turn the

coverage JAR file into a bundle. Our chosen coverage tool for this example is Cobertura

1.9.3 (http://cobertura.sourceforge.net/), but all the techniques mentioned should

work for other tools as well.

http://cobertura.sourceforge.net/

236 CHAPTER 7 Testing applications

 The first step is to create a new JAR file which contains the original Cobertura JAR

file and all of its execution-time dependencies. You embed these dependencies because

you want this to be a standalone bundle. Remember, this bundle will only be used during

testing, so you have more leeway than if you were creating a production-quality bundle.

You then use the bnd tool to wrap the JAR file in the same way you wrapped JUnit, making

sure you set Bundle-ClassPath so the bundle can see its embedded dependencies. You

can find the complete bundling process in cobertura.osgi/build.xml.

 All you need to do now is instrument the classes and run the tests:

$ ant clean test.osgi -Dinstrument=true

You use the instrument property to enable the various instrumentation targets.

Before launching the tests, the build also sets the net.sourceforge.cobertura.data-

file system property so that instrumented tests know where to find the coverage data-

base. As soon as the tests complete, the build runs the Cobertura report task to

process the results. Point your browser at reports/index.html to see the results, which

should look like figure 7.4.

In this section, you saw how to take existing tests (and test tools) and run them inside

an OSGi container. You may have noticed that this process is similar to the JAR-to-bundle

process described in the first half of chapter 6. Deciding how to bundle tests is no dif-

ferent than deciding how to bundle an application. Visibility and modularity are just as

important when it comes to testing. But what about going the other way? Can you take

OSGi-related code and test it outside the container?

 When you first begin to modularize and migrate an application over to OSGi, you

probably won’t have a direct dependency on the OSGi API. This means your code can

still be tested both inside and outside the container. But at some point you’ll want to

use the OSGi API. It may start with one or two bundle activators, and then maybe use

the bundle context to look up a service. Dependency injection, component models

(discussed in chapters 11 and 12), and other similar abstractions can all help reduce

the need to deal directly with the container. But what if you have code that uses the

OSGi API? Such code can’t be tested outside the container—or can it?

 Imagine if you could mimic the container without having to implement a com-

plete OSGi framework. There’s a technique for doing this, and it goes by the name

of mocking.

Package #
Classes

Line Coverage Branch Coverage Com plexity

All packages

org.apache.commons.pool

org.apache.commons.pool.impl

22

27

25

79%

86%

76%

64%
89%
60%

2.276

1.596
2.744

2274/2870

564/649

1710/2221

657/1022

111/124

546/898

Coverage Report - All Packages

Report generated by Cobertura 1.9.3 on 2/21/10 7:47 PM

Figure 7.4 Cobertura coverage report for Commons Pool

237Mocking OSGi

7.2 Mocking OSGi

OSGi is just a load of fancy class loaders! Oh, wait, we didn’t mean that sort of mocking.

(Besides, we all know by now that there’s a lot more to OSGi than enhanced class load-

ing.) We’re talking about using mock objects to test portions of code without requiring

a complete system. A mock object is basically a simulation, not a real implementation.

It provides the same API, but its methods are scripted and usually return expected values

or additional mocked objects. Object mocking is a powerful technique because it lets

you test code right from the start of a project, even before your application is complete.

You can also use it to test situations that are hard to recreate with the real object, such

as external hardware failures.

 Figure 7.5 represents the dynamic

log client from chapter 4. Let’s take this

example and test it outside OSGi by

mocking the API: verifying calls made

to the API and scripting the desired

responses. We’ll show you how easy it is

to script scenarios that may be hard to

reproduce in a real container, look at

mocking in a multithreaded environ-

ment, and wrap things up by reliably

demonstrating the race condition

mentioned in section 4.3.1.

7.2.1 Testing expected behavior

How might you use mocking to test an OSGi application? Let’s look at code from ear-

lier in this book: the LogService lookup example from chapter 4 that contained a

potential race condition. Here’s a quick reminder of the problematic code.

public class Activator implements BundleActivator {

 BundleContext m_context;

 public void start(BundleContext context) {
 m_context = context;

 startTestThread();

 }

 public void stop(BundleContext context) {

 stopTestThread();

 }

 class LogServiceTest implements Runnable {

 public void run() {

 while (Thread.currentThread() == m_logTestThread) {
 ServiceReference logServiceRef =

 m_context.getServiceReference(LogService.class.getName());

Listing 7.1 Broken service lookup containing a race condition

BGets service
reference

getServiceReference
getService
ungetService

log
log
...

<no calls>

Bun
dleC

ont
ex

t A
PI

Log Service APIComponent

ServiceReference API

Figure 7.5 Mocking in action

238 CHAPTER 7 Testing applications

 if (logServiceRef != null) {
 ((LogService)m_context.getService(logServiceRef)).log(
 LogService.LOG_INFO, "ping");
 } else {
 alternativeLog("LogService has gone");
 }

 pauseTestThread();
 }
 }
 }

 // The rest of this class is just support code...
}

Notice how this code interacts with the OSGi container. It receives a context object in

the activator start method, uses this context to get a service reference B, and uses this

reference to get the actual instance C. Each of these objects has a well-defined inter-

face you can mock out, and the example code uses only a few methods from each API.

This is good news because when mocking objects you only need to simulate the meth-

ods that are used, not the complete API.

 You already know that this code compiles against the OSGi API, and back in chap-

ter 4 you even tried it on an actual framework. But does it use the service API cor-

rectly? This is the sort of test that’s hard to write without mocking. Sure, you can run

tests on the container by invoking your code and checking the results as you did

back in section 7.1, but this doesn’t tell you if the code is using the container the

right way. For example, the container won’t complain if you forget to unget a ser-

vice after you’re done with it, but forgetting to do this skews service accounting and

makes it look like your bundle is still using the service when it isn’t. The container

also doesn’t know if you use the result of getService() without checking for null.

In this example, you may get a NullPointerException if the service disappears in

the short time between checking the reference and using it. Writing a test that’s

guaranteed to expose this race condition on a live framework is hard, but trivial with

mock objects.

 How exactly does mocking help? Because mock objects are scripted, you can verify

that the right methods are called in the appropriate order. You can throw exceptions

or return null values at any point in the sequence to see how the client handles it.

Enough talk, let’s try mocking ourselves.

7.2.2 Mocking in action

Typically, five steps are involved in mocking out an API:

1 Mock—Create prototype mock objects

2 Expect—Script the expected behavior

3 Replay—Prepare the mock objects

4 Test—Run the code using the mock objects

5 Verify—Check that the behavior matches

Gets
instanceC

239Mocking OSGi

You’ll use EasyMock (http://easymock.org/) in this example, but any mocking library

will do. You can find the initial setup under chapter07/mocking-example in

the book’s companion code. It contains the log client code from listing 7.1 and a skel-

eton test class that you’ll expand on in this section: mock_test/src/org/foo/mock/

LogClientTests.java. You can also find a completed version of the unit test in the solu-

tion directory if you don’t feel like typing all this code. Let’s go through each of the

five steps in detail and mock out the OSGi API:

1 Create prototype objects for parts of the API that you want to mock out:

BundleContext, ServiceReference, and LogService. You can do this by adding

the following lines to the empty test case:

BundleContext context = createStrictMock(BundleContext.class);
ServiceReference serviceRef = createMock(ServiceReference.class);
LogService logService = createMock(LogService.class);

You use a strict mock for the context, because you want to check the call

sequence.

2 Script the expected behavior of the log client as it finds and calls the Log-

Service:

expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(serviceRef);

expect(context.getService(serviceRef))
 .andReturn(logService);

logService.log(
 and(geq(LogService.LOG_ERROR), leq(LogService.LOG_DEBUG)),
 isA(String.class));

Using your knowledge of the service API from chapter 4, you expect that the cli-

ent will call your mock context to find a reference to the LogService, to which

you respond by returning a mock service reference. You expect the client to

pass this reference back your mock context in order to get your mock Log-

Service. Finally, you expect the client to call your mock LogService with a

valid log level and some sort of message string.

3 Replay the expected behavior to initialize your mock objects:

replay(context, serviceRef, logService);

4 Use your mock objects, and pretend to be the OSGi container:

BundleActivator logClientActivator = new Activator();

logClientActivator.start(context);
try {
 Thread.sleep(1000);
} catch (InterruptedException e) {}
logClientActivator.stop(context);

Consider the active lifecycle of an OSGi bundle: first it’s started, and some time

later it’s stopped. You don’t worry about mimicking the resolution stage in this

http://easymock.org/

240 CHAPTER 7 Testing applications

test because you want to test service usage, not class loading. You know the cli-

ent will spawn some sort of thread to use the LogService, so you wait one sec-

ond to give that thread time to make the call and pause. (Using sleep here isn’t

ideal; later, you’ll see how you can replace it with proper handshaking.) Then,

when the one second is up, you stop the client bundle.

5 The last step is to make sure you saw the expected behavior during the test:

verify(context, serviceRef, logService);

This method throws an exception if the observed behavior doesn’t match.

At this point, you should have a complete test that compiles and runs successfully:

$ cd chapter07/mocking-example

$ ant test
...
test:
[junit] Running org.foo.mock.LogClientTests
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 1.157 sec

Excellent: you’ve confirmed that your client uses the OSGi API correctly when a Log-

Service is available. But what happens when a LogService isn’t available; does it han-

dle that too?

7.2.3 Mocking unexpected situations

As we mentioned back at the start of this section, mocking is a powerful testing tech-

nique because it lets you script situations that are hard to re-create inside a test envi-

ronment. Although it’s easy to arrange a test in an OSGi container without a

LogService, it would be difficult to arrange for this service to appear and disappear at

exactly the right time to trigger the race condition you know exists in your client code.

With mocking, it’s easy.

 First, let’s test what happens when no LogService is available by adding the follow-

ing expectation between your last expect and the call to replay:

expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(null);

This states that you expect the client to begin another call to look up the LogService,

but this time you return a null reference to indicate no available service. If you try to

run the test now, it will fail because you don’t give the client enough time to make a

second call before stopping the bundle. Your log client pauses five seconds between

each call, so you need to add five seconds to the existing sleep:

try {
 Thread.sleep(6000);
} catch (InterruptedException e) {}

The client now gets enough time to begin a second log call, but the test still fails:

241Mocking OSGi

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] Exception in thread "LogService Tester" java.lang.AssertionError:
[junit] Unexpected method call getBundle():

It appears that your client is using another method (getBundle()) on the Bundle-

Context to find the owning bundle when no LogService is available. If you look at the

rest of the client code under chapter07, you’ll see that it uses this to get the bundle

identifier when logging directly to the console. You don’t mind how many times your

client calls getBundle(), if at all, so let’s use a wildcard expectation:

Bundle bundle = createNiceMock(Bundle.class);

expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(null);

expect(context.getBundle())
 .andReturn(bundle).anyTimes();

You need to provide a new mock to represent your Bundle object. This time, instead

of simulating each method the client uses, you take a shortcut and use a nice mock on

the first line. Nice mocks automatically provide empty implementations and default

return values. You expect your log client to request this mock bundle from your mock

bundle context after you return the null service reference, but it may ask for it zero

or more times. One last thing you must remember to do is add your mock bundle to

the replay list. (If you happen to forget to replay a mock before it’s used, you’ll get an

IllegalStateException from EasyMock about missing behavior definitions.)

replay(context, serviceRef, logService, bundle);

With the new expectation in place and everything replayed, the test passes once more:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 6.125 sec

Having sleep in your unit test is annoying, though. Every time you want to test addi-

tional log calls, you need to extend the sleep, which makes your tests run longer and

longer. You should try to replace it with some form of handshaking. But even with

handshaking, your log client will still pause for five seconds between each call. If only

you could replace the pause method while keeping the rest of the code intact.

7.2.4 Coping with multithreaded tests

You’re currently testing a simple log client that spawns a separate thread to make log calls.

Knowing how to test multithreaded bundles is useful, because people often use threads

to limit the amount of work done in the activator’s start method. As we mentioned at the

end of the last section, the main difficulty is synchronizing the test thread with the threads

being tested. Up to now you relied on sleep, but this is a fragile solution. Some form

242 CHAPTER 7 Testing applications

of barrier or handshake procedure (see figure 7.6) is needed to hold client threads back

until the test is ready to proceed and vice versa.

 Thankfully, the log client has an obvious place where you can add such a barrier:

the protected pauseTestThread method, which currently puts the client thread to

sleep for five seconds. You could consider using aspect-orientated programming

(AOP) to add a barrier to this method, but let’s avoid pulling in extra test dependen-

cies and use an anonymous class to override it instead:

final CountDownLatch latch = new CountDownLatch(2);

BundleActivator logClientActivator = new Activator() {
 @Override protected void pauseTestThread() {
 latch.countDown();

 if (latch.getCount() == 0) {
 LockSupport.park();
 }
 }
};

The anonymous class replaces the original pauseTestThread method with one that

uses a countdown latch, initialized with the number of expected log calls. Each time

the client makes a log call, it calls pauseTestThread and counts down the latch. When

no more log calls are expected, the client thread suspends itself and waits for the rest

of the test to shut down. The test code only needs to wait for the latch to reach zero

before it stops the client bundle:

logClientActivator.start(context);
if (!latch.await(5, TimeUnit.SECONDS)) {
 fail("Still expecting" + latch.getCount() + " calls");
}
logClientActivator.stop(context);

T1 T2 T3 M

Kick-off threads

Barrier

Barrier

Check preconditions

Check postconditions

Cooperatively wait for
threads to complete

Figure 7.6 Synchronizing

tests with multithreaded code

243Mocking OSGi

The test includes a timeout in case the client thread aborts and can’t complete the count-

down; but if everything goes as expected, the updated test finishes in under a second:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.14 sec

So far so good: all you have to do to test additional log calls is increment the latch

count. But what should you do if your client thread doesn’t contain a pause method

or this method can’t be replaced or extended? Another solution is to add barriers to

the mocked-out objects themselves by using so-called answer objects. Answers let you

perform basic AOP by intercepting method calls, which you can use to add synchroni-

zation points. Here’s an example:

expect(context.getServiceReference(isA(String.class)).andAnswer(
 new IAnswer<ServiceReference>() {
 public ServiceReference answer() {
 LockSupport.park();
 return null;
 }
 });

In this (incomplete) example, you script an answer that always returns a null service ref-

erence and use it to suspend the client thread whenever it makes this call. This works

as long as the client thread initiates the expected call at the right time and there are no

problems with suspending the client in the middle of this call. But it also leaves the client

code untouched, which in this case means a five-second pause between log calls. You’ll

test another log call in the next section, so let’s stick with the original latch solution.

7.2.5 Exposing race conditions

OSGi is dynamic: bundles and services may come and go at any time. The key to devel-

oping a robust application is being able to cope with and react to these events. This

same dynamism makes testing robustness difficult. You could deploy your bundles

into a real framework and attempt to script events to cover all possibilities (we’ll look

at this in more detail in section 7.3), but some scenarios require microsecond timing.

Remember the race condition we mentioned at the start of this section? This will be

exposed only if you can arrange for the LogService to disappear between two method

invocations—a narrow window. Many factors can cause you to miss this window, such

as unexpected garbage collection and differences in thread scheduling. With mock-

ing, you can easily script the exact sequence of events you want:

expect(context.getServiceReference(LogService.class.getName()))
 .andReturn(serviceRef);

expect(context.getService(serviceRef))
 .andReturn(null);

expect(context.getBundle())
 .andReturn(bundle).anyTimes();

244 CHAPTER 7 Testing applications

You begin by expecting another log call, so remember to bump the latch count up to

three calls. The LogService is still available at this point, so you return the mock refer-

ence. The client is expected to dereference this by calling getService(), and at this

point you pretend the LogService has vanished and return null. You follow this by

expecting another wildcard call to get the bundle, just as you did in section 7.2.3,

because the log client may need it to do some alternative logging to the console.

 Your test is now complete. You may want to compare it with the class in the solution

subdirectory. It covers normal and missing service conditions and the edge case where

the service is there to begin with but quickly disappears. Running it should expose the

problem that you know is there but couldn’t re-create reliably on a real framework:

$ ant test
...
[junit] Running org.foo.mock.LogClientTests
[junit] <--> thread="LogService Tester", bundle=0 : LogService has gone
[junit] Exception in thread "LogService Tester"
 java.lang.NullPointerException
[junit] at org.foo.log.Activator$LogServiceTest.run(Activator.java:66)
[junit] at java.lang.Thread.run(Thread.java:619)
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 5.205 sec

At this point, adventurous readers may want to copy the working service-lookup exam-

ple from chapter 4 (chapter04/dynamics/correct_lookup) and try testing it. One tip:

you’ll need to extend the test to expect calls to ungetService(), because the working

example attempts to release the service reference after each successful call to get-

Service(). Whether you mandate calls to ungetService() or make them optional by

appending times(0, 1) to the expectation is completely up to you.

 In this section, you learned how to mock out the OSGi API and script different sce-

narios when testing bundle-specific code that uses OSGi. Mocking helps you test situa-

tions that are next to impossible to recreate in a real container. It also provides a

counterpoint to the first section where you were running existing tests inside a real

container on code that often had no dependency on OSGi at all. The last section will

attempt to harmonize both approaches, by explaining how to script modular tests and

run them on a variety of frameworks.

7.3 Advanced OSGi testing

In the previous section, you successfully mocked out the OSGi API and ran your tests

without requiring a framework. Of course, the less you depend directly on an API, the

easier it is to mock. It’s even easier if you use one of the component models from chap-

ters 11 and 12, because your dependencies will be indirectly injected by the component

framework. Such components rarely need to use the OSGi API themselves, so testing

becomes a matter of reconfiguring bindings to inject mocked-out dependencies in

place of the original instances. But as we discussed in section 7.1.1, eventually you’ll

want to run tests on a real OSGi framework. These container tests typically don’t

increase your code coverage—any unit and mocked-out tests should have already tested

the critical paths. Instead, these tests verify that your code conforms to the container:

245Advanced OSGi testing

is it packaged correctly, does it follow the container programming model, does it use

standard APIs?

 You should run your tests on as many containers as possible to guard against con-

tainer-specific behavior. But keeping all these containers up to date and managing

their different settings and configurations soon becomes tiresome. The newly stan-

dardized OSGi embedding and launching API (discussed in chapter 13) helps, but it

lacks features that would make testing on OSGi much easier: automatic test wrapping,

dynamic bundle creation, and common deployment profiles. Luckily, several recently

released OSGi test tools provide all these features and more.

OSGi-enabled test tools bring other benefits because they embrace OSGi, such as

improved test modularity and management. You can use them to run a complete

range of tests from basic unit tests, through various combinations of integration tests,

all the way up to advanced management tests. You’ll see a real-world example of this

later that uses one of the more popular OSGi test tools called Pax Exam to test a ser-

vice bundle in isolation, combined with client bundles, and finally with older versions

of the same service to try out a proposed upgrade scenario.

 Let’s begin with a brief review of the various OSGi test tools available today.

7.3.1 OSGi test tools

At the time of writing this book, three major test tools are available for OSGi:

■ Open Participation Software for Java’s (OPS4J) Pax Exam (http://wiki.ops4j.org/

display/paxexam)

■ Spring DM’s test support (http://static.springsource.org/osgi/docs/1.2.1/

reference/html/testing.html)

■ Dynamic Java’s DA-Testing (www.dynamicjava.org/posts/da-testing-introduction)

All follow the same basic approach to building and deploying tests:

1 Prepare the OSGi container.

2 Deploy the selected bundles.

3 Create a test bundle on the fly.

4 Deploy and execute the tests.

5 Shut down the container.

Each tool has its own advantages and disadvantages. The Spring DM test support obvi-

ously works best with Spring-based applications. Although you can also use it to test

non-Spring applications, doing so requires several Spring dependencies that make it

appear rather heavy. Spring DM testing also only supports JUnit 3, which means no

annotated tests. DA-Testing, on the other hand, provides its own test API, optimized

for testing service dynamics such as the race condition you saw in section 7.2.5. This

makes it hard to move existing JUnit or TestNG tests over to DA-Testing, because devel-

opers have to learn another test API, but it does make dynamic testing much easier.

Pax Exam goes to the other extreme and supports both JUnit 3 and 4, with TestNG

support in the works. Table 7.1 summarizes the differences between the tools.

http://wiki.ops4j.org/display/paxexam
http://wiki.ops4j.org/display/paxexam
http://static.springsource.org/osgi/docs/1.2.1/reference/html/testing.html
http://static.springsource.org/osgi/docs/1.2.1/reference/html/testing.html
www.dynamicjava.org/posts/da-testing-introduction

246 CHAPTER 7 Testing applications

In this chapter, you’ll use Pax Exam from the OPS4J community, because we believe

it’s a good general-purpose solution; but many of the techniques covered in this sec-

tion can be adapted for use with the other tools. One of Pax Exam’s strengths is its

support for a wide range of different OSGi frameworks, which is important if you want

to produce robust portable bundles. But why is this?

7.3.2 Running tests on multiple frameworks

OSGi is a standard, with a detailed specification and a set of framework-compliance

tests. Even with all this, there can be subtle differences between implementations. Per-

haps part of the specification is unclear or is open to interpretation. On the other

hand, maybe your code relies on behavior that isn’t part of the specification and is left

open to framework implementers, such as the default Thread Context Class Loader

(TCCL) setting. The only way to make sure your code is truly portable is to run the

same tests on different frameworks. This is like the practice of running tests on differ-

ent operating systems—even though the JDK is supposed to be portable and standard-

ized, differences can exist, and it’s better to catch them during development than to

fix problems in the field.

 Unfortunately, many OSGi developers only test against a single framework. This

may be because they only expect to deploy their bundles on that particular implemen-

tation, but it’s more likely that they believe the cost of setting up and managing multi-

ple frameworks far outweighs the perceived benefits. This is where Pax Exam helps—

testing on an extra OSGi framework is as simple as adding a single line of Java code.

 Let’s see how easy it to use Pax Exam. You’ll continue to use Ant to run these tests,

although Pax Exam is primarily Maven-based. This means you need to explicitly list

execution-time dependencies in build.xml, instead of letting Maven manage this for

you. You can find your initial setup under chapter07/testing-example.

 Look at the fw subproject; it contains a simple test class that prints out various

framework properties. The contents of this test class are shown next.

@RunWith(JUnit4TestRunner.class)
public class ContainerTest {

 @Configuration

Table 7.1 OSGi test tool features

Test tool JUnit 3 JUnit 4 TestNG OSGi mocks OSGi frameworks OSGi profiles

Pax Exam ✔ ✔ Future Felix / Equinox / Knopflerfish

(multiple versions)

over 50

Spring DM ✔ Future ✔ Felix / Equinox / Knopflerfish

(single version only)

DA-Testing Equinox (others planned)

Listing 7.2 Simple container test

247Advanced OSGi testing

 public static Option[] configure() {
 return options(
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0")
);
 }

 @Test
 public void testContainer(BundleContext ctx) {
 System.out.println(
 format(ctx, FRAMEWORK_VENDOR) +
 format(ctx, FRAMEWORK_VERSION) +
 format(ctx, FRAMEWORK_LANGUAGE) +
 format(ctx, FRAMEWORK_OS_NAME) +
 format(ctx, FRAMEWORK_OS_VERSION) +
 format(ctx, FRAMEWORK_PROCESSOR) +
 "\nTest Bundle is " +
 ctx.getBundle().getSymbolicName());
 }

 private static String format(
 BundleContext ctx, String key) {

 return String.format("%-32s = %s\n",
 key, ctx.getProperty(key));
 }
}

You begin by annotating your test class with @RunWith. This tells JUnit to use the named

test runner instead of the standard JUnit one. The Pax Exam JUnit4TestRunner class

is responsible for starting the relevant framework, deploying bundles, and running the

tests. The @Configuration annotation identifies the method that provides the Pax

Exam configuration. Right now, you ask it to deploy the standard OSGi compendium

bundle B from Maven central in to the default framework. The actual test method is

annotated with the usual JUnit 4 annotation, @Test. It accepts a BundleContext argu-

ment that’s supplied by Pax Exam at execution time. You use this bundle context to print

out various properties, including the symbolic name of the test bundle C.

 To run this test, type the following:

$ cd chapter07/testing-example

$ ant test.container

You should see something like the following, but with properties that match your system.

[junit] Running org.foo.test.ContainerTest
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]

Listing 7.3 Using Pax Exam to run tests on an OSGi framework

Deploys
compendium bundle B

Prints symbolic
name

C

248 CHAPTER 7 Testing applications

[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit]
[junit] Welcome to Felix
[junit]
[junit] ================
[junit]
[junit] org.osgi.framework.vendor = Apache Software Foundation
[junit] org.osgi.framework.version = 1.5
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = windowsvista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 3.424 sec

You may have noticed that the symbolic name of the test bundle is pax-exam-probe. This

bundle is generated at execution time by Pax Exam and contains your test classes. The

default container is Apache Felix, but you can easily ask Pax Exam to run the same test

on other frameworks as well. All you need to do is add a few lines to the configuration

method in your test class fw/container/src/org/foo/test/ContainerTest.java:

 @Configuration
 public static Option[] configure() {
 return options(
 frameworks(
 felix(), equinox(), knopflerfish()
),
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0")
);
 }

Pax Exam does the hard work of downloading the necessary JAR files and setting up any

framework-specific configuration files. You just need to sit back and rerun your test:

$ ant test.container

This time you should see three distinct sets of output, as shown here.

[junit] Running org.foo.test.ContainerTest
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org

Listing 7.4 Using Pax Exam to run tests on multiple frameworks

249Advanced OSGi testing

[junit] --
[junit]
[junit]
[junit]
[junit] Welcome to Felix
[junit] ================
[junit]
[junit] org.osgi.framework.vendor = Apache Software Foundation
[junit] org.osgi.framework.version = 1.5
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = windowsvista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit] org.osgi.framework.vendor = Eclipse
[junit] org.osgi.framework.version = 1.5.0
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = WindowsVista
[junit] org.osgi.framework.os.version = 6.0.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] __________ ___________
[junit] ______ _____ ___ ___ _ _____/__ ________ _____
[junit] | ___/__ \ \ \/ / | __)_\ \/ /__ \ / \
[junit] | | / __ _> < | \> < / __ \| Y Y \
[junit] |____| (____ /__/_ \ /_______ /__/_ \(____ /__|_| /
[junit] \/ \/ \/ \/ \/ \/
[junit]
[junit] Pax Exam 1.1.0 from OPS4J - http://www.ops4j.org
[junit] --
[junit]
[junit]
[junit] Knopflerfish OSGi framework, version 4.1.10
[junit] Copyright 2003-2009 Knopflerfish. All Rights Reserved.
[junit]
[junit] See http://www.knopflerfish.org for more information.
[junit]
[junit] Loading xargs url file:knopflerfish/config.ini

250 CHAPTER 7 Testing applications

[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam_1.1.0.jar (id#1)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.junit.extender_1.1.0.jar (id#2)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.junit.extender.impl_1.1.0.jar (id#3)
[junit] Installed and started:
 file:bundles/org.ops4j.pax.url.dir_1.0.0.jar (id#4)
[junit] Installed and started:
 file:bundles/com.springsource.org.junit_4.4.0.jar (id#5)
[junit]
[junit] Installed and started:
 file:bundles/org.ops4j.pax.exam.rbc_1.1.0.jar (id#6)
[junit] Installed and started:
 file:bundles/osgi.cmpn_4.2.0.200908310645.jar (id#7)
[junit] Framework launched
[junit] org.osgi.framework.vendor = Knopflerfish
[junit] org.osgi.framework.version = 1.3
[junit] org.osgi.framework.language = en
[junit] org.osgi.framework.os.name = Windows Vista
[junit] org.osgi.framework.os.version = 6.0
[junit] org.osgi.framework.processor = x86
[junit]
[junit] Test Bundle is pax-exam-probe
[junit]
[junit]
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 12.513 sec

Notice how some of the properties vary slightly between frameworks, in particular the

OS name. This is a reminder of why it’s a good idea to test on a variety of frameworks:

to make sure you aren’t depending on unspecified or undocumented behavior.

 You just saw how easy it is to run a test on many different frameworks using Pax

Exam. But how well does it work with existing unit tests and existing test tools?

7.3.3 Unit testing

At the start of this section, we mentioned how OSGi test tools can help you modularize

and manage tests. Because Pax Exam integrates with JUnit as a custom runner, you can

use it in any system that can run JUnit tests. This means you can mix non-OSGi unit

and integration tests with Pax Exam–based tests and have the results collected in one

place. A good example of this mixture can be found in the Configuration Admin Ser-

vice implementation from the Apache Felix project (http://felix.apache.org/site/

apache-felix-config-admin.html). The Configuration Admin Service is a compendium

service that provides and persists configuration data for bundles.

 The Felix Configuration Admin Service build uses Maven and has a single test

directory. This test directory contains mocked-out unit tests to test internal details

along with Pax Exam integration tests to test the expected Configuration Admin Ser-

vice behavior. We’ve taken these tests and separated them into unit and integration

tests so you can see the difference. The unit tests are in the ut subproject, and you can

run them with this command from the chapter07/testing-example/ directory:

http://felix.apache.org/site/apache-felix-config-admin.html
http://felix.apache.org/site/apache-felix-config-admin.html

251Advanced OSGi testing

$ ant test.unit
...
[junit] Running
 org.apache.felix.cm.file.FilePersistenceManagerConstructorTest
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 0.027 sec
[junit] Running org.apache.felix.cm.file.FilePersistenceManagerTest
[junit] Tests run: 8, Failures: 0, Errors: 0, Time elapsed: 0.255 sec
[junit] Running org.apache.felix.cm.impl.CaseInsensitiveDictionaryTest
[junit] Tests run: 10, Failures: 0, Errors: 0, Time elapsed: 0.012 sec
[junit] Running org.apache.felix.cm.impl.ConfigurationAdapterTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.013 sec
[junit] Running org.apache.felix.cm.impl.ConfigurationManagerTest
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 0.037 sec
[junit] Running org.apache.felix.cm.impl.DynamicBindingsTest
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 0.055 sec

These are still considered unit tests because they don’t run inside an OSGi con-

tainer. You could bundle them into a fragment as you did in section 7.1 and deploy

them using Pax Exam, in which case they would be called bundle tests. Bundle tests

are somewhere between unit and full-blown integration tests. They test more than

a single class or feature but don’t involve more than one bundle. Figure 7.7 shows

the difference.

After you’ve tested your core functionality both inside and outside the OSGi container,

you can move on to integration testing. Integration testing is where Pax Exam shines.

7.3.4 Integration testing

Integration tests are where you start to piece together your application and test interac-

tions between individual components. To test combinations of components, you need

some way to compose them. For standard Java applications, it can be tricky deciding

which JAR files you need to load; but with OSGi applications, all the dependency infor-

mation is available in the metadata. Deployment becomes a simple matter of picking a

set of bundles.

Class

Bundle

Class

Class

Class

Bundle

Class

Class

Class

Bundle

Class

Class

Bundle

Class

Unit test Bundle test Integration test

Figure 7.7 Unit, bundle, and integration testing

252 CHAPTER 7 Testing applications

 Let’s look at a concrete example. You can find the Apache Felix Configuration

Admin Service integration tests under the it subproject. To run all these tests in

sequence, type the following in the chapter07/testing-example/ directory:

$ ant test.integration
...
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 26.523 sec
...
[junit] Tests run: 7, Failures: 0, Errors: 0, Time elapsed: 24.664 sec
...
[junit] Tests run: 15, Failures: 0, Errors: 0, Time elapsed: 55.839 sec
...
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 14.45 sec
...
[junit] Tests run: 4, Failures: 0, Errors: 0, Time elapsed: 13.809 sec
...
[junit] Tests run: 2, Failures: 0, Errors: 0, Time elapsed: 5.723 sec

You may wonder why there isn’t much output during the tests. This is because you’ve

set the local logging threshold to WARN. To see more details about what Pax Exam

is running, edit the local log4j.properties file, and change the threshold from WARN

to INFO.

 Let’s take a closer look at one of the integration tests from ConfigurationBaseTest.

@Test
public void test_basic_configuration_configure_then_start()
 throws BundleException, IOException
{
 final String pid = "test_basic_configuration_configure_then_start";
 final Configuration config = configure(pid, null, true);

 bundle = installBundle(pid, ManagedServiceTestActivator.class);
 bundle.start();
 delay();

 final ManagedServiceTestActivator tester =
 ManagedServiceTestActivator.INSTANCE;

 TestCase.assertNotNull(tester.props);
 TestCase.assertEquals(pid, tester.props.get(
 Constants.SERVICE_PID));
 TestCase.assertNull(tester.props.get(
 ConfigurationAdmin.SERVICE_FACTORYPID));
 TestCase.assertNull(tester.props.get(
 ConfigurationAdmin.SERVICE_BUNDLELOCATION));
 TestCase.assertEquals(PROP_NAME, tester.props.get(PROP_NAME));
 TestCase.assertEquals(1, tester.numManagedServiceUpdatedCalls);

 config.delete();
 delay();
 TestCase.assertNull(tester.props);
 TestCase.assertEquals(2, tester.numManagedServiceUpdatedCalls);
}

Listing 7.5 Basic configure-then-start integration test

Sets
configuration data

B

Checks for correct
configuration

C

Verifies
notification

D

253Advanced OSGi testing

This integration test checks that the Configuration Admin Service implementation

successfully records configuration data that is registered before the managed bundle

starts. The managed bundle is the bundle being configured. The test method has the

standard JUnit 4 annotation and extends a base class called ConfigurationTestBase

that provides general helper methods. One such method is used to set configuration

data using the current Configuration Admin Service B. The test creates and installs a

managed bundle on the fly and waits for the configuration to be delivered to this

managed bundle. It makes sure the delivered configuration is correct C before

removing the configuration. The test waits for the managed bundle to be notified

about this removal and verifies it was correctly notified D.

 This is a clear test. It almost looks like a unit test, except calls are being made between

components instead of inside a single component or class. The other tests under the it

subproject follow the same basic pattern, which may be repeated several times:

1 Check the initial system state.

2 Disrupt the state (by calling services, or adding or removing bundles).

3 Check the resulting system state.

As you just saw, the Configuration Admin Service integration tests all extend a single

base class called ConfigurationTestBase that defines helper methods to deal with

configurations, synchronize tests, and create additional bundles at execution time.

These additional bundles consume and validate the configuration data. Right now,

the tests are only configured to run on Apache Felix, but let’s see if they also pass on

other frameworks.

 Add the following lines to the Pax Exam options inside the configuration()

method in ConfigurationTestBase, just as you did with the container test back in sec-

tion 7.3.2, like this:

@Configuration
public static Option[] configuration() {
 return options(
 frameworks(felix(), equinox(), knopflerfish()),
 provision(
 bundle(new File("bundles/configadmin.jar").toURI().toString()),
 mavenBundle(
 "org.ops4j.pax.swissbox", "pax-swissbox-tinybundles", "1.0.0"))
);
}

Pax Exam now runs each test three times—once per framework. You can see this by

typing the following command in the chapter07/testing-example/ directory:

$ ant test.integration
...
[junit] Tests run: 6, Failures: 0, Errors: 0, Time elapsed: 84.585 sec
...
[junit] Tests run: 21, Failures: 0, Errors: 0, Time elapsed: 99.05 sec
...
[junit] Tests run: 45, Failures: 0, Errors: 0, Time elapsed: 220.184 sec

254 CHAPTER 7 Testing applications

...
[junit] Tests run: 12, Failures: 0, Errors: 0, Time elapsed: 55.269 sec
...
[junit] Tests run: 12, Failures: 0, Errors: 0, Time elapsed: 54.686 sec
...
[junit] Tests run: 6, Failures: 0, Errors: 0, Time elapsed: 26.417 sec

No failures or errors! The Apache Felix Configuration Admin Service implementation

works the same on all three frameworks. This shouldn’t be unexpected, because one

of the goals driving OSGi is reusable modules. Many framework bundles can be reused

on other frameworks. When you find you need a particular compendium service, and

your current framework doesn’t provide it, look around in case you can reuse a bun-

dle from another site. You can even use Pax Exam to try different combinations of

compendium bundles.

 Pax Exam makes integration testing as simple as unit testing, but like any good tool

you have to be careful not to overuse it. Each integration test has the overhead of start-

ing and stopping an OSGi container, so the overall test time can build up as you add

more and more tests. People are looking into reusing containers during testing, but

for some tests you need complete isolation. Although work is being done to reduce

the cost of each test, this cost will never be zero. In practice, this means you should

look carefully at your tests and try to get the most from each one.

 Integration testing is normally considered the last phase of testing before starting

system or acceptance tests. You’ve tested each piece of functionality separately and

tested that the pieces work together. There’s nothing else to test before verifying that

your application meets the customers’ requirements—or is there?

7.3.5 Management testing

This book contains an entire chapter (chapter 10) about how to manage OSGi appli-

cations, so it’s clear that management is an important aspect. You should reflect that

by testing applications to make sure they can be successfully managed, upgraded, and

restarted before releasing them into production. Too often, we see bundles that work

perfectly until they’re restarted or bundles that can’t be upgraded without causing rip-

ples that affect the whole application.

 What might management testing cover? Table 7.2 has some suggestions.

Table 7.2 Management testing ideas

Task Involves

Install Installing new bundles (or features) alongside existing used implementations

Uninstall Uninstalling old bundles (or features) that may or may not have replacements

Upgrade Upgrading one or more bundles with new functionality or bug fixes

Downgrade Downgrading one or more bundles because of an unexpected regression

Graceful degradation Seeing how long the application functions as elements are stopped or uninstalled

255Advanced OSGi testing

We’ll show you how OSGi and Pax Exam can help with management testing. The cur-

rent test example exercises the latest Configuration Admin Service implementation

from Apache Felix. But what if you have an application that uses an earlier version?

Can you upgrade to the latest version without losing any configuration data? Why not

write a quick test to find out?

 You can find the example upgrade test under mt/upgrade_configadmin_bundle.

It’s based on the listConfiguration test from the existing Apache Felix integration

test suite. Listing 7.6 shows the custom configuration for the upgrade test. You want to

reuse the helper classes from the earlier tests, so you explicitly deploy the integration

test bundle alongside your management test. You also deploy the old Configuration

Admin Service bundle and store the location of the new bundle in a system property

so you can use it later to upgrade Configuration Admin Service during the manage-

ment test. You use a system property because the configuration and test methods are

executed by different processes, and system properties are a cheap way to communi-

cate between processes.

private static String toFileURI(String path) {
 return new File(path).toURI().toString();
}

@org.ops4j.pax.exam.junit.Configuration
public static Option[] configuration() {
 return options(
 provision(
 bundle(toFileURI("bundles/integration_tests-1.0.jar")),
 bundle(toFileURI("bundles/old.configadmin.jar")),
 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0"),
 mavenBundle("org.ops4j.pax.swissbox", "pax-swissbox-tinybundles",
 "1.0.0")
),
 systemProperty("new.configadmin.uri").
 value(toFileURI("bundles/configadmin.jar"))
);
}

The rest of the test follows the same script as the original listConfiguration test with

three key differences. First, you make sure the installed Configuration Admin Service

bundle is indeed the older 1.0.0 release, by checking the OSGi metadata:

Dictionary headers = getCmBundle().getHeaders();
TestCase.assertEquals("org.apache.felix.configadmin",
 headers.get(Constants.BUNDLE_SYMBOLICNAME));
TestCase.assertEquals("1.0.0",
 headers.get(Constants.BUNDLE_VERSION));

Second, you do an in-place update of the Configuration Admin Service bundle to the

new edition:

cmBundle.update(new URL(
 System.getProperty("new.configadmin.uri")).openStream());

Listing 7.6 Configuring the upgrade management test

256 CHAPTER 7 Testing applications

You perform an in-place update to preserve the existing configuration data in the

bundle’s persistent data area (see section 3.3.4). This works only when you’re upgrad-

ing bundles to a new version. If you wanted to switch to a Configuration Admin Ser-

vice implementation from another vendor, you’d need both bundles installed while

you copied the configuration data between them.

 Third, you make sure the Configuration Admin Service bundle was successfully

updated to the new version before finally checking that the configuration data still

exists:

headers = cmBundle.getHeaders();
TestCase.assertEquals("org.apache.felix.configadmin",
 headers.get(Constants.BUNDLE_SYMBOLICNAME));
TestCase.assertEquals("1.2.7.SNAPSHOT",
 headers.get(Constants.BUNDLE_VERSION));

You can run this management test with a single command from the chapter07/

testing- example/ directory:

$ ant test.management

[junit] Running org.apache.felix.cm.integration.mgmt.ConfigAdminUpgradeTest
...
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 5.344 sec

You can even extend the upgrade test to make sure it works on other OSGi frameworks,

as you did with the original Apache Felix Configuration Admin Service integration tests.

You’ll see that the test passes on all three frameworks, which is more proof that this ser-

vice implementation is truly independent of the underlying OSGi framework.

 This was only a small test; but if you look at the management examples from chap-

ters 3 and 10, we hope you can see that you can easily script larger, more complex sce-

narios in Java (or any other JVM language) by using the standard OSGi lifecycle and

deployment APIs. Imagine building up a modular library of management actions

(install, start, stop, upgrade, and downgrade) that you can quickly tie together to test

a particular task. Such management testing can help squash potential problems well

in advance, minimizing real-world downtime.

 Earlier in this chapter, we showed you how to test an application all the way up

from individual classes to single bundles and combinations of bundles. Just now, we

looked at testing different management strategies, such as upgrading and downgrad-

ing components, to make sure the application as a whole (and not just this release)

continues to behave over its lifetime. At this point, you should be ready to move on to

system and acceptance tests. These tests don’t need special treatment regarding OSGi,

because OSGi is just an implementation detail. As long as the application can be

launched, it can be tested.

257Summary

7.4 Summary

This chapter covered three different approaches to testing OSGi applications:

■ Bundling existing non-OSGi tests to run inside OSGi

■ Mocking existing OSGi tests to run outside of OSGi

■ Using OSGi test tools to automate test deployment

In an ideal world, you’d use a combination of these three approaches to test all your

code, both inside and outside one or more OSGi containers. In the real world, proj-

ects have deadlines and developers need their sleep, so we suggest using tools such as

Pax Exam to automate as much of the test-bundling and -deployment work as possi-

ble. These tests should grow along with your application, giving you confidence that

you do indeed have a robust, modular application. But what should you do if one of

your tests fails inside OSGi? What tools and techniques can you apply to find the solu-

tion? Help is available in chapter 8.

258

Debugging applications

You just learned how to test individual bundles and application deployments in

OSGi, but what should you do when an integration test unexpectedly fails with a

class-loading exception or a load test runs out of memory? If you were working on a

classic Java application, you’d break out the debugger, start adding or enabling

instrumentation, and capture various diagnostic dumps. Well, an OSGi application

is still a Java application, so you can continue to use many of your well-honed

debugging techniques. The key area to watch out for is usually related to class load-

ing, but that’s not the only pitfall.

OSGi applications can have multiple versions of the same class running at the

same time, requiring greater awareness of versioning; missing imports can lead to

groups of classes that are incompatible with other groups; and dangling services can

lead to unexpected memory leaks when updating bundles. In this chapter, we’ll show

This chapter covers

■ Debugging bundles using jdb

■ Debugging bundles using Eclipse

■ Understanding and solving class-loading issues

■ Tracking down memory leaks and dangling

service references

259Debugging bundles

you examples of how to debug all these problems and suggest best practices based on

our collective experience of working with real-world OSGi applications in the field.

 Let’s kick off with something simple. Say you have an application composed of

many working bundles and one misbehaving bundle: how do you find the bad bundle

and debug it?

8.1 Debugging bundles

Applications continue to grow over time—more features get built on top of existing

functionality, and each code change can introduce errors, expose latent bugs, or

break original assumptions. In a properly modularized OSGi application, this should

only lead to a few misbehaving bundles rather than a completely broken application.

If you can identify these bundles, you can decide whether to remove or replace them,

potentially fixing the application without having to restart it. But first, you need to

find out which bundles are broken!

 Take the paint example you’ve worked on in previous chapters. Imagine that you

get a request to allow users to pick the colors of shapes. Your first step might be to add

a setColor() method to the SimpleShape interface:

/**
 * Change the color used to shade the shape.
 *
 * @param color The color used to shade the shape.
 **/
public void setColor(Color color);

You probably think adding a method to an API is a minor, backward-compatible

change, but in this case the interface is implemented by various client bundles that

you may not have control over. In order to compile against the new SimpleShape API,

they need to implement this method; so from their perspective, this is a major change.

You should therefore increment the API version in the main paint example build.xml

file to reflect this. The last version you used was 5.0, so the new version is

<property name="version" value="6.0"/>

You now need to implement the setColor() method in each of the three shape bun-

dles. Here’s the updated implementation for the triangle shape bundle.

public class Triangle implements SimpleShape {

 Color m_color = Color.GREEN;

 public void draw(Graphics2D g2, Point p) {
 int x = p.x - 25;
 int y = p.y - 25;
 GradientPaint gradient =
 new GradientPaint(x, y, m_color, x + 50, y, Color.WHITE);
 g2.setPaint(gradient);
 int[] xcoords = { x + 25, x, x + 50 };
 int[] ycoords = { y, y + 50, y + 50 };

Listing 8.1 Implementing the setColor() method for the triangle shape

assigned color

Applies color to
gradient

260 CHAPTER 8 Debugging applications

 GeneralPath polygon =
 new GeneralPath(GeneralPath.WIND_EVEN_ODD, xcoords.length);
 polygon.moveTo(x + 25, y);
 for (int i = 0; i < xcoords.length; i++) {
 polygon.lineTo(xcoords[i], ycoords[i]);
 }
 polygon.closePath();
 g2.fill(polygon);
 BasicStroke wideStroke = new BasicStroke(2.0f);
 g2.setColor(Color.black);
 g2.setStroke(wideStroke);
 g2.draw(polygon);
 }

 public void setColor(Color color) {
 m_color = color;
 }
}

The paint frame bundle contains another implementation of the SimpleShape API:

org.foo.paint.DefaultShape. This class lazily delegates to the real shape via the

OSGi service registry, so it also needs to implement the new setColor() method. The

correct implementation follows the same approach used in DefaultShape.draw():

check that you have access to the real shape from the registry and, if you don’t,

request it. You’ll use a broken implementation instead and assume you already have

access to the shape instance:

public void setColor(Color color) {
 m_shape.setColor(color);
}

This sort of mistake could be made by a new team member who doesn’t know about

the lazy delegation approach and assumes that m_shape has been initialized else-

where. If the application happened to call draw() early on, this bug could go unno-

ticed for a long time, because m_shape would always be valid by the time the code

reached setColor(). But one day, someone may reasonably change the application so

it calls setColor() first, as follows from the ShapeComponent class, and the bug will

bite. (This example may seem a little contrived, but it’s surprisingly hard to write bad

code when you really want to!)

protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 Graphics2D g2 = (Graphics2D) g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 SimpleShape shape = m_frame.getShape(m_shapeName);
 shape.setColor(getForeground());
 shape.draw(g2, new Point(getWidth() / 2, getHeight() / 2));
}

You now have a broken OSGi application, which will throw an exception whenever you

try to paint shapes. Let’s see if you can debug it using the JDK provided debugger, jdb

(http://java.sun.com/javase/6/docs/technotes/tools/solaris/jdb.html).

Updates
assigned color

http://java.sun.com/javase/6/docs/technotes/tools/solaris/jdb.html

261Debugging bundles

8.1.1 Debugging in action

The Java Debugger (also known as jdb) is a simple debugging tool that primarily exists

as an example application for the Java Platform Debugger Architecture (JPDA, http:

//java.sun.com/javase/technologies/core/toolsapis/jpda/index.jsp) rather than a

product in its own right. This means it lacks some of the polish and user-friendly fea-

tures found in most other debuggers. But jdb is still a useful tool, especially when

you’re debugging on production servers that have limited installation environments.

DEBUGGING WITH JDB

You first need to build the broken example. When that’s done, you can start jdb:

$ cd chapter08/debugging-bundles

$ ant dist

$ jdb -classpath launcher.jar launcher.Main bundles

Initializing jdb ...
>

Jdb starts up, but it won’t launch your application until you type run:

> run
run launcher.Main bundles
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started:
>

You should see the updated paint window

appear, as shown in figure 8.1. All you had to

do is use the jdb command instead of java and

specify the class path and main class (the jdb

command doesn’t support the -jar option).

You didn’t have to tell jdb anything about your

bundles or the OSGi framework; from jdb’s per-

spective, this is just another Java application.

If you try to draw a shape in the paint window, jdb reports an uncaught exception in

the AWT event thread:

Felix bundle cache

If you happen to see several I/O exceptions mentioning the felix-cache, check that

you haven’t got any leftover debugged Java processes running. When you forcibly

quit jdb using Ctrl-C, it can sometimes leave the debugged process running in the

background, which in this case will stop new sessions from using the local felix-

cache directory.

Figure 8.1 Updated paint

example running under jdb

http://java.sun.com/javase/technologies/core/toolsapis/jpda/index.jsp
http://java.sun.com/javase/technologies/core/toolsapis/jpda/index.jsp

262 CHAPTER 8 Debugging applications

Exception occurred: java.lang.NullPointerException (uncaught)
 "thread=AWT-EventQueue-0", java.awt.EventDispatchThread.run(),
 line=156 bci=152

AWT-EventQueue-0[1] where

 [1] java.awt.EventDispatchThread.run (EventDispatchThread.java:156)

This exception has percolated all the way up to the top of the AWT event thread, and

jdb doesn’t give you an easy way to see where it was originally thrown. You can ask it to

stop the application when this sort of exception occurs again, like so:

AWT-EventQueue-0[1] catch java.lang.NullPointerException

Set all java.lang.NullPointerException

AWT-EventQueue-0[1] resume

All threads resumed.

Keep resuming the program until you see a long exception stack trace appear on the

jdb console. This isn’t a new exception: it’s the AWT thread printing out the original

uncaught exception. The top of the exception stack confirms that it was caused by

your faulty code inside DefaultShape, which you know is contained inside the paint

frame bundle. Notice that jdb doesn’t give you a way to correlate the exception loca-

tion with a particular JAR file.

 What if you didn’t know which bundle contained this package? You could try to

locate it using the console, but most framework consoles only let you see exported

packages. For internal packages, you would have to come up with a list of candidate

bundles by manually checking the content of each bundle and comparing the excep-

tion location with the appropriate source. As you’ll see in a moment, tracking a prob-

lem to a specific bundle is much easier when you use an OSGi-aware debugger, such as

the Eclipse debugger.

 Returning to the broken example, try to paint another shape. Jdb now detects and

reports the exception at the point at which it’s thrown inside setColor(). But because

you haven’t attached any source files, it doesn’t show you the surrounding Java code:

Exception occurred: java.lang.NullPointerException
 (to be caught at: javax.swing.JComponent.paint(), line=1,043 bci=351)
 "thread=AWT-EventQueue-0", org.foo.paint.DefaultShape.setColor(),
 line=126 bci=5

AWT-EventQueue-0[1] list

Source file not found: DefaultShape.java

No problem—you need to attach your local source directory:

AWT-EventQueue-0[1] use org.foo.paint/src

AWT-EventQueue-0[1] list

122 g2.drawImage(m_icon.getImage(), 0, 0, null);
123 }
124
125 public void setColor(Color color) {
126 => m_shape.setColor(color);
127 }
128 }

263Debugging bundles

When you print the current value of m_shape, you can finally see why it failed:

AWT-EventQueue-0[1] print m_shape

 m_shape = null

If you’re an experienced Java programmer this should be familiar; no special OSGi

knowledge is required. But take another look at the command where you attached

your source directory:

use org.foo.paint/src

This command has no knowledge of bundles or class versions; it merely provides a list

of candidate source files for jdb to compare to debugged classes. Jdb allows only one

version of a given source file to be used at any one time, which makes life difficult

when you’re debugging an OSGi application containing multiple bundle versions. You

have to know which particular collection of source directories to enable for each

debug session.

DEBUGGING WITH ECLIPSE

Thankfully, this is merely a limitation of jdb. If you use an IDE such as Eclipse, which

knows that multiple versions of a class can coexist in the same JVM, you don’t have to

worry about which source relates to which bundle version. The IDE manages that asso-

ciation for you as you debug your application.

 To see this in action, generate Eclipse project files for the two paint examples from

chapters 4 and 8:

$ cd ../../chapter04/paint-example

$ ant clean pde

$ cd ../../chapter08/debugging-bundles

$ ant clean pde

Now import these two directories into Eclipse as existing projects. You should end up

with 10 new projects: half marked version 4, the rest version 6. To debug these bun-

dles in Equinox, the OSGi framework used by Eclipse, click the drop-down arrow next

to the bug icon (circled at the top of figure 8.2), and select Debug Configurations.

 Doing so opens the Debug Configurations dialog box. Follow these instructions to

configure a minimal Eclipse target platform for debugging the paint example:

1 Double-click OSGi Framework.

2 Change the name from New_configuration to ch8_debugging_example.

3 Deselect Include Optional Dependencies as well as Add New Workspace Bundles.

4 Select Validate Bundles Automatically.

5 Deselect the top-level Target Platform.

6 Click Add Required Bundles.

7 Click Apply.

When you’re happy with your selection, click the Debug button to launch the debug-

ger. Two different paint frames appear, as shown in figure 8.3. This is because you

have two versions of the code running simultaneously in the same JVM.

264 CHAPTER 8 Debugging applications

Figure 8.2 Configuring the Eclipse Debugger

Figure 8.3 Debugging the paint example in Eclipse

265Debugging bundles

Before you start to paint, let’s add a breakpoint so the debugger will stop when some-

one tries to use a null object reference. Choose Run > Add Java Exception Breakpoint

to open the dialog box shown in figure 8.4. Select java.lang.NullPointerException

and click OK.

 You now have the two paint examples running in the Eclipse debugger. If you try to

paint with the original version, which has three shapes in its toolbar, everything works

as expected. But if you try to paint with the new version—the one with the paintbrush

in its toolbar—the debugger stops (see figure 8.5).

 Look closely at the title bar. The debugger has correctly identified that the affected

source code is from chapter08 even though there are multiple versions of this class

loaded in the Java runtime. Again, the problem is caused by a null shape object. Using

the Eclipse IDE, you can trace the exception back to the specific bundle project. You can

also click different frames in the stack trace to see what other bundles (if any) were

Figure 8.4 Watching

for NullPointer-
Exceptions

Figure 8.5 Exception caused by a bad setColor() method

266 CHAPTER 8 Debugging applications

involved. Compare this to jdb, where it was difficult to tell which bundles were involved

in a given stack trace without a good understanding of the source distribution.

You’ve successfully debugged an OSGi application with existing tools, from the basic

jdb debugger to the full-fledged Eclipse IDE. But what do you do when you finally

track down the bug? Do you stop your application, fix the code, and restart? What if

your application takes a long time to initialize, or if it takes hours to get it into the

state that triggered the bug in the first place? Surely there must be a better way!

8.1.2 Making things right with HotSwap

Thankfully, there is an answer to the question we just asked. You may know it as

HotSwap. HotSwap is a feature of the Java 5 debugging architecture that lets you

change the definition of a class at execution time without having to restart the JVM.

The technical details behind HotSwap are outside of the scope of this book; what’s

more interesting is whether it works correctly with OSGi.

 To use HotSwap, you need to attach a native agent at startup to the low-level

debugging hooks provided by the JVM. One such agent is attached whenever you run

an application under jdb. Although jdb provides a basic redefine command to swap in

Figure 8.5 (continued) Exception caused by a bad setColor() method

Embedding source inside OSGi bundles

OSGi defines a standard place for embedding documentation inside bundles: OSGI-

OPT. Bundles containing source code under OSGI-OPT/src can be debugged in

Eclipse even when you don’t have a project associated with them in your workspace.

267Debugging bundles

newly compiled classes, it won’t work for the previous example. Jdb refuses to redefine

classes that have multiple versions loaded, because it can’t determine which version

should be redefined. But what about Eclipse? Can it help you update the right version

of DefaultShape?

HOTSWAP WITH ECLIPSE

In the previous section, you successfully used the Eclipse debugger to manage multiple

versions of source code while debugging. Will Eclipse come to the rescue again and let

you fix the broken DefaultShape implementation while leaving earlier working ver-

sions intact? If you still have the Eclipse debugger instance running, you can skip to the

next paragraph. Otherwise, you need to relaunch the example by clicking the drop-

down arrow next to the bug icon (circled in figure 8.2) and selecting ch8_debugging_

example. Trigger the exception again by attempting to paint a shape.

 You should have the paint example suspended in the debugger at the point of failure,

as you saw in figure 8.5. Unlike jdb, which has to be told which classes to redefine, the

Eclipse debugger automatically attempts to redefine any class whose source changes in

the IDE (provided you have automatic builds enabled). This means all you need to do

to squish this bug is change the setColor() method in the open DefaultShape.java win-

dow so that m_shape is initialized before you use it, and save the file. For a quick solution,

you can copy and paste the relevant code from the draw() method, as follows.

public void setColor(Color color) {
 if (m_context != null) {
 try {
 if(m_shape == null) {
 m_shape = (SimpleShape) m_context.getService(m_ref);
 }
 m_shape.setColor(color);
 } catch (Exception ex) {}
 }
}

Copying code this way is fine for a quick debugging session, but it’s better to extract

the initialization code into a common method for use by both the draw() and set-

Color() methods. Reducing code duplication makes testing and debugging a lot eas-

ier. For now, you’ll keep things simple: paste the code from listing 8.2 over the broken

setColor() implementation. When you’re ready, click Save to squish the bug!

 What happened? Most, if not all, of you got an error message like the one in fig-

ure 8.6, saying the JVM couldn’t add a method to an existing class. This happened

because Eclipse tried to update both versions of the DefaultShape class. Although it

was able to redefine the broken setColor() method in the version from this chap-

ter, there is no such method in the DefaultShape class from chapter 4. Instead, the

debugger attempted to add the setColor() method to the old class, but adding

methods isn’t supported by the current Sun implementation of HotSwap. Even

Listing 8.2 Fixing the setColor() method

268 CHAPTER 8 Debugging applications

worse, if you decide to ignore this error message and continue, you still get the same

exception as before when painting shapes.

 Alternative implementations of HotSwap do support adding methods. You can

find one such implementation in the IBM JDK (www.ibm.com/developerworks/java/

jdk/). If you debug the same example using IBM Java 6 as the target runtime (remem-

bering, of course, to first revert the setColor() method back to the broken version),

you can successfully fix the problem without restarting the process. Figure 8.7 con-

firms that even after using HotSwap to squish the bug, both the old and new paint

examples continue to work on the IBM JDK.

 Although you eventually managed to use HotSwap to fix the problem in your bun-

dle, this isn’t exactly what you want, because all versions of DefaultShape were

updated. By chance, this didn’t affect the old paint example because you were adding

a completely new method. It has no effect on the old application and sits there

unused. But what if you wanted to change a method that was tightly coupled to exist-

ing code? You could end up fixing one version only to find out you’d broken all the

others by unintentionally upgrading them with the new logic. This may not be a big

deal during development, because you’ll probably be focusing on one version at a

time; but can you do better when debugging OSGi applications in the field?

Figure 8.6 HotSwap failure updating DefaultShape

www.ibm.com/developerworks/java/jdk/
www.ibm.com/developerworks/java/jdk/

269Debugging bundles

HOTSWAP WITH JREBEL

Yes, you can do better. A JVM agent called JRebel (formerly known as JavaRebel;

www.zeroturnaround.com/jrebel/) behaves in a way similar to HotSwap but has much

better support for custom class-loading solutions like OSGi. For those who don’t know,

a JVM agent is a small native library that attaches to the process on startup and is

granted low-level access to the Java runtime. Whenever you recompile a class, JRebel

automatically updates the appropriate version loaded in the JVM without affecting any

other versions of the class. This makes it easy to develop, debug, and compare differ-

ent releases of an application at the same time.

 What are the downsides? The main downside is reduced performance due to the

extra tracking involved. JRebel also needs to know how custom class loaders map their

classes and resources to local files. It currently supports the Equinox OSGi implemen-

tation, but there’s no guarantee it will work with other OSGi frameworks. Finally, you

need to add an option to the JVM command line to use it, which is problematic in pro-

duction environments that lock down the JVM’s configuration. Some places won’t let

you use JVM agents at all because of the potential security issues involved. Agents have

access to the entire process and can redefine almost any class in your application.

Adding an agent to your JVM is like giving root access to a user in Linux. For these rea-

sons, JRebel is usually best suited to development environments.

 But what if you’re working somewhere that forbids the use of debuggers or JVM

agents? Is there any other way you can update the broken bundle without restarting

the whole process?

HOTSWAP THE OSGI WAY

Update is the key word here. Back in section 3.7, we discussed the update and refresh

parts of the OSGi lifecycle. Well, you can use them here to deploy your fix without having

Figure 8.7 Successful HotSwap with the IBM JVM

www.zeroturnaround.com/jrebel/

270 CHAPTER 8 Debugging applications

to restart the JVM. To see this in action, you first need to revert the setColor() method

of the local DefaultShape class back once again to the broken implementation:

public void setColor(Color color) {
 m_shape.setColor(color);
}

Next, completely rebuild the example:

$ ant clean dist

This time, you won’t use a debugger. Also, add your command shell to the current set

of bundles, so you can ask the framework to update the fixed bundle later:

$ ant add_shell_bundles

$ java -jar launcher.jar bundles

First, confirm that you have the broken implementation installed by attempting to

paint a shape (you should see an exception). Then, in another operating system shell,

fix the setColor() method of the DefaultShape class using the code from listing 8.2,

and rebuild the paint frame bundle in a new window:

$ cd chapter08/debugging-bundles/org.foo.paint

$ ant

You can now try updating your fixed bundle. Go back to the OSGi console, and type

the following:

-> update 6

Here, 6 is the ID of the paint frame bundle, as reported by the bundles command. When

you issue the update command, the framework updates the bundle content by reload-

ing the bundle JAR file from its original install location. It also stops and restarts the paint

frame bundle, so you should see the paint frame window disappear and reappear. The

paint example is now using the fixed code, which means you can paint multicolored

shapes as shown in figure 8.8. Notice that you didn’t need to follow the update with a

refresh. This is because the paint frame bundle doesn’t export any packages, so you

know there are no other bundles hanging onto old revisions of the DefaultShape code.

 Unlike JRebel, the OSGi update process doesn’t depend on a special JVM agent. It

also doesn’t have any significant effect on performance. These reasons together mean

you can use the OSGi update process in a production environment. The downside is

that you have to update and restart the entire bundle, potentially destroying the cur-

rent state, rather than redefine a single class. If you wanted to keep any previously

drawn shapes, you would need to persist them somehow when stopping and restore

them when restarting.

 You’ve just seen how you can debug and fix problems in OSGi applications using every-

day development tools such as jdb and Eclipse. You looked at more advanced techniques,

such as HotSwap and JRebel, and finally used the tried-and-tested OSGi update process

to fix a broken bundle. We hope these examples made you feel more comfortable about

271Solving class-loading issues

debugging your own OSGi applications. In the next section, we’ll take a closer look at

a set of problems you’ll eventually encounter when using OSGi: class-loading issues.

8.2 Solving class-loading issues

OSGi encourages and enforces modularity, which, by its nature, can lead to class-loading

issues. Maybe you forgot to import a package or left something out when building a bun-

dle. Perhaps you have a private copy of a class you’re supposed to be sharing or forgot

to make sure two tightly coupled packages are provided by the same bundle. These are

all situations that break modularity and can lead to various class-loading exceptions. The

right tools can help you avoid getting into these situations in the first place, but it’s still

worthwhile knowing what can happen and what the resulting problem signatures look

like. The following sections take you through a number of common class-loading prob-

lems, what to look out for, what might be the cause, and how to solve them.

 All the exceptions discussed in this section come from the same example applica-

tion: a simple hub-and-spoke message system that uses the OSGi extender pattern (see

section 3.4) to load spoke implementations at execution time. The basic architecture

is shown in figure 8.9. The only thing that changes throughout this example is the

Figure 8.8 Painting with the fixed example

Spoke

Spoke

Spoke

Spoke

Hub
extender

Hub
tester

Hub
API/SPI

Receive

Receive

Receive

Receive

Spoke-Class: org.foo.spoke.SpokeImpl
Spoke-Name: some_identifiable_name

Send

Figure 8.9 Simple hub-and-

spoke message system

272 CHAPTER 8 Debugging applications

content of the spoke implementation bundle; the API, hub extender, and test bundles

remain exactly the same. By the end of this section, you should understand which

class-loading issues can arise from simple changes in content and metadata and how

you can diagnose and fix them when something goes wrong.

8.2.1 ClassNotFoundException vs. NoClassDefFoundError

The first thing you should do when debugging a class-loading exception is look and

see if the exception is ClassNotFoundException or NoClassDefFoundError. A subtle

difference between these two types will help you understand why the exception

occurred and how to fix it.

CLASSNOTFOUNDEXCEPTION

A ClassNotFoundException means the reporting class loader wasn’t able to find or

load the initial named class, either by itself or by delegating to other class loaders.

This could occur in a Java application for three main reasons:

■ There's a typo in the name passed to the class loader (common).

■ The class loader (and its peers) have no knowledge of the named class.

■ The named class is available, but it isn’t visible to the calling code.

The third case, visibility, is where things get interesting. You know all about public,

protected, and private access; but how many of you know what package private

means? Package-private classes are those without any access modifier before their class

keyword. Their visibility rules are unique: in addition to only being visible to classes

from the same package, they’re also only visible to classes from the same class loader.

Most Java programs have a single application class loader, so this last rule hardly ever

comes up. OSGi applications contain multiple class loaders, but as long as each pack-

age is loaded by only one class loader, it’s effectively the same as before. The real prob-

lem arises with split packages (see section 5.3), which span several class loaders.

Package-private classes from a split package in one bundle aren’t visible to fellow

classes in other bundles. This can lead to ClassNotFoundExceptions or Illegal-

AccessExceptions that wouldn’t happen with a single application class loader.

 Figure 8.10 shows three different package-private scenarios: one classic and two

involving split packages. Each scenario has subtly different class visibility.

 To see a common ClassNotFoundException situation, run the following example:

$./chapter08/classloading/PICK_EXAMPLE 1

This builds and deploys a spoke bundle with incorrect extender metadata concerning

its implementation class: it lists the name as MySpokeImpl instead of SpokeImpl. This is

an easy mistake to make in applications configured with XML or property files because

of the lack of type safety. The resulting exception gives the name of the missing class:

java.lang.ClassNotFoundException: org.foo.spoke.MySpokeImpl

You should use this information to check if the name is correct, the class is visible, and

the package containing the class is either imported or contained inside the bundle.

273Solving class-loading issues

Most ClassNotFoundExceptions are easily solved by checking bundle manifests and

configuration files. The hardest problems involve third-party custom class loaders; you

inevitably need access to the class loader’s source code to determine why it couldn’t

see a particular class, as well as have the patience to unravel the exception stack.

 That’s ClassNotFoundException, but how is NoClassDefFoundError any different?

NOCLASSDEFFOUNDERROR

First, this is an error rather than an exception, which means applications are discour-

aged from catching it. Second, it means the initial class that started the current load

cycle was found, but the class loader wasn’t able to finish loading it because a class it

depends on was missing. This can happen when a class is compiled against a depen-

dent API, but the resulting bundle neither contains nor imports that package.

 Continuing with the exceptional example, type the following:

$./chapter08/classloading/PICK_EXAMPLE 2

This time, the extender metadata in the spoke bundle is correct, but the bundle

doesn’t import the org.foo.hub.spi package containing the Spoke interface. The

runtime begins to load the spoke implementation but can’t find the named interface

when defining the class:

java.lang.NoClassDefFoundError: org/foo/hub/spi/Spoke
...
Caused by: java.lang.ClassNotFoundException: org.foo.hub.spi.Spoke

Debugging a NoClassDefFoundError involves tracing back through the dependencies

of the class being loaded to find the missing link (or links). Although the cause in this

example is clear, developers often get side-tracked by assuming the initial class is at

fault. The real culprit may be hidden down at the bottom of the stack as the original

package a;
public class A {}

package a;
class B {}

package a;
class C {}

package a;
public class A {}

package a;
class B {}

package a;
class C {}

package a;
public class A {}

package a;
class B {}

package a;
class C {}

A can see B and C
B can see A and C
C can see A and B

A can’t see B or C
B can see A and C
C can see A and B

A can see B but not C
B can see A but not C
C can see A but not B

Figure 8.10 Split packages and package-private visibility

274 CHAPTER 8 Debugging applications

cause of the exception. When you know the real cause, you can use the same problem-

solving approach used in ClassNotFoundException to fix the issue.

 Figure 8.11 summarizes the difference between the two missing-class exception

types; together, they make up many of the class-loading issues you’ll encounter when

using OSGi. Just remember: ClassNotFoundException means a class is missing,

whereas NoClassDefFoundError means one of its dependencies is missing.

 Unfortunately, these two exceptions don’t have a monopoly on confusing OSGi

developers. A classic puzzle for people new to class loading goes something like this:

you’re given an object that says its type is org.foo.Item, but when you try to cast it to

org.foo.Item you get a ClassCastException! What’s going on?

8.2.2 Casting problems

How many of you would expect a ClassCastException from the following code?

ServiceTracker itemTracker =
 new ServiceTracker(bundleContext, "org.foo.Item", null);

itemTracker.open(true);

Item item = (Item) itemTracker.getService();

At first glance, it looks correct: you configure a service tracker to track services of

type org.foo.Item and cast the discovered service, if any, to the same type. But

notice how you open the tracker. Instead of calling the no-argument open() method

as usual, you pass in a Boolean: true. This tells the service tracker to track all services

whose type name matches the org.foo.Item string, not just the ones that are class-

loader compatible with your bundle (we discussed a similar situation back in sec-

tion 4.5.1). If another bundle provides an Item service and happens to get the

org.foo package from a different class space than you did, you’ll see a ClassCast-

Exception at the last line.

 How can this be? Recall from chapter 2 that class loaders form part of a type’s iden-

tity at execution time, so the exact same class byte code loaded by two different class

loaders is considered to be two distinct types. This makes all the difference, because

OSGi uses a class loader per bundle to support class-space isolation in the same Java

runtime. It also means you can get ClassCastExceptions when casting between types

that look identical on paper.

package b;
public class B extends a.A {}

package a;
public class A {}

No I m port -Package

bundleB.loadClass("a.A") � a.A� ClassNotFoundException

bundleB.loadClass("b.B") � b.B�� a.A� NoClassDefFoundError

Figure 8.11 Differences between ClassNotFoundException and NoClassDefFoundError

275Solving class-loading issues

 To see this in practice, run the third example:

$./chapter08/classloading/PICK_EXAMPLE 3

You should see a ClassCastException involving the Spoke class. This is because your

spoke bundle contains its own private copy of org.foo.hub.spi, instead of importing

it from the hub bundle. The spoke and hub end up using different class loaders for the

same API class, which makes the spoke implementation incompatible with the hub:

java.lang.ClassCastException: org.foo.spoke.SpokeImpl
 cannot be cast to org.foo.hub.spi.Spoke

The fastest way to investigate these impossible ClassCastExceptions is to compare

the class loaders for the expected and actual types. OSGi frameworks sometimes label

their class loaders with the bundle identifier, so calling getClassLoader().

toString() on both sides can tell you which bundles are involved. You can also use

the framework console to find out who’s exporting the affected package and who

imports it from them. Use this to build a map of the different class spaces. The specific

commands to use depend on the framework; at the time of writing this book, the OSGi

Alliance is still standardizing a command shell. On Felix, the inspect package com-

mand is the one to use. On Equinox you would use the packages or bundle com-

mands. Once you understand the different class spaces, you can adjust the bundle

metadata to make things consistent to avoid the ClassCastException. One approach

might be to add uses constraints, which we first introduced at the end of chapter 2.

8.2.3 Using uses constraints

Think back to chapter 2, specifically the discussion about consistent class spaces in

section 2.7.2. Bundles must have a consistent class space to avoid running into class-

related problems, such as visibility or casting issues. When you have two tightly cou-

pled packages, it’s sometimes necessary to add uses constraints to make sure these

packages come from the same class space. Perhaps you don’t think you need all these

uses constraints cluttering up your manifest—after all, what’s the worst that can hap-

pen if you remove them?

 Let’s find out by running the fourth example in the class-loading series:

$./chapter08/classloading/PICK_EXAMPLE 4

Yet again you get a class-loading exception, except this time it happens inside the

spoke implementation. The Java runtime notices that you attempted to load two dif-

ferent versions of the Message class in the same class loader—in other words, your

class space is inconsistent:

java.lang.LinkageError: loader constraint violation: loader (instance of
 org/apache/felix/framework/searchpolicy/ModuleImpl$ModuleClassLoader)
 previously initiated loading for a different type with name
 "org/foo/hub/Message"

How did this happen? Your new spoke bundle has an open version range for the hub

API, which means it can import any version after 1.0. It also provides a new 2.0 version

276 CHAPTER 8 Debugging applications

of the org.foo.hub package that includes a modified Message interface. You may

wonder what this package is doing in your spoke bundle—maybe you’re experiment-

ing with a new design, or perhaps it was included by mistake. How it got there isn’t

important. What is important is that you have a 2.0 version of org.foo.hub floating

around without a corresponding 2.0 version of the Spoke Service Provider Interface

(SPI). Let’s see how this affects the package wiring.

 The hub extender and test bundles still have the original, restricted version range:

Import-Package:
 org.foo.hub;version="[1.0,2.0)",
 org.foo.hub.api;version="[1.0,2.0)",
 org.foo.hub.spi;version="[1.0,2.0)"

They get Spoke and Message from the original API bundle, but your spoke bundle has

Import-Package:
 org.foo.hub;version="1.0",
 org.foo.hub.spi;version="1.0"

This means it gets the original Spoke interface from the API bundle and the updated

Message from itself. (Remember, the framework always tries to pick the newest version

it can.) Thus the Spoke interface and your implementation see different versions of

the Message interface, which causes the LinkageError in the JVM. Figure 8.12 shows

the mismatched wiring.

 You must tell the framework that the various hub packages are related, so it can

stop this mismatch from happening. This is where the missing uses constraints come

in. Edit the chapter08/classloading/org.foo.hub/build.properties file and remove

this line from the bnd instructions:

-nouses: ${no.uses}

Removing this re-enables bnd support for uses constraints. If you run the example

again,

$./chapter08/classloading/PICK_EXAMPLE 4

Hub
extender

Hub
API/SPI

Spoke

org.foo.hub.spi.Spoke 1.0

org.foo.hub.Message 1.0

org.foo.hub.spi.SpokeImpl

org.foo.hub.Message 2.0

org.foo.hub.spi 1.0

org.foo.hub 1.0 org.foo.hub 2.0

org.foo.hub.spi 1.0

≠

Figure 8.12 Mismatched wiring due to missing uses constraints

277Solving class-loading issues

you no longer see any exceptions or linkage errors:

SPOKE org.foo.spoke.no_uses_constraints RECEIVED Testing Testing 1, 2, 3...

You just saw how uses constraints can help you avoid inconsistent class spaces and odd

linkage errors, but what happens if they can’t be satisfied? You can find out by tweaking

the version range for org.foo.hub in the spoke bundle. By using a range of [2.0, 3.0),

you leave only one matching exporter of org.foo.hub: the spoke bundle itself. But this

breaks the uses constraints on the SPI package exported from the main API bundle,

because it has a range of [1.0, 2.0) for org.foo.hub. These two ranges are incompat-

ible: there's no way you can find a solution that satisfies both. The fifth example dem-

onstrates the result:

$./chapter08/classloading/PICK_EXAMPLE 5

Error starting framework: org.osgi.framework.BundleException:
 Unable to resolve due to constraint violation.

Unfortunately, the framework exception doesn’t tell you which constraint failed or

why. Determining why a solution wasn’t found without help from the framework can

be time consuming, because the search space of potential solutions can be large.

Fortunately, Equinox has a diag command to explain which constraints were left

unsatisfied. With Felix, you can add more details to the original exception by enabling

debug logging.

 For example, if you change the last line in the PICK_EXAMPLE script to

java "-Dfelix.log.level=4" -jar launcher.jar bundles

this enables Felix debug logging, which prints the following message before the

exception is thrown:

$./chapter08/classloading/PICK_EXAMPLE 5

DEBUG: Constraint violation for 1.0 detected;
 module can see org.foo.hub from [1.0] and org.foo.hub from [2.0]

The message tells you the unsatisfied constraint is related to the org.foo.hub pack-

age. It also gives you the identifiers of the bundles involved. This is another reason

why it’s a good idea to use uses constraints. Without them, you’d have to debug con-

fusing class-loading problems with no support from the framework. By using uses

constraints, you can avoid linkage errors to begin with and help the framework

explain why certain sets of bundles aren’t compatible. But it can only do this if the

constraints are valid and consistent, which is why we recommend you always use a tool

to compute them, such as bnd.

 So far, we’ve concentrated on what happens when your bundle metadata is wrong;

but even a perfect manifest doesn’t always guarantee success. Certain coding practices

common to legacy code can cause problems in OSGi because they assume a flat, static

class path. One practice worth avoiding is the use of Class.forName() to dynamically

load code.

278 CHAPTER 8 Debugging applications

8.2.4 Staying clear of Class.forName()

Suppose you’re writing a module that needs to look up a class at execution time based

on some incoming argument or configuration value. Skimming through the Java plat-

form API, you spot a method called Class.forName(). Give it a class name, and it returns

the loaded class. Perfect, right? Its ongoing popularity suggests many Java programmers

agree; but before you sprinkle it throughout your code, you should know it has a flaw:

it doesn’t work well in modular applications. It assumes the caller’s class loader can see

the named class, which you know isn’t always true when you enforce modularity.

 How does this affect you as an OSGi developer? Any class you attempt to load using

Class.forName() must either be contained, imported, or boot-delegated by the bun-

dle making the call. When you’re loading from a selection of known classes, this isn’t a

big deal; but if you’re providing a general utility (such as an aspect-weaving service),

there’s no way to know which classes you may need to load. And even if you happen to

know, you may decide to keep things flexible for the future. If you remember our dis-

cussion on discovering imports from section 6.1.3, you may think this sounds like a job

for dynamic imports:

DynamicImport-Package: *

But dynamic imports only work when the wanted packages are exported. In addition,

your bundle can get wired to many different packages in numerous client bundles. If

any one of these bundles is refreshed, your bundle will also end up refreshed, which in

turn may affect the other bundles. Finally, you can import only one version of a package

at any one time. If you want to work with non-exported classes or handle multiple ver-

sions of the same code concurrently, you need to find another way to access them.

 Whenever you work with OSGi class loading, always remember that well-defined

rules govern visibility. It’s not some arbitrary decision about who sees what. Every

loaded class must be visible to at least one class loader. Your bundle may not be able to

see the client class, but the client bundle certainly can. If you can somehow get hold

of the client class loader, you can use it to load the class instead of using your own class

loader. This job is much easier if the method arguments already include a type or

instance of a type that you know belongs to the client. Let’s see how easy it can be with

the help of the sixth spoke implementation.

public class SpokeImpl implements Spoke {

 String address;

 public SpokeImpl(String address) {
 this.address = address;
 }

 public boolean receive(Message message) {
 if (address.matches(message.getAddress())) {

 Class msgClazz = message.getClass();
 String auditorName = msgClazz.getPackage().getName() + ".Auditor";

Listing 8.3 Audited spoke implementation

Assumes same
package

279Solving class-loading issues

 try {
 Class auditClazz = Class.forName(auditorName);

 Method method = auditClazz.getDeclaredMethod(
 "audit", Spoke.class, Message.class);

 method.invoke(null, this, message);

 return true;

 } catch (Throwable e) {
 e.printStackTrace();
 return false;
 }
 }
 return false;
 }
}

This spoke assumes each Message implementation has an accompanying Auditor class

in the same package and uses reflection to access it and log receipt of the message. The

reason behind this design isn’t important; you can imagine that the team wants to sup-

port both audited and non-audited messages without breaking the simple message API.

What’s important is that by using Class.forName(), the spoke bundle assumes it can

see the Auditor class. But you don’t export your implementation packages, so when

you run the example, we hope you aren’t too surprised to see an exception:

$./chapter08/classloading/PICK_EXAMPLE 6

java.lang.ClassNotFoundException: org.foo.hub.test.Auditor

You know the Auditor sits alongside the Message implementation in the same pack-

age, so they share the same class loader (you don’t have any split packages). You need

to access the Message implementation class loader and ask it to load the class like so:

Class auditClazz = msgClazz.getClassLoader().loadClass(auditorName);

Remove the Class.forName() line from the spoke implementation in listing 8.3, and

replace it with the previous line. You can now run the example without any problem:

$./chapter08/classloading/PICK_EXAMPLE 6

Fri Sep 18 00:13:52 SGT 2009 - org.foo.spoke.SpokeImpl@186d4c1
 RECEIVED Testing Testing 1, 2, 3...

Calls auditor
method

Class.forName() considered harmful!

You may wonder why we don’t use the longer form of Class.forName()—the

method that accepts a user-given class loader instead of using the caller’s class

loader. We don’t use it because there's a subtle but important difference between

these statements:

Class<?> a = initiatingClassLoader.loadClass(name);
Class<?> b = Class.forName(name, true, initiatingClassLoader);

280 CHAPTER 8 Debugging applications

In the last example, you found the client class loader by examining one of the argu-

ments passed into your method and used that to look up the client’s Auditor class.

What if none of the method arguments relate to the client bundle? Perhaps you can

use a feature specifically introduced for application frameworks in Java 2: the Thread

Context Class Loader.

8.2.5 Following the Thread Context Class Loader

The Thread Context Class Loader (TCCL) is, as you may expect, a thread-specific class

loader. Each thread can have its own TCCL; and, by default, a thread inherits the TCCL

of its parent. You can access the TCCL with a single line of Java code:

ClassLoader tccl = Thread.currentThread().getContextClassLoader();

The TCCL is useful when you’re writing code

that needs dynamic access to classes or

resources but must also run inside a number

of different containers such as OSGi. Instead

of adding a class-loader parameter to each

method call, you can instead use the previ-

ous code to access the current TCCL. All the

container needs to do is update the TCCL for

each thread as it enters and leaves the con-

tainer. When done properly, this approach

also supports nesting of containers, as shown

in figure 8.13.

 You should use a try-catch-finally

block to guarantee that the correct TCCL is

restored even if an exception or error occurs

somewhere inside the container code:

(continued)

First, consider loadClass(). The initiating class loader is used to initiate the load

request. It may delegate through several class loaders before finding one that has

already loaded the class or can load it. The class loader that defines the class (by

converting its byte code into an actual class) is called the defining class loader. The

result of the load request is cached in the defining class loader in case anyone else

wants this class.

Now consider forName(). Although it behaves like loadClass() when looking for

new classes, it caches the result in both the defining and initiating class loaders. It

also consults the initiating loader cache before delegating any load request. With

loadClass(), the resulting class can depend on your context, perhaps according to

which module you’re currently running in. But with forName(), you get the same re-

sult regardless of context. Because this extra caching may lead to unexpected results

in a dynamic environment such as OSGi, we strongly recommend you use load-
Class() instead of forName().

Save old TCCL
Set new TCCL

Save old TCCL
Set new TCCL

Save old TCCL
Set new TCCL

Restore old TCCL

Restore old TCCL

Restore old TCCL

Figure 8.13 Using TCCL with nested containers

281Solving class-loading issues

ClassLoader oldTCCL = Thread.currentThread().getContextClassLoader();
try {
 Thread.currentThread().setContextClassLoader(newTCCL);
 ...
} catch (Throwable e) {
 ...
} finally {
 Thread.currentThread().setContextClassLoader(oldTCCL);
}

Let’s see how the TCCL can help you solve a class-loading issue without affecting the

API. Run this example:

$./chapter08/classloading/PICK_EXAMPLE 7

You should see an exception when the spoke attempts to load the Auditor class:

java.lang.ClassNotFoundException: org.foo.hub.test.Auditor

If you look at this spoke implementation, you’ll see that it uses the TCCL, as shown here.

public class SpokeImpl implements Spoke {

 String address;

 public SpokeImpl(String address) {
 this.address = address;
 }

 public boolean receive(Message message) {
 if (address.matches(message.getAddress())) {

 Class msgClazz = message.getClass();
 String auditorName = msgClazz.getPackage().getName() + ".Auditor";

 try {
 Class auditClazz = Thread.currentThread()
 .getContextClassLoader().loadClass(auditorName);

 Method method = auditClazz.getDeclaredMethod(
 "audit", Spoke.class, Message.class);

 method.invoke(null, this, message);

 return true;

 } catch (Throwable e) {
 e.printStackTrace();
 return false;
 }
 }
 return false;
 }
}

As long as the TCCL is assigned properly by the container or the caller, this should

work. The OSGi standard doesn’t define what the default TCCL should be: it’s left up

Listing 8.4 Audited spoke implementation with TCCL

Uses
current
TCCL

282 CHAPTER 8 Debugging applications

to the framework implementers. This example uses Apache Felix, which leaves the

default TCCL unchanged; in other words, it’ll be set to the application class loader.

Unfortunately, the application class loader has no visibility of the Auditor class con-

tained within the test bundle, which explains why you see a ClassNotFoundException.

 To avoid this exception, you need to update the TCCL in the test bundle before

sending the message. To be consistent, you should also record the original TCCL and

reset it after the call completes. This last step is important if you want to nest or share

containers inside the same process, as you saw in figure 8.13. Look at the test activator

contained under org.foo.hub.test; following are the changes needed to set and

reset the TCCL.

public Object addingService(ServiceReference reference) {
 ClassLoader oldTCCL = Thread.currentThread().getContextClassLoader();

 try {
 Thread.currentThread().setContextClassLoader(
 getClass().getClassLoader());

 Hub hub = (Hub) ctx.getService(reference);
 hub.send(new TextMessage(".*", "Testing Testing 1, 2, 3..."));

 } catch (Throwable e) {
 e.printStackTrace();
 } finally {
 Thread.currentThread().setContextClassLoader(oldTCCL);
 }
 return null;
}

This listing saves the old TCCL, sets the new TCCL, and then restores the old TCCL.

With these three changes, you can rerun the test without any class-loading problems:

$./chapter08/classloading/PICK_EXAMPLE 7

Fri Sep 19 00:13:52 SGT 2009 - org.foo.spoke.SpokeImpl@186d4c1
 RECEIVED Testing Testing 1, 2, 3...

That wraps up our discussion of class-loading problems. You used the same example

code to see a wide range of different exceptions you may encounter when developing

OSGi applications. We hope this will provide you with a foundation for any future

class-loading investigations. If you can relate a particular exception with one of the

examples here, the associated solution will also help fix your problem.

 Unfortunately, class loading isn’t the only problem you’ll encounter when working

with OSGi, but the next topic we’ll look at is indirectly related to class loading. OSGi

enforces modularity with custom class loaders. An OSGi application contains several

class loaders, each one holding on to a set of resources. Unused class loaders are freed

as bundles are uninstalled and the framework is refreshed, but occasionally a rogue

reference keeps a class loader and its associated resources alive. This can turn into a

memory leak.

Listing 8.5 Setting and resetting the TCCL

283Tracking down memory leaks

8.3 Tracking down memory leaks

Memory leaks occur in OSGi applications as in any other Java application. All you

need is something like a rogue thread or static field hanging on to one end of a spa-

ghetti ball of references to stop the garbage collector from reclaiming the objects. In a

desktop Java application, you may not notice any memory leaks because you don’t

leave the application running for a long time. As soon as you restart the JVM, your old

application with its ever-growing heap of objects is gone, and you get a brand-new

empty heap to fill.

 Server-side OSGi applications, on the other hand, can have longer lifetimes; an

uptime of many months isn’t unreasonable. One of the strengths of OSGi is that

you’re able to install, update, and uninstall bundles without having to restart the JVM.

Although this is great for maximizing uptime, it means you have to be careful not to

introduce memory leaks in your bundles. You can’t always rely on the process being

occasionally restarted. Furthermore, updating a bundle introduces a new class loader

to hold the updated classes. If there’s anything holding on to objects or classes from

the old class loader, it won’t be reclaimed, and your process will use more and more

class loaders each time the bundle is updated or reinstalled.

Any leak is a cause for concern, but depending on your requirements, not all leaks

warrant investigation. You may not even notice certain leaks if they add only a

few bytes to the heap every now and then. What’s the best way to find leaks in an

OSGi application?

8.3.1 Analyzing OSGi heap dumps

As with debugging, you can continue to use your existing heap analysis skills to exam-

ine OSGi applications. Sure, there are more class loaders than in a normal Java appli-

cation; but standard Java EE containers also contain multiple class loaders, and that

doesn’t stop developers from finding memory leaks inside web applications.

 Let’s see what an OSGi application heap dump looks like. The leaky application is

under chapter08/memory-leaks in the online examples. It consists of a single bundle

that creates and accesses a ThreadLocal variable every time the bundle starts and fails

to remove it when the bundle stops. Here’s the bundle activator.

Introducing the PermGen heap

Class-loader leaks can be more problematic than simple object leaks because some

Java runtimes, like Sun’s HotSpot JVM, place classes in a separate heap space

called the Permanent Generation, or PermGen for short. This class heap is much

smaller than the main object heap, and its capacity is controlled by a different GC

setting: -XX:MaxPermSize. If every bundle update adds hundreds of new class revi-

sions without unloading anything, you’ll probably exhaust the PermGen before you run

out of object heap space.

284 CHAPTER 8 Debugging applications

public class Activator implements BundleActivator {
 static class Data {
 StringBuffer data = new StringBuffer(8 * 1024 * 1024)
 }

 static final ThreadLocal leak = new ThreadLocal() {
 protected Object initialValue() {
 return new Data();
 };
 };

 public void start(BundleContext ctx) {
 leak.get();
 }

 public void stop(BundleContext ctx) {}
}

Each leaked ThreadLocal takes up a noticeable 8 MB. Following recommended prac-

tice, the ThreadLocal is a static member of the class. This is safe because the JVM guar-

antees to supply a distinct instance of the data object for each thread accessing the

ThreadLocal. But how does forgetting to remove the ThreadLocal cause a memory

leak? If you read the ThreadLocal Javadoc, you may expect the JVM to clear up stale

references (http://java.sun.com/javase/6/docs/api/java/lang/ThreadLocal.html):

Each thread holds an implicit reference to its copy of a thread-local variable as long as

the thread is alive and the ThreadLocal instance is accessible; after a thread goes away,

all of its copies of thread-local instances are subject to garbage collection (unless other

references to these copies exist).

If the bundle has been updated and the framework refreshed, surely the stale data

object is no longer accessible and should be removed, right? Unfortunately, the Java 5

ThreadLocal implementation has a subtle behavior that causes it to hang on to values

longer than is strictly necessary.

As you’ll soon see, missing the remove() call in stop() means that the data object is

kept alive indefinitely because you don’t use any other ThreadLocals in the example.

This in turn keeps your class loader alive. Let’s see this leak in action:

$ cd chapter08/memory-leaks

$ ant dist

$ java -verbose:gc -jar launcher.jar bundles

Listing 8.6 Leaky bundle activator

ThreadLocal behavior in Java 5

The Java 5 ThreadLocal implementation only clears stale thread-local map entries

if set() or remove() is called on another ThreadLocal for the same thread. In the

worst case, even this isn’t guaranteed to purge all stale thread-local map entries.

http://java.sun.com/javase/6/docs/api/java/lang/ThreadLocal.html

285Tracking down memory leaks

[GC 4416K->318K(15872K), 0.0066670 secs]
[GC 926K->327K(15872K), 0.0040134 secs]
[Full GC 327K->327K(15872K), 0.2674688 secs]
Bundle: org.foo.shell.tty started with bundle id 3
->

Try updating the leaky bundle:

-> update 1

Here, 1 is the ID of the leaky bundle, as reported by the bundles command. You

should see the heap expand each time you call update:

[GC 17857K->16753K(32324K), 0.0376856 secs]
[Full GC 16753K->16750K(32324K), 0.0329633 secs]

If you continue to update the bundle, you’ll eventually get an OutOfMemoryError:

org.osgi.framework.BundleException:
 Activator start error in bundle org.foo.leaky [1].
...
Caused by: java.lang.OutOfMemoryError: Java heap space
...
Unable to execute: update 1

Let’s try to analyze this memory leak. Restart the framework with heap dumps enabled:

$ java -XX:+HeapDumpOnOutOfMemoryError -jar launcher.jar bundles

Repeatedly update the leaky bundle until the OutOfMemoryError occurs:

java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid1916.hprof ...
Heap dump file created [238744986 bytes in 16.578 secs]

You should now have a heap-dump file in your current working directory. Plenty of

open-source tools work with heap dumps; in this case, you’ll use the Eclipse Memory

Analyzer (MAT, http://eclipse.org/mat/). This tool provides a graphical view of the

heap and several useful reports to quickly identify potential leaks. Let’s see how it

copes with an OSGi application. Figure 8.14 shows the leak suspect report for the cap-

tured heap dump.

 Notice how it correctly identifies the ThreadLocal as the root of the leak. But can it

tell you what application code was responsible? To find out, click the Details link at

the bottom. Doing so opens a detailed page about the ThreadLocal, including the var-

ious thread stacks that created the instances (see figure 8.15). It clearly shows the bun-

dle activator start() method is the one responsible for creating all these instances.

With your knowledge of the OSGi lifecycle, you can infer that the problem is in the

activator stop() method.

 To solve this leak, all you need to do is go back to the bundle activator and add a

call to remove() the ThreadLocal in the stop() method. This forces the underlying

data object to be cleared and means the bundle’s class loader can be collected on

each update/refresh. You should now be able to continually update the bundle with-

out incurring an OutOfMemoryError.

http://eclipse.org/mat/

286 CHAPTER 8 Debugging applications

Figure 8.14 Leak suspects reported by the Eclipse Memory Analyzer

Figure 8.15 Leaking thread stack identified by the Eclipse Memory Analyzer

287Dangling services

This example shows that analyzing heap dumps from OSGi applications is similar to

analyzing dumps from everyday Java applications. You’ve also seen that misbehaving

code can cause memory leaks in OSGi as with any other container. But are any leaks

specific to OSGi?

8.4 Dangling services

In addition to the everyday leaks Java developers have to be careful of, the OSGi frame-

work introduces a new form of memory leak to trap the unwary: dangling services. But

what exactly do we mean by dangling?

 In section 4.3.1, we discussed why it’s a bad idea to access a service instance once

and store it in a field: you don’t know when this service is unregistered by the provid-

ing bundle. Your bundle continues to keep a strong reference to the original service

instance and its entire graph of references long after the providing bundle has been

updated or uninstalled (see figure 8.16). You’re also keeping alive the class loaders of

any classes used by this instance. As with many memory leaks, you can end up with a

significant amount of space being kept alive by a single field. Clearing this field frees

everything and allows your application to continue running.

How do you find this one field in the metaphorical haystack that is your application?

8.4.1 Finding a dangling service

In an ideal world, your application won’t resemble a haystack! Often, you’ll have some

idea where the leak may be, because of the bundles involved. For example, if bundle A

leaks when it’s updated, and you know that it’s used only by bundles X and Y, you can

Strong reference

Bundle A is uninstalled. Bundle B doesn’t notice!

getService

Bundle B

Bundle B

Bundle A

Service
registry

Service
object

Service
object

Field

Field

registerService

Figure 8.16 Classic dangling service

288 CHAPTER 8 Debugging applications

concentrate your search on those three bundles. This is another benefit of modular-

ity: by enforcing module boundaries and interacting indirectly via the service registry,

you reduce the contact points between modules. You no longer have to read through

or instrument the entire code base for potential references, because different con-

cerns are kept separate from one another. But regardless of how much code you have

to look through, you can use a couple of techniques to narrow the search, ranging

from high-level queries to low-level monitoring.

QUERYING THE FRAMEWORK

You can perform high-level monitoring by using facilities built into the OSGi frame-

work to track service use. The Bundle API has a method called getServicesInUse() to

tell you which services the OSGi framework believes a given bundle is actively using at

any given time. Remember from chapter 4 that this is done by tracking calls to

getService() and ungetService(). Unfortunately, many developers and even some

service-based frameworks don’t call ungetService() when they’re done with a service,

which can lead you to think there is a leak where there isn’t one. This approach

also doesn’t detect when a direct reference to the service escapes from the bundle

into some long-lived field. You can also use the getUsingBundles() method from the

ServiceReference API to perform a reverse check and find out which bundles are

using a given service, but this too doesn’t account for incorrectly cached instances.

MONITORING WITH JVMTI

Low-level monitoring is possible using the JVM Tools Interface (JVMTI, http://

java.sun.com/javase/6/docs/platform/jvmti/jvmti.html). JVMTI is a native API that

provides several ways to interrogate, intercept, and introspect aspects of the JVM such

as the Java heap, locks, and threads. There are open source agents that can analyze

the heap to find leak candidates. It should be possible to take these generic agents

and develop them further to add knowledge about OSGi resources, so they can watch

for references to OSGi service instances on the Java heap and determine which bundle

is responsible for holding on to them. A recent example of this is the OSGi inspector

agent (http://wiki.github.com/mirkojahn/OSGi-Inspector/).

 Just as you saw when debugging, it’s one thing to find out why something is hap-

pening; being able to do something about it (and, in this case, protect against it) is

even more important.

8.4.2 Protecting against dangling services

The simplest way to protect against dangling services is to let a component framework

such as Declarative Services manage services for you. Component frameworks are dis-

cussed in detail in chapters 11 and 12; for now, you can think of them as watchful par-

ents that protect their children from the harsh realities of the world. But even

component frameworks may not be able to help against rogue clients that stubbornly

refuse to relinquish references to your service. You somehow need to give these bun-

dles a reference that you can clear yourself, without requiring their cooperation.

http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html
http://wiki.github.com/mirkojahn/OSGi-Inspector/

289Dangling services

 One way to do this is by using a delegating service proxy. A delegating service proxy is

a thin wrapper that implements the same set of interfaces as the original service. It

contains a single reference to the real service implementation that can be set and

cleared by methods only visible to your registering bundle. By registering this delegat-

ing proxy with the service registry instead of the real service implementation, you stay

in control. Because client bundles are unaware of the internal indirection, they can’t

accidentally keep a reference to the underlying service. As figure 8.17 shows, you can

decide to sever the link at any time.

 Notice that there's still a small leak, because the rogue client maintains a strong

reference to the service proxy. But this should be much smaller than the graph of

objects and classes referenced by the actual service implementation; otherwise, you

don’t gain much by using a proxy.

 You can see an example of a service proxy in the code examples:

$ cd chapter08/dangling-services

$ ant dist

$ java -jar launcher.jar bundles
<3> thread="main", bundle=2 : logging ON
->

The log client is taken from the broken_lookup_field service example from chapter 4.

It caches the log service instance in a field and repeatedly calls it every few seconds:

<3> thread="LogService Tester", bundle=2 : ping

Try stopping the log service by going to the OSGi console and typing

-> stop 1
<3> thread="Thread-1", bundle=2 : logging OFF

Strong reference

getService

Bundle B

Bundle B

Bundle A

Service
registry

Service
object Field

Field

Proxy

Proxy

registerService

Figure 8.17 Delegating service proxy

290 CHAPTER 8 Debugging applications

where 1 is the ID of the log service bundle, as reported by the bundles command. You

should see an exception when the log client next calls the service:

Exception in thread "LogService Tester"
 java.lang.IllegalStateException: LogService has been deactivated

Your log service proxy has detected that the underlying logger is no longer available

and has thrown an IllegalStateException back to the client. In an ideal world, this

would make the client take action and clean up after itself. If it doesn’t, the only leak

is the service proxy. But what does the service proxy look like? The following listing

shows the sample implementation.

Proxy.newProxyInstance(
 LogService.class.getClassLoader(),
 new Class[] { LogService.class },
 new InvocationHandler() {
 @Override
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 LogService cachedService = (LogService) loggerMap.get(bundle);
 if (cachedService != null) {
 return method.invoke(cachedService, args);
 }
 throw new IllegalStateException("LogService has been deactivated");
 }
 });

You use JDK reflection to create the proxy, because this approach is less error-prone

than creating a new implementation by hand and delegating each method individually.

The proxy is defined in the same space as the LogService class and provides the same

API. Active logger instances are tracked with an internal shared map. You use reflection

to delegate method calls to active loggers and throw exceptions for inactive loggers.

 You could manually create delegating service proxies up front, but doing so would

only make sense for small numbers of services. For large systems, you want a generic

service that accepts a set of interfaces at execution time and returns the appropriate

delegating service proxy. Note also that some OSGi component frameworks, which

we’ll discuss in chapters 11 and 12, will automatically create delegating service proxies

for you. There’s some overhead involved in both memory and performance, so you

may only want to consider using a delegating service proxy only when you don’t trust

client bundles to do the right thing or your service uses so many resources that even a

single leak could be dangerous.

8.5 Summary

We started this chapter with a practical guide to debugging OSGi applications using

the console debugger (jdb) and an advanced IDE (Eclipse). We then moved on to

specific issues you may encounter while working with OSGi, including seven class-

loading problems:

Listing 8.7 Delegating service proxy

291Summary

■ ClassNotFoundException

■ NoClassDefFoundError

■ ClassCastException

■ Missing uses constraints

■ Mismatched uses constraints

■ Class.forName issues

■ TCCL loading issues

This was followed by a couple of related resource discussions:

■ Memory/resource leaks

■ Dangling OSGi services

The next couple of chapters should be a welcome break from all this low-level debug-

ging and testing. Look out for fresh, high-level concepts as we discuss managing OSGi

bundles and applications!

292

Managing bundles

We’ve covered a lot of ground so far. You know how to use modularity to improve

the cohesiveness of your application code; how to use lifecycles to bring dynamic

installations and updates to application environments; and how to use services to

decouple your modules via interface-based programming techniques. You’ve also

learned approaches and techniques for creating, testing, and debugging bundles.

In this chapter and the next, we’ll move our focus away from coding bundles to

issues of managing bundles and OSGi-based applications.

 With the OSGi Service Platform, your deployed set of bundles becomes your

application’s configuration. As such, the task of managing bundles is one of the

This chapter covers

■ Versioning packages and bundles in a meaningful way

■ Configuring bundles using the Configuration Admin

Service

■ Describing bundle configuration data using the

Metatype Service

■ Saving bundle settings using the Preferences Service

■ Deferring bundle startup using lazy activation

293Versioning packages and bundles

most important skills you’ll need to fully master OSGi. In this chapter, we’ll explore

different aspects of bundle management, including the following:

■ Evolving a bundle using versioning policies

■ Managing a bundle’s configuration data

■ Configuring a bundle’s activation policy

With these skills, you’ll be better equipped to deploy and manage bundles in various

application configurations. Let’s start by looking at versioning.

9.1 Versioning packages and bundles

From what you’ve learned so far, you know that versioning is a core part of any OSGi

application. Both bundles and their exported packages have versions. When the

framework resolves bundle dependencies, it takes these versions into account. In this

section, we’ll discuss the recommended policy for versioning these artifacts and dis-

cuss advantages and disadvantages of different versioning strategies. To get things

started, let’s provide some motivation for OSGi’s approach to versioning.

9.1.1 Meaningful versioning

In traditional Java programming, versioning is an afterthought. OSGi, on the other

hand, treats versioning as a first-class citizen, which makes it easier to handle version-

ing in a meaningful way. This emphasis on versioning means that a proper versioning

strategy is important for maintaining application consistency.

 You must be thinking, “Hey! I already version my JAR files!” Tools like Maven and Ivy

let you specify versions for JAR files and declare dependencies on those versions. These

tools work with module-level dependencies, which we talked about in chapters 2 and 5.

You know that module-level dependencies are brittle when it comes to expressing fine-

grained dependencies between units of code.

 Likewise, applying versions only at the module level has some drawbacks. Such a

model is too simple and forces all packages in a JAR file to be versioned in lockstep

with the other packages. Let’s look at some of these issues in more detail.

MODULE VERSIONING IS OPAQUE

Consider a case where you bundle related packages together and assign a version

number to the resulting JAR file. Later, you may need to alter some code in one of the

contained packages; such a change may be the result of a bug fix or a change to the

API contract. This new JAR file needs a new version number associated with it.

 With a single version number for all the packages, it’s left to upstream users of the

JAR file to decide whether the change warrants their making the update. Because the

only information they have is the module-level version-number change, it’s often a

stab in the dark as to whether the updated functionality is required for their applica-

tion. Upstream users don’t typically use all the functionality provided by a JAR file and

depend on only a subset of it. Depending on which subset they use, it’s possible that

nothing of importance has changed for them.

294 CHAPTER 9 Managing bundles

A counterargument is that if the bundle is highly cohesive, it makes no sense to

update a single package without its siblings. Although this is true, it’s not uncommon

for JAR files to be less than optimally cohesive. OSGi already caters to this situation

with uses constraints, which we introduced in chapter 2. These constraints ensure

that the cohesiveness of packages is maintained by capturing internal package depen-

dencies. This means upstream users aren’t forced to depend on anything more than

the API-level contract of the exported packages.

 Luckily, in OSGi, you can version your packages either independently or in lock-

step with the bundle, as shown in figure 9.1. The OSGi approach of package-level ver-

sioning and dependencies leads to less churn in the development lifecycle. Less churn

implies less risk, because existing modules are better understood than updated mod-

ules, which may introduce unexpected behavior into a complex system. This concept

is extremely powerful and removes a lot of the pain from assembling applications out

of independent JAR files, because you can make better-informed decisions about when

and what to update.

MULTIPLE VERSIONS IN THE SAME JVM

Package-level versioning is also helpful when it comes to running different versions

side by side. Java doesn’t explicitly support this by default, but OSGi does. In many

cases, this seemingly unimportant feature frees you from worrying about backward

compatibility or changes to artifacts outside your control. Your bundles can continue

to use the versions of packages with which they’re compatible, because your entire

application no longer has to agree on a single version to place on the class path.

Provider
version="1.0"

Provider
version="2.0"

Provider
version="2.0"

Client
version="1.0"

Client
version="1.0"

Client
version="2.0"

foo;version="1.0"

foo;version="2.0"

bar;version="1.0"

bar;version="1.0"

foo;version="2.0"

bar;version="2.0"
Versioning the bundle and
packages in lock step

Versioning the bundle and
packages independently

Figure 9.1 Versioning

packages independently

295Versioning packages and bundles

 There’s a price to pay for this flexibility. Versioning must be done as a core task

throughout the development process, not as an afterthought. Versioning packages and

maintaining a versioning policy is a lot of work. One easy way to reduce the amount of

work is to have less to version. In OSGi, you have the option to not expose the imple-

mentation packages of a bundle (assuming that no other bundle needs them). As a con-

sequence, the simplest option you have is to not export packages to avoid the need to

version them. When you need to export packages, then you need to version them. Let’s

look more closely at how you can implement a versioning policy for packages in OSGi.

9.1.2 Package versioning

Let’s consider a package named org.foo with a version of 1.0.0.r4711 provided by a

bundle called foo that is itself at version 1.0.0. Its manifest looks like this:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: foo
Bundle-Version: 1.0.0
Export-Package: org.foo;version:="1.0.0.r4711"

As we mentioned previously, the OSGi specification doesn’t define a versioning policy,

which means you can use any scheme that makes sense to you. But the OSGi specification

does recommend the following policy behind version-number component changes:

■ Major number change—Signifies an incompatible update

■ Minor number change—Signifies a backward-compatible update

■ Micro number change—Signifies an internal update (such as a bug fix or perfor-

mance improvement)

■ Qualifier change—Signifies a trivial internal change (such as line-number

refactoring)

This is a common version compatibility policy. Why? Versions are important for the

consumer to specify what’s needed, and this policy makes it possible to easily express a

floor and a ceiling version in between which all versions are acceptable. As you saw in

chapter 2, a version range is expressed as a pair of version numbers inside braces or

parentheses. This follows mathematical interval notation, where a square brace signi-

fies an inclusive value and a parenthesis signifies an exclusive value. As an example,

consider a typical definition of a package import:

Import-Package: org.foo;version:="[1.0,2.0)"

The org.foo package is imported from version 1.0.0 up to, but excluding, 2.0.0.

This makes sense if the recommended version policy is being used, because it includes

all backward-compatible versions and excludes all non-backward-compatible versions,

which a change in the major number would signify. Being able to specify such ranges

is useful because the import can be satisfied by a wider range of exports. This scheme

works only if producers and consumers operate with a shared understanding of the

kind of compatibility being expressed by a given version number.

296 CHAPTER 9 Managing bundles

DOWNSIDES AND PITFALLS

The recommended OSGi versioning policy sounds good, and it’s been used success-

fully by many projects. But new users should still take care due to a subtlety regard-

ing the use of Java interfaces, which is related to whether an interface is being used

or implemented.

 The difference seems trivial, but it becomes important in the context of version-

ing. Consider the following 1.0.0 version of the Foo interface:

public interface Foo {
 Bar getBar();
}

What happens if you change this simple interface? For example, suppose you add a

method:

public interface Foo {
 Bar getBar();
 void setBar();
}

The question to ponder is whether this change should cause a major or minor version-

number increase. It depends on whether the interface is intended to be implemented

or used by the consumer. In the former case, the addition of the method is a binary-

incompatible change to the interface and should cause the major version number to

increase to 2.0.0. In the latter case, increasing the minor version number to 1.1.0 is

sufficient because method addition is a backward-compatible update to the interface.

Figure 9.2 shows the situation.

 If you’re in control of all the bundles, you can define a policy to ensure that

method addition always causes a change in the major version number, which allows all

consumers of a package to use a [1.0,2.0) version range. In reality, you’re unlikely to

be in control of all the bundles. Furthermore, such a drastic policy would limit the

reusability of your bundles, because consumers only using the interfaces would have

no way to express that they’re fine with an added method.

Foo Foo

+getBar() +getBar()
+setBar()

Foo implementor Foo implementor

Add new method to Foo

Foo user Foo user

Figure 9.2 Impact on versioning between using and implementing the interface

297Versioning packages and bundles

Another important requirement for versioning is consistency. You don’t want to

define your versioning policy on a bundle-by-bundle basis. So, whether you follow the

recommended approach or not, you should at least try to use the same policy globally.

 This gives you a fairly good understanding of versioning policy for packages, but

what about versioning bundles? We’ll explore bundle-versioning policies next.

9.1.3 Bundle versioning

Bundles and packages are related through containment: bundles contain packages.

Because both bundles and packages have version numbers, what is the relationship

between them? You need to adopt a versioning policy to define this relationship. Let’s

look at that in more detail.

 In the simple case, a bundle may contain several related implementation packages,

all with the same version number. Here it’s advisable to make the bundle version mir-

ror the version of the implementation packages. When you’re dealing with a bundle

containing packages of different versions, the most consistent versioning policy is to

increment the bundle version based on the highest change of a package inside it. For

example, if any package has a major number increase, the major number of the bun-

dle should increase as well; the same is true if the highest change was to a minor or

micro portion of the version. With this policy, it’s possible to judge the impact of an

updated bundle based on its version number. Unfortunately, this may not always make

sense, especially if the versions of the individual packages represent a well-known

product version.

 For example, let’s assume you want to create a bundle for the core API of the OSGi

framework. In this case, you have several independently versioned packages, but the

A refined approach

The best strategy devised so far is to shift the burden to the consumer. This is pretty

straightforward and requires implementers to specify a version range of [1.0,1.1),

while users can specify the broader version range of [1.0,2.0) as shown in the fol-

lowing figure.

Uses

version="[1.0,2.0)"

version="[1.0,1.1)"

org.foo

Implements

298 CHAPTER 9 Managing bundles

collection of packages in this bundle has a version number based on the OSGi specifi-

cation. Figure 9.3 graphically depicts this situation.

 Now, the question is, what version should you assign to the org.osgi.core bundle?

There’s no single answer. You could increase the major number on every major release

of the OSGi specification, but this would indicate a binary-incompatible change in at

least one of the provided packages, which clearly isn’t the case (as indicated by the indi-

vidual package versions). Another approach is to keep the version number at 1, indi-

cating that no binary-incompatible change has happened. You would then need to use

the minor number to match the release number of the specification. Because the OSGi

specification has also had minor number releases (such as 4.1), you would then need

to use the micro number for the minor number of the specification.

 Unfortunately, this wouldn’t be exactly what you want either, because there have

been updates in the minor numbers of the contained packages. To make matters worse,

if you ever needed to update the bundle for a different reason (like a packaging mis-

take), then you’d need to use the qualifier to express that the bundle had changed. In

the specific case of the core OSGi specification, the OSGi Alliance makes API JAR files

available based on the version of the specification (4.1.0, 4.2.0, and so on).

 Although there’s no single policy you can prescribe for versioning bundles, at a

minimum you should try to reflect incompatible changes at the package level in your

bundle version number. The management task to take away from this section is that

versioning is important and shouldn’t be left as an afterthought. If done correctly, the

OSGi concept of versioning is extremely powerful and removes a lot of the pain from

assembling applications. To get it right, you need to define a versioning policy and

enforce it on all your bundles and exported packages.

org.osgi.core

OSGi Service
Platform Release 4

Interfaces and classes

org.osgi.framework;version="1.4"

org.osgi.service.packageadmin;version="1.2"

org.osgi.service.url;version="1.0"

org.osgi.service.startlevel;version="1.1"

org.osgi.service.permissionadmin;version="1.2"

org.osgi.service.condpermadmin;version="1.0"

Figure 9.3 The platform implementation contains many subpackages

that must evolve in step with the specification, but what’s the version of

the implementation?

299Configuring bundles

 With versioning covered, let’s look into another important management task: con-

figuring your bundles.

9.2 Configuring bundles

To make your bundles more reusable, it’s a good idea to introduce configuration

properties to control their behavior. Recall from chapter 3, when we introduced the

shell example, that you used configuration properties to alter its behavior, such as the

port on which it listened for client connections. Configuring bundles is an important

aspect of using them, so it would be beneficial if there was a standard way of managing

this. At a minimum, it would be nice to have the following:

■ A common way to set the configuration information for a given bundle

■ A common format for specifying the type of configuration data a given bundle

expects

■ A common mechanism for bundles to safely store bundle- and user-related con-

figuration information

Fortunately, the OSGi Alliance defines the following three compendium specifications

to help you address these issues:

■ Configuration Admin Service—Manages key/value pair configuration properties

for bundles

■ Metatype Service—Allows bundles to describes their configuration properties

■ Preferences Service—Provides a place to store bundle- and user-related information

Even with these specifications to help you, adding bundle configurations to the mix

creates more issues for you to worry about. Configuration data becomes yet another

artifact to manage. For example, you have to make sure to consider this data when you

change the bundles in your systems, because configuration data generally isn’t com-

patible across bundles or even bundle versions. The data is subject to deployment and

provisioning just like bundles.

 In the remainder of this section, we’ll introduce you to these configuration-related

services and show you how you can manage configurations. We’ll start with the Config-

uration Admin Service.

9.2.1 Configuration Admin Service

The Configuration Admin Service is an important piece of the deployment of the

OSGi Service Platform. It allows you to set the configuration information of deployed

bundles. You use this service to set a bundle’s configuration data, and it ensures that

the bundle receives the data when it becomes active.

 What happens is pretty simple. Consider the scenario in figure 9.4, where a bundle

needs an integer port number and a Boolean secure property. In this case, you pro-

vide these values to the Configuration Admin Service, and it provides these values to

the bundle when it’s activated. Using this approach, bundles have a simple, standard

way of obtaining configuration data.

300 CHAPTER 9 Managing bundles

How does this work? The Configuration Admin Service maintains a database of Con-

figuration objects, each of which has an associated set of name-value pair properties.

The Configuration Admin Service follows the whiteboard pattern and monitors the

service registry for two different managed services: ManagedService and Managed-

ServiceFactory. If you have a bundle that needs configuration data, it must register

one of these two services defined in the Configuration Admin specification. The dif-

ference between these two is that a ManagedService accepts one configuration to con-

figure a single service, whereas a ManagedServiceFactory accepts any number of

configurations and configures a different service instance for each configuration; fig-

ure 9.5 illustrates this difference.

 When you’re registering one of these managed services, you need to attach a

service.pid (service persistent identity) service property to it. Each managed Config-

uration object also has a service.pid associated with it, which the Configuration

Admin Service uses as a key to match configuration data to the bundle needing it.

 You may have noticed you’re dealing with two conceptually different layers when

using the Configuration Admin Service. On one layer, you have a published Managed-

Service or ManagedServiceFactory service. On the other layer, you have a bundle and

the services it provides that you want to configure. The Configuration Admin Service

Configuration Admin

Configuration date

Bundle is deployed

Bundle developer
writes a bundle

port=?
secure=?

port=4711
secure=true

Figure 9.4 An administrator configures a bundle in the framework by interacting with the

Configuration Admin Service. This approach decouples the administrator from having to

know the internal workings of the bundle using the configuration data.

What is a PID?

In a nutshell, you can associate a persistent identity, or PID, with each registered ser-

vice by specifying it in the service property dictionary when you register its managed

service. If you specify a service.pid property, it must be unique for each service.

Its purpose is to uniquely and persistently identify a given service, which allows the

Configuration Admin Service to use it as a primary key for bundles needing configu-

ration data. This means the Configuration Admin Service requires the use of a PID

with ManagedService and ManagedServiceFactory service registrations. As a con-

vention, PIDs starting with a bundle identifier and a dot are reserved for the bundle

associated with that identifier. For example, the PID 42.4711 belongs to the bundle

associated with bundle identifier 42. You’re free to use other schemes for your PIDs;

just make sure they’re unique and persistent across bundle activations.

301Configuring bundles

connects these two layers together when it delivers the configuration data. Of course,

the reverse is also possible, and the Configuration Admin Service may tell a managed

service that its configuration has gone away, which means it needs to stop performing

its functionality because it no longer has a valid configuration. This approach gives you

a flexible system, where you can configure and control any kind of service or any num-

ber of service instances in a common way. Let’s look into the details of implementing

a managed service next.

IMPLEMENTING A MANAGED SERVICE

Now that you understand the underlying basics of how the Configuration Admin Ser-

vice works by associating configuration data to managed services, let’s explore an

example. The actual interface you need to implement looks like the following:

public interface ManagedService {
 public void updated(Dictionary properties) throws ConfigurationException;
}

The following listing shows an example ManagedService implementation.

public class ManagedServiceExample implements ManagedService {
 private EchoServer m_server = null;

 public synchronized void updated(Dictionary properties)
 throws ConfigurationException {
 if (m_server != null) {
 m_server.stop();
 m_server = null;
 }
 if (properties != null) {
 String portString = (String) properties.get("port");
 if (portString == null) {
 throw new ConfigurationException(null, "Property missing");
 }
 int port;
 try {
 port = Integer.parseInt(portString);
 } catch (NumberFormatException ex) {
 throw new ConfigurationException(null, "Not a valid port number");

Listing 9.1 Example of a managed service

Service layer

Service registry

Management layer

ManagedService ManagedServiceFactory

Figure 9.5 Difference between a ManagedService and ManagedServiceFactory

302 CHAPTER 9 Managing bundles

 }
 try {
 m_server = new EchoServer(port);
 m_server.start();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
...
}

The ManagedService interface has a single updated() method. The argument to this

method is a Dictionary containing the configuration properties.

In this example, a simple echo server listens on a port and sends back whatever it

receives. Because it’s good practice, you make the port configurable. When you

receive a new configuration, you first stop the existing server, if there is one. Then,

you check whether you received a null configuration, which indicates that the previ-

ous configuration was deleted and there is no new one. If this is the case, there’s noth-

ing else to do. Otherwise, you get the port number from the dictionary and verify its

existence. If it exists, you parse it and create and start a new server for the given port.

 A ManagedService is associated with one configuration object. A bundle can regis-

ter any number of ManagedService services, but each must be identified with its own

PID. You should use a ManagedService when configuration is needed for a single

entity in the bundle or where the service represents an external entity like a device.

Then, for each detected device, a ManagedService is published with a PID related to

the identity of the device, such as the address or serial number.

 What about cases where you want to configure more than a single entity using the

same PID, such as creating multiple instances of the same service with different config-

urations? You use a ManagedServiceFactory, which we’ll explore next.

IMPLEMENTING A MANAGED SERVICE FACTORY

You should use a ManagedServiceFactory when a bundle doesn’t have an internal or

external entity associated with the configuration information, but can handle more than

one configuration at the same time. Remember, with a ManagedService, there’s only one

configuration: the configuration for the specific PID. With a ManagedServiceFactory,

Configuration properties

A configuration dictionary contains a set of properties in a Dictionary object. The

name or key of a property must always be a String object and isn’t case sensitive

during lookup, but preserves the original case. The values should be of type String,

Integer, Long, Float, Double, Byte, Short, Character, Boolean, or the primitive

counterparts. Furthermore, they can be arrays or collections of them. For arrays and

collections, they must only contain values of the same type.

303Configuring bundles

the same factory can have any number of configurations. Using this approach, you can

instantiate a service for each configuration associated with your managed service factory,

for example. This way, by creating a new configuration for the managed service factory,

you create new service instances. A slightly different use case is related to services rep-

resenting entities that can’t be identified directly, such as devices on a USB port that can’t

provide information about their type. Using a ManagedServiceFactory, you can define

configuration information for each available device attached to the USB port.

 How does this work with respect to the PIDs? The trick in this case is that you regis-

ter the ManagedServiceFactory with a factory.pid service property. This way, the

Configuration Admin Service can differentiate between a managed service factory

and a managed service. For the managed service factory, it assigns a new and unique

PID to each created configuration for the factory. The interface to implement looks

like this:

public interface ManagedServiceFactory{
 public String getName();
 public void updated(String pid, Dictionary properties)
 throws ConfigurationException;
 public void deleted(String pid);
}

The following example uses a ManagedServiceFactory to configure echo services that

read from their configured port and send back whatever they receive along with their

name.

public class ManagedServiceFactoryExample implements
 ManagedServiceFactory {
 private final Map<String, EchoServer> m_servers =
 new HashMap<String, EchoServer>();

 public synchronized void deleted(String pid) {
 EchoServer server = m_servers.remove(pid);
 if (server != null) {
 server.stop();
 }
 }

 public String getName() {
 return getClass().getName();
 }

 public synchronized void updated(String pid, Dictionary properties)
 throws ConfigurationException {
 EchoServer server = m_servers.remove(pid);
 if (server != null) {
 server.stop();
 }
 if (properties != null) {
 String portString = (String) properties.get("port");
 if (portString == null) {

Listing 9.2 ManagedServiceFactory example

Accepts
PIDB

304 CHAPTER 9 Managing bundles

 throw new ConfigurationException(null, "Property missing");
 }
 int port;
 try {
 port = Integer.parseInt(portString);
 } catch (NumberFormatException ex) {
 throw new ConfigurationException(null,"Not a valid port number");
 }
 try {
 server = new EchoServer(port);
 server.start();
 m_servers.put(pid, server);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 ...
}

This example isn’t significantly different from the last one. You now implement the

ManagedServiceFactory interface. Because you’re going to manage a number of serv-

ers, you introduce a map to hold them. The factory interface defines two new meth-

ods, deleted() and getName(). The latter is a descriptive name for the factory, and

the former notifies your factory that a previously updated configuration has gone

away, which results in you stopping the corresponding server. Notice that the

updated() method has a different signature from the ManagedService interface B. It

now accepts a PID, which is necessary because your managed service factory needs to

know the PID for the supplied configuration; it correlates the PID with a specific echo

server. For each one, you need a PID and a configuration. The rest is similar to what

you did for a single server in the ManagedService example. The only exception is that

now you must add the resulting server instance to your list of servers C.

 This covers the basics of what you need to do to make your bundles configurable.

Now we need to look into how you configure bundles by creating configurations.

CREATING CONFIGURATIONS

It’s one thing to make your bundles configurable, but you need some way to specify

and set the property values you want to use to configure them. You need to learn how

to create and manage configurations; you use the Configuration Admin Service for

this. It provides methods to maintain configuration data by means of Configuration

objects associated with specific configuration targets that can be created, listed, modi-

fied, and deleted. The ConfigurationAdmin service interface is defined as follows:

public interface ConfigurationAdmin{
 public Configuration createFactoryConfiguration(String factoryPid)
 throws IOException;
 public Configuration createFactoryConfiguration(String factoryPid,
 String location) throws IOException;
 public Configuration getConfiguration(String pid, String location)
 throws IOException;

Adds server instance
to server list

C

305Configuring bundles

 public Configuration getConfiguration(String pid) throws IOException;
 public Configuration[] listConfigurations(String filter) throws
 IOException, InvalidSyntaxException;
}

Configuration objects are represented by the following interface:
public interface Configuration{
 public String getPid();
 public Dictionary getProperties();
 public void update(Dictionary properties) throws IOException;
 public void delete() throws IOException;
 public String getFactoryPid();
 public void update() throws IOException;
 public void setBundleLocation(String location);
 public String getBundleLocation();
}

To illustrate how these all fit together, you continue to improve the shell example in

the following listing by creating a new command to manage configurations.

public class ConfigAdminCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 args=args.trim();
 if (args.startsWith("list")) {
 listConfigurations(args.substring("list".length()).trim(),
 out);
 } else if (args.startsWith("add-cfg")) {
 addConfiguration(args.substring("add-cfg".length()).trim());
 } else if (args.startsWith("remove-cfg")) {
 removeConfiguration(args.substring(
 "remove-cfg".length()).trim());
 } else if (args.startsWith("add-factory-cfg")) {
 addFactoryConfiguration(args.substring("add-factory-
 cfg".length()).trim());
 } else if (args.startsWith("remove-factory-cfg")) {
 removeFactoryConfiguration(args.substring(
 "remove-factory-cfg".length()).trim());
 }
 }

In this example, you create a cm command that accepts five different subcommands:

list, add-cfg, remove-cfg, add-factory-cfg, and remove-factory-cfg. The code is

largely responsible for delegating to private methods to perform the functionality of

the subcommands.

 The following code shows how cm list lists available configurations.

private void listConfigurations(String filter, PrintStream out)
 throws IOException, InvalidSyntaxException {
 Configuration[] configurations = admin().listConfigurations(

Listing 9.3 ConfigurationAdmin service shell command

Listing 9.4 Implementing the cm list subcommand

306 CHAPTER 9 Managing bundles

 ((filter.length() == 0) ? null : filter));
 if (configurations != null) {
 for (Configuration configuration : configurations) {
 Dictionary properties = configuration.getProperties();
 for (Enumeration e = properties.keys(); e.hasMoreElements();) {
 Object key = e.nextElement();
 out.println(key + "=" + properties.get(key));
 }
 out.println();
 }
 }
 ...
}

You get the ConfigurationAdmin service and use its listConfigurations() method

to get the Configuration objects. You can optionally specify an LDAP filter to limit

which configurations are returned; specifying no filter results in all configurations. In

either case, an array of Configuration objects is returned, which are the holders of

the actual configuration properties. Then you print the configuration properties,

using the getProperties() method of the Configuration object to retrieve them.

 You can use the add-cfg subcommand to create new Configuration objects. The

subcommand accepts the PID of the ManagedService and the configuration proper-

ties as a whitespace-delimited list of name-value pairs, where the name and value are

separated by an equals sign. The implementation is as follows:

private void addConfiguration(String args) {
 String pid = args.substring(0, args.indexOf(" ")).trim();
 Configuration conf = admin.getConfiguration(pid, null);
 createConfiguration(args.substring(pid.length()).trim(), pid, conf);
}

To create a Configuration object, you call getConfiguration() on Configuration-

Admin. This method creates the Configuration object on the first call and returns the

same object on subsequent calls. You initialize the new configuration with a call to the

private method createConfiguration(), which is defined next.

private void createConfiguration(
 String args, String pid, Configuration conf) throws IOException {
 conf.setBundleLocation(null);
 Dictionary dict = conf.getProperties();
 if (dict == null) {
 dict = new Properties();
 }
 StringTokenizer tok = new StringTokenizer(args, " ");
 while (tok.hasMoreTokens()) {
 String[] entry = tok.nextToken().split("=");
 dict.put(entry[0], entry[1]);
 }
 conf.update(dict);
}

Listing 9.5 Private method to initialize Configuration objects

307Configuring bundles

This sets the Configuration object’s bundle location to null, which means it isn’t

currently associated with any bundle. You finish initializing the new configuration

by getting any existing properties, parsing the specified properties and merging

them with existing properties, and finally updating the configuration. Because you

handle existing properties, you can use the add-cfg subcommand to create and

modify configurations.

You can use the remove-cfg subcommand to remove Configuration objects. The

implementation of this subcommand is much simpler:

private void removeConfiguration(String pid) {
 Configuration conf = admin.getConfiguration(pid);
 conf.delete();
}

The subcommand accepts a PID that you use to get the Configuration object from

the ConfigurationAdmin service. When you have the Configuration object, you call

delete() on it.

 The add-factory-cfg subcommand creates a Configuration object for a man-

aged service factory. It’s implemented as follows:

private void addFactoryConfiguration(String args) {
 String pid = args.substring(0, args.indexOf(" ")).trim();
 Configuration conf = admin.createFactoryConfiguration(pid, null);
 createConfiguration(args.substring(pid.length()).trim(), pid, conf);
}

It accepts the PID of the managed service factory and the configuration properties as a

whitespace-delimited list of name-value pairs. It’s similar to the add-cfg subcommand,

except that you use ConfigurationAdmin.createFactoryConfiguration() to create

a new Configuration object for the factory. This always creates a new Configuration

object for the factory service (unlike getConfiguration(), which creates one only the

first time for a given PID).

Configuration and location binding

When you create a Configuration object using either getConfiguration() or

createFactoryConfiguration(), it becomes bound to the location of the calling bun-

dle. You can obtain this location via the calling bundle’s getLocation() method. Lo-

cation binding is a security feature to ensure that only management bundles can modify

configuration data, and other bundles can only modify their own configuration data.

If the bundle location of a configuration for a given PID is set to null (as in list-

ing 9.5), the Configuration Admin Service binds the first bundle registering a managed

service with the given PID to this configuration. After the bundle location is set, then

configurations for the given PID are only delivered to the bundle with that location.

When this dynamically bound bundle is subsequently uninstalled, the location is set

to null again automatically so it can be bound again later.

308 CHAPTER 9 Managing bundles

 The remove-factory-cfg subcommand allows you to remove a factory configura-

tion. It’s implemented as follows:

private void removeFactoryConfiguration(String pid) {
 Configuration[] configurations = admin.listConfigurations(
 "(service.pid=" + pid + ")");
 configurations[0].delete();
}

The subcommand accepts a PID that you use to find the associated configuration using

listConfigurations() with a filter. When you have it, you call delete() on it as before.

 To experiment with this new command, go into the chapter09/combined-example/

directory of the companion code. Type ant to build the example and java

-jar launcher.jar bundles to execute it. To interact with the shell, use telnet local-

host 7070. This example uses the Apache Felix Configuration Admin implementation

(http://felix.apache.org/site/apache-felix-configuration-admin-service.html). Here’s

a session using the cm command:

-> cm add-cfg org.foo.managed.service port=6251
-> cm add-factory-cfg org.foo.managed.factory port=6252
-> cm list
service.pid=org.foo.managed.service
port=6251

service.pid=org.foo.managed.factory.89706c08-3902-4f4d-87f5-7da5a504cb94
port=6252
service.factoryPid=org.foo.managed.factory

-> cm remove-cfg org.foo.managed.service
-> cm remove-factory-cfg
[CA]org.foo.managed.factory.89706c08-3902-4f4d-87f5-7da5a504cb94
-> cm list
->

This session creates configurations for your managed service and managed service fac-

tory. As you should be aware now, the result of these two commands is subtly different.

The first directly configures the service associated with the PID, whereas the latter

causes a service to be created from the managed service factory. For the combined

example, if you go to another operating system shell after performing the first two

steps, you can telnet into your configured echo servers using the specified port num-

bers. Finally, you remove the configurations.

 That finishes our quick tour of the Configuration Admin Service. You should now

be able to use Configuration Admin to create externally configurable bundles, instan-

tiate services using configurations, and manage configurations. But wait, how do you

know what kind of data your configurable bundles accept? All we’ve said so far is that

managed services are configured with simple name-value pairs. Sometimes that may

suffice, but often you may want to tell other bundles or entities, such as a user, about

the structure of your bundle’s configuration data. The Metatype Service, which we’ll

introduce next, allows you to define your own metatypes and associate them with your

bundles and services.

http://felix.apache.org/site/apache-felix-configuration-admin-service.html

309Configuring bundles

9.2.2 Metatype Service

Assume for a moment that you’re deploying a new bundle for the first time into a

framework that has your Configuration Admin shell command available. If this new

bundle provides some services that are configurable, you can use your shell command

to configure it, right? Unfortunately, because this bundle is new to you, you have no

idea which properties it accepts, nor which ones are required for it to operate. In this

kind of scenario, it would certainly be helpful if the bundle could convey to you what

a valid configuration look likes.

 The OSGi standard Metatype Service makes this possible. It aggregates metatypes

(descriptions of types) contributed by bundles and allows others to look up these

definitions. Using this service allows you to introspect what a managed service accepts

as a valid configuration and also validate configurations against these schema, which

are subject to the same update and versioning mechanisms as the bundles that pro-

vide them.

 As you can see in figure 9.6, there are two ways to provide metatype information

about your managed services:

■ A bundle can contain XML resources in its OSGI-INF/metatype directory, which

are picked-up by the Metatype Service using the extender pattern.

■ A managed service can implement a second interface called MetaTypeProvider.

If for some reason a bundle does both, only the XML resources are considered, and

the MetaTypeProvider service is ignored.

 From a client perspective, the Metatype Service defines a dynamic typing system

for properties. This allows you, for example, to construct reasonable user interfaces

dynamically. The service itself provides unified access to the metatype information

provided by deployed bundles. A client can request MetaTypeInformation associated

with a given bundle, which in turn provides a list of ObjectClassDefinition objects

for this bundle. An object class contains descriptive information and a set of name-

value pairs. Here’s what this looks like for the example echo server:

MetaType
Service

Managed
Service

ManagedService
Factory

OSGI-INF/
metatype

XML resource

Figure 9.6 Metatype Service overview

310 CHAPTER 9 Managing bundles

<?xml version="1.0" encoding="UTF-8"?>
<MetaData xmlns="http://www.osgi.org/xmlns/metatype/v1.0.0">
 <OCD name="EchoServer" id="4.7.1.1" description="Echo Server Config">
 <AD name="port" id="4.7.1.1.1" type="Integer"
 description="The port the Echo Server listens on"/>
 </OCD>
 <Designate pid="org.foo.managed.service">
 <Object ocdref="4.7.1.1"/>
 </Designate>
</MetaData>

Don’t let this somewhat obtuse XML fool you. It’s simple. You first define an Object-

ClassDefinition (OCD) called EchoServer, with a unique identifier of 4.7.1.1 (if

you have a matching LDAP/X.500 object class OSGi object identifier (OID), you can

use that one; otherwise, use any other reasonably unique name that follows the same

grammar as the LDAP/X.500 OID and a human-readable description). You specify an

attribute definition (AD) to describe the configuration properties the echo server

needs. In this case, there’s only one: port. Notice the Designate element: this is

where you make the link between the type (the OCD) and the instance (the PID). In

this example, the EchoServer description applies to the configurations of managed

services with the PID org.foo.managed.service.

USING METATYPE INFORMATION

To use metatype information, you use the Metatype Service to look up metatype defi-

nitions. The Metatype Service is represented by the following interface:

public interface MetaTypeService {
 public MetaTypeInformation getMetaTypeInformation(Bundle bundle);
}

Using the discovered metatype information, you can generate user interfaces or vali-

date configurations, for example. To demonstrate how to use the Metatype Service,

let’s add a type command to the shell to display metatype information, as follows.

public class MetaDataCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 MetaTypeService mts = getMetaTypeService();
 Bundle b = getBundle(args);
 MetaTypeInformation mti = mts.getMetaTypeInformation(b);
 String[] pids = mti.getPids();
 for (int i = 0; i < pids.length; i++) {
 out.println(pids[i]);
 ObjectClassDefinition ocd = mti.getObjectClassDefinition(
 pids[i], null);
 AttributeDefinition[] ads = ocd
 .getAttributeDefinitions(ObjectClassDefinition.ALL);
 for (int j = 0; j < ads.length; j++) {
 out.println("\tOCD=" + ocd.getName());

Listing 9.6 Metatype Service shell command example

311Configuring bundles

 out.println("\t\tAD=" + ads[j].getName() + " - " +
 ads[j].getDescription());
 }
 }
 }

 private MetaTypeService getMetaTypeService() {...}

}

The command is simple: you ask the MetaTypeService if a specified bundle has Meta-

TypeInformation objects associated with it. The type command accepts a bundle

identifier as an argument. You get the MetaTypeService and retrieve the Bundle

object associated with the specified bundle identifier. You invoke the getMetaType-

Information() method to retrieve the associated metatype information. If there is

metatype information, you get the PIDs; and for each PID, you get the object class def-

inition. Likewise, for each object class definition, you get the AttributeDefinitions

and print their names and descriptions. You can now use this command to get a list of

all known PIDs and their respective properties for any given bundle identifier.

 To run this example, go back into the chapter09/combined-example/ directory of

the companion code. If you haven’t already done so, type ant to build the example

and java -jar launcher.jar bundles to execute it. To interact with the shell, use

telnet localhost 7070. This example uses the Apache Felix Metatype implementa-

tion (http://felix.apache.org/site/apache-felix-metatype-service.html). Here’s a ses-

sion using the type command:

-> bundles
...
[2] [ACTIVE] managed.service
 Location: file:bundles/managed.service-2.0.jar
 Symbolic Name: org.foo.managed.service
...
-> type 2
org.foo.managed.service
 OCD=EchoServer
 AD=port - The port the Echo Server listens on
->

All you need to do is execute the type command with the bundle identifier of a bun-

dle providing metadata, and you get a description of what kind of properties any

associated PIDs can understand. This makes it a little easier to properly configure arbi-

trary services.

 Where are we now? You’ve learned how to configure bundles and provide meta-

type information about configuration properties. This combination allows you to cre-

ate externally and generically configurable applications. What more do you need? Not

all configuration information is intended to be externally managed; for example,

most preference settings in an application fall in this category. Where should a bundle

store such configuration information? The OSGi Preferences Service can help you

here; let’s look at how it works next.

http://felix.apache.org/site/apache-felix-metatype-service.html

312 CHAPTER 9 Managing bundles

9.2.3 Preferences Service

In many cases, applications need to store preferences and settings persistently. Of

course, this chapter is about managing bundles, and, technically, dealing with prefer-

ence settings isn’t really a management activity. Still, we include it here because it’s

related to configuration data in general, and this gives us an opportunity to present

another standard OSGi Compendium service.

 The OSGi Preferences Service gives bundles a mechanism to persistently store

data. You may recall from chapter 3 that a bundle already has a private file system

area, which it can access via BundleContext.getDataFile(). You could use this mech-

anism to store preference settings, but the Preferences Service has several advantages:

■ It defines a standard way to handle such data.

■ It supports a hierarchical system and per-user settings.

■ It doesn’t require a file system.

■ It can abstract access to the underlying operating system’s settings mechanism,

if one exists.

The Preferences Service provides simple, lightweight access to stored data. It doesn’t

define a general database service but is optimized to deliver stored information when

needed. It will, for example, return defaults instead of throwing exceptions when the

back-end store isn’t available.

 The Preferences Service data model is a multirooted hierarchy of nodes: a system root

node exists for system settings, and you can create any number of named user root nodes

for user settings. Each one of these root nodes is the root of a tree of Preferences objects.

A Preferences object has a name, a single parent node (except for a root node, which

has no parent), and zero or more child nodes. It’s possible to navigate a tree either by

walking from one node to its parent or children or by addressing nodes directly via a rel-

ative or absolute path. This is possible using the node names separated with the / char-

acter, much like file system paths. Figure 9.7 shows a conceptual picture of such trees.

 Each Preferences object has a set of key/value pairs, called properties. The key is a

case-sensitive string that lives in a separate namespace from that of the child nodes,

which means a node can have a property with the same key as one of its children. The

Node

Node Node

Node

System
root

Node

Node Node

Node

User1
root

Node

Node Node

Node

UserN
root

Figure 9.7 System and user-preferences trees

313Configuring bundles

value must always be able to be stored and retrieved as a string. Therefore, it must be

possible to encode/decode all values into/from strings. A number of methods are

available to store and retrieve values as primitive types.

Using the Preferences Service is straightforward. It’s represented by the following sim-

ple interface:

public interface PreferencesService {
 Preferences getSystemPreferences();
 Preferences getUserPreferences(String name);
 String[] getUsers();
}

The getSystemPreferences() method provides access to the system preferences root,

whereas the getUserPreferences() method provides access to a given user’s prefer-

ences root. You can use the getUsers() method to enumerate all usernames that have

stored preferences.

 When you have a node, you can navigate the preference tree using the children-

Names(), parent(), and node() methods on the returned Preferences node. For setting

values, the Preferences interface offers some simple methods to store key/value pairs:

public void put(String key, String value);
public void putInt(String key, int value);
public void putLong(String key, long value);
public void putBoolean(String key, boolean value);
public void putFloat(String key, float value);
public void putDouble(String key, double value);
public void putByteArray(String key, byte[] value);

For each of these methods, a corresponding getter method exists. Getter methods

always accept two arguments: the first to specify the key of the property to retrieve,

and the second to specify a default value in case the property doesn’t exist (or in case

of errors). For instance:

public float getFloat(String key, float def);

Assuming you want to store the last time your bundle was started, you can do this

using the system preferences:

Preferences startPreferences =
 service.getSystemPreferences().node("start");
startPreferences.putLong("time", new Date().getTime());

Preferences are per bundle

The preferences saved by one bundle are completely distinct from the preferences

saved by another bundle. The Preferences Service doesn’t provide a mechanism for

one bundle to access another bundle’s preferences storage. If this is needed, you

must obtain a reference to the source bundle’s preferences in another way, such as

directly passing a reference to the other bundle.

314 CHAPTER 9 Managing bundles

This stores the current time as a long in the system preferences start node. As you

can see, this is pretty simple stuff, but it’s convenient to have a standard service defini-

tion rather than having to invent it yourself.

This concludes our discussion of bundle configuration. We’ve covered a lot of

ground. The combination of the Configuration Admin, Metatype, and Preferences

Services provides for flexible approaches when it comes to configuring your bundles,

which can save you a lot of management effort.

 So far in this chapter, we’ve talked about how to manage versions and spent a fair

amount of time showing how to manage bundle configuration data. Now we’ll switch

to our final topic: managing when a given bundle is activated after it’s started.

9.3 Starting bundles lazily

From chapter 3, you know that starting a bundle involves invoking the Bundle.

start() method on its corresponding Bundle object. If the bundle has a BundleActi-

vator, and it’s resolvable, the framework creates an instance of the bundle’s activator

and invokes start() on it, allowing the bundle to initialize itself. The act of starting a

bundle and of it being activated are two independent concepts, although typically

they occur together. Sometimes you may want to start a bundle but not necessarily

activate it until some later time. Why? There are two main reasons:

■ Your bundle’s exported packages aren’t able to function properly without a

BundleContext (for example, perhaps they require a service from the registry).

■ Your bundle’s initialization is costly, and you want to defer it until it’s needed.

The OSGi specification allows bundles to declare a lazy activation policy, which indi-

cates to management agents that something like one of the previous two issues applies

to it. Of course, you can use alternative approaches to deal with these situations. For

the first issue, you can program the bundle classes to always throw exceptions until

activated. For the second, you can minimize initialization in the bundle activator and

use threads to do work in the background. Sometimes these alternative approaches

are feasible, but sometimes throwing exceptions isn’t so clean, nor is it possible to

completely reduce all startup overhead, especially if you’re starting lots of bundles. In

these cases, you can use the lazy activation policy.

Isn’t this just Java Preferences?

Generally speaking, the Preferences Service is similar to java.util.prefs.Pref-
erences, introduced in Java 1.4. One of the reasons the OSGi Preferences service

exists is because the Java Preferences API isn’t available before Java 1.4 and OSGi

still supports Java 1.3. At the same time, the OSGi Preferences Service saves pref-

erences for each bundle independently of other bundles, whereas Java Preferences

saves preferences of one user of the system independently of other users. So the

two, although similar, aren’t identical.

315Starting bundles lazily

9.3.1 Understanding activation policies

Although the OSGi specification defines activation policies in an open-ended way,

there’s currently only one activation policy: lazy. The main gist of the lazy activation

policy is this:

1 A bundle declares itself to be lazy.

2 A management agent installs a lazy bundle and starts it lazily. The framework

marks the bundle as started but doesn’t yet activate it.

3 The lazy bundle’s activation is deferred until a class is loaded from it.

4 After a class is loaded from the lazy bundle, the framework completes its activa-

tion as normal.

This is fairly straightforward, but some small details lurk inside. Let’s revisit the bun-

dle lifecycle diagram in figure 9.8 to get a better understanding of the impact.

 The bold arrows in figure 9.8 depict additional transitions in the bundle lifecycle

state diagram. When a bundle is started lazily, it transitions to the STARTING state,

which is denoted by the framework by firing a BundleEvent of type LAZY_ACTIVATION,

instead of the normal STARTING event. The bundle stays in this state until it’s stopped

or a class is loaded from it. Stopping a lazy bundle in the STARTING state returns it to

the RESOLVED state and results in STOPPING and STOPPED bundle events. When a class is

loaded from a lazy bundle in the STARTING state, this acts as a trigger for the frame-

work to automatically activate the bundle, which completes the normal process of cre-

ating the bundle activator and calling its start() method, resulting in the normal

STARTING and STARTED bundle events.

Installed

Install

Uninstalled

Uninstall Resolved

Starting

Active

StartRefresh
Update

Update
Refresh

Resolve

Stop

Stop

Lazily started

Trigger

Stopping

Figure 9.8 The lazy activation policy causes a bundle to defer activation and linger

in the STARTING state until a class is loaded from it, at which point the framework

completes its activation.

316 CHAPTER 9 Managing bundles

Because loading a class from one lazy bundle may require other classes to be loaded

from other lazy bundles, the framework may end up activating chains of lazy bundles.

The framework doesn’t activate the lazy bundles as it loads classes from them, because

this can lead to arcane class-loading errors. Instead, the framework delays the activa-

tion of each lazy bundle it discovers in a class-loading chain until it finishes loading

the instigating class. At that point, the framework activates the detected lazy bundles

in reverse order. For example, assume ClassA is loaded from bundle A, which

requires ClassB from bundle B, which in turn requires ClassC from bundle C. If all of

the bundles are lazy and in the STARTING state, the framework will activate bundle C,

bundle B, and then bundle A before returning ClassA to the requester.

Now that you know how the lazy activation policy works, let’s look into the details of

using it.

9.3.2 Using activation policies

The process of using activation policies involves both the bundle wishing to be lazily

activated and the management agent deciding whether to start a bundle lazily. For the

first, when you create a bundle that can be lazily activated, you use the Bundle-

ActivationPolicy header in its manifest metadata to declare the activation policy.

BUNDLE-ACTIVATIONPOLICY Specifies the activation policy of a bundle where
the only defined policy is lazy activation, which is specified with the value
lazy. The default behavior is eager activation, although there is no explicit
way to specify this value.

To use this in the bundle manifest, you do this:

Bundle-ActivationPolicy: lazy

Only bundles containing this manifest header can have their activation deferred. It’s

not possible to lazily activate an arbitrary bundle. The reasoning behind this goes back

to one of the main use cases motivating deferred activation: a bundle that requires a

BundleContext for its exported packages to function properly. In this use case, only

the bundle itself knows if this is the case; thus, only the bundle itself can declare

the policy.

Attention!

Be aware that loading resources from a bundle doesn’t trigger lazy activation, only

classes. Also, the specification doesn’t unambiguously define how the framework

should treat the class-loading trigger, so the precise behavior may vary. In particular,

some frameworks may scope the trigger to the lifetime of the bundle’s class loader

(it needs to be re-triggered only if the bundle is refreshed), whereas others may scope

the trigger to the bundle’s ACTIVE lifecycle state (it needs to be re-triggered after the

bundle is stopped and restarted).

317Summary

 This may sound a little odd, because deferring activation sounds like a good

thing to do all the time. Why pay the cost of activating a bundle before it’s needed?

You could start all bundles lazily and they would only activate when another bundle

used them, right? There’s a fly in the ointment with this approach. Suppose your

bundle provides a service. If your bundle isn’t activated, it won’t ever get a chance

to publish its service in its bundle activator. Thus, no other bundles will be able

to use it, and it will never be activated lazily. So, even if it were possible to apply an

activation policy to a bundle externally, it wouldn’t always end up working the way

you intended.

 One final detail for bundles declaring an activation policy: the specification offers

fine-grained control over which precise packages trigger lazy activation. The specifica-

tion defines include and exclude directives, which declare a comma-separated list of

included and excluded packages, respectively. For example:

Bundle-ActivationPolicy: lazy; include:="com.acme.service"

A bundle with this metadata will only be lazily activated if a class is loaded from its

com.acme.service package.

 Assuming you have bundles with the declared lazy activation policy, the manage-

ment agent has the final say as to whether their activation is deferred. In chapter 3,

you learned about using Bundle.start() to start and eagerly activate a bundle. If

you call Bundle.start() with no arguments on a bundle with lazy activation policy,

it will be activated eagerly, as normal. To start the bundle with lazy activation, you

must call Bundle.start() with the Bundle.START_ACTIVATION_POLICY flag. When

you use this flag, you’re saying that you want to start the bundle using its declared

activation policy. A bundle with no activation policy will be started eagerly as usual,

whereas one with the lazy policy will have its activation deferred as described in the

previous section.

 There’s no requirement to start bundles declared as “lazy” lazily. Eagerly starting a

bundle is always acceptable; it means you’re willing to pay for the startup cost immedi-

ately. In most cases, eager activation is more than sufficient, so you won’t need to

worry about activation policies. But in those situations where it’s required, it can make

your life simpler.

 That’s it! We’ve covered a variety of bundle management topics. Let’s review what

you’ve learned in this chapter.

9.4 Summary

In this chapter, we discussed how to manage bundles, including a range of issues:

■ You must carefully consider the versioning of both packages and bundles when

working with OSGi.

■ The OSGi specification recommends, but doesn’t prescribe, versioning policies.

It’s up to you to define and adhere to such as policy.

■ Managing bundles also involves managing bundle configuration data.

318 CHAPTER 9 Managing bundles

■ The Configuration Admin Service provides a way to externalize and standardize

management of bundle configuration data, and the Metatype Service provides

a standard way to describe a bundle’s configuration data.

■ Related to configuration data, the Preferences Service provides a standard

mechanism for bundles to manage system- and user-preference settings.

■ The lazy activation policy defers bundle activation until a class is loaded from

the lazily started bundle, allowing management agents to defer the cost of bun-

dle startup.

These topics have given you a fairly good foundation for managing your bundles.

Next, let’s look at how to build and manage OSGi-based applications. This is the topic

of the next chapter.

319

Managing applications

In the last chapter, we focused on issues relating to the management of individual

bundles, such as how to version them, manage their configuration data, and con-

trol their activation policies. Now, we’ll move beyond managing individual bundles

to issues related to managing OSGi-based applications composed of many bundles.

As we’ve mentioned previously, in OSGi-based applications the deployed set of bun-

dles is your application’s configuration. This is a powerful aspect of the OSGi

approach, so understanding this point and knowing how to manage sets of bundles

is important to be able to fully take advantage of OSGi technology.

 In this chapter, we’ll explore a couple of different aspects of application

management:

■ Deploying applications using the OSGi Bundle Repository or Deployment-

Admin

■ Controlling bundle activation order using the StartLevel service

This chapter covers

■ Discovering and deploying bundles using the OSGi

Bundle Repository

■ Deploying applications using Deployment Admin

■ Controlling bundle activation order using start levels

320 CHAPTER 10 Managing applications

With these tools, you’ll be better equipped to build, deploy, and configure sophisti-

cated OSGi-based applications. Let’s start by looking at bundle deployment.

10.1 Deploying bundles

When you’ve created some configurable bundles and versioned them according to a

meaningful policy, you need to install them into an OSGi framework. In chapter 3, we

looked at the various details of the lifecycle layer API, which allows you to install, start,

update, and uninstall bundles from a running framework. Given the nature of modu-

larity, it’s likely your applications will grow over time to include too many bundles for

you to manage their deployment in an ad hoc fashion. Manually installing and updat-

ing tens, hundreds, or even thousands of bundles becomes impractical. What can you

do? This is when it becomes important to think about how you (or your users) are

going to discover and deploy bundles.

10.1.1 Introducing management agents

The solution, in OSGi lingo, is to create a specific type of bundle called a management

agent. Although we’ve shown how to programmatically manipulate the lifecycle of a

bundle, it’s typically not a good idea for a bundle to change its own state or the state of

other bundles. Such a bundle is difficult to reuse in other compositions, because it’s

tightly bound to the other bundles it expects to control. The solution employed by

most management agents is to externalize the information about which bundles to

install or start. For example, management information can refer to bundles using

URIs and aggregate useful groups of bundles using some sort of composition lan-

guage/mechanism. A management agent can generically process such information,

leaving it nicely decoupled from the bundles it’s managing.

 A simple example of a management agent is the shell from chapter 3. Granted, it’s

perhaps too simplistic because it only accepts and executes commands; but if such

capabilities are sufficient for your application, it’s fine. A management agent can be

much more powerful, however. Even for your shell, you could easily extend it to han-

dle command scripts for executing commands in batches. You could then create a

couple of scripts, one for each configuration you need. Switching between application

configurations would then be trivial.

 More sophisticated management agents are possible. Your shell assumes human

interaction to either directly or indirectly make the correct decisions and issue com-

mands to manage the bundles. You could devise a system with rules to automate some

of this by reacting to certain conditions autonomously. Consider a home-automation

system that’s able to detect a new device, automatically discover a driver for it in a

remote repository, and subsequently install the driver along with its dependencies. Or

you may have an application that automatically adapts itself to the language of the cur-

rent user by installing the necessary locale bundles.

 In essence, a management agent manages a running framework. OSGi supports

you in developing such an agent by providing you with the means to monitor and

321Deploying bundles

manipulate a running framework. One of the more critical aspects of managing the

framework is determining which bundles should be deployed to it. Various strategies

are possible to manage complex sets of interdependent bundles. The two most promi-

nent at the moment are the OSGi Bundle Repository (OBR) and Deployment Admin.

OBR and Deployment Admin address bundle deployment from different angles,

but both can help when it comes to developing a management agent. The difference

in focus between the two can be summarized as follows:

■ OBR focuses on remote discovery and deployment of individual bundles and

their dependencies.

■ Deployment Admin focuses on the deployment of sets of bundles and associ-

ated resources.

In the following sections, we’ll explore these two technologies in more detail and

show you how to use them to provision or deploy your applications and bundles.

10.1.2 OSGi Bundle Repository

The OSGi Bundle Repository (OBR) is officially not an OSGi standard specification;

rather, it’s a proposal for a specification, internally referred to as RFC 112 in the OSGi

Alliance. Because OBR is only an RFC, its details may change in the future, but it’s still

a useful tool as it is.

OBR started life as the Oscar Bundle Repository, which was associated with the

Oscar OSGi framework (which ultimately became the Apache Felix framework). OBR

is intended to address two aspects of bundle deployment:

Alternative technologies

A number of other technologies attempt to address deployment and provisioning for

OSGi, including Apache Ace, Paremus Nimble, and Equinox p2:

■ Ace is a software distribution framework based on Deployment Admin. It focuses

on centrally managing target systems, and distributing software components,

configuration data, and other artifacts to them. The target systems are usually

OSGi-based, but they don’t have to be.

■ Nimble is based on open source work from the Newton project and focuses on

building an extensible resolver architecture that can deal with other types of

dependencies outside of the OSGi modularity layer, such as service-level depen-

dencies. For example, if a bundle containing servlets is deployed and activated,

a servlet container should be deployed and activated alongside it.

■ p2 is a subproject of the Eclipse Equinox framework. p2 focuses on extending

the types of deployable artifacts to encompass things outside of an OSGi envi-

ronment, including Unix RPM packages or Windows services, for example.

We won’t discuss the details of any of these in the remainder of this book. If you’re

interested in them, they’re just a Google search away.

322 CHAPTER 10 Managing applications

■ Discovery—Provide a simple mechanism to discover which bundles are available

for deployment

■ Dependency deployment—Provide a simple mechanism to deploy a bundle and its

transitive set of dependencies

To achieve the first goal, OBR defines a simple bundle repository with an API for

accessing it and a common XML interchange format for describing deployable

resources. An OBR repository can refer to other OBR repositories, defining a federa-

tion of repositories. But it’s not necessary to define federations, so it’s possible to cre-

ate independent repositories specifically for your own purposes and applications. One

of the main goals of OBR was simplicity, so it’s easy for anyone to provide a bundle

repository. One of the benefits of using an XML-based repository format is that no

server-side process is needed (although server-side processes are possible). Figure 10.1

shows the federated structure of an OBR repository.

 The key concept of an OBR repository is a generic description of a resource and its

dependencies. A resource is an abstract entity used to represent any type of artifact such

as a bundle, a certificate, or a configuration file. The resource description allows an

agent to discover applicable artifacts, typically bundles, and deploy them along with

their transitive dependencies. Each resource description has

■ Zero or more requirements on other resources or the environment

■ Zero or more capabilities used to satisfy other resources’ requirements

Resource requirements are satisfied by capabilities provided by other resources or

the environment. OBR maps bundle metadata from Import-Package and Require-

Bundle headers onto resource requirements and from Export-Package and Bundle-

SymbolicName headers onto resource capabilities. Figure 10.2 shows the relationship

among the repository entities.

Root
repository

Referral

Delegate1 Delegate2 Delegate3

Delegate4

Subdelegate

Management
agent

RepositoryAdmin
serviceOBR

bundle

OSGi framework

Figure 10.1 The OBR proposed specification provides a federated index that allows a management

agent to resolve and install large numbers of bundles from a number of remote locations. The OBR index

files are aggregated by a RepositoryAdmin service that resolves bundle dependencies on behalf of a

management agent.

323Deploying bundles

Using this information, an OBR implementation is able to resolve a consistent set of bun-

dles for deployment given an initial set of bundles to be deployed. OBR’s dependency-

resolution algorithm is basically the same as the framework’s dependency-resolution

algorithm.

With this overview of OBR, let’s look at how you can create a repository for it.

CREATING OBR REPOSITORIES

To illustrate how to create an OBR repository, let’s use the bundles from the service-

based paint program example. The repository is just an XML file containing the meta-

data of the bundles. We’ll go through the entries in the XML file and explain the

schema along the way. Assume you have the bundles from the example in a directory

called paint-bundles. The directory contains the paint frame bundle, the API bundle,

and the three shape bundles:

Repository
files Repository

Capability

Requirement

Extend extends

requires

contains

providesResource

0..n

0..n

0..n

0..n

0..n

0..n

1

1 1

1

refers

Figure 10.2 Relationships among

the OBR repository entities

OBR vs. framework resolution

Although the dependency-resolution algorithms for OBR and the framework are simi-

lar, they aren’t identical. OBR starts from a given set of bundles and pulls in resourc-

es from its available repositories in an attempt to satisfy any dependencies. The

framework’s resolution algorithm will never pull in additional resources; it only con-

siders installed bundles.

Another gotcha is the fact that the current OBR RFC doesn’t currently mandate uses
constraints when resolving dependencies. This can lead to unexpected failures at ex-

ecution time if a uses constraint prevents bundles from resolving. OBR is an active

area of work within the OSGi Alliance, so future revisions of the RFC may address

this issue.

324 CHAPTER 10 Managing applications

paint-bundles/
 frame-4.0.jar
 circle-4.0.jar
 triangle-4.0.jar
 shape-4.0.jar
 square-4.0.jar

You could create the repository XML file by hand, but you can use several different tools

to create one instead. This example uses BIndex (http://www.osgi.org/Repository/

BIndex), which is provided by the OSGi Alliance. For Maven users, there’s also Maven

support, which we’ll discuss in appendix A. To create a repository using BIndex, run the

following from above the bundles directory (this example assumes you’re in the

chapter10/combined-example/ directory of the companion code):

java -jar bindex.jar -r repository.xml -n Paint paint-bundles/*.jar

This creates a repository.xml file that contains the metadata of the bundles from the

example. The main XML element is a repository tag defining the repository:

<repository lastmodified='20090215101706.874' name='Paint'>
...
</repository>

The lastmodified attribute is used as a timestamp by the OBR service to determine

whether something has changed. The most interesting element is the <resource> tag:

it describes a bundle you want to make available. The created repository XML file

contains one resource block per bundle. The shape API bundle converted into OBR is

as follows.

<resource id='org.foo.shape/4.0.0' presentationname='shape'
 symbolicname='org.foo.shape' uri='paint-bundles/shape-4.0.jar'
 version='4.0.0'>
 <size>
5742
 </size>
 <license>
 http://www.apache.org/licenses/LICENSE-2.0
 </license>
 <documentation>
http://code.google.com/p/osgi-in-action/
 </documentation>
 <capability name='bundle'>
 <p n='manifestversion' v='2'/>
 <p n='presentationname' v='shape'/>
 <p n='symbolicname' v='org.foo.shape'/>
 <p n='version' t='version' v='4.0.0'/>
 </capability>
 <capability name='package'>
 <p n='package' v='org.foo.shape'/>
 <p n='version' t='version' v='4.0.0'/>
 </capability>

Listing 10.1 Shape API bundle converted into OBR repository XML syntax

C Capability element
representing package

http://www.osgi.org/Repository/BIndex
http://www.osgi.org/Repository/BIndex

325Deploying bundles

 <require extend='false' filter='(&(package=org.foo.shape)
(version>=4.0.0)(version<5.0.0))' multiple='false' name='package'
 optional='false'>
 Import package org.foo.shape ;version=[4.0.0,5.0.0)
 </require>
</resource>

The capability elements B and C represent what the bundle provides. In this case,B
represents the bundle itself, because the bundle can be required (for example,

Require-Bundle), whereas C represents the package exported by the bundle. Bundle

dependencies are represented as requirement elements, such as the one for an

imported package D. Both capabilities and requirements have a name, which is actu-

ally a namespace; it’s how capabilities are matched to requirements. For example,

capabilities representing exported packages and requirements representing imported

packages both have the package namespace.

 In general, a capability is a set of properties specified using a <p> element with the

following attributes:

■ n—The name of the property

■ v—The value of the property

■ t—The type of the property, which is one of the following:

◆ string—A string value, which is the default
◆ version—An OSGi version
◆ uri—A URI

◆ long—A long value
◆ double—A double value
◆ set—A comma-separated list of values

Looking more closely at the bundle capability B, you see it’s a fairly straightforward

mapping from the bundle identification metadata:

Bundle-ManifestVersion: 2
Bundle-Name: Simple Paint API
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0

Likewise, the package capability C is also a simple mapping from the bundle’s

Export-Package header:

Export-Package: org.foo.shape;version="4.0"

A requirement is an LDAP query over the properties of a capability. So, to match a

requirement to a capability, first the namespace must match. If that matches, the

requirements LDAP query must match the properties supplied by the capabilities.

Even with the LDAP query, the package requirement D is a fairly easy mapping from

the Import-Package header:

Import-Package: org.foo.shape;version="[4.0,5.0)"

DRequirement
element

326 CHAPTER 10 Managing applications

One reason the filter D looks somewhat more complicated than necessary is that ver-

sion ranges aren’t directly supported by the filter syntax and must be expressed as the

lower and upper bound.

 If your bundle had a Require-Bundle, Fragment-Host, or Bundle-Execution-

Environment header, it would be mapped to requirements. Even though the map-

pings are straightforward, it’s still nice to have a tool like BIndex doing this for you.

You can even integrate BIndex into in your build cycle so your repository is updated

whenever your bundles change.

 The repository XML is all well and good, but you’re probably wondering how you

can use repositories in your management agent. You don’t need to know anything

about the XML format to use OBR. All you need to do is grab the service implemented

by OBR and use it. Let’s take a closer look at this.

BROWSING OBR REPOSITORIES

The best way to familiarize you with how to use repositories is to give an example and

explain what it does along the way. Let’s use the shell example again and extend it

with a new command to add/remove/list repositories and browse the bundles inside

them. The programmatic entry point to the OBR specification is the RepositoryAdmin

service, which is represented by the following interface:

public interface RepositoryAdmin {
 Resource[] discoverResources(String filterExpr);
 Resolver resolver();
 Repository addRepository(URL repository) throws Exception;
 boolean removeRepository(URL repository);
 Repository[] listRepositories();
 Resource getResource(String respositoryId);
}

This RepositoryAdmin service provides centralized access to the federated repository.

An OBR implementation implements this interface as well as the other types refer-

enced by it. Figure 10.3 shows the relationships among the involved entities.

 The code in the following listing shows the code for the new obr-repo command.

It uses RepositoryAdmin to add, remove, and list repositories as well as to discover

resources.

Uses

Implements

Resolves with

Resolver Repository
Admin

Repository
client impl

Capability
provider

Capability
provider impl

0..n

0..n

0..n

1

1 Adds capabilities
Resolver

Impl
Repository
AdminImpl

Figure 10.3 UML diagram of the Repository-
Admin service. An external repository client uses

the RepositoryAdmin and Resolver inter-

faces to download and install bundles and their

transitive dependencies.

327Deploying bundles

public class RepositoryCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 args = args.trim();
 RepositoryAdmin admin = getRepositoryAdmin();
 if (admin != null) {
 if ("list-urls".equalsIgnoreCase(args)) {
 for (Repository repo : admin.listRepositories()) {
 out.println(repo.getName() + " (" + repo.getURL() + ")");
 }
 } else if (args != null) {
 if (args.startsWith("add-url")) {
 admin.addRepository(
 new URL(args.substring("add-url".length())));
 } else if (args.startsWith("remove-url")) {
 admin.removeRepository(
 new URL(args.substring("remove-url".length())));
 } else if (args.startsWith("list")) {
 String query = (args.equals("list"))
 ? "(symbolicname=*)"
 : args.substring("list".length()).trim();
 for (Resource res : admin.discoverResources(query)) {
 out.println(res.getPresentationName() + " ("
 + res.getSymbolicName() + ") " + res.getVersion());
 }
 }
 } else {
 out.println(
 "Unknown command - use {list-urls|add-url|remove-url|list}");
 }
 } else {
 out.println("No RepositoryAdmin service found...");
 }
 }

 private RepositoryAdmin getRepositoryAdmin() {
 ...
 }
}

The obr-repo command has the following subcommands: list-url, add-url,

remove-url, and list. A RepositoryAdmin provides access to a number of reposito-

ries referenced by URLs. You implement the list-url subcommand B to list these

repositories by retrieving the RepositoryAdmin service and calling its listReposito-

ries() method, which gives you access to the associated Repository objects. In this

case, you loop through the repositories and print their names and URLs.

 You can add or remove repository URLs with the add-url and remove-url subcom-

mands, respectively. As you can see at C and D, there’s a one-to-one mapping to the

addRepository() and removeRepository() methods of the RepositoryAdmin service.

Finally, the list subcommand expects an LDAP query which it passes to discover-

Repositories() to discover resources E. If no query is specified, all resources are

Listing 10.2 OBR repository shell command example

BLists
repositories

D Removes
repository

EDiscovers
resources

328 CHAPTER 10 Managing applications

listed. You loop through the discovered resources and print their presentation name,

symbolic name, and version.

 You can now use this command to configure repositories and discover bundles.

After you’ve discovered a bundle you want to use, you need to deploy it. You’ll imple-

ment a separate command for that next.

DEPLOYING BUNDLES WITH OBR

Discovering bundles is one half of the OBR story; the other half is deploying them and

their dependencies into the framework. The RepositoryAdmin.getResolver()

method gives you access to a Resolver object to select, resolve, and deploy resources.

A Resolver has these methods:

public interface Resolver {
 void add(Resource resource);
 Requirement[] getUnsatisfiedRequirements();
 Resource[] getOptionalResources();
 Requirement[] getReason(Resource resource);
 Resource[] getResources(Requirement requirement);
 Resource[] getRequiredResources();
 Resource[] getAddedResources();
 boolean resolve();
 void deploy(boolean start);
}

 The process for deploying resources is fairly simple. Follow these steps:

1 Add desired resources using Resolver.add().

2 Resolve the desired resources’ dependencies with Resolver:resolve().

3 If the desired resources resolve successfully, deploy them with Resolver.

deploy().

The following listing implements an obr-resolver shell command to resolve and

deploy resources.

public class ResolverCommand extends BasicCommand {
 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 RepositoryAdmin admin = getRepositoryAdmin();
 Resolver resolver = admin.resolver();
 Resource[] resources = admin.discoverResources(args);
 if ((resources != null) && (resources.length > 0)) {
 resolver.add(resources[0]);
 if (resolver.resolve()) {
 for (Resource res : resolver.getRequiredResources()) {
 out.println("Deploying dependency: " +
 res.getPresentationName() +
 " (" + res.getSymbolicName() + ") " + res.getVersion());
 }
 resolver.deploy(true);
 } else {

Listing 10.3 OBR resolver shell command example

B Resolves
resource

Deploys
bundleC

329Deploying bundles

 out.println("Can not resolve " + resources[0].getId() +
 " reason: ");
 for (Requirement req : resolver.getUnsatisfiedRequirements()) {
 out.println("missing " + req.getName()
 + " " + req.getFilter());
 }
 }
 } else {
 out.println("No such resource");
 }
 }

 private RepositoryAdmin getRepositoryAdmin() {
 ...
 }
}

You first get the Resolver from the RepositoryAdmin service. Then you use the

RepositoryAdmin.discoverResources() method with a LDAP filter argument to dis-

cover a resource to deploy. If you find any resources, you add the first one to the

Resolver and call resolve() to resolve its dependencies from the available reposito-

ries B. If the resource is successfully resolved, you print out all of the dependencies of

the resource you’re deploying. Then you use Resolver.deploy() to install and start

the discovered bundle and its dependencies C. If the resource couldn’t be resolved,

you print out the missing requirements.

 To run this example, go to the chapter10/combined-example/ directory of the

companion code. Type ant to build the example and java -jar launcher.jar

bundles to execute it. To interact with the shell, use telnet localhost 7070. This

example uses the Apache Felix OBR implementation (http://felix.apache.org/site/

apache-felix-osgi-bundle-repository.html). The following session uses the obr-repo

and obr-resolver commands:

-> obr-repo add-url file:repository.xml
-> obr-repo list-urls
Paint (file:repository.xml)
-> obr-repo list
circle (org.foo.shape.circle) 4.0.0
frame (org.foo.paint) 4.0.0
shape (org.foo.shape) 4.0.0
square (org.foo.shape.square) 4.0.0
triangle (org.foo.shape.triangle) 4.0.0
-> obr-resolver (symbolicname=org.foo.paint)
Deploying dependency: shape (org.foo.shape) 4.0.0
-> obr-resolver (symbolicname=org.foo.shape.circle)

In this session, you first use the add-url subcommand to add your repository contain-

ing the paint program bundles. You verify the configured repository using the list-

url subcommand. Using the list subcommand, you browse the bundles contained in

the repository. Then, you use the obr-resolver command with an LDAP filter to

select and deploy the paint-frame bundle, which also installs its dependencies. Finally,

you install the circle bundle.

http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html
http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html

330 CHAPTER 10 Managing applications

 That’s about all you need to know to start using OBR to discover and deploy your

bundles. Often, this is enough to manage the growing complexity of your applica-

tions. But sometimes you’ll be faced with a slightly different scenario that doesn’t fit as

well with what OBR provides. Perhaps you want to package your application in a single

deployment unit composed of several bundles. What can you do in this case? Another

OSGi Compendium specification targets such needs. Let’s look at that next.

10.1.3 Deployment Admin

With OBR, you tend to think about deploying specific bundles and letting OBR auto-

matically calculate and deploy any dependent bundles. With Deployment Admin,

your thinking changes to deploying entire applications or subsystems as a single unit.

The Deployment Admin specification standardizes some of the responsibilities of a

management agent; specifically, it addresses lifecycle management of interlinked

resources on an OSGi Service Platform.

 Deployment Admin defines a way to package a number of resources in a deploy-

ment package. A deployment package is a JAR file with a format similar to a bundle. You

can install deployment packages using the DeploymentAdmin service. The Deployment-

Admin service can process bundle resources itself, but other types of resources in the

deployment package are handled by passing them to a ResourceProcessor service for

that specific type of resource. The chosen ResourceProcessor service appropriately

processes the given resource type. The uninstallation and update of a deployment

package works similarly: bundles are processed by the DeploymentAdmin service, and

other types of resources are handed off to ResourceProcessors. All ResourceProces-

sor services are notified about any resources that are uninstalled or updated. If all

resources have been processed, the changes are committed. If an operation fails, all

changes are rolled back.

NOTE Although we’re talking in terms of commits and rollbacks, a Deploy-
ment Admin implementation isn’t guaranteed to support all features of trans-
actions. Most implementations tend to provide only a best effort rollback.

This sounds fairly promising for managing applications. To get a better idea of how it

works, we’ll present some of the details of deployment packages next. After that, we’ll

give an example of how you can use the Deployment Admin to install and manage

deployment packages.

CREATING DEPLOYMENT PACKAGES

As an example, let’s think about how to provision your paint program. The paint pro-

gram has the following artifacts:

paint-4.0.jar
shape-4.0.jar
circle-4.0.jar
square-4.0.jar
triangle-4.0.jar

331Deploying bundles

To be able to show all of what deployment packages

have to offer, let’s assume you want to provide a core

version of the program containing the drawing

frame and the shape API bundles. This way, you’re

able to deploy the actual shape implementations

separately via an extension pack. The extension

pack contains the square, circle, and triangle bun-

dles. Let’s go with this approach and explore the

different ways you can use deployment packages to

make it work.

 The general structure of a deployment package

is shown in figure 10.4. This ordering is carefully

designed to allow deployment packages to be streamed in such a way that the contents

can be processed without needing to download the entire JAR file.

 The deployment package design has a few other desirable characteristics. First, the

deployment package puts metadata in its manifest, similar to bundles, which allows

you to turn it into a named and versioned set of resources. Second, by taking advan-

tage of the fact that JAR files can be signed, you can use signed JAR files to make your

deployment packages tamperproof.

 For this example, you can do either of the following (see figure 10.5):

■ Create a deployment package for the core bundles and one package for all

shape bundles.

■ Create a deployment package for

the core bundles and individual

deployment packages for each

shape bundle.

The difference is obviously that in the

first case, you’ll deploy either all shapes

or none; and in the second case, you can

extend the core bundle piecemeal. The

important point to understand, though,

is that you can’t use both approaches at

the same time: you must choose one.

 In terms of the example, you need to

make a decision. In this case, you’ll go

with the first approach and create a sin-

gle deployment bundle for all shapes.

But because deployment packages can

be updated, you can gain some flexibility

by starting with only one shape in the

deployment package and then adding

another one in an updated version and

Manifest

Signature files

Localization files

Bundles

Resources

Resource
order

Figure 10.4 Structure of a

deployment package JAR file

Packaged together

Packaged seperately

paint-4.0.jar

shape-4.0.jar

triangle-4.0.jar

square-4.0.jar

circle-4.0.jar

triangle-4.0.jar

square-4.0.jar

circle-4.0.jar

Dependency

Resource

Deployment package

Figure 10.5 Paint program packaging

alternatives

332 CHAPTER 10 Managing applications

another for the third or other combinations. When you create an update that adds or

removes resources from a previous version, you don’t even have to package the

resources inside the update; instead, you can use fix packages.

FIX PACKAGE A deployment package that minimizes download time by
excluding resources that aren’t required to upgrade or downgrade a deploy-
ment package. It can only be installed if a previous version of that deployment
package is already installed. A fix package contains only the changed and new
resources. A fix package (called the source) therefore must specify the range of
versions that the existing deployment package (called the target) must have
installed. You’ll see this shortly when we walk through the example.

Let’s assume that you want to be able to add new shapes to the application when they

become available. In this scenario, it makes sense to start with a core deployment

package and create fix packages, adding new shapes as they become available.

 Now that you’ve figured out your packaging approach, how do you proceed? You

need to create a manifest for the target that contains the paint frame and shape API

bundles; you’ll use this to provision the paint program core. Then you need to create

the manifest of the fix package that you’ll use to add the three shape bundles to the

core. When you have your manifests, you need to create two JAR files with the corre-

sponding manifests and your bundles, you can optionally sign them, and you’re good

to go. Here’s the manifest of the core deployment package:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: org.foo.paint
DeploymentPackage-Version: 1.0.0

Name: paint-4.0.jar
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 4.0.0

Name: shape-4.0.jar
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0.0

Deployment packages are greedy

These two different packaging strategies can’t be used simultaneously. The specifi-

cation only allows resources to belong to a single resource package. Using both ap-

proaches at the same time or changing your approach after the fact would move

ownership of the bundle resources to another deployment package and thus violate

the specification.

A deployment package is defined as a set of resources that must be managed as a

unit. The resources in a deployment package are assumed to be tightly coupled, such

as a bundle and its configuration data. As a consequence, a resource can belong to

only one deployment package; otherwise, for example, you could run into situations

where you had two different, conflicting configurations for the same bundle.

333Deploying bundles

You first specify the deployment package’s symbolic name and version. Next, you specify

the list of resources contained in the JAR file. You specify the name of a resource, its sym-

bolic name, and its version; you must do this for each resource. For this example, you

only have bundle resources. To finish, you need to use the jar tool to create the JAR file

with the appropriate content, and you’re finished with your first deployment package.

Now you need to create the manifest for your fix package containing the shape bun-

dles. This manifest is as follows:

Manifest-Version: 1.0
DeploymentPackage-Symbolicname: org.foo.paint
DeploymentPackage-Version: 2.0
DeploymentPackage-FixPack: [1,2)

Name: paint-4.0.jar
Bundle-SymbolicName: org.foo.paint
Bundle-Version: 4.0.0
DeploymentPackage-Missing: true

Name: shape-4.0.jar
Bundle-SymbolicName: org.foo.shape
Bundle-Version: 4.0.0
DeploymentPackage-Missing: true

Name: triangle-4.0.jar
Bundle-SymbolicName: org.foo.shape.triangle
Bundle-Version: 4.0.0

Name: circle-4.0.jar
Bundle-SymbolicName: org.foo.shape.circle
Bundle-Version: 4.0.0

Name: square-4.0.jar
Bundle-SymbolicName: org.foo.shape.square
Bundle-Version: 4.0.0

Because the fix package is an update to your core package, the symbolic name stays

the same, but the version is upgraded to 2.0.0. The DeploymentPackage-FixPack

header indicates that this is a fix package; you use version-range syntax to indicate that

the fix package can be applied to any previously installed version of the deployment

package from 1.0.0 inclusive to 2.0.0 exclusive. This version-numbering scheme

expresses the assumption that only major version-number changes indicate added

Signing deployment packages

In this example, you don’t sign your deployment package, nor is it required for you to

do so. If you want to create a signed deployment package, you use the jarsigner
tool from the standard Java SDK. The signing process is no different than signing a

normal JAR file; it results in the signatures being placed in the deployment package

JAR file in the META-INF directory and after the MANIFEST.MF file. Additionally, each

entry section in the manifest contains a digest entry.

334 CHAPTER 10 Managing applications

bundles. You don’t need to package the bundles already present in the core package,

but you still need to mention them in the manifest. You use the DeploymentPackage-

Missing header to do this. Then you specify the shape bundles in the same fashion as

before. To use the deployment packages, you need to make each available via a URL.

NOTE If you make deployment packages available via a protocol that supports
MIME types, the standard MIME type for deployment packages is application/
vnd.osgi.dp.

Next, you can use the provided DeploymentAdmin service in your management agent

to install, update, and uninstall deployment packages.

MANAGING DEPLOYMENT PACKAGES

To demonstrate how a management agent can use Deployment Admin, you’ll again

return to the shell and create a new dpa shell command to list, install, and uninstall

deployment packages. This command will use the DeploymentAdmin service, which is

represented by the following interface:

public interface DeploymentAdmin {
 DeploymentPackage installDeploymentPackage(InputStream in)
 throws DeploymentException;
 DeploymentPackage[] listDeploymentPackages();
 DeploymentPackage getDeploymentPackage(String symbName);
 DeploymentPackage getDeploymentPackage(Bundle bundle);
 boolean cancel();
}

The following listing shows the implementation of the command.

public class DeploymentPackageCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 DeploymentAdmin admin = getDeploymentAdmin();

 if (admin == null) {
 out.println("No DeploymentAdmin service found.");
 return;
 }
 if (args != null) {
 if (args.trim().equalsIgnoreCase("list")) {
 for (DeploymentPackage dp : admin.listDeploymentPackages()) {
 out.println(dp.getName() + " " + dp.getVersion());
 }
 } else if (args.trim().startsWith("uninstall ")) {
 DeploymentPackage dp = admin.getDeploymentPackage(
 args.trim().substring("uninstall ".length()));
 if (dp != null) {
 dp.uninstall();
 } else {
 out.println("No such package");
 }

Listing 10.4 Deployment Admin shell command example

BGets installed
deployment packages

C Uninstalls
deployment
package

335Deploying bundles

 } else if (args.trim().startsWith("install ")) {
 DeploymentPackage dp = admin.installDeploymentPackage(new URL(
 args.trim().substring("install ".length())).openStream());
 out.println(dp.getName() + " " + dp.getVersion());
 }
 } else {
 out.println("Use {list|install <url>|uninstall <name>}");
 }
 }

 private DeploymentAdmin getDeploymentAdmin() {
 ...
 }
}

Like the previous example commands, you more or less map the command onto the

DeploymentAdmin service interface. You get installed deployment packages using the

listDeploymentPackages() service method and print their names and versions B.

Then, you uninstall an existing deployment package associated with a specified sym-

bolic name using DeploymentPackage.uninstall() C. Finally, you install a deploy-

ment package from the specified URL using the installDeploymentPackage() service

method D. The approach is fairly similar to managing bundles.

 To run this example, go to the chapter10/combined-example/ directory of the com-

panion code. Type ant to build the example and java -jar launcher.jar bundles to

execute it. To interact with the shell, use telnet localhost 7070. This example uses the

Apache Felix Deployment Admin implementation (http://felix.apache.org/site/

apache-felix-deployment-admin.html). Here’s the command in action:

-> dpa install file:org.foo.paint-1.0.dp
org.foo.paint 1.0.0
-> dpa install file:org.foo.paint-2.0.dp
org.foo.paint 2.0.0
-> dpa list
org.foo.paint 2.0.0
-> dpa uninstall org.foo.paint

This session installs the core paint program deployment package. You then update it to

include the fix package for the shapes. You list the installed deployment packages and

then uninstall the deployment package. (Note that the Apache Felix implementation of

Deployment Admin doesn’t currently implement the uninstall functionality.) This high-

lights the difference between the OBR and Deployment Admin approaches, because you

can manage your bundles as a single unit of deployment rather than individual bundles.

 Before concluding our discussion on Deployment Admin, we’ll discuss resource

processors. Resource processors are an important part of the Deployment Admin

specification, because they extend OSGi deployment beyond bundles.

RESOURCE PROCESSORS

Deployment Admin can process bundle resources in deployment packages by itself;

but when it comes to other types of resources, it needs to enlist the help of Resource-

Processor services. A ResourceProcessor is a service used to appropriately process

arbitrary resource types; it implements the following interface:

Installs
deployment

package

D

http://felix.apache.org/site/apache-felix-deployment-admin.html
http://felix.apache.org/site/apache-felix-deployment-admin.html

336 CHAPTER 10 Managing applications

public interface ResourceProcessor {
 void begin(DeploymentSession session);
 void process(String name, InputStream stream)
 throws ResourceProcessorException;
 void dropped(String resource) throws ResourceProcessorException;
 void dropAllResources() throws ResourceProcessorException;
 void prepare() throws ResourceProcessorException;
 void commit();
 void rollback();
 void cancel();
}

Deployment Admin connects resource types to resource processors using the

Resource-Processor header in the resource entry of the deployment-package mani-

fest. You use this header to specify the service PID of the needed resource processor.

These kinds of services are provided by customizer bundles delivered as part of the

deployment package.

 You indicate a customizer bundle by using the DeploymentPackage-Customizer

header in the resource entry for a bundle in the deployment package. This allows

Deployment Admin to start customizers first, so they can provide the necessary

ResourceProcessor services to handle the deployment package content. Resource

processors may result in new file system artifacts but can perform other tasks like data-

base initialization or data conversion, for example. Each nonbundle resource should

have a processor associated with it. With the necessary resource processor specified,

Deployment Admin is able to process all resource package content.

 Before processing of the deployment package starts, Deployment Admin creates a

session in which all actions needed to process the package will take place. A session isn’t

visible to clients of the DeploymentAdmin service; it’s used to join the required resource

processors to the processing of the deployment package. If an exception is raised during

a session by any of the resource processors

or the session is canceled, Deployment

Admin rolls back the changes. As we men-

tioned before, this may only be a best-

effort rollback, but it’s normally sufficient

to leave the framework in a consistent

state. If no exceptions are raised during a

session, Deployment Admin commits the

changes. During a commit, Deployment-

Admin tells all joined ResourceProcessor

services to prepare and subsequently com-

mit their changes. Figure 10.6 shows the

transactional aspects of the session.

 As you can see, this essentially pro-

vides a two-phase commit implementa-

tion. It allows ResourceProcessors to

cleanly handle rollbacks. But rolling back

Yes

No

No

Yes

Commit

Ok?

Prepare

Ok?

Begin

Operations

Roll back

Figure 10.6 Transactional aspects of a session

337Ordering bundle activation

a bundle update, as well as reinstalling a stale bundle, requires an implementation-

specific back door into the OSGi framework, because the framework specification isn’t

transactional over multiple lifecycle operations. This is why the Deployment Admin

specification doesn’t mandate full transactional behavior.

 In this section, we’ve looked at two different ways of deploying bundles. Which

approach to choose depends on your needs. OBR is geared toward discovery and

installation of bundles together with the transitive closure of their dependencies.

Deployment Admin provisions sets of bundles and their required resources as com-

plete units. These provide solutions to many of the deployment and discovery tasks

you’ll need for a management agent. Of course, if necessary, you can always use the

core OSGi API to create something for your specific needs.

 Now that you know how to deploy bundles to the OSGi framework, we need to look at

one final management-related task. After deploying a set of bundles, sometimes you need

to control their relative activation order. We’ll discuss this management activity next.

10.2 Ordering bundle activation

In certain scenarios, you may need to control the relative order in which deployed bun-

dles are activated and/or deactivated. There are some good reasons to control such

ordering, but there are many more bad ones. Best practice dictates that you should create

your bundles to be independent of activation and deactivation ordering. OSGi allows

bundles to listen for lifecycle events from other bundles because it eliminates the need

to order dependencies and allows bundles to be aware of changes and react to them.

Ordering constraints are another form of coupling among bundles, which severely limits

their ability to be reused and arbitrarily composed. A bundle shouldn’t require that func-

tionality from another bundle be available for it to be started itself; instead, it should wait

for the functionality to become available and then continue with its own functionality.

 Having said that, there are a few valid reasons why you may want to ensure that a

given bundle is activated before another. For example, you may want to implement a

splash screen to display the progress of your application’s startup. If your splash screen

is developed as a bundle, you need a way to ensure that it’s activated first. After all, what

good would a splash screen showing the startup progress be if it came up last? You can

generalize this kind of functionality as a high-priority feature, which in general

requires ordering because it needs preferred treatment. In addition to high-priority

features, ordering may be needed in two other scenarios:

■ When a bundle violates the best practices mentioned earlier and relies on

implicit activation ordering during startup. In reality, you should consider fix-

ing or replacing such a bundle; but if you can’t, then you must ensure that the

bundles it depends on are started first. Again, this is extremely bad practice,

and you should feel a generous amount of shame until the bundle is fixed.
■ When bundles can be grouped into sets with certain desirable properties. For

example, you may define a set of bundles comprising a safe mode, where you

deactivate all but a small set of trusted bundles and provide limited core func-

tionality for safety or security reasons. Other examples include diagnostic or

power save modes.

338 CHAPTER 10 Managing applications

How can you influence and control relative activation and deactivation ordering among

bundles? By using the standard Start Level Service provided by the OSGi framework.

10.2.1 Introducing the Start Level Service

The Start Level Service allows a management agent to control the relative activation/

deactivation order among bundles as well as when transitions should occur. The idea

is simple, and you may already be familiar with it from other contexts, such as in

UNIX environments where system services are started or stopped based on the sys-

tem’s current run level.

 In OSGi, the framework has an active start level associated with it, which is a non-

negative integer indicating the start level in which it’s executing. The framework starts

with an active start level of zero and, by default, transitions to an active start level of

one when it’s fully running. Each bundle also has an integer start level associated with

it, which indicates the required start level of the bundle. Only bundles with a start

level less than or equal to the framework’s active start level are allowed to be in the

ACTIVE state. The Start Level Service is represented by the following interface:

public interface StartLevel {
 int getStartLevel();
 void setStartLevel(int startlevel);
 int getBundleStartLevel(Bundle bundle);
 void setBundleStartLevel(Bundle bundle, int startlevel);
 int getInitialBundleStartLevel();
 void setInitialBundleStartLevel(int startlevel);
 boolean isBundlePersistentlyStarted(Bundle bundle);
 boolean isBundleActivationPolicyUsed(Bundle bundle);
}

This service interface supports the following operations:

■ Modifying the active start level of the framework—You can change the framework’s

active start level with setStartLevel(). Doing so results in all active bundles

with a higher start level being stopped, and bundles with a lower or equal start

level that are persistently marked as started being activated.

■ Assigning a specific start level to a bundle—You can change an individual bundle’s

start level with setBundleStartLevel(). The framework activates the bundle if

it’s persistently marked as started and the new start level is less than or equal to

the active start level or stops the bundle if the new start level is greater than the

active start level.

■ Setting the initial start level for newly installed bundles—All bundles are installed

with a default start level of 1. With setInitialBundleStartLevel(), you can

change this default value to any desired initial start level. This only impacts sub-

sequently installed bundles.

■ Querying relevant values—You can query the framework’s active start level, the

start level of a bundle, and the initial bundle start level. Additionally, you can

query whether a given bundle is persistently marked as started.

339Ordering bundle activation

What does all this mean in simple terms? The framework’s active start level and a bun-

dle’s start level control whether a bundle can be started. This means that if you explic-

itly start a bundle (invoke Bundle.start() on it), it won’t activate unless the bundle’s

start level is less than or equal to the framework’s active start level. In such a case, the

only effect of invoking Bundle.start() is that the bundle is persistently marked as

started. If the framework’s active start level is eventually changed to a greater or equal

value, the bundle will be automatically activated by the framework.

 As you can imagine, changing the active start level of the framework can have a

dramatic impact on the framework, because a lot of bundles may be started or

stopped as a result. When you use the Start Level Service to change the framework’s

active start level, all active bundles with start levels greater than the target start level

are stopped, whereas all bundles persistently marked as started with start levels

less than or equal to the target start level are started. When you invoke StartLevel.

setStartLevel(), the actual process occurs on a background thread, so the method

returns immediately. The background thread effectively increments or decrements

the current active start level one step at a time, depending on whether the new active

start level is greater than or less than the current active start level, respectively. At each

step, the background thread starts or stops the bundles at that level until the new tar-

get level is reached.

10.2.2 Using the Start Level Service

To illustrate how you use the Start Level Service, you’ll add startlevel and

bundlelevel commands to the shell. These two commands, implemented in the fol-

lowing listing, perform the four functions mentioned earlier.

package org.foo.shell;

import java.io.PrintStream;
import org.osgi.service.startlevel.StartLevel;

public class StartLevelCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)
 throws Exception {
 if (args == null) {
 out.println(getStartLevelService().getStartLevel());
 } else {
 getStartLevelService().setStartLevel(
 Integer.parseInt(args.trim()));
 }
 }
...
}
...

public class BundleLevelCommand extends BasicCommand {

 public void exec(String args, PrintStream out, PrintStream err)

Listing 10.5 Start Level Service shell commands example

Prints
framework’s
active start
levelB

340 CHAPTER 10 Managing applications

 throws Exception {
 StringTokenizer tok = new StringTokenizer(args);
 if (tok.countTokens() == 1) {
 out.println("Bundle " + args + " has level " +
 getStartLevelService().getBundleStartLevel(
 getBundle(tok.nextToken())));
 } else {
 String first = tok.nextToken();
 if ("-i".equals(first)) {
 getStartLevelService().setInitialBundleStartLevel(
 Integer.parseInt(tok.nextToken()));
 } else {
 getStartLevelService().setBundleStartLevel(
 getBundle(tok.nextToken()), Integer.parseInt(first));
 }
 }
 }
...
}

Executing the startlevel command without an argument prints the framework’s

active start level B. You implement this with the StartLevel.getStartLevel()

method. If the startlevel command is passed an argument, the new active start level

is parsed from the argument, and you call the StartLevel.setStartLevel() method,

which causes the framework to move to the specified active start level.

 Next, the bundlelevel command allows you to set and get the start level of an indi-

vidual bundle. When the command is given only one argument, you use the argument

as the bundle identifier and retrieve and output the associated bundle’s start level

with StartLevel.getBundleStartLevel() C. You add a -i switch to the command to

set the initial bundle start level using the StartLevel.setInitialBundle-

StartLevel() method. Finally, you add the ability to change an individual bundle’s

start level by using the StartLevel.setBundleStartLevel() method.

 When the framework’s active start level is changed, the background thread doing

the work fires a FrameworkEvent.STARTLEVEL_CHANGED event to indicate that it’s fin-

ished doing the work. Here’s a simple session demonstrating what you can do with

these commands.

-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
-> startlevel
1
-> bundlelevel -i 2

Listing 10.6 Using the startlevel and bundlelevel commands

Outputs bundle’s
start level

C

341Ordering bundle activation

-> install file:foo.jar
Bundle: 3
-> start 3
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [INSTALLED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo
-> startlevel 2
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [ACTIVE] Foo Bundle
 Location: foo.jar
 Symbolic-Name: org.foo.foo
-> bundlelevel 3 3
-> bundles
 ID State Name
[0] [ACTIVE] System Bundle
 Location: System Bundle
 Symbolic-Name: system.bundle
[1] [ACTIVE] Simple Shell
 Location: file:org.foo.shell-1.0.jar
 Symbolic-Name: org.foo.shell
[3] [RESOLVED] Foo Bundle
 Location: file:foo.jar
 Symbolic-Name: org.foo.foo

In this example session, you first use the startlevel command to display the frame-

work’s current active start level, which is 1 by default. You use the bundlelevel com-

mand with the -i switch to set the initial bundle start level of installed bundles to 2.

Subsequently, when you install and start the foo bundle, you can see from the follow-

ing bundles command output that it’s not started yet. This is expected, because the

bundle’s start level is 2, but the framework’s active start level of 1 is less than that. You

raise the framework’s active start level to 2, which ultimately causes the foo bundle to

be started. Using the bundlelevel command to set the foo bundle’s start level to 3

stops the bundle again.

 That’s all there is to the Start Level Service. You’ll not likely need this service often,

because bundle activation ordering isn’t good practice, but it can come in handy in

certain situations. We’ve finished covering application management; let’s summarize

what we’ve discussed.

342 CHAPTER 10 Managing applications

10.3 Summary

In this chapter, we discussed how to manage your OSGi-based applications. We cov-

ered the following issues:

■ One of the key management tasks is deploying bundles to the OSGi framework.

You can use multiple techniques to do so, including rolling your own approach

or using technologies like OBR and Deployment Admin.

■ OBR focuses on discovering and deploying bundles and the transitive closure of

their dependencies, whereas Deployment Admin focuses on defining and

deploying sets of bundles and needed resources.

■ You can use the Start Level Service to control the relative activation order of

your deployed bundles, which may be needed in a few situations like creating

splash screens and different execution modes.

These topics have given you a fairly good foundation for managing your bundles. Now

that you know how to build and manage your OSGi applications, we’ll move into more

advanced topics, such as service-oriented component models.

Part 3

Advanced topics

In the first part of the book we looked into the core OSGi framework specifi-

cation and explained its most important features and capabilities. In the second

part of the book, we turned to the pragmatic issues of developing OSGi-based

applications. In this third and final part of the book, we’ll explore a variety of

advanced topics. To help you simplify OSGi development, we’ll introduce OSGi-

based component frameworks. These component frameworks should be inter-

esting for all OSGi developers. We’ll also look into launching and embedding

the OSGi framework, enabling security in OSGi-based applications, and develop-

ing web and distributed applications in OSGi. After completing this final part of

the book, you should have a good idea of all the possibilities that OSGi technol-

ogy provides.

345

Component models
 and frameworks

So far in this book, we’ve shown you how to develop applications using the core

OSGi framework layers: module, lifecycle, and service. In chapter 2, we mentioned

the similarities between module- and component-oriented programming. In chap-

ter 4, we mentioned how the OSGi service model can work alongside component

models. There’s obviously some degree of synergy between OSGi and component

technologies. This has led a variety of existing component technologies to integrate

with OSGi as well as a variety of new component frameworks being built on top of it.

 Component-oriented approaches have become incredibly popular in Java

development over the past decade, and a vast number of approaches are available,

This chapter covers

■ Understanding component-oriented concepts

and terminology

■ Explaining how OSGi relates to component

orientation

■ Exploring the OSGi Declarative Services

component framework

346 CHAPTER 11 Component models and frameworks

including Enterprise JavaBeans (EJB), Spring Beans, Google Guice, Service Component

Architecture (SCA), and Fractal, to name just a few. The variety and variation among

component-oriented approaches is staggering, but one thing is typically common: they

ignore or only pay lip service to modularity issues related to deployment and execution-

time verification and enforcement. This means OSGi technology provides a perfect

foundation for integrating existing component approaches or defining new ones.

 In this chapter and the next, we’ll introduce you to component orientation in gen-

eral and as it relates to OSGi technology. This chapter will cover introductory aspects

and present the first OSGi standard component framework, called Declarative Services,

which is lightweight and fairly representative of how component frameworks are inte-

grated with OSGi. In the next chapter, we’ll introduce a couple more advanced com-

ponent frameworks. We’ll reuse the example paint program to illustrate how these

component frameworks simplify OSGi-based development. Let’s start with background

information and motivation.

11.1 Understanding component orientation

Although component-oriented programming has been around for a while, there’s no

single definition for most of the concepts it embodies (which is similar to module ori-

entation). Therefore, you shouldn’t take the discussion in this section as the bible for

all component-oriented approaches. The main questions we intend to address for the

scope of this chapter and the next are, what are components, and why do we want

them? We’ll answer these questions in the following two subsections, respectively.

11.1.1 What are components?

A key aspect of all component technologies is that they describe functional building

blocks that are typically more coarse-grained than what we normally associate with

objects (although object orientation isn’t required for component orientation).

These building blocks are typically business logic; they provide functionality via inter-

faces. Conversely, components may consume functionality provided by other compo-

nents via their interfaces. Components for a given approach are usually programmed

according to a particular pattern defined by a component model. A component framework is

used to execute components.

Component model vs. component framework

A component model describes what a component looks like, how it interacts with oth-

er components, and what capabilities it has (such as lifecycle or configuration man-

agement). A component framework implements the runtime needed to support a

component model and execute the components. The relationship between the two

isn’t strictly one-to-one. For example, the Common Object Model (COM) defines a

component model that’s implemented by different component frameworks for differ-

ent platforms. Likewise, it’s also possible for a component framework to support mul-

tiple component models, such as the JBoss Microcontainer.

347Understanding component orientation

Generally speaking, components have some explicit way of declaring their provided

interfaces. This can be done through certain patterns, such as implementing an inter-

face or extending a base class, or it can be done more explicitly at execution time by

publishing provided interfaces, such as using an interface repository. Likewise, com-

ponents may have some explicit way of declaring their dependencies on the provided

interfaces of other components, such as with declarative metadata, or they may be

responsible for managing their own dependencies at execution time, such as querying

an interface repository. Often, components are packaged as independent deployment

units, such as JAR files or DLLs, but this isn’t strictly necessary.

The general approach for creating an application from components is to compose it.

This means you grab the components implementing the functionality you need and com-

pose them (match required interfaces to provided interfaces) to form an application.

Component compositions can be declarative, such as using some sort of composition lan-

guage to describe the components and bindings among them; or implicit, where the

(continued)

Component frameworks aren’t constrained by the component model they support and

may provide additional capabilities. This is common when vendors try to differentiate

implementations of standard component models; think about how Java EE applica-

tion servers try to differentiate themselves. The reality is that no clear line separates

a component model from a component framework. The important differentiation to

take away is that a component model describes what it means to be a component,

and the framework provides the runtime to execute components adhering to a com-

ponent model.

Modules vs. components

Doesn’t it sound like modules and components have a lot in common? They both pro-

vide stuff to each other and consume stuff from each other. They’re also packaged

as independent deployment units. Couldn’t these two be considered one and the same

or at least be combined? Yes, they could, but components and modules serve different

purposes and are somewhat orthogonal (they’re not completely orthogonal, because

components are made from code that can ultimately be packaged into modules).

Modules deal with code packaging and the dependencies among code. Compo-

nents deal with implementing higher-level functionality and the dependencies

among components. Components need their code dependencies managed, but they

technically don’t need a module system to do it (often it’s us programmers doing it

via the class path).

A good summary is that you can think of modules as dealing with static code and

compile-time dependencies, whereas components deal with instances and execution-

time dependencies.

348 CHAPTER 11 Component models and frameworks

composition is the deployed set of components. For

the application to execute, the application’s constitu-

ent components must somehow be loaded into the

component framework and instantiated. Figure 11.1

shows a trivial component composition.

 This description of component orientation is by

no means complete. Depending on the component

model, components may have a variety of capabili-

ties, such as explicit lifecycle control. Some compo-

nent models and frameworks differentiate between

component types and instances (for example, there

can be multiple component instances from a given type), whereas others treat them as

being the same (only one instance per component). You’ll see some of these differ-

ences rear their heads in our later discussions of specific OSGi-based component

frameworks. For now, it’s sufficient if your general understanding of component ori-

entation is as a programming approach promoting coarse-grained, composable appli-

cation building blocks. Now let’s look at why we want it.

11.1.2 Why do we want components?

The long-held promise of component orientation is that we’ll be able to create appli-

cations easily and quickly by snapping them together from readily available, reusable

components. The actual merits of this rosy view of component orientation are debat-

able, but there are benefits to be gained by adhering to a component model. First and

foremost, it promotes separation of concerns and encapsulation with its interface-

based approach. This enhances the reusability of your code because it limits depen-

dencies on implementation details.

 Another worthwhile aspect of an interface-based approach is substitutability of

providers. Because component interaction occurs through well-defined interfaces, the

semantics of these interfaces must themselves be well defined. As such, it’s possible to

create different implementations and easily substitute one provider with another. You

may have noticed that these benefits are pretty much the same as we described for

OSGi services. This is part of the reason why such a strong synergy exists between OSGi

and component technologies; more on this shortly.

 Because component models typically make the provided and required interfaces

of components explicit (or at least explicitly focus on them), you end up with more

reusable software that’s amenable to composition. And because component models

typically require a specific pattern or approach for development, your code ends up

more uniform and easier to understand. This uniformity also leads to another poten-

tial benefit: external management.

 This last point isn’t necessarily obvious; but by creating components following a

specific model, external entities can understand more about your code and poten-

tially take some tasks off your hands. For example, transactions and persistence are

handled automatically for components in EJB. Another example is distribution,

FooImpl

BarImpl

Foo

Bar

Bar 1..1

Figure 11.1 Trivial component

composition of two components:

FooImpl and BarImpl

349OSGi and components

where some component frameworks automatically make components remotely acces-

sible. And as you’ll see in this chapter, execution-time dependency management is

also possible.

 This all sounds useful, but are there any downsides to using components? Yes, there

are always issues to be considered in any architectural decision. Table 11.1 details some

general issues you should consider when choosing whether to use components.

Overall, we feel the positives far outweigh the potential negatives. Given this general

motivation for component orientation, let’s move on to discussing how all this relates

specifically to OSGi.

11.2 OSGi and components

For those reading between the lines in the last section, it may not come as a complete

surprise, but there’s a reason why the synergy between OSGi and component technol-

ogies is so strong. The core OSGi specification defines a component model and the

framework for executing the corresponding components. Yes, that’s right: OSGi devel-

opers are component developers. The type of component model defined by OSGi is a

special kind, called a service-oriented component model. Let’s take a minute to look at the

specification in this new light.

11.2.1 OSGi’s service-oriented component model

The high-level description of the OSGi component model can be understood by

equating bundles with components and services with component interfaces. We’ll put

a little more meat on this description by breaking down how the OSGi core specifica-

tion maps to the component-oriented concepts of the last section.

COMPONENTS AND THEIR INTERACTION

For a bundle to be a component, it implements a bundle activator. The activator also

allows for lifecycle management. Another capability includes external configuration

Table 11.1 Potential issues associated with component orientation

Problem Description Analysis

Bloat Some component frameworks are relatively

heavy, so they may not be appropriate for

small applications.

How complex are your application dependen-

cies? Is the extra functionality provided by a

component framework required?

Diagnosis Debugging service-dependency problems

requires a new set of tools to figure out

what’s going on when your services aren’t

published as expected.

Debugging dependency problems is often

simplified by having generic tools that can

be applied to common component models.

Side-file

syndrome

Build- or execution-time problems caused by

component configuration files becoming

stale with respect to Java source code can

be frustrating to debug.

IDE tooling can definitely help by providing

refactoring support and early analysis. A

number of projects are building in support of

component models, and they will only

increase over time.

350 CHAPTER 11 Component models and frameworks

management using BundleContext.getProperty(), although the exact details are

left to the framework implementation.

 The bundle JAR file is the independent unit of deployment for a component. In

OSGi, the logical bundle (the component) is equated with the physical bundle JAR file

(the module). Technically, this means there can be only one component per module

and, further, only one component instance. Later, you’ll see that most OSGi-based

component frameworks break this one-to-one physical-to-logical mapping, but this

mapping isn’t the important part of the OSGi component model. OSGi’s killer feature

is in the richness of its dynamic module layer. Some component models and frame-

works deal with modularity (the code level), but few if any provide such rich features.

 At the module level, as you’ve learned, bundles have a way of explicitly describing

the code they provide and require. At the component level, the core OSGi specifica-

tion doesn’t define a way for bundles to explicitly declare the services they provide

and require. Instead, these issues are left to be handled manually by the bundle at

execution time.

COMPONENT FRAMEWORK

The distinction between component model and framework is definitely blurred in the

OSGi specification, because it goes to great lengths to ensure that the component

framework has standardized behavior. This ultimately makes aspects of what might

ordinarily be thought of as belonging to the component framework part of the com-

ponent model.

 The OSGi-based component frameworks described here and in the following chap-

ter can be seen as extensions to the OSGi component model and framework. This is

sometimes confusing because the distinction of what is part of the model, the frame-

work, or components themselves isn’t always obvious. For example, the OSGi Configu-

ration Admin Service defines how bundles can be configured. But it isn’t part of the

OSGi component model, nor the OSGi component framework; it’s an agreement

among the Configuration Admin component and its client components.

 But this is how it should be. Keep the model and framework simple and small. Try

to do everything else in the layers above. The framework should be the execution

environment for components and little else.

COMPONENT COMPOSITION

Just as there isn’t an explicit way for bundles to declare their provided and required

services, the core OSGi specification doesn’t define an explicit way to compose an

application. In OSGi, the composition of a component-based application is the set of

deployed bundles. The interesting part is how the composition is constructed (match-

ing provided services to required services), which is done at execution time via the ser-

vice registry. This service-oriented interaction pattern among components is what

makes the OSGi approach a service-oriented component model.

 Using execution-time service binding means dependencies are resolved late. Fur-

ther, the use of an interfaced-based interaction via services enables substitutability of

providers. Combining late binding and provider substitutability results in a flexible

351OSGi and components

component model where compositions are malleable, because they don’t specify

explicit component implementations, nor precise bindings among them. In the OSGi

model, this also opens up the possibility of advanced scenarios based on execution-

time dynamism.

 The OSGi approach is flexible, but it’s also a little low-level. For example, although

OSGi uses an API-based approach, many modern component models use or are mov-

ing toward an API-less approach, such as using Plain Old Java Objects (POJOs) as com-

ponents. This has led to the creation of several OSGi-based component frameworks

and/or extensions to the core OSGi approach. In the next section, we’ll provide an

overview of what these additional component frameworks are trying to achieve.

11.2.2 Improving upon OSGi’s component model

The main weakness of the OSGi component model is its reliance on components man-

ually managing their own service-level dependencies, even though module-level

dependencies are automatically managed. Some of the earliest work on improving the

OSGi component model was done to address this complexity, such as by Beanome

(www.humbertocervantes.net/papers/ISADS2002.pdf) and Service Binder (www.hum-

bertocervantes.net/papers/ESEC2003.pdf). All of the component frameworks we’ll

discuss in this chapter and the next also address this issue. Because the approaches

have a lot of similarities, we’ll try to describe some of the issues in a general way here.

GENERAL APPROACH

OSGi-based component frameworks adopt the bundle JAR file as the deployment unit

for components. In general, they break the “one component per JAR file” approach of

the standard OSGi component framework and allow any number of components to be

contained in it. They all define additional, component-related metadata, which is

packaged in the bundle to describe the components contained in the bundle JAR file.

They then employ the extender pattern to listen for bundles containing components

to come and go so they can start managing the contained components, as shown in

figure 11.2. A component’s description defines which services it provides and which it

requires; we’ll go into a little more depth on this topic shortly.

Service-oriented component models

Service-oriented component models rely on execution-time binding of provided servic-

es to required services using the service-oriented interaction pattern (publish-find-

bind). Often, execution-time dynamism is also associated with service-oriented com-

ponent models, but this isn’t technically a requirement to receive some of the bene-

fits. For example, COM follows a similar approach of execution-time binding to

required components, but it doesn’t assume that these components will also come

and go during application execution. Still, following this approach allows you to treat

the deployed set of components as the application configuration, which leads to flex-

ibility in your application composition.

www.humbertocervantes.net/papers/ISADS2002.pdf
www.humbertocervantes.net/papers/ESEC2003.pdf
www.humbertocervantes.net/papers/ESEC2003.pdf

352 CHAPTER 11 Component models and frameworks

The lifecycles of components contained in a bundle are subservient to their containing

bundle, meaning that components can only be active if their containing bundle is

active. Beyond that, the lifecycle of an individual component is based on its own

dependencies and constraints. Component frameworks typically define valid and

invalid component lifecycle states based on whether a component’s dependencies are

satisfied. Because the lifecycle of the contained components is managed by the compo-

nent framework, component bundles typically don’t have bundle activators. A compo-

nent framework listens for bundle lifecycle state changes in the component bundles to

trigger management. As a result, component frameworks introduce some other sort of

callback mechanism (a lifecycle hook) for components wishing for such notification; you

can think of this as a component activator. Luckily, such lifecycle hooks are usually

unnecessary, because services and service dependencies are managed automatically,

which was the main purpose for having a bundle activator in the first place.

AUTOMATING SERVICE MANAGEMENT

The most immediate benefit of having the component framework manage service

dependencies is the simplification it brings. It removes redundant boilerplate code

for handling each service dependency, and it also eliminates some of the complex,

error-prone aspects.

 Consider a trivial example where a component FooImpl depends on service Bar

and should only publish its service when Bar is available. This is the scenario shown

in figure 11.1; the following listing shows the code necessary to achieve it using a

ServiceTracker (refer to chapter 4 for a reminder of how ServiceTracker works).

class BarTracker extends ServiceTracker {
 private final FooImpl foo;
 private final BundleContext ctx;

Listing 11.1 ServiceTracker handling one-to-one dependency on a service

OSGi
framework

Component
framework
provider

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo
Bundle-Version: 1.0
Import-Package:
 org.bar;version="[1.0,2.0)"
Component-Model:
 OSGI-INF/foo.xml

META-INF/MANIFEST.MF
OSGI-INF/foo.xml
org/foo/Foo.class
org/foo/FooImpl.class

Figure 11.2

Component frameworks in OSGi

are generally implemented as

other bundles using the extend-

er pattern. They remove boiler-

plate code from user bundles

(often using metadata files—

OSGI-INF/foo.xml in this case),

allowing the deployer to build

complex business services out

of modular building blocks.

353OSGi and components

 private LinkedList<Bar> found = new LinkedList<Bar>();
 private ServiceRegistration reg;

 BarTracker(FooImpl foo, BundleContext ctx) {
 super(ctx, Bar.class.getName(), null);
 this.foo = foo;
 this.ctx = ctx;
 }

 @Override
 public Object addingService(ServiceReference reference) {
 Bar bar = (Bar) super.addingService(reference);
 found.add(bar);
 if (foo.getBar() == null) {
 foo.setBar(bar);
 reg = ctx.registerService(Foo.class.getName(), foo, null);
 }
 return bar;
 }

 @Override
 public void removedService(ServiceReference reference, Object service) {
 found.remove(service);
 if (foo.getBar() == service) {
 if (found.isEmpty()) {
 reg.unregister();
 foo.setBar(null);
 reg = null;
 }
 else {
 foo.setBar(found.getFirst());
 }
 }
 super.removedService(reference, service);
 }
}

BarTracker tracks Bar services. If one is discovered, it checks whether this is the first

Bar service it has found C. If so, it calls the FooImpl.setBar() method prior to regis-

tering the Foo service of FooImpl. If more than one Bar service is found, backups are

stored B. If BarTracker detects that the Bar service being used has been removed D,

it replaces that service with one of the backups E. If no backup is available, it unregis-

ters the Foo service and calls the FooImpl.setBar() method with null.

 You may be looking at this code and thinking that it looks complicated. We agree

that it’s reasonably so, particularly if you also consider that it covers only a single, one-

to-one service dependency. Things get more complex (and redundant) as you get

more dependencies. OSGi-based component frameworks allow you to describe these

types of issues; then the frameworks worry about it for us. Typically, the component

frameworks let you describe the following:

■ Provided services—Services implemented by the component

■ Required services—Services needed by the component in order to provide its

services

Stores
backups

B

First Bar
service found?C

Bar service
removed?D

Replaces removed
service with backup

E

354 CHAPTER 11 Component models and frameworks

If the component’s required services are satisfied, the component framework can

instantiate the component and publish its provided services into the service registry.

The descriptions of provided services are normally straightforward (just mentioning the

interfaces under which to publish the component), but the descriptions of required ser-

vices can be rich. A service’s dependency description may include the following:

■ Service type—Actual type of required service

■ Optionality—Whether the dependency is mandatory or the component can

function without it

■ Cardinality—Whether the dependency is for a single service instance (one-to-

one) or for an aggregate number of service instances (one-to-many)

■ Lifecycle impact—Whether execution-time changes are visible to the component

(dynamic) or invalidate the entire component instance (static)

Most of these characteristics are reasonably self-explanatory. The last one, lifecycle

impact, is a little trickier. Because dynamism adds complexity, some component

frameworks allow components to control how much service dynamism a component

sees. If a component wants to treat a given dependency as having a static lifecycle, it

won’t see new services arriving after instantiation and will be completely invalidated if

a service being used goes away. On the other hand, dependencies having a dynamic

lifecycle can potentially see (and handle) service dynamism at execution time without

being invalidated. For example, you may want to create a component with an

optional, dynamic dependency on a log service. If the log service isn’t there, your

component can function without it; but if one arrives, your component can start using

it as soon as it’s available.

 Don’t worry if these service dependency characteristics are a little fuzzy at this

point; they’ll become clearer as we look into the various component frameworks in

more detail.

SIMPLIFYING OTHER MANAGEMENT AREAS

Another area where component frameworks can help in removal of boilerplate code

is in the management of component configuration. In chapter 9, you saw how you can

use the Configuration Admin Service to configure OSGi services using a simple porta-

ble model. Still, the developer must provide some boilerplate code to interact with

this service. Most component frameworks provide ways to simplify component config-

uration and interaction with the Configuration Admin Service.

 Finally, a number of component frameworks allow for custom extension points to

allow third-party providers to provide advanced capabilities such as audit manage-

ment, persistent state, and transaction management using declarative hooks (either in

user code or via side files). These sorts of capabilities turn component frameworks

into rich programming environments, allowing you to strip away the layers and focus

your code on the core of your business process without sacrificing portability.

 Having introduced component models and how they relate to modularity in gen-

eral and OSGi specifically, let’s now turn our attention to a practical demonstration of

using component models and frameworks in OSGi.

355Declarative Services

11.2.3 Painting with components

In this chapter and the next, we’ll look at three different OSGi-based component

frameworks: Declarative Services, Blueprint Container, and iPOJO. You’ll re-create the

example paint program using each of these component frameworks. For each, you’ll

have the components shown in figure 11.3, where each component is packaged in its

own bundle (although this isn’t strictly necessary).

The PaintFrame component provides a Window service and has an aggregate depen-

dency on SimpleShape services. The shape components each export a single Simple-

Shape service, with no service dependencies. The WindowListener component has a

mandatory, one-to-one dependency on a Window service; it shuts down the framework

when the window it’s bound to closes. The WindowListener also has an optional, one-

to-one dependency on a LogService to log a message when the window is closed.

 All versions of the paint program function like the original, but how they achieve

this varies quite a bit. Let’s take this high-level of view of OSGi-based component

frameworks and make it concrete by turning our attention to the first component

framework on the list: Declarative Services.

11.3 Declarative Services

The Declarative Services specification was defined by the OSGi Alliance as part of the

R4 compendium specification. It defines a lightweight approach for managing service

dependencies. The focus of the Declarative Services specification is to address three

main areas of concern, outlined in table 11.2.

 The Declarative Services specification addresses these issues by managing service

publication and dependencies for components. Managing service publication on

behalf of components allows Declarative Services to defer service creation and

improve both startup performance and the memory footprint; and managing service

Window

Window [1..1]

PaintFrame

WindowListener

Circle

Square

Triangle

SimpleShape [0..n] SimpleShape

SimpleShape

SimpleShape

LogService [0..1]

Figure 11.3 Components

used in the modified paint

application

356 CHAPTER 11 Component models and frameworks

dependencies reduces complexity. We’ll look into precisely how Declarative Services

does these things in the remainder of this chapter.

11.3.1 Building Declarative Services components

Let’s start by example. Consider the circle bundle converted to use Declarative Ser-

vices (the square and triangle bundles follow the same pattern). If you inspect the

contents of the new circle bundle in the chapter11/paint-example-ds/ directory of

the companion code, you’ll see that it has the following contents:

META-INF/MANIFEST.MF
OSGI-INF/
OSGI-INF/circle.xml
org/
org/foo/
org/foo/shape/
org/foo/shape/circle/
org/foo/shape/circle/Circle.class
org/foo/shape/circle/circle.png

If you remember the previous version, the first thing you’ll notice is that it no longer

contains a BundleActivator implementation. Interesting. If the bundle doesn’t have

an activator, how does it provide and use services? The clue you need is located in the

bundle’s manifest file, which has the following new entry:

Service-Component: OSGI-INF/circle.xml

This header is defined by the Declarative Services specification. It serves two purposes:

its existence tells the Declarative Services framework that this bundle contains compo-

nents and the referenced XML file contains metadata describing the contained com-

ponents. When a bundle is installed into the OSGi framework, the Declarative Services

framework follows the extender pattern and probes for this manifest entry. If it exists,

the Declarative Services framework takes over management of the contained compo-

nents according to the information in the referenced file.

 In Declarative Services, the convention is to place component description files in

the bundle’s OSGI-INF/ directory following an OSGI-INF/<component-name>.xml

Table 11.2 The Declarative Services’ raison d’être

Area of concern Discussion

Startup time Because many bundles have bundle activators, the initialization time of each bundle

adds to the initialization time of the entire application.

Memory

footprint

Registering services often implies the creation of many classes and objects up front

to support the services. These classes and objects needlessly consume memory and

resources even if these services are never used.

Complexity A large amount of boilerplate code is required to handle complex service-dependency

scenarios. Management of this code in small scenarios is at a minimum a chore, but

in large environments this boilerplate code represents a real risk in terms of software

maintenance.

357Declarative Services

naming convention, but the files can go anywhere within the bundle. It’s possible to

include multiple component files in a single bundle using a comma-delimited set, a *

wildcard pattern, or a mixture of the two.

This explains the lack of a bundle activator for your component bundle, but how

exactly does your SimpleShape service get published? Next, we’ll look more closely at

the component description file to see how components declare their provided services.

11.3.2 Providing services with Declarative Services

The following code snippet shows the declaration used to tell the Declarative Services

framework to publish your Circle class as a service in the OSGi service registry under

the SimpleShape interface:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
 <property name="simple.shape.name" value="Circle" />
 <property name="simple.shape.icon" value="circle.png" />
 <scr:implementation class="org.foo.shape.circle.Circle" />
 <scr:service>
 <scr:provide interface="org.foo.shape.SimpleShape"/>
 </scr:service>
</scr:component>

In this metadata, you define two properties for your component. Properties may be

used to configure a component (which we’ll look at shortly), but they also act as ser-

vice properties and are automatically attached to services published by a component.

In this case, these properties are used by your paint frame to identify the shape. You

define the component’s implementation class, which must be reachable on the bun-

dle class path where this component description is located. Finally, you declare that

the component provides the SimpleShape service. Let’s now look at the Circle class.

public class Circle implements SimpleShape {
 public void draw(Graphics2D g2, Point p) {
 int x = p.x - 25;
 int y = p.y - 25;

Listing 11.2 Circle class used in the Declarative Services paint example

Fragmented components

It’s also possible to place component descriptions into bundle fragments (which we

covered in chapter 5). In this scenario, only the host bundle’s Service-Component
manifest header is read, although the XML files may reside in the bundle fragments.

A possible use case for doing this is if you want to support several different compo-

nent configuration options where you choose at deployment time which is instantiat-

ed. We don’t classify this as a recommended use case, because fragments bring in

all sorts of complex lifecycle issues and break a number of best practices with re-

spect to modular boundaries, but we cover it here for the sake of completeness.

358 CHAPTER 11 Component models and frameworks

 GradientPaint gradient =
 new GradientPaint(x, y, Color.RED, x + 50, y, Color.WHITE);
 g2.setPaint(gradient);
 g2.fill(new Ellipse2D.Double(x, y, 50, 50));
 BasicStroke wideStroke = new BasicStroke(2.0f);
 g2.setColor(Color.black);
 g2.setStroke(wideStroke);
 g2.draw(new Ellipse2D.Double(x, y, 50, 50));
 }
}

This Circle class is exactly the same as the prior version. All you do is drop the associ-

ated bundle activator and add the component description instead. Before moving on

to consuming services, let’s discuss component properties a little further.

COMPONENT PROPERTIES

For the circle component, you use the component properties to specify service prop-

erties. This follows a pattern of property propagation similar to what you saw in chap-

ter 9 for Configuration Admin, where configuration properties are attached to the

service. In the paint example, you statically declare the properties in a component

XML file using the <property> element. This is the last place a Declarative Services

framework looks for component properties. Component properties may come from

1 Properties passed to the ComponentFactory.newInstance() method (we’ll

cover component factories in section 11.3.4)

2 Properties retrieved from the Configuration Admin service using the compo-

nent name as the PID

3 Properties defined in the component description file

The priority of these properties is as listed, with the first having the highest priority.

This means properties coming from a higher-priority source override the same prop-

erty coming from a lower-priority source. This precedence behavior allows a developer

to assign default component properties, but another user or system administrator can

change the configuration at execution time to suit their specific needs.

Declarative Services have simple attribute types

One limitation arises from using Declarative Services as opposed to the core OSGi

framework API: Declarative Services components can only use service properties with

simple Java types (String [default], Long, Double, Float, Integer, Byte, Charac-
ter, Boolean, and Short). In the previous version of the paint program, you added

the shape icon object directly as a service property using the following code:

dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(this.getClass().getResource("circle.png")));

In the vast majority of situations, this limitation isn’t a big deal, but it’s something to

consider. We’ll return to this topic briefly in the next section and in the following chap-

ter when we discuss the Blueprint and iPOJO component frameworks.

359Declarative Services

Providing services is straightforward: a component declares which internal class

implements which provided service interface, and the Declarative Services frame-

work publishes the service at execution time after the bundle containing the compo-

nent descriptions is activated. What happens if the component has dependencies on

other services?

11.3.3 Consuming services with Declarative Services

To see how Declarative Services components can use services, let’s turn our attention

to the paint program’s paint frame. Again, you modify the bundle to contain a compo-

nent description in OSGI-INF/paint.xml, as shown next.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="paint"
 immediate="true">

 <scr:implementation class="org.foo.paint.PaintFrame" />

 <scr:reference
 interface="org.foo.shape.SimpleShape"
 cardinality="0..n"
 policy="dynamic"
 bind="addShape"
 unbind="removeShape"/>

 <scr:service>
 <scr:provide interface="java.awt.Window"/>
 </scr:service>

 <scr:property name="name" value="main"/>
</scr:component>

There’s quite a bit of information in this component description. Looking at some of

the aspects that are similar to the circle component, you see the component declara-

tion, but this time you assign paint as its name. You specify the component implemen-

tation class, which you indicate as providing a java.awt.Window service with a service

property, called name. You introduce a new element B, defining a “reference” (a

dependency) to a service implementing the SimpleShape interface.

 If you’re familiar with other dependency-injection frameworks, such as Spring, this

should be starting to feel familiar. You specify the method PaintFrame.addShape() to

use for injecting discovered SimpleShape services. Also, because you’re in an OSGi

environment where services can come and go, you specify the method Paint-

Frame.removeShape() to use when a shape service goes away. There are other service-

dependency characteristics, but before we go into the details of those, let’s talk more

about binding methods.

BINDING METHOD SIGNATURES

The Declarative Services specification defines the following method signatures for

binding methods:

Listing 11.3 Declarative Services’ description of PaintFrame component

Defines reference
to service

B

360 CHAPTER 11 Component models and frameworks

■ void <method-name>(ServiceReference);
■ void <method-name>(<parameter-type>);
■ void <method-name>(<parameter-type>, Map);

The first form injects the service’s associated ServiceReference into the component

instead of the service object itself. This allows the component to find out which ser-

vices are available in the framework without retrieving them. This method is typically

used in conjunction with the ComponentContext, which we’ll discuss a little later, to

implement extremely lightweight solutions where service objects are created only

when absolutely necessary.

 The second form should look familiar to most programmers who have used some

form of dependency-injection framework. Using this binding method, the Declarative

Services implementation retrieves the actual service object from the OSGi service reg-

istry and injects it into the component. The component developer may choose to

store a reference to the service object; but you must take care to dereference the ser-

vice when the corresponding unbind method is called, to prevent memory leakage.

 The third form behaves much like the second, except that the associated service

properties are also injected into the component. Because you need the service proper-

ties to retrieve the shape name and icon for the paint frame component, this is the

form you’ll use. The PaintFrame.addShape() method is as follows:

void addShape(SimpleShape shape, Map attrs) {
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);
 final Icon icon = new ImageIcon(shape.getClass().getResource(
 (String) attrs.get(SimpleShape.ICON_PROPERTY)));

 m_shapes.put(name, delegate);
 ...
}

The Declarative Services framework calls this addShape() method when any Simple-

Shape service is published in the OSGi service registry, passing in the service and the

associated map of service properties. You read the name property of the shape and

load its ImageIcon representation. As we mentioned earlier, the Declarative Services

specification is only able to handle simple property types, so in this version of the

paint frame component you have to explicitly load the resource via the shape object’s

class loader. Finally, you store a reference to the shape service object in an internal

map for use later.

 Conversely, when a shape service is removed from the service registry, the Declara-

tive Services framework invokes the PaintFrame.removeShape() method:

void removeShape(SimpleShape shape, Map attrs) {
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);

 DefaultShape delegate = (DefaultShape) m_shapes.remove(name);

 ...
}

361Declarative Services

You use the binding method form that supplies the service attributes as a map. You

use the name property from the map to figure out which component has been

removed and remove your reference to the service object from the internal map.

Now, let’s return our attention to how components describe their service dependen-

cies. So far, we’ve discussed that the component service dependency description

includes a service interface and binding methods. Other, more sophisticated depen-

dency characteristics are available.

SOPHISTICATED SERVICE DEPENDENCY CHARACTERISTICS

Many service dependencies fall into the category of being a hard dependency on a sin-

gle service object. But what if your component is different? Recall the following snip-

pet from listing 11.3:

 <scr:reference
 interface="org.foo.shape.SimpleShape"
 cardinality="0..n"
 policy="dynamic"
 bind="addShape"
 unbind="removeShape"/>

We haven’t discussed the cardinality and policy dependency characteristics yet, but

they help you address more sophisticated service dependency situations. The notion

of cardinality plays two roles in the Declarative Services specification:

■ Optionality—Cardinality values starting with 0 are treated as optional, whereas

values starting with 1 are treated as mandatory.

■ Aggregation—Cardinality values ending with 1 are treated as a dependency on a

single service object of the specified type, whereas values ending in n are

treated as a dependency on all available service objects of the specified type.

Binding method accessibility

You may have noticed that the binding methods you’ve defined have package-private

visibility. The Declarative Services specification states the following with regard to

method visibility:

■ public—Access permitted
■ protected—Access permitted
■ package private—Access permitted if the method is declared in an implementa-

tion class or any superclass within the same package
■ private—Access permitted if the method is declared in an implementation

class

As a matter of best practice, you should generally protect binding methods, because

doing so prevents external code from injecting services out of band of the main ser-

vice-registry lifecycle (assuming the Java security manager is enabled—we’ll look at

security in chapter 14).

362 CHAPTER 11 Component models and frameworks

The possible cardinality values defined by the Declarative Services specification are 0..1

(optional, singular dependency), 1..1 (mandatory, singular dependency), 0..n

(optional, aggregate dependency), and 1..n (mandatory, aggregate dependency).

From the snippet, you can see that the paint frame has an optional, aggregate depen-

dency on shape services; this means it wants to be bound to all available shape services,

but doesn’t need any to function. Cardinality is fairly straightforward, but the depen-

dency policy is a little trickier to understand.

 A component service dependency can be declared with either of two policy values:

dynamic or static. What does this mean? A dynamic policy means that the component

is notified whenever the service comes or goes, whereas with a static policy, the service

is injected once and not changed until the component is deactivated. In essence, if you

use a dynamic policy, your component needs to cope with the possible issues (such as

threading and synchronization) resulting from service dynamism. If you use a static pol-

icy, you don’t need to worry about issues related to service dynamism, but your compo-

nent sees only one view of the services published in the OSGi registry while it’s active.

 This dependency policy also relates to component lifecycle management. For

example, the paint frame component specifies a dynamic policy. Therefore, if a shape

it’s using goes away, it sees the change immediately and dynamically adapts accord-

ingly. You’ve seen this in earlier examples, where you dynamically added and removed

shapes. If this dependency were specified as static, then if a shape service being used

by the paint frame departed, the paint frame component instance would need to be

thrown away, because a static policy means the component isn’t programmed such

that it can handle service dynamism. We’ll continue this discussion about component

lifecycle in the next subsection.

 Another characteristic of service dependencies is a target filter. To illustrate, let’s

look at the WindowListener component of the modified paint program; its Declara-

tive Services component description is as follows.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="windowlistener">
 <scr:implementation class="org.foo.windowlistener.WindowListener" />

 <scr:reference
 name="window"
 interface="java.awt.Window"
 policy="static"
 cardinality="1..1"
 target="(name=main)"
 bind="bindWindow"
 unbind="unbindWindow"/>
 <scr:reference
 name="logService"
 interface="org.osgi.service.log.LogService"
 policy="dynamic"

Listing 11.4 Metadata for WindowListener with optional LogService dependency

B Window service
dependency

Specifies
filterC

363Declarative Services

 cardinality="0..1"
 bind="bindLog"
 unbind="unbindLog"/>
</scr:component>

The WindowListener component has a static, singular, and mandatory dependency on

a Window service B. You specify a target LDAP filter to locate the specific Window service

of interest C; recall that the filter references the property you associated with the

PaintFrame component’s Window service in its component description in listing 11.3.

Additionally, the WindowListener component has a dynamic, singular, and optional

dependency on a log service.

Filtering services based on attributes is relatively easy and, at first glance, dealing with

optional services appears equally easy. But there are some subtle mechanics of which

you need to be aware when using the dynamic dependency policy. Here are the rele-

vant lines from the WindowListener component.

public class WindowListener extends WindowAdapter {
...
 private AtomicReference<LogService> logRef =
 new AtomicReference<LogService>();

 protected void bindLog(LogService log) {
 logRef.compareAndSet(null, log);
 }

 protected void unbindLog(LogService log) {
 logRef.compareAndSet(log, null);
 }
...
 private void log(int level, String msg) {
 LogService log = logRef.get();

Listing 11.5 WindowListener with optional LogService dependency

Target reference properties

You saw earlier that component properties can be used to define the service proper-

ties associated with a component’s provided service. Component properties can also

be used to configure service-dependency target filters at execution time. To do this,

the property name must be equal to the name associated with the service reference

appended with .target. In this case, you could override the window target using a

property of this form:

<property name="window.target" value="(name=other)" />

This binds the window listener to windows attributed with the name=other identifier.

Doing this directly in the static component description is of relatively low value. But

if you remember the discussion on component properties, these values can also be

set at execution time via the Configuration Admin Service or using component facto-

ries, which opens up a set of interesting use cases.

364 CHAPTER 11 Component models and frameworks

 if (log != null) {
 log.log(level,msg);
 }
 }
}

Here, you use a java.util.concurrent.AtomicReference object to hold the Log-

Service, which you set in the binding methods. You use an AtomicReference to pro-

tect yourself from threading issues related to the service being bound or unbound

while your component is using it. You also need to be aware of the fact that the Log-

Service may in fact not be bound because it’s optional, so you check whether the ser-

vice is bound and log a message if so. The use of a wrapper method to achieve this is

one possible mechanism; for a more advanced solution, you could use null objects to

protect other areas of code from this execution-time issue.

 So far, you’ve seen how to describe components that publish and consume ser-

vices, but we’ve only indirectly discussed component lifecycle management. Next,

we’ll provide more details about the lifecycle of Declarative Services components.

11.3.4 Declarative Services component lifecycle

Having described your components, the next issue to consider is their lifecycle. When

are components created? When are they destroyed? Are there any callbacks at these

stages? How can you access the BundleContext if there is no BundleActivator? We’ll

deal with each of these questions in this section.

COMPONENT LIFECYCLE STAGES

In chapter 3, we introduced the bundle lifecycle: in essence, bundles are installed,

then resolved, and then activated. Declarative Services defines a similar lifecycle for

components, where they’re enabled, then satisfied, and then activated. The Declara-

tive Services specification defines the following stages to a component lifecycle:

■ Enabled—A simple Boolean flag controls whether the component is eligible for

management.

■ Satisfied—The component is enabled, its mandatory dependencies are satisfied,

any provided services are published in the service registry, but the component

itself isn’t yet instantiated.

■ Activated—The component is enabled, its mandatory dependencies are satis-

fied, any provided services are published in the service registry, and the compo-

nent instance has been created as a result of a request to use its service.

■ Modified—The configuration associated with the component has changed, and

the component instance should be notified.

■ Deactivated—Either the component has been disabled or its mandatory depen-

dencies are no longer satisfied, so its provided services are no longer available

and its component instance, if created, is dereferenced for garbage collection.

You can enable/disable a component declaratively using the enabled attribute of the

<component> XML element and programmatically using the ComponentContext

365Declarative Services

interface, which you’ll see shortly. A simple use case for this is to reduce startup time

by disabling all but a small number of components and then enabling additional

components later as needed. Similarly, neither the enabled nor satisfied stages result

in instantiating the component class in an effort to avoid unnecessary work.

 When a component is enabled, it may become satisfied. A component can become

satisfied only if all of its mandatory dependencies are satisfied. After it’s satisfied, it

may become activated if its provided service is requested. Activation results in the

component being instantiated. Each component description ultimately is reified as a

single component instance that will be managed by the Declarative Services frame-

work; by default, a one-to-one mapping exists between a component description and a

component instance.

 The component lifecycle is coupled to the lifecycle of its containing bundle. Only

components in activated bundles are eligible for lifecycle management. If a bundle is

stopped, the Declarative Services framework automatically deactivates all activated

components contained in it.

 Let’s dive into some code to see what this means in practice for the paint applica-

tion. First, let’s look at the PaintFrame class.

public PaintFrame() {
 super("PaintFrame");
...
}
...
void activate(Map properties) {
 Integer w = (Integer) properties.get(".width");
 Integer h = (Integer) properties.get(".height");

 int width = w == null ? 400 : w;
 int height = h == null ? 400 : h;

 setSize(width, height);

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 setVisible(true);
 }
 });
}

void deactivate() {
 SwingUtils.invokeLater(new Runnable() {
 public void run() {
 setVisible(false);
 dispose();
 }
 });
}
...
}

Listing 11.6 Lifecycle-related code from Declarative Services PaintFrame class

366 CHAPTER 11 Component models and frameworks

You define a default, no-argument constructor for the component class; Declarative

Services component classes must define such a constructor. You define an activate()

callback method to be invoked by the Declarative Services framework when the com-

ponent is activated, along with a corresponding deactivate() callback method to be

called when the component is deactivated.

You may be wondering about the Map passed into the activate() method, which you

use to configure the size of the component. The Declarative Services lifecycle callback

methods accept a number of different argument types to give the component addi-

tional information, which we’ll describe next.

LIFECYCLE CALLBACK METHOD SIGNATURES

The lifecycle callback methods follow the same method-accessibility rules laid out ear-

lier for binding methods. They may also accept zero or more of the following argu-

ment types (ordering isn’t important):

■ ComponentContext—Receives the component context for the component con-

figuration

■ BundleContext—Receives the bundle context of the component’s bundle

■ Map—Receives an unmodifiable map containing the component’s properties

Declarative Services callback methods

The names of callback methods (activate() and deactivate()) are defaults. If you

wish to use a different pattern or are migrating legacy code, you can define the names

of these callback methods via attributes on the <component> XML element. For ex-

ample, the following code snippet redefines the activation and deactivation methods

to be start() and stop(), respectively:

<component name="org.foo.example"
 activate="start"
 deactivate="stop">

The activation and deactivation methods are optional, so if your component has no

need to track its activation state, you can leave them out. Also, if you use the default

activate() and deactivate() method names, there’s no need to define these in

the component declaration because the Declarative Services framework will discover

them automatically.

Although it isn’t shown in the example, there’s also a callback method for the modi-

fied component lifecycle stage. Unlike the activation and deactivation methods, this

lifecycle callback has no default method name, so you must define the method name

in the <component> element, as follows:

<component name="org.foo.example" modified="modified">

This indicates that the component is interested in being notified about configuration

updates and specifies the name of the callback method.

367Declarative Services

■ int or Integer—Receives the reason why the component is being deactivated,

where the value is one of the following reasons:

◆ 0—Unspecified.
◆ 1—The component was disabled.
◆ 2—A reference became unsatisfied.
◆ 3—A configuration was changed.
◆ 4—A configuration was deleted.
◆ 5—The component was disposed.
◆ 6—The bundle was stopped.

Of these arguments, you know little yet about ComponentContext. What is its purpose?

USING THE COMPONENTCONTEXT

The Declarative Services framework creates a unique ComponentContext object for

each component it activates. This object plays a role for components similar to the

role the BundleContext object plays for bundles—it provides access to execution envi-

ronment facilities. The ComponentContext interface is as follows:

public interface ComponentContext {
 public Dictionary getProperties();
 public Object locateService(String name);
 public Object locateService(String name, ServiceReference reference);
 public Object[] locateServices(String name);
 public BundleContext getBundleContext();
 public Bundle getUsingBundle();
 public ComponentInstance getComponentInstance();
 public void enableComponent(String name);
 public void disableComponent(String name);
 public ServiceReference getServiceReference();
}

The getProperties() method allows a component to access its configuration proper-

ties. The methods for locating services provide an alternative approach to service

injection for using services; this alternative strategy is discussed in the “Lookup strat-

egy” sidebar. The getBundleContext() method provides access to the containing bun-

dle’s BundleContext object. The getUsingBundle() method is related to component

factories, which we’ll discuss later.

 The getComponentInstance(), enableComponent(), and disableComponent()

methods provide a component with a way to programmatically control the compo-

nent lifecycle; we’ll discuss them further in the next section. Finally, the getService-

Reference() method allows a component to access the ServiceReference of this

component if it provides a service.

 In the general case, whether or not a component is satisfied is dictated by whether

or not its service dependencies are satisfied. But this isn’t the only type of dependency

considered by Declarative Services; another situation is where a component is depen-

dent on its configuration properties.

368 CHAPTER 11 Component models and frameworks

CONFIGURATION POLICY

We’ve mentioned that it’s possible to configure a Declarative Services component by

specifying an entry in the Configuration Admin Service with PID corresponding to the

name of the component. These configuration properties override any specified in the

XML description and provide a way to tweak the behavior of a component at execu-

tion time. It’s also possible to define a policy for how dependencies on configuration

properties should be handled.

 Declarative Services defines the following configuration policies: optional,

require, and ignore. The default configuration policy is optional, indicating that

Configuration Admin will be used if available. If require is specified, the component

Lookup strategy

So far in this section, we’ve shown you how to inject services into components using

binding methods. This pattern is known as the Hollywood principle: “Don’t call us,

we’ll call you.” In some circumstances, it’s useful to apply the Reverse Hollywood

principle, “Do call us, we won’t call you.”

The Declarative Services specification supports both approaches; it refers to the in-

jection approach as the event strategy and the alternative as the lookup strategy. The

event strategy provides instant notification about service changes, whereas the look-

up strategy is able to defer service creation until the last minute.

The family of locateService() methods on the ComponentContext facilitate the

lookup strategy. These methods each take a String argument that specifies the name

of the associated service reference in the component description XML file to retrieve.

For example, you could change the paint frame description to be the following:

<scr:reference
 interface="org.foo.shape.SimpleShape"
 cardinality="0..n"
 policy="dynamic"
 name="shape"/>

In this case, you don’t have bind or unbind methods. To access any bound services,

you need to use the ComponentContext, like this:

void findShapes(ComponentContext ctx) {
 Object[] services = ctx.locateServices("shape");
 for (Object s : services) {
 SimpleShape shape = (SimpleShape) s;
 }
}

It’s possible to mix and match these approaches. You can use the event strategy for

some service references and the lookup strategy for others. You can even use a hy-

brid approach, using the event strategy with a binding method accepting a Service-
Reference combined with the locateService(String, ServiceReference)
method of the ComponentContext. This option provides a highly responsive but light-

weight approach to service binding.

369Declarative Services

won’t be satisfied until there’s a configuration for it in Configuration Admin. The

require policy is useful in cases where no sensible default value can be given for a

configuration property (such as a database URL). The ignore policy indicates that

only the declared component properties should be considered.

 You specify configuration policies like this:

<component name="org.foo.example" configuration-policy="require">

In this example, the component requires a corresponding configuration to be present

in Configuration Admin, or else it can’t be satisfied.

Components can be satisfied by the availability of their service dependencies and con-

figuration, but the Declarative Services framework still won’t activate (instantiate) a

component until another bundle requests its provided service. What about a compo-

nent that doesn’t provide a service? How will it ever be activated?

IMMEDIATE VS. DELAYED COMPONENTS

Many components, such as the shape components in the paint example, exist solely to

provide a function to other parts of an application. If no other deployed bundles con-

sume the services these bundles provide, there’s no need to expend resources activat-

ing the associated components. Components that provide services are delayed by

default in Declarative Services. Sometimes this delayed behavior is problematic. If you

look again at the component declaration of the paint frame, you see that it specifies

the immediate="true" attribute:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="paint"
 immediate="true">

This turns off the delayed behavior and forces the Declarative Services implementa-

tion to construct the paint frame as soon as it’s satisfied. Because the paint frame com-

ponent provides a service, it would be delayed by default. You need it to be immediate

Configuration Admin Service factories

In chapter 9, you saw that it’s possible to use the Configuration Admin Service with

one of two types of managed services, either a ManagedService or a Managed-
ServiceFactory. The first takes a single configuration and uses it to configure a ser-

vice provided by a bundle; the second allows multiple configurations to be created—

each corresponding to a new service.

This pattern can be applied to Declarative Services components. If the component

name matches a registered PID for a nonfactory configuration, the Declarative Services

framework creates a single instance of the component. But if the component name

matches a registered factory PID, a new component instance is created for each con-

figuration associated with the factory PID. This provides a lightweight way of construct-

ing several different component instances from a common component definition.

370 CHAPTER 11 Component models and frameworks

because you need it to create the window for the paint program. For components that

don’t provide a service, it’s an error to set immediate to false because they would

never be instantiated; instead, they’re implicitly defined as immediate components.

COMPONENT FACTORIES

The final tool in the Declarative Services toolbox is component factories. These pro-

vide a programmatic mechanism to instantiate new instances of components. In many

ways, this is similar to the factory PID mechanism of creating components mentioned

earlier; but instead of going via the ConfigurationAdmin interface, the Declarative

Services specification provides a mechanism to declare a component as explicitly pro-

viding a factory API, which is then manipulated by a secondary service to construct

actual instances of the components.

 To see how this works, let’s consider a slight variation of the original paint example

where a shape component factory is registered to provide shape components on

demand. You create a component factory by declaring the component using the

factory=<factory.identifier> attribute on the top-level component declaration:

<scr:component xmlns:scr=http://www.osgi.org/xmlns/scr/v1.1.0
 factory="shape.factory" name="shape">

This results in the Declarative Services framework publishing a ComponentFactory ser-

vice into the service registry. Component factory services can be used like any normal

services; for example, client code wishing to be injected with this component factory

can do the following:

 <reference
 name="shape"
 interface="org.osgi.service.component.ComponentFactory"
 target="(component.factory=shape.factory)"
 cardinality="1..1"
 policy="static"
 bind="addShapeFactory"
 unbind="removeShapeFactory"/>

Here the target attribute of the reference element is set to the name of the factory

attribute of the declared component. To create a new shape instance, you use the fol-

lowing code.

import org.osgi.service.component.ComponentFactory;

public class ShapeManager {
 private AtomicReference<ComponentFactory> factoryRef =
 new AtomicReference<ComponentFactory>();

 void addShapeFactory(ComponentFactory factory) {
 factoryRef.set(factory);
 }

 void removeShapeFactory(ComponentFactory factory) {
 factoryRef.set(null);

Listing 11.7 Using a component factory

Registers
component factory

B

371Summary

 }

 public void createShape(String name) {
 ComponentFactory factory = factoryRef.get();
 if (factory == null)
 throw new IllegalStateException("No factory registered");

 Hashtable config = new Hashtable();
 config.set("name", name);
 factory.newInstance(config);
 }
}

The component factory is registered with the ShapeManager component using callback

methods B. You use the factory.newInstance() method to instruct the Declarative

Services runtime to build another instance of a shape with the specified name C, which

will then be registered in the OSGi registry as before.

This concludes our introduction to component models in OSGi and review of the Declar-

ative Services specification. If you want a closer look at the Declarative Services version

of the paint program, go to the chapter11/paint-example-ds/ directory of the compan-

ion code. Type ant to build the example and java -jar launcher.jar bundles to run

it. The example uses the Apache Felix Service Component Runtime (SCR; http://

felix.apache.org/site/apache-felix-service-component-runtime.html) implementation

of Declarative Services.

11.4 Summary

In this chapter, we reviewed the general principles and motivation of component-

oriented programming and looked at how components and modules intersect and

interact in an OSGi context. The topics we discussed included the following:

■ Components are application building blocks that adhere to a component

model.

■ Components further support separation of concerns by separating interface

from implementation.

■ Components support external management of concerns, allowing you to

offload mundane and potentially error-prone tasks to component frameworks.

■ The OSGi framework is a component framework, where bundles are equivalent

to components that interact via services.

Builds shape
instance

C

Component factories vs. Configuration Admin Service factories

The component factory provides an alternative mechanism to the Configuration Ad-

min managed service factory approach mentioned earlier. Which approach you take

is largely a matter of preference. Note that the component factory approach and the

managed service factory approach are mutually exclusive: it’s not possible to create

a component factory that is instantiated by a factory PID.

http://felix.apache.org/site/apache-felix-service-component-runtime.html
http://felix.apache.org/site/apache-felix-service-component-runtime.html

372 CHAPTER 11 Component models and frameworks

■ Additional, more advanced component frameworks can be layered on top of

the OSGi framework to further enhance the core component model.

■ Declarative Services is an OSGi standard component framework that manages

service publication, service dependencies, and configuration dependencies on

behalf of components.

Component orientation in general and Declarative Services in particular are worth-

while approaches when you’re working with OSGi. In the next chapter, we’ll push even

further by looking at two more advanced component frameworks, in case Declarative

Services doesn’t address all your needs.

373

Advanced
 component frameworks

In the last chapter, we introduced you to component-oriented programming and

how it relates to OSGi. We also introduced a lightweight component framework

defined by the OSGi Alliance, called Declarative Services, which you used to re-

create your paint program. Declarative Services is just one possible component

framework for OSGi. In this chapter, we’ll introduce you to two more: Blueprint

and iPOJO. These component frameworks provide more advanced capabilities than

Declarative Services.

 The numerous component frameworks for OSGi may at first seem daunting,

but the good news is that you aren’t necessarily constrained to a single decision for

all time. Choose whichever one seems best to you now. We’ll show at the end of

This chapter covers

■ Exploring the OSGi Blueprint component

framework

■ Exploring the Apache Felix iPOJO component

framework

■ Using Declarative Services, Blueprint, and

iPOJO in a single application

374 CHAPTER 12 Advanced component frameworks

this chapter that it’s possible to have different component frameworks collaborate in

a single application.

 Let’s get started with the Blueprint component framework.

12.1 Blueprint Container

One of the popular component frameworks in Java today is Spring Beans. The Blue-

print Container specification (Blueprint for short) from the OSGi R4.2 Enterprise

specification is based heavily on the Spring/OSGi integration work done in Spring

Dynamic Modules. One benefit of standardizing this work is that it has resulted in sev-

eral implementations of this specification from other vendors, including the Apache

Aries and Eclipse Gemini projects.

Let’s look into the Blueprint architecture, after which we’ll discuss how you can build

the paint program using Blueprint.

12.1.1 Blueprint architecture

Blueprint defines a component in terms of a number of elements, each of which has

an underlying manager in the Blueprint component container. Each Blueprint com-

ponent definition can contain zero or more of the managers listed in table 12.1.

Table 12.1 Blueprint component container managers

Manager Description

Bean Provides components with the same basic semantics as Spring beans:

■ Construction via reflective construction or static factory methods

■ Support for singletons or prototype instances

■ Injection of properties or constructor arguments

■ Lifecycle callbacks for activation and deactivation

Reference Gets a single service from the OSGi service registry for the component based on the

service interface and an optional filter over the service properties

One to rule them all?

It may seem confusing that the OSGi Alliance has defined two “standard” component

frameworks: Declarative Services and Blueprint. There’s a method to this apparent

madness. Both specifications are interoperable at execution time (see section 12.3)

via services, so either can be used to implement a given service interface without im-

pacting clients. Additionally, each specification caters to different use cases:

■ Declarative Services focuses on building lightweight components with quick

startup times.
■ Blueprint focuses on building highly configurable enterprise-oriented applications.

As usual, one size doesn’t fit all. We see this throughout computing: often there are

numerous ways to accomplish similar, but not quite identical, tasks. From the OSGi

Alliance’s perspective, it makes sense to have different communities standardizing

their approaches around OSGi technology, rather than trying to dictate a single ap-

proach for everyone.

375Blueprint Container

Let’s now look at a concrete example of Blueprint in action.

12.1.2 Providing services with Blueprint

In this section, we’ll explore how to use the Blueprint specification to build the

example paint program. As with Declarative Services from the previous chapter, we’ll

start by looking at the converted circle bundle. Again, this bundle no longer con-

tains a bundle activator class, but it does contain the circle.xml file shown in the fol-

lowing listing.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="circle" class="org.foo.shape.circle.Circle" />

 <service id="shape" interface="org.foo.shape.SimpleShape" ref="circle">
 <service-properties>
 <entry key="simple.shape.name" value="Circle"/>
 <entry key="simple.shape.icon">
 <bean class="org.foo.shape.circle.IconFactory"
 factory-method="createIcon"/>
 </entry>
 </service-properties>
 </service>
</blueprint>

Notice that Blueprint uses a different XML syntax than Declarative Services. If you’re

familiar with Spring, some of this XML should look a little familiar. For example, Blue-

print uses the <bean> element to describe components, which you use here to define

the circle component. You also use it again to specify a value for a service property.

Spring users should also be familiar with the <entry> element, which is used by

Spring and Blueprint to define the entries of map objects. You use <entry> in this

case to define the service properties for your service interface. Some less familiar

aspects are as follows:

■ The top-level <blueprint> element (with a new namespace) as compared to

the classic <beans> element from Spring

■ The <service> element, which you use to publish the bean associated with the

ref identifier circle into the OSGi service registry with the declared set of

nested service properties

Reference list Gets one or more services from the OSGi service registry for the component based on

the service interface and an optional filter over the service properties

Service Allows components to provide OSGi services

Environment Provides components access to the OSGi framework and the Blueprint container,

including the bundle context of the component

Listing 12.1 Blueprint component definition for the circle component

Table 12.1 Blueprint component container managers (continued)

Manager Description

376 CHAPTER 12 Advanced component frameworks

Let’s dig a little deeper into the details of precisely how you provide services using

Blueprint.

BLUEPRINT SERVICE ATTRIBUTES

At a glance, there appear to be only syntactic differences between the Declarative Ser-

vices version of this component and the Blueprint one. There’s one big functional dif-

ference: the ability to define complex attribute objects. Blueprint introduces a factory

bean concept, which you use in the example to create an ImageIcon service property.

The code required to implement the factory bean is

public class IconFactory {
 public static ImageIcon createIcon() {
 return new ImageIcon(IconFactory.class.getResource("circle.png"));
 }
}

This factory bean allows you to provide a class to perform the nontrivial actions

required to create an ImageIcon from the XML model. The factory-bean pattern also

lets Blueprint create objects with nontrivial constructors and use them in the compo-

nent as services, parameters, or service properties.

SERVICE INTERFACES

To provide the circle’s SimpleShape service, you directly specify the interface name as

an attribute of the <service> element. Blueprint supports a couple of other options

for supplying the service interface: the <interfaces> element and the auto-export

attribute. To demonstrate, consider the following trivial XML bean definition:

<bean id="fooImpl" class="FooImpl"/>

This corresponds to a class definition like this:

public class FooImpl implements Foo { ... }

Given this bean and class definition, you can describe the component’s provided Foo

service in any of the following equivalent ways:

■ <service id="foo" ref="fooImpl">
 <interfaces>

 <value>com.acme.Foo</value>

 </interface>

</service>
■ <service id="foo" interface="com.acme.Foo" ref="fooImpl"/>
■ <service id="foo" auto-export="interfaces" ref="fooImpl"/>

The first is the longhand form of a service definition, which allows a Blueprint compo-

nent to export more than one interface for a given bean. The second is the shorthand

form for explicitly exporting a single service interface. The last is an automatic form,

where the service manager reflectively calculates the interfaces under which the bean

should be registered. For this last form, you must specify one of the following auto-

export attribute values:

377Blueprint Container

■ disabled—No autodetection of service-interface names is undertaken; the

interface names must be explicitly declared. This is the default mode.

■ interfaces—The service object is registered using all of its implemented pub-

lic Java interface types, including any interfaces implemented by super classes.

■ class-hierarchy—The service object is registered using its actual type and any

public supertypes up to the Object class (not included).

■ all-classes—The service object is registered using its actual type, all public

supertypes up to the Object class (not included), as well as all public interfaces

implemented by the service object and any of its super classes.

After you’ve described your component and the services it provides in your XML

description, you need some way to tell the Blueprint implementation about it. As with

Declarative Services, Blueprint introduces a new manifest header to reference the

component description file. If you examine the circle bundle’s manifest, you see it has

the following entry:

Bundle-Blueprint: OSGI-INF/circle.xml

Following the same approach as Declarative Services, Blueprint employs the extender

pattern and probes bundles to determine if they contain this manifest header. If so,

the Blueprint implementation manages the contained components; if not, the bundle

is ignored.

A limitation for providing services

Blueprint requires using Java interfaces for services, whereas basic OSGi and Declar-

ative Services allow (but don’t recommend) you to use a Java class as a service. You

may wonder why Blueprint requires services to be interfaces. Blueprint injects servic-

es into components using dynamic proxies (java.lang.reflect.Proxy), which re-

quire interfaces. We’ll discuss Blueprint’s use of proxies more later.

Fragmented components

The Bundle-Blueprint header can take one of a number of forms:

■ Absolute path—The path to a resource on the bundle class path. For example:

Bundle-Blueprint: OSGI-INF/circle.xml.
■ Directory—The path to a directory on the bundle class path. Here, the path must

end in a slash (/). For example: Bundle-Blueprint: OSGI-INF/.
■ Pattern—The last component of the path specifies a filename with an optional

wildcard. The part before is the path of the directory in the bundle class path.

For example: Bundle-Blueprint: OSGI-INF/*.xml.

One interesting point to note is that a single logical component can be defined over

many Blueprint XML files. This idea is borrowed from Spring Beans, where it’s useful

if you need to switch the behavior of a component in different environments—say, for

local testing versus enterprise deployment.

378 CHAPTER 12 Advanced component frameworks

We’ve covered the basics of providing services with Blueprint; next, let’s look at how

you consume them.

12.1.3 Consuming services with Blueprint

Blueprint tries to simplify dealing with

the dynamic nature of OSGi services by

using a proxy approach, instead of bind-

ing components directly to an OSGi ser-

vice. The injected proxy is backed by

actual service objects from the service

registry, as shown in figure 12.1.

 Service proxies are injected into

Blueprint components using either the

reference or reference-list manager.

Let’s look into both.

BLUEPRINT REFERENCES A, B, C’S

The easiest way to demonstrate service reference behavior is with a simple example of

injecting a service A into a client B. The following code defines the service interface:

public interface A {
 void doit();
}

And here’s the simple client:

public class B {
 private A a;
 public void setService(A a) { this.a = a }
 public void someAction() { a.doit(); }
}

In this example, you have a class B that depends on a service A, which will be injected

via a setService() method. In Blueprint, you can express this dependency as

<reference id="a" interface="A"/>
<bean id="b" class="B">
 <property name="service" ref="a"/>
</bean>

(continued)

Recall from chapter 5 that we discussed bundle fragments. With fragments, it’s pos-

sible to define different component configurations by installing different fragments

into the OSGi framework, where the host bundle is the base component bundle. In

real-world scenarios, you can use this approach to specify entirely new object graphs

or service relationships. This is potentially powerful but also very low level because

it relies on intimate knowledge of the components being extended in this fashion.

Thus you should use this feature with care.

Bar

Bar

Foo

Bar 1..1

Barlmpl

Barlmpl

Foolmpl

Blueprint
proxy

BarImpl1

BarImpl2

Figure 12.1 Blueprint injects a proxy object, which

masks changes in the OSGi service registry. If the

underlying service provider goes away and returns,

the client code is insulated from this dynamism.

379Blueprint Container

Given this declaration, the Blueprint container knows it must inject an instance of A

from the service registry into the component by calling the setService() method. It’s

also possible for Blueprint to inject the service proxy via a constructor. The following

class C has a dependency on service A, which is injected via a constructor argument:

public class C {
 private A a;
 public C(A a) { this.a = a }
 public void someAction() { a.doit(); }
}

In this case, the Blueprint service-dependency description looks like this:

<reference id="a" interface="A"/>
<bean id="c" class="C">
 <argument ref="a"/>
</bean>

What if your client code doesn’t depend on a single service instance, but instead wants

to aggregate several service instances? The following example shows a class D that

aggregates many A services from the OSGi service registry:

public class D {
 private List<A> list;
 public void setServices(List<A> list) { this.list = list }
 public void someAction() {
 for (A a : list) {
 a.doit();
 }
 }
}

In this case, class D is injected with a proxied list that aggregates the OSGi services.

Changes in the OSGi service registry are reflected in the list. New services are

appended to the end of the list, and old services are removed. The XML to describe

this sort of dependency in Blueprint is as follows:

<reference-list id="a" interface="A"/>
<bean id="d" class="D">
 <property name="services" ref="a"/>
</bean>

This is similar to the previous dependency on a single service. The difference is that

you replace the XML <reference/> element with the <reference-list/> element.

Proxies and service dynamism

Blueprint uses proxies to mask OSGi service dynamism so you don’t have to worry

about the concurrency issues in your code. This approach can’t solve all issues re-

lated to dynamism. For example, in this static view of services, what happens if the

underlying service goes away and no replacements are available? In this case, the

service proxy blocks the calling thread, waiting for a replacement service, and will

eventually throw an org.osgi.framework.ServiceUnavailableException after a

certain timeout period if no replacement service arrives.

380 CHAPTER 12 Advanced component frameworks

This covers the basics of service injection. Now let’s look at how Blueprint lets compo-

nents have a dynamic view of services using reference listeners.

REFERENCE LISTENERS

Reference listeners allow a component to receive services via bind and unbind call-

backs. Consider the following example:

public class E {
 private volatile A a;
 public void addService(A a) { this.a = a }
 public void removeService(A a) { this.a = null }
 public void someAction() {
 A a = this.a;
 if (a != null) a.doit();
 }
}

In this example, class E receives callbacks via the addService() and removeService()

methods when an A service is registered or unregistered in the OSGi service registry,

respectively. The body of the someAction() method must guard against the fact that the

service may be null. You express this sort of dependency in Blueprint XML as follows:

<bean id="e" class="E"/>
<reference id="a" interface="A">
 <reference-listener
 bind-method="addService"
 unbind-method="removeService"
 ref="e"/>
</reference>

A reference-listener callback can have any of the following signatures, which have the

same semantics as their Declarative Services equivalents (from the last chapter):

■ public void <method-name>(ServiceReference)
■ public void <method-name>(<parameter-type>)
■ public void <method-name>(<parameter-type>, Map)

One issue to keep in mind: the Blueprint specification mandates that binding meth-

ods have public method access. Although the risk is probably minor in most scenar-

ios, it does open Blueprint components exposed as services to the possibility that

external code using reflection can inject dependencies even if a security manager is

(continued)

This also applies to the reference-list approach of aggregating services. The Blueprint

specification ensures that the hasNext() and getNext() operations are safe with

respect to changes in the OSGi service registry. But if a service is removed and has-
Next() has already been called, a dummy object is returned that throws Service-
UnavailableExceptions when any methods are called, instead of throwing a

ConcurrentModificationException during the iteration. These types of issues

aren’t specific to Blueprint, but to how Blueprint handles OSGi’s service dynamism.

381Blueprint Container

enabled. Concerned users can work around this using a nonservice helper delegate

that manages the reference list—although this is a lot of work compared to marking

the methods as nonpublic.

 Let’s use your newfound Blueprint knowledge and continue to convert the paint

program to use it.

PAINTING WITH BLUEPRINT

Your paint frame component has a dependency on SimpleShape services, and it pro-

vides a Window service. The following listing provides its definition in the Blueprint

XML syntax.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="paintFrame" class="org.foo.paint.PaintFrame"
 init-method="activate"
 destroy-method="deactivate"/>

 <reference-list id="shape"
 interface="org.foo.shape.SimpleShape"
 availability="optional">
 <reference-listener
 bind-method="addShape"
 unbind-method="removeShape"
 ref="paintFrame"/>
 </reference-list>

 <service id="window"
 interface="org.foo.windowlistener.api.Window"
 ref="paintFrame"/>
</blueprint>

You begin by defining the paint frame component and specifying lifecycle methods to

be invoked by the Blueprint container after its properties have been injected; we’ll

leave the details of these for the next section. You use the <reference-list> element

at B to ask the Blueprint container to listen for all SimpleShape services it finds in the

OSGi service registry.

 Notice that you use the availability attribute on the <reference-list> ele-

ment. As with Declarative Services, Blueprint includes the notion of mandatory and

optional service dependencies, where mandatory dependencies impact the compo-

nent lifecycle and optional ones don’t. We’ll discuss this more when we cover the

Blueprint component lifecycle. Possible values for the availability attribute are

optional and mandatory; the default is mandatory.

 Nested in this <reference-list> element is a <reference-listener> element C.

This tells the Blueprint container to inject the services into the addShape() and

removeShape() methods of the paint frame component. You choose this approach

because your paint frame needs to react dynamically to the arrival and departure of

shape services.

Listing 12.2 Blueprint definition of the PaintFrame component

Listens for
SimpleShape
services

B

Injects
services

C

382 CHAPTER 12 Advanced component frameworks

 Finally, you use the <service> element to publish the paint frame bean as a service

in the OSGi service registry. Recall that you can’t register classes as services in Blue-

print; you must use an interface. As a result, you must define a new interface class to

provide the java.awt.Window methods you need to use in the window-listener compo-

nent. You define this new interface as

public interface Window {
 void addWindowListener(WindowListener listener);
 void removeWindowListener(WindowListener listener);
}

The addShape() and removeShape() methods for the paint frame component look

basically the same as the Declarative Services example, but with one minor difference.

Here’s the addShape() method:

public void addShape(SimpleShape shape, Map attrs) {
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);
 final Icon icon = (Icon) attrs.get(SimpleShape.ICON_PROPERTY);
 m_shapes.put(name, delegate);

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 //...
 }
 });
}

You’re given the Icon object directly versus having to look it up from the shape’s class

loader, as is required for Declarative Services.

 You’ve now seen how to define a component, how to publish services, and how to

consume services. The next area of the Blueprint specification we’ll explore is the

component lifecycle.

12.1.4 Blueprint component lifecycle

Similar to Declarative Services, Blueprint is responsible for managing the lifecycles of

its components. Blueprint also supports lifecycle callbacks, eager/lazy component

activation, and access to the execution-time container environment. Additionally,

Blueprint introduces some new concepts, such as service damping and grace periods.

We’ll look into each of these topics in more detail, starting with general Blueprint

component lifecycle management.

COMPONENT LIFECYCLE MANAGEMENT

Similar to Declarative Services, a Blueprint component’s lifecycle is controlled over-

all by its containing bundle’s lifecycle. For individual beans, their lifecycle is tied to

the state of their service dependencies. All mandatory service dependencies must be

satisfied for a bean to become enabled. When a bean is enabled, any service manag-

ers associated with it can register their associated service interfaces in the OSGi ser-

vice registry.

383Blueprint Container

For Declarative Services, you learned that if a mandatory service dependency is bro-

ken, the component instance immediately becomes invalid. Blueprint handles this dif-

ferently via the concepts of damping and grace periods.

SERVICE DAMPING

As we previously mentioned, Blueprint injects proxies into components instead of the

actual service objects. These proxies are the mechanism Blueprint uses to provide

service-dynamism damping; said a different way, it uses this approach to hide service

dynamism from the component.

 When a mandatory service is removed from the service registry, the Blueprint con-

tainer first stops providing any services offered by the impacted component. Addition-

ally, any attempts by the component to use the proxy associated with the missing

service block the calling thread. Blueprint proxies block for a configurable amount of

time (five minutes by default). If the timeout expires and no new service is found to

replace the missing service, the proxy throws a ServiceUnavailableException. Client

code should therefore be coded defensively to gracefully deal with execution-time

exceptions, but this is true in general and not just in Blueprint.

 The benefit of this approach is it eliminates service unpublish/publish waves rip-

pling throughout the framework during bundle updates. But if you’re unaware, it can

lead to unexpected lockups in your application, which is particularly interesting in

GUI scenarios.

 To configure the timeout behavior, you specify the timeout attribute on a service

reference. This value specifies the number of milliseconds to wait until the service

reappears. The timeout value must be equal to or greater than zero, where a timeout

of zero signifies an indefinite wait. In the window-listener component, you can see this

in action:

<reference id="window" interface="org.foo.windowlistener.api.Window"
 timeout="1">

Damping isn’t the only mechanism Blueprint employs to hide service dynamism;

another one is grace periods.

GRACE PERIODS

Normally, a Blueprint component container doesn’t enable its component until the

component’s mandatory service dependencies are satisfied. The grace period is a period

Reference listener != service dependency

One important point to note is that for a Blueprint container to treat a bean as depen-

dent on a service reference, the bean must be bound to the service via an injection

mechanism—either a property or a constructor argument. A reference-listener call-

back is not treated as an injection mechanism. So, even though a bean receives a

callback when the service appears and disappears, it won’t necessarily stop provid-

ing its services unless it has the property or argument injection relationship as well.

384 CHAPTER 12 Advanced component frameworks

of time the component container waits during component startup for mandatory ser-

vice dependencies. The grace period ends in success if all mandatory dependencies

can be satisfied or in failure if its timeout is exceeded. If the grace period was a suc-

cess, the component is enabled and its services are registered. If the grace period was

a failure, the container is destroyed and the component isn’t created. You can see how

this affects the Blueprint component lifecycle in figure 12.2.

 You can configure the grace period timeout value using directives on the Bundle-

SymbolicName manifest header in the Blueprint component bundle. For example:

Bundle-SymbolicName: com.acme.foo; blueprint.graceperiod:=true;
 blueprint.timeout:=10000

Here, you set the grace period timeout to be 10 seconds. It’s also possible to com-

pletely disable the grace period by using blueprint.graceperiod:=false. In this

case, the Blueprint container won’t wait for any mandatory service references to be

Wait bundle
state = ACTIVE

Wait for bundle
or extender to stop

Wait for bundle
or extender to stop

Wait bundle state =
ACTIVE | STARTING

YesNo

Preparing

Parsing

Track references

Register services

Instantiate

Destroy

Destroy

Creating

Created

Destroying

Destroyed

Failure

Lazy
bundle?

No wait ||
satisfied

Wait &&

not satisfied

Grace period

Grace period

Satisfied Not

satisfied

Event

Wait

Process

Entry/Exit

Decision

Failed

Figure 12.2 The Blueprint component lifecycle

385Blueprint Container

satisfied and will create any Blueprint components contained in the bundle. This

results in components being injected with service proxies, which may or may not have

backing services available. For those components without backing services for manda-

tory dependencies, the Blueprint container won’t publish their provided services.

This is similar to the case where required services depart at execution time, which

means that if any threads try to use them, those threads are blocked.

ACTIVATION CALLBACKS

In listing 12.2, you saw that the Blueprint XML declaration allows you to define call-

back methods that are invoked by the Blueprint container to initialize and destroy

beans when they’re enabled and disabled, respectively. In the paint frame component,

you use these callbacks to control when the component is visible, as shown next.

public void activate()
{
 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 setVisible(true);
 }
 });
}

public void deactivate()
{
 SwingUtils.invokeLater(new Runnable() {
 public void run() {
 setVisible(false);
 dispose();
 }
 });
}

You still have an issue regarding precisely when your component—in this case, the

paint frame—is created. We’ll deal with that next.

LAZY VS. EAGER INITIALIZATION

As with Declarative Services, Blueprint components are lazy by default, which means

components aren’t created in advance to delay class loading until a published service

is requested by another bundle. If you need your component to be created eagerly,

you can request this behavior from the container. You declare Blueprint managers as

eager or lazy using the activation attribute on the associated XML element with a

Boolean argument. For example:

<bean id="foo" class="Foo" activation="eager" />
<reference id="bar" interface="Bar" activation="lazy" />
<service id="baz" interface="Baz" activation="lazy" />

The laziness of a component is also impacted by how it provides its services. If the auto-

export attribute from section 12.1.2 is used, the Blueprint container must activate the

underlying component to perform class loading to calculate the service interfaces.

Listing 12.3 Callback methods used in the PaintFrame application

386 CHAPTER 12 Advanced component frameworks

 The final lifecycle-related issue we’ll discuss is how Blueprint components gain

access to the underlying OSGi execution environment.

ENVIRONMENT MANAGER

As you’ve seen so far, the Blueprint specification uses managers to control various

aspects (such as services, references, and beans) of a component. Each manager

defines and controls the specific lifecycle characteristics of its associated aspect. The

same pattern is applied to entities outside of the component; these are called environ-

ment managers. In this case, environment managers are effectively property-value mac-

ros. They come in four types:

■ blueprintContainer—Provides access to the Blueprint container object and

allows various forms of component introspection

■ blueprintBundle—Provides access to the Blueprint bundle’s Bundle object

■ blueprintBundleContext—Provides access to the Blueprint bundle’s Bundle-

Context object

■ blueprintConverter—Provides access to an object implementing the Con-

verter interface, which we’ll discuss shortly

Let’s look at how you use the blueprintBundleContext manager in the paint applica-

tion to access the BundleContext. The WindowListener needs the bundle context so it

can retrieve the system bundle to shut down the OSGi framework when the paint

frame is closed. In the following snippet’s WindowListener component XML descrip-

tion, you use the environment manager to inject the bundle context into the Window-

Listener class as a property:

<bean id="listener" class="org.foo.windowlistener.WindowListener">
 <property name="bundleContext" ref="blueprintBundleContext" />
</bean>

This follows the same pattern as the reference-injection mechanism of accessing ser-

vice references. The implementation code in the WindowListener class looks like this:

private BundleContext m_context;
...
public void setBundleContext(BundleContext context) {
 m_context = context;
}

The bundle context ends up being injected using an ordinary setter method.

 With this, we’ll conclude the discussion of the Blueprint version of the paint pro-

gram. To see it in action, go to the chapter12/paint-example-bp/ directory of the book’s

companion code. Type ant to build the example and java -jar launcher.jar bundles/

to run it. This example uses the Apache Aries (http://incubator.apache.org/aries/)

implementation of the Blueprint specification.

 In the final section on Blueprint, we’ll look at some other advanced features it

provides.

http://incubator.apache.org/aries/

387Blueprint Container

12.1.5 Advanced Blueprint features

The features of Blueprint we’ve described so far are largely comparable to those of

Declarative Services. But because Blueprint is an evolution of Spring Dynamic Mod-

ules, a lot of experience from that work was carried over into creating the Blueprint

specification. This heritage has resulted in some advanced concepts, such as manager

values, scopes, type converters, and metadata, which we’ll discuss in this section.

MANAGER VALUES

If you’ve developed Spring applications in the past, you likely know it’s possible to

define complex object graphs using the Spring XML model. This gives software archi-

tects a number of options when composing applications, because the overall program

structure doesn’t need to be hardcoded in Java. This is particularly useful for scenar-

ios such as desktop testing versus enterprise deployment; with just a few tweaks of

XML, you can wire together a raft of new functions without recompiling code.

 Blueprint has inherited this ability and supports several constructs in the XML

declaration:

■ <value>—An object that can be directly constructed from its text string contents.

■ <ref>—A reference to a top-level manager in the same Blueprint container.

■ <idref>—The ID of another manager that is checked by the Blueprint con-

tainer. This is the preferred mechanism to pass in a manager ID compared to an

unchecked string value, which would show up later at execution time.

■ <map>—A java.util.Map containing a sequence of associations between a key

and an object.

■ <props>—A java.util.Properties containing string keys and values.

■ <list>—A java.util.List containing other values.

■ <set>—A java.util.Set containing other unique values.

■ <array>—A primitive array containing other values.

It’s also possible to use the various Blueprint managers we’ve been discussing inline in

these constructs. Every Blueprint manager has a particular value it provides, similar to

macro expansion. You’ve already seen this in action in the way reference managers

give access to underlying service references, where the value of a service-reference

manager is either a service object or a ServiceReference to a service object. For com-

pleteness, table 12.2 lists the value objects associated with each Blueprint manager.

Table 12.2 Blueprint manager value objects

Manager Value

<bean> The instantiated object created by this bean.

<service> A proxy object wrapping the service registration created as a result of regis-

tering the service in the OSGi service registry. (A proxy is returned because

the unregister() method isn’t supported and throws an exception.)

388 CHAPTER 12 Advanced component frameworks

This capability makes it possible to define reasonably sophisticated constructions in

the component XML descriptions. Consider a contrived example in the following

XML snippet:

<bean class="com.acme.FooImpl">
 <property name="services">
 <map>
 <entry key="bar">
 <service interface="com.acme.Bar">
 <bean class="com.acme.BarImpl"/>
 </service>
 </entry>
 </map>
 </property>
</bean>

In this example, you construct a Foo object into which you inject its services property

with a Map. For the map, you set the bar key to the ServiceRegistration object for a

service Bar. The Bar service is provided by an inlined bean, constructed from the

BarImpl class. The FooImpl class looks something like this:

public class FooImpl {
 public void setServices(Map<String, ServiceRegistration> services) {
 for (Map.Entry<String, ServiceRegistration> e : services.getEntrySet())
 {
 String key = e.getKey();
 ServiceRegistration val = e.getValue();
 System.out.println("Registered service " + key + "=" + val);
 }
 }
}

Here, the FooImpl class is injected with a property whose value is wholly constructed

from the Blueprint XML model. This is definitely a contrived example, but it shows

the flexibility of the Blueprint model.

SCOPES

As with manager values, Blueprint has inherited the concept of scope from Spring

Dynamic Modules. A scope can be applied to bean and service managers; it defines

the lifetime over which the specified manager is applicable. Blueprint defines two

scopes—singleton and prototype—but they imply subtly different behavior depending

on whether they’re applied to a bean or a service manager, as shown in table 12.3.

<reference> A proxy object to the service registered in the OSGi service registry.

<reference–list> A java.util.List containing proxies to the registered services or

ServiceReferences.

Table 12.2 Blueprint manager value objects (continued)

Manager Value

389Blueprint Container

TYPE CONVERTERS

The Blueprint specification defines a rich inversion of control (IoC) framework for

wiring objects together at execution time. Often, you need to convert between types

in order to perform an injection. The most obvious example is converting from

String values in XML to integer, boolean, or other basic Java types. The Blueprint

specification defines a default set of type converters that can convert a String value to

a target typed value.

 The Blueprint specification also allows you to extend the default set of type con-

verters. Type converters are defined in the <type-converters> XML element, which is

a child element of the top-level <blueprint> element. In the <type-converters> ele-

ment, you can use <bean> or <reference> elements, which let you define local con-

verters for one particular Blueprint definition or shared converters in the OSGi service

registry. Consider the following XML snippet:

<type-converters>
 <bean class="AtomicConverter">
 <argument ref="blueprintConverter"/>
 </bean>
</type-converters>

Here, you define a type converter using the class AtomicConverter that takes a refer-

ence to the top-level Blueprint converter as an argument in its constructor. A type con-

verter doesn’t need to implement any specific interface, although it must implement

two methods:

■ canConvert(Object, ReifiedType)
■ convert(Object, ReifiedType)

The code for the atomic conversion class is shown in the following listing.

public class AtomicConverter {
 Converter bpc;
 public AtomicConverter(Converter bpc) { this.bpc=bpc; }

 public boolean canConvert(Object s, ReifiedType T) {
 return T.getRawClass() == AtomicReference.class

Table 12.3 How Blueprint scopes apply to different managers

Singleton Prototype

Bean One instance of the bean object is con-

structed when the bean is activated.

This pattern is usually applied to state-

less services and core components. This

is the default scope for bean managers.

A new instance of the bean object is constructed

each time it’s requested from the Blueprint con-

tainer using the getComponentInstance()
method. All inlined beans (which you saw in the last

subsection) are automatically prototype scope.

Service A single service object is shared by all

clients of the service.

A new service object is returned to each bundle,

which provides a similar result if your bean imple-

ments an OSGi ServiceFactory.

Listing 12.4 Converter class to coerce an Object to an AtomicReference

390 CHAPTER 12 Advanced component frameworks

 && bpc.canConvert(s, T.getActualTypeArgument(0));
 }

 public Object convert(Object s, ReifiedType T)
 throws Exception {
 Object obj = bpc.convert(s, T.getActualTypeArgument(0));
 return new AtomicReference<Object>(obj);
 }
}

The canConvert() method checks whether it can convert the supplied object to the

given reified type. The convert() method is called by the Blueprint container if the

canConvert() method returns true. The top-level Blueprint converter is injected into

the constructor of the AtomicConverter class to allow it to convert generic arguments.

For example, AtomicConverter can use the top-level converter to convert a source

object to an Integer and then create an AtomicReference to this converted object.

WARNING Type converters shouldn’t require type conversion in their initial-
ization because the state of the converter isn’t well defined at this time. The
Blueprint built-in type converter delegates to registered converters, so a call
to the converter during construction may fail because a needed type con-
verter may not have been registered yet.

Having defined this converter, any injection targeting an AtomicReference<T> value is

automatically converted into an AtomicReference of the appropriate type using the

example converter. To illustrate, consider the following code:

public class Foo<T extends Integer> {
 public Foo(AtomicReference<T> v) {}
}

Here’s the corresponding XML snippet:

<bean id="foo" class="Foo"> <argument value="6"/></bean>

This pattern of conversion is useful if you have to adapt third-party code that you can’t

change, but you nonetheless want to have a common model at execution time.

 Next, we’ll discuss metadata, which is the last advanced Blueprint feature before

we move on to the iPOJO component framework.

METADATA

Metadata is a programmatic representation of the XML description of the Blueprint

component. In Spring, the main use case for accessing metadata is to dynamically

modify the model (add new elements, modify elements, and so on) at execution time.

This forms a flexible component pipeline much like aspect weaving in Java code, but

at the component level. But in the current Blueprint specification, this model is

largely for informational purposes. Still, it’s useful because it can be used to build

diagnostic tools to analyze the structure of Blueprint components, for example.

 The Blueprint specification defines many classes to model the Blueprint compo-

nents. We won’t list every method and its meaning here, but figure 12.3 provides a

view of the Blueprint metadata interface hierarchy.

391Apache Felix iPOJO

To access the metadata model, the Blueprint specification provides the Blueprint-

Container interface, which serves a purpose similar to the ComponentContext in

Declarative Services. It has the following signature:

public interface BlueprintContainer {
 void Set getComponentIds();
 Object getComponentInstance(String id);
 ComponentMetadata getComponentMetadata(String id)
 Collection getMetadata(Class type);
}

This concludes our look at the OSGi Blueprint Container specification. We’ll now turn

our attention to the last component framework on our list: iPOJO, from the Apache

Felix project.

12.2 Apache Felix iPOJO

Outside of the OSGi Alliance, a number of different component models have been

built for or ported to the OSGi environment:

■ Google Guice peaberry (http://code.google.com/p/peaberry/)

■ ScalaModules (http://wiki.github.com/weiglewilczek/scalamodules/)

■ Apache Felix iPOJO (http://felix.apache.org/site/apache-felix-ipojo.html)

In this section, we’ll focus on iPOJO due to its novel features and because we (the

authors) are all involved in the Apache Felix project. One of the main goals of iPOJO

is to simplify creating dynamic, service-oriented applications in OSGi. The biggest dif-

ference between iPOJO and Declarative Services or Blueprint is its approach, which

includes the following:

Metadata

Null
metadata

NonNull
metadata

Props
metadata

Map
entry

Value
metadata

IdRef
metadata

Component
metadata

Collection
metadata

Map
metadata

ServiceRef.
metadata

Ref
metadata

Target Bean
metadata

Service
metadata

Reference
listener

RefList
metadata

Reference
metadata

Bean
property

Bean
argument

Registration
listener

Figure 12.3 The Blueprint metadata interface hierarchy

http://code.google.com/p/peaberry/
http://wiki.github.com/weiglewilczek/scalamodules/
http://felix.apache.org/site/apache-felix-ipojo.html

392 CHAPTER 12 Advanced component frameworks

■ Byte-code weaving—iPOJO instruments component byte code, which enables it to

provide features not possible (or easily possible) with other approaches.

■ Metadata format agnosticism—Whereas other approaches force you into using

the single approach they support to describe your components (XML, annota-

tions, or API), iPOJO allows you to use any of these approaches.

■ High level of extensibility—The component man-

agement features provided by the iPOJO com-

ponent container are implemented by handlers

from which you can pick and choose. You can

also create custom handlers for specific man-

agement tasks; see figure 12.4.

In most of the remainder of this chapter, we’ll explore

the features of iPOJO, but we won’t cover everything.

For starters, we’ll focus on using the annotation

approach for describing components, because you’ve

already seen enough XML and API. But keep in mind

that everything you do with annotations you can do

with the XML- and API-based description approaches—

it depends on your preference.

12.2.1 Building iPOJO components

iPOJO uses byte-code manipulation to instrument component class files. This instru-

mentation inserts hooks into the component class file so it can be externally man-

aged. Although iPOJO also supports execution-time byte-code instrumentation, the

simplest way to get it done is with a build-time step to process your components. To

achieve this, iPOJO integrates with Ant, Maven, and Eclipse. As an example, here’s the

Ant task for the circle bundle:

<taskdef name="ipojo"
 classname="org.apache.felix.ipojo.task.iPojoTask"
 classpath="${lib}/felix/org.apache.felix.ipojo.ant-1.6.0.jar" />
<ipojo input="${dist}/${ant.project.name}-${version}.jar"
 metadata = "OSGI-INF/circle.xml"/>

Upon completion of this build step, iPOJO has instrumented the byte code of any

components contained in the referenced bundle. The details of how iPOJO instru-

ments the component byte code aren’t as important; but for the curious, iPOJO instru-

ments all components in a single, generic way to enable intercepting member field

and method accesses. All functionality provided by the iPOJO component framework

(providing services, requiring services, and so on) is provided by handlers using these

interception hooks. The hooks themselves don’t change the component behavior; the

modified component classes behave the same as before and can still be use without

iPOJO, although they now have some code dependencies on it.

Handler

H
a

nd
lerH

a
nd

le
r

Handler

Container

POJO

Figure 12.4 iPOJO components

are an aggregation of handlers

attached to the component

container at execution time.

393Apache Felix iPOJO

In addition to instrumenting the component byte code, the iPOJO build step also

converts the component description to a canonical form. This approach offers three

benefits:

■ If you use XML to describe your components, an XML parser is needed only

during build time and not at execution time.

■ If you use annotations to describe your components, they’re needed only at

build time, and the resulting JAR file can still be used on an older JVM.

■ Parsing the resulting descriptions at execution time is more efficient, because

it’s in a simplified and less verbose form.

As with the other component frameworks, you want to achieve three main tasks with

iPOJO: publishing services, consuming services, and configuring components. Let’s

look into each of these.

12.2.2 Providing services with iPOJO

As we mentioned, iPOJO supports a variety of approaches for describing components.

For this chapter, you’ll use annotations. As before, let’s start with the circle compo-

nent; the iPOJO version of its source code is shown in the following listing. One of the

benefits of using annotations is that the metadata is closely associated with the source

code it’s describing.

@Component(immediate=true)
@Provides
public class Circle implements SimpleShape {

 @ServiceProperty(name=SimpleShape.NAME_PROPERTY)
 private String m_name = "Circle";

 @ServiceProperty(name=SimpleShape.ICON_PROPERTY)
 private ImageIcon m_icon =
 new ImageIcon(this.getClass().getResource("circle.png"));

 public void draw(Graphics2D g2, Point p) {
 ...
 }
}

Listing 12.5 iPOJO declaration of circle component type using annotations

What about that XML file?

We said you’d use annotations, but the previous Ant task references a circle.xml file.

What’s the deal?

iPOJO tries to maintain a fairly strict separation of concepts between component

types and component instances. In Declarative Services and Blueprint, a component

description is typically a component instance description, meaning it results in a com-

ponent instance. In iPOJO, component descriptions describe a component type; in-

stances must be explicitly instantiated. As you’ll soon see, the circle.xml file doesn’t

describe the component: you use it to create an instance.

394 CHAPTER 12 Advanced component frameworks

You use @Component to declare the Circle class as an iPOJO component; see the side-

bar “Immediate components and service properties” for why you use the immediate

flag. With the @Provide annotation, you indicate that your component provides a ser-

vice. You leave iPOJO the task of determining the type of the service, which defaults to

all implemented interfaces (only SimpleShape in this case).

 You use the @ServiceProperty annotation to declare the m_name and m_icon

member fields as service properties, which iPOJO automatically attaches to your pro-

vided service and even dynamically updates if the component code changes the field

values at execution time. Notice also that because you’re using annotations, which are

part of the Java source code, you can use static constant fields for the attribute names,

unlike in Declarative Services or Blueprint; this greatly reduces the risks of metadata

rot due to changing attribute names.

In listing 12.5, you use the default behavior of @Provides to tell iPOJO to register all of

the component’s implemented interfaces as service interfaces, including inherited

interfaces. You can also explicitly specify interfaces or classes to provide, as shown in

the following snippet:

@Component
@Provides(specifications=java.awt.Window.class)
public class PaintFrame extends JFrame
 implements MouseListener, MouseMotionListener {

As with Declarative Services and Blueprint, the circle bundle no longer needs to have

a bundle activator because iPOJO manages service publication. As mentioned previ-

ously, you have to modify the component’s build process to include the iPOJO Ant

task, but that’s all there is to it. iPOJO takes care of everything at execution time.

 Now, let’s look into consuming services.

Immediate components and service properties

Just as with Declarative Services and Blueprint, iPOJO delays class loading and com-

ponent instance creation for as long as possible. Sometimes this delay is inconvenient,

and you want the component created immediately. When using @ServiceProperty,

iPOJO uses the member field value as a service-property value. But if component cre-

ation is deferred (which is the default behavior), iPOJO can’t get the field value because

the field doesn’t yet exist.

As a result, iPOJO first registers the service with no service properties. When the ser-

vice is requested by another component, then the component is instantiated, which

causes the field to be initialized and added to the service. To rectify this situation,

@ServiceProperty supports a value attribute to set the default value of the service

property; but this works only for simple types, not for complex types like this exam-

ple’s icon. To deal with complex types, you need to use the immediate attribute of

@Component to tell iPOJO to instantiate the component immediately.

395Apache Felix iPOJO

12.2.3 Consuming services with iPOJO

iPOJO defines two mechanisms for injecting services into a component: method injec-

tion and field injection. In most cases, the two can be used interchangeably or mixed

and matched. In either case, a component service dependency description can

include (among others)

■ Service specification—The actual service type of interest

■ Optionality—Whether it’s mandatory (default) or optional

■ Aggregation—Whether it’s for a single service or many

■ Filter—An LDAP filter over service properties for additional constraints

■ Binding policy—How dynamism is handled with respect to the component’s life-

cycle (we’ll discuss this more when we look at the iPOJO component lifecycle)

■ Proxy injection—Whether injected services are proxied

Given the similarities between method and field injection, the approach you choose

often comes down to preference. Still, there are some things you can do only with one

or the other. For example, if you want to be notified whenever a desired service

becomes available, you need to use method injection to get a callback, which makes it

possible to react immediately to dynamic changes. Yet it’s possible to use field injec-

tion and method injection at the same time to get the best of both worlds.

We’ll first explore method injection, because it’s similar to the mechanisms you saw in

Declarative Services and Blueprint.

METHOD INJECTION

iPOJO defines @Bind and @Unbind method-level annotations to declare the binding

methods for a specific service dependency, where @Bind is associated with the method

used to inject a service and @Unbind is associated with the method used to remove a

previously injected service. These annotations can be applied to methods with any of

the following signatures:

To proxy or not to proxy

By default, iPOJO injects proxies instead of the actual service object. This creates a

managed reference to the service that can be passed around internally in the com-

ponent. iPOJO uses byte-code generation instead of Java’s dynamic proxy mecha-

nism, which improves performance and avoids the limitation of working only with

interfaces. For platforms like Android where dynamic byte-code generation isn’t sup-

ported, iPOJO reverts to Java’s dynamic proxies.

Note that iPOJO proxies aren’t like Blueprint proxies, in that they don’t do any sort of

blocking of the calling thread if no backing service is available. Instead, by default,

they hide the fact that the service is missing by using the null-object pattern, which

we’ll discuss shortly. If you’d rather not use proxies, you can disable them on a de-

pendency-by-dependency basis or completely.

396 CHAPTER 12 Advanced component frameworks

■ void <method-name>()—A parameterless binding method useful as a simple

notification mechanism.

■ void <method-name>(ServiceReference ref)—The component receives the

service reference associated with the service.

■ void <method-name>(<S> svc)—The component receives the service object.

■ void <method-name>(<S> svc, ServiceReference ref)—The component

receives the service object and its associated service reference.

■ void <method-name>(<S> svc, Map props)—The component receives the ser-

vice object and its associated service properties as a java.util.Map.

■ void <method-name>(<S> svc, Dictionary props)—The component receives

the service object and its associated service properties as a java.util.Dictionary.

In the first two cases, you need to specify the type of the service dependency using the

specification parameter in the annotation; in all the other cases, iPOJO infers the

service type from the method signature. Let’s look at some examples. The binding

methods for the window-listener component are as follows:

@Bind(filter="(name=main)")
protected void bindWindow(Window window) {
 m_log.log(LogService.LOG_INFO, "Bind window");
 window.addWindowListener(this);
}

@Unbind
protected void unbindWindow(Window window) {
 m_log.log(LogService.LOG_INFO, "Unbind window");
 window.removeWindowListener(this);
}

You annotate the bind and unbind methods right in the Java code. From the method

signatures, iPOJO infers that the type of service dependency is java.awt.Window. The

particular window service in which your window listener is interested has a name ser-

vice property with the value main, to differentiate it from other window services that

may be in the service registry. To make sure your window listener tracks the correct

window, you use the filter attribute of the binding annotation to specify an LDAP fil-

ter matching the name service property. This particular dependency is on a single ser-

vice instance, which is the default in iPOJO.

 How do you declare an aggregate dependency? You can see an example in the

iPOJO version of the PaintFrame shown in the following listing.

@Bind(aggregate=true)
public void bindShape(SimpleShape shape, Map attrs) {
 final DefaultShape delegate = new DefaultShape(shape);
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);
 final Icon icon = (Icon) attrs.get(SimpleShape.ICON_PROPERTY);

 m_shapes.put(name, delegate);

Listing 12.6 Bind and unbind methods for the iPOJO PaintFrame

397Apache Felix iPOJO

 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 ...
 }
 });
}

@Unbind
public void unbindShape(SimpleShape shape, Map attrs) {
 final String name = (String) attrs.get(SimpleShape.NAME_PROPERTY);

 DefaultShape delegate = null;

 synchronized (m_shapes) {
 delegate = (DefaultShape) m_shapes.remove(name);
 }
}

Here you declare the paint frame’s binding methods. Because the paint frame

depends on all available shape services, you use the aggregate annotation attribute to

inform the iPOJO framework. At execution time, iPOJO injects all discovered shape

services into the component. The service properties of injected services are also

needed to get the service name and icon, so you use the binding method signature

that includes the service properties.

All the component frameworks we’ve covered provide mechanisms to simplify the task

of accessing OSGi services; but accessing services is only one part of the challenge.

Another issue is dealing with the dynamic nature of services. If services can come and

go at any point, you must code a service consumer defensively. Doing so involves one

or more of the following patterns:

Bind/unbind method pairs

Conceptually, a bind method is paired with an unbind method. You aren’t technically

required to have both, but if you do, iPOJO treats them as a logical pair. What does

this mean exactly? In the previous examples, when you use an attribute (for example,

filter or aggregate) on @Bind, you don’t repeat it on @Unbind. This is because

iPOJO creates a union of attributes out of paired bind/unbind methods, so it isn’t nec-

essary to repeat the attributes. If you do repeat attributes, they must have the same

value, or iPOJO complains.

iPOJO automatically infers bind and unbind pairs based on method names. If the

method name starts with bind or unbind, the remaining part of the method name is

used as an identifier to match pairs. For example, iPOJO determines that bindFoo()
and unbindFoo() are a matched pair with an identifier of Foo. Sometimes it isn’t

possible to name your methods following the bind/unbind naming convention: for ex-

ample, if you’re dealing with legacy or third-party components. In these cases, you

can use the id annotation attribute to explicitly specify the pair’s identifier. For iden-

tifiers, you should repeat the id attribute in both the @Bind and @Unbind annotations

so iPOJO can correctly pair them.

398 CHAPTER 12 Advanced component frameworks

■ Using synchronization logic such as synchronized blocks, AtomicReference,

or CopyOnWriteArraySet

■ Using timeouts if the service removal is only temporary (during a software

upgrade)

■ Declaring dependencies as mandatory such that a component is shut down if its

dependencies become unsatisfied during execution time

iPOJO offers another option through the use of the @Requires annotation, which we’ll

look at next.

FIELD INJECTION

iPOJO defines the @Requires field-level annotation to associate a service dependency

with a component class-member field, rather than a pair of binding methods. As we

mentioned previously, iPOJO performs byte-code instrumentation on components to

enable field-access interception. For the @Requires annotation, the iPOJO framework

intercepts field access at execution time to provide components access to their

required services. At a very high level, this acts as if you’ve sprinkled your code with a

liberal number of AtomicRefererences. This ensures that the component always sees

a consistent view of the services as they appear in the OSGi service registry at a given

moment, without all the tedious boilerplate synchronization code in the source files.

 The @Requires annotation also works with collections or arrays to aggregate multi-

ple services from the OSGi service registry. In addition, it can create default objects or

null objects if an optional service isn’t available, which greatly simplifies your source

code because you don’t need to perform null checks throughout.

 Let’s look at how you can use these features in the paint program. The Window-

Listener component has an optional dependency on the OSGi Log Service. In

Declarative Services and in Blueprint, you use an AtomicReference to ensure that you

have a consistent view of the service in your component. In iPOJO, you declare the log

service dependency on a field, like so:

@Requires(optional=true)
private LogService m_log;

To access the log service, you use the field like this:

@Override
public void windowClosed(WindowEvent evt) {
 try {
 m_log.log(LogService.LOG_INFO, "Window closed");
 m_context.getBundle(0).stop();
 } catch (BundleException e) {
 } catch (IllegalStateException e) {
 }
}

In Declarative Services and Blueprint, you have to use the AtomicReference to hold

the log service and then check for null before using it. In iPOJO, you can use the log

service, because optional dependencies automatically receive a null object if no real

399Apache Felix iPOJO

service is available. A null object implements the target service interface but doesn’t

do anything meaningful.

The @Requires annotation goes even further with respect to service dynamism. The

iPOJO runtime ensures that a given field access always returns the same service instance

from the moment in time a given calling thread enters a component method and uses

a service until it ultimately exits the original entry method. This means that even if the

calling thread somehow calls out to another component and reenters the original com-

ponent, it always sees the same service instances until it exits the original component

once and for all. Essentially, iPOJO associates a shadow copy of a component’s field after

Null objects and default implementations

Unless you explicitly tell it not to do so, iPOJO injects a null object in place of missing

optional service dependencies. These null objects are created using a trivial mock

object pattern where any method that returns void takes no action, and methods that

return values return the default false, 0, or null, depending on which is appropriate.

If you’re using service proxies (which is the default), this means the service proxies

are injected with null objects if a backing service isn’t available. If you aren’t using

proxies, then your component is injected with a null object directly. This approach

saves you from having to check for null in your component code. If you don’t desire

this behavior, you can disable null object creation like this:

@Requires(nullable=false)
private Foo foo;

If you disable null objects and you’re using proxies, your component code must be

prepared to catch runtime exceptions when accessing a proxy object if the backing

service is missing (similar to the unavailable service exceptions in Blueprint and in-

dicative of OSGi service dynamism in general). If you aren’t using proxies, you’ll

need to check for null service values in your component code. When using proxies,

it’s recommended to keep the default behavior of null object creation, because the

whole point of proxies is to try to insulate the component from dynamism, but the

choice is yours.

In the case where you’re using null objects without proxies, it’s possible for your com-

ponent to determine whether it has a null object using instanceof, because all null

objects implement the Nullable interface.

As a final comment, because a null object is just a default service implementation

that doesn’t do anything, iPOJO provides one more wrinkle. You can supply your own

default service implementation instead of the normal null object:

@Requires(default-implementation=org.foo.DefaultFoo)
private Foo foo;

When you do this, iPOJO constructs an instance of the DefaultFoo class and injects

it into the proxy or component whenever a real Foo service is unavailable.

400 CHAPTER 12 Advanced component frameworks

a thread accesses it and while the thread executes inside the component. Suppose you

have a method that does something like this:

@Requires
private Foo m_foo;

public void statelessAccess() {
 m_foo.doA()
 m_foo.doB()
 m_foo.doC()
}

Accesses to m_foo always return the same service instance at the time of the first access

to m_foo. This allows iPOJO to simplify the task of dealing with stateful services in the

dynamic service environment provided by OSGi. This is cool, but it doesn’t mean you

don’t have to worry about anything! Due to dynamism, accessing a service is similar to

using remote services, which means they can throw exceptions for unknown reasons.

For example, if Foo represents some device that becomes physically disconnected, its

service methods are likely to throw exceptions when you access them. In short, you

still need to code defensively, just as in distributed computing.

 You now know how to describe your components’ provided and required services.

Like the other component frameworks you’ve seen, your components’ lifecycles are

controlled and managed according to these component characteristics. We’ll look

more deeply at the iPOJO component lifecycle next.

12.2.4 iPOJO component lifecycle

As with the other component frameworks, iPOJO component instances are either valid

or invalid depending on whether their mandatory service dependencies are satisfied.

When a component is valid, iPOJO can publish its provided services in the OSGi ser-

vice registry. When a component is invalid, iPOJO must remove its provided services

from the service registry and release the associated component instance if one was

created. At execution time, the iPOJO runtime watches for bundles containing compo-

nents to be installed into the running OSGi framework. After these bundles are acti-

vated, iPOJO takes over their management.

 Overall, the component lifecycle is fairly straightforward. iPOJO provides a number

of additional ways to impact or hook into a component lifecycle, such as service-

dependency binding policy, temporal service dependencies, lifecycle callback meth-

ods, component lifecycle participation, and bundle context access. We’ll look into

each of these.

SERVICE-DEPENDENCY BINDING POLICY

In addition to treating all service dependencies as either mandatory or optional,

iPOJO treats them as either static or dynamic; this is called a binding policy. This con-

cept is also present in Declarative Services and has the same meaning here. The best

way to understand the difference between a static and dynamic service dependency is

to consider a specific service dependency, such as an aggregate dependency on the

SimpleShape service.

401Apache Felix iPOJO

 For a component with a dynamic, aggregate dependency, iPOJO adds services to

and removes them from the component at execution time as the associated services

appear and disappear in the service registry without invalidating the component

instance (in other words, the component instance lifetime spans service dynamism).

For a component with a static, aggregate dependency, iPOJO injects the component

with a snapshot of the available services when the component instance was created.

iPOJO doesn’t inject later-arriving services; and if a service being used departs, iPOJO

invalidates the component instance and throws it away (the component instance life-

time doesn’t span service dynamism).

 The main benefit of using static service dependencies is that your component code

is simpler because it never has to worry about dealing with dynamism; but, by default,

iPOJO assumes service dependencies are dynamic. You can explicitly choose which

binding policy iPOJO uses for a given service dependency. The possible values are

as follows:

■ static—Dependencies are treated as static.

■ dynamic—Dependencies are dynamic, but not with respect to service priority

(default).

■ dynamic-priority—Dependencies are dynamic and automatically change if a

higher-priority service appears, and/or aggregate dependencies are re-sorted.

The dynamic-priority policy uses the OSGi service ranking algorithm to determine

service priority, but iPOJO also allows you to specify custom sorting algorithms based

on java.util.Comparators. You declare the binding policy with the policy annota-

tion attribute on either @Requires or @Bind:

@Requires(policy=static)
private LogService m_log;

The binding policy should be determined on a case-by-case basis for each of your com-

ponent’s service dependencies. This gives you pretty rich control over your compo-

nent’s service dependencies, but sometimes this still isn’t sufficient—for

dependencies that are potentially very short-lived, for example. For this, iPOJO sup-

ports temporal service dependencies.

TEMPORAL SERVICE DEPENDENCIES

Service dependencies are generally mandatory (they must be satisfied to instantiate the

component) or optional (they aren’t needed to instantiate the component). But some

types of service dependencies don’t fit neatly into these two categories. For example,

perhaps your component needs a specific service during startup but then never needs

it again. Such a dependency can’t be declared optional, because you need it at startup.

At the same time, if you declare it mandatory, and it goes away later, your component

instance will be invalidated even though it didn’t need the service anymore.

 In this scenario, the component only has a dependency on the service at a particu-

lar point in time. For this reason, iPOJO supports temporal service dependencies,

which don’t impact the overall component lifecycle like optional dependencies, but

402 CHAPTER 12 Advanced component frameworks

must be present when used by the component. How does iPOJO ensure this? It blocks

the calling thread if a matching service isn’t available.

 Declaring a temporal dependency is similar to a normal service dependency. Con-

sider a temporal dependency for a log service:

@Requires
private LogService m_log;

Although the name is the same, this isn’t the same @Requires annotation. The origi-

nal annotation is org.apache.felix.ipojo.annotations.Requires; this annotation

is org.apache.felix.ipojo.handler.temporal.Requires. By using it, whenever a

thread accesses m_log, it either gets a log service or blocks until one is available. You

can use the timeout annotation attribute to specify a timeout value, which when

expired results in a service exception. If you’d rather not receive an exception, you

can use the onTimeout annotation attribute to indicate that you’d rather receive a

null value, a null object, or a default implementation.

LIFECYCLE CALLBACK METHODS

iPOJO defines two method-level annotations for declaring lifecycle callback methods

in components: @Validate and @Invalidate. The @Validate annotation is applied to

component methods to be called when all mandatory service dependencies are

satisfied. For example, the paint frame component uses this mechanism to make its

frame visible:

@Validate
protected void activate() {
 SwingUtils.invokeAndWait(new Runnable() {
 public void run() {
 setVisible(true);
 }
 });
}

The @Invalidate annotation is applied to component methods to be called when any

of the mandatory service references become unsatisfied and iPOJO is going to release

the component instance. The paint frame component likewise uses this mechanism to

close and dispose of its frame:

Damping, anyone?

The behavior of iPOJO’s temporal dependencies is similar to the damping concept

used by Blueprint. Technically, if you used temporal dependencies liberally, you’d end

up with a similar effect of having all your dependencies damped. Although this is pos-

sible, it isn’t the intended use case for temporal dependencies, and we advise

against it. Generally speaking, most service dependencies are either mandatory or

optional. Temporal dependencies are for specific situations as described. The use of

damped dependencies may result in systems that exhibit odd behavior when faced

with service dynamism.

403Apache Felix iPOJO

@Invalidate
protected void deactivate() {
 SwingUtils.invokeLater(new Runnable() {
 public void run() {
 setVisible(false);
 dispose();
 }
 });
}

WARNING Be careful about using services in the @Invalidate callback,
because service departure is the likely cause of the invalidation. This means
not all service references are necessarily usable.

Callback methods such as these are nice if you want your components hooked into

their own lifecycle. But what if you want them to actively participate in it?

COMPONENT LIFECYCLE PARTICIPATION

In addition to lifecycle-callback methods, iPOJO components can directly participate

in their own instance and service-lifecycle management using the @Controller and

@ServiceController annotations, respectively. Both of these annotations can be asso-

ciated with a boolean member field in the component. For example:

public class MyComponent implements MyService {
 @Controller
 private boolean isValid = true;
 ...
}

This tells the iPOJO runtime to monitor this field to control the lifecycle of the compo-

nent. If the component sets isValid to false, iPOJO invalidates the component

instance and throws it away. You can use this approach to model exceptional condi-

tions, such as an invalid configuration with no reasonable defaults.

@ServiceController is a little more dynamic and allows the component to control

when its provided services are published:

public class MyComponent implements MyService {
 @ServiceController
 private boolean isProvided = true;
 ...
}

In this case, if the component sets isProvided to false, the iPOJO runtime removes

the instance’s service from the service registry. If isProvided is set to true again,

iPOJO publishes the service into the service registry again. You can specify the precise

service interface using the specification annotation attribute, if the component

provides more than one service. By default, @ServiceController applies to all pro-

vided services.

BUNDLE CONTEXT ACCESS

As with the other component frameworks, you can access the underlying OSGi

BundleContext object associated with the bundle containing the components. In

404 CHAPTER 12 Advanced component frameworks

iPOJO, you do so by declaring the component class with a constructor that accepts

BundleContext as a parameter. Here’s an example from the window listener:

@Component(immediate=true)
public class WindowListener extends WindowAdapter {
 private BundleContext m_context;

 public WindowListener(BundleContext context) {
 m_context = context;
 m_log.log(LogService.LOG_INFO, "Created " + this);
 }

iPOJO automatically injects the BundleContext into your component when it’s instan-

tiated. So how do you instantiate your components in iPOJO? You’ll find out next.

12.2.5 Instantiating components with iPOJO

At this point, you’ve seen how to define an iPOJO component using Java annotations,

and we’ve looked into component lifecycle issues; but, surprisingly, nothing you’ve

learned so far creates any component instances. Unlike Declarative Services and Blue-

print, where component definitions are typically treated as configured component

instances, iPOJO always treats a component definition as a type definition. The distinc-

tion is the same as between a class (type) and an object (instance).

 An iPOJO component description defines a template for creating component

instances; but creating an instance requires an extra step, much like using new in Java

to create an object. How do you accomplish this in iPOJO? There are four possibilities:

■ Static XML when the component is instrumented

■ Static @Instantiate annotation in the Java source code

■ Programmatically using an iPOJO component factory service

■ Programmatically using the ConfigurationAdmin service

We’ll look into each of these options in this section.

XML INSTANCE CREATION

Recall earlier that when we discussed setting up the build process for an iPOJO compo-

nent, you saw the following Ant task referencing a circle.xml file:

<ipojo input="${dist}/${ant.project.name}-${version}.jar"
 metadata = "OSGI-INF/circle.xml"/>

Now you can see what this file contains:

<?xml version="1.0" encoding="UTF-8"?>
<ipojo>
 <instance component="org.foo.shape.circle.Circle"/>
</ipojo>

This instructs iPOJO to create an instance of the circle component. Although the cir-

cle.xml file is contained in the same bundle as the circle component, this needn’t be

the case. The beauty of iPOJO’s strict separation between component type and

instance is that you can package all your component types into bundles, deploy which

405Apache Felix iPOJO

types you need, and then separately deploy a bundle containing an application config-

uration describing which instances of which components to create and how to config-

ure them. For example, consider the following simple component:

@Component(name="hello")
@Provides
public class HelloImpl implements Hello {
 @Property
 private String name;
 public void sayHello() {
 System.out.println("Hello my name is " + name);
 }
}

This component prints a message telling you its name, where its name is injected into

the member field name. You indicate this by using the iPOJO @Property annotation.

Here’s how to create and configure four different instances of the component:

<instance component="hello">
 <property name="name" value="David"/>
</instance>
<instance component="hello">
 <property name="name" value="Karl"/>
</instance>
<instance component="hello">
 <property name="name" value="Richard"/>
</instance>
<instance component="hello">
 <property name="name" value="Stuart"/>
</instance>

You declare four different component instances and uniquely configure each. When

the bundle containing this component configuration is activated, the iPOJO runtime

finds the component type associated with the name hello and instantiates it four

times, injecting the appropriate configuration into the corresponding instance. In

addition to simple name-value properties, iPOJO also supports lists, maps, arrays, sets,

and dictionaries as configuration properties.

 This is the recommended approach for creating component instances. And

remember, the XML is only parsed at build time—no XML parsing goes on at

execution time. Regardless, some people wish to avoid XML, which brings us to the

next approach.

@INSTANTIATE INSTANCE CREATION

iPOJO also supports the @Instantiate annotation. It provides a way to create a com-

ponent instance without XML and is largely equivalent to declaring a static singleton

in Java code. You use it like this:

@Instantiate
@Component
@Provides
public class FooImpl implements Foo {
 public void doFoo() {

406 CHAPTER 12 Advanced component frameworks

 // Do something...
 }
}

The @Instantiate annotation results in iPOJO creating a component instance at exe-

cution time when the containing bundle is activated and the component becomes valid.

The main downside of this approach is that it hinders component reusability, because

it presupposes that the number and configuration of your component instances are the

same for every scenario in which they’re used. This isn’t typically the case.

 Although the XML and annotation approaches likely satisfy the majority of use

cases for most people, they don’t cover all possibilities. For example, what if you need

to dynamically create component instances? iPOJO provides two different ways to

accomplish this.

FACTORY SERVICE INSTANCE CREATION

We’ve told you that iPOJO maintains a strict separation between type and instance, but

we didn’t tell you how iPOJO does this. For each described component type, iPOJO

registers an org.apache.felix.ipojo.Factory service in the OSGi service registry at

execution time. The Factory interface is fairly straightforward and largely defines

methods for creating configured component instances.

 Internally, iPOJO uses these factory services to create the component instances you

declare using XML or @Instantiate. To differentiate one component factory service

from another, iPOJO registers them with unique factory.name service properties,

which is the name of the component class by default but can be any name you choose.

How does this allow you to dynamically create component instances? Because these

are just OSGi services, you can look them up in the service registry and use them like

any normal service. The following listing shows an example.

@Component(immediate=true)
public class Creator {
 @Requires(filter="(factory.name=hello)")
 private Factory helloFactory;

 private Map<String, ComponentInstance> instances =
 new HashMap<String, ComponentInstance>();

 public void create(String name) {
 Hashtable props = new Hashtable();
 props.put("name", name);
 ComponentInstance instance =
 helloFactory.createComponentInstance(props);
 instances.put(name, instance);
 }

 public void rename(String oldName, String newName) {
 ComponentInstance instance = instances.remove(oldName);
 if (instance != null) {
 Hashtable props = new Hashtable();
 props.put("name", newName);

Listing 12.7 Creating components using the component factory service

Dependent on component
factory serviceB

Creates
instance

C

407Apache Felix iPOJO

 instance.reconfigure(props);
 instances.put(newName, instance);
 }
 }

 public void dispose(String name) {
 ComponentInstance instance = instances.remove(name);
 if (instance != null) {
 instance.dispose();
 System.out.println(name + " says: Eeek!");
 }
 }
}

In this example, you define a component with a dependency B on a component fac-

tory service for the previous trivial Hello component implementation. You specify the

desired factory using the filter attribute of @Requires; in this case, you previously

named the component type hello. Like any normal service dependency, the Creator

component becomes valid only if a matching factory service is available.

 In the create() method, you prepare a new Hello instance configuration by set-

ting the name property to the passed-in value and then use the factory to create the

instance C. In the rename() method D, you use the ComponentInstance object

returned from the factory service to configure previously created instances. When

you’re finished with the instance you dispose of it in dispose().

 This approach is well-suited to pooling, allowing you to programmatically create

and release component instances. If you swapped your Hello implementation for a

database connection pool or a thread pool, for example, instances could be program-

matically created as other components in the framework noticed degradation in appli-

cation performance. Although this mechanism lets you dynamically create instances

at execution time, it ties components to the iPOJO API. But this effect can be mini-

mized: iPOJO provides another approach to eliminate this coupling.

CONFIGURATION ADMIN INSTANCE CREATION

The final option for creating component instances uses the ManagedServiceFactory

interface from the OSGi Configuration Admin specification. This approach is fairly

similar to the iPOJO factory service, except that it uses the standard OSGi interface

rather than an iPOJO-specific one. To illustrate, the next listing shows the previous

Creator component refactored to use the ConfigurationAdmin service instead.

@Component(immediate=true)
public class Creator {
 @Requires
 private ConfigurationAdmin ca;

 public void create(String name) throws IOException {
 Configuration config = ca.createFactoryConfiguration("hello");
 Hashtable props = new Hashtable();
 props.put("name", name);

Listing 12.8 Creating components using Configuration Admin

Configures previously
created instancesD

Creates
Configuration object

B

408 CHAPTER 12 Advanced component frameworks

 config.update(props);
 }

 public void rename(String oldName, String newName)
 throws IOException, InvalidSyntaxException {
 String filter = "(&(service.factoryPid=hello)(name=" + oldName + "))";
 Configuration[] configs = ca.listConfigurations(filter);
 if (configs != null) {
 Hashtable props = new Hashtable();
 props.put("name", newName);
 configs[0].update(props);
 }
 }

 public void dispose(String name)
 throws IOException, InvalidSyntaxException {
 String filter = "(&(service.factoryPid=hello)(name=" + name + "))";
 Configuration[] configs = ca.listConfigurations(filter);
 if (configs != null) {
 configs[0].delete();
 }
 }
}

This version of the Creator component requires the Configuration Admin Service.

You use it in create() to create a Configuration object for the factory associated with

your component B; iPOJO automatically registers a Configuration Admin Managed-

ServiceFactory for component factories and uses the factory name as its PID (see

chapter 9 for a refresher on Configuration Admin). You then set the configuration

property with the passed-in name and update the configuration. This results in Con-

figuration Admin creating an instance from the ManagedServiceFactory, which is

backed by the iPOJO Factory service.

 To update the component, in rename() you find the Configuration object associ-

ated with the passed-in name C. If it’s found, you update its name property with the

specified value. Finally, in dispose() you again find the Configuration object associ-

ated with the passed-in name and delete it D, which disposes of the instance.

Although this approach is somewhat less direct than using iPOJO factory services, the

component now only depends on standard OSGi APIs.

 We haven’t touched on all of iPOJO’s features (such as composite service descrip-

tion, which goes beyond what we can cover in this section), but we’ve discussed most of

what you’ll need to get started. To see the iPOJO version of the paint program in action,

go to the chapter12/paint-example-ip/ directory of the book’s companion code. Type

ant to build the example and java -jar launcher.jar bundles/ to run it.

12.3 Mix and match

In this and the preceding chapter, we’ve shown you three OSGi-based component

frameworks. You may be wondering which to choose. Unfortunately, there’s no one-

size-fits-all answer. You have to pick based on your requirements, but table 12.4 pro-

vides a summary of some of the features of each to make this task a little easier.

Finds
 Configuration object C

Disposes of
Configuration objectD

409Mix and match

Table 12.4 Summary of component framework features

Feature Declarative Services Blueprint iPOJO

Dependency injection

Callback injection Yes Yes (but methods

must be public)

Yes

Constructor injection No Yes No

Field injection No No Yes

Setter injection Yes Yes Yes

Proxy injection No Yes Yes

List injection No Yes Yes

Nullable injection No No Yes

Lifecycle

Callbacks (activate/deactivate) Yes Yes Yes

Factory pattern Yes Yes Yes

Lazy initialization Yes Yes Yes

Damping No Yes Yes

Field synchronization No No Yes

Component lifecycle control Yes Partial Yes

Service lifecycle control No No Yes

Configuration

Property configuration No Yes Yes

Field configuration No No Yes

Configuration Admin Yes No Yes

Services

Custom attribute type No Yes Yes

Lazy initialization Yes Yes Yes

Composite services No No Yes

Description approach

XML Yes Yes Yes

Java annotations No No Yes

API No No Yes

Nonfunctional

Multiple providers Yes Yes No

410 CHAPTER 12 Advanced component frameworks

Before closing out this chapter, we’ll let you in on a little secret about OSGi compo-

nent frameworks: you don’t have to choose just one. They can all work together via

the OSGi service layer. To a large degree, you can use any combination of these com-

ponent frameworks in your application. To show this in action, let’s convert the paint

application to use the following components:

■ Paint frame from Declarative Services

■ Shape API from standard OSGi

■ Circle from Declarative Services

■ Square from Blueprint

■ Triangle from iPOJO

■ Window listener from iPOJO

To achieve this goal, you need to make a handful of minor changes to your compo-

nents so they’ll play well together. We hear you asking, “Wait! Why do we need to

change the components? I thought you said they can work together.” Technically, they

can; but there are some issues due to disparate feature sets. You need to smooth over

one or two discontinuities among the various component models; table 12.5 summa-

rizes these issues.

Practically, you need to make the following changes:

■ In the SimpleShape interface, add an Icon getIcon() method and remove the

ICON_PROPERTY constant that’s no longer used. Doing so bridges the gap

between Declarative Services capabilities and Blueprint capabilities with respect

to service attributes.

■ As a consequence, each SimpleShape implementation now loads its own Image-

Icon. Also, the DefaultShape class delegates the getIcon() call to the Simple-

Shape implementation where possible and handles the loading of the under-

construction icon when the service is no longer available.

■ The PaintFrame class uses the getIcon() method on SimpleShape to load the

icon versus handling this itself.

Table 12.5 Component model discontinuities

ID Difference Discussion

1 Declarative Services’

simple service properties

In Declarative Service components, you use simple string service

properties with class loading to load icons. This approach causes

issues with Blueprint due to issue 2.

2 Blueprint’s use of proxy

objects

Because Blueprint injects proxies into the callback methods, you

can’t use the service object to load a resource (i.e., service.
getClass().getResource() would search the proxy’s class

loader, not the service object’s).

3 Blueprint’s requirement of

only interfaces as services

For Blueprint, you needed to create an interface to represent the

java.awt.Window API. All components need to agree on the

interfaces they’ll expose.

411Summary

To run this combined paint program, go to the chapter12/paint-example-mixed

directory of the book’s companion code. Type ant to build the example and java

-jar launcher.jar bundles to execute it. All the components from the different

frameworks integrate nicely into a single application.

12.4 Summary

Component frameworks can simplify the task of creating OSGi-based applications and

add useful capabilities, including lazy initialization, complex service-dependency man-

agement, and configuration externalization. Often, you’ll end up having to do a lot of

this work yourself, so using a component framework can free you from the drudgery.

 The following list summarizes the component frameworks we’ve investigated in

the past two chapters:

■ Declarative Services is an OSGi specification and is the simplest framework,

offering management of service dependencies and component configuration.

■ Blueprint is also an OSGi specification and provides features similar to Declara-

tive Services, but with a richer configuration model. It’s familiar to developers

who come from a Spring background.

■ iPOJO is an open source solution that uses byte-code instrumentation of compo-

nents to offer a well-rounded and sophisticated framework for building

dynamic, service-based applications.

■ With any of these component frameworks, you can build rich, dynamic, OSGi-

based applications, with the added bonus that they can all integrate and collab-

orate via the OSGi service registry.

Now we’ll switch focus from dealing with the internal structure of your applications to

external concerns. Until now, we’ve assumed that applications are a set of bundles

running inside an OSGi framework, but sometimes they’re more complicated. For

example, you may need to be in control of how your application is launched, or you

may not be able to package an entire application as bundles. What do you do then? In

the next chapter, we’ll look at how to launch and/or embed an OSGi framework.

412

Launching and
 embedding an

 OSGi framework

We’ve spent a lot of time talking about creating, deploying, and managing bundles

and services. Interestingly, you can’t do anything with these unless you have a run-

ning OSGi framework. For such an important and necessary topic, we’ve spent very

little time discussing how precisely to achieve it. Not only is it necessary, but by

learning to launch the framework, you’ll have the ability to create custom launch-

ers tailored to your application’s needs. It even opens up new use cases, where you

can use an instance of an OSGi framework inside an existing application or even

embedded inside a bundle. Interesting stuff.

This chapter covers

■ Introducing the OSGi framework launching and

embedding API

■ Explaining the generic bundle launcher used

throughout the book

■ Embedding the OSGi framework into an existing

application

413Standard launching and embedding

 In this chapter, you’ll learn everything you need to know about launching the OSGi

framework. To help you reach this goal, we’ll dissect the generic bundle launcher

you’ve been using to run the book’s examples. You’ll also refactor the paint program to

see how to embed a framework instance inside an existing application. Let’s get going.

13.1 Standard launching and embedding

As we mentioned back in chapter 3, you face a dilemma when you want to use a bun-

dle you’ve created. You need a BundleContext object to install your bundle into the

framework, but the framework only gives a BundleContext object to an installed and

started bundle. So you’re in a chicken-and-egg situation where you need an installed

and started bundle to install and start your bundle. You need some way to bootstrap

the process.

 Traditionally, OSGi framework implementations from Apache Felix, Equinox, and

Knopflerfish devised implementation-specific means for dealing with this situation.

This typically involved some combination of auto-deploy configuration properties for

each framework implementations’ custom launchers and/or shells with textual or

graphical interfaces. These mechanisms worked reasonably well but weren’t portable

across framework implementations.

 With the release of the OSGi R4.2 specification, the OSGi Alliance defined a stan-

dard framework launching and embedding API. Although this isn’t a major advance in

and of itself, it does help you create applications that are truly portable across frame-

work implementations. You may wonder if this is really necessary or all that common.

There are two main reasons why you may want to create your own framework instance:

1 Your application has custom startup requirements that aren’t met by your

framework’s default launcher.

2 For legacy reasons, you can’t convert your entire application into a set of bun-

dles that run inside an OSGi framework.

Previously, if either of these applied to your project, you had to couple your project to

a specific framework implementation by using its custom API to launch it. Now, R4.2-

compliant frameworks share a common API for creating, configuring, and starting the

framework. Let’s dive into its details.

13.1.1 Framework API overview

As we previously mentioned, at execution time the OSGi framework is internally repre-

sented as a special bundle, called the system bundle, with bundle identifier zero. This

means active bundles are able to interact with the framework using the standard

Bundle interface, which we reiterate in the following listing.

public interface Bundle {
 String getSymbolicName();
 Version getVersion();

Listing 13.1 Standard Bundle interface

Content-access
methods

414 CHAPTER 13 Launching and embedding an OSGi framework

 Dictionary getHeaders();
 Dictionary getHeaders(String locale);
 URL getEntry(String path);
 Enumeration getEntryPaths(String path);
 Enumeration findEntries(String path, String pattern, boolean recurse);
 URL getResource(String name);
 Enumeration getResources(String name) throws IOException;
 Class loadClass(String name) throws ClassNotFoundException;
 Map getSignerCertificates(int signersType);
 void start() throws BundleException;
 void start(int options) throws BundleException;
 void stop() throws BundleException;
 void stop(int options) throws BundleException;
 void update() throws BundleException;
 void update(InputStream input) throws BundleException;
 void uninstall() throws BundleException;
 int getState();
 BundleContext getBundleContext();
 long getBundleId();
 String getLocation();
 long getLastModified();
 ServiceReference[] getRegisteredServices();
 ServiceReference[] getServicesInUse();
 boolean hasPermission(Object permission);
}

Although this provides an internal framework API for other bundles, it doesn’t help

externally when you want to create and start framework instances. When the R4.2

specification looked to address this situation, the logical place to start was with the

Bundle interface. This was a good starting point, but it wasn’t completely sufficient. To

address the missing pieces, the R4.2 specification defines a new Bundle subtype, called

Framework, which is captured in the following snippet:

public interface Framework extends Bundle {
 void init() throws BundleException;
 FrameworkEvent waitForStop(long timeout) throws InterruptedException;
}

All R4.2-compliant framework implementations implement the Framework interface.

Because it extends Bundle, this means framework implementations now look like a

bundle externally as well as internally via the system bundle.

NOTE Although this new API represents the framework instance inter-
nally and externally as a Bundle object, the specification doesn’t require
the internal system bundle object to be the same object as the external
Framework object. Whether this is or isn’t the case depends on the frame-
work implementation.

As you can see, the Framework interface is a simple extension, so you don’t have too

much new API to learn. In the following subsections, we’ll fully explore how to use this

API to configure, create, and control framework implementations in a standard way.

Content-access
methods

Lifecycle-
control
methods

Execution-time state- and
context-access methods

415Standard launching and embedding

13.1.2 Creating a framework instance

It’s great to have a standard interface for framework implementations, but you can’t

instantiate an interface; you need a way to get a concrete implementation class. It isn’t

possible for the OSGi specification to define a standard class name, so it adopts the

standard Java approach of specifying service-provider implementations in JAR files:

META-INF/services.

 In this case, META-INF/services refers to a directory entry in a JAR file. Just as a

JAR’s META-INF/MANIFEST.MF file contains metadata about the JAR file, so does its

META-INF/services directory. More specifically, it contains metadata about the service

providers contained in a JAR file. Here the term service isn’t referring to an OSGi ser-

vice, but to well-known interfaces and/or abstract classes in general. All in all, the con-

cept is similar to the OSGi service concept.

 The META-INF/services directory in a JAR file contains service-provider configura-

tion files, which refer to a concrete implementation class for a given service. Concrete

service implementations are connected to their abstract service type via the name of

the file entry in the directory, which is named after the fully qualified service it imple-

ments. For example, a service implementation for the java.text.spi.DateFormat-

Provider service would be named

META-INF/services/java.text.spi.DateFormatProvider

The content of this file is the name of the concrete service-implementation class:

org.foo.CustomDateFormatProvider

Figure 13.1 depicts this hypothetical example. At execution time, when a service pro-

vider is required, the code needing it queries the service-provider configuration file

Compile

jar jar

META-INF/
 MANIFEST.MF
 services/
 java.text.spi.DateFormatProvider
org/
 foo/
 CustomDateFormatProvider.class

java.text.spi.DateFormatProvider

org.foo.CustomDateFormatProvider

CustomerDateFormatProvider.java

package org.foo;
...
public class CustomDateFormatProvider
 implements DateFormatProvider {
 ...
}

.class

Figure 13.1 The Java META-INF/services approach dis-

covers service providers at execution time by performing

lookups of well-known named resource files to acquire

concrete service-implementation class names.

416 CHAPTER 13 Launching and embedding an OSGi framework

like any normal resource using the well-known service name as the name of the

resource file. When a concrete type is obtained from the content of the file, the code

needing the service can load and instantiate the associated class.

 The OSGi specification uses this mechanism to provide a standard way to get the

concrete framework implementation class. But rather than directly retrieve a frame-

work implementation class, OSGi defines a framework factory service as follows:

public interface FrameworkFactory {
 Framework newFramework(Map config);
}

This interface provides a simple way to create new framework instances and pass a con-

figuration map into them. As a concrete example, the Apache Felix framework imple-

mentation has the following entry in its JAR file declaring its service implementation:

META-INF/services/org.osgi.framework.launch.FrameworkFactory

The content of this JAR file entry is the name of the concrete class implementing the

factory service:

org.apache.felix.framework.FrameworkFactory

Of course, these details are only for illustrative purposes, because you only need to

know how to get a framework factory service instance. The standard way to do this in

Java 6 is to use java.util.ServiceLoader. You obtain a ServiceLoader instance for a

framework factory like this:

ServiceLoader<FrameworkFactory> factoryLoader =
 ServiceLoader.load(FrameworkFactory.class);

Using the ServiceLoader instance referenced by factoryLoader, you can iterate over

all available OSGi framework factory services like this:

Iterator<FrameworkFactory> it = factoryLoader.iterator();

In most cases, you only care if there’s a single provider of the factory service; you can

invoke it.next() to get the first available factory and use FrameworkFactory.

newInstance() to create a framework instance. If you’re not using Java 6, you can also

use the ClassLoader.getResource() method as illustrated in the following listing.

private static FrameworkFactory getFrameworkFactory() throws Exception {
 URL url = Main.class.getClassLoader().getResource(
 "META-INF/services/org.osgi.framework.launch.FrameworkFactory");
 if (url != null) {
 BufferedReader br =
 new BufferedReader(new InputStreamReader(url.openStream()));
 try {
 for (String s = br.readLine(); s != null; s = br.readLine()) {
 s = s.trim();
 if ((s.length() > 0) && (s.charAt(0) != '#')) {

Listing 13.2 Retrieving a FrameworkFactory service manually

Looks up framework
factory provider B

417Standard launching and embedding

 return (FrameworkFactory) Class.forName(s).newInstance();
 }
 }
 } finally {
 if (br != null) br.close();
 }
 }
 throw new Exception("Could not find framework factory.");
}

The getFrameworkFactory() method in listing 13.2 isn’t as robust as it could be, but

it’s sufficient to get the job done. It queries for the standard service-provider configu-

ration file B. If it finds one, it reads the content of the file. Within the loop, it

searches for the first line not starting with # (the comment character) and assumes

that the line contains the name of the concrete class it should instantiate at C. The

method throws an exception if an error occurs during this process or if a factory pro-

vider couldn’t be found.

 This method is fairly simple and will work for all R4.2-compliant frameworks; you’ll

use it for the generic launcher in section 13.2. Next, we’ll look into how you use the

factory service to configure a framework instance.

13.1.3 Configuring a framework

When you have a framework factory service, you can create an instance of Framework.

Typically, you don’t use a default framework instance; instead, you often want to con-

figure it in some way, such as setting the directory where the framework should store

cached bundles. This is why FrameworkFactory.newInstance() takes a Map, so you

can pass in configuration properties for the created framework instance.

Prior OSGi specifications defined a few standard configuration properties; but until

the framework factory API, there was no standard way to set them. As part of the R4.2

specification process, several new standard configuration properties were also intro-

duced. Table 13.1 shows some of the standard configuration properties.

 The properties listed in table 13.1 can be put into a Map and passed into the Frame-

workFactory.newInstance() method to configure the resulting framework instance;

Instantiates
provider class C

No configuration required

You don’t have to pass in configuration properties when creating a framework; null
is an acceptable configuration. The OSGi specification says framework implementa-

tions must use reasonable defaults, but it doesn’t explicitly define all of them. This

means some defaults are implementation-specific. For example, by default the

Apache Felix framework caches installed bundles in a felix-cache/ directory in the cur-

rent directory, whereas the Equinox framework uses configuration/org.eclipse.osgi/

bundles/ in the directory where the Equinox JAR file is located. Be aware that you

won’t necessarily get the same behavior unless you explicitly configure it.

418 CHAPTER 13 Launching and embedding an OSGi framework

Table 13.1 Some standard OSGi framework configuration properties

Property name Spec Meaning

org.osgi.framework.storage R4.2 A file system path to a directory,

which will be created if it doesn’t

exist. If this property isn’t set, a

reasonable default is used.

org.osgi.framework.storage.clean R4.2 Specifies if and when the storage

area for the framework should be

cleaned. If no value is specified,

the framework storage area isn’t

cleaned. Currently, the only pos-

sible value is onFirstInit,

which causes the framework

instance to clean the storage

area the first time it’s used.

org.osgi.framework.system.packages R4 Using standard Export-
Package syntax, specifies a list

of class path packages to be

exported from the system bun-

dle. If not set, the framework

must provide a reasonable

default for the current VM.

org.osgi.framework.system.packages.extra R4.2 Specifies a list of class path

packages to be exported from

the system bundle in addition to

those from the previous system-

packages property.

org.osgi.framework.startlevel.beginning R4.2 Specifies the beginning start

level of the framework.

org.osgi.framework.bootdelegation R4 Specifies a comma-delimited list

of packages with potential wild-

cards to make available to bun-

dles from the class path without

Import-Package declara-

tions (for example, com.sun.*).

By default, all java.* packages

are boot delegated. We recom-

mend avoiding this property.

org.osgi.framework.bundle.parent R4.2 Specifies which class loader is

used for boot delegation. Possible

values are boot for the boot

class loader, app for the applica-

tion class loader, ext for the

extension class loader, and

framework for the framework’s

class loader. The default is boot.

419Standard launching and embedding

property names are case insensitive. We won’t go into the precise details of all the stan-

dard configuration properties, so consult the R4.2 specification if you want details not

covered here. With this knowledge, you know how to configure and instantiate a

framework instance; let’s look at how to start it.

13.1.4 Starting a framework instance

When you have a Framework instance from FrameworkFactory, starting it is easy:

invoke the start() method inherited from the Bundle interface. The start()

method implicitly initializes the framework by invoking the Framework.init()

method, unless you explicitly initialize it beforehand. If the init() method wasn’t

invoked prior to calling start(), then it’s invoked by start().

 You can relate these methods to the framework lifecycle transitions, similar to the

normal bundle lifecycle:

■ init() transitions the framework instance to the Bundle.STARTING state.

■ start() transitions the framework instance to the Bundle.ACTIVE state.

The init() method gets the framework ready but doesn’t start executing any bundle

code yet. It performs the following steps:

1 Framework event handling is enabled.

2 The security manager is installed if it’s enabled.

3 The framework start level is set to 0.

4 All cached bundles are reloaded, and their state is set to Bundle.INSTALLED.

5 A BundleContext object is created for the framework.

6 All framework-provided services are made available (Package Admin, Start

Level, and so on).

7 The framework enters the Bundle.STARTING state.

The start() method starts the framework instance and performs the following addi-

tional steps:

org.osgi.framework.library.extensions R4.2 Specifies a comma-separated list

of additional library file exten-

sions that must be used when

searching for native code.

org.osgi.framework.command.execpermission R4.2 Specifies an optional OS-specific

command to set file permissions

on a bundle’s native code.

Table 13.1 Some standard OSGi framework configuration properties (continued)

Property name Spec Meaning

420 CHAPTER 13 Launching and embedding an OSGi framework

1 If the framework isn’t in the Bundle.STARTING state, the init() method is

invoked.

2 The framework sets its beginning start level to the configured value, which

causes all reloaded bundles to be started in accordance with their activation

policy and start level.

3 The framework’s state is set to Bundle.ACTIVE.

4 A framework event of type FrameworkEvent.STARTED is fired.

You may wonder why the init() method is necessary and why all the steps aren’t per-

formed in the start() method. In some cases, you may want to interact with the

framework instance before restarting cached bundles, but some interactions can only

happen via the framework’s BundleContext object. Because bundles (including the

framework) don’t have a BundleContext object until they’ve been started, init() is

necessary to transition the framework to the Bundle.STARTING state so you can

acquire its context with Bundle.getBundleContext().

 To summarize, in the normal case, call start(). But if you want to perform some

actions before all the cached bundles restart, call init() first to do what you need to

do followed by a call to start(). When the framework is active, subsequent calls to

init() and start() have no effect.

 Next, we’ll look at how you shut down a running framework.

13.1.5 Stopping a framework instance

As you may guess, stopping an active framework involves invoking the stop()

method inherited from the Bundle interface. This method asynchronously stops the

framework on another thread, so the method returns immediately to the caller. If

you want to know when the framework has finished shutting down, call Framework.

waitForStop() after calling stop(), which blocks the calling thread until shutdown

is complete.

 The following steps are performed when you stop a framework:

1 The framework’s state is set to Bundle.STOPPING.

2 All installed bundles are stopped without changing each bundle’s persistent

activation state and according to start levels.

3 The framework’s start level is set to 0.

4 Framework event handling is disabled.

5 The framework’s state is set to Bundle.RESOLVED.

6 All resources held by the framework are released.

7 All threads waiting on Framework.waitForStop() are awakened.

NOTE Calling waitForStop() doesn’t start the framework shutdown process,
it waits for it to occur. If you want to stop the framework, you must call stop()
on it first.

421Launching the framework

The waitForStop() method takes a timeout value in milliseconds and returns a

FrameworkEvent object whose type indicates why the framework stopped:

■ FrameworkEvent.STOPPED—The framework was stopped.

■ FrameworkEvent.STOPPED_UPDATE—The framework was updated.

■ FrameworkEvent.ERROR—An error forced the framework to shut down, or an

error occurred during shutdown.

■ FrameworkEvent.WAIT_TIMEDOUT—The timeout value expired before the

framework stopped.

When the framework has successfully stopped, it can be safely discarded or reused. To

start the framework again, call start() or init()/start(). The normal startup pro-

cess will commence, except the bundle cache won’t be deleted again if the storage-

cleaning policy is onFirstInit, because that applies only the first time the framework

is initialized. Otherwise, you can stop and restart the framework as much as you like.

 That’s all there is to creating and launching frameworks with the standard frame-

work launching and embedding API from the R4.2 specification. Let’s explore your

newfound knowledge by examining the generic bundle launcher.

13.2 Launching the framework

The general steps for launching a framework are straightforward:

1 Set the desired configuration properties.

2 Create a framework instance using the configuration properties.

3 Start the framework instance.

4 Install some bundles.

Launching vs. embedding

Why is this called the framework launching and embedding API? The term launching

is largely self explanatory, but the term embedding is less clear. What is the differ-

ence between the two? The conceptual difference is that launching refers to creating

and starting a framework instance in isolation, whereas embedding refers to creating

and starting a framework instance within (embedded in) another application. Techni-

cally, there’s very little difference between the two, because creating, configuring,

and starting a framework instance with the API is the same in either case.

The main technical differences are in your objectives. When you launch a framework,

all functionality is typically provided by installed bundles, and there’s no concern

about the outside world. But when you embed a framework, you often have function-

ality on the outside that you want to expose somehow on the inside or vice versa.

Embedding a framework instance has some additional constraints and complications

that we’ll discuss later in this chapter.

422 CHAPTER 13 Launching and embedding an OSGi framework

These are the same basic steps the generic bundle launcher uses, as we’ll introduce in

the following subsections by breaking the example into short code snippets. The com-

plete source code for the generic launcher is in the launcher/ directory of the book’s

companion code.

13.2.1 Determining which bundles to install

As you’ve seen throughout the book, the generic bundle launcher installs and starts

all bundles contained in a directory specified as a command line argument. The

launcher is composed of a single class, called Main, which is declared in the following

code snippet.

public class Main {
 private static Framework fwk;

 public static void main(String[] args) throws Exception {
 if (args.length < 1 || !new File(args[0]).isDirectory()) {
 System.out.println("Usage: <bundle-directory>");
 } else {
 File[] files = new File(args[0]).listFiles();
 Arrays.sort(files);
 List jars = new ArrayList();
 for (int i = 0; i < files.length; i++)
 if (files[i].getName().toLowerCase().endsWith(".jar"))
 jars.add(files[i]);
 ...

The static member variable holds the framework instance you’re going to create. You

verify that a directory was specified as a command line argument. If a directory was

specified, you get the files contained in it and save all files ending with .jar into a list to

be processed later.

13.2.2 Shutting down cleanly

You can’t always guarantee that the launcher process will exit normally, so it’s a good

idea to try to ensure your framework instance cleanly shuts down. Depending on the

framework implementation, you can end up with a corrupted bundle cache if you

don’t shut down cleanly. The following listing adds a shutdown hook to the JVM pro-

cess to cleanly shut down your framework instance.

...
if (jars.isEmpty()) {
 System.out.println("No bundles to install.");
} else {
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 try {

Listing 13.3 Main class declaration for generic bundle launcher

Listing 13.4 Using a shutdown hook to cleanly stop the framework

423Launching the framework

 if (fwk != null) {
 fwk.stop();
 fwk.waitForStop(0);
 }
 } catch (Exception ex) {
 System.err.println("Error stopping framework: " + ex);
 }
 }
 });
 ...

The JVM shutdown hook mechanism requires a Thread object to perform necessary

actions during process exit; you supply a thread to cleanly stop the framework. When

the shutdown thread executes, you verify that a framework instance was created B
and, if so, you stop it. Because shutting down the framework happens asynchronously,

the call to fwk.stop() returns immediately. You call fwk.waitForStop() to make the

thread wait for the framework to completely stop. It’s necessary to have your thread

wait; otherwise, there’s a race condition between the JVM process exiting and your

framework stopping.

 Using a shutdown hook isn’t strictly necessary. The process is in an awkward state

during shutdown, and not all JVM services are guaranteed to be available. There’s also

the potential for deadlock and hanging the process. In short, it’s a good idea to try to

cleanly shut down the framework, but be aware of the potential pitfalls and do as little

work as possible in the shutdown hook.

13.2.3 Configuring, creating, and starting the framework

In section 13.2.1, you determined which bundles you want to install; all you need now

is a framework instance. The following snippet shows how you create it:

...
Bundle mainBundle = null;
try {
 List bundleList = new ArrayList();
 Map m = new HashMap();
 m.putAll(System.getProperties());
 m.put(Constants.FRAMEWORK_STORAGE_CLEAN, "onFirstInit");
 fwk = getFrameworkFactory().newFramework(m);
 fwk.start();
 ...

You begin by creating a variable to hold a reference to your main bundle, which is a

bundle with a Main-Class entry in its manifest file; we’ll come back to this concept

in a couple of sections. After that, you create a list to hold the bundles you success-

fully install.

 In the setup for the framework instance, you create a configuration map for it. For

the generic launcher, you copy the system properties in the configuration map as a

convenience and only set one configuration, which cleans the bundle cache on first

initialization. In most cases, you likely won’t want to do this; but for the purposes of

Checks if
framework existsB

424 CHAPTER 13 Launching and embedding an OSGi framework

the book examples, this makes sense to be sure you always start with a clean frame-

work instance. Next, you get the framework factory service and use it to create a

framework instance using the configuration map. To get the framework factory ser-

vice, you use the getFrameworkFactory() method introduced in listing 13.2. Finally,

you start the framework.

13.2.4 Installing the bundles

Now you have a configured and started framework instance. Because you configured the

framework to clean its bundle cache on first initialization, you know your framework has

no bundles installed in it. You need to remedy that. The following snippet shows how

to install the bundles contained in the directory specified on the command line:

...
BundleContext ctxt = fwk.getBundleContext();
for (int i = 0; i < jars.size(); i++) {
 Bundle b = ctxt.installBundle(
 ((File) jars.get(i)).toURI().toString());
 bundleList.add(b);
 if (b.getHeaders().get("Main-Class") != null) {
 mainBundle = b;
 }
}
...

You first get the BundleContext object associated with the system bundle; this is possi-

ble because the Framework object extends Bundle and represents the system bundle.

You loop through the JAR files discovered in the specified directory and install them

using the system bundle context; any exceptions cause the launcher to fail. After you

install a bundle, you add it to the list of installed bundles and probe to see if its mani-

fest contains a Main-Class header, which you’ll use later. If there’s more than one

bundle with a Main-Class header, you use the last one you discover.

13.2.5 Starting the bundles

You’ve installed all of the bundles, but they aren’t doing anything yet. You need to

start them. You can accomplish this in a simple loop over all installed bundles, invok-

ing start() on each one:

...
for (int i = 0; i < bundleList.size(); i++) {
 if (!isFragment((Bundle) bundleList.get(i))) {
 ((Bundle) bundleList.get(i)).start();
 }
}
...

You may wonder why you don’t start each installed bundle right after installing it. It’s

better to install and start bundles in two passes: one pass for installing and one pass

for starting. This approach helps alleviate ordering issues when it comes to depen-

dency resolution. If you install a bundle and start it immediately, it may fail to resolve

Starts nonfragment
bundles

B

425Launching the framework

because it may depend on some bundle that’s not yet installed. By installing all the

bundles first, you stand a better chance of successfully resolving the bundles when you

activate them.

 Notice also that you don’t call start() on all bundles B; instead, you only call

start() on bundles that aren’t fragment bundles. Fragments can’t be started and will

throw an exception if you try to start them, which is why you avoid doing so. How do

you know a bundle is a fragment? This simple approach works:

private static boolean isFragment(Bundle bundle) {
 return bundle.getHeaders().get(Constants.FRAGMENT_HOST) != null;
}

You check to see if the bundle’s manifest headers contain the Fragment-Host header.

If so, it must be a fragment, and you don’t want to start it.

13.2.6 Starting the main bundle

You’ve installed and started all the bundles contained in the specified directory. In

most cases, this would be good enough. But for the examples in this book, you need

one more step. In chapter 2, we showed how you can use the module layer all by itself

to modularize the paint program. In that example, none of the bundles contained a

BundleActivator, because activators are part of the lifecycle layer. In such an sce-

nario, you need a way to start your application: you can use the standard Java Main-

Class JAR file manifest header as a way to define a main bundle from which you can

load the main class and execute its static void main() method.

NOTE The notion of a main bundle with a main class isn’t an OSGi conven-
tion or a standard. We defined this approach for this book to show that it’s
possible to use the OSGi modularity layer to modularize OSGi-unaware appli-
cations. You could also consider introducing a custom manifest header for
this purpose to avoid confusion with the standard Main-Class header.

The next listing shows how to load the main class and invoke its main() method.

...
if (mainBundle != null) {
 final String className =
 (String) mainBundle.getHeaders().get("Main-Class");
 if (mainClassName != null) {
 final Class mainClass = mainBundle.loadClass(className);
 try {
 Method method = mainClass.getMethod(
 "main", new Class[] { String[].class });
 String[] mainArgs = new String[args.length-1];
 System.arraycopy(args, 1, mainArgs, 0, mainArgs.length);
 method.invoke(null, new Object[] { mainArgs });
 } catch (Exception ex) {
 System.err.println("Error invoking main method: "

Listing 13.5 Invoking the main class from the main bundle

Invokes static
main methodB

426 CHAPTER 13 Launching and embedding an OSGi framework

 + ex + " cause = " + ex.getCause());
 }
 } else {
 System.err.println("Main class not found: " + mainClassName);
 }
}
...

If you have a main bundle, you need to invoke its main class’s main() method; you

won’t necessarily have a main bundle if the bundles have activators. First, you get the

name of the class from the Main-Class manifest header. Using this name, you load

the class from the main bundle. Then, you use reflection to get the Method object

associated with the main class’s main() method. You make an array to contain any

additional command line arguments passed into the launcher after the specified

directory. Finally, you use reflection to invoke the main() method B, passing in any

command line arguments.

13.2.7 Waiting for shutdown

At this point, your launcher should have your bundled application up and running.

What’s left to do? Not much; just sit around and wait for it to finish, like this:

 ...
 fwk.waitForStop(0);
 System.exit(0);
 } catch (Exception ex) {
 System.err.println("Error starting framework: " + ex);
 ex.printStackTrace();
 System.exit(0);
 }
 }
 }
}

You first call Framework.waitForStop(), which doesn’t stop the framework—it waits

for it to stop somehow. Why do you do this? Why not let the calling thread run off

the end of your main method, similar to what you do with Swing applications?

Unlike Swing applications, which result in a non-daemon thread starting for Swing

event delivery, you don’t have any guarantee that the OSGi framework will create any

non-daemon threads. (If you aren’t familiar with the concept of daemon threads, it’s

a fancy way of saying background threads.) For the Java VM, if only daemon threads are

present, the VM process terminates. You need to explicitly wait for the framework to

stop, because you know the main thread is non-daemon and will keep the VM pro-

cess alive.

 For similar issues, you call System.exit() to end the VM process. If you didn’t call

exit() here, and a bundle started a non-daemon thread that wasn’t properly stopped,

then the VM process wouldn’t exit after stopping the framework. This is similar to

Swing applications, which require an explicit call to exit() because the Swing event

thread is non-daemon.

427Embedding the framework

 That’s all there is to it. You’ve successfully created a completely generic launcher

that will work with any OSGi R4.2 framework implementation. To use this launcher

with an arbitrary framework implementation, put it on the class path with the

launcher, and you’re good to go. But what about situations where you can’t convert

your entire application into bundles? In that case, you may want to embed a frame-

work instance inside your application. We’ll look into that next.

13.3 Embedding the framework

In some situations, it isn’t possible to convert your entire application into bundles,

where everything runs inside the OSGi framework. This can happen in legacy situa-

tions where conversion into bundles is prohibitively expensive, or in situations where

there’s resistance or uncertainty about converting the entire application. Even in

these sorts of situations, you can use OSGi technology for specific needs. For example,

it’s not uncommon for Java-based applications to provide a plugin mechanism for

extensibility purposes. If your application has a plugin mechanism or you’re thinking

about adding one, an embedded OSGi framework can do the trick (in chapter 6, you

saw how to convert jEdit’s plugin mechanism to use OSGi).

 You may be thinking, “Wouldn’t I be better off creating my own simple plugin

mechanism in this case?” Typically, the answer is, no. The dynamic class-loading

aspects of plugin mechanisms are difficult to get right. Over time, you’ll likely need to

add more advanced features, such as support for library sharing, side-by-side versions,

or native libraries, at which point you’ll start to enter complicated territory and have

to reinvent the wheel. By using OSGi, all this is taken care of for you, so you can con-

centrate on implementing your application’s core functionality. If you’re concerned

about the size of OSGi frameworks, remember that they’re intended to run on embed-

ded devices, and most implementations aren’t too hefty. In addition, you get the ben-

efit of having a known standard, which makes it easier for your plugin developers and

provides the opportunity to reuse existing bundles.

 Embedding an OSGi framework instance into an application may sound pretty

exotic; but thanks to the standard framework launching and embedding API, it’s

largely the same as launching the framework. You do need to understand some differ-

ences and a few issues; in the remainder of this section, we’ll discuss these issues as

well as present an example of embedding a framework instance into an application.

13.3.1 Inside vs. outside

The main issue around embedding a framework instance into an application is the

distinction between being on the inside of the framework versus being on the outside of

the framework. The bundles deployed into the embedded framework live in a nice

insulated world and know nothing about the outside. Conversely, the application lives

in the external rough-and-tumble world. Figure 13.2 illustrates the situation.

 It’s possible to traverse the isolation boundary provided by the framework, but the

inside/outside distinction places some constraints on how the application can interact

with installed bundles and vice versa.

428 CHAPTER 13 Launching and embedding an OSGi framework

If you decide to embed a framework instance, what are some of the things you’ll likely

want to do with it? You’ll probably want to

■ Interact with and manage the embedded framework instance

■ Provide services to bundles and use services from bundles

Let’s look at what you need to do in each of these cases.

INTERACTING WITH THE EMBEDDED FRAMEWORK

You already know how to interact with an embedded framework instance: through the

standard launching and embedding API. When you create an instance of an R4.2-

compatible framework implementation, you get an object that implements the Frame-

work interface. As you saw previously, this interface gives you access to all the API nec-

essary to control and inspect the framework instance. The framework instance

represents the system bundle and provides you a passage from the outside to the

inside of the framework, as depicted in figure 13.3.

 From the system bundle, you can start and stop the framework as well as deploy, man-

age, and interact with bundles. If you’re using an embedded framework instance as a

plugin mechanism in your application, you use this API to deploy plugin bundles by

loading them from a directory or providing a GUI for user access, for example. It’s also

through this API that you can provide services to bundles and use services from bundles.

Application

Application objects

Isolation boundary

Framework instance

A

B

C

Figure 13.2 The embedded framework instance forms an isolation boundary between the bundles

on the inside and the application objects on the outside.

Avoid being on the outside

The best approach for dealing with the inside/outside divide is to eliminate it by con-

verting your entire application to bundles. If you’re on the fence about this issue, you

can start with an embedding approach and later convert the rest of your application

to bundles. But if you have a choice up front, start with all bundles.

429Embedding the framework

PROVIDING SERVICES AND USING BUNDLE SERVICES

Luckily, there’s no new API to learn when it comes to providing application services to

embedded bundles or using services from them. You learned about providing and

using services in chapter 4, and that knowledge applies here. The only real difference

is that you use the system bundle to do everything, because the application has no

bundle associated with it.

 Because you need a BundleContext to register or find services, you use the

BundleContext associated with the system bundle. You can get access to it by calling

getBundleContext() on the framework instance. From there, registering and using

services is pretty much the same as if the application were a bundle. Simple, right? As

you may expect, there is one main constraint.

NOTE An application embedding a framework instance can only interact with
contained bundles using objects whose class definition is the same for both
the application and bundles.

By default, the application on the outside and the bundles on the inside only share

core JVM packages, so it would be possible for the application and bundles to interact

using objects from classes defined in core JVM packages. For example, you can pro-

vide or use java.lang.Runnable services, because you know the application and the

bundles use a common class definition for Runnable. This works out fairly well if

everything you need is in a core JVM package, but this isn’t typically the case.

 Luckily, there’s a rudimentary way to share packages from the application to the

contained bundles via framework configuration. The launching and embedding API

defines two previously mentioned configuration properties for this purpose:

Application

Application objects

Isolation boundary

Framework instance

A

B

C

Access System
bundle

Figure 13.3 A framework instance represents the system bundle and provides the means to

manage the framework instance as well as interact with deployed bundles.

430 CHAPTER 13 Launching and embedding an OSGi framework

■ org.osgi.framework.system.packages—Defines the complete set of class

path packages exported by the system bundle

■ org.osgi.framework.system.packages.extra—Defines an additional set of

class path packages that is appended to the former set

Typically, you’ll only use the latter property, because the specification requires the

framework to set a reasonable default for the former. For an example, suppose you’re

going to create a version of the paint program that used an embedded framework

instance. In that case, you likely want to put the SimpleShape interface on the class

path so you can share a common definition between the application and the bundles.

You configure the framework instance like this:

Map m = new HashMap();
m.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA, "org.foo.shape");
fwk = getFrameworkFactory().newFramework(m);
fwk.start();

The syntax to use when specifying the property is exactly the same as for the Export-

Package manifest header, which means you can specify additional packages by separat-

ing them with commas; you can also include version information and attributes.

The need to perform this configuration is an extra step for the application, but from

the bundle’s perspective it’s business as usual. Bundles need to specify the package on

their Import-Package manifest header, as normal, and the framework gives them

access to the package following normal OSGi rules.

 What about the situation where you don’t have a common class available from the

class path? Because the application can’t import packages from bundles, there isn’t

much you can do here. The main option is to resort to reflection, which is possible

because OSGi service lookup can be performed by the class name. Of course, you

should use BundleContext.getAllServiceReferences() instead of BundleContext.

getServiceReferences(), because the framework will potentially filter results if it

determines that you don’t have access to the published service type. This gives you

access to the ServiceReference that you can use to get access to the service object so

you can invoke methods on it using reflection.

 If you have different definitions of the service class on the outside and inside, you

can try to get fancy and use dynamic proxies to bridge the two types in a generic way.

But this is beyond the scope of this chapter and can easily be avoided by converting

your entire application to bundles.

Necessary, but not sufficient

It’s necessary to specify this configuration property to share class path packages

with bundles, but it isn’t sufficient to only do this. You must also ensure that the

specified packages are available on the class path when you start your application.

You do so the standard way (by specifying them on the JVM class path).

431Embedding the framework

13.3.2 Who’s in control?

If you’re going to pursue the embedded framework route, you may run into a few

other issues related to who’s expecting to be in control. Generally speaking, the OSGi

framework assumes it’s in control of the JVM on which it’s running. If you’re embed-

ding a framework, you probably don’t want it to be in control or at least want it to

share control with the application in which you’re embedding it. It’s not uncommon

to run into issues related to JVM singleton mechanisms, such as URL and content han-

dler factories or security.

 Singleton mechanisms like these are only intended to be set once at execution time.

OSGi framework implementations need to be responsible for initializing these mecha-

nisms to properly implement specification functionality. When a framework is embed-

ded in another application, often the application assumes it’s in control of these

singletons. The OSGi specification doesn’t specifically address these aspects of frame-

work embedding, so how implementations deal with it is undefined. Some frameworks,

like Apache Felix, go to lengths to try to do the right thing, but the right thing often

depends on the specific use case. If you run into issues in these areas, you’ll have to con-

sult the documentation or support forums for your specific framework implementation.

 Another area where issues arise is in the use of the Thread Context Class Loader

(TCCL). If you’re not familiar with this concept, each thread in Java has a class loader

associated with it, which is its context class loader. The TCCL provides a backdoor mech-

anism to subvert Java’s normal, strict hierarchical class loading. Application servers and

various frameworks use this mechanism to deal with class-loading dependencies that

can’t be shoehorned into hierarchical class loading. Unfortunately, this crude attempt

at dealing with class-loading dependencies doesn’t mesh well with OSGi modularity.

Thread Context Class Loader travails

The TCCL can be both a blessing and a curse. Used correctly, it can enable access

to classes in places where it wouldn’t otherwise be possible; but it can have unex-

pected side effects in cases where modularity is enforced. Embedding an OSGi

framework is a typical example of where things may go wrong. This can happen if the

outside application or container sets the context class loader. In this case, it’s leak-

ing classes into the class space of bundles being accessed from the outside. Typical

examples of situations in which problems can occur include the following:

■ Libraries that prefer the TCCL over their own class loader
■ Libraries that rely on the TCCL mechanism and don’t attempt to get the correct

class loader
■ An outside container that expects a certain TCCL on a callback

One prime example for the first case is logging. Consider a situation where you’re em-

bedding an OSGi framework inside a container using log4j for logging. The container

will obviously have log4j on its class path. Now, if the container happens to set the

TCCL to its own class loader and then calls into the framework, a bundle using log4j

may end up with unexpected problems because classes from the container can be

found that shouldn’t, or vice versa.

432 CHAPTER 13 Launching and embedding an OSGi framework

13.3.3 Embedded framework example

For a simple illustration of framework embedding, you’ll convert the service-based

paint program from chapter 4 into a standalone application with an embedded frame-

work instance. Because the service-based paint program is completely composed of

bundles, you need to transform it into a Java application. The new standalone paint pro-

gram uses an embedded framework instance as a plugin mechanism by which it can

deploy custom shape implementations. Figure 13.4 shows the before and after states.

(continued)

To get around this, bundles can set the TCCL to their own class loader before touch-

ing log4j, but this is a fragile solution and can confuse the container.

Dealing with the TCCL is tricky. Because the OSGi specifications don’t address this

issue, you can’t be sure it’s handled the same way by different frameworks. For ex-

ample, Apache Felix doesn’t do anything in regard to the TCCL, whereas other frame-

works try to automagically set it to the “correct” bundle class loader.

One piece of useful advice to keep in mind is that the TCCL is inherited by threads.

So if you set the TCCL of a given thread, and it in turn creates a new thread, it’ll inherit

the same TCCL. Of course, this can be a good or a bad thing, depending on your sit-

uation. The important part is to think about what the TCCL will be for any threads created

by the framework and/or bundles; it will be implicitly inherited if you don’t explicitly set it.

Shape
API

Paint
Triangle

Square

Circle

Before

Paint,
shape,

and main
JAR Triangle

Square

Circle

After

Figure 13.4 a) Before

The service-based paint program is composed of

five bundle sharing packages and services.

Figure 13.4 b) After

The standalone paint program combines the core

paint program, shape API, and launcher into a

single JAR file that provides and shares the API

with the bundles and uses their services.

433Embedding the framework

For the standalone paint program, you don’t need to change the shape bundles. What

does need to be changed? The original service-based paint program didn’t need a

launcher, because the bundle activator in the paint bundle served this purpose. For

the standalone paint program, you need a launcher that creates the paint frame and

the framework instances and wires everything together. Additionally, because the

paint program needs a common class definition to interact with bundles implement-

ing shapes, you must move the shape API into the standalone application so the appli-

cation and bundles can use the same SimpleShape service-interface definition. Note

that figure 13.4 depicts the application as a quasi bundle with an exported package

and service dependencies. This is just for illustrative purposes: the application is a nor-

mal JAR file. The structure of the modified paint program source code is as follows:

org/foo/paint/
 DefaultShape.java
 Main.java
 PaintFrame.java
 ShapeTracker.java
 ShapeComponent.java
 underc.png
org/foo/shape
 SimpleShape.java

What’s the design of the standalone paint program? Recall the original design of the

paint program: the main paint frame was designed in such a way as to be injected with

shape implementations. This approach had the benefit of allowing you to limit depen-

dencies on OSGi API and to concentrate your OSGi-aware code in the shape tracker. In

keeping with these design principles, you’ll do most of the work in the launcher Main

class, which creates the embedded framework instance, deploys the shape bundles,

creates the paint frame, and binds the paint frame to the embedded shape services.

 Perhaps at this point you’re thinking that this sounds similar to the generic frame-

work launcher you created in the previous section. You’re correct. Using the framework

in an embedded way isn’t all that different, other than the issues we outlined previously.

As a result, the launcher code for the standalone paint program will bear a striking

resemblance to the generic launcher. The different aspects it illustrates are as follows:

■ Sharing code from the class path to bundles

■ Using services on the outside

■ Providing services to the inside

This last aspect doesn’t have an analogue in the original service-based paint program,

but we include it to demonstrate that it’s possible to provide services from the outside.

As before, we’ll break the launcher into small snippets and describe each one. Let’s

get started.

PERFORMING THE MAIN TASKS

Because the paint program is no longer a bundle, you replace its bundle activator with

a Main class. The primary tasks this class performs are easy to discern from the main()

method.

434 CHAPTER 13 Launching and embedding an OSGi framework

public class Main {
 private static Framework fwk;
 private static PaintFrame frame = null;
 private static ShapeTracker shapeTracker = null;

 public static void main(String[] args) throws Exception {
 addShutdownHook();
 fwk = createFramework();
 publishTrapezoidService();
 createPaintFrame();
 }
 ...

The performed functionality is a combination of the generic launcher and the old

bundle activator: adding a shutdown hook, creating a framework instance, and creat-

ing a paint frame. The only new task is publishing an external trapezoid shape service,

which you’ll see is pretty much the same as publishing a normal service.

 Let’s continue to look into the details. Because adding a shutdown hook is basi-

cally identical to what you did for the generic launcher, we’ll skip that step and go

directly to creating the framework instance.

CONFIGURING AND CREATING THE FRAMEWORK

The createFramework() method follows fairly closely to the launcher, so we’ll go over

the details quickly. The method starts, like the launcher, with discovering which bun-

dles it should install into the framework instance:

...
private static Framework createFramework() throws Exception {
 File[] files = new File("bundles").listFiles();
 Arrays.sort(files);
 List jars = new ArrayList();
 for (int i = 0; i < files.length; i++)
 if (files[i].getName().toLowerCase().endsWith(".jar"))
 jars.add(files[i]);
...

Here you get the contents of the bundles directory in the current directory and add

all contained JAR files to a list. This is rather simplistic, but it’s sufficient for this exam-

ple. Now you can create the framework instance and deploy the discovered bundles.

The following listing shows these steps.

 ...
 try {
 List bundleList = new ArrayList();
 Map m = new HashMap();
 m.putAll(System.getProperties());
 m.put(Constants.FRAMEWORK_STORAGE_CLEAN,
 Constants.FRAMEWORK_STORAGE_CLEAN_ONFIRSTINIT);
 m.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA,
 "org.foo.shape; version=\"4.0.0\"");

Listing 13.6 Standalone paint program main() method

Listing 13.7 Creating the framework instance and deploying discovered bundles

B Includes shape API
in system bundle
exports

435Embedding the framework

 fwk = getFrameworkFactory().newFramework(m);
 fwk.start();
 BundleContext ctxt = fwk.getBundleContext();
 for (int i = 0; i < jars.size(); i++) {
 Bundle b = ctxt.installBundle(
 ((File) jars.get(i)).toURI().toString());
 bundleList.add(b);
 }
 for (int i = 0; i < bundleList.size(); i++) {
 ((Bundle) bundleList.get(i)).start();
 }
 } catch (Exception ex) {
 System.err.println("Error starting framework: " + ex);
 ex.printStackTrace();
 System.exit(0);
 }

 return fwk;
}
...

As with the generic launcher, you configure the framework to clean its bundle cache

on first initialization. For performance reasons, you probably wouldn’t want to do this

if you were using the framework as a plugin mechanism, because it’s slower to repopu-

late the cache every time. You do it in this case to make sure you’re starting from a

clean slate. An important difference from the launcher, which we alluded to previ-

ously, is at B. Here you configure the framework to export the org.foo.shape pack-

age from the class path via the system bundle. This allows bundles to import the

package from the application, thus ensuring that they’re both using the same inter-

face definition for shape implementations. You also need to ensure that this package

is on the class path; but because you’re going to package it in the application JAR file,

it should definitely be available.

 Next, you create the framework with the defined configuration and start it. You get

the system bundle’s bundle context, which you use to install the discovered bundles.

Finally, you start all installed bundles C. Any errors cause the JVM to exit.

 Now let’s look at how you publish an external service into the framework instance.

PUBLISHING AN EXTERNAL SERVICE

The publishTrapezoidService() method is simple, as the following code snippet

illustrates:

...
private static void publishTrapezoidService() {
 Hashtable dict = new Hashtable();
 dict.put(SimpleShape.NAME_PROPERTY, "Trapezoid");
 dict.put(SimpleShape.ICON_PROPERTY,
 new ImageIcon(Trapezoid.class.getResource("trapezoid.png")));
 fwk.getBundleContext().registerService(
 SimpleShape.class.getName(), new Trapezoid(), dict);
}
...

C Starts all
installed bundles

436 CHAPTER 13 Launching and embedding an OSGi framework

This code is basically the same as what you saw back in chapter 4 for publishing ser-

vices. The only difference is that you use the system bundle’s bundle context to regis-

ter the service, because the application doesn’t have its own bundle context. Of

course, what makes this possible is the fact that you’re using the same org.foo.shape

package on the inside and the outside, which means your trapezoid shape works just

like the shapes provided by any of the shape bundles.

 Now you’re ready to bind everything together to complete the functioning paint

program.

CREATING THE PAINT FRAME

The createPaintFrame() method performs nearly the same functionality as the bun-

dle activator for the original paint bundle from chapter 4. The details are shown in

the following listing.

...
private static void createPaintFrame() throws Exception {
 SwingUtilities.invokeAndWait(new Runnable() {
 public void run() {
 frame = new PaintFrame();
 frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent evt) {
 try {
 fwk.stop();
 fwk.waitForStop(0);
 } catch (Exception ex) {
 System.err.println("Issue stopping framework: " + ex);
 }
 System.exit(0);
 }
 });
 frame.setVisible(true);

 shapeTracker = new ShapeTracker(fwk.getBundleContext(), frame);
 shapeTracker.open();
 }
 });
}

You create the paint frame itself and then add a window listener to cleanly stop the

embedded framework instance and exit the JVM process when the frame is closed.

Then you display the paint frame; but at this point it isn’t hooked into the embedded

framework instance. You get the system bundle’s bundle context and use it to create a

shape tracker for the paint frame B; this is what binds everything together. Due to the

original design, you don’t need to spread OSGi API usage throughout the application.

 To run the standalone paint program, go into the chapter13/paint-example/

directory. Type ant to build the program and java -jar paint.jar to run it. Fig-

ure 13.5 shows the result.

Listing 13.8 Creating the paint frame and binding it to the framework instance

BCreates and starts
shape tracker

437Summary

 As you can see, the bundle-provided shape ser-

vices and the application-provided shape service inte-

grate nicely in the paint frame. You didn’t need to do

anything to make this happen, other than ensure that

the application and the bundles used the same ser-

vice interface. Cool.

 That’s all there is to the OSGi R4.2 standard launch-

ing and embedding API. Don’t be afraid to use it.

13.4 Summary

The OSGi specification doesn’t define a standard

launcher with a standard way to configure and launch

a framework. Consequently, most OSGi framework

implementations provide their own approach. The standard launching and embedding

API introduced in OSGi R4.2 is the next best thing to a standard launcher, because it

allows you to create a single launcher that works across framework implementations. In

this chapter, you learned the following:

■ The OSGi R4.2 specification introduced the Framework interface to represent a

framework instance.

■ The Framework interface extends the existing Bundle interface, which extends

your existing knowledge of managing bundles to framework instances.

■ The Framework instance represents the system bundle, which provides access to

the system bundle’s bundle context for performing normal bundle tasks (such

as installing bundles and registering services).

■ The META-INF/services approach finds a FrameworkFactory provider, which

enables framework creation without knowing a concrete framework implemen-

tation class name.

■ The OSGi specification defines numerous framework configuration properties to

further improve framework implementation independence; you can pass these

into FrameworkFactory.newInstance() when creating a framework instance.

■ Although using completely bundled applications is the preferred approach, the

launching and embedding API also simplifies embedding framework instances

into existing applications.

■ When you embed a framework instance into an application, the main con-

straint involves dealing with the difference between being on the outside versus

the inside. If direct interaction with bundles is required, you often need to

share common class definitions from the class path.

■ Other than some additional constraints, embedding a framework instance is

nearly identical to launching a framework instance.

With this knowledge under your belt, you can use it to create your own framework launch-

ers for specific purposes and do so in a framework implementation-neutral way. In the

next chapter, we’ll look into configuring framework instances to deal with security.

Figure 13.5

The standalone paint program

438

Securing
 your applications

OSGi allows you to create loosely coupled, extensible applications. In such applica-

tions, bundles can come and go at any time, and it’s easy to allow third parties to

extend your application in a well-defined way. But as with most things in life, there’s

a downside to this flexibility: you open yourself (or your users) to security vulnera-

bilities because third-party bundles can’t be completely trusted.

 Luckily, the Java platform has built-in support for secure sandboxes, and the

OSGi framework is designed to take advantage of them. Unfortunately, secure

This chapter covers

■ Providing an overview of the Java security

architecture

■ Using OSGi Conditional Permission Admin to

manage permissions

■ Signing bundles and granting permissions

based on bundle signers

■ Creating custom permission conditions for

advanced use cases

439To secure or not to secure

sandboxes and their restrictions are difficult to get right and often hard to manage.

This is especially true in an environment as dynamic as the OSGi framework. To help

with this situation, OSGi defines an extensive and powerful security model to ease

security management.

 In this chapter, we’ll familiarize you with the Java security model and how OSGi

uses it to securely deploy and manage applications. You’ll learn how to create secure

applications and well-behaved bundles for security-enabled OSGi frameworks. Before

we start with that, let’s look at some general issues you’ll need to consider when trying

to secure your applications.

14.1 To secure or not to secure

Modern applications and software solutions increasingly center around loosely cou-

pled, extensible architectures. Component and service orientation are applied to

almost all areas of application development including distributed systems, ubiquitous

computing, embedded systems, and client-side applications. One of the main drawbacks

of loosely coupled, extensible applications is the potential security issues around exe-

cuting untrusted code. There are two common reasons for running untrusted software:

■ Permission management is often extremely complicated. Often, users are left to make

security policy decisions, and they’re typically unable to assess the impact of

granting a given permission. Further, because the user is typically using an

application to perform some task, security is largely viewed as an obstacle

because it doesn’t contribute to the task at hand.

■ It’s inherently tricky to establish meaningful identity of third-party software providers. It’s

often necessary to differentiate between providers or types of providers to prop-

erly grant or deny permissions. Often the origin of the software artifact (where it

came from) is used for this purpose, but techniques like digital signatures are also

needed to ensure that the software hasn’t been tampered with. Digital signatures

introduce the complicated process of creating and maintaining certificates and

trust between certificates, which can be onerous for both users and developers.

This raises perhaps the biggest issue with securing code: it adds another burden to

development. Even if you don’t plan to run with security enabled, your code has to be

aware of security if you want it to be possible for other people to use the code when

security is enabled. Then, to make matters worse, if you decide to enable security, the

fine-grained security checks impose an execution-time performance penalty.

 Despite these issues, security isn’t something that can or should be ignored,

because plenty of people are willing to take advantage of software vulnerabilities.

What do you need to do? Providing meaningful security management involves three

key aspects:

■ Establishing identity

■ Establishing policies to manage permissions

■ Performing permission checks and privilege management

440 CHAPTER 14 Securing your applications

As we mentioned previously, identity can be established by the location or origin of

the software artifact or by cryptographic measures using digital certificates. Especially

for the latter approach, the software provider generally needs to make the code avail-

able in such a way that you can establish the needed credentials. When you have

identity established, you need to define the permissions that code should have. For

OSGi, this is the responsibility of whoever is managing the framework, which can be a

gateway operator, a server administrator, or even an end user. As a consequence, per-

mission management should be kept as simple as possible. Last but not least, secu-

rity must be built into the code itself. You have to think about internal security

checks to prevent external code from performing undesired operations and also how

to limit privileges so external code can perform potentially sensitive operations in a

safe way.

 Assuming you’re able to develop your code with all the security checks in the right

place, define a reasonably policy to manage permissions, and sign it using a trusted

certificate for establishing identity, is all the work worth it?

 Clearly, it depends on your specific situation. In some cases, it’s not within the

scope of your application. Either the performance impact is too great or the develop-

ment costs are too high. Often, these issues serve as the determining factor for creat-

ing security-enabled applications. This is compounded by the fact that if code isn’t

designed to be usable in security-enabled environments, it’s unlikely to happen by acci-

dent. This results in a catch-22 type of situation, where the difficulty associated with

creating secure code results in security being ignored, which makes it next to impossi-

ble to use such code with security enabled, thus further raising the barriers for decid-

ing to develop with security in mind in the first place.

 All hope isn’t lost. In the remainder of this chapter, we’ll show you that taking

advantage of the security capabilities of the OSGi framework needn’t be too difficult.

In the next section, we’ll start by taking a high-level view of Java and OSGi security.

14.2 Security: just do it

So you want to secure your OSGi-based application. Great—but where do you start?

Let’s begin at the beginning and look at the Java security architecture and its permis-

sion model, on which the OSGi security model is based.

14.2.1 Java and OSGi security

It’s important to understand the Java security architecture; but to keep this chapter

tightly scoped, we’ll introduce only the parts needed to understand the remainder of

the chapter. Welcome to Java security boot camp!

 The Java security architecture is fundamentally about the assignment of

java.security.Permission subclass objects to code. Specific permissions allow

access to specific, sensitive operations, such as file system or network socket access.

How do you grant Permission objects to code? The Java security architecture is based

on the two fundamental concepts of domain- and role-based security:

441Security: just do it

■ Domain-based security revolves around granting code permissions based on its

origins (also referred to as its code base).

■ Role-based security revolves around authenticating users or processes and

granting them permissions based on who they are.

The OSGi framework security model relies on Java’s domain-based approach; the role-

based approach is possible, but only as a layer on top. In standard Java, role-based

security is provided by the Java Authentication and Authorization Service (JAAS)

framework, but OSGi also provides its own API in the form of the User Admin Service.

We won’t deal with role-based security in this chapter; for more information on the

User Admin Service, refer to the OSGi compendium specification. Now, let’s delve a

little deeper into domain-based security.

PERMISSIONS

The Java permission model is fairly simple. The Permission class is a base class from

which more specific permissions can be derived via subclassing. You grant Permission

objects to code to give it the ability to perform sensitive operations. Additionally, the

Permission class has a method called implies() that accepts another Permission.

This method checks to see if the supplied permission is implied by the target permis-

sion (similar to being a subset). Thus, Permission objects are used to both grant and

check permissions.

PROTECTION DOMAINS

You grant permissions to code, but how are they associated with it? For domain-based

security, Java uses a special concept called a protection domain, which is represented by

the java.security.ProtectionDomain class, to encapsulate the security characteris-

tics of a domain. Permissions are granted to protection domains, and all classes

belong to a single protection domain. Sound complicated? Actually, in OSGi it’s pretty

simple, because a domain is mapped one-to-one with a bundle; you can think of it as a

bundle protection domain. All classes originating from a given bundle are members

of the same bundle protection domain.

BUNDLE PROTECTION DOMAIN Maintains a set of permissions granted to a given
bundle. All classes loaded from a bundle are associated with the bundle’s pro-
tection domain, thus granting them the permissions granted to the bundle.

To understand how protection domains enable permission checking, consider code

that performs a sensitive operation, such as creating a file. The code in the JRE for file

access performs security checks internally to make sure the invoking code has permis-

sion to perform the operation. Internally, the code associated with performing file sys-

tem operations triggers a specific permission check by using the security-checking

methods of SecurityManager or AccessController. When triggered, the JVM collects

the ProtectionDomains of all classes on the call stack leading to the invocation of the

sensitive operation. It checks that each protection domain on the call stack has at least

one permission implying (granting) the specific permission being checked by the

method. Figure 14.1 shows how this looks in practice.

442 CHAPTER 14 Securing your applications

In this case, assume that class D performs a sensitive operation that triggers an internal

permission check using the AccessController.checkPermission(Permission p)

method. This checks whether at the point of the permission check, all protection

domains on the call stack have permission p. Looking at figure 14.1, the JVM performs

a stack walk from the class performing the security check and determines that classes

A, B, C, and D are involved. Subsequently, it determines that classes A and C originate

from the protection domain of Bundle B, and classes B and D originate from the pro-

tection domain of Bundle A. With this information, the JVM checks whether all pro-

tection domains have some permission implying the checked permission. If not, then

a security exception is thrown.

 This provides a good foundation for understanding the Java security architecture,

but there’s one final piece to the puzzle: privileged calls.

PRIVILEGED CALLS

You now know that checking a specific permission triggers a complete stack walk to col-

lect all involved protection domains and verify that they all imply that permission. This

is useful, but it’s too restrictive by itself. For example, assume you have a service with a

method for appending a message to a log file. Because disk operations trigger file sys-

tem–related permission checks, all code on the call stack must have permission to write

to the file. This may be fine if only trusted code is involved; but in an extensible and col-

laborative environment like OSGi, you generally want to allow arbitrary bundles to

share code and services, so it’s likely that some code on the call stack won’t be trusted.

 In such cases, if a permission check always walks up the entire call stack, you either

have to disallow all nontrusted code or grant code-sensitive permissions to untrusted

code. Neither choice is palatable, which is why Java supports privileged calls. A privi-

leged call is a mechanism to short-circuit the stack walk when performing a permission

check. In practice, this allows trusted code to perform sensitive operations on behalf

of code with insufficient permissions.

 You achieve this by using the AccessController.doPrivileged() method, which

takes a PrivilegedAction instance (it has a run() method similar to a Runnable).

When the doPrivileged() method is invoked, it invokes the run() method of the

passed-in PrivilegedAction. Any subsequent permission checks triggered by the

PrivilegedAction stop walking the call stack at the last privileged call. Thus, only the

protection domains from the privileged action onward are considered by subsequent

permission checks.

A.class

B.class

C.class

D.class

ProtectionDomain
Bundle A

ProtectionDomain
Bundle B

PermissionC

PermissionB

PermissionA

PermissionD

PermissionB

PermissionA

Call stack Figure 14.1 The JVM

checks permissions by

collecting all protection

domains associated

with classes on the call

stack and seeing if each

involved protection do-

main has the specified

permission granted to it.

443Security: just do it

 Returning to the example of a service for appending a message to a log file, you

trust the bundle containing the service implementation, but you don’t want to give

direct file system access to anyone else. To do this, your service must encapsulate its

file system operations inside a PrivilegedAction and use doPrivileged() like this:

public void append(String msg) {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() {
 doFileAppend();
 }
 });
 }
 else {
 doFileAppend();
 }
}

Any triggered permission checks stop walking the call stack at the run() method,

which means nontrusted code further up the stack won’t have its protection domain

checked for the triggered permissions. Pushing this example further, you may decide

to limit which code can call the append() method. To so this, you can create your own

Permission subclass, which you can grant to code. For the append method, if you cre-

ate an AppendPermission, it can check the permission before performing the privi-

leged call:

public void append(String msg) {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 sm.checkPermission(new AppendPermission());
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() { doFileAppend(); }});
 } else {
 doFileAppend();
 }
}

Here your service asks the SecurityManager to check whether the code on the call

stack has been granted the custom AppendPermission. If so, it can continue to per-

form the file-append operation; otherwise, a security exception is thrown.

WARNING You may have noticed that you check whether the security man-
ager is null before performing security checks. You do it this way because you
want to perform security checks only if security is enabled, to avoid perfor-
mance penalties when it’s not enabled.

That pretty much sums up the important pieces of the Java security architecture.

These mechanisms provide for flexible, fine-grained security management. A poten-

tial downside is that managing all these permissions can be complex. Luckily, the OSGi

specification lessens some of this complexity by defining services to help you perform

444 CHAPTER 14 Securing your applications

permission management. We’ll look at these services shortly; first, let’s examine OSGi-

specific permissions defined by the OSGi specification.

14.3 OSGi-specific permissions

Certain methods in the OSGi framework API perform sensitive operations or provide

access to sensitive information. To control which code can access these sensitive meth-

ods, the OSGi specification defines a few custom permissions, as you learned about in

the last section. You can group these permissions by the layers of the OSGi framework,

as shown in table 14.1.

We’ll introduce these OSGi permissions in the following subsections, and you’ll subse-

quently use them when we discuss permission management.

14.3.1 PackagePermission

PackagePermission is a module-layer permission giving you the ability to limit which

packages a bundle can import or export. For example, we discussed how methods can

use AccessController.doPrivileged() to allow code with insufficient privileges to

perform sensitive operations. You may not want any arbitrary code using the packages

containing these privileged operations. In that case, you can use PackagePermission

to limit which bundles can import the packages containing the associated classes.

Likewise, you can use PackagePermission to control which bundles can export a

given package, because you may only want trusted bundles providing some packages.

Table 14.1 Permissions defined by the OSGi specification

Layer Permission(s)

Module PackagePermission—Controls which packages a bundle is allowed to

import and/or export

BundlePermission—Controls which bundles a bundle is allowed to require

Lifecycle AdminPermission—Controls which bundles are allowed to perform sensitive

lifecycle operations

Services ServicePermission—Controls which services a bundle is allowed to pub-

lish and/or use

Names and actions

Standard Java permissions typically have constructors that accept two parameters:

a name string and an actions string. The meaning of these parameters is determined

by the specific permission. For example, java.io.FilePermission expects a file

path for name and a comma-delimited value that may include READ, WRITE, EXECUTE,

or DELETE for actions. The combination of name and actions allows you to express

everything the permission allows you to control. All of the OSGi-specific permissions

follow this pattern, as you’ll see.

445OSGi-specific permissions

 To grant a specific PackagePermission, you need to supply the name and actions

parameters for its constructor; these parameters are described in table 14.2.

For convenience, you can use * or a trailing .* as a wildcard to target several packages

with a single permission. For the actions, import gives a bundle permission to import

the named packages, export gives a bundle permission to export and import the pack-

age, and exportonly does as its name implies. You may wonder why export also gives

permission to import the named packages. It’s to support bundles’ ability to import

packages they export (that is, substitutable exports), as described in section 5.1.1.

 To get an idea of how PackagePermission works, let’s take a conceptual look at how

the framework uses it. Assume you have a bundle with the following imports and

exports:

Import-Package: org.foo, org.bar
Export-Package: org.bar

When the framework resolves this bundle, it checks to see whether the bundle has the

following permissions granted to it:

■ PackagePermission.IMPORT permission for the org.foo package

■ PackagePermission.IMPORT permission for the org.bar package

■ PackagePermission.EXPORT permission for the org.bar package

For these checks to succeed, you’d have to grant the necessary permissions, such as

new PackagePermission("org.foo", PackagePermission.IMPORT);
new PackagePermission("org.bar", PackagePermission.EXPORT);

Notice that you don’t need to grant the bundle permission to import org.bar,

because it’s implied by the export action.

 That’s the basics for PackagePermission; let’s move on to the next OSGi permission.

14.3.2 BundlePermission

Similar to PackagePermission, BundlePermission is a module-layer permission for

controlling bundle and fragment dependencies. To grant a BundlePermission, you

need to construct it with the parameters shown in table 14.3.

 As with PackagePermission, you can use * or a trailing .* as a wildcard to target sev-

eral packages with a single permission. To control bundle dependencies, the provide

action gives a bundle permission to be required by bundles matching the supplied

symbolic name, whereas require gives it permission to require matching bundles.

Table 14.2 PackagePermission constructor parameters

Parameter Description

String name Name of the package or packages to which this permission applies

String
actions

Comma-delimited list of the actions granted by the permission

(export, import, or exportonly)

446 CHAPTER 14 Securing your applications

Fragment dependencies are controlled by the host and fragment actions, which give a

bundle the ability to be a host bundle for matching fragments or be a fragment for

matching hosts, respectively. Another similarity to PackagePermission is that the

provide action implies the require action.

 Using BundlePermission isn’t sufficiently different from using PackagePermission,

so we won’t look into it any further. Instead, we’ll move on to the next OSGi permission.

14.3.3 AdminPermission

AdminPermission is a lifecycle-layer permission to control access to sensitive frame-

work operations and information. The operations and information protected by

AdminPermission are diverse, which makes it somewhat complex but fairly powerful.

Table 14.4 shows the parameters needed to create such a permission.

When you grant AdminPermission to a bundle, that bundle is allowed to perform the

specified actions on the bundles matching the filter. The filter uses the same LDAP fil-

ter syntax used by the OSGi service registry, but only the following attributes are

defined for matching:

■ signer—Identity information about the bundle provider

■ location—Bundle location

■ id—Bundle identifier

■ name—Bundle symbolic name

We’ll give some filter examples shortly. First we’ll briefly describe what the granted

actions allow on the matching bundles:

■ class—Load a class

■ execute—Start, stop, and set the start level

■ extensionLifecycle—Manage extension bundles

Table 14.3 BundlePermission constructor parameters

Parameter Description

String symbolicName Symbolic name of the bundle to which this permission applies

String actions Comma-delimited list of the actions granted by the permission

(provide, require, host, or fragment)

Table 14.4 AdminPermission constructor parameters

Parameter Description

String filter LDAP filter to specify matching bundles

String actions Comma-delimited list of the actions granted by the permission (class,

execute, extensionLifecycle, lifecycle, listener,

metadata, resolve, resource, startlevel, or context)

447OSGi-specific permissions

■ lifecycle—Install, update, and uninstall

■ listener—Add/remove a synchronous bundle listener

■ metadata—Retrieve bundle headers and location

■ resolve—Resolve and refresh

■ resource—Get resources

■ startlevel—Set the start level, and initial the start level

■ context—Get the bundle context

The special action * represents all actions. As you can see, AdminPermission gives you

fine-grained control over which bundles can do what on which bundles. For example,

assume a bundle wants to install another bundle using code like this:

context.installBundle("file:bundle.jar").start();

This triggers the framework to check whether all code on the call stack has the

following:

■ AdminPermission.LIFECYCLE permission for the installed bundle

■ AdminPermission.EXECUTE permission for the installed bundle

This is relatively straightforward, although granting the permission can be a little con-

fusing. The thing to remember about AdminPermission is that you use it to grant a

bundle the right to perform specific operations on other bundles. The filter con-

structor parameter is how you specify the bundles that can be controlled. For a more

complicated example, you can grant an AdminPermission like this:

new AdminPermission("(&(signer=CN=core,O=baz,C=de)(name=org.foo.*)
 (location=file://*)(id>=10))", AdminPermission.LIFECYCLE + "," +
 AdminPermission.EXECUTE);

The bundle granted this permission can perform the operations associated with

AdminPermission.LIFECYCLE and AdminPermission.EXECUTE on bundles with a

signer matching CN=core,O=baz,C=de (more on signing later), a symbolic name start-

ing with org.foo, a location starting with file://, and a bundle identifier greater

than 10. Granted, this is completely contrived, but it illustrates the possibilities.

 You’ve now seen the module- and lifecycle-layer permissions, which means you

have one framework layer to go—services.

14.3.4 ServicePermission

ServicePermission is a service-layer permission for controlling which services a bun-

dle can provide or use. As with the other permissions, the actual permission granted is

controlled by its constructor parameters, as shown in table 14.5.

 You can use * or a trailing .* as a wildcard to target several service interfaces or

classes with a single permission. The get action grants the ability to use the specified

services, whereas the register action grants the ability to provide the specified ser-

vices. For the get action, you can also use an LDAP filter for name, which matches

448 CHAPTER 14 Securing your applications

against the associated service properties in addition to the same set of bundle proper-

ties described for BundlePermission (signer, location, id, and name).

 To get a better understanding of how this permission is used, consider the follow-

ing snippet of code a bundle can use to find a service and to register a service:

context.getServiceReference("org.foo.Service");
context.registerService("org.bar.Service", new Service(), null);

Here you find an org.foo.Service service and register an org.bar.Service service.

This triggers the framework to check whether all code on the call stack has the following:

■ ServicePermission.GET for the org.foo.Service interface

■ ServicePermission.REGISTER for the org.bar.Service interface

These permission checks are straightforward. For the associated bundle to perform

these tasks, you can grant it these permissions:

new ServicePermission("org.foo.*", ServicePermission.GET);
new ServicePermission("org.bar.Service", ServicePermission.REGISTER);

In the first permission, you use a wildcard to allow it to access all services in the

org.foo package. In the second permission, you specifically allow it to register

org.bar.Service services.

 That completes the OSGi-specific permissions you can grant to bundles. Before we

move on to discussing permission management, let’s briefly discuss file permissions,

because they behave slightly differently in an OSGi environment.

14.3.5 Relative file permissions

Although java.io.FilePermission isn’t defined by the OSGi specification, it’s still

impacted by how the framework interprets it. In a standard Java environment, a file

permission created with a relative path is interpreted as being relative to the directory

from which the Java process was started (the current working directory). This isn’t the

case in an OSGi environment. Instead, it’s treated as relative to the root of the private

data area of the associated bundle.

 Typically, this doesn’t have much of an effect, especially because the framework

automatically grants bundles permission to read, write, and delete files in their own

private area. The main thing this enables is the ability to grant a bundle additional

permissions for files in its private data area, such as the execute permission.

 Enough of describing permissions. Next, we’ll discuss how you manage them with

the Conditional Permission Admin Service.

Table 14.5 ServicePermission constructor parameters

Parameter Description

String name Service interface or class name(s)

String actions Comma-delimited list of the actions granted by the permission (get or register)

449Managing permissions with Conditional Permission Admin

14.4 Managing permissions with Conditional Permission Admin

Until now, we’ve talked mostly about the details of permissions (what they look like

and what they mean) and otherwise glossed over how you grant permissions to bun-

dles. Individual permissions in and of themselves aren’t that useful. The useful part is

being able to grant and manage permissions for groups of bundles in accordance with

your desired security policies. To help you achieve this goal, the OSGi specification

defines the Conditional Permission Admin Service.

 Whereas standard Java offers a file-based policy approach for permission manage-

ment, OSGi only defines an API-based approach, because it fits better with the inher-

ently dynamic nature of the OSGi environment. The Conditional Permission Admin

Service is the one place to go to define and maintain your security policy. Further, it

introduces a new way of performing permission management by defining the concept

of conditional permission management, which is how it got its name. Let’s explore this

concept first.

14.4.1 Conditional permissions

If you’re at all familiar with standard Java permission management, you know that the

basic approach is to grant permissions to code using a policy file. A standard Java pol-

icy file may look something like this:

grant signedBy "sysadmin" {
 permission java.security.AllPermission;
};
grant codeBase "file:/app/main.jar" {
 permission java.security.AllPermission;
};
grant {
 permission java.io.FilePermission "/tmp/*", "read,write";
};

In this policy file, you granted all permissions to classes signed by sysadmin and from

file:/app/main.jar. All other classes are only granted read/write access to the /tmp/

directory. Although this example assigns only a single permission for each case, you can

assign any number of permissions in a single group. When the security manager walks

up the call stack to check permissions at execution time, the permissions for a given

class are determined by effectively using either its signer or code base as a key to look

up the associated protection domain to see which permissions have been granted to it.

If the protection domain has the permission, the call can proceed; if not, the call fails.

 This approach works, but it’s somewhat simplistic. In particular, it allows you to

grant permissions only based on one of two conditions:

■ Who cryptographically signed the class

■ The originating location of the class (that is, the code base)

The Conditional Permission Admin Service improves on this by introducing an

abstract condition concept, which allows you to grant permissions based on arbitrary

conditions. A condition acts as a Boolean guard that determines whether a permission

450 CHAPTER 14 Securing your applications

group is applicable; a permission group can be guarded by zero or more conditions.

Because permissions are granted to bundles in OSGi, conditions are evaluated against

the bundles on the call stack to determine which permissions have been granted to a

bundle. If multiple conditions are associated with a permission group, all conditions

must be satisfied for the permissions to apply (a logical AND).

 If it isn’t already clear, this is pretty powerful. Not only does it allow you to introduce

your own arbitrary conditions for granting permissions, but these conditions can also

be much more dynamic and fine-grained. For example, you can create a condition to

only grant permissions based on license status via remote server communication or

even the time of day. We’ll get into creating custom conditions later; for now, we’ll con-

tinue to explore what’s provided by the Conditional Permission Admin Service.

14.4.2 Introducing the Conditional Permission Admin Service

Let’s look at the API behind the Conditional Permission Admin Service, which is the

ConditionalPermissionAdmin service interface shown in the following listing.

public interface ConditionalPermissionAdmin {

 ConditionalPermissionInfo addConditionalPermissionInfo(
 ConditionInfo[] conds, PermissionInfo[] perms);

 AccessControlContext getAccessControlContext(String[] signers);

 ConditionalPermissionInfo getConditionalPermissionInfo(String name);

 Enumeration getConditionalPermissionInfos();

 ConditionalPermissionInfo setConditionalPermissionInfo(
 String name, ConditionInfo[] conds, PermissionInfo[] perms);

 public ConditionalPermissionUpdate newConditionalPermissionUpdate();

 public ConditionalPermissionInfo newConditionalPermissionInfo(
 String name, ConditionInfo[] conditions, PermissionInfo[] permissions,
 String access);

 public ConditionalPermissionInfo newConditionalPermissionInfo(
 String encodedConditionalPermissionInfo);
}

Listing 14.1 The ConditionalPermissionAdmin interface

What about performance?

If you know anything about Java security, you probably know it can have a significant

impact on execution-time performance. Evaluating all conditions for all bundles on

the call stack on every permission check can get expensive. Luckily, the Conditional

Permission Admin Service provides a way to mitigate this cost in a lot of cases by

differentiating between mutable and immutable conditions. This means the Boolean

results for immutable conditions only need to be calculated once per bundle protec-

tion domain. You’ll see an example of an immutable condition shortly.

451Managing permissions with Conditional Permission Admin

With this service, you can grant permissions to bundles. To achieve this, you use the

service to maintain a persistent set of ConditionalPermissionInfo objects, which as a

whole embody your current security policy. A ConditionalPermissionInfo object is a

tuple containing a set of ConditionInfo objects and a set of PermissionInfo objects.

Figure 14.2 depicts these relationships.

 The set of ConditionInfo objects encodes the conditions that must be true for the

permissions to apply, and the set of PermissionInfo objects encodes the permissions

to be granted. You may wonder why you need ConditionInfo and PermissionInfo

objects to encode the conditions and permissions, respectively, rather than directly

creating instances of conditions and permissions. This is because the bundle assigning

permissions may not have access to the associated classes, because you’re in a modular

environment. Both of these info objects encode a target class name and its construc-

tor arguments.

 More specifically, a ConditionInfo encodes two arguments: the class name of the

condition and an array of String objects for any constructor arguments for the condi-

tion class. The PermissionInfo object, on the other hand, encodes three arguments:

the class name of the permission and the standard name and actions arguments of

the permission class constructor. As a simple example, you can construct a Permis-

sionInfo object like this:

new PermissionInfo(
 AdminPermission.class.getName(), "(id>10)", AdminPermission.EXECUTE);

This encodes the AdminPermission with the name of (id>10) and actions of execute,

which grants the right to start and stop bundles with a bundle identifier greater than 10.

To see a ConditionInfo example, you’ll need a concrete condition to play with, so we’ll

introduce one next. After that, we can get down to brass tacks and show you the steps

involved in using ConditionalPermissionAdmin.

14.4.3 Bundle location condition

We’ve talked abstractly about conditions, but we haven’t yet discussed any concrete con-

dition types. The OSGi specification defines two: BundleLocationCondition and

BundleSignerCondition. Intuitively, you can probably guess that these conditions cor-

respond to the two types of conditions that exist in standard Java policy files. You’ll learn

about the former right now and the latter when we discuss bundle signing a little later.

ConditionalPermissionAdmin ConditionalPermissionInfo

ConditionInfo

Condition

PermissionInfo

java.security.Permission

EncodesEncodes

1

1

Figure 14.2 Conditional

Permission Admin Service

overview

452 CHAPTER 14 Securing your applications

 You construct a BundleLocationCondition with a location string, which it uses to

match against bundles on the call stack during a permission check. In other words,

this condition matches bundles with the same location string, which for all intents and

purposes is equivalent to the bundle’s origin or code base. The condition location

string may contain * as a wildcard to match multiple locations. As we mentioned previ-

ously, to use this condition with the ConditionalPermissionAdmin service, you need

to encode it in a ConditionInfo, such as in the following example:

new ConditionInfo(BundleLocationCondition.class.getName(),
 new String[] { "*://foo.org/*" });

Here you encode the name of the BundleLocationCondition class and its constructor

arguments. This particular example matches all bundles coming from the foo.

org domain using any protocol. Since the OSGi R4.2 specification, BundleLocation-

Condition also accepts a second parameter; you can use ! to negate the evaluated

result. For example:

new ConditionInfo(BundleLocationCondition.class.getName(),
 new String[] { "file:bundle/foo.jar", "!" });

This results in a BundleLocationCondition that matches all bundles except a bun-

dle with the location file:bundle/foo.jar. With this concrete condition under your

belt, you can now see what’s involved in using the ConditionalPermissionAdmin ser-

vice in practice.

14.4.4 Using ConditionalPermissionAdmin

The steps for using ConditionalPermissionAdmin are straightforward:

1 Get the service from the OSGi service registry.

2 Give your bundle AllPermission.

3 Set permissions for other bundles to implement a security policy.

Nothing too surprising here, but these steps do assume you’re starting from a clean

slate. When an OSGi framework is started for the first time with security enabled, all

bundles have AllPermission. This essentially means that the first bundle to get the

ConditionalPermissionAdmin service and set a security policy is in control, because

any permissions it sets are persistently recorded. If your bundle isn’t the first, it may

not be able to get the service or may get a security exception when it tries to change

the security policy, because AllPermission is required to change permissions. For

now, let’s assume your bundle is first or at a minimum has AllPermission.

 When you’ve retrieved the service, you want to use the ConditionalPermission-

Admin.newConditionalPermissionUpdate() method to create a session for modifying

permissions. The ConditionalPermissionUpdate object has a getConditional-

PermissionInfos() method for retrieving a mutable list of ConditionalPermission-

Info objects that make up the current security policy. To make changes to the policy,

modify the returned list and then call ConditionalPermissionUpdate.commit() to

453Managing permissions with Conditional Permission Admin

write your changes. For example, the following code snippet shows how a bundle can

give itself AllPermission (steps 1 and 2 from earlier).

ConditionalPermissionAdmin cpa = getConditionalPermissionAdmin();
ConditionalPermissionUpdate u = cpa.newConditionalPermissionUpdate();
List infos = u.getConditionalPermissionInfos();
infos.clear();
infos.add(
 cpa.newConditionalPermissionInfo(
 "management agent all permission",
 new ConditionInfo[] {
 new ConditionInfo(
 BundleLocationCondition.class.getName(),
 new String[] { context.getBundle().getLocation() })
 },
 new PermissionInfo[] {
 new PermissionInfo(
 AllPermission.class.getName(), "", "")
 }
 },
 ConditionalPermissionInfo.ALLOW));
u.commit();

Going step by step through the code, you begin by using a utility method to retrieve

the ConditionalPermissionAdmin service, and then you use the service to get a

ConditionalPermissionUpdate object. From the update object, you get a list of

ConditionalPermissionInfo objects representing the current security policy (which

is an empty list initially). Although it may not technically be necessary, you clear the list

to make sure there aren’t any other random permissions in your security policy. Then

you add a new ConditionalPermissionInfo object, which you construct using the

newConditionalPermissionInfo() method of the ConditionalPermissionAdmin ser-

vice. This method takes four arguments: the name associated with the Conditional-

PermissionInfo, an array of ConditionalInfo objects, an array of PermissionInfo

objects, and an access-decision flag.

 What does this particular permission entry do? The name you set is a unique key to

identify the entry and has no inherent meaning; if you specify null for the name, a

unique name will be generated for you. The single ConditionInfo and Permission-

Info objects in their respective arrays match your bundle and grant it AllPermission.

We’ll expand on the last argument, the access-decision flag, in the next section.

 The last step after adding the ConditionalPermissionInfo object is to commit it,

which you do using the update object. Assuming this completes successfully, you’ve

successfully modified the security policy. To set permissions for other bundles, you fol-

low a similar set of steps: get an update object, add or remove any desired permissions,

and then call commit(). Pretty simple. Just make sure you don’t delete the entry giving

your own bundle AllPermission!

 Now let’s look into what the access-decision flag means.

Listing 14.2 Using the ConditionalPermissionUpdate to set permissions

454 CHAPTER 14 Securing your applications

ALLOW- VS. DENY-ACCESS DECISIONS

Until this point, we’ve talked about granting permissions to allow code to perform

some operation. This is the standard way to think about permissions in Java. The OSGi

R4.2 specification introduced a new wrinkle: deny-access decisions. Instead of only

using permissions to say what code is allowed to do, you can also use them to say what

code isn’t allowed to do. You saw the standard case in listing 14.2, where you added a

condition with an access decision of ConditionalPermissionInfo.ALLOW; this corre-

sponds to the normal case of saying what is allowed. But now you can use Condi-

tionalPermissionInfo.DENY to say what isn’t allowed.

 Being able to allow/deny permissions makes it possible to use a white list/black list

approach for handling security. Deny-access decisions can significantly simplify some

security policies because they let you easily handle an exception to a general rule.

Consider a case where you want to allow a bundle to import all packages except those

Are you stuck in the past?

The approach we just outlined for using the ConditionalPermissionAdmin service

is simplified by the introduction of the ConditionalPermissionUpdate API in the

OSGi R4.2 specification. If you’re using a framework that implements an older R4

specification, the steps are conceptually the same, but the details are different. For

example, after getting the ConditionalPermissionAdmin service, you need to di-

rectly add AllPermission for your bundle:

ConditionPermissionInfo myCPI = cpa.addConditionalPermissionInfo(
 new ConditionInfo[] {
 new ConditionInfo(
 BundleLocationCondition.class.getName(),
 new String[]{context.getBundle().getLocation()}) },
 new PermissionInfo[] {
 new PermissionInfo(
 AllPermission.class.getName(), "", "") });

You assign permissions to other bundles in a similar fashion. To remove unexpected

or unwanted permission entries, you need to loop through any existing Condi-
tionalPermissionInfo objects and delete them, like this:

Enumeration e = cpa.getConditionalPermissionInfos();
while (e.hasMoreElements()) {
 ConditionalPermissionInfo info =
 (ConditionPermissionInfo) e.nextElement();
 if (!info.equals(myCPI)) {
 info.delete();
 }
}

Notice that in this example, you take care not to delete your own Conditional-
PermissionInfo; otherwise, you’d lose the ability to set permissions. This highlights

the most important difference between this older (and deprecated) approach and the

newer update approach: changes happen immediately and don’t require any sort of

commit operation.

455Managing permissions with Conditional Permission Admin

with names starting with org.foo.secure. How can you implement such a policy with

only allow-access decisions? You’d have to exhaustively grant permissions to import

every package except the ones you want to exclude. This wouldn’t even be possible in

an open-ended system. This is where a deny-access decision becomes valuable.

 Assume you add a ConditionalPermissionInfo with a deny-access decision. Dur-

ing a permission check, if the associated conditions match and the permission being

checked is implied by the associated permissions, the bundle on the stack will be

denied permission to perform the operation. To complete the hypothetical example,

you can grant a bundle the following permission:

infos.add(admin.newConditionalPermissionInfo(
 "deny-secure-packages",
 new ConditionInfo[] { new ConditionInfo(
 BundleLocationCondition.class.getName(),
 new String[] { "file:foo.jar" }) },
 new PermissionInfo[] { new PermissionInfo(
 PackagePermission.class.getName(),
 "org.foo.secure.*", PackagePermission.IMPORT)
 }, ConditionalPermissionInfo.DENY));

This prevents it from importing packages starting with org.foo.secure. Of course,

to give it permission to import everything else, you also have to grant it the follow-

ing permission:

infos.add(admin.newConditionalPermissionInfo(
 "allow-non-secure-packages",
 new ConditionInfo[] { new ConditionInfo(
 BundleLocationCondition.class.getName(),
 new String[] { "file:foo.jar" }) },
 new PermissionInfo[] { new PermissionInfo(
 PackagePermission.class.getName(),
 "*", PackagePermission.IMPORT)
 }, ConditionalPermissionInfo.ALLOW));

This allows it to import everything else. This also raises another important point when

mixing allow and deny decisions into a single security policy: ordering. With allow-

and deny-access decisions, the order of ConditionalPermissionInfo objects in the

policy table managed by the ConditionalPermissionAdmin service becomes impor-

tant. When a permission check is triggered, the entries in the policy table are tra-

versed in ascending index order until the first one is found where the conditions are

satisfied and the required permission is present. If the associated access policy is DENY,

the check fails. If it’s ALLOW, the checking continues with the next bundle protection

domain on the stack. Thus, in the example, to implement the policy correctly the

denied permission must be added before the allowed permission.

 That covers the basics of using the ConditionalPermissionAdmin service. To pro-

vide a slightly more familiar approach to defining a security policy for seasoned Java

developers, you’ll now use this API to create a policy-file reader. A lot of what you

need for doing this is provided by the OSGi specification already, so it’s pretty easy

to accomplish.

456 CHAPTER 14 Securing your applications

14.4.5 Implementing a policy-file reader

The main purpose behind implementing a policy-file reader is to give you a conve-

nient way to populate the ConditionalPermissionAdmin service with Conditional-

PermissionInfo objects composing your desired security policy. To achieve this, you

need a way to encode/decode ConditionalPermissionInfo objects to/from human-

readable text. As luck would have it, the Conditional Permission Admin Service speci-

fication standardizes such an encoding.

 To encode an object, you use the ConditionalPermissionInfo.getEncoded()

method, which returns a String representing the associated object. To decode an object,

you use the ConditionalPermissionAdmin.newConditionalPermission(String)

method, which returns the corresponding decoded ConditionalPermissionInfo

object. It can’t get much simpler than that. The encoded format is

access { conditions permissions } name

Here, access is the access decision (either ALLOW or DENY), conditions is zero or

more encoded conditions, permissions is one or more encoded permissions, and

name is the name associated with the ConditionalPermissionInfo object. Drilling

down, the encoded format of a ConditionInfo is

[type "arg0" "arg1" ...]

where type is the fully qualified class name of the condition and the remaining are

the quoted arguments for its constructor. In a similar fashion, the encoded format of a

PermissionInfo is

(type "name" "actions")

As with conditions, type is the fully qualified class name of the permission, and the

remaining are the quoted name and actions for its constructor. A more concrete

example looks like this (we’ve added line breaks for readability):

ALLOW {
 [org.osgi.service.condpermadmin.BundleLocationCondition "file:foo.jar"]
 (org.osgi.framework.PackagePermission "*" "IMPORT")
} "allow-all-packages"

With this standard encoding format, you can implement a simple policy-file reader

bundle that populates the ConditionalPermissionAdmin service by reading encoded

ConditionalPermissionInfo objects from a file upon activation. All you’ll need to do

to set and/or change your security policy is to edit your policy file and then start this

bundle. More precisely, its start() method looks like the following listing.

public void start(BundleContext context) {
 File policyFile = getPolicyFile(context);
 List<String> encodedInfos = readPolicyFile(policyFile);
 encodedInfos.add(0, "ALLOW {"
 + "[org.osgi.service.condpermadmin.BundleLocationCondition \""

Listing 14.3 Policy-file reader bundle activator start() method

457Digitally signed bundles

 + context.getBundle().getLocation() + "\"]"
 + "(java.security.AllPermission \"*\" \"*\")"
 + "} \"Management Agent Policy\"");
 ConditionalPermissionAdmin cpa =
 getConditionalPermissionAdmin(context);
 ConditionalPermissionUpdate u = cpa.newConditionalPermissionUpdate();
 List infos = u.getConditionalPermissionInfos();
 infos.clear();
 for (String encodedInfo : encodedInfos) {
 infos.add(cpa.newConditionalPermissionInfo(encodedInfo));
 }
 if (!u.commit()) {
 throw new ConcurrentModificationException(
 "Permissions changed during update");
 }
}

This method combines most of your knowledge about the ConditionalPermission-

Admin service. You get the policy file, which defaults to a file called security.policy

but can be configured. Next, you read in the encodings of the ConditionalPermis-

sionInfo objects contained in the policy file and add an encoding for an AllPermis-

sion at the beginning of the list for the policy-file reader bundle. The previous step is

necessary to make sure the policy-reader bundle has sufficient permission to make

future changes to the security policy.

 After this, you get the ConditionalPermissionAdmin service, create a new Condi-

tionalPermissionUpdate, and use it to get the current list of ConditionalPermis-

sionInfo objects. You clear the existing policy to make sure you’re starting with a

clean slate, and then loop through the encoded permissions to decode them and add

them to your list of objects. The only thing left to do is commit the update. Because

the update may fail if the permissions were changed concurrently, you throw an

exception in this case.

 To see the full details of this bundle, go to the chapter14/combined-example/

org.foo.policy/ directory of the book’s companion code. This bundle is generic and

can be used in any security-enabled framework to put a policy file into effect. You’ll

see it in action a little later when we show a complete example with digitally signed

bundles and a custom condition. We’ll introduce bundle signing next.

14.5 Digitally signed bundles

Defining a security policy by assigning permissions to bundles is a workable approach,

but being able to step up a level can simplify things. For example, you may trust a par-

ticular provider, so it’s nice to be able to assign permissions based on the provider

rather than individual bundles. Doing so simplifies defining a security policy, because

it raises the level of abstraction. Digitally signed bundles can help you achieve this;

specifically, they help you do two things:

■ Authenticate the provider of a bundle

■ Ensure that bundle content hasn’t been modified

458 CHAPTER 14 Securing your applications

The former provides the ultimate goal, but without the latter, the former would be

meaningless. You’ll learn about both as we discuss digital signing and certificates.

We’ll show you how to create certificates and use them to digitally sign your bundles.

Then we’ll introduce BundleSignerCondition, which gives you the ability to grant

permissions based on the identity established via certificates. First, let’s get some ter-

minology out of the way.

14.5.1 Learning the terminology

The domain of digital cryptography is complex and sophisticated. Providing a com-

plete and detailed description is beyond the scope of the book, so we’ll focus on

describing just enough to have it make sense. With that in mind, table 14.6 introduces

some relevant terms we’ll use throughout the remainder of the chapter.

A general understanding of these terms should be sufficient. You don’t need a com-

plete understanding of digital cryptography to use the technology effectively. We’ll

start looking at the basics.

14.5.2 Creating certificates and signing bundles

You’ll be using digital signing based on public key cryptography, which involves a pub-

lic key and a private key. The public key is shared with the world in the form of a cer-

tificate. The private key is kept secret and used to sign data by performing a

computation over it. The resulting value can be verified by performing another calcu-

lation over the data using the public key. This verifies that the signer has access to the

private key and that the data hasn’t been modified.

Table 14.6 Digital cryptography terminology

Term Definition

Digital signing A mathematical approach for verifying the authenticity of digital data. Specifically, used

to verify the identity of the provider and that the data hasn’t been modified.

Signature A unique value calculated when data is digitally signed.

Public key

cryptography

A form of digital signing using two mathematically related keys: a public key and a pri-

vate key. The private key is a guarded secret used to sign data. The public key is shared

with others in the form of a certificate, which they can use to verify that a signature was

generated with the private key. This allows you to infer the identity of the provider and

determine whether someone has tampered with the data.

Certificate A form of metadata about a public key, binding it to the identity of the private key holder.

This binding is achieved by having a well-known (trusted) third party sign the public key/

identity pair.

Distinguished

name

The identification portion of a certificate; specifically, as defined by the X.509 ITU-IT

standard. Identifies the holder of the private key.

Certificate

chain

A certificate has a reference to the certificate of its third-party signer, which includes a

reference to the certificate of its signer, and so on, until the root. This is a certificate

chain. The root of the certificate chain is a self-signed certificate.

459Digitally signed bundles

 In OSGi, the signer of a bundle is associated with it. With this association, you can

grant permissions to a bundle based on its signers. For example, you can assign per-

missions to all bundles from a particular company, if the company signs its bundles.

You can also grant permissions to perform operations on bundles signed by specific

principles. These approaches provide a simple yet powerful way to control who can do

what inside your application.

 Effectively, bundle signing creates a powerful delegation model. An administrator

can grant a restricted set of permissions to a signer, after which the signer can create

bundles that use those permissions or some subset, without any intervention or com-

munication with the administrator for each particular bundle. To understand how this

all fits together, consider the following scenario.

 Assume you have a system that features a set of core bundles (which we’ll call the

core domain) and an arbitrary number of third-party plugin bundles (which we’ll call

the third-party domain). This means you expect fully trusted bundles and not com-

pletely trusted bundles to exist in your system, but you want to provide a level of isola-

tion between them. Your goal is to create a simple security policy that lets you manage

core and third-party bundle domains without knowing the precise bundles in each set.

We’ll delve into the details of doing this next.

CERTIFICATES AND KEYSTORES

To implement the desired security policy for this scenario, you need to create two root

certificates for the core and third-party domains. These root certificates will be used

by the framework to establish a chain of trust for the two domains. With these two cer-

tificates, you can then sign certificates of core and third-party providers with the

appropriate certificate. When they use their individual certificates to sign bundles

they’ve created, the framework can use the root certificates to establish a chain of

trust and determine to which domain a bundle belongs.

 The details of all this are based on Java 2 JAR file signing, which means the same

tools you use to sign JAR files can be used for OSGi. To create the needed certificates

and their associated public and private keys, you’ll use the keytool command pro-

vided by the JDK. It can create and manage certificates and keys inside a keystore, which

is an encrypted file defined by Java for this purpose. For this scenario, you use key-

tool to create two certificates and their associated public/private keys for the core

and third-party domains like this:

keytool -genkey -keystore keys.ks -alias core -storepass foobar \
 -keypass barbaz -dname "CN=core,O=baz,C=de"
keytool -genkey -keystore keys.ks -alias third-party \
 -storepass foobar -keypass barbaz -dname "CN=third-party,O=baz,C=de"

This creates a keystore called keys.ks containing two new key pairs and a certificate

for each pair with aliases of core and third-party. The keystore is protected by the

password foobar, and the keys themselves have the password barbaz. The -dname

switch allows you to specify the distinguished name you use to identify yourself, which

in this case is the baz organization in Germany (de).

460 CHAPTER 14 Securing your applications

DISTINGUISHED NAME A standard X.509 structured name, officially identifying
a node in a hierarchical namespace. For our purposes, it’s sufficient to recog-
nize a distinguished name (DN) as a set of comma-delimited attributes, such
as in the example: CN=core,O=baz,C=de. These attributes specify the com-
mon name, organization, and country, respectively. The hierarchical aspect
of this namespace is that it goes from the least significant (but most specific)
attribute to the most significant. The root of the tree for these attributes is the
country, which is then divided into organization, and further divided into
common names within an organization. Order is significant. Two DNs with
the same attributes but different order are different DNs.

The next thing to do is sign your key pair certificates with themselves. It may sound a

little strange, but this is how you make them root certificates. It’s a common thing to

do, as you can see by the fact that the keytool command has support for it:

keytool -selfcert -keystore keys.ks -alias core -storepass foobar \
 -keypass barbaz -dname "CN=core,O=baz,C=de"
keytool -selfcert -keystore keys.ks -alias third-party \
 -storepass foobar -keypass barbaz -dname "CN=third-party,O=baz,C=de"

The only difference from the previous command is that you use -selfcert instead

of -genkey.

 Now you have key pairs that you can use to sign other certificates or bundles to

make them part of your trusted certificate chain. To allow other people to verify your

signatures, you need to extract the certificates from the keys.ks keystore and import

them into a new keystore called certificates.ks. Why? Because the keys.ks key-

store contains your private keys; you need another keystore that contains only your

public keys to share with the outside world. Currently, your certificates are saved as key

entries (a public/private key pair and its certificate) in the keystore. You need to

export them and re-import them as certificate-only entries, which you do like this:

keytool -export -v -keystore keys.ks -alias core \
 -file core.cert -storepass foobar -keypass barbaz
keytool -export -v -keystore keys.ks -alias third-party \
 -file third-party.cert -storepass foobar -keypass barbaz
keytool -import -v -keystore certificates.ks -alias core-cert \
 -file core.cert -storepass foobar -keypass barbaz
keytool -import -v -keystore certificates.ks -alias third-party-cert \
 -file third-party.cert -storepass foobar -keypass barbaz

You can verify the contents of your keystores like this:

> keytool -list -keystore certificates.ks -storepass foobar

third-party-cert, 08.01.2010, trustedCertEntry,
fingerprint (MD5): 15:9B:EE:BE:E7:52:64:D4:9C:C1:CB:5D:69:66:BB:29
core-cert, 08.01.2010, trustedCertEntry,
fingerprint (MD5): CE:37:F8:71:C9:37:12:D0:F1:C8:2B:F9:85:BE:EA:61

> keytool -list -keystore keys.ks -storepass foobar

core, 08.01.2010, PrivateKeyEntry,
fingerprint (MD5): CE:37:F8:71:C9:37:12:D0:F1:C8:2B:F9:85:BE:EA:61
third-party, 08.01.2010, PrivateKeyEntry,
fingerprint (MD5): 15:9B:EE:BE:E7:52:64:D4:9C:C1:CB:5D:69:66:BB:29

461Digitally signed bundles

You have everything in place now, which means we can look into signing bundles to

make them members of one of your domains.

SIGNING BUNDLES

A bundle JAR file can be signed by multiple signers; the signing follows normal Java

JAR signing rules. The only additional constraint for a bundle is that all entries inside

the bundle must be included in the signature, but entries below the META-INF/ direc-

tory aren’t included. Normal Java JAR file signing allows for partially signed JAR files,

but OSGi doesn’t. It’s lucky that signing all entries except those below META-INF/ is

the default in JAR signing, so you can use the jarsigner tool included in the JDK. The

following will sign a bundle with your core private key:

jarsigner -keystore file:keys.ks \
 -storepass foobar -keypass barbaz core-bundle.jar core

Signing another bundle with your third-party private key looks very similar. You specify

the appropriate alias:

jarsigner -keystore file:keys.ks \
 -storepass foobar -keypass barbaz third-party-bundle.jar third-party

For verification, you need the keystore containing the certificates. You can use the

jarsigner tool for verification as well:

jarsigner -verify -keystore file:certificates.ks core-bundle.jar
jarsigner -verify -keystore file:certificates.ks third-party-bundle.jar

This command should output jar verified if you’ve correctly signed the bundles.

Assuming you have, you now have one bundle in the core domain and one in the

third-party domain. This makes it easy for you to grant permissions to either, based on

the signer of a bundle, as you’ll see next.

14.5.3 BundleSignerCondition

To assign permissions to bundles based on who signed them, you need a condition.

The OSGi specification defines the BundleSignerCondition for certificate matching,

which is specifically based on DN matching. DN matching can seem somewhat compli-

cated, but it needn’t be. We’ll discuss the details of it shortly; first, let’s look at how you

construct a BundleSignerCondition.

 The BundleSignerCondition is initialized with a DN matching expression as

its first argument and an optional second argument of !. If you specify the excla-

mation mark, it negates the result of the DN matching expression. Consider the

following snippet of an encoded ConditionalPermissionInfo object containing a

BundleSignerCondition:

ACCEPT {
[org.osgi.service.condpermadmin.BundleSignerCondition "CN=core,O=baz,C=de"]
...
}

This matches a bundle on the call stack if it’s signed by the core certificate of the

example, which means any permissions associated with this entry will be granted to

462 CHAPTER 14 Securing your applications

the bundle. On the other hand, the following won’t match a bundle if it was signed by

the core certificate:

ACCEPT {
[org.osgi.service.condpermadmin.BundleSignerCondition
 "CN=core,O=baz,C=de" "!"]
...
}

The DN matching expression in these two examples illustrates how simple DN match-

ing can be. It can also be sophisticated, because it supports various flavors of wildcard

matching. We’ll describe that next.

DISTINGUISHED NAME MATCHING DETAILS

You saw that a DN is composed of multiple attributes, like country, organization, and

common name. When performing DN matching, you’re matching against these attri-

butes using a comma-delimited list, such as what you saw earlier with CN=core,

O=baz,C=de to match the core certificate. Additionally, because certificates can be

signed by other certificates, you can match against the other certificates in the chain: you

delimit different certificates with a semicolon.

 To match certificates in a chain, use DN matching expressions against the DN asso-

ciated with each certificate you’re trying to match. For example, consider the follow-

ing DN matching expression:

CN=extensions,O=bar,C=fr;CN=core,O=baz,C=de

This matches a bundle that was signed by the bar organization from France using its

extensions certificate, which was signed by your core certificate. You need to under-

stand two important points about chain matching:

■ Matching occurs naturally against the most specific certificate. Certificates fur-

ther up the chain that aren’t mentioned are ignored.

■ Order is important, because reversing it indicates the opposite signing

relationship.

When you match certificate chains, you’re specifying an interest from the most spe-

cific certificate of the chain onward.

 Both attribute matching and certificate chain matching support wildcards, but the

rules for comparison are more complicated than string-based wildcard matching. The

different cases are described in table 14.7.

Table 14.7 Certificate DN wildcard matching

Case Description

Specific

attribute

wildcards

If a wildcard is used as part of the right-hand argument of an attribute, such as

CN=*,O=baz,C=de

this matches either of the two certificates (core and third-party). You can also use a wild-

card for more than one attribute:

CN=*,O=baz,C=*

This matches any certificate from the baz organization from any country.

463Digitally signed bundles

The rules for certificate matching are also relevant to AdminPermission, discussed in

section 14.3.3. If you recall, AdminPermission accepts an LDAP filter over a limited

number of attributes to describe target bundles. The value for the signer attribute of

the LDAP filter is a DN matching expression.

ESTABLISHING TRUST

In addition to DN matching, a BundleSignerCondition will only match if all the cer-

tificates in the chain are trusted or are signed by a trusted certificate. Certificates are

trusted when they’re known by the OSGi framework. How do they become known?

Prior to OSGi R4.2 specification, this was implementation-specific; but now the

standard way is to specify keystores containing trusted certificates using the

org.osgi.framework.trust.repositories framework configuration property. For

example:

org.osgi.framework.trust.repositories=\
 /var/trust/keystore.jks:~/.cert/certs.jks

The value is a list of file paths, where the paths are separated by the system-specific

File.pathSeparator. Each file path must point to a JKS keystore, which can’t have a

password. The framework uses the keystores as trust repositories to authenticate certif-

icates of trusted signers. The stores must be used only as read-only trust repositories to

access public keys.

 You should now understand how to use certificates to sign your bundles and grant

permissions based on the bundle signer. With that out of the way, let’s look at how you

can use local permissions to know which permissions a bundle needs.

Arbitrary

attribute

wildcards

If a wildcard is used standalone, such as

*,O=baz,C=de

this matches any attributes coming before o and c, regardless of their name or value. For

the example, it’s another way to match both of your certificates. This kind of wildcard can

also be combined with the previous:

,O=baz,C=

This also matches all certificates from the baz organization from any country.

Certificate

chain

wildcards

The attribute wildcard can be used in a certificate chain and behaves as described earlier,

but when used standalone it matches at most one certificate. For example:

*;CN=core,O=baz,C=de

This matches either a bundle signed by another certificate that was signed by your core cer-

tificate or a bundle signed directly by your core certificate. The hyphen wildcard matches

zero or more certificates:

-;CN=core,O=baz,C=de

This matches any bundle signed by your core certificate anywhere in the certificate chain.

Table 14.7 Certificate DN wildcard matching (continued)

Case Description

464 CHAPTER 14 Securing your applications

14.6 Local permissions

Bundle signing provides a powerful yet fairly simple mechanism for creating desired

security policies. But it doesn’t help address one nagging issue: how do you know

which permissions to grant a bundle? Even if you’ve verified a bundle’s signature and

know that the bundle comes from a trusted provider, you still need to answer this

question. Even if you fully trust a provider, it’s better to limit a bundle’s permissions to

a precise set of required permissions to further prevent intended or unintended secu-

rity breaches.

 The standard Java security architecture doesn’t help you here; instead, you must

rely on prior knowledge about the code’s requirements or trial and error. OSGi specif-

ically addresses this issue with a concept called local permissions. Local permissions are

defined by a resource contained in the bundle, which describes the maximum set of

permissions required by the bundle. This set of permission is enforced by the OSGi

framework. A bundle can be granted fewer permissions than its local permissions, but

it never gets more permissions.

 At first blush, it may seem a little odd to have a bundle define its own permissions,

but the purpose is more for the deployer to audit and analyze a bundle. Bundles

aren’t guaranteed to receive the permissions they request and therefore should be

programmed to degrade gracefully when they receive less. As a deployer, though,

local permissions simplify your life because you can easily determine what permissions

are required and which you’re willing to give. For example, if the local permissions

request the use of network sockets, it’s clear that the bundle has the potential to access

the wider internet. If you decide this is acceptable, you can trust this audit because it’s

enforced by the framework at execution time.

 What do local permissions look like in practice? The bundle-permission resource is

a file in the bundle’s OSGI-INF/ directory called permissions.perm. It contains a listing

of all of the bundle’s required permissions. As a simple example, let’s assume you pro-

vide a bundle that only wants to export a single package, org.foo. This bundle’s OSGi-

INF/permissions.perm file is as follows:

Tuesday, Dec 28 2009
Foo Bundle
(org.osgi.framework.PackagePermission "org.foo" "IMPORT,EXPORT")

Lines that start with a # are comments. All other non-empty lines describe required

permissions as encoded PermissionInfo objects. This is simple but effective when it

comes to auditing the security impact of a given bundle.

 You’ve now learned about some powerful tools for defining a security policy; but in

the infamous words of many infomercials, “Wait! There’s still more!” In the next sec-

tion, we’ll cover the most advanced tool available: the ability to create custom condi-

tions for your security policy. We’ll explore why you may want to do this and show you

how to do it by implementing two custom conditions.

465Advanced permission management

14.7 Advanced permission management

At this point, you’ve seen the two standard conditions defined by the OSGi specification:

BundleLocationCondition and BundleSignerCondition. Although these are often suf-

ficient to implement reasonable security policies, in some cases you may want or need

more. To address these situations, you can create custom conditions. This extensibility

gives you a lot of power. In this section, we’ll show you how to harness this power by cre-

ating two custom conditions: a date-based condition and a user-input condition.

14.7.1 Custom conditions overview

As you may imagine, providing custom conditions is a security-sensitive process. You

certainly don’t want a malicious bundle to shadow an actual condition with a faulty

one. For this reason, providing conditions isn’t possible via normal bundles. Custom

conditions are valid only if they’re made available from the framework’s class path

(that is, they’re provided by the system bundle). Otherwise, implementing a custom

condition is pretty easy.

 When you use ConditionInfo to construct a new condition instance, the frame-

work loads the specified condition class from the class path and tries to call a static

method on it that looks like this:

public static Condition getCondition(Bundle bundle, ConditionInfo info)

This is a factory method, although it need not return a new instance for each call. If

such a method isn’t available, the framework falls back to trying to find a constructor

to invoke with the following signature:

public X(Bundle bundle, ConditionInfo info)

Assuming it finds one or the other, it uses the condition as part of the permission

check. The custom condition must implement the Condition interface, which is

defined as follows:

public interface Condition{
 public static Condition TRUE;
 public static Condition FALSE;
 public boolean isPostponed();
 public boolean isSatisfied();
 public boolean isMutable();
 public boolean isSatisfied(Condition[] conditions, Dictionary context);
}

The static TRUE and FALSE objects are used for conditions that are always true or false,

respectively. This may seem odd, but think about BundleLocationCondition. Its get-

Condition() method can determine immediately whether the supplied bundle’s loca-

tion matches; it only needs to return TRUE for matches and FALSE for nonmatches,

because these values will never change. Other than that, the interface is reasonably sim-

ple, but the best way to explain the remaining methods is by way of some examples.

466 CHAPTER 14 Securing your applications

14.7.2 Date-based condition

Assume you want to restrict certain permission sets to be available before a given point

in time, but not after. Imagine that you want to associate permissions with a period of

validity, where the ability to perform certain operations expires after some time. The

following listing shows a condition you can use to make this possible.

class BeforeDateCondition implements Condition {
 private final long m_date;
 public static Condition getCondition(Bundle bundle, ConditionInfo info){
 return new BeforeDateCondition(Bundle bundle, info);
)
 private BeforeDateCondition(Bundle bundle, ConditionInfo info){
 m_date = Long.parseLong(info.getArgs()[0]);
 }
 public boolean isMutable(){
 return m_date > System.currentTimeMillis();
 }
 public boolean isPostponed(){
 return false;
 }
 public boolean isSatisfied(){
 return System.currentTimeMillis() < m_date;
 }
 public boolean isSatisfied(Condition[] conditions, Dictionary context){
 return false;
 }
}

As you can see, this implementation is pretty simple. When the framework evaluates

this condition, it uses the static getCondition() method to create an instance for the

target bundle. The condition’s constructor B converts its argument to a long, which

sets the date. The framework then checks whether the condition is postponed by call-

ing the isPostponed() method. This tells the framework whether the condition

should be evaluated immediately or deferred; this condition is immediate, but you’ll

see an opposite example later. Because this condition isn’t postponed, the framework

invokes the isSatisfied() method immediately to test the condition. This method

checks whether the current time in milliseconds is still lower than the ending date

supplied in the constructor argument. Note that the second isSatisfied() method is

only used for postponed conditions and is ignored here.

 The isMutable() method is purely used by the framework to optimize condition

evaluation. If a condition is immutable, the framework only needs to call its isSatis-

fied() method one time and can cache the result. For mutable conditions, the frame-

work needs to evaluate the condition on every check. For this particular condition,

you have an interesting case because it’s mutable until the ending date is reached,

after which it becomes immutable.

 You can now use this custom condition to define your security policy like the stan-

dard conditions. For example, in the policy file you can do something like this:

Listing 14.4 BeforeDateCondition example

Condition
constructorB

467Advanced permission management

ACCEPT {
 [org.foo.BeforeDateCondition "1282684888"]
 (java.security.AllPermission "*" "*")
} "DATE CONDITION"

As we mentioned previously, you need to put this condition on the class path of the

framework to use it. You can achieve this by adding it directly to your application class

path or by using a special kind of bundle called an extension bundle. Because it’s more

dynamic, you’ll use an extension bundle.

To package this custom condition inside an extension bundle, you create a bundle

with the following manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.foo.beforedatecondition
Bundle-Name: Before Date Condition Extension Bundle
Bundle-Version: 1.0.0
Fragment-Host: system.bundle; extension:=framework
Export-Package: org.foo

Now you need to install this bundle into your framework, after which you can use the

condition in your security policy. That was fairly easy, so let’s move on to a more

sophisticated example.

14.7.3 User-input condition

Often, the only means to determine whether some code is allowed to perform an

operation is to ask the user. We see this regularly when running Java applications from

a web browser or on a mobile phone. As you may guess, you can implement such a

Extension bundles

Extension bundles can deliver optional parts of the framework implementation or pro-

vide functionality that must reside on the boot class path. For example, a framework

vendor can supply optional services like Conditional Permission Admin and Start

Level as framework-extension bundles instead of building them into the framework

for more modular framework deployments.

An extension bundle is treated as a fragment of the system bundle. The system bun-

dle has a standard bundle symbolic name, system.bundle, but it also has an imple-

mentation-specific alias. For example, the following example uses the Fragment-
Host header to specify an extension bundle for the Felix framework implementation:

Fragment-Host: org.apache.felix.framework; extension:=framework

Because extension bundles are special, there are certain restrictions on what you can

do with them. For example, extension bundles can’t specify any of the following head-

ers: Import-Package, Require-Bundle, Bundle-NativeCode, DynamicImport-
Package, and Bundle-Activator. Typically, they’re used to add stuff to the class

path and possibly to export additional packages from the system bundle.

468 CHAPTER 14 Securing your applications

custom condition, but the scenario is trickier. In particular, permission checks tend to

be fine-grained, and in this case executing the condition is costly (and potentially

annoying to the user). Luckily, the Conditional Permission Admin Service specifica-

tion defines mechanisms to deal with such situations.

POSTPONED CONDITIONS

Certain conditions can be costly to evaluate, such as asking the user for permission. In

such situations, you should evaluate the conditions as postponed conditions. Doing so

causes the framework to delay their verification until the end of the permission check.

 A condition informs the framework that it’s postponed by returning true from the

Condition.isPostponed() method. A condition must always return the same value

for the isPostponed() method, so that the Conditional Permission Admin Service

can cache the value. If the method returns false, the no-argument version of the

isSatisfied() method checks the permission, which is intended to be used for quick

evaluations. On the other hand, if the method returns true, the version of isSatis-

fied() that takes arguments is used; it’s intended for more costly evaluations.

 For example, a condition can verify whether a mobile phone is roaming. This

information is readily available in memory, and therefore this condition need not be

postponed. Alternatively, a condition obtaining authorization over the network

should be postponed to avoid the delay caused by network latency if not necessary.

 Looking more closely at the parameters of the isSatisfied() method used to

evaluate postponed conditions, you see that it takes an array of Condition objects and

a Dictionary. The array always contains a single element: a reference to the receiving

condition. This behavior was introduced in the R4.2 specification, because prior spec-

ification versions could verify multiple conditions at the same time. As a result, this

change makes the array relatively worthless. The method was reused to avoid creating

a breaking change for existing custom conditions. The Dictionary parameter is a

context object for the condition implementation, which it can use to maintain state

between invocations. The same Dictionary object is passed into all postponed condi-

tions of the same type during a single permission check.

You now understand the theory behind postponed conditions. Let’s implement an

example that asks the user to authorize permissions.

Impact on creating security policies

From the point of view of the security-policy creator, it doesn’t matter whether a con-

dition is postponed. The impact is in how the framework processes the conditions

and/or how the condition implementation optimizes evaluation. The important result

is that the framework evaluates postponed conditions only when no immediate con-

dition entry implies the required permission, which allows the framework to avoid

costly condition evaluation if possible. When you’re creating a security policy, you can

ignore this aspect of conditions.

469Advanced permission management

ASKING THE USER

You’ll implement the ask-the-user condition by splitting it into two parts:

■ An AskTheUser class that presents the user with a Swing dialog box asking to

authorize permission requests

■ AskTheUserCondition, which is a postponed condition that uses the Ask-

TheUser class to evaluate its condition

This is a good example for postponed conditions, because you don’t want to bother

the user with questions if the check fails for other reasons and user interaction is slow.

The following listing shows the AskTheUser implementation.

public class AskTheUser implements Runnable {
 private final String m_question;
 private volatile boolean m_result;

 public AskTheUser(String question) {
 m_question = question;
 }
 public void run() {
 m_result = (JOptionPane.YES_OPTION ==
 JOptionPane.showConfirmDialog(null, m_question, "Security",
 JOptionPane.YES_NO_OPTION));
 }
 public boolean ask() throws Exception {
 SwingUtilities.invokeAndWait(this);
 return m_result;
 }
}

The constructor accepts the question to ask B, which you display in the ask()

method C. In the ask() method, you use a JOptionPane confirmation dialog box to

query the user. You return true or false depending on whether the user confirms or

rejects the request, respectively. The next listing shows how you implement the condi-

tion itself.

public class AskUserCondition implements Condition {
 private final Bundle m_bundle;
 private final String m_question;
 private final boolean m_not;
 private boolean m_result = false;
 private boolean m_alreadyAsked = false;

 private AskUserCondition(Bundle bundle, ConditionInfo info){
 m_bundle = bundle;
 m_question = info.getArgs()[0].replace(
 "$symbolic-name", bundle.getSymbolicName());
 m_not = (info.getArgs().length == 2 && "!".equals(info.getArgs()[1]));
 }

Listing 14.5 AskTheUser dialog box implementation

Listing 14.6 AskTheUserCondition implementation

Question
to ask

B

Asks
question

C

470 CHAPTER 14 Securing your applications

 public static Condition getCondition(Bundle b, ConditionInfo i) {
 return new AskUserCondition(bundle, i);
 }
 public boolean isMutable() {
 return false;
 }
 public boolean isPostponed() {
 return true;
 }
 public boolean isSatisfied() {
 return false;
 }
 public synchronized boolean isSatisfied(Condition[], Dictionary) {
 ...
 }
}

You provide a static factory method B which delegates to the private constructor. The

constructor is initialized with the question you need to ask the user, which comes from

the first argument of a corresponding ConditionInfo object. In the constructor, you

automatically replace any occurrence of ${symbolic-name} in the question with the

symbolic name of the bundle making the permission request. Additionally, if there’s a

second argument in the ConditionInfo of !, you use it as an indication to negate the

eventual result.

 The condition is immutable and postponed. Because the condition is postponed,

you can stub out the other isSatisfied() method C.

 Now let’s look at how to implement the postponed isSatisfied() method, which

is shown in the following listing.

public synchronized boolean isSatisfied(Condition[] cs, Dictionary) {
 if (alreadyAsked) {
 return m_result;
 }
 Boolean result = ((Boolean) AccessController.doPrivileged(
 new PrivilegedAction() {
 public Object run() {
 AskTheUser question = new AskTheUser(m_question);
 try {
 return question.ask() ? Boolean.TRUE : Boolean.FALSE;
 } catch (Exception e) {
 return Boolean.FALSE;
 }
 }
 }));
 }
 m_alreadyAsked = true;
 if (m_not) {
 return (m_result = !result.booleanValue());
 } else {
 return (m_result = result.booleanValue());
 }
}

Listing 14.7 AskTheUserCondition isSatisfied() method implementation

Delegates to
constructor B

Stubbed
out

C

Calls ask()
method

B

Creates
AskTheUser

C

Marks question
as already asked

D

471Bringing it all back home

Here you check whether you’ve already asked the user by looking at the

m_alreadyAsked flag, which is only necessary to avoid a race condition if multiple

threads are trying to set the initial value; after that, the framework will cache the result

because the condition is immutable. If the user hasn’t already been asked, you create

a new AskTheUser object with your question C and call its ask() method. When you

get the result, you set the alreadyAsked flag to true D to make sure that the user is

asked only one time for the given bundle. Finally, you return the result or invert the

result if “!” was specified in the ConditionInfo.

 A slightly complicated part of this example is that you need to perform the call to

the ask() method using AccessController.doPrivileged() B. This is because the

use of Swing will result in a lot of additional permission checks, so you must limit the

protection domains involved to the protection domain of the condition itself. Because

the condition must be on the class path, it’ll have the protection domain of the frame-

work, which needs to have AllPermission. If, for whatever reason, you get an excep-

tion, you return false.

 This completes the AskTheUserCondition implementation. If you package it as an

extension bundle or add it to the framework class path, you can use it to let the user

make security decisions by including it in your policy file like this:

ACCEPT {
 [org.foo.AskTheUserCondition "Do you want to allow $symbolic-name to
 provide a shape?"]
 (org.osgi.framework.ServicePermission "org.foo.shape.SimpleShape"
 "register")
}

We’ve covered a lot of ground in this chapter, so you should be commended for mak-

ing it this far. To wrap up the discussion on security, we’ll look at an example that pulls

everything together.

14.8 Bringing it all back home

What’s left is to show you how to start a framework with security enabled. You need to

make sure a security manager is installed in the system and tell the framework where it

can find the trusted root certificates. You can either set a custom security manager or

have the framework install its own security manager. Typically, you need to set the fol-

lowing two framework-configuration properties:

■ org.osgi.framework.security—Tells the framework to set the security manager

■ org.osgi.framework.trust.repositories—As mentioned earlier, specifies

the repositories of trusted certificates

The org.osgi.framework.security property value can be either an empty string or

osgi. In either case, the framework sets the JVM security manager to an implementa-

tion-specific one when started. If the property isn’t specified, the framework doesn’t

set the security manager; security will still work if a security manager is already set, but

not all features of OSGi security may work. In particular, if the existing security man-

ager uses AccessController, postponed conditions won’t work.

472 CHAPTER 14 Securing your applications

 Even though some aspects of enabling security are standardized, not all aspects

are. As a result, enabling security is handled a little differently by different framework

implementations. We’ll use the Apache Felix framework to show a concrete example.

The Felix framework is special because it provides its Conditional Permission Admin

Service implementation as an extension bundle. This means that in addition to setting

the previous properties, you also need to deploy the security provider bundle. Luckily,

this is easy to do with the bundle launcher; add it to the directory containing the bun-

dles you want to launch.

 This gets you a framework with security enabled and an initial security policy. If

you want to allow for bundles signed by trusted certificates, you can use the

org.osgi.framework.trust.repositories property to point to the keystore contain-

ing the certificates you trust, but typically a keystore requires the use of a password.

Because keystores used with this configuration property can’t have passwords, you

need to resort to an implementation-specific means to give you what you want. For the

Felix framework, you do the following:

java -Dorg.osgi.framework.security=osgi \
 -Dfelix.keystore=file:certificates.ks \
 -Dfelix.keystore.pass=foobar \
 -Dfelix.keystore.type=jks \
 -jar launcher.jar bundles

In this case, the initial security policy file contains the following:

grant { permission java.security.AllPermission; };

This sets up your framework with a keystore and the password necessary to access it.

 To illustrate what you can do with all of this, let’s add to the paint program a secu-

rity policy that uses the security features you’ve learned about. The security policy will

allow core providers to provide shapes automatically; all others will require explicit

approval from the user. Other than provide shape services, bundles are allowed to do

anything. Start by creating a policy file with an entry to grant AllPermission to bun-

dles signed by the core certificate:

ALLOW {
 [org.osgi.service.condpermadmin.BundleSignerCondition
 "CN=core,O=baz,C=de"]
 (java.security.AllPermission "*" "*")
} "Signed by core"

Next, create an entry to grant all other bundles permission to register a shape service

based on the condition that the user approves it. For this, use your custom condition

like this:

ALLOW {
 [org.foo.condition.ask.AskUserCondition
 "Do you want to allow ${symbolic-name} to provide a shape?"]
 (org.osgi.framework.ServicePermission
 "org.foo.shape.SimpleShape" "register")
} "Ask the user"

473Bringing it all back home

If a bundle that isn’t signed by your core certificate tries to register a shape service, the

user is asked to grant or deny that request. Pretty simple, right? This entry only deals

with asking the user to approve shape services from non-core bundles; you still need

to create an entry to grant these bundles the ability to do everything else. In that case,

you need to grant them AllPermission except for registering shape services. You can

use a DENY access decision, like this:

DENY {

 (org.osgi.framework.ServicePermission

 "org.foo.shape.SimpleShape" "register")

} "Deny register"

ALLOW {

 (java.security.AllPermission "*" "*")

} "All other"

All these entries combined form your defined security policy. You may wonder

whether the policy is correct. If you follow the rule ordering in the policy file, it looks

like it will always prompt the user if a bundle isn’t signed by the core. But this isn’t the

case, because AskUserCondition is a postponed condition. That means it’s evaluated

only if no other rule with an immediate condition implies the permission. Your secu-

rity policy is evaluated like this:

1 If a bundle is signed by the core certificate, it immediately matches the first

rule, which allows it to do anything.

2 If a non-core signed bundle performs any secure operation other than register-

ing a shape service, the first rule doesn’t apply, the second rule is postponed,

the third rule doesn’t apply, and ultimately the fourth rule is matched that

allows the bundle to do anything.

3 If a non-core signed bundle tries to register a shape service, the first rule

doesn’t apply, the second rule is postponed, the third rule applies because the

permission is implied, and this rule fails due to the DENY access decision. This

causes the framework to evaluate the postponed second rule because it logically

came before the failed entry, which prompts the user and grants the permission

based on the user’s reply.

As you can see, you only ask the user at the end if all other rules don’t provide the

needed permission. The DENY access decision of the third rule provides a way to short-

circuit the rule evaluation. To see this security policy in action, go into the chapter14/

combined-example/ directory of the book’s companion code; type ant to build it and

the following to run it:

java -Dorg.osgi.framework.security=osgi -Djava.security.policy=all.policy \
 -Dfelix.keystore=file:certificates.ks -Dfelix.keystore.pass=foobar \
 -Dfelix.keystore.type=jks -jar launcher.jar bundles

This starts your shell in a security-enabled framework running your security policy.

You first need to install the bundles of the paint program:

474 CHAPTER 14 Securing your applications

-> install file:paint-example/shape-4.0.jar
Bundle: 8
-> install file:paint-example/paint-4.0.jar
Bundle: 9
-> start 9

These bundles were signed by the core certificate and have AllPermission, so you

should see an empty paint program (one with no shapes) after starting the paint bun-

dle. Next, install and start the unsigned circle bundle:

-> install file:paint-example/circle-4.0.jar
Bundle: 10
-> start 10

Doing this causes the user to be prompted to grant the permission, as shown in fig-

ure 14.3. If you grant the bundle permission, you get a circle shape in the paint pro-

gram, as shown in figure 14.4.

Figure 14.3 Secured

paint program prompting

the user to grant the

unsigned circle bundle

permission to provide a

shape service

Figure 14.4 Secured

paint program after

the user has granted

permission to the

unsigned circle bundle

475Summary

Finally, to show that core-signed bundles can provide shapes without prompting the

user, install and start the square bundle:

-> install file:paint-example/square-4.0.jar
Bundle: 11
-> start 11

You should now have a paint program with circle and square shapes, as shown in fig-

ure 14.5.

 Congratulations! If you’ve made it this far, you know just about everything there is

to know about securing your OSGi-based applications. Just do it!

14.9 Summary

In this chapter, we introduced you to the Java security model and showed how OSGi

uses it to provide the infrastructure to deploy and manage applications that must run

in secure environments. You’ve learned the following:

■ It’s important to have security in mind when you’re writing bundles, because oth-

erwise they probably won’t be good citizens in a security-enabled environment.

■ Java security provides the foundation of the OSGi security model.

■ OSGi provides the necessary permissions to express security policies for bundles

with respect to the three key layers of the OSGi framework: module, lifecycle,

and services.

■ The Conditional Permission Admin Service introduces a new way of managing

security by means of conditions that must be satisfied in order for certain per-

missions to be applicable.

Figure 14.5 Secured

paint program with an un-

signed circle bundle and

a signed square bundle

476 CHAPTER 14 Securing your applications

■ You can make your life a lot simpler by signing your bundles with certificates

and assigning permissions to bundles based on who signed them.

■ Specifying local permission inside of bundles provides a convenient and simple

way to audit and enforce the permissions needed by a bundle.

■ It’s easy to implement and provide custom conditions for use in your security

policies.

■ Postponed conditions let you defer expensive condition evaluation until the

end, which allows you to fine-tune your security policies for efficiency.

With this knowledge under your belt, you can secure your framework according to

your specific security policies and develop bundles that can work in security-enabled

frameworks. In the next chapter, we’ll look into how you can use and provide web ser-

vices in OSGi as well as how to build web applications on top of OSGi.

477

Web applications
 and web services

This is it: the last chapter. We hope that throughout the course of this book, we’ve been

able to convince you that OSGi technology is fairly easy to use and extremely powerful.

This final chapter touches on an area that we haven’t covered yet but that is hugely

important to many modern developers: web applications and web services. We’ll show

you how to build and deploy web applications using OSGi, and the benefits this tech-

nique can bring to traditional web-development frameworks. You’ll reuse a lot of

knowledge from earlier in the book to build a dynamic, distributed OSGi application.

 Web-related technologies are ubiquitous. Almost all organizations and many indi-

viduals have some form of web presence, whether via social networking sites, static

HTML pages, simple one-tier web applications, medium-sized n-tiered architectures,

This chapter covers

■ Using the OSGi HTTP Service specification to

serve content and servlets

■ Using the OSGi Web Applications specification

to deploy WAR files

■ Using the OSGi Remote Services specification

to provide and consume web services

478 CHAPTER 15 Web applications and web services

or massive global behemoths. Developers of these types of systems are familiar with a

number of key technologies, including web services for back-end communication

between business tiers and web applications for user interaction via a browser.

 If you’re reasonably familiar with Java, you know that a plethora of tools and tech-

nologies are available to help you build such applications. In fact, there are so many

that it’s impossible for us to cover all the possibilities in a single chapter. Instead, we’ll

pick a few of the more popular Java toolkits and show you how OSGi can improve on

their design and usage. From here, you should be able to extend the general princi-

ples we cover to integrate OSGi with other toolkits of your choice.

 To illustrate our points, we’ll look at a number of simple examples before explain-

ing how you can extend an existing stock-watcher web application from the Google

Web Toolkit (GWT) tutorial to use OSGi. For the purposes of brevity, we’ll focus on the

aspects of these technologies that directly relate to OSGi and skip over (or even

ignore) some of the more complex aspects of web development and distributed com-

puting in general. Our goal is to show you how OSGi can work in a web context, not

how to build and manage all aspects of web applications or services. Let’s get started.

15.1 Creating web applications

We’ll start our foray into web technologies by looking at web applications, before mov-

ing on to web services. Unless you’ve been living on the moon for the last decade, you

must’ve had some exposure to web applications, whether as a user or as a developer.

Web applications are a class of applications that present their user interface in a stan-

dard web browser such as Internet Explorer, Firefox, or Safari. They range from con-

sumer shopping carts to online banking, from travel booking to social networking,

from games to employment to government—the list is pretty much endless.

 In this section, we’ll look at using OSGi with the following web-application

technologies:

■ Static content

■ Java Servlets

■ JavaServer Pages (JSP)

■ Google Web Toolkit (GWT)

Figure 15.1 provides a simple diagram of the components you’ll build in this chapter.

What benefits can OSGi bring to web-application development to cause you to break

from the status quo? The major benefits are related to OSGi’s different layers:

■ The module layer provides an improved physical and logical structure, so web

applications are easier to maintain and deploy.
■ The lifecycle layer enables managing web-application installation and activa-

tion, to control what is available and when.
■ The services layer supports a more loosely coupled application development

approach, making it easy to swap in different implementations or even move

those pieces to other machines to improve performance without changing a

single line of client code.

479Creating web applications

There are two main routes into the OSGi framework for web applications: the OSGi

HTTP Service specification and the Web Applications specification. The HTTP Service

specification is an OSGi Compendium specification. It enables programmatic registra-

tion of servlets and static resources. The Web Applications specification is one of the

R4.2 Enterprise specifications and defines a web application bundle (WAB). A WAB is a

special web archive (WAR) file that supplies OSGi metadata and relies on the OSGi

framework’s lifecycle layer to control when its resources are made available. We’ll look

at HTTP Service first.

15.1.1 Using the HTTP Service specification

If you’re starting a web application from scratch, the simplest way of providing it in

OSGi is to use the HTTP Service, which is represented by the org.osgi.service.

http.HttpService interface. You find the HTTP Service like any other OSGi service,

by looking in the service registry using the BundleContext:

String name = HttpService.class.getName();
ServiceReference ref = ctx.getServiceReference(name);
if (ref != null) {
 HttpService svc = (HttpService) ctx.getService(ref);
 if (svc != null) {
 // do something
 }
}

Having found the HTTP Service, what can you do with it? The HttpService interface

provides methods to register and unregister static resources (for example, images or

HTML pages) and Java servlets. The HttpService interface is defined as follows:

Web
server

HTML

Servlet

JSP

GWT

Web service client

Web serviceWeb serviceWeb service

Blah, blah, blah,

blah, blah, blah,

blah, blah

Figure 15.1 In this chapter you’ll

build a simple web application

hosted on a single OSGi framework

that calls out to a number of back-

end OSGi frameworks using web-

services protocols.

480 CHAPTER 15 Web applications and web services

public interface HttpService {
 HttpContext createDefaultHttpContext();
 void registerResources(String alias, String name, HttpContext context);
 void registerServlet(
 String alias, Servlet servlet,
 Dictionary initparams, HttpContext context);
 void unregister(String alias)
}

Let’s look at how you use this interface; you’ll start with registering static resources

and then move on to servlets.

REGISTERING RESOURCES

Let’s dive into a web application by creating a bundle to register a set of static

resources. You’ll reuse your knowledge of components from chapter 12 to build a sim-

ple iPOJO component that registers resources with the HTTP Service. Listing 15.1

shows the complete source code for this component. You may wonder why you’re

using an iPOJO component instead of a simple BundleActivator. The reason is the

complex startup-ordering issues associated with using multiple services, because your

component uses the HTTP Service and the Log Service. You could do this without a

component framework, but using one makes life simpler.

@Component
public class ResourceBinder {
 @Requires(optional=true)
 private LogService s_log;

 @Requires(id="http")
 private HttpService s_http;

 @Bind(id="http")
 protected void addHttpService(HttpService service) {
 register(service);
 }

 @Unbind(id="http")
 protected void removeHttpService(HttpService service) {
 unregister(service);
 }

 @Validate
 protected void start() {
 register(s_http);
 }

 @Invalidate
 protected void stop() {
 unregister(s_http);
 }

 private void register(HttpService service) {
 try {
 service.registerResources("/", "/html", null);

Listing 15.1 ResourceBinder component class

Responds to
lifecycle events

B

Registers content
from /html

C

481Creating web applications

 service.registerResources("/images", "/images", null);
 } catch (NamespaceException e) {
 s_log.log(
 LogService.LOG_WARNING, "Failed to register static content", e);
 }
 }

 private void unregister(HttpService service) {
 service.unregister("/");
 service.unregister("/images");
 }
}

The iPOJO runtime automatically injects the Log Service into the s_log field and uses

the addHttpService() and removeHttpService() methods to bind and unbind

(respectively) the HTTP Service. The ResourceBinder component responds to lifecycle

events B. The real work, for this example, is done when you register content from the

/html directory within your bundle to the root context of the HTTP Service C. In other

words, the file /html/index.html from within your bundle is served as /index.html from

the HTTP Service. You unregister it when the service is removed or the component is

deactivated D. What does the end result look like? Figure 15.2 shows the service- and

bundle-level dependencies of the ResourceBinder component.

 To see this example running, go into the chapter15/httpservice/ directory of the

book’s companion code. Type ant to build the example and java -Dorg.osgi.

service.http.port=8080 -jar launcher.jar bundles to execute it. In addition to

using iPOJO, this example uses the Apache Felix HTTP Service (http://felix.

apache.org/site/apache-felix-http-service.html) and Apache Felix Log Service (http:

//felix.apache.org/site/apache-felix-log.html) implementations.

 After launching the example, navigate to http://localhost:8080/index.html; you

should see the web page shown in figure 15.3.

Unregisters
content

D

LogServiceImpl

Log service bundle

HttpService

LogService

HTTP resource bundle

ResourceBinder

HttpService bundle

HttpServiceImpl

Figure 15.2 The ResourceBinder has a mandatory

dependency on the HTTP Service for providing content

and an optional dependency on the Log Service for

logging errors.

Figure 15.3 Static content served from the

OSGi HTTP Service

http://felix.apache.org/site/apache-felix-http-service.html
http://felix.apache.org/site/apache-felix-http-service.html
http://felix.apache.org/site/apache-felix-log.html
http://felix.apache.org/site/apache-felix-log.html

482 CHAPTER 15 Web applications and web services

SETTING THE HTTPCONTEXT

You may have noticed the HttpContext parameter in the HttpService.register-

Resources() method. In the previous example, you passed in null, but what does this

parameter do? HttpContext provides a way to inject the HTTP Service with resource-

lookup and -access policies. Let’s first look at the API, followed by an example, to show

what this allows you to do. The HttpContext interface is defined as follows:

public interface HttpContext {
 boolean handleSecurity(HttpServletRequest req, HttpServletResponse res)
 throws IOException;
 URL getResource(String name);
 String getMimeType(String path);
}

The handleSecurity() method provides a callback to allow the HTTP Service to verify

whether a request should be allowed for a given resource. The getResource()

method provides a mechanism to define how a particular resource is mapped to a

URL, which makes it possible to host contents from any scheme accessible from URLs.

Finally, the getMimeType() provides a mechanism to control the MIME type headers

returned with the stream of a particular resource.

 If you use null for the HttpContext, as in the previous example, the HTTP Service

uses a default context implementation, which can also be accessed using the Http-

Service.createDefaultHttpContext() method. Table 15.1 describes the behavior of

the default HttpContext as defined by the OSGi specification.

 To demonstrate how to use the HttpContext, let’s create a ResourceTracker to

track bundles and automatically register their resources with the HTTP Service. To

accomplish this, you’ll use the org.osgi.util.tracker.BundleTracker introduced

in the OSGi R4.2 Compendium specification. Listing 15.2 shows the body of the add-

Bundle() method of the BundleTracker subclass.

Configuring the HTTP Service

The HTTP Service is registered by an implementation bundle. The client has no con-

trol over the port or URL on which the service is running. That’s the job of the admin-

istrator of the OSGi framework. The HTTP Service specification defines framework

properties to configure the service ports:

■ org.osgi.service.http.port—Specifies the port used for servlets and

resources accessible via HTTP. The default value is 80.
■ org.osgi.service.http.port.secure—Specifies the port used for servlets

and resources accessible via HTTPS. The default value is 443.

You can set framework properties using the launching API covered in chapter 13. In

this case, the launcher passes system properties through to the framework proper-

ties. It’s also generally possible to configure the HTTP Service implementation using

the Configuration Admin Service, but that is implementation-dependent.

483Creating web applications

@Override
public Object addingBundle(Bundle bundle, BundleEvent event) {
 ArrayList<String> aliases = new ArrayList<String>();

 String[] resources = findResources(bundle);

 if (resources != null) {
 HttpContext ctx = new ProxyHttpContext(bundle);

 for (String p : resources) {
 String[] split = p.split("\\s*=\\s*");
 String alias = split[0];
 String file = split.length == 1 ? split[0] : split[1];
 try {
 http.registerResources(alias, file, ctx);
 aliases.add(alias);
 } catch (NamespaceException e) {
 e.printStackTrace();
 }
 }
 }

 return aliases.isEmpty()
 ? null : aliases.toArray(new String[aliases.size()]);
}

Table 15.1 Default behavior of HttpContext implementations

Method Behavior

handleSecurity() Implementation-specific authentication, although all known open

source implementations return true

getResource() Maps requested resources to the content of the registering bundle

getMimeType() Always returns null

Listing 15.2 Tracking HTTP resources in ResourceTracker

OSGi R4.2 bundle tracker

The BundleTracker class provided by the OSGi R4.2 Compendium simplifies the

task of tracking bundles much as ServiceTracker simplifies tracking services. As

with ServiceTracker, which we introduced in chapter 4, BundleTracker supports

a filter pattern based on bundle states and a customizer object to fine-tune which

bundles are tracked and/or to create a customized object to track with the bundle.

Compared to the simple BundleTracker you created in chapter 3, the OSGi Bundle-
Tracker performs the same task, but does so in a more sophisticated way. In par-

ticular, it handles concurrency issues better and allows you to track bundles based

on desired states, instead of just the ACTIVE state as the simple implementation did.

Checks whether bundle
specifies resourcesB

484 CHAPTER 15 Web applications and web services

In this example, you define an HTTP-Resources manifest header that bundles can

use to specify resources they wish to register with the HTTP Service. You check

whether a bundle specifies any resources in the HTTP-Resources header B. The for-

mat of this header is a comma-delimited list of directories that may optionally be

aliased (you’ll see this working in a second). If any resources are found, you create a

ProxyHttpContext (shown in the following listing) and register the resources with

the HttpService.

public class ProxyHttpContext implements HttpContext {

 private final Bundle bundle;

 public ProxyHttpContext(Bundle bundle) {
 this.bundle = bundle;
 }

 public URL getResource(String name) {
 return bundle.getResource(name);
 }
...
}

If you used the default HttpContext, the HTTP Service would try to find the requested

resources in your ResourceTracker bundle, which clearly isn’t correct. ProxyHttp-

Context attempts to find the resources in the bundle you’re tracking. You create a

unique ProxyHttpContext for each tracked bundle. The key line of code in this class

passes the getResource() call through to the tracked bundle B.

 To demonstrate how to use the resource tracker, the org.foo.http.resource bun-

dle in the chapter15/httpservice/ directory of the companion code contains the fol-

lowing header:

HTTP-Resources: /resource=html,/resource/images=images

If you deploy this bundle into an OSGi framework along with an HTTP Service and

your ResourceTracker, then its resources are registered; you can browse them at

http://localhost:8080/resource/index.html. This is just one trivial usage of the Http-

Context object. Other possible scenarios might include the following:

■ Managing authenticated access to web content

■ Mapping local file system resources into the HTTP Service

Now that you’re familiar with registering static resources with the HTTP Service, let’s

look at how it allows you to use servlets in an OSGi environment.

REGISTERING SERVLETS

Java servlets are the building block on which a vast number of web applications have

been built. Some of the key advantages of the servlet specification are the relative

simplicity of the API and the huge number of tools and frameworks available to help

you develop web applications with it. Similar to static content, the HTTP Service

Listing 15.3 ProxyHttpContext for reading resources from a bundle

Passes getResource()
to tracked bundle

B

485Creating web applications

provides a mechanism to dynamically register servlets using the following Http-

Service method:

void registerServlet(String alias, Servlet servlet,
 Dictionary initparams, HttpContext context);

In the example using static content with the HTTP Service, we showed how you can

use the registerResources() method to dynamically register content. Can you do

the same for servlets? Yes, you can. But because the registerServlet() method

expects an instance of a servlet, instead of using the BundleTracker, you’ll find serv-

lets in the OSGi service registry and automatically register them with the HTTP Service.

 The following listing shows a snippet from an iPOJO component that maps servlets

registered in the service registry with a Web-ContextPath service property to any avail-

able HttpServices.

@Component(immediate=true)
public class ServletManager {

 @Requires(optional=true)
 private LogService log;

 private LinkedList<HttpService> services = new LinkedList<HttpService>();
 private Map<String, Servlet> servlets = new HashMap<String, Servlet>();

 @Bind(aggregate=true)
 void bindHttp(HttpService http) {
 Map<String, Servlet> snapshot;

 synchronized (servlets) {
 snapshot = new HashMap<String, Servlet>(servlets);
 services.add(http);
 }

 for (Map.Entry<String, Servlet> entry : snapshot.entrySet()) {
 String ctx = entry.getKey();
 Servlet s = entry.getValue();
 try {
 http.registerServlet(ctx, s, null, null);
 } catch (ServletException e) {
 log.log(LogService.LOG_WARNING, "Failed to registerServlet", e);
 } catch (NamespaceException e) {
 log.log(LogService.LOG_WARNING, "Failed to registerServlet", e);
 }
 }
 }

In this example, you declare an optional service dependency on the LogService to

allow you to inform the outside world of any exceptions. You synchronize on the

current servlets to create a snapshot of them and to add the HttpService to the set

of known services. Then you iterate over the current servlets and register them with

the recently discovered HttpService B. Because this is a dynamic environment,

Listing 15.4 Binding servlets in the OSGi service registry using iPOJO

Registers
servlets

B

486 CHAPTER 15 Web applications and web services

you also need to consider the case where servlets come before or after an Http-

Service. Hence you need similar logic in the bindServlet() method, shown in the

next code snippet.

@Bind(aggregate=true)
void bindServlet(Servlet servlet, Map attrs) {
 String ctx = (String) attrs.get("Web-ContextPath");
 if (ctx != null) {
 LinkedList<HttpService> snapshot;

 synchronized (servlets) {
 servlets.put(ctx, servlet);
 snapshot = new LinkedList<HttpService>(services);
 }

 for (HttpService s : snapshot) {
 try {
 s.registerServlet(ctx, servlet, null, null);
 } catch (ServletException e) {
 log.log(LogService.LOG_WARNING, "Failed to registerServlet", e);
 } catch (NamespaceException e) {
 log.log(LogService.LOG_WARNING, "Failed to registerServlet", e);
 }
 }
 }
}

In this method, you read the Web-ContextPath from the service headers B. If this

isn’t null, you then snapshot the HttpServices and store the servlet using the same

object lock as in listing 15.4—ensuring that you don’t miss any services C. Finally, you

iterate over the available HttpServices and register the new servlet D.

 The final piece of the puzzle is the actual registration of a servlet. Here you create

the trivial HelloServlet shown in the following listing, which prints a message in the

web browser.

@Component(immediate = true)
@Provides(specifications = Servlet.class)
public class HelloServlet extends HttpServlet {
 @ServiceProperty(name = "Web-ContextPath")
 String ctx = "/hello";

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 ...
 }
}

You register this component using the Servlet interface and add the Web-Context-

Path service property with iPOJO annotations.

Listing 15.5 Binding servlets in the OSGi service registry using iPOJO (continued)

Listing 15.6 Binding servlets in the OSGi service registry using iPOJO (continued)

Reads web
context path

B

Stores servlet and snapshots
available HTTP Services

C

Registers servlet
with available
HTTP Services

D

487Creating web applications

 To see this example in action, go into the chapter15/httpservice/ directory of

the book’s companion code; type ant to build it and java -Dorg.osgi.service.

http.port=8080 -jar launcher.jar bundles/ to launch it. Then browse to http://

localhost:8080/hello with a web browser.

PAX WEB SUPPORT

Before leaving this section on the HTTP Service, we should also point out the support

provided by the Pax Web project (http://wiki.ops4j.org/display/paxweb/Pax+Web).

This project defines a WebContainer service interface that extends the standard OSGi

HttpService interface. This new interface provides a number of extra methods to reg-

ister other servlet-related services, including JSP, servlet filters, and servlet event listeners.

 We won’t cover Pax Web in depth, but we’ll show you how to run a shopping cart

example from another Manning publication, Web Development with Java Server Pages, Sec-

ond Edition (Fields, Kolb, and Bayern, 2001), in an OSGi context. The following listing

shows a Declarative Services component for registering JSPs when the WebContainer

service is published in the OSGi service registry.

public class Binder {
 private volatile HttpContext http;

 protected void bindWebContainer(WebContainer c) {
 http = c.createDefaultHttpContext();
 c.registerJsps(new String[] { "*.jsp" }, http);
 }

 protected void unbindWebContainer(WebContainer c) {
 c.unregisterJsps(http);
 http = null;
 }
}

This component registers all JSPs in the bundle under a shared HttpContext and

unregisters the JSPs. The next listing shows the Declarative Services component

description.

<?xml version="1.0" encoding="UTF-8"?>
<component name="sample.component" immediate="true">
 <implementation class="org.foo.webapp.jspapp.Binder" />

Listing 15.7 Binder to register JPS pages in the Pax Web WebContainer

Listing 15.8 Declarative Services component definition for JSP binder

The relationship between the servlet and HTTP contexts

The HTTP Service specification specifies that only servlets registered with the same

HttpContext object are part of the same ServletContext. The HTTP Service imple-

mentation creates a ServletContext for each unique HttpContext object that is

registered. If null is passed in, the HTTP Service calls createDefaultHttp-
Context(), which puts the registered servlet in a separate ServletContext.

http://wiki.ops4j.org/display/paxweb/Pax+Web

488 CHAPTER 15 Web applications and web services

 <reference name="webcontainer"
 interface="org.ops4j.pax.web.service.WebContainer"
 cardinality="1..1"
 policy="static"
 bind="bindWebContainer"
 unbind="unbindWebContainer"
 />
</component>

You specify the component implementation class and declare the component as

immediate, so an instance is created as soon as the component’s dependencies are sat-

isfied. Then you specify a one-to-one dependency on a WebContainer service, which

you want injected into your component using the specified binding methods. We’ll

leave it as an exercise for you, but you can trivially extend this to use the Bundle-

Tracker approach from listing 15.2 to track JSP bundles centrally, rather than dupli-

cating binding logic in different bundles.

 To see this example running, go into the chapter15/pax-web/ directory of the

book’s companion code. Type ant to build the example and java -jar launcher.jar

bundles to execute it. To see the shopping-cart

application in action, go to http://localhost:

8080/jsps/catalog.jsp. When you do, you should

see a simple shopping cart page. Add a couple of

items to the cart to verify that it works, as shown in

figure 15.4.

 We’ve shown you how to deploy a range of

web-application technologies from static

resources to servlets to JSPs using the HTTP Ser-

vice or its extensions. This may leave you wonder-

ing, “What about my WAR files?” Good question.

In the next section, we’ll look at the standard way

to deal with WAR files in OSGi.

15.1.2 Using the Web Applications specification

Since the Servlet 2.2 specification came out in August 1999, we’ve been packaging and

deploying servlets, JSPs, and other web technologies in WAR files. WAR files provide a

standard way to map a range of web technologies to a servlet-container context.

Despite the widespread use of WAR files, until recently there was no standard way to

use WAR files in an OSGi framework. Due to the increasing use of OSGi technology in

the enterprise domain, member companies in the OSGi Alliance are now producing

enterprise-related specifications.

 The OSGi R4.2 Enterprise specification is the result of this effort. The Enterprise

specification defines another set of compendium specifications specifically targeting

enterprise technologies. One of these specifications is the Web Applications specifica-

tion, which provides a standard way for servlet and JSP application components to exe-

cute within an OSGi framework by defining a web application bundle (WAB).

Figure 15.4 JSP shopping cart

application running in an OSGi

environment

489Creating web applications

WAB is pretty much a standard WAR file that has been converted into a bundle. More

specifically, it’s a WAR file that adheres to the Servlet 2.5 and JSP 2.1 specifications and

additionally declares its dependencies using the standard OSGi metadata. To demon-

strate the process of creating a WAB, you’ll take the stock-watcher application from the

GWT tutorial and convert it to run in an OSGi context. You can use bnd to convert the

WAR file generated by the GWT build into a bundle using the following Ant target:

<target name="osgi">
 <path id="bnd.class.path">
 <fileset dir="${root.dir}/lib" includes="osgi.*.jar"/>
 <fileset dir="build" includes="*.war"/>
 </path>
 <mkdir dir="../bundles" />
 <pathconvert pathsep=":" property="bnd.cp" refid="bnd.class.path"/>
 <bnd files="build.properties" classpath="${bnd.cp}" exceptions="true"/>
</target>

Bnd takes its configuration properties from the build.properties file in the same direc-

tory, which contains the following:

Bundle-SymbolicName: com.google.gwt.sample.stockwatcher
Bundle-ClassPath: WEB-INF/lib/gwt-servlet.jar,WEB-INF/classes
Include-Resource: war
Import-Package: \
 com.google.gwt.benchmarks;resolution:=optional,\
 junit.framework;resolution:=optional,\
 *
Web-ContextPath: /stockwatcher/stockPrices

Most of these headers look similar to those introduced in chapter 2; if you aren’t

familiar with bnd syntax, refer to appendix A. Briefly, you first specify the bundle sym-

bolic name for your WAB. Next, you set up the bundle class path to include the gwt-

servlet.jar file, which is embedded in the WAR file, and the WEB-INF/classes directory,

which contains the classes of your application. You embed the various resources used

by this application, including JavaScript files and images. Then you specify two

optional package imports that are only used in testing scenarios.

 The only new header here is Web-ContextPath. It’s used to identify the bundle as a

WAB. The header is used by the web container extender bundle. This bundle is defined in

the Web Application specification; it uses the extender pattern, which we discussed in

chapter 3, to track bundles with the Web-ContextPath header and register the servlet

resources specified in these WABs as a web application, similar to the previous exam-

ples in this chapter. The value of this header specifies the context root that the web

container uses to register the web application. All web-accessible resources in the bun-

dle are served up relative to this path.

 Before we delve any further into the inner workings of WAB files, let’s launch the

GWT application to show it in action. Go into the chapter15/gwtapp/ directory of the

book’s companion code. Type ant to build the example and java -jar launcher.jar

bundles to execute it. Browse to http://localhost:8080/stockwatcher/stockPrices/,

which should look something like figure 15.5.

490 CHAPTER 15 Web applications and web services

The Web Applications specification allows you to take advantage of OSGi’s module

layer to share classes installed elsewhere in the OSGi framework, ensure that you have

the correct dependencies installed, and enforce defined module boundaries. You can

also use the lifecycle layer to allow dynamic installation, update, and removal of your

web application.

You’ve got modularity. You’ve got lifecycle. What about services? Yep, the example

uses services too! The following listing shows how.

public class StockPriceServiceImpl extends RemoteServiceServlet
 implements StockPriceService {

 private BundleContext ctx;

 @Override
 public void init() throws ServletException {
 ctx = (BundleContext) getServletContext()
 .getAttribute("osgi-bundlecontext");

Listing 15.9 Accessing the BundleContext from within a servlet

Figure 15.5 The

Google stock-watcher

application running in

an OSGi context

Modularity improves memory consumption

In this trivial example, sharing classes offers relatively little value, because the

stock watcher has few external dependencies. But consider the benefits of being

able to share classes in a large web application environment. In standard WAR de-

velopment, each application must embed its own set of dependencies in its WAR

file under the WEB-INF/lib directory. For utility classes, such as collections libraries,

XML parsers, and logging frameworks, this can mean a lot of duplicate classes get

loaded into the VM for each WAR file installed in your application server. These

classes can eat up memory. In an OSGi environment, you can move dependencies

into separate bundles that are then shared among installed applications, reducing

the overall memory footprint.

491Creating web applications

 }

 @Override
 public void destroy() {
 ctx = null;
 }
}

Here you extend com.google.gwt.user.server.rpc.RemoteServiceServlet with

your own implementation class. Although the details of GWT aren’t important for this

example, note that you override the init() and destroy() methods of javax.servlet.

GenericServlet. You grab a reference to the BundleContext from an attribute on the

javax.servlet.ServletContext. Having cached a reference to the BundleContext,

you can use it to discover other services in the framework.

EXTENDING THE GWT SAMPLE WEB APPLICATION FOR OSGI

To demonstrate how you can use services in a WAB context, you can make a minor

change to the sample GWT application to discover a trivial StockProvider service

from the OSGi registry using the following interface:

public interface StockProvider {
 Map<String, Double> getStocks(String[] symbols);
}

This service returns a Map of stock prices for the given symbols. In the StockPrice-

ServiceImpl.getPrices() method, you look up a StockProvider service and use it

to get stock prices as shown in the next listing.

public StockPrice[] getPrices(String[] symbols)
 throws DelistedException, ServiceUnavailableException {
 StockPrice[] prices = null;

 StockProvider provider = (StockProvider) tracker.getService();
 if (provider != null) {
 prices = readPrices(provider, symbols);
 } else {
 throw new ServiceUnavailableException();
 }

 return prices;
}

You see whether a StockProvider service is registered using a ServiceTracker. If one

is available, you use it to read prices for the specified symbols or throw a checked

exception to indicate that an error message should be displayed to the user.

 You’ve now taken an existing servlet application and deployed it to an OSGi envi-

ronment using the WAB format. You’ve also extended this application to discover ser-

vices from the OSGi registry. As it stands, this is a trivial example; but you’ll see in the

next section how to extend the example further by using the service abstraction to

allow your application to be divided into a multiprocess application. First, we’ll briefly

cover one remaining area of interest: how to support standard WAR files in OSGi.

Listing 15.10 Reading stock prices from the StockProvider service

492 CHAPTER 15 Web applications and web services

15.1.3 Standard WARs: the Web URL Handler

As a convenience for users who wish to migrate web applications to OSGi but don’t wish

to undertake the effort of converting a WAR file to a WAB, the Web Applications speci-

fication provides a utility mechanism to convert a WAR file to a WAB at execution time:

the Web URL Handler. It uses the OSGi URL Handlers Service to turn WARs into WABs.

To use the Web URL Handler, all you need to do is prefix any existing URL pointing to

a WAR file with the webbundle protocol when installing the WAR file into the frame-

work. For example, you could use your shell’s install command like this:

install webbundle:http://www.acme.com/acme.war?Bundle-SymoblicName=
com.example&Web-ContextPath=acme

The Web URL Handler converts the referenced WAR file into a WAB on the fly prior to

the OSGi framework installing. The Web URL Handler makes a best-effort attempt to

convert a WAR to a WAB, but in certain circumstances you may have to give it extra

hints to help the process go smoothly. In this example above, you specify a Bundle-

SymbolicName as a parameter in the query portion of the URL. The Web URL Handler

also supports a number of other parameters that affect the outcome of the conver-

sion; these parameters are listed in table 15.2.

OSGi and JNDI

Retrieving the OSGi bundle context from the ServletContext is the most direct way

to interact with the OSGi environment. Many existing servlets use JNDI to discover

Java EE services—wouldn’t it be great if a bridge existed between these two worlds?

Such a bridge does exist in the R4.2 Enterprise specification, so rest assured that

you can use this mechanism to access services. The technical details of how this

interaction works are beyond the scope of this book; refer to the specification for

more information (www.osgi.org/Download/Release4V42).

URL Handlers Service specification

The OSGi URL Handlers Service specification provides a service-based approach for

bundles to offer custom stream and content handlers associated with URLs. The normal

approach for dealing with stream and content handlers in Java is to set a URLStream-
HandlerFactory and/or a ContentHandlerFactory on URL and URLConnection, re-

spectively. Unfortunately, these are singletons, so they can’t be shared and they aren’t

dynamic. The URL Handlers specification addresses both of these issues.

The URL Handlers Service works by setting the URLStreamHandlerFactory and

ContentHandlerFactory objects once; it then uses the whiteboard pattern to dis-

cover services offered by bundles implementing custom stream and content han-

dlers. When the URL Handlers service receives a request for a specific protocol or

content type, it delegates the request to the appropriate underlying service to perform

the processing.

www.osgi.org/Download/Release4V42

493Providing and consuming web services

In the first half of this chapter, we’ve looked at a range of web-application technolo-

gies and shown how they can be integrated with OSGi. We’ve highlighted a number of

themes:

■ Using the HTTP Service to provide static and dynamic content

■ The benefits modularity brings at execution time due to improved memory

consumption from the use of shared classes

■ Flexible collaboration between functional units due to the use of service patterns

■ Converting WAR-style applications to WABs using OSGi R4.2 Enterprise features

In the second half of this chapter, we’ll turn our attention to making OSGi services avail-

able across process boundaries—that is, how to build distributed OSGi applications.

15.2 Providing and consuming web services

Until this point in the book, all your applications have resided in a single JVM process;

but this is rarely the case for web-based applications. The entire ethos of internet-based

development is predicated on distributed processes communicating over network pro-

tocols. You saw how to do this at a low level in chapter 3, where you built a simple telnet

implementation. But this is the early twenty-first century, and the zeitgeist for distributed

computing today is web services. In this section, we’ll investigate OSGi-based technolo-

gies for communicating between JVM processes using web-service protocols.

 Obviously, we’ll only be able to scratch the surface of distributed computing,

because the topic is too large and complex to cover in a single section of a chapter.

Instead of going into a lot of detail about specific web-service protocols or technologies,

we’ll introduce you to some of the key features of the Remote Services specification,

which is another specification in the OSGi R4.2 Enterprise specification.

 The Remote Services specification and its sibling specifications, Remote Services

Admin and SCA Configuration Type, provide a comprehensive model for building dis-

tributed computer systems in OSGi. Their key purpose is to provide a common model

Table 15.2 Parameters supported by the Web URL Handler

Parameter Description

Bundle-SymbolicName Desired symbolic name for the resulting WAB.

Bundle-Version Version of the resulting WAB. The value of this parameter must fol-

low OSGi versioning syntax.

Bundle-ManifestVersion Desired bundle manifest version. Currently, the only valid value for

this parameter is 2.

Import-Package List of packages on which the WAR file depends.

Web-ContextPath Context path from which the servlet container should serve content

from the resulting WAB. If the input JAR is already a WAB, this

parameter is optional but may be used to override the context path.

Otherwise, it must be specified.

494 CHAPTER 15 Web applications and web services

to import remote services (provided over any protocol, such as SOAP, RMI, or JMS)

into the OSGi service registry and symmetrically export services from the OSGi service

registry so they can be accessed by other processes external to the JVM.

 To see how this works in practice, let’s look at the stock-watcher application you

built in the last section. It has a three-tier architecture, consisting of a web browser

connected to a back-end servlet engine that talks to an in-process StockProvider ser-

vice. A logical step in this section of the book is to split the StockProvider service into

a separate JVM process and communicate with it using an over-the-wire protocol, such

as SOAP. The new architecture is shown in figure 15.6. Let’s look into how you can

realize this design using the Remote Services specification.

15.2.1 Providing a web service

The first step in making a distributed OSGi application is to create the remote imple-

mentation of the StockProvider service. To do this, create the BundleActivator

shown in the following listing.

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) throws Exception {
 Dictionary props = new Hashtable();

 props.put("service.exported.interfaces", "*");
 props.put("service.exported.intents", "SOAP");
 props.put("service.exported.configs", "org.apache.cxf.ws");
 props.put("org.apache.cxf.ws.address",
 "http://localhost:9090/stockprovider");

 ctx.registerService(StockProvider.class.getName(),
 new StockProviderImpl(), props);
 }

 public void stop(BundleContext ctx) throws Exception {
 }
}

Listing 15.11 Reading stock prices from the StockProvider service

Blah, blah, blah,

blah, blah, blah,

blah, blah

Web browser JVM2

JVM1

HTTP

SOAP

Stock-watcher bundle

Stock-provider bundle

StockProvider

StockProvider

StockProviderImpl

Stock-watcher
servlet

Figure 15.6 The Google

stock-watcher application

running in an OSGi context

495Providing and consuming web services

As you can see, this is a fairly typical BundleActivator. You’re basically registering a

service with a set of properties. You may be asking yourself, “Where is the remote com-

munication?” That’s the cool thing about the Remote Services specification: it shields

you from those messy details. The specification defines a set of service properties you

can attach to your services to indicate that they should be made available remotely.

The actual remote communication is handled by another bundle or set of bundles;

these types of bundles are classified as distribution provider bundles.

 The key service property in listing 15.11 is service.exported.interfaces, which

tells any distribution providers that you intend for your service to be made available

remotely. The value * indicates that all interfaces specified when registering the ser-

vice should be exported remotely. You can also change this to a String array to specify

a specific set of interfaces.

NOTE This opt-in approach is reasonable, because not all services make sense
in a remote context. For example, consider the whiteboard pattern for serv-
lets that we provided earlier, in section 15.1.1. It makes little sense to register
a Java5 servlet interface remotely, because it’s entirely an in-memory API.

The rest of the attributes specify either intents or configuration for the distribution

provider, which it uses to decide how to publish the remote service. We’ll look at

intents and configuration in more detail a little later; for now, you can probably intui-

tively guess that you’re requesting that your service be exposed using a SOAP interface

from the specified URL.

 To create a remote service, you need to select a distribution provider. For this

example, we’ve chosen to use the Apache CXF Distributed OSGi implementation

(http://cxf.apache.org/distributed-osgi.html), which is a Remote Services distribu-

tion provider built on top of Apache CXF. To run your remote service, go into the

chapter15/webservice/ directory of the book’s companion code. Type ant to build

the example and java -jar launcher.jar bundles/ to run it. You can test your intu-

ition by visiting http://localhost:9090/stockprovider?wsdl in a web browser. You

should see something like the following (truncated):

<wsdl:definitions name="StockProvider"
 targetNamespace="http://stockprovider.foo.org/">
 <wsdl:types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://stockprovider.foo.org/">
 <xsd:complexType name="string2doubleMap">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="entry">

That’s all there is to it! By deploying the StockProvider bundle into an OSGi frame-

work along with a distribution provider, you’re able to make it available remotely.

Pretty neat. Before we move on to the client side of the example, let’s look a little

more at intents and configuration.

http://cxf.apache.org/distributed-osgi.html

496 CHAPTER 15 Web applications and web services

UNDERSTANDING INTENTS AND CONFIGURATION

To understand intents and configuration it’s useful to consider the actual mechanics

of how OSGi distribution providers publish a service remotely. This process follows the

classic whiteboard pattern, where the distribution provider waits around listening for

services to be registered with the service.exported.interfaces service property.

This is the cue for it to make the corresponding service available remotely.

 Given no other information, a distribution provider can pick any number of ways to

make the service available remotely. It can use various protocols (SOAP, REST, RMI, and

so on). It can use a range of different

security or authentication mechanisms

(such as SSL, DSA, Blowfish, LDAP, or

Kerberos). There are even many differ-

ent transport technologies (HTTP, JMS,

Unicast, Multicast, and P2P). This

dilemma is shown in figure 15.7.

 There’s no single best choice for any

of these options. When you’re building

distributed applications, as with most

applications, one size doesn’t fit all. Dif-

ferent techniques are appropriate in dif-

ferent scenarios. Having said that, it

doesn’t make sense for business-level

services to specify the minute details of

how they should be made available remotely. Coming back full circle to the theme from

chapter 2, this is another area where separation of concerns is applicable.

 Intents and configurations provide a layer of indirection between the service pro-

vider and the distribution provider. They allow the service provider to specify just

enough information to ensure that the service behaves as expected, yet still allow the

distribution provider to optimize communications for the environment in which

they’re deployed. Now that you understand what intents and configuration are in the

abstract, let’s look at them in concrete terms.

INTENTS

Intents are a pattern borrowed from the Service Component Architecture (SCA) spec-

ification. An intent is a string value with agreed-on distribution-level semantics. To

make this concept less abstract, let’s look at an example of an intent you might attach

to a registered service:

props.put("service.exported.intents",
 new String[] { "propagatesTransaction", "authentication" });

In this case, you’re communicating two different intents to the distribution provider.

The first, propagatesTransaction, says the service should be made available in such a

way that transactional boundaries are transmitted to the service. The second, authen-

tication, says the client application should be authenticated prior to using the service.

service.exported.interfaces=*

Service

LDAP
SOAP

RMI

SSL

Distribution provider

Figure 15.7 When making remote services

available, the number of options is bewildering:

protocols, transports, authentication schemes,

and encryption algorithms all play their part.

497Providing and consuming web services

The precise details of how these intents are accomplished is left up to the distribu-

tion provider.

Because the meaning of the intents is well-known, a distribution provider can make its

best attempt at how to achieve them in its underlying implementation. This aids in

decoupling distributed applications, because you can specify the qualities of the

desired remote communication without tying yourself to a particular distribution

technology. If you move your application to a different environment, a different distri-

bution provider may make equally valid but potentially different choices. The SCA

specification defines many intent values, but the precise details are beyond the scope

of this book—for more information on SCA, visit the OSOA consortium website

(www.osoa.org).

 A service provider specifies intents, and the distribution provider realizes them. Is

this the end of the story? Not exactly. The distribution provider must honor the

requirements of the service provider, but it’s free to add any behaviors it feels are

appropriate. These may include default communication protocols, authentication

schemes, and buffering strategies, as shown in figure 15.8.

 In summary, intents provide a distribution provider with some flexibility when it

comes to deciding how to distribute a service. Sometimes, though, you know exactly

how you want your service to be made available remotely. In these situations, you need

a mechanism to give specific instructions to the distribution provider. This leads us to

Remote Services configuration properties.

Qualified intents

Intent values are hierarchical. This is expressed by delimiting the intent value with

the . character. For example, authentication.transport indicates that the service

should use transport-level authentication. The practical upshot is that a service spec-

ifying authentication as an intent may be implemented by a provider that provides

authentication.transport. But a service specifying authentication.transport
may not be implemented by a provider only providing authentication.

Service
provider

pr
op

a
ga

te
sT

ra
ns

a
ct

io
n

a
ut

he
nt

ic
a

ti
on

Distribution
provider J

M
S

in
te

gr
it

y.
m

es
sa

ge

E
n

d
p

o
in

ts

Figure 15.8 Service providers and distribution providers can each define intents that are applied

to a service endpoint.

www.osoa.org

498 CHAPTER 15 Web applications and web services

CONFIGURATION

Configuration properties provide a mechanism for the service provider to communi-

cate explicit settings to the distribution provider. Given the range of possible configu-

ration schemes, the Remote Services specification defines a mechanism for how the

configuration is encoded. In the earlier example, you added the following property to

the service:

props.put("service.exported.configs","org.apache.cxf.ws");

This specifies that the configuration properties follow the CXF web-services configura-

tion scheme or configuration type. Note that this doesn’t mean that only CXF can be

used to distribute the service; it means the semantics of the configuration properties

are defined by CXF. The Remote Services specification suggests a naming convention

for configuration properties, which is the configuration type followed by . and a key.

In the example, you specified a single configuration property:

props.put(
 "org.apache.cxf.ws.address","http://localhost:9090/stockprovider");

Here, the configuration type is org.apache.cxf.ws and the key is address. It’s possi-

ble to use a number of different configuration types, in which case you may see some-

thing like this:

props.put("service.exported.configs", new String[]{"foo","bar"});
props.put("foo.key1","value1");
props.put("foo.key2","value2");
props.put("bar.key1","value3");
props.put("bar.key2","value4");

The idea behind using configuration properties from multiple configuration types is

to make your service’s configuration more broadly applicable. Clearly, the Apache

CXF distribution provider understands the org.apache.cxf.ws configuration type.

Some other distribution providers may understand it too, but not all of them will. By

using additional configuration types, you make your service’s configuration under-

standable to a wider range of distribution providers.

 This concludes our overview of intents and configurations. They provide an exten-

sible and flexible mechanism for service providers to specify to distribution providers

SCA configuration

For interoperability purposes, the OSGi R4.2 Enterprise specification introduces a

standard configuration type based on the SCA XML format. This configuration format

uses the configuration type org.osgi.sca and defines a single configuration attri-

bute org.osgi.sca.bindings which points to a named service definition. This

forms a recommended approach for different distribution providers to share configu-

ration data in a vendor-neutral format. A full description of this functionality is outside

the scope of this book, but you can refer to the OSGi Enterprise specification for more

information (www.osgi.org/Download/Release4V42).

www.osgi.org/Download/Release4V42

499Providing and consuming web services

how services should behave in a distributed environment. In general, intents and con-

figuration should be kept to a minimum to allow distribution-provider flexibility. Let’s

now turn our attention to the other side of the equation: client-side distributed services.

15.2.2 Consuming a web service

Returning to the stock-watcher example, what do you need to do it to make it use the

remote StockProvider service? Currently, it looks for the StockProvider service in

the OSGi service registry; what needs to change? With respect to your application,

nothing at all.

 Because your client bundle runs in a separate JVM, all you need to do is install a

distribution provider into the client-side OSGi framework and configure it to discover

the distributed StockProvider service. The distribution provider will automatically

create a proxy of the remote service and inject it into the local service registry, which

the stock-watcher application will discover and use as normal. This scenario is shown

in figure 15.9.

 If you’re familiar with technologies such as Zeroconf, SSDP, UDDI, and Jini, you’re

acquainted with the concept of discovery. Even if you aren’t familiar with these technol-

ogies, it should be relatively intuitive that discovery is a pattern used in distributed

computing to allow a service provider to announce the presence of a service and for a

consumer to find it. Often, this is achieved using a central registry or peer-to-peer

mechanism, such as multicast TCP or multicast DNS. With such approaches, services

are discovered as needed by client applications. The Remote Services specification

provides an extensible pattern for implementing service discovery, which we’ll cover

in more depth in the next section. For now, we’ll look at what you need to do to con-

figure your distribution provider to discover the remote StockProvider service.

“Client” VM

OSGi registry

Service-provider
proxy

Distribution
provider

Distribution
provider

Announcement

Service
provider

“Server” VM

Endpoint
OSGi registry

Figure 15.9 The distribution provider bundle creates a remote endpoint for the service provider. It may

also announce the location and type of this endpoint for other distribution provider bundles to find. The

client-side distribution provider discovers remote endpoints and creates proxies to these services, which

it injects into the local OSGi service registry.

500 CHAPTER 15 Web applications and web services

CONFIGURING THE DISTRIBUTION PROVIDER FOR DISCOVERY

The Remote Services specification doesn’t explicitly define how discovery is imple-

mented, only how it should behave. The Apache CXF Distributed OSGi implementa-

tion provides discovery based on the Apache Hadoop Zookeeper project (http://

hadoop.apache.org/zookeeper/), but its usage is beyond the scope of this book.

Luckily, Apache CXF Distributed OSGi also provides a static version of discovery based

on the Remote Services Admin Endpoint description from the R4.2 Enterprise specifi-

cation. With this approach, the discovery process is directed by XML files contained in

bundles installed in the framework. The following listing shows the XML that

describes the StockProvider service, which is nearly identical to the configuration for

publishing the service.

<service-descriptions xmlns="http://www.osgi.org/xmlns/sd/v1.0.0">
 <service-description>
 <provide interface="org.foo.stockprovider.StockProvider" />
 <property name="service.exported.interfaces">*</property>
 <property name="service.exported.configs">
 org.apache.cxf.ws
 </property>
 <property name="org.apache.cxf.ws.address">
 http://localhost:9090/stockprovider
 </property>
 </service-description>
</service-descriptions>

For this example, package this file in OSGI-INF/remote-service/remote-services.xml of

a new bundle called stockprovider-client-1.0.jar. You define the interface that the dis-

covered service will provide B. Then you provide the configuration entries needed by

the distribution provider to bind to the remote service into the OSGi service registry C.

In this example, this new bundle is purely for configuring the discovery process, so it

only contains this XML file.

 That’s all there is to it. The service is automatically published into the OSGi service

registry; you can look it up and invoke methods on it, which results in remote method

invocations being sent using SOAP to the server proxy created in the remote JVM.

 You now know how to provide and consume remote services. Let’s wrap up this

example by seeing how to use this service in the stock-watcher application.

USING YOUR WEB SERVICE

It’s time to see the updated stock-watcher application in action. Go into the

chapter15/webservice/ directory of the book’s companion code. Type ant to build

the example and java -Dorg.osgi.service.http.port=8081 -jar launcher.jar

bundles/ to execute it. Doing so starts the remote StockProvider service.

 Now you need to start the stock-watcher application. In a separate command shell,

go into the chapter15/webservice-client/ directory of the companion code. Type ant

to build the application and java -jar launcher.jar bundles/ to start it. Browse to

Listing 15.12 XML discovery file for the StockProvider service for Apache CXF

Defines
provided

service
interface B

Specifies configuration
information

C

http://hadoop.apache.org/zookeeper/
http://hadoop.apache.org/zookeeper/

501Providing and consuming web services

http://localhost:8080/stockwatcher/stockPrices/, and enter the stock name foo. You

should see results appear in the browser and in the output of the first console, as follows:

Retrieved {FOO=4.736842484258008}
Retrieved {FOO=48.88924250369791}
Retrieved {FOO=22.847587831790904}

This output shows that the method invocation of the local StockProvider service is

being sent across the wire from the stock-watcher JVM using SOAP to the stock-provider

JVM. Very cool!

As you can see, it’s fairly straightforward to configure a distribution provider to import

a remote service for use locally. In the example, the client isn’t particularly picky

about which StockProvider service it uses: it takes whichever one is available in the

service registry. The Remote Services specification allows the consumer to be more

selective; we’ll conclude this section by looking into how it does so.

MATCHMAKING SERVICES

Earlier, we covered how the service provider uses intents and configuration to have

control over how its service is exposed remotely. In a symmetric fashion, clients often

need to use services with specific characteristics. For example, a medical insurance

web application may require encrypted communications to ensure patient confidenti-

ality, or a financial trading application may require a certain protocol to communicate

between services for performance or regulatory reasons. Using the OSGi service regis-

try’s query mechanism, clients can select services using filters over the intents and

configurations specified on published services.

 Let’s consider the simplest case of differentiating between local and remote services.

In this case, the Remote Services specification requires distribution providers to auto-

matically add a service.imported service property to imported remote services. If you

explicitly want to bind to only a remote service, you can use a filter like the following:

ServiceReference ref =
 context.getServiceReferences(
 MyService.class.getName(),"(service.imported=*)")

Alternatively, if you explicitly want to bind to only a local service, you use a filter like

the following:

Dealing with failure

One thing that should be obvious to experienced developers of distributed software

is that remote services are unreliable. In RMI, for example, this unreliability is dealt

with by using java.rmi.RemoteException, which is a checked exception to inform

the client when things go wrong during attempts to communicate with a remote ser-

vice. In OSGi, the equivalent exception is osgi.framework.ServiceException, but

in this case it’s an unchecked exception. Regardless, you should expect these types

of exceptions to occur when dealing with a remote service.

502 CHAPTER 15 Web applications and web services

ServiceReference ref =
 context.getServiceReferences(
 MyService.class.getName(),"(!(service.imported=*))")

Now, let’s consider the more complex case of matching remote-service qualities. You

saw earlier that a service provider can specify various intents (propagatesTransac-

tion, authentication, and so on) when publishing its service. We also mentioned

that a distribution provider can augment this set. The Remote Services specification

requires distribution providers to automatically add a service.intents service prop-

erty to imported remote services, which contains the union of the service provider

and distribution provider intents. Therefore, if you want a service that propagates

transactions and uses encryption, you can use a filter like the following:

ServiceReference ref =
 context.getServiceReferences(
 MyService.class.getName(),
 "(&(service.intents=propagatesTransaction)
 (service.intents=confidentiality))")

We’ve looked at how the Remote Services distribution provider makes it easy to pub-

lish and consume remote services within an OSGi-based environment. What if you’re

coming at this from the other side? What if you’re a distributed software developer

and want to import/export services from/to the OSGi service registry using your own

distribution technology of choice? In that case, you’ll need to implement your own

distribution provider. We’ll briefly look into doing this next.

15.2.3 Distributing services

In this section, we’ll lead you through a short example showing how you can imple-

ment a trivial distribution-provider framework. The goal isn’t to create something par-

ticularly useful, but to show the underlying mechanics at play.

 For the purposes of this example, you’ll create a simple RemoteRegistry interface

to abstract away the details of dealing with remote services. You’ll first see how you can

export local OSGi services into your remote registry; then you’ll see how to import

remote services into the local OSGi service registry. Figure 15.10 provides a view of the

classes involved in this example.

Matching qualified intents and configurations

One slightly thorny area surrounds the matching of qualified intents where, for ex-

ample, the client requires service.intents=confidentiality, but a service pro-

vides service.intents=confidentiality.message. These two intents should

match because the client doesn’t care how the confidentiality is achieved, but a

pure LDAP filter match would fail. To work around such issues, the Remote Services

specification requires distribution providers to expand all implied qualified intents

on services so LDAP queries function intuitively. For example, service.
intents=confidentiality.message becomes service.intents="confidenti-
ality,confidentiality.message".

503Providing and consuming web services

During this example, we’ll focus on the following classes:

■ ExportedServiceTracker
■ ImportedServiceListenerHook
■ ImportedServiceFindHook

But before we get there, let’s look briefly at the other classes in this diagram. The Remote-

Registry interface provides a simple lookup and listener scheme similar to those of

the OSGi service registry. The RegistryListener interface receives notifications of

RegistryEvents, which contain details of added or removed RemoteServiceReferences.

 For the purposes of providing a concrete implementation of this API, you’ll imple-

ment a DummyRegistry that performs no remote communication at all; instead, it

tracks the available remote services using a java.util.HashMap.

RegistryEvent

RegistryListener

RemoteRegistry

RemoteServiceReference

DummyRegistry

HashMap

ExportedServiceTracker

ImportedServiceListenerHook

ImportedServiceFindHook

Handles

Aggregates

Provides

Uses

Publish

Publish

Publish

Subscribe
Subscribe

Subscribe

BundleContextExtends

Figure 15.10 Simple registry scheme that abstracts mechanism of service discovery

Remote Services Admin

If you’re interested in building this sort of technology, we advise you to look at the

Remote Services Admin chapter of the OSGi R4.2 Enterprise specification. It provides

a more complete model for building pluggable discovery and transport schemes, but

it goes beyond the scope of this book.

Hash map?

You may think we’re cheating a little by using a HashMap in this example—and we

are. But this HashMap-based approach demonstrates all the key functionality of im-

plementing a Remote Services distribution provider, which involves dealing with an

externally managed service registry. By necessity, we must ignore the complex issues

in the area of distributed computing, such as network-discovery protocols, remote pro-

cedure calls, and object marshaling. These are all important topics, but they’re beyond

the scope of this book. We leave you as architects or developers with the task of choos-

ing your favorite distributed technologies if you wish to implement a real remote registry.

504 CHAPTER 15 Web applications and web services

Having described the general registry architecture, let’s look more closely at the

ExportedServiceTracker, which handles the task of exporting local services with the

service.exported.interfaces service property into the remote registry.

EXPORTEDSERVICETRACKER

The ExportedServiceTracker class extends the ServiceTracker class you met in

chapter 4. As the name implies, it tracks any services that have been marked for

export. Here’s how you do this.

public ExportedServiceTracker(BundleContext ctx, Registry registry,
 String[] intents, String[] configs) {
 super(ctx, createFilter(ctx), null);
 this.ctx = ctx;
 this.registry = registry;
 this.intents = intents == null ? new String[0] : intents;
 this.configs = configs == null ? new String[0] : configs;
}

private static Filter createFilter(BundleContext ctx) {
 try {
 return ctx.createFilter("(service.exported.interfaces=*)");
 } catch (InvalidSyntaxException e) {
 throw new IllegalStateException(e);
 }
}

You call the ServiceTracker constructor, passing in an LDAP filter that you create to

match all services with a service.exported.interfaces attribute of any value; the *

is interpreted by the LDAP syntax to be a wildcard that matches any value. Then you

store the intents and configurations supported by your remote registry. You’ll see a lit-

tle later how these are derived; for now, let’s look at the overridden addingService()

method in the next listing.

@Override
public Object addingService(ServiceReference ref) {
 Object svc = super.addingService(ref);

 if (isValidService(ref)) {
 String[] ifaces = findExportedInterfaces(ref);
 for (String iface : ifaces) {
 registry.registerService(ref, iface, svc);
 }
 }

 return svc;
}

This method is called by the ServiceTracker super-class whenever a service published

in the OSGi service registry matches the filter specified in listing 15.13. In this method,

you first get a reference to the matching service by calling the addingService()

Listing 15.13 Constructing an exported service tracker

Listing 15.14 Dealing with new exported services

505Providing and consuming web services

method of the ServiceTracker super class. You check whether the service’s intents

match the supported intents and configurations passed into the constructor. If so, you

determine the set of interfaces by which the service should be exported. Finally, the

service is exported to your remote registry.

NOTE This example exports the service multiple times for each desired inter-
face. In a real-world scenario, it might be more appropriate to register the ser-
vice once with multiple interfaces. The approach used in this book is for
conceptual simplicity only.

The next listing shows how to check whether a matching service is supported by the

registry. The process compares the matching intents and configurations with the ones

supplied to your ExportedServiceTracker’s constructor.

private boolean isValidService(ServiceReference ref) {
 List<String> list = readIntents(ref);
 list.removeAll(Arrays.asList(intents));
 if (list.isEmpty()) {
 list = readConfigs(ref);
 list.removeAll(Arrays.asList(configs));
 return list.isEmpty();
 }
 else {
 return false;
 }
}

This code reads the intent and configuration values from the matching service’s ser-

vice properties. You then use String.equals() via List.removeAll() to verify that

the service doesn’t export any intents and configurations your remote registry doesn’t

support, respectively.

NOTE The isValidService() method is a naïve implementation for checking
whether a given service matches your remote registry’s supplied intents and con-
figurations. It’s naïve because it doesn’t take into account the qualified naming
convention mentioned in section 15.2.1. A proper implementation needs to do
this, but the logic to achieve it is too long to list here and doesn’t add much to
the discussion. We’ll neatly skip over it and leave it as an exercise for you.

You now need to find out the interfaces that matching services wish to export

remotely. The following listing shows how to find these interfaces. The method find-

ExportedInterfaces() returns a String[] containing the interface names or null if

the service isn’t exported.

private String[] findExportedInterfaces(ServiceReference ref) {
 Object ifaces = ref.getProperty("service.exported.interfaces");
 if (ifaces == null) {

Listing 15.15 Checking if a service matches supported intents and configurations

Listing 15.16 Checking the exported interfaces of a service

506 CHAPTER 15 Web applications and web services

 return null;
 }
 else {
 String[] strs = PropertyUtil.toStringArray(ifaces);
 if (strs.length == 1 && "*".equals(strs[0])) {
 ifaces = ref.getProperty(Constants.OBJECTCLASS);
 strs = PropertyUtil.toStringArray(ifaces);
 }
 return strs;
 }
}

You first look for the appropriate service property indicating whether the service is to

be exported. If it is, you use a utility class to return the interfaces. Then you check to

see whether the name of the exported interface is *. If it is, you get the interfaces

from the standard OSGi objectClass service property, which lists all the registered

service interfaces of the service object.

 You also need to override the ServiceTracker methods for handling when match-

ing services are modified or removed, but we’ll skip describing these in detail because

they’re fairly similar to adding services. If you’re curious, you can look at the compan-

ion code in chapter15/webservice-impl/org.foo.dosgi.

 Let’s turn our attention away from exporting local services to a remote registry and

toward importing remote services into the local OSGi service registry. To facilitate this,

the OSGi R4.2 core specification introduced a way to hook into the OSGi service regis-

try using two new service interfaces:

■ org.osgi.framework.hooks.service.FindHook
■ org.osgi.framework.hooks.service.ListenerHook

To save ourselves from repeating boilerplate code in the following examples, you

define a RegistryWatcher helper class to handle the lookup of services from the

Framework service registry hooks

The OSGi R4.2 core specification allows third-party code to inject various hooks into

the framework service registry. These hooks let you monitor or even mask service

lookup, service discovery, and service registrations. The new interfaces:

■ FindHook detects when services are requested from the framework.
■ ListenerHook detects when service listeners are registered.
■ EventHook detects service registrations, modifications, or removals, and

enables the masking of these events.

Services implementing these interfaces are registered in the OSGi service registry,

just like any other service, but they’re picked up by the framework implementation.

These interfaces can provide some extremely powerful patterns, but you should be

highly wary because they have the capacity to create complex situations that are dif-

ficult to debug. That being said, they’re the only practical way to build distributed ser-

vice models on top of the OSGi service registry, so here we are.

507Providing and consuming web services

remote registry and injection into the OSGi service registry. To give context for the

example, the following listing shows the implementation of the addWatch() method

of RegistryWatcher.

 public void addWatch(String clazz, String filter) {
 Watch watch = new Watch(clazz, filter);
 synchronized (watches) {
 Integer count = watches.get(watch);
 if (count == null) {
 log.info("Adding watch " + clazz + " -> " + filter);
 Collection<RegistryServiceReference> services = registry
 .findServices(clazz, filter);
 for (RegistryServiceReference ref : services) {
 if (!regs.containsKey(ref)) {
 log.debug("Registering " + ref);
 Future<ServiceRegistration> future = exec
 .submit(new Registration(ref));
 regs.put(ref, future);
 }
 else {
 log.debug("Already registered " + ref);
 }
 }
 } else {
 watches.put(watch, count + 1);
 }
 }
 }

You begin by checking whether this a new Watch—a unique class and filter request. If

it is, you find the existing services that match your watch criteria from the Remote-

Registry. For each service, you check whether you’ve already imported it for a differ-

ent watch. If this is in fact a new service, you create a new Registration callable

object. Here, the Registration callable object is submitted to a background thread

executor to avoid deadlock scenarios that can occur if you execute external code

while holding the object lock on the m_watches object. Finally, you store the future

ServiceRegistration for tidying up later, should the Watch be removed.

 The next listing shows the code for the Registration inner class.

public class RegistryWatcher {
...
 class Registration implements Callable<ServiceRegistration> {
 private final RemoteServiceReference ref;

 public Registration(RemoteServiceReference ref) {
 this.ref = ref;
 }

 public ServiceRegistration call() throws Exception {

Listing 15.17 RegistryWatcher helper addWatch() method

Listing 15.18 Registration callable

508 CHAPTER 15 Web applications and web services

 Hashtable props = new Hashtable(ref.getProperties());
 return ctx.registerService(
 ref.getInterface(), ref.getService() ,props);
 }
 }
...
}

This class passes through the service properties of the remote service and registers the

service object in the OSGi service registry.

 The final area to look at is what happens if a new remote service is discovered by

the watcher.

private void handleAdd(RemoteServiceReference ref) {
 synchronized (m_watches) {
 if (!m_regs.containsKey(ref)) {
 for (Watch w : m_watches.keySet()) {
 if (w.matches(ref)) {
 Future<ServiceRegistration> future = exec
 .submit(new Registration(ref));
 m_regs.put(ref, future);
 break;
 }
 }
 }
 }
}

This method is called as a result of a RegistryListener event indicating that a new

remote-service reference has been added to your RemoteRegistry. You check whether

this is a new service reference and whether any existing watch has been created for

this service. If so, you create another background registration and store the future

OSGi service registration.

 In summary, using your helper class and the service-hook interfaces, you can find

out when a remote service is needed and inject it into the local OSGi service registry

on demand. Let’s see how this works in practice.

IMPORTEDSERVICELISTENERHOOK

ImportedServiceListenerHook tracks service-listener registrations and adds a watch in

the remote registry for the associated services. You keep track of which types of services

other bundles are interested in so you know which types of remote services you should

import. The following listing shows how to process service-listener registrations.

public void added(Collection listeners) {
 for (final ListenerInfo info : (Collection<ListenerInfo>) listeners) {
 if (!info.isRemoved()) {
 LDAPExpr expr = LDAPParser.parseExpression(info.getFilter());
 expr.visit(new ExprVisitor() {

Listing 15.19 RegistryListener event handling

Listing 15.20 ListenerHook that tracks registered service listeners

509Providing and consuming web services

 public void visitExpr(LDAPExpr expr) {
 if (expr instanceof SimpleTerm) {
 SimpleTerm term = (SimpleTerm) expr;
 if (term.getName().equals(Constants.OBJECTCLASS)) {
 watcher.addWatch(term.getRval(), info.getFilter());
 }
 }
 }
 });
 }
 }
}

You first check whether the listener is removed. This may seem a little odd, given that

it happens in the added() method, but it protects your listener against race condi-

tions due to asynchronous event delivery. You then inspect the body of the LDAP

expression by using a utility class to walk your way through the filter expression to

find references to the objectClass service property, indicating the service interfaces

of interest. Finally, you add a watch in your remote registry for the discovered service

interfaces specified.

 Now, when another bundle registers a service listener, your listener hook will find

any matching remote services in the remote registry and add them to the local OSGi

service registry. This lets you handle asynchronous service lookup; but how do you

handle direct service queries? We’ll look at this next.

IMPORTEDSERVICEFINDHOOK

When a bundle invokes BundleContext.getServiceReference(), you’d like to be

able to intercept it and inject a remote service into the OSGi service registry. You can

achieve this using a find hook:

public class ImportedServiceFindHook implements FindHook {
...
 public void find(BundleContext ctx, java.lang.String name,
 java.lang.String filter, boolean allServices, Collection references)
 {
 watcher.findServices(name, filter);
 }
}

This implementation is trivial because it asks the registry watcher to find any matching

services in the remote registry, which then adds the services to the local OSGi service

registry.

PUTTING IT ALL TOGETHER

We’ll skip over the implementation of the DummyRegistry, because it’s indeed trivial

(the curious can look in the companion code). You can complete the example by

creating a test bundle that exports a Foo service using the service.exported.

interfaces=* service property as follows:

Hashtable props = new Hashtable();
props.put("service.exported.interfaces","*");
context.registerService(Foo.class.getName(), new FooImpl(), props);

510 CHAPTER 15 Web applications and web services

In a second bundle, add a ServiceTracker that finds the “remote” service in list-

ing 15.21. Because all of this example is happening in the same OSGi framework (it

isn’t distributed), you explicitly look for the service.imported service property to

ensure that you find the “remote” version of your service versus the local service,

both of which are published in the local framework’s service registry.

Filter filter = context.createFilter(
 "(&(" + Constants.OBJECTCLASS + "=" + Foo.class.getName()
 + ")(service.imported=*))");
ServiceTracker tracker = new ServiceTracker(context, filter, null) {
 @Override
 public Object addingService(ServiceReference reference) {
 System.out.println("Found " + reference + " !!!!!!!");
 return super.addingService(reference);
 }

 @Override
 public void removedService(ServiceReference reference, Object service) {
 System.out.println("Lost " + reference + " !!!!!!!");
 super.removedService(reference, service);
 }
};
tracker.open();

To see this in action, go into the chapter15/webservice-impl/ directory of the com-

panion code. Type ant to build the example and java -jar launcher.jar bundles

to run it. You should see the following output:

Found [org.foo.dosgi.test.Foo] !!!!!!!

Although this Remote Services distribution provider is simplistic, it demonstrates the

general outline and underlying mechanics for getting remote services to work seam-

lessly with existing OSGi applications.

15.3 Summary

In this chapter, we’ve shown you how to build web applications and web services that

take advantage of the OSGi framework. We built on the advanced features of the OSGi

framework and demonstrated the extensibility of the OSGi framework, including the

following topics:

■ Using the HTTP Service to provide static resources and simple servlet-based

applications in an OSGi framework

■ Using the Pax Web extensions to the HTTP Service to deploy JSP applications in

an OSGi framework

■ Converting a more complex WAR-style application based on the stock-watcher

application for the Google Web Toolkit into a web application bundle

Listing 15.21 Tracking the “remote” service

511Summary

■ Exporting a local OSGi service into a remote JVM using a Remote Services distri-

bution provider, which, thanks to the flexibility of service-based programming,

required no changes to the client application

■ Examining at a high level the mechanics of implementing an OSGi Remote Ser-

vices distribution provider

Let’s quickly review what we’ve covered during the course of this book. We started by

introducing you to the core concepts of OSGi development provided by its module,

service, and lifecycle layers. In the middle of the book, we moved on to practical con-

siderations of developing OSGi, including migrating, testing, debugging, and manag-

ing OSGi-based applications. Finally, in this last part of the book, we covered a number

of advanced topics including component development, launching and embedded use

cases, how to manage security, and building web applications.

 We’ve covered a lot of ground, and you deserve congratulations for making it all

the way through. We think you’ll agree that OSGi is both flexible and powerful—and

now you have the skills and knowledge required to build your own dynamic modular

applications using OSGi. Thanks for reading.

513

appendix A:
Building bundles

Throughout this book, you’ve been building OSGi bundles with the bnd tool, using

Ant to manage the builds. If you’re a fan of Maven, you may be feeling a bit left out

at this point, but don’t worry. You can build bundles with Maven using the same

bnd instructions, thanks to the maven-bundle-plugin. To build a bundle, all you

really need is the ability to customize the JAR manifest; you don’t need to change to

an OSGi-specific build system. On the other hand, the more a build system under-

stands about what it’s building, the more it can assist you—so which build systems

work particularly well with OSGi?

 We start by revisiting bnd and Ant, but this time explaining the various bnd

instructions used in the book along with some advanced ones with which you may

not be familiar. After that, we’ll show you how to migrate a Maven project to use

bnd and introduce some features specific to the maven-bundle-plugin. Finally, we’ll

round things off with a brief overview of more OSGi-specific build systems, includ-

ing Eclipse Plug-in Development Environment (PDE) and Maven Tycho. But first,

let’s return to where we left off: building bundles with Ant.

A.1 Building with Ant

Apache Ant (http://ant.apache.org) is a build system for Java that uses XML to

describe a tree of targets, where each target describes a sequence of tasks. Ant is

extended by writing new tasks in Java, such as the bnd tool’s bnd task that can gen-

erate one or more bundles from a given class path. But what exactly is bnd?

A.1.1 Introducing the bnd tool

The bnd tool (www.aqute.biz/Code/Bnd) was written by Peter Kriens to take the

pain out of developing bundles. Usually, when you create a JAR, you take a direc-

tory and archive its contents. This is fine for plain JARs, but it isn’t always ideal for

OSGi bundles—there’s no easy way to tell if the OSGi manifest matches the contents

or to quickly slice a large project class path into a consistent set of bundles.

http://ant.apache.org
www.aqute.biz/Code/Bnd

http://maven.apache.org

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

http://felix.apache.org/obr/releases.xml

http://felix.apache.org/site/apache-felix-sigil.html
http://njbartlett.name/bndtools.html
http://www.osmorc.org
www.eclipse.org/pde

http://netbeans.org/features/java/osgi.html
http://tycho.sonatype.org
http://www.springsource.org/bundlor

Hall Pauls McCulloch Savage

O
SGi is a Java-based framework for creating applications as
a set of interconnected modules. OSGi lets you install,
start, stop, update, or uninstall modules at execution time

without taking down your entire system. It’s the backbone of
the Eclipse plugin system, as well as many Java EE containers,
such as GlassFish, Geronimo, and WebSphere.

OSGi in Action provides a clear introduction to OSGi concepts
with examples that are relevant both for architects and
developers. You’ll start with the central ideas of OSGi: bundles,
module lifecycles, and interaction among application com-
ponents. With the core concepts well in hand, you’ll explore
numerous application scenarios and techniques. You’ll learn
how to migrate legacy systems to OSGi and how to test, debug,
and manage applications.

What’s Inside

Core ideas of OSGi

Vocabulary, tools, and strategies

Applying OSGi

h is book assumes readers with a working knowledge of Java,
but requires no previous exposure to OSGi.

Richard S. Hall, Karl Pauls, Stuart McCulloch, and David Savage are
all respected Java developers and committers on the Apache
Felix OSGi implementation.

For access to the book’s forum and a free ebook for owners
of this book, go to manning.com/OSGiinAction

$49.99 / Can $61.99 [INCLUDING eBOOK]

OSGi IN ACTION

JAVA

“An impressive book.”
 —From the foreword by
 Peter Kriens
 OSGi Technical Director

“A lucid explanation of an
 intricate topic.”
 —John S. Gri� n, Overstock.com

“Easy to read ... explains
 everything you need
 to know.”
 —Jason Lee, Oracle

“Straight from the experts.”
 —Erik Van Oosten, JTeam

“Hit the ground running
 with this book.”
 —David Dossot
 Coauthor of Mule in Action

M A N N I N G

SEE INSERT

	OSGi in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code
	Author Online
	About the title
	About the cover illustration

	about the authors
	Introducing OSGi: modularity, lifecycle, and services
	OSGi revealed
	1.1 The what and why of OSGi
	1.1.1 Java’s modularity limitations
	1.1.2 Can OSGi help you?

	1.2 An architectural overview of OSGi
	1.2.1 The OSGi framework
	1.2.2 Putting it all together

	1.3 “Hello, world!” examples
	1.3.1 Module layer example
	1.3.2 Lifecycle layer example
	1.3.3 Service layer example
	1.3.4 Setting the stage

	1.4 Putting OSGi in context
	1.4.1 Java Enterprise Edition
	1.4.2 Jini
	1.4.3 NetBeans
	1.4.4 Java Management Extensions
	1.4.5 Lightweight containers
	1.4.6 Java Business Integration
	1.4.7 JSR 277
	1.4.8 JSR 294
	1.4.9 Service Component Architecture
	1.4.10 .NET

	1.5 Summary

	Mastering modularity
	2.1 What is modularity?
	2.1.1 Modularity vs. object orientation

	2.2 Why modularize?
	2.3 Modularizing a simple paint program
	2.4 Introducing bundles
	2.4.1 The bundle’s role in physical modularity
	2.4.2 The bundle’s role in logical modularity

	2.5 Defining bundles with metadata
	2.5.1 Human-readable information
	2.5.2 Bundle identification
	2.5.3 Code visibility
	2.5.4 Class-search order

	2.6 Finalizing the paint program design
	2.6.1 Improving the paint program’s modularization
	2.6.2 Launching the new paint program

	2.7 OSGi dependency resolution
	2.7.1 Resolving dependencies automatically
	2.7.2 Ensuring consistency with uses constraints

	2.8 Reviewing the benefits of the modular paint program
	2.9 Summary

	Learning lifecycle
	3.1 Introducing lifecycle management
	3.1.1 What is lifecycle management?
	3.1.2 Why lifecycle management?

	3.2 OSGi bundle lifecycle
	3.2.1 Introducing lifecycle to the paint program
	3.2.2 The OSGi framework’s role in the lifecycle
	3.2.3 The bundle activator manifest entry
	3.2.4 Introducing the lifecycle API
	3.2.5 Lifecycle state diagram
	3.2.6 Bundle cache and framework restarts

	3.3 Using the lifecycle API in your bundles
	3.3.1 Configuring bundles
	3.3.2 Deploying bundles
	3.3.3 Inspecting framework state
	3.3.4 Persisting bundle state
	3.3.5 Listening for events
	3.3.6 Bundle suicide

	3.4 Dynamically extending the paint program
	3.5 Lifecycle and modularity
	3.5.1 Resolving bundles
	3.5.2 Refreshing bundles
	3.5.3 When updating isn’t updated

	3.6 Summary

	Studying services
	4.1 The what, why, and when of services
	4.1.1 What is a service?
	4.1.2 Why use services?
	4.1.3 When to use services
	4.1.4 When not to use services
	4.1.5 Still not sure?

	4.2 OSGi services in action
	4.2.1 Publishing a service
	4.2.2 Finding and binding services

	4.3 Dealing with dynamics
	4.3.1 Avoiding common pitfalls
	4.3.2 Listening for services
	4.3.3 Tracking services

	4.4 Using services in the paint example
	4.4.1 Defining a shape service
	4.4.2 Publishing a shape service
	4.4.3 Tracking shape services

	4.5 Relating services to modularity and lifecycle
	4.5.1 Why can’t I see my service?
	4.5.2 Can I provide a bundle-specific service?
	4.5.3 When should I unget a service?
	4.5.4 When should I unregister my service?
	4.5.5 Should I bundle interfaces separately?

	4.6 Standard services
	4.6.1 Core services
	4.6.2 Compendium services

	4.7 Summary

	Delving deeper into modularity
	5.1 Managing your exports
	5.1.1 Importing your exports
	5.1.2 Implicit export attributes
	5.1.3 Mandatory export attributes
	5.1.4 Export filtering
	5.1.5 Duplicate exports

	5.2 Loosening your imports
	5.2.1 Optional imports
	5.2.2 Dynamic imports
	5.2.3 Optional vs. dynamic imports
	5.2.4 Logging example

	5.3 Requiring bundles
	5.3.1 Declaring bundle dependencies
	5.3.2 Aggregating split packages
	5.3.3 Issues with bundle dependencies

	5.4 Dividing bundles into fragments
	5.4.1 Understanding fragments
	5.4.2 Using fragments for localization

	5.5 Dealing with your environment
	5.5.1 Requiring execution environments
	5.5.2 Bundling native libraries

	5.6 Summary

	OSGi in practice
	Moving toward bundles
	6.1 Turning JARs into bundles
	6.1.1 Choosing an identity
	6.1.2 Exporting packages
	6.1.3 Discovering what to import
	6.1.4 Embedding vs. importing
	6.1.5 Adding lifecycle support
	6.1.6 JAR file to bundle cheat sheet

	6.2 Splitting an application into bundles
	6.2.1 Making a mega bundle
	6.2.2 Slicing code into bundles
	6.2.3 Loosening things up
	6.2.4 To bundle or not to bundle?

	6.3 Summary

	Testing applications
	7.1 Migrating tests to OSGi
	7.1.1 In-container testing
	7.1.2 Bundling tests
	7.1.3 Covering all the bases

	7.2 Mocking OSGi
	7.2.1 Testing expected behavior
	7.2.2 Mocking in action
	7.2.3 Mocking unexpected situations
	7.2.4 Coping with multithreaded tests
	7.2.5 Exposing race conditions

	7.3 Advanced OSGi testing
	7.3.1 OSGi test tools
	7.3.2 Running tests on multiple frameworks
	7.3.3 Unit testing
	7.3.4 Integration testing
	7.3.5 Management testing

	7.4 Summary

	Debugging applications
	8.1 Debugging bundles
	8.1.1 Debugging in action
	8.1.2 Making things right with HotSwap

	8.2 Solving class-loading issues
	8.2.1 ClassNotFoundException vs. NoClassDefFoundError
	8.2.2 Casting problems
	8.2.3 Using uses constraints
	8.2.4 Staying clear of Class.forName()
	8.2.5 Following the Thread Context Class Loader

	8.3 Tracking down memory leaks
	8.3.1 Analyzing OSGi heap dumps

	8.4 Dangling services
	8.4.1 Finding a dangling service
	8.4.2 Protecting against dangling services

	8.5 Summary

	Managing bundles
	9.1 Versioning packages and bundles
	9.1.1 Meaningful versioning
	9.1.2 Package versioning
	9.1.3 Bundle versioning

	9.2 Configuring bundles
	9.2.1 Configuration Admin Service
	9.2.2 Metatype Service
	9.2.3 Preferences Service

	9.3 Starting bundles lazily
	9.3.1 Understanding activation policies
	9.3.2 Using activation policies

	9.4 Summary

	Managing applications
	10.1 Deploying bundles
	10.1.1 Introducing management agents
	10.1.2 OSGi Bundle Repository
	10.1.3 Deployment Admin

	10.2 Ordering bundle activation
	10.2.1 Introducing the Start Level Service
	10.2.2 Using the Start Level Service

	10.3 Summary

	Advanced topics
	Component models and frameworks
	11.1 Understanding component orientation
	11.1.1 What are components?
	11.1.2 Why do we want components?

	11.2 OSGi and components
	11.2.1 OSGi’s service-oriented component model
	11.2.2 Improving upon OSGi’s component model
	11.2.3 Painting with components

	11.3 Declarative Services
	11.3.1 Building Declarative Services components
	11.3.2 Providing services with Declarative Services
	11.3.3 Consuming services with Declarative Services
	11.3.4 Declarative Services component lifecycle

	11.4 Summary

	Advanced component frameworks
	12.1 Blueprint Container
	12.1.1 Blueprint architecture
	12.1.2 Providing services with Blueprint
	12.1.3 Consuming services with Blueprint
	12.1.4 Blueprint component lifecycle
	12.1.5 Advanced Blueprint features

	12.2 Apache Felix iPOJO
	12.2.1 Building iPOJO components
	12.2.2 Providing services with iPOJO
	12.2.3 Consuming services with iPOJO
	12.2.4 iPOJO component lifecycle
	12.2.5 Instantiating components with iPOJO

	12.3 Mix and match
	12.4 Summary

	Launching and embedding an OSGi framework
	13.1 Standard launching and embedding
	13.1.1 Framework API overview
	13.1.2 Creating a framework instance
	13.1.3 Configuring a framework
	13.1.4 Starting a framework instance
	13.1.5 Stopping a framework instance

	13.2 Launching the framework
	13.2.1 Determining which bundles to install
	13.2.2 Shutting down cleanly
	13.2.3 Configuring, creating, and starting the framework
	13.2.4 Installing the bundles
	13.2.5 Starting the bundles
	13.2.6 Starting the main bundle
	13.2.7 Waiting for shutdown

	13.3 Embedding the framework
	13.3.1 Inside vs. outside
	13.3.2 Who’s in control?
	13.3.3 Embedded framework example

	13.4 Summary

	Securing your applications
	14.1 To secure or not to secure
	14.2 Security: just do it
	14.2.1 Java and OSGi security

	14.3 OSGi-specific permissions
	14.3.1 PackagePermission
	14.3.2 BundlePermission
	14.3.3 AdminPermission
	14.3.4 ServicePermission
	14.3.5 Relative file permissions

	14.4 Managing permissions with Conditional Permission Admin
	14.4.1 Conditional permissions
	14.4.2 Introducing the Conditional Permission Admin Service
	14.4.3 Bundle location condition
	14.4.4 Using ConditionalPermissionAdmin
	14.4.5 Implementing a policy-file reader

	14.5 Digitally signed bundles
	14.5.1 Learning the terminology
	14.5.2 Creating certificates and signing bundles
	14.5.3 BundleSignerCondition

	14.6 Local permissions
	14.7 Advanced permission management
	14.7.1 Custom conditions overview
	14.7.2 Date-based condition
	14.7.3 User-input condition

	14.8 Bringing it all back home
	14.9 Summary

	Web applications and web services
	15.1 Creating web applications
	15.1.1 Using the HTTP Service specification
	15.1.2 Using the Web Applications specification
	15.1.3 Standard WARs: the Web URL Handler

	15.2 Providing and consuming web services
	15.2.1 Providing a web service
	15.2.2 Consuming a web service
	15.2.3 Distributing services

	15.3 Summary

	appendix A: Building bundles
	A.1 Building with Ant
	A.1.1 Introducing the bnd tool
	A.1.2 Headers
	A.1.3 Directives
	A.1.4 Variables and macros
	A.1.5 Choosing a version policy
	A.1.6 Mending split packages

	A.2 Building with Maven
	A.2.1 Introducing the maven-bundle-plugin
	A.2.2 Going undercover
	A.2.3 Embedding dependencies
	A.2.4 Deploying artifacts to OBR
	A.2.5 Bundling non-JAR projects

	A.3 For your consideration
	A.3.1 Eclipse PDE
	A.3.2 Apache Felix Sigil
	A.3.3 Eclipse bndtools
	A.3.4 IDEA Osmorc
	A.3.5 NetBeans Netisgo
	A.3.6 Maven Tycho
	A.3.7 Spring Bundlor

	appendix B: OSGi standard services
	B.1 Core OSGi services
	B.2 Compendium OSGi services
	B.3 Enterprise OSGi services

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

