JAVA
FOUNDATION

CLASSES
IN A NUTSHELL

A Desktop Quick Reference

(D,REILI_\,® David Flanagan

JAVA FOUNDATION CLASSES IN A NUTSHELL

Java Foundation Classes in a Nuishell is an indispensable quick
reference for Java programmers who are writing applications that
use graphics or graphical user interfaces. The author of the bestsell-
ing Java in a Nutshell has written fast-paced introductions to the
Java APIs that comprise the Java Foundation Classes (JFC), so you
can start using these exciting new technologies right away. This book contains the

following:

e An overview of the architecture of graphical user interfaces built with both the
new Swing API and the older AW

e An introduction to the important components and application services
provided by the Swing API

* A comprehensive explanation of the features of the new Java 2D API

This book also includes O'Reilly’s classic-style, quick-reference material for all of
the classes in the javax.swing and java.awt packages and their numerous sub-
packages. This reference material covers all of the new JFC classes in the Java 2
platform, as well as the existing Java 1.1 AWT classes. Once you've learned about
the JFC, you'll keep this book next to your keyboard for handy reference while
you program.

Java Foundation Classes in a Nutshell is part of the two-volume set of quick refer-
ences that every Java programmer needs. It is an essential companion to Java in a
Nutshell, 3rd Edition, which covers the key nongraphical APIs in Java 1.2. A third
volume, Java Enterprise in a Nutshell, focuses on the Java Enterprise APIs and is of
interest to programmers working on server-side or enterprise Java applications.

O’REILLY"

oreilly.com

US $49.99 CAN $62.99
ISBN: 978-1-565-92488-8

UL i

781565792488

FOUNDATION
CLASSES
IN ANUTSHELL

A Desktop Quick Reference

THE

JAVA.
SERIES

Exploring Java™

Java™ Threads

Java" Network Programming

Java™ Virtual Machine

Java™ AWT Reference

Java" Language Reference

Java™ Fundamental Classes Reference

Database Programming with
JDBC™ and Java™

Java" Distributed Computing
Developing Java Beans™
Java" Security

Java" Cryptography

Java” Swing

Java™ Servlet Programming
Java"1/0
Java™ 2D Graphics

Enterprise JavaBeans™

Also from O’Reilly
Java™ in a Nutshell

Java"™ in a Nutshell, Deluxe Edition
Java™ Examples in a Nutshell
Java" Enterprise in a Nutshell

Java"™ Foundation Classes in
a Nutshell

Java” Power Reference: A Complete
Searchable Resource on CD-ROM

JAVA
FOUNDATION
CLASSES
IN ANUTSHELL

A Desktop Quick Reference

David Flanagan

O’REILLY"

Beijing + Cambridge + Farnbam * Koéln -« Sebastopol * Taipei + Tokyo

Java™ Foundation Classes in a Nutshell
by David Flanagan

Copyright © 1999 O'Reilly Media, Inc. All rights reserved.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
Editor: paula Ferguson

Production Editor: Nicole Arigo

Production Services: Nancy Crumpton
Printing History:

September 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and the Java™ series is a trademark of O'Reilly Media, Inc. The In a Nutshell series
designations, java™ Foundation Classes in a Nutshell, the image of a Florida panther, and
related trade dress are trademarks of O’'Reilly Media, Inc. Java™ and all Java-based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. O’'Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
% This book uses RepKover”, a durable and flexible lay-flat binding.

ISBN: 978-1-565-92488-8
(M] [4/05]

1able of Contents

PrEfliCe ..o ix

Part I: Introducing the Java Foundation Classes

Chapter 1— The Java Foundation Classes 3
Chapter 2— Swing and AWT Architecture 5
A Simple Graphical User Interfaceccccoociiiiiiiiiiiiiiiiieiieiee 6
COMIPONEIILS ..vtiiieieeeeee ettt e e e e ettt e e e e e e naaies 7
PIOPEITIES ..eiiiiiiiiiiiiii e 11
Containers and CONtAINMENTc.ccceiiiiiiiiiriiiiiiiie e, 12
Layout MaNAGEMIEIIT ..eooiviiiiiiiiiieeiiiiit ettt 15
Event Handlingoccoiiiiiiiii e 17
Swing Component ATChiteCtUIEccoeiiiiiiiieiieiieiie e 23
Chapter 3— Swing Programming TOPICScccccocvcrnin.. 25
Versions Of SWINGcoiiiiiiiiiiiii i 25
Labels and HTMLcoooiiiiiiiiiiiii e 26
ACHONS ottt 26
TOOIPS ettt ettt 27
TIMIELS .o 27
The Event Dispatch Threadc.cocooiiiiiiiiiii, 28
Client PIOPEITIEScciiiiiiiiiiiiiiiiit e, 28
Keyboard SROTTCULScoviiiiiiiiiiiiiecite et 29
SEriAliZATION ..iviiiiiiiii it 33

BOTAETS oo 34

LCOMS ottt 34
CUTSOTS .. 35
Double-Buffering ... 37
The BOX CONLAINET ...ooviiiiiiieiiiieiiie e 37
SIMPle DIAlOZS ..ovviiiiiiiiiiiiii 40
JFHLECROOSET ..o 42
JCOLOTCROOSET ... 44
MEIUS ittt 45
JTree and TreeModelcccocviiviiiiiiiiiiiiicc e 47
JTable and TableModelcc.coovviiiiiiiiiic e 50
JTextComponent and HTML Text Displaycccceoviiiiiiiiiiiiiieenes, 52
Pluggable Look-and-Feelcccciiiiiiiiiiiiiiiiiii 55
ACCESSIDILILY w.oiiviiiiiiiieiii et 58
CUSLOM COMPONEIILS ...ivviiiiiiiiieeeiiiiee ettt e ettt e e iaee e e 59
Chapter 4— Graphics with AWT and Java 2D 64
Graphics Before Java 2D ..o, 64
Java 2D Graphics Attributes and Operationsc...ccccevviervieniiincnn, 68
The Coordinate SYSTEIMeciiiiiiiiieeiiie et e et 71
SRAPES ittt 73
SETOKING LINES ..ottt ettt 76
PAINT oot 79
Blending Colors with AlphaCompositeccccceeviiiiiiiiiiiiiiieieene, 80
Rendering HINES ..o.viiiiiiiiiiieiie et 86
FONLS ANd TEXE .oiiviiiiiiiiiiiiie ettt 86
Buffered TMagesooovviiiiiiiiiie e 92
Transformations with AffineTransformcccoviiiiniiiiininn, 97
COLOT SPACES ..ttt 100
Chapter 5— Printingc.cccccocoioioiiiiiiiii, 102
Printing in Java 1.1 ... 102
Printing in Java 1.2 ... 103
Chapter 6— Data Transferccccccccocovvveriivien. 111
The Data Transfer Framework ..., 111
CUE-ANA-PASLE oot 114
Drag-and-DIODcccooiiiiiiiiiiii et 115
A DA SOUICE ..t 117
A DaAta SINK i 119

vi

Chapter 7—APPLELS ..., 123

WIHNG APPLELS .eviiiiieiiieie e 123
Including Applets in HTML Filescccccoiiiiiiiiiiiiiiiiiiiicce 129
APPIEL SECUTILY ittt 133

Part II: API Quick Reference

How To Use This Quick Referencecccccccocucunii... 139
Chapter 8S— The java.applet Package 150
Chapter 9— The java.awt Package 154
Chapter 10— The java.awt.color Package 232
Chapter 11— The java.awt.datatransfer Package 239
Chapter 12— The java.awt.dnd Package 246
Chapter 13— The java.awt.dnd.peer Package 262
Chapter 14— The java.awt.event Package 264
Chapter 15— The java.awt. font Package 288
Chapter 16— The java.awt.geom Package 302
Chapter 17— The java.awt.im Package 329
Chapter 18— The java.awt.image Package 332
Chapter 19— The java.awt.image.renderable Package 368
Chapter 20— The java.awt.peer Package 373

vii

Chapter 21— The java.awt.print Package 381

Chapter 22— The javax.accessibility Package 388
Chapter 23— The javax.swing Package 399
Chapter 24— The javax.swing.border Package 519
Chapter 25— The javax.swing.colorchooser Package 527
Chapter 26— The javax.swing.event Package 530
Chapter 27— The javax.swing filechooser Package 551
Chapter 28— The javax.swing.plaf Package 554
Chapter 29— The javax.swing.table Package 568
Chapter 30— The javax.swing.text Package 579
Chapter 31— The javax.swing.text.btml Package 633

Chapter 32— The javax.swing.text.btml.parser Package 656

Chapter 33— The javax.swing.text.rif Package 664
Chapter 34— The javax.swing.tree Package 666
Chapter 35— The javax.swing.undo Package 683
Chapter 36— Class INAEX ..., 690

viii

Preface

This book is a desktop quick reference for Java™ programmers who are writing
applications or applets that involve graphics or graphical user interfaces. The first
part of the book is a fast-paced, “no fluff” introduction to the Java APIs that com-
prise the Java Foundation Classes, or JFC. These chapters are followed by a quick-
reference section that succinctly details every class of those APIs.

This book complements the best-selling Java in a Nutshell. That volume introduces
the Java programming language itself and provides an API quick reference for the
core packages and classes of the Java platform. A third volume in the series, java
Enterprise in a Nutshell, covers the Java Enterprise APIs. Programmers working on
server-side or enterprise applications will be interested in that book.

Contents of This Book

The first seven chapters of this book document the graphics and graphical user
interface (GUD APIs used in client-side Java programming. The chapters are:

Chapter 1: The Java Foundation Classes
Provides a quick introduction to the JFC and the APIs that comprise it.

Chapter 2: Swing and AWT Architecture
Explains the architecture used for graphical user interfaces built with the older
Abstract Windowing Toolkit (AWT) and the new Swing API. The remaining
chapters of the book assume an understanding of the fundamentals presented
here.

Chapter 3: Swing Programming Topics
Introduces a number of the most important GUI components and application
services provided by the Swing API.

Chapter 4: Graphics with AWT and Java 2D
Explains how to draw text and graphics. It introduces the AWT graphics API,
used in Java 1.0 and Java 1.1, and the powerful new Java 2D API of Java 2.

Chapter 5: Printing
Covers how to draw text and graphics to a printer, using both the Java 1.1
and Java 2 printing APIs.

Chapter 6: Data Transfer
Explains how to enable data transfer between and within applications, using
both cut-and-paste and drag-and-drop.

Chapter 7: Applets
Documents the Java applet API, which allows Java applets, or mini-applica-
tions, to run within web browsers.

These chapters provide enough information to get you started with each of the JFC
APIs. The bulk of the book, however, is the API quick reference, Chapters 8
through 306, which is a succinct but detailed API reference formatted for optimum
ease of use. Please be sure to read the How To Use This Quick Reference section,
which appears at the beginning of the reference section. It explains how to get the
most out of this book.

Related Books

O'Reilly & Associates publishes an entire series of books on Java programming.
These books include Java in a Nutshell and Java Enterprise in a Nutshell, which, as
mentioned earlier, are companions to this book.

A related reference work is the java Power Reference. 1t is an electronic Java quick
reference on CD-ROM that uses the java in a Nutshell style. But since it is
designed for viewing in a web browser, it is fully hyperlinked and includes a pow-
erful search engine. It is wider in scope but narrower in depth than the java in a
Nutshell books. The Java Power Reference covers all the APIs of the Java 2 plat-
form, plus the APIs of many standard extensions. But it does not include tutorial
chapters on the various APIs, nor does it include descriptions of the individual
classes.

You can find a complete list of Java books from O’Reilly & Associates at
bttp://java.oreilly.com/. Books of particular interest to JFC programmers include
the following:

Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood
A complete guide to the Swing graphical user interface toolkit.

Java 2D Graphics, by Jonathan Knudsen
A comprehensive tutorial on the Java 2D API, from basic drawing techniques
to advanced image processing and font handling.

Java AWT Reference, by John Zukowski
A complete reference manual (not a quick reference like this book) to the
graphics and GUI features of the AWT. This book covers Java 1.0 and Java
1.1, and although some AWT features have been superseded by the Swing

x Preface

and Java 2D APIs, the AWT is still the foundation for all graphics and graphi-
cal user interfaces in Java.

Exploring Java, by Pat Niemeyer and Joshua Peck
A comprehensive tutorial introduction to Java, with an emphasis on client-side
Java programming.

Java Programming Resources Online

This book is a quick reference designed for speedy access to frequently needed
information. It does not, and cannot, tell you everything you need to know about
the Java Foundation Classes. In addition to the books listed earlier, there are sev-
eral valuable (and free) electronic sources of information about Java programming.

Sun’s main web site for all things related to Java is http.//java.sun.com/. The web
site specifically for Java developers is bttp.//developer.java.sun.com/. Much of the
content on this developer site is password protected, and access to it requires
(free) registration.

Sun distributes electronic documentation for all Java classes and methods in its
Jjavadoc HTML format. Although this documentation is rough or outdated in
places, it is still an excellent starting point when you need to know more about a
particular Java package, class, method, or field. If you do not already have the
Javadoc files with your Java distribution, see bttp.//java.sun.com/docs/ for a link to
the latest available version.

Sun also distributes its excellent Java Tutorial online. You can browse and down-
load it from http://java.sun.com/docs/books/tutorial/. Developers who are using the
Swing GUI toolkit should read “The Swing Connection,” a periodically updated
online newsletter devoted to Swing programming. It contains news and useful
tutorial articles. You'll find it at htip://java.sun.com/products/jfc/tsc/.

For Usenet discussion (in English) about Java, try the comp.lang java.programmer
and related comp.lang. java.* newsgroups. You can find the very comprehensive
comp.lang java.programmer FAQ by Peter van der Linden at http://www.afu.com/
Jjavafaq.btm.

Finally, don’t forget O'Reilly’s Java web site. bhttp:/java.oreilly.com/ contains Java
news and commentary and a monthly tips-and-tricks column by O'Reilly Java
author Jonathan Knudsen.

Examples Online

The examples in this book are available online and can be downloaded from the
home page for the book at btip.//www.oreilly.com/catalog/jfcnut. You also may
want to visit this site to see if any important notes or errata about the book have
been published there.

Preface xi

Conventions Used in This Book
We use the following formatting conventions in this book:

Ttalic
Used for emphasis and to signify the first use of a term. Italic is also used for
commands, email addresses, web sites, FIP sites, file and directory names,
and newsgroups.

Bold
Occasionally used to refer to particular keys on a computer keyboard or to
portions of a user interface, such as the Back button or the Options menu.

Letter Gothic
Used in all Java code and generally for anything that you would type literally
when programming, including keywords, data types, constants, method
names, variables, class names, and interface names.

Letter Gothic 0blique
Used for the names of function arguments and generally as a placeholder to
indicate an item that should be replaced with an actual value in your pro-
gram.

Franklin Gothic Book Condensed
Used for the Java class synopses in the quick-reference section. This very nar-
row font allows us to fit a lot of information on the page without a lot of dis-
tracting line breaks. This font is also used for code entities in the descriptions
in the quick-reference section.

Franklin Gothic Demi Condensed
Used for highlighting class, method, field, property, and constructor names in
the quick-reference section, which makes it easier to scan the class synopses.

Franklin Gothic Book Compressed ltalic
Used for method parameter names and comments in the quick-reference sec-
tion.

Request for Comments

Please help us to improve future editions of this book by reporting any errors,
inaccuracies, bugs, misleading or confusing statements, and even plain old typos
that you find. Email your bug reports and comments to us at bookques-
tions@oreilly.com. Please also let us know what we can do to make this book
more useful to you. We take your comments seriously and will try to incorporate
reasonable suggestions into future editions.

Acknowledgments

This book is an outgrowth of the best-selling Java in a Nutshell. T'd like to thank
all the readers who made that book a success and who wrote in with comments,
suggestions, and praise.

xii Preface

The editor of this book, and of java in a Nutshell before it, was Paula Ferguson.
As usual, she’s done a great job of keeping me on topic and made her best effort
to keep me on schedule! Her careful and thoughtful editing has made this book a
better one. Thanks, Paula.

This book had a number of high-powered technical reviewers. Jeanette Hung, of
Sun Microsystems; Doug Felt and John Raley, both of IBM; and Jonathan Knudsen,
author of O'Reilly’s Java 2D Grapbhics, reviewed the Java 2D class descriptions.
Jonathan also reviewed the Java 2D-related chapters. Marc Loy, coauthor of
O'Reilly’s Java Swing and course developer and technical trainer at Galileo Sys-
tems, LLC, reviewed all of the Swing-related material. This book is made much
stronger by the valuable contributions of these reviewers. I alone must take
responsibility for any errors that remain, of course.

The O'Reilly & Associates production team has done its usual fine work of creating
a book out of the electronic files I submit. My thanks to them all. And a special
thanks to Lenny Muellner and Chris Maden, who worked overtime to implement
the new and improved format of the quick-reference section.

Finally, as always, my thanks and love to my partner Christie.

David Flanagan
htip://www.davidflanagan.com
June 1999

Preface xiii

PART I

Introducing the
Java Foundation Classes

Part T is an introduction to the key APIs that comprise the Java Foundation
Classes. These chapters provide enough information for you to get started
using these APIs right away.

Chapter 1, The Java Foundation Classes
Chapter 2, Swing and AWT Architecture
Chapter 3, Swing Programming Topics
Chapter 4, Graphics with AWT and Java 2D
Chapter 5, Printing

Chapter 6, Data Transfer

Chapter 7, Applets

CHAPTER 1

The Java Foundation Classes

The Java Foundation Classes, or JFC, is a loose collection of standard Java APIs for
client-side graphics, graphical user interfaces (GUIs), and related programming
tasks. They are foundation classes in the sense that most client-side Java applica-
tions are built upon these APIs. This book covers the following APIs:

AWT

Although the most powerful and exciting features of the JFC were introduced
in Version 1.2 of the Java 2 platform, the JFC also includes the graphics and
GUI features of Java 1.0 and Java 1.1. These features are provided by the
Abstract Windowing Toolkit (AWT). The graphics and GUI capabilities of the
AWT are rudimentary, and many of them have been superseded by more
advanced features in Java 1.2. Nevertheless, the AWT is the bedrock upon
which more advanced JFC functionality is built.

In addition, there are certain situations in which you cannot take advantage of
the new JFC functionality and must instead rely solely on the AWT. For exam-
ple, common web browsers do not yet support Swing, so if you are writing
applets, you have to use the AWT. Because of this, the graphics and GUI APIs
of the AWT are discussed right along with the more powerful APIs introduced
in Java 1.2.

Swing

Swing is an advanced GUI toolkit written in pure Java. It is built upon the
AWT but provides many new GUI components and useful GUI-related appli-
cation services. Swing offers a pluggable look-and-feel architecture that
allows an application to be trivially configured either to display a platform-
independent Java look-and-feel or to mimic the look-and-feel of the native
operating system. Swing also includes an accessibility API that enables the
use of assistive technologies, such as screen readers or screen magnifiers for
the vision impaired. Many features of Swing are based on the pioneering
design of the Netscape Internet Foundation Classes.

Swing is a core part of the Java 2 platform. It is also available, however, as an
extension to Java 1.1.

Java 2D

Java 2D is the name for the state-of-the-art two-dimensional graphics API
introduced in Java 1.2. Java 2D is built upon the AWT, but greatly expands on
the graphics capabilities that were available in Java 1.0 and Java 1.1. Java 2D
includes support for resolution independence, rotation, scaling and shearing
of arbitrary graphics, antialiasing of text and graphics, alpha transparency,
color compositing, and the use of the full range of fonts installed on the
native system.

Printing
The ability to print text and graphics on a page is almost as important as the
ability to draw text and graphics on the screen. Java 1.1 introduced simple
printing capabilities as part of the AWT, and Java 1.2 includes a more power-
ful printing APT as part of the JFC. This book describes both printing APIs.

Data transfer
An important feature of many client-side applications is the ability to allow
user-directed data transfer within the application and between unrelated
applications. There are two commonly used data transfer metaphors: cut-and-
paste and drag-and-drop. Java 1.1 defined a basic data transfer framework and
provided an API for cut-and-paste. Java 1.2 adds support for data transfer
using the drag-and-drop metaphor.

Applets
The applet API allows a client-side program to run as an applet, or mini-appli-
cation, within a web browser or some other form of applet viewer. Techni-
cally, the applet API is not part of the JFC, but it is a crucial piece of the
client-side Java programming picture and is included in this book.

The rest of the chapters in Part I describe these APIs in far more detail. Read
Chapter 2, Swing and AWT Architecture, first. After reading that chapter, you can
read the remaining chapters in whatever order you prefer. The goal of each chap-
ter is to introduce an API in enough detail so that you can begin to use it in your
programs. While reading a chapter, you may find it helpful to refer to the quick-
reference material in Part II of this book to find detailed API information on the
individual classes you are reading about.

4 Chapter 1— The Java Foundation Classes

CHAPTER 2

Swing and AWT
Architecture

The Abstract Windowing Toolkit (AWT) provides basic facilities for creating graphi-
cal user interfaces (GUIs), and also for drawing graphics, as we’ll discuss in a later
chapter. AWT has been a core part of Java since Java 1.0. The GUI features of AWT
are layered on top of the native GUI system of the underlying platform. In other
words, when you create a graphical push button with AWT, AWT creates a Win-
dows push button, or a Macintosh push button, or a Motif push button, or what-
ever, depending on the platform on which the application is running. In Java 1.1,
AWT was extended to allow the creation of “lightweight” GUI components that do
not have corresponding native GUI components behind them.

Swing is a new GUI toolkit that is available as a core part of the Java 2 platform
and also as an extension to Java 1.1. Swing is an extension of the AWT toolkit, not
an entirely new toolkit. All of the GUI components provided by Swing are
lightweight components, so they do not rely on the underlying native GUIs. The
result is that Swing is more portable, making it much easier to write graphical
applications that behave the same on all platforms. Swing is also larger and more
comprehensive than AWT. In addition to a complete and powerful set of GUI com-
ponents, Swing provides a number of utilities that make it easier to write graphical
applications.

Swing offers a great step forward when compared to AWT. You should use Swing
in all your Java 2 applications. You should also seriously consider using it as an
extension for Java 1.1 applications. Unfortunately, at the time of this writing, com-
mon web browsers do not yet support Swing, so if you are writing applets, you
should either run those applets under the Java Plug-in, or you should avoid the
use of Swing and rely exclusively on the features of AWT. See Chapter 7, Applets,
for more information on applets.

This chapter introduces the basic architecture used by both AWT and Swing. For
more information on Swing and AWT, see java Swing, by Robert Eckstein, Marc
Loy, and Dave Wood (O'Reilly), and Java AWT Reference, by John Zukowski
(O'Reilly), respectively.

=
(]
=
=3
()
2
S
@

Imy/buimg

A Simple Grapbical User Interface

Example 2-1 is a simple program that uses Swing to create and display a graphical
user interface. Figure 2-1 shows the GUI created by this program.

E‘i Meszage O] x|

Do you really want to gquit?

Figure 2-1: The GUI of the DisplayMessage program

The DisplayMessage program is designed for use in a shell script or batch file.* If
you invoke the program on the command line with the text of a question, it dis-
plays the question to the user and waits for the user to click the Yes button or the
No button. The program sets its exit code based on the user’s response, so a shell
script can examine this exit code to determine how the user responded. The pro-
gram expects from one to three command-line arguments that specify the text of
the question and the text for the “Yes” and “No” buttons, respectively. For exam-
ple, you might invoke the program like this:

% java DisplayMessage "Do you really want to quit?" "Yes, Please", "No, Thanks"

The example illustrates step-by-step how to create a Swing GUI. Don’t worry if
you don’t understand the details of this program yet. If you read it through once
now to get the big picture, you can refer back to it as you read the sections that
follow.

Example 2-1: Creating a Simple GUI with Swing

import java.awt.*; // AWT classes

import javax.swing.*; // Swing components and classes
import javax.swing.border.*; // Borders for Swing components
import java.awt.event.*; // Basic event handling

pubTic class DisplayMessage {
public static void main(String[] args) {

/*

* Step 1: Create the components

*/

JlLabel msglabel = new JlLabel(); // Component to display the question
JButton yesButton = new JButton(); // Button for an affirmative response
JButton noButton = new JButton(); // Button for a negative response

/*

* Step 2: Set properties of the components

*/
msglabel.setText(args[0]); // The msg to display

* Because the Java Virtual Machine takes a long time to start up, it is not actually practical to use this pro-
gram in a shell script. It is a useful example nevertheless.

6 Chapter 2— Swing and AWT Architecture

Example 2-1: Creating a Simple GUI with Swing (continued)

msglabel.setBorder(new EmptyBorder(10,10,10,10)); // A 10-pixel margin
yesButton.setText((args.length >= 2)%args[1]:"Yes"); // Text for yes button
noButton.setText((args.length >= 3)?args[2]:"No"); // Text for no button

/*

* Step 3: Create containers to hold the components

*/
JFrame win = new JFrame("Message"); // The main application window
JPanel buttonbox = new JPanel(); // A container for the two buttons
/*

* Step 4: Specify LayoutManagers to arrange components in the containers
*/
win.getContentPane().setlLayout(new BorderlLayout()); // Layout on borders
buttonbox.setlayout(new FlowlLayout()); // Layout left-to-right
/*

* Step 5: Add components to containers, with optional layout constraints
*/

buttonbox.add(yesButton); // Add yes button to the panel
buttonbox.add(noButton); // Add no button to the panel

// add JlLabel to window, telling the BorderLayout to put it in the middle
win.getContentPane().add(msglLabel, "Center");

// add panel to window, telling the BorderlLayout to put it at the bottom
win.getContentPane().add(buttonbox, "South");

/*
* Step 6: Arrange to handle events in the user interface
*/
yesButton.addActionlListener(new ActionListener() { // Note: inner class
// This method is called when the Yes button is clicked
public void actionPerformed(ActionEvent e) { System.exit(0); }
1IN

noButton.addActionListener(new ActionListener() { // Note: inner class
// This method is called when the No button is clicked
pubTic void actionPerformed(ActionEvent e) { System.exit(1); }

1)

/*
* Step 7: Display the GUI to the user
*/
win.pack(); // Set the size of the window based on its children's sizes
win.show(); // Make the window visible
}
}
Components

A graphical user interface is composed of individual building blocks such as push
buttons, scrollbars, and pull-down menus. Some programmers know these individ-
ual building blocks as controls, while others call them widgets. In Java, they are
typically called components because they all inherit from the base class
java.awt.Component.

Components 7

=
(]
=
=]
()
o
S
@

Imy/buimg

When you are describing a GUI toolkit, one of the most important characteristics is
the list of components it supports. Table 2-1 lists the heavyweight components
provided by AWT, where heavyweight refers to components that are layered on
top of native GUI components. The components listed are all classes in the
Jjava.awt package. One of the curious features of the AWT is that pull-down and
pop-up menus, and the items contained within those menus, are not technically
components. Instead of inheriting from Component, they inherit from java.awt.-
MenuComponent. Nevertheless, the various menu component classes are used in
very much the same way that true components are, so I have included them in
Table 2-1.

Table 2-1: Heavyweight AWT Components

Component Name | Description

Button A graphical push button.

Canvas A heavyweight component that displays a blank canvas,
allowing a program to display custom graphics.

Checkbox A toggle button that can be selected or unselected. Use the
Checkbox group to enforce mutually exclusive or radio
button behavior among a group of Checkbox components.

CheckboxMenuItem | A toggle button that can appear within a Menu.

Choice An option menu or drop-down list. Displays a menu of
options when clicked on and allows the user to select
among this fixed set of options.

Component The base class for all AWT and Swing components.
Defines many basic methods inherited by all components.

FileDialog Allows the user to browse the filesystem and select or
enter a filename.

Label Displays a single line of read-only text. Does not respond
to user input in any way.

List Displays a list of choices (optionally scrollable) to the user
and allows the user to select one or more of them.

Menu A single pane of a pull-down menu

MenuBar A horizontal bar that contains pull-down menus.

MenuComponent The base class from which all menu-related classes inherit.

Menultem A single item within a pull-down or pop-up menu pane.

PopUpMenu A menu pane for a pop-up menu.

Scrollbar A graphical scrollbar.

TextArea Displays multiple lines of plain text and allows the user to
edit the text.

TextComponent The base class for both TextArea and TextField.

TextField Displays a single line of plain text and allows the user to
edit the text.

8 Chapter 2— Swing and AWT Architecture

Table 2-2 lists the components provided by Swing. By convention, the names of
these components all begin with the letter /. You'll notice that except for this J pre-
fix, many Swing components have the same names as AWT components. These
are designed to be replacements for the corresponding AWT components. For
example, the lightweight Swing components JButton and JTextField replace the
heavyweight AWT components Button and TextField. In addition, Swing defines
a number of components, some quite powerful, that are simply not available
in AWT.

Swing components are all part of the javax.swing package. Despite the javax
package prefix, Swing is a core part of the Java 2 platform, not a standard exten-
sion. Swing can be used as an extension to Java 1.1, however. All Swing compo-
nents inherit from the javax.swing.JComponent class. JComponent itself inherits
from the java.awt.Component class, which means that all Swing components are
also AWT components. Unlike most AWT components, however, Swing compo-
nents do not have a native “peer” object and are therefore “lightweight” compo-
nents, at least when compared to the AWT components they replace. Finally, note
that menus and menu components are no different than any other type of compo-
nent in Swing; they do not form a distinct class hierarchy as they do in AWT.

Table 2-2: GUI Components of Swing

Component Name Description

JButton A push button that can display text, images, or both.

JCheckBox A toggle button for displaying choices that are not
mutually exclusive.

JCheckBoxMenuItem A checkbox designed for use in menus.

JColorChooser A complex, customizable component that allows the

user to select a color from one or more color spaces.
Used in conjunction with the
Jjavax.swing.colorchooser package.

JComboBox A combination of a text entry field and a drop-down
list of choices. The user can type a selection or choose
one from the list.

JComponent The root of the Swing component hierarchy. Adds
Swing-specific features such as tooltips and support for
double-buffering.

JEditorPane A powerful text editor, customizable via an EditorKit
object. Predefined editor kits exist for displaying and
editing HTML- and RTF-format text.

JFileChooser A complex component that allows the user to select a
file or directory. Supports filtering and optional file
previews. Used in conjunction with the
javax.swing.filechooser package.

JLabel A simple component that displays text, an image, or

both. Does not respond to input.

Components 9

=
(]
=
=3
()
2
S
@

Imy/buimg

Table 2-2: GUI Components of Swing (continued)

Component Name Description

JList A component that displays a selectable list of choices.
The choices are usually strings or images, but arbitrary
objects may also be displayed.

JMenu A pull-down menu in a JMenuBar or a submenu within
another menu.

JMenuBar A component that displays a set of pull-down menus.

JMenultem A selectable item within a menu.

JOptionPane A complex component suitable for displaying simple

JPasswordField

JPopupMenu

JProgressBar

JRadioButton

JRadioButtonMenultem
JScroll1Bar

JSeparator

JSTlider

JTable

JTextArea

JTextComponent

JTextField

dialog boxes. Defines useful static methods for
displaying common dialog types.

A text input field for sensitive data, such as passwords.
For security, does not display the text as it is typed.

A window that pops up to display a menu. Used by
JMenu and for standalone pop-up menus.

A component that displays the progress of a time-
consuming operation.

A toggle button for displaying mutually exclusive
choices.

A radio button for use in menus.
A horizontal or vertical scrollbar.

A simple component that draws a horizontal or vertical
line. Used to visually divide complex interfaces into
sections.

A component that simulates a slider control like those
found on stereo equalizers. Allows the user to select a
numeric value by dragging a knob. Can display tick
marks and labels.

A complex and powerful component for displaying
tables and editing their contents. Typically used to
display strings but may be customized to display any
type of data. Used in conjunction with the
javax.swing.table package.

A component for displaying and editing multiple lines
of plain text. Based on JTextComponent.

The root component of a powerful and highly
customizable text display and editing system. Part of
the javax.swing.text package.

A component for the display, input, and editing of a
single line of plain text. Based on JTextComponent.

10 Chapter 2— Swing and AWT Architecture

Table 2-2: GUI Components of Swing (continued)

Component Name Description

JTextPane A subclass of JEditorPane for displaying and editing
formatted text that is not in HTML or RTF format.
Suitable for adding simple word processing
functionality to an application.

JToggleButton The parent component of both JCheckBox and
JRadioButton.
JToolBar A component that displays a set of user-selectable

tools or actions.

JToolTip A lightweight pop-up window that displays simple
documentation or tips when the mouse pointer lingers
over a component.

JTree A powerful component for the display of tree-
structured data. Data values are typically strings, but
the component can be customized to display any kind
of data. Used in conjunction with the

javax.swing.tree package.

Properties

Every AWT and Swing component can have its appearance and behavior cus-
tomized by specifying values for its properties. In Example 2-1, we set the text
property of the JButton components by calling the setText() method and the
border property of the JLabel by calling setBorder().

The properties of a component are not a formal part of a Java class, in the way
that the fields and methods of a class are. Instead, the notion of properties is
merely a naming convention adopted from the JavaBeans component framework.
When a component defines a pair of public accessor methods whose names begin
with “set” and “get”, this pair of methods defines a property. For example, the
methods setFont() and getFont() define the font property of a component.
When a property is of type boolean, the “get” accessor method is often replaced
with one that begins with “is”. For example, the setVisible() and isVisible()
methods define the visible property.

Although any given component may define only a few properties of its own, every
component inherits the properties of its superclasses. If you refer to the reference
pages for JComponent, Component, and MenuComponent, you'll see that there are
quite a few of these inherited properties.

Thinking about GUI components in terms of the properties they define and the
properties they inherit is useful because it conveniently sums up the customizable
state of the component. Looking at a list of component properties tells you a lot

Properties 11

=
(]
=
=3
()
2
S
@

Imy/buimg

about what you can do with the component. This is so useful, in fact, that the ref-
erence section of this book groups property accessor methods separately from
other methods.

Containers and Containment

Table 2-1 and Table 2-2 listed the GUI components available in the AWT and
Swing toolkits. In order to create a graphical user interface, however, these indi-
vidual components must be arranged within some kind of container. A container
is a component that can contain other components. All containers inherit from the
java.awt.Container base class, which itself inherits from java.awt.Component.

Main application windows and dialog boxes are commonly used containers. Each
provides a window within which GUI components can be arranged to create a
user interface. A graphical application does not usually arrange all its components
directly within a window or dialog box, however. Instead, an application typically
uses containers nested within other containers. For example, a dialog box that
contains two columns of text input fields above a row of push buttons might use
three separate containers, one for each column of text fields and one for the row
of push buttons. Then the dialog box container contains only these three contain-
ers, instead of the full set of text fields and push buttons.

Some kinds of containers display their children in very specific ways, while others
have restrictions on the number or type of components they can display. Some
other containers are generic, so they can contain any number of children, arranged
in any way. A generic container uses a layout manager to specify how its children
should be arranged (as we’ll discuss in the next section).

Table 2-3 lists the containers provided by AWT (in the java.awt package), and
Table 2-4 lists the additional containers provided by Swing (in javax.swing).
Menus and menu bars, such as javax.swing.JMenuBar and javax.swing.JPopup-
Menu, are containers. Because of their highly specialized use, however, I have
listed them in the earlier tables of components. Also, the JComponent class extends
Java.awt.Container, which means that all Swing components are actually contain-
ers. In practice, however, they are not used this way; only the Swing classes listed
in Table 2-4 are typically used as containers.

Table 2-3: AWT Containers

Container Description

Applet This subclass of Panel is actually part of the java.applet
package. It is the base class for all applets. (See Chapter 7.)

Container The base class from which all containers inherit.

Dialog A window suitable for dialog boxes.

Frame A window suitable for use as the main window of an application.

In AWT, Frame is the only container that can contain a MenuBar
and related menu components.

Panel A generic container used to create nested layouts.

12 Chapter 2— Swing and AWT Architecture

Table 2-3: AWT Containers (continued)

Container Description

ScrollPane | A container that contains a single child and allows that child to be
scrolled vertically and horizontally.

Window A heavyweight window with no titlebar or other decoration,
suitable for pop-up menus and similar uses.
)
. . S S
Table 2-4: Swing Containers ==}
S
Container Description =3 s
S
@ ~
Box A general-purpose container that arranges children using the

BoxLayout layout manager.

JApplet A java.applet.Applet subclass that contains a JRootPane to
add Swing features, such as support for menu bars to applets.
Applets are discussed in Chapter 7.

JDesktopPane A container for JInternalFrame components; simulates the
operation of a desktop within a single window. Supports MDI
(multiple document interface) application styles.

JDialog The container used to display dialog boxes in Swing.

JFrame The container used for top-level windows in Swing.

JInternalFrame | A lightweight nested window container. Behaves like a
JFrame and displays a titlebar and resize handles but is not an
independent window and is constrained to appear within the
bounds of its parent container. Often used with JDesktopPane.

JLayeredPane A container that allows its children to overlap and manages
the stacking order of those children.

JPanel A generic container for grouping Swing components. Typically
used with an appropriate LayoutManager.

JRootPane A complex container used internally by JApplet, JDialog,
JFrame, JInternalFrame, and JWindow. Provides a number of
important Swing capabilities to these top-level containers.
JScrol1Pane A container that allows a single child component to be
scrolled horizontally or vertically. Supports scrolling and non-
scrolling header regions at the top and left of the scrolling
region.

JSplitPane A container that displays two children by splitting itself
horizontally or vertically. Allows the user to adjust the amount
of space allocated to each child.

JTabbedPane A container that displays one child at a time, allowing the user
to select the currently displayed child by clicking on tabs like
those found on manila file folders.

Containers and Containment 13

Table 2-4: Swing Containers (continued)

Container Description

JViewport A fixed-size container that displays a portion of a single larger
child. Typically used as part of a JScrol1Pane.

JWindow A top-level Swing window that does not display a titlebar,

resize handles, or any other decorations.

When building a graphical user interface, you must create your components, cre-
ate the containers that will hold those components, and then add the components
to the containers. You do this with one of the add() methods defined by
java.awt.Container. In its simplest form, this process looks like this:

JButton b = new JButton("Push Me");
JPanel p = new JPanel();
p.add(b);

There are other versions of the add() method as well. In addition to specifying the
component to add, you may also specify a string or an object as a constraint. The
container may use this constraint object as a hint that tells it how the component
should be arranged in the container. In practice, containers do not use the con-
straint directly, but pass it on to a layout manager, as we’ll discuss shortly.

In Swing, the top-level containers JFrame, JDialog, JInternalFrame, JWindow, and
JApplet are used slightly differently than containers such as JPanel, JSplitPane,
and JTabbedPane.

I've said that all Swing components extend JComponent. JFrame, JInternalFrame,
JDialog, JWindow, and JApplet are actually exceptions to this rule. These top-level
Swing containers extend their corresponding AWT containers: Frame, Dialog, Win-
dow, and java.applet.Applet. Because these container classes do not extend
JComponent, they do not inherit the Swing-specific features of JComponent.

Instead, when you create a JFrame, JInternalFrame, JDialog, JWindow, or JApplet
container, the container automatically creates a single child for itself. The child is a
JRootPane container. JRootPane does extend JComponent, and it is this automati-
cally created JRootPane that will hold all of the components that are placed in the
container. You cannot add children directly to the top-level container. Instead, you
add them to the content pane of the JRootPane. All Swing containers that use a
JRootPane implement the RootPaneContainer interface. This interface defines the
getContentPane() method, which returns the container that you should use. This
is not as confusing as it sounds. In practice, your code looks like this:

JButton b = new JButton("Press Me"); // Create a button
JFrame f = new JFrame("Test Application"); // Create a window to display it
f.getContentPane().add(b); // Add the button to the window

By default, getContentPane() returns a JPanel container, but you can override this
default by creating a container of your own and passing it to setContentPane().

The JRootPane container is a complex one; it contains a number of children in
addition to the content pane container. These children support features such as
pop-up menus and are primarily for internal use by Swing. One notable and

14 Chapter 2— Swing and AWT Architecture

commonly used feature of JRootPane, however, is that it displays a JMenuBar
passed to its setdMenuBar() method. (In AWT, you specify a MenuBar for a Frame
by calling the setMenuBar() method of Frame.)

Layout Management

Some containers, such as JTabbedPane and JSplitPane, define a particular
arrangement for their children. Other containers such as JPanel (and JFrame, JDi -
alog, and other top-level containers that use JPanel as their default content pane)
do not define any particular arrangement. When working with containers of this
type, you must specify a LayoutManager object to arrange the children within the
container.

AWT and Swing include various implementations of the java.awt.layoutManager
interface. Each arranges components in a different way. Table 2-5 lists the layout
managers defined by AWT. Swing applications often rely on these AWT layout
managers, but Swing also defines some of its own, which are listed in Table 2-6.
Figure 2-2 shows how some of these layout managers arrange their children.

Table 2-5: AWT Layout Managers

Layout Manager | Description

BorderlLayout Lays out a maximum of five components: one along each of
the four borders of the container and one in the center. When
using this layout manager, you must add components to the
container using a two-argument version of the add() method.
The constraint argument should be one of the strings “North”,
“East”, “South”, “West”, or “Center”. Despite the simplicity of
this layout system, this layout manager is used quite often.
CardlLayout Makes each component as large as the container and displays
only one at a time. Various methods change the currently
displayed component.

FlowlLayout Arranges components like words on a page: from left to right
in rows and then top to bottom as each row fills up. Rows
may be left, center, or right justified.

GridBaglLayout A flexible layout manager that arranges components in a grid
with variable-sized cells. Allows explicit control over the way
each component is resized when the container changes size.
Requires a complex constraints set specified with the
GridBagConstraints object.

GridlLayout Makes all components the same size and arranges them in a

grid of specified dimensions.

Layout Management 15

=
(]
=
=3
()
2
S
@

Imy/buimg

B3 Applet Viewer: Borderl ayoutE xample. class H=1 =i Applet Viewer: GridLayoutExample. class 18 [=] E3

Applet Applet
Narth |
Button #1 Button #2 Button #3
West Center East Button #4 Button #5 Button #6
Button #7 Button #8 Button #3
South
Applet started. Applet started.
BorderLayout GridLayout
Eg’%.hpplel Viewer: FlowLayoutExample_class |_ O] x|
Applet

Button #2

Buton#1 | |Buton#2 | Button#3 | sutonss |

Button #3
Buton#s | Buton#s | Buton#r |
Button #1
Buton# | Buton#a |
Button #4 Applet started.
FlowLayout
Butian #5 Bution #6 | Bution #7
Button #3 | Button #4
GridBagLayout
Figure 2-2: Layout managers
Table 2-6: Swing Layout Managers
Layout Manager Description
BoxLayout The layout manager used by the Box container. It arranges

its children into either a row or a column. It uses the glue
and strut components returned by static Box methods to
display stretchy and rigid spaces between the children.
OverlaylLayout An obscure and infrequently used layout manager that
overlaps its children based on the children’s alignment
values specified with the setAlignmentX() and
setAlignmentY () methods inherited from JComponent.
Used by AbstractButton.

Scroll1Panelayout | A specialized layout manager used by JScrol1Pane. Not
typically useful for general-purpose layouts.
ViewportlLayout A specialized layout manager used by JViewport. Not
useful for general-purpose layouts.

16 Chapter 2— Swing and AWT Architecture

Some layout managers require additional information about the components they
are to arrange. This information takes the form of a constraint string or constraint
object passed to the add() method when the component is added to its container.
Java.awt.Borderlayout is the most commonly used of these layout managers: its
constraint object is a string that specifies where the child should be positioned
within the container. Example 2-1 showed a typical use of BorderLayout.

Every AWT and Swing container has a default layout manager. If you explicitly set
the layout manager to null, however, you can arrange your components using
hardcoded sizes and positions. Set the size and position with methods such as
setSize() and setlocation(). However, hardcoding the layout of your compo-
nents makes your GUI less portable, harder to customize, and harder to translate
into other languages.

Event Handling

Using a layout manager to arrange components within a container may result in a
GUI that looks good, but in order to make it do anything, you have to handle
events. An event typically signifies an action by the user, such as striking a key or
clicking the mouse over a JButton component. But it can also refer to any other
action performed by the user or the program. An event can be generated when
the value of component’s property changes or when a specified amount of time
elapses, for example.

The event model used in Java changed between Java 1.0 and Java 1.1. The Java
1.1 event model is used by AWT and Swing in Java 1.1 and Java 1.2. The Java 1.0
event model is largely obsolete; we’ll discuss it in Chapter 7, Applets, however,
since some web browsers still only support Java 1.0.

Event Objects

Different types of events are represented by different Java classes. The base class,
from which all events inherit, is java.util.EventObject. AWT defines its own
base class for GUI events, java.awt.AWTEvent, which is subclassed from EventOb-
ject. AWT then defines a number of subclasses of AWTEvent in the package
Java.awt.event. Swing uses many of these event types and also defines more of
its own in the javax.swing.event package. Some Swing events subclass AWT
events, but many subclass java.util.EventObject directly. There is one other
kind of event used by Swing components: the java.beans.PropertyChangeEvent,
which is part of the JavaBeans component model.

The base EventObject class defines a getSource() method that returns the object
that generated or triggered the event. AWTEvent defines the getID() method; the
value returned by this method is used to distinguish the various types of events
that are represented by the same event class. For example, FocusEvent has two
possible types: FocusEvent.FOCUS_GAINED and FocusEvent.FOCUS_LOST.

In addition to these getSource() and getID() methods, the various event sub-
classes define methods to return whatever data values are pertinent to the particu-
lar event type. For example, MouseEvent has getX(), getY(), and getClickCount()

Event Handling 17

=
(]
=
=3
()
2
S
@

Imy/buimg

methods; it also inherits the getModifiers() and getWhen() methods, among oth-
ers, from its superclass InputEvent. Thus, when the user clicks the mouse, you
receive a MouseEvent that specifies where, when, and how many times the user
clicked, along with other information, such as the set of keyboard modifier keys
that were held down at the time.

Event Listeners

An object that would like to be notified of and respond to an event is an event lis-
tener. An object that generates a particular kind of event, called an event source,
maintains a list of listeners that are interested in being notified when that kind of
event occurs. The event source provides methods that allow listeners to add and
remove themselves from this list of interested objects. When the event source gen-
erates an event (or when a user input event such as a mouse click or a key press
occurs on the event source object), the event source notifies all the listener objects
that the event has occurred.

All AWT and Swing components are event sources, and all of them define (or
inherit) methods for adding and removing event listeners. By convention, these
methods have names that begin with “add” or “remove” and end with “Listener”.
So, for example, the JButton class inherits the addActionlListener() and remove-
ActionListener() methods. In the reference section of this book, youll notice
that the event registration methods of a component are grouped separately, just as
the property accessor methods are. This is because one of the most important
things you need to know about a component is the list of event types that it can
generate.

Each type of event object typically has a corresponding event listener type. The
ActionEvent event type has an ActionlListener listener type, for example. Event
listeners, such as ActionListener, are interfaces that extend java.util.Eventlis-
tener. Eventlistener doesn’t define any methods; it is merely a marker interface
that gives all event listeners a common type. An event listener interface defines
one or more methods that an event source may invoke when a particular type of
event occurs. Such a method always takes an event object as its single argument.
For example, the ActionListener interface defines a single method, actionPer-
formed(). When the user clicks on a JButton component, an ActionEvent repre-
senting that click is created and passed to the actionPerformed() method of each
ActionListener object that was registered on the JButton with the addAction-
Listener() method.

An event listener interface may define more than one method. For example,
MouselListener defines several methods that correspond to different types of
mouse events, including button press events and button release events. This is
because MouseEvent represents several different types of mouse events. By con-
vention, each method of an event listener is passed a single argument that is an
event object of the type that corresponds to the listener. Thus, a MouseEvent object
is always created when a mouse event occurs, but the object is passed to a differ-
ent listener method depending on the type of mouse event that occurred.

18 Chapter 2— Swing and AWT Architecture

Event Adapters

When an event listener interface defines more than one method, it is often accom-
panied by an event adapter class that provides empty implementations for each of
the methods. For example, the Mouselistener interface defines five different
methods. If your program is interested only in the mouseC1icked() method, it may
be easier for you to subclass the MouseAdapter class and override mouseClicked()
than to implement all five methods of the MouseListener interface directly.

Event Handling with Inner Classes

An important point to notice about the Java event handling model is that, in order
to receive an event notification, you must implement an appropriate event listener
interface. Sometimes you do this directly in your main application class. For exam-
ple, an object interested in action and focus events might simply implement
ActionListener and FocusListener directly.

However, it is also quite common to create special classes for the sole purpose of
handling events. This is usually done with inner classes, as we saw in Example
2-1. With this event-handling paradigm, you create a simple inner class to handle
each event type that you are interested in for a particular event source. Your code
might look like this:

JFrame window = new JFrame("test application");
window.addFocusListener(new FocuslListener() {
public void focusGained(FocusEvent e) { /* gain focus code here */ }
public void focusLost(FocusEvent e) { /* lose focus code here */ }
1)

You can also use this approach with an event adapter class, instead of an event lis-
tener interface. For example:

Panel panel = new Panel();
panel.addMouselistener(new MouseAdapter() {

public void mouseClicked(MouseEvent e) { /* mouse click code here */ }
1)

Handling Input Events Directly

Certain types of events occur as a direct result of user input. When the user types
a key or moves the mouse, for example, a KeyEvent or MouseEvent is generated.
Similarly, when the user resizes a window or transfers keyboard focus to a new
component, a FocusEvent or ComponentEvent is generated. These types of events
represent event notifications generated by the underlying native windowing sys-
tem or operating system. Other types of events, such as ActionEvent and Popup-
MenuEvent, do not originate in the native windowing system. Instead, these events
are generated directly by AWT and Swing components.

The distinction between these types of events becomes more clear when you
implement a component yourself. Consider the JButton component, for example.
It receives MouseEvent events and generates ActionEvent events in response to
them. For a component like this, it is not particularly appropriate or efficient to
use a Mouselistener object to receive mouse events.

Event Handling 19

=
(]
=
=3
()
2
S
@

Imy/buimg

The Java event model provides a low-level way to handle input events that origi-
nate in the underlying windowing system. When such an event occurs, it is passed
to the processkEvent() method of the Component on which it occurs. This method
examines the type of event and invokes an appropriate method to handle the
event. These methods are: processMouseEvent(), processMouseMotionEvent(),
processKeyEvent(), processFocusEvent(), processComponentEvent(), and pro-
cessInputMethodEvent (). By default, each method simply invokes the appropriate
methods on the appropriate event listeners. When you subclass a component,
however, you can override any of these protected methods to perform any other
type of event handling you desire. When you override one of these methods, you
should usually remember to invoke the superclass method as well, so that the
appropriate event listeners are notified.

There is one additional requirement to make this low-level Java 1.1 event model
work. In order to receive events of a particular type for a particular component,
you must tell the component that it is interested in receiving that type of event. If
you do not, events of that type are simply not delivered to the component, at least
on some operating systems. With event listeners, the act of registering a listener is
sufficient to tell the component what kinds of events it should request. However,
when you are using the processXXXEvent() methods directly, you must first call
another protected method, enableEvents(), and pass in a bit mask that specifies
the types of events you are interested in. The bit mask is formed by ORing
together various EVENT_MASK constants that are defined by java.awt.AWTEvent. For
example:

this.enableEvents(AWTEvent.MOUSE_EVENT_MASK | AWTEvent.KEY_EVENT_MASK);

Event Reference

AWT and Swing define quite a few event objects, event listeners, and event
adapters in the java.awt.event and javax.swing.event packages. Fortunately, all
these classes and interfaces follow the same basic naming conventions. For an
event X, the event object is named XEvent, the listener interface is XListener, and
the adapter, if one is defined is XAdapter. The event listener interface defines
methods that vary by event type, but every event listener method returns void and
accepts the corresponding event object as its single argument. The only significant
variation from these rules is that the java.awt.Mouselistener and java.awt.-
MouseMotionlListener listeners both work with MouseEvent events—there is no
separate MouseMotionEvent.

You can find a list of the events generated by any given component by turning to
its reference page and looking at the event listener registration methods for that
component. Remember, too, that the component may also inherit events. Table 2-7
and Table 2-8 work in the opposite direction. For a given event listener type, these
tables list the components that can generate events of that type. (Note, however,
that they do not list classes that inherit events of that type.) These tables also list
the names of the methods defined by each event listener interface. You can learn a
lot about the intended usage of an event simply by looking at the list of listener
methods to which it can be passed.

20 Chapter 2— Swing and AWT Architecture

Table 2-7 shows the event listeners defined by AWT. These event types are not
restricted to AWT components; Swing components use them too, as do some other
Swing classes that are not components. Table 2-8 displays the event listeners
defined by Swing. Note that I have also added two event listeners defined in the
Java.beans package, but used by Swing components, to this table.

Table 2-7: AWT Event Listeners and the Components That Use Them

Event Listener

Listener Methods

Registered on

ActionlListener

AdjustmentListener

ComponentListener

ContainerlListener

FocusListener

ItemListener

KeyListener

MouselListener

MouseMotionlListener

TextListener

actionPerformed()

adjustmentValue-
Changed()
componentHidden(),
componentMoved(),
componentResized(),
componentShown ()
componentAdded(),
componentRemoved()

focusGained(),
focusLost()

itemStateChanged()

keyPressed(),
keyReleased(),
keyTyped()
mouseClicked(),
mouseEntered(),
mouseExited(),
mousePressed(),
mouseReleased()

mouseDragged(),
mouseMoved()

textValueChanged()

)
AbstractButton, Button, §~ §

S
ButtonModel, g N
ComboBoxEditor, 5 §|
JComboBox,

JFileChooser,
JTextField, List,
Menultem, TextField,
Timer

Adjustable,
JScroll1Bar, Scrollbar
Component

Container

Component

AbstractButton,
ButtonModel, Checkbox,
CheckboxMenultem,
Choice, ItemSelectable
JComboBox, List

Component

)

Component

Component

TextComponent

Event Handling 21

Table 2-7: AWT Event Listeners and the Components That Use Them (continued)

Event Listener

Listener Methods

Registered on

WindowlListener

windowActivated(),
windowClosed(),
windowClosing(),
windowDeactivated(),
windowDeiconified(),
windowIconified(),

windowOpened()

Window

Table 2-8: Swing Event Listeners and the Components That Use Them

Event Listener

Listener Methods

Registered on

AncestorListener

CaretlListener
CellEditorListener

Changelistener

HyperlinkListener

InternalFramelListener

ListDataListener

ancestorAdded(),
ancestorMoved(),
ancestorRemoved()

caretUpdate()
editingCanceled(),
editingStopped()
stateChanged()

hyperlinkUpdate()

internalFrame-
Activated (),
internalFrameClosed(),
internalFrameClosing()
internalFrame-
Deactivated(),
internalFrame-
Deiconified(),
internalFrame-
Iconified()
internalFrameOpened()

contentsChanged(),
intervalAdded(),
intervalRemoved()

Action, JComponent

JTextComponent
CellEditor,

AbstractButton,
BoundedRangeModel,
ButtonModel,
JProgressBar, JSlider,
JTabbedPane, JViewport,
MenuSelectionManager,
SingleSelectionModel

JEditorPane

AbstractlListModel,
ListModel

22 Chapter 2— Swing and AWT Architecture

Table 2-8: Swing Event Listeners and the Components That Use Them (continued)

Event Listener

Listener Methods

Registered on

ListSelectionListener

MenuDragMouselListener

MenuKeyListener

MenulListener

PopupMenulistener

TreeExpansionlListener

TreeSelectionlListener

TreeWillExpandListener

java.beans.-
PropertyChangelistener
java.beans.-

VetoableChangelListener

valueChanged()

menuDragMouseDragged(),
menuDragMouseEntered(),
menuDragMouseExited(),

menuDragMouseReleased()

menuKeyPressed(),
menuKeyReleased(),
menuKeyTyped ()

menuCanceled(),
menuDeselected(),
menuSelected()

popupMenuCanceled(),
popupMenuWil1Become-
Invisible(),
popupMenuWil1Become-
Visible()

treeCollapsed(),
treeExpanded()

valueChanged()

treeWillCollapse(),
treeWilTExpand()

propertyChange()

vetoableChange()

JList,
ListSelectionModel
JMenultem

JMenultem

=
(]
=
=3
()
2
S
@

Imy/buimg

JMenu

JPopupMenu

JTree

JTree

JTree

Action, JComponent,
UIDefaults, UIManager

JComponent

Swing Component Architecture

So far, we have treated components as single, self-contained GUI building blocks.
And indeed, components can be written to be entirely self-contained. However,
neither AWT nor Swing components are actually self-contained. As I mentioned
earlier, each AWT component is simply a frontend for an underlying native user-
interface object. AWT delegates all the display and event processing—that is, the
look-and-feel—to these native GUI elements.

Swing components are not self-contained either. Most Swing components rely on
two other objects: a user-interface (UD delegate object and a model object. Swing
supports a pluggable look-and-feel architecture, which means that a Swing appli-
cation can control the appearance and behavior of its user-interface. Thus, a Swing

Swing Component Architecture 23

application can be displayed in a platform-independent way or in a way that mim-
ics the native look-and-feel of the underlying platform, for example. In order to
implement the pluggable look-and-feel architecture, every Swing component must
delegate its display and event-handling functions to a separate object: the UI dele-
gate. Fortunately, you can use Swing without ever thinking about the pluggable
look-and-feel. That's because, when you create a Swing component, an appropri-
ate Ul delegate object is automatically created for it.

The model object for a Swing component is responsible for storing the state of the
component. For example, the JToggleButton uses an implementation of the But-
tonModel interface as its model. This ButtonModel object remembers whether the
button is currently selected. As another example, the JScrol1Bar, JSlider, and
JProgressBar components use a BoundedRangeModel object to keep track of their
state. This state includes minimum, maximum, and current values.

Most Swing components automatically create the model objects they rely on, so
you can use these components without ever worrying about model objects. When
working with more complicated components, however, models become more
important. For example, the JTree component uses a javax.swing.tree.Tree-
Model object to represent the data it is to display. The JTree component can be
used to display many kinds of hierarchically structured data. JTree does not
require you to convert your data into some predefined data format, however.
Instead, you implement the TreeModel interface in a way that allows JTree to
understand the data. For example, to use a JTree component to display files in the
filesystem, you might define a FileTreeModel class that implements the TreeModel
interface on top of the capabilities of the java.io.File class. Or, if you want to
use JTree to display the structure of an XML document, you might create an
implementation of TreeModel that works with the parse tree returned by an XML
parsing class.

The JTable component is another for which the use of a separate model object is
particularly important. JTable can be used to display a tabular view of data, even
when that data is not tabular by nature. To do so, you implement the javax. -
swing.table.TableModel interface to provide a neat, tabular view of the data.

One advantage of this model object approach, where the actual data is separated
from the component’s view of that data, is that you can define multiple views of
the same data. For example, if you have a large set of tabular data that implements
the TableModel interface, you can have two or more JTable components that dis-
play different portions of that data at the same time. When you are writing an
application that manipulates complex data structures, you should consider design-
ing these structures so that they implement appropriate Swing model interfaces. If
you do this, you'll be able to trivially display your data using Swing components.
See Chapter 3, Swing Programming Topics, for more information about implement-
ing TreeModel and TableModel.

24 Chapter 2— Swing and AWT Architecture

CHAPTER 3

Swing
Programming Topics

The last chapter provided an architectural overview of AWT and Swing; it
explained how to create a graphical user interface by placing components inside
containers, arranging them with layout managers, and handling the events that
they generate. This chapter builds on that architectural foundation and introduces
many other important features of Swing. Most of the topics discussed herein are
independent of one another, so you can think of each section as a short essay on
a particular topic, where the sections can be read in any order.

This chapter introduces many of the new components and features of Swing, but it
cannot cover them in full detail. For more information on the topics covered
herein, see Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood (O’Reilly).

Versions of Swing

Swing is a core part of the Java 2 platform, so many developers will simply obtain
the Swing libraries when they download the Java 2 SDK. Swing is also available as
a separate download for use as an extension to Java 1.1. When you download
Swing independently of the SDK, you must pay attention to the Swing version
number. Swing 1.0.3 is an early version of Swing that was released before Version
1.2 of Java 2. It is now outdated and is not documented in this book. Swing 1.1 is
the version of Swing that is being bundled with Java 1.2. You can download a ver-
sion of it for use with Java 1.1 from http://java.sun.com/products/jfc/.

As this book goes to press, the most recent version of Swing is Swing 1.1.1. This
version of Swing is bundled with Java 1.2.2 and is also available for use with Java
1.1 from the web site mentioned in the previous paragraph. Swing 1.1.1 fixes
many bugs in the initial release of Swing 1.1 but does not change the Swing 1.1
API in any way. Its use is strongly recommended. Swing 1.1.1 is the last release of
Swing that will be available for use with Java 1.1.

~
(=)

=
-~
S
[

‘foid buimg

Development of Swing continues, and Java 1.3 will ship with a new version that
includes a number of minor changes and improvements to the Swing API. This
future release will focus on improving the existing APIs and should not add many
new APlIs.

Labels and HTML

In the initial releases of Swing 1.1 and Java 1.2, the JlLabel, JButton, and related
classes that display textual labels can display only a single line of text using a sin-
gle font. In Swing 1.1.1 and Java 1.2.2, however, components like these can dis-
play multiline, multifont text using simple HTML formatting. To display formatted
text, simply specify a string of HTML text that begins with an <HTML> tag. You can
use this feature to present text using multiple fonts, font styles, and colors. Just as
important, however, the introduction of HTML allows you to specify multiline
labels.

This new formatted text display feature is available in Java 1.2.2 for the Jlabel,
JButton, Menultem, JMenu, JCheckBoxMenultem, JRadioButtonMenultem, JTabbed-
Pane, and JToo1Tip classes. It is not supported (at least in Java 1.2.2) by JCheckBox
or JRadioButton, however. Formatted text display is particularly useful with JOp-
tionPane dialog boxes (described later in this chapter), as they display text using
internal JLabel objects.

Actions

A GUI application often allows a user to invoke an operation in a number of dif-
ferent ways. For example, the user may be able to save a file by either selecting an
item from a menu or clicking on a button in a toolbar. The resulting operation is
exactly the same; it is simply presented to the user through two different inter-
faces.

Swing defines a simple but powerful javax.swing.Action interface that encapsu-
lates information about such an operation. The Action interface extends the
ActionListener interface, so it contains the actionPerformed() method. It is this
method that you implement to actually perform the desired action. Each Action
object also has an arbitrary set of name/value pairs that provide additional infor-
mation about the action. The values typically include: a short string of text that
names the operation, an image that can be used to represent the action graphi-
cally, and a longer string of text suitable for use in a tooltip for the action. In addi-
tion, each Action object has an enabled property and a setEnabled() method that
allows it to be enabled and disabled. (If there is no text selected in a text editor,
for example, the “Cut” action is usually disabled.)

You can add an Action object directly to a JMenu or JTool1Bar component. When
you do this, the component automatically creates a JMenultem or JButton to repre-
sent the action, making the action’s operation available to the user and displaying
the action’s textual description and graphical image as appropriate. When an
action is disabled, the JMenultem or JButton component that represents the action
displays it in a grayed-out style and does not allow it to be selected or invoked.

26 Chapter 3 — Swing Programming Topics

One shortcoming of working with actions is that there is no way to tell a JMenuBar
or JToolBar to display just text or just icons for actions. Although you might like
an action’s name to be displayed in a menu and its icon to be displayed in a tool-
bar, both JMenuBar and JToolBar display an action’s textual name and its icon.

The Action interface helps you implement a clean separation between GUI code
and application logic. Remember, however, that you cannot just instantiate Action
objects directly. Since Action is a kind of Actionlistener, you must define an
individual subclass of Action that implements the actionPerformed() method for
each of your desired actions. The AbstractAction class is helpful here; it imple-
ments everything except the actionPerformed() method.

Tooltips

A Swing component can display context-sensitive help to the user in the form of a
tooltip: a small window that pops up when the user lets the mouse rest over the
component. You can display text in this window that explains the purpose or
function of the component. Specify this text with the setToolTipText() method.
This toolTipText property is inherited from JComponent, so it is shared by all
Swing components.

While it is a good idea to provide tooltips for the benefit of your novice users,
your experienced users may find them annoying, so it is nice to provide a way to
turn them off. You can do this programatically by setting the enabled property of
the ToolTipManager object. The code looks like this:

ToolTipManager.sharedInstance().setEnabled(false);

Timers

The javax.swing.Timer object generates single or multiple ActionEvent events at
time intervals that you specify. Thus, a Timer is useful for performing a repeated
operation like an animation. They are also useful for triggering operations that
must occur at some point in the future. For example, an application might display
a message in a status line and then set up a Timer object that erases the message
after 5,000 milliseconds. These operations can also be performed with threads, of
course, but since Swing is not designed for thread safety, it is usually more conve-
nient to use a Timer.

You use Timer objects just like regular components. A Timer has property accessor
methods and an addActionlistener() method that you can use to add event lis-
teners. The initialDelay property specifies how many milliseconds the Timer
waits before firing its first ActionEvent. If the repeats property is true, the Timer
generates a new ActionEvent each time delay milliseconds passes. When an
application (or the system in general) is very busy or when the delay property is
very small, the timer may fire events faster than the application can process them.
If the coalesce property is true, the Timer combines multiple pending events into
a single ActionEvent, rather than letting a queue of unprocessed events build up.

Timers 27

~
S

I
=3
»

‘foid buimg

The Event Dispaitch Thread

For efficiency reasons, Swing components are not designed to be thread safe. This
means that Swing components should be manipulated by a single thread at a time.
The easiest way to ensure this is to do all your GUI manipulations from the event
dispatch thread. Every GUI application has an event dispatch thread: it is the
thread that waits for events to occur and then dispatches those events to the
appropriate event handlers. All of your event listener methods are invoked by the
event dispatch thread, so any GUI manipulations you perform from an event lis-
tener are safe.

There are times, however, when you need to update your Ul in response to some
kind of external event, such as a response from a server that arrives in a separate
thread. To accommodate these situations, Swing provides two utility methods that
allow you ask the event dispatch thread to run arbitrary code. The methods are
SwingUtilities.invokelater() and SwingUtilities.invokeAndWait(). You pass
a Runnable object to each method, and the run() method of this object is invoked
from the event thread. invokelater() returns right away, regardless of when the
run() method is invoked, while invokeAndWait() does not return until the run()
method has completed.

The invokelater() and invokeAndWait() methods do not run your Runnable
object right away. Instead, each method encapsulates the Runnable object within a
special event object and places the event on the event queue. Then, when all
pending events have been handled, the Runnable object is extracted from the
event queue and the event dispatch thread calls its run() method. This means that
invokelater() provides a useful way to defer the execution of some chunk of
code until after all pending events have been processed. There are times when
you may even want to do this with code that is already running within the event
dispatch thread.

Client Properties

In addition to its normal set of properties, JComponent includes a hashtable in
which it can store arbitrary name/value pairs. These name/value pairs are called
client properties, and they can be set and queried with the putClientProperty()
and getClientProperty() methods. Since these are JComponent methods, they are
inherited by all Swing components. Although both the name and value of a client
property can be arbitrary objects, the name is usually a String object.

Client properties allow arbitrary data to be associated with any Swing component.
This can be useful in a number of situations. For example, suppose you've created
a JMenu that contains 10 JMenultem components. Each component notifies the
same ActionListener object when it is invoked. This action listener has to decide
which of the 10 menu items invoked it and then perform whatever action is
appropriate for that menu item. One way the action listener can distinguish among
the menu items is by looking at the text that each displays. But this approach
doesn’t work well if you plan to translate your menu system into other languages.
A Dbetter approach is to use the setActionCommand() method (inherited from
AbstractButton) to associate a string with each of the JMenultem components.

28 Chapter 3 — Swing Programming Topics

Then the action listener can use this string to distinguish among the various menu
items. But what if the action listener needs to check some kind of object other
than a String in order to decide how to process the action event? Client properties
are the solution: they allow you to associate an arbitrary object (or multiple
objects) with each JMenuItem.

Client properties are used within Swing to set properties that are specific to a sin-
gle look-and-feel implementation. For example, the default Java look-and-feel
examines the client properties of a few components to obtain additional informa-
tion about how it should display the components. Here are some details on these
particular client properties:

"JInternalFrame.isPalette"
When a JInternalFrame is being used as a floating palette, set this client
property to Boolean.TRUE to change the look of the border.

"JScrol1Bar.isFreeStanding"
JScrol1Pane sets this client property to Boolean.FALSE on the JScrollBar
components it creates.

"JSlider.isFilled"
Setting this client property of a JSTider to Boolean.TRUE causes the slider to
display a different background color on either side of the slider thumb.

"JToolBar.isRollover"
Setting this client property to Boolean.TRUE on a JToolBar causes the compo-
nent to highlight the border of whatever child component the mouse is cur-
rently over.

"JTree.lineStyle"
This client property specifies how the JTree component draws the branches
of its tree. The default value is the string “Horizontal”; other possible values
are “Angled” and “None”.

Keyboard Shortcuts

A full-featured user interface does not require the user to use the mouse all the
time. Instead, it provides keyboard shortcuts that allow the user to operate the
application primarily or entirely with the keyboard. Swing has a number of fea-
tures that support keyboard shortcuts. Every Swing component is designed to
respond to keyboard events and support keyboard operation automatically. For
example, a JButton is activated when it receives a KeyEvent that tells it that the
user pressed the Spacebar or the Enter key. Similarly, JMenu and JList respond to
the arrow keys.

Focus Management

In order for a Swing component to receive keyboard events, it must first have the
keyboard focus. In the old days, before graphical interfaces, when you typed on
the keyboard, the characters always appeared on the screen. There was only one
“window,” so there was only one place to send key events. This changes with the

Keyboard Shortcuts 29

~
S

I
=3
»

‘foid buimg

introduction of windowing systems and GUIs, however, as there are now lots of
places that keyboard events can be directed to. When there is more than one win-
dow open on the screen, one window is singled out as the current window (or the
focused window). Most windowing systems highlight this window somehow.
When you type at the keyboard, it is understood that your keystrokes are directed
at the current window.

Just as a screen may contain many application windows, a single application win-
dow usually contains many GUI components. An application window must redi-
rect the keyboard events it receives to only one of these components, called the
focused component. Like most GUI toolkits, Swing highlights the component that
has the keyboard focus, to let the user know where keyboard events are being
directed. The details of the highlight depend on the look-and-feel that is currently
in effect, but focus is often indicated by drawing a bold border around a com-
ponent.

A Swing component can be operated from the keyboard when it has the focus.
The user can usually direct keyboard focus to a given component by clicking on
that component with the mouse, but this defeats the whole point of not using the
mouse. The missing piece of the picture is focus traversal, otherwise known as
keyboard navigation, which allows the user to use the keyboard to change focus
from one component to the next.

Swing uses the Tab key to implement focus traversal. When the user presses Tab,
Swing moves the keyboard focus from the current component to the next compo-
nent that can accept the focus. (Some components, such as JLabel objects, do not
respond to keyboard events and are therefore never given the focus.) When the
user types Shift-Tab, Swing moves keyboard focus backward to the previous focus-
able component. By default, keyboard focus moves from left to right and top to
bottom within a container. You can override this, however, by setting the nextFo-
cusableComponent property of your components, chaining them together in what-
ever order you desire.

When a container is given focus through this mechanism, it passes that focus on to
its first focusable child. When the focus reaches the last focusable child, some con-
tainers relinquish the focus and allow it to move on, while other containers retain
the focus and give it back to the first focusable child. You can determine the
behavior of a container by calling isFocusCycleRoot(). If this method returns
true, the container defines a focus cycle and retains the focus. The user must type
Ctrl-Tab to traverse to the next focus cycle or Ctrl-Shift-Tab to traverse to the previ-
ous focus cycle. There is no setFocusCycleRoot() method: the only way you can
change this behavior is by subclassing a container and overriding the isFocusCy-
cleRoot() method. Also note that multiline text components such as JTextArea
and JEditorPane use the Tab key for their own purposes. These components
behave like focus cycles, so the user must type Ctrl-Tab to move the focus away
from such a component.

An application sometimes needs to set the keyboard focus to a particular compo-
nent explicitly. You can do this by calling the requestFocus() method of that
component. Components typically call requestFocus() themselves under certain
circumstances, such as when they are clicked on. If you do not want a component
to respond to requestFocus() calls, set its requestFocusEnabled property to

30 Chapter 3 — Swing Programming Topics

false. For example, you might set this property on a JButton so that the user can
click on it without taking keyboard focus away from whatever component cur-
rently has it.

Swing focus management is handled by the currently installed javax.-
swing.FocusManager object. You can obtain this object with FocusManager.get-
CurrentFocusManager(). If you implement your own manager, you can install it
with FocusManager.setCurrentFocusManager().

Menu Mnemonics and Accelerators

Although Swing components can all be operated automatically from the keyboard,
doing so is often cumbersome. The solution is to provide additional explicit key-
board shortcuts for common actions, as is commonly done with items on pull-
down menus. Swing pull-down menus support two traditional types of keyboard
shortcuts: mnemonics and accelerators. Figure 3-1 shows both types of menu
shortcuts.

File |Edit | Other File |Edit | Other
Undo Undo Ctr+Z
Cut Cut Chil+x
Copy Copy Crl+C
Paste Paste Chil+s
Menu ltem with Mnemonic Menu Items with Keyboard Accelerators

Figure 3—1: Swing menu mnemonics and accelerators

A menu mnemonic is a single-letter abbreviation for a menu command. When the
menu has already been pulled down, the user can type this single key to invoke
that menu item. The mnemonic for a menu item is typically indicated by underlin-
ing the letter of the shortcut in the menu item name, which means that you must
select a shortcut letter that appears in the menu item label. Mnemonics must be
unique within a menu, of course, but multiple menu panes can reuse mnemonics.
Items in a menu bar may also have mnemonics. You specify a mnemonic for a
menu or a menu item with the setMnemonic() method (inherited from Abstract-
Button):

JMenu file = new JMenu("File");

file.setMnemonic('F');

JMenultem save = new JMenultem("Save");

save.setMnemonic('S'); // Always use a capital Tetter
file.add(save);

A menu accelerator is a unique keyboard command that can be used to invoke a
menu item even when the menu is not displayed. An accelerator is represented by
a javax.swing.KeyStroke object and usually includes a keyboard modifier such as

Keyboard Shortcuts 31

=~
(=)

=
I~
S
[

‘foid buimg

Ctrl or Alt. Unlike mnemonics, accelerators can be applied only to menu items,
not to menus in a menu bar. You can create an accelerator for a menu item by
calling setAccelerator(). To obtain an appropriate KeyStroke object, call the
static KeyStroke.getKeyStroke() method with the keycode and modifier mask for
the keyboard command you want to use:

JMenultem save = new JMenultem("Save");
save.setAccelerator(KeyStroke.getKeyStroke(java.awt.event.KeyEvent.VK_S,
java.awt.Event.CTRL_MASK));

Keyboard Actions

Sometimes even the keyboard shortcuts supported by menus are not enough. An
application may need to define keyboard shortcuts for actions that are not avail-
able through the menu system. For example, an application that uses a JScrol1-
Pane to display a large drawing might want to allow the user to scroll the drawing
with the arrow keys and the PageUp and PageDown keys.

Fortunately, every Swing component maintains a table of KeyStroke-to-ActionLis-
tener bindings. When a particular keystroke is bound to an ActionListener, the
component will perform the action (i.e., invoke the actionPerformed() method)
when the user types the keystroke. You can register a keyboard shortcut for a
component with registerKeyboardAction(). For instance:

Action scroll; // This action object is initialized elsewhere
JPanel panel; // The application's main container; initialized elsewhere

KeyStroke up = KeyStroke.getKeyStroke(java.awt.event.KeyEvent.VK_UP);
KeyStroke down = KeyStroke.getKeyStroke(java.awt.event.KeyEvent.VK_DOWN);
KeyStroke pgup = KeyStroke.getKeyStroke(java.awt.event.KeyEvent.VK_PAGE_UP);
KeyStroke pgdown=KeyStroke.getKeyStroke(java.awt.event.KeyEvent.VK_PAGE_DOWN);

panel.registerKeyboardAction(scroll, "lineup", up,

JComponent .WHEN_ANCESTOR_OF_FOCUSED_WINDOW) ;
panel.registerKeyboardAction(scroll, "linedown", down,

JComponent .WHEN_ANCESTOR_OF_FOCUSED_WINDOW) ;
panel.registerKeyboardAction(scroll, "pageup", pgup,

JComponent .WHEN_ANCESTOR_OF_FOCUSED_WINDOW) ;
panel.registerKeyboardAction(scroll, "pagedown", pgdown,

JComponent .WHEN_ANCESTOR_OF_FOCUSED_WINDOW) ;

This code registers four keystrokes that all invoke the scroll action. When the
user types one of these keystrokes, the actionPerformed() method is passed an
ActionEvent object. The getActionCommand() method of this ActionEvent returns
one of the strings “lineup”, “linedown”, “pageup”, or “pagedown”. The hypotheti-
cal scroll action we are using here would examine this string to determine what
kind of scrolling to perform.

The fourth argument to registerKeyboardAction() is a constant that defines
under what circumstances the keyboard action should be available to the user. The
value used here, WHEN_ANCESTOR_OF_FOCUSED_WINDOW, specifies that the keyboard
binding should be in effect whenever the panel or any of its descendants has the
focus. You can also specify a value of WHEN_IN_FOCUSED_WINDOW, which means that
the keyboard action is available whenever the window containing the component
has the focus. This is useful for shortcuts registered on default buttons within

32 Chapter 3 — Swing Programming Topics

dialog boxes. The final allowable value for this argument is WHEN_FOCUSED, which
specifies that the key binding is in effect only when the component itself has the
focus. This is useful when you are adding key bindings to an individual compo-
nent like a JTree.

Keymaps

Swing supports a general, yet powerful text-editing subsystem. The javax.-
swing.text.JTextComponent is the base component in this system; it is the super-
class of JTextField, JTextEditor, and JEditorPane, among others.

Because text editing typically involves many keyboard shortcuts, Swing defines the
Javax.swing.text.Keymap interface, which represents a set of KeyStroke-to-Action
bindings. As you might expect, when a text component has the keyboard focus
and the user types a keystroke that is bound to an action, the text component
invokes that action. A Keymap can have a parent Keymap from which it inherits
bindings, making it easy to override a few bindings of an existing keymap without
redefining all the bindings from scratch. When you are working with a large num-
ber of keyboard shortcuts, it is easier to use a Keymap than to register each one
individually with registerKeyboardAction().

JTextComponent defines getKeymap() and setKeymap() methods you can use to
query and set the current keymap of a text component. There are no public imple-
mentations of the Keymap interface, so you cannot instantiate one directly. Instead,
create a new Keymap by calling the static JTextComponent.addKeymap() method.
This method allows you to specify a name and parent for the new Keymap. Both
arguments are optional, however, so you may pass in null.

Serialization

The AWT Component class implements the java.io.Serializable marker interface,
and JComponent reimplements this interface. This means that all AWT and Swing
components are serializable, or, in other words, the state of an AWT or Swing
component can be stored as a stream of bytes that can be written to a file. Com-
ponents serialized to a file can be restored to their original state at a later date.
When a component is serialized, all the components it contains are also automati-
cally serialized as part of the same stream.

You serialize a component (or any serializable object) with the java.io.-
ObjectOutputStream class and reconstruct a serialized component with the
java.io.0bjectInputStream. See Java in a Nutshell for more information about
these classes. Because the byte stream format used in serialization changed
between Java 1.1 and Java 1.2, Swing components serialized by a Java 1.2 applica-
tion cannot be deserialized by a Java 1.1 application.

The serializability of Swing and AWT components is a powerful feature that is
exploited by some GUI design tools. Thus, an application may create its graphical
interface simply by reading and deserializing an already-built interface from a file.
This is usually much simpler than creating the components of the GUI indi-
vidually.

Serialization 33

~
S
I
=3
»

‘foid buimg

Borders

Every Swing component inherits a border property from JComponent, so you can
call setBorder() to specify a Border object for a Swing component. This Border
object displays some kind of decoration around the outside of the component. The
Jjavax.swing.border package contains this Border interface and a number of use-
ful implementations of it. Table 3-1 lists the available border styles, and Figure 3-2
illustrates them.

Table 3-1: Swing Border Styles

Border Description

BevelBorder Gives the component a beveled edge that makes it appear
raised or lowered.

CompoundBorder Combines two other Border types to create a compound
border.

EmptyBorder A border with no appearance. This is a useful way to place

an empty margin around a component.

EtchedBorder Draws a line around the component, using a 3D effect that
makes the line appear etched into or raised out of the
surrounding container.

LineBorder Draws a line, with a color and thickness you specify, around
the component.

MatteBorder Draws the border using a solid color or a tiled image. You
specify the border dimensions for all four sides.
SoftBevelBorder | Like BevelBorder, but with somewhat more complex
graphics that give the bevel a softer edge.

TitledBorder A border that combines text with an EtchedBorder or any
other border you specify.

The Border implementations defined in javax.swing.border cover just about
every possible border you are likely to want to display. But if you ever find your-
self needing a specialized border, simply implement the Border interface yourself.

Most of the Border implementations in javax.swing.border are immutable
objects, designed to be shared. If two components have the same style of border,
they can use the same Border immutable object. The javax.swing.BorderFactory
class contains static methods that return various commonly used Border objects
suitable for sharing.

Icons

All buttons, labels, and menu items in Swing can display both text and graphic ele-
ments. If you are familiar with the AWT, you might expect Swing to use the
Java.awt.Image class to represent these graphic elements. Instead, however, it
uses javax.swing.Icon. This interface represents a graphic element more gener-

34 Chapter 3 — Swing Programming Topics

= Swing Borders Demo |52
Raised BevelBorder Lowered BEevelBorder
Raised SoftEevelBorder Lowered SoftBevelBorder
Raised EtchedBorder Lowered EtchedBorder
Thin Black LineBorder Thick Red LineBorder
title another title
TitledBorder ‘ Another TitledBorder ‘
Bevel+Etched CompoundBorder I Empty+Line CompoundBorder I
//IIIIIIIIIIIIIIII/
I //IIIIIIIIIIIIIIII/ I

Figure 3-2: Swing border styles

ally. Its paintIcon() method is called to display the graphic, and this method can
do anything necessary to display it.

Swing includes an Icon implementation called ImageIcon. This commonly used
class is an Image-based implementation of Icon. ImagelIcon also simplifies the pro-
cess of reading images from external files. One of the constructors for Imagelcon
simply takes the name of the desired image file.

A related utility function is the static method GrayFilter.createDisabledImage().
This version produces a grayed-out version of a given Image, which can be used
to create an ImageIcon that represents a disabled action or capability.

cursors

The cursor, or mouse pointer, is the graphic that appears on the screen and tracks
the position of the mouse. Java support for cursors has evolved in each Java
release. Java 1.0 and 1.1 included 14 predefined cursors but did not support cus-
tom cursors. In Java 1.0, the predefined cursors were represented by constants
defined by java.awt.Frame and they could be specified only for these top-level
Frame components. These Frame constants and the corresponding setCursor()
method of Frame are now deprecated.

Cursors 35

~
(=)

=
-~
S
[

‘foid buimg

Java 1.1 included a new java.awt.Cursor class and defined a new setCursor()
method for all Component objects. Even though cursors had a class of their own in
Java 1.1, the Cursor() constructor and the Cursor.getPredefinedCursor() method
could still return only the same 14 predefined cursors. Despite their limited num-
ber, these predefined cursors are often useful. Figure 3-3 shows what they look
like on a Unix machine running the X Window System.

¥ Cursor.DEFAULT_CURSOR T Cursor.N_RESIZE_CURSOR
| Cursor. CROSSHAIR_CURSOR 2L Cursor.S_RESIZE_CURSOR
T Cursor. TEXT_CURSOR —#| Cursor.E_RESIZE_CURSOR
(@» Cursor WAIT_CURSOR |& Cursor.W_RESIZE_CURSOR
&% Cursor. HAND_CURSOR] Cursor.NE_RESIZE_CURSOR
+§» Cursor MOVE_CURSOR [CursorNW_RESIZE_CURSOR
il Cursor.SE_RESIZE_CURSOR
| Cursor.SW_RESIZE_CURSOR

Figure 3-3: The standard Java cursors, on a Unix platform

Java 1.2 includes an API to support custom cursors, at least when running on top
of a native windowing system that supports them. In Java 1.2, the Cursor class has
a new getSystemCustomCursor() method that returns a named cursor defined by a
system administrator in a systemwide cursors.properties file. Since there is no way
to query the list of system-specific custom cursors, however, this method is rarely
used. Instead, an application may create its own custom cursors by calling the
createCustomCursor() method of the Toolkit object. First, however, the appli-
cation should check whether custom cursors are supported, by calling the
getBestCursorSize() method of the Toolkit. If this method indicates a width or
height of 0, custom cursors are not supported (by either the Java implementation
or the underlying windowing system).

To create a custom cursor, you might use code like this:

Cursor c;
Toolkit tk = Toolkit.getDefaultToolkit();
Dimension bestsize = tk.getBestCursorSize(24,24);
if (bestsize.width != 0)
¢ = tk.createCustomCursor(cursorImage, cursorHotSpot, cursorName);
else
¢ = Cursor.getDefaultCursor();

36 Chapter 3 — Swing Programming Topics

Double-Buffering

Double-buffering is the process of drawing graphics into an off-screen image
buffer and then copying the contents of the buffer to the screen all at once. For
complex graphics, using double-buffering can reduce flickering. Swing automati-
cally supports double-buffering for all of its components. To enable it, simply call
the setDoubleBuffered() method (inherited from JComponent) to set the double-
Buffered property to true for any components that should use double-buffered
drawing.

Remember that double-buffering is memory intensive. Its use is typically only justi-
fied for components that are repainted very frequently or have particularly com-
plex graphics to display. Note, however, that if a container uses double-buffering,
any double-buffered children it has share the off-screen buffer of the container, so
the required off-screen buffer is never larger than the on-screen size of the appli-
cation.

The Box Container

Chapter 2, Swing and AWT Architecture, discussed the general task of arranging
components within containers and listed the layout managers provided by AWT
and Swing. This section describes a commonly used Swing layout management
technique in detail. The easiest way to create complex arrangements of Swing
components is often with the javax.swing.Box container.” Box arranges its compo-
nents into a single row or a single column. You can then use nested Box contain-
ers to create a two-dimensional arrangement of components.

The Box container uses the BoxLayout layout manager, but this layout manager is
automatically assigned, so you never need to work with it explicitly. The easiest
way to create a Box is with the static Box.createHorizontalBox() or Box.create-
VerticalBox() method. Once you have created a Box, simply add children to it.
They will be arranged from left to right or from top to bottom.

The unique power of the Box actually comes from an inner class called
Box.Filler. This class is a simple component that has no appearance; it exists
simply to insert blank space in a layout and to affect the resize behavior of the lay-
out. You do not create Box.Filler objects directly. Instead, you create them using
the following static methods of Box:

Box.createHorizontalStrut(int width)
Box.createVerticalStrut(int height)
Box.createHorizontalGlue()
Box.createVerticalGlue()

If you are arranging a row of components, you can call createHorizontalStrut()
to insert a fixed number of pixels of blank horizontal space. For a column of com-
ponents, use createVerticalStrut() to insert a blank vertical space.

* For some reason, Box does not begin with the letter J as other Swing components and containers do.
Nevertheless, it is a very useful and commonly used container.

The Box Container 37

~
S

I
=3
»

‘foid buimg

The glue methods are different. They insert stretchy horizontal or vertical space
into a row or column. By default, the space is zero pixels wide or zero pixels
high. But, if the row or column is stretched so that it becomes wider or higher
than its default size, these glue components stretch to take up that extra space. For
example, say you fill a row with some horizontal glue, a JButton component, and
some more horizontal glue. Now, no matter how wide the row becomes, the
JButton is always centered in it. This is because the two glue components (and
possibly the JButton) grow equally to take up the extra space. On the other hand,
if the row consists of only one glue component followed by a JButton, the JBut-
ton always appears right justified in the row, since the glue component grows to
take up all the space to the left of the button.

As another example, consider a Box used in a dialog to hold a row of OK, Cancel,
and Help buttons. Without any glue, the buttons are resized to fill up the entire
row, with no extra space between them. If we intersperse the three buttons with
four glue components, however, the buttons are always nicely spaced out and the
buttons and the spaces between them grow proportionally as the dialog box
becomes wider.

Minimum, Preferred, and Maximum Sizes

In order to fully understand the behavior of the Box container and its glue, it is
important to understand that Swing components can have a minimum size, a pre-
ferred size, and a maximum size. Many components have a natural size. For exam-
ple, with a JButton, the natural size is the space required to accommodate the
button text and/or Icon, plus the space required for the button border. By default,
a JButton reports its natural size as its minimum size and as its preferred size.
When asked for its maximum size, a JButton returns very large integers, indicating
that it can grow to become arbitrarily wide and arbitrarily tall.

Swing components (but not AWT components) allow you to specify their mini-
mum, preferred, and maximum sizes. For example, if you do not want to allow a
JButton to become arbitrarily large as its container grows larger, you can set a
maximum size for it by calling setMaximumSize(). Setting a preferred size for a
JButton is an uncommon thing to do, as JButton has a perfectly good natural size.
But some components, such as JScrollPane objects, do not have a natural size.
For components like these, it is usually important that you establish a default size
with setPreferredSize(). If you want to prevent a JScrol1Pane or similar compo-
nent from becoming arbitrarily small or arbitrarily large, you should also call set-
MinimumSize() and setMaximumSize().

Now that you understand the concepts of minimum, preferred, and maximum
sizes, we can return to the Box container and its struts and glue. Both struts and
glue are instances of the Box.Filler component. When you create a Box.Filler,
you are actually specifying minimum, preferred, and maximum sizes for the com-
ponent. A horizontal strut is simply a Box.Filler with its minimum, preferred, and
maximum width set to the number of pixels you specify. A vertical strut has a
fixed minimum, preferred, and maximum height.

Horizontal glue has a minimum and preferred width of zero, but a very large max-
imum width. This means that the glue takes up no space by default but grows as

38 Chapter 3 — Swing Programming Topics

necessary to fill up extra space. Vertical glue does the same thing in the other
dimension. In order to understand glue, it is also important to understand how the
Box container distributes excess space to its children. If a horizontal Box becomes
wider, the extra width is allocated among the children based on their maximum
widths. Children with larger maximums are given a proportionally larger amount
of the extra space. When you intersperse JButton objects with glue, all the com-
ponents have effectively infinite maximum widths, so all grow by equal amounts.
Suppose, instead, that you restricted the sizes of your buttons like this:

okayButton.setMaximumSize(okayButton.getPreferredSize());
cancelButton.setMaximumSize(cancelButton.getPreferredSize());
helpButton.setMaximumSize(helpButton.getPreferredSize());

In this case, the buttons are already at their maximum sizes, so no extra space is
allocated to them. Now the glue between the buttons gets all the extra space.

I just said that glue components have a preferred size of zero. With regard to the
example of three buttons interspersed with four glue components, this means that
when the row of buttons is displayed at its default size, the buttons bump into one
another and appear awkwardly crowded. To remedy this, you might place hori-
zontal struts and horizontal glue between the buttons. In this case, the struts pro-
vide the default and minimum spacing, while the glue components make the
spacing grow. There is a more efficient way to do this, however. You can explicitly
create Box.Filler components that combine the nonzero default size of a strut
with the infinite maximum size of a glue object. You can create such a filler object
as follows:

Dimension fixedwidth = new Dimension(15, 0);
Dimension infinitewidth = new Dimension(Short.MAX_VALUE, 0);
Box.Filler filler = new Box.Filler(fixedwidth, fixedwidth, infinitewidth);

The Otber Dimension

So far, our discussion of the Box container has covered only how components are
arranged horizontally in a horizontal box or vertically in a vertical box. What does
Box do in the other dimension? When laying out components in a row, the Box
makes the row as tall as the tallest component and then attempts to make all the
components as tall as the row. Similarly, when it lays out components in a col-
umn, Box tries to make all components as wide as the widest component.

As we've discussed, however, components can have a maximum size. If a row
becomes taller than a component’s maximum height or a column becomes wider
than a component’s maximum width, the Box must decide how to position the
component with respect to the others in the row or column. For a column, the
component can be left, center, or right justified or positioned anywhere in
between. A component in a row can be aligned along the top or bottom of the
row or placed somewhere in between.

A Box positions such a component based on its alignmentX or alignmentY prop-
erty. Each is a float property that should have a value between 0.0 and 1.0. The
default for both is 0.5. When a component needs to be positioned horizontally in a
column, the Box uses the alignmentX property. A value of 0.0 means the compo-
nent is left justified, 1.0 means the component is right justified, and 0.5 means the

The Box Container 39

~
S

I
=3
»

‘foid buimg

component is centered. Other values position the component appropriately
between these positions. When a Box needs to position a component vertically in
a row, it uses the component’s alignmentY property to place the component in the
vertical plane in an analogous way.

Simple Dialogs

GUIs often use dialog boxes to handle simple interactions with the user.
javax.swing.JOptionPane is a Swing component that is designed to serve as a
highly configurable body of a dialog box. Instead of using the JOptionPane
directly, however, most Swing programs use one or more of the many static meth-
ods defined by JOptionPane. These methods make it quite easy to implement sim-
ple dialog-based interactions.

If you take a look at the API for JOptionPane, you'll see that the class defines a
group of static methods whose names begin with show and another whose names
begin with showInternal. The show methods display simple dialog boxes within
JDialog windows, while the showInternal methods display the same dialog boxes
inside JInternalFrame windows. These static methods are further broken down by
the type of dialog they display. There are several versions of showMessageDia-
1og(), showConfirmDialog(), and showInputDialog(), as well as showInternal
versions of the same methods. We’ll consider these three types of dialogs—mes-
sage, confirm, and input—in the sections that follow.

Message Dialogs

Message dialogs are used to display important information to users in a way that is
difficult or impossible for them to miss. For example, you might use a message
dialog to tell the user that a requested file was not found. To display this message
with a JOptionPane, you can use code like this:

JOptionPane.showMessageDialog(mainpanel, "The file you requested, " +
filename + ", was not found. Please try again");

This code produces the dialog shown in Figure 3-4. The dialog remains visible
until the user dismisses it by clicking OK.

Eg’,i' Message

ﬁ_ The file you requested, Dialog.java, was not found. Please try again

Figure 3—4: A JOptionPane message dialog

The first argument to showMessageDialog() is the component over which the dia-
log is to appear. You typically specify the main window or panel of your

40 Chapter 3 — Swing Programming Topics

application. If you specify null, then the dialog will simply be centered on the
screen. The second argument is obviously the message to be displayed. If you
look at the API again, however, you'll notice that the message argument to this and
other JOptionPane methods is defined as an Object, not a String. This means that
you are not limited to textual messages. If you pass a Component or an Icon, the
JOptionPane displays it as the message. If you pass some other kind of object,
JOptionPane attempts to convert it to a string by calling its toString() method.
You can even pass an array of objects as the message argument. When you pass
more than one object, the objects are displayed top to bottom in the resulting dia-
log. So, to display a multiline message, for example, you can just pass in an array
of String objects, instead of a single long String.

The showMessageDialog() function has variants that take more arguments. The
title argument specifies the text to appear in the titlebar of the dialog. The mes-
sageType argument specifies the general type of the message. Legal values are the
JOptionPane constants that end with _MESSAGE. The values you are most likely to
use are INFORMATION_MESSAGE, WARNING_MESSAGE, and ERROR_MESSAGE. Specifying a
message type implicitly specifies the icon that appears in the dialog box. If you
don’t like the default icons, however, there is a version of showMessageDialog()
that lets you specify your own icon to display.

Confirm Dialogs

You can use JOptionPane.showConfirmDialog() or JOptionPane.showInternal-
ConfirmDialog() when you want to ask the user a simple question that requires a
Yes or No (or perhaps Cancel) answer. For example, you can use one of these
methods to present the dialog shown in Figure 3-5.

E_g’,i'ﬁave Before Quitting? x|

There are unsaved files.
= Save them hefore quitting?

| Yes || Ho HCancel‘

Figure 3-5: A JOptionPane confirm dialog

The arguments to showConfirmDialog() are much like the arguments to showMes-
sageDialog(), with the addition of the optionType argument. This argument speci-
fies the set of buttons that appears at the bottom of the dialog. Legal values are
OK_CANCEL_OPTION, YES_NO_OPTION, and YES_NO_CANCEL_OPTION.

A confirm dialog asks the user a question. The return value of showOptionDia-
log() or showInternalOptionDialog() is an integer that represents the user’s
answer in terms of the button the user clicked to dismiss the dialog. The possible
values are OK_OPTION, YES_OPTION, NO_OPTION, CANCEL_OPTION, and CLOSED_OPTION.
This last value is returned if the user did not click any of the dialog buttons but
instead dismissed the dialog by closing the window. Here is some simple code

Simple Dialogs 41

=~
(=)

=
—
S
[

‘foid buimg

that asks a question with a confirm dialog (note the use of a string array for the
message argument):

int response = JOptionPane.showConfirmDialog(mainpanel, new String[] {

/* first line of the message */ "There are unsaved files.",
/* second Tine of message */ "Save them before quitting?"},
/* dialog title */ "Save Before Quitting?",
/* what buttons to display */ JOptionPane.YES_NO_CANCEL_OPTION,
/* icon type to display */ JOptionPane .WARNING_MESSAGE) ;
switch(response) {
case JOptionPane.YES_OPTION: saveAndQuit();
case JOptionPane.NO_OPTION: quitWithoutSaving();

case JOptionPane.CANCEL_OPTION:
case JOptionPane.CLOSED_OPTION: break; // Don't quit!

Input Dialogs

The showInputDialog() and showInternallnputDialog() methods are designed to
ask for input that is more complex than a yes-or-no answer. The simple versions
of showInputDialog() support asking a question like “What is your name?” and
letting the user type a response in a text input area:

String name = JOptionPane.showInputDialog(frame, "What is your name?");

The more complex version of this method allows the user to select an object from
a list or pull-down menu of predefined options.

The arguments to showInputDialog() are quite similar to those passed to showMes-
sageDialog() and showConfirmDialog(). To display a list of options to the user,
use the seven-argument version of the method and pass in an array of choices and
the default choice to display. For example:

String response = (String) JOptionPane.showInputDialog(

contentpane, // parent
"Who is your favorite chipmunk?", // message
"Pick a Chipmunk", // dialog title
JOptionPane.QUESTION_MESSAGE, // icon type
null, // no explicit icon
new String[] { // choices
"Alvin", "Simon", "Theodore"
1,
"Alvin"); // default choice

JFileChooser

javax.swing.JFileChooser is a specialized component that allows the user to
browse the filesystem and select a file. The easiest way to use it is with the
showOpenDialog() and showSaveDialog() methods. These methods differ only in
the text that appears in the “Okay” button. You can also call the showDialog()
method and specify your own text for that button. Each of these methods returns
an integer status code that specifies how the user dismissed the dialog. If the
return value is APPROVE_OPTION, the user actually selected a file, which you can
obtain with the getSelectedFile() method. For example:

42 Chapter 3 — Swing Programming Topics

public void saveAs() {
JFileChooser chooser = new JFileChooser();
int result = chooser.showSaveDialog(mainpane);
if (result == JFileChooser.APPROVE_OPTION)

save(chooser.getSelectedFile());
}

Note that showSaveDialog() and showOpenDialog() are instance methods, not
static methods like those used with JOptionPane. This means that you can cus-
tomize the dialog by setting properties on your JFileChooser object. You may be
interested in setting the currentDirectory and fileSelectionMode properties
before you display a JFileChooser. fileSelectionMode can be set to FILES_ONLY,
DIRECTORIES_ONLY, or FILES_AND_DIRECTORIES. Once you create a JFileChooser
for an application, you may want to reuse it, rather than creating a new one each
time you need one. If you do so, the JFileChooser automatically remembers the
currentDirectory most recently selected by the user.

Using File Filters

The javax.swing.filechooser package defines auxiliary classes that are used by
JFileChooser. One of the most important of these is FileFilter. The abstract
javax.swing.filechooser.FileFilter class is much like the java.io.FileFilter
interface. Each defines an accept() method that is passed File objects and returns
true for each file that should be displayed. The FileFilter class used by JFile-
Chooser has an additional getDescription() method that returns a string that
names the types of files accepted by the filter. For example, you might define a
FileFilter subclass that accepts files with names ending in .htm or .btml and
returns a description of “HTML Files.”

When you create a JFileChooser, you can specify the FileFilter it is to use with
setFileFilter(). Alternately, you can specify an array of FileFilter objects with
setChoosableFileFilters(). In this case, JFileChooser displays the descriptions
of the filters and allows the user to choose one.

Customizing JFileChooser

The behavior of a JFileChooser can be customized by providing your own imple-
mentation of FileView and FileSystemView. Both of these abstract classes are
defined in the javax.swing.filechooser class. FileView defines methods that
affect the way individual files are displayed by the JFileChooser, while FileSys-
temView defines methods that enable the JFileChooser to handle operating-system
dependencies in the filesystem. FileSystemView understands the notion of hidden
files, and it can return a complete list of filesystem roots, a capability that was
lacking from the basic java.io.File class prior to Java 1.2. The default FileView
and FileSystemView classes provided by JFileChooser are perfectly adequate for
most purposes, so you typically don’t have to implement these classes yourself.

It is also possible to customize a JFileChooser by providing an accessory compo-
nent. If you pass a JComponent to the setAccessory() method of JFileChooser,
the Swing component you specify is displayed in the file chooser dialog box. A

JFileChooser 43

~
S

I
=3
»

‘foid buimg

common use of a file chooser accessory is as a file preview component. In order
to provide a preview of the currently selected file, the accessory must know what
the currently selected file is. It can get this information by implementing the Prop-
ertyChangelistener interface and listening for changes to the selectedFile prop-
erty. In order for this to work, you have to pass the accessory object to the
addPropertyChangelistener() method of the JFileChooser, of course.

JColorChooser

Just as JFileChooser allows the user to choose a file, javax.swing.JColorChooser
allows the user to choose a color. Figure 3-6 shows a JColorChooser dialog. You
can embed a JColorChooser component directly in your application or in a cus-
tom dialog box, but the most common way to use it is to simply call the static
showDialog() method:

Color c = JColorChooser.showDialog(contentpane, // Dialog appears over this
"Pick a Color", // Dialog title
Color.white); // Default color selection

Recent:
[E T

Preview

n - . Sample Text Sample Text
I = [ST

Sample Text Sample Text

| oK || Cancel H Reset |

Figure 3-6: A JColorChooser dialog

As you can see from Figure 3-6, JColorChooser displays a color selection pane
and a color preview pane. The selection pane is actually a JTabbedPane that allows
colors to be selected in three different ways. The Swatches pane lets the user
select a color from a palette of color swatches. With the RGB pane, the user picks
a color by specifying the red, green, and blue components of the color, while with

the HSV pane, the user specifies the hue, saturation, and value components of the
color.

44 Chapter 3 — Swing Programming Topics

Instead of displaying a generic JColorChooser with the static showDialog()
method, you can create your own instance of the JColorChooser class. You can
then set properties on the color chooser object and display it in any way you
want. The static JColorChooser.createDialog() method is useful here. It creates a
dialog box to hold your JColorChooser pane and allows you to specify two
ActionListener objects that are invoked in response to the OK and Cancel but-
tons in the dialog box.

You can customize a JColorChooser by adding a new color selection panel or a
new color preview panel. To add a new color selection panel (for example, a
panel that allows the user to select a grayscale color or a CMYK color), implement
a subclass of AbstractColorChooserPanel (from the javax.swing.colorchooser
package) and pass it to the addChooserPanel() method of your JColorChooser.
Your custom panel contains a ColorSelectionModel that serves as the interface
between your pane and the JColorChooser. All your pane needs to do is update
the selected color of its ColorSelectionModel (ColorSelectionModel is also part
of the javax.swing.colorchooser package).

You can use any JComponent as a custom preview panel for your JColorChooser.
Simply pass the component to setPreviewPanel(). The preview component has to
track the currently selected color by listening for ChangeEvent events generated by
the ColorSelectionModel of the JColorChooser.

Menus

In Swing, menu bars, menu panes, and menu items are components, just like all
other Swing components. JMenuBar is a container designed to hold JMenu objects.
JMenu is a container designed to hold JMenultem objects and other JMenu objects
(as submenus). Working with menus is not exactly the same as working with other
types of components, however, and Example 3-1 shows a simple example of creat-
ing pull-down and pop-up menus.

Example 3—-1: Creating Pull-Down and Pop-Up Menus in Swing

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MenuDemo {
public static void main(String[] args) {
// Create a window for this demo
JFrame frame = new JFrame("Menu Demo");
JPanel panel = new JPanel();
frame.getContentPane().add(panel, "Center");

// Create an action listener for the menu items we will create
// The MenultemActionlListener class is defined below
ActionListener Tistener = new MenultemActionListener(panel);

// Create some menu panes, and fill them with menu items

// The menultem() method is important. It is defined below.
JMenu file = new JMenu("File");

file.setMnemonic('F');

file.add(menultem("New", T1istener, "new", 'N', KeyEvent.VK_N));

Menus 45

~
S

I
=3
»

‘foid buimg

Example 3—1: Creating Pull-Down and Pop-Up Menus in Swing (continued)

}

file.add(menultem("Open...", Tistener, "open", '0', KeyEvent.VK_0));
file.add(menultem("Save", listener, "save", 'S', KeyEvent.VK_S))
file.add(menultem("Save As...", Tistener, "saveas", 'A', KeyEvent.VK_A));

JMenu edit = new JMenu("Edit");

edit.setMnemonic('E');

edit.add(menultem("Cut", Tistener, "cut", 0, KeyEvent.VK_X))
edit.add(menultem("Copy", Tistener, "copy", 'C', KeyEvent.VK_C))
edit.add(menultem("Paste", listener, "paste", 0, KeyEvent.VK_V));

// Create a menu bar and add these panes to it.
JMenuBar menubar = new JMenuBar();
menubar.add(file);

menubar.add(edit);

// Add menu bar to the main window. Note special method to add menu bars.
frame.setJMenuBar(menubar);

// Now create a popup menu and add the some stuff to it
final JPopupMenu popup = new JPopupMenu();

popup.add(menultem("Open...", listener, "open", 0, 0));
popup.addSeparator(); // Add a separator between items
JMenu colors = new JMenu("Colors"); // Create a submenu
popup.add(colors); // and add it to the popup menu

// Now fill the submenu with mutually exclusive radio buttons
ButtonGroup colorgroup = new ButtonGroup();
colors.add(radioltem("Red", Tistener, "color(red)", colorgroup));
colors.add(radioltem("Green", Tistener, "color(green)", colorgroup));
colors.add(radioltem("Blue", Tistener, "color(blue)", colorgroup));

// Arrange to display the popup menu when the user clicks in the window
panel.addMouselistener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {
// Check whether this is the right type of event to pop up a popup
// menu on this platform. Usually checks for right button down.
if (e.isPopupTrigger())
popup.show((Component)e.getSource(), e.getX(), e.getY());
}
1)

// Finally, make our main window appear
frame.setSize(450, 300);
frame.setVisible(true);

// A convenience method for creating menu items
pubTic static JMenultem menultem(String Tabel,

ActionlListener listener, String command,
int mnemonic, int acceleratorKey) {
JMenultem item = new JMenultem(label);
item.addActionListener(listener);
item.setActionCommand(command) ;
if (mnemonic != 0) item.setMnemonic((char) mnemonic);
if (acceleratorKey != 0)
item.setAccelerator(KeyStroke.getKeyStroke(acceleratorKey,
java.awt.Event.CTRL_MASK));
return item;

46

Chapter 3 — Swing Programming Topics

Example 3-1: Creating Pull-Down and Pop-Up Menus in Swing (continued)

// A convenience method for creating radio button menu items
public static JMenultem radioltem(String Tabel, Actionlistener listener,
String command, ButtonGroup mutExGroup) {
JMenultem item = new JRadioButtonMenuItem(label);
item.addActionListener(listener);
item.setActionCommand(command);
mutExGroup.add(item);
return item;
}

// An event listener class used with the menu items created above
// For this demo, it just displays a dialog box when an item is selected
pubTic static class MenultemActionlListener implements ActionListener {
Component parent;
pubTic MenultemActionlListener(Component parent) { this.parent = parent; }
public void actionPerformed(ActionEvent e) {
JMenultem item = (JIMenultem) e.getSource();
String cmd = item.getActionCommand();
JOptionPane.showMessageDialog(parent, cmd + " was selected.");
}
}
}

JTree and TreeModel

The javax.swing.JTree class is a powerful Swing component for displaying tree-
structured data. Like all Swing components, JTree relies on a separate model
object to hold and represent the data that it displays. Most Swing components cre-
ate this model object automatically, and you never need to work with it explicitly.
The JTree component, however, displays data that is much more complex than a
typical Swing component. When you are working with a JTree, you must create a
model object that implements the javax.swing.tree.TreeModel interface.

One approach is to use the DefaultTreeModel class, which implements the
TreeModel interface using the TreeNode and MutableTreeNode interfaces (all
defined in javax.swing.tree). To use DefaultTreeModel, you must implement
your hierarchical data structures so that each element of the tree implements the
TreeNode or MutableTreeNode interface. Now you can create a DefaultTreeMode]l
object simply by passing the root TreeNode of your tree to a DefaultTreeModel
constructor. Then you create a JTree component to display your tree simply by
passing the DefaultTreeModel to the setModel() method of the JTree.

Sometimes, however, you do not have the luxury of designing the data structures
used to represent your tree, so implementing the TreeNode interface is simply not
an option. In this case, you can implement the TreeModel interface directly. The
resulting TreeModel object serves as the interface between your data and the JTree
component that displays the data. Your TreeModel implementation provides the
methods that allow the JTree component to traverse the nodes of your tree,
regardless of the actual representation of the tree data.

Example 3-2 shows a program that implements the TreeModel interface to repre-
sent the hierarchical structure of the filesystem, thereby allowing the file and direc-
tory tree to be displayed in a JTree component. Notice how a relatively simple

JTree and TreeModel 47

~
S

I
=3
»

‘foid buimg

implementation of TreeModel enables the powerful tree- browsing capabilities
shown in Figure 3-7.

7 cjkl.2 -
[y e4jdkt . 2Wninstisu
& [0 c:ijdk1. 2bin
[y £4jdk1 . Z\README hitml
[y ejdkt WLICENSE
[eidk1 2IREADME
[ejdk1 . ZWCOPYRIGHT
@ Tkt 2ire]
- [0 cojdk1 . 2jretbin
@ [cjdk! 2jrellib
D chjdkl Ajrelimcontent-types properies
D cjdk1. Ajrellibflavorman.properties~
D cjdk1 . Ajrellibtfont properdies
[ekt Zyrevibfornt properties.ar
D cjdk1. Ajrelibifont. properies.iw

l

Figure 3—7: The JTree component
Example 3-2: Using JTree and TreeModel

import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;
import java.io.File;

public class FileTreeDemo {
public static void main(String[] args) {
// Figure out where in the filesystem to start displaying
File root;
if (args.length > 0) root = new File(args[0]);
else root = new File(System.getProperty("user.home"));

// Create a TreeModel object to represent our tree of files
FileTreeModel model = new FileTreeModel(root);

// Create a JTree and tell it to display our model
JTree tree = new JTree();
tree.setModel (model);

// The JTree can get big, so allow it to scroll
JScrollPane scrollpane = new JScrollPane(tree);

// Display it all in a window and make the window appear
JFrame frame = new JFrame("FileTreeDemo");
frame.getContentPane().add(scrollpane, "Center");
frame.setSize(400,600);

frame.setVisible(true);

48 Chapter 3 — Swing Programming Topics

Example 3-2: Using JTree and TreeModel (continued)

/**
* The methods in this class allow the JTree component to traverse
* the file system tree and display the files and directories.
**/
class FileTreeModel implements TreeModel {
// We specify the root directory when we create the model.
protected File root;
public FileTreeModel(File root) { this.root = root; }

// The model knows how to return the root object of the tree
pubTic Object getRoot() { return root; }

// Tell JTree whether an object in the tree is a Tleaf
public boolean isLeaf(Object node) { return ((File)node).isFile(); }

// Tell JTree how many children a node has
public int getChildCount(Object parent) {
String[] children = ((File)parent).list();
if (children == null) return 0;
return children.length;

~
S
I
=3
»

‘foid buimg

}

// Fetch any numbered child of a node for the JTree.
// Qur model returns File objects for all nodes in the tree. The
// JTree displays these by calling the File.toString() method.
public Object getChild(Object parent, int index) {
String[] children = ((File)parent).list();
if ((children == null) || (index >= children.length)) return null;
return new File((File) parent, childrenl[index]);

}

// Figure out a child's position in its parent node.
pubTic int getIndexO0fChild(Object parent, Object child) {

String[] children = ((File)parent).list();

if (children == null) return -1;

String childname = ((File)child).getName();

for(int i = 0; i < children.length; i++) {

if (childname.equals(children[i])) return i;

}

return -1;
}

// This method is invoked by the JTree only for editable trees.

// This TreeModel does not allow editing, so we do not implement
// this method. The JTree editable property is false by default.
public void valueForPathChanged(TreePath path, Object newvalue) {}

// Since this is not an editable tree model, we never fire any events,
// so we don't actually have to keep track of interested listeners
public void addTreeModellListener(TreeModellistener 1) {}

public void removeTreeModellListener(TreeModelListener 1) {}

JTree and TreeModel 49

J1able and TableModel

javax.swing.JTable is another powerful Swing component for displaying com-
plex data structures. Like JTree, JTable relies on a separate model object to hold
and represent the data it displays and has its own package of helper classes,
javax.swing.table. This package contains the TableModel interface and its default
implementations, AbstractTableModel and DefaultTableModel.

If your table data is tidily organized, it is easy to use JTable without worrying
about the TableModel. If your data is an array of rows, where each row is an array
of objects, you can just pass this Object[1[] directly to the JTable constructor. If
you want, you can also specify an optional array of column names. This is all you
need to do: the JTable does the rest. This technique also works if your data is
stored in a Vector of rows, where each row is itself a Vector.

Often, however, your data is not as regular as that. When you want to display a
tabular view of data that is not, by nature, tabular, you must implement the Table-
Model interface (or, more likely, subclass the AbstractTableModel class). The job
of this TableModel implementation is to serve as the interface between your data,
which is not neatly organized into a table, and the JTable object, which wants to
display a table. In other words, your TableModel presents a neat tabular view of
your data, regardless of how the data is organized underneath.

Example 3-3 shows how this can be done. Given a File object that represents a
directory in the filesystem, this example displays the contents of that directory in
tabular form, as shown in Figure 3-8. Once again, notice how a relatively simple
TableModel implementation enables the use of the powerful table-display capabili-
ties of the JTable component.

[E5FileT ableDemo - [Of x|
narme size last modified directory? readable? wiritahle?
Uninstisu 288,802 Dec 8, 1998] v]
hin i} Cec §, 1998 v vl vl
README htrnl 19,431 Dec 1, 1998 O v [
LICENSE 8,762 Cec1, 1998 O [v] [
README 6,010 Dec 1, 1998 [} [¥] [}
COPYRIGHT 935 Dec 1, 1998 [[v] [
jre i} Dec 8, 1998 [v] [[
lik i} Cec g, 1998 v] v
include i Ciec 8, 1998 v [v] [v]
include-ald i} Dec 8, 1998 v v vl
derno i} Ciec £, 1098 v (vl v
srejar 16,715,279 Dec1,1998] v]
SRC i Oct 30,1998 [v] [v] [v]

Figure 3-8: The JTable component
Example 3-3: Using JTable and TableModel

import javax.swing.*;
import javax.swing.table.*;
import java.io.File;
import java.util.Date;

50 Chapter 3 — Swing Programming Topics

Example 3-3: Using JTable and TableModel (continued)

public class FileTableDemo {
public static void main(Stringl[] args) {
// Figure out what directory to display
File dir;
if (args.length > 0) dir = new File(args[0]);
else dir = new File(System.getProperty("user.home"));

// Create a TableModel object to represent the contents of the directory
FileTableModel model = new FileTableModel(dir);

// Create a JTable and tell it to display our model
JTable table = new JTable(model);

// Display it all in a scrolling window and make the window appear
JFrame frame = new JFrame("FileTableDemo");

frame.getContentPane().add(new JScrollPane(table), "Center"); %?
frame.setSize(600, 400); S5
(=)
frame.setVisible(true); 35.“=
} 5] E§
) <
/**

* The methods in this class allow the JTable component to get
* and display data about the files in a specified directory.
* It represents a table with six columns: filename, size, modification date,
* plus three columns for flags: directory, readable, writable.
**/
class FileTableModel extends AbstractTableModel {
protected File dir;
protected String[] filenames;

protected String[] columnNames = new String[] {
"name", "size", "last modified", "directory?", "readable?", "writable?"

s

protected Class[] columnClasses = new Class[] {
String.class, Long.class, Date.class,
Boolean.class, Boolean.class, Boolean.class
s

// This table model works for any one given directory
public FileTableModel(File dir) {

this.dir = dir;

this.filenames = dir.1ist(); // Store a 1ist of files in the directory
}

// These are easy methods
public int getColumnCount() { return 6; } // A constant for this model
public int getRowCount() { return filenames.length; } // # of files in dir

// Information about each column
public String getColumnName(int col) { return columnNames[col]; }
pubTic Class getColumnClass(int col) { return columnClasses[coll; }

// The method that must actually return the value of each cell
public Object getValueAt(int row, int col) {

File f = new File(dir, filenames[row]);

switch(col) {

JTable and TableModel 51

Example 3-3: Using JTable and TableModel (continued)

case 0: return filenames[row];

case 1: return new Long(f.length());

case 2: return new Date(f.lastModified());

case 3: return f.isDirectory() ? Boolean.TRUE : Boolean.FALSE;
case 4: return f.canRead() ? Boolean.TRUE : Boolean.FALSE;

case 5: return f.canWrite() ? Boolean.TRUE : Boolean.FALSE;
default: return null;

}

JTextComponent and HTML Text Display

The most complex component in all of Swing is the JTextComponent, which is a
powerful editor. It is part of the javax.swing.text package and generally is not
used directly. Instead, you typically use one of its subclasses, such as JTextField,
JPasswordField, JTextArea, or JEditorPane. The first three of these components
are straightforward. They are for the entry of a single line of text, secret text such
as a password, and simple, unformatted, multiline text, respectively.

It is the JEditorPane component that really makes use of the full power of
JTextComponent. JEditorPane supports the display and editing of complex format-
ted text. In conjunction with the classes in the javax.swing.text.html and
javax.swing.text.rtf packages, JEditorPane can display and edit HTML and
RTF documents. The ability to display formatted text so easily is a very powerful
feature. For example, the ability to display HTML documents makes it simple for a
Swing application to add online help based on an HTML version of the applica-
tion’s user manual. Furthermore, formatted text is a professional-looking way for
an application to display its output to the user.

Because HTML has become so ubiquitous, we’ll focus on the display of HTML
documents with JEditorPane, There are several different ways to get a JEditor-
Pane to display an HTML document. If the desired document is available on the
network, the easiest way to display it is simply to pass an appropriate
java.net.URL object to the setPage() method of JEditorPane. setPage() deter-
mines the data type of the document and, assuming it is an HTML document,
loads it and displays it as such. For example:
editor.setPage(new java.net.URL("http://www.my.com/product/help.htm"));

If the document you want to display is in a local file or is available from some
kind of InputStream, you can display it by passing the appropriate stream to the

read() method of JEditorPane. The second argument to this method should be
null. For example:

InputStream in = new FileInputStream("help.htm");
editor.read(in, null);

52 Chapter 3 — Swing Programming Topics

Yet another way to display text in a JEditorPane is to pass the text to the set-
Text () method. Before you do this, however, you must tell the editor what type of
text to expect:

editor.setContentType("text/html");
editor.setText("<Hl>Hello World!</H1>");

Calling setText() can be particularly useful when your application generates
HTML text on the fly and wants to use a JEditorPane to display nicely formatted
output to the user.

Example 3-4 shows one such use of the JEditorPane. This example is an alterna-
tive to Example 3-3: it displays the contents of a directory in tabular form but uses
an HTML table instead of the JTable component. As a bonus, this example uses
HTML hyperlinks to allow the user to browse from one directory to the next. (If
you download and run the two examples, however, you’ll probably notice that the
JTable example is significantly faster, since it does not have to encode the direc-
tory contents into HTML and then parse that HTML into a table.) Figure 3-9 shows
sample output from this example.

FileTableHTHL

c:\jdk1.2

Lp to parent directory

Name Size Modified Readable? |Writable?
Uninst.isu 298802 Tue Dec 08 14:27:52 PST 19828 ¥ ¥

hin 0 Tue Dec 08 14:21:58 PST 12828 ¥ ¥

README html || 12431 Tue Dec 01 12:38:52 PST 1998 ES

LICENSE 8762 Tue Dec 01 14:41:16 PST 1995 ES

README £010 Tue Dec 01 14:41:16 PST 1998 ¥

COPYRIGHT ||935 Tue Dec 01 14:41:16 PST 1998 ¥

jre 0 Tue Dec 08 14:22:00 PST 1958 ® ® =

Figure 3-9: The JEditorPane component displaying an HTML table
Example 3-4: Dynamically Generated HIML in JEditorPane

import javax.swing.*;
import javax.swing.event.*;
import java.io.*;

import java.util.Date;

/**
* This class implements a simple directory browser using the HTML
* display capabilities of the JEditorPane component

JTextComponent and HIML Text Display 53

~
S

I
=3
»

‘foid buimg

Example 3—4: Dynamically Generated HTML in JEditorPane (continued)

~k~k/
public class FileTableHTML {
public static void main(Stringl] args) throws IOException {
// Get the name of the directory to display
String dirname = (args.length>0)?args[0]:System.getProperty("user.home");

// Create something to display it in

final JEditorPane editor = new JEditorPane();
editor.setEditable(false); // we're browsing not editing
editor.setContentType("text/html"); // must specify HTML text
editor.setText(makeHTMLTable(dirname)); // specify the text to display

// Set up the JEditorPane to handle clicks on hyperlinks
editor.addHyperlinkListener(new HyperlinkListener() {
public void hyperlinkUpdate(HyperlinkEvent e) {
// Handle clicks; ignore mouseovers and other Tink-related events
if (e.getEventType() == HyperlinkEvent.EventType.ACTIVATED) {
// Get the HREF of the 1ink and display it.
editor.setText(makeHTMLTable(e.getDescription()));
}
}
1)

// Put the JEditorPane in a scrolling window and display it
JFrame frame = new JFrame("FileTableHTML");
frame.getContentPane().add(new JScrollPane(editor));
frame.setSize(650, 500);
frame.setVisible(true);

}

// This method returns an HTML table representing the specified directory
public static String makeHTMLTable(String dirname) {

// Look up the contents of the directory

File dir = new File(dirname);

String[] entries = dir.list();

// Set up an output stream we can print the table to.

// This is easier than concatenating strings all the time.
StringWriter sout = new StringWriter();

PrintWriter out = new PrintWriter(sout);

// Print the directory name as the page title
out.printin("<H1>" + dirname + "</H1>");

// Print an "up" link, unless we're already at the root
String parent = dir.getParent();
if ((parent != null) && (parent.length() > 0))
out.printIn("Up to parent directory<P>");

// Print out the table
out.print("<TABLE BORDER=2 WIDTH=600><TR>");
out.print("<TH>Name</TH><TH>S{ze</TH><TH>Modified</TH>");
out.printin("<TH>Readable?</TH><TH>Writable?</TH></TR>");
for(int i=0; i < entries.length; i++) {

File f = new File(dir, entries[i]);

out.printIn("<TR><TD>" +

(f.isDirectory() ?
"" + entries[i] + "" :

54 Chapter 3 — Swing Programming Topics

Example 3-4: Dynamically Generated HTML in JEditorPane (continued)

entries[i]) +

"</TD><TD>" + f.length() +
"</TD><TD>" + new Date(f.lastModified()) +
"</TD><TD align=center>" + (f.canRead()?"x":" ") +
"</TD><TD align=center>" + (f.canWrite()?"x":" ") +
"</TD></TR>");

}

out.printin("</TABLE>");

out.close();

// Get the string of HTML from the StringWriter and return it.
return sout.toString();

Pluggable Look-and-Feel

One of the unique features of Swing is its pluggable look-and-feel (PLAF) architec-
ture, which allows a Swing application to change its entire appearance with one or
two lines of code. The most common use of this feature is to give applications a
choice between the native platform look-and-feel and a new platform-independent
Java look-and-feel (also known as the Metal look-and-feel). Swing is distributed
with three look-and-feels: Metal and two look-and-feels that mimic the appearance
and behavior of the Windows and Motif (Unix/X) component toolkits. A look-and-
feel that mimics the Macintosh platform is available as a separate download. While
the Metal and Motif look-and-feels can be freely used, the Windows look-and-feel
is restricted for use only on Windows platform—for copyright reasons, it does not
run on any other operating system.

When a Swing application starts up, it reads the system property swing.default-
laf to determine the classname of the default look-and-feel. In most Java installa-
tions, this property is set to the default Java look-and-feel, implemented by the
class javax.swing.plaf.metal.MetallLookAndFeel. The end user can override this
default by using the -D switch on the command line when invoking the Java inter-
preter. For example, to run a Swing application using the Motif look-and-feel, a
user can type:

% java -Dswing.defaultlaf=com.sun.java.swing.plaf.motif.MotiflLookAndFeel app

If the user is using a Windows operating system, he can start the application using
the Windows look-and-feel like this:

% java -Dswing.defaultlaf=com.sun.java.swing.plaf.windows.WindowsLookAndFeel app

When you write a Swing application, you can explicitly set the look-and-feel that
the application uses. To do this, simply call the static setLookAndFeel() method of
the UIManager class and specify the classname of the desired look-and-feel imple-
mentation. To make this even easier, UIManager defines a static method that
returns the classname of the default cross-platform look-and-feel (i.e., Metal) and
another that returns the classname of the look-and-feel that mimics the native
look-and-feel of the current platform. So, if you want your application to always
look like a native application, you can simply include this line of code in your

Pluggable Look-and-Feel 55

~
S

I
=3
»

‘foid buimg

application, before it begins to create any GUI components:
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName());

Or, if you want to force the application to use the cross-platform look-and-feel,
regardless of installation defaults and user preferences, you can use this line of
code:

UIManager.setLookAndFeel (UIManager.getCrossPTatformLookAndFeelClassName());

Note that calling setlLookAndFeel() like this overrides the wvalue of the
swing.defaultlaf property, if the end user has set one. Of course, the command-
line syntax for setting that property is quite awkward and may be beyond the
capabilities of many end users. An alternative is to implement command-line
options in your own application that give the user a choice of look-and-feels. You
might set a native look-and-feel if the user specifies a -nativelook flag on the
command line, for example.

The easiest time to call the setLookAndFeel() method is at application start-up,
before any Swing components have been created. It is also possible to change the
look-and-feel of a running application, however. This means that you can allow
the user to change the current look-and-feel through a preferences dialog box, if
you are so inclined. When the user selects a new look-and-feel, you first call set-
LookAndFeel () to install the new look-and-feel, and then you have to notify all of
the Swing components that a new look-and-feel is in effect and ask them to use it.
Fortunately, there is a convenience method to do this. Your code might look like
this:

// Set the new look-and-feel

UIManager.setLookAndFeel (UIManager.getSystemlLookAndFeelClassName);
// Tell all components from main JFrame on down that LAF has changed
SwingUtilities.updateComponentTreeUI(myframe);

A dialog that allows the user to change the currently installed look-and-feel of a
running application should probably let the user choose among all the look-and-
feels that are installed on the system. An application can find out the classnames
and human-readable names of all the installed look-and-feels on a given system by
calling the static getInstalledlLookAndFeels() method of UIManager. In the imple-
mentation from Sun, this method returns either a default list of installed look-and-
feels or a list obtained from the swing.properties file of the installation.

Using Themes with the Metal Look-and-Feel

You can customize the colors and fonts of the default Java look-and-feel by sub-
classing the DefaultMetalTheme class that appears in the javax.swing.plaf.metal
package. When you create a custom subclass, you can specify the six different
fonts and six different colors used by the Metal look-and-feel. For example, you
might implement a large font theme for users who have difficulty reading the
default fonts used by Metal.

If you are feeling brave and want to second-guess the skilled designers who put
the Metal look-and-feel together, you can subclass the abstract MetalTheme class
directly. This class defines many methods that return colors and fonts. All of these

56 Chapter 3 — Swing Programming Topics

methods, however, are implemented in terms of the six basic font methods and six
basic color methods of the DefaultMetalTheme class.

If you look at the DefaultMetalTheme API, you'll notice that the font and color
methods do not return java.awt.Font and java.awt.Color objects as you would
expect. Instead, they return FontUIResource and ColorUIResource objects. Both of
these classes are part of the javax.swing.plaf package and are trivial subclasses
of the more familiar Font and Color classes. The only thing these subclasses do is
implement the UIResource interface. But UIResource is a marker interface, with no
methods of its own. Thus, a FontUIResource is a Font object that also happens to
implement UIResource. Similarly, a ColorUIResource is both a Color object and a
UIResource object.

The currently installed look-and-feel assigns default values for many properties of
Swing components. A look-and-feel implementation needs to be able to distin-
guish between default values it has specified and programmer-supplied property
values. For this reason, all look-and-feel defaults, such as colors and fonts, must
implement the UIResource marker interface. For our purposes here, you can sub-
class DefaultMetalTheme and use the FontUIResource and ColorUIResource
classes exactly as you would use normal Font and Color resources.

Once you have created your own theme by subclassing MetalTheme or Default-
MetalTheme, you can install it with code like this:

MetallookAndFeel.setCurrentTheme(new MyCustomTheme());

If you are changing the current theme after having already created Swing compo-
nents, you also have to reinstall the MetallookAndFeel and notify all the compo-
nents of the change:

UIManager.setLookAndFeel (new MetallLookAndFeel());
SwingUtilities.updateComponentTreeUI(myRootFrame);

Auxiliary Look-and-Feels

If you've browsed the list of Swing packages, you've probably noticed
Javax.swing.plaf.multi. This is the multiplexing look-and-feel. It allows one or
more auxiliary look-and-feels to be used in conjunction with a single primary
look-and-feel. The multiplexing look-and-feel is automatically used by a Swing
application if an auxiliary look-and-feel has been requested. An application can
request an auxiliary look-and-feel by calling the static UIManager method addAux-
iliaryLookAndFeel (), while an end user can do this by setting the swing.auxil-
iarylaf property on a Java command line.

The primary purpose of auxiliary look-and-feels is for accessibility. For example, a
person with impaired vision might start up a Java application using the
-Dswing.auxiliarylaf= option to specify that the application should load a
screen-reader look-and-feel. Auxiliary look-and-feels can be used for other pur-
poses as well, of course. You might use an auxiliary look-and-feel to add audio
feedback to a user interface. Such a look-and-feel might produce an audible click
when the user clicks on a JButton, for example.

Pluggable Look-and-Feel 57

~
S

I
=3
»

‘foid buimg

Swing is not shipped with any predefined auxiliary look-and-feels. You can imple-
ment your own, of course, although explaining how to do so is beyond the scope
of this book.

Accessibility

The term accessibility refers to the architectural features of Swing that allow Swing
applications to interact with assistive technologies, such as a visual macro recorder
that allows users to automate repetitive point-and-click tasks or a screen reader.

To enable accessibility, every Swing component implements the Accessible inter-
face, which, like all accessibility-related classes, is part of the javax.accessibil-
ity package. This interface defines a single getAccessibleContext() method that
returns an AccessibleContext object for the component. The methods of Acces-
sibleContext export salient information about the component, such as a list of its
accessible children and its name, purpose, and description. An assistive technology
can use the tree of AccessibleContext objects to gather information about a GUI
and assist the user in interacting with that GUL

A number of the AccessibleContext methods return objects that implement spe-
cialized interfaces to return specific types of accessibility information. For example,
if an accessible component represents a numeric value of some sort (say a
JSTider), the getAccessibleValue() method of its AccessibleContext object
returns an AccessibleValue object that provides more information about that
value and allows the assistive technology to query and set the value.

The interfaces and classes of the javax.accessibility package provide methods
that allow an assistive technology to “read” a GUI. Many of the methods defined
by these interfaces duplicate functionality already provided by Swing components.
The point, however, is that java.accessibility defines a standard API for interac-
tion between any assistive technology and any accessible application. In other
words, the accessibility API is not Swing specific. You can write JavaBeans and
other custom components so that they support accessibility. If you do, these com-
ponents automatically work with assistive technologies.

The details of the javax.accessibility package are of interest to programmers
who are creating assistive technologies and developing accessible components or
JavaBeans. Unfortunately, the details of these tasks are beyond the scope of this
book.

Most of us are not developing assistive technologies and only rarely do we have to
create accessible components. What we all want to do, however, is create accessi-
ble applications. Since all Swing components support accessibility, it is quite sim-
ple to create an accessible application with Swing. The key to supporting
accessibility is providing the necessary information that allows an assistive technol-
ogy to interpret your GUI for a user. The most commonly used example of an
assistive technology is a screen reader for the vision impaired. A screen reader
needs to be able to verbally describe a GUI to a user who cannot see it. In order
to do this, it needs to have names and descriptions for all the critical components
in your GUL

58 Chapter 3 — Swing Programming Topics

The easiest way to assign a description to a component is to give it a tooltip. This
way, your accessibility information also serves as context-sensitive help for novice
users:

continue.setToolTipText("Click here to continue");

If, for some reason, you want to assign an accessible description to a component
without giving it a tooltip, you can use code like this:

continue.getAccessibleContext().setAccessibleDescription("Continue button");

It is also helpful to assistive technologies if you provide names for your various
components. A name should be a short human-readable string that uniquely iden-
tifies the component, at least within the current window or dialog box. Buttons,
labels, menu items, and other components that display labels simply use those
labels as their accessible names. Other components need to have names assigned.
Here is one way to do that:

JTextField zipcode = new JTextField();
zipcode.getAccessibleContext().setAccessibleName("zipcode");

In a GUI, important components that do not display their own labels are often
associated with JLabel components that serve to identify them. When this is the
case, you can use the setlabelFor() method of JLabel to set the accessible name
of the other component. The code might look like this:

Jlabel zipcodelabel = new JlLabel("Zipcode");
JTextField zipcode = new JTextField();
zipcodelabel.setlLabelFor(zipcode);

By taking the simple step of assigning names and descriptions to your GUI com-
ponents, you ensure that your application can be interpreted by assistive technolo-
gies and successfully used by all users.

Custom Components

We'll conclude this survey of Swing features with a quick look at what it takes to
write a custom Swing component. Creating a custom component is a matter of
subclassing an existing component and adding the new functionality you desire.
Sometimes this is a simple job of adding a minor new feature to an existing com-
ponent. At other times, you may want to create an entirely new component from
scratch. In this case, youll probably be subclassing JComponent, which is a bit
more complicated. The following sections briefly explain the various things you’ll
need to consider when creating such a custom component. The best way to learn
to write your own Swing-style components is to study the source code of Swing
components, and since Sun makes this source code freely available, I encourage
you to examine it.

Properties

You need to decide what properties you want your component to export and
define accessor methods that allow them to be set and queried. If your component
represents or displays some kind of nontrivial data structure, consider representing

Custom Components 59

~
S
I
=3
»

‘foid buimg

the data in a separate model object. Define an interface for the model and a
default implementation of the interface.

If you think that other objects may be interested in property changes on your
component, have the set methods for those properties generate the events Prop-
ertyChangeEvent or ChangeEvent and include appropriate event listener registra-
tion methods in your component. This kind of notification is often important if
you follow the Swing architecture and divide the functionality of your component
among a component object, a model object, and a UI delegate object.

When a property is set on your component, the component may need to be
redrawn or resized as a result. You must keep this in mind when you write the
property accessor methods for your component. For example, if you define a set-
Color() method, this method should call repaint() to request that the component
be repainted. (Painting the component is a separate topic that is discussed later.) If
you define a setFont() method and a change in font size causes the component
to require more (or less) space on the screen, you should call revalidate() to
request a relayout of the GUI. Note that the repaint() and revalidate() methods
add a repaint or relayout request to a queue and return right away. Therefore, you
may call these methods freely without fear of inefficiency.

Events

You need to decide what kind of events your component generates. You can reuse
existing event and listener classes, if they suit your purposes, or you can define
your own. Add event listener registration and deregistration methods in your com-
ponent. You need to keep track of the registered listeners, and you may find the
javax.swing.event.EventlListenerList helpful for this task. For each event lis-
tener registration method, it is common practice to define a protected method to
generate and fire an appropriate event to all registered listeners. For example, if
your component has a public addActionlListener() method, you may find it use-
ful to define a protected fireActionEvent() method as well. This method calls the
actionPerformed() method of every registered ActionListener object.

Comnstructors

It is customary to provide a no-argument constructor for a component. This is
helpful if you want your component to work with GUI builder tools, for example.
In addition, think about how you expect programmers to use your component. If
there are a few properties that are likely to be set in most cases, you should define
a constructor that takes values for these properties as arguments, to make the com-
ponent easier to use.

Drawing the Component

Almost every component has some visual appearance. When you define a custom
component, you have to write the code that draws the component on the screen.
There are several ways you can do this. If you are creating an AWT component,
override the paint() method and use the Graphics object that is passed to it to do
whatever drawing you need to do.

60 Chapter 3 — Swing Programming Topics

For Swing components, the paint() method is also responsible for drawing the
border and the children of your component, so you should not override it directly.
Instead, override the paintComponent() method. This method is passed a Graphics
object, just as the paint() method is, and you use this Graphics object to do any
drawing you want. As we'll see in Chapter 4, Graphics with AWT and Java 2D, you
can cast this Graphics object to a Graphics2D object if you want to use Java 2D
features when drawing your component. Keep in mind, however, that a Swing
component can be assigned an arbitrary border. Your paintComponent() method
should check the size of the border and take this value into account when
drawing.

When you define a custom component, you typically have only one look-and-feel
in mind, so you can hardcode this look-and-feel as part of the component class
itself. If you want your component to support the Swing pluggable look-and-feel
architecture, however, you need to separate the drawing and event-handling tasks
out into a separate javax.swing.plaf.ComponentUI object. If you do this, you
should not override your component’s paintComponent () method. Instead, put the
painting functionality in the paint() method of the ComponentUI implementation.
In order to make this work, you have to override the getUICTassID(), getUI(),
setUI(), and updateUI() methods of JComponent.

Handling Events

Most components have some kind of interactive behavior and respond to user-
input events such as mouse clicks and drags and key presses. When you are creat-
ing a custom component, you must write the code that handles these events. The
Swing event-handling model was discussed in Chapter 2. Recall that the high-level
way to handle input events is to register appropriate event listeners, such as
Mouselistener, MouseMotionListener, KeyListener, and FocusListener on your
component. If you are using a separate Ul delegate object, this object should
implement the appropriate listener interfaces, and it should register itself with the
appropriate event registration methods on the component when its installUI()
method is called.

If you are not using a UI delegate, your component class can handle events at the
lower level discussed in Chapter 2. To do this, you override methods such as pro-
cessMouseEvent(), processMouseMotionEvent(), processKeyEvent(), and pro-
cessFocusEvent (). In this case, be sure to register your interest in receiving events
of the appropriate type by calling enableEvents() in your component’s initializa-
tion code.

Component Size

Most components have a natural or preferred size that often depends on the set-
tings of various component properties. Many components also have a minimum
size below which they cannot adequately display themselves. And some compo-
nents have a maximum size they wish to enforce. You must write the methods that
compute and return these sizes.

Custom Components 61

~
S

I
=3
»

‘foid buimg

If you are using a Ul delegate object, you should implement the getMinimum-
Size(), getPreferredSize(), and getMaximumSize() methods in the delegate. The
default JComponent methods call the delegate methods to determine these sizes if
the programmer using the component has not overridden the minimum, preferred,
or maximum sizes with her own specifications.

If you are not using a UI delegate object, you should override these three methods
in the component itself. Ideally, your methods should respect any sizes passed to
setMinimumSize(), setPreferredSize() and setMaximumSize(). Unfortunately, the
values set by these methods are stored in private fields of JComponent, so you
typically have to override both the get and the set methods.

Accessibility

It is a good idea to make your component accessible. In order to do this, your
component must implement the javax.accessibility.Accessible interface and
its getAccessibleContext() method. This method must return an AccessibleCon-
text object that is customized for your component. You typically implement
AccessibleContext as an inner class of the component by extending JCompo-
nent.AccessibledComponent or some subclass of that class. Depending on your
component, you may need to implement various other accessibility interfaces on
this inner class as well. Studying the accessibility code in existing Swing com-
ponents can be very helpful in learning how to write your own accessible
components. You might start, for example, with the source code for AbstractBut-
ton.AccessibleAbstractButton.

Miscellaneous Methods

JComponent defines a number of other methods that you can optionally override to
change aspects of a component’s behavior. If you take a look at the list of proper-
ties defined by the JComponent API, you'll notice that a number of these are read-
only properties (i.e., they do not define set methods). The only way to set the
value returned by one of these methods is to subclass the method. In general,
when you see a read-only property, you should consider it a candidate for sub-
classing. Here are a few methods of particular interest:

isOpaque()
If the component always fills its entire background, this method should return
true. If a component can guarantee that it completely paints itself, Swing can
perform some drawing optimizations. JComponent actually does define a set-
Opaque() method for this property, but your custom component may choose
to ignore setOpaque() and override isOpaque().

isOptimizedDrawingEnabled()
If your component has children and allows those children to overlap, it
should override this method to return false. Otherwise, leave it as is.

isFocusTraversable()
If your component wants to be included in focus traversal, it should override
this method to return true. If your component does not want to be included
in the keyboard navigation system, this method should return false.

62 Chapter 3 — Swing Programming Topics

isFocusCycleRoot()
If your component has children and wants to cycle focus among them, over-

ride this method to return true.
isManagingFocus()

If your component needs to receive the Tab and Shift-Tab key events that are

normally handled by the focus manager, override this method to return true.

If you do, the focus manager uses Ctrl-Tab instead.

~
(=)
=

-
S

]

‘foid buimg

Custom Components 63

CHAPTER 4

Graphbics with AWT
and Java 2D

Java 1.0 and Java 1.1 included basic graphics capabilities as part of the AWT
(Abstract Windowing Toolkit). In the Java 2 platform, these capabilities have been
greatly enhanced with the introduction of Java 2D. While Java 2D is part of the JFC
(the Java Foundation Classes), the Java 2D API is implemented in the same
java.awt package as the original Java graphics classes.

This chapter begins by documenting the original Java graphics model, which is still
required for Java 1.1 applications, applets, and Personal Java applications. The
chapter then moves on to detail the enhanced features provided by Java 2D. This
chapter can provide only an introduction to the various features of Java 2D; for
more complete information, see Java 2D Graphics, by Jonathan Knudsen
(O'Reilly).

Graphbics Before Java 2D

All graphics operations in Java are performed using a java.awt.Graphics object.
The Graphics object serves three purposes:

e It represents the drawing surface. A Graphics object is used to draw into a
java.awt.Component on the screen, to draw into an off-screen java.awt.-
Image, or to send graphics to a printer.

e It maintains the current state of graphics attributes, such as the current draw-
ing color, font, and clipping region.

e It defines methods that perform various graphics operations, such as drawing
lines, rendering strings of text, and copying the content of Image objects onto
the drawing surface.

The graphics capabilities of Java before Java 2D can be neatly summarized by list-
ing the graphics attributes and operations supported by the Graphics object. Table
4-1 lists the attributes, and Table 4-2 lists the operations.

64

Table 4-1: Attributes of the Graphics Class

Attribute

Type

Description

Color

Font

Clipping region

Origin

Paint mode

Background color

Color
Font

Rectangle

Point

boolean

Color

Set with setColor().

Set with setFont(). Only a small number of
standard fonts are available.

In Java 1.1, set with setC1ip(). Use
clipRect() to set to the intersection of the
current clipping region and a rectangle.
setC1ip() takes a Shape object, but prior to
Java 1.2, the clipping region is, in practice,
restricted to rectangles.

Use translate() to move the origin. The
default origin is in the upper-left corner of
the drawing region, with X coordinates
increasing to the right and Y coordinates
increasing down.

setXORMode() puts the Graphics object into
the infrequently used XOR mode, while
setPaintMode() restores the default drawing
mode.

o
S
Ss
=
H

A

This attribute is used only by the clearRect()
method, and its value cannot be set. When
drawing into a Component, the background
color is the value of the background attribute
of the component. The value is undefined
when drawing into off-screen images.

Table 4-2: Operations of the Graphics Class

Operation

Methods Attributes Used

Line drawing

Shape drawing

drawLine(), color, origin, clip, paint mode
drawPolyline()

drawArc(), color, origin, clip, paint mode
drawOval(),
drawPolygon(),
drawRect (),
drawRoundRect (),
draw3DRect ()

Graphics Before Java 2D 65

Table 4-2: Operations of the Grapbhics Class (continued)

Operation Methods Attributes Used

Shape filling fillArc(), color, origin, clip, paint mode
filloval(),
£i11Polygon(),
fil1Rect (),
fi11RoundRect (),
fiT113DRect()
Text drawing drawBytes(), color, font, origin, clip, paint
drawChars(), mode

drawString()
Image drawing (blitting) | drawImage() origin, clip, paint mode
(various versions)

Clearing clearRect() origin, clip, background color

Line Drawing

An important point to notice in Table 4-1 is that there is no attribute for line width.
Prior to Java 2D, Java can only draw lines that are a single pixel wide. This is per-
haps the single largest limitation of the Java 1.0 and Java 1.1 graphics envi-
ronments.

Colors

Colors are represented by the java.awt.Color class. In Java 1.0 and Java 1.1, this
class represents colors in the RGB color space. It has constructors that allow you
to specify red, green, and blue color coordinates as integers or as floating-point
values. The class defines a static method that allows you to create a Color using
coordinates from the HSB (hue, saturation, brightness) color space. It also defines
a number of constants that represent colors by their common names, such as
Color.black and Color.white.

java.awt.SystemColor is a subclass of Color introduced in Java 1.1. The class has
no public constructor but defines a number of SystemColor constants that repre-
sent colors used on the system desktop (for systems that support a system desktop
color palette). For example, SystemColor.textHighlight represents the color used
for highlighted text

Fonts

Fonts are represented with the java.awt.Font class. A Font object is created by
specifying the name, style, and point size of the desired font. In an attempt to pro-
mote platform independence, Java 1.0 supports only a handful of standard font
names. Java 1.1 supports the same fonts but provides new preferred symbolic
names for them. The fonts supported prior to Java 2D are listed in Table 4-3.

66 Chapter 4— Graphics with AWT and Java 2D

Table 4-3: Font Names in Java 1.0 and Java 1.1

Java 1.0 Name | Preferred Name in Java 1.1
TimesRoman Serif

Helvetica SansSerif

Courier Monospaced

Symbol Symbol

Dialog Dialog

DialogInput DialogInput

Fonts can be displayed in any of four possible font styles, which are represented
by the symbolic constants listed in Table 4-4.

Table 4-4: Java Font Styles

Style Java Constant

plain Font.PLAIN

italic Font.ITALIC

bold Font.BOLD

bolditalic | Font.BOLD + Font.ITALIC

Font sizes are specified in points. The Font() constructor accepts an integer argu-
ment, so fractional point sizes are not supported in Java 1.0 and 1.1. If the native
platform does not support scalable fonts, the returned font may have a different
size than what you requested.

Font Metrics

If you need to figure out how big a piece of text will be, you can call the get-
FontMetrics() methods of a Graphics object and pass in the desired font. This
returns a FontMetrics object. The getHeight() method returns the line height for
the font, which can be further broken down into the font ascent and descent,
returned by getAscent() and getDescent(), respectively. To measure the horizon-
tal dimension of text, use charWidth() and stringWidth().

Images

Images are represented by the java.awt.Image class. Working with images in Java
1.0 and Java 1.1 is a little tricky because the image processing model of those
releases is based on streaming image data being loaded across a network. This
treatment of images allows images to be partially displayed before they are fully
loaded, but makes working with images somewhat more difficult.

Graphics Before Java 2D 67

o
S
Ss
=
H

A

All of the drawImage() methods of the Graphics objects require an java.awt.-
image.ImageObserver object. This is the object that handles things if you try to
draw an image that is not fully loaded. Fortunately, java.awt.Component imple-
ments ImageObserver, so you can use any Component or Applet object for this
method argument.

If are writing an applet and want to load a predefined image from a URL, you can
use the getImage() method defined by the java.applet.Applet class. This
method begins downloading the specified image and returns an Image object to
you immediately.

If you are writing a standalone application and want to load a predefined image
from a file or URL, use one of the getImage() or createImage() methods of the
java.awt.Toolkit class:

Toolkit.getDefaultToolkit().getImage("myimage.qgif");

Like the getImage() method of Applet, these Toolkit methods start loading the
image and immediately return an Image object. The image formats supported by
these Applet and Toolkit methods are implementation dependent. Most imple-
mentations support common formats, such as GIF (including transparent GIF),
JPEG, and XBM.

To ensure that an Image object is fully loaded before you use it, you can create a
Jjava.awt.MediaTracker object, pass your Image to its addImage() method, then
call the waitForA11() method.

To create an empty off-screen image that you can draw into and copy pixels out
of, call the createlmage() method of the Component with which you plan to use
the image and pass in the desired width and height of the image. To draw into the
image, you have to obtain a Graphics object by calling the getGraphics() method
of the image. Images created in this way are often used for double-buffering, to
produce smoother animations or graphical updates.

The java.awt.image package contains classes that support rudimentary image pro-
cessing and filtering. Java 2D implements more powerful image-processing tech-
niques, so the Java 1.0 model is not described here.

Java 2D Grapbics Attributes and Operations

Java 2D dramatically expands the graphics capabilities of Java. It does this through
the java.awt.Graphics2D subclass of java.awt.Graphics. In Java 2, you can sim-
ply cast any Graphics object you are given to a Graphics2D object, and then you
can use the new features of Java 2D.

Table 4-5 and Table 4-6 summarize the new features of Java 2D by listing the
graphics attributes and graphics operations supported by the Graphics2D class.

68 Chapter 4— Graphics with AWT and Java 2D

Table 4-5: Grapbhics Attributes of Java 2D

Attribute Type

Description

Foreground color Color

Background color Color

Font Font

Clipping region Shape

Line style Stroke

Fill style Paint

Inherited from Graphics but
superseded by the fill style attribute
and the Paint interface.

Inherited from Graphics but can now
be set and queried with setBack-
ground() and getBackground(). This
attribute is still used only by
clearRect().

Inherited from Graphics. All of the
system fonts are now available to
Java.

Inherited from Graphics. In Java 2D,
however, arbitrary Shape objects may
be used; the clipping region is no
longer restricted to only rectangular
shapes. A new method, which is
called c1ip(), sets the clipping region
to the intersection of the current
region and a specified Shape.

o
S
Ss
=
H

A

A Stroke object specifies how lines
are drawn. The BasicStroke
implementation supports line width,
dash pattern, and other attributes,
described in more detail later in the
chapter. Set the current line style with
setStroke().

A Paint object specifies how an area
is filled. Color implements this
interface and fills with a solid color,
java.awt.TexturePaint fills with a
tiled image, and java.awt.Gra-
dientPaint fills with a color gradient.
Set the current fill style with
setPaint().

Java 2D Grapbhics Attributes and Operations

69

Table 4-5: Grapbics Attributes of Java 2D (continued)

Attribute

Type

Description

Compositing

Transform

Hints

Composite

java.awt.geom. -
AffineTransform

RenderingHints

A Composite object controls how the
color of a pixel is combined, or
composited, with the color of the
pixel on top of which it is drawn. The
default compositing operation
combines translucent pixels with the
pixels they overlay, letting the
overlaid colors “show through.” The
AlphaComposite class is an
implementation of Composite; it
performs various types of
compositing, based on the alpha-
transparency of the pixels involved.
Controls the translation, scaling,
rotation, and shearing of the
coordinate system. Set this attribute
with setTransform(), or modify the
current transform with translate(),
scale(), rotate(), shear(), or
transform().

A RenderingHints object allows a
program to express preferences about
various speed versus quality trade-offs
made by Java 2D. Most notably,
RenderingHints controls whether Java
2D performs antialiasing. Set with
setRenderingHints(), setRendering-
Hint(), or addRenderingHints().

Table 4-6: Graphics Operations of Java 2D

Operation Methods Description
Drawing draw(), inherited draw() outlines an arbitrary
methods Shape. Uses the clip, transform,
stroke, paint, and composite
attributes.
Filling fi11(0), inherited fi11() fills an arbitrary Shape.

methods

Uses the clip, transform, paint,
and composite attributes.

70 Chapter 4 — Grapbics with AWT and Java 2D

Table 4-6: Graphics Operations of Java 2D (continued)

Operation Methods Description

Hit detection hit() Tests whether a given rectangle
(in device coordinates) intersects
the interior or outline of an
arbitrary Shape. Uses the clip,
transform, and stroke attributes
when testing the outline of a

Shape.
Text drawing drawString(), Java 2D defines text-drawing
drawGlyphVector(), methods that take String,
inherited methods java.text.AttributedCharacter-

Iterator, and java.awt.font.-
GlyphVector arguments. Text
drawing uses the clip, transform,
font, paint, and composite
attributes. Note, however, that
AttributedCharacterIterator
objects supply their own fonts.

Image drawing | drawlImage(), Java 2D defines new image-
drawRenderableImage(), | drawing methods that draw
drawRenderedImage(), special types of images.
inherited methods java.awt.image.BufferedImage is

the most important new type.
These methods use the clip,
transform, and composite
attributes.

The Coordinate System

By default, Java 2D uses the same coordinate system as AWT. The origin is in the
upper-left corner of the drawing surface. X coordinate values increase to the right,
and Y coordinate values increase as they go down. When drawing to a screen or
an off-screen image, X and Y coordinates are measured in pixels. When drawing
to a printer or other high-resolution device, however, X and Y coordinates are
measured in points instead of pixels (and there are 72 points in one inch).

It is instructive to consider in more detail how Java 2D draws to a high-resolution
device like a printer. The Java 2D drawing commands you issue express coordi-
nates on the printer paper in units of points. This coordinate system is referred to
as “user space.” However, different printers print at different resolutions and sup-
port different coordinate systems, so when drawing to a device like this, Java 2D
must convert your user-space coordinates into printer-specific, device-space coor-
dinates.

The Coordinate System 71

o
S
Ss
=
H

A

On a high-resolution printer, one point in user space may translate into 10 or more
pixels in the printer’s device space. In order to take full advantage of all this reso-
lution, you need to be able to use coordinates like 75.3 in user space. This brings
us to one of the big differences between the Java 2D coordinate system and the
AWT system: Java 2D allows coordinates to be expressed as floating-point num-
bers, instead of restricting them to integers. Throughout the Java 2D API, you’ll see
methods that accept float values instead of int values.

The distinction between user space and device space is valid even when we are
just drawing to the relatively low resolution screen. By default, when drawing to a
screen or image, user space is the same as device space. However, the Graphics2D
class defines methods that allow you to trivially modify the default coordinate sys-
tem. For example, you can move the origin of the coordinate system with the
translate() method. The following code draws two identical lines at identical
positions. The first line is drawn in the default coordinate system, while the sec-
ond is drawn after calling translate():

Graphics2D g; // Assume this is already initialized
g.drawlLine(100, 100, 200, 200); // Draw in the default coordinate system
g.translate(100.0, 100.0); // Move the origin down and to the right
g.drawlLine(0, 0, 100, 100); // Draw the same Tine relative to new origin

The translate() method is not all that interesting, and, in fact, a version of it
existed even before Java 2D. The Graphics2D class also defines scale(), rotate(),
and shear() methods that perform more powerful transformations of the coordi-
nate system.

By default, when drawing to the screen, one unit in user space corresponds to one
pixel in device space. The scale() method changes this. If you scale the coordi-
nate system by a factor of 10, one unit of user space corresponds to 10 pixels in
device space. Note that you can scale by different amounts in the X and Y dimen-
sions. The following code draws the same simple line from 100, 100 to 200, 200
(using the default origin):

g.scale(2.0, 2.0);
g.drawlLine(50, 50, 100, 100);

You can combine transformations. For example, suppose you are drawing into a
500-pixel-by-500-pixel window and you want to have the origin at the bottom left
of the window, with Y coordinates increasing as they go up, rather than as they go
down. You can achieve this with two simple method calls:

g.translate(0.0, 500.0); // Move the origin to the Tower left
g.scale(1.0, -1.0); // Flip the sign of the coordinate system

rotate() is another powerful coordinate system transformation method. You spec-
ify an angle in radians, and the method rotates the coordinate system by that
amount. The direction of rotation is such that points on the positive X axis are
rotated in the direction of the positive Y axis. Although you typically do not want
to leave your coordinate system in a permanently rotated state, the rotate()
method is useful for drawing rotated text or other rotated graphics. For example:

g.rotate(Math.P1/4); // Rotate 45 degrees
g.drawString("Hello world", 300, 300) // Draw text in this rotated position
g.rotate(-Math.P1/4); // Rotate back to normal

72 Chapter 4 — Grapbics with AWT and Java 2D

Note that these calls to rotate() rotate the coordinate system about the origin.
There is also a three-argument version of the method that rotates about a specified
point, which can often be more useful.

The final transformation method defined by Graphics2D is shear(). The effects of
this method are not as intuitive as the methods we’ve already discussed. After a
call to shear(), any rectangles you draw appear skewed, as parallelograms.

Any calls you make to translate(), scale(), rotate(), and shear() have a
cumulative effect on the mapping from user space to device space. This mapping
is encapsulated in a java.awt.geom.AffineTransform object and is one of the
graphics attributes maintained by a Graphics2D object. You can obtain a copy of
the current transform with getTransform(), and you can set a transform directly
with setTransform(). setTransform() is not cumulative. It simply replaces the
current user-to-device-space mapping with a new mapping:

AffineTransform t = g.getTransform(); // Save the current transform

g.rotate(theta); // Change the transform
g.drawRect (100, 100, 200, 200); // Draw something
g.setTransform(t); // Restore the transform to its old state

AffineTransform is used in a number of places in the Java 2D API; we'll discuss it
in more detail later in this chapter. Once you understand the details and some of
the math behind this class, you can define AffineTransform objects of your own
and pass them to setTransform().

Another use of AffineTransform objects is with the transform() method of
Graphics2D. This method modifies the current coordinate system, just as trans-
late(), scale(), rotate(), and shear() do. transform() is much more general,
however. The AffineTransform object you pass to it can represent any arbitrary
combination of translation, scaling, rotation, and shearing.

Shapes

One of the most fundamental abstractions in Java 2D is the java.awt.Shape. This
interface describes a shape, obviously. But note that the Java 2D definition of a
shape does not require the shape to enclose an area—a Shape object may repre-
sent an open curve such as a line or parabola just as easily as it represents a
closed curve such as a rectangle or circle. If an open curve is passed to a graphics
operation (such as fi11()) that requires a closed curve, the curve is implicitly
closed by adding a straight-line segment between its end points. A Java 2D shape
is sometimes referred to as a “path,” because it describes the path a pen would
follow to draw the shape.

The Java 2D Graphics2D class defines some very fundamental operations on Shape
objects: draw() draws a Shape; fi11() fills a Shape; c1ip() restricts the current
drawing region to the specified Shape; hit() tests whether a given rectangle falls
in or on a given shape. In addition, the AffineTransform class has methods that
allow Shape objects to be arbitrarily scaled, rotated, translated, and sheared.
Because the Shape interface is used throughout Java 2D, these fundamental opera-
tions on shapes are quite powerful. For example, the individual glyphs of a font

Shapes 73

o
S
Ss
=
SH

A

can be represented as Shape objects, meaning they can be individually scaled,
rotated, drawn, filled, and so on.

Java 2D contains a number of predefined Shape implementations, many of which
are part of the java.awt.geom package. Note that some basic geometric shapes
have multiple Shape implementations, where each implementation uses a different

data type to store coordinates. Table 4-7 lists these predefined Shape implemen-
tations.

Table 4-7: Java 2D Shape Implementations

Shape Implementations

Rectangle java.awt.Rectangle,
java.awt.geom.Rectangle2D.Float,
java.awt.geom.Rectangle2D.Double

Rounded rectangle java.awt.geom.RoundRectangle2D.Float,
java.awt.geom.RoundRectangle2D.Double

Ellipse (and circle) java.awt.geom.E11ipse2D.Float,
java.awt.geom.E11ipse2D.Double

Polygon java.awt.Polygon

Line segment java.awt.geom.Line2D.Float,

java.awt.geom.Line2D.Double

Arc (ellipse segment) java.awt.geom.Arc2D.Float,
java.awt.geom.Arc2D.Double

Bezier curve (quadratic) | java.awt.geom.QuadCurve2D.Float,
java.awt.geom.QuadCurve2D.Double
Bezier curve (cubic) java.awt.geom.CubicCurve2D.Float,
Jjava.awt.geom.CubicCurve2D.Double

To draw a circle inside a square, for example, you can use code like this:

Graphics2D g; // Initialized elsewhere
Shape square = new Rectangle2D.Float(100.0f, 100.0f, 100.0f, 100.0f);
Shape circle = new E1Tipse2D.Float(100.0f, 100.0f, 100.0f, 100.0f);
g.draw(square);

g.draw(circle);

In addition to these basic predefined shapes, the java.awt.geom package also con-
tains two powerful classes for defining complex shapes. The Area class allows you
to define a shape that is the union or intersection of other shapes. It also allows
you to subtract one shape from another or define a shape that is the exclusive OR
of two shapes. For example, the following code allows you to fill the shape that
results from subtracting a circle from a square:

Graphics2D g; // Initialized elsewhere

Shape square = new Rectangle2D.Float(100.0f, 100.0f, 100.0f, 100.0f);

Shape circle = new E1Tipse2D.Float(100.0f, 100.0f, 100.0f, 100.0f);

Area difference = new Area(square);

difference.subtract(circle);
g.fill(difference);

74 Chapter 4 — Grapbics with AWT and Java 2D

The GeneralPath class allows you to describe a Shape as a sequence of line seg-
ments and Bezier curve segments. You create such a general shape by calling the
moveTo(), TineTo(), quadTo(), and curveTo() methods of GeneralPath. General-
Path also allows you to append entire Shape objects to the path you are defining.

Bezier Curves

A Bezier curve is a smooth curve between two end points, with a shape described
by one or more control points. Java 2D makes extensive low-level use of quadratic
and cubic Bezier curves. A quadratic Bezier curve uses one control point, while a
cubic Bezier curve uses two control points. There is some moderately complex
mathematics behind Bezier curves, but for most Java 2D programmers, an intuitive
understanding of these curves is sufficient. Figure 4-1 shows three quadratic and
three cubic Bezier curves and illustrates how the position of the control points
affects the shape of the curve.

o SO

a]

m I Endpoint [_] Control point Tangent line — Bezier Curve

Figure 4-1: Bezier curves

How Shapes Are Implemented

Java 2D can perform some very general operations on arbitrary Shape objects. In
order to make this possible, the Shape interface exposes a quite general descrip-
tion of the desired shape. For example, the getBounds() and getBounds2D() meth-
ods return a bounding box for the shape. The various contains() methods test
whether a given point or rectangle is enclosed by the shape. The intersects()
methods test whether a given rectangle touches or overlaps the shape. These
methods enable clipping, hit detection, and similar operations.

The getBounds(), contains(), and intersects() methods are important, but they
do not say anything about how to draw the shape. This is the job of getPathIter-
ator(), which returns a java.awt.geom.PathIterator object that breaks a Shape
down into a sequence of individual line and curve segments that Java 2D can han-
dle at a primitive level. The PathIterator interface is basically the opposite of
GeneralPath. While GeneralPath allows a Shape to be built of line and curve seg-
ments, PathIterator breaks a Shape down into its component line and curve
segments.

Shape defines two getPathIterator() methods. The two-argument version of this
method returns a PathIterator that describes the shape in terms of line segments
only (i.e., it cannot use curves). This method is usually implemented with a

Shapes 75

o
S
Ss
=
SH

A

java.awt.geom.FlatteningPathIterator, an implementation of PathIterator that
approximates the curved segments in a given path with multiple line segments.
The flatness argument to getPathIterator() is a measure of how closely these
line segments must approximate the original curve segments, where smaller values
of flatness imply a better approximation.

Stroking Lines

One of the new graphic attributes defined by Java 2D is the java.awt.Stroke; it is
set with the setStroke() method of a Graphics2D object. The Stroke attribute is
used by Java 2D whenever it draws a line. Conceptually, the Stroke describes the
pen or brush that is used to draw the line: it controls all line-drawing attributes,
such as line width and dash pattern. Java 2D defines a single implementation of
the Stroke interface, java.awt.BasicStroke, that is suitable for almost all line
drawing needs.

BasicStroke

A BasicStroke object encapsulates several different line drawing attributes: the
line width, the dash pattern, the end cap style for the line, and the join style for
the line. You specify values for these attributes when you call the BasicStroke()
constructor. BasicStroke objects are immutable, so that they can be safely cached
and shared. This means, however, that they don’t have set() methods that allow
you to change the attribute values.

The line-width attribute specifies (obviously) the width of the line. This line width
is measured in units of user space. If you are using the default coordinate system,
then user space equals device space, and line widths are measured in pixels. For
backward compatibility, the default line width is 1.0. Suppose you want to draw
the outline of a circle of radius 100, using a line that is 10 units wide. You can
code it like this:

Graphics2D g; // Initialized elsewhere
Shape circle = new ElTipse2D.Float(100.0f, 100.0f, // Upper-left corner
300.0f, 300.0f); // Width and height
g.setStroke(new BasicStroke(10.0f)); // Set 1ine width
g.draw(circle); // Now draw it

The end-cap attribute specifies how the ends of lines are drawn, or, more specifi-
cally, what type of end caps are placed at the end of lines. There is no analogous
line attribute in AWT prior to Java 2D, as end caps are necessary only for lines that
are more than one-pixel wide. If you are not familiar with end caps, look at Figure
4-2, as they are best explained visually. This figure shows what lines look like
when drawn with each of the three possible end cap styles.

The BasicStroke.CAP_BUTT constant specifies that the line should have no end
cap. The CAP_SQUARE constant specifies a rectangular end cap that projects beyond
the end point of the line by a distance equal to half of the line width; this is the
default value for the end-cap attribute. CAP_ROUND specifies a semicircular end cap,
with a radius equal to half of the line width.

76 Chapter 4— Graphics with AWT and Java 2D

Figure 4-2: BasicStroke end-cap styles

The join-style attribute is similar to the end-cap attribute, except that it applies to
the vertex where two lines join, rather than to the end of a line. Like the end-cap
attribute, the join-style attribute is necessary only with wide lines and is best
understood visually. Figure 4-3 illustrates this BasicStroke attribute. Note that the
join style attribute is used only when drawing a shape that includes multiple line
segments, not when two intersecting lines are drawn as separate shapes.

Aj\\ AA A//\\

JOIN_BEVEL JOIN_MITER JOIN_ROUND

Figure 4-3: BasicStroke join styles

The default join style is a mitered join, represented by the Basic-
Stroke.JOIN_MITER constant. This value specifies that lines are joined by extend-
ing their outer edges until they meet. The JOIN_BEVEL constant specifies that lines
are joined by drawing a straight line between the outside corners of the two lines,
while JOIN_ROUND specifies that the vertex formed by the two lines should be
rounded, with a radius of half the line width. To use cap style and join style, you
can use code like this:

g.setStroke(new BasicStroke(5.0f, // Line width
BasicStroke.CAP_ROUND, // End-cap style
BasicStroke.JOIN_ROUND)); // Vertex join style

When you use the JOIN_MITER style to join two lines that have a small angle
between them, the miter can become quite long. To avoid this situation, Basic-
Stroke includes another attribute known as the miter limit. If the miter would be
longer than this value times half of the line width, it is truncated. The default miter
limit is 10.0.

The dash pattern of a line is actually controlled by two attributes: the dash array
and the dash phase. The dash array is a float[] that specifies the number of units
to be drawn followed by the number of units to be skipped. For example, to draw

Stroking Lines 77

o
S
Ss
=
SH

L

a dashed line in which both the dashes and spaces are 25 units long, you use an
array like:

new float[] { 25.0f, 25.0f }

To draw a dot-dash pattern consisting of 21 on, 9 off, 3 on, and 9 off, you use this
array:

new float[] { 21.0f, 9.0f, 3.0f, 9.0f }

Figure 4-4 illustrates these dashed-line examples. The end-cap style you specify is
applied to each dash that is drawn.

IS I IS I IS § . {2],9,3,9}

- . D s D . . dUShphuse:]O

Figure 4—4: BasicStroke dash patterns

If, for some reason, you want to draw a dashed line but do not want your line to
begin at the beginning of the dash pattern, you can specify the dash-phase
attribute. The value of this attribute specifies how far into the dash pattern the line
should begin. Note, however, that this value is not an integer index into the dash
pattern array. Instead, it is a floating-point value that specifies a linear distance.

To draw a dashed line, you must use the most complicated BasicStroke() con-
structor and specify values for all attributes. For example:

Stroke s = new BasicStroke(4.0f, // Width
BasicStroke.CAP_SQUARE, // End cap
BasicStroke.JOIN_MITER, // Join style

10.0f, // Miter limit
new float[] {16.0f,20.0f}, // Dash pattern
0.0f); // Dash phase

How a Stroke Works

The BasicStroke class is sufficient for most drawing needs, so it is unlikely that
you will ever need to implement the Stroke interface yourself. Nevertheless, the
Stroke interface defines only a single createStrokedShape() method, and it is
instructive to understand what this method does.

In Java 2D, filling an area is a more fundamental operation than drawing (or
stroking) the outline of a shape. The Stroke object is the link between the two
operations; it makes it possible to implement the draw() method using the fi11()
method.

78 Chapter 4 — Grapbics with AWT and Java 2D

Recall the code that we just used to draw the outline of a circle. The draw()
method has to draw the outline of the circle using only the fi11() method. If it
simply calls fi11() on the circle, it ends up creating a solid disk, not the outline of
a circle. So instead, draw() first passes the circle to the createStrokedShape()
method of the BasicStroke object we've specified. createStrokedShape() returns
a new shape: a circle of radius 105, minus a concentric circle of radius 95. The
interior of this shape is the area between the two circles, a region that always has
a width of 10 units. Now draw() can call fi11() on this stroked shape to draw the
10-unit-wide outline of the original circle. (We’ll discuss the fi11() operation and
the graphics attributes that it uses in the next section.)

Paint

As we’ve just seen, the Java 2D Stroke attribute turns the task of drawing a line
into the task of filling an area. Prior to Java 2D, an area could be filled only with a
solid color, specified by passing a Color object to the setColor() method of a
Graphics object. In Java 2D, this color attribute has been generalized to a paint
attribute: you pass a Paint object to the setPaint() method of a Graphics2D
object. The specified Paint object is used to generate the pixel values used to fill
areas.

The most common way to fill an area, however, is still to use a solid color. So
another change in Java 2D is that the java.awt.Color class now implements the
Java.awt.Paint interface. All Color objects are perfectly legal Paint objects and
can be used to draw lines and fill areas with a solid color.

Java 2D also defines two more complex Paint implementations. The java.awt.-
TexturePaint class uses a tiled image for its filling operations. The image is speci-
fied as a java.awt.image.BufferedImage. This is a Java 2D simplification of the
java.awt.Image class; we'll discuss it in more detail later in the chapter. When you
create a TexturePaint object, you must also specify a java.awt.geom.Rectangle2D
object (java.awt.Rectangle is a kind of Rectangle2D). The purpose of this rectan-
gle is to specify an initial position and horizontal and vertical repetition intervals
for the tiled image. Typically, you can just specify a rectangle based at 0,0 with the
same width and height as the image. If you are not using the default coordinate
system, things are a little trickier, since image dimensions are always measured in
pixels, but you must specify your rectangle dimensions in user-space coordinates.

The java.awt.GradientPaint class fills an area with a color gradient. The fill color
varies linearly between a color C1 and a color C2, along the line between point P1
and point P2. You may also specify whether the gradient is cyclic or acyclic. If the
gradient is cyclic, the line between P1 and P2 is extended infinitely in both direc-
tions, and the color cycles smoothly along this line from C1 to C2 and back to C1
again. If the gradient is defined to be acyclic, however, the color remains fixed at
C1 beyond P1 and at C2 beyond P2.

Paint 79

o
S
Ss
=
H

A

Here’s an example of creating and using a GradientPaint:

Graphics2D g; // Initialized elsewhere

Paint p = new GradientPaint(0, 0, Color.red, 100, 100, Color.pink, true);
g.setPaint(p);

g.fillRect(0, 0, 300, 300);

Both TexturePaint and GradientPaint objects are immutable: they have no set()
methods that allow their attributes to be changed. This is important because it
means that a Graphics2D object can use a Paint object without worrying about its
attributes being changed concurrently (i.e., the Graphics2D object does not have to
make a private copy of its Paint attribute).

Blending Colors with AlphaComposite

Although a Paint object is used to generate the colors used when drawing and fill-
ing with Java 2D, these colors are not always the final colors that end up displayed
on the screen. Another Java 2D attribute, the Composite object, controls the way in
which the colors being drawn combine with the colors that are already visible on
the drawing surface.

A compositing operation combines the pixels of your drawing (the source pixels)
with the pixels of the drawing surface (the destination pixels) to produce a new,
composite set of pixels. Prior to Java 2D, you could use the setXORMode() method
of a Graphics object to produce a simple and very specialized kind of compositing
operation. Java 2D supports generalized compositing through the java.awt.Com-
posite interface and its implementation, java.awt.AlphaComposite.

AlphaComposite performs compositing based on alpha-transparency, letting you
paint with partially transparent colors that allow some of the background color to
show through. It also supports various Porter-Duff compositing rules, as we’ll dis-
cuss shortly.

Transparent Colors and the Alpha Channel

Before we can discuss the AlphaComposite class, you need to understand a bit
about the notion of transparent colors. With most low-end graphics systems, such
as the AWT before Java 2D, colors and images are opaque. When a line is drawn,
a shape is filled, or an image is rendered, that item totally obscures whatever pix-
els it is drawn on top of. An image is always represented as a rectangular array of
pixels. Sometimes, however, we want to use an image to display a nonrectangular
graphic. To allow this, some image formats support the notion of a transparent
color. When the image is drawn, the background shows through whatever pixels
are marked as transparent. Transparency is indicated with a bit mask: for each
pixel in the image, the graphics system uses one extra bit of information to specify
whether the pixel is transparent or opaque.

Bit mask transparency is an on-or-off thing: a pixel is either fully transparent or
fully opaque. The notion of transparency can be generalized, however, to include
translucent pixels. Instead of simply associating 1 extra bit of data with each pixel,
the graphics system can associate 4, 8, 16, or some other number of bits with each

80 Chapter 4 — Graphics with AWT and Java 2D

pixel. This leads to 16, 256, or 65,536 possible levels of translucency, ranging from
fully transparent (0) to fully opaque (16, 256, or 65536). When you think about it,
these transparency bits are really no different than the bits we use to represent the
red, green, and blue components of each pixel. The transparency bits are called
the alpha channel, while the color bits are called the red, green, and blue chan-
nels. When you are working with pixels represented by red, green, and blue com-
ponents, you are said to be using the RGB color space.

Transparent and translucent pixels do not actually exist. Inside a monitor, there are
red, green, and blue electron guns (or red, green, and blue LCD elements), but
there is no electron gun for the alpha channel. At the hardware level, a pixel is on
or it is off; it cannot be partially on. In order to give the appearance of trans-
parency, the graphics system (Java 2D, in this case) has to blend (or composite)
transparent pixels with the pixels that are beneath them. When a source color Cs
that has a transparency of « is painted over a destination color Cd, the two colors
are combined to produce a new destination color Cd' with an equation like the
following:

Cd' = Cs*a + Cd*(1 - o)

For the purposes of this computation, the alpha value and the values of the red,
green, and blue channels are treated as floating-point numbers between 0.0 and
1.0, rather than 8- or 16-bit integers. The equation is shorthand: the computation is
actually performed independently on each of the red, green, and blue channels. If
Cs is fully opaque, o is 1 and Cd' is simply Cs. On the other hand, if Cs is fully
transparent, « is 0 and Cd' is simply Cd. If & is somewhere between fully opaque
and fully transparent, the resulting color Cd' is a combination of the source and
destination colors. The remarkable fact about combining colors with this simple
mathematical formula is that the resulting blended color is actually a visually con-
vincing simulation of translucent colors.

Drawing with Translucent Colors

You create an AlphaComposite object by calling its static getInstance() factory
method. (A factory method is provided instead of a constructor so that the Alpha-
Composite class can cache and share immutable AlphaComposite objects.)
getInstance() takes two arguments: a compositing mode and a float value
between 0.0 and 1.0 that specifies an alpha-transparency value. The default Com-
posite object used by a Graphics2D object is an AlphaComposite created like this:

AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 1.0f);

The AlphaComposite.SrcOver constant also refers to this default AlphaComposite
object.

The SRC_OVER compositing rule places the source color over the destination color
and blends them based on the transparency of the source, using the formula
shown in the previous section. I'll explain this rule and the others supported by
AlphaComposite in more detail shortly. For now, you just need to know that
SRC_OVER is the most commonly used compositing rule and has the most intuitive
behavior.

Blending Colors with AlphaComposite 81

o
S
Ss
=
H

A

If you use the default AlphaComposite attribute of a Graphics2D object, you can
achieve color-blending effects by drawing with a translucent color. In Java 2D, the
Color class includes new constructors that allow you to create translucent colors
by including an alpha channel. For example, you can create and use a 50% trans-
parent red color with code like the following:

Graphics2D g; // Initialized elsewhere
Color ¢ = new Color(1.0f, 0.0f, 0.0f, 0.5f); // Red with alpha = 0.5
g.setPaint(c); // Use this translucent color
g.fiT1Rect (100, 100, 100, 100); // Draw something with it

This code draws a translucent red rectangle over whatever background previously
existed on the drawing surface represented by the Graphics2D object. As an aside,
it is worth noting that you can achieve interesting effects by using the Gradient-
Paint class to define color gradients between colors with different levels of trans-
parency.

Now suppose that you want to draw a complex, multicolor figure, and you want
to make it translucent. While you could allocate a bunch of translucent colors and
draw with them, there is an easier way. As we already discussed, when you create
an AlphaComposite object, you specify an alpha value for it. The alpha value of
any source pixel is multiplied by the alpha value associated with the AlphaCompos-
ite currently in effect. Since the default AlphaComposite object has an alpha value
of 1.0, this object does not affect the transparency of colors. However, by setting
the alpha value of an AlphaComposite object, we can draw using opaque colors
and opaque images and still achieve the effect of translucency. For example,
here’s another way to draw a translucent red rectangle:

Graphics2D g; // Initialized elsewhere
Color ¢ = new Color(1.0f, 0.0f, 0.0f); // Opaque red; alpha = 1.0
g.setPaint(c); // Use this opaque color

// Get and install an AlphaComposite to do transparent drawing
g.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f);

g.fi11Rect (100, 100, 100, 100); // Start drawing with it

The AlpbaComposite Compositing Rules

The SRC_OVER compositing rule draws a possibly translucent source color over the
destination color. This is what we typically want to happen when we perform a
graphics operation. But the AlphaComposite object actually allows colors to be
combined according to seven other rules as well.

Before we consider the compositing rules in detail, there is an important point you
need to understand. Colors displayed on the screen never have an alpha channel.
If you can see a color, it is an opaque color. The precise color value may have
been chosen based on a transparency calculation, but, once that color is chosen,
the color resides in the memory of a video card somewhere and does not have an
alpha value associated with it. In other words, with on-screen drawing, destination
pixels always have alpha values of 1.0.

The situation is different when you are drawing into an off-screen image, however.
As you'll see when we consider the Java 2D BufferedImage class later in this

82 Chapter 4 — Graphics with AWT and Java 2D

chapter, you can specify the desired color representation when you create an off-
screen image. By default, a BufferedImage object represents an image as an array
of RGB colors, but you can also create an image that is an array of ARGB colors.
Such an image has alpha values associated with it, and when you draw into the
images, the alpha values remain associated with the pixels you draw.

This distinction between on-screen and off-screen drawing is important because
some of the compositing rules perform compositing based on the alpha values of
the destination pixels, rather than the alpha values of the source pixels. With on-
screen drawing, the destination pixels are always opaque (with alpha values of
1.0), but with off-screen drawing, this need not be the case. Thus, some of the
compositing rules only are useful when you are drawing into off-screen images
that have an alpha channel.

To overgeneralize a bit, we can say that when you are drawing on-screen, you
typically stick with the default SRC_OVER compositing rule, use opaque colors, and
vary the alpha value used by the AlphaComposite object. When working with off-
screen images that have alpha channels, however, you can make use of other
compositing rules. In this case, you typically use translucent colors and translucent
images and an AlphaComposite object with an alpha value of 1.0.

The compositing rules supported by AlphaComposite are a subset of the classic
Porter-Duff compositing rules.” Each of the rules describes a way of creating a
new destination color Cd' by combining a source color Cs with the existing desti-
nation color Cd. The colors are combined according to a general formula, which is
applied independently to each of the red, green, and blue values of the color:

Cd' = Cs*Fs + Cd*Fd

In this formula, Fs and Fd are the fractions of the source and destination colors
used in the compositing operation, respectively. Each of the eight compositing
rules uses a different pair of values for Fs and Fd, which is what makes each rule
unique.

As I already noted, with certain off-screen images, destination pixels can have
alpha values. The new alpha value of a destination pixel is computed in the same
way as the new color value of that pixel (i.e., using the same fractions). If Ad is the
destination alpha value and As is the source alpha value, the resulting alpha value
is computed like this:

Ad' = As*Fs + Ad*Fd

Table 4-8 lists the compositing rules supported by AlphaComposite, using the
names defined by that class. Don’t take the names of these constants at face value;
they can be misleading. The rule names that include the words IN and OUT make
the most sense if you consider the case of a 1-bit alpha channel. In this case, the
alpha channel is simply a bit mask, and an image has an inside where it is fully
opaque and an outside where it is fully transparent. In the more general case, with
a multibit alpha channel, these compositing operations behave more generally

* These rules were described originally in the paper “Compositing Digital Images,” by Porter and Dulff,
published in SIGGRAPH, vol. 84.

Blending Colors with AlphaComposite 83

o
S
Ss
=
H

A

than their names imply. These rules also make the most sense when copying one
image into another; they typically are not useful for drawing lines, text, and so on.

Table 4-8 includes the Fs and Fd values, used in the preceding formulas that
define each of the compositing rules. These values are specified in terms of As, the
alpha value of the source pixel, and Ad, the alpha value of the destination pixel.
Note that the values of Fs and Fd listed here are for illustrative purposes, to help
you understand the compositing operations. The actual formulas for computing
composited colors depends on whether the source and destination color values
have been premultiplied by their alpha values.

Table 4-8: AlpbaComposite Compositing Rules
Rule Fs Fd Description

SRC_OVER | As 1-As | By far the most commonly used compositing rule.
It draws the source on top of the destination. The
source and destination are combined based on the
transparency of the source. Where the source is
opaque, it replaces the destination. Where the
source is transparent, the destination is unchanged.
Where the source is translucent, the source and
destination colors are combined so that some of
the destination color shows through the translucent
source.

DST_OVER | 1-Ad | Ad This rule draws the source based on the
transparency of the destination, so that the source
appears to be underneath the destination. Where
the destination is opaque, it is left unchanged.
Where the destination is fully transparent, the
source is drawn. Where the destination is
translucent, the source and destination colors are
combined so that some of the source color shows
through the translucent destination.

SRC 1.0 0.0 The source replaces the destination color and its
alpha channel with the source color and its alpha
channel. In other words, the rule does a simple
replacement, ignoring the destination and doing no
color blending at all.

CLEAR 0.0 0.0 This rule ignores both the source and the
destination. It clears the destination by setting it to

a fully transparent black.

84 Chapter 4 — Graphics with AWT and Java 2D

Table 4-8: AlphaComposite Compositing Rules (continued)
Rule Fs Fd Description

SRC_IN Ad 0 This rule draws the source color using the
transparency of the destination. Where the
destination is fully opaque, it is replaced with an
opaque version of the source. Where the
destination is fully transparent, it remains fully
transparent. Where the destination is translucent, it
is replaced with an equally translucent version of
the source. The color of the destination is never
blended with the color of the source.

SRC_OUT 1-Ad 0 This is the inverse of the SRC_IN rule. It draws the
source color using the inverse of the destination
transparency. Where the destination is opaque, it
becomes transparent. Where the destination is
transparent, it is replaced with an opaque version
of the source. Where the destination is translucent,
it is replaced with an inversely translucent version
of the source.

DST_IN 0 As This rule ignores the color of the source, but

o
S
Ss
=
H

A

modifies the destination based on the transparency

of the source. Where the source is transparent, the
destination becomes transparent. Where the source
is opaque, the destination is unmodified. Where
the source is translucent, the destination becomes
correspondingly translucent.

DST_OUT 0 1-As | This rule is the inverse of the DST_IN rule. It
ignores the source color but modifies the
destination based on the inverse of the source
transparency. Where the source is opaque, the
destination becomes transparent. Where the
source is transparent, the destination is left
unmodified. Where the source is translucent, the
destination is given the inverse translucency.

Finally, note that AlphaComposite also predefines constant AlphaComposite objects
that use each of these rules along with a built-in alpha value of 1.0. For example,
the AlphaComposite.DstOver object uses the AlphaComposite.DST_OVER com-
positing rule with an alpha value of 1.0. This object is the same as the object cre-
ated by:

AlphaComposite.getInstance(ATphaComposite.DST_OVER, 1.0f)

Remember that if you use an AlphaComposite object with an alpha value other
than the default 1.0, that alpha value is used to make the source colors more trans-
parent before the rest of the compositing operation occurs.

Blending Colors with AlphaComposite 85

Rendering Hints

Another graphics attribute used by the Graphics2D class is java.awt.Rendering-
Hints. This class is a mapping (a java.util.Map) from a set of rendering hint
names to a set of rendering hint values. Unlike with other attributes, Graphics2D
defines more than one method to set the rendering hints attribute. setRendering-
Hints() specifies a new set of hints that replaces the old set of hints, while
addRenderingHints() adds a set of hints to the existing set and setRendering-
Hint () sets the value for a single hint in the current set of hints.

Rendering hints are suggestions to Java 2D about how it should perform its ren-
dering. The RenderingHints class defines a number of constants whose names
begin with KEY_. These constants represent the kind of hints you can give. The
class also defines a number of constants whose names begin with VALUE_. These
are the legal values for the various hints. The names of the VALUE constants make
it clear with which hint KEY constant each value is associated.

The purpose of the hints is to allow you to request that Java 2D turn a particular
feature, such as antialiasing, on or off. In addition, the hints allow you to suggest
what kind of speed versus quality trade-offs Java 2D should make. Remember that
these are hints and suggestions to Java 2D, not commands. Not all Java 2D imple-
mentations support all the hints, and different implementations have different
default values for the hints. Furthermore, the meanings of the hints are not pre-
cisely defined, so different implementations may interpret the hints differently.

Suppose that you are writing an application that draws complex graphics. For slow
systems, you might want to support a draft mode that draws graphics quickly at
the expense of high-quality output. Your code might look like this:

public void paint(Graphics graphics) {
Graphics2D g = (Graphics2D)graphics;
if (draftmode) {
g.setRenderingHint(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_SPEED);
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_OFF);
g.setRenderingHint (RenderingHints.KEY_TEXT_ANTIALIASING,
RenderingHints.VALUE_TEXT_ANTIALIAS_OFF);
g.setRenderingHint(RenderingHints.KEY_FRACTIONALMETRICS,
RenderingHints.VALUE_FRACTIONALMETRICS_OFF);
g.setRenderingHint(RenderingHints.KEY_COLOR_RENDERING,
RenderingHints.VALUE_COLOR_RENDER_SPEED);
g.setRenderingHint (RenderingHints.KEY_DITHERING,
RenderingHints.VALUE_DITHER_DISABLE);

Fonts and Text

As we've seen, fonts are represented in AWT by the java.awt.Font class. While
you can continue to use fonts in Java 1.2 exactly as you did in Java 1.1, Java 2D
has added a number of powerful new features related to fonts and text rendering
that you may want to take advantage of.

86 Chapter 4— Graphics with AWT and Java 2D

Available Fonts

Java 1.0 and Java 1.1 support only a small set of fonts, specified by logical font
names. Although these logical fonts are guaranteed to be available on every plat-
form, they are not guaranteed to look the same on every platform. In addition, the
lack of variety severely limits the design choices available to developers. The fonts
and their logical names were listed earlier in Table 4-3.

Java 1.2 allows an application to use any font installed on the native system and
refer to that font by its physical font name, instead of a logical font name. A physi-
cal font name is the actual name of a font, such as “Century Gothic” or “Lucida
Sans Bold.” To request a specific font, simply pass its physical name to the Font()
constructor. The Font() constructor always returns a valid Font object, even if the
font you have requested does not exist. If you need to check whether you got the
font you requested, call the getFontName() method of the returned font.

If you want to be sure that a font exists on the host system before attempting to
use it, you should first query the system to find out what fonts are installed. You
can do this with methods of the java.awt.GraphicsEnvironment object. The code
looks like this:

GraphicsEnvironment env = GraphicsEnvironment.getlLocalGraphicsEnvironment();
Font[] allfonts = env.getAllFonts();

The getAl1Fonts() method returns an array of Font objects that represents all of
the fonts installed on the system. Each Font object in this array represents a font
that is one point high, so you have to scale the font (using deriveFont() as
explained shortly) before using it. Also, in the initial release of Java 1.2 at least, the
getAl1Fonts() method can take prohibitively long to return (65 seconds on my
Windows 95 system).

Another GraphicsEnvironment method, getAvailableFontFamilyNames(), returns
an array of font family names instead of an array of Font objects:

GraphicsEnvironment env = GraphicsEnvironment.getlLocalGraphicsEnvironment();
String[] familynames = env.getAvailableFontFamilyNames();

This method returns relatively quickly and is therefore safer to call than getA11-
Fonts(). Note that this method returns font family names (e.g., “Lucida Sans”), not
actual font face names (e.g., “Lucida Sans Oblique”). The good news is that you
can get away with specifying a font family name instead of a font face name when
you call the Font() constructor.”

Font Attributes

In Java 1.2, the Font class has a new constructor that is passed a java.util.Map
object that contains a set of font attributes. These attributes specify the desired
characteristics of the font; the Font() constructor tries to return a Font that
matches the attributes. Typically, you wuse a Jjava.util.Hashtable or
Java.util.Hashmap to hold your attribute values. The attribute names or keys are

* A bug in Java 1.2, 1.2d, and 1.2.2 prevents the Font() constructor from working with any nonlogical
font name unless you have previously queried the list of available fonts or font family names.

Fonts and Text 87

o
S
Ss
=
H

A

constants defined in java.awt.font.TextAttribute. The important constants are
FAMILY, SIZE, WEIGHT, and POSTURE. The TextAttribute class also defines com-
monly used values for the WEIGHT and POSTURE attributes.

Transforming Fonts

The Font class defines several deriveFont() methods that allow you to use a Font
object to create related Font objects. deriveFont() is typically used to return a
new Font object that represents an existing font at a different size or in a different
style. For example:

GraphicsEnvironment env = GraphicsEnvironment.getlLocalGraphicsEnvironment();
String[] familynames = env.getAvailableFontFamilyNames();

Font regularFont = new Font("Century Schoolbook", Font.PLAIN, 12);

Font bigFont = regularFont.deriveFont(18.0f);

Font boldFont = regularfont.deriveFont(Font.BOLD);

Font bigBoldFont = regularFont.deriveFont(Font.BOLD, 24.0f);

When you are passing a point size to deriveFont(), be sure to explicitly specify a
float value, such as the 18.0f constant in the preceding code, so that you do not
inadvertently call the version of deriveFont() that takes an integer-style constant.

You can also derive a transformed version of a Font object by passing in an arbi-
trary java.awt.geom.AffineTransform object. This technique allows you to arbi-
trarily rotate or skew any font, as we’ll discuss later in the chapter.

Text-Rendering Hints

The java.awt.RenderingHints class defines two hints that apply particularly to
text drawing. The first controls antialiasing. Antialiasing is a technique used to
make the jagged edges of shapes, such as the glyphs of a font, look smoother. It is
implemented using translucent colors and compositing: when the edge of a shape
only partially covers a pixel, the color used to draw that pixel is given an alpha-
transparency value that corresponds to the amount of coverage. If a fully covered
pixel is drawn with an opaque color, a pixel that is only one-quarter covered is
drawn with an alpha value of .25. As you can imagine, antialiasing can be compu-
tationally intensive. However, the smoothing effect it achieves is significant and is
particularly useful when drawing small amounts of text at large point sizes.

The first text-related rendering hint simply requests antialiasing for text. If you
want text to be antialiased, set the KEY_TEXT_ANTIALIASING hint to VALUE_
TEXT_ANTIALIAS_ON. There is also a more general hint, KEY_ANTIALIASING. Java 2D
defines a separate hint for text so that you can choose independently whether to
request antialiasing for text and other graphics.

The second text-related rendering hint controls the low-level positioning of charac-
ters of text. When Java 2D renders the shape of an individual font glyph, it caches
the rendered pixels for reuse. This technique dramatically speeds up text display.
However, the cached rendering is useful only if the glyph is always drawn at an
integral pixel position. By default, therefore, most implementations of Java 2D
adjust character spacing so that the origin of each character falls evenly on an
integer-pixel coordinate. If you want to be able to position text at arbitrary

88 Chapter 4 — Graphics with AWT and Java 2D

floating-point positions, without forcing each character to the nearest device pixel,
set the KEY_FRACTIONALMETRICS hint to VALUE_FRACTIONALMETRICS_ON. Note, how-
ever, that the visual effect of setting this hint is rarely worth the computational
overhead it requires.

Measuring Text and Fonts

Sometimes you need to obtain measurement information about a font or measure
text before you can draw text. For example, to horizontally center a string of text,
you must be able to figure out how wide it is. To correctly draw multiple lines of
text, you need to be able to query the baseline position and the interline spacing
for the font. In Java 1.0 and Java 1.1, you obtained this information with the Font-
Metrics class (as described near the beginning of the chapter).

Java 2D provides another way to measure the width of a string of text. The Font
class defines several getStringBounds() methods that return the width and height
of a specified string as a Rectangle2D object. These methods allow widths to be
returned as floating-point numbers instead of integers and are therefore more
accurate than the stringWidth() method of FontMetrics. Each variant of get-
StringBounds() allows you to specify a string of text in a different way. What
these methods have in common, however, is that they must all be passed a
FontRenderContext object. This object contains information needed to accurately
measure text. It includes information about whether antialiasing and fractional
metrics are being used, for example. You can obtain an appropriate FontRender-
Context by calling the getFontRenderContext () method of a Graphics2D object.

The Java 1.2 Font class also defines a set of getLineMetrics() methods that are
similar to the getStringBounds() methods. Each method takes a FontRenderCon-
text object and returns a java.awt.font.LineMetrics object that contains various
vertical metrics for the font. LineMetrics is similar to the older FontMetrics,
except that it returns precise float values instead of approximate int values. get-
Height() returns the line height of the font. This value is the sum of the values
returned by getAscent(), getDescent(), and getlLeading(). Ascent is the amount
of space above the baseline, descent is the space below the baseline, and leading
space is the empty interline spacing for the font. Other LineMetrics methods
return values that allow you to correctly underline and strike through text.

The following code shows how you can obtain important metrics for a string of
text, so that you can center it in a box:

Graphics2D g; // Initialized elsewhere

Font f; // Initialized elsewhere

String message = "Hello World!"; // The text to measure and display
Rectangle2D box; // The display box: initialized elsewhere

// Measure the font and the message
FontRenderContext frc = g.getFontRenderContext();
Rectangle2D bounds = f.getStringBounds(message, frc);
LineMetrics metrics = f.getLineMetrics(message, frc);

float width = (float) bounds.getWidth(); // The width of our text
float lineheight = metrics.getHeight(); // Total Tine height
float ascent = metrics.getAscent(); // Top of text to baseline

Fonts and Text 89

o
S
Ss
=
SH

A

// Now display the message centered horizontally and vertically in box
float x0 = (float) (box.getX() + (box.getWidth() - width)/2);

float y0 = (float) (box.getY() + (box.getHeight() - lineheight)/2 + ascent);
g.setFont(f);

g.drawString(message, x0, y0);

The getLineMetrics() methods all require a string to be specified, just as the get-
StringBounds() methods do. This is because a single font may have different font
metrics for glyphs in different writing systems. If you pass a string of Latin text,
you may get a different LineMetrics object than you would if you supplied a
string of Chinese text, for example. If you pass in a string that mixes text from sev-
eral distinct writing systems, you get line metrics for only a prefix of that string.
The LineMetrics.getNumChars() method returns the length of this prefix.

Advanced Text Drawing

The easiest way to display text in an application is to use a Swing component such
as a Jlabel, JTextField, JTextArea, or JEditorPane. Sometimes, however, you
have to draw text explicitly, such as when you are implementing a custom Swing
component.

The easiest way to draw text is with the drawString() method of Graphics or
Graphics2D. drawString() is actually a more complex method than you might
think. It works by first taking the characters of a string and converting them to a
list of glyphs in a font. There is not always a one-to-one correspondence between
characters and glyphs, however, and font encodings usually do not match the Uni-
code encoding used for characters. Next, the method must obtain the measure-
ments of each glyph in the list of glyphs and position it individually. Only after
these steps can the method actually perform the requested string drawing
operation.

If you are drawing a string repeatedly, you can optimize this process by first con-
verting the string of characters into a java.awt.font.GlyphVector.” This converts
characters to glyphs and calculates the appropriate position for each glyph. Then,
to draw the string, you simply pass the resulting glyph vector to the drawGlyph-
Vector() method of a Graphics2D object. Your code might look like this:

Graphics2D g;

Font f;

GlyphVector msg = f.createGlyphVector(g.getFontRenderContext(), "Hello");
g.drawGlyphVector(msg, 100.0f, 100.0f);

This technique is useful only if you expect to be drawing the same string repeat-
edly. The optimization occurs because the string is converted to glyphs only once,
instead of being converted each time you call drawString().

The GlyphVector class has a number of methods that are useful for other pur-
poses. Once you have created a GlyphVector, you can call getOutline() to obtain
a Shape that represents the original string or getGlyphOutline() to get the Shape

* The drawString() method is typically already highly optimized for drawing basic ASCII or Latin-1 text
without antialiasing. Using a GlyphVector may actually slow down the drawing process.

90 Chapter 4 — Graphics with AWT and Java 2D

of a single glyph. You can also call getGlyphMetrics() to obtain a GlyphMetrics
object that contains detailed metrics for an individual glyph.

Two other methods, setGlyphPosition() and setGlyphTransform(), are designed
to let you set the position and transform for individual glyphs. For example, you
might use setGlyphPosition() to increase the interletter spacing of a glyph in a
GlyphVector in order to implement fill-justification. In the initial release of Java
1.2, however, these methods are not implemented. If you want to handle the low-
level layout of glyphs, one approach is to implement your own subclass of the
abstract GlyphVector class.

A GlyphVector object can represent only glyphs from a single font; the default
implementation represents only glyphs that appear on a single line of text. If you
want to represent a single line of multifont text, you can use a java.awt.-
font.TextLayout object. And if you want to work with multiline text, you can use
Java.awt.font.LineBreakMeasurer to break a paragraph of multifont text into
multiple TextLayout objects, each representing a single line of text.

TextlLayout is a powerful class for displaying multifont text. It supports bidirec-
tional text layout, such as when left-to-right English text is mixed with right-to-left
Hebrew or Arabic text or when right-to-left Hebrew letters are mixed with left-to-
right Hebrew numbers. Once you've created a TextlLayout object, you can draw
the text it represents by calling its draw() method, specifying a Graphics2D object
and a position.

The TextlLayout object does more than simply draw text. Once the text is drawn, it
also provides methods that applications can use to allow a user to interact with the
text. If the user clicks on the text, the TextlLayout has a method that allows you to
determine which character was clicked on. If you want to highlight portions of the
text, you can tell the TextLayout the first and last characters to be highlighted, and
it returns a Shape that represents the region to be highlighted. Similarly, if you
want to display an insertion cursor within the text, you can specify the character
position, and the TextlLayout returns a Shape that you can draw to display the cur-
sor. Although these methods may seem trivial, they in fact handle all the nontrivial
complexities of multifont and bidirectional text, making Textlayout a powerful
class for certain applications.

You can create a TextlLayout object by specifying a String, a Font, and a
FontRenderContext. However, a TextlLayout created in this way can represent only
single-font text. To display multifont text, you must use a java.text.Attributed-
CharacterIterator to represent the text. The attributes associated with the text
should be java.awt.font.TextAttribute constants, such as TextAttribute.FONT.
The easiest way to create an AttributedCharacterlIterator is to create a
Java.text.AttributedString, specify attributes with its addAttribute() method,
and then get an iterator for it with its getIterator() method. The java.text API
is covered in Java in a Nutshell, not in this book.

Text Art with Font Glypbs

As I mentioned earlier, the GlyphVector class allows you to obtain a Shape object
that represents the outline of a single glyph or a string of glyphs. This is a power-
ful feature of Java 2D that allows you to produce sophisticated text art. The Shape

Fonts and Text 91

o
S
Ss
=
H

A

object returned by the getOutline() or getGlyphOutline() method of Glyph-
Vector can be used in the same way that you use any other Shape object. Use the
draw() method of Graphics2D to draw the outline of the glyph or glyphs. Use
fi11() to fill the glyphs with an arbitrary Paint. You can transform the glyph
shapes by scaling, rotating, and skewing them and you can even use them to per-
form clipping and hit detection.

Buffered Images

Java 2D introduces a new java.awt.Image subclass, java.awt.image.BufferedIm-
age. BufferedImage represents image data that is present in memory, unlike Image,
which typically represents streaming image data being transferred over a network.
Java 2D also provides powerful image-processing classes that operate on
BufferedImage objects and are much simpler to use than the ImageFilter class of
Java 1.0.

As we discussed at the beginning of the chapter, Java knows how to read images
in commonly used formats from files and URLs. You can use the getImage()
method of either Applet() or Toolkit to retrieve an Image, but the image data
may not have been fully read when the method returns. If you want to ensure that
the image is fully loaded, you have to use a java.awt.MediaTracker. Note also
that both of these methods return read-only Image objects, rather than read/write
BufferedImage objects.

If you are writing a Swing application, an easy way to load an image is with the
Javax.swing.Imagelcon class. This class automatically waits until the image is fully
loaded. For example:

Image myimage = new javax.swing.Imagelcon("myimage.gif").getImage();

As useful as Imagelcon is, its getImage() method still returns an Image object, not
a BufferedImage object.

Obtaining a Bufferedlmage

To create an empty BufferedImage object, call the createImage() method of a
Component. This method was first introduced in Java 1.0; it returns an Image object.
In Java 1.2, however, the returned Image object is always an instance of Buffered-
Image, so you can safely cast it. After you have created an empty BufferedImage,
you can call its createGraphics() method to obtain a Graphics2D object. Then use
this Graphics2D object to draw image data from an Image object into your
BufferedImage object. For example:

javax.swing.JFrame f; // Initialized elsewhere

// Create an image, and wait for it to load
Image i = javax.swing.Imagelcon("myimage.gif").getImage();

// Create a BufferedImage of the same size as the Image
BufferedImage bi = (BufferedImage)f.createlmage(i.getWidth(f),i.getHeight(f));

92 Chapter 4— Graphics with AWT and Java 2D

Graphics2D g = bi.createGraphics(); // Get a Graphics2D object
g.drawlmage(i, 0, 0, f); // Draw the Image data into the BufferedImage

Note that we must pass an ImageObserver object to the getWidth(), getHeight()
and drawImage() methods in this code. All AWT components implement ImageOb-
server, so we use our JFrame for this purpose. Although we could have gotten
away with passing null, this is exactly the sort of complexity that the BufferedIm-
age API allows us to avoid.

Sun’s implementation of Java 1.2 ships with a package named
com.sun.image.codec.jpeg that contains classes for reading JPEG image data
directly into BufferedImage objects and for encoding BufferedImage image data
using the JPEG image format. Although this package is not part of the core Java 2
platform, most Java implementations will probably contain these classes. You can
use this package to read JPEG files with code like this:

import java.io.*;
import com.sun.image.codec.jpeg.*;

FileInputStream in = new FilelnputStream("myimage.jpeg");
JPEGImageDecoder decoder = JPEGCodec.createJPEGDecoder(in);
BufferedImage image = decoder.decodeAsBufferedImage();
in.close();

Drawing a BufferedImage

A BufferedImage is a kind of Image, so you can do anything with a BufferedImage
that you can do with an Image. For instance, the Graphics class defines a number
of methods for drawing Image objects. Some of these methods take only an X and
a Y coordinate at which to draw the image and simply draw the image at its origi-
nal size. Other drawImage() methods also take a width and a height and scale the
image as appropriate.

Java 1.1 introduced more sophisticated drawImage() methods that take coordinates
that specify a destination rectangle on the drawing surface and a source rectangle
within the image. These methods map an arbitrary subimage onto an arbitrary
rectangle of the drawing surface, scaling and flipping as necessary. Each of these
drawImage() methods comes in two versions, one that takes a background color
argument and one that does not. The background Color is used if the Image con-
tains transparent pixels.

Since all the drawImage() methods of the Graphics object operate on Image
objects instead of BufferedImage objects, they all require a Component or other
ImageObserver object to be specified.

In Java 2D, the Graphics2D object defines two more drawImage() methods. One of
these methods draws an Image object as modified by an arbitrary AffineTransform
object. As we'll see a bit later, an AffineTransform object can specify a position,
scaling factor, rotation, and shear.

The other drawImage() method of Graphics2D actually operates on a Buffered-
Image object. This method processes the specified BufferedImage as specified by a
BufferedImageOp object and then draws the processed image at the specified posi-
tion. We'll talk about image processing with BufferedImageOp objects in more

Buffered Images 93

o
S
Ss
=
SH

A

detail shortly. Since this drawImage() method operates on a BufferedImage object
instead of an Image object, it does not require an ImageObserver argument.

Finally, the Graphics2D class defines a drawRenderedImage() method. Buffered-
Image implements the RenderedImage interface, so you can pass a BufferedImage
to this method, along with an arbitrary AffineTransform that specifies where and
how to draw it.

Drawing into a BufferedImage

As I mentioned earlier, the createGraphics() method of a BufferedImage returns
a Graphics2D object that you can use to draw into a BufferedImage. Anything you
can draw on the screen, you can draw into a BufferedImage. One common reason
to draw into a BufferedImage object is to implement double-buffering. When per-
forming animations or other repetitive drawing tasks, the erase/redraw cycle can
cause flickering. To avoid this, do your drawing into an off-screen BufferedImage
and then copy the contents of the image to the screen all at once. Although this
requires extra memory, it can dramatically improve the appearance of your
programs.”

Manipulating Pixels of a Bufferedlmage

The Image class defines very few methods, so about all you can do with an Image
object is query its width and height. The BufferedImage class, by contrast, defines
quite a few methods. Most of these are required by interfaces that BufferedImage
implements. A few important ones, however, allow pixel-level manipulation of
images.

For example, getRGB() returns the image pixel at the specified X and Y coordi-
nates, while setRGB() sets the pixel at the specified coordinates. Both of these
methods represent the pixel value as an int that contains 8-bit red, green, and
blue color values. Other versions of getRGB() and setRGB() read and write rectan-
gular arrays of pixels into int arrays. getSubimage() is a related method that
returns a rectangular region of the image as a BufferedImage.

Inside a Bufferedlmage

Most applications can use the BufferedImage class without ever caring what is
inside a BufferedImage. However, if you are writing a program that performs low-
level image-data manipulation, such as reading or writing image data from a file,
you need to know more. The complete details of the image architecture are
beyond the scope of this book; this section explains the basics in case you want to
explore on your own.

* Recall that Swing components, and custom components subclassed from Swing components, automati-
cally support double-buffering.

94 Chapter 4 — Graphics with AWT and Java 2D

The image data of a BufferedImage is stored in a java.awt.image.Raster object,
which can be obtained with the getData() method of BufferedImage. The Raster
itself contains two parts: a java.awt.image.DataBuffer that holds the raw image
data and a java.awt.image.SampleModel object that knows how to extract individ-
ual pixel values out of the DataBuffer. DataBuffer supports a wide variety of for-
mats for image data, which is why a Raster object also needs a SampleModel.

The Raster object of a BufferedImage stores the pixel values of an image. These
pixel values may or may not correspond directly to the red, green, and blue color
values to be displayed on the screen. Therefore, a BufferedImage object also con-
tains a java.awt.image.ColorModel object that knows how to convert pixel values
from the Raster into Color objects. A ColorModel object typically contains a
Java.awt.color.ColorSpace object that specifies the representation of color com-
ponents.

Processing a Bufferedlmage

The java.awt.image package defines five powerful implementations of the
BufferedImageOp interface that perform various types of image-processing opera-
tions on BufferedImage objects. The five implementations are described briefly in
Table 4-9.

Table 4-9: Java 1.2 Image-Processing Classes

Class Description

AffineTransformOp | Performs an arbitrary geometric transformation—specified
by an AffineTransform—on an image. The transform can
include scaling, rotation, translation, and shearing in any
combination. This operator interpolates pixel values when
needed, using either a fast, nearest-neighbor algorithm or
a slower, higher-quality bilinear interpolation algorithm.
This class cannot process images in place.

ColorConvertOp Converts an image to a new java.awt.color.ColorSpace.
It can process an image in place.

ConvolveOp Performs a powerful and flexible type of image processing
called convolution, which is used for blurring or
sharpening images and performing edge detection, among
other things. ConvolveOp uses a java.awt.image.Kernel
object to hold the matrix of numbers that specify exactly
what convolution operation is performed. Convolution

operations cannot be performed in place.

Buyffered Images 95

o
S
Ss
=
H

A

Table 4-9: Java 1.2 Image-Processing Classes (continued)

Class Description

LookupOp Processes the color channels of an image using a lookup
table, which is an array that maps color values in the
source image to color values in the new image. The use of
lookup tables makes LookupOp a very flexible image-
processing class. For example, you can use it to brighten
or darken an image, to invert the colors of an image, or to
reduce the number of distinct color levels in an image.
LookupOp can use either a single lookup table to operate
on all color channels in an image or a separate lookup
table for each channel. LookupOp can be used to process
images in place. You typically use LookupOp in conjunction
with java.awt.image.BytelookupTable.

RescaleOp Like LookupQp, RescaleOp is used to modify the values of
the individual color components of an image. Instead of
using a lookup table, however, RescaleOp uses a simple
linear equation. The color values of the destination are
obtained by multiplying the source values by a constant
and then adding another constant. You can specify either a
single pair of constants for use on all color channels or
individual pairs of constants for each of the channels in
the image. RescaleOp can process images in place.

To use a BufferedImageOp, simply call its filter() method. This method pro-
cesses or filters a source image and stores the results in a destination image. If no
destination image is supplied, filter() creates one. In either case, the method
returns a BufferedImage that contains the processed image. As noted in Table 4-9,
some implementations of BufferedImageOp can process an image “in place.” These
implementations allow you to specify the same BufferedImage object as both the
source and destination arguments to the filter() method.

To convert a color image to grayscale, you can use ColorConvertOp as follows:

import java.awt.image.*;
import java.awt.color.*;

ColorConvertOp op = new ColorConvertOp(ColorSpace.getInstance(CS_GRAY), null);
BufferedImage grayImage = op.filter(sourcelmage, null);

To invert the colors in an image (producing a photographic negative effect), you
might use a RescaleOp as follows:

RescaleOp op = new RescaleOp(-1.0f, 255f, null);
BufferedImage negative = op.filter(sourcelmage, null);

To brighten an image, you can use a RescaleOp to linearly increase the intensity of
each color value. More realistic brightening effects require a nonlinear transform,
however. For example, you can use a LookupOp to handle brightening based on

96 Chapter 4— Graphics with AWT and Java 2D

the square-root function, which boosts midrange colors more than colors that are
dark or bright:

byte[] data = new byte[256];
for(int i = 0; 1 < 256; i++)

datali] = (byte)(Math.sqrt((float)i/255.0) * 255);
BytelookupTable table = new BytelLookupTable(0, data);
LookupOp op = new LookupOp(table, null);
BufferedImage brighterImage = op.filter(sourcelmage, null);

You can blur an image using a ConvolveOp. When processing an image by convo-
lution, a pixel value in the destination image is computed from the corresponding
pixel value in the source image and the pixels that surround that pixel. A matrix of
numbers known as the kernel is used to specify the contribution of each source
pixel to the destination pixel. To perform a simple blurring operation, you might
use a kernel like this to specify that the destination pixel is the average of the
source pixel and the eight pixels that surround that source pixel:

0.1111 0.1111 0.1111
0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

Note that the sum of the values in this kernel is 1.0, which means that the destina-
tion image has the same brightness as the source image. To perform a simple blur,
use code like this:

Kernel k = new Kernel(3, 3, new float[] { .1111f, .1111f, .1111f,
J1111F, L1111fF, (1111f,
J1111F, L1111F, L1111 });

ConvolveOp op = new ConvolveOp(k);

BufferedImage blurry = op.filter(sourcelmage, null);

Transformations with AffineTransform

As we discussed earlier when we considered the Java 2D coordinate system, the
java.awt.geom.AffineTransform class represents a general mapping from one
coordinate system to another. AffineTransform defines a general coordinate-
system transformation that can include translation, scaling, rotation, and shearing.

Setting Up an AffineTransform

One of the easiest ways to obtain an AffineTransform object is to use one of the
static methods defined by AffineTransform. For example, getScalelnstance()
returns an instance of AffineTransform that represents a simple scaling transfor-
mation.

Another way to get an AffineTransform is with the AffineTransform() construc-
tor, of course. The no-argument version of the constructor returns an Affine-
Transform that represents the identity transform—that is, no transform at all. You
can modify this empty transform with a number of methods. Note that Affine-
Transform defines several other constructors, but we have to wait to discuss them
until after we’ve discussed the mathematics that underlie AffineTransform.

Transformations with AffineTransform 97

o
S
Ss
=
H

A

Once you have obtained an AffineTransform object, you can modify it with meth-
ods just like the methods defined by Graphics2D. Each of the translate(),
scale(), rotate(), and shear() methods modifies an AffineTransform by adding
the specified transformation to it. Note that there are two versions of rotate().
One rotates around the origin and the other rotates around a specified point; both
use angles specified in radians. Remember that calls to these four methods are
cumulative: you can build up a complex transformation as a combination of trans-
lation, scaling, rotation, and shearing.

AffineTransform also defines noncumulative methods. setToTranslation(), set-
ToScale(), setToRotation(), and setToShear() set an AffineTransform to a sin-
gle transform, replacing whatever transform was previously contained by the
AffineTransform.

Performing Transformations

Once you have created and initialized an AffineTransform object, you can use
it to transform points and shapes. AffineTransform defines a number of
transform() methods that transform points represented by either java.awt.-
geom.Point2D objects or arrays of numbers. deltaTransform() is a variant of
transform() that performs a transformation disregarding any translation compo-
nent. It is designed for transforming distances or position-independent vectors,
instead of actual points. inverseTransform() is the inverse of transform()—it
converts points expressed in the new coordinate system back to the corresponding
points in the original coordinate system.

The transform(), deltaTransform(), and inverseTransform() methods are fairly
low-level and typically are not used directly by Java 2D programs. Instead, a pro-
gram typically uses the createTransformedShape() method, which provides a
powerful, high-level transformation capability. Given an arbitrary Shape object, this
method returns a new Shape that has been transformed as specified by the Af-
fineTransform object.

The Mathematics of AffineTransform

The coordinate system transformations described by AffineTransform have two
very important properties:

e Straight lines remain straight
e Parallel lines remain parallel

An AffineTransform is a linear transform, so the transformation can be expressed
in the matrix notation of linear algebra. An arbitrary AffineTransform can be
mathematically expressed by six numbers arranged in a matrix like this:

sx shx tx

shy sy ty
In this matrix, tx and ty are the translation amounts, sx and sy are the scaling fac-
tors, and shx and shy are the shearing factors, all in the X and Y dimensions,

98 Chapter 4— Graphics with AWT and Java 2D

respectively. As we'll see in a moment, rotation is a combination of scaling and
shearing, so there are not separate rx and ry numbers.

To transform a point from one coordinate system to another using an Affine-
Transform, we multiply the point by this matrix. Using matrix notation (and
adding a few dummy matrix elements), the equation looks like this:

x’ sx shx 0] [x
y'|=|shy sy 0f |y
1 0 0 1 1

This matrix equation is simply shorthand for the following system of equations:

X SX*X + shx*y + tx
y' = shy*x + sy*y + ty

The identity transform does not perform any transformation at all. It looks like
this:

=)
_ O O

*
— =

Mathematically, rotation is a combination of scaling and shearing. The rotation of
an angle theta around the origin is expressed with a matrix like this:

cos(@) -sin(e) 0
sin(e) cos(e) 0

You don’t need to understand how this rotation matrix works. If you remember
basic trigonometry, however, you can use it and the preceding equations to verify
that this matrix works for the base cases of 90-degree and 180-degree rotations.

As we've seen, it is possible to make cumulative changes to an AffineTransform.
This is done by multiplying the current transformation matrix by the new transfor-
mation matrix. For example, suppose we perform a translation by 100 units in
both the X and Y dimensions and follow this by scaling both the X and Y dimen-
sions by a factor of 2. The resulting AffineTransform matrix is the product of the
two individual matrices:

00

Note that matrix multiplication is not commutative. If we perform the scaling op-
eration first and then do the translation, we obtain a different result:

200 10 100 2 0 200
020[*|01100|=|0 2 200
001 00 1 00 1

Most applications do not have to work with matrices explicitly in order to perform
coordinate-system transformations. As we've seen, it typically is easier to use the
translate(), scale(), rotate(), and shear() methods of either AffineTransform
or Graphics2D. It is useful to understand the mathematics underlying Affine-
Transform, however.

Transformations with AffineTransform 99

o
S
Ss
=
H

A

You may, on occasion, have the need to create a custom AffineTransform object
from a set of six numbers. A number of AffineTransform constructors and meth-
ods take matrix elements as arguments. These matrix elements are either passed in
explicitly or specified in an array. Note that the matrix-element naming system
used by the AffineTransform class is different than the system I've used here. The
parameter names for AffineTransform methods are based on the following matrix:

m00 m01 m02
ml0 mll ml2

This is nothing more that a different naming scheme for the elements we are
already familiar with:

SX shx tx

shy sy ty
When matrix elements are passed to or returned by an AffineTransform in an
array of float or double values, they are stored in this order:

[moo, m10, mo1, m11, mo1, m12]
This corresponds to the following order using our mnemonic names:

[sx, shy, sy, tx, ty}

Color Spaces

The java.awt.Color class represents a color in Java. As we discussed earlier, Java
2D has added several new constructors to the Color class, to support the creation
of translucent colors. Another important change to the Color class is support for
arbitrary color spaces. A color space is a system for representing a color using
some characteristic set of axes.

Java 2D introduces the java.awt.color package for working with color spaces.
The most important piece of this package is the abstract ColorSpace class, which
represents a color space and defines a number of constants for commonly used
spaces. By default, Java colors are represented in the standard, device-independent
SRGB color space, in which colors are represented by idealized red, green, and
blue components. There are other ways of representing colors, however. One
commonly used standard is the CIEXYZ space, which represents colors in terms of
three abstract components named X, Y, and Z. Applications that represent colors
to be displayed on a printed page often use the CMYK color space, which repre-
sents the cyan, magenta, yellow, and black inks used in the four-color printing
process. Another familiar color space is the grayscale color space, which repre-
sents shades of gray as individual values between 0.0 (black) and 1.0 (white).

An application that cares about accurate color reproduction often uses a device-
independent color space to ensure that the colors it displays look the same on dif-
ferent monitors, printers, and other devices. To make device-independent color
representation work, each monitor, printer, scanner, or other device needs to be
calibrated, so that device-independent colors can be correctly and accurately

100 Chapter 4— Grapbics with AWT and Java 2D

converted to appropriate device-dependent colors for that device. The result of a
device calibration is called a “profile.” The International Color Consortium (ICC)
has defined a standard file format for profiles, and the java.awt.color package
defines classes that implement color spaces in terms of these profiles. Sun’s imple-
mentation of the Java 1.2 runtime environment includes five sample profiles for
five different color spaces, stored in the jre/lib/cmm directory of the Java installa-
tion. A more sophisticated implementation would obtain profiles from the color
management system of the native OS.

o
S
Ss
=
H

A

Color Spaces 101

CHAPTER 5

Printing

The previous chapters of this book have described how to draw graphics and dis-
play graphical user interfaces on a computer screen. This chapter explains how to
transfer those graphics to hardcopy. Printing was not supported in Java 1.0. Java
1.1 added a simple printing API that was easy to use but was not tightly integrated
with the printing capabilities of the underlying operating system. The Java 2 plat-
form introduces an entirely new printing API that addresses the shortcomings of
the Java 1.1 API This chapter explains both the Java 1.1 and the Java 1.2 APIs.

Printing in Java 1.1

In Java 1.1, you use a Graphics object to draw to the screen or into an off-screen
Image. To produce hardcopy, you do exactly the same thing: obtain a Graphics
object that represents your printer and use the methods of that object to draw to
the printer. The only tricky thing you need to know is how to obtain an appropri-
ate Graphics object. You do this with a java.awt.PrintJdob object, which you can
obtain from the Toolkit object.

The basic Java 1.1 printing algorithm has the following steps:

1. First, you must begin the print job. You do this by calling the getPrintJdob()
method of the Toolkit object. This method displays a dialog box to the user
to request information about the print job, such as the name of the printer it
should be sent to. getPrintJob() returns a PrintJob object.

2. To begin printing a page, you call the getGraphics() method of the PrintJob
object. This returns a Graphics object that implements the PrintGraphics
interface, to distinguish it from an on-screen Graphics object.

3. Now you can use the various methods of the Graphics object to draw your
desired output on the page. If you are printing an applet or a custom AWT
component, you can simply pass your Graphics object to the paint() method

102

of the applet or component. Note, however, that built-in AWT components are
drawn by the native GUI system, rather than a paint() method, and may not
print correctly.

4. When you are done drawing the page, you call the dispose() method of the
Graphics object to send that page description to the printer. If you need to
print another page, you can call the getGraphics() method of the PrintJdob
again to obtain a new Graphics object for the next page and repeat the pro-
cess of drawing and calling dispose().

5. When you have printed all of your pages, you end the print job itself by call-
ing the end() method of the PrintJob object.

With the Java 1.1 printing API, the coordinate system of the printer is very much
like the coordinate system used when drawing on-screen. The origin is at the top
left, X coordinates run from left to right, and Y coordinates run from the top to the
bottom of the page. The coordinate system uses a resolution of 72 points per inch,
which is a typical resolution for monitors as well. Most printers support much
higher resolutions than this, however, and they use that extra resolution when
printing text, for example. However, because the Java 1.1 Graphics object does
not allow floating-point coordinates, all graphics must be positioned exactly at
integer positions.

Printing in Java 1.2

Java 1.2 introduces a more complete printing API. As in Java 1.1, printing is done
by calling methods of a special Graphics object that represents the printer device.
The printer coordinate system and base resolution of 72 points per inch are the
same in both Java 1.1 and Java 1.2. Beyond these similarities, however, the Java
1.2 API flips the Java 1.1 API upside down. Instead of asking a PrintJob object for
the Graphics object to draw to, Java 1.2 uses a callback model. You tell the Java
1.2 printing API the object you’d like to print, and it calls the print() method of
that object, passing in the appropriate Graphics object to draw to. In Java 1.1,
your printing code is in charge of the print job, while in Java 1.2, the print job is in
charge of your printing code.

The Java 1.2 printing API is contained in the java.awt.print package. Key classes
and interfaces in this package are Printable, which represents a printable object,
Pageable, which represents a multipage printable document, and PrinterdJob,
which coordinates the print job and serves as an intermediary between the Java
API and the native printing system. Do not confuse java.awt.print.PrinterdJob
with the java.awt.PrintJob class used by the Java 1.1 printing API! Another
important class is PageFormat, which represents the size of the paper being
printed on, its margins, and the printing orientation (i.e., portrait mode or land-
scape mode).

The basic Java 1.2 printing algorithm includes the following steps:

1. First, obtain a PrinterJdob object to coordinate the printing. Do this by calling
the static method Printerdob.getPrinterdob().

Printing in Java 1.2 103

)
=
=
s
<

2. Obtain a PageFormat object that describes the size, margins, and orientation of
the page or pages to be printed. The PrinterJob object has methods that
allow you to obtain a default PageFormat object and display a dialog asking
the user to specify paper, margin, and orientation information. (You might dis-
play this dialog box in response to a Print Setup ... menu item, for example.)

3. Next, tell the PrinterJob object what it is that you want to print. The item to
print is an object that implements either the Printable interface or the Page-
able interface (we’ll discuss each of these in more detail shortly). You pass
this object to either the setPrintable() or the setPageable() method of the
Printerdob.

4. Unless you want the printing to occur silently, without any user interaction,
your next call is to the printDialog() method of the PrinterJdob object. This
method displays a dialog box, giving the user the opportunity to specify the
printer to use and the number of copies to print. If you are printing a multi-
page Pageable object, this dialog box allows the user to select a subset of
pages to print, rather than printing the entire Pageable document. The dialog
box also gives the user the opportunity to cancel the print job. If the printDi-
alog() method returns false, the user has asked to cancel printing and you
should not proceed.

5. Finally, you call the print() method of the PrinterJob. This tells the Print-
erdob to begin the printing process.

6. The PrinterJdob is now in control of printing. As we’ll discuss later, Print-
erJob invokes methods of the Printable or Pageable object you specified,
providing the opportunity for your object to print itself to an appropriate
Graphics object.

Printing Single-Page Objects

When the object, figure, or document you want to print fits on a single printed
page, you typically represent it using the Printable interface. This interface
defines a single method, print(), that the PrinterJob calls to print the page. The
print() method has three arguments. The first is the Graphics object that repre-
sents the printer. print() should do all of its drawing using this object. This
Graphics object may be cast to a Graphics2D object, enabling all the features of
Java 2D, including the use of floating-point coordinates to position graphics ele-
ments with more precision than is possible with integer coordinates.

The second argument to print() is a PageFormat object. Your print() method
should call the getImageableX(), getImageableY(), getImageableWidth(), and
getImageableHeight() methods of PageFormat to determine the size and position
of the area that it should draw in. Note that these methods are poorly named. The
values they return represent the page and margin sizes requested by the user,not
the size of the paper actually available in the printer or the imageable area of the
printer (i.e., the region of the page that a specific type of printer can actually
print to).

The third argument is a page number. Although the Printable interface is most
useful for single-page documents, it can be used for multipage documents. The

104 Chapter 5— Printing

Printerdob has no way to determine how many pages a Printable object
requires. Indeed, a Printable object may be implemented in such a way that it
does not know how many pages it requires either (e.g., a PrintableStream object
that prints a stream of text as it arrives). Because the page count is not known in
advance, the PrinterJob calls the print() method repeatedly, incrementing the
page number after printing each page.

One important responsibility of the print() method is to notify the PrinterJdob
when all pages are printed. Your method does this by returning the constant
Printable.NO_SUCH_PAGE when the PrinterdJdob asks it to print a page that is past
the end of the document.

It is also important to implement the print() method so that it can be called more
than once for each page. As of this writing, Sun’s Java 1.2 printing implementation
calls the print() method at least twice for each page (we’ll see why at the end of
this chapter).

Example 5-1 shows a PrintableComponent class that can be used to print the con-
tents of a Swing component, applet, or custom AWT component. This class is a
wrapper around a Component and implements the Printable interface. Note that it
defines two print() methods. One is the three-argument Printable method I
already described. The other print() method takes no arguments and implements
the general Java 1.2 printing algorithm. It creates a PrinterdJdob, displays some
dialogs to the user, and initiates the printing process. To print a component, create
a PrintableComponent for that component, then call its print() method with no
arguments.

Example 5-1: PrintableComponent java

import java.awt.*;
import java.awt.print.*;

/**
* This wrapper class encapsulates a Component and allows it to be printed
* using the Java 1.2 printing API
*/
public class PrintableComponent implements Printable {
// The component to be printed
Component c;

/** Create a PrintableComponent wrapper around a Component */
public PrintableComponent(Component c¢) { this.c = c; }

/**
* This method is not part of the Printable interface. It is a method
* that sets up the Printerdob and initiates the printing.
*/
public void print() throws PrinterException {
// Get the Printerdob object
Printerdob job = PrinterdJob.getPrinterdob();
// Get the default page format, then allow the user to modify it
PageFormat format = job.pageDialog(job.defaultPage());
// Tell the Printerdob what to print
job.setPrintable(this, format);
// Ask the user to confirm, and then begin the printing process
if (job.printDialog())
job.print();

Printing in Java 1.2 105

)
=
=
s
<

Example 5-1: PrintableComponent java (continued)
}

/**
* This is the "callback" method that the Printerdob will invoke.
* This method is defined by the Printable interface.
*/
pubTic int print(Graphics g, PageFormat format, int pagenum) {
// The Printerdob will keep trying to print pages until we return
// this value to tell it that it has reached the end
if (pagenum > 0)
return Printable.NO_SUCH_PAGE;

// We're passed a Graphics object, but it can always be cast to Graphics2D
Graphics2D g2 = (Graphics2D) g;

// Use the top and left margins specified in the PageFormat Note
// that the PageFormat methods are poorly named. They specify
// margins, not the actual imageable area of the printer.
g2.translate(format.getImageableX(), format.getImageableY());

// Tell the Component to draw itself to the printer by passing in
// the Graphics2D object. This will not work well if the Component
// has double-buffering enabled.

c.paint(g2);

// Return this constant to tell the PrinterJob that we printed the page
return Printable.PAGE_EXISTS;
}
}

There are a few important points to note about this PrintableComponent example.
First, it is not designed to work with native AWT components, since those compo-
nents do not do their own drawing. Second, it does not work well for components
that use double-buffering because double-buffering locks the component drawing
into the relatively low resolution of an off-screen image, rather than taking advan-
tage of the high resolution available on the printer. Finally, PrintableComponent
prints only the visible portion of a component, not the complete contents of the
component. For example, the Swing JEditorPane class can display long HTML
documents. If you use PrintableComponent to print a JEditorPane, however, it
prints only the currently visible text, not the complete HTML document. The ability
to print complete documents is a feature that is sorely missing in the current
implementation of Swing.

Printing Multipage Documents

As we just discussed, the Printable interface can be used to print multipage docu-
ments. However, the Printerdob has no way of determining in advance how
many pages are required. This means that the user cannot request that only a sub-
set of pages be printed, for example. When you know the complete contents of
the document to be printed and can break it into pages before printing begins, it
is better to use the Pageable interface than the Printable interface.

Pageable defines a getNumberOfPages() method that returns the number of pages
to be printed. It also defines two methods that take a page number and return

106 Chapter 5— Printing

PagefFormat and Printable objects for that page. To print a Pageable object, the
Printerdob asks for a PageFormat and a Printable object for each page to be
printed and then uses the print() method of each Printable object to print that

page.

Example 5-2 shows a class that implements the Pageable and Printable interfaces
in order to print a string, file, or stream of text. This is a rudimentary example of
text printing. It prints only text files, using a single font, and does not even expand
tabs or wrap long lines. The Java 1.2 printing API allows the use of Java 2D graph-
ics through the Graphics2D class. This example does not use the Java 2D version
of the drawString() method, however. Although that method allows text to be
positioned more precisely using floating-point coordinates, there is a bug in the
current implementation that prevents this method from printing correctly.

Example 5-2: PageableText.java

import java.awt.*;
import java.awt.print.*;
import java.io.*;
import java.util.Vector;

public class PageableText implements Pageable, Printable {
// Constants for font name, size, style and Tine spacing
public static String FONTFAMILY = "Monospaced";
public static int FONTSIZE = 10;
public static int FONTSTYLE = Font.PLAIN;
public static float LINESPACEFACTOR = 1.1f;

PageFormat format; // The page size, margins, and orientation

Vector Tlines; // The text to be printed, broken into Tines
Font font; // The font to print with

int Tinespacing; // How much space between Tines

int linesPerPage; // How many lines fit on a page

int numPages; // How many pages required to print all lines
int baseline = -1; // The baseline position of the font

/** Create a PageableText object for a string of text */

public PageableText(String text, PageFormat format) throws IOException {
this(new StringReader(text), format);

}

/** Create a PageableText object for a file of text */

public PageableText(File file, PageFormat format) throws IOException {
this(new FileReader(file), format);

}

/** Create a PageableText object for a stream of text */
public PageableText(Reader stream, PageFormat format) throws IOException {
this.format = format;

// First, read all the text, breaking it into Tines.

// This code ignores tabs and does not wrap long lines.

BufferedReader in = new BufferedReader(stream);

Tines = new Vector();

String Tine;

while((1ine = in.readlLine()) != null)
Tines.addElement(1ine);

Printing in Java 1.2 107

)
=
=
s
<

Example 5-2: PageableText java (continued)

// Create the font we will use, and compute spacing between lines
font = new Font(FONTFAMILY, FONTSTYLE, FONTSIZE);
Tinespacing = (int) (FONTSIZE * LINESPACEFACTOR);

// Figure out how many Tines per page and how many pages
linesPerPage = (int)Math.floor(format.getImageableHeight()/1inespacing);
numPages = (lines.size()-1)/1inesPerPage + 1;

}

// These are the methods of the Pageable interface.

// Note that the getPrintable() method returns this object, which means
// that this class must also implement the Printable interface.

pubTic int getNumberOfPages() { return numPages; }

public PageFormat getPageFormat(int pagenum) { return format; }

pubTic Printable getPrintable(int pagenum) { return this; }

/**

* This is the print() method of the Printable interface.

* It does most of the printing work.

*/

pubTic int print(Graphics g, PageFormat format, int pagenum) {
// Tell the Printerdob if the page number is not a legal one
if ((pagenum < 0) | (pagenum >= numPages))

return NO_SUCH_PAGE;

// First time we're called, figure out the baseline for our font.
// We couldn't do this earlier because we needed a Graphics object.
if (baseline == -1) {

FontMetrics fm = g.getFontMetrics(font);

baseline = fm.getAscent();
}

// Clear the background to white. This shouldn't be necessary but is

// required on some systems to work around an implementation bug.

g.setColor(Color.white);

g.fi11Rect((int)format.getImageableX(), (int)format.getImageableY(),
(int)format.getImageableWidth(),
(int)format.getImageableHeight());

// Set the font and the color we will be drawing with.

// Note that you cannot assume that black is the default color!
g.setFont(font);

g.setColor(Color.black);

// Figure out which Tines of text we will print on this page
int startline = pagenum * linesPerPage;
int endlLine = startLine + TinesPerPage - 1;
if (endLine >= Tines.size())
endLine = lines.size()-1;

// Compute the position on the page of the first Tine
int x0 = (int) format.getImageableX();
int y0 = (int) format.getImageableY() + baseline;

// Loop through the lines, drawing them all to the page
for(int i=startLine; i <= endLine; i++) {

// Get the Tine

String line = (String)lines.elementAt(i);

108 Chapter 5— Printing

Example 5-2: PageableText java (continued)

// Draw the line.
// We use the integer version of drawString(), not the Java 2D
// version that uses floating-point coordinates. A bug in early
// Java 1.2 implementations prevents the Java 2D version from working.
if (line.length() > 0)
g.drawString(line, x0, y0);

// Move down the page for the next line
y0 += Tinespacing;
}

// Tell the Printerdob that we successfully printed the page
return PAGE_EXISTS;
}

/**

* This is a test program that demonstrates the use of PageableText

*/

pubTic static void main(Stringl[] args) throws IOException, PrinterException {
// Get the Printerdob object that coordinates everything
Printerdob job = Printerdob.getPrinterdob();

// Get the default page format, then ask the user to customize it
PageFormat format = job.pageDialog(job.defaultPage());

// Create our PageableText object, and tell the Printerdob about it
job.setPageable(new PageableText(new File(args[0]), format));

// Ask the user to select a printer, etc., and if not canceled, print!
if (job.printDialog())
job.print();

Efficiency Issues in the Java 1.2 Printing API

Although the Java 1.2 printing API offers important design improvements over the
Java 1.1 API, there are serious efficiency problems with Sun’s implementation of
the 1.2 API in versions of Java up to at least Java 1.2.2. All printers are good at
printing text, but not all are equally good at drawing arbitrary graphics. Thus,
when a page contains anything but text or very simple graphics, Java 1.2 converts
the entire page to a very large image and prints it in graphics mode.

As T mentioned earlier, the current implementation of PrinterdJdob calls the print()
method of a Printable object at least twice. The first call uses a dummy Graphics
object whose sole purpose is to determine what kind of graphics the page con-
tains. If the page contains only text, as is the case in Example 5-2, the Printerdob
can print the page efficiently in text mode.

However, if the page contains any other type of graphics, the PrinterJob uses a
large, high-resolution image to capture the graphics on the page and then trans-
mits this image to the printer for printing in graphics mode. Because such a high-
resolution image is memory intensive, the PrinterdJob typically breaks the page up
into several smaller bands and calls the print() method several times (using a

Printing in Java 1.2 109

)
=
=
s
<

different clipping region each time). In this way, the PrinterdJdob is able to spool a
large image to the printer without using a large amount of memory (a classic time
versus space trade-off).

Unfortunately, the implementation is not well optimized, and printing performance
is unacceptable on some systems. Printing even a simple graphic, such as one pro-
duced with the PrintableComponent class shown in Example 5-1, can take several
minutes and can produce a printer spool file of more than 50 megabytes.

Printing with the Java 1.1 API works better in Java 1.1 than it does in current
implementations of Java 1.2. The Java 1.1 API works in Java 1.2, but it suffers the
same efficiency problems as the Java 1.2 API. Furthermore, the Java 1.1 API does
not perform the first pass to determine what type of graphics a page contains,
so even a Java 1.1 program that prints only text is inefficient when run under
Java 1.2.

110 Chapter 5— Printing

CHAPTER 6

Data Transfer

Data transfer refers to the ability of an application to transfer selected data in a
variety of ways. For example, an application can use data transfer to support mov-
ing data between its own subparts. An application can also use data transfer to
exchange data with other Java applications that are running in the same Java VM
or in another Java VM or with native applications that are not running in a VM at
all. There are two commonly used metaphors for data transfer: cut-and-paste and
drag-and-drop. Java 1.1 included a basic data transfer architecture and supported
cut-and-paste. The Java 2 platform extends the architecture in minor ways and
adds support for drag-and-drop.

The Data Transfer Framework

Both the cut-and-paste and drag-and-drop metaphors rely on the same underlying
data transfer architecture. This architecture was defined in Java 1.1 in the
Jjava.awt.datatransfer package. It consists of the DataFlavor class, which
describes data types and data formats, and the Transferable interface, which
defines methods that must be implemented if data is to be transferred.

The DataFlavor Class

A data transfer mechanism requires a precise and portable way to specify the type
of data to be transferred. This is necessary so that both parties to the transfer—the
data source and the data sink—can agree on exactly what is being transferred.
Since the data source and the data sink may be entirely different applications, the
mechanism for describing a data type must be general and flexible.

In Java, the type of data being transferred is described by a java.awt.datatrans-
fer.DataFlavor object. The DataFlavor class describes data types using MIME
types. MIME defines standard types like “text/html” and “image/jpeg”. Because
Java programs often transfer data within the same Java VM or between VMs, the

111

-~
S
2
)
-

eleq

DataFlavor class also supports describing data types with Java class names. For
example, to transfer a java.awt.Point object from one Java VM to another, the
data transfer mechanism can simply serialize the Point object and send the result-
ing stream of bytes to the other Java VM, where the Point object can be deserial-
ized. When doing data transfer between Java VMs in this way, the transfer of
objects becomes totally transparent.

The DataFlavor class defines constants for several commonly used data flavors,
including DataFlavor.stringFlavor, DataFlavor.plainTextFlavor, and (in Java
1.2) DataFlavor.javaFilelistFlavor. To transfer another types of data, you must
create a custom DataFlavor by specifying the MIME type or Java class of the data
and a human-readable name for the data type. For example:

DataFlavor jpegFlavor = new DataFlavor("image/jpeg", "JPEG Image Data");
DataFlavor pointFlavor = new DataFlavor(java.awt.Point.class,
"Java Point Object");

The Transferable Interface

DataFlavor objects describe data types, but they contain no data themselves. Data
to be transferred using cut-and-paste or drag-and-drop must be encapsulated in an
object that implements the Transferable interface.

Data transfer occurs in a heterogeneous environment. When you design the data
transfer capabilities of your application, you cannot know the other applications
with which the user may eventually want to exchange data. Thus, for maximum
flexibility, an application that exports data—a data source—typically offers its data
in multiple formats. An application that exports text might offer to transfer that
data in the form of a Java String object or as a stream of Unicode characters, for
example. If the receiving application is a Java program, it may choose to request
the data as a Java String, while a non-Java application would choose the stream
of characters instead.

The Transferable interface defines three methods. getTransferDataFlavors(),
returns an array of DataFlavor objects that represent the data formats in which the
data may be transferred, while isDataFlavorSupported() asks whether a particular
data flavor is supported. The third method, getTransferData(), performs the
actual transfer. This method takes an argument that specifies the desired data fla-
vor and returns an Object that represents the data in the specified format. If the
specified data flavor is not supported, getTransferData() throws an Unsupported-
FlavorException.

The return value for getTransferData() needs a little more explanation. The type
of this object depends on the DataFlavor that was requested. For any DataFlavor,
the getRepresentationClass() method returns a Java Class object that represents
the type of object that will be returned by getTransferData(). When a DataFla-
vor represents data that is transferred as a serialized Java object, the return value
of getTransferData() is simply a Java object of whatever type was transferred
(e.g., a String or java.awt.Point object). When a DataFlavor represents a MIME
type, the data is actually transferred between applications as a stream of bytes. In
this case, getTransferData() returns a java.io.InputStream object from which
you can read and parse these bytes.

112 Chapter 6 — Data Transfer

Because text is the most frequently transferred data type, the java.awt.datatrans-
fer package defines a StringSelection class that implements the Transferable
interface for strings. This Transferable class supports two data flavors, the pre-
defined DataFlavor.stringFlavor and DataFlavor.plainTextFlavor constants.
Unfortunately, however, there is a problem with StringSelection. When the
string is requested in plain text format, the getTransferData() method returns a
Java.io.Reader object instead of a java.io.InputStream. Because StringSelec-
tion is widely used, applications receiving DataFlavor.plainTextFlavor data may
want to use instanceof to determine whether the return value is an InputStream
(a byte stream) or a Reader (a Unicode character stream). Despite the problems
with StringSelection, there is a long-standing bug in Sun’s Java 1.1 and Java 1.2
implementations for Windows platforms that makes it indispensable. On those
platforms, StringSelection is the only Transferable class that can successfully
transfer text between a Java application and a native application.

Applications that display strings in JTextField, JTextArea, and related compo-
nents already support textual data transfer, as these components have cut-and-
paste support built in. In other words, you typically don’t have to implement tex-
tual data transfer yourself. When you do need to implement data transfer, it is
probably because you are transferring some specialized type of data. Example 6-1
shows how we can implement the Transferable interface to transfer
Java.awt.Color objects between Java applications.

Example 6-1: TransferableColor.java

import java.awt.Color;
import java.awt.datatransfer.*;
import java.io.*;

/**

* This class is used to transfer a Color object via cut-and-paste or

* drag-and-drop. It allows a color to be transferred as a Color object
* or as a string. Due to a long-standing bug in Java 1.1 and Java 1.2,
* transferring a color as a string to native Windows applications will
* not work.

*/
pubTic class TransferableColor implements Transferable {

// This DataFlavor object is used when we transfer Color objects directly

protected static DataFlavor colorFlavor =

new DataFlavor(Color.class, "Java Color Object");

// These are the data flavors we support
protected static DataFlavor[] supportedFlavors = {

colorFlavor, // Transfer as a Color object
DataFlavor.stringFlavor, // Transfer as a String object
DataFlavor.plainTextFlavor, // Transfer as a stream of Unicode text
};
Color color; // The color we encapsulate and transfer

/** Create a new TransferableColor that encapsulates the specified color */
public TransferableColor(Color color) { this.color = color; }

/** Return a 1ist of DataFlavors we can support */
public DataFlavor[] getTransferDataFlavors() { return supportedFlavors; }

The Data Transfer Framework 113

-~
S
2
)
-

eleq

Example 6-1: TransferableColor.java (continued)

/** Check whether a specified DataFlavor is available */
public boolean isDataFlavorSupported(DataFlavor flavor) {

}

if (flavor.equals(colorFlavor) ||
flavor.equals(DataFlavor.stringFlavor) ||
flavor.equals(DataFlavor.plainTextFlavor)) return true;
return false;

/**

* Transfer the data. Given a specified DataFlavor, return an Object
* appropriate for that flavor. Throw UnsupportedFlavorException if we
* don't support the requested flavor.

*/

public Object getTransferData(DataFlavor flavor)

{

throws UnsupportedFlavorException, IO0Exception

if (flavor.equals(colorFlavor)) return color;
else if (flavor.equals(DataFlavor.stringFlavor)) return color.toString();
else if (flavor.equals(DataFlavor.plainTextFlavor))

return new ByteArrayInputStream(color.toString().getBytes("Unicode"));
else throw new UnsupportedFlavorException(flavor);

Cut-and-Paste

In addition to the data transfer framework classes, the java.awt.datatransfer
package also defines the Clipboard class and the ClipboardOwner interface, which
implement data transfer with the cut-and-paste metaphor.

A typical cut-and-paste transfer works as follows:

In the initiating application, the user types Ctrl-C or Ctrl-X or in some other
way tells the application that he wants to copy or cut some data.

The application takes the selected data and encapsulates it in an appropriate
Transferable object. The next step is to call the getSystemClipboard()
method of the Toolkit object, to get a Clipboard object. The application then
calls the setContents() method of the Clipboard, passing the Transferable
object as the new clipboard contents.

If the user issued a cut command, the initiating application typically deletes
the data after transferring it to the clipboard. If the user issued a copy com-
mand, however, the application typically just highlights the data to make it
clear to the user what data is available for pasting. Often this data should
remain highlighted for as long as the initiating application owns the clipboard.
When an application calls setContents(), it becomes the clipboard owner
and remains such until some other application transfers data to the clipboard.
The application must, in fact, pass a object that implements C11ipboardOwner
to the setContents() method. This object is used to notify the application
when it ceases to be the clipboard owner. Until that happens, however, the
application must maintain the Transferable object and be willing to provide
the data when it is requested.

114 Chapter 6 — Data Transfer

At some point, the user moves his attention to some other application and
issues a paste command in that application. This receiving first application
calls Toolkit.getSystemClipboard() to obtain a Clipboard object. Then it
calls getContents() to obtain a Transferable object that represents the data
available on the clipboard. The application uses getTransferDataFlavors()
or isDataFlavorSupported() to see if the clipboard data is available in a for-
mat it is willing to accept. If there is such a format, the application calls get-
TransferData() to transfer the data.

At some point after this cut-and-paste operation, the user cuts or copies a new
piece of data in an application. At this point, the original application ceases to
be the clipboard owner and no longer has to make its data available for past-
ing. The TostOwnership() method of the originating application’s C11ipboard-
Owner object is called to notify the application of this occurrence.

Drag-and-Drop

Java 1.2 adds drag-and-drop support to Java. Drag-and-drop requires quite a bit
more infrastructure than cut-and-paste, and this infrastructure is added in a pack-
age of its own, java.awt.dnd. Despite the complexity of the infrastructure, drag-
and-drop is built upon the same data transfer architecture as cut-and-paste. The
key classes are still DataFlavor and Transferable.

Here’s the general outline of a drag-and-drop transaction from the standpoint of
the initiating or dragging application or component:

If a component within an application wants to allow data to be dragged from
it, it first obtains a DragSource object and then uses this DragSource to create
a DragGestureRecognizer. This DragGestureRecognizer pays attention to
mouse events that occur over the component, looking for the platform-depen-
dent gesture that indicates that the user wants to drag something.

When the DragGestureRecognizer sees a drag gesture, it invokes the
dragGestureRecognized() of a specified DragGesturelistener object.

The dragGestureRecognized() method determines if there is data available
for dragging, and, if so, it encapsulates the data in a Transferable object.
dragGestureRecognized is passed a DragGestureEvent object. Unlike most
other event objects, many of the event objects in the java.awt.dnd package
define important methods that are used during a drag-and-drop transaction.
In this case, the dragGestureRecognized() method activates the native drag-
and-drop system by calling the startDrag() method of its DragGestureEvent
object and passing it the Transferable object. In the call to startDrag(),
you also specify a cursor that is displayed during the drag and a Drag-
Sourcelistener object that keeps the data source notified about how the drag
is progressing. You can also specify an optional Image that is dragged along
with the cursor, on systems that support it. (Call the static Drag-
Source.isDragImageSupported() to see if image dragging is supported on the
system.)

Drag-and-Drop 115

-~
S
2
)
-

eleq

As the user drags the data, various methods of the DragSourcelistener are
invoked to notify the initiating application of the status of the drag. These
methods can be used to update the cursor being displayed or the image being
dragged along with the cursor. The methods provide a way to implement
specialized drag-over animation effects, for example. The native drag-and-
drop system typically supplies basic drag-over effects, by changing the cursor
when it is over a receptive drop target.

The most commonly used DragSourcelistener method is dragDropEnd().
This method is invoked when the user drops the data. The initiating applica-
tion can use this method to determine whether the drop was successful. If the
user were moving data instead of copying data, the initiating application
should delete its copy of the data once it has been successfully transferred to
the recipient. dragDropEnd() is passed a DragSourceDropEvent object. The
getDropSuccess() and getDropAction() methods of this event help the initi-
ating application decide on the appropriate action to take.

A drag-and-drop transaction looks somewhat different from the standpoint of a
receiving application or component:

A component that wants to allow data to be dropped on it must create a
DropTarget object to act as an intermediary between itself and the native
drag-and-drop system. When creating a DropTarget, you must specify the
component on which data can be dropped and also a DropTargetlListener
object that can be notified when data is dragged over the component.

When the user drags data over the component, the dragEnter() method of
the DropTargetlistener is invoked. This method is passed a DropTarget-
DragEvent that it can query to determine the supported data flavors of the
data being dragged. If the component is willing to accept a drop of that type
of data, it should call the acceptDrop() method of the event object to signal
its willingness. This in turn causes the dragEnter() method of the Drag-
Sourcelistener in the initiating application to be invoked. The dragEnter()
method of the DropTargetlListener may also want to display some visual cue
to the user of its willingness to accept a drop. For example, it might change
colors or change its border. This kind of visual change is known as a “drag-
under effect.”

The dragOver() method is called repeatedly as the user continues to drag the
data over the component. If the user drags the data out of the component, the
dragExit() method is called. If dragEnter() displayed a visual cue, drag-
Exit() should undo it.

If the user drops the data while over the component, the drop() method of
the DropTargetListener is invoked. It is this method that performs the actual
data transfer. drop() is passed a DropTargetDropEvent. The getTransfer-
able() method of this event returns the Transferable object that was
dropped. If the Transferable object supports a DataFlavor that the compo-
nent can accept, the component calls the acceptDrop() method of the event
to tell the native drag-and-drop system that the drop is valid. If it cannot work
with any of the available data flavors, it should call rejectDrop(). After
accepting the drop, the receiving component uses the getTransferData()

116 Chapter 6 — Data Transfer

method of the Transferable object to actually transfer the data. This phase of
the data transfer is done exactly as it is in cut-and-paste. Finally, the compo-
nent calls the dropComplete() method of the DropTargetDropEvent, passing
true if the transfer was successful or false if something went wrong and the
transfer did not succeed.

A Data Source

Example 6-2 shows the ColorSource class. This is a simple JComponent subclass
that displays a small block of a solid color and makes that color available for trans-
fer via both cut-and-paste and drag-and-drop. The copy () method copies the color
to the clipboard, making it available for pasting, while the dragGestureRecog-
nized() method initiates a drag operation. This example relies upon the Trans-
ferableColor class of Example 6-1, of course. For simplicity, the copy () method is
invoked when the user clicks on the component—there is no Ctrl-C keyboard
binding or Edit menu command.

Example 6-2: ColorSource.java

import java.awt.*;

import java.awt.event.*;

import java.awt.datatransfer.*;
import java.awt.dnd.*;

import javax.swing.*;

import javax.swing.border.*;
import java.io.*;

/**
* This simple component displays a solid color and allows that color
* to be dragged. Also, it copies the color to the clipboard when the
* user clicks on it.
*/
public class ColorSource extends JComponent
implements ClipboardOwner, DragGesturelistener, DragSourcelistener

{
Color color; // The color to display -
TransferableColor tcolor; // The color, encapsulated for data transfer E‘, (<}
DragSource dragSource; // We need this object for drag-and-drop a E’_
FD.' QV
S

/** A ColorSource normally displays itself with this border */
protected static Border defaultBorder = new BevelBorder(BevelBorder.LOWERED);
/** When we are the clipboard owner, uses this border */
protected static Border highlightBorder =
new CompoundBorder(defaultBorder, new LineBorder(Color.black, 2));

/** Create a new ColorSource object that displays the specified color */
public ColorSource(Color color) {

// Save the color. Encapsulate it in a Transferable object so that

// it can be used with cut-and-paste and drag-and-drop.

this.color = color;

this.tcolor = new TransferableColor(color);

// Set our default border
this.setBorder(defaultBorder);

// Listen for mouse clicks, and copy the color to the clipboard

A Data Source 117

Example 6-2: ColorSource. java (continued)

this.addMouselistener(new MouseAdapter() {
public void mouseClicked(MouseEvent e) { copy(); }
1)

// Set up a DragGestureRecognizer that will detect when the user

// begins a drag. When it detects one, it will notify us by calling

// the dragGestureRecognized() method of the DragGesturelistener

// interface we implement below

this.dragSource = DragSource.getDefaultDragSource();

dragSource.createDefaultDragGestureRecognizer(this, // Look for drags on us
DnDConstants.ACTION_COPY_OR_MOVE, // Recognize these types
this); // Tell us when recognized

}

// These are component methods that make this class work as a component.
// They specify how big the component is, and what it it Tooks like.
protected static Dimension mysize = new Dimension(25, 25);
public Dimension getMinimumSize() { return mysize; }
public Dimension getPreferredSize() { return mysize; }
public void paintComponent(Graphics g) {

g.setColor(color);

Dimension s = this.getSize();

Insets i = this.getInsets();

g.fillRect(i.left, i.top,

s.width-i.left-i.right, s.height-i.top-i.bottom);

}

// The methods below support cut-and-paste

/** This method copies the color to the clipboard */
public void copy() {

// Get system clipboard

Clipboard ¢ = this.getToolkit().getSystemClipboard();

// Put our TransferableColor object on the clipboard.
// Also, we'll get notification when we no Tonger own the clipboard.
c.setContents(tcolor, this);

// Set a special border on ourselves that indicates that we're the
// current color available for pasting
this.setBorder(highlightBorder);

}

// This ClipboardOwner method is called when something else is

// placed on the clipboard. It means that our color is no longer

// available for pasting, and we should not display the highlight border.

public void TostOwnership(Clipboard clipboard, Transferable contents) {
this.setBorder(defaultBorder)

}

// The methods below support drag-and-drop

// This DragGesturelistener method is called when the DragGestureRecognizer
// detects that the user has dragged the mouse. It is responsible
// for beginning the drag-and-drop process.
public void dragGestureRecognized(DragGestureEvent e) {
// Create an image we can drag along with us.
// Not all systems support this, but it doesn't hurt to try.

118 Chapter 6 — Data Transfer

Example 6-2: ColorSource.java (continued)

Image colorblock = this.createlmage(25,25);
Graphics g = colorblock.getGraphics();
g.setColor(color);

g.fillRect(0,0,25,25);

// Start dragging our transferable color object
e.startDrag(DragSource.DefaultMoveDrop, // The initial drag cursor
colorblock, new Point(0,0), // The image to drag
tcolor, // The data being dragged
this); // Who to notify during drag
}

// These methods implement DragSourcelistener.

// Since we passed this object to startDrag, these methods will be

// called at interesting points during the drag. We could use them,

// for example, to implement custom cursors or other "drag-over" effects.
public void dragEnter(DragSourceDragEvent e) {}

public void dragExit(DragSourceEvent e) {}

pubTic void dragDropEnd(DragSourceDropEvent e) {}

public void dragOver(DragSourceDragEvent e) {}

pubTic void dropActionChanged(DragSourceDragEvent e) {}

A Data Sink

Example 6-3 shows the ColorSink class, which is a simple subclass of the Swing
JTextArea class. ColorSink allows color objects to be pasted or dropped on it.
When either event occurs, ColorSink sets its background color to the transferred
color object. In addition, the class allows the pasting of textual data, which it
inserts at the current cursor position. Finally, ColorSink accepts drops of the
DataFlavor.javaFilelListFlavor type. This data flavor is used when the user
drags and drops a file icon. When a ColorSink receives a drop of this type, it
opens the specified file (which it assumes to be a text file) and reads and displays
its contents.

The pastecolor() method does the work of transferring a color through cut-and-
paste. Again, for simplicity, the pastecolor() method is invoked when the user
double-clicks on the ColorSink. The drag-and-drop transfer is implemented pri-
marily in the drop() method. Note, however, that dragknter() and dragExit()
perform a simple drag-under effect by highlighting the ColorSink border.

The ColorSink class also includes a simple main() method that shows how it can
be combined with the ColorSource class to create a simple demonstration of cut-
and-paste and drag-and-drop.

Example 6-3: ColorSink. java

import java.awt.*;

import java.awt.event.*;

import java.awt.datatransfer.*;
import java.awt.dnd.*;

import javax.swing.*;

import javax.swing.border.*;
import java.io.*;

A Data Sink 119

-~
S
2
)
-

eleq

Example 6-3: ColorSink.java (continued)
import java.util.List;

/~k~k
* This simple JTextArea subclass allows TransferableColor objects to
* pe pasted or dropped into it. It also supports the pasting of
* text and the dropping of File objects.
*/
public class ColorSink extends JTextArea implements DropTargetlListener {
/** Create a new ColorSink object */
public ColorSink() {
// Listen for double-clicks. Use them to trigger a paste action.
addMouselListener(new MouseAdapter() {
public void mouseClicked(MouseEvent e) {
if (e.getClickCount() == 2) { pastecolor(); e.consume(); }
}
1)

// We have to create a DropTarget object to support drag-and-drop.
// It will Tisten for drops on top of us and notify our DropTargetListener
// methods when drag-and-drop-related events occur.
setDropTarget(new DropTarget(this, this));
}

// This method is invoked when the user double-clicks on us. It attempts
// to paste a color or text. Note that the JTextArea we extend
// already supports cut-and-paste of text through the Ctrl-V keystroke.
// This adds a different kind of cut-and-paste for demonstration purposes.
public void pastecolor() {

// Get the clipboard, and read its contents

Clipboard ¢ = this.getToolkit().getSystemClipboard();

Transferable t = c.getContents(this);

if (£t =null) { // If nothing to paste
this.getToolkit().beep(); // then beep and do nothing
return;

}

try {

// 1f the clipboard contained a color, use it as the background color
if (t.isDataFlavorSupported(TransferableColor.colorFlavor)) {
Color color = (Color) t.getTransferData(TransferableColor.colorFlavor);
this.setBackground(color);
}
// If the clipboard contained text, insert it.
else if (t.isDataFlavorSupported(DataFlavor.stringFlavor)) {
String s = (String) t.getTransferData(DataFlavor.stringFlavor)
this.replaceSelection(s);
}
// Otherwise, we don't know how to paste the data, so just beep
else this.getToolkit().beep();
}
catch (UnsupportedFlavorException ex) { this.getToolkit().beep(); }
catch (IOException ex) { this.getToolkit().beep(); }
}

// The methods below are the methods of DropTargetlListener.
// They are invoked at various times when something is being

// dragged over us, and allow us an opportunity to respond to the drag.

// This is the border we display when the user is dragging over us.

120 Chapter 6 — Data Transfer

Example 6-3: ColorSink.java (continued)
protected static Border dropBorder = new BevelBorder(BevelBorder.LOWERED);

// Something is being dragged over us. If we can support this data type.
// tell the drag-and-drop system that we are interested, and display
// a special border to tell the user that we're interested.
public void dragEnter(DropTargetDragEvent e) {
if (e.isDataFlavorSupported(TransferableColor.colorFlavor) ||
e.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
e.acceptDrag(DnDConstants.ACTION_COPY_OR_MOVE);
this.setBorder(dropBorder);
}
}

/** The user is no longer dragging over us, so restore the default border */
public void dragExit(DropTargetEvent e) { this.setBorder(null); }

/** This method is invoked when the user drops something on us */

public void drop(DropTargetDropEvent e){
this.setBorder(null); // Restore the default border
Transferable t = e.getTransferable(); // Get the data that was dropped

// Check for types of data that we support
if (t.isDataFlavorSupported(TransferableColor.colorFlavor)) {
// If it was a color, accept it, and use it as the background color
e.acceptDrop(DnDConstants.ACTION_COPY_OR_MOVE);
try {
Color ¢ = (Color) t.getTransferData(TransferableColor.colorFlavor);
this.setBackground(c);
e.dropComplete(true);
}
catch (Exception ex) { e.dropComplete(false); }
}
else if (t.isDataFlavorSupported(DataFlavor.javaFileListFlavor)) {
// If it was a file 1ist, accept it, read the first file in the Tist
// and display the file contents
e.acceptDrop(DnDConstants.ACTION_COPY_OR_MOVE);
try {
List files = (List) t.getTransferData(DataFlavor.javaFilelListFlavor);
File f = (File) files.get(0);
BufferedReader in = new BufferedReader(new FileReader(f));
String s;
this.setText("");
while((s = in.readlLine()) != null) this.append(s);
e.dropComplete(true);
}
catch (Exception ex) { e.dropComplete(false); }
}
else { // If it wasn't a color or a file list, reject it
e.rejectDrop();
return;
}
}

=
S o
S S
Qs
)
)

// These are unused DropTargetlListener methods
public void dragOver(DropTargetDragEvent e) {}
public void dropActionChanged(DropTargetDragEvent e) {}

A Data Sink 121

Example 6-3: ColorSink.java (continued)

/** This is a simple test program for ColorSource and ColorSink */
public static void main(String[] args) {
// Create a window
JFrame f = new JFrame("ColorSourceTest");
f.getContentPane().setlLayout(new BorderLayout());

// Add some ColorSources

JPanel panel = new JPanel();
f.getContentPane().add(panel, BorderLayout.NORTH);
panel.add(new ColorSource(Color.yellow));
panel.add(new ColorSource(Color.pink));
panel.add(new ColorSource(Color.white));
panel.add(new ColorSource(Color.gray));

// Add a ColorSink
ColorSink sink = new ColorSink();
f.getContentPane().add(sink, BorderlLayout.CENTER);

// Pop it all up
f.setSize(400, 300);
f.show();

122 Chapter 6 — Data Transfer

CHAPTER 7

Applets

An applet, as the name implies, is a kind of mini-application, designed to be
downloaded over a network from a possibly untrusted source and run in a web
browser or in the context of some other applet viewer application. Because of the
ubiquity of web browsers, applets are a useful and powerful way of delivering
Java programs to end users. In fact, it was the power of applets that popularized
Java in the first place. Applets differ from regular applications in several important
ways:

e An applet doesn’t have a main() method like a standalone Java application
does. Writing an applet is a lot more like subclassing an AWT or Swing com-
ponent than writing a standalone application.

e An applet is not invoked using the command line, as a Java application is.
Instead, an applet is embedded within an HTML file with an <APPLET> tag.
And, instead of reading command-line arguments as an application does, an
applet gets its arguments from <PARAM> tags in the HTML file.

e An applet is usually subject to a number of strict security restrictions that pre-
vent untrusted, and possibly malicious, applet code from damaging the host
system.

This chapter briefly explains how applets are written and how they are embedded
in HTML pages. It also explains the security restrictions to which applets are
subject.

Writing Applets

From a programmer’s standpoint, one of the biggest differences between an applet
and an application is that an applet does not have a main() method or any other
single entry point from which the program starts running. Instead, to write an
applet, you subclass the java.applet.Applet class (which is itself a subclass of

123

java.awt.Panel and thus a descendant of java.awt.Component) and override a
number of standard methods. At appropriate times, under well-defined circum-
stances, the web browser or applet viewer invokes the methods you have defined.
The applet is not in control of the thread of execution; it simply responds when
the browser or viewer tells it to. For this reason, the methods you write must take
the necessary action and return promptly—they are not allowed to enter time-con-
suming (or infinite) loops. In order to perform a time-consuming or repetitive task,
such as animation, an applet may create its own Thread, over which it does have
complete control.

The task of writing an applet, then, comes down to defining the appropriate meth-
ods. A number of these methods are defined by the Applet class:

init()

Called when the applet is first loaded into the browser or viewer. It is typi-
cally used to perform applet initialization, in preference to a constructor
method. (If you define a constructor for your Applet, it must be a no-argu-
ment constructor, as that is what the web browser expects.) If your applet
displays GUI components, they are typically created here. (Remember that the
applet itself is a java.awt.Panel, so you can create components and add()
them directly to the applet.)

destroy()
Called when the applet is about to be unloaded from the browser or viewer.
The method should free any resources, other than memory, that the applet
has allocated. The destroy() method is much less commonly used than
init().

start()
Called when the applet becomes visible and should start doing whatever it is
that it does. An applet that performs animation or does some other action
only when it is visible needs to implement this method.

stop()
Called when the applet becomes temporarily invisible (e.g., when the user
has scrolled it off the screen). Tells the applet to stop performing an anima-
tion or other task.

getAppletInfo()
Called to get information about the applet (e.g., its name and author). This
method should return a string suitable for display in a dialog box.

getParameterInfo()
Called to obtain information about the parameters to which the applet
responds. Returns a String[I[] that describes the parameters.

In addition to these Applet methods, there are a variety of Component methods that
an applet may want to override. The most obvious of these methods is paint(),
which the browser or viewer invokes to ask the applet to draw itself on the
screen.

Applets handle events in the same way that AWT and Swing applications and com-
ponents do. However, for maximum portability to old web browsers such as

124 Chapter 7— Applets

Netscape Navigator 3 and early versions of Navigator 4, many applets use the dep-
recated Java 1.0 event model and override methods such as mouseDown(), mouse-
Drag(), keyDown(), and action().

In addition to all these methods that you override when writing an applet, the
Applet class also defines some methods that you may find useful to invoke from
your applet:

getImage()
Loads an image file from the network and returns an Image object.

getAudioClip()
Loads a sound clip from the network and returns an AudioC1ip object.

getParameter()
Looks up and returns the value of a named parameter, specified with a
<PARAM> tag in the HTML file that contains the applet.

getCodeBase()
Returns the base URL from which the applet class file was loaded.

getDocumentBase()
Returns the base URL of the HTML file that refers to the applet.

showStatus()
Displays a message in the status line of the browser or applet viewer.

getAppletContext()
Returns the AppletContext object for the applet. AppletContext defines the
useful showDocument() method that asks the browser to load and display a
new web page.

A Simple Applet

Example 7-1 is a simple applet. The applet has a simple init() method but con-
sists primarily of the paint() method that produces the applet display shown in
Figure 7-1. The example also demonstrates the use of the getParameter() method
to obtain the string of text that it displays.

This applet can be placed within an HTML file using the following HTML tags:

<APPLET code="MessageApplet.class" width=350 height=125>
<PARAM name="message" value="Hello World">
</APPLET>

To run and display the applet, simply load the HTML file into a Java-enabled web
browser. Alternatively, you can use the appletviewer program included with Sun’s
Java implementation to view the applet:

% appletviewer MessageApplet.html

When invoking appletviewer, you must specify the name of the HTML file that
includes the applet, not the Java class file that implements the applet. We’ll discuss
how applets are embedded in HTML files in full detail later in this chapter.

Writing Applets 125

= Applet Viewer: MessageApplet.class |l5]m

fpplet

Hello World

lapplet started,

Figure 7-1: A simple applet

Example 7-1: MessageApplet.java

import java.applet.*;
import java.awt.*;

public class MessageApplet extends Applet {
protected String message; // The text to display
protected Font font; // The font to display it in

// One-time initialization for the applet
public void init() {

message = this.getParameter("message");

font = new Font("Helvetica", Font.BOLD, 48);
}

// Draw the applet whenever necessary
public void paint(Graphics g) {
// The pink oval
g.setColor(Color.pink);
g.fi110val(10, 10, 330, 100);

// The red outline. The browser may not support Java 2D, so we
// try to simulate a four-pixel-wide line by drawing four ovals.
g.setColor(Color.red);

g.drawOval(10,10, 330, 100);

g.drawOval(9, 9, 332, 102);

g.drawOval(8, 8, 334, 104);

g.drawOval(7, 7, 336, 106);

// The text
g.setColor(Color.black);
g.setFont(font);
g.drawString(message, 40, 75);

126 Chapter 7— Applets

Applets and the Java 1.0 Event Model

The AWT event model changed dramatically between Java 1.0 and Java 1.1. Chap-
ter 2, Swing and AWT Architecture, described the Java 1.1 event-handling model
exclusively, since the Java 1.0 event model is now deprecated. However, because
there is still a large installed base of web browsers that support only the Java 1.0
event model, applets are sometimes still written using this model.

In Java 1.0, all events are represented by the Event class. This class has a number
of instance variables that describe the event. One of these variables, id, specifies
the type of the event. Event defines a number of constants that are the possible
values for the id field. The target field specifies the object (typically a Component)
that generated the event or on which the event occurred (i.e., the source of the
event). The other fields may or may not be used, depending on the type of the
event. For example, the x and y fields are defined when id specifies a BUT-
TON_EVENT but not when it specifies an ACTION_EVENT. The arg field can provide
additional type-dependent data.

A Java 1.0 event is dispatched first to the handleEvent () method of the Component
on which it occurred. The default implementation of this method checks the id
field of the Event object and dispatches the most commonly used types of events
to various type-specific methods, listed in Table 7-1.

Table 7-1: Java 1.0 Event Processing Methods of Component

action() keyUp() mouseDrag() mouseMove()
gotFocus() | TostFocus() | mouseEnter() | mouseUp()
keyDown () mouseDown () | mouseExit()

The methods listed in Table 7-1 are defined by the Component class. One of the
primary characteristics of the Java 1.0 event model is that you must override these
methods in order to process events. This means that you must create a subclass to
define custom event-handling behavior, which is exactly what we do when we
write an applet, for example. However, not all of the event types are dispatched
by handleEvent() to more specific methods. If you are interested in LIST_SELECT
or WINDOW_ICONIFY events, for example, you have to override handleEvent() itself,
rather than one of the more specific methods. If you do this, you usually want to
invoke super.handleEvent() to continue dispatching events of other types in the
default way.

handleEvent() and all of the type-specific methods return boolean values. If an
event-handling method returns false, as they all do by default, it means that the
event was not handled, so it should be passed to the container of the current com-
ponent to see if that container is interested in processing it. If a method returns
true, on the other hand, it is a signal that the event has been handled and no fur-
ther processing is needed.

The fact that unhandled events are passed up the containment hierarchy is impor-
tant. It means that we can override the action() method in an applet in order to
handle ACTION_EVENT events that are generated by the buttons within the applet. If

Writing Applets 127

they were not propagated up as they are, we would have to create a custom sub-
class of Button for every button we wanted to add to an interface!

In the Java 1.0 model, there is no de facto way to know what types of events are
generated by what GUI components nor to know what fields of the Event object
are filled in for what types of events. You simply have to look this information up
in the documentation of individual AWT components.

Many event types use the modifiers field of the Event object to report which key-
board modifier keys were pressed when the event occurred. This field contains a
bitmask of the SHIFT_MASK, CTRL_MASK, META_MASK, and ALT_MASK constants defined
by the Event class. The shiftDown(), controlDown(), and metaDown() methods
can be used to test for the various modifiers.

The Event class does not have a special field to indicate which mouse button was
pressed when a mouse event occurs. Instead, Event uses the keyboard modifier
constants for this purpose, which allows systems that use a one-button mouse to
simulate other mouse buttons by using keyboard modifiers. If the left mouse but-
ton is in use, no keyboard modifiers are reported. If the right button is used, the
META_MASK bit is set in the modifiers field. And if the middle button is down, the
ALT_MASK bit is set.

When a keyboard event occurs, you should check the id field of the Event object
to determine what kind of key was pressed. If the event type is KEY_PRESS or
KEY_RELEASE, the keyboard key has an ASCII or Unicode representation, and the
key fields of the event object contain the encoding of the key. On the other hand,
if id is KEY_ACTION or KEY_ACTION_RELEASE, the key is a function key of some sort,
and the key field contains one of the keyboard constants defined by the Event
class, such as Event.F1 or Event.LEFT.

Example 7-2 shows a simple applet that allows the user to produce drawings by
scribbling with the mouse. It also allows the user to erase those drawings by click-
ing on a button or pressing the E key. The applet overrides methods to handle
mouse events, keyboard events, and action events generated by the Button com-
ponent. Unlike the applet in Example 7-1, this applet does not define a paint()
method. For simplicity, it does its drawing directly in response to the events it
receives and does not store the coordinates. This means that it cannot regenerate
the user’s drawing if it is scrolled off the screen and then scrolled back on.

Example 7-2: An Applet That Uses the Java 1.0 Event Model

import java.applet.*;
import java.awt.*;

/** A simple applet using the Java 1.0 event-handling model */
public class Scribble extends Applet {

private int Tlastx, lasty; // Remember last mouse coordinates
Button erase_button; // The Erase button
Graphics g; // A Graphics object for drawing

/** Initialize the button and the Graphics object */
public void init() {
erase_button = new Button("Erase");
this.add(erase_button);
g = this.getGraphics();

128 Chapter 7— Applets

Example 7-2: An Applet That Uses the Java 1.0 Event Model (continued)

this.requestFocus(); // Ask for keyboard focus so we get key events

}

/** Respond to mouse clicks */

public boolean mouseDown(Event e, int x, int y) {
Tastx = x; lasty = y; // Remember where the click was
return true;

}

/** Respond to mouse drags */

public boolean mouseDrag(Event e, int x, int y) {
g.setColor(Color.black);

g.drawlLine(Tastx, Tasty, x, y); // Draw from Tast position to here
Tastx = x; lasty = y; // And remember new last position
return true;

}
/** Respond to key presses: erase drawing when user types 'e' */
public boolean keyDown(Event e, int key) {
if ((e.id == Event.KEY_PRESS) && (key == 'e')) {
g.setColor(this.getBackground());
g.fillRect(0, 0, bounds().width, bounds().height);
return true;
}
else return false;
}
/** Respond to button clicks: erase drawing when user clicks button */
pubTic boolean action(Event e, Object arg) {
if (e.target == erase_button) {
g.setColor(this.getBackground());
g.fillRect(0, 0, bounds().width, bounds().height);
return true;
}
else return false;
}
}

Including Applets in HTML Files

Applets are typically embedded in HTML files using the <APPLET> tag. Another
alternative relies on a Java Plug-in and uses the <EMBED> and <OBJECT> tags. Multi-
ple applet files can be combined into a single JAR (Java Archive) file that a web
browser can read as a single, compressed file, substantially reducing download
time for some applets.

The <APPLET> 1lag

A Java applet is included in a web page with the <APPLET> tag, which has the fol-
lowing syntax (items in brackets ([]) are optional):

<APPLET
CODE = applet-filename
WIDTH = pixel-width
HEIGHT = pixel-height
[OBJECT = serialized-applet-filename]
[ARCHIVE = jar-file-list]
[CODEBASE = applet-url]

Including Applets in HIML Files 129

[ALT = alternate-text]
[NAME = applet-name]
[ALIGN = alignment]

[VSPACE = vertical-pixel-spacel
[HSPACE = horizontal-pixel-space]
>
[<PARAM NAME = parameter VALUE = value>]
[<PARAM NAME = parameter VALUE = value>]

[alternate-text]
</APPLET>

<APPLET>
The <APPLET> tag specifies an applet to be run within a web document. A
web browser that does not support Java and does not understand the
<APPLET> tag ignores this tag and any related <PARAM> tags and simply dis-
plays any alternate-text that appears between <APPLET> and </APPLET>. A
browser that does support Java runs the specified applet and does not display
the alternate-text.

CODE
This required attribute specifies the file that contains the compiled Java code
for the applet. It must be relative to the CODEBASE, if that attribute is specified
or relative to the current document’s URL, by default. It must not be an abso-
lute URL. As of Java 1.1, this attribute can be replaced with an OBJECT
attribute.

WIDTH
This attribute specifies the initial width, in pixels, that the applet needs in the
browser’s window. It is required.

HEIGHT
This attribute specifies the initial height, in pixels, that the applet needs in the
browser’s window. It is required.

OBJECT

As of Java 1.1, this attribute specifies the name of a file that contains a serial-
ized applet that is to be created by deserialization. An applet specified in this
way does not have its init() method invoked but does have its start()
method invoked. Thus, before an applet is saved through serialization, it
should be initialized but should not be started, or, if started, it should be
stopped. An applet must have either the CODE or OBJECT attribute specified,
but not both.

ARCHIVE
As of Java 1.1, this attribute specifies a comma-separated list of JAR files that
are preloaded by the web browser or applet viewer. These archive files may
contain Java class files, images, sounds, properties, or any other resources
required by the applet. The web browser or applet viewer searches for
required files in the archives before attempting to load them over the net-
work.

130 Chapter 7— Applets

CODEBASE
This optional attribute specifies the base URL (absolute or relative) of the
applet to be displayed. This should be a directory, not the applet file itself. If
this attribute is unspecified, the URL of the current document is used.

ALT This optional attribute specifies text that should be displayed by browsers that
understand the <APPLET> tag but do not support Java.

NAME
This optional attribute gives a name to the applet instance. Applets that are
running at the same time can look one another up by name and communicate
with one another.

ALIGN
This optional attribute specifies the applet’s alignment on the page. It behaves
just like the ALIGN attribute of the tag. Its allowed values are: left,
right, top, texttop, middle, absmiddle, baseline, bottom, and absbottom.

VSPACE
This optional attribute specifies the margin, in pixels, that the browser should
put above and below the applet. It behaves just like the VSPACE attribute of
the tag.

HSPACE
This optional attribute specifies the margin, in pixels, that the browser should
put on either side of the applet. It behaves just like the HSPACE attribute of
the tag.

<PARAM>

The <PARAM> tag, with its NAME and VALUE attributes, specifies a named param-
eter and its corresponding string value that are passed to the applet. These
applet parameters function like system properties or command-line arguments
do for a regular application. Any number of <PARAM> tags may appear
between <APPLET> and </APPLET>. An applet can look up the value of a
parameter specified in a <PARAM> tag with the getParameter() method of
Applet.

Using Applet JAR Files

The <APPLET> tag supports an ARCHIVE attribute that identifies a JAR file containing
the files required by an applet. The JAR, or Java Archive, format is simply a ZIP
file with the addition of an optional manifest file. When an applet implementation
involves more than one class file or when an applet relies on external image or
sound files, it can be quite useful to combine all these files into a single, com-
pressed JAR file and allow the web browser to download them all at once.

Starting with Java 1.1, Sun’s Java SDK contains a jar command that allows you to
create a JAR file. You might invoke it like this to create a JAR file named myap-
plet jar that contains all class files, GIF images, and AU format sound files in the
current directory:

% jar cf myapplet.jar *.class *.gif *.au

Including Applets in HIML Files 131

Having created a JAR file like this, you can tell a web browser about it with the
following HTML tags:

<APPLET ARCHIVE="myapplet.jar" CODE="myapplet.class" WIDTH=400 HEIGHT=200>
</APPLET>

The ARCHIVE attribute does not replace the CODE attribute. ARCHIVE specifies where
to look for files, but CODE is still required to tell the browser which of the files in
the archive is the applet class file to be executed. The ARCHIVE attribute may actu-
ally specify a comma-separated list of JAR files. The web browser or applet viewer
searches these archives for any files the applet requires. If a file is not found in an
archive, however, the browser falls back upon its old behavior and attempts to
load the file from the web server using a new HTTP request.

Web browsers introduced support for the ARCHIVE attribute at about the same time
that Java 1.1 was introduced. Some Java 1.0 browsers do not recognize ARCHIVE
and therefore ignore it. If you want to maintain compatibility with these browsers,
be sure to make your applet files available in an unarchived form, in addition to
the more efficient archived form.

Using Applets with the Java Plug-in

When a Java-enabled web browser encounters an <APPLET> tag, it starts up its
embedded Java VM, downloads the class files that implement the applet, and starts
running them. This approach has run into difficulties because web browser
releases are not synchronized with releases of new versions of Java. It was quite a
while after the release of Java 1.1 before commonly used browsers supported this
version of the language, and there are still quite a few browsers in use that sup-
port only Java 1.0. It is not at all clear when, or even if, browsers will include sup-
port for the Java 2 platform. Furthermore, because of the lawsuit between Sun and
Microsoft, the future of integrated Java support in the popular Internet Explorer
web browser is questionable.

For these reasons, Sun has produced a product called the Java Plug-in. This prod-
uct is a Java VM that acts as a Netscape Navigator plug-in and as an Internet
Explorer ActiveX control. It adds Java 1.2 support to these browsers for the Win-
dows and Solaris platforms. In many ways, Java support makes the most sense as
a plug-in; using the Java Plug-in may be the preferred method for distributing Java
applets in the future.

There is a catch, however. To run an applet under the Java Plug-in, you cannot
use the <APPLET> tag. <APPLET> invokes the built-in Java VM, not the Java Plug-in.
Instead, you must invoke the Java Plug-in just as you would invoke any other Nav-
igator plug-in or Internet Explorer ActiveX control. Unfortunately, Netscape and
Microsoft have defined different HTML tags for these purposes. Netscape uses the
<EMBED> tag, and Microsoft uses the <OBJECT> tag. The details of using these tags
and combining them in a portable way are messy and confusing. To help applet
developers, Sun distributes a special HTML converter program that you can run
over your HTML files. It scans for <APPLET> tags and converts them to equivalent
<EMBED> and <OBJECT> tags.

132 Chapter 7— Applets

Consider the simple HTML file we used for the first applet example in this chapter:

<APPLET code="MessageApplet.class" width=350 height=125>
<PARAM name="message" value="Hello World">
</APPLET>

When run through the HTML converter, this tag becomes something like this:

<OBJECT classid="c1sid:8AD9C840-044E-11D1-B3E9-00805F499D93"
codebase=
"http://java.sun.com/products/plugin/1.2/jinstall-12-win32.cab#Version=1,2,0,0"
WIDTH=350 HEIGHT=125>
<PARAM NAME=CODE VALUE="MessageApplet.class" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.2">
<PARAM NAME="message" VALUE="Hello World">

<COMMENT>
<EMBED type="application/x-java-applet;version=1.2"
pluginspage=
"http://java.sun.com/products/plugin/1.2/plugin-install.html"
java_CODE="MessageApplet.class"
WIDTH=350 HEIGHT=125 message="Hello World">
</EMBED>
</COMMENT>
</0BJECT>

When Navigator reads this HTML file, it ignores the <OBJECT> and <COMMENT> tags
that it does not support and reads only the <EMBED> tag. When Internet Explorer
reads the file, however, it handles the <OBJECT> tag and ignores the <EMBED> tag
that is hidden within the <COMMENT> tag. Note that both the <OBJECT> and <EMBED>
tags specify all the attributes and parameters specified in the original file. In addi-
tion, however, they identify the plug-in or ActiveX control to be used and tell the
browser from where it can download the Java Plug-in, if it has not already down-
loaded it.

You can learn more about the Java Plug-in and download the HTML converter util-
ity from bttp.//java.sun.com/products/plugin.

Applet Security

One of the most important features of Java is its security model. It allows untrusted
code, such as applets downloaded from arbitrary web sites, to be run in a
restricted environment that prevents that code from doing anything malicious, like
deleting files or sending fake email. The Java security model has evolved consider-
ably between Java 1.0 and Java 1.2 and is covered in detail in Java in a Nutshell.

To write applets, you don’t need to understand the entire Java security model.
What you do need to know is that when your applet is run as untrusted code, it is
subject to quite a few security restrictions that limit the kinds of things it can do.
This section describes those security restrictions and also describes how you can
attach a digital signature to applets, so that users can treat them as trusted code
and run them in a less restrictive environment.

The following list details the security restrictions that are typically imposed on
untrusted applet code. Different web browsers and applet viewers may impose

Applet Security 133

slightly different security restrictions and may allow the end user to customize or
selectively relax the restrictions. In general, however, you should assume that your
untrusted applet are restricted in the following ways:

e Untrusted code cannot read from or write to the local filesystem. This means
that untrusted code cannot:

— Read files

— List directories

— Check for the existence of files

— Obtain the size or modification date of files
— Obtain the read and write permissions of a file
— Test whether a filename is a file or directory
- Write files

— Delete files

— Create directories

— Rename files

— Read or write from FileDescriptor objects

e Untrusted code cannot perform networking operations, except in certain
restricted ways. Untrusted code cannot:

— Create a network connection to any computer other than the one from
which the code was itself loaded

— Listen for network connections on any of the privileged ports with num-
bers less than or equal to 1,024

— Accept network connections on ports less than or equal to 1,024 or from
any host other than the one from which the code itself was loaded

— Use multicast sockets

— Create or register a SocketImplFactory, URLStreamHandlerFactory, or
ContentHandlerFactory

e Untrusted code cannot make use of certain system facilities. It cannot:

— Exit the Java interpreter by calling System.exit() or Runtime.exit()
— Spawn new processes by calling any of the Runtime.exec() methods

— Dynamically load native code libraries with the Toad() or ToadLibrary()
methods of Runtime or System

e Untrusted code cannot make use of certain AWT facilities. One major restric-
tion is that all windows created by untrusted code display a prominent visual
indication that they have been created by untrusted code and are “insecure.”

134 Chapter 7— Applets

This is to prevent untrusted code from spoofing the on-screen appearance of
trusted code. Additionally, untrusted code cannot:

— Initiate a print job
— Access the system clipboard
— Access