

Patrick Niemeyer and Daniel Leuck

FOURTH EDITION

Learning Java

Learning Java, Fourth Edition
by Patrick Niemeyer and Daniel Leuck

Copyright © 2013 Patrick Niemeyer, Daniel Leuck. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Rachel Steely
Copyeditor: Gillian McGarvey
Proofreader: Rachel Monaghan

Indexer: BIM Publishing Services, Inc.
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

June 2013: Fourth Edition

Revision History for the Fourth Edition:

2013-06-06: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319243 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Learning Java, Fourth Edition, the image of a Bengal tigress and her cubs, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-31924-3

[LSI]

Table of Contents

Preface. xxi

1. A Modern Language. 1
Enter Java 2

Java’s Origins 2
Growing Up 3

A Virtual Machine 4
Java Compared with Other Languages 7
Safety of Design 10

Simplify, Simplify, Simplify... 10
Type Safety and Method Binding 11
Incremental Development 12
Dynamic Memory Management 13
Error Handling 14
Threads 14
Scalability 15

Safety of Implementation 15
The Verifier 17
Class Loaders 18
Security Managers 19

Application and User-Level Security 19
A Java Road Map 20

The Past: Java 1.0–Java 1.6 20
The Present: Java 7 21
The Future 23
Availability 23

2. A First Application. 25
Java Tools and Environment 25

iii

Configuring Eclipse and Creating a Project 26
Importing the Learning Java Examples 28

HelloJava 29
Classes 32
The main() Method 33
Classes and Objects 34
Variables and Class Types 34
HelloComponent 35
Inheritance 36
The JComponent Class 37
Relationships and Finger Pointing 38
Package and Imports 39
The paintComponent() Method 40

HelloJava2: The Sequel 41
Instance Variables 43
Constructors 44
Events 45
The repaint() Method 47
Interfaces 48

HelloJava3: The Button Strikes! 49
Method Overloading 51
Components 52
Containers 52
Layout 53
Subclassing and Subtypes 54
More Events and Interfaces 54
Color Commentary 55
Static Members 55
Arrays 56
Our Color Methods 56

HelloJava4: Netscape’s Revenge 58
Threads 60
The Thread Class 61
The Runnable Interface 61
Starting the Thread 62
Running Code in the Thread 62
Exceptions 63
Synchronization 64

3. Tools of the Trade. 67
JDK Environment 67
The Java VM 68

iv | Table of Contents

Running Java Applications 68
System Properties 70

The Classpath 70
javap 72

The Java Compiler 72
JAR Files 74

File Compression 74
The jar Utility 75
The pack200 Utility 78

Policy Files 78
The Default Security Manager 79
The policytool Utility 79
Using a Policy File with the Default Security Manager 81

4. The Java Language. 83
Text Encoding 83
Comments 84

Javadoc Comments 85
Types 86

Primitive Types 87
Reference Types 91
A Word About Strings 93

Statements and Expressions 93
Statements 94
Expressions 100

Exceptions 104
Exceptions and Error Classes 105
Exception Handling 107
Bubbling Up 109
Stack Traces 110
Checked and Unchecked Exceptions 111
Throwing Exceptions 112
try Creep 115
The finally Clause 116
Try with Resources 117
Performance Issues 119

Assertions 119
Enabling and Disabling Assertions 120
Using Assertions 121

Arrays 122
Array Types 123
Array Creation and Initialization 123

Table of Contents | v

Using Arrays 125
Anonymous Arrays 127
Multidimensional Arrays 127
Inside Arrays 129

5. Objects in Java. 131
Classes 132

Accessing Fields and Methods 133
Static Members 135

Methods 138
Local Variables 139
Shadowing 139
Static Methods 140
Initializing Local Variables 141
Argument Passing and References 142
Wrappers for Primitive Types 144
Autoboxing and Unboxing of Primitives 146
Variable-Length Argument Lists 147
Method Overloading 148

Object Creation 149
Constructors 150
Working with Overloaded Constructors 151
Static and Nonstatic Initializer Blocks 153

Object Destruction 154
Garbage Collection 154
Finalization 155
Weak and Soft References 155

Enumerations 156
Enum Values 158
Customizing Enumerations 158

6. Relationships Among Classes. 161
Subclassing and Inheritance 161

Shadowed Variables 163
Overriding Methods 165
Special References: this and super 172
Casting 172
Using Superclass Constructors 174
Full Disclosure: Constructors and Initialization 175
Abstract Methods and Classes 176

Interfaces 177
Interfaces as Callbacks 179

vi | Table of Contents

Interface Variables 180
Subinterfaces 181

Packages and Compilation Units 182
Compilation Units 182
Package Names 183
Class Visibility 183
Importing Classes 184

Visibility of Variables and Methods 186
Basic Access Modifiers 186
Subclasses and Visibility 188
Interfaces and Visibility 189

Arrays and the Class Hierarchy 189
ArrayStoreException 190

Inner Classes 190
Inner Classes as Adapters 192
Inner Classes Within Methods 194

7. Working with Objects and Classes. 201
The Object Class 201

Equality and Equivalence 202
Hashcodes 203
Cloning Objects 203

The Class Class 206
Reflection 208

Modifiers and Security 211
Accessing Fields 212
Accessing Methods 213
Accessing Constructors 215
What About Arrays? 216
Accessing Generic Type Information 216
Accessing Annotation Data 217
Dynamic Interface Adapters 217
What Is Reflection Good For? 218

Annotations 219
Using Annotations 220
Standard Annotations 221
The apt Tool 222

8. Generics. 223
Containers: Building a Better Mousetrap 224

Can Containers Be Fixed? 224
Enter Generics 225

Table of Contents | vii

Talking About Types 228
“There Is No Spoon” 229

Erasure 230
Raw Types 231

Parameterized Type Relationships 232
Why Isn’t a List<Date> a List<Object>? 234

Casts 235
Writing Generic Classes 236

The Type Variable 236
Subclassing Generics 237
Exceptions and Generics 238
Parameter Type Limitations 239

Bounds 240
Erasure and Bounds (Working with Legacy Code) 241

Wildcards 242
A Supertype of All Instantiations 243
Bounded Wildcards 243
Thinking Outside the Container 243
Lower Bounds 244
Reading, Writing, and Arithmetic 245
<?>, <Object>, and the Raw Type 247
Wildcard Type Relationships 247

Generic Methods 248
Generic Methods Introduced 249
Type Inference from Arguments 250
Type Inference from Assignment Context 251
Explicit Type Invocation 252
Wildcard Capture 252
Wildcard Types Versus Generic Methods 253

Arrays of Parameterized Types 253
Using Array Types 254
What Good Are Arrays of Generic Types? 255
Wildcards in Array Types 255

Case Study: The Enum Class 256
Case Study: The sort() Method 257
Conclusion 258

9. Threads. 259
Introducing Threads 260

The Thread Class and the Runnable Interface 261
Controlling Threads 265
Death of a Thread 267

viii | Table of Contents

Threading an Applet 268
Issues Lurking 270

Synchronization 271
Serializing Access to Methods 272
Accessing class and instance Variables from Multiple Threads 274
The wait() and notify() Methods 275
Passing Messages 277
ThreadLocal Objects 281

Scheduling and Priority 282
Thread State 283
Time-Slicing 284
Priorities 285
Yielding 285

Thread Groups 286
Working with ThreadGroups 287
Uncaught Exceptions 287

Thread Performance 288
The Cost of Synchronization 288
Thread Resource Consumption 289

Concurrency Utilities 289
Executors 291
Locks 303
Synchronization Constructs 306
Atomic Operations 311

Conclusion 313

10. Working with Text. 315
Text-Related APIs 316
Strings 316

Constructing Strings 317
Strings from Things 318
Comparing Strings 319
Searching 321
Editing 322
String Method Summary 322
StringBuilder and StringBuffer 323

Internationalization 325
The java.util.Locale Class 325
Resource Bundles 326

Parsing and Formatting Text 328
Parsing Primitive Numbers 328
Tokenizing Text 330

Table of Contents | ix

Printf-Style Formatting 332
Formatter 333
The Format String 333
String Conversions 334
Primitive and Numeric Conversions 336
Flags 337
Miscellaneous 338

Formatting with the java.text Package 338
MessageFormat 340

Regular Expressions 342
Regex Notation 342
The java.util.regex API 352

11. Core Utilities. 359
Math Utilities 359

The java.lang.Math Class 360
Big/Precise Numbers 361
Floating-Point Components 362
Random Numbers 363

Dates and Times 364
Working with Calendars 365
Time Zones 366
Parsing and Formatting with DateFormat 368
Printf-Style Date and Time Formatting 370

Timers 371
Collections 373

The Collection Interface 374
Iterator 376
Collection Types 378
The Map Interface 380
Collection Implementations 382
Hash Codes and Key Values 387
Synchronized and Unsynchronized Collections 388
Read-Only and Read-Mostly Collections 390
WeakHashMap 390
EnumSet and EnumMap 390
Sorting Collections 391
A Thrilling Example 392

Properties 393
Loading and Storing 394
System Properties 395

The Preferences API 396

x | Table of Contents

Preferences for Classes 397
Preferences Storage 398
Change Notification 398

The Logging API 399
Overview 399
Logging Levels 401
A Simple Example 402
Logging Setup Properties 403
The Logger 405
Performance 406

Observers and Observables 406

12. Input/Output Facilities. 409
Streams 409

Basic I/O 412
Character Streams 415
Stream Wrappers 416
Pipes 420
Streams from Strings and Back 422
Implementing a Filter Stream 423

File I/O 425
The java.io.File Class 425
File Streams 430
RandomAccessFile 433
Resource Paths 434

The NIO File API 436
FileSystem and Path 436
NIO File Operations 438
Directory Operations 441
Watching Paths 443

Serialization 444
Initialization with readObject() 446
SerialVersionUID 447

Data Compression 448
Archives and Compressed Data 448
Decompressing Data 450
Zip Archive As a Filesystem 452

The NIO Package 453
Asynchronous I/O 453
Performance 454
Mapped and Locked Files 454
Channels 454

Table of Contents | xi

Buffers 455
Character Encoders and Decoders 459
FileChannel 461
Scalable I/O with NIO 467

13. Network Programming. 469
Sockets 471

Clients and Servers 472
The DateAtHost Client 477
The TinyHttpd Server 478
Socket Options 482
Proxies and Firewalls 484

Datagram Sockets 486
The HeartBeat Applet 487
InetAddress 491

Simple Serialized Object Protocols 491
A Simple Object-Based Server 492

Remote Method Invocation 496
Real-World Usage 497
Remote and Nonremote Objects 497
An RMI Example 500
RMI and CORBA 508

Scalable I/O with NIO 509
Selectable Channels 509
Using Select 510
LargerHttpd 512
Nonblocking Client-Side Operations 517

14. Programming for the Web. 519
Uniform Resource Locators (URLs) 519
The URL Class 520

Stream Data 521
Getting the Content as an Object 522
Managing Connections 523
Handlers in Practice 524
Useful Handler Frameworks 524

Talking to Web Applications 525
Using the GET Method 526
Using the POST Method 527
The HttpURLConnection 530
SSL and Secure Web Communications 530
URLs, URNs, and URIs 530

xii | Table of Contents

Web Services 531
XML-RPC 532
WSDL 532
The Tools 532
The Weather Service Client 533

15. Web Applications and Web Services. 535
Web Application Technologies 536

Page-Oriented Versus “Single Page” Applications 536
JSPs 537
XML and XSL 538
Web Application Frameworks 538
Google Web Toolkit 539
HTML5, AJAX, and More... 539

Java Web Applications 539
The Servlet Lifecycle 540
Servlets 541
The HelloClient Servlet 542
The Servlet Response 544
Servlet Parameters 545
The ShowParameters Servlet 546
User Session Management 548
The ShowSession Servlet 548
The ShoppingCart Servlet 550
Cookies 553
The ServletContext API 554
Asynchronous Servlets 555

WAR Files and Deployment 559
Configuration with web.xml and Annotations 560
URL Pattern Mappings 562
Deploying HelloClient 563
Error and Index Pages 564
Security and Authentication 566
Protecting Resources with Roles 566
Secure Data Transport 568
Authenticating Users 569
Procedural Authorization 570

Servlet Filters 571
A Simple Filter 572
A Test Servlet 573
Declaring and Mapping Filters 574
Filtering the Servlet Request 575

Table of Contents | xiii

Filtering the Servlet Response 577
Building WAR Files with Ant 580

A Development-Oriented Directory Layout 581
Deploying and Redeploying WARs with Ant 582

Implementing Web Services 582
Defining the Service 583
Our Echo Service 584
Using the Service 585
Data Types 587

Conclusion 588

16. Swing. 589
Components 592

Peers and Look-and-Feel 594
The MVC Framework 595
Painting 596
Enabling and Disabling Components 597
Focus, Please 598
Other Component Methods 598
Layout Managers 600
Insets 601
Z-Ordering (Stacking Components) 601
The revalidate() and doLayout() Methods 601
Managing Components 602
Listening for Components 602
Windows, Frames and Splash Screens 602
Other Methods for Controlling Frames 604
Content Panes 605
Desktop Integration 605

Events 607
Event Receivers and Listener Interfaces 608
Event Sources 610
Event Delivery 611
Event Types 612
The java.awt.event.InputEvent Class 613
Mouse and Key Modifiers on InputEvents 613
Focus Events 614

Event Summary 616
Adapter Classes 619
Dummy Adapters 622

The AWT Robot! 623

xiv | Table of Contents

Multithreading in Swing 623

17. Using Swing Components. 627
Buttons and Labels 627

HTML Text in Buttons and Labels 630
Checkboxes and Radio Buttons 631
Lists and Combo Boxes 634
The Spinner 637
Borders 639
Menus 642
Pop-Up Menus 646

Component-Managed Pop Ups 648
The JScrollPane Class 650
The JSplitPane Class 652
The JTabbedPane Class 653
Scrollbars and Sliders 657
Dialogs 659

File Selection Dialog 662
The Color Chooser 664

18. More Swing Components. 667
Text Components 667

The TextEntryBox Application 668
Formatted Text 670
Filtering Input 671
Validating Data 673
Say the Magic Word 674
Sharing a Data Model 675
HTML and RTF for Free 677
Managing Text Yourself 680

Focus Navigation 682
Trees 684
Nodes and Models 684
Save a Tree 685
Tree Events 685
A Complete Example 686

Tables 688
A First Stab: Freeloading 688
Round Two: Creating a Table Model 690
Round Three: A Simple Spreadsheet 693
Sorting and Filtering 697
Printing JTables 699

Table of Contents | xv

Desktops 699
Pluggable Look-and-Feel 701
Creating Custom Components 704

Generating Events 704
A Dial Component 704
Model and View Separation 708

19. Layout Managers. 709
FlowLayout 711
GridLayout 712
BorderLayout 713
BoxLayout 716
CardLayout 717
GridBagLayout 719

The GridBagConstraints Class 719
Grid Coordinates 721
The fill Constraint 722
Spanning Rows and Columns 724
Weighting 725
Anchoring 728
Padding and Insets 728
Relative Positioning 730
Composite Layouts 731

Other Layout Managers 734
Absolute Positioning 735

20. Drawing with the 2D API. 737
The Big Picture 737
The Rendering Pipeline 739
A Quick Tour of Java 2D 742

Filling Shapes 742
Drawing Shape Outlines 742
Convenience Methods 743
Drawing Text 744
Drawing Images 744
The Whole Iguana 745

Filling Shapes 748
Solid Colors 748
Color Gradients 749
Textures 749
Desktop Colors 749

Stroking Shape Outlines 750

xvi | Table of Contents

Using Fonts 751
Font Metrics 752

Displaying Images 756
The Image Class 756
Image Observers 758
Scaling and Size 759

Drawing Techniques 760
Double Buffering 763
Limiting Drawing with Clipping 764
Offscreen Drawing 766

Printing 769

21. Working with Images and Other Media. 771
Loading Images 772

ImageObserver 773
MediaTracker 775
ImageIcon 777
ImageIO 777

Producing Image Data 778
Drawing Animations 779
BufferedImage Anatomy 782
Color Models 783
Creating an Image 784
Updating a BufferedImage 786

Filtering Image Data 790
How ImageProcessor Works 792
Converting an Image to a BufferedImage 793
Using the RescaleOp Class 793
Using the AffineTransformOp Class 793

Saving Image Data 794
Simple Audio 795
Java Media Framework 796

22. JavaBeans. 799
What’s a Bean? 799

What Constitutes a Bean? 801
The NetBeans IDE 801

Installing and Running NetBeans 802
Properties and Customizers 805
Event Hookups and Adapters 807

Taming the Juggler 808
Molecular Motion 810

Table of Contents | xvii

Binding Properties 811
Constraining Properties 812

Building Beans 813
The Dial Bean 813
Design Patterns for Properties 816

Limitations of Visual Design 817
Serialization Versus Code Generation 818
Customizing with BeanInfo 819

Getting Properties Information 819
Handcoding with Beans 822

Bean Instantiation and Type Management 823
Working with Serialized Beans 823
Runtime Event Hookups with Reflection 825

BeanContext and BeanContextServices 827
The Java Activation Framework 828
Enterprise JavaBeans and POJO-Based Enterprise Frameworks 828

23. Applets. 831
The Politics of Browser-Based Applications 831
Applet Support and the Java Plug-in 833
The JApplet Class 833

Applet Lifecycle 834
The Applet Security Sandbox 837
Getting Applet Resources 838
The <applet> Tag 842
Attributes 843
Parameters 843
¿Habla Applet? 844
The Complete <applet> Tag 844
Loading Class Files 846
Packages 846
appletviewer 847

Java Web Start 847
Conclusion 848

24. XML. 849
The Butler Did It 849
A Bit of Background 850

Text Versus Binary 851
A Universal Parser 851
The State of XML 851
The XML APIs 852

xviii | Table of Contents

XML and Web Browsers 852
XML Basics 852

Attributes 853
XML Documents 854
Encoding 854
Namespaces 855
Validation 856
HTML to XHTML 856

SAX 856
The SAX API 857
Building a Model Using SAX 858
XMLEncoder/Decoder 864

DOM 865
The DOM API 865
Test-Driving DOM 866
Generating XML with DOM 868
JDOM 869

XPath 869
Nodes 870
Predicates 871
Functions 871
The XPath API 872
XMLGrep 873

XInclude 874
Enabling XInclude 875

Validating Documents 876
Using Document Validation 876
DTDs 877
XML Schema 879
The Validation API 883

JAXB Code Binding and Generation 885
Annotating Our Model 885
Generating a Java Model from an XML Schema 890
Generating an XML Schema from a Java Model 891

Transforming Documents with XSL/XSLT 891
XSL Basics 892
Transforming the Zoo Inventory 894
XSLTransform 896
XSL in the Browser 897

Web Services 897

Table of Contents | xix

The End of the Book 898

A. The Eclipse IDE. 899

B. BeanShell: Java Scripting. 911

Glossary. 917

Index. 931

xx | Table of Contents

Preface

This book is about the Java programming language and environment. Whether you are
a software developer or just someone who uses the Internet in your daily life, you’ve
undoubtedly heard about Java. Its introduction was one of the most exciting develop‐
ments in the history of the Web and Java applications have powered much of the growth
of business on the Internet in the past 15 years. Java is, arguably, the most popular
programming language in the world, used by millions of developers on almost every
kind of computer imaginable. In the past decade, Java has surpassed languages such as
C++ and Visual Basic in terms of developer demand and has become the de facto lan‐
guage for certain kinds of development—especially for web-based services. Most uni‐
versities are now using Java in their introductory courses alongside the other important
modern languages. Perhaps you are using this text in one of your classes right now!

This book gives you a thorough grounding in Java fundamentals and APIs. Learning
Java, Fourth Edition, attempts to live up to its name by mapping out the Java language
and its class libraries, programming techniques, and idioms. We’ll dig deep into inter‐
esting areas and at least scratch the surface of the rest. Other titles from O’Reilly pick
up where we leave off and provide more comprehensive information on specific areas
and applications of Java.

Whenever possible, we provide compelling, realistic, and fun examples and avoid mere‐
ly cataloging features. The examples are simple, but hint at what can be done. We won’t
be developing the next great “killer app” in these pages, but we hope to give you a starting
point for many hours of experimentation and inspired tinkering that will lead you to
develop one yourself.

Who Should Read This Book
This book is for computer professionals, students, technical people, and Finnish hack‐
ers. It’s for everyone who has a need for hands-on experience with the Java language
with an eye toward building real applications. This book could also be considered a

xxi

crash course in object-oriented programming, networking, GUIs, and XML. As you
learn about Java, you’ll also learn a powerful and practical approach to software devel‐
opment, beginning with a deep understanding of the fundamentals of Java and its APIs.

Superficially, Java looks like C or C++, so you’ll have a tiny head start in using this book
if you have some experience with one of these languages. If you do not, don’t worry.
Don’t make too much of the syntactic similarities between Java and C or C++. In many
respects, Java acts like more dynamic languages such as Smalltalk and Lisp. Knowledge
of another object-oriented programming language should certainly help, although you
may have to change some ideas and unlearn a few habits. Java is considerably simpler
than languages such as C++ and Smalltalk. If you learn well from concise examples and
personal experimentation, we think you’ll like this book.

The last part of this book branches out to discuss Java in the context of web applications,
web services, and XML processing, so you should be familiar with the basic ideas behind
web browsers, servers, and documents.

New Developments
This edition of Learning Java is actually the sixth edition—updated and retitled—of our
original, popular Exploring Java. With each edition, we’ve taken great care not only to
add new material covering additional features, but to thoroughly revise and update the
existing content to synthesize the coverage and add years of real-world perspective and
experience to these pages.

One noticeable change in recent editions is that we’ve deemphasized the use of applets,
reflecting their diminished role in recent years in creating interactive web pages. In
contrast, we’ve greatly expanded our coverage of Java web applications, web services,
and XML, which are now mature technologies.

We cover all of the important features of the latest release of Java, officially called Java
Standard Edition (SE) 7, JDK 1.7. Sun (Java’s keeper before Oracle) has changed the
naming scheme many times over the years. Sun coined the term Java 2 to cover the
major new features introduced in Java version 1.2 and dropped the term JDK in favor
of SDK. With the sixth release, Sun skipped from Java version 1.4 to Java 5.0, but re‐
prieved the term JDK and kept its numbering convention there. After that, we had Java
6 and now we reach Java 7.

This release of Java reflects a mature language with relatively few syntactic changes but
significant updates to APIs and libraries. We’ve tried to capture these new features and
update every example in this book to reflect not only the current Java practice, but style
as well.

xxii | Preface

New in This Edition (Java 6 and 7)
This edition of the book has been significantly reworked to be as complete and up-to-
date as possible. It incorporates changes from both the Java 6 and Java 7 releases that
occurred since the last edition of this book. New topics in this edition include:

• New language features, including type inference in generics and improved excep‐
tion handling and automatic resource management syntax

• New concurrency utilities including the Fork-Join framework
• The new NIO Files API, which allows new types of filesystem access to be imple‐

mented in Java
• New versions of the Java Servlets (3.0) and web services APIs, including use of the

new annotations-based deployment and built-in web service container
• New version of JAXB (2.2) Java XML Binding, including use of the new annotations

for binding Java to XML
• Improved Swing desktop integration and enhancements to key Swing components

such as JTable
• Updated examples and analysis throughout the book

Using This Book
This book is organized roughly as follows:

• Chapters 1 and 2 provide a basic introduction to Java concepts and a tutorial to give
you a jump start on Java programming.

• Chapter 3 discusses fundamental tools for developing with Java (the compiler, the
interpreter, and the JAR file package).

• Chapters 4 through 7 describe the Java language itself, beginning with the basic
syntax and then covering classes and objects, exceptions, arrays, enumerations,
annotations, and much more.

• Chapter 8 covers generics and parameterized types in Java.
• Chapter 9 covers the language’s built-in thread facilities and the Java Concurrency

package, which should be of particular interest to advanced programmers.
• Chapter 10 covers text processing, formatting, scanning, string utilities, and the

powerful regular expressions API.
• Chapter 11 covers much of the core API including utilities and collections.
• Chapter 12 covers Java I/O, streams, files, and the NIO package.

Preface | xxiii

• Chapters 13 and 14 cover Java networking, including sockets and NIO, URLs, and
RMI.

• Chapter 15 covers web applications using servlets, servlet filters, and WAR files, as
well as web services.

• Chapters 16 through 21 cover GUI development with the Abstract Window Toolkit
(AWT) and Swing, which provide graphical user interface (GUI) and image
support.

• Chapter 22 covers the JavaBeans component architecture and introduces the Net‐
Beans IDE.

• Chapter 23 covers applets.
• Chapter 24 covers the Java APIs for working with XML and XSLT, including XML

Schema, validation, XPath, and XInclude, as well as XML binding with JAXB.
• Appendix A covers using the Eclipse IDE with the examples in this book.
• Appendix B describes BeanShell, a lightweight scripting language for Java developed

by the authors of this book.

If you’re like us, you don’t read books from front to back. If you’re really like us, you
usually don’t read the Preface at all. However, on the off chance that you will see this in
time, here are a few suggestions:

• If you are an experienced programmer who has to learn Java in the next five minutes,
you are probably looking for the examples. You might want to start by glancing at
the tutorial in Chapter 2. If that doesn’t float your boat, you should at least look at
the information in Chapter 3, which explains how to use the compiler and inter‐
preter, or Appendix A, which shows how to run the examples in the Eclipse IDE.
This should get you started.

• Chapters 12 through 15 are essential if you are interested in writing advanced net‐
worked or web-based applications and services. This is one of the more interesting
and important parts of Java.

• Chapters 16 through 22 discuss Java’s graphics features and component architec‐
ture. You should read this if you are interested in writing graphical Java applications
or applets.

• Chapter 24 covers the Java APIs for working with XML, including SAX, DOM,
DTDs, XML Schema, and using XSL to render output for the Web. XML technology
is becoming key to cross-platform development.

xxiv | Preface

Online Resources
There are many online sources for information about Java. Oracle’s official website for
Java topics is http://java.sun.com; look here for the software, updates, and Java releases.
This is where you’ll find the JDK, which includes the compiler, the interpreter, and other
tools.

You should also visit O’Reilly’s Java site at http://oreilly.com/java. There you’ll find in‐
formation about other O’Reilly Java books, and a pointer to the home page for Learning
Java, http://oreil.ly/Java_4E, where you’ll find the source code examples for this book.

Conventions Used in This Book
The font conventions used in this book are quite simple.

Italic is used for:

• Unix pathnames, filenames, and program names
• Internet addresses, such as domain names and URLs
• New terms where they are defined
• Program names, compilers, interpreters, utilities, and commands
• Threads

Constant width is used for:

• Anything that might appear in a Java program, including method names, variable
names, and class names

• Tags that might appear in an HTML or XML document
• Keywords, objects, and environment variables

Constant width bold is used for:

• Text that is typed by the user on the command line

Constant width italic is used for:

• Replaceable items in code

This icon designates a note, which is an important aside to the near‐
by text.

Preface | xxv

This icon designates a warning relating to the nearby text.

In the main body of text, we always use a pair of empty parentheses after a method name
to distinguish methods from variables and other creatures.

In the Java source listings, we follow the coding conventions most frequently used in
the Java community. Class names begin with capital letters; variable and method names
begin with lowercase. All the letters in the names of constants are capitalized. We don’t
use underscores to separate words in a long name; following common practice, we
capitalize individual words (after the first) and run the words together. For example:
thisIsAVariable, thisIsAMethod(), ThisIsAClass, and THISISACONSTANT. Also, note
that we differentiate between static and nonstatic methods when we refer to them. Unlike
some books, we never write Foo.bar() to mean the bar() method of Foo unless bar()
is a static method (paralleling the Java syntax in that case).

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Java, Fourth Edition, by Patrick
Niemeyer and Daniel Leuck. Copyright 2013 Patrick Niemeyer and Daniel Leuck,
978-1-449-31924-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

xxvi | Preface

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Java_4E.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have contributed to putting this book together, both in its Exploring
Java incarnation and in its current form as Learning Java. Foremost, we would like to
thank Tim O’Reilly for giving us the opportunity to write this book. Thanks to Mike
Loukides, the series editor, whose patience and experience helped us get started on this

Preface | xxvii

journey. Thanks to Paula Ferguson and John Posner, who contributed their organiza‐
tional and editing abilities at various times. And a special thanks to Deb Cameron, the
tireless editor of this book, without whom the previous two editions might never have
been finished and certainly wouldn’t have resembled English. We could not have asked
for a more skillful or responsive team of people with whom to work.

Speaking of borrowings, the original version of the glossary came from David Flanagan’s
book Java in a Nutshell (O’Reilly). We also borrowed several class hierarchy diagrams
from David’s book. These diagrams were based on similar diagrams by Charles L.
Perkins.

Thanks also to Marc Wallace and Steven Burkett for reading the original work in pro‐
gress and for the support of our friends at Washington University: Bryan O’Connor and
Brian Gottlieb. Thanks also to Josh Peck, coauthor of the original book, Exploring
Java. Thanks to all those who reviewed or answered questions: David Flanagan for
generics; Henry Wong for the concurrency utilities; Jim Elliott, Marc Loy, and Brian
Cole for Swing; Jack Shirazi for NIO; Tim Boudreau for NetBeans; Martin Aeschlimann,
Jim Farley, and John Norman for Eclipse; Ed Howland for XML; and Ian Darwin for
regular expressions. (Check out Ian’s Java Cookbook [O’Reilly] for more examples.)
Thanks also to Ray O’Leary, Mario Aquino, and Mark Volkmann for their reviews. And
finally, thanks to my beautiful wife, Ellen Song, for putting up with me through all this
work.

xxviii | Preface

CHAPTER 1

A Modern Language

The greatest challenges and most exciting opportunities for software developers today
lie in harnessing the power of networks. Applications created today, whatever their
intended scope or audience, will almost certainly run on machines linked by a global
network of computing resources. The increasing importance of networks is placing new
demands on existing tools and fueling the demand for a rapidly growing list of com‐
pletely new kinds of applications.

We want software that works—consistently, anywhere, on any platform—and that plays
well with other applications. We want dynamic applications that take advantage of a
connected world, capable of accessing disparate and distributed information sources.
We want truly distributed software that can be extended and upgraded seamlessly. We
want intelligent applications that can roam the Net for us, ferreting out information and
serving as electronic emissaries. We have known for some time what kind of software
we want, but it is really only in the past few years that we have begun to get it.

The problem, historically, has been that the tools for building these applications have
fallen short. The requirements of speed and portability have been, for the most part,
mutually exclusive, and security has been largely ignored or misunderstood. In the past,
truly portable languages were bulky, interpreted, and slow. These languages were pop‐
ular as much for their high-level functionality as for their portability. Fast languages
usually provided speed by binding themselves to particular platforms, so they met the
portability issue only halfway. There were even a few safe languages, but they were
primarily offshoots of the portable languages and suffered from the same problems.
Java is a modern language that addresses all three of these fronts: portability, speed, and
security. This is why it has been a dominant language in the world of programming for
more than a decade and a half.

1

Enter Java
The Java programming language, developed at Sun Microsystems under the guidance
of Net luminaries James Gosling and Bill Joy, was designed to be a machine-independent
programming language that is both safe enough to traverse networks and powerful
enough to replace native executable code. Java addresses the issues raised here and
played a starring role in the growth of the Internet, leading to where we are today.

Initially, most of the enthusiasm for Java centered on its capabilities for building em‐
bedded applications for the Web called applets. But in the early days, applets and other
client-side GUI applications written in Java were limited. Today, Java has Swing, one of
the most sophisticated toolkits for building graphical user interfaces (GUIs) in any lan‐
guage. This development has allowed Java to become a popular platform for developing
traditional client-side application software.

Of even more importance, however, Java has become the premier platform for web-
based applications and web services. These applications use technologies including the
Java Servlet API, Java web services, and many popular open source and commercial Java
application servers and frameworks. Java’s portability and speed make it the platform
of choice for modern business applications. Java servers running on open source Linux
platforms are at the heart of the business and financial world today.

This book will show you how to use Java to accomplish real-world programming tasks.
In the coming chapters we’ll cover everything from text processing to networking,
building rich client-side GUI applications with Swing and lightweight web-based ap‐
plications and services.

Java’s Origins
The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief re‐
searcher Bill Joy. At the time, Sun was competing in a relatively small workstation market
while Microsoft was beginning its domination of the more mainstream, Intel-based PC
world. When Sun missed the boat on the PC revolution, Joy retreated to Aspen, Colo‐
rado, to work on advanced research. He was committed to the idea of accomplishing
complex tasks with simple software and founded the aptly named Sun Aspen
Smallworks.

Of the original members of the small team of programmers assembled in Aspen, James
Gosling will be remembered as the father of Java. Gosling first made a name for himself
in the early 80s as the author of Gosling Emacs, the first version of the popular Emacs
editor that was written in C and ran under Unix. Gosling Emacs became popular but
was soon eclipsed by a free version, GNU Emacs, written by Emacs’s original designer.
By that time, Gosling had moved on to design Sun’s NeWS, which briefly contended
with the X Window System for control of the Unix GUI desktop in 1987. Although some
people would argue that NeWS was superior to X, NeWS lost because Sun kept it

2 | Chapter 1: A Modern Language

proprietary and didn’t publish source code while the primary developers of X formed
the X Consortium and took the opposite approach.

Designing NeWS taught Gosling the power of integrating an expressive language with
a network-aware windowing GUI. It also taught Sun that the Internet programming
community will ultimately refuse to accept proprietary standards, no matter how good
they may be. The seeds of Java’s licensing scheme and open (if not quite “open source”)
code were sown by NeWS’s failure. Gosling brought what he had learned to Bill Joy’s
nascent Aspen project. In 1992, work on the project led to the founding of the Sun
subsidiary FirstPerson, Inc. Its mission was to lead Sun into the world of consumer
electronics.

The FirstPerson team worked on developing software for information appliances, such
as cellular phones and personal digital assistants (PDAs). The goal was to enable the
transfer of information and real-time applications over cheap infrared and traditional
packet-based networks. Memory and bandwidth limitations dictated small, efficient
code. The nature of the applications also demanded they be safe and robust. Gosling
and his teammates began programming in C++, but they soon found themselves con‐
founded by a language that was too complex, unwieldy, and insecure for the task. They
decided to start from scratch, and Gosling began working on something he dubbed
“C++ minus minus.”

With the foundering of the Apple Newton (Apple’s earliest handheld computer), it be‐
came apparent that the PDA’s ship had not yet come in, so Sun shifted FirstPerson’s
efforts to interactive TV (ITV). The programming language of choice for ITV set-top
boxes was to be the near ancestor of Java, a language called Oak. Even with its elegance
and ability to provide safe interactivity, Oak could not salvage the lost cause of ITV at
that time. Customers didn’t want it, and Sun soon abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their innovative
language. It was 1993, and the explosion of interest in the Web presented a new oppor‐
tunity. Oak was small, safe, architecture-independent, and object-oriented. As it
happens, these are also some of the requirements for a universal, Internet-savvy pro‐
gramming language. Sun quickly changed focus, and, with a little retooling, Oak became
Java.

Growing Up
It would not be overstating it to say that Java caught on like wildfire. Even before its first
official release when Java was still a nonproduct, nearly every major industry player had
jumped on the Java bandwagon. Java licensees included Microsoft, Intel, IBM, and vir‐
tually all major hardware and software vendors. However, even with all this support
Java took a lot of knocks and experienced some growing pains during its first few years.

Enter Java | 3

A series of breach of contract and antitrust lawsuits between Sun and Microsoft over
the distribution of Java and its use in Internet Explorer hampered its deployment on
the world’s most common desktop operating system—Windows. Microsoft’s involve‐
ment with Java also become one focus of a larger federal lawsuit over serious anticom‐
petitive practices at the company, with court testimony revealing concerted efforts by
the software giant to undermine Java by introducing incompatibilities in its version of
the language. Meanwhile, Microsoft introduced its own Java-derived language called
C# (C-sharp) as part of its .NET initiative and dropped Java from inclusion in Windows.
C# has gone on to become a very good language in its own right, enjoying more inno‐
vation in recent years than has Java.

But Java continues to spread on a wide variety of platforms. As we begin looking at the
Java architecture, you’ll see that much of what is exciting about Java comes from the
self-contained, virtual machine environment in which Java applications run. Java was
carefully designed so that this supporting architecture can be implemented either in
software, for existing computer platforms, or in customized hardware. Hardware im‐
plementations of Java are used in some smart cards and other embedded systems. You
can even buy “wearable” devices, such as rings and dog tags, that have Java interpreters
embedded in them. Software implementations of Java are available for all modern com‐
puter platforms down to portable computing devices. Today, an offshoot of the Java
platform is the basis for Google’s Android operating system that powers billions of
phones and other mobile devices.

In 2010, Oracle corporation bought Sun Microsystems and became the steward of the
Java language. In a somewhat rocky start to its tenure, Oracle sued Google over its use
of the Java language in Android and lost. In July of 2011, Oracle released Java SE 7, a
significant Java release.

A Virtual Machine
Java is both a compiled and an interpreted language. Java source code is turned into
simple binary instructions, much like ordinary microprocessor machine code. How‐
ever, whereas C or C++ source is reduced to native instructions for a particular model
of processor, Java source is compiled into a universal format—instructions for a virtual
machine.

Compiled Java bytecode is executed by a Java runtime interpreter. The runtime system
performs all the normal activities of a hardware processor, but it does so in a safe, virtual
environment. It executes a stack-based instruction set and manages memory like an
operating system. It creates and manipulates primitive data types and loads and invokes
newly referenced blocks of code. Most importantly, it does all this in accordance with
a strictly defined open specification that can be implemented by anyone who wants to
produce a Java-compliant virtual machine. Together, the virtual machine and language
definition provide a complete specification. There are no features of the base Java

4 | Chapter 1: A Modern Language

language left undefined or implementation-dependent. For example, Java specifies the
sizes and mathematical properties of all its primitive data types rather than leaving it
up to the platform implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in what‐
ever form is desirable for a particular platform. The interpreter may be run as a separate
application or it can be embedded in another piece of software, such as a web browser.
Put together, this means that Java code is implicitly portable. The same Java application
bytecode can run on any platform that provides a Java runtime environment, as shown
in Figure 1-1. You don’t have to produce alternative versions of your application for
different platforms, and you don’t have to distribute source code to end users.

Figure 1-1. The Java runtime environment

The fundamental unit of Java code is the class. As in other object-oriented languages,
classes are application components that hold executable code and data. Compiled Java
classes are distributed in a universal binary format that contains Java bytecode and other
class information. Classes can be maintained discretely and stored in files or archives
locally or on a network server. Classes are located and loaded dynamically at runtime
as they are needed by an application.

In addition to the platform-specific runtime system, Java has a number of fundamental
classes that contain architecture-dependent methods. These native methods serve as the
gateway between the Java virtual machine and the real world. They are implemented in

A Virtual Machine | 5

a natively compiled language on the host platform and provide low-level access to re‐
sources such as the network, the windowing system, and the host filesystem. The vast
majority of Java, however, is written in Java itself—bootstrapped from these basic
primitives—and is therefore portable. This includes fundamental Java tools such as the
Java compiler, networking, and GUI libraries, which are also written in Java and are
therefore available on all Java platforms in exactly the same way without porting.

Historically, interpreters have been considered slow, but Java is not a traditional inter‐
preted language. In addition to compiling source code down to portable bytecode, Java
has also been carefully designed so that software implementations of the runtime system
can further optimize their performance by compiling bytecode to native machine code
on the fly. This is called just-in-time (JIT) or dynamic compilation. With JIT compila‐
tion, Java code can execute as fast as native code and maintain its transportability and
security.

This is an often misunderstood point among those who want to compare language
performance. There is only one intrinsic performance penalty that compiled Java code
suffers at runtime for the sake of security and virtual machine design—array bounds
checking. Everything else can be optimized to native code just as it can with a statically
compiled language. Going beyond that, the Java language includes more structural in‐
formation than many other languages, providing for more types of optimizations. Also
remember that these optimizations can be made at runtime, taking into account the
actual application behavior and characteristics. What can be done at compile time that
can’t be done better at runtime? Well, there is a tradeoff: time.

The problem with a traditional JIT compilation is that optimizing code takes time. So
a JIT compiler can produce decent results, but may suffer a significant latency when the
application starts up. This is generally not a problem for long-running server-side ap‐
plications, but is a serious problem for client-side software and applications that run on
smaller devices with limited capabilities. To address this, Java’s compiler technology,
called HotSpot, uses a trick called adaptive compilation. If you look at what programs
actually spend their time doing, it turns out that they spend almost all their time exe‐
cuting a relatively small part of the code again and again. The chunk of code that is
executed repeatedly may be only a small fraction of the total program, but its behavior
determines the program’s overall performance. Adaptive compilation also allows the
Java runtime to take advantage of new kinds of optimizations that simply can’t be done
in a statically compiled language, hence the claim that Java code can run faster than C/
C++ in some cases.

To take advantage of this fact, HotSpot starts out as a normal Java bytecode interpreter,
but with a difference: it measures (profiles) the code as it is executing to see what parts
are being executed repeatedly. Once it knows which parts of the code are crucial to
performance, HotSpot compiles those sections into optimal native machine code. Since
it compiles only a small portion of the program into machine code, it can afford to take

6 | Chapter 1: A Modern Language

the time necessary to optimize those portions. The rest of the program may not need
to be compiled at all—just interpreted—saving memory and time. In fact, the Java VM
can run in one of two modes: client and server, which determine whether it emphasizes
quick startup time and memory conservation or flat out performance.

A natural question to ask at this point is, Why throw away all this good profiling infor‐
mation each time an application shuts down? Well, Sun partially broached this topic
with the release of Java 5.0 through the use of shared, read-only classes that are stored
persistently in an optimized form. This significantly reduced both the startup time and
overhead of running many Java applications on a given machine. The technology for
doing this is complex, but the idea is simple: optimize the parts of the program that need
to go fast and don’t worry about the rest.

Java Compared with Other Languages
Java draws on many years of programming experience with other languages in its choice
of features. It is worth taking a moment to compare Java at a high level with some other
languages, both for the benefit of those of you with other programming experience and
for the newcomers who need to put things in context. We do not expect you to have a
knowledge of any particular programming language in this book and when we refer to
other languages by way of comparison, we hope that the comments are self-explanatory.

At least three pillars are necessary to support a universal programming language today:
portability, speed, and security. Figure 1-2 shows how Java compares to a a few of the
languages that were popular when it was created.

Figure 1-2. Programming languages compared

You may have heard that Java is a lot like C or C++, but that’s really not true except at a
superficial level. When you first look at Java code, you’ll see that the basic syntax looks
like C or C++. But that’s where the similarities end. Java is by no means a direct

Java Compared with Other Languages | 7

descendant of C or a next-generation C++. If you compare language features, you’ll see
that Java actually has more in common with highly dynamic languages such as Smalltalk
and Lisp. In fact, Java’s implementation is about as far from native C as you can imagine.

If you are familiar with the current language landscape, you will notice that C#, a popular
language, is missing from this comparison. C# is largely Microsoft’s answer to Java,
admittedly with a number of niceties layered on top. Given their common design goals
and approach (e.g., use of a virtual machine, bytecode, sandbox, etc.), the platforms
don’t differ substantially in terms of their speed or security characteristics. C# is theo‐
retically as portable as Java, but to date it is supported on far fewer platforms. Like Java,
C# borrows heavily from C syntax but is really a closer relative of the dynamic languages.
Most Java developers find it relatively easy to pick up C# and vice versa. The majority
of time spent moving from one to the other is learning the standard library.

The surface-level similarities to these languages are worth noting, however. Java borrows
heavily from C and C++ syntax, so you’ll see terse language constructs, including an
abundance of curly braces and semicolons. Java subscribes to the C philosophy that a
good language should be compact; in other words, it should be sufficiently small and
regular so a programmer can hold all the language’s capabilities in his or her head at
once. Just as C is extensible with libraries, packages of Java classes can be added to the
core language components to extend its vocabulary.

C has been successful because it provides a reasonably feature-packed programming
environment, with high performance and an acceptable degree of portability. Java also
tries to balance functionality, speed, and portability, but it does so in a very different
way. C trades functionality for portability; Java initially traded speed for portability. Java
also addresses security issues that C does not (although in modern systems many of
those concerns are now addressed in the operating system and hardware).

In the early days before JIT and adaptive compilation, Java was slower than statically
compiled languages and there was a constant refrain from detractors that it would never
catch up. But as we described in the previous section, Java’s performance is now com‐
parable to C or C++ for equivalent tasks and those criticisms have generally fallen quiet.
ID Software’s open source Quake2 video game engine has been ported to Java. If Java is
fast enough for first-person combat video games, it’s certainly fast enough for business
applications.

Scripting languages such as Perl, Python, and Ruby are very popular. There’s no reason
a scripting language can’t be suitable for safe, networked applications. But most scripting
languages are not well suited for serious, large-scale programming. The attraction to
scripting languages is that they are dynamic; they are powerful tools for rapid develop‐
ment. Some scripting languages such as Perl also provide powerful tools for
text-processing tasks that more general-purpose languages find unwieldy. Scripting
languages are also highly portable, albeit at the source code level.

8 | Chapter 1: A Modern Language

1. See, for example, G. Phipps, “Comparing Observed Bug and Productivity Rates for Java and C++,”Software
—Practice & Experience, volume 29, 1999.

Not to be confused with Java, JavaScript is an object-based scripting language originally
developed by Netscape for the web browser. It serves as a web browser resident language
for dynamic, interactive web-based applications. JavaScript takes its name from its in‐
tegration with and similarities to Java, but the comparison really ends there. While there
have been applications of JavaScript outside of the browser, it has not truly caught on
as a general scripting language. For more information on JavaScript, check out Java‐
Script: The Definitive Guide by David Flanagan (O’Reilly).

The problem with scripting languages is that they are rather casual about program
structure and data typing. Most scripting languages (with a hesitant exception for
Python and later versions of Perl) are not object-oriented. They also have simplified
type systems and generally don’t provide for sophisticated scoping of variables and
functions. These characteristics make them less suitable for building large, modular
applications. Speed is another problem with scripting languages; the high-level, usually
source-interpreted nature of these languages often makes them quite slow.

Advocates of individual scripting languages would take issue with some of these gen‐
eralizations, and no doubt they’d be right in some cases. Scripting languages have im‐
proved in recent years—especially JavaScript, which has had an enormous amount of
research poured into its performance. But the fundamental tradeoff is undeniable:
scripting languages were born as loose, less structured alternatives to systems program‐
ming languages and are generally not ideal for large or complex projects for a variety
of reasons, at least not today.

Java offers some of the essential advantages of a scripting language: it is highly dynamic,
along with the added benefits of a lower-level language. Java has a powerful Regular
Expression API that competes with Perl for working with text and language features
that streamline coding with collections, variable argument lists, static imports of meth‐
ods, and other syntactic sugar that make it more concise.

Incremental development with object-oriented components, combined with Java’s sim‐
plicity, make it possible to develop applications rapidly and change them easily. Studies
have found that development in Java is faster than in C or C++, strictly based on language
features.1 Java also comes with a large base of standard core classes for common tasks
such as building GUIs and handling network communications. But along with these
features, Java has the scalability and software-engineering advantages of more static
languages. It provides a safe structure on which to build higher-level frameworks (and
even other languages).

As we’ve already said, Java is similar in design to languages such as Smalltalk and Lisp.
However, these languages were used mostly as research vehicles rather than for

Java Compared with Other Languages | 9

development of large-scale systems. One reason is that these languages never developed
a standard portable binding to operating system services, such as the C standard library
or the Java core classes. Smalltalk is compiled to an interpreted bytecode format, and it
can be dynamically compiled to native code on the fly, just like Java. But Java improves
on the design by using a bytecode verifier to ensure the correctness of compiled Java
code. This verifier gives Java a performance advantage over Smalltalk because Java code
requires fewer runtime checks. Java’s bytecode verifier also helps with security issues,
something that Smalltalk doesn’t address.

Throughout the rest of this chapter, we’ll present a bird’s-eye view of the Java language.
We’ll explain what’s new and what’s not-so-new about Java and why.

Safety of Design
You have no doubt heard a lot about the fact that Java is designed to be a safe language.
But what do we mean by safe? Safe from what or whom? The security features that attract
the most attention for Java are those features that make possible new types of dynami‐
cally portable software. Java provides several layers of protection from dangerously
flawed code as well as more mischievous things such as viruses and Trojan horses. In
the next section, we’ll take a look at how the Java virtual machine architecture assesses
the safety of code before it’s run and how the Java class loader (the bytecode loading
mechanism of the Java interpreter) builds a wall around untrusted classes. These features
provide the foundation for high-level security policies that can allow or disallow various
kinds of activities on an application-by-application basis.

In this section, though, we’ll look at some general features of the Java programming
language. Perhaps more important than the specific security features, although often
overlooked in the security din, is the safety that Java provides by addressing common
design and programming problems. Java is intended to be as safe as possible from the
simple mistakes we make ourselves as well as those we inherit from legacy software. The
goal with Java has been to keep the language simple, provide tools that have demon‐
strated their usefulness, and let users build more complicated facilities on top of the
language when needed.

Simplify, Simplify, Simplify...
With Java, simplicity rules. Since Java started with a clean slate, it was able to avoid
features that proved to be messy or controversial in other languages. For example, Java
doesn’t allow programmer-defined operator overloading (which in some languages al‐
lows programmers to redefine the meaning of basic symbols like + and –). Java doesn’t
have a source code preprocessor, so it doesn’t have things like macros, #define state‐
ments, or conditional source compilation. These constructs exist in other languages
primarily to support platform dependencies, so in that sense, they should not be needed
in Java. Conditional compilation is also commonly used for debugging, but Java’s

10 | Chapter 1: A Modern Language

sophisticated runtime optimizations and features such as assertions solve the problem
more elegantly (we’ll cover these in Chapter 4).

Java provides a well-defined package structure for organizing class files. The package
system allows the compiler to handle some of the functionality of the traditional make
utility (a tool for building executables from source code). The compiler can also work
with compiled Java classes directly because all type information is preserved; there is
no need for extraneous source “header” files, as in C/C++. All this means that Java code
requires less context to read. Indeed, you may sometimes find it faster to look at the
Java source code than to refer to class documentation.

Java also takes a different approach to some structural features that have been trouble‐
some in other languages. For example, Java supports only a single inheritance class
hierarchy (each class may have only one “parent” class), but allows multiple inheritance
of interfaces. An interface, like an abstract class in C++, specifies the behavior of an
object without defining its implementation. It is a very powerful mechanism that allows
the developer to define a “contract” for object behavior that can be used and referred to
independently of any particular object implementation. Interfaces in Java eliminate the
need for multiple inheritance of classes and the associated problems.

As you’ll see in Chapter 4, Java is a fairly simple and elegant programming language and
that is still a large part of its appeal.

Type Safety and Method Binding
One attribute of a language is the kind of type checking it uses. Generally, languages are
categorized as static or dynamic, which refers to the amount of information about vari‐
ables known at compile time versus what is known while the application is running.

In a strictly statically typed language such as C or C++, data types are etched in stone
when the source code is compiled. The compiler benefits from this by having enough
information to catch many kinds of errors before the code is executed. For example, the
compiler would not allow you to store a floating-point value in an integer variable. The
code then doesn’t require runtime type checking, so it can be compiled to be small and
fast. But statically typed languages are inflexible. They don’t support collections as nat‐
urally as languages with dynamic type checking, and they make it impossible for an
application to safely import new data types while it’s running.

In contrast, a dynamic language such as Smalltalk or Lisp has a runtime system that
manages the types of objects and performs necessary type checking while an application
is executing. These kinds of languages allow for more complex behavior and are in many
respects more powerful. However, they are also generally slower, less safe, and harder
to debug.

Safety of Design | 11

2. The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ.

The differences in languages have been likened to the differences among kinds of au‐
tomobiles.2 Statically typed languages such as C++ are analogous to a sports car: rea‐
sonably safe and fast, but useful only if you’re driving on a nicely paved road. Highly
dynamic languages such as Smalltalk are more like an off-road vehicle: they afford you
more freedom but can be somewhat unwieldy. It can be fun (and sometimes faster) to
go roaring through the backwoods, but you might also get stuck in a ditch or mauled
by bears.

Another attribute of a language is the way it binds method calls to their definitions. In
a static language such as C or C++, the definitions of methods are normally bound at
compile time, unless the programmer specifies otherwise. Languages like Smalltalk, on
the other hand, are called late binding because they locate the definitions of methods
dynamically at runtime. Early binding is important for performance reasons; an appli‐
cation can run without the overhead incurred by searching for methods at runtime. But
late binding is more flexible. It’s also necessary in an object-oriented language where
new types can be loaded dynamically and only the runtime system can determine which
method to run.

Java provides some of the benefits of both C++ and Smalltalk; it’s a statically typed, late-
binding language. Every object in Java has a well-defined type that is known at compile
time. This means the Java compiler can do the same kind of static type checking and
usage analysis as C++. As a result, you can’t assign an object to the wrong type of variable
or call nonexistent methods on an object. The Java compiler goes even further and
prevents you from using uninitialized variables and creating unreachable statements
(see Chapter 4).

However, Java is fully runtime-typed as well. The Java runtime system keeps track of all
objects and makes it possible to determine their types and relationships during execu‐
tion. This means you can inspect an object at runtime to determine what it is. Unlike C
or C++, casts from one type of object to another are checked by the runtime system,
and it’s possible to use new kinds of dynamically loaded objects with a degree of type
safety. And because Java is a late binding language, it’s always possible for a subclass to
override methods in its superclass, even a subclass loaded at runtime.

Incremental Development
Java carries all data type and method signature information with it from its source code
to its compiled bytecode form. This means that Java classes can be developed incre‐
mentally. Your own Java source code can also be compiled safely with classes from other
sources your compiler has never seen. In other words, you can write new code that
references binary class files without losing the type safety you gain from having the
source code.

12 | Chapter 1: A Modern Language

Java does not suffer from the “fragile base class” problem. In languages such as C++,
the implementation of a base class can be effectively frozen because it has many derived
classes; changing the base class may require recompilation of all of the derived classes.
This is an especially difficult problem for developers of class libraries. Java avoids this
problem by dynamically locating fields within classes. As long as a class maintains a
valid form of its original structure, it can evolve without breaking other classes that are
derived from it or that make use of it.

Dynamic Memory Management
Some of the most important differences between Java and lower-level languages such
as C and C++ involve how Java manages memory. Java eliminates ad hoc “pointers” that
can reference arbitrary areas of memory and adds object garbage collection and high-
level arrays to the language. These features eliminate many otherwise insurmountable
problems with safety, portability, and optimization.

Garbage collection alone has saved countless programmers from the single largest
source of programming errors in C or C++: explicit memory allocation and dealloca‐
tion. In addition to maintaining objects in memory, the Java runtime system keeps track
of all references to those objects. When an object is no longer in use, Java automatically
removes it from memory. You can, for the most part, simply ignore objects you no longer
use, with confidence that the interpreter will clean them up at an appropriate time.

Java uses a sophisticated garbage collector that runs in the background, which means
that most garbage collecting takes place during idle times, between I/O pauses, mouse
clicks, or keyboard hits. Advanced runtime systems, such as HotSpot, have more ad‐
vanced garbage collection that can differentiate the usage patterns of objects (such as
short-lived versus long-lived) and optimize their collection. The Java runtime can now
tune itself automatically for the optimal distribution of memory for different kinds of
applications based on their behavior. With this kind of runtime profiling, automatic
memory management can be much faster than the most diligently programmer-
managed resources, something that some old-school programmers still find hard to
believe.

We’ve said that Java doesn’t have pointers. Strictly speaking, this statement is true, but
it’s also misleading. What Java provides are references—a safe kind of pointer. A refer‐
ence is a strongly typed handle for an object. All objects in Java, with the exception of
primitive numeric types, are accessed through references. You can use references to
build all the normal kinds of data structures a C programmer would be accustomed to
building with pointers, such as linked lists, trees, and so forth. The only difference is
that with references, you have to do so in a typesafe way.

Another important difference between a reference and a pointer is that you can’t play
games (perform pointer arithmetic) with references to change their values; they can
point only to specific objects or elements of an array. A reference is an atomic thing;

Safety of Design | 13

you can’t manipulate the value of a reference except by assigning it to an object. Refer‐
ences are passed by value, and you can’t reference an object through more than a single
level of indirection. The protection of references is one of the most fundamental aspects
of Java security. It means that Java code has to play by the rules; it can’t peek into places
it shouldn’t and circumvent the rules.

Java references can point only to class types. There are no pointers to methods. People
sometimes complain about this missing feature, but you will find that most tasks that
call for pointers to methods can be accomplished more cleanly using interfaces and
adapter classes instead. We should also mention that Java has a sophisticated Reflection
API that actually allows you to reference and invoke individual methods. However, this
is not the normal way of doing things. We discuss reflection in Chapter 7.

Finally, we should mention that arrays in Java are true, first-class objects. They can be
dynamically allocated and assigned like other objects. Arrays know their own size and
type, and although you can’t directly define or subclass array classes, they do have a well-
defined inheritance relationship based on the relationship of their base types. Having
true arrays in the language alleviates much of the need for pointer arithmetic, such as
that used in C or C++.

Error Handling
Java’s roots are in networked devices and embedded systems. For these applications, it’s
important to have robust and intelligent error management. Java has a powerful excep‐
tion handling mechanism, somewhat like that in newer implementations of C++. Ex‐
ceptions provide a more natural and elegant way to handle errors. Exceptions allow you
to separate error handling code from normal code, which makes for cleaner, more
readable applications.

When an exception occurs, it causes the flow of program execution to be transferred to
a predesignated “catch” block of code. The exception carries with it an object that con‐
tains information about the situation that caused the exception. The Java compiler re‐
quires that a method either declare the exceptions it can generate or catch and deal with
them itself. This promotes error information to the same level of importance as argu‐
ment and return types for methods. As a Java programmer, you know precisely what
exceptional conditions you must deal with, and you have help from the compiler in
writing correct software that doesn’t leave them unhandled.

Threads
Modern applications require a high degree of parallelism. Even a very single-minded
application can have a complex user interface—which requires concurrent activities. As
machines get faster, users become more sensitive to waiting for unrelated tasks that seize
control of their time. Threads provide efficient multiprocessing and distribution of tasks

14 | Chapter 1: A Modern Language

for both client and server applications. Java makes threads easy to use because support
for them is built into the language.

Concurrency is nice, but there’s more to programming with threads than just perform‐
ing multiple tasks simultaneously. In most cases, threads need to be synchronized (co‐
ordinated), which can be tricky without explicit language support. Java supports
synchronization based on the monitor and condition model—a sort of lock and key
system for accessing resources. The keyword synchronized designates methods and
blocks of code for safe, serialized access within an object. There are also simple, primitive
methods for explicit waiting and signaling between threads interested in the same object.

Java also has a high-level concurrency package that provides powerful utilities address‐
ing common patterns in multithreaded programming, such as thread pools, coordina‐
tion of tasks, and sophisticated locking. With the addition of the concurrency package
and related utilities, Java provides some of the most advanced thread-related utilities of
any language.

Although some developers may never have to write multithreaded code, learning to
program with threads is an important part of mastering programming in Java and
something all developers should grasp. See Chapter 9 for a discussion of this topic.

Scalability
At the lowest level, Java programs consist of classes. Classes are intended to be small,
modular components. Over classes, Java provides packages, a layer of structure that
groups classes into functional units. Packages provide a naming convention for organ‐
izing classes and a second tier of organizational control over the visibility of variables
and methods in Java applications.

Within a package, a class is either publicly visible or protected from outside access.
Packages form another type of scope that is closer to the application level. This lends
itself to building reusable components that work together in a system. Packages also
help in designing a scalable application that can grow without becoming a bird’s nest of
tightly coupled code.

Safety of Implementation
It’s one thing to create a language that prevents you from shooting yourself in the foot;
it’s quite another to create one that prevents others from shooting you in the foot.

Encapsulation is the concept of hiding data and behavior within a class; it’s an important
part of object-oriented design. It helps you write clean, modular software. In most lan‐
guages, however, the visibility of data items is simply part of the relationship between
the programmer and the compiler. It’s a matter of semantics, not an assertion about the
actual security of the data in the context of the running program’s environment.

Safety of Implementation | 15

When Bjarne Stroustrup chose the keyword private to designate hidden members of
classes in C++, he was probably thinking about shielding a developer from the messy
details of another developer’s code, not the issues of shielding that developer’s classes
and objects from attack by someone else’s viruses and Trojan horses. Arbitrary casting
and pointer arithmetic in C or C++ make it trivial to violate access permissions on
classes without breaking the rules of the language. Consider the following code:

 // C++ code
 class Finances {
 private:
 char creditCardNumber[16];
 ...
 };

 main() {
 Finances finances;

 // Forge a pointer to peek inside the class
 char *cardno = (char *)&finances;
 printf("Card Number = %.16s\n", cardno);
 }

In this little C++ drama, we have written some code that violates the encapsulation of
the Finances class and pulls out some secret information. This sort of shenanigan—
abusing an untyped pointer—is not possible in Java. If this example seems unrealistic,
consider how important it is to protect the foundation (system) classes of the runtime
environment from similar kinds of attacks. If untrusted code can corrupt the compo‐
nents that provide access to real resources such as the filesystem, network, or windowing
system, it certainly has a chance at stealing your credit card numbers.

If a Java application is to be able to dynamically download code from an untrusted source
on the Internet and run it alongside applications that might contain confidential infor‐
mation, protection has to extend very deep. The Java security model wraps three layers
of protection around imported classes, as shown in Figure 1-3.

Figure 1-3. The Java security model

16 | Chapter 1: A Modern Language

At the outside, application-level security decisions are made by a security manager in
conjunction with a flexible security policy. A security manager controls access to system
resources such as the filesystem, network ports, and windowing environment. A security
manager relies on the ability of a class loader to protect basic system classes. A class
loader handles loading classes from local storage or the network. At the innermost level,
all system security ultimately rests on the Java verifier, which guarantees the integrity
of incoming classes.

The Java bytecode verifier is a fixed part of the Java runtime system. Class loaders and
security managers (or security policies to be more precise), however, are components
that may be implemented differently by different applications, such as servers or web
browsers. All three of these pieces need to be functioning properly to ensure security
in the Java environment.

The Verifier
Java’s first line of defense is the bytecode verifier. The verifier reads bytecode before it is
run and makes sure it is well behaved and obeys the basic rules of the Java language. A
trusted Java compiler won’t produce code that does otherwise. However, it’s possible for
a mischievous person to deliberately assemble bad Java bytecode. It’s the verifier’s job
to detect this.

Once code has been verified, it’s considered safe from certain inadvertent or malicious
errors. For example, verified code can’t forge references or violate access permissions
on objects (as in our credit card example). It can’t perform illegal casts or use objects in
unintended ways. It can’t even cause certain types of internal errors, such as overflowing
or underflowing the internal stack. These fundamental guarantees underlie all of Java’s
security.

You might be wondering, isn’t this kind of safety implicit in lots of interpreted languages?
Well, while it’s true that you shouldn’t be able to corrupt a BASIC interpreter with a
bogus line of BASIC code, remember that the protection in most interpreted languages
happens at a higher level. Those languages are likely to have heavyweight interpreters
that do a great deal of runtime work, so they are necessarily slower and more
cumbersome.

By comparison, Java bytecode is a relatively light, low-level instruction set. The ability
to statically verify the Java bytecode before execution lets the Java interpreter run at full
speed later with full safety, without expensive runtime checks. This was one of the fun‐
damental innovations in Java.

The verifier is a type of mathematical “theorem prover.” It steps through the Java byte‐
code and applies simple, inductive rules to determine certain aspects of how the byte‐
code will behave. This kind of analysis is possible because compiled Java bytecode
contains a lot more type information than the object code of other languages of this

Safety of Implementation | 17

kind. The bytecode also has to obey a few extra rules that simplify its behavior. First,
most bytecode instructions operate only on individual data types. For example, with
stack operations, there are separate instructions for object references and for each of
the numeric types in Java. Similarly, there is a different instruction for moving each type
of value into and out of a local variable.

Second, the type of object resulting from any operation is always known in advance. No
bytecode operations consume values and produce more than one possible type of value
as output. As a result, it’s always possible to look at the next instruction and its operands
and know the type of value that will result.

Because an operation always produces a known type, it’s possible to determine the types
of all items on the stack and in local variables at any point in the future by looking at
the starting state. The collection of all this type information at any given time is called
the type state of the stack; this is what Java tries to analyze before it runs an application.
Java doesn’t know anything about the actual values of stack and variable items at this
time; it only knows what kind of items they are. However, this is enough information
to enforce the security rules and to ensure that objects are not manipulated illegally.

To make it feasible to analyze the type state of the stack, Java places an additional re‐
striction on how Java bytecode instructions are executed: all paths to the same point in
the code must arrive with exactly the same type state.

Class Loaders
Java adds a second layer of security with a class loader. A class loader is responsible for
bringing the bytecode for Java classes into the interpreter. Every application that loads
classes from the network must use a class loader to handle this task.

After a class has been loaded and passed through the verifier, it remains associated with
its class loader. As a result, classes are effectively partitioned into separate namespaces
based on their origin. When a loaded class references another class name, the location
of the new class is provided by the original class loader. This means that classes retrieved
from a specific source can be restricted to interact only with other classes retrieved from
that same location. For example, a Java-enabled web browser can use a class loader to
build a separate space for all the classes loaded from a given URL. Sophisticated security
based on cryptographically signed classes can also be implemented using class loaders.

The search for classes always begins with the built-in Java system classes. These classes
are loaded from the locations specified by the Java interpreter’s classpath (see Chap‐
ter 3). Classes in the classpath are loaded by the system only once and can’t be replaced.
This means that it’s impossible for an application to replace fundamental system classes
with its own versions that change their functionality.

18 | Chapter 1: A Modern Language

Security Managers
A security manager is responsible for making application-level security decisions. A
security manager is an object that can be installed by an application to restrict access to
system resources. The security manager is consulted every time the application tries to
access items such as the filesystem, network ports, external processes, and the window‐
ing environment; the security manager can allow or deny the request.

Security managers are primarily of interest to applications that run untrusted code as
part of their normal operation. For example, a Java-enabled web browser can run applets
that may be retrieved from untrusted sources on the Net. Such a browser needs to install
a security manager as one of its first actions. This security manager then restricts the
kinds of access allowed after that point. This lets the application impose an effective
level of trust before running an arbitrary piece of code. And once a security manager is
installed, it can’t be replaced.

The security manager works in conjunction with an access controller that lets you im‐
plement security policies at a high level by editing a declarative security policy file.
Access policies can be as simple or complex as a particular application warrants. Some‐
times it’s sufficient simply to deny access to all resources or to general categories of
services, such as the filesystem or network. But it’s also possible to make sophisticated
decisions based on high-level information. For example, a Java-enabled web browser
could use an access policy that lets users specify how much an applet is to be trusted or
that allows or denies access to specific resources on a case-by-case basis. Of course, this
assumes that the browser can determine which applets it ought to trust. We’ll discuss
how this problem is addressed through code-signing shortly.

The integrity of a security manager is based on the protection afforded by the lower
levels of the Java security model. Without the guarantees provided by the verifier and
the class loader, high-level assertions about the safety of system resources are mean‐
ingless. The safety provided by the Java bytecode verifier means that the interpreter can’t
be corrupted or subverted and that Java code has to use components as they are intended.
This, in turn, means that a class loader can guarantee that an application is using the
core Java system classes and that these classes are the only way to access basic system
resources. With these restrictions in place, it’s possible to centralize control over those
resources at a high level with a security manager and user-defined policy.

Application and User-Level Security
There’s a fine line between having enough power to do something useful and having all
the power to do anything you want. Java provides the foundation for a secure environ‐
ment in which untrusted code can be quarantined, managed, and safely executed. How‐
ever, unless you are content with keeping that code in a little black box and running it
just for its own benefit, you will have to grant it access to at least some system resources

Application and User-Level Security | 19

so that it can be useful. Every kind of access carries with it certain risks and benefits.
For example, in the web browser environment, the advantages of granting an untrusted
(unknown) applet access to your windowing system are that it can display information
and let you interact in a useful way. The associated risks are that the applet may instead
display something worthless, annoying, or offensive.

At one extreme, the simple act of running an application gives it a resource—compu‐
tation time—that it may put to good use or burn frivolously. It’s difficult to prevent an
untrusted application from wasting your time or even attempting a “denial of service”
attack. At the other extreme, a powerful, trusted application may justifiably deserve
access to all sorts of system resources (e.g., the filesystem, process creation, network
interfaces); a malicious application could wreak havoc with these resources. The mes‐
sage here is that important and sometimes complex security issues have to be addressed.

In some situations, it may be acceptable to simply ask the user to “okay” requests. The
Java language provides the tools to implement any security policies you want. However,
what these policies will be ultimately depends on having confidence in the identity and
integrity of the code in question. This is where digital signatures come into play.

Digital signatures, together with certificates, are techniques for verifying that data truly
comes from the source it claims to have come from and hasn’t been modified en route.
If the Bank of Boofa signs its checkbook application, you can verify that the app actually
came from the bank rather than an imposter and hasn’t been modified. Therefore, you
can tell your browser to trust applets that have the Bank of Boofa’s signature.

A Java Road Map
With everything that’s going on, it’s hard to keep track of what’s available now, what’s
promised, and what has been around for some time. The following sections constitute
a road map that imposes some order on Java’s past, present, and future.

The Past: Java 1.0–Java 1.6
Java 1.0 provided the basic framework for Java development: the language itself plus
packages that let you write applets and simple applications. Although 1.0 is officially
obsolete, there are still a lot of applets in existence that conform to its API.

Java 1.1 superseded 1.0, incorporating major improvements in the Abstract Window
Toolkit (AWT) package (Java’s original GUI facility), a new event pattern, new language
facilities such as reflection and inner classes, and many other critical features. Java 1.1
is the version that was supported natively by most versions of Netscape and Microsoft
Internet Explorer for many years. For various political reasons, the browser world was
frozen in this condition for a long time. This version of Java is still considered a sort of
baseline for applets, although even this will fall away as Microsoft drops support for Java
in its platforms.

20 | Chapter 1: A Modern Language

Java 1.2, dubbed “Java 2” by Sun, was a major release in December 1998. It provided
many improvements and additions, mainly in terms of the set of APIs that were bundled
into the standard distributions. The most notable additions were the inclusion of the
Swing GUI package as a core API and a new, full-fledged 2D drawing API. Swing is
Java’s advanced user interface toolkit with capabilities far exceeding the old AWT’s.
(Swing, AWT, and some other packages have been variously called the JFC, or Java
Foundation Classes.) Java 1.2 also added a proper Collections API to Java.

Java 1.3, released in early 2000, added minor features but was primarily focused on
performance. With version 1.3, Java got significantly faster on many platforms and
Swing received many bug fixes. In this timeframe, Java enterprise APIs such as Servlets
and Enterprise JavaBeans also matured.

Java 1.4, released in 2002, integrated a major new set of APIs and many long-awaited
features. This included language assertions, regular expressions, preferences and log‐
ging APIs, a new I/O system for high-volume applications, standard support for XML,
fundamental improvements in AWT and Swing, and a greatly matured Java Servlets
API for web applications.

Java 5, released in 2004, was a major release that introduced many long-awaited language
syntax enhancements including generics, typesafe enumerations, the enhanced for-
loop, variable argument lists, static imports, autoboxing and unboxing of primitives, as
well as advanced metadata on classes. A new concurrency API provided powerful
threading capabilities, and APIs for formatted printing and parsing similar to those in
C were added. RMI has also been overhauled to eliminate the need for compiled stubs
and skeletons. There were also major additions in the standard XML APIs.

Java 6, released in late 2006, was a relatively minor release that added no new syntactic
features to the Java language, but bundled new extension APIs such as those for XML
and web services.

The Present: Java 7
This book includes all the latest and greatest improvements through the final release of
Java 7. This release adds some minor language syntax enhancements such as those to
improve exception handling and resource management. It also includes some major
API updates, such as a completely new filesystem API and additions to many others.

This edition of the book is the first since the Java 5 release and therefore has been
completely overhauled to incorporate all of the changes from the Java 6 and Java 7
releases.

Here’s a brief overview of the most important features of the current core Java API:
JDBC (Java Database Connectivity)

A general facility for interacting with databases (introduced in Java 1.1).

A Java Road Map | 21

RMI (Remote Method Invocation)
Java’s distributed objects system. RMI lets you call methods on objects hosted by a
server running somewhere else on the network (introduced in Java 1.1).

Java Security
A facility for controlling access to system resources, combined with a uniform in‐
terface to cryptography. Java Security is the basis for signed classes, which were
discussed earlier.

JFC (Java Foundation Classes)
A catch-all for a number of features, including the Swing user interface components;
“pluggable look and feel,” which means the ability of the user interface to adapt itself
to the look and feel of the platform you’re using; drag and drop; and accessibility,
which means the ability to integrate with special software and hardware for people
with disabilities.

Java 2D
Part of JFC; enables high-quality graphics, font manipulation, and printing.

Internationalization
The ability to write programs that adapt themselves to the language the user wants
to use; the program automatically displays text in the appropriate language (intro‐
duced in Java 1.1).

JNDI (Java Naming and Directory Interface)
A general service for looking up resources. JNDI unifies access to directory services,
such as LDAP, Novell’s NDS, and others.

The following are “standard extension” APIs. Some, such as those for working with XML
and web services, are bundled with the standard edition of Java; some must be down‐
loaded separately and deployed with your application or server.
JavaMail

A uniform API for writing email software.

Java 3D
A facility for developing applications with 3D graphics.

Java Media
Another catch-all that includes Java 2D, Java 3D, the Java Media Framework (a
framework for coordinating the display of many different kinds of media), Java
Speech (for speech recognition and synthesis), Java Sound (high-quality audio),
Java TV (for interactive television and similar applications), and others.

Java Servlets
A facility that lets you write server-side web applications in Java.

22 | Chapter 1: A Modern Language

Java Cryptography
Actual implementations of cryptographic algorithms. (This package was separated
from Java Security for legal reasons.)

JavaHelp
A facility for writing help systems and incorporating them in Java programs.

Enterprise JavaBeans
A component architecture for building distributed server-side applications.

Jini
An interesting distributed component technology that is designed to enable dis‐
tributed computing, discovery, and rendezvous of devices ranging from software
tools to hardware and household appliances.

XML/XSL
Tools for creating and manipulating XML documents, validating them, mapping
them to and from Java objects, and transforming them with stylesheets.

Web services
Tools for creating and deploying Java-based SOAP web services.

In this book, we’ll try to give you a taste of as many features as possible; unfortunately
for us (but fortunately for Java software developers), the Java environment has become
so rich that it’s impossible to cover everything in a single book.

The Future
Changes in Java have become less frequent as Java has matured over the years, but Java
continues to be one of the most popular platforms for application development. This is
especially true in the areas of web services, web application frameworks, and XML tools.
While Java has not dominated mobile platforms in the way it seemed destined to, the
Java language and core APIs are used to program for Google’s Android mobile OS, which
is used on billions of devices around the world. In the Microsoft camp, the Java-derived
C# language has taken over much .NET development and brought the core Java syntax
and patterns to those platforms.

Probably the most exciting areas of change in Java today are found in the trend toward
lighter weight, simpler frameworks for business and the integration of the Java platform
with dynamic languages for scripting web pages and extensions. There is much more
interesting work to come.

Availability
You have several choices for Java development environments and runtime systems.
Oracle’s Java Development Kit (JDK) is available for Mac OS X, Windows, and Linux.

A Java Road Map | 23

Visit Oracle’s Java website at for more information about obtaining the latest JDK. This
book’s online content is available at http://oreil.ly/Java_4E.

There is also a whole array of popular Java Integrated Development Environments. We’ll
discuss two in this book: IBM’s Eclipse and the Oracle NetBeans IDE. These all-in-one
development environments let you write, test, and package software with advanced tools
at your fingertips. While Eclipse is unquestionably the most popular and is open source,
this author’s preferred IDE is Intellij IDEA by JetBrains, which now also has a free
community edition.

24 | Chapter 1: A Modern Language

CHAPTER 2

A First Application

Before diving into our full discussion of the Java language, let’s get our feet wet by
jumping into some working code and splashing around a bit. In this chapter, we’ll build
a friendly little application that illustrates many of the concepts used throughout the
book. We’ll take this opportunity to introduce general features of the Java language and
applications.

This chapter also serves as a brief introduction to the object-oriented and multithreaded
aspects of Java. If these concepts are new to you, we hope that encountering them here
in Java for the first time will be a straightforward and pleasant experience. If you have
worked with another object-oriented or multithreaded programming environment, you
should especially appreciate Java’s simplicity and elegance. This chapter is intended only
to give you a bird’s eye view of the Java language and a feel for how it is used. If you have
trouble with any of the concepts introduced here, rest assured they will be covered in
greater detail later in the book.

We can’t stress enough the importance of experimentation as you learn new concepts
here and throughout the book. Don’t just read the examples—run them. The source
code for these examples and all of the examples in this book can be found on our
website. Compile the programs and try them. Then, turn our examples into your ex‐
amples: play with them, change their behavior, break them, fix them, and hopefully have
some fun along the way.

Java Tools and Environment
Although it’s possible to write, compile, and run Java applications with nothing more
than Oracle’s Java Development Kit (JDK) and a simple text editor (e.g., vi, Notepad,
etc.), today the vast majority of Java code is written with the benefit of an Integrated
Development Environment (IDE). The benefits of using an IDE include an all-in-one
view of Java source code with syntax highlighting, navigation help, source control,

25

integrated documentation, building, refactoring, and deployment all at your fingertips.
Therefore, we are going to skip an academic command-line treatment and start with
the most popular IDE, Eclipse. If you are adverse to using an IDE, feel free to use the
command-line instructions javac HelloJava.java for compilation and java Hello
Java to run the upcoming examples.

IBM originally spearheaded The Eclipse Project in 2001, leading a consortium of soft‐
ware vendors to create an open and extensible development environment to rival the
then-legendary Visual Studio environment from Microsoft. Today, Eclipse has grown
into a powerful open source platform supported by individuals and corporations alike,
backed by a thriving ecosystem of plug-ins and frameworks. Although Java is the most
popular language associated with Eclipse, the IDE supports dozens of languages. We
will be doing a light introduction to Eclipse in this chapter. For a more comprehensive
approach, see Appendix A.

Eclipse requires a Java Runtime Environment (JRE) to be installed. This book covers
Java 7 language features, so although the examples in this chapter will work with older
versions, it’s best to have JDK 7 installed to ensure that all examples in the book compile.
The JDK includes the JRE as well as developer tools. You can check to see which version,
if any, you have installed by typing java -version at the command line. If Java isn’t
present, or if it’s a version older than JDK 7 (confusingly also referred to as JDK 1.7),
you will want to download the latest version from Oracle’s download page. All that is
required for the examples in this book is the basic JDK, which is the first option in the
upper-left corner of the download page.

Eclipse is an open source IDE available at Eclipse.org. For the purposes of this book,
and getting started with Java in general, the Eclipse Classic download is sufficient. Make
sure the architecture of your JDK and Eclipse matches. In other words, don’t use a 64-
bit JDK with a 32-bit version of Eclipse or vice versa. The download is a compressed
archive: .zip for Windows and .tar.gz on OS X and Linux. Double-click to expand and
run the installer.

Configuring Eclipse and Creating a Project
The first time you run Eclipse, you’ll be prompted to select a workspace. This is a root
directory to hold new projects that you create within Eclipse. The default location is
inside the application’s folder itself, which is probably not what you want. Choose a
location and click OK.

Eclipse greets you with the Welcome screen. Close this window by closing the Welcome
tab within the application. If you want to come back later and go through the Eclipse
tutorials and related help topics, you can return to this window by choosing Help →
Welcome.

26 | Chapter 2: A First Application

One last thing before we move on: Eclipse stores all of its configuration information in
the configuration folder inside the Eclipse installation directory. If, at any point in this
introduction, you feel that things are not right and you want to start from scratch, you
can quit the application and remove this folder. You may also wish to remove your
workspace items as they hold per-project state. Less drastically, if you wish to reset all
of the application windows to their default locations, you can choose Window → Reset
Perspective. We’ll talk more about perspectives later.

We are going to create a project to hold all our examples. Select File → New → Java Project
from the application menu and type Learning Java in the “Project name” field at the
top of the dialog, as seen in Figure 2-1. Make sure the JRE version is set to JavaSE-1.7
as seen in the figure and click Next at the bottom.

Figure 2-1. New Java Project dialog

Configuring Eclipse and Creating a Project | 27

Next, you will need to set your build path to the Java 7 system library. Select the Libra‐
ries tab and remove the Java 1.6 library. Click Add Library and select JavaSE-1.7. Eclipse
is now configured to use Java 7. Click Finish.

Importing the Learning Java Examples
Let’s load the examples from this book. You can find a ZIP file containing all of the
examples from this book nicely packaged as an Eclipse project at http://oreil.ly/
Java_4E. The Eclipse version of the examples is called examples-eclipse.zip. (The file
examples.zip holds the same examples but packaged slightly differently and without the
Eclipse project files.)

Next, we’ll import the examples ZIP file. Choose File → Import to open the Import
wizard. Select Archive File as the source and click Next. See Figure 2-2.

Figure 2-2. New Java Project dialog

Click the Browse button and choose the examples-eclipse.zip file as seen in Figure 2-3.
Check the “Overwrite existing resources without warning” button so that our Eclipse-
specific project file will overwrite the empty one in your new project. Click Finish.

28 | Chapter 2: A First Application

Figure 2-3. New Java Project dialog

Eclipse will now import all of the files from the archive and immediately begin building
the source in the background (a small progress bar at the bottom of the screen will show
this). On the left is the Package Explorer. It shows a tree view of the Java packages,
libraries, and resources of our project. Click the folder handles to expand the tree and
see source folders for each chapter in the book. Now we are ready to start coding!

HelloJava
In the tradition of introductory programming texts, we will begin with Java’s equivalent
of the archetypal “Hello World” application, HelloJava.

We’ll end up taking four passes at this example before we’re done (HelloJava, Hello
Java2, etc.), adding features and introducing new concepts along the way. But let’s start
with the minimalist version:

 public class HelloJava {
 public static void main(String[] args) {
 System.out.println("Hello, Java!");
 }
 }

This five-line program declares a class called HelloJava and a method called main() .
It uses a predefined method called println() to write some text as output. This is a

HelloJava | 29

command-line program, which means that it runs in a shell or DOS window and prints
its output there. That’s a bit old-school for our taste, so before we go any further, we’re
going to give HelloJava a graphical user interface (GUI). Don’t worry about the code
yet; just follow along with the progression here, and we’ll come back for explanations
in a moment.

In place of the line containing the println() method, we’re going to use a JFrame object
to put a window on the screen. We can start by replacing the println line with the
following three lines:

 JFrame frame = new JFrame("Hello, Java!");
 frame.setSize(300, 300);
 frame.setVisible(true);

This snippet creates a JFrame object with the title “Hello, Java!” The JFrame is a graphical
window. To display it, we simply configure its size on the screen using the setSize()
method and make it visible by calling the setVisible() method.

If we stopped here, we would see an empty window on the screen with our “Hello, Java!”
banner as its title. We’d like our message inside the window, not just scrawled at the top
of it. To put something in the window, we need a couple more lines. The following
complete example adds a JLabel object to display the text centered in our window. The
additional import line at the top is necessary to tell Java where to find the JFrame and
JLabel classes (the definitions of the JFrame and JLabel objects that we’re using).

 import javax.swing.*;

 public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello, Java!");
 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);
 frame.add(label);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

Now to compile and run this source, select the ch02/HelloJava.java class from the pack‐
age explorer along the left and click the Run button in the toolbar along the top. The
Run button is a green circle with a white arrow pointing to the right. See Figure 2-4.

30 | Chapter 2: A First Application

Figure 2-4. Running the HelloJava application

You should see the proclamation shown in Figure 2-5. Congratulations, you have run
your first Java application! Take a moment to bask in the glow of your monitor.

Figure 2-5. The output of the HelloJava application

Be aware that when you click on the window’s close box, the window goes away, but
your program is still running. (We’ll fix this shutdown behavior in a later version of the
example.) To stop the Java application in Eclipse, click the big red button in the console
window. If you are running the example on the command line, type Ctrl-C. Note that

HelloJava | 31

nothing stops you from running more than one instance (copy) of the application at
a time.

HelloJava may be a small program, but there is quite a bit going on behind the scenes.
Those few lines represent the tip of an iceberg. What lies under the surface are the layers
of functionality provided by the Java language and its foundation class libraries. Re‐
member that in this chapter, we’re going to cover a lot of ground quickly in an effort to
show you the big picture. We’ll try to offer enough detail for a good understanding of
what is happening in each example, but will defer detailed explanations until the ap‐
propriate chapters. This holds for both elements of the Java language and the object-
oriented concepts that apply to them. With that said, let’s take a look now at what’s going
on in our first example.

Classes
The first example defines a class named HelloJava.

 public class HelloJava {
 ...

Classes are the fundamental building blocks of most object-oriented languages. A class
is a group of data items with associated functions that can perform operations on that
data. The data items in a class are called variables, or sometimes fields; in Java, functions
are called methods. The primary benefits of an object-oriented language are this asso‐
ciation between data and functionality in class units and also the ability of classes to
encapsulate or hide details, freeing the developer from worrying about low-level details.

In an application, a class might represent something concrete, such as a button on a
screen or the information in a spreadsheet, or it could be something more abstract, such
as a sorting algorithm or perhaps the sense of ennui in a video game character. A class
representing a spreadsheet might, for example, have variables that represent the values
of its individual cells and methods that perform operations on those cells, such as “clear
a row” or “compute values.”

Our HelloJava class is an entire Java application in a single class. It defines just one
method, main() , which holds the body of our program:

 public class HelloJava {
 public static void main(String[] args) {
 ...

It is this main() method that is called first when the application is started. The bit labeled
String [] args allows us to pass command-line arguments to the application. We’ll
walk through the main() method in the next section. Finally, we’ll note that although
this version of HelloJava does not define any variables as part of its class, it does use
two variables, frame and label, inside its main() method. We’ll have more to say about
variables soon as well.

32 | Chapter 2: A First Application

The main() Method
As we saw when we ran our example, running a Java application means picking a par‐
ticular class and passing its name as an argument to the Java virtual machine. When we
did this, the java command looked in our HelloJava class to see if it contained the
special method named main() of just the right form. It did, and so it was executed. If it
had not been there, we would have received an error message. The main() method is
the entry point for applications. Every standalone Java application includes at least one
class with a main() method that performs the necessary actions to start the rest of the
program.

Our main() method sets up a window (a JFrame) to hold the visual output of the
HelloJava class. Right now, it’s doing all the work in the application. But in an object-
oriented application, we normally delegate responsibilities to many different classes. In
the next incarnation of our example, we’re going to perform just such a split—creating
a second class—and we’ll see that as the example subsequently evolves, the main()
method remains more or less the same, simply holding the startup procedure.

Let’s quickly walk through our main() method, just so we know what it does. First,
main() creates a JFrame, the window that will hold our example:

 JFrame frame = new JFrame("Hello, Java!");

The word new in this line of code is very important. JFrame is the name of a class that
represents a window on the screen, but the class itself is just a template, like a building
plan. The new keyword tells Java to allocate memory and actually create a particular
JFrame object. In this case, the argument inside the parentheses tells the JFrame what
to display in its title bar. We could have left out the “Hello, Java” text and used empty
parentheses to create a JFrame with no title, but only because the JFrame specifically
allows us to do that.

When frame windows are first created, they are very small. Before we show the
JFrame, we set its size to something reasonable:

 frame.setSize(300, 300);

This is an example of invoking a method on a particular object. In this case, the set
Size() method is defined by the JFrame class, and it affects the particular JFrame object
we’ve placed in the variable frame. Like the frame, we also create an instance of JLa
bel to hold our text inside the window:

 JLabel label = new JLabel("Hello, Java!", JLabel.CENTER);

JLabel is much like a physical label. It holds some text at a particular position—in this
case, on our frame. This is a very object-oriented concept: using an object to hold some
text, instead of simply invoking a method to “draw” the text and moving on. The ra‐
tionale for this will become clearer later.

HelloJava | 33

Next, we have to place the label into the frame we created:
 frame.add(label);

Here, we’re calling a method named add()to place our label inside the JFrame. The
JFrame is a kind of container that can hold things. We’ll talk more about that later.
main()’s final task is to show the frame window and its contents, which otherwise would
be invisible. An invisible window makes for a pretty boring application.

 frame.setVisible(true);

That’s the whole main() method. As we progress through the examples in this chapter,
it will remain mostly unchanged as the HelloJava class evolves around it.

Classes and Objects
A class is a blueprint for a part of an application; it holds methods and variables that
make up that component. Many individual working copies of a given class can exist
while an application is active. These individual incarnations are called instances of the
class, or objects. Two instances of a given class may contain different data, but they always
have the same methods.

As an example, consider a Button class. There is only one Button class, but an appli‐
cation can create many different Button objects, each one an instance of the same class.
Furthermore, two Button instances might contain different data, perhaps giving each a
different appearance and performing a different action. In this sense, a class can be
considered a mold for making the object it represents, something like a cookie cutter
stamping out working instances of itself in the memory of the computer. As you’ll see
later, there’s a bit more to it than that—a class can in fact share information among its
instances—but this explanation suffices for now. Chapter 5 has the whole story on
classes and objects.

The term object is very general and in some other contexts is used almost interchange‐
ably with class. Objects are the abstract entities that all object-oriented languages refer
to in one form or another. We will use object as a generic term for an instance of a class.
We might, therefore, refer to an instance of the Button class as a button, a Button object,
or, indiscriminately, as an object.

The main() method in the previous example creates a single instance of the JLabel class
and shows it in an instance of the JFrame class. You could modify main() to create many
instances of JLabel, perhaps each in a separate window.

Variables and Class Types
In Java, every class defines a new type (data type). A variable can be declared to be of
this type and then hold instances of that class. A variable could, for example, be of type
Button and hold an instance of the Button class, or of type SpreadSheetCell and hold

34 | Chapter 2: A First Application

a SpreadSheetCell object, just as it could be any of the simpler types, such as int or
float, that represent numbers. The fact that variables have types and cannot simply
hold any kind of object is another important feature of the language that ensures the
safety and correctness of code.

Ignoring the variables used inside the main() method for the moment, only one other
variable is declared in our simple HelloJava example. It’s found in the declaration of
the main() method itself:

 public static void main(String [] args) {

Just like functions in other languages, a method in Java declares a list of variables that
it accepts as arguments or parameters, and it specifies the types of those variables. In
this case, the main method is requiring that when it is invoked, it be passed a list of
String objects in the variable named args. The String is the fundamental object rep‐
resenting text in Java. As we hinted earlier, Java uses the args parameter to pass any
command-line arguments supplied to the Java virtual machine (VM) into your appli‐
cation. (We don’t use them here.)

Up to this point, we have loosely referred to variables as holding objects. In reality,
variables that have class types don’t so much contain objects as point to them. Class-
type variables are references to objects. A reference is a pointer to or a handle for an
object. If you declare a class-type variable without assigning it an object, it doesn’t point
to anything. It’s assigned the default value of null, meaning “no value.” If you try to use
a variable with a null value as if it were pointing to a real object, a runtime error,
NullPointerException, occurs.

Of course, object references have to come from somewhere. In our example, we created
two objects using the new operator. We’ll examine object creation in more detail a little
later in the chapter.

HelloComponent
Thus far, our HelloJava example has contained itself in a single class. In fact, because
of its simple nature, it has really just served as a single, large method. Although we have
used a couple of objects to display our GUI message, our own code does not illustrate
any object-oriented structure. Well, we’re going to correct that right now by adding a
second class. To give us something to build on throughout this chapter, we’re going to
take over the job of the JLabel class (bye bye, JLabel!) and replace it with our own
graphical class: HelloComponent. Our HelloComponent class will start simple, just dis‐
playing our “Hello, Java!” message at a fixed position. We’ll add capabilities later.

The code for our new class is very simple; we added just a few more lines:
 import java.awt.*;

 class HelloComponent extends JComponent {

HelloJava | 35

 public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
 }
 }

You can add this text to the HelloJava.java file, or you can place it in its own file called
HelloComponent.java. If you put it in the same file, you must move the new import
statement to the top of the file, along with the other one. To use our new class in place
of the JLabel, simply replace the two lines referencing the label with:

 frame.add(new HelloComponent());

This time when you compile HelloJava.java, you will see two binary class files: Hello‐
Java.class and HelloComponent.class (regardless of how you arranged the source). Run‐
ning the code should look much like the JLabel version, but if you resize the window,
you’ll notice that our class does not automatically adjust to center the code.

So what have we done, and why have we gone to such lengths to insult the perfectly
good JLabel component? We’ve created our new HelloComponent class, extending a
generic graphical class called JComponent. To extend a class simply means to add func‐
tionality to an existing class, creating a new one. We’ll get into that in the next section.
Here we have created a new kind of JComponent that contains a method called paint
Component(), which is responsible for drawing our message. Our paintComponent()
method takes one argument named (somewhat tersely) g, which is of type Graphics.
When the paintComponent() method is invoked, a Graphics object is assigned to g,
which we use in the body of the method. We’ll say more about paintComponent() and
the Graphics class in a moment. As for why, you’ll understand when we add all sorts of
new features to our new component later on.

Inheritance
Java classes are arranged in a parent-child hierarchy in which the parent and child are
known as the superclass and subclass, respectively. We’ll explore these concepts fully in
Chapter 6. In Java, every class has exactly one superclass (a single parent), but possibly
many subclasses. The only exception to this rule is the Object class, which sits atop the
entire class hierarchy; it has no superclass.

The declaration of our class in the previous example uses the keyword extends to specify
that HelloComponent is a subclass of the JComponent class:

 public class HelloComponent extends JComponent { ... }

A subclass may inherit some or all the variables and methods of its superclass. Through
inheritance, the subclass can use those variables and methods as if it has declared them
itself. A subclass can add variables and methods of its own, and it can also override or
change the meaning of inherited methods. When we use a subclass, overridden methods
are hidden (replaced) by the subclass’s own versions of them. In this way, inheritance

36 | Chapter 2: A First Application

provides a powerful mechanism whereby a subclass can refine or extend the function‐
ality of its superclass.

For example, the hypothetical spreadsheet class might be subclassed to produce a new
scientific spreadsheet class with extra mathematical functions and special built-in con‐
stants. In this case, the source code for the scientific spreadsheet might declare methods
for the added mathematical functions and variables for the special constants, but the
new class automatically has all the variables and methods that constitute the normal
functionality of a spreadsheet; they are inherited from the parent spreadsheet class. This
also means that the scientific spreadsheet maintains its identity as a spreadsheet, and
we can use the extended version anywhere the simpler spreadsheet could be used. That
last sentence has profound implications, which we’ll explore throughout the book. It
means that specialized objects can be used in place of more generic objects, customizing
their behavior without changing the underlying application. This is called polymor‐
phism and is one of the foundations of object-oriented programming.

Our HelloComponent class is a subclass of the JComponent class and inherits many vari‐
ables and methods not explicitly declared in our source code. This is what allows our
tiny class to serve as a component in a JFrame, with just a few customizations.

The JComponent Class
The JComponent class provides the framework for building all kinds of user interface
components. Particular components—such as buttons, labels, and list boxes—are im‐
plemented as subclasses of JComponent.

We override methods in such a subclass to implement the behavior of our particular
component. This may sound restrictive, as if we are limited to some predefined set of
routines, but that is not the case at all. Keep in mind that the methods we are talking
about are ways to interact with the windowing system. We don’t have to squeeze our
whole application in there. A realistic application might involve hundreds or thousands
of classes, with legions of methods and variables and many threads of execution. The
vast majority of these are related to the particulars of our job (these are called domain
objects). The JComponent class and other predefined classes serve only as a framework
on which to base code that handles certain types of user interface events and displays
information to the user.

The paintComponent() method is an important method of the JComponent class; we
override it to implement the way our particular component displays itself on the screen.
The default behavior of paintComponent() doesn’t do any drawing at all. If we hadn’t
overridden it in our subclass, our component would simply have been invisible. Here,
we’re overriding paintComponent() to do something only slightly more interesting. We
don’t override any of the other inherited members of JComponent because they provide
basic functionality and reasonable defaults for this (trivial) example. As HelloJava
grows, we’ll delve deeper into the inherited members and use additional methods. We

HelloJava | 37

will also add some application-specific methods and variables specifically for the needs
of HelloComponent.

JComponent is really the tip of another iceberg called Swing. Swing is Java’s user interface
toolkit, represented in our example by the import statement at the top; we’ll discuss it
in some detail in Chapters 16 through 18.

Relationships and Finger Pointing
We can correctly refer to HelloComponent as a JComponent because subclassing can be
thought of as creating an “is a” relationship, in which the subclass “is a” kind of its
superclass. HelloComponent is therefore a kind of JComponent. When we refer to a kind
of object, we mean any instance of that object’s class or any of its subclasses. Later, we
will look more closely at the Java class hierarchy and see that JComponent is itself a
subclass of the Container class, which is further derived from a class called Compo
nent, and so on, as shown in Figure 2-6.

In this sense, a HelloComponent object is a kind of JComponent, which is a kind of
Container, and each of these can ultimately be considered to be a kind of Component.
It’s from these classes that HelloComponent inherits its basic GUI functionality and (as
we’ll discuss later) the ability to have other graphical components embedded within it
as well.

Figure 2-6. Part of the Java class hierarchy

Component is a subclass of the top-level Object class, so all these classes are types of
Object. Every other class in the Java API inherits behavior from Object, which defines
a few basic methods, as you’ll see in Chapter 7. We’ll continue to use the word object

38 | Chapter 2: A First Application

(lowercase o) in a generic way to refer to an instance of any class; we’ll use Object to
refer specifically to the type of that class.

Package and Imports
We mentioned earlier that the first line of our example tells Java where to find some of
the classes that we’ve been using:

 import javax.swing.*;

Specifically, it tells the compiler that we are going to be using classes from the Swing
GUI toolkit (in this case, JFrame, JLabel, and JComponent). These classes are organized
into a Java package called javax.swing. A Java package is a group of classes that are
related by purpose or by application. Classes in the same package have special access
privileges with respect to one another and may be designed to work together closely.

Packages are named in a hierarchical fashion with dot-separated components, such as
java.util and java.util.zip. Classes in a package must follow conventions about
where they are located in the classpath. They also take on the name of the package as
part of their “full name” or, to use the proper terminology, their fully qualified name.
For example, the fully qualified name of the JComponent class is javax.swing.JCompo
nent. We could have referred to it by that name directly, in lieu of using the import
statement:

 public class HelloComponent extends javax.swing.JComponent {...}

The statement import javax.swing.* enables us to refer to all the classes in the jav
ax.swing package by their simple names. So we don’t have to use fully qualified names
to refer to the JComponent, JLabel, and JFrame classes.

As we saw when we added our second example class, there may be one or more im
port statements in a given Java source file. The imports effectively create a “search path”
that tells Java where to look for classes that we refer to by their simple, unqualified names.
(It’s not really a path, but it avoids ambiguous names that can create errors.) The im
ports we’ve seen use the dot star (.*) notation to indicate that the entire package should
be imported. But you can also specify just a single class. For example, our current ex‐
ample uses only the Graphics class from the java.awt package. So we could have used
import java.awt.Graphics instead of using the wildcard * to import all the Abstract
Window Toolkit (AWT) package’s classes. However, we are anticipating using several
more classes from this package later.

The java. and javax. package hierarchies are special. Any package that begins with
java. is part of the core Java API and is available on any platform that supports Java.
The javax. package normally denotes a standard extension to the core platform, which
may or may not be installed. However, in recent years, many standard extensions have
been added to the core Java API without renaming them. The javax.swing package is

HelloJava | 39

an example; it is part of the core API in spite of its name. Figure 2-7 illustrates some of
the core Java packages, showing a representative class or two from each.

Figure 2-7. Some core Java packages

java.lang contains fundamental classes needed by the Java language itself; this package
is imported automatically and that is why we didn’t need an import statement to use
class names such as String or System in our examples. The java.awt package contains
classes of the older, graphical Abstract Window Toolkit; java.net contains the net‐
working classes; and so on.

As you gain more experience with Java, you will come to realize that having a command
of the packages available to you, what they do, when to use them, and how to use them
is a critical part of becoming a successful Java developer.

The paintComponent() Method
The source for our HelloComponent class defines a method, paintComponent(), that
overrides the paintComponent() method of the JComponent class:

 public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
 }

The paintComponent() method is called when it’s time for our example to draw itself
on the screen. It takes a single argument, a Graphics object, and doesn’t return any type
of value (void) to its caller.

40 | Chapter 2: A First Application

Modifiers are keywords placed before classes, variables, and methods to alter their ac‐
cessibility, behavior, or semantics. paintComponent() is declared as public, which
means it can be invoked (called) by methods in classes other than HelloComponent. In
this case, it’s the Java windowing environment that is calling our paintComponent()
method. A method or variable declared as private is accessible only from its own class.

The Graphics object, an instance of the Graphics class, represents a particular graphical
drawing area. (It is also called a graphics context.) It contains methods that can be used
to draw in this area, and variables that represent characteristics such as clipping or
drawing modes. The particular Graphics object we are passed in the paintCompo
nent() method corresponds to our HelloComponent’s area of the screen, inside our
frame.

The Graphics class provides methods for rendering shapes, images, and text. In Hello
Component, we invoke the drawString() method of our Graphics object to scrawl our
message at the specified coordinates. (For a description of the methods available in the
Graphics class, see Chapter 20.)

As we’ve seen earlier, we access a method of an object by appending a dot (.) and its
name to the object that holds it. We invoked the drawString() method of the Graph
ics object (referenced by our g variable) in this way:

 g.drawString("Hello, Java!", 125, 95);

It may be difficult to get used to the idea that our application is drawn by a method that
is called by an outside agent at arbitrary times. How can we do anything useful with
this? How do we control what gets done and when? These answers are forthcoming. For
now, just think about how you would begin to structure applications that respond on
command instead of by their own initiative.

HelloJava2: The Sequel
Now that we’ve got some basics down, let’s make our application a little more interactive.
The following minor upgrade allows us to drag the message text around with the mouse.

We’ll call this example HelloJava2 rather than cause confusion by continuing to expand
the old one, but the primary changes here and further on lie in adding capabilities to
the HelloComponent class and simply making the corresponding changes to the names
to keep them straight (e.g., HelloComponent2, HelloComponent3, and so on). Having
just seen inheritance at work, you might wonder why we aren’t creating a subclass of
HelloComponent and exploiting inheritance to build upon our previous example and
extend its functionality. Well, in this case, that would not provide much advantage, and
for clarity we simply start over.

Here is HelloJava2:

HelloJava2: The Sequel | 41

 //file: HelloJava2.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class HelloJava2
 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava2");
 frame.add(new HelloComponent2("Hello, Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

 class HelloComponent2 extends JComponent
 implements MouseMotionListener
 {
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 public HelloComponent2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 // Save the mouse coordinates and paint the message.
 messageX = e.getX();

 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }
 }

Two slashes in a row indicate that the rest of the line is a comment. We’ve added a few
comments to HelloJava2 to help you keep track of everything.

Place the text of this example in a file called HelloJava2.java and compile it as before.
You should get new class files, HelloJava2.class and HelloComponent2.class, as a result.

Run the example using the following command:
 C:\> java HelloJava2

42 | Chapter 2: A First Application

Or, if you are following in Eclipse, click the Run button. Feel free to substitute your own
salacious comment for the “Hello, Java!” message and enjoy many hours of fun, dragging
the text around with your mouse. Notice that now when you click the window’s close
button, the application exits; we’ll explain that later when we talk about events. Now
let’s see what’s changed.

Instance Variables
We have added some variables to the HelloComponent2 class in our example:

 int messageX = 125, messageY = 95;
 String theMessage;

messageX and messageY are integers that hold the current coordinates of our movable
message. We have crudely initialized them to default values that should place the mes‐
sage somewhere near the center of the window. Java integers are 32-bit signed numbers,
so they can easily hold our coordinate values. The variable theMessage is of type String
and can hold instances of the String class.

You should note that these three variables are declared inside the braces of the class
definition, but not inside any particular method in that class. These variables are called
instance variables, and they belong to the class as a whole. Specifically, copies of them
appear in each separate instance of the class. Instance variables are always visible to (and
usable by) all the methods inside their class. Depending on their modifiers, they may
also be accessible from outside the class.

Unless otherwise initialized, instance variables are set to a default value of 0, false, or
null, depending on their type. Numeric types are set to 0, Boolean variables are set to
false, and class type variables always have their value set to null, which means “no
value.” Attempting to use an object with a null value results in a runtime error.

Instance variables differ from method arguments and other variables that are declared
inside the scope of a particular method. The latter are called local variables. They are
effectively private variables that can be seen only by code inside the method. Java doesn’t
initialize local variables, so you must assign values yourself. If you try to use a local
variable that has not yet been assigned a value, your code generates a compile-time error.
Local variables live only as long as the method is executing and then disappear, unless
something else saves their value. Each time the method is invoked, its local variables are
recreated and must be assigned values.

We have used the new variables to make our previously stodgy paintComponent()
method more dynamic. Now all the arguments in the call to drawString() are deter‐
mined by these variables.

HelloJava2: The Sequel | 43

Constructors
The HelloComponent2 class includes a special kind of a method called a constructor. A
constructor is called to set up a new instance of a class. When a new object is created,
Java allocates storage for it, sets instance variables to their default values, and calls the
constructor method for the class to do whatever application-level setup is required.

A constructor always has the same name as its class. For example, the constructor for
the HelloComponent2 class is called HelloComponent2(). Constructors don’t have a re‐
turn type, but you can think of them as creating an object of their class’s type. Like other
methods, constructors can take arguments. Their sole mission in life is to configure and
initialize newly born class instances, possibly using information passed to them in these
parameters.

An object is created with the new operator specifying the constructor for the class and
any necessary arguments. The resulting object instance is returned as a value. In our
example, a new HelloComponent2 instance is created in the main() method by this line:

 frame.add(new HelloComponent2("Hello, Java!"));

This line actually does two things. We could write them as two separate lines that are a
little easier to understand:

 HelloComponent2 newObject = new HelloComponent2("Hello, Java!");
 frame.add(newObject);

The first line is the important one, where a new HelloComponent2 object is created. The
HelloComponent2 constructor takes a String as an argument and, as we have arranged
it, uses it to set the message that is displayed in the window. With a little magic from the
Java compiler, quoted text in Java source code is turned into a String object. (See
Chapter 10 for a complete discussion of the String class.) The second line simply adds
our new component to the frame to make it visible, as we did in the previous examples.

While we’re on the topic, if you’d like to make our message configurable, you can change
the constructor line to the following:

 HelloComponent2 newobj = new HelloComponent2(args[0]);

Now you can pass the text on the command line when you run the application using
the following command:

 C:\> java HelloJava2 "Hello, Java!"

args[0] refers to the first command-line parameter. Its meaning will become clearer
when we discuss arrays later in the book. If you are using an IDE, such as Eclipse, you
will need to configure it to accept your parameters before running it.

HelloComponent2’s constructor then does two things: it sets the text of theMessage
instance variable and calls addMouseMotionListener(). This method is part of the event

44 | Chapter 2: A First Application

mechanism, which we discuss next. It tells the system, “Hey, I’m interested in anything
that happens involving the mouse.”

 public HelloComponent2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
 }

The special, read-only variable called this is used to explicitly refer to our object (the
“current” object context) in the call to addMouseMotionListener(). A method can use
this to refer to the instance of the object that holds it. The following two statements
are therefore equivalent ways of assigning the value to theMessage instance variable:

 theMessage = message;

or:
 this.theMessage = message;

We’ll normally use the shorter, implicit form to refer to instance variables, but we’ll need
this when we have to explicitly pass a reference to our object to a method in another
class. We often do this so that methods in other classes can invoke our public methods
or use our public variables.

Events
The last two methods of HelloComponent2, mouseDragged() and mouseMoved(), let us
get information from the mouse. Each time the user performs an action, such as pressing
a key on the keyboard, moving the mouse, or perhaps banging his or her head against
a touch screen, Java generates an event. An event represents an action that has occurred;
it contains information about the action, such as its time and location. Most events are
associated with a particular GUI component in an application. A keystroke, for instance,
can correspond to a character being typed into a particular text entry field. Pressing a
mouse button can activate a particular button on the screen. Even just moving the mouse
within a certain area of the screen can trigger effects such as highlighting or changing
the cursor’s shape.

To work with these events, we’ve imported a new package, java.awt.event, which
provides specific Event objects that we use to get information from the user. (Notice
that importing java.awt.* doesn’t automatically import the event package. Packages
don’t really contain other packages, even if the hierarchical naming scheme would imply
that they do.)

There are many different event classes, including MouseEvent, KeyEvent, and
ActionEvent. For the most part, the meaning of these events is fairly intuitive. A
MouseEvent occurs when the user does something with the mouse, a KeyEvent occurs
when the user presses a key, and so on. ActionEvent is a little special; we’ll see it at work

HelloJava2: The Sequel | 45

later in this chapter in our third version of HelloJava. For now, we’ll focus on dealing
with MouseEvents.

GUI components in Java generate events for specific kinds of user actions. For example,
if you click the mouse inside a component, the component generates a mouse event.
Objects can ask to receive the events from one or more components by registering a
listener with the event source. For example, to declare that a listener wants to receive a
component’s mouse-motion events, you invoke that component’s addMouseMotionLis
tener() method, specifying the listener object as an argument. That’s what our example
is doing in its constructor. In this case, the component is calling its own addMouseMo
tionListener() method, with the argument this, meaning “I want to receive my own
mouse-motion events.”

That’s how we register to receive events. But how do we actually get them? That’s what
the two mouse-related methods in our class are for. The mouseDragged() method is
called automatically on a listener to receive the events generated when the user drags
the mouse—that is, moves the mouse with any button pressed. The mouseMoved()
method is called whenever the user moves the mouse over the area without pressing a
button. In this case, we’ve placed these methods in our HelloComponent2 class and had
it register itself as the listener. This is entirely appropriate for our new text-dragging
component. More generally, good design usually dictates that event listeners be imple‐
mented as adapter classes that provide better separation of GUI and “business logic.”
We’ll discuss that in detail later in the book.

Our mouseMoved() method is boring: it doesn’t do anything. We ignore simple mouse
motions and reserve our attention for dragging. mouseDragged() has a bit more meat
to it. This method is called repeatedly by the windowing system to give us updates on
the position of the mouse. Here it is:

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

The first argument to mouseDragged() is a MouseEvent object, e, that contains all the
information we need to know about this event. We ask the MouseEvent to tell us the x
and y coordinates of the mouse’s current position by calling its getX() and getY()
methods. We save these in the messageX and messageY instance variables for use
elsewhere.

The beauty of the event model is that you have to handle only the kinds of events you
want. If you don’t care about keyboard events, you just don’t register a listener for them;
the user can type all she wants and you won’t be bothered. If there are no listeners for

46 | Chapter 2: A First Application

1. Event handling in Java 1.0 was a very different story. Early on, Java did not have a notion of event listeners
and all event handling happened by overriding methods in base GUI classes. This was both inefficient and
led to poor design with a proliferation of highly specialized components.

a particular kind of event, Java won’t even generate it. The result is that event handling
is quite efficient.1

While we’re discussing events, we should mention another small addition we slipped
into HelloJava2:

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This line tells the frame to exit the application when its close button is pressed. It’s called
the “default” close operation because this operation, like almost every other GUI inter‐
action, is governed by events. We could register a window listener to get notification of
when the user pushes the close button and take whatever action we like, but this con‐
venience method handles the common cases.

Finally, we’ve danced around a couple of questions here: how does the system know that
our class contains the necessary mouseDragged() and mouseMoved() methods (where
do these names come from)? And why do we have to supply a mouseMoved() method
that doesn’t do anything? The answer to these questions has to do with interfaces. We’ll
discuss interfaces after clearing up some unfinished business with repaint().

The repaint() Method
Because we changed the coordinates for the message (when we dragged the mouse), we
would like HelloComponent2 to redraw itself. We do this by calling repaint(), which
asks the system to redraw the screen at a later time. We can’t call paintComponent()
directly, even if we wanted to, because we don’t have a graphics context to pass to it.

We can use the repaint() method of the JComponent class to request that our compo‐
nent be redrawn. repaint() causes the Java windowing system to schedule a call to our
paintComponent() method at the next possible time; Java supplies the necessary Graph
ics object, as shown in Figure 2-8.

This mode of operation isn’t just an inconvenience brought about by not having the
right graphics context handy. The foremost advantage to this mode of operation is that
the repainting behavior is handled by someone else while we are free to go about our
business. The Java system has a separate, dedicated thread of execution that handles all
repaint() requests. It can schedule and consolidate repaint() requests as necessary,
which helps to prevent the windowing system from being overwhelmed during
painting-intensive situations like scrolling. Another advantage is that all the painting
functionality must be encapsulated through our paintComponent() method; we aren’t
tempted to spread it throughout the application.

HelloJava2: The Sequel | 47

Figure 2-8. Invoking the repaint() method

Interfaces
Now it’s time to face the question we avoided earlier: how does the system know to call
mouseDragged() when a mouse event occurs? Is it simply a matter of knowing that
mouseDragged() is some magic name that our event-handling method must have? Not
quite; the answer to the question touches on the discussion of interfaces, which are one
of the most important features of the Java language.

The first sign of an interface comes on the line of code that introduces the HelloCompo
nent2 class: we say that the class implements the MouseMotionListener interface.

 class HelloComponent2 extends JComponent
 implements MouseMotionListener
 {

Essentially, an interface is a list of methods that the class must have; this particular
interface requires our class to have methods called mouseDragged() and mouse
Moved(). The interface doesn’t say what these methods have to do; indeed, mouse
Moved() doesn’t do anything. It does say that the methods must take a MouseEvent as
an argument and return no value (that’s what void means).

An interface is a contract between you, the code developer, and the compiler. By saying
that your class implements the MouseMotionListener interface, you’re saying that these
methods will be available for other parts of the system to call. If you don’t provide them,
a compilation error will occur.

That’s not the only way interfaces impact this program. An interface also acts like a class.
For example, a method could return a MouseMotionListener or take a MouseMotion
Listener as an argument. When you refer to an object by an interface name in this way,
it means that you don’t care about the object’s actual class; the only requirement is that
the class implements that interface. addMouseMotionListener() is such a method: its
argument must be an object that implements the MouseMotionListener interface. The
argument we pass is this, the HelloComponent2 object itself. The fact that it’s an instance
of JComponent is irrelevant; it could be a Cookie, an Aardvark, or any other class we
dream up. What’s important is that it implements MouseMotionListener and, thus,
declares that it will have the two named methods. That’s why we need a mouseMoved()

48 | Chapter 2: A First Application

2. Why isn’t it just called a Button? Button is the name that was used in Java’s original GUI toolkit, AWT. AWT
had some significant shortcomings, so it was extended and essentially replaced by Swing in Java 1.2. Since
AWT already took the reasonable names, such as Button and MenuBar, and mixing them in code could be
confusing, Swing user interface component names start with J, such as JButton and JMenuBar.

method, even though the one we supplied doesn’t do anything: the MouseMotionLis
tener interface says we must have one.

The Java distribution comes with many interfaces that define what classes have to do.
This idea of a contract between the compiler and a class is very important. There are
many situations like the one we just saw where you don’t care what class something is,
you just care that it has some capability, such as listening for mouse events. Interfaces
give us a way of acting on objects based on their capabilities without knowing or caring
about their actual type. They are a tremendously important concept in how we use Java
as an object-oriented language, and we’ll talk about them in detail in Chapter 4.

We’ll also see shortly that interfaces provide a sort of escape clause to the Java rule that
any new class can extend only a single class (“single inheritance”). A class in Java can
extend only one class, but can implement as many interfaces as it wants; our next ex‐
ample implements two interfaces and the final example in this chapter implements three.
In many ways, interfaces are almost like classes, but not quite. They can be used as data
types, can extend other interfaces (but not classes), and can be inherited by classes (if
class A implements interface B, subclasses of A also implement B). The crucial difference
is that classes don’t actually inherit methods from interfaces; the interfaces merely spec‐
ify the methods the class must have.

HelloJava3: The Button Strikes!
Now we can move on to some fun stuff. HelloJava3 brings us a new graphical interface
component: JButton.2 In this example, we add a JButton component to our application
that changes the color of our text each time the button is pressed. The draggable-message
capability is still there, too. Our new code looks like this:

 //file: HelloJava3.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class HelloJava3
 {

 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava3");
 frame.add(new HelloComponent3("Hello, Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);

HelloJava3: The Button Strikes! | 49

 frame.setVisible(true);
 }
 }

 class HelloComponent3 extends JComponent
 implements MouseMotionListener, ActionListener
 {
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 JButton theButton;

 int colorIndex; // Current index into someColors
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };

 public HelloComponent3(String message) {
 theMessage = message;
 theButton = new JButton("Change Color");
 setLayout(new FlowLayout());
 add(theButton);
 theButton.addActionListener(this);
 addMouseMotionListener(this);
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) {}

 public void actionPerformed(ActionEvent e) {
 // Did somebody push our button?
 if (e.getSource() == theButton)
 changeColor();
 }

 synchronized private void changeColor() {
 // Change the index to the next color, awkwardly.
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor()); // Use the new color.
 repaint();
 }

50 | Chapter 2: A First Application

 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }
 }

Compile HelloJava3 in the same way as the other applications. Run the example, and
you should see the display shown in Figure 2-9. Drag the text. Each time you press the
button, the color should change. Call your friends! Test yourself for color blindness!

Figure 2-9. The HelloJava3 application

What have we added this time? Well, for starters, we have a new variable:
 JButton theButton;

The theButton variable is of type JButton and is going to hold an instance of the
javax.swing.JButton class. The JButton class, as you might expect, represents a
graphical button, like other buttons in your windowing system.

Three additional lines in the constructor create the button and display it:
 theButton = new JButton("Change Color");
 setLayout(new FlowLayout());
 add(theButton);

In the first line, the new keyword creates an instance of the JButton class. The next line
affects the way our component will be used as a container to hold the button. It tells
HelloComponent3 how it should arrange components that are added to it for display—
in this case, to use a scheme called a FlowLayout (more on that coming up). Finally, it
adds the button to our component, just like we added HelloComponent3 to the content
pane of the JFrame in the main() method.

Method Overloading
JButton has more than one constructor. A class can have multiple constructors, each
taking different parameters and presumably using them to do different kinds of setup.
When a class has multiple constructors, Java chooses the correct one based on the types
of arguments used with them. We call the JButton constructor with a String argument,
so Java locates the constructor method of the JButton class that takes a single String
argument and uses it to set up the object. This is called method overloading. All methods

HelloJava3: The Button Strikes! | 51

in Java (not just constructors) can be overloaded; this is another aspect of the object-
oriented programming principle of polymorphism.

Overloaded constructors generally provide a convenient way to initialize a new object.
The JButton constructor we’ve used sets the text of the button as it is created:

 theButton = new JButton("Change Color");

This is shorthand for creating the button and setting its label, like this:
 theButton = new JButton();
 theButton.setText("Change Color");

Components
We have used the terms component and container somewhat loosely to describe graph‐
ical elements of Java applications, but these terms are used in the names of actual classes
in the java.awt package.

Component is a base class from which all of Java’s GUI components are derived. It contains
variables that represent the location, shape, general appearance, and status of the object
as well as methods for basic painting and event handling. javax.swing.JComponent
extends the base Component class and refines it for the Swing toolkit. The paintCompo
nent() method we have been using in our example is inherited from the JComponent
class. HelloComponent is a kind of JComponent and inherits all its public members, just
as other GUI components do.

The JButton class is also derived from JComponent and therefore shares this function‐
ality. This means that the developer of the JButton class had methods such as paint
Component() available with which to implement the behavior of the JButton object, just
as we did when creating our example. What’s exciting is that we are perfectly free to
further subclass components such as JButton and override their behavior to create our
own special types of user-interface components. JButton and HelloComponent3 are, in
this respect, equivalent types of things.

Containers
The Container class is an extended type of Component that maintains a list of child
components and helps to group them. The Container causes its children to be displayed
and arranges them on the screen according to a particular layout strategy.

Because a Container is also a Component, it can be placed alongside other Component
objects in other Containers in a hierarchical fashion, as shown in Figure 2-10. Our
HelloComponent3 class is a kind of Container (by virtue of the JComponent class) and
can therefore hold and manage other Java components and containers, such as buttons,
sliders, text fields, and panels.

52 | Chapter 2: A First Application

Figure 2-10. Layout of Java containers (in bold) and components (in italics)

In Figure 2-10, the italicized items are Components, and the bold items are Containers.
The keypad is implemented as a container object that manages a number of keys. The
keypad itself is contained in the GizmoTool container object.

Since JComponent descends from Container, it can be both a component and a con‐
tainer. In fact, we’ve already used it in this capacity in the HelloComponent3 example.
It does its own drawing and handles events, just like a component, but it also contains
a button, just like a container.

Layout
Having created a JButton object, we need to place it in the container, but where? An
object called a LayoutManager determines the location within the HelloComponent3
container at which to display the JButton. A LayoutManager object embodies a partic‐
ular scheme for arranging components on the screen and adjusting their sizes. There
are several standard layout managers to choose from, and we can, of course, create new
ones. In our case, we specify one of the standard managers, a FlowLayout . The net result
is that the button is centered at the top of the HelloComponent3 container. Our JFrame
has another kind of layout, called BorderLayout. You’ll learn more about layout man‐
agers in Chapter 19.

To add the button to the layout, we invoke the add() method that HelloComponent3
inherits from Container, passing the JButton object as a parameter:

 add(theButton);

add() is a method inherited by our class from the Container class. It appends our
JButton to the list of components that the HelloComponent3 container manages. There‐
after, HelloComponent3 is responsible for the JButton: it causes the button to be dis‐
played and it determines where in its window the button should be placed.

HelloJava3: The Button Strikes! | 53

Subclassing and Subtypes
If you look up the add() method of the Container class, you’ll see that it takes a Compo
nent object as an argument. In our example, we’ve given it a JButton object. What’s
going on?

As we’ve said, JButton is a subclass of the Component class. Because a subclass is a kind
of its superclass and has, at minimum, the same public methods and variables, Java
allows us to use an instance of a subclass anywhere we could use an instance of its
superclass. JButton is a kind of Component, so any method that expects a Component as
an argument will accept a JButton. The converse, however, is not true. A method sig‐
nature expecting a particular class will not accept its superclass as a parameter.

More Events and Interfaces
Now that we have a JButton, we need some way to communicate with it—that is, to get
the events it generates. We could just listen for mouse clicks within the button and act
accordingly, but that would require customization, via subclassing of the JButton, and
we would be giving up the advantages of using a pre-fab component. Instead, we have
the HelloComponent3 object listen for higher-level events, corresponding to button
presses. A JButton generates a special kind of event called an ActionEvent when some‐
one clicks on it with the mouse. To receive these events, we have added another method
to the HelloComponent3 class:

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton)
 changeColor();
 }

If you followed the previous example, you shouldn’t be surprised to see that HelloCom
ponent3 now declares that it implements the ActionListener interface in addition to
MouseMotionListener. ActionListener requires us to implement an actionPer
formed() method that is called whenever an ActionEvent occurs. You also shouldn’t be
surprised to see that we added a line to the HelloComponent3 constructor, registering
itself (this) as a listener for the button’s action events:

 theButton.addActionListener(this);

Note that this time, we’re registering our component as a listener with a different
object—the button—whereas previously we were asking for our own events.

The actionPerformed() method takes care of any action events that arise. First, it
checks to make sure that the event’s source (the component generating the event) is what
we think it should be: theButton. This may seem superfluous; after all, there is only one
button. What else could possibly generate an action event? In this application, nothing,
but it’s a good idea to check because another application may have many buttons, and
you may need to figure out which one has been clicked. Or you may add a second button

54 | Chapter 2: A First Application

to this application later, and you don’t want it to break something when you do. To check
this, we call the getSource() method of the ActionEvent object, e. We then use the ==
operator to make sure the event source matches theButton.

In Java, == is a test for identity, not equality; it is true if the event source
and theButton are the same object. The distinction between equality
and identity is important. We would consider two String objects to be
equal if they have the same characters in the same sequence. Howev‐
er, they might not be the same object. In Chapter 7, we’ll look at the
equals() method, which tests for equality.

Once we establish that event e comes from the right button, we call our changeCol
or() method, and we’re finished.

You may wonder why we don’t have to change mouseDragged() now that we have a
JButton in our application. The rationale is that the coordinates of the event are all that
matter for this method. We are not particularly concerned if the event falls within an
area of the screen occupied by another component. This means you can drag the text
right through the JButton: try it and see! In this case, the arrangement of containers
means that the button is on top of our component, so the text is dragged beneath it.

Color Commentary
To support HelloJava3’s colorful side, we have added a couple of new variables and two
helpful methods. We create and initialize an array of Color objects representing the
colors through which we cycle when the button is pressed. We also declare an integer
variable that serves as an index into this array, specifying the position of the current
color:

 int colorIndex;
 static Color[] someColors = { Color.black, Color.red,
 Color.green, Color.blue, Color.magenta };

A number of things are going on here. First, let’s look at the Color objects we are putting
into the array. Instances of the java.awt.Color class represent colors; they are used by
all classes in the java.awt package that deal with basic color graphics. Notice that we
are referencing variables such as Color.black and Color.red. These look like examples
of an object’s instance variables, but Color is not an object, it’s a class. What is the
meaning of this? We’ll discuss that next.

Static Members
A class can contain variables and methods that are shared among all instances of the
class. These shared members are called static variables and static methods. The most

HelloJava3: The Button Strikes! | 55

common use of static variables in a class is to hold predefined constants or unchanging
objects that all the instances can use.

This approach has two advantages. One advantage is that static values are shared by all
instances of the class; the same value can be seen by all instances. More importantly,
static members can be accessed even if no instances of the class exist. In this example,
we use the static variable Color.red without having to create an instance of the Color
class.

An instance of the Color class represents a visible color. For convenience, the Color
class contains some static, predefined objects with friendly names such as GREEN, RED,
and (the happy color) MAGENTA. The variable GREEN, for example, is a static member in
the Color class. The data type of the variable GREEN is Color. Internally, in Java-land, it
is initialized like this:

 public final static Color GREEN = new Color(0, 255, 0);

The GREEN variable and the other static members of Color cannot be modified (after
they’ve been initialized) so that they are effectively constants and can be optimized as
such by the Java VM. The alternative to using these predefined colors is to create a color
manually by specifying its red, green, and blue (RGB) components using a Color class
constructor.

Arrays
Next, we turn our attention to the array. We have declared a variable called someCol
ors, which is an array of Color objects. In Java, arrays are first-class objects. This means
that an array itself is a type of object—one that knows how to hold an indexed list of
some other type of object. An array is indexed by integers; when you index an array, the
resulting value is an object reference—that is, a reference to the object that is located in
the array’s specified slot. Our code uses the colorIndex variable to index someColors.
It’s also possible to have an array of simple primitive types, such as floats, rather than
objects.

When we declare an array, we can initialize it using the curly brace construct. Specifying
a comma-separated list of elements inside curly braces is a convenience that instructs
the compiler to create an instance of the array with those elements and assign it to our
variable. Alternatively, we could have just declared our someColors variable and, later,
allocated an array object for it and assigned individual elements to that array’s slots. See
Chapter 5 for a complete discussion of arrays.

Our Color Methods
Now we have an array of Color objects and a variable with which to index the array.
Two private methods do the actual work for us. The private modifier on these methods
specifies that they can be called only by other methods in the same instance of the class.

56 | Chapter 2: A First Application

They cannot be accessed outside the object that contains them. We declare members to
be private to hide the detailed inner workings of a class from the outside world. This
is called encapsulation and is another tenet of object-oriented design as well as good
programming practice. Private methods are created as helper functions for use solely
in the class implementation.

The first method, currentColor(), is simply a convenience routine that returns the
Color object representing the current text color. It returns the Color object in the
someColors array at the index specified by our colorIndex variable:

 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }

We could just as readily have used the expression someColors[colorIndex] everywhere
we use currentColor(); however, creating methods to wrap common tasks is another
way of shielding ourselves from the details of our class. In an alternative implementation,
we might have shuffled off details of all color-related code into a separate class. We could
have created a class that takes an array of colors in its constructor and then provides
two methods: one to ask for the current color and one to cycle to the next color (just
some food for thought).

The second method, changeColor(), is responsible for incrementing the colorIndex
variable to point to the next Color in the array. changeColor() is called from our
actionPerformed() method whenever the button is pressed:

 synchronized private void changeColor() {
 // Change the index to the next color, awkwardly.
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor()); // Use the new color.
 repaint();
 }

Here we increment colorIndex and compare it to the length of the someColors array.
All array objects have a variable called length that specifies the number of elements in
the array. If we have reached the end of the array, we wrap around to the beginning by
resetting the index to 0. We’ve flagged this with a comment to indicate that we’re doing
something fishy here. But we’ll come back to that in a moment. After changing the
currently selected color, we do two things. First, we call the component’s setFore
ground() method, which changes the color used to draw text in our component. Then
we call repaint() to cause the component to be redrawn with the new color for the
draggable message.

What is the synchronized keyword that appears in front of our currentColor() and
changeColor() methods? Synchronization has to do with threads, which we’ll examine
in the next section. For now, all you need to know is that the synchronized keyword

HelloJava3: The Button Strikes! | 57

3. The title of this section, “Netscape’s Revenge,” refers to the infamous <BLINK> HTML tag introduced with an
early version of the Netscape web browser.

indicates that these two methods can never be running at the same time. They must
always run in a mutually exclusive way.

The reason for this is related to the fishy way we increment our index. Notice that in
changeColor(), we increment colorIndex before testing its value. Strictly speaking,
this means that for some brief period of time while Java is running through our code,
colorIndex can have a value that is past the end of our array. If our currentColor()
method happened to run at that same moment, we would see a runtime “array out of
bounds” error. Now, it would be easy for us to fix the problem in this case with some
simple arithmetic before changing the value, but this simple example is representative
of more general synchronization issues that we need to address. We’ll use it to illustrate
the use of the synchronized keyword. In the next section, you’ll see that Java makes
dealing with these problems relatively easy through language-level synchronization
support.

HelloJava4: Netscape’s Revenge
We have explored quite a few features of Java with the first three versions of the Hello
Java application. But until now, our application has been rather passive; it has been
completely event-driven, waiting patiently for events to come its way and responding
to the whims of the user. Now our application is going to take some initiative—Hello

Java4 will blink!3 Here is the code for our latest version:
 //file: HelloJava4.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class HelloJava4
 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava4");
 frame.add(new HelloComponent4("Hello, Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

 class HelloComponent4 extends JComponent
 implements MouseMotionListener, ActionListener, Runnable
 {
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

58 | Chapter 2: A First Application

 JButton theButton;

 int colorIndex; // Current index into someColors.
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };

 boolean blinkState;

 public HelloComponent4(String message) {
 theMessage = message;
 theButton = new JButton("Change Color");
 setLayout(new FlowLayout());
 add(theButton);
 theButton.addActionListener(this);
 addMouseMotionListener(this);
 Thread t = new Thread(this);
 t.start();
 }

 public void paintComponent(Graphics g) {
 g.setColor(blinkState ? getBackground() : currentColor());
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton)
 changeColor();
 }

 synchronized private void changeColor() {
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor());
 repaint();
 }

 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }

 public void run() {
 try {

HelloJava4: Netscape’s Revenge | 59

 while(true) {
 blinkState = !blinkState; // Toggle blinkState.
 repaint(); // Show the change.
 Thread.sleep(300);
 }
 } catch (InterruptedException ie) { }
 }
 }

Compile and run this version of HelloJava just like the others. You’ll see that the text
does, in fact, blink. Our apologies if you find this annoying—it’s all in the name of
education.

Threads
All the changes we’ve made in HelloJava4 have to do with setting up a separate thread
of execution to make the text blink. Java is a multithreaded language, which means there
can be many paths of execution effectively running at the same time. A thread is a
separate flow of control within a program. Conceptually, threads are similar to pro‐
cesses. Unlike processes, multiple threads share the same program space, which means
that they can share variables and methods (but also have their own local variables).
Threads are also quite lightweight in comparison to processes, so it’s conceivable for a
single application to be running many (perhaps hundreds or thousands) of threads
concurrently.

Multithreading provides a way for an application to handle many different tasks at the
same time. It’s easy to imagine multiple things going on at the same time in an application
like a web browser. The user could be listening to an audio clip while scrolling an image;
at the same time, the browser can be downloading another image. Multithreading is
especially useful in GUI-based applications because it improves the interactive perfor‐
mance of these applications.

Unfortunately for us, programming with multiple threads can be quite a headache. The
difficulty lies in making sure routines are implemented so they can be run concurrently
by more than one thread at a time. If a routine changes the value of multiple state
variables, for example, it may be important that those changes happen together, without
overlapping changes affecting each other. Later in this section, we’ll examine briefly the
issue of coordinating multiple threads’ access to shared data. In other languages, syn‐
chronization of threads can be extremely complex and error-prone. You’ll see that Java
gives you powerful tools that help you deal with many of these problems. See Chap‐
ter 9 for a detailed discussion of threads.

The Java runtime system creates and manages a number of threads. (Exactly how varies
with the implementation.) We’ve already mentioned the repaint thread, which manages
repaint() requests and event processing for GUI components that belong to the
java.awt and javax.swing packages. Our example applications have done most of their

60 | Chapter 2: A First Application

work in one thread. Methods such as mouseDragged() and actionPerformed() are
invoked by the windowing thread and run by its thread, on its time. Similarly, our
HelloComponent constructor runs as part of the main application thread (the main()
method). This means we are somewhat limited in the amount of processing we do within
these methods. If we were, for instance, to go into an endless loop in our constructor,
our application would never appear because it would never finish initializing. If we want
an application to perform any extensive processing, such as animation, a lengthy cal‐
culation, or communication, we should create separate threads for these tasks.

The Thread Class
As you might have guessed, threads are created and controlled as Thread objects. An
instance of the java.lang.Thread class corresponds to a single thread. It contains
methods to start, control, and interrupt the thread’s execution. Our plan here is to create
a Thread object to handle our blinking code. We call the Thread’s start() method to
begin execution. Once the thread starts, it continues to run until it completes its work,
we interrupt it, or we stop the application.

So, how do we tell the thread which method to run? Well, the Thread object is rather
picky; it always expects to execute a method called run() to perform the action of the
thread. The run() method can, however, with a little persuasion, be located in any class
we desire.

We specify the location of the run() method in one of two ways. First, the Thread class
itself has a method called run(). One way to execute some Java code in a separate thread
is to subclass Thread and override its run() method to do our bidding. Invoking the
start() method of the subclass object causes its run() method to execute in a separate
thread.

It’s not usually desirable to create a subclass of Thread to contain our run() method.
The Thread class has a constructor that takes an object as its argument. If we create a
Thread object using this constructor and call its start() method, the Thread executes
the run() method of the argument object rather than its own. In order to accomplish
this, Java needs a guarantee that the object we are passing it does indeed contain a
compatible run() method. We already know how to make such a guarantee: we use an
interface. Java provides an interface named Runnable that must be implemented by any
class that wants to become a Thread.

The Runnable Interface
We’ve implemented the Runnable interface in HelloComponent4. To create a thread, the
HelloComponent4 object passes itself (this) to the Thread constructor. This means that
HelloComponent4 must implement the Runnable interface by implementing the run()

HelloJava4: Netscape’s Revenge | 61

method. This method is called automatically when the runtime system needs to start
the thread.

We indicate that the class implements the interface in our class declaration:
 public class HelloComponent4
 extends JComponent
 implements MouseMotionListener, ActionListener, Runnable {...}

At compile time, the Java compiler checks to make sure we abide by this statement. We
have carried through by adding an appropriate run() method to HelloComponent4. It
takes no arguments and returns no value. Our run() method accomplishes blinking by
changing the color of our text a few times a second. It’s a very short routine, but we’re
going to delay looking at it until we tie up some loose ends in dealing with the Thread
itself.

Starting the Thread
We want the blinking to begin when the application starts, so we’ll start the thread in
the initialization code in HelloComponent4’s constructor. It takes only two lines:

 Thread t = new Thread(this);
 t.start();

First, the constructor creates a new instance of Thread, passing it the object that contains
the run() method to the constructor. Since HelloComponent4 itself contains our run()
method, we pass the special variable this to the constructor. this always refers to our
object. After creating the new Thread, we call its start() method to begin execution.
This, in turn, invokes HelloComponent4’s run() method in the new thread.

Running Code in the Thread
Our run() method does its job by setting the value of the variable blinkState. We have
added blinkState, a Boolean variable that can have the value true or false, to represent
whether we are currently blinking on or off:

 boolean blinkState;

A setColor() call has been added to our paintComponent() method to handle blinking.
When blinkState is true, the call to setColor() draws the text in the background
color, making it disappear:

 g.setColor(blinkState ? getBackground() :
 currentColor());

Here we are being very terse, using the C language-style ternary operator to return one
of two alternative color values based on the value of blinkState. If blinkState is
true, the value is the value returned by the getBackground() method. If it is false, the
value is the value returned by currentColor().

62 | Chapter 2: A First Application

Finally, we come to the run() method itself:
 public void run() {
 try {
 while(true) {
 blinkState = !blinkState;
 repaint();
 Thread.sleep(300);
 }
 } catch (InterruptedException ie) {}
 }

Basically, run() is an infinite while loop, which means the loop runs continuously until
the thread is terminated by the application exiting (not a good idea in general, but it
works for this simple example).

The body of the loop does three things on each pass:

• Flips the value of blinkState to its opposite value using the not operator (!)
• Calls repaint() to redraw the text
• Sleeps for 300 milliseconds (about a third of a second)

sleep() is a static method of the Thread class. The method can be invoked from any‐
where and has the effect of putting the currently running thread to sleep for the specified
number of milliseconds. The effect here is to give us approximately three blinks per
second. The try/catch construct, described in the next section, traps any errors in the
call to the sleep() method of the Thread class and, in this case, ignores them.

Exceptions
The try/catch statement in Java handles special conditions called exceptions. An ex‐
ception is a message that is sent, normally in response to an error, during the execution
of a statement or a method. When an exceptional condition arises, an object is created
that contains information about the particular problem or condition. Exceptions act
somewhat like events. Java stops execution at the place where the exception occurred,
and the exception object is said to be thrown by that section of code. Like an event, an
exception must be delivered somewhere and handled. The section of code that receives
the exception object is said to catch the exception. An exception causes the execution
of the instigating section of code to stop abruptly and transfers control to the code that
receives the exception object.

The try/catch construct allows you to catch exceptions for a section of code. If an
exception is caused by any statement inside a try clause, Java attempts to deliver the
exception to the appropriate catch clause. A catch clause looks like a method declara‐
tion with one argument and no return type.

HelloJava4: Netscape’s Revenge | 63

 try {
 ...
 } catch (SomeExceptionType e) {
 ...
 }

If Java finds a catch clause with an argument type that matches the type of the exception,
that catch clause is invoked. A try clause can have multiple catch clauses with different
argument types; Java chooses the appropriate one in a way that is analogous to the
selection of overloaded methods. You can catch multiple types of exceptions from a
block of code. Depending on the type of exception thrown, the appropriate catch clause
is executed.

If there is no try/catch clause surrounding the code, or a matching catch clause is not
found, the exception is thrown up to the calling method. If the exception is not caught
there, it’s thrown up to another level, and so on until the exception is handled or the
Java VM prints an error and exits. This provides a very flexible error-handling mech‐
anism so that exceptions in deeply nested calls can bubble up to the surface of the call
stack for handling. As a programmer, you need to know what exceptions a particular
statement can generate. For this reason, methods in Java are required to declare the
exceptions they can throw. If a method doesn’t handle an exception itself, it must specify
that it can throw that exception so that its calling method knows that it may have to
handle it. See Chapter 4 for a complete discussion of exceptions and the try/catch
clause.

Why do we need a try/catch clause in the run() method? What kind of exception can
Thread’s sleep() method throw, and why do we care about it when we don’t seem to
check for exceptions anywhere else? Under some circumstances, Thread’s sleep()
method can throw an InterruptedException, indicating that it was interrupted by
another thread. Since the run() method specified in the Runnable interface doesn’t
declare that it can throw an InterruptedException, we must catch it ourselves, or else
the compiler will complain. The try/catch statement in our example has an empty
catch clause, which means that it handles the exception by ignoring it. In this case, our
thread’s functionality is so simple that it doesn’t matter if it’s interrupted (and it won’t
be anyway). All the other methods we have used either handle their own exceptions or
throw only general-purpose exceptions called RuntimeExceptions that are assumed to
be possible everywhere and don’t need to be explicitly declared.

Synchronization
At any given time, we can have lots of threads running in an application. Unless we
explicitly coordinate them, these threads will be executing methods without any regard
for what the other threads are doing. Problems can arise when these methods share the
same data. If one method is changing the value of some variables at the same time
another method is reading these variables, it’s possible that the reading thread might

64 | Chapter 2: A First Application

catch things in the middle and get some variables with old values and some with new.
Depending on the application, this situation could cause a critical error.

In our HelloJava examples, both our paintComponent() and mouseDragged() methods
access the messageX and messageY variables. Without knowing more about the imple‐
mentation of the Java environment, we have to assume that these methods could con‐
ceivably be called by different threads and run concurrently. paintComponent() could
be called while mouseDragged() is in the midst of updating messageX and messageY. At
that point, the data is in an inconsistent state and if paintComponent() gets lucky, it
could get the new x value with the old y value. Fortunately, Swing does not allow this
to happen in this case because all event activity is handled by a single thread, and we
probably would not even notice if it were to happen in this application anyway. We did,
however, see another case in our changeColor() and currentColor() methods that is
representative of the potential for a more serious “out of bounds” error.

The synchronized modifier tells Java to acquire a lock for the object that contains the
method before executing that method. Only one method in the object can have the lock
at any given time, which means that only one synchronized method in that object can
be running at a time. This allows a method to alter data and leave it in a consistent state
before a concurrently running method is allowed to access it. When the method is done,
it releases the lock on the class.

Unlike synchronization in other languages, the synchronized keyword in Java provides
locking at the language level. This means there is no way that you can forget to unlock
a class. Even if the method throws an exception or the thread is terminated, Java will
release the lock. This feature makes programming with threads in Java much easier than
in other languages. See Chapter 9 for more details on coordinating threads and shared
data.

Whew! Well, it’s time to say goodbye to HelloJava. We hope that you have developed
a feel for the major features of the Java language and that this will help you as you explore
the details of programming with Java. If you are a bit bewildered by some of the material
presented here, take heart. We’ll be covering all the major topics presented here again
in their own chapters throughout the book. This tutorial was meant to be something of
a “trial by fire” to get the important concepts and terminology into your brain so that
the next time you hear them you’ll have a head start.

HelloJava4: Netscape’s Revenge | 65

CHAPTER 3

Tools of the Trade

While you will almost certainly do the majority of your Java development in an IDE
such as Eclipse, NetBeans, or (the author’s favorite, Intellij IDEA), all of the core tools
you need to build Java applications are included in the Java Development Kit (JDK) that
you have likely already downloaded from Oracle for version 7. In this chapter, we’ll
discuss some of these command-line tools that you can use to compile, run, and package
Java applications. There are many additional developer tools included in the JDK that
we’ll discuss throughout this book.

For an introduction to the Eclipse IDE and instructions for loading all of the examples
in this book as an Eclipse project, see Appendix A. In Chapter 22, we introduce the
NetBeans IDE with our discussion of the JavaBeans component architecture, so you will
get additional GUI development environment experience there.

JDK Environment
After you install Java 7, the core java runtime command may appear in your path
(available to run) automatically. However, many of the other commands provided with
the JDK may not be available unless you add the Java bin directory to your execution
path. The following commands show how to do this on Mac OS X and Windows. You
will, of course, have to change the path to match the version of Java you have installed.

Mac OS X
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_09.jdk/Contents/Home
export PATH=$PATH:$JAVA_HOME/bin

Windows
set JAVA_HOME=c:\Program Files\Java\jdk1.7.0_09
set PATH=%PATH%;%JAVA_HOME%\bin

On Mac OS X, the situation may be more confusing because recent versions ship with
“stubs” for the Java commands installed. If you attempt to run one of these commands,

67

the OS will prompt you to download Java at that time. As of the time of this writing,
Mac OS X still ships with Java version 6, so you will need to download version 7 and set
up your environment as just shown.

When in doubt, your go-to test for determining which version of the tools you are using
is to use the -version flag on the java and javac commands:

java -version

java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b10)
Java HotSpot(TM) 64-Bit Server VM (build 23.3-b01, mixed mode)

javac -version

javac 1.7.0_07

The Java VM
A Java virtual machine (VM) is software that implements the Java runtime system and
executes Java applications. It can be a standalone application like the java command
that comes with the JDK or built into a larger application like a web browser. Usually
the interpreter itself is a native application, supplied for each platform, which then
bootstraps other tools written in the Java language. Tools such as Java compilers and
IDEs are often implemented directly in Java to maximize their portability and extensi‐
bility. NetBeans, for example, is a pure-Java application.

The Java VM performs all the runtime activities of Java. It loads Java class files, verifies
classes from untrusted sources, and executes the compiled bytecode. It manages mem‐
ory and system resources. Good implementations also perform dynamic optimization,
compiling Java bytecode into native machine instructions.

Running Java Applications
A standalone Java application must have at least one class containing a method called
main(), which is the first code to be executed upon startup. To run the application, start
the VM, specifying that class as an argument. You can also specify options to the inter‐
preter as well as arguments to be passed to the application:

 % java [interpreter options] class_name [program arguments]

The class should be specified as a fully qualified class name, including the package name,
if any. Note, however, that you don’t include the .class file extension. Here are a couple
of examples:

 %java animals.birds.BigBird
 %java MyTest

68 | Chapter 3: Tools of the Trade

The interpreter searches for the class in the classpath, a list of directories and archive
files where classes are stored. We’ll discuss the classpath in detail in the next section.
The classpath can be specified either by an environment variable or with the command-
line option -classpath. If both are present, the command-line option is used.

Alternately, the java command can be used to launch an “executable” Java archive
(JAR) file:

 % java -jar spaceblaster.jar

In this case, the JAR file includes metadata with the name of the startup class containing
the main() method, and the classpath becomes the JAR file itself.

After loading the first class and executing its main() method, the application can ref‐
erence other classes, start additional threads, and create its user interface or other struc‐
tures, as shown in Figure 3-1.

Figure 3-1. Starting a Java application

The main() method must have the right method signature. A method signature is the
set of information that defines the method. It includes the method’s name, arguments,
and return type, as well as type and visibility modifiers. The main() method must be a
public, static method that takes an array of String objects as its argument and does
not return any value (void):

 public static void main (String [] myArgs)

The fact that main() is a public and static method simply means that it is globally
accessible and that it can be called directly by name. We’ll discuss the implications of
visibility modifiers such as public and the meaning of static in Chapters 4 through 6.

The main() method’s single argument, the array of String objects, holds the command-
line arguments passed to the application. The name of the parameter doesn’t matter;
only the type is important. In Java, the content of myArgs is an array. In Java, arrays know
how many elements they contain and can happily provide that information:

 int numArgs = myArgs.length;

Running Java Applications | 69

myArgs[0] is the first command-line argument, and so on.

The Java interpreter continues to run until the main() method of the initial class file
returns and until any threads that it has started also exit. Special threads designated as
daemon threads are automatically terminated when the rest of the application has
completed.

System Properties
Although it is possible to read host environment variables from Java, it is discouraged
for application configuration. Instead, Java allows any number of system property values
to be passed to the application when the VM is started. System properties are simply
name-value string pairs that are available to the application through the static Sys
tem.getProperty() method. You can use these properties as a more structured and
portable alternative to command-line arguments and environment variables for pro‐
viding general configuration information to your application at startup. Each system
property is passed to the interpreter on the command line using the -D option followed
by name=value. For example:

 % java -Dstreet=sesame -Dscene=alley animals.birds.BigBird

The value of the street property is then accessible this way:
 String street = System.getProperty("street");

An application can get its configuration in myriad other ways, including via files or
network configuration at runtime.

The Classpath
The concept of a path should be familiar to anyone who has worked on a DOS or Unix
platform. It’s an environment variable that provides an application with a list of places
to look for some resource. The most common example is a path for executable programs.
In a Unix shell, the PATH environment variable is a colon-separated list of directories
that are searched, in order, when the user types the name of a command. The Java
CLASSPATH environment variable, similarly, is a list of locations that are searched for
Java class files. Both the Java interpreter and the Java compiler use the CLASSPATH when
searching for packages and Java classes.

An element of the classpath can be a directory or a JAR file. Java also supports archives
in the conventional ZIP format, but JAR and ZIP are really the same format. JARs are
simple archives that include extra files (metadata) that describe each archive’s contents.
JAR files are created with the JDK’s jar utility; many tools for creating ZIP archives are
publicly available and can be used to inspect or create JAR files as well. The archive
format enables large groups of classes and their resources to be distributed in a single

70 | Chapter 3: Tools of the Trade

file; the Java runtime automatically extracts individual class files from the archive as
needed.

The precise means and format for setting the classpath vary from system to system. On
a Unix system (including Mac OS X), you set the CLASSPATH environment variable with
a colon-separated list of directories and class archive files:

 %export CLASSPATH=/home/vicky/Java/classes:/home/josh/lib/foo.jar:.

This example specifies a classpath with three locations: a directory in the user’s home,
a JAR file in another user’s directory, and the current directory, which is always specified
with a dot (.). The last component of the classpath, the current directory, is useful when
you are tinkering with classes.

On a Windows system, the CLASSPATH environment variable is set with a semicolon-
separated list of directories and class archive files:

 C:\> set CLASSPATH=C:\home\vicky\Java\classes;C:\home\josh\lib\foo.jar;.

The Java launcher and the other command-line tools know how to find the core classes,
which are the classes included in every Java installation. The classes in the java.lang,
java.io, java.net, and javax.swing packages, for example, are all core classes so you
do not need to include these classes in your classpath.

The classpath may also include “*” wildcards that match all JAR files within a directory.
For example:

export CLASSPATH=/home/pat/libs/*

To find other classes, the Java interpreter searches the elements of the classpath in order.
The search combines the path location and the components of the fully qualified class
name. For example, consider a search for the class animals.birds.BigBird. Searching
the classpath directory /usr/lib/java means the interpreter looks for an individual class
file at /usr/lib/java/animals/birds/BigBird.class. Searching a ZIP or JAR archive on the
classpath, say /home/vicky/myutils.jar, means that the interpreter looks for component
file animals/birds/BigBird.class within that archive.

For the Java runtime, java, and the Java compiler, javac, the classpath can also be speci‐
fied with the -classpath option:

 % javac -classpath /home/pat/classes:/utils/utils.jar:. Foo.java

If you don’t specify the CLASSPATH environment variable or command-line option, the
classpath defaults to the current directory (.); this means that the files in your current
directory are normally available. If you change the classpath and don’t include the cur‐
rent directory, these files will no longer be accessible.

We suspect that about 80 percent of the problems that newcomers have when first
learning Java are classpath-related. You may wish to pay particular attention to setting
and checking the classpath when getting started. If you’re working inside an IDE, it may

The Classpath | 71

remove some or all of the burden of managing the classpath. Ultimately, however, un‐
derstanding the classpath and knowing exactly what is in it when your application runs
is very important to your long-term sanity. The javap command, discussed next, can be
useful in debugging classpath issues.

javap
A useful tool to know about is the javap command. With javap, you can print a de‐
scription of a compiled class. You don’t need the source code, and you don’t even need
to know exactly where it is, only that it is in your classpath. For example:

 % javap java.util.Stack

prints the information about the java.util.Stack class:
Compiled from "Stack.java"
public class java.util.Stack<E> extends java.util.Vector<E> {
 public java.util.Stack();
 public E push(E);
 public synchronized E pop();
 public synchronized E peek();
 public boolean empty();
 public synchronized int search(java.lang.Object);
}

This is very useful if you don’t have other documentation handy and can also be helpful
in debugging classpath problems. Using javap, you can determine whether a class is in
the classpath and possibly even which version you are looking at (many classpath issues
involve duplicate classes in the classpath). If you are really curious, you can try javap
with the -c option, which causes it to also print the JVM instructions for each method
in the class!

The Java Compiler
In this section, we’ll say a few words about javac, the Java compiler in the JDK. The javac
compiler is written entirely in Java, so it’s available for any platform that supports the
Java runtime system. javac turns Java source code into a compiled class that contains
Java bytecode. By convention, source files are named with a .java extension; the resulting
class files have a .class extension. Each source code file is considered a single compilation
unit. As you’ll see in Chapter 6, classes in a given compilation unit share certain features,
such as package and import statements.

javac allows one public class per file and insists that the file have the same name as the
class. If the filename and class name don’t match, javac issues a compilation error. A
single file can contain multiple classes, as long as only one of the classes is public and
is named for the file. Avoid packing too many classes into a single source file. Packing

72 | Chapter 3: Tools of the Trade

classes together in a .java file only superficially associates them. In Chapter 6, we’ll talk
about inner classes, classes that contain other classes and interfaces.

As an example, place the following source code in the file BigBird.java:
 package animals.birds;

 public class BigBird extends Bird {
 ...
 }

Next, compile it with:
 % javac BigBird.java

Unlike the Java interpreter, which takes just a class name as its argument, javac needs a
filename (with the .java extension) to process. The previous command produces the
class file BigBird.class in the same directory as the source file. While it’s nice to see the
class file in the same directory as the source for this example, for most real applications,
you need to store the class file in an appropriate place in the classpath.

You can use the -d option with javac to specify an alternative directory for storing the
class files javac generates. The specified directory is used as the root of the class hier‐
archy, so .class files are placed in this directory or in a subdirectory below it, depending
on whether the class is contained in a package. (The compiler creates intermediate
subdirectories automatically, if necessary.) For example, we can use the following com‐
mand to create the BigBird.class file at /home/vicky/Java/classes/animals/birds/
BigBird.class:

 % javac -d /home/vicky/Java/classes BigBird.java

You can specify multiple .java files in a single javac command; the compiler creates a
class file for each source file. But you don’t need to list the other classes your class
references as long as they are in the classpath in either source or compiled form. During
compilation, Java resolves all other class references using the classpath.

The Java compiler is more intelligent than your average compiler, replacing some of the
functionality of a make utility. For example, javac compares the modification times of
the source and class files for all classes and recompiles them as necessary. A compiled
Java class remembers the source file from which it was compiled, and as long as the
source file is available, javac can recompile it if necessary. If, in the previous example,
class BigBird references another class, animals.furry.Grover, javac looks for the
source file Grover.java in an animals.furry package and recompiles it if necessary to
bring the Grover.class class file up-to-date.

By default, however, javac checks only source files that are referenced directly from
other source files. This means that if you have an out-of-date class file that is referenced
only by an up-to-date class file, it may not be noticed and recompiled. For that and many

The Java Compiler | 73

other reasons, most projects use a real build utility such as Apache’s Ant to manage
builds, packaging, and more. We discuss Ant in Chapter 15.

Finally, it’s important to note that javac can compile an application even if only the
compiled (binary) versions of some of the classes are available. You don’t need source
code for all your objects. Java class files contain all the data type and method signature
information that source files contain, so compiling against binary class files is as typesafe
(and exception safe) as compiling with Java source code.

JAR Files
Java Archive (JAR) files are Java’s suitcases. They are the standard and portable way to
pack up all the parts of your Java application into a compact bundle for distribution or
installation. You can put whatever you want into a JAR file: Java class files, serialized
objects, data files, images, audio, etc. A JAR file can also carry one or more digital
signatures that attest to its integrity and authenticity. A signature can be attached to the
file as a whole or to individual items in the file.

The Java runtime system can load class files directly from an archive in your CLASS
PATH, as described earlier. Nonclass files (data, images, etc.) contained in your JAR file
can also be retrieved from the classpath by your application using the getResource()
method (described in Chapter 12). Using this facility, your code doesn’t have to know
whether any resource is in a plain file or a member of a JAR archive. Whether a given
class or data file is an item in a JAR file or an individual file on the classpath, you can
always refer to it in a standard way and let Java’s class loader resolve the location.

File Compression
Items stored in JAR files are compressed with the standard ZIP file compression. Com‐
pression makes downloading classes over a network much faster. A quick survey of the
standard Java distribution shows that a typical class file shrinks by about 40 percent
when it is compressed. Text files such as HTML or ASCII containing English words
often compress to one-tenth their original size or less. (On the other hand, image files
don’t normally get smaller when compressed as most common image formats are them‐
selves a compression format.)

Java also has an archive format called Pack200, which is optimized specifically for Java
class bytecode and can achieve over four times greater compression of Java classes than
ZIP alone. We’ll talk about Pack200 later in this chapter.

74 | Chapter 3: Tools of the Trade

The jar Utility
The jar utility provided with the JDK is a simple tool for creating and reading JAR files.
Its user interface isn’t particularly friendly. It mimics the Unix tar (tape archive) com‐
mand. If you’re familiar with tar, you’ll recognize the following incantations:
jar -cvf jarFile path [path] [...]

Create jarFile containing path(s).

jar -tvf jarFile [path] [...]

List the contents of jarFile, optionally showing just path(s).

jar -xvf jarFile [path] [...]

Extract the contents of jarFile, optionally extracting just path(s).

In these commands, the flag letters c, t, and x tell jar whether it is creating an archive,
listing an archive’s contents, or extracting files from an archive. The f means that the
next argument is the name of the JAR file on which to operate. The optional v flag tells
jar to be verbose when displaying information about files. In verbose mode, you get
information about file sizes, modification times, and compression ratios.

Subsequent items on the command line (i.e., anything aside from the letters telling jar
what to do and the file on which jar should operate) are taken as names of archive items.
If you’re creating an archive, the files and directories you list are placed in it. If you’re
extracting, only the filenames you list are extracted from the archive. (If you don’t list
any files, jar extracts everything in the archive.)

For example, let’s say we have just completed our new game, spaceblaster. All the files
associated with the game are in three directories. The Java classes themselves are in the
spaceblaster/game directory, spaceblaster/images contains the game’s images, and space‐
blaster/docs contains associated game data. We can pack all this in an archive with this
command:

 % jar -cvf spaceblaster.jar spaceblaster

Because we requested verbose output, jar tells us what it is doing:

 adding:spaceblaster/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/game/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/game/Game.class (in=8035) (out=3936) (deflated 51%)
 adding:spaceblaster/game/Planetoid.class (in=6254) (out=3288) (deflated 47%)
 adding:spaceblaster/game/SpaceShip.class (in=2295) (out=1280) (deflated 44%)
 adding:spaceblaster/images/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/images/spaceship.gif (in=6174) (out=5936) (deflated 3%)
 adding:spaceblaster/images/planetoid.gif (in=23444) (out=23454) (deflated 0%)
 adding:spaceblaster/docs/ (in=0) (out=0) (stored 0%)
 adding:spaceblaster/docs/help1.html (in=3592) (out=1545) (deflated 56%)
 adding:spaceblaster/docs/help2.html (in=3148) (out=1535) (deflated 51%)

JAR Files | 75

jar creates the file spaceblaster.jar and adds the directory spaceblaster, adding the di‐
rectories and files within spaceblaster to the archive. In verbose mode, jar reports the
savings gained by compressing the files in the archive.

We can unpack the archive with this command:
 % jar -xvf spaceblaster.jar

Likewise, we can extract an individual file or directory with:
 % jar -xvf spaceblaster.jar filename

But, of course, you normally don’t have to unpack a JAR file to use its contents; Java
tools know how to extract files from archives automatically. We can list the contents of
our JAR with the command:

 % jar -tvf spaceblaster.jar

Here’s the output; it lists all the files, their sizes, and their creation times:
 0 Thu May 15 12:18:54 PDT 2003 META-INF/
 1074 Thu May 15 12:18:54 PDT 2003 META-INF/MANIFEST.MF
 0 Thu May 15 12:09:24 PDT 2003 spaceblaster/
 0 Thu May 15 11:59:32 PDT 2003 spaceblaster/game/
 8035 Thu May 15 12:14:08 PDT 2003 spaceblaster/game/Game.class
 6254 Thu May 15 12:15:18 PDT 2003 spaceblaster/game/Planetoid.class
 2295 Thu May 15 12:15:26 PDT 2003 spaceblaster/game/SpaceShip.class
 0 Thu May 15 12:17:00 PDT 2003 spaceblaster/images/
 6174 Thu May 15 12:16:54 PDT 2003 spaceblaster/images/spaceship.gif
 23444 Thu May 15 12:16:58 PDT 2003 spaceblaster/images/planetoid.gif
 0 Thu May 15 12:10:02 PDT 2003 spaceblaster/docs/
 3592 Thu May 15 12:10:16 PDT 2003 spaceblaster/docs/help1.html
 3148 Thu May 15 12:10:02 PDT 2003 spaceblaster/docs/help2.html

JAR manifests

Note that the jar command automatically adds a directory called META-INF to our
archive. The META-INF directory holds files describing the contents of the JAR file. It
always contains at least one file: MANIFEST.MF. The MANIFEST.MF file can contain
a “packing list” naming the files in the archive along with a user-definable set of attributes
for each entry.

The manifest is a text file containing a set of lines in the form keyword: value. The
manifest is, by default, empty and contains only JAR file version information:

Manifest-Version: 1.0
Created-By: 1.7.0_07 (Oracle Corporation)

It is also possible to sign JAR files with a digital signature. When you do this, digest
(checksum) information is added to the manifest for each archived item (as shown next)
and the META-INF directory holds digital signature files for items in the archive.

76 | Chapter 3: Tools of the Trade

 Name: com/oreilly/Test.class
 SHA1-Digest: dF2GZt8G11dXY2p4olzzIc5RjP3=
 ...

You can add your own information to the manifest descriptions by specifying your own
supplemental, manifest file when you create the archive. This is one possible place to
store other simple kinds of attribute information about the files in the archive, perhaps
version or authorship information.

For example, we can create a file with the following keyword: value lines:
 Name: spaceblaster/images/planetoid.gif
 RevisionNumber: 42.7
 Artist-Temperament: moody

To add this information to the manifest in our archive, place it in a file called myMani‐
fest.mf and give the following jar command:

 % jar -cvmf myManifest.mf spaceblaster.jar spaceblaster

We included an additional option, m, which specifies that jar should read additional
manifest information from the file given on the command line. How does jar know
which file is which? Because m is before f, it expects to find the manifest information
before the name of the JAR file it will create. If you think that’s awkward, you’re right;
get the names in the wrong order, and jar does the wrong thing.

An application can get this manifest information from a JAR file using the
java.util.jar.Manifest class.

We’ll see more examples of adding information to the JAR manifest in Chapter 22. The
JavaBeans APIs use manifest information to designate which classes are “beans” using
a Java-Bean attribute. This information is used by IDEs that work with JavaBeans.

Making a JAR file runnable

Aside from attributes, you can put a few special values in the manifest file. One of these,
Main-Class, allows you to specify the class containing the primary main() method for
an application contained in the JAR:

 Main-Class: com.oreilly.Game

If you add this to your JAR file manifest (using the m option described earlier), you can
run the application directly from the JAR:

 % java -jar spaceblaster.jar

More importantly, under Mac OS X, Windows, and other GUI environments, you can
simply double-click on the JAR file to launch the application. The interpreter looks for
the Main-Class value in the manifest, then loads the designated class as the application’s
startup class.

JAR Files | 77

The pack200 Utility
Pack200 is an archive format that is optimized for storing compiled Java class files.
Pack200 is not a new form of compression, but rather a super-efficient layout for class
information that eliminates many types of waste and redundancy across related classes.
It is effectively a bulk class-file format that deconstructs many classes and reassembles
their parts efficiently into one catalog. This then allows a standard compression format
like ZIP to work at maximum efficiency on the archive, achieving four or more times
greater compression. The Java runtime does not understand the Pack200 format, so you
cannot place archives of this type into the classpath. Instead, it is mainly an intermediate
format that is very useful for transferring application JARs over the network for applets
or other kinds of web-based applications.

You can convert a JAR to and from Pack200 format with the pack200 and unpack200
commands supplied with the JDK.

For example, to convert foo.jar to foo.pack.gz, use the pack200 command:
 % pack200 foo.pack.gz foo.jar

To convert foo.pack.gz to foo.jar:
 % unpack200 foo.pack.gz foo.jar

Note that the Pack200 process completely tears down and reconstructs your classes at
the class level, so the resulting foo.jar file will not be byte-for-byte the same as the
original.

Policy Files
One of the truly novel things about Java is that security is built into the language. As
described in Chapter 1, the Java VM can verify class files and Java’s security manager
can impose limits on what classes do. In early versions of Java, it was necessary to im‐
plement security policies programmatically by writing a Java security manager class and
using it in your application. Later, a declarative security system was added. This system
allows you to write policy files—text-based descriptions of permissions—which are
much simpler and don’t require code changes. These policy files tell the security manager
what to allow and disallow and for whom.

In early versions of Java, much of the buzz had to do with the security of applets. Applets
that were downloaded from untrusted locations could be run with security restrictions
that prevented them from doing questionable things such as reading from or writing to
the disk or contacting arbitrary computers on the network. With security policy files,
it’s easy to apply applet-style security to any application without modifying it. Further‐
more, it’s easy to fine-tune the access you grant. For example, you can allow an appli‐
cation to access only a specific directory on the disk, or you can allow network access
to certain addresses.

78 | Chapter 3: Tools of the Trade

Understanding security and security policies can be important, so we’ll cover it here.
However, in practice, you probably won’t use this facility yourself, unless you are writing
a framework for running applications from many unknown sources or need to restrict
an application for some other reason.

The Default Security Manager
By default, no security manager is installed when you launch a Java application locally.
You can turn on security using an option of the java interpreter to install a default
security manager. The default security policy enforces many of the same rules as for
applets. To see how this works, let’s write a little program that does something ques‐
tionable: it makes a network connection to some computer on the Internet. (We cover
the specifics of network programming in Chapters 13 and 14.)

 import java.net.*;

 public class EvilEmpire {
 public static void main(String[] args) throws Exception{
 try {
 Socket s = new Socket("207.46.131.13", 80);
 System.out.println("Connected!");
 }
 catch (SecurityException e) {
 System.out.println("SecurityException: could not connect.");
 }
 }
 }

If you run this program with the Java interpreter, it makes the network connection:
 C:\> java EvilEmpire
 Connected!

But because this program is “evil,” let’s install the default security manager, like this:
 C:\> java -Djava.security.manager EvilEmpire
 SecurityException: could not connect.

That’s better, but suppose that the application actually has a legitimate reason to make
its network connection. We’d like to leave the default security manager in place, just to
be safe, but we’d like to grant this application permission to make a network connection.

The policytool Utility
To permit our EvilEmpire example to make a network connection, we need to create a
policy file that contains the appropriate permission. A handy utility called policytool,
included with the JDK, helps make policy files. Fire it up from a command line like this:

 C:\> policytool

Policy Files | 79

You may get an error message when policytool starts up about not finding a default policy
file. Don’t worry about this; just click OK to make the message go away.

We now add a network permission for the EvilEmpire application. The application is
identified by its origin, also called a codebase, described by a URL. In this case, it is a
file: URL that points to the location of the EvilEmpire application on your disk.

If you started up policytool, you should see its main window, shown in Figure 3-2. Click
on Add Policy Entry. Another window pops up, like the one shown in Figure 3-3 (but
with the fields empty).

Figure 3-2. The Policy Tool window

Figure 3-3. Adding a policy entry

First, fill in the codebase with the URL of the directory containing EvilEmpire. Then
click on Add Permission. Yet another window pops up as shown in Figure 3-4.

Choose SocketPermission from the first combo box. Then fill out the second text field
on the right side with the network address that EvilEmpire will connect to. Finally,
choose Connect from the third combo box. Click on OK; you should see the new per‐
mission in the policy entry window, as shown in Figure 3-3.

80 | Chapter 3: Tools of the Trade

Figure 3-4. Creating a new permission

Click on Done to finish creating the policy. Then choose Save As from the File menu
and save the policy file as something memorable, such as EvilEmpire.policy. You can
quit policytool now; we’re all done with it.

The policy file you just created is not complicated. Take a look at it with a text editor,
which shows the simple syntax of the policy we created:

 grant codeBase "file:/c:/Projects/Exploring/" {
 permission java.net.SocketPermission "207.46.131.13", "connect";
 };

You can eschew policytool entirely and just create policy files with a text editor if you’re
more comfortable that way.

Using a Policy File with the Default Security Manager
Now that we’ve gone to the trouble of creating a policy file, let’s use it. You can tell the
default security manager to use the policy file with another command-line option to
the java interpreter:

 C:\> java -Djava.security.manager -Djava.security.policy=EvilEmpire.policy
 EvilEmpire
 Connected!

EvilEmpire can now make its socket connection because we have explicitly granted it
permission with a policy file. The default security manager still protects us in other ways,
however. EvilEmpire cannot write or read files on the disk except in the directory it
came from, and it cannot make connections to any other network addresses except the
one we specified. Take a moment and bask in this warm fuzzy feeling.

Policy Files | 81

CHAPTER 4

The Java Language

This chapter begins our introduction to the Java language syntax. Because readers come
to this book with different levels of programming experience, it is difficult to set the
right level for all audiences. We have tried to strike a balance between giving a thorough
tour of the language syntax for beginners and providing enough background informa‐
tion so that a more experienced reader can quickly gauge the differences between Java
and other languages. Since Java’s syntax is derived from C, we make some comparisons
to features of that language, but no prior knowledge of C is necessary. We spend more
time on aspects of Java that are different from other languages and less on elemental
programming concepts. For example, we’ll take a close look at arrays in Java because
they are significantly different from those in other languages. We won’t, on the other
hand, spend a lot of time explaining basic language constructs such as loops and control
structures. Chapters 5 through 7 will build on this chapter by talking about Java’s object-
oriented side and complete the discussion of the core language. Chapter 8 discusses
generics, a feature that enhances the way types work in the Java language, allowing you
to write certain kinds of classes more flexibly and safely. After that, we dive into the Java
APIs and see what we can do with the language. The rest of this book is filled with concise
examples that do useful things and if you are left with any questions after these intro‐
ductory chapters, we hope they’ll be answered as you look at the code.

Text Encoding
Java is a language for the Internet. Since the citizens of the Net speak and write in many
different human languages, Java must be able to handle a large number of languages as
well. One of the ways in which Java supports internationalization is through the Unicode
character set. Unicode is a worldwide standard that supports the scripts of most

83

1. For more information about Unicode, see http://www.unicode.org. Ironically, one of the scripts listed as
“obsolete and archaic” and not currently supported by the Unicode standard is Javanese—a historical language
of the people of the Island of Java.

languages.1 The latest version of Java bases its character and string data on the Unicode
6.0 standard, which uses at least two bytes to represent each symbol internally.

Java source code can be written using Unicode and stored in any number of character
encodings, ranging from a full binary form to ASCII-encoded Unicode character values.
This makes Java a friendly language for non-English-speaking programmers who can
use their native language for class, method, and variable names just as they can for the
text displayed by the application.

The Java char type and String class natively support Unicode values. Internally, the
text is stored as multibyte characters using the UTF-16 encoding; however, the Java
language and APIs make this transparent to you and you will not generally have to think
about it. Unicode is also very ASCII-friendly (ASCII is the most common character
encoding for English). The first 256 characters are defined to be identical to the first
256 characters in the ISO 8859-1 (Latin-1) character set, so Unicode is effectively
backward-compatible with the most common English character sets. Furthermore, one
of the most common file encodings for Unicode, called UTF-8, preserves ASCII values
in their single byte form. This encoding is used by default in compiled Java class files,
so storage remains compact for English text.

Most platforms can’t display all currently defined Unicode characters. As a result, Java
programs can be written with special Unicode escape sequences. A Unicode character
can be represented with this escape sequence:

 \uxxxx

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates an
ASCII-encoded Unicode character. This is also the form Java uses to output (print)
Unicode characters in an environment that doesn’t otherwise support them. Java also
comes with classes to read and write Unicode character streams in specific encodings,
including UTF-8.

Comments
Java supports both C-style block comments delimited by /* and */ and C++-style line
comments indicated by //:

 /* This is a
 multiline
 comment. */

84 | Chapter 4: The Java Language

 // This is a single-line comment
 // and so // is this

Block comments have both a beginning and end sequence and can cover large ranges
of text. However, they cannot be “nested,” meaning that you can’t have a block comment
inside of a block comment without the compiler getting confused. Single-line comments
have only a start sequence and are delimited by the end of a line; extra // indicators
inside a single line have no effect. Line comments are useful for short comments within
methods; they don’t conflict with block comments, so you can still comment out larger
chunks of code in which they are nested.

Javadoc Comments
A block comment beginning with /** indicates a special doccomment. A doc comment
is designed to be extracted by automated documentation generators, such as the JDK’s
javadoc program. A doc comment is terminated by the next */, just as with a regular
block comment. Within the doc comment, lines beginning with @ are interpreted as
special instructions for the documentation generator, giving it information about the
source code. By convention, each line of a doc comment begins with a *, as shown in
the following example, but this is optional. Any leading spacing and the * on each line
are ignored:

 /**
 * I think this class is possibly the most amazing thing you will
 * ever see. Let me tell you about my own personal vision and
 * motivation in creating it.
 * <p>
 * It all began when I was a small child, growing up on the
 * streets of Idaho. Potatoes were the rage, and life was good...
 *
 * @see PotatoPeeler
 * @see PotatoMasher
 * @author John 'Spuds' Smith
 * @version 1.00, 19 Dec 2006
 */
 class Potato {

javadoc creates HTML documentation for classes by reading the source code and pulling
out the embedded comments and @ tags. In this example, the tags cause author and
version information to be presented in the class documentation. The @see tags produce
hypertext links to the related class documentation.

The compiler also looks at the doc comments; in particular, it is interested in the @dep
recated tag, which means that the method has been declared obsolete and should be
avoided in new programs. The fact that a method is deprecated is noted in the compiled
class file so a warning message can be generated whenever you use a deprecated feature
in your code (even if the source isn’t available).

Comments | 85

Doc comments can appear above class, method, and variable definitions, but some tags
may not be applicable to all of these. For example, the @exception tag can only be applied
to methods. Table 4-1 summarizes the tags used in doc comments.

Table 4-1. Doc comment tags
Tag Description Applies to

@see Associated class name Class, method, or variable

@author Author name Class

@version Version string Class

@param Parameter name and description Method

@return Description of return value Method

@exception Exception name and description Method

@deprecated Declares an item to be obsolete Class, method, or variable

@since Notes API version when item was added Variable

Javadoc as metadata

Javadoc tags in doc comments represent metadata about the source code; that is, they
add descriptive information about the structure or contents of the code that is not,
strictly speaking, part of the application. Some additional tools extend the concept of
Javadoc-style tags to include other kinds of metadata about Java programs that are car‐
ried with the compiled code and can more readily be used by the application to affect
its compilation or runtime behavior. The Java annotations facility provides a more for‐
mal and extensible way to add metadata to Java classes, methods, and variables. We’ll
talk about annotations in Chapter 7. However, we should mention that there is a @dep
recated annotation that has the same meaning as that of the Javadoc tag of the same
name, and you may prefer to use that.

Types
The type system of a programming language describes how its data elements (variables
and constants) are associated with storage in memory and how they are related to one
another. In a statically typed language, such as C or C++, the type of a data element is
a simple, unchanging attribute that often corresponds directly to some underlying
hardware phenomenon, such as a register or a pointer value. In a more dynamic lan‐
guage such as Smalltalk or Lisp, variables can be assigned arbitrary elements and can
effectively change their type throughout their lifetime. A considerable amount of over‐
head goes into validating what happens in these languages at runtime. Scripting lan‐
guages such as Perl achieve ease of use by providing drastically simplified type systems
in which only certain data elements can be stored in variables, and values are unified
into a common representation, such as strings.

86 | Chapter 4: The Java Language

Java combines many of the best features of both statically and dynamically typed lan‐
guages. As in a statically typed language, every variable and programming element in
Java has a type that is known at compile time, so the runtime system doesn’t normally
have to check the validity of assignments between types while the code is executing.
Unlike traditional C or C++, Java also maintains runtime information about objects and
uses this to allow truly dynamic behavior. Java code may load new types at runtime and
use them in fully object-oriented ways, allowing casting and full polymorphism (ex‐
tending of types). Java code may also “reflect” upon or examine its own types at runtime,
allowing advanced kinds of application behavior such as interpreters that can interact
with compiled programs dynamically.

Java data types fall into two categories. Primitive types represent simple values that have
built-in functionality in the language; they are fixed elements, such as literal constants
and numbers. Reference types (or class types) include objects and arrays; they are called
reference types because they “refer to” a large data type that is passed “by reference,” as
we’ll explain shortly. Generic types are really just a kind of composition (combination)
of class types and are therefore reference types as well.

Primitive Types
Numbers, characters, and Boolean values are fundamental elements in Java. Unlike
some other (perhaps more pure) object-oriented languages, they are not objects. For
those situations where it’s desirable to treat a primitive value as an object, Java provides
“wrapper” classes. The major advantage of treating primitive values as special is that the
Java compiler and runtime can more readily optimize their implementation. Primitive
values and computations can still be mapped down to hardware as they always have
been in lower-level languages. Later we’ll see how Java can automatically convert be‐
tween primitive values and their object wrappers as needed to partially mask the dif‐
ference between the two. We’ll explain what that means in more detail in the next chapter
when we discuss boxing and unboxing of primitive values.

An important portability feature of Java is that primitive types are precisely defined. For
example, you never have to worry about the size of an int on a particular platform; it’s
always a 32-bit, signed, two’s complement number. Table 4-2 summarizes Java’s primitive
types.

Table 4-2. Java primitive data types
Type Definition

boolean true or false

char 16-bit, Unicode character

byte 8-bit, signed, two’s complement integer

short 16-bit, signed, two’s complement integer

int 32-bit, signed, two’s complement integer

Types | 87

Type Definition

long 64-bit, signed, two’s complement integer

float 32-bit, IEEE 754, floating-point value

double 64-bit, IEEE 754

Those of you with a C background may notice that the primitive types
look like an idealization of C scalar types on a 32-bit machine, and
you’re absolutely right. That’s how they’re supposed to look. The 16-
bit characters were forced by Unicode, and ad hoc pointers were de‐
leted for other reasons. But overall, the syntax and semantics of Java
primitive types derive from C.

Floating-point precision

Floating-point operations in Java follow the IEEE 754 international specification, which
means that the result of floating-point calculations is normally the same on different
Java platforms. However, Java allows for extended precision on platforms that support
it. This can introduce extremely small-valued and arcane differences in the results of
high-precision operations. Most applications would never notice this, but if you want
to ensure that your application produces exactly the same results on different platforms,
you can use the special keyword strictfp as a class modifier on the class containing
the floating-point manipulation (we cover classes in the next chapter). The compiler
then prohibits these platform-specific optimizations.

Variable declaration and initialization

Variables are declared inside of methods and classes with a type name followed by one
or more comma-separated variable names. For example:

 int foo;
 double d1, d2;
 boolean isFun;

Variables can optionally be initialized with an expression of the appropriate type when
they are declared:

 int foo = 42;
 double d1 = 3.14, d2 = 2 * 3.14;
 boolean isFun = true;

Variables that are declared as members of a class are set to default values if they aren’t
initialized (see Chapter 5). In this case, numeric types default to the appropriate flavor
of zero, characters are set to the null character (\0), and Boolean variables have the
value false. Local variables, which are declared inside a method and live only for the
duration of a method call, on the other hand, must be explicitly initialized before they

88 | Chapter 4: The Java Language

can be used. As we’ll see, the compiler enforces this rule so there is no danger of
forgetting.

Integer literals

Integer literals can be specified in octal (base 8), decimal (base 10), or hexadecimal (base
16). A decimal integer is specified by a sequence of digits beginning with one of the
characters 1–9:

 int i = 1230;

Octal numbers are distinguished from decimal numbers by a leading zero:
 int i = 01230; // i = 664 decimal

A hexadecimal number is denoted by the leading characters 0x or 0X (zero “x”), followed
by a combination of digits and the characters a–f or A–F, which represent the decimal
values 10–15:

 int i = 0xFFFF; // i = 65535 decimal

Integer literals are of type int unless they are suffixed with an L, denoting that they are
to be produced as a long value:

 long l = 13L;
 long l = 13; // equivalent: 13 is converted from type int

(The lowercase letter l is also acceptable but should be avoided because it often looks
like the number 1.)

When a numeric type is used in an assignment or an expression involving a “larger”
type with a greater range, it can be promoted to the bigger type. In the second line of
the previous example, the number 13 has the default type of int, but it’s promoted to
type long for assignment to the long variable. Certain other numeric and comparison
operations also cause this kind of arithmetic promotion, as do mathematical expressions
involving more than one type. For example, when multiplying a byte value by an int
value, the compiler promotes the byte to an int first:

 byte b = 42;
 int i = 43;
 int result = b * i; // b is promoted to int before multiplication

A numeric value can never go the other way and be assigned to a type with a smaller
range without an explicit cast, however:

 int i = 13;
 byte b = i; // Compile-time error, explicit cast needed
 byte b = (byte) i; // OK

Conversions from floating-point to integer types always require an explicit cast because
of the potential loss of precision.

Types | 89

Finally, we should note that if you are using Java 7 or later, you can add a bit of formatting
to your numeric literals by utilizing the “_” underscore character between digits. So if
you have particularly large strings of digits, you can break them up as in the following
examples:

 int RICHARD_NIXONS_SSN = 567_68_0515;
 int for_no_reason = 1___2___3;
 int JAVA_ID = 0xCAFE_BABE;

Underscores may only appear between digits, not at the beginning or end of a number
or next to the “L” long integer signifier.

Floating-point literals

Floating-point values can be specified in decimal or scientific notation. Floating-point
literals are of type double unless they are suffixed with an f or F denoting that they are
to be produced as a float value. And just as with integer literals, in Java 7 you may use
“_” underscore characters to format floating-point numbers—but only between digits,
not at the beginning, end, or next to the decimal point or “F” signifier of the number.

 double d = 8.31;
 double e = 3.00e+8;
 float f = 8.31F;
 float g = 3.00e+8F;
 float pi = 3.14_159_265_358;

Binary literals

A new feature of Java 7 is the introduction of binary literal values. This allows you to
write out binary values directly by prefixing the number with a “0b” or “0B” (zero B).

 byte one = (byte)0b00000001;
 byte two = (byte)0b00000010;
 byte four = (byte)0b00000100;
 byte sixteen = (byte)0b00001000;
 int cafebabe = 0b11001010111111101011101010111110;
 long lots_o_ones = (long)0b111L;

Character literals

A literal character value can be specified either as a single-quoted character or as an
escaped ASCII or Unicode sequence:

 char a = 'a';
 char newline = '\n';
 char smiley = '\u263a';

90 | Chapter 4: The Java Language

2. The comparable code in C++ would be:

 Foo& myFoo = *(new Foo());
 Foo& anotherFoo = myFoo;

Reference Types
In an object-oriented language like Java, you create new, complex data types from simple
primitives by creating a class. Each class then serves as a new type in the language. For
example, if we create a new class called Foo in Java, we are also implicitly creating a new
type called Foo. The type of an item governs how it’s used and where it can be assigned.
As with primitives, an item of type Foo can, in general, be assigned to a variable of type
Foo or passed as an argument to a method that accepts a Foo value.

A type is not just a simple attribute. Classes can have relationships with other classes
and so do the types that they represent. All classes in Java exist in a parent-child hier‐
archy, where a child class or subclass is a specialized kind of its parent class. The corre‐
sponding types have the same relationship, where the type of the child class is considered
a subtype of the parent class. Because child classes inherit all of the functionality of their
parent classes, an object of the child’s type is in some sense equivalent to or an extension
of the parent type. An object of the child type can be used in place of an object of the
parent’s type. For example, if you create a new class, Cat, that extends Animal, the new
type, Cat, is considered a subtype of Animal. Objects of type Cat can then be used
anywhere an object of type Animal can be used; an object of type Cat is said to be
assignable to a variable of type Animal. This is called subtype polymorphism and is one
of the primary features of an object-oriented language. We’ll look more closely at classes
and objects in Chapter 5.

Primitive types in Java are used and passed “by value.” In other words, when a primitive
value like an int is assigned to a variable or passed as an argument to a method, it’s
simply copied. Reference types (class types), on the other hand, are always accessed “by
reference.” A reference is simply a handle or a name for an object. What a variable of a
reference type holds is a “pointer” to an object of its type (or of a subtype, as described
earlier). When the reference is assigned to a variable or passed to a method, only the
reference is copied, not the object to which it’s pointing. A reference is like a pointer in
C or C++, except that its type is so strictly enforced. The reference value itself can’t be
explicitly created or changed. A variable acquires a reference value only through as‐
signment to an appropriate object.

Let’s run through an example. We declare a variable of type Foo, called myFoo, and assign
it an appropriate object:2

 Foo myFoo = new Foo();
 Foo anotherFoo = myFoo;

Types | 91

myFoo is a reference-type variable that holds a reference to the newly constructed Foo
object. (For now, don’t worry about the details of creating an object; we’ll cover that in
Chapter 5.) We declare a second Foo type variable, anotherFoo, and assign it to the same
object. There are now two identical references : myFoo and anotherFoo, but only one
actual Foo object instance. If we change things in the state of the Foo object itself, we
see the same effect by looking at it with either reference.

Object references are passed to methods in the same way. In this case, either myFoo or
anotherFoo would serve as equivalent arguments:

 myMethod(myFoo);

An important, but sometimes confusing, distinction to make at this point is that the
reference itself is a value and that value is copied when it is assigned to a variable or
passed in a method call. Given our previous example, the argument passed to a method
(a local variable from the method’s point of view) is actually a third reference to the Foo
object, in addition to myFoo and anotherFoo. The method can alter the state of the Foo
object through that reference (calling its methods or altering its variables), but it can’t
change the caller’s notion of the reference to myFoo: that is, the method can’t change the
caller’s myFoo to point to a different Foo object; it can change only its own reference.
This will be more obvious when we talk about methods later. Java differs from C++ in
this respect. If you need to change a caller’s reference to an object in Java, you need an
additional level of indirection. The caller would have to wrap the reference in another
object so that both could share the reference to it.

Reference types always point to objects, and objects are always defined by classes. How‐
ever, two special kinds of reference types—arrays and interfaces—specify the type of
object they point to in a slightly different way.

Arrays in Java have a special place in the type system. They are a special kind of object
automatically created to hold a collection of some other type of object, known as the
base type. Declaring an array type reference implicitly creates the new class type designed
as a container for its base type, as you’ll see in the next chapter.

Interfaces are a bit sneakier. An interface defines a set of methods and gives it a corre‐
sponding type. An object that implements the methods of the interface can be referred
to by that interface type, as well as its own type. Variables and method arguments can
be declared to be of interface types, just like other class types, and any object that im‐
plements the interface can be assigned to them. This adds flexibility in the type system
and allows Java to cross the lines of the class hierarchy and make objects that effectively
have many types. We’ll cover interfaces in the next chapter as well.

Generic types or parameterized types, as we mentioned earlier, are an extension of the
Java class syntax that allows for additional abstraction in the way classes work with other
Java types. Generics allow for specialization of classes by the user without changing any
of the original class’s code. We cover generics in detail in Chapter 8.

92 | Chapter 4: The Java Language

A Word About Strings
Strings in Java are objects; they are therefore a reference type. String objects do, how‐
ever, have some special help from the Java compiler that makes them look more like
primitive types. Literal string values in Java source code are turned into String objects
by the compiler. They can be used directly, passed as arguments to methods, or assigned
to String type variables:

 System.out.println("Hello, World...");
 String s = "I am the walrus...";
 String t = "John said: \"I am the walrus...\"";

The + symbol in Java is “overloaded” to perform string concatenation as well as regular
numeric addition. Along with its sister +=, this is the only overloaded operator in Java:

 String quote = "Four score and " + "seven years ago,";
 String more = quote + " our" + " fathers" + " brought...";

Java builds a single String object from the concatenated strings and provides it as the
result of the expression. We discuss the String class and all things text-related in great
detail in Chapter 10.

Statements and Expressions
Java statements appear inside methods and classes; they describe all activities of a Java
program. Variable declarations and assignments, such as those in the previous section,
are statements, as are basic language structures such as if/then conditionals and loops.

 int size = 5;
 if (size > 10)
 doSomething();
 for(int x = 0; x < size; x++) { ... }

Expressions produce values; an expression is evaluated to produce a result that is to be
used as part of another expression or in a statement. Method calls, object allocations,
and, of course, mathematical expressions are examples of expressions. Technically, be‐
cause variable assignments can be used as values for further assignments or operations
(in somewhat questionable programming style), they can be considered to be both
statements and expressions.

 new Object();
 Math.sin(3.1415);
 42 * 64;

One of the tenets of Java is to keep things simple and consistent. To that end, when there
are no other constraints, evaluations and initializations in Java always occur in the order
in which they appear in the code—from left to right, top to bottom. We’ll see this rule
used in the evaluation of assignment expressions, method calls, and array indexes, to
name a few cases. In some other languages, the order of evaluation is more complicated

Statements and Expressions | 93

or even implementation-dependent. Java removes this element of danger by precisely
and simply defining how the code is evaluated. This doesn’t mean you should start
writing obscure and convoluted statements, however. Relying on the order of evaluation
of expressions in complex ways is a bad programming habit, even when it works. It
produces code that is hard to read and harder to modify.

Statements
Statements and expressions in Java appear within a code block. A code block is syntac‐
tically a series of statements surrounded by an open curly brace ({) and a close curly
brace (}). The statements in a code block can include variable declarations and most of
the other sorts of statements and expressions we mentioned earlier:

 {
 int size = 5;
 setName("Max");
 ...
 }

Methods, which look like C functions, are in a sense just code blocks that take parameters
and can be called by their names—for example, the method setUpDog():

 setUpDog(String name) {
 int size = 5;
 setName(name);
 ...
 }

Variable declarations are limited in scope to their enclosing code block—that is, they
can’t be seen outside of the nearest set of braces:

 {
 int i = 5;
 }

 i = 6; // Compile-time error, no such variable i

In this way, code blocks can be used to arbitrarily group other statements and variables.
The most common use of code blocks, however, is to define a group of statements for
use in a conditional or iterative statement.

if/else conditionals

We can define an if/else clause as follows:
 if (condition)
 statement;
 [else
 statement;]

94 | Chapter 4: The Java Language

(The whole of the preceding example is itself a statement and could be nested within
another if/else clause.) The if clause has the common functionality of taking two
different forms: a “one-liner” or a block. The block form is as follows:

 if (condition) {
 [statement;]
 [statement;]
 [...]
 } else {
 [statement;]
 [statement;]
 [...]
 }

The condition is a Boolean expression. A Boolean expression is a true or false value
or an expression that evaluates to one of those. For example i == 0 is a Boolean ex‐
pression that tests whether the integer i holds the value 0.

In the second form, the statements are in code blocks, and all their enclosed statements
are executed if the corresponding (if or else) branch is taken. Any variables declared
within each block are visible only to the statements within the block. Like the if/
else conditional, most of the remaining Java statements are concerned with controlling
the flow of execution. They act for the most part like their namesakes in other languages.

do/while loops

The do and while iterative statements have the familiar functionality; their conditional
test is also a Boolean expression:

 while (condition)
 statement;
 do
 statement;
 while (condition);

For example:
 while(queue.isEmpty())
 wait();

Unlike while or for loops (which we’ll see next) that test their conditions first, a do-
while loop always executes its statement body at least once.

The for loop

The most general form of the for loop is also a holdover from the C language:
 for (initialization; condition; incrementor)
 statement;

The variable initialization section can declare or initialize variables that are limited to
the scope of the for statement. The for loop then begins a possible series of rounds in

Statements and Expressions | 95

which the condition is first checked and, if true, the body statement (or block) is exe‐
cuted. Following each execution of the body, the incrementor expressions are evaluated
to give them a chance to update variables before the next round begins:

 for (int i = 0; i < 100; i++) {
 System.out.println(i);
 int j = i;
 ...
 }

This loop will execute 100 times, printing values from 0 to 99. Note that the variable j
is local to the block (visible only to statements within it) and will not be accessible to
the code “after” the for loop. If the condition of a for loop returns false on the first
check, the body and incrementor section will never be executed.

You can use multiple comma-separated expressions in the initialization and incremen‐
tation sections of the for loop. For example:

 for (int i = 0, j = 10; i < j; i++, j--) {
 ...
 }

You can also initialize existing variables from outside the scope of the for loop within
the initializer block. You might do this if you wanted to use the end value of the loop
variable elsewhere:

 int x;
 for(x = 0; hasMoreValue(); x++)
 getNextValue();
 System.out.println(x);

The enhanced for loop

Java’s auspiciously dubbed “enhanced for loop” acts like the “foreach” statement in some
other languages, iterating over a series of values in an array or other type of collection:

 for (varDeclaration : iterable)
 statement;

The enhanced for loop can be used to loop over arrays of any type as well as any kind
of Java object that implements the java.lang.Iterable interface. This includes most
of the classes of the Java Collections API. We’ll talk about arrays in this and the next
chapter; Chapter 11 covers Java Collections. Here are a couple of examples:

 int [] arrayOfInts = new int [] { 1, 2, 3, 4 };

 for(int i : arrayOfInts)
 System.out.println(i);

 List<String> list = new ArrayList<String>();
 list.add("foo");
 list.add("bar");

96 | Chapter 4: The Java Language

3. Strings in switch statements were added in Java 7.

 for(String s : list)
 System.out.println(s);

Again, we haven’t discussed arrays or the List class and special syntax in this example.
What we’re showing here is the enhanced for loop iterating over an array of integers
and also a list of string values. In the second case, the List implements the Iterable
interface and thus can be a target of the for loop.

switch statements

The most common form of the Java switch statement takes an integer (or a numeric
type argument that can be automatically “promoted” to an integer type), a string type
argument, or an “enum” type (discussed shortly) and selects among a number of alter‐
native, constant case branches:3

 switch (expression)
 {
 case constantExpression :
 statement;
 [case constantExpression :statement;]
 ...
 [default :
 statement;]
 }

The case expression for each branch must evaluate to a different constant integer or
string value at compile time. Strings are compared using the String equals() method,
which we’ll discuss in more detail in Chapter 10. An optional default case can be
specified to catch unmatched conditions. When executed, the switch simply finds the
branch matching its conditional expression (or the default branch) and executes the
corresponding statement. But that’s not the end of the story. Perhaps counterintuitively,
the switch statement then continues executing branches after the matched branch until
it hits the end of the switch or a special statement called break. Here are a couple of
examples:

 int value = 2;

 switch(value) {
 case 1:
 System.out.println(1);
 case 2:
 System.out.println(2);
 case 3:
 System.out.println(3);
 }

Statements and Expressions | 97

 // prints 2, 3!

Using break to terminate each branch is more common:
 int retValue = checkStatus();

 switch (retVal)
 {
 case MyClass.GOOD :
 // something good
 break;
 case MyClass.BAD :
 // something bad
 break;
 default :
 // neither one
 break;
 }

In this example, only one branch—GOOD, BAD, or the default—is executed. The “fall
through” behavior of the switch is justified when you want to cover several possible case
values with the same statement without resorting to a bunch of if/else statements:

 int value = getSize();

 switch(value) {
 case MINISCULE:
 case TEENYWEENIE:
 case SMALL:
 System.out.println("Small");
 break;
 case MEDIUM:
 System.out.println("Medium");
 break;
 case LARGE:
 case EXTRALARGE:
 System.out.println("Large");
 break;
 }

This example effectively groups the six possible values into three cases.

Enumerations and switch statements

Enumerations are intended to replace much of the usage of integer constants for situa‐
tions like the one just discussed with a typesafe alternative. Enumerations use objects
as their values instead of integers but preserve the notion of ordering and comparability.
We’ll see in Chapter 5 that enumerations are declared much like classes and that the
values can be “imported” into the code of your application to be used just like constants.
For example:

98 | Chapter 4: The Java Language

 enum Size { Small, Medium, Large }

You can use enumerations in switches in the same way that the previous switch examples
used integer constants. In fact, it is much safer to do so because the enumerations have
real types and the compiler does not let you mistakenly add cases that do not match any
value or mix values from different enumerations.

 // usage
 Size size = ...;
 switch (size) {
 case Small:
 ...
 case Medium:
 ...
 case Large:
 ...
 }

Chapter 5 provides more details about enumerations.

break/continue

The Java break statement and its friend continue can also be used to cut short a loop
or conditional statement by jumping out of it. A break causes Java to stop the current
block statement and resume execution after it. In the following example, the while loop
goes on endlessly until the condition() method returns true, triggering a break state‐
ment that stops the loop and proceeds at the point marked “after while.”

 while(true) {
 if (condition())
 break;
 }
 // after while

A continue statement causes for and while loops to move on to their next iteration by
returning to the point where they check their condition. The following example prints
the numbers 0 through 99, skipping number 33.

 for(int i=0; i < 100; i++) {
 if (i == 33)
 continue;
 System.out.println(i);
 }

The break and continue statements look like those in the C language, but Java’s forms
have the additional ability to take a label as an argument and jump out multiple levels
to the scope of the labeled point in the code. This usage is not very common in day-to-
day Java coding, but may be important in special cases. Here is an outline:

 labelOne:
 while (condition) {
 ...

Statements and Expressions | 99

 labelTwo:
 while (condition) {
 ...

 // break or continue point
 }
 // after labelTwo
 }
 // after labelOne

Enclosing statements, such as code blocks, conditionals, and loops, can be labeled with
identifiers like labelOne and labelTwo. In this example, a break or continue without
argument at the indicated position has the same effect as the earlier examples. A break
causes processing to resume at the point labeled “after labelTwo”; a continue immedi‐
ately causes the labelTwo loop to return to its condition test.

The statement break labelTwo at the indicated point has the same effect as an ordinary
break, but break labelOne breaks both levels and resumes at the point labeled “after
labelOne.” Similarly, continue labelTwo serves as a normal continue, but continue
labelOne returns to the test of the labelOne loop. Multilevel break and continue
statements remove the main justification for the evil goto statement in C/C++.

There are a few Java statements we aren’t going to discuss right now. The try , catch,
and finally statements are used in exception handling, as we’ll discuss later in this
chapter. The synchronized statement in Java is used to coordinate access to
statements among multiple threads of execution; see Chapter 9 for a discussion of thread
synchronization.

Unreachable statements

On a final note, we should mention that the Java compiler flags “unreachable” statements
as compile-time errors. An unreachable statement is one that the compiler determines
won’t be called at all. Of course, many methods may never actually be called in your
code, but the compiler detects only those that it can “prove” are never called by simple
checking at compile time. For example, a method with an unconditional return state‐
ment in the middle of it causes a compile-time error, as does a method with a conditional
that the compiler can tell will never be fulfilled:

 if (1 < 2)
 return;
 // unreachable statements

Expressions
An expression produces a result, or value, when it is evaluated. The value of an expres‐
sion can be a numeric type, as in an arithmetic expression; a reference type, as in an
object allocation; or the special type, void, which is the declared type of a method that
doesn’t return a value. In the last case, the expression is evaluated only for its side

100 | Chapter 4: The Java Language

effects; that is, the work it does aside from producing a value. The type of an expression
is known at compile time. The value produced at runtime is either of this type or in the
case of a reference type, a compatible (assignable) subtype.

Operators

Java supports almost all standard operators from the C language. These operators also
have the same precedence in Java as they do in C, as shown in Table 4-3.

Table 4-3. Java operators
Precedence Operator Operand type Description

1 ++, — Arithmetic Increment and decrement

1 +, - Arithmetic Unary plus and minus

1 ~ Integral Bitwise complement

1 ! Boolean Logical complement

1 (type) Any Cast

2 *, /, % Arithmetic Multiplication, division, remainder

3 +, - Arithmetic Addition and subtraction

3 + String String concatenation

4 << Integral Left shift

4 >> Integral Right shift with sign extension

4 >>> Integral Right shift with no extension

5 <, <=, >, >= Arithmetic Numeric comparison

5 instanceof Object Type comparison

6 ==, != Primitive Equality and inequality of value

6 ==, != Object Equality and inequality of reference

7 & Integral Bitwise AND

7 & Boolean Boolean AND

8 ^ Integral Bitwise XOR

8 ^ Boolean Boolean XOR

9 | Integral Bitwise OR

9 | Boolean Boolean OR

10 && Boolean Conditional AND

11 || Boolean Conditional OR

12 ?: N/A Conditional ternary operator

13 = Any Assignment

We should also note that the percent (%) operator is not strictly a modulo, but a re‐
mainder, and can have a negative value.

Statements and Expressions | 101

Java also adds some new operators. As we’ve seen, the + operator can be used with String
values to perform string concatenation. Because all integral types in Java are signed
values, the >> operator can be used to perform a right-arithmetic-shift operation with
sign extension. The >>> operator treats the operand as an unsigned number and per‐
forms a right-arithmetic-shift with no sign extension. The new operator is used to create
objects; we will discuss it in detail shortly.

Assignment

While variable initialization (i.e., declaration and assignment together) is considered a
statement with no resulting value, variable assignment alone is an expression:

 int i, j; // statement
 i = 5; // both expression and statement

Normally, we rely on assignment for its side effects alone, but an assignment can be used
as a value in another part of an expression:

 j = (i = 5);

Again, relying on order of evaluation extensively (in this case, using compound assign‐
ments in complex expressions) can make code obscure and hard to read.

The null value

The expression null can be assigned to any reference type. It means “no reference.” A
null reference can’t be used to reference anything and attempting to do so generates a
NullPointerException at runtime.

Variable access

The dot (.) operator is used to select members of a class or object instance. (We’ll talk
about those in detail in the following chapters.) It can retrieve the value of an instance
variable (of an object) or a static variable (of a class). It can also specify a method to be
invoked on an object or class:

 int i = myObject.length;
 String s = myObject.name;
 myObject.someMethod();

A reference-type expression can be used in compound evaluations by selecting further
variables or methods on the result:

 int len = myObject.name.length();
 int initialLen = myObject.name.substring(5, 10).length();

Here we have found the length of our name variable by invoking the length() method
of the String object. In the second case, we took an intermediate step and asked for a
substring of the name string. The substring method of the String class also returns a
String reference, for which we ask the length. Compounding operations like this is also

102 | Chapter 4: The Java Language

called chaining method calls, which we’ll mention later. One chained selection operation
that we’ve used a lot already is calling the println() method on the variable out of the
System class:

 System.out.println("calling println on out");

Method invocation

Methods are functions that live within a class and may be accessible through the class
or its instances, depending on the kind of method. Invoking a method means to execute
its body statements, passing in any required parameter variables and possibly getting a
value in return. A method invocation is an expression that results in a value. The value’s
type is the return type of the method:

 System.out.println("Hello, World...");
 int myLength = myString.length();

Here, we invoked the methods println() and length() on different objects. The
length() method returned an integer value; the return type of println() is void (no
value).

This is all pretty simple, but in Chapter 5 we’ll see that it gets a little more complex when
there are methods with the same name but different parameter types in the same class
or when a method is redefined in a child class, as described in Chapter 6.

Object creation

Objects in Java are allocated with the new operator:
 Object o = new Object();

The argument to new is the constructor for the class. The constructor is a method that
always has the same name as the class. The constructor specifies any required parameters
to create an instance of the object. The value of the new expression is a reference of the
type of the created object. Objects always have one or more constructors, though they
may not always be accessible to you.

We look at object creation in detail in Chapter 5. For now, just note that object creation
is a type of expression and that the result is an object reference. A minor oddity is that
the binding of new is “tighter” than that of the dot (.) selector. So you can create a new
object and invoke a method in it without assigning the object to a reference type variable
if you have some reason to:

 int hours = new Date().getHours();

The Date class is a utility class that represents the current time. Here we create a new
instance of Date with the new operator and call its getHours() method to retrieve the
current hour as an integer value. The Date object reference lives long enough to service

Statements and Expressions | 103

the method call and is then cut loose and garbage-collected at some point in the future
(see Chapter 5 for details about garbage collection).

Calling methods in object references in this way is, again, a matter of style. It would
certainly be clearer to allocate an intermediate variable of type Date to hold the new
object and then call its getHours() method. However, combining operations like this
is common.

The instanceof operator

The instanceof operator can be used to determine the type of an object at runtime. It
tests to see if an object is of the same type or a subtype of the target type. This is the
same as asking if the object can be assigned to a variable of the target type. The target
type may be a class, interface, or array type as we’ll see later. instanceof returns a
boolean value that indicates whether the object matches the type:

 Boolean b;
 String str = "foo";
 b = (str instanceof String); // true, str is a String
 b = (str instanceof Object); // also true, a String is an Object
 //b = (str instanceof Date); // The compiler is smart enough to catch this!

instanceof also correctly reports whether the object is of the type of an array or a
specified interface (as we’ll discuss later):

 if (foo instanceof byte[])
 ...

It is also important to note that the value null is not considered an instance of any
object. The following test returns false, no matter what the declared type of the variable:

 String s = null;
 if (s instanceof String)
 // false, null isn't an instance of anything

Exceptions
Java has its roots in embedded systems—software that runs inside specialized devices,
such as handheld computers, cellular phones, and fancy toasters. In those kinds of ap‐
plications, it’s especially important that software errors be handled robustly. Most users
would agree that it’s unacceptable for their phone to simply crash or for their toast (and
perhaps their house) to burn because their software failed. Given that we can’t eliminate
the possibility of software errors, it’s a step in the right direction to recognize and deal
with anticipated application-level errors methodically.

Dealing with errors in some languages is entirely the responsibility of the programmer.
The language itself provides no help in identifying error types and no tools for dealing
with them easily. In the C language, a routine generally indicates a failure by returning

104 | Chapter 4: The Java Language

4. The somewhat obscure setjmp() and longjmp() statements in C can save a point in the execution of code
and later return to it unconditionally from a deeply buried location. In a limited sense, this is the functionality
of exceptions in Java.

5. For example, the getHeight() method of the Image class returns -1 if the height isn’t known yet. No error
has occurred; the height will be available in the future. In this situation, throwing an exception would be
inappropriate.

an “unreasonable” value (e.g., the idiomatic -1 or null). As the programmer, you must
know what constitutes a bad result and what it means. It’s often awkward to work around
the limitations of passing error values in the normal path of data flow.4 An even worse
problem is that certain types of errors can legitimately occur almost anywhere, and it’s
prohibitive and unreasonable to explicitly test for them at every point in the software.

Java offers an elegant solution to these problems through exceptions. (Java exception
handling is similar to, but not quite the same as, exception handling in C++.) An
exception indicates an unusual condition or an error condition. Program control be‐
comes unconditionally transferred or “thrown” to a specially designated section of code
where it’s caught and handled. In this way, error handling is orthogonal to (or inde‐
pendent of) the normal flow of the program. We don’t have to have special return values
for all of our methods; errors are handled by a separate mechanism. Control can be
passed a long distance from a deeply nested routine and handled in a single location
when that is desirable, or an error can be handled immediately at its source. A few
standard Java API methods still return -1 as a special value, but these are generally
limited to situations where we are expecting a special value and the situation is not really
out of bounds.5

A Java method is required to specify the exceptions it can throw (i.e., the ones that it
doesn’t catch itself), and the compiler makes sure that callers of the method handle them.
In this way, the information about what errors a method can produce is promoted to
the same level of importance as its argument and return types. You may still decide to
punt and ignore obvious errors, but in Java you must do so explicitly. (We’ll discuss
“runtime exceptions,” which are not required to be declared or handled by the method,
in a moment.)

Exceptions and Error Classes
Exceptions are represented by instances of the class java.lang.Exception and its sub‐
classes. Subclasses of Exception can hold specialized information (and possibly behav‐
ior) for different kinds of exceptional conditions. However, more often they are simply
“logical” subclasses that serve only to identify a new exception type. Figure 4-1 shows
the subclasses of Exception in the java.lang package. It should give you a feel for how
exceptions are organized. Most other packages define their own exception types, which
usually are subclasses of Exception itself or of its important subclass RuntimeExcep
tion, which we’ll get to in a moment.

Exceptions | 105

For example, an important exception class is IOException in the package java.io. The
IOException class extends Exception and has many subclasses for typical I/O problems
(such as a FileNotFoundException) and networking problems (such as a
MalformedURLException). Network exceptions belong to the java.net package. An‐
other important descendant of IOException is RemoteException, which belongs to the
java.rmi package. It is used when problems arise during remote method invocation
(RMI). Throughout this book, we mention exceptions you need to be aware of as we
encounter them.

Figure 4-1. The java.lang.Exception subclasses

An Exception object is created by the code at the point where the error condition arises.
It can be designed to hold any information that is necessary to describe the exceptional
condition and also includes a full stack trace for debugging. (A stack trace is the list of
all the methods called and the order in which they were called to reach the point where
the exception was thrown.) The Exception object is passed as an argument to the han‐
dling block of code, along with the flow of control. This is where the terms throw and
catch come from: the Exception object is thrown from one point in the code and caught
by the other, where execution resumes.

106 | Chapter 4: The Java Language

The Java API also defines the java.lang.Error class for unrecoverable errors. The
subclasses of Error in the java.lang package are shown in Figure 4-2. A notable Er
ror type is AssertionError, which is used by the Java assert statement to indicate a
failure (assertions are discussed later in this chapter). A few other packages define their
own subclasses of Error, but subclasses of Error are much less common (and less useful)
than subclasses of Exception. You generally needn’t worry about these errors in your
code (i.e., you do not have to catch them); they are intended to indicate fatal problems
or virtual machine errors. An error of this kind usually causes the Java interpreter to
display a message and exit. You are actively discouraged from trying to catch or recover
from them because they are supposed to indicate a fatal program bug, not a routine
condition.

Figure 4-2. The java.lang.Error subclasses

Both Exception and Error are subclasses of Throwable. The Throwable class is the base
class for objects that can be “thrown” with the throw statement. In general, you should
extend only Exception, Error, or one of their subclasses.

Exception Handling
The try/catch guarding statements wrap a block of code and catch designated types
of exceptions that occur within it:

Exceptions | 107

 try {
 readFromFile("foo");
 ...
 }
 catch (Exception e) {
 // Handle error
 System.out.println("Exception while reading file: " + e);
 ...
 }

In this example, exceptions that occur within the body of the try portion of the state‐
ment are directed to the catch clause for possible handling. The catch clause acts like
a method; it specifies as an argument the type of exception it wants to handle and if it’s
invoked, it receives the Exception object as an argument. Here, we receive the object
in the variable e and print it along with a message.

A try statement can have multiple catch clauses that specify different types (subclasses)
of Exception:

 try {
 readFromFile("foo");
 ...
 }
 catch (FileNotFoundException e) {
 // Handle file not found
 ...
 }
 catch (IOException e) {
 // Handle read error
 ...
 }
 catch (Exception e) {
 // Handle all other errors
 ...
 }

The catch clauses are evaluated in order, and the first assignable match is taken. At
most, one catch clause is executed, which means that the exceptions should be listed
from most to least specific. In the previous example, we anticipate that the hypothetical
readFromFile() can throw two different kinds of exceptions: one for a file not found
and another for a more general read error. In the preceding example, FileNotFoundEx
ception is a subclass of IOException, so if the first catch clause were not there, the
exception would be caught by the second in this case. Similarly, any subclass of Excep
tion is assignable to the parent type Exception, so the third catch clause would catch
anything passed by the first two. It acts here like the default clause in a switch statement
and handles any remaining possibilities. We’ve shown it here for completeness, but in
general you want to be as specific as possible in the exception types you catch.

One beauty of the try/catch scheme is that any statement in the try block can assume
that all previous statements in the block succeeded. A problem won’t arise suddenly

108 | Chapter 4: The Java Language

because a programmer forgot to check the return value from a method. If an earlier
statement fails, execution jumps immediately to the catch clause; later statements are
never executed.

In Java 7, there is an alternative to using multiple catch clauses, and that is to handle
multiple discrete exception types in a single catch clause using the “|” or syntax:

 try {
 // read from network...
 // write to file..
 catch (ZipException | SSLException e) {
 logException(e);
 }

Using this “|” or syntax, we receive both types of exception in the same catch clause.
So, what is the actual type of the e variable that we are passing to our log method? (What
can we do with it?) In this case, it will be neither ZipException nor SSLException but
IOException, which is the two exceptions’ nearest common ancestor (the closest parent
class type to which they are both assignable). In many cases, the nearest common type
among the two or more argument exception types may simply be Exception, the parent
of all exception types. The difference between catching these discrete exception types
with a multiple-type catch clause and simply catching the common parent exception
type is that we are limiting our catch to only these specifically enumerated exception
types and we will not catch all the other IOException types, as would be the alternative
in this case. The combination of multiple-type catch and ordering your catch clauses
from most specific to most broad (“narrow” to “wide”) types gives you great flexibility
to structure your catch clauses to consolidate handling logic where it is appropriate and
to not repeat code. There are more nuances to this feature, and we will return to it after
we have discussed “throwing” and “rethrowing” exceptions.

Bubbling Up
What if we hadn’t caught the exception? Where would it have gone? Well, if there is no
enclosing try/catch statement, the exception pops up from the method in which it
originated and is thrown from that method up to its caller. If that point in the calling
method is within a try clause, control passes to the corresponding catch clause. Other‐
wise, the exception continues propagating up the call stack, from one method to its
caller. In this way, the exception bubbles up until it’s caught, or until it pops out of the
top of the program, terminating it with a runtime error message. There’s a bit more to
it than that because in this case, the compiler might have forced us to deal with it along
the way, but we’ll get back to that in a moment.

Let’s look at another example. In Figure 4-3, the method getContent() invokes the
method openConnection() from within a try/catch statement. In turn, openConnec
tion() invokes the method sendRequest(), which calls the method write() to send
some data.

Exceptions | 109

Figure 4-3. Exception propagation

In this figure, the second call to write() throws an IOException. Since sendRe
quest() doesn’t contain a try/catch statement to handle the exception, it’s thrown
again from the point where it was called in the method openConnection(). Since open
Connection() doesn’t catch the exception either, it’s thrown once more. Finally, it’s
caught by the try statement in getContent() and handled by its catch clause. Notice
that each throwing method must declare with a “throws” clause that it can throw the
particular type of exception. We’ll discuss this shortly.

Stack Traces
Because an exception can bubble up quite a distance before it is caught and handled,
we may need a way to determine exactly where it was thrown. It’s also very important
to know the context of how the point of the exception was reached; that is, which meth‐
ods called which methods to get to that point. For these kinds of debugging and logging
purposes, all exceptions can dump a stack trace that lists their method of origin and all
the nested method calls it took to arrive there. Most commonly, the user sees a stack
trace when it is printed using the printStackTrace() method.

 try {
 // complex, deeply nested task
 } catch (Exception e) {
 // dump information about exactly where the exception occurred
 e.printStackTrace(System.err);
 ...
 }

For example, the stack trace for an exception might look like this:
 java.io.FileNotFoundException: myfile.xml
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at java.io.FileInputStream.<init>(FileInputStream.java)
 at MyApplication.loadFile(MyApplication.java:137)
 at MyApplication.main(MyApplication.java:5)

110 | Chapter 4: The Java Language

This stack trace indicates that the main() method of the class MyApplication called the
method loadFile(). The loadFile() method then tried to construct a FileInput
Stream, which threw the FileNotFoundException. Note that once the stack trace rea‐
ches Java system classes (like FileInputStream), the line numbers may be lost. This can
also happen when the code is optimized by some virtual machines. Usually, there is a
way to disable the optimization temporarily to find the exact line numbers. However,
in tricky situations, changing the timing of the application can affect the problem you’re
trying to debug, and other debugging techniques may be required.

Methods on the exception allow you to retrieve the stack trace information program‐
matically as well by using the Throwable getStackTrace() method. (Throwable is the
base class of Exception and Error.) This method returns an array of StackTraceEle
ment objects, each of which represents a method call on the stack. You can ask a Stack
TraceElement for details about that method’s location using the methods getFile
Name(), getClassName(), getMethodName(), and getLineNumber(). Element zero of
the array is the top of the stack, the final line of code that caused the exception; subse‐
quent elements step back one method call each until the original main() method is
reached.

Checked and Unchecked Exceptions
We mentioned earlier that Java forces us to be explicit about our error handling, but it’s
not necessary to require that every conceivable type of error be handled explicitly in
every situation. Java exceptions are therefore divided into two categories: checked and
unchecked. Most application-level exceptions are checked, which means that any meth‐
od that throws one, either by generating it itself (as we’ll discuss later) or by ignoring
one that occurs within it, must declare that it can throw that type of exception in a special
throws clause in its method declaration. We haven’t yet talked in detail about declaring
methods (see Chapter 5). For now, all you need to know is that methods have to declare
the checked exceptions they can throw or allow to be thrown.

Again in Figure 4-3, notice that the methods openConnection() and sendRequest()
both specify that they can throw an IOException. If we had to throw multiple types of
exceptions, we could declare them separated by commas:

 void readFile(String s) throws IOException, InterruptedException {
 ...
 }

The throws clause tells the compiler that a method is a possible source of that type of
checked exception and that anyone calling that method must be prepared to deal with
it. The caller must then either use a try/catch block to handle it, or it must, in turn,
declare that it can throw the exception from itself.

In contrast, exceptions that are subclasses of either the class java.lang.RuntimeExcep
tion or the class java.lang.Error are unchecked. See Figure 4-1 for the subclasses of

Exceptions | 111

RuntimeException. (Subclasses of Error are generally reserved for serious class loading
or runtime system problems.) It’s not a compile-time error to ignore the possibility of
these exceptions; methods also don’t have to declare they can throw them. In all other
respects, unchecked exceptions behave the same as other exceptions. We are free to
catch them if we wish, but in this case we aren’t required to.

Checked exceptions are intended to cover application-level problems, such as missing
files and unavailable hosts. As good programmers (and upstanding citizens), we should
design software to recover gracefully from these kinds of conditions. Unchecked ex‐
ceptions are intended for system-level problems, such as “out of memory” and “array
index out of bounds.” While these may indicate application-level programming errors,
they can occur almost anywhere and usually aren’t possible to recover from. Fortunately,
because they are unchecked exceptions, you don’t have to wrap every one of your array-
index operations in a try/catch statement (or declare all of the calling methods as a
potential source of them).

To sum up, checked exceptions are problems that a reasonable application should try
to handle gracefully; unchecked exceptions (runtime exceptions or errors) are problems
from which we would not normally expect our software to recover. Error types are those
explicitly intended to be conditions that we should not normally try to handle or recover
from.

Throwing Exceptions
We can throw our own exceptions—either instances of Exception, one of its existing
subclasses, or our own specialized exception classes. All we have to do is create an
instance of the Exception and throw it with the throw statement:

 throw new IOException();

Execution stops and is transferred to the nearest enclosing try/catch statement that
can handle the exception type. (There is little point in keeping a reference to the Excep
tion object we’ve created here.) An alternative constructor lets us specify a string with
an error message:

 throw new IOException("Sunspots!");

You can retrieve this string by using the Exception object’s getMessage() method.
Often, though, you can just print (or toString()) the exception object itself to get the
message and stack trace.

By convention, all types of Exception have a String constructor like this. The preceding
String message is not very useful. Normally, it will throw a more specific subclass
Exception, which captures details or at least a more specific string explanation. Here’s
another example:

112 | Chapter 4: The Java Language

 public void checkRead(String s) {
 if (new File(s).isAbsolute() || (s.indexOf("..") != -1))
 throw new SecurityException(
 "Access to file : "+ s +" denied.");
 }

In this code, we partially implement a method to check for an illegal path. If we find
one, we throw a SecurityException with some information about the transgression.

Of course, we could include any other information that is useful in our own specialized
subclasses of Exception. Often, though, just having a new type of exception is good
enough because it’s sufficient to help direct the flow of control. For example, if we are
building a parser, we might want to make our own kind of exception to indicate a
particular kind of failure:

 class ParseException extends Exception {
 ParseException() {
 super();
 }
 ParseException(String desc) {
 super(desc);
 }
 }

See Chapter 5 for a full description of classes and class constructors. The body of our
Exception class here simply allows a ParseException to be created in the conventional
ways we’ve created exceptions previously (either generically or with a simple string
description). Now that we have our new exception type, we can guard like this:

 // Somewhere in our code
 ...
 try {
 parseStream(input);
 } catch (ParseException pe) {
 // Bad input...
 } catch (IOException ioe) {
 // Low-level communications problem
 }

As you can see, although our new exception doesn’t currently hold any specialized in‐
formation about the problem (it certainly could), it does let us distinguish a parse error
from an arbitrary I/O error in the same chunk of code.

Chaining and rethrowing exceptions

Sometimes you’ll want to take some action based on an exception and then turn around
and throw a new exception in its place. This is common when building frameworks
where low-level detailed exceptions are handled and represented by higher-level ex‐
ceptions that can be managed more easily. For example, you might want to catch an
IOException in a communications package, possibly perform some cleanup, and

Exceptions | 113

ultimately throw a higher-level exception of your own, maybe something like LostSer
verConnection.

You can do this in the obvious way by simply catching the exception and then throwing
a new one, but then you lose important information, including the stack trace of the
original “causal” exception. To deal with this, you can use the technique of exception
chaining. This means that you include the causal exception in the new exception that
you throw. Java has explicit support for exception chaining. The base Exception class
can be constructed with an exception as an argument or the standard String message
and an exception:

 throw new Exception("Here's the story...", causalException);

You can get access to the wrapped exception later with the getCause() method. More
importantly, Java automatically prints both exceptions and their respective stack traces
if you print the exception or if it is shown to the user.

You can add this kind of constructor to your own exception subclasses (delegating to
the parent constructor) or you can take advantage of this pattern by using the Throwa
ble method initCause() to set the causal exception explicitly after constructing your
exception and before throwing it:

 try {
 // ...
 } catch (IOException cause) {
 Exception e =
 new IOException("What we have here is a failure to communicate...");
 e.initCause(cause);
 throw e;
 }

Sometimes it’s enough to simply do some logging or take some action and then rethrow
the original exception:

try {
 // ...
 } catch (IOException cause) {
 log(e); // Log it
 throw e; // rethrow it
 }

But be aware that if you do that, the stack trace included in the exception will show the
new throw location as the origin.

Narrowed rethrow

Prior to Java 7 if you wanted to handle a bunch of exception types in a single catch
clause and then rethrow the original exception, you would inevitably end up widening
the declared exception type to what was required to catch them all or having to do a lot
of work to avoid that. In Java 7, the compiler has become smarter and can now do most

114 | Chapter 4: The Java Language

of the work for us by allowing us to narrow the type of exceptions thrown back to the
original types in most cases. This is best explained by example:

void myMethod() throws ZipException, SSLException
{
 try {
 // Possible cause of ZipException or SSLException
 } catch (Exception e) {
 log(e);
 throw e;
 }
}

In this example, we are exceedingly lazy and simply catch all exceptions with a broad
catch Exception clause in order to log them prior to rethrowing. Prior to Java 7, the
compiler would have insisted that the throws clause of our method declare that it throws
the broad Exception type as well. However, the Java compiler is now smart enough in
most cases to analyze the actual types of exceptions that may be thrown and allow us to
prescribe the precise set of types. The same would be true if we had used the mutiple-
type catch clause in this example, as you might have guessed. The preceding is a bit less
intuitive, but very useful in shoring up the specificity of exception handling of code,
including code written prior to Java 7, without requiring potentially tricky reworking
of catch clauses.

try Creep
The try statement imposes a condition on the statements that it guards. It says that if
an exception occurs within it, the remaining statements are abandoned. This has con‐
sequences for local variable initialization. If the compiler can’t determine whether a local
variable assignment placed inside a try/catch block will happen, it won’t let us use the
variable. For example:

 void myMethod() {
 int foo;

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 }

 int bar = foo; // Compile-time error: foo may not have been initialized

In this example, we can’t use foo in the indicated place because there’s a chance it was
never assigned a value. One obvious option is to move the assignment inside the try
statement:

Exceptions | 115

 try {
 foo = getResults();

 int bar = foo; // Okay because we get here only
 // if previous assignment succeeds
 }
 catch (Exception e) {
 ...
 }

Sometimes this works just fine. However, now we have the same problem if we want to
use bar later in myMethod(). If we’re not careful, we might end up pulling everything
into the try statement. The situation changes, however, if we transfer control out of the
method in the catch clause:

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 return;
 }

 int bar = foo; // Okay because we get here only
 // if previous assignment succeeds

The compiler is smart enough to know that if an error had occurred in the try clause,
we wouldn’t have reached the bar assignment, so it allows us to refer to foo. Your code
will dictate its own needs; you should just be aware of the options.

The finally Clause
What if we have something important to do before we exit our method from one of the
catch clauses? To avoid duplicating the code in each catch branch and to make the
cleanup more explicit, you can use the finally clause. A finally clause can be added
after a try and any associated catch clauses. Any statements in the body of the final
ly clause are guaranteed to be executed no matter how control leaves the try body,
whether an exception was thrown or not:

 try {
 // Do something here

 }
 catch (FileNotFoundException e) {
 ...
 }
 catch (IOException e) {
 ...
 }
 catch (Exception e) {
 ...

116 | Chapter 4: The Java Language

 }
 finally {
 // Cleanup here is always executed
 }

In this example, the statements at the cleanup point are executed eventually, no matter
how control leaves the try. If control transfers to one of the catch clauses, the statements
in finally are executed after the catch completes. If none of the catch clauses handles
the exception, the finally statements are executed before the exception propagates to
the next level.

If the statements in the try execute cleanly, or if we perform a return , break, or
continue, the statements in the finally clause are still executed. To guarantee that some
operations will run, we can even use try and finally without any catch clauses:

 try {
 // Do something here
 return;
 }
 finally {
 System.out.println("Whoo-hoo!");
 }

Exceptions that occur in a catch or finally clause are handled normally; the search
for an enclosing try/catch begins outside the offending try statement, after the fi
nally has been executed.

Try with Resources
A common use of the finally clause is to ensure that resources used in a try clause are
cleaned up, no matter how the code exits the block.

 try {
 // Socket sock = new Socket(...);
 // work with sock
 } catch(IOException e) {
 ...
 }
 finally {
 if (sock != null) { sock.close(); }
 }

What we mean by “clean up” here is to deallocate expensive resources or close connec‐
tions such as files, sockets, or database connections. In some cases, these resources might
get cleaned up on their own eventually as Java reclaimed the garbage, but that would at
best be at an unknown time in the future and at worst may never happen or may not
happen before you run out of resources. So it is always best to guard against these
situations. There are two problems with this venerable approach: first, it requires extra
work to carry out this pattern in all of your code, including important things like null

Exceptions | 117

checks as shown in our example, and second, if you are juggling multiple resources in
a single finally block, you have the possibility of your cleanup code throwing an ex‐
ception (e.g., on close()) and leaving the job unfinished.

In Java 7, things have been greatly simplified via the new “try with resources” form of
the try clause. In this form, you may place one or more resource initialization statements
within parentheses after a try keyword and those resources will automatically be
“closed” for you when control leaves the try block.

 try (
 Socket sock = new Socket("128.252.120.1", 80);
 FileWriter file = new FileWriter("foo");
)
 {
 // work with sock and file
 } catch (IOException e) {
 ...
 }

In this example, we initialize both a Socket object and a FileWriter object within the
try-with-resources clause and use them within the body of the try statement. When
control leaves the try statement, either after successful completion or via an exception,
both resources are automatically closed by calling their close() method. Resources are
closed in the reverse of the order in which they were constructed, so dependencies among
them can be accommodated. This behavior is supported for any class that implements
the AutoCloseable interface (which, at current count, over 100 different built-in classes
do). The close() method of this interface is prescribed to release all resources associated
with the object, and you can implement this easily in your own classes as well. When
using try with resources, we don’t have to add any code specifically to close the file or
socket; it is done for us automatically.

Another problem that try with resources solves is the pesky situation we alluded to
where an exception may be thrown during a close operation. Looking back to the prior
example in which we used a finally clause to do our cleanup, if an exception had been
raised by the close() method, it would have been thrown at that point, completely
abandoning the original exception from the body of the try clause. But in using try
with resources, we preserve the original exception. If an exception occurs while within
the body of the try and one or more exceptions is raised during the subsequent auto-
closing operations, it is the original exception from the body of the try that is bubbled
up to the caller. Let’s look at an example:

 try (
 Socket sock = new Socket("128.252.120.1", 80); // potential exception #3
 FileWriter file = new FileWriter("foo"); // potential exception #2
)
 {
 // work with sock and file // potential exception #1
 }

118 | Chapter 4: The Java Language

Once the try has begun, if an exception occurs as exception point #1, Java will attempt
to close both resources in reverse order, leading to potential exceptions at locations #2
and #3. In this case, the calling code will still receive exception #1. Exceptions #2 and
#3 are not lost, however; they are merely “suppressed” and can be retrieved via the
Throwable getSuppressed() method of the exception thrown to the caller. This returns
an array of all of the supressed exceptions.

Performance Issues
Because of the way the Java virtual machine is implemented, guarding against an ex‐
ception being thrown (using a try) is free. It doesn’t add any overhead to the execution
of your code. However, throwing an exception is not free. When an exception is thrown,
Java has to locate the appropriate try/catch block and perform other time-consuming
activities at runtime.

The result is that you should throw exceptions only in truly “exceptional” circumstances
and avoid using them for expected conditions, especially when performance is an issue.
For example, if you have a loop, it may be better to perform a small test on each pass
and avoid throwing the exception rather than throwing it frequently. On the other hand,
if the exception is thrown only once in a gazillion times, you may want to eliminate the
overhead of the test code and not worry about the cost of throwing that exception. The
general rule should be that exceptions are used for “out of bounds” or abnormal situa‐
tions, not routine and expected conditions (such as the end of a file).

Assertions
An assertion is a simple pass/fail test of some condition, performed while your appli‐
cation is running. Assertions can be used to “sanity check” your code anywhere you
believe certain conditions are guaranteed by correct program behavior. Assertions are
distinct from other kinds of tests because they check conditions that should never be
violated at a logical level: if the assertion fails, the application is to be considered broken
and generally halts with an appropriate error message. Assertions are supported directly
by the Java language and they can be turned on or off at runtime to remove any per‐
formance penalty of including them in your code.

Using assertions to test for the correct behavior of your application is a simple but
powerful technique for ensuring software quality. It fills a gap between those aspects of
software that can be checked automatically by the compiler and those more generally
checked by “unit tests” and human testing. Assertions test assumptions about program
behavior and make them guarantees (at least while they are activated).

If you have programmed before, you may have written something like the following:
 if (!condition)
 throw new AssertionError("fatal error: 42");

Assertions | 119

An assertion in Java is equivalent to this example, but is performed with the assert
language keyword. It takes a Boolean condition and an optional expression value. If the
assertion fails, an AssertionError is thrown, which usually causes Java to bail out of
the application.

The optional expression may evaluate to either a primitive or object type. Either way,
its sole purpose is to be turned into a string and shown to the user if the assertion fails;
most often you’ll use a string message explicitly. Here are some examples:

 assert false;
 assert (array.length > min);
 assert a > 0 : a // shows value of a to the user
 assert foo != null : "foo is null!" // shows message "foo is null!" to user

In the event of failure, the first two assertions print only a generic message, whereas the
third prints the value of a and the last prints the foo is null! message.

Again, the important thing about assertions is not just that they are more terse than the
equivalent if condition, but that they can be enabled or disabled when you run the
application. Disabling assertions means that their test conditions are not even evaluated,
so there is no performance penalty for including them in your code (other than, perhaps,
space in the class files when they are loaded).

Enabling and Disabling Assertions
Assertions are turned on or off at runtime. When disabled, assertions still exist in the
class files but are not executed and consume no time. You can enable and disable as‐
sertions for an entire application or on a package-by-package or even class-by-class
basis. By default, assertions are turned off in Java. To enable them for your code, use the
java command flag -ea or -enableassertions:

 % java -ea MyApplication

To turn on assertions for a particular class, append the class name:
 % java -ea:com.oreilly.examples.Myclass MyApplication

To turn on assertions just for particular packages, append the package name with trailing
ellipses (. . .):

 % java -ea:com.oreilly.examples...MyApplication

When you enable assertions for a package, Java also enables all subordinate package
names (e.g., com.oreilly.examples.text). However, you can be more selective by us‐
ing the corresponding -da or -disableassertions flag to negate individual packages
or classes. You can combine all this to achieve arbitrary groupings like this:

 % java -ea:com.oreilly.examples...
 -da:com.oreilly.examples.text-ea:com.oreilly.examples.text.MonkeyTypewriters
 MyApplication

120 | Chapter 4: The Java Language

This example enables assertions for the com.oreilly.examples package as a whole,
excludes the package com.oreilly.examples.text, and then turns exceptions on for
just one class, MonkeyTypewriters, in that package.

Using Assertions
An assertion enforces a rule about something that should be unchanging in your code
and would otherwise go unchecked. You can use an assertion for added safety anywhere
you want to verify your assumptions about program behavior that can’t be checked by
the compiler.

A common situation that cries out for an assertion is testing for multiple conditions or
values where one should always be found. In this case, a failing assertion as the default
or “fall through” behavior indicates the code is broken. For example, suppose we have
a value called direction that should always contain either the constant value LEFT or
RIGHT:

 if (direction == LEFT)
 doLeft();
 else if (direction == RIGHT)
 doRight()
 else
 assert false : "bad direction";

The same applies to the default case of a switch:
 switch (direction) {
 case LEFT:
 doLeft();
 break;
 case RIGHT:
 doRight();
 break;
 default:
 assert false;
 }

In general, you should not use assertions for checking the validity of arguments to
methods because you want that behavior to be part of your application, not just a test
for quality control that can be turned off. The validity of input to a method is called its
preconditions, and you should usually throw an exception if they are not met; this ele‐
vates the preconditions to part of the method’s “contract” with the user. However,
checking the correctness of results of your methods with assertions before returning
them is a good idea; these are called post-conditions.

Sometimes determining what is or is not a precondition depends on your point of view.
For example, when a method is used internally within a class, preconditions may already
be guaranteed by the methods that call it. Public methods of the class should probably
throw exceptions when their preconditions are violated, but a private method might

Assertions | 121

use assertions because its callers are always closely related code that should obey the
correct behavior.

Finally, note that assertions can not only test simple expressions but perform complex
validation as well. Remember that anything you place in the condition expression of an
assert statement is not evaluated when assertions are turned off. You can make helper
methods for your assertions that may contain arbitrary amounts of code. And, although
it suggests a dangerous programming style, you can even use assertions that have side
effects to capture values for use by later assertions—all of which will be disabled when
assertions are turned off. For example:

 int savedValue;
 assert (savedValue = getValue()) != -1;
 // Do work...
 assert checkValue(savedValue);

Here, in the first assert, we use the helper method getValue() to retrieve some infor‐
mation and save it for later. Then, after doing some work, we check the saved value using
another assertion, perhaps comparing results. When assertions are disabled, we’ll no
longer save or check the data. Note that it’s necessary for us to be somewhat cute and
make our first assert condition into a Boolean by checking for a known value. Again,
using assertions with side effects is a bit dangerous because you have to be careful that
those side effects are seen only by other assertions. Otherwise, you’ll be changing your
application behavior when you turn them off.

Arrays
An array is a special type of object that can hold an ordered collection of elements. The
type of the elements of the array is called the base type of the array; the number of
elements it holds is a fixed attribute called its length. Java supports arrays of all primitive
and reference types.

The basic syntax of arrays looks much like that of C or C++. We create an array of a
specified length and access the elements with the index operator, []. Unlike other lan‐
guages, however, arrays in Java are true, first-class objects. An array is an instance of a
special Java array class and has a corresponding type in the type system. This means
that to use an array, as with any other object, we first declare a variable of the appropriate
type and then use the new operator to create an instance of it.

Array objects differ from other objects in Java in three respects:

• Java implicitly creates a special array class type for us whenever we declare a new
type of array. It’s not strictly necessary to know about this process in order to use
arrays, but it helps in understanding their structure and their relationship to other
objects in Java later.

122 | Chapter 4: The Java Language

• Java lets us use the [] operator to access array elements so that arrays look as we
expect. We could implement our own classes that act like arrays, but we would have
to settle for having methods such as get() and set() instead of using the special
[] notation.

• Java provides a corresponding special form of the new operator that lets us construct
an instance of an array with a specified length with the [] notation or initialize it
directly from a structured list of values.

Array Types
An array type variable is denoted by a base type followed by the empty brackets, [].
Alternatively, Java accepts a C-style declaration with the brackets placed after the array
name.

The following are equivalent:
 int [] arrayOfInts; // preferred
 int arrayOfInts []; // C-style

In each case, arrayOfInts is declared as an array of integers. The size of the array is not
yet an issue because we are declaring only the array type variable. We have not yet created
an actual instance of the array class, with its associated storage. It’s not even possible
to specify the length of an array when declaring an array type variable. The size is strictly
a function of the array object itself, not the reference to it.

An array of reference types can be created in the same way:
 String [] someStrings;
 Button [] someButtons;

Array Creation and Initialization
The new operator is used to create an instance of an array. After the new operator, we
specify the base type of the array and its length with a bracketed integer expression:

 arrayOfInts = new int [42];
 someStrings = new String [number + 2];

We can, of course, combine the steps of declaring and allocating the array:
 double [] someNumbers = new double [20];
 Component [] widgets = new Component [12];

Array indices start with zero. Thus, the first element of someNumbers[] is 0, and the last
element is 19. After creation, the array elements are initialized to the default values for
their type. For numeric types, this means the elements are initially zero:

 int [] grades = new int [30];
 grades[0] = 99;

Arrays | 123

6. The analog in C or C++ is an array of pointers to objects. However, pointers in C or C++ are themselves two-
or four-byte values. Allocating an array of pointers is, in actuality, allocating the storage for some number of
those pointer objects. An array of references is conceptually similar, although references are not themselves
objects. We can’t manipulate references or parts of references other than by assignment, and their storage
requirements (or lack thereof) are not part of the high-level Java language specification.

 grades[1] = 72;
 // grades[2] == 0

The elements of an array of objects are references to the objects—just like individual
variables they point to—but do not actually contain instances of the objects. The default
value of each element is therefore null until we assign instances of appropriate objects:

 String names [] = new String [4];
 names [0] = new String();
 names [1] = "Boofa";
 names [2] = someObject.toString();
 // names[3] == null

This is an important distinction that can cause confusion. In many other languages, the
act of creating an array is the same as allocating storage for its elements. In Java, a newly
allocated array of objects actually contains only reference variables, each with the value
null.6 That’s not to say that there is no memory associated with an empty array; memory
is needed to hold those references (the empty “slots” in the array). Figure 4-4 illustrates
the names array of the previous example.

Figure 4-4. A Java array

names is a variable of type String[] (i.e., a string array). This particular String[] object
contains four String type variables. We have assigned String objects to the first three
array elements. The fourth has the default value null.

Java supports the C-style curly braces {} construct for creating an array and initializing
its elements:

124 | Chapter 4: The Java Language

 int [] primes = { 2, 3, 5, 7, 7+4 }; // e.g., primes[2] = 5

An array object of the proper type and length is implicitly created, and the values of the
comma-separated list of expressions are assigned to its elements. Note that we did not
use the new keyword or the array type here. The type of the array was inferred from the
assignment.

We can use the {} syntax with an array of objects. In this case, each expression must
evaluate to an object that can be assigned to a variable of the base type of the array or
the value null. Here are some examples:

 String [] verbs = { "run", "jump", someWord.toString() };
 Button [] controls = { stopButton, new Button("Forwards"),
 new Button("Backwards") };
 // All types are subtypes of Object
 Object [] objects = { stopButton, "A word", null };

The following are equivalent:
 Button [] threeButtons = new Button [3];
 Button [] threeButtons = { null, null, null };

Using Arrays
The size of an array object is available in the public variable length:

 char [] alphabet = new char [26];
 int alphaLen = alphabet.length; // alphaLen == 26

 String [] musketeers = { "one", "two", "three" };
 int num = musketeers.length; // num == 3

length is the only accessible field of an array; it is a variable, not a method. (Don’t worry;
the compiler tells you when you accidentally use parentheses as if it were a method, as
everyone does now and then.)

Array access in Java is just like array access in other languages; you access an element
by putting an integer-valued expression between brackets after the name of the array.
The following example creates an array of Button objects called keyPad and then fills
the array with Button objects:

 Button [] keyPad = new Button [10];
 for (int i=0; i < keyPad.length; i++)
 keyPad[i] = new Button(Integer.toString(i));

Remember that we can also use the enhanced for loop to iterate over array values. Here
we’ll use it to print all the values we just assigned:

 for (Button b : keyPad)
 System.out.println(b);

Arrays | 125

Attempting to access an element that is outside the range of the array generates an
ArrayIndexOutOfBoundsException. This is a type of RuntimeException, so you can
either catch and handle it yourself if you really expect it, or ignore it, as we’ve already
discussed:

 String [] states = new String [50];

 try {
 states[0] = "California";
 states[1] = "Oregon";
 ...
 states[50] = "McDonald's Land"; // Error: array out of bounds
 }
 catch (ArrayIndexOutOfBoundsException err) {
 System.out.println("Handled error: " + err.getMessage());
 }

It’s a common task to copy a range of elements from one array into another. One way
to copy arrays is to use the low-level arraycopy() method of the System class:

 System.arraycopy(source, sourceStart, destination, destStart, length);

The following example doubles the size of the names array from an earlier example:
 String [] tmpVar = new String [2 * names.length];
 System.arraycopy(names, 0, tmpVar, 0, names.length);
 names = tmpVar;

A new array, twice the size of names, is allocated and assigned to a temporary variable,
tmpVar. The arraycopy() method is then used to copy the elements of names to the new
array. Finally, the new array is assigned to names. If there are no remaining references
to the old array object after names has been copied, it is garbage-collected on the next
pass.

An easier way is to use the java.util.ArrayscopyOf() and copyOfRange() methods:
 byte [] bar = new byte[] { 1, 2, 3, 4, 5 };

 byte [] barCopy = Arrays.copyOf(bar, bar.length);
 // { 1, 2, 3, 4, 5 }
 byte [] expanded = Arrays.copyOf(bar, bar.length+2);
 // { 1, 2, 3, 4, 5, 0, 0 }

 byte [] firstThree = Arrays.copyOfRange(bar, 0, 3);
 // { 1, 2, 3 }
 byte [] lastThree = Arrays.copyOfRange(bar, 2, bar.length);
 // { 3, 4, 5 }
 byte [] lastThreePlusTwo = Arrays.copyOfRange(bar, 2, bar.length+2);
 // { 3, 4, 5, 0, 0 }

The copyOf() method takes the original array and a target length. If the target length
is larger than the original array length, then the new array is padded (with zeros or nulls)

126 | Chapter 4: The Java Language

to the desired length. The copyOfRange() takes a starting index (inclusive) and an end‐
ing index (exclusive) and a desired length, which will also be padded if necessary.

Anonymous Arrays
Often it is convenient to create “throwaway” arrays, arrays that are used in one place
and never referenced anywhere else. Such arrays don’t need a name because you never
need to refer to them again in that context. For example, you may want to create a
collection of objects to pass as an argument to some method. It’s easy enough to create
a normal, named array, but if you don’t actually work with the array (if you use the array
only as a holder for some collection), you shouldn’t need to do this. Java makes it easy
to create “anonymous” (i.e., unnamed) arrays.

Let’s say you need to call a method named setPets(), which takes an array of Animal
objects as arguments. Provided Cat and Dog are subclasses of Animal, here’s how to call
setPets() using an anonymous array:

 Dog pokey = new Dog ("gray");
 Cat boojum = new Cat ("grey");
 Cat simon = new Cat ("orange");
 setPets (new Animal [] { pokey, boojum, simon });

The syntax looks similar to the initialization of an array in a variable declaration. We
implicitly define the size of the array and fill in its elements using the curly-brace no‐
tation. However, because this is not a variable declaration, we have to explicitly use the
new operator and the array type to create the array object.

Anonymous arrays were sometimes used as a substitute for variable-length argument
lists to methods, which are discussed in Chapter 5. With the introduction of variable-
length argument lists in Java, the usefulness of anonymous arrays has diminished.

Multidimensional Arrays
Java supports multidimensional arrays in the form of arrays of array type objects. You
create a multidimensional array with C-like syntax, using multiple bracket pairs, one
for each dimension. You also use this syntax to access elements at various positions
within the array. Here’s an example of a multidimensional array that represents a chess
board:

 ChessPiece [][] chessBoard;
 chessBoard = new ChessPiece [8][8];
 chessBoard[0][0] = new ChessPiece.Rook;
 chessBoard[1][0] = new ChessPiece.Pawn;
 ...

Here, chessBoard is declared as a variable of type ChessPiece[][] (i.e., an array of
ChessPiece arrays). This declaration implicitly creates the type ChessPiece[] as
well. The example illustrates the special form of the new operator used to create a

Arrays | 127

multidimensional array. It creates an array of ChessPiece[] objects and then, in turn,
makes each element into an array of ChessPiece objects. We then index chessBoard to
specify values for particular ChessPiece elements. (We’ll neglect the color of the pieces
here.)

Of course, you can create arrays with more than two dimensions. Here’s a slightly im‐
practical example:

 Color [][][] rgbCube = new Color [256][256][256];
 rgbCube[0][0][0] = Color.black;
 rgbCube[255][255][0] = Color.yellow;
 ...

We can specify a partial index of a multidimensional array to get a subarray of array
type objects with fewer dimensions. In our example, the variable chessBoard is of type
ChessPiece[][]. The expression chessBoard[0] is valid and refers to the first element
of chessBoard, which, in Java, is of type ChessPiece[]. For example, we can populate
our chess board one row at a time:

 ChessPiece [] homeRow = {
 new ChessPiece("Rook"), new ChessPiece("Knight"),
 new ChessPiece("Bishop"), new ChessPiece("King"),
 new ChessPiece("Queen"), new ChessPiece("Bishop"),
 new ChessPiece("Knight"), new ChessPiece("Rook")
 };

 chessBoard[0] = homeRow;

We don’t necessarily have to specify the dimension sizes of a multidimensional array
with a single new operation. The syntax of the new operator lets us leave the sizes of some
dimensions unspecified. The size of at least the first dimension (the most significant
dimension of the array) has to be specified, but the sizes of any number of trailing, less
significant array dimensions may be left undefined. We can assign appropriate array-
type values later.

We can create a checkerboard of Boolean values (which is not quite sufficient for a real
game of checkers either) using this technique:

 boolean [][] checkerBoard;
 checkerBoard = new boolean [8][];

Here, checkerBoard is declared and created, but its elements, the eight boolean[]
objects of the next level, are left empty. Thus, for example, checkerBoard[0] is null
until we explicitly create an array and assign it, as follows:

 checkerBoard[0] = new boolean [8];
 checkerBoard[1] = new boolean [8];
 ...
 checkerBoard[7] = new boolean [8];

128 | Chapter 4: The Java Language

The code of the previous two examples is equivalent to:
 boolean [][] checkerBoard = new boolean [8][8];

One reason we might want to leave dimensions of an array unspecified is so that we can
store arrays given to us by another method.

Note that because the length of the array is not part of its type, the arrays in the check‐
erboard do not necessarily have to be of the same length; that is, multidimensional arrays
don’t have to be rectangular. Here’s a defective (but perfectly legal in Java)
checkerboard:

 checkerBoard[2] = new boolean [3];
 checkerBoard[3] = new boolean [10];

And here’s how you could create and initialize a triangular array:
 int [][] triangle = new int [5][];
 for (int i = 0; i < triangle.length; i++) {
 triangle[i] = new int [i + 1];
 for (int j = 0; j < i + 1; j++)
 triangle[i][j] = i + j;
 }

Inside Arrays
We said earlier that arrays are instances of special array classes in the Java language. If
arrays have classes, where do they fit into the class hierarchy and how are they related?
These are good questions, but we need to talk more about the object-oriented aspects
of Java before answering them. That’s the subject of the next chapter. For now, take it
on faith that arrays fit into the class hierarchy.

Arrays | 129

1. Once you have some experience with basic object-oriented concepts, you might want to look at Design Pat‐
terns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson, and Vlissides (Addison-
Wesley). This book catalogs useful object-oriented designs that have been refined over the years by experience.
Many appear in the design of the Java APIs.

CHAPTER 5

Objects in Java

In this chapter, we get to the heart of Java and explore the object-oriented aspects of the
language. The term object-oriented design refers to the art of decomposing an application
into some number of objects, which are self-contained application components that
work together. The goal is to break your problem down into a number of smaller prob‐
lems that are simpler and easier to handle and maintain. Object-based designs have
proven themselves over the years, and object-oriented languages such as Java provide
a strong foundation for writing applications from the very small to the very large. Java
was designed from the ground up to be an object-oriented language, and all of the Java
APIs and libraries are built around solid object-based design patterns.

An object design “methodology” is a system or a set of rules created to help you break
down your application into objects. Often this means mapping real-world entities and
concepts (sometimes called the “problem domain”) into application components. Var‐
ious methodologies attempt to help you factor your application into a good set of re‐
usable objects. This is good in principle, but the problem is that good object-oriented
design is still more art than science. While you can learn from the various off-the-shelf
design methodologies, none of them will help you in all situations. The truth is that
there is no substitute for experience.

We won’t try to push you into a particular methodology here; there are shelves full of
books to do that.1 Instead, we’ll provide some common-sense hints to get you started.
The following general design guidelines will hopefully make more sense after you’ve
read this chapter and the next:

131

• Hide as much of your implementation as possible. Never expose more of the in‐
ternals of an object than you need to. This is key to building maintainable, reusable
code. Avoid public variables in your objects, with the possible exception of con‐
stants. Instead define accessor methods to set and return values (even if they are
simple types). Later, when you need to, you’ll be able to modify and extend the
behavior of your objects without breaking other classes that rely on them.

• Specialize objects only when you have to—use composition instead of inheritance.
When you use an object in its existing form, as a piece of a new object, you are
composing objects. When you change or refine the behavior of an object (by sub‐
classing), you are using inheritance. You should try to reuse objects by composition
rather than inheritance whenever possible because when you compose objects, you
are taking full advantage of existing tools. Inheritance involves breaking down the
encapsulation of an object and should be done only when there’s a real advantage.
Ask yourself if you really need to inherit the whole public interface of an object (do
you want to be a “kind” of that object?) or whether you can just delegate certain
jobs to the object and use it by composition.

• Minimize relationships between objects and try to organize related objects in pack‐
ages. Classes that work closely together can be grouped using Java packages, which
can hide those that are not of general interest. Only expose classes that you intend
other people to use. The more loosely coupled your objects are, the easier it will be
to reuse them later.

Classes
Classes are the building blocks of a Java application. A class can contain methods (func‐
tions), variables, initialization code, and, as we’ll discuss later, other classes. It serves as
a blueprint for making class instances, which are runtime objects (individual copies)
that implement the class structure. You declare a class with the class keyword. Methods
and variables of the class appear inside the braces of the class declaration:

 class Pendulum {
 float mass;
 float length = 1.0f;
 int cycles;

 float getPosition (float time) {
 ...
 }
 ...
 }

The Pendulum class contains three variables: mass, length, and cycles. It also defines
a method called getPosition(), which takes a float value as an argument and returns

132 | Chapter 5: Objects in Java

a float value as a result. Variables and method declarations can appear in any order,
but variable initializers can’t make “forward references” to other variables that appear
later. Once we’ve defined the Pendulum class, we can create a Pendulum object (an in‐
stance of that class) as follows:

 Pendulum p;
 p = new Pendulum();

Recall that our declaration of the variable p doesn’t create a Pendulum object; it simply
creates a variable that refers to an object of type Pendulum. We still had to create the
object, using the new keyword, as shown in the second line of the preceding code snippet.
Now that we’ve created a Pendulum object, we can access its variables and methods, as
we’ve already seen many times:

 p.mass = 5.0;
 float pos = p.getPosition(1.0);

Two kinds of variables can be defined in a class: instance variables and static variables.
Every object instance has its own set of instance variables; the values of these variables
in one instance of an object can differ from the values in another object. We’ll talk about
static variables later, which, in contrast, are shared among all instances of an object. In
either case, if you don’t initialize a variable when you declare it, it’s given a default value
appropriate for its type (null, zero, or false).

Figure 5-1 shows a hypothetical TextBook application that uses two instances of Pendu
lum through the reference-type variables bigPendulum and smallPendulum. Each of
these Pendulum objects has its own copy of mass, length, and cycles. As with variables,
methods defined in a class may be instance methods or static methods. An instance
method is associated with just one instance of the class, but the relationship isn’t quite
as simple as it is for variables. Instance methods are accessed through an object instance,
but the object doesn’t really have its own “copy” of the methods (there is no duplication
of code). Instead, the association means that instance methods can “see” and operate on
the values of the instance variables of the object. As you’ll see in Chapter 6 when we talk
about subclassing, there’s more to learn about how methods see variables. In that chap‐
ter, we’ll also discuss how instance methods can be “overridden” in child classes—a very
important feature of object-oriented design. Both aspects differ from static methods,
which we’ll see are really more like global functions, as they are associated with a class
by name only.

Accessing Fields and Methods
Inside a class, we can access variables and call methods of the class directly by name.
Here’s an example that expands on our Pendulum:

 class Pendulum {
 ...
 void resetEverything() {

Classes | 133

 mass = 1.0;
 length = 1.0;
 cycles = 0;
 ...
 float startingPosition = getPosition(0.0);
 }
 ...
 }

Figure 5-1. Instances of the Pendulum class

Other classes access members of an object through a reference, using the dot selector
notation that we discussed in the last chapter:

 class TextBook {
 ...
 void showPendulum() {
 Pendulum bob = new Pendulum();
 ...
 int i = bob.cycles;
 bob.resetEverything();
 bob.mass = 1.01;
 ...
 }
 ...
 }

Here we have created a second class, TextBook, that uses a Pendulum object. It creates
an instance in showPendulum() and then invokes methods and accesses variables of the
object through the reference bob.

134 | Chapter 5: Objects in Java

Several factors affect whether class members can be accessed from another class. You
can use the visibility modifiers public, private, and protected to control access; classes
can also be placed into a package, which affects their scope. The private modifier, for
example, designates a variable or method for use only by other members of the class
itself. In the previous example, we could change the declaration of our variable cy
cles to private:

 class Pendulum {
 ...
 private int cycles;
 ...

Now we can’t access cycles from TextBook:
 class TextBook {
 ...
 void showPendulum() {
 ...
 int i = bob.cycles; // Compile-time error

If we still need to access cycles in some capacity, we might add a public getCycles()
method to the Pendulum class. (Creating accessor methods like this is a good design rule
because it allows future flexibility in changing the type or behavior of the value.) We’ll
take a detailed look at packages, access modifiers, and how they affect the visibility of
variables and methods in Chapter 6.

Static Members
As we’ve said, instance variables and methods are associated with and accessed through
an instance of the class (i.e., through a particular object, like bob in the previous exam‐
ple). In contrast, members that are declared with the static modifier live in the class
and are shared by all instances of the class. Variables declared with the static modifier
are called static variables or class variables; similarly, these kinds of methods are called
static methods or class methods. We can add a static variable to our Pendulum example:

 class Pendulum {
 ...
 static float gravAccel = 9.80;
 ...

We have declared the new float variable gravAccel as static. That means that it is
associated with the class, not with an individual instance and if we change its value
(either directly or through any instance of a Pendulum), the value changes for all Pendu
lum objects, as shown in Figure 5-2.

Classes | 135

Figure 5-2. Static variables shared by all instances of a class

Static members can be accessed like instance members. Inside our Pendulum class, we
can refer to gravAccel like any other variable:

 class Pendulum {
 ...
 float getWeight () {
 return mass * gravAccel;
 }
 ...
 }

However, since static members exist in the class itself, independent of any instance, we
can also access them directly through the class. We don’t need a Pendulum object to get
or set the variable gravAccel; instead, we can use the class to select the variable:

 Pendulum.gravAccel = 8.76;

This changes the value of gravAccel as seen by all instances. Why would we want to
change the value of gravAccel? Well, perhaps we want to explore how pendulums would
work on different planets. Static variables are also very useful for other kinds of data
that is shared among classes at runtime. For instance, you can create methods to register
your object instances so that they can communicate, or so that you can keep track of all
of them. It’s also common to use static variables to define constant values. In this case,
we use the static modifier along with the final modifier. So, if we cared only about

136 | Chapter 5: Objects in Java

pendulums under the influence of the Earth’s gravitational pull, we might change Pen
dulum as follows:

 class Pendulum {
 ...
 static final float EARTH_G = 9.80;
 ...

We have followed a common convention here and named our constant with capital
letters. The value of EARTH_G is a constant; it can be accessed through the class Pendu
lum or its instances, but its value can’t be changed at runtime.

It’s important to use the combination of static and final only for things that are really
constant. That’s because the compiler is allowed to “inline” such values within classes
that reference them. This means that if you change a static final variable, you may
have to recompile all code that uses that class (this is really the only case where you have
to do that in Java). Static members are useful as flags and identifiers, which can be
accessed from anywhere. They are also useful for values needed in the construction of
an instance itself. In our example, we might declare a number of static values to represent
various kinds of Pendulum objects:

 class Pendulum {
 ...
 static int SIMPLE = 0, ONE_SPRING = 1, TWO_SPRING = 2;
 ...

We might then use these flags in a method that sets the type of a Pendulum or in a special
constructor, as we’ll discuss shortly:

 Pendulum pendy = new Pendulum();
 pendy.setType(Pendulum.ONE_SPRING);

Again, inside the Pendulum class, we can use static members directly by name, as well;
there’s no need for the Pendulum. prefix:

 class Pendulum {
 ...
 void resetEverything() {
 setType (SIMPLE);
 ...
 }
 ...
 }

Constants versus enumerations

In the previous section, we saw two uses for static final variables (constants). The first
was to create true constants; in that case, it was the numeric constant EARTH_G, but it
could easily have been a String or Date value. The second usage was to create a fixed

Classes | 137

set of identifiers, SIMPLE, ONE_SPRING, etc., whose actual values were not as important
as their uniqueness and, perhaps, their particular order.

Enumerations were added to the Java language to replace this identifier usage with a
mechanism that is both safer and, in some cases, more efficient. We could have declared
our pendulum types as an enumeration like so:

 public enum PendulumTypes { Simple, OneSpring, TwoSpring }

This enumeration creates not only the values, but also a new type, PendulumTypes,
whose value is limited to one of the three discrete identifiers. Calling code can refer to
the values as it did through our class: PendulumTypes.Simple. We’ve changed our case
convention here to diverge from the convention for integer constants, but you can stick
with uppercase if you prefer.

Later, when we talk about importing classes and packages, we’ll discuss the static im‐
port feature of Java, which allows us to import static identifiers and enumerations
(which, as we’ve seen, are related) into a class so that we can use them by their simple
names. For example:

 new Pendulum(OneSpring);

We’ll go into detail about enumerations later in this chapter after we’ve covered objects
in more depth.

Methods
Methods appear inside class bodies. They contain local variable declarations and other
Java statements that are executed when the method is invoked. Methods may return a
value to the caller. They always specify a return type, which can be a primitive type, a
reference type, or the type void , which indicates no returned value. Methods may take
arguments, which are values supplied by the caller of the method.

Here’s a simple example:
 class Bird {
 int xPos, yPos;

 double fly (int x, int y) {
 double distance = Math.sqrt(x*x + y*y);
 flap(distance);
 xPos = x;
 yPos = y;
 return distance;
 }
 ...
 }

In this example, the class Bird defines a method, fly(), that takes as arguments two
integers: x and y. It returns a double type value as a result, using the return keyword.

138 | Chapter 5: Objects in Java

Our method has a fixed number of arguments (two); however, methods can have
variable-length argument lists, which allow the method to specify that it can take any
number of arguments and sort them itself at runtime. We provide more details later in
this chapter.

Local Variables
Our fly() method declares a local variable called distance, which it uses to compute
the distance flown. A local variable is temporary; it exists only within the scope (the
block) of its method. Local variables are allocated when a method is invoked; they are
normally destroyed when the method returns. They can’t be referenced from outside
the method itself. If the method is executing concurrently in different threads, each
thread has its own version of the method’s local variables. A method’s arguments also
serve as local variables within the scope of the method; the only difference is that they
are initialized by being passed in from the caller of the method.

An object created within a method and assigned to a local variable may or may not
persist after the method has returned. As with all objects in Java, it depends on whether
any references to the object remain. If an object is created, assigned to a local variable,
and never used anywhere else, that object is no longer referenced when the local variable
disappears from scope, so garbage collection removes the object. If, however, we assign
the object to an instance variable of an object, pass it as an argument to another method,
or pass it back as a return value, it may be saved by another variable holding its reference.
We’ll discuss object creation and garbage collection in more detail shortly.

Shadowing
If a local variable and an instance variable have the same name, the local variable shadows
or hides the name of the instance variable within the scope of the method. In the fol‐
lowing example, the local variables xPos and yPos hide the instance variables of the
same name:

 class Bird {
 int xPos, yPos;
 int xNest, yNest;
 ...
 double flyToNest() {
 int xPos = xNest;
 int yPos = yNest:
 return (fly(xPos, yPos));
 }
 ...
 }

When we set the values of the local variables in flyToNest(), it has no effect on the
values of the instance variables.

Methods | 139

The “this” reference

You can use the special reference this any time you need to refer explicitly to the current
object or a member of the current object. Often you don’t need to use this, because the
reference to the current object is implicit; such is the case when using unambiguously
named instance variables inside a class. But we can use this to refer explicitly to instance
variables in our object, even if they are shadowed. The following example shows how
we can use this to allow argument names that shadow instance variable names. This
is a fairly common technique because it saves having to make up alternative names.
Here’s how we could implement our fly() method with shadowed variables:

 class Bird {
 int xPos, yPos;

 double fly (int xPos, int yPos) {
 double distance = Math.sqrt(xPos*xPos + yPos*yPos);
 flap(distance);
 this.xPos = xPos; // instance var = local vra
 this.yPos = yPos;
 return distance;
 }
 ...
 }

In this example, the expression this.xPos refers to the instance variable xPos and as‐
signs it the value of the local variable xPos, which would otherwise hide its name. The
only reason we need to use this in the previous example is because we’ve used argument
names that hide our instance variables, and we want to refer to the instance variables.
You can also use the this reference any time you want to pass a reference to “the current”
enclosing object to some other method; we’ll show examples of that later.

Static Methods
Static methods (class methods), like static variables, belong to the class and not to in‐
dividual instances of the class. What does this mean? Well, foremost, a static method
lives outside of any particular class instance. It can be invoked by name, through the
class name, without any objects around. Because it is not bound to a particular object
instance, a static method can directly access only other static members (static variables
and other static methods) of the class. It can’t directly see any instance variables or call
any instance methods, because to do so we’d have to ask, “on which instance?” Static
methods can be called from instances, syntactically just like instance methods, but the
important thing is that they can also be used independently.

Our fly() method uses a static method: Math.sqrt(), which is defined by the
java.lang.Math class; we’ll explore this class in detail in Chapter 11. For now, the im‐
portant thing to note is that Math is the name of a class and not an instance of a Math
object. (It so happens that you can’t even make an instance of the Math class.) Because

140 | Chapter 5: Objects in Java

static methods can be invoked wherever the class name is available, class methods are
closer to C-style functions. Static methods are particularly useful for utility methods
that perform work that is useful either independently of instances or in working on
instances. For example, in our Bird class, we could enumerate all of the available types
of birds that can be created:

 class Bird {
 ...
 static String [] getBirdTypes() { ... }

 }

Here, we’ve defined a static method, getBirdTypes(), that returns an array of strings
containing bird names. We can use getBirdTypes() from within an instance of Bird,
just like an instance method. However, we can also call it from other classes, using the
Bird class name:

 String [] names = Bird.getBirdTypes();

Perhaps a special version of the Bird class constructor accepts the name of a bird type.
We could use this list to decide what kind of bird to create.

Static methods also play an important role in various design patterns, where you limit
the use of the new operator for a class to one method—a static method called a factory
method. We’ll talk more about object construction later, but suffice it to say that it’s
common to see usage like this:

 Bird bird = Bird.createBird("pigeon");

Initializing Local Variables
In the flyToNest() example, we made a point of initializing the local variables xPos
and yPos. Unlike instance variables, local variables must be initialized before they can
be used. It’s a compile-time error to try to access a local variable without first assigning
it a value:

 void myMethod() {
 int foo = 42;
 int bar;

 bar += 1; // compile-time error, bar uninitialized

 bar = 99;
 bar += 1; // would be OK here
 }

Notice that this doesn’t imply local variables have to be initialized when declared, just
that the first time they are referenced must be in an assignment. More subtle possibilities
arise when making assignments inside conditionals:

Methods | 141

2. As with malloc’ed storage in C or C++, Java objects and their instance variables are allocated on a heap, which
allows them default values once, when they are created. Local variables, however, are allocated on the Java
virtual machine stack. As with the stack in C and C++, failing to initialize these could mean successive method
calls could receive garbage values, and program execution might be inconsistent or implementation-
dependent.

 void myMethod {
 int foo;
 if (someCondition) {
 foo = 42;
 ...
 }
 foo += 1; // Compile-time error, foo may not be initialized
 }

In this example, foo is initialized only if someCondition is true. The compiler doesn’t
let you make this wager, so it flags the use of foo as an error. We could correct this
situation in several ways. We could initialize the variable to a default value in advance
or move the usage inside the conditional. We could also make sure the path of execution
doesn’t reach the uninitialized variable through some other means, depending on what
makes sense for our particular application. For example, we could simply make sure
that we assign foo a value in both the if and else branch. Or we could return from the
method abruptly:

 int foo;
 ...
 if (someCondition) {
 foo = 42;
 ...
 } else
 return;

 foo += 1;

In this case, there’s no chance of reaching foo in an uninitialized state, so the compiler
allows the use of foo after the conditional.

Why is Java so picky about local variables? One of the most common (and insidious)
sources of errors in C or C++ is forgetting to initialize local variables, so Java tries to
help out. If it didn’t, Java would suffer the same potential irregularities as C or C++.2

Argument Passing and References
In the beginning of Chapter 4, we described the distinction between primitive types,
which are passed by value (by copying), and objects, which are passed by reference. Now
that we’ve got a better handle on methods in Java, let’s walk through an example:

 void myMethod(int j, SomeKindOfObject o) {
 ...

142 | Chapter 5: Objects in Java

 }

 // use the method
 int i = 0;
 SomeKindOfObject obj = new SomeKindOfObject();
 myMethod(i, obj);

The chunk of code calls myMethod(), passing it two arguments. The first argument, i,
is passed by value; when the method is called, the value of i is copied into the method’s
parameter (a local variable to it) named j. If myMethod() changes the value of j, it’s
changing only its copy of the local variable.

In the same way, a copy of the reference to obj is placed into the reference variable o of
myMethod(). Both references refer to the same object, so any changes made through
either reference affect the actual (single) object instance. If we change the value of, say,
o.size, the change is visible both as o.size (inside myMethod()) or as obj.size (in the
calling method). However, if myMethod() changes the reference o itself—to point to
another object—it’s affecting only its local variable reference. It doesn’t affect the caller’s
variable obj, which still refers to the original object. In this sense, passing the reference
is like passing a pointer in C and unlike passing by reference in C++.

What if myMethod() needs to modify the calling method’s notion of the obj reference
as well (i.e., make obj point to a different object)? The easy way to do that is to wrap
obj inside some kind of object. For example, we could wrap the object up as the lone
element in an array:

 SomeKindOfObject [] wrapper = new SomeKindOfObject [] { obj
 };

All parties could then refer to the object as wrapper[0] and would have the ability to
change the reference. This is not aesthetically pleasing, but it does illustrate that what
is needed is the level of indirection.

Another possibility is to use this to pass a reference to the calling object. In that case,
the calling object serves as the wrapper for the reference. Let’s look at a piece of code
that could be from an implementation of a linked list:

 class Element {
 public Element nextElement;

 void addToList(List list) {
 list.addToList(this);
 }
 }

 class List {
 void addToList(Element element) {
 ...
 element.nextElement = getNextElement();

Methods | 143

 }
 }

Every element in a linked list contains a pointer to the next element in the list. In this
code, the Element class represents one element; it includes a method for adding itself
to the list. The List class itself contains a method for adding an arbitrary Element to
the list. The method addToList() calls addToList() with the argument this (which is,
of course, an Element). addToList() can use the this reference to modify the Ele
ment’s nextElement instance variable. The same technique can be used in conjunction
with interfaces to implement callbacks for arbitrary method invocations.

Wrappers for Primitive Types
As we described in Chapter 4, there is a schism in the Java world between class types
(i.e., objects) and primitive types (i.e., numbers, characters, and Boolean values). Java
accepts this tradeoff simply for efficiency reasons. When you’re crunching numbers,
you want your computations to be lightweight; having to use objects for primitive types
complicates performance optimizations. For the times you want to treat values as ob‐
jects, Java supplies a standard wrapper class for each of the primitive types, as shown in
Table 5-1.

Table 5-1. Primitive type wrappers
Primitive Wrapper

void java.lang.Void

boolean java.lang.Boolean

char java.lang.Character

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

An instance of a wrapper class encapsulates a single value of its corresponding type. It’s
an immutable object that serves as a container to hold the value and let us retrieve it
later. You can construct a wrapper object from a primitive value or from a String
representation of the value. The following statements are equivalent:

 Float pi = new Float(3.14);
 Float pi = new Float("3.14");

The wrapper constructors throw a NumberFormatException when there is an error in
parsing a string.

144 | Chapter 5: Objects in Java

Each of the numeric type wrappers implements the java.lang.Number interface, which
provides “value” methods access to its value in all the primitive forms. You can retrieve
scalar values with the methods doubleValue(), floatValue(), longValue(), intVal
ue(), shortValue(), and byteValue():

 Double size = new Double (32.76);

 double d = size.doubleValue(); // 32.76
 float f = size.floatValue(); // 32.76
 long l = size.longValue(); // 32
 int i = size.intValue(); // 32

This code is equivalent to casting the primitive double value to the various types.

The most common need for a wrapper is when you want to pass a primitive value to a
method that requires an object. For example, in Chapter 11, we’ll look at the Java Col‐
lections API, a sophisticated set of classes for dealing with object groups, such as lists,
sets, and maps. All the Collections APIs work on object types, so primitives must be
wrapped when stored in them. We’ll see in the next section that Java makes this wrapping
process automatic. For now, however, let’s do it ourselves. As we’ll see, a List is an
extensible collection of Objects. We can use wrappers to hold numbers in a List (along
with other objects):

 // Simple Java code
 List myNumbers = new ArrayList();
 Integer thirtyThree = new Integer(33);
 myNumbers.add(thirtyThree);

Here, we have created an Integer wrapper object so that we can insert the number into
the List, using the add() method, which accepts an object. Later, when we are extracting
elements from the List, we can recover the int value as follows:

 // Simple Java code
 Integer theNumber = (Integer)myNumbers.get(0);
 int n = theNumber.intValue(); // 33

As we alluded to earlier, allowing Java to do this for us makes the code more concise
and safer. The usage of the wrapper class is mostly hidden from us by the compiler, but
it is still being used internally:

 // Java code using autoboxing and generics
 List<Integer> myNumbers = new ArrayList<Integer>();
 myNumbers.add(33);
 int n = myNumbers.get(0);

This example will make more sense as you read the next section on autoboxing and
unboxing of primitive values.

Methods | 145

Autoboxing and Unboxing of Primitives
The Java compiler automatically wraps primitives in their wrapper types and unwraps
them where appropriate. This process is called autoboxing and unboxing the primitive.
It happens when primitives are used as arguments and return values in methods and
on simple assignment to variables. For example:

 // Simple assignments
 Integer integer = 5;
 int i = new Integer(5);

 // Method arguments and return types
 Double multiply(Double a, Double b) {
 return a.doubleValue() * b.doubleValue();
 }

 double d = multiply(5.0, 5.0);

In the first case, Java simply wrapped the value 5 into an Integer for us. In the second
case, it unwrapped our Integer object to its primitive value. Next, we have a method
that multiplies two Double wrapper objects and returns the result as a Double wrapper.
This example actually has three cases of boxing and one case of unboxing. First, the two
double primitive values are boxed to Double types in order to call the method. Next, the
return statement of the method is actually being called on a primitive double value,
which the compiler turns into a Double before it leaves the method. Finally, the compiler
unboxes the return value on assignment to the primitive double variable d.

Performance implications of boxing

Gauging performance is tricky. For the vast majority of applications, the time it takes
to perform tasks like creating a small object or calling a method is miniscule compared
to other factors, such as I/O, user interaction, or the actual logic of the application. As
a general rule, it’s not wise to worry too much about these detailed performance issues
until the application is mature (no premature optimization). However, we can anticipate
that allowing Java to box and unbox primitives in performance-critical areas will not
be as fast as using primitives directly. One aspect of this to consider is how many new
objects are being created and reclaimed by the garbage collector. While in general Java
may be forced to create a new object for each boxed primitive, there are optimizations
for a small range of values. Java guarantees that the Boolean values true and false, as
well as “small” valued numeric types ranging from 0 to 127 for bytes and chars and from
–128 to 127 for shorts and integers, are interned. Saying that they are interned means
that instead of creating a new object each time, Java reuses the same object on subsequent
boxings. This is safe because primitive wrappers are immutable and cannot be changed.

 Integer i = 4;
 Integer j = 4;
 System.out.println(i == j); // This object equality is true only for small
 // values.

146 | Chapter 5: Objects in Java

The effect of this, as shown in this code snippet, is that for small identical values the
boxed primitives are actually the same object. Java also attempts to intern string values
in Java classes. We’ll talk about that in Chapter 10.

Variable-Length Argument Lists
As we mentioned earlier, Java methods may have variable-length argument lists or “var‐
args” that allow them to take any number of arguments when invoked. The most com‐
mon example usage of varargs is for the printf() style printing method, which allows
any number of tags to be embedded in a string and takes an argument for each tag to
be printed. For example:

 System.out.printf("My name is %s and my age is %s\n", "Bob", 21);
 System.out.printf("Get the %s out of %s before I %s\n", item, place,
 action);

Varargs allow the printf() method to accept any number of items to print (from zero
to dozens, as awkward as that would be).

A method accepting a variable argument list is equivalent to a method accepting an
array of some type of object. The difference is that the compiler makes the method call
accept individual, comma-separated values, and then packs them into the array for us.
The syntax for declaring the varargs method uses ellipses (...) where the square brack‐
ets of an array might go. For example:

 void printObjects(Object ... list) {
 // list is an Object []
 for(Object o : list)
 System.out.println(o);
 }

Inside the printObjects() method, the variable list is actually an Object [] type.
We could find out how many arguments were passed to us by asking the array for its
length in the usual way:

 System.out.println("Number of arguments:" + list.length);

If the caller passed no arguments, the array will be empty.

In the case of our printObjects() method, we could pass a mix of primitive values as
well as object types because the compiler would automatically box the primitives to their
wrapper types for us before placing them into the Object [].

The variable argument list does not have to be of type Object. It can be of any type,
including primitive types. For example:

 printInts(int ... list) {
 // list is an int []
 }
 // usage

Methods | 147

 printInts(1, 2, 3, 4);

 printStrings(String ... list) {
 // list is a String []
 }
 // usage
 printStrings("foo", "bar", "gee");

The printInts() method receives an int [] array of primitive int values. The print
Strings() method receives a String [] as its argument. The actual arguments must
all be assignable (possibly after numeric promotion or boxing) to the type of the variable
argument list. In other words, the printInts() method can only be called with numbers
assignable to int, and the printStrings() method can only be called with Strings.

Varargs methods may also have any number of fixed arguments before the varargs dec‐
laration. This is how the printf() method guarantees that its first argument is the
format string:

 void printf(String format, Object ... args) { ... }

Of course, a method can have only one varargs declaration, and it must come last in the
method signature.

Method Overloading
Method overloading is the ability to define multiple methods with the same name in a
class; when the method is invoked, the compiler picks the correct one based on the
arguments passed to the method. This implies that overloaded methods must have dif‐
ferent numbers or types of arguments. (In Chapter 6, we’ll look at method overriding,
which occurs when we declare methods with identical signatures in different classes.)

Method overloading (also called ad-hoc polymorphism) is a powerful and useful feature.
The idea is to create methods that act in the same way on different types of arguments.
This creates the illusion that a single method can operate on many types of arguments.
The print() method in the standard PrintStream class is a good example of method
overloading in action. As you’ve probably deduced by now, you can print a string rep‐
resentation of just about anything using this expression:

 System.out.print(argument)

The variable out is a reference to an object (a PrintStream) that defines nine different,
“overloaded” versions of the print() method. The versions take arguments of the fol‐
lowing types: Object, String, char[], char, int, long, float, double, and boolean.

 class PrintStream {
 void print(Object arg) { ... }
 void print(String arg) { ... }
 void print(char [] arg) { ... }
 ...
 }

148 | Chapter 5: Objects in Java

You can invoke the print() method with any of these types as an argument, and it’s
printed in an appropriate way. In a language without method overloading, this requires
something more cumbersome, such as a uniquely named method for printing each type
of object. In that case, it’s your responsibility to figure out what method to use for each
data type.

In the previous example, print() has been overloaded to support two reference types:
Object and String. What if we try to call print() with some other reference type? Say,
a Date object? When there’s not an exact type match, the compiler searches for an
acceptable, assignable match. Since Date, like all classes, is a subclass of Object, a Date
object can be assigned to a variable of type Object. It’s therefore an acceptable match,
and the Object method is selected.

What if there’s more than one possible match? For example, we try to print a subclass
of String called MyString. (The String class is final so it can’t really be subclassed,
but let’s use our imaginations.) MyString is assignable to either String or to Object.
Here, the compiler makes a determination as to which match is “better” and selects that
method. In this case, it’s the String method.

The intuitive explanation for this is that the String class is “closer” to MyString in the
inheritance hierarchy. It is a more specific match. A slightly more rigorous way of spec‐
ifying it would be to say that a given method is more specific than another method if
the argument types of the first method are all assignable to the argument types of the
second method. In this case, the String method is more specific to a subclass of String
than the Object method because type String is assignable to type Object. The reverse
is not true.

If you’re paying close attention, you may have noticed we said that the compiler resolves
overloaded methods. Method overloading is not something that happens at runtime;
this is an important distinction. It means that the selected method is chosen once, when
the code is compiled. Once the overloaded method is selected, the choice is fixed until
the code is recompiled, even if the class containing the called method is later revised
and an even more specific overloaded method is added. This is in contrast to overrid‐
den methods, which are located at runtime and can be found even if they didn’t exist
when the calling class was compiled. In practice, this distinction will not usually be
relevant to you, as you will likely recompile all of the necessary classes at the same time.
We’ll talk about method overriding later in the chapter.

Object Creation
Objects in Java are allocated on a system “heap” memory space. Unlike other languages,
however, we needn’t manage that memory ourselves. Java takes care of memory allo‐
cation and deallocation for you. Java explicitly allocates storage for an object when you

Object Creation | 149

create it with the new operator. More importantly, objects are removed by garbage col‐
lection when they’re no longer referenced.

Constructors
Objects are allocated with the new operator using an object constructor. A constructor
is a special method with the same name as its class and no return type. It’s called when
a new class instance is created, which gives the class an opportunity to set up the object
for use. Constructors, like other methods, can accept arguments and can be overloaded
(they are not, however, inherited like other methods; we’ll discuss inheritance in
Chapter 6).

 class Date {
 long time;

 Date() {
 time = currentTime();
 }

 Date(String date) {
 time = parseDate(date);
 }
 ...
 }

In this example, the class Date has two constructors. The first takes no arguments; it’s
known as the default constructor. Default constructors play a special role: if we don’t
define any constructors for a class, an empty default constructor is supplied for us. The
default constructor is what gets called whenever you create an object by calling its con‐
structor with no arguments. Here we have implemented the default constructor so that
it sets the instance variable time by calling a hypothetical method, currentTime(),
which resembles the functionality of the real java.util.Date class. The second con‐
structor takes a String argument. Presumably, this String contains a string represen‐
tation of the time that can be parsed to set the time variable. Given the constructors in
the previous example, we create a Date object in the following ways:

 Date now = new Date();
 Date christmas = new Date("Dec 25, 2006");

In each case, Java chooses the appropriate constructor at compile time based on the
rules for overloaded method selection.

If we later remove all references to an allocated object, it’ll be garbage-collected, as we’ll
discuss shortly:

 christmas = null; // fair game for the garbage collector

Setting this reference to null means it’s no longer pointing to the "Dec 25, 2006" string
object. Setting the variable christmas to any other value would have the same effect.

150 | Chapter 5: Objects in Java

Unless the original string object is referenced by another variable, it’s now inaccessible
and can be garbage-collected. We’re not suggesting that you have to set references to
null to get the values garbage-collected. Often this just happens naturally when local
variables fall out of scope, but items referenced by instance variables of objects live as
long as the object itself lives (through references to it) and static variables live effectively
forever.

A few more notes: constructors can’t be declared abstract, synchronized, or final
(we’ll define the rest of those terms later). Constructors can, however, be declared with
the visibility modifiers public, private, or protected, just like other methods, to con‐
trol their accessibility. We’ll talk in detail about visibility modifiers in the next chapter.

Working with Overloaded Constructors
A constructor can refer to another constructor in the same class or the immediate su‐
perclass using special forms of the this and super references. We’ll discuss the first case
here and return to that of the superclass constructor after we have talked more about
subclassing and inheritance. A constructor can invoke another overloaded constructor
in its class using the self-referential method call this() with appropriate arguments to
select the desired constructor. If a constructor calls another constructor, it must do so
as its first statement:

 class Car {
 String model;
 int doors;

 Car(String model, int doors) {
 this.model = model;
 this.doors = doors;
 // other, complicated setup
 ...
 }

 Car(String model) {
 this(model, 4 /* doors */);
 }
 ...
 }

In this example, the class Car has two constructors. The first, more explicit, one accepts
arguments specifying the car’s model and its number of doors. The second constructor
takes just the model as an argument and, in turn, calls the first constructor with a default
value of four doors. The advantage of this approach is that you can have a single con‐
structor do all the complicated setup work; other auxiliary constructors simply feed the
appropriate arguments to that constructor.

The special call to this() must appear as the first statement in our delegating con‐
structor. The syntax is restricted in this way because there’s a need to identify a clear

Object Creation | 151

chain of command in the calling of constructors. At the end of the chain, Java invokes
the constructor of the superclass (if we don’t do it explicitly) to ensure that inherited
members are initialized properly before we proceed.

There’s also a point in the chain, just after invoking the constructor of the superclass,
where the initializers of the current class’s instance variables are evaluated. Before that
point, we can’t even reference the instance variables of our class. We’ll explain this sit‐
uation again in complete detail after we have talked about inheritance.

For now, all you need to know is that you can invoke a second constructor (delegate to
it) only as the first statement of your constructor. For example, the following code is
illegal and causes a compile-time error:

 Car(String m) {
 int doors = determineDoors();
 this(m, doors); // Error: constructor call
 // must be first statement
 }

The simple model name constructor can’t do any additional setup before calling the
more explicit constructor. It can’t even refer to an instance member for a constant value:

 class Car {
 ...
 final int default_doors = 4;
 ...

 Car(String m) {
 this(m, default_doors); // Error: referencing
 // uninitialized variable
 }
 ...
 }

The instance variable defaultDoors is not initialized until a later point in the chain of
constructor calls setting up the object, so the compiler doesn’t let us access it yet. For‐
tunately, we can solve this particular problem by using a static variable instead of an
instance variable:

 class Car {
 ...
 static final int DEFAULT_DOORS = 4;
 ...

 Car(String m) {
 this(m, DEFAULT_DOORS); // Okay!
 }
 ...
 }

152 | Chapter 5: Objects in Java

The static members of a class are initialized when the class is first loaded into the virtual
machine, so it’s safe to access them in a constructor.

Static and Nonstatic Initializer Blocks
It’s possible to declare a block of code (some statements within curly braces) directly
within the scope of a class. This code block doesn’t belong to any method; instead, it’s
executed once, at the time the object is constructed, or, in the case of a code block marked
static, at the time the class is loaded. These blocks can be used to do additional setup
for the class or an object instance and are called initializer blocks.

Instance initializer blocks can be thought of as extensions of instance variable initiali‐
zation. They’re called at the time the instance variable’s initializers are evaluated (after
superclass construction, but before your constructor body), in the order in which they
appear in the Java source:

 class MyClass {
 Properties myProps = new Properties();
 // set up myProps
 {
 myProps.put("foo", "bar");
 myProps.put("boo", "gee");
 }
 int a = 5;
 ...

Normally, this kind of setup could be done just as well in the object’s constructor. A
notable exception is in the case of an anonymous inner class (see Chapter 6).

Similarly, you can use static initializer blocks to set up static class members. This more
useful case allows the static members of a class to have complex initialization just like
objects do with constructors:

 class ColorWheel {
 static Hashtable colors = new Hashtable();

 // set up colors
 static {
 colors.put("Red", Color.red);
 colors.put("Green", Color.green);
 colors.put("Blue", Color.blue);
 ...
 }
 ...
 }

The class ColorWheel provides a variable, colors, that maps the names of colors to
Color objects in a Hashtable. The first time the class ColorWheel is referenced and
loaded, the static components of ColorWheel are evaluated in the order they appear in
the source. In this case, the static code block simply adds elements to the colors table.

Object Creation | 153

3. It’s still possible in Java to write code that holds onto objects forever, consuming more and more memory.
This isn’t really a leak so much as it is hoarding memory. It is also usually much easier to track down with the
correct tools and techniques.

Object Destruction
Now that we’ve seen how to create objects, it’s time to talk about their destruction. If
you’re accustomed to programming in C or C++, you’ve probably spent time hunting
down memory leaks in your code. Java takes care of object destruction for you; you
don’t have to worry about traditional memory leaks, and you can concentrate on more
important programming tasks.3

Garbage Collection
Java uses a technique known as garbage collection to remove objects that are no longer
needed. The garbage collector is Java’s grim reaper. It lingers in the background, stalking
objects and awaiting their demise. It finds and watches them, periodically counting
references to them to see when their time has come. When all references to an object
are gone and it’s no longer accessible, the garbage-collection mechanism declares the
object unreachable and reclaims its space back to the available pool of resources. An
unreachable object is one that can no longer be found through any combination of “live”
references in the running application.

Garbage collection uses a variety of algorithms; the Java virtual machine architecture
doesn’t require a particular scheme. It’s worth noting, however, how some implemen‐
tations of Java have accomplished this task. In the beginning, Java used a technique
called “mark and sweep.” In this scheme, Java first walks through the tree of all accessible
object references and marks them as alive. Java then scans the heap, looking for iden‐
tifiable objects that aren’t marked. In this technique, Java is able to find objects on the
heap because they are stored in a characteristic way and have a particular signature of
bits in their handles unlikely to be reproduced naturally. This kind of algorithm doesn’t
become confused by the problem of cyclic references, in which objects can mutually
reference each other and appear alive even when they are dead (Java handles this prob‐
lem automatically). This scheme wasn’t the fastest method, however, and caused pauses
in the program. Since then, implementations have become much more sophisticated.

Modern Java garbage collectors effectively run continuously without forcing any lengthy
delay in execution of the Java application. Because they are part of a runtime system,
they can also accomplish some things that could not be done statically. Sun’s Java im‐
plementation divides the memory heap into several areas for objects with different es‐
timated lifespans. Short-lived objects are placed on a special part of the heap, which
reduces the time to recycle them drastically. Objects that live longer can be moved to
other, less volatile parts of the heap. In recent implementations, the garbage collector
can even “tune” itself by adjusting the size of parts of the heap based on the actual

154 | Chapter 5: Objects in Java

application performance. The improvement in Java’s garbage collection since the early
releases has been remarkable and is one of the reasons that Java is now roughly equiv‐
alent in speed to traditional compiled languages.

In general, you do not have to concern yourself with the garbage-collection process. But
one garbage-collection method can be useful for debugging. You can prompt the garbage
collector to make a clean sweep explicitly by invoking the System.gc() method. This
method is completely implementation-dependent and may do nothing, but it can be
used if you want some guarantee that Java has cleaned up before you do an activity.

Finalization
Before an object is removed by garbage collection, its finalize() method is invoked
to give it a last opportunity to clean up its act and free other kinds of resources it may
be holding. While the garbage collector can reclaim memory resources, it may not take
care of things such as closing files and terminating network connections as gracefully
or efficiently as could your code. That’s what the finalize() method is for. An object’s
finalize() method is called once and only once before the object is garbage-collected.
However, there’s no guarantee when that will happen. Garbage collection may, in theory,
never run on a system that is not short of memory. It is also interesting to note that
finalization and collection occur in two distinct phases of the garbage-collection process.
First, items are finalized; then they are collected. It is, therefore, possible that finalization
can (intentionally or unintentionally) create a lingering reference to the object in ques‐
tion, postponing its garbage collection. The object is, of course, subject to collection
later if the reference goes away, but its finalize() method isn’t called again.

The finalize() methods of superclasses are not invoked automatically for you. If you
need to invoke the finalization routine of your parent classes, you should invoke the
finalize() method of your superclass, using super.finalize(). We discuss inheri‐
tance and overridden methods in Chapter 6.

Weak and Soft References
In general, as we’ve described, Java’s garbage collector reclaims objects when they are
unreachable. An unreachable object, again, is one that is no longer referenced by any
variables within your application and that is not reachable through any chain of refer‐
ences by any running thread. Such an object cannot be used by the application any
longer and is, therefore, a clear case where the object should be removed.

In some situations, however, it is advantageous to have Java’s garbage collector work
with your application to decide when it is time to remove a particular object. For these
cases, Java allows you to hold an object reference indirectly through a special wrapper
object, a type of java.lang.ref.Reference. If Java then decides to remove the object,
the reference the wrapper holds turns to null automatically. While the reference exists,

Object Destruction | 155

you may continue to use it in the ordinary way and, if you wish, assign it elsewhere
(using normal references), preventing its garbage collection.

There are two types of Reference wrappers that implement different schemes for de‐
ciding when to let their target references be garbage-collected. The first is called a
WeakReference. Weak references are eligible for garbage collection immediately; they
do not prevent garbage collection the way that ordinary “strong” references do. This
means that if you have a combination of strong references and references contained in
WeakReference wrappers in your application, the garbage collector waits until only
WeakReferences remain and then collects the object. This is an essential feature that
allows garbage collection to work with certain kinds of caching schemes. You’ll often
want to cache an object reference for performance (to avoid creating it or looking it up).
But unless you take specific action to remove unneeded objects from your cache, the
cache keeps those objects alive forever by maintaining live references to them. By using
weak references, you can implement a cache that automatically throws away references
when the object would normally be garbage-collected. In fact, an implementation of
HashMap called WeakHashMap is provided that does just this (see Chapter 11 for details).

The second type of reference wrapper is called SoftReference. A soft reference is similar
to a weak reference, but it tells the garbage collector to be less aggressive about reclaim‐
ing its contents. Soft-referenced objects are collected only when and if Java runs short
of memory. This is useful for a slightly different kind of caching where you want to keep
some content around unless there is a need to get rid of it. For example, a web browser
can use soft references to cache images or HTML strings internally, thus keeping them
around as long as possible until memory constraints come into play. (A more sophis‐
ticated application might also use its own scheme based on a “least recently used”
marking of some kind.)

The java.lang.ref package contains the WeakReference and SoftReference wrap‐
pers, as well as a facility called ReferenceQueue that allows your application to receive
a list of references that have been collected. It’s important that your application use the
queue or some other checking mechanism to remove the Reference objects themselves
after their contents have been collected; otherwise, your cache will soon fill up with
empty Reference object wrappers.

Enumerations
Now that we’ve covered the basics of classes, we can talk a bit more in depth about
enumerations. As we’ve discussed, an enumeration is an object type in the Java language
that is limited to an explicit set of values. The values have an order that is defined by
their order of declaration in the code, and have a correspondence with a string name
that is the same as their declared name in the source code.

156 | Chapter 5: Objects in Java

We’ve already seen a couple of examples of enumerations used in place of static iden‐
tifiers. For example:

 enum Weekday { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
 Saturday }

 // usage
 setDay(Weekday.Sunday);

Let’s take a look at what the Java compiler is actually generating for the enum. It is a
regular compiled Java class, in this case named Weekday, so we can display it with the
javap command like so:

 % javap Weekday

 public final class Weekday extends java.lang.Enum {
 public static final Weekday Sunday;
 public static final Weekday Monday;
 public static final Weekday Tuesday;
 public static final Weekday Wednesday;
 public static final Weekday Thursday;
 public static final Weekday Friday;
 public static final Weekday Saturday;

 public static final Weekday[] values();
 public static Weekday valueOf(java.lang.String);
 }

Weekday is a subclass of the Enum type with seven static, final, “constant” object references
corresponding to our seven enumerated values. Each of the enumerated values is of type
Weekday. The Java compiler does not let us extend this class or create any other instances
of this type. The only instances of Weekday that will ever exist are the seven enumerated
values. This is what gives enumerations their type safety. A method expecting a Week
day can be given one of only seven values. Unlike a numeric constant identifier, no value
other than a Weekday will work. As we saw in Chapter 4, enumerations (unlike most
objects) can also be used in switch statements with all the same benefits.

Because enumerations are static values, they can be imported with the Java static im‐
port, saving us some typing:

 import static mypackage.Weekday.*;
 ...
 setDay(Friday);
 setDeadline(Sunday);

We should also mention that enumerations can be declared not only at the “top level”
alongside classes, but within classes or interfaces as well. In this case, they act just like
inner classes (see Chapter 6).

Enumerations | 157

Enum Values
You can get the ordered list of enum values for a type with the static values() method.

 Weekday [] weekdays = Weekday.values();

The compareTo() method of an enum compares an enum value to another value of the
same enum type and returns an integer less than zero, zero, or greater than zero, indi‐
cating whether the target enum is “less than,” “equal to,” or “greater than” the order of
the reference enum. This doesn’t mean much for our Weekdays, but it might be useful
for values that have a more numeric meaning or a (noncyclic) scale of some kind. For
example:

 Level level = Level.LOW;
 Level anotherLevel = Level.HIGH;
 if (level.compareTo(anotherLevel) > 0) // true
 doSomething();

We mentioned that enum values have a string correspondence for their names. You can
get the string name of the value (which is exactly the same as it is declared in the source
code) with the name() method. Going the other direction, you can “look up” any enum
value by its class type and string name using the static Enum.valueOf() method:

 String mondayString = Weekday.Monday.name(); // "Monday"
 Weekday mondayWeekday = Enum.valueOf(Weekday.class, "Monday");

The name() value is also used by the toString() method of the value, so printing an
enum value does what you’d expect.

Customizing Enumerations
We said that the java.lang.Enum type cannot be directly extended and that you can’t
create new instances of enum types. However, you can add things to the generated
enumeration class when it’s declared. For example, the enumeration java.util.con
current.TimeUnit, which has identifiers for time units such as SECONDS, MILLI‐
SECONDS, and MICROSECONDS, has a sleep() method that interprets its argument
in the correct time scale:

 import static java.util.concurrent.TimeUnit.*;

 SECONDS.sleep(5); // sleep 5 seconds

Enumerations can have values with constructors, methods, and fields just like other
classes. For the most part, this is straightforward; you just add a semicolon after the
enum values and then add your additional class members. Let’s add a “fun” value and
accessor method to our weekdays:

158 | Chapter 5: Objects in Java

 public enum Weekday
 {
 Sunday(8), Monday(0), Tuesday(1), Wednesday(2), Thursday(4),
 Friday(6), Saturday(10) ;

 int fun;

 Weekday(int fun) { this.fun = fun; }

 public int getFun() { return fun; }
 }

Here, we’ve added an instance variable, fun, to the Weekday class, as well as a constructor
and accessor method that work with the value. The declaration of our enum values each
now accepts the constructor value, much like a constructor call without the new key‐
word. Note that the semicolon at the end of the values is mandatory. Each Weekday now
has a fun attribute.

There is an odd special feature of enums that we didn’t show. In addition to adding
features to the enum class as a whole (as in our example), we can add methods and
variables to individual values of the enumeration by giving them a body with curly braces
({}). This is best served by an example:

 enum Cat {
 Himilayan, Siamese, Caleco,
 Persian {
 public void someMethod() { ... }
 }
 }

Now, only the Cat.Persian enum value has the method. In this case, the compiler
generates a subclass of Cat as an inner class of the Persian type to hold the extra member.
(We’ll talk about inner classes in Chapter 6.) You could use this to have the Persian
member override a method in the base enum class.

Enumerations | 159

CHAPTER 6

Relationships Among Classes

So far in our exploration of Java, we have seen how to create Java classes and objects,
which are instances of those classes. By themselves, classes would be little more than a
convention for organizing code. It is in the relationships between objects—their con‐
nections and privileges with respect to one another—that the power of an object-
oriented language is really expressed.

That’s what we’ll cover in this chapter. In particular, we’ll look at several kinds of
relationships:
Inheritance relationships

How a class inherits methods and variables from its parent class

Interfaces
How to declare that a class implements certain behavior and define a type to refer
to that behavior

Packaging
How to organize objects into logical groups

Inner classes
A generalization of classes that lets you nest a class definition inside another class
definition

Subclassing and Inheritance
Classes in Java exist in a hierarchy. A class in Java can be declared as a subclass of another
class using the extends keyword. A subclass inherits variables and methods from its
superclass and can use them as if they were declared within the subclass itself:

 class Animal {
 float weight;
 ...

161

 void eat() {
 ...
 }
 ...
 }

 class Mammal extends Animal {
 // inherits weight
 int heartRate;
 ...

 // inherits eat()
 void breathe() {
 ...
 }
 }

In this example, an object of type Mammal has both the instance variable weight and the
method eat(). They are inherited from Animal.

A class can extend only one other class. To use the proper terminology, Java allows single
inheritance of class implementation. Later in this chapter, we’ll talk about interfaces,
which take the place of multiple inheritance as it’s primarily used in other languages.

A subclass can be further subclassed. Normally, subclassing specializes or refines a class
by adding variables and methods (you cannot remove or hide variables or methods by
subclassing). For example:

 class Cat extends Mammal {
 // inherits weight and heartRate
 boolean longHair;
 ...

 // inherits eat() and breathe()
 void purr() {
 ...
 }
 }

The Cat class is a type of Mammal that is ultimately a type of Animal. Cat objects inherit
all the characteristics of Mammal objects and, in turn, Animal objects. Cat also provides
additional behavior in the form of the purr() method and the longHair variable. We
can denote the class relationship in a diagram, as shown in Figure 6-1.

A subclass inherits all members of its superclass not designated as private. As we’ll
discuss shortly, other levels of visibility affect which inherited members of the class can
be seen from outside of the class and its subclasses, but at a minimum, a subclass always
has the same set of visible members as its parent. For this reason, the type of a subclass
can be considered a subtype of its parent, and instances of the subtype can be used
anywhere instances of the supertype are allowed. Consider the following example:

162 | Chapter 6: Relationships Among Classes

 Cat simon = new Cat();
 Animal creature = simon;

Figure 6-1. A class hierarchy

The Cat instance simon in this example can be assigned to the Animal type variable
creature because Cat is a subtype of Animal. Similarly, any method accepting an Ani
mal object would accept an instance of a Cat or any Mammal type as well. This is an
important aspect of polymorphism in an object-oriented language such as Java. We’ll
see how it can be used to refine a class’s behavior, as well as add new capabilities to it.

Shadowed Variables
In Chapter 5, we saw that a local variable of the same name as an instance variable
shadows (hides) the instance variable. Similarly, an instance variable in a subclass can
shadow an instance variable of the same name in its parent class, as shown in
Figure 6-2. We’re going to cover the details of this variable hiding now for completeness
and in preparation for more advanced topics, but in practice you should almost never
do this. It is much better in practice to structure your code to clearly differentiate vari‐
ables using different names or naming conventions.

In Figure 6-2, the variable weight is declared in three places: as a local variable in the
method foodConsumption() of the class Mammal, as an instance variable of the class
Mammal, and as an instance variable of the class Animal. The actual variable selected
when you reference it in the code would depend on the scope in which we are working
and how you qualify the reference to it.

Subclassing and Inheritance | 163

1. Note that a better way to design our calculators would be to have an abstract Calculator class with two
subclasses: IntegerCalculator and DecimalCalculator.

Figure 6-2. The scope of shadowed variables

In the previous example, all variables were of the same type. A slightly more plausible
use of shadowed variables would involve changing their types. We could, for example,
shadow an int variable with a double variable in a subclass that needs decimal values
instead of integer values. We can do this without changing the existing code because,
as its name suggests, when we shadow variables, we don’t replace them but instead mask
them. Both variables still exist; methods of the superclass see the original variable, and
methods of the subclass see the new version. The determination of what variables the
various methods see occurs at compile time.

Here’s a simple example:
 class IntegerCalculator {
 int sum;
 ...
 }

 class DecimalCalculator extends IntegerCalculator {
 double sum;
 ...
 }

In this example, we shadow the instance variable sum to change its type from int to
double.1 Methods defined in the class IntegerCalculator see the integer variable
sum, while methods defined in DecimalCalculator see the floating-point variable sum.
However, both variables actually exist for a given instance of DecimalCalculator, and
they can have independent values. In fact, any methods that DecimalCalculator in‐
herits from IntegerCalculator actually see the integer variable sum.

164 | Chapter 6: Relationships Among Classes

Because both variables exist in DecimalCalculator, we need a way to reference the
variable inherited from IntegerCalculator. We do that using the super keyword as a
qualifier on the reference:

 int s = super.sum;

Inside of DecimalCalculator, the super keyword used in this manner selects the sum
variable defined in the superclass. We’ll explain the use of super more fully in a bit.

Another important point about shadowed variables has to do with how they work when
we refer to an object by way of a less derived type (a parent type). For example, we can
refer to a DecimalCalculator object as an IntegerCalculator by using it via a variable
of type IntegerCalculator. If we do so and then access the variable sum, we get the
integer variable, not the decimal one:

 DecimalCalculator dc = new DecimalCalculator();
 IntegerCalculator ic = dc;

 int s = ic.sum; // accesses IntegerCalculator sum

The same would be true if we accessed the object using an explicit cast to the Integer
Calculator type or when passing an instance into a method that accepts that parent
type.

To reiterate, the usefulness of shadowed variables is limited. It’s much better to abstract
the use of variables like this in other ways than to use tricky scoping rules. However, it’s
important to understand the concepts here before we talk about doing the same thing
with methods. We’ll see a different and more dynamic type of behavior when methods
shadow other methods, or to use the correct terminology, override other methods.

Overriding Methods
In Chapter 5, we saw that we could declare overloaded methods (i.e., methods with the
same name but a different number or type of arguments) within a class. Overloaded
method selection works in the way we described on all methods available to a class,
including inherited ones. This means that a subclass can define additional overloaded
methods that add to the overloaded methods provided by a superclass.

A subclass can do more than that; it can define a method that has exactly the same
method signature (name and argument types) as a method in its superclass. In that case,
the method in the subclass overrides the method in the superclass and effectively replaces
its implementation, as shown in Figure 6-3. Overriding methods to change the behavior
of objects is called subtype polymorphism. It’s the usage most people think of when they
talk about the power of object-oriented languages.

Subclassing and Inheritance | 165

2. The Platypus is a highly unusual egg-laying Mammal. We could override the reproduce() behavior again
for it in its own subclass of Mammal.

3. An overridden method in Java acts like a virtual method in C++.

Figure 6-3. Method overriding

In Figure 6-3, Mammal overrides the reproduce() method of Animal, perhaps to spe‐
cialize the method for the behavior of mammals giving birth to live young.2 The Cat
object’s sleeping behavior is also overridden to be different from that of a general Ani
mal, perhaps to accommodate cat naps. The Cat class also adds the more unique be‐
haviors of purring and hunting mice.

From what you’ve seen so far, overridden methods probably look like they shadow
methods in superclasses, just as variables do. But overridden methods are actually more
powerful than that. When there are multiple implementations of a method in the in‐
heritance hierarchy of an object, the one in the “most derived” class (the furthest down
the hierarchy) always overrides the others, even if we refer to the object through a
reference of one of the superclass types.3

For example, if we have a Cat instance assigned to a variable of the more general type
Animal, and we call its sleep() method, we still get the sleep() method implemented
in the Cat class, not the one in Animal:

 Cat simon = new Cat();
 Animal creature = simon;
 ...
 creature.sleep(); // accesses Cat sleep();

In other words, for purposes of behavior (invoking methods), a Cat acts like a Cat,
regardless of whether you refer to it as such. In other respects, the variable creature
here may behave like an Animal reference. As we explained earlier, access to a shadowed
variable through an Animal reference would find an implementation in the Animal class,

166 | Chapter 6: Relationships Among Classes

not the Cat class. However, because methods are located dynamically, searching sub‐
classes first, the appropriate method in the Cat class is invoked, even though we are
treating it more generally as an Animal object. This means that the behavior of objects
is dynamic. We can deal with specialized objects as if they were more general types and
still take advantage of their specialized implementations of behavior.

@Override

A common programming error in Java is to accidentally overload a method when trying
to override it. Any difference in the number or type of arguments (the method signa‐
ture) produces two overloaded methods instead of a single, overridden method. The
new annotations syntax in Java 5.0 provides a way to get the compiler to help with this
problem. An annotation, as we’ll describe in Chapter 7, allows us to add special markers
or metadata to source code that can be read by the compiler or runtime tools. One of
the standard annotations that Java defines is called @Override and it tells the compiler
that the method it marks is intended to override a method in the superclass. The com‐
piler then warns if the method doesn’t match. For example, we could specify that the
sleep() method of our Cat class overrides one in a superclass like so:

 class Cat extends Mammal {
 ...
 @Override void sleep() { ... }
 }

Overridden methods and dynamic binding

In a previous section, we mentioned that overloaded methods are selected by the com‐
piler at compile time. Overridden methods, on the other hand, are selected dynamically
at runtime. Even if we create an instance of a subclass our code has never seen before
(perhaps a new class loaded over the network), any overriding methods that it contains
are located and used at runtime, replacing those that existed when we last compiled our
code.

In contrast, if we created a new class that implements an additional, more specific,
overloaded method, and replace the compiled class in our classpath with it, our code
would continue to use the implementation it discovered originally. This situation would
persist until we recompiled our code along with the new class. Another effect of this is
that casting (i.e., explicitly telling the compiler to treat an object as one of its assignable
types) affects the selection of overloaded methods at compile time but not overridden
methods.

In practice what we’ve just described is not something you need to worry about often,
but it’s important in understanding what the virtual machine does and does not do at
runtime.

Subclassing and Inheritance | 167

Static method binding

Static methods don’t belong to any object instance; they are accessed directly through
a class name, so they are not dynamically selected at runtime like instance methods.
That is why static methods are called “static”; they are always bound at compile time.

A static method in a superclass can be shadowed by another static method in a subclass,
as long as the original method was not declared final. However, both methods are always
accessible directly via their respective class names. You can’t “override” a static method
with an instance method. In other words, you can’t have a static method and instance
method with the same signature in the same class hierarchy.

final methods and performance

In languages like C++, the default is for methods to act like shadowed variables, so you
have to declare explicitly the methods you want to be dynamic (or, as C++ terms them,
virtual). In Java, instance methods are, by default, dynamic. But you can use the fi
nal modifier to declare that an instance method can’t be overridden in a subclass, and
it won’t be subject to dynamic binding.

We have seen final used with variables to effectively make them constants. When
applied to a method, final means that its implementation is constant—no overriding
allowed. final can also be applied to an entire class, which means the class can’t be
subclassed.

In the old days, dynamic method binding came with a significant performance penalty,
and some people are still inclined to use the final modifier to guard against this.
Modern Java runtime systems eliminate the need for this kind of tweaking. A profiling
runtime can determine which methods are not being overridden and “optimistically”
inline them, treating them as if they were final until it becomes necessary to do other‐
wise. As a rule, you should use the final keyword when it is correct for your program’s
structure, not for performance considerations.

Compiler optimizations

In some older versions of Java, the javac compiler can be run with a -O switch, which
tells it to perform certain optimizations, like inlining, statically. Most of these opti‐
mizations are now done at runtime by smarter VMs, so switches like this are generally
not necessary.

Another kind of optimization allows you to include debugging code in your Java source
without incurring a size or performance penalty. Although Java doesn’t have a prepro‐
cessor to explicitly control what source is included, you can get some of the same effects
by making a block of code conditional on a constant (i.e., static and final) variable.
The Java compiler is smart enough to remove this code when it determines that it won’t
be called. For example:

168 | Chapter 6: Relationships Among Classes

 static final boolean DEBUG = false;
 ...
 final void debug (String message) {
 if (DEBUG) {
 System.err.println(message);
 // do other stuff
 ...
 }
 }

In this case, the compiler can recognize that the condition on the DEBUG variable is always
false, and the body of the debug() method will be optimized away. With a modern
compiler, the method call might even be optimized away entirely.

Note that this kind of debugging code is useful for purposes such as logging. In contrast
to assertions, which we covered in Chapter 4, which are supposed to be yes/no tests that
guarantee the correctness of your program logic, these conditional blocks of code might
do expensive formatting or other output processing that is useful during develoment
but you don’t wish to have around in the final product.

Method selection revisited

By now you should have a good, intuitive feel for how methods are selected from the
pool of potentially overloaded and overridden method names of a class. If, however,
you are dying for more detail, we’ll provide it now.

In a previous section, we offered an inductive rule for overloaded method resolution.
It said that a method is considered more specific than another if its arguments are
assignable to the arguments of the second method. We can now expand this rule to
include the resolution of overridden methods by adding the following condition: to be
more specific than another method, the type of the class containing the method must
also be assignable to the type of the class holding the second method.

What does that mean? Well, the only classes whose types are assignable are classes in
the same inheritance hierarchy, meaning that we’re talking about the set of all methods
of the same name in a class or any of its parent or child classes. Because subclass types
are assignable to superclass types, but not vice versa, the resolution is pushed in the way
that we expect down the chain toward the subclasses. This effectively adds a second
dimension to the search, in which resolution is pushed down the inheritance tree toward
more refined classes and, simultaneously, toward the most specific overloaded method
within a given class.

Exceptions and overridden methods

An overriding method may change the behavior of an object, but in some ways, it must
still fulfill the contract of the original method with the user. Specifically, an overriding
method must adhere to the throws clause of the original method. The new method

Subclassing and Inheritance | 169

cannot throw new types of checked exceptions. It can only declare that it throws ex‐
ception types assignable to those thrown by the method in the parent class; that is, it
may declare that it throws the same types of exceptions or subtypes of those declared
by the original method. If the new method does not throw any of the checked exceptions
of the original, it does not have to declare them and callers of the method via the subclass
do not have to guard against them. (In this way, you can override a method to “handle”
exceptions for the user.)

So the new method may declare exactly the same checked exceptions as the original, or
it has the option to refine those types by declaring that it throws more specific subtypes
than the overridden method. This is not the same as just saying that the method can
simply throw subtypes of its declared exceptions; any method can do that. The new
method can actually redefine the throws clause of the method to be more specific. This
technique is called covariant typing of the throws clause, which means that the exception
types against which the user must guard change to become more refined with the
subtype.

Let’s quickly review what the throws clause really means. If a method declares that it
can throw an IOException, it is really saying that it can throw exceptions of type IOEx
ception or its subtypes. For example, FileNotFoundException is a type of IOExcep
tion. A method declaring that it can throw IOException could actually throw FileNot
FoundException or any other subtype of IOException at runtime:

 public void readFile() throws IOException {
 ...
 if (error) throw new FileNotFoundException(filename);
 }

When we call this method, the compiler will ensure that we allow for the possibility of
any kind of IOException, using either a try/catch block or by throwing the exception
from our own method.

When we override a method in a subclass, we get an opportunity to rewrite the throws
clause of the method a bit. The new method must still be backward-compatible with the
original, so any checked exceptions it throws must be assignable to those thrown by the
overridden method. But we can be more specific if we want, refining the type of excep‐
tion to go along with the new method’s behavior. For example:

 class MeatInedibleException extends InedibleException { ... }

 class Animal {
 void eat(Food f) throws InedibleException {
 ...
 }
 }
 class Herbivore extends Animal {
 void eat(Food f) throws MeatInedibleException {
 if (f instanceof Meat)

170 | Chapter 6: Relationships Among Classes

 throw new MeatInedibleException();
 ...
 }
 }

In this code, Animal specifies that it can throw an InedibleException from its eat()
method. Herbivore is a subclass of Animal, so its eat() method must also be able to
throw an InedibleException. However, Herbivore’s eat() method actually declares
that it throws a more specific exception: MeatInedibleException. It can do this because
MeatInedibleException is a subtype of InedibleException. If we are working with
an Herbivore type directly, the compiler will allow us to catch just the MeatInedibleEx
ception and not require us to guard against the more general InedibleException:

 Herbivore creature = ...
 try {
 creature.eat(food);
 } catch (MeatInedibleException) {
 // creature can't eat this food because it's meat
 }

On the other hand, if we don’t care why the food is inedible, we’re free to guard for the
more general InedibleException alone and treat it as any other Animal.

To sum up, an overriding method can refine not only the behavior of the parent method,
but also the type of checked exceptions it throws. Next, we’ll talk about overridden
methods that change their return type in exactly the same way.

Return types and overridden methods

For a method to qualify as an overridden method in a subclass, it must have exactly the
same number and types of arguments. It must have the same “inputs,” as it were. As we
saw in the previous section, overriding methods may refine their “output” to some ex‐
tent. Namely, they can narrow their throws clause by declaring that they throw subtypes
of the original method’s exception types. What about the main “output” of a method?
Its return value? Can we change the return type of a method by overriding it? The answer
is that Java gives us covariant return types on methods just as it does for exception types.

What this means is that when you override a method, you may change the return type
to a subtype of the original method’s return type. For example, if our Animal class has
a factory method called create() that produces an instance of Animal, our Mammal class
could refine the return type to Mammal:

 class Animal {
 Animal create() { ... }
 }
 class Mammal extends Animal {
 Mammal create() { ... }
 }

Subclassing and Inheritance | 171

As we’ll see later, this coding technique is very helpful because it eliminates some run‐
time casting of objects.

Special References: this and super
The special references this and super allow you to refer to the members of the current
object instance or to members of the superclass, respectively. We have seen this used
elsewhere to pass a reference to the current object and to refer to shadowed instance
variables. The reference super does the same for the parents of a class. You can use it
to refer to members of a superclass that have been shadowed or overridden. Being able
to invoke the original method of the superclass allows us to use it as part of our new
method, delegating to its behavior before or after we perform additional work:

 class Animal {
 void eat(Food f) throws InedibleException {
 // consume food
 }
 }

 class Herbivore extends Animal {
 void eat(Food f) throws MeatInedibleException {
 // check if edible
 ...
 try {
 super.eat(f);
 } catch (InedibleException e) { ... }
 }
 }

In this example, our Herbivore class overrides the Animal eat() method to first do
some checking on the food object. After doing its job, it uses super.eat() to call the
(otherwise overridden and inaccessible) implementation of eat() in its superclass.

super prompts a search for the method or variable to begin in the scope of the immediate
superclass rather than the current class. The inherited method or variable found may
reside in the immediate superclass or one further up the tree. The usage of the super
reference when applied to overridden methods of a superclass is special; it tells the
method resolution system to stop the dynamic method search at the superclass instead
of at the most derived class (as it otherwise does). Without super, there would be no
way to access overridden methods.

Casting
A cast explicitly tells the compiler to change the apparent type of an object reference.
The main use for casts is when an object is temporarily assigned to a more general type.
For example, if a String were assigned to a variable of type Object, to use it as a String
again, we’d have to perform a cast to get it back. The compiler recognizes only the

172 | Chapter 6: Relationships Among Classes

declared types of variables and doesn’t know that we actually placed a String into it. In
Java, casts are checked both at compile time and at runtime to make sure they are legal.
At compile time the Java compiler will stop you from trying to perform a cast that cannot
possibly work (such as turning a Date directly into a String). And at runtime, Java will
check that casts that are plausible (such as our Object to String) are actually correct
for the real objects involved.

Attempting to cast an object to an incompatible type at runtime results in a
ClassCastException. Only casts between objects in the same inheritance hierarchy
(and, as we’ll see later, to appropriate interfaces) are legal in Java and pass the scrutiny
of the compiler and the runtime system. Casts in Java affect only the treatment of ref‐
erences; they never change the form of the actual object. This is an important rule to
keep in mind. You never change the object pointed to by a reference by casting it; you
change only the compiler’s (or runtime system’s) notion of it.

A cast can be used to narrow or downcast the type of a reference—to make it more
specific. Often, we’ll do this when we have to retrieve an object from a more general
type of collection or when it has been previously used as a less derived type. (The pro‐
totypical example is using an object in a collection, as we’ll see in Chapter 11.) Con‐
tinuing with our Cat example:

 Animal creature;
 Cat simon;
 // ...

 creature = simon; // OK
 // simon = creature; // Compile-time error, incompatible type
 simon = (Cat)creature; // OK

We can’t reassign the reference in creature to the variable simon even though we know
it holds an instance of a Cat (Simon). We have to perform the indicated cast to narrow
the reference. Note that an implicit cast was performed when we went the other way to
widen the reference simon to type Animal during the first assignment. In this case, an
explicit cast would have been legal but superfluous.

What all this means is that you can’t lie or guess about what an object is. If you have a
Cat object, you can use it as an Animal or even Object because all Java classes are a
subclass of Object. But if you have an Object you think is a Cat, you have to perform
a cast to get it back to an Animal or a Cat. If you aren’t sure whether the Object is a Cat
or a Dog at runtime, you can check it with instanceof before you perform the cast. If
you do not check and you get the cast wrong, the runtime system throws a
ClassCastException.

 if (creature instanceof Cat) {
 Cat cat = (Cat)creature;
 cat.meow();
 }

Subclassing and Inheritance | 173

As we mentioned earlier, casting can affect the selection of compile-time items such as
variables and overloaded methods, but not the selection of overridden methods.
Figure 6-4 shows the difference. As shown in the top half of the diagram, casting the
reference simon to type Animal (widening it) affects the selection of the shadowed vari‐
able weight within it. However, as the lower half of the diagram indicates, the cast doesn’t
affect the selection of the overridden method sleep().

Figure 6-4. Casting and selection of methods and variables

Casting aspersions

Casting in Java is something that programmers strive to avoid. This is not only because
it indicates a weakness in the static typing of the code, but because casts can also simply
be tedious to use and make code less readable. Unfortunately, a great deal of code written
in Java in the past has had no choice but to rely on casting so that it can work with any
type of object the user requires. Java 5.0 introduced a major new language feature,
generics, partly to address this issue. Generics allow Java code to be “typed” for a par‐
ticular kind of object by the user, eliminating the need to cast in many situations. We’ll
cover generics in detail in Chapter 8 and see how they reduce the need for casts in most
Java code.

Using Superclass Constructors
When we talked earlier about constructors, we discussed how the special statement
this() invokes an overloaded constructor upon entry to another constructor. Similarly,

174 | Chapter 6: Relationships Among Classes

the statement super() explicitly invokes the constructor of a superclass. Of course, we
also talked about how Java makes a chain of constructor calls that includes the super‐
class’s constructor, so why use super() explicitly? When Java makes an implicit call to
the superclass constructor, it calls the default constructor. If we want to invoke a
superclass constructor that takes arguments, we have to do so explicitly using super().

If we are going to call a superclass constructor with super(), it must be the first statement
of our constructor, just as this() must be the first call we make in an overloaded con‐
structor. Here’s a simple example:

 class Person {
 Person (String name) {
 // setup based on name
 ...
 }
 ...
 }

 class Doctor extends Person {
 Doctor (String name, String specialty) {
 super(name);
 // setup based on specialty
 ...
 }
 ...
 }

In this example, we use super() to take advantage of the implementation of the super‐
class constructor and avoid duplicating the code to set up the object based on its name.
In fact, because the class Person doesn’t define a default (no arguments) constructor,
we have no choice but to call super() explicitly. Otherwise, the compiler would com‐
plain that it couldn’t find an appropriate default constructor to call. In other words, if
you subclass a class whose constructors all take arguments, you have to invoke one of
the superclass’s constructors explicitly from at least one of your subclass’s constructors.

Instance variables of the class are initialized upon return from the superclass construc‐
tor, whether that’s due to an explicit call to super() or an implicit call to the default
superclass constructor.

Full Disclosure: Constructors and Initialization
We can now tell the full story of how constructors are chained together and when in‐
stance variable initialization occurs. The rule has three parts and is applied repeatedly
for each successive constructor that is invoked:

• If the first statement of a constructor is an ordinary statement—that is, not a call
to this() or super()—Java inserts an implicit call to super() to invoke the default
constructor of the superclass. Upon returning from that call, Java initializes the

Subclassing and Inheritance | 175

instance variables of the current class and proceeds to execute the statements of the
current constructor.

• If the first statement of a constructor is a call to a superclass constructor via su
per(), Java invokes the selected superclass constructor. Upon its return, Java initi‐
alizes the current class’s instance variables and proceeds with the statements of the
current constructor.

• If the first statement of a constructor is a call to an overloaded constructor via
this(), Java invokes the selected constructor, and upon its return, simply proceeds
with the statements of the current constructor. The call to the superclass’s con‐
structor has happened within the overloaded constructor, either explicitly or im‐
plicitly, so the initialization of instance variables has already occurred.

Abstract Methods and Classes
A method in Java can be declared with the abstract modifier to indicate that it’s just a
prototype. An abstract method has no body; it’s simply a signature declaration followed
by a semicolon. You can’t directly use a class that contains an abstract method; you must
instead create a subclass that implements the abstract method’s body:

 abstract void vaporMethod(String name);

In Java, a class that contains one or more abstract methods must be explicitly declared
as an abstract class, also using the abstract modifier:

 abstract classVaporClass {
 ...
 abstract void vaporMethod(String name);
 ...
 }

An abstract class can contain other nonabstract methods and ordinary variable decla‐
rations, but it can’t be instantiated. To be used, it must be subclassed and its abstract
methods must be “overridden” with methods that implement a body. Not all abstract
methods have to be implemented in a single subclass, but a subclass that doesn’t override
all its superclass’s abstract methods with actual, concrete implementations must also be
declared abstract.

 class MyVaporImplementation extends VaporClass {
 void vaporMethod(String name) { ... }
 }

Abstract classes provide a framework for classes that is to be “filled in” by the imple‐
menter. The java.io.InputStream class, for example, has a single abstract method
called read(). Various subclasses of InputStream implement read() in their own ways
to read from their own sources. The rest of the InputStream class, however, provides
extended functionality built on the simple read() method. A subclass of Input

176 | Chapter 6: Relationships Among Classes

Stream inherits these nonabstract methods to provide functionality based on the simple
read() method that the subclass implements.

Interfaces
Java expands on the concept of abstract methods with interfaces. It’s often desirable to
specify a group of abstract methods defining some behavior for an object without tying
it to any implementation at all. In Java, this is called an interface. An interface defines a
set of methods that a class must implement. A class in Java can declare that it imple‐
ments an interface if it implements the required methods. Unlike extending an abstract
class, a class implementing an interface doesn’t have to inherit from any particular part
of the inheritance hierarchy or use a particular implementation.

Interfaces are kind of like Boy Scout or Girl Scout merit badges. A scout who has learned
to build a birdhouse can walk around wearing a little sleeve patch with a picture of one.
This says to the world, “I know how to build a birdhouse.” Similarly, an interface is a list
of methods that define some set of behavior for an object. Any class that implements
each method listed in the interface can declare at compile time that it implements the
interface and wear, as its merit badge, an extra type—the interface’s type.

Interface types act like class types. You can declare variables to be of an interface type,
you can declare arguments of methods to accept interface types, and you can specify
that the return type of a method is an interface type. In each case, what is meant is that
any object that implements the interface (i.e., wears the right merit badge) can fill that
role. In this sense, interfaces are orthogonal to the class hierarchy. They cut across the
boundaries of what kind of object an item is and deal with it only in terms of what it
can do. A class can implement as many interfaces as it desires. In this way, interfaces in
Java replace much of the need for multiple inheritance in other languages (and all its
messy complications).

An interface looks, essentially, like a purely abstract class (i.e., a class with only ab
stract methods). You define an interface with the interface keyword and list its
methods with no bodies, just prototypes (signatures):

 interface Driveable {
 boolean startEngine();
 void stopEngine();
 float accelerate(float acc);
 boolean turn(Direction dir);
 }

The previous example defines an interface called Driveable with four methods. It’s
acceptable, but not necessary, to declare the methods in an interface with the ab
stract modifier; we haven’t done that here. More importantly, the methods of an in‐
terface are always considered public, and you can optionally declare them as so. Why
public? Well, the user of the interface wouldn’t necessarily be able to see them otherwise,

Interfaces | 177

and interfaces are generally intended to describe the behavior of an object, not its
implementation.

Interfaces define capabilities, so it’s common to name interfaces after their capabilities.
Driveable, Runnable, and Updateable are good interface names. Any class that imple‐
ments all the methods can then declare that it implements the interface by using a special
implements clause in its class definition. For example:

 class Automobile implements Driveable {
 ...
 public boolean startEngine() {
 if (notTooCold)
 engineRunning = true;
 ...
 }

 public void stopEngine() {
 engineRunning = false;
 }

 public float accelerate(float acc) {
 ...
 }

 public boolean turn(Direction dir) {
 ...
 }
 ...
 }

Here, the class Automobile implements the methods of the Driveable interface and
declares itself a type of Driveable using the implements keyword.

As shown in Figure 6-5, another class, such as Lawnmower, can also implement the
Driveable interface. The figure illustrates the Driveable interface being implemented
by two different classes. While it’s possible that both Automobile and Lawnmower could
derive from some primitive kind of vehicle, they don’t have to in this scenario.

After declaring the interface, we have a new type, Driveable. We can declare variables
of type Driveable and assign them any instance of a Driveable object:

 Automobile auto = new Automobile();
 Lawnmower mower = new Lawnmower();
 Driveable vehicle;

 vehicle = auto;
 vehicle.startEngine();
 vehicle.stopEngine();

 vehicle = mower;

178 | Chapter 6: Relationships Among Classes

 vehicle.startEngine();
 vehicle.stopEngine();

Figure 6-5. Implementing the Driveable interface

Both Automobile and Lawnmower implement Driveable, so they can be considered in‐
terchangeable objects of that type.

Interfaces as Callbacks
Interfaces can be used to implement “callbacks” in Java. This is when an object effectively
passes a reference to one or more of its methods to another object. The callback occurs
when the called object subsequently invokes one of the methods. In C or C++, this is
prime territory for function pointers; Java uses interfaces instead. More generally, this
concept is extended in Java to the concept of events in which listener objects register
with event sources. We’ll cover events in great detail in later chapters.

Consider two classes: a TickerTape class that displays data and a TextSource class that
provides an information feed. We’d like our TextSource to send any new text data. We
could have TextSource store a reference to a TickerTape object, but then we could
never use our TextSource to send data to any other kind of object. Instead, we’d have
to proliferate subclasses of TextSource that dealt with different types. A more elegant
solution is to have TextSource store a reference to an interface type, TextReceiver:

 interface TextReceiver {
 void receiveText(String text);
 }

Interfaces | 179

 class TickerTape implements TextReceiver {
 public void receiveText(String text) {
 System.out.println("TICKER:\n" + text + "\n");
 }
 }

 class TextSource {
 TextReceiver receiver;

 TextSource(TextReceiver r) {
 receiver = r;
 }

 public void sendText(String s) {
 receiver.receiveText(s);
 }
 }

The only thing TextSource really cares about is finding the right method to invoke in
order to output some text. Using an interface establishes a “contract,” receiveText(),
for that method.

When the TextSource is constructed, a reference to the TickerTape (which implements
the interface) is stored in an instance variable. This “registers” the TickerTape as the
TextSource’s “output device.” Whenever it needs to output data, the TextSource calls
the output device’s receiveText() method. Later, we’ll see that many APIs in Java use
a model like this, but more often many “receivers” may register with the same source.

Interface Variables
Although interfaces mostly allow us to specify behavior without implementation, there’s
one exception. An interface can contain constants (static final variables), which can
be referred to directly through the interface name, and which also appear in any class
that implements the interface. This feature allows constants to be packaged for use with
the methods of the interface:

 interface Scaleable {
 static final int BIG = 0, MEDIUM = 1, SMALL = 2;
 void setScale(int size);
 }

The Scaleable interface defines three integers: BIG, MEDIUM, and SMALL. All variables
defined in interfaces are implicitly final and static; you don’t need to use the modi‐
fiers, but for clarity, we recommend that you do. A class that implements Scaleable
sees these constants:

 class Box implements Scaleable {

 void setScale(int size) {
 switch(size) {

180 | Chapter 6: Relationships Among Classes

 case BIG:
 ...
 case MEDIUM:
 ...
 case SMALL:
 ...
 }
 }
 ...
 }

While there is nothing technically wrong with using interfaces in this way, the main
incentive for doing so disappeared when Java added enumerations and static imports.
Using interfaces for this purpose is bad because all those public, static constants then
appear in the public API of your class and can confuse those who use it. What’s worse,
you can’t remove them later because other code may rely on the class that contains those
values. It’s better to use an enumeration or to put your constants in their own class and
then use the new static import syntax to remove the hassle of referring to them. We’ll
discuss static import later in this chapter. This code snippet gives a glimpse of how it
works:

 enum SizeConstants { BIG, MEDIUM, SMALL }

 // usage
 static import mypackage.SizeConstants;
 ...
 setSize(MEDIUM);

Flag interfaces

Sometimes completely empty interfaces serve as a marker that a class has a special
property. The java.io.Serializeable interface is a good example. Classes that im‐
plement Serializeable don’t have to add any methods or variables. Their additional
type simply identifies them to Java as classes that want to be able to be serialized. This
usage of interfaces is less important now that Java has annotations, described in Chap‐
ter 7.

Subinterfaces
An interface can extend another interface, just as a class can extend another class. Such
an interface is called a subinterface. For example:

 interface DynamicallyScaleable extends Scaleable {
 void changeScale(int size);
 }

The interface DynamicallyScaleable extends our previous Scaleable interface and
adds an additional method. A class that implements DynamicallyScaleable must im‐
plement all the methods of both interfaces.

Interfaces | 181

Note here that we are using the term extends and not implements to subtype the interface.
Interfaces can’t implement anything! But an interface is allowed to extend as many
interfaces as it wants. If you want to extend two or more interfaces, list them after the
extends keyword, separated by commas:

 interface DynamicallyScaleable extends Scaleable, SomethingElseable {
 ...
 }

A class that implements this interface must also implement the other interfaces. Fur‐
thermore, interface subtypes are assignable to their supertypes in the same way that
classes are, so an instance of DynamicallyScaleable can be assigned to a variable of
type Scaleable, as you might expect.

Overlapping and conflicting methods

We should also note the possibility that when an interface extends two or more interfaces
(or when a class implements two or more interfaces), there may be overlapping or con‐
flicting methods in those interfaces. If two methods in different interfaces have exactly
the same signature and return type, there is no problem and the implementation in the
class satisfies both interfaces. If the methods differ in the way that overloaded methods
do, the class must implement both method signatures. If the methods have the same
name but differ in return or exception types, the class cannot implement both and
compile-time errors occur.

Packages and Compilation Units
A package is a name for a group of related classes and interfaces. In Chapter 3, we
discussed how Java uses package names to locate classes during compilation and at
runtime. In this sense, packages are somewhat like libraries; they organize and manage
sets of classes. Packages provide more than just source-code-level organization. They
create an additional level of scope for their classes and the variables and methods within
them. We’ll talk about the visibility of classes later in this section. In the next section,
we discuss the effect that packages have on access to variables and methods among
classes.

Compilation Units
The source code for Java classes is organized into compilation units. A simple compi‐
lation unit contains a single class definition and is named for that class. The definition
of a class named MyClass, for instance, could appear in a file named MyClass.java. For
most of us, a compilation unit is just a file with a .java extension, but theoretically in an
IDE, it could be an arbitrary entity. For brevity, we’ll refer to a compilation unit simply
as a file.

182 | Chapter 6: Relationships Among Classes

The division of classes into their own files is important because the Java compiler as‐
sumes much of the responsibility of a make or build utility. The compiler relies on the
names of source files to find and compile dependent classes. It’s possible to put more
than one class definition into a single file, but there are some restrictions that we’ll
discuss shortly.

A class is declared to belong to a particular package with the package statement. The
package statement must appear as the first statement in a file. There can be only one
package statement, and it applies to the entire file:

 package mytools.text;

 class TextComponent {
 ...
 }

In this example, the class TextComponent is placed in the package mytools.text.

Package Names
Package names are hierarchical in nature, using a dot-separated naming convention.
By default, package name components correspond to directory names and serve as a
unique path for the compiler and runtime systems to locate Java source files and classes.
However, other than for locating files, package names in Java do not create real rela‐
tionships between packages. There is really no such thing as a “subpackage.” The
package namespace is actually flat, not hierarchical. Packages under a particular part of
a package hierarchy are related only by convention. For example, if we create another
package called mytools.text.poetry (presumably for text classes that are specialized
in some way to work with poetry), those classes won’t be part of the mytools.text
package; they won’t have the access privileges of package members. In this sense, the
package-naming convention can be misleading. One minor deviation from this notion
is that assertions, which we described in Chapter 4, can be turned on or off for a package
and all packages “under” it. But that is really just a convenience and not represented in
the code structure.

Class Visibility
By default, a class is accessible only to other classes within its package. This means that
our TextComponent class is available only to other classes in the mytools.text package.
To be used outside of its package, a class must be declared as public:

 package mytools.text;

 public class TextEditor {
 ...
 }

Packages and Compilation Units | 183

The class TextEditor can now be referenced anywhere. A Java source code file can have
only a single public class defined within it and the file must be named for that class.

By hiding unimportant or extraneous classes, a package builds a subsystem that has a
well-defined interface to the rest of the world. Public classes provide a facade for the
operation of the system. The details of its inner workings can remain hidden, as shown
in Figure 6-6. In this sense, packages can hide classes in the way classes hide private
members. Nonpublic classes within a package are sometimes called package private for
this reason.

Figure 6-6. Packages and class visibility

Figure 6-6 shows part of the hypothetical mytools.text package. The classes TextArea
and TextEditor are declared public so that they can be used elsewhere in an applica‐
tion. The class TextComponent is part of the implementation of TextArea and is not
accessible from outside of the package.

Importing Classes
Classes within a package can refer to each other by their simple names. However, to
locate a class in another package, we have to be more specific. Continuing with the
previous example, an application can refer directly to our editor class by its fully qualified
name of mytools.text.TextEditor. But we’d quickly grow tired of typing such long
class names, so Java gives us the import statement. One or more import statements can
appear at the top of a compilation unit, after the package statement. The import state‐
ments list the fully qualified names of classes and packages to be used within the file.

Like a package statement, an import statement applies to the entire compilation unit.
Here’s how you might use an import statement:

 package somewhere.else;
 import mytools.text.TextEditor;

 class MyClass {
 TextEditor editBoy;
 ...
 }

184 | Chapter 6: Relationships Among Classes

As shown in this example, once a class is imported, it can be referenced by its simple
name throughout the code. It is also possible to import all the classes in a package using
the * wildcard notation:

 import mytools.text.*;

Now we can refer to all public classes in the mytools.text package by their simple
names.

Obviously, there can be a problem with importing classes that have conflicting names.
The compiler prevents you from explicitly importing two classes with the same name
and gives you an error if you try to use an ambiguous class that could come from two
packages imported with the package import notation. In this case, you just have to fall
back to using fully qualified names to refer to those classes. You can either use the fully
qualified name directly, or you can add an additional, single class import statement that
disambiguates the class name. It doesn’t matter whether this comes before or after the
package import.

Other than the potential for naming conflicts, there’s no penalty for importing many
classes. Java doesn’t carry extra baggage into the compiled class files. In other words,
Java class files don’t contain information about the imports; they only reference classes
actually used in them.

One note about conventions: in an effort to keep our examples short,
we’ll sometimes import entire packages (.*) even when we use only a
class or two from it. In practice, it’s usually better to be specific when
possible and list individual, fully qualified class imports if there are
only a few of them. Some people (especially those using IDEs that do
it for them) avoid using package imports entirely, choosing to list every
imported class individually. Usually, a compromise is your best bet. If
you are going to use more than two or three classes from a package,
consider the package import.

The unnamed package

A class that is defined in a compilation unit that doesn’t specify a package falls into the
large, amorphous unnamed package. Classes in this nameless package can refer to each
other by their simple names. Their path at compile time and runtime is considered to
be the current directory, so packageless classes are useful for experimentation and test‐
ing (and for brevity in examples in books about Java).

Static imports

A static import is a variation of the import statement that allows you to import static
members of a class into the namespace of your file so that you don’t have to qualify them

Packages and Compilation Units | 185

when you use them. The best example of this is in working with the java.lang.Math
class. With static import, we can get an illusion of built-in math “functions” and con‐
stants like so:

 import static java.lang.Math.*;

 // usage
 double circumference = 2 * PI * radius;
 double length = sin(theta) * side;
 int bigger = max(a, b);
 int positive = abs(num);

This example imports all of the static members of the java.lang.Math class. We can
also import individual members by name:

 import static java.awt.Color.RED;
 import static java.awt.Color.WHITE;
 import static java.awt.Color.BLUE;

 // usage
 setField(BLUE);
 setStripe(RED);
 setStripe(WHITE);

To be precise, these static imports are importing a name, not a specific member, into
the namespace of our file. For example, importing the name “foo” would bring in any
constants named foo as well as any methods named foo() in the class.

Static imports are compelling and make code more succinct. Their usage, however, goes
somewhat against the concepts of object-oriented programming. Static imports are best
for utilities and other global convenience methods that do not require much context.

Visibility of Variables and Methods
One of the most important aspects of object-oriented design is data hiding, or encap‐
sulation. By treating an object in some respects as a “black box” and ignoring the details
of its implementation, we can write more resilient, simpler code with components that
can be easily reused.

Basic Access Modifiers
By default, the variables and methods of a class are accessible to members of the class
itself and to other classes in the same package. To borrow from C++ terminology, classes
in the same package are friendly. We’ll call this the default level of visibility. As you’ll
see as we go on, the default visibility lies in the middle of the range of restrictiveness
that can be specified.

The modifiers public and private, on the other hand, define the extremes. As we
mentioned earlier, methods and variables declared as private are accessible only within

186 | Chapter 6: Relationships Among Classes

4. Early on, the Java language allowed for certain combinations of modifiers, one of which was private pro
tected. The meaning of private protected was to limit visibility strictly to subclasses (and remove package
access). This was later deemed confusing and overly complex. It is no longer supported.

their class. At the other end of the spectrum, members declared as public are accessible
from any class in any package, provided the class itself can be seen. (The class that
contains the methods must also be public to be seen outside of its package, as we
discussed previously.) The public members of a class should define its most general
functionality—what the black box is supposed to do.

Figure 6-7 illustrates the four simplest levels of visibility, continuing the example from
the previous section. Public members in TextArea are accessible from anywhere. Private
members are not visible from outside the class. The default visibility allows access by
other classes in the package.

Figure 6-7. Private, default, protected, and public visibility

The protected modifier allows special access permissions for subclasses. Contrary to
how it might sound, protected is slightly less restrictive than the default level of ac‐
cessibility. In addition to the default access afforded classes in the same package, pro
tected members are visible to subclasses of the class, even if they are defined in a
different package. If you are a C++ programmer used to more restrictive meanings, this
may rub you the wrong way.4

Visibility of Variables and Methods | 187

Table 6-1 summarizes the levels of visibility available in Java; it runs generally from most
to least restrictive. Methods and variables are always visible within a declaring class
itself, so the table doesn’t address that scope.

Table 6-1. Visibility modifiers
Modifier Visibility outside the class

private None

No modifier (default) Classes in the package

protected Classes in package and subclasses inside or outside the package

public All classes

Subclasses and Visibility
Subclasses add two important (but unrelated) complications to the topic of visibility.
First, when you override methods in a subclass, the overriding method must be at least
as visible as the overridden method. While it is possible to take a private method and
override it with a public method in a subclass, the reverse is not possible; you can’t
override a public method with a private method. This restriction makes sense if you
recall that subtypes have to be usable as instances of their supertype (e.g., a Mammal is a
subclass of Animal and, therefore, must be usable as an Animal). If we could override a
method with a less visible method, we would have a problem: our Mammal might not be
able to do all the things an Animal can. However, we can reduce the visibility of a variable.
In this case, the variable acts like any other shadowed variable; the two variables are
distinct and can have separate visibilities in different classes.

The next complication is a bit harder to follow: the protected variables of a class are
visible to its subclasses, but only through objects of the subclass’s type or its subtypes.
In other words, a subclass can see a protected variable of its superclass as an inherited
variable, but it can’t access that same variable via a reference to the superclass itself. This
statement could be confusing because it might not be obvious that visibility modifiers
don’t restrict access between instances of the same class in the same way that they restrict
access between instances of different classes. Two instances of the same class can access
all of each other’s members, including private ones, as long as they refer to each other
as the correct type. Said another way: two instances of Cat can access all of each other’s
variables and methods (including private ones), but a Cat can’t access a protected mem‐
ber in an instance of Animal unless the compiler can prove that the Animal is a Cat. That
is, Cats have the special privileges of being an Animal only with respect to other Cats,
not just any Animal. If you find this hard to follow, don’t worry too much. If you run
into this as a problem in the real world, you are probably trying to do something trickier
than you should.

188 | Chapter 6: Relationships Among Classes

Interfaces and Visibility
Interfaces behave like classes within packages. An interface can be declared public to
make it visible outside its package. Under the default visibility, an interface is visible
only inside its package. Like classes, only one public interface can be declared in a
compilation unit (file).

Arrays and the Class Hierarchy
Now we’re going to shift gears a bit and return to the topic of arrays, considering them
from the object point of view. At the end of Chapter 4, we mentioned that arrays have
a place in the Java class hierarchy, but we didn’t give you any details. Now that we’ve
discussed the object-oriented aspects of Java, we can give you the whole story.

Array classes live in a parallel Java class hierarchy under the Object class. If a class is a
direct subclass of Object, an array class for that base type also exists as a direct subclass
of Object. Arrays of more derived classes are subclasses of the corresponding array
classes. For example, consider the following class types:

 class Animal { ... }
 class Bird extends Animal { ... }
 class Penguin extends Bird { ... }

Figure 6-8 illustrates the class hierarchy for arrays of these classes. Arrays of the same
dimension are related to one another in the same manner as their base type classes. In
our example, Bird is a subclass of Animal, which means that the Bird[] type is a subtype
of Animal[]. In the same way a Bird object can be used in place of an Animal object, a
Bird[] array can be assigned to a variable of type Animal[]:

 Animal [][] animals;
 Bird [][] birds = new Bird [10][10];
 birds[0][0] = new Bird();

 // make animals and birds reference the same array object
 animals = birds;
 observe(animals[0][0]); // processes Bird object

Because arrays are part of the class hierarchy, we can use instanceof to check the type
of an array:

 if (birds instanceof Animal[][]) // true

An array is a type of Object and thus can be assigned to Object type variables:
 Object obj = animals;

Because Java knows the actual type of all objects, you can also cast back if appropriate:
 animals = (Animal [][])something;

Arrays and the Class Hierarchy | 189

Figure 6-8. Arrays in the Java class hierarchy

ArrayStoreException
Because arrays have the property that an array of one type is assignable to an array of
its supertype, it is possible to play games with the compiler and try to trick it into storing
the wrong kind of object in an array. Java may not be able to check the types of all objects
that you place into arrays at compile time. In those cases, it’s possible to receive an
ArrayStoreException at runtime if you try to assign the wrong type of object to an
array element. For example:

 String [] strings = new String [10];
 Object [] objects = strings; // alias String [] as Object []
 objects[0] = new Date(); // Runtime ArrayStoreException!

Here, we have “aliased” a String [] by assigning it to an Object []. By the third line,
the compiler no longer knows the actual type of array stored in the object’s variable and
has no choice but to let us try whatever we want. Of course, at runtime the VM realizes
that we are trying to put a Date object into an array of Strings and throws the
ArrayStoreException for us. This type of problem shouldn’t happen often for you in
straightforward array use. We mention it here because the concept will come up again
when we talk about generics in Chapter 8.

Inner Classes
All of the classes we’ve seen so far in this book have been top-level, “freestanding” classes
declared at the file and package level. But classes in Java can actually be declared at any
level of scope, within any set of curly braces (i.e., almost anywhere that you could put
any other Java statement). These inner classes belong to another class or method as a
variable would and may have their visibility limited to its scope in the same way. Inner
classes are a useful and aesthetically pleasing facility for structuring code. Their cousins,

190 | Chapter 6: Relationships Among Classes

anonymous inner classes, are an even more powerful shorthand that make it seem as if
you can create new kinds of objects dynamically within Java’s statically typed environ‐
ment. In Java, anonymous inner classes play part of the role of closures in other lan‐
guages, giving the effect of handling state and behavior independently of classes.

However, as we delve into their inner workings, we’ll see that inner classes are not quite
as aesthetically pleasing or dynamic as they seem. Inner classes are pure syntactic sugar;
they are not supported by the VM and are instead mapped to regular Java classes by the
compiler. As a programmer, you may never need be aware of this; you can simply rely
on inner classes like any other language construct. However, you should know a little
about how inner classes work to better understand the compiled code and a few potential
side effects.

Inner classes are essentially nested classes, for example:
 Class Animal {
 Class Brain {
 ...
 }
 }

Here, the class Brain is an inner class: it is a class declared inside the scope of class
Animal. Although the details of what that means require a bit of explanation, we’ll start
by saying that Java tries to make the meaning, as much as possible, the same as for the
other members (methods and variables) living at that level of scope. For example, let’s
add a method to the Animal class:

 Class Animal {
 Class Brain {
 ...
 }
 void performBehavior() { ... }
 }

Both the inner class Brain and the method performBehavior() are within the scope of
Animal. Therefore, anywhere within Animal, we can refer to Brain and performBehav
ior() directly, by name. Within Animal, we can call the constructor for Brain (new
Brain()) to get a Brain object or invoke performBehavior() to carry out that method’s
function. But neither Brain nor performBehavior() are generally accessible outside of
the class Animal without some additional qualification.

Within the body of the inner Brain class and the body of the performBehavior()
method, we have direct access to all the other methods and variables of the Animal class.
So, just as the performBehavior() method could work with the Brain class and create
instances of Brain, methods within the Brain class can invoke the performBehav
ior() method of Animal as well as work with any other methods and variables declared
in Animal. The Brain class “sees” all of the methods and variables of the Animal class
directly in its scope.

Inner Classes | 191

That last bit has important consequences. From within Brain, we can invoke the method
performBehavior(); that is, from within an instance of Brain, we can invoke the per
formBehavior() method of an instance of Animal. Well, which instance of Animal? If
we have several Animal objects around (say, a few Cats and Dogs), we need to know
whose performBehavior() method we are calling. What does it mean for a class defi‐
nition to be “inside” another class definition? The answer is that a Brain object always
lives within a single instance of Animal: the one that it was told about when it was created.
We’ll call the object that contains any instance of Brain its enclosing instance.

A Brain object cannot live outside of an enclosing instance of an Animal object. Any‐
where you see an instance of Brain, it will be tethered to an instance of Animal. Although
it is possible to construct a Brain object from elsewhere (i.e., another class), Brain always
requires an enclosing instance of Animal to “hold” it. We’ll also say now that if Brain is
to be referred to from outside of Animal, it acts something like an Animal.Brain class.
And just as with the performBehavior() method, modifiers can be applied to restrict
its visibility. All of the usual visibility modifiers apply, and inner classes can also be
declared static, as we’ll discuss later.

We’ve said that within the Animal class, we can construct a Brain in the ordinary way,
using new Brain(), for example. Although we’d probably never find a need to do it, we
can also construct an instance of Brain from outside the class by referencing an instance
of Animal. To do this requires that the inner class Brain be accessible and that we use a
special form of the new operator designed just for inner classes:

 Animal monkey = new Animal();
 Animal.Brain monkeyBrain = monkey.new Brain();

Here, the Animal instance monkey is used to qualify the new operator on Brain. Again,
this is not a very common thing to do and you can probably just forget that we said
anything about it. Static inner classes are more useful. We’ll talk about them a bit later.

Inner Classes as Adapters
A particularly important use of inner classes is to make adapter classes. An adapter class
is a “helper” class that ties one class to another in a very specific way. Using adapter
classes, you can write your classes more naturally, without having to anticipate every
conceivable user’s needs in advance. Instead, you provide adapter classes that marry
your class to a particular interface. As an example, let’s say that we have an EmployeeList
object:

 public class EmployeeList {
 private Employee [] employees = ... ;
 ...
 }

EmployeeList holds information about a set of employees. Let’s say that we would like
to have EmployeeList provide its elements via an iterator. An iterator is a simple,

192 | Chapter 6: Relationships Among Classes

standard interface to a sequence of objects. The java.util.Iterator interface has sev‐
eral methods:

 public interface Iterator {
 boolean hasNext();
 Object next();
 void remove();
 }

It lets us step through its elements, asking for the next one and testing to see if more
remain. The iterator is a good candidate for an adapter class because it is an interface
that our EmployeeList can’t readily implement itself. Why can’t the list implement the
iterator directly? Because an iterator is a “one-way,” disposable view of our data. It isn’t
intended to be reset and used again. It may also be necessary for there to be multiple
iterators walking through the list at different points. We must, therefore, keep the iterator
implementation separate from the EmployeeList itself. This is crying out for a simple
class to provide the iterator capability. But what should that class look like?

Before we knew about inner classes, our only recourse would have been to make a new
“top-level” class. We would probably feel obliged to call it EmployeeListIterator:

 class EmployeeListIterator implements Iterator {
 // lots of knowledge about EmployeeList
 ...
 }

Here we have a comment representing the machinery that the EmployeeListItera
tor requires. Think for just a second about what you’d have to do to implement that
machinery. The resulting class would be completely coupled to the EmployeeList and
unusable in other situations. Worse, in order to to function, it must have access to the
inner workings of EmployeeList. We would have to allow EmployeeListIterator ac‐
cess to the private array in EmployeeList, exposing this data more widely than it should
be. This is less than ideal.

This sounds like a job for inner classes. We already said that EmployeeListIterator
was useless without an EmployeeList; this sounds a lot like the “lives inside” relationship
we described earlier. Furthermore, an inner class lets us avoid the encapsulation problem
because it can access all the members of its enclosing instance. Therefore, if we use an
inner class to implement the iterator, the array employees can remain private, invisible
outside the EmployeeList. So let’s just shove that helper class inside the scope of our
EmployeeList:

 public class EmployeeList {
 private Employee [] employees = ... ;
 ...

 class Iterator implements java.util.Iterator {
 int element = 0;

Inner Classes | 193

 boolean hasNext() {
 return element < employees.length ;
 }

 Object next() {
 if (hasNext())
 return employees[element++];
 else
 throw new NoSuchElementException();
 }

 void remove() {
 throw new UnsupportedOperationException();
 }
 }
 }

Now EmployeeList can provide a method like the following to let other classes work
with the list:

 Iterator getIterator() {
 return new Iterator();
 }

One effect of the move is that we are free to be a little more familiar in the naming of
our iterator class. Since it is no longer a top-level class, we can give it a name that is
appropriate only within the EmployeeList. In this case, we’ve named it Iterator to
emphasize what it does, but we don’t need a name like EmployeeIterator that shows
the relationship to the EmployeeList class because that’s implicit. We’ve also filled in
the guts of the Iterator class. As you can see, now that it is inside the scope of Employ
eeList, Iterator has direct access to its private members, so it can directly access the
employees array. This greatly simplifies the code and maintains compile-time safety.

Before we move on, we should note that inner classes can have constructors, variables,
and initializers, even though we didn’t need one in this example. They are, in all respects,
real classes.

Inner Classes Within Methods
Inner classes may also be declared for “local” use within the body of a method. Returning
to the Animal class, we can put Brain inside the performBehavior() method if we decide
that the class is useful only inside that method:

 Class Animal {
 void performBehavior() {
 Class Brain {
 ...
 }
 }
 }

194 | Chapter 6: Relationships Among Classes

In this situation, the rules governing what Brain can see are the same as in our earlier
example. The body of Brain can see anything in the scope of performBehavior() and
above it (in the body of Animal). This includes local variables of performBehavior()
and its arguments. But because of the fleeting nature of a method invocation, there are
a few limitations and additional restrictions, as described in the following sections. If
you are thinking that inner classes within methods sounds arcane, bear with us until we
talk about anonymous inner classes, which are tremendously useful.

Limitations on inner classes in methods

performBehavior() is a method, and method invocations have limited lifetimes. When
they exit, their local variables normally disappear into the abyss. However, an instance
of Brain (like any object created in the method) lives on as long as it is referenced. Java
must make sure that any local variables used by instances of Brain created within an
invocation of performBehavior() also live on. Furthermore, all the instances of Brain
that we make within a single invocation of performBehavior() must see the same local
variables. To accomplish this, the compiler must be allowed to make copies of local
variables. Thus, their values cannot change once an inner class has seen them. This
means that any of the method’s local variables or arguments that are referenced by the
inner class must be declared final. The final modifier means that they are constant
once assigned. This is a little confusing and easy to forget, but the compiler will gra‐
ciously remind you. For example:

 void performBehavior(final boolean nocturnal)
 {
 class Brain {
 void sleep() {
 if (nocturnal) { ... }
 }
 }
 }

In this code snippet, the argument nocturnal to the performBehavior() method must
be marked final so that it can be referenced within the inner class Brain. This is just
a technical limitation of how inner classes are implemented, ensuring that it’s OK for
the Brain class to keep a copy of the value.

Static inner classes

We mentioned earlier that the inner class Brain of the class Animal can, in some ways,
be considered an Animal.Brain class—that is, it is possible to work with a Brain from
outside the Animal class, using just such a qualified name: Animal.Brain. But as we
described, given that our Animal.Brain class always requires an instance of an Ani
mal as its enclosing instance, it’s not as common to work with them directly in this way.

Inner Classes | 195

However, there is another situation in which we want to use inner classes by name. An
inner class that lives within the body of a top-level class (not within a method or another
inner class) can be declared static. For example:

 class Animal {
 static class MigrationPattern {
 ...
 }
 ...
 }

A static inner class such as this acts just like a new top-level class called Animal.Migra
tionPattern. We can use it just like any other class, without regard to any enclosing
instances. Although this may seem strange, it is not inconsistent because a static member
never has an object instance associated with it. The requirement that the inner class be
defined directly inside a top-level class ensures that an enclosing instance won’t be
needed. If we have permission, we can create an instance of the class using the qualified
name:

 Animal.MigrationPattern stlToSanFrancisco =
 new Animal.MigrationPattern();

As you see, the effect is that Animal acts something like a minipackage, holding the
MigrationPattern class. Here, we have used the fully qualified name, but we could also
import it like any other class:

 import Animal.MigrationPattern;

This statement enables us to refer to the class simply as MigrationPattern. We can use
all the standard visibility modifiers on inner classes, so a static inner class can have
private, protected, default, or public visibility.

Here’s another example. The Java 2D API uses static inner classes to implement speci‐
alized shape classes (i.e., the java.awt.geom.Rectangle2D class has two inner classes,
Float and Double, that implement two different precisions). These shape classes are
actually very simple subclasses; it would have been sad to have to multiply the number
of top-level classes in that package by three to accommodate all of them. With inner
classes, we can bundle them with their respective classes:

 Rectangle2D.Float rect = new Rectangle2D.Float();

Anonymous inner classes

Now we get to the best part. As a general rule, the more deeply encapsulated and limited
in scope our classes are, the more freedom we have in naming them. We saw this in our
earlier iterator example. This is not just a purely aesthetic issue. Naming is an important
part of writing readable, maintainable code. We generally want to use the most concise,
meaningful names possible. A corollary to this is that we prefer to avoid doling out
names for purely ephemeral objects that are going to be used only once.

196 | Chapter 6: Relationships Among Classes

Anonymous inner classes are an extension of the syntax of the new operation. When
you create an anonymous inner class, you combine a class declaration with the allocation
of an instance of that class, effectively creating a “one-time only” class and a class instance
in one operation. After the new keyword, you specify either the name of a class or an
interface, followed by a class body. The class body becomes an inner class, which either
extends the specified class or, in the case of an interface, is expected to implement the
interface. A single instance of the class is created and returned as the value.

For example, we could do away with the declaration of the Iterator class in the Em
ployeeList example by using an anonymous inner class in the getIterator() method:

 Iterator getIterator()
 {
 return new Iterator() {
 int element = 0;
 boolean hasNext() {
 return element < employees.length ;
 }
 Object next() {
 if (hasNext())
 return employees[element++];
 else
 throw new NoSuchElementException();
 }
 void remove() {
 throw new UnsupportedOperationException();
 }
 };
 }

Here, we have simply moved the guts of Iterator into the body of an anonymous inner
class. The call to new implicitly creates a class that implements the Iterator interface
and returns an instance of the class as its result. Note the extent of the curly braces and
the semicolon at the end. The getIterator() method contains a single statement, the
return statement.

The previous example is a bit extreme and certainly does not improve readability. Inner
classes are best used when you want to implement a few lines of code, but the verbiage
and conspicuousness of declaring a separate class detracts from the task at hand. Here’s
a better example. Suppose that we want to start a new thread to execute the performBe
havior() method of our Animal:

 new Thread() {
 public void run() { performBehavior(); }
 }.start();

Here, we have gone over to the terse side. We’ve allocated and started a new Thread,
using an anonymous inner class that extends the Thread class and invokes our perform
Behavior() method in its run() method. The effect is similar to using a method pointer

Inner Classes | 197

in some other language. However, the inner class allows the compiler to check type
consistency, which would be more difficult (or impossible) with a true method pointer.
At the same time, our anonymous adapter class with its three lines of code is much more
efficient and readable than creating a new, top-level adapter class named AnimalBeha
viorThreadAdapter.

While we’re getting a bit ahead of the story, anonymous adapter classes are a perfect fit
for event handling (which we cover fully in Chapter 16). Skipping a lot of explanation,
let’s say you want the method handleClicks() to be called whenever the user clicks the
mouse. You would write code such as:

 addMouseListener(new MouseInputAdapter() {
 public void mouseClicked(MouseEvent e) { handleClicks(e); }
 });

In this case, the anonymous class extends the MouseInputAdapter class by overriding
its mouseClicked() method to call our method. A lot is going on in a very small space,
but the result is clean, readable code. You assign method names that are meaningful to
you while allowing Java to do its job of type checking.

Scoping of the “this” reference

Sometimes an inner class may want to get a handle on its “parent” enclosing instance.
It might want to pass a reference to its parent or to refer to one of the parent’s variables
or methods that has been hidden by one of its own. For example:

 class Animal {
 int size;
 class Brain {
 int size;
 }
 }

Here, as far as Brain is concerned, the variable size in Animal is shadowed by its own
version.

Normally, an object refers to itself using the special this reference (implicitly or ex‐
plicitly). But what is the meaning of this for an object with one or more enclosing
instances? The answer is that an inner class has multiple this references. You can specify
which this you want by prefixing it with the name of the class. For instance (no pun
intended), we can get a reference to our Animal from within Brain, like so:

 class Brain {
 Animal ourAnimal = Animal.this;
 ...
 }

Similarly, we could refer to the size variable in Animal:

198 | Chapter 6: Relationships Among Classes

 class Brain {
 int animalSize = Animal.this.size;
 ...
 }

How do inner classes really work?

Finally, let’s get our hands dirty and take a look at what’s really going on when we use
an inner class. We’ve said that the compiler is doing all the things that we had hoped to
forget about. Let’s see what’s actually happening. Try compiling this trivial example:

 class Animal {
 class Brain {
 }
 }

What you’ll find is that the compiler generates two .class files: Animal.class and Animal
$Brain.class.

The second file is the class file for our inner class. Yes, as we feared, inner classes are
really just compiler magic. The compiler has created the inner class for us as a normal,
top-level class and named it by combining the class names with a dollar sign. The dollar
sign is a valid character in class names, but is intended for use only by automated tools.
(Please don’t start naming your classes with dollar signs.) Had our class been more
deeply nested, the intervening inner class names would have been attached in the same
way to generate a unique top-level name.

Now take a look at the class with the JDK’s javap utility. Starting in Java 5.0, you can
refer to the inner class as Animal.Brain, but in earlier versions of Java, you may have
to call the class by its real name, Animal$Brain:

 % javap 'Animal$Brain'
 class Animal$Brain extends java.lang.Object {
 Animal$Brain(Animal);
 }

On a Windows system, it’s not necessary to quote the argument, as we did on this Unix
command line.

You’ll see that the compiler has given our inner class a constructor that takes a reference
to an Animal as an argument. This is how the real inner class gets the reference to its
enclosing instance.

The worst thing about these additional class files is that you need to know they are there.
Utilities such as jar don’t automatically find them; when you’re invoking such a utility,
you need to specify these files explicitly or use a wildcard to find them:

 % jar cvf animal.jar Animal*class

Inner Classes | 199

5. Inner classes were added to Java in version 1.1.

Security implications

Given what we just saw—that the inner class really does exist as an automatically gen‐
erated top-level class—how does it get access to private variables? The answer, unfortu‐
nately, is that the compiler is forced to break the encapsulation of your object and insert
accessor methods so that the inner class can reach them. The accessor methods are given
package-level access, so your object is still safe within its package walls, but it is con‐
ceivable that this difference could be meaningful if people were allowed to create new
classes within your package.

The visibility modifiers on inner classes also have some problems. Current implemen‐
tations of the VM do not implement the notion of a private or protected class within
a package, so giving your inner class anything other than public or default visibility is
only a compile-time guarantee. It is difficult to conceive of how these security issues
could be abused, but it is interesting to note that Java is straining a bit to stay within its
original design.5

200 | Chapter 6: Relationships Among Classes

CHAPTER 7

Working with Objects and Classes

In the previous two chapters, we came to know Java objects and their interrelationships.
We will now climb the scaffolding of the Java class hierarchy to the very top and finish
our study of the core language at the summit. In this chapter, we’ll talk about the Object
class itself, which is the “grandmother” of all classes in Java. We’ll also describe the even
more fundamental Class class (the class named “Class”) that represents Java classes in
the Java virtual machine. We’ll discuss what you can do with these components in their
own right. This will lead us to a more general topic: the Java Reflection API, which lets
a Java program inspect and interact with (possibly unknown) objects dynamically at
runtime. Finally, we’ll also talk about the Java Annotations API, which allows developers
to add metadata to their source code for use by the compiler and runtime systems that
look for it.

The Object Class
java.lang.Object is the ancestor of all objects; it’s the primordial class from which all
other classes are ultimately derived. Methods defined in Object are, therefore, very
important because they appear in every instance of every class, throughout all of Java.
At last count, there were nine public methods and two protected methods in Object.
Five of these are versions of wait() and notify() that are used to synchronize threads
on object instances, as we’ll discuss in Chapter 9. The remaining four methods are used
for basic comparison, conversion, and administration.

Every object has a toString() method that can be called when it’s to be represented as
a text value. PrintStream objects use toString() to print data, as discussed in Chap‐
ter 12. toString() is also used implicitly when an object is referenced in a string con‐
catenation. Here are some examples:

 MyObj myObject = new MyObj();
 Answer theAnswer = new Answer();

201

 System.out.println(myObject);
 String s = "The answer is: " + theAnswer ;

To be friendly, a new kind of object can override toString() and implement its own
version that provides appropriate information about itself. This is particularly helpful
in debugging, where it is common to print the string value of an object to see what is
going on. Two other methods, equals() and hashCode(), may also require specializa‐
tion when you create a new class.

Equality and Equivalence
equals() determines whether two objects are equivalent. Precisely what that means for
a particular class is something that you’ll have to decide for yourself. Two String objects,
for example, are considered equivalent if they hold precisely the same characters in the
same sequence:

 String userName = "Joe";
 ...
 if (userName.equals(suspectName))
 arrest(userName);

Using equals() is not the same as the “==” operator in Java:
 if (userName == suspectName) // Wrong!

This statement tests whether the two reference variables, userName and suspectName,
refer to the same object. It is a test for identity, not equality. Two variables that are
identical (point to the same object) will necessarily be equal, but the converse is not
always true. It is possible in Java to construct two String objects with the same contents
that are, nonetheless, different instances of the String class—although, as we’ll describe
later, Java tries to help you avoid that when it can.

A class should override the equals() method if it needs to implement its own notion
of equality. If you have no need to compare objects of a particular class, you don’t nec‐
essarily need to override equals().

Watch out for accidentally overloading equals() if you mean to override it. With over‐
loading, the method signatures differ; with overriding, they must be the same. The
equals() method signature specifies an Object argument so that an object can be com‐
pared to any other kind of object, not only those of its own class type. You’ll probably
want to consider only objects of the same type for equivalence. But in order to override
(not overload) equals(), the method must specify its argument to be an Object.

Here’s an example of correctly overriding an equals() method in class Shoes with an
equals() method in subclass Sneakers. Using its own method, a Sneakers object can
compare itself with any other object:

 class Sneakers extends Shoes {
 public boolean equals(Object arg) {

202 | Chapter 7: Working with Objects and Classes

 if ((arg != null) && (arg instanceof Sneakers)) {
 // compare arg with this object to check equivalence
 // If comparison is okay...
 return true;
 }
 return false;
 }
 ...
 }

If we specified public boolean equals(Sneakers arg) ... in the Sneakers class,
we’d overload the equals() method instead of overriding it. If the other object happens
to be assigned to a non-Sneakers variable, the method signature won’t match. The result:
superclass Shoes’s implementation of equals() is called, which may or may not be what
you intended.

Hashcodes
The hashCode() method returns an integer that is a hashcode for the object. A hash‐
code is like a signature or checksum for an object; it’s a random-looking identifying
number that is usually generated from the contents of the object. The hashcode should
always be different for instances of the class that contain different data, but should be
the same for instances that compare “equal” with the equals() method. Hashcodes are
used in the process of storing objects in a Hashtable or a similar kind of collection. (A
Hashtable is sometimes called a dictionary or associative array in other languages.) A
random distribution of the hashcode values helps the Hashtable optimize its storage
of objects by serving as an identifier for distributing them into storage evenly and quickly
locating them later.

The default implementation of hashCode() in Object does not really implement this
scheme. Instead it assigns each object instance a unique number. If you don’t override
this method when you create a subclass, each instance of your class will have a unique
hashcode. This is sufficient for some objects. However, if your classes have a notion of
equivalent objects (if you have overridden equals()) and you want equal objects to
serve as equivalent keys in a Hashtable, you should override hashCode() so that your
equivalent objects generate the same hashcode value. We’ll return to the topic of
hashcodes in more detail in Chapter 11 when we discuss the Hashtable and HashMap
classes.

Cloning Objects
Objects can use the clone() method of the Object class to make copies of themselves.
A copied object is a new object instance, separate from the original. It may or may not
contain exactly the same state (the same instance variable values) as the original; that is
controlled by the object being copied. Just as important, the decision as to whether the
object allows itself to be cloned at all is up to the object.

The Object Class | 203

The Java Object class provides the mechanism to make a simple copy of an object
including all of its “shallow” state—a bitwise copy. But by default, this capability is turned
off. (We’ll show why in a moment.) To make itself cloneable, an object must implement
the java.lang.Cloneable interface. This is a flag interface indicating to Java that the
object wants to cooperate in being cloned (the interface does not actually contain any
methods). If the object isn’t cloneable, the clone() method throws a CloneNotSuppor
tedException.

clone() is a protected method, so by default it can be called only by an object on itself,
an object in the same package, or another object of the same type or a subtype. If we
want to make an object cloneable by everyone, we have to override its clone() method
and make it public.

Here is a simple, cloneable class—Sheep:
 import java.util.HashMap;

 public class Sheep implements Cloneable {
 HashMap flock = new HashMap();

 public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 throw new Error(
 "This should never happen because we implement Cloneable!");
 }
 }
 }

Sheep has one instance variable, a HashMap called flock (which the sheep uses to keep
track of its fellow sheep). Our class implements the Cloneable interface, indicating that
it is OK to copy Sheep, and it has overridden the clone() method to make it public.
Our clone() simply returns the object created by the superclass’s clone() method—a
copy of our Sheep. Unfortunately, the compiler is not smart enough to figure out that
the object we’re cloning will never throw the CloneNotSupportedException, so we have
to guard against it anyway. Our sheep is now cloneable. We can make copies like so:

 Sheep one = new Sheep();
 Sheep anotherOne = (Sheep)one.clone();

The cast is necessary here because the return type of clone() is Object. We can do better
by changing the return type of the overridden clone() method in the subclass and
moving the cast into the clone() method itself, to make things a little easier on the users
of the class:

 public Sheep clone() {
 try {
 return (Sheep)super.clone();
 } catch (CloneNotSupportedException e) {

204 | Chapter 7: Working with Objects and Classes

 throw new Error("This should never happen!");
 }
 }

 // usage
 Sheep one = new Sheep();
 Sheep anotherOne = one.clone();

In either case, we now have two sheep instead of one. A properly implemented equals()
method would tell us that the sheep are equivalent, but == tells us that they are, in fact,
two distinct instances of Sheep. Java has made a shallow copy of our Sheep. What’s so
shallow about it? Java has simply copied the values of our variables. That means that the
flock instance variable in each of our Sheep still holds the same information—that is,
both sheep have a reference to the same HashMap. The situation looks like that shown
in Figure 7-1.

Figure 7-1. Shallow copy of an object

This may or may not be what you intended. If we instead want our Sheep to have separate
copies of its full state (or something in between), we can take control ourselves. In the
following example, DeepSheep, we implement a deep copy, duplicating our own flock
variable:

 public class DeepSheep implements Cloneable {
 HashMap flock = new HashMap();

 public DeepSheep clone() {
 try {
 DeepSheep copy = (DeepSheep)super.clone();
 copy.flock = (HashMap)flock.clone();
 return copy;
 } catch (CloneNotSupportedException e) {
 throw new Error("This should never happen!");
 }
 }
 }

The Object Class | 205

Our clone() method now clones the HashMap as well. Now, when a DeepSheep is cloned,
the situation looks more like that shown in Figure 7-2.

Each DeepSheep now has its own full copy of the map, which can contain different
elements. You can see now why objects are not cloneable by default. It would make no
sense to assume that all objects can be sensibly duplicated with a shallow copy. Likewise,
it makes no sense to assume that a deep copy is necessary, or even correct. In this case,
we probably don’t need a deep copy; the flock contains the same members no matter
which sheep you’re looking at, so there’s no need to copy the HashMap. But the decision
depends on the object itself and its requirements.

Figure 7-2. Deep copy of an object

The last method of Object we need to discuss is getClass(). This method returns a
reference to the Class object that produced the Object instance. We’ll talk about it next.

The Class Class
A good measure of the complexity of an object-oriented language is the degree of ab‐
straction of its class structures. We know that every object in Java is an instance of a
class, but what exactly is a class? In languages like traditional C++, objects are formulated
by and instantiated from classes, but classes are really just artifacts of the compiler. In
those languages, you see classes mentioned only in source code, not at runtime. By
comparison, classes in Smalltalk are real, runtime entities in the language that are
themselves described by “metaclasses” and “metaclass classes.” Java strikes a happy me‐
dium between these two languages with what is effectively a two-tiered system that uses
Class objects.

Classes in Java source code are represented at runtime by instances of the
java.lang.Class class. There’s a Class object for every object type you use; this Class
object is responsible for producing instances of that type. But you don’t generally have
to worry about that unless you are interested in loading new kinds of classes dynamically
at runtime or using a highly abstracted API that wants a “type” instead of an actual

206 | Chapter 7: Working with Objects and Classes

argument. The Class object is also the basis for “reflecting” on a class to find its methods
and other properties, allowing you to find out about an object’s structure or invoke its
methods programmatically at runtime. We’ll discuss reflection in the next section.

We get the Class associated with a particular object with the getClass() method:
 String myString = "Foo!"
 Class stringClass = myString.getClass();

We can also get the Class reference for a particular class statically, using the .class
notation:

 Class stringClass = String.class;

The .class reference looks like a static field that exists in every class. However, it is
really resolved by the compiler.

One thing we can do with the Class object is ask for its full name:
 String s = "Boofa!";
 Class stringClass = s.getClass();
 System.out.println(stringClass.getName()); // "java.lang.String"

Another thing that we can do with a Class is to ask it to produce a new instance of its
type of object. Continuing with the previous example:

 try {
 String s2 = (String)stringClass.newInstance();
 }
 catch (InstantiationException e) { ... }
 catch (IllegalAccessException e) { ... }

Here, newInstance() has a return type of Object, so we have to cast it to a reference of
the appropriate type. This is fine, but we’ll see in the next chapter that the Class class
is a generic class, which means that we can parameterize it to be more specific about
the Java type we’re dealing with; that is, we can get the newInstance() method to return
the correct type directly without the cast. We’ll show this here, but don’t worry if it
doesn’t make any sense yet:

 Class<String> stringClass = String.class;
 try {
 String s2 = stringClass.newInstance(); // no cast necessary
 }
 catch (InstantiationException e) { ... }
 catch (IllegalAccessException e) { ... }

A couple of exceptions can be thrown here. An InstantiationException indicates that
we’re trying to instantiate an abstract class or an interface. IllegalAccessExcep
tion is a more general exception that indicates that we can’t access a constructor for the
object. Note that newInstance() can create only an instance of a class that has an ac‐
cessible default constructor. It doesn’t allow us to pass any arguments to a constructor.
(In the next section, we’ll learn how to do just that using the Reflection API.)

The Class Class | 207

All of this becomes more meaningful when we add the capability to look up a class by
name. forName() is a static method of Class that returns a Class object given its name
as a String:

 try {
 Class sneakersClass = Class.forName("Sneakers");
 } catch (ClassNotFoundException e) { ... }

A ClassNotFoundException is thrown if the class can’t be located.

Combining these tools, we have the power to load new kinds of classes dynamically.
When combined with the power of interfaces, we can use new data types loaded by a
string name in our applications:

 interface Typewriter {
 void typeLine(String s);
 ...
 }

 class Printer implements Typewriter {
 ...
 }

 class MyApplication {
 ...
 String outputDeviceName = "Printer";

 try {
 Class newClass = Class.forName(outputDeviceName);
 Typewriter device = (Typewriter)newClass.newInstance();
 ...
 device.typeLine("Hello...");
 }
 catch (Exception e) { ... }
 }

Here, we have an application loading a class implementation (Printer, which imple‐
ments the Typewriter interface) knowing only its name. Imagine the name was entered
by the user or looked up from a configuration file. This kind of class loading is the basis
for many kinds of configurable systems in Java.

Reflection
In this section, we’ll take a look at the Java Reflection API, supported by the classes in
the java.lang.reflect package. As its name suggests, reflection is the ability for a class
or object to examine itself. Reflection lets Java code look at an object (more precisely,
the class of the object) and determine its structure. Within the limits imposed by the
security manager, you can find out what constructors, methods, and fields a class has,
as well as their attributes. You can even change the value of fields, dynamically invoke

208 | Chapter 7: Working with Objects and Classes

methods, and construct new objects, much as if Java had primitive pointers to variables
and methods. And you can do all this on objects that your code has never even seen
before. The Annotations API also has the ability to preserve metadata about source code
in the compiled classes and we can retrieve this information with the Reflection API.

We don’t have room here to cover the Reflection API fully. As you might expect, the
reflect package is complex and rich in details. But reflection has been designed so that
you can do a lot with relatively little effort; 20% of the effort gives you 80% of the fun.

The Reflection API can be used to determine the capabilities of objects at runtime. It’s
used by object serialization to tear apart and build objects for transport over streams or
into persistent storage. Obviously, the power to pick apart objects and see their internals
must be zealously guarded by the security manager. The general rule is that your code
is not allowed to do anything with the Reflection API that it couldn’t do with static
(ordinary, compiled) Java code. In short, reflection is a powerful tool, but it isn’t an
automatic loophole. By default, an object can’t use it to work with fields or methods that
it wouldn’t normally be able to access (for example, another object’s private fields),
although those privileges can be granted, as we’ll discuss later.

The three primary features of a class are its fields (variables), methods, and constructors.
For purposes of describing and accessing an object, these three features are represented
by separate classes in the Reflection API: java.lang.reflect.Field, java.lang.re
flect.Method , and java.lang.reflect.Constructor . We can look up these members
of a class through the Class object.

The Class class provides two pairs of methods for getting at each type of feature. One
pair allows access to a class’s public features (including those inherited from its super‐
classes) while the other pair allows access to any public or nonpublic item declared
directly within the class (but not features that are inherited), subject to security con‐
siderations. Some examples:

• getFields() returns an array of Field objects representing all a class’s public vari‐
ables, including those it inherits.

• getDeclaredFields() returns an array representing all the variables declared in
the class, regardless of their access modifiers, but not including inherited variables.

• For constructors, the distinction between “all constructors” and “declared con‐
structors” is not meaningful (classes do not inherit constructors), so getConstruc
tors() and getDeclaredConstructors() differ only in that the former returns
public constructors while the latter returns all the class’s constructors.

Each set of methods includes the methods for listing all the items at once (for example,
getFields()) and an additional method for looking up a particular item by name and—
for methods and constructors—by signature (for example, getField(), which takes the
field name as an argument).

Reflection | 209

The following listing shows the methods in the Class class:
Field [] getFields();

Get all public variables, including inherited ones.

Field getField(String name);

Get the specified public variable, which may be inherited.

Field [] getDeclaredFields();

Get all public and nonpublic variables declared in this class (not including those
inherited from superclasses).

Field getDeclaredField(String name);

Get the specified variable, public or nonpublic, declared in this class (inherited
variables not considered).

Method [] getMethods();

Get all public methods, including inherited ones.

Method getMethod(String name, Class ... argumentTypes);

Get the specified public method that has arguments that match the types listed in
argumentTypes. The method may be inherited.

Method [] getDeclaredMethods();

Get all public and nonpublic methods declared in this class (not including those
inherited from superclasses).

Method getDeclaredMethod(String name, Class ... argumentTypes);

Get the specified method, public or nonpublic, that has arguments that match the
types listed in argumentTypes, and which is declared in this class (inherited meth‐
ods not considered).

Constructor [] getConstructors();

Get all public constructors of this class.

Constructor getConstructor(Class ... argumentTypes);

Get the specified public constructor of this class that has arguments that match the
types listed in argumentTypes.

Constructor [] getDeclaredConstructors();

Get all public and nonpublic constructors of this class.

Constructor getDeclaredConstructor(Class ... argumentTypes);

Get the specified constructor, public or nonpublic, that has arguments that match
the types listed in argumentTypes.

Class [] getDeclaredClasses();

Get all public and nonpublic inner classes declared within this class.

210 | Chapter 7: Working with Objects and Classes

Constructor [] getInterfaces();

Get all interfaces implemented by this class, in the order in which they are declared.

As you can see, the four getMethod() and getConstructor() methods take advantage
of the Java variable-length argument lists to allow you to pass in the argument types. In
older versions of Java, you have to pass an array of Class types in their place. We’ll show
an example later.

As a quick example, we’ll show how easy it is to list all the public methods of the
java.util.Calendar class:

 for (Method method : Calendar.class.getMethods())
 System.out.println(method);

Here, we’ve used the .class notation to get a reference to the Class of Calendar. Re‐
member the discussion of the Class class; the reflection methods don’t belong to a
particular instance of Calendar itself; they belong to the java.lang.Class object that
describes the Calendar class. If we wanted to start from an instance of Calendar (or,
say, an unknown object), we could have used the getClass() method of the object
instead:

 Method [] methods = myUnknownObject.getClass().getMethods();

Modifiers and Security
All of the types of members of a Java class—fields, methods, constructors, and inner
classes—have a method getModifiers() that returns a set of flags indicating whether
the member is private, protected, default level, or publicly accessible. You can test for
these with the java.lang.reflect.Modifier class, like so:

 Method method = Object.class.getDeclaredMethod("clone"); // no arguments
 int perms = method.getModifiers();
 System.out.println(Modifier.isPublic(perms)); // false
 System.out.println(Modifier.isProtected(perms)); // true
 System.out.println(Modifier.isPrivate(perms)); // false

In this example, the clone() method in Object is protected.

Access to the Reflection API is governed by a security manager. A fully trusted appli‐
cation has access to all the previously discussed functionality; it can gain access to
members of classes at the level of restriction normally granted code within its scope. It
is, however, possible to grant special access to code so that it can use the Reflection API
to gain access to private and protected members of other classes in a way that the Java
language ordinarily disallows.

The Field, Method, and Constructor classes all extend from a base class called Acces
sibleObject. The AccessibleObject class has one important method called setAc
cessible(), which allows you to deactivate normal security when accessing that par‐
ticular class member. That may sound too easy. It is indeed simple, but whether that

Reflection | 211

method allows you to disable security or not is a function of the Java security manager
and security policy. You can do this in a normal Java application running without any
security policy, but not, for example, in an applet or other secure environment. For
example, to be able to use the protected clone() method of the Object class, all we have
to do (given no contravening security manager) is:

 Method method = Object.class.getDeclaredMethod("clone");
 method.setAccessible(true);

Accessing Fields
The class java.lang.reflect.Field represents static variables and instance variables.
Field has a full set of overloaded accessor methods for all the base types (for example,
getInt() and setInt(), getBoolean() and setBoolean()), and get() and set()
methods for accessing fields that are reference types. Let’s consider this class:

 class BankAccount {
 public int balance;
 }

With the Reflection API, we can read and modify the value of the public integer field
balance:

 BankAccount myBankAccount = ...;
 ...
 try {
 Field balanceField = BankAccount.class.getField("balance");
 // read it
 int mybalance = balanceField.getInt(myBankAccount);
 // change it
 balanceField.setInt(myBankAccount, 42);
 } catch (NoSuchFieldException e) {
 ... // there is no "balance" field in this class
 } catch (IllegalAccessException e2) {
 ... // we don't have permission to access the field
 }

In this example, we are assuming that we already know the structure of a BankAc
count object. In general, we could gather that information from the object itself.

All the data access methods of Field take a reference to the particular object instance
that we want to access. In this example, the getField() method returns a Field object
that represents the balance of the BankAccount class; this object doesn’t refer to any
specific BankAccount. Therefore, to read or modify any specific BankAccount, we call
getInt() and setInt() with a reference to myBankAccount, which is the particular
object instance that contains the field with which we want to work. For a static field,
we’d use the value null here. An exception occurs if we try to access a field that doesn’t
exist, or if we don’t have the proper permission to read or write to the field. If we make

212 | Chapter 7: Working with Objects and Classes

balance a private field, we can still look up the Field object that describes it, but we
won’t be able to read or write its value.

Therefore, we aren’t doing anything that we couldn’t have done with static code at com‐
pile time; as long as balance is a public member of a class that we can access, we can
write code to read and modify its value. What’s important is that we’re accessing bal
ance at runtime, and we could just as easily use this technique to examine the bal
ance field in a class that was dynamically loaded or that we just discovered by iterating
through the class’s fields with the getDeclaredFields() method.

Accessing Methods
The class java.lang.reflect.Method represents a static or instance method. Subject
to the normal security rules, a Method object’s invoke() method can be used to call the
underlying object’s method with specified arguments. Yes, Java does have something
like a method pointer!

As an example, we’ll write a Java application called Invoke that takes as command-line
arguments the name of a Java class and the name of a method to invoke. For simplicity,
we’ll assume that the method is static and takes no arguments (quite a limitation):

 //file: Invoke.java
 import java.lang.reflect.*;

 class Invoke {
 public static void main(String [] args) {
 try {
 Class clas = Class.forName(args[0]);
 Method method = clas.getMethod(args[1]); // Named method,
 // no arguments
 Object ret = method.invoke(null); // Invoke a static method

 System.out.println(
 "Invoked static method: " + args[1]
 + " of class: " + args[0]
 + " with no args\nResults: " + ret);
 } catch (ClassNotFoundException e) {
 // Class.forName() can't find the class
 } catch (NoSuchMethodException e2) {
 // that method doesn't exist
 } catch (IllegalAccessException e3) {
 // we don't have permission to invoke that method
 } catch (InvocationTargetException e4) {
 // an exception occurred while invoking that method
 System.out.println(
 "Method threw an: " + e4.getTargetException());
 }
 }
 }

Reflection | 213

We can run invoke to fetch the value of the system clock:
 % java Invoke java.lang.System currentTimeMillis
 Invoked static method: currentTimeMillis of class:
 java.lang.System with no args
 Results: 861129235818

Our first task is to look up the specified Class by name. To do so, we call the for
Name() method with the name of the desired class (the first command-line argument).
We then ask for the specified method by its name. getMethod() has two arguments: the
first is the method name (the second command-line argument), and the second is an
array of Class objects that specifies the method’s signature. (Remember that any method
may be overloaded; you must specify the signature to make it clear which version you
want.) Because our simple program calls only methods with no arguments, we create
an anonymous empty array of Class objects. Had we wanted to invoke a method that
takes arguments, we would have passed an array of the classes of their respective types,
in the proper order. For primitive types, we would have used the standard wrappers
(Integer, Float, Boolean, etc.) to hold the values. The classes of primitive types in Java
are represented by special static TYPE fields of their respective wrappers; for example,
use Integer.TYPE for the Class of an int. As shown in comments in the code, starting
in Java 5.0, the getMethod() and invoke() methods accept variable-length argument
lists, which means that we can omit the arguments entirely and Java will make the empty
array for us.

Once we have the Method object, we call its invoke() method. This calls our target
method and returns the result as an Object. To do anything nontrivial with this object,
you must cast it to something more specific. Presumably, because we’re calling the
method, we know what kind of object to expect. But if we didn’t, we could use the Method
getReturnType() method to get the Class of the return type at runtime. If the returned
value is a primitive type such as int or boolean, it will be wrapped in the standard
wrapper class for its type. If the method returns void, invoke() returns a
java.lang.Void object. This is the “wrapper” class that represents void return values.

The first argument to invoke() is the object on which we would like to invoke the
method. If the method is static, there is no object, so we set the first argument to null.
That’s the case in our example. The second argument is an array of objects to be passed
as arguments to the method. The types of these should match the types specified in the
call to getMethod(). Because we’re calling a method with no arguments, we can pass
null for the second argument to invoke(). As with the return value, you must use
wrapper classes for primitive argument types.

The exceptions shown in the previous code occur if we can’t find or don’t have permis‐
sion to access the method. Additionally, an InvocationTargetException occurs if the
method being invoked throws some kind of exception itself. You can find what it threw
by calling the getTargetException() method of InvocationTargetException.

214 | Chapter 7: Working with Objects and Classes

1. This Date constructor is deprecated but will serve us for this example.

Accessing Constructors
The java.lang.reflect.Constructor class represents an object constructor in the
same way that the Method class represents a method. You can use it, subject to the security
manager, of course, to create a new instance of an object, even with constructors that
require arguments. Recall that you can create instances of a class with Class.newIn
stance(), but you cannot specify arguments with that method. This is the solution to
that problem, if you really need to do it.

Here, we’ll create an instance of java.util.Date,1 passing a string argument to the
constructor:

try {
 Constructor<Date> cons =
 Date.class.getConstructor(String.class);
 Date date = cons.newInstance("Jan 1, 2006");
 System.out.println(date);
 } catch (NoSuchMethodException e) {
 // getConstructor() couldn't find the constructor we described
 } catch (InstantiationException e2) {
 // the class is abstract
 } catch (IllegalAccessException e3) {
 // we don't have permission to create an instance
 } catch (InvocationTargetException e4) {
 // the construct threw an exception
 }

The story is much the same as with a method invocation; after all, a constructor is really
no more than a method with some strange properties. We look up the appropriate
constructor for our Date class—the one that takes a single String as its argument—by
passing getConstructor() the String.class type. Here, we are using the Java 5.0
variable argument syntax. If the constructor required more arguments, we would pass
additional Classes representing the class of each argument. We can then invoke newIn
stance(), passing it a corresponding argument object. Again, to pass primitive types,
we would wrap them in their wrapper types first. Finally, we print the resulting object
to a Date. Note that we’ve slipped in another strange construct using generics here. The
Constructor<Date> type here simply allows us to specialize the Constructor for the
Date type, alleviating the need to cast the result of the newInstance() method, as before.

The exceptions from the previous example apply here, too, along with IllegalArgu
mentException and InstantiationException. The latter is thrown if the class is
abstract and, therefore, can’t be instantiated.

Reflection | 215

What About Arrays?
The Reflection API allows you to create and inspect arrays of base types using the
java.lang.reflect.Array class. The process is very much the same as with the other
classes, so we won’t cover it in detail. The primary feature is a static method of Array
called newInstance(), which creates an array that allows you to specify a base type and
length. You can also use it to construct multidimensional array instances by specifying
an array of lengths (one for each dimension). For more information, look in your fa‐
vorite Java language reference.

Accessing Generic Type Information
In Chapter 8, we’ll discuss generics, which first appeared in Java 5.0. Generics is a major
addition that adds new dimensions (literally) to the concept of types in the Java language.
With the addition of generics, types are no longer simply one-to-one with Java classes
and interfaces but can be parameterized on one or more types to create a new, generic
type. To make matters more complicated, these new types do not actually generate new
classes, but instead are artifacts of the compiler. To keep the generic information, Java
adds information to the compiled class files.

The Reflection API can accommodate all of this, mainly through the addition of the
new java.lang.reflect.Type class, which is capable of representing generic types.
Covering this in detail is a bit outside the scope of this book and because we won’t even
get to generics until Chapter 8, we won’t devote much more space to this topic here.
However, the following code snippets may guide you later if you return to the topic of
accessing generic type information reflectively:

 // public interface List<E> extends Collection<E> { ... }

 TypeVariable [] tv = List.class.getTypeParameters();
 System.out.println(tv[0].getName()); // "E"

This snippet gets the type parameter of the java.util.List class and prints its name:
 class StringList extends ArrayList<String> { }

 Type type = StringList.class.getGenericSuperclass();

 System.out.println(type); //
 // "java.util.ArrayList<java.lang.String>"

 ParameterizedType pt = (ParameterizedType)type;
 System.out.println(pt.getActualTypeArguments()[0]); //
 // "class java.lang.String"

This second snippet gets the Type for a class that extends a generic type and then prints
the actual type on which it was parameterized.

216 | Chapter 7: Working with Objects and Classes

Accessing Annotation Data
Later in this chapter, we discuss annotations, a feature that allows metadata to be added
to Java classes, methods, and fields. Annotations can optionally be retained in the com‐
piled Java classes and accessed through the Reflection API. This is one of several in‐
tended uses for annotations, allowing code at runtime to see the metadata and provide
special services for the annotated code. For example, a property (field or setter method)
on a Java object might be annotated to indicate that it is expecting a container application
to set its value or export it in some way.

Covering this in detail is outside the scope of this book; however, getting annotation
data through the Reflection API is easy. Java classes, as well as Method and Field objects,
have the following pairs of methods (and some other related ones):

 public <A extends Annotation> A getAnnotation(Class<A> annotationClass)
 public Annotation[] getDeclaredAnnotations()

These methods (the first is a generic method, as covered in Chapter 8) return
java.lang.annotation.Annotation type objects that represent the metadata.

Dynamic Interface Adapters
Ideally, Java reflection would allow us to do everything at runtime that we can do at
compile time (without forcing us to generate and compile source into bytecode). But
that is not entirely the case. Although we can dynamically load and create instances of
objects at runtime using the Class.forName() method, there is no general way to create
new types of objects—for which no class files preexist—on the fly.

The java.lang.reflect.Proxy class, however, takes a step toward solving this problem
by allowing the creation of adapter objects that implement arbitrary Java interfaces at
runtime. The Proxy class is a factory that can generate an adapter class, implementing
any interface (or interfaces) you want. When methods are invoked on the adapter class,
they are delegated to a single method in a designated InvocationHandler object. You
can use this to create dynamic implementations of any kind of interface at runtime and
handle the method calls anywhere you want. For example, using a Proxy, you could log
all of the method calls on an interface, delegating them to a “real” implementation af‐
terward. This kind of dynamic behavior is important for tools that work with Java beans,
which must register event listeners. (We’ll mention this again in Chapter 22.) It’s also
useful for a wide range of problems.

In the following snippet, we take an interface name and construct a proxy implementing
the interface. It outputs a message whenever any of the interface’s methods are invoked:

 import java.lang.reflect.*;

 InvocationHandler handler =
 new InvocationHandler() {

Reflection | 217

 Object invoke(Object proxy, Method method, Object[] args) {
 System.out.println(
 "Method: {[QUOTE-REPLACEMENT]}+ method.getName() +"()"
 +" of interface: "+ interfaceName
 + " invoked on proxy!"
);
 return null;
 }
 };

 Class clas = Class.forName(MyInterface);

 MyInterface interfaceProxy =
 (MyInterface)Proxy.newProxyInstance(
 clas.getClassLoader(), new Class[] { class }, handler);

 // use MyInterface
 myInterface.anyMethod(); // Method: anyMethod() ... invoked on proxy!

The resulting object, interfaceProxy, is cast to the type of the interface we want. It will
call our handler whenever any of its methods are invoked.

First, we make an implementation of InvocationHandler. This is an object with an
invoke() method that takes as its argument the Method being called and an array of
objects representing the arguments to the method call. We then fetch the class of the
interface that we’re going to implement using Class.forName(). Finally, we ask the
proxy to create an adapter for us, specifying the types of interfaces (you can specify more
than one) that we want implemented and the handler to use. invoke() is expected to
return an object of the correct type for the method call. If it returns the wrong type, a
special runtime exception is thrown. Any primitive types in the arguments or in the
return value should be wrapped in the appropriate wrapper class. (The runtime system
unwraps the return value, if necessary.)

What Is Reflection Good For?
Reflection, although in some sense a “back door” feature of the Java language, is finding
more and more important uses. In this chapter, we mentioned that reflection is used to
access runtime annotations. In Chapter 22, we’ll see how reflection is used to dynami‐
cally discover capabilities and features of JavaBean objects. Those are pretty specialized
applications—what can reflection do for us in everyday situations?

We could use reflection to go about acting as if Java had dynamic method invocation
and other useful capabilities; in Chapter 22, we’ll see a dynamic adapter class that uses
reflection to make calls for us. As a general coding practice however, dynamic method
invocation is a bad idea. One of the primary features of Java (and what distinguishes it
from some similar languages) is its strong type safety. You abandon much of that when
you take a dip in the reflecting pool. And although the performance of the Reflection
API is very good, it is not precisely as fast as compiled method invocations in general.

218 | Chapter 7: Working with Objects and Classes

More appropriately, you can use reflection in situations where you need to work with
objects that you can’t know about in advance. Reflection puts Java on a higher plane of
programming languages, opening up possibilities for new kinds of applications. As
we’ve mentioned, it makes possible one use of Java annotations at runtime, allowing us
to inspect classes, methods, and fields for metadata. Another important and growing
use for reflection is integrating Java with scripting languages. With reflection, you can
write language interpreters in Java that can access the full Java APIs, create objects,
invoke methods, modify variables, and do all the other things a Java program can do at
compile time, while the program is running. In fact, you could go so far as to reimple‐
ment the Java language in Java, allowing completely dynamic programs that can do all
sorts of things. Sound crazy? Well, someone has already done this—one of the authors
of this book! We’ll explain next.

The BeanShell Java scripting language

I (Pat) can’t resist inserting a plug here for BeanShell—my free, open source, lightweight
Java scripting language. BeanShell is just what we alluded to in the previous section—
a Java application that uses the Reflection API to execute Java statements and expressions
dynamically. You can use BeanShell interactively to quickly try out some of the examples
in this book or take it further to start using Java syntax as a scripting language in your
applications. BeanShell exercises the Java Reflection API to its fullest and serves as a
demonstration of how dynamic the Java runtime environment really is.

You can find a copy of BeanShell at its own website. See Appendix B for more infor‐
mation on getting started. We hope you find it both interesting and useful!

Annotations
As we mentioned in Chapter 4, Java for a long time has supported a limited kind of
metadata in Java source code through the use of Javadoc comment tags. With Javadoc
tags like @deprecated or @author, we can add some information to a class, method, or
field by sticking it into comments above the item. In this case, the information is mainly
useful to the Javadoc documentation generator, because comments exist only in Java
source code. However, developers have long wanted a way to generalize metadata for
other purposes. And in fact, some tools have been developed over the years that read
extended Javadoc-style tags in comments and do all sorts of things with them, including
code generation and documentation. In Java 5.0, a formal, extensible metadata system
called annotations was added to the language that provides this kind of source-level
functionality as well as new possibilities for using metadata at runtime.

Annotations allow you to add metadata to Java packages, classes, methods, and fields.
This metadata can be utilized by tools at compile time and optionally retained in the
compiled Java classes for use at runtime as well. The availability of annotation data to
the running program opens up new uses for metadata. For example, annotations cannot

Annotations | 219

only be used at compile time to generate auxiliary classes or resources, but also could
be used by a server to provide special services to classes such as importing or exporting
of values, security, or monitoring. Annotations will be used heavily in Java XML Binding
(JAXB), the Java Servlets API, and Java Web Services (JAX-WS), as we’ll see later in the
book. In those cases, annotations are used to simplify configuration and deployment
information.

Technically, according to the spec, annotations are not supposed to “directly affect the
semantics of a program.” However, that admonition is a little vague and there is some
fear in the Java community that this facility will open a Pandora’s box of possible abuses.
Hopefully, developers will use them with restraint.

Only a handful of “built-in” annotations are commonly used in Java and we’ll summarize
them in this section. More built-in annotations are used with specialized packages such
as those for web services and some are used in creating the annotations themselves.
Creating your own annotations for use in your code is syntactically easy (essentially just
like declaring an interface), but implementing the behavior for them via the compiler
or a runtime system is a bit beyond the scope of this book, so we won’t cover that here.
The JDK provides a framework tool called apt that can be used to implement source-
level annotations that generate and compile code or resource files at compile time. Ac‐
cessing annotation data at runtime is done via the Reflection API as described briefly
earlier in this chapter.

Using Annotations
Annotations are placed in the code preceding the annotated item using an @ (at) symbol
followed by the annotation class name. The @Deprecated annotation is an example of
the simplest kind, a marker or flag annotation. A marker annotation indicates some
semantics just by its presence. (In the case of @Deprecated, it means that the member
is deprecated and the compiler should generate warnings if it is used.) To use the @Dep
recated annotation, we place it before a Java class, method, or field like this:

 @Deprecated
 class OldClass { ... }

 class AgingClass
 {
 @Deprecated
 public someMethod() { ... }
 ...
 }

More generally, annotations may take “arguments” in an extended method-like syntax.
Table 7-1 summarizes the possible variations.

220 | Chapter 7: Working with Objects and Classes

Table 7-1. Use of arguments in annotations
Example Description

@Deprecated Marker annotation (no “data”)

@WarningMessage("Something about...") Single argument

@TestValues({ "one", "two" }) Array of arguments

@Author(first="Pat", last="Niemeyer") Named arguments

The first annotation in the table, @Deprecated, is a real annotation as described earlier;
the remaining three are fictitious. To accept multiple values, an annotation may either
use the curly brace ({}) array syntax or the more novel named argument syntax listed
in the final example. The named syntax allows arguments to be passed in any order.

Package annotations

In the introduction, we mentioned that Java packages can be annotated. This raises the
question of where one would place such an annotation, as there is ordinarily no location
where we “declare” a Java package; we normally just use them implicitly. The answer is
that by convention we can create a file named package-info.java and place it into the
folder corresponding to the Java package. The file cannot contain Java classes, but should
contain a package statement. Package annotations can be placed on this package state‐
ment. In the following example, we deprecate the whole package learningjava.old
stuff such that using any of its classes generates the deprecation warning.

// file: learningjava/service/package-info.java

/**
 * We can put package comments here too!
 */
@Deprecated
package learningjava.oldstuff;

Standard Annotations
Table 7-2 summarizes common annotations supplied with Java.

Table 7-2. Standard annotations
Annotation Description

@Deprecated Deprecation warning on member

@Override Indicates that the annotated method must override a method in the parent
class or else a compiler warning is issued

@SuppressWarnings(value=" type ") Indicates that the specified warning types should be suppressed by the compiler
for the annotated class or method

Annotations | 221

We have already discussed the @Deprecated and @Override annotations, the latter of
which we covered in the section “Overriding Methods” on page 165. The @Suppress
Warnings annotation is intended to have a compelling use in bridging legacy code with
newer code using generics after Java 5.0, but some compilers may not implement it.

Additional annotations are supplied with Java as part of the java.lang.annotations
package that are used to annotate only other annotations (they are really meta-
annotations). For example, the java.lang.annotation.Retention annotation sets the
retention policy for an annotation, specifying whether it is retained in the compiled
class and loaded at runtime.

The apt Tool
The Java JDK ships with the command-line Annotation Processing Tool, apt, which is
a sort of frontend to the javac compiler. apt uses pluggable annotation processors to
process the annotations in source files before the code is compiled by javac. If you write
your own source-level annotations, you can build a plug-in annotation processor for
apt that will be invoked to process your annotations in the source code. Your annotation
processor can be quite sophisticated, examining the structure of the source code (in a
read-only fashion) through the supplied syntax tree (object model) and generating any
additional files or actions that it wishes. If you generate new Java source files, they will
be automatically compiled by javac for you. Running apt on a source file with no an‐
notations simply falls through to javac.

222 | Chapter 7: Working with Objects and Classes

CHAPTER 8

Generics

It’s been over 15 years since the introduction of the Java programming language (and
the first edition of this book). In that time, the Java language has matured and come
into its own. But it wasn’t until Java 5.0, the sixth major release of Java, that the core
language itself changed in a significant way. Yes, there were subtle changes and drop-
ins over the years. Inner classes, added very early on, were important. But no language
improvements prior to that point affected all Java code or all Java developers in the way
that generic types did in Java 5.0.

Generics are about abstraction. Generics let you create classes and methods that work
in the same way on different types of objects. The term generic comes from the idea that
we’d like to be able to write general algorithms that can be broadly reused for many
types of objects rather than having to adapt our code to fit each circumstance. This
concept is not new; it is the impetus behind object-oriented programming itself. Java
generics do not so much add new capabilities to the language as they make reusable Java
code easier to write and easier to read.

Generics take reuse to the next level by making the type of the objects with which we
work into an explicit parameter of the generic code. For this reason, generics are also
referred to as parameterized types. In the case of a generic class, the developer specifies
a type as a parameter (an argument) whenever she uses the generic type. The class is
parameterized by the supplied type to which the code adapts itself.

In other languages, generics are sometimes referred to as templates, which is more of
an implementation term. Templates are like intermediate classes, waiting for their type
parameters so that they can be used. Java takes a different path, which has both benefits
and drawbacks that we’ll describe in detail in this chapter.

There is much to say about Java generics. Some of the fine points may seem a bit obscure
at first, but don’t get discouraged. The vast majority of what you’ll do with generics is
easy and intuitive. The rest will come with a little patience and tinkering.

223

We begin our discussion with the most compelling case for generics: container classes
and collections. Next, we take a step back and look at the good, bad, and ugly of how
Java generics work before getting into the details of writing generic classes. We then
introduce generic methods, which intelligently infer their parameter types based upon
how they are invoked. We conclude by looking at a couple of real-world generic classes
in the Java API.

Containers: Building a Better Mousetrap
In an object-oriented programming language like Java, polymorphism means that ob‐
jects are always to some degree interchangeable. Any child of a type of object can serve
in place of its parent type and, ultimately, every object is a child of java.lang.Object,
the object-oriented “Eve,” so to speak. It is natural, therefore, for the most general types
of containers in Java to work with the type Object so that they can hold just about
anything. By containers, we mean classes that hold instances of other classes in some
way. The Java Collections Framework is the best example of containers. A List, for
example, holds an ordered collection of elements of type Object. A Map holds an asso‐
ciation of key-value pairs, with the keys and values also being of the most general type,
Object. With a little help from wrappers for primitive types, this arrangement has served
us well. But (not to get too Zen on you) in a sense, a “collection of any type” is also a
“collection of no type,” and working with Objects pushes a great deal of responsibility
onto the user of the container.

It’s kind of like a costume party for objects where everybody is wearing the same mask
and disappears into the crowd of the collection. Once objects are dressed as the Ob
ject type, the compiler can no longer see the real types and loses track of them. It’s up
to the user to pierce the anonymity of the objects later by using a type cast. And like
attempting to yank off a party-goer’s fake beard, you’d better have the cast correct or
you’ll get an unwelcome surprise.

 Date date = new Date();
 List list = new ArrayList();
 list.add(date);
 ...
 Date firstElement = (Date)list.get(0); // Is the cast correct? Maybe.

The List interface has an add() method that accepts any type of Object. Here, we
assigned an instance of ArrayList, which is simply an implementation of the List
interface, and added a Date object. Is the cast in this example correct? It depends on
what happens in the elided “...” period of time.

Can Containers Be Fixed?
It’s natural to ask if there is a way to make this situation better. What if we know that we
are only going to put Dates into our list? Can’t we just make our own list that only accepts

224 | Chapter 8: Generics

Date objects, get rid of the cast, and let the compiler help us again? The answer, sur‐
prisingly perhaps, is no. At least, not in a very satisfying way.

Our first instinct may be to try to “override” the methods of ArrayList in a subclass.
But of course, rewriting the add() method in a subclass would not actually override
anything; it would add a new overloaded method.

 public void add(Object o) { ... }
 public void add(Date d) { ... } // overloaded method

The resulting object still accepts any kind of object—it just invokes different methods
to get there.

Moving along, we might take on a bigger task. For example, we might write our own
DateList class that does not extend ArrayList, but rather delegates the guts of its
methods to the ArrayList implementation. With a fair amount of tedious work, that
would get us an object that does everything a List does but that works with Dates.
However, we’ve now shot ourselves in the foot because our container is no longer an
implementation of List and we can’t use it interoperably with all of the utilities that
deal with collections, such as Collections.sort(), or add it to another collection with
the Collection addAll() method.

To generalize, the problem is that instead of refining the behavior of our objects, what
we really want to do is to change their contract with the user. We want to adapt their
API to a more specific type and polymorphism doesn’t allow that. It would seem that
we are stuck with Objects for our collections. And this is where generics come in.

Enter Generics
Generics are an enhancement to the syntax of classes that allow us to specialize the class
for a given type or set of types. A generic class requires one or more type parameters
wherever we refer to the class type and uses them to customize itself.

If you look at the source or Javadoc for the List class, for example, you’ll see it defined
something like this:

 public class List< E > {
 ...
 public void add(E element) { ... }
 public E get(int i) { ... }
 }

The identifier E between the angle brackets (<>) is a type variable. It indicates that the
class List is generic and requires a Java type as an argument to make it complete. The
name E is arbitrary, but there are conventions that we’ll see as we go on. In this case, the
type variable E represents the type of elements we want to store in the list. The List
class refers to the type variable within its body and methods as if it were a real type, to
be substituted later. The type variable may be used to declare instance variables,

Enter Generics | 225

1. That is, unless you want to use a generic type in a nongeneric way. We’ll talk about “raw” types later in this
chapter.

arguments to methods, and the return type of methods. In this case, E is used as the type
for the elements we’ll be adding via the add() method and the return type of the get()
method. Let’s see how to use it.

The same angle bracket syntax supplies the type parameter when we want to use the
List type:

 List<String> listOfStrings;

In this snippet, we declared a variable called listOfStrings using the generic type List
with a type parameter of String. String refers to the String class, but we could have
specialized List with any Java class type. For example:

 List<Date> dates;
 List<java.math.BigDecimal> decimals;
 List<Foo> foos;

Completing the type by supplying its type parameter is called instantiating the type. It
is also sometimes called invoking the type, by analogy with invoking a method and
supplying its arguments. Whereas with a regular Java type, we simply refer to the type
by name, a generic type must be instantiated with parameters wherever it is used.1

Specifically, this means that we must instantiate the type everywhere types can appear
as the declared type of a variable (as shown in this code snippet), as the type of a method
argument, as the return type of a method, or in an object allocation expression using
the new keyword.

Returning to our listOfStrings, what we have now is effectively a List in which the
type String has been substituted for the type variable E in the class body:

 public class List< String > {
 ...
 public void add(String element) { ... }
 public String get(int i) { ... }
 }

We have specialized the List class to work with elements of type String and only
elements of type String. This method signature is no longer capable of accepting an
arbitrary Object type.

List is just an interface. To use the variable, we’ll need to create an instance of some
actual implementation of List. As we did in our introduction, we’ll use ArrayList. As
before, ArrayList is a class that implements the List interface, but in this case, both
List and ArrayList are generic classes. As such, they require type parameters to in‐
stantiate them where they are used. Of course, we’ll create our ArrayList to hold String
elements to match our List of Strings:

226 | Chapter 8: Generics

 List<String> listOfStrings = new ArrayList<String>
 List<String> listOfStrings = new ArrayList<>(); // Or shorthand in Java 7.0
 // and later

As always, the new keyword takes a Java type and parentheses with possible arguments
for the class’s constructor. In this case, the type is ArrayList<String>—the generic
ArrayList type instantiated with the String type.

Declaring variables as shown in the first line of the preceding example is a bit cumber‐
some because it requires us to type the generic parameter type twice (once on the left
side in the variable type and once on the right in the initialing expression). And in
complicated cases, the generic types can get very lengthy and nested within one another.
In Java 7, the compiler is smart enough to infer the type of the initializing expression
from the type of the variable to which you are assigning it. This is called generic type
inference and boils down to the fact that you can shorthand the right side of your variable
declarations by leaving out the contents of the <> notation, as shown in the example’s
second line.

We can now use our specialized List with strings. The compiler prevents us from even
trying to put anything other than a String object (or a subtype of String if there were
any) into the list and allows us to fetch them with the get() method without requiring
any cast:

 List<String> listOfStrings = new ArrayList<String>();
 listOfStrings.add("eureka! ");
 String s = listOfStrings.get(0); // "eureka! "

 listOfStrings.add(new Date()); // Compile-time Error!

Let’s take another example from the Collections API. The Map interface provides a
dictionary-like mapping that associates key objects with value objects. Keys and values
do not have to be of the same type. The generic Map interface requires two type param‐
eters: one for the key type and one for the value type. The Javadoc looks like this:

 public class Map< K, V > {
 ...
 public V put(K key, V value) { ... } // returns any old value
 public V get(K key) { ... }
 }

We can make a Map that stores Employee objects by Integer “employee ID” numbers
like this:

 Map< Integer, Employee > employees = new HashMap< Integer, Employee >();
 Integer bobsId = ...;
 Employee bob = ...;

 employees.put(bobsId, bob);
 Employee employee = employees.get(bobsId);

Enter Generics | 227

Here, we used HashMap, which is a generic class that implements the Map interface, and
instantiated both types with the type parameters Integer and Employee. The Map now
works only with keys of type Integer and holds values of type Employee.

The reason we used Integer here to hold our number is that the type parameters to a
generic class must be class types. We can’t parameterize a generic class with a primitive
type, such as int or boolean. Fortunately, autoboxing of primitives in Java (see Chap‐
ter 5) makes it almost appear as if we can by allowing us to use primitive types as though
they were wrapper types:

 employees.put(42, bob);
 Employee bob = employees.get(42);

Here, autoboxing converted the integer 42 to an Integer wrapper for us twice.

In Chapter 11, we’ll see that all of the Java collection classes and interfaces are generic.
Furthermore, dozens of other APIs use generics to let you adapt them to specific types.
We’ll talk about them as they occur throughout the book.

Talking About Types
Before we move on to more important things, we should say a few words about the way
we describe a particular parameterization of a generic class. Because the most common
and compelling case for generics is for container-like objects, it’s common to think in
terms of a generic type “holding” a parameter type. In our example, we called our
List<String> a “list of strings” because, sure enough, that’s what it was. Similarly, we
might have called our employee map a “Map of employee IDs to Employee objects.”
However, these descriptions focus a little more on what the classes do than on the type
itself. Take instead a single object container called Trap< E > that could be instantiated
on an object of type Mouse or of type Bear; that is, Trap<Mouse> or Trap<Bear>. Our
instinct is to call the new type a “mouse trap” or “bear trap.” Similarly, we could have
thought of our list of strings as a new type: “string list” or our employee map as a new
“integer employee object map” type. You may use whatever verbiage you prefer, but
these latter descriptions focus more on the notion of the generic as a type and may help
a little bit later when we discuss how generic types are related in the type system. There
we’ll see that the container terminology turns out to be a little counterintuitive.

In the following section, we’ll continue our discussion of generic types in Java from a
different perspective. We’ve seen a little of what they can do; now we need to talk about
how they do it.

228 | Chapter 8: Generics

2. For those of you who might like some context for the title of this section, here is where it comes from:

Boy: Do not try and bend the spoon. That’s impossible. Instead, only try to realize the truth.

Neo: What truth?

Boy: There is no spoon.

Neo: There is no spoon?

Boy: Then you’ll see that it is not the spoon that bends, it is only yourself.

—Wachowski, Andy and Larry. The Matrix. 136 minutes. Warner Brothers, 1999.

“There Is No Spoon”
In the movie The Matrix,2 the hero Neo is offered a choice. Take the blue pill and remain
in the world of fantasy, or take the red pill and see things as they really are. In dealing
with generics in Java, we are faced with a similar ontological dilemma. We can go only
so far in any discussion of generics before we are forced to confront the reality of how
they are implemented. Our fantasy world is one created by the compiler to make our
lives writing code easier to accept. Our reality (though not quite the dystopian nightmare
in the movie) is a harsher place, filled with unseen dangers and questions. Why don’t
casts and tests work properly with generics? Why can’t I implement what appear to be
two different generic interfaces in one class? Why is it that I can declare an array of
generic types, even though there is no way in Java to create such an array?!? We’ll answer
these questions and more in this chapter, and you won’t even have to wait for the sequel.
Let’s get started.

The design goals for Java generics were formidable: add a radical new syntax to the
language that safely introduces parameterized types with no impact on performance
and, oh, by the way, make it backward-compatible with all existing Java code and don’t
change the compiled classes in any serious way. It’s actually quite amazing that these
conditions could be satisfied at all and no surprise that it took a while. But as always,
compromises were required, which lead to some headaches.

To accomplish this feat, Java employs a technique called erasure, which relates to the
idea that since most everything we do with generics applies statically at compile time,
generic information does not need to be carried over into the compiled classes. The
generic nature of the classes, enforced by the compiler can be “erased” in the compiled
classes, which allows us to maintain compatibility with nongeneric code. While Java
does retain information about the generic features of classes in the compiled form, this
information is used mainly by the compiler. The Java runtime does not know anything
about generics at all.

“There Is No Spoon” | 229

Erasure
Let’s take a look at a compiled generic class: our friend, List. We can do this easily with
the javap command:

 % javap java.util.List

 public interface java.util.List extends java.util.Collection{
 ...
 public abstract boolean add(java.lang.Object);
 public abstract java.lang.Object get(int);

The result looks exactly like it did prior to Java generics, as you can confirm with any
older version of the JDK. Notably, the type of elements used with the add() and get()
methods is Object. Now, you might think that this is just a ruse and that when the actual
type is instantiated, Java will create a new version of the class internally. But that’s not
the case. This is the one and only List class, and it is the actual runtime type used by
all parameterizations of List; for example, List<Date> and List<String>, as we can
confirm:

 List<Date> dateList = new ArrayList<Date>();
 System.out.println(dateList instanceof List); // true!

But our generic dateList clearly does not implement the List methods just discussed:
 dateList.add(new Object()); // Compile-time Error!

This illustrates the somewhat schizophrenic nature of Java generics. The compiler be‐
lieves in them, but the runtime says they are an illusion. What if we try something a
little more sane and simply check that our dateList is a List<Date>:

 System.out.println(dateList instanceof List<Date>); // Compile-time Error!
 // Illegal, generic type for instanceof

This time the compiler simply puts its foot down and says, “No.” You can’t test for a
generic type in an instanceof operation. Since there are no actual differentiable classes
for different parameterizations of List at runtime, there is no way for the instanceof
operator to tell the difference between one incarnation of List and another. All of the
generic safety checking was done at compile time and now we’re just dealing with a
single actual List type.

What has really happened is that the compiler has erased all of the angle bracket syntax
and replaced the type variables in our List class with a type that can work at runtime
with any allowed type: in this case, Object. We would seem to be back where we started,
except that the compiler still has the knowledge to enforce our usage of the generics in
the code at compile time and can, therefore, handle the cast for us. If you decompile a
class using a List<Date> (the javap command with the -c option shows you the byte‐
code, if you dare), you will see that the compiled code actually contains the cast to
Date, even though we didn’t write it ourselves.

230 | Chapter 8: Generics

3. When generics were added in Java 5.0, things were carefully arranged such that the raw type of all of the
generic classes worked out to be exactly the same as the earlier, nongeneric types. So the raw type of a List
in Java 5.0 is the same as the old, nongeneric List type that had been around since JDK 1.2. Since the vast
majority of current Java code at the time did not use generics, this type equivalency and compatibility was
very important.

We can now answer one of the questions we posed at the beginning of the section (“Why
can’t I implement what appear to be two different generic interfaces in one class?”). We
can’t have a class that implements two different generic List instantiations because they
are really the same type at runtime and there is no way to tell them apart:

 public abstract class DualList implements List<String>, List<Date> { }
 // Error: java.util.List cannot be inherited with different arguments:
 // <java.lang.String> and <java.util.Date>

Raw Types
Although the compiler treats different parameterizations of a generic type as different
types (with different APIs) at compile time, we have seen that only one real type exists
at runtime. For example, the class of List<Date> and List<String> share the plain old
Java class List. List is called the raw type of the generic class. Every generic has a raw
type. It is the degenerate, “plain” Java form from which all of the generic type information
has been removed and the type variables replaced by a general Java type like Object.3

It is still possible to use raw types in Java just as before generics were added to the
language. The only difference is that the Java compiler generates a warning wherever
they are used in an “unsafe” way. For example:

 // nongeneric Java code using the raw type
 List list = new ArrayList(); // assignment ok
 list.add("foo"); // Compiler warning on usage of raw type

This snippet uses the raw List type just as old-fashioned Java code prior to Java 5 would
have. The difference is that now the Java compiler issues an unchecked warning about
the code if we attempt to insert an object into the list.

 % javac MyClass.java
 Note: MyClass.java uses unchecked or unsafe operations.
 Note: Recompile with -Xlint:unchecked for details.

The compiler instructs us to use the -Xlint:unchecked option to get more specific
information about the locations of unsafe operations:

 % javac -Xlint:unchecked MyClass.java
 warning: [unchecked] unchecked call to add(E) as a member of the raw type
 java.util.
 List: list.add("foo");

“There Is No Spoon” | 231

Note that creating and assigning the raw ArrayList does not generate a warning. It is
only when we try to use an “unsafe” method (one that refers to a type variable) that we
get the warning. This means that it’s still OK to use older-style, nongeneric Java APIs
that work with raw types. We only get warnings when we do something unsafe in our
own code.

One more thing about erasure before we move on. In the previous examples, the type
variables were replaced by the Object type, which could represent any type applicable
to the type variable E. Later we’ll see that this is not always the case. We can place
limitations or bounds on the parameter types, and, when we do, the compiler can be
more restrictive about the erasure of the type. We’ll explain in more detail later after we
discuss bounds, but, for example:

 class Bounded< E extends Date > {
 public void addElement(E element) { ... }
 }

This parameter type declaration says that the element type E must be a subtype of the
Date type. In this case, the erasure of the addElement() method is therefore more re‐
strictive than Object, and the compiler uses Date:

 public void addElement(Date element) { ... }

Date is called the upper bound of this type, meaning that it is the top of the object
hierarchy here and the type can be instantiated only on type Date or on “lower” (more
derived) types.

Now that we have a handle on what generic types really are, we can go into a little more
detail about how they behave.

Parameterized Type Relationships
We know now that parameterized types share a common, raw type. This is why our
parameterized List<Date> is just a List at runtime. In fact, we can assign any instan‐
tiation of List to the raw type if we want:

 List list = new ArrayList<Date>();

We can even go the other way and assign a raw type to a specific instantiation of the
generic type:

 List<Date> dates = new ArrayList(); // unchecked warning

This statement generates an unchecked warning on the assignment, but thereafter the
compiler trusts that the list contained only Dates prior to the assignment. It is also
permissible, albeit pointless, to perform a cast in this statement. We’ll talk about casting
to generic types a bit later.

232 | Chapter 8: Generics

Whatever the runtime types, the compiler is running the show and does not let us assign
things that are clearly incompatible:

 List<Date> dates = new ArrayList<String>(); // Compile-time Error!

Of course, the ArrayList<String> does not implement the methods of List<Date>
conjured by the compiler, so these types are incompatible.

But what about more interesting type relationships? The List interface, for example, is
a subtype of the more general Collection interface. Is a particular instantiation of the
generic List also assignable to some instantiation of the generic Collection? Does it
depend on the type parameters and their relationships? Clearly, a List<Date> is not a
Collection<String>. But is a List<Date> a Collection<Date>? Can a List<Date> be
a Collection<Object>?

We’ll just blurt out the answer first, then walk through it and explain. The rule is that
for the simple types of generic instantiations we’ve discussed so far, inheritance applies
only to the “base” generic type and not to the parameter types. Furthermore, assignability
applies only when the two generic types are instantiated on exactly the same parameter
type. In other words, there is still one-dimensional inheritance, following the base
generic class type, but with the additional restriction that the parameter types must be
identical.

For example, recalling that a List is a type of Collection, we can assign instantiations
of List to instantiations of Collection when the type parameter is exactly the same:

 Collection<Date> cd;
 List<Date> ld = new ArrayList<Date>();
 cd = ld; // Ok!

This code snippet says that a List<Date> is a Collection<Date>—pretty intuitive. But
trying the same logic on a variation in the parameter types fails:

 List<Object> lo;
 List<Date> ld = new ArrayList<Date>();
 lo = ld; // Compile-time Error! Incompatible types.

Although our intuition tells us that the Dates in that List could all live happily as
Objects in a List, the assignment is an error. We’ll explain precisely why in the next
section, but for now just note that the type parameters are not exactly the same and that
there is no inheritance relationship among parameter types in generics. This is a case
where thinking of the instantiation in terms of types and not in terms of what they do
helps. These are not really a “list of dates” and a “list of objects,” but more like a Date
List and an ObjectList, the relationship of which is not immediately obvious.

Try to pick out what’s OK and what’s not OK in the following example:
 Collection<Number> cn;
 List<Integer> li = new ArrayList<Integer>();
 cn = li; // Compile-time Error! Incompatible types.

Parameterized Type Relationships | 233

It is possible for an instantiation of List to be an instantiation of Collection, but only
if the parameter types are exactly the same. Inheritance doesn’t follow the parameter
types and this example fails.

One more thing: earlier we mentioned that this rule applies to the simple types of in‐
stantiations we’ve discussed so far in this chapter. What other types are there? Well, the
kinds of instantiations we’ve seen so far where we plug in an actual Java type as a
parameter are called concrete type instantiations. Later we’ll talk about wildcard instan‐
tiations, which are akin to mathematical set operations on types. We’ll see that it’s pos‐
sible to make more exotic instantiations of generics where the type relationships are
actually two-dimensional, depending both on the base type and the parameterization.
But don’t worry: this doesn’t come up very often and is not as scary as it sounds.

Why Isn’t a List<Date> a List<Object>?
It’s a reasonable question. Even with our brains thinking of arbitrary DateList and
ObjectList types, we can still ask why they couldn’t be assignable. Why shouldn’t we
be able to assign our List<Date> to a List<Object> and work with the Date elements
as Object types?

The reason gets back to the heart of the rationale for generics that we discussed in the
introduction: changing APIs. In the simplest case, supposing an ObjectList type ex‐
tends a DateList type, the DateList would have all of the methods of ObjectList and
we could still insert Objects into it. Now, you might object that generics let us change
the APIs, so that doesn’t apply anymore. That’s true, but there is a bigger problem. If we
could assign our DateList to an ObjectList variable, we would have to be able to use
Object methods to insert elements of types other than Date into it. We could alias the
DateList as an ObjectList and try to trick it into accepting some other type:

 DateList dateList = new DateList();
 ObjectList objectList = dateList; // Can't really do this
 objectList.add(new Foo()); // should be runtime error!

We’d expect to get a runtime error when the actual DateList implementation was pre‐
sented with the wrong type of object. And therein lies the problem. Java generics have
no runtime representation. Even if this functionality were useful, there is no way with
the current scheme for Java to know what to do at runtime. Another way to look at it is
that this feature is simply dangerous because it allows for an error at runtime that
couldn’t be caught at compile time. In general, we’d like to catch type errors at compile
time. By disallowing these assignments, Java can guarantee that your code is typesafe if
it compiles with no unchecked warnings.

Actually, that last sentence is not entirely true, but it doesn’t have to do with generics; it
has to do with arrays. If this all sounds familiar to you, it’s because we mentioned it
previously in relation to Java arrays. Array types have an inheritance relationship that
allows this kind of aliasing to occur:

234 | Chapter 8: Generics

 Date [] dates = new Date[10];
 Object [] objects = dates;
 objects[0] = "not a date"; // Runtime ArrayStoreException!

However, arrays have runtime representations as different classes and they check them‐
selves at runtime, throwing an ArrayStoreException in just this case. So in theory, Java
code is not guaranteed typesafe by the compiler if you use arrays in this way.

Casts
We’ve now talked about relationships between generic types and even between generic
types and raw types. But we haven’t brought up the concept of a cast yet. No cast was
necessary when we interchanged generics with their raw types. Instead, we just crossed
a line that triggers unchecked warnings from the compiler:

 List list = new ArrayList<Date>();
 List<Date> dl = list; // unchecked warning

Normally, we use a cast in Java to work with two types that could be assignable. For
example, we could attempt to cast an Object to a Date because it is plausible that the
Object is a Date value. The cast then performs the check at runtime to see if we are
correct. Casting between unrelated types is a compile-time error. For example, we can’t
even try to cast an Integer to a String. Those types have no inheritance relationship.
What about casts between compatible generic types?

 Collection<Date> cd = new ArrayList<Date>();
 List<Date> ld = (List<Date>)cd; // Ok!

This code snippet shows a valid cast from a more general Collection<Date> to a
List<Date>. The cast is plausible here because a Collection<Date> is assignable from
and could actually be a List<Date>. Similarly, the following cast catches our mistake
where we have aliased a TreeSet<Date> as a Collection<Date> and tried to cast it to a
List<Date>:

 Collection<Date> cd = new TreeSet<Date>();
 List<Date> ld = (List<Date>)cd; // Runtime ClassCastException!
 ld.add(new Date());

There is one case where casts are not effective with generics, however, and that is when
we are trying to differentiate the types based on their parameter types:

 Object o = new ArrayList<String>();
 List<Date> ld = (List<Date>)o; // unchecked warning, ineffective
 Date d = ld.get(0); // unsafe at runtime, implicit cast may fail

Here, we aliased an ArrayList<String> as a plain Object. Next, we cast it to a
List<Date>. Unfortunately, Java does not know the difference between a List<String>
and a List<Date> at runtime, so the cast is fruitless. The compiler warns us of this by
generating an unchecked warning at the location of the cast; we should be aware that

Casts | 235

when we try to use the cast object later, we might find out that it is incorrect. Casts on
generic types are ineffective at runtime because of erasure and the lack of type
information.

Writing Generic Classes
Now that we have (at least some of) the “end user” view of generics, let’s try writing a
few classes ourselves. In this section, we’ll talk about how type variables are used in the
definition of generic classes, where they may appear, and some of their limitations. We’ll
also talk about subclassing generic types.

The Type Variable
We’ve already seen the basics of how type variables are used in the declaration of a
generic class. One or more type variables are declared in the angle bracket (<>) type
declaration and used throughout the body and instance methods of the class. For
example:

 class Mouse { }
 class Bear { }

 class Trap< T >
 {
 T trapped;

 public void snare(T trapped) { this.trapped = trapped; }
 public T release() { return trapped; }
 }

 // usage
 Trap<Mouse> mouseTrap = new Trap<Mouse>();
 mouseTrap.snare(new Mouse());
 Mouse mouse = mouseTrap.release();

Here, we created a generic Trap class that can hold any type of object. We used the type
variable T to declare an instance variable of the parameter type as well as in the argument
type and return type of the two methods.

The scope of the type variable is the instance portion of the class, including methods
and any instance initializer blocks. The static portion of the class is not affected by the
generic parameterization, and type variables are not visible in static methods or static
initializers. As you might guess, just as all instantiations of the generic type have only
one actual class (the raw type), they have only one, shared static context as well. You
cannot even invoke a static method through a parameterized type. You must use the
raw type or an instance of the object.

236 | Chapter 8: Generics

The type variable can also be used in the type instantiation of other generic types used
by the class. For example, if we wanted our Trap to hold more than one animal, we could
create a List for them within our class by referencing the parameter type like so:

 List<T> trappedList = new ArrayList<T>();

Just to cover all the bases, we should mention that instantiations of generic types on the
type variable act just like any other type and can serve in all the places that other in‐
stantiations of a type can. For example, a method in our class can take a List<T> as an
argument:

 public void trapAll(List<T> list) { ... }

The effective type of the trapAll() method in a Trap<Mouse> is then simply:
 trapAll(List<Mouse> list) { ... }

We should note that this is not what we mean by the term generic method. This is just a
regular Java method that happens to take a generic type as an argument. We’ll talk about
real generic methods, which can infer their types from arguments, and assignment con‐
texts later in this chapter. A type variable can also be used to parameterize a generic
parent class, as we’ll see in the next section.

Subclassing Generics
Generic types can be subclassed just like any other class by either generic or nongeneric
child classes. A nongeneric subclass must extend a particular instantiation of the parent
type, filling in the required parameters to make it concrete:

 class DateList extends ArrayList<Date> { }

 DateList dateList = new DateList();
 dateList.add(new Date());
 List<Date> ld = dateList;

Here, we have created a nongeneric subclass, DateList, of the concrete generic instan‐
tiation ArrayList<Date>. The DateList is a type of ArrayList<Date> and inherits the
particular instantiation of all of the methods, just as it would from any other parent. We
can even assign it back to the parent type if we wish, as shown in this example.

A generic subtype of a generic class may extend either a concrete instantiation of the
class, as in the previous example, or it may share a type variable that it “passes up” to
the parent upon instantiation:

 class AdjustableTrap< T > extends Trap< T > {
 public void setSize(int i) { ... }
 }

Writing Generic Classes | 237

Here, the type variable T used to instantiate the AdjustableTrap class is passed along
to instantiate the base class, Trap. When the user instantiates the AdjustableTrap on a
particular parameter type, the parent class is instantiated on that type as well.

Exceptions and Generics
Types appear in the body of classes in another place—the throws clauses of methods.
We can use type variables to define the type of exceptions thrown by methods, but to
do so we need to introduce the concept of bounds. We cover bounds more in the next
section. In this case, the usage is very simple. We just need to ensure that the type variable
we want to use as our exception type is actually a type of Throwable. We can do that by
adding an extends clause to the declaration of our type variable, like this:

 < T extends Throwable >

Here is an example class, parameterized on a type that must be a kind of Throwable. Its
test() method accepts an instance of that kind of object and throws it as a checked
exception:

 ExceptionTester< T extends Throwable > {
 public void test(T exception) throws T {// throw type is generic param
 throw exception;
 }
 }

 try {
 new ExceptionTester<ClassNotFoundException>().test(
 new ClassNotFoundException());
 } catch (ClassNotFoundException e) { ... }

The important part of this example is that the throws clause of our test method is defined
to throw T, the generic parameter type of the class. This means that we can parameterize
the type of exceptions thrown by a class.

The addition of the bound imposes the restriction that the parameter type used to in‐
stantiate the class T must be a type of Throwable. And we referenced the type T in the
throws clause. So, an ExceptionTester<ClassNotFoundException> can throw a Class
NotFoundException from its test() method. Note that this is a checked exception and
that fact has not been lost on the compiler. The compiler enforces the checked exception
type that it just applied.

No generic throwables

We saw that a type variable can be used to specify the type of Throwable in the throws
clause of a method. Perhaps ironically, however, we cannot use generics to create new
types of exceptions. No generic subtypes of Throwable are allowed. If you think about
this for a moment, you’ll see that in order to be useful, generic Throwables would require

238 | Chapter 8: Generics

try/catch blocks that can differentiate instantiations of Throwable. And because (once
again) there is no runtime representation of generics, this isn’t possible with erasure.

Parameter Type Limitations
We have seen the parameter types (type variables) of a generic class used to declare
instance variables, method arguments, and return types as well as “passed along” to
parameterize a generic superclass. One thing that we haven’t talked about is the question
of how or whether we can use the type variable of a generic class to construct instances
of the parameter type or work with objects of the type in other concrete ways. We
deliberately avoided this issue in our previous “exception tester” example by simply
passing our exception object in as an argument. Could we have done away with this
argument? The answer, unfortunately, is that due to the limitations of erasure, there
really is no parameter type information to work with at runtime. In this section, we’ll
look at this problem and explore a workaround.

Because the type variable T has faithfully served as our parameter type everywhere else,
you might imagine that we could use it to construct an instance of T using the new
keyword. But we can’t:

 T element = new T(); // Error! Invalid syntax.

Remember that all type information is erased in the compiled class. The raw type does
not have any way of knowing the type of object you want to construct at runtime. Nor
is there any way to get at the Class of the parameter type through the type variable, for
the same reason. So reflection won’t help us here either. This means that, in general,
generics are limited to working with parameter types in relatively hands-off ways (by
reference only). This is one reason that generics are more useful for containers than in
some other applications. This problem comes up often and there is a solution, although
it’s not quite as elegant as we’d like.

Using Class<T>

The only real way to get the type information that we need at runtime is to have the user
explicitly pass in a Class reference, generally as one of the arguments to a method. Then
we can explicitly refer to the class using reflection and create instances or do whatever
else is necessary. This may sound like a really bad solution, without much type safety
and placing a big burden on the developer to do the right thing. Fortunately, we can use
a trick of generics to enforce this contract with the user and make it safe. Again, the
basic idea is to have one of our methods accept the Class of the parameter type so that
we can use it at runtime. Following our “exception tester” example:

 public void test(Class type) throws T { ... }

Writing Generic Classes | 239

This isn’t much better than it was before. Specifically, it doesn’t guarantee that the Class
type passed to the method will match the parameterized type of the class (used in the
throws clause here).

Fortunately, the Class class is, itself, now a generic type. Specifically, all instances of the
Class class created by the Java VM are instantiated with their own type as a parameter.
The class of the String type, for example, is now Class<String>, not just some arbitrary
instance of the raw Class type that happens to know about strings.

This has two ramifications. First, we can specify a particular instantiation of Class using
the parameter type in our class. And second, since the Class class is now generic, all of
the reflective and instance creation methods can be typed properly and no longer require
casts, so we can write our test() method like this:

 public void test(Class<T> type) throws T {
 throw type.newInstance();
 }

The only Class instance that can be passed to our test() method now is Class<T>, the
Class for the parameter type T, on which we instantiated ExceptionTester. So, al‐
though the user still has the burden of passing in this seemingly extraneous Class
argument, at least the compiler will ensure that we do it and do it correctly:

 ExceptionTester<ArithmeticException> et =
 new ExceptionTester<ArithmeticException>();

 et.test(ArithmeticException.class); // no other .class will work

In this code snippet, attempting to pass any other Class argument to the test() method
generates a compile-time error.

Bounds
In the process of discussing generics, we’ve already had to mention bounds a few times.
A bound is a constraint on the type of a type parameter. Bounds use the extends keyword
and some new syntax to limit the parameter types that may be applied to a generic type.
In the case of a generic class, the bounds simply limit the type that may be supplied to
instantiate it.

A type variable may extend a class or interface type, meaning that its instantiation must
be of that type or a subtype:

 class EmployeeList< T extends Employee > { ... }

Here, we made a generic EmployeeList type that can be instantiated only with Employ
ee types. We could further require that the Employee type implement one or more
interfaces using the special & syntax:

 class EmployeeList< T extends Employee & Ranked & Printable > { ... }

240 | Chapter 8: Generics

The order of the & interface bounds is not significant, but only one class type can be
specified and if there is one, it must come first. When a type has no specific bounds, the
bound extends Object is implicit.

By applying bounds to our type, we not only limit the instantiations of the generic class,
but we make the type arguments more useful. Now that we know that our type must
extend some type or implement some set of interfaces, we can use variables and argu‐
ments declared with T by those other type names. Here is a somewhat contrived exten‐
sion of our previous example:

 class EmployeeList< T extends Employee & Ranked & Printable >
 {
 Ranked ranking;
 List<Printable> printList = new ArrayList<Printable>();

 public void addEmployee(T employee) {
 this.ranking = employee; // T as Ranked
 printList.add(employee); // T as Printable
 }
 }

This example shows that by placing bounds on the generic parameter type we can re‐
quire it to be of a particular class type or implement certain interface types. This allows
us to use arguments of the parameter type passed to methods in more useful ways. In
this example, we know that the EmployeeList will be instantiated with a generic type
that is a Printable and so we can use the employee argument as a Printable.

Type variables can also refer to other type variables within the type declaration:
 class Foo <A, B extends A> { ... }

We’ll see a particularly vicious example of this later when we talk about the definition
of the Enum class. We’ll also see a more convenient technique for declaring how indi‐
vidual elements of a generic class relate to the parameter type when we cover wildcards
in the next section.

Erasure and Bounds (Working with Legacy Code)
We mentioned earlier in our discussion of erasure that the resulting type used in place
of the type parameter in the raw type for the generic class is the bound of the type
variable. Specifically, we have seen many generics with no explicit bounds that defaulted
to a bound of type Object. We also showed a quick example of a type that imposed a
bound of extends Date and said that the type of its methods would be Date instead of
Object. We can now be a little more specific.

The type after erasure used for the parameter type of a generic class is the leftmost
bound; that is, the first bound specified after the extends keyword (literally the leftmost)
becomes the type used in the erasure. This implies that if the type extends a class type,

Bounds | 241

it is always the erased type because it must always come first. But if the type extends
only interface types, the choice is up to us. This fine point is important for backward
compatibility with nongeneric code. Often when creating generic versions of nonge‐
neric APIs, we have the opportunity to “tighten up” the specification a bit. Being aware
of the leftmost bound gives us a way to explicitly control the type of the erased class.
For example, suppose we create a generic List class that we only want instantiated on
Listable objects, but we’d prefer not to change the API of our old List class that
accepted Object type elements. Our initial attempt:

 class List< E extends Listable > { ... }

produces a raw type that accepts only Listable. However, we can insert a somewhat
gratuitous additional type, Object, as the leftmost bound in order to get back our old
API without changing the new generic bounds:

 class List< E extends Object & Listable > { ... }

Inserting Object doesn’t change the actual bounds of the generic class but does change
the erased signature.

Wildcards
We mentioned earlier that the kinds of generic type instantiations discussed so far in
this chapter have all been concrete type instantiations. We described this as meaning
that all of the parameter arguments are real Java types. For example, List<String> and
List<Date> are instantiations of the generic List class with the concrete types String
and Date. Now we’re going to look at another kind of generic type instantiation: wildcard
instantiation.

As we’ll see in this section, wildcards are Java’s way of introducing polymorphism into
the type parameter portion of the generic equation. A wildcard instantiation uses a
question mark (?) in place of an actual type parameter at instantiation time and denotes
that the type can be assigned any of a range of possible instantiations of the generic type.
The ? wildcard by itself is called the unbounded wildcard and denotes that any type
instantiation is acceptable (assignable to the type).

 List<?> anyInstantiationOfList = new ArrayList<Date>();
 anyInstantiationOfList = new ArrayList<String>(); // another instantiation

In this snippet, we declared a variable anyInstantiationOfList whose type is the un‐
bounded wildcard instantiation of the generic List type. (What a mouthful.) This means
that the type we instantiated can be assigned any particular concrete instantiation of the
List type, whether Dates, Strings, or Foos. Here, we assigned it a List<Date> first and,
subsequently, a List<String>.

242 | Chapter 8: Generics

A Supertype of All Instantiations
The unbounded wildcard instantiation is a kind of supertype of all of these concrete
instantiations. In contrast to the generic type relationships that we saw earlier, which
followed only raw, “base” generic types, wildcards let us implement polymorphism on
the parameter types. The unbounded wildcard is to generic type parameters what the
Object type is to regular Java types: a supertype of everything.

 // A List<Object> is not a List<Date>!
 List<Object> objectList = new ArrayList<Date>() // Error!

 // A List<?> can be a List<Date>
 List<?> anyList = new ArrayList<Date>(); // Yes!

We are reminded in this example that List<Object> is not a List<Date>; polymorphism
doesn’t flow that way with generic instantiations of concrete types. But List<?>, the
unbounded wildcard instantiation, can be assigned any instantiation of List. As we go
on, we’ll see that wildcards add a new dimension to the assignability of generic types.

Bounded Wildcards
A bounded wildcard is a wildcard that uses the extends keyword just as a type variable
would to limit the range of assignable types. For example:

 List<? extends Date> dateInstantiations = new ArrayList<Date>();
 dateInstantiations = new ArrayList<MyDate>(); // another instantiation

Our dateInstantiations variable is limited to holding instantiations of List on pa‐
rameter types of Date and its subclasses. So, we can assign it a List<Date> or a List<My
Date>. In the same way that the unbounded wildcard serves as a superclass for all in‐
stantiations of a generic type, bounded wildcards create more limited supertypes cov‐
ering a narrower range of instantiations. In this case, our wildcard instantiation, List<?
extends Date>, is the supertype of all instantiations of List on Date types. As with type
parameter bounds, the bound Date is called the upper bound of the type.

Wildcard bounds may extend interfaces as well as use the & syntax to add interface
requirements to the bound:

 Trap< ? extends Catchable & Releaseable > trap;

In this case, the instantiation serves as a supertype of the set of instantiations on types
implementing both the Catchable and Releaseable interfaces.

Thinking Outside the Container
Let’s be clear about what the wildcard means in the context of a container type such as
List. The unbounded wildcard instantiation may be assigned any type instantiation,
but it does ultimately refer to some particular type instantiation. A wildcard instantiation

Wildcards | 243

serves as the type of a variable, and that variable eventually holds some actual concrete
instantiation of the generic type:

 List<?> someInstantiationOfList;
 someInstantiationOfList = new ArrayList<Date>();
 someInstantiationOfList = new ArrayList<String>();

In this example, our List<?> variable is either a List<String> or a List<Date>. It is
not some new kind of List that can hold either String or Date elements.

In the same way, a wildcard with bounds ultimately holds one of the concrete instan‐
tiations assignable to its bounds. Imagine for a moment that we have a private class Foo
with only one subclass Bar and no others. The expression Collection<? extends
Foo> in this case means the set of two possibilities: either Collection<Foo> or Collec
tion<Bar>—that is, either a Collection of elements with a common supertype of Foo
or a collection of elements with a common supertype of Bar. Again, the wildcard in‐
stantiation matches either of those generic type instantiations. It does not create a new
type of collection that can contain either Foos or Bars. (That is actually the job of
Collection<Foo>, which can contain both Foo and Bar elements.)

For this reason, wildcard type instantiations are valid types for referencing an object,
but they cannot be used as the type to create an instance of an object. In general, you
cannot use a wildcard type with the new keyword to allocate an object instance because
the wildcard denotes one or a possible set of objects. It doesn’t make sense.

Lower Bounds
We saw the extends construct used to specify an upper bound for both type variables
and wildcard instantiations. It implies a type that is “at the top” of the object hierarchy
for the bound. Wildcard instantiations actually allow another type of bound called a
lower bound as well. A lower bound is specified with the keyword super and, as you
might guess, requires that instantiations be of a certain type or any of its supertypes, up
to Object. For example:

 List< ? super MyDate > listOfAssignableFromMyDate;
 listOfAssignableFromMyDate = new ArrayList<MyDate>();
 listOfAssignableFromMyDate = new ArrayList<Date>();
 listOfAssignableFromMyDate = new ArrayList<Object>();

This wildcard instantiation creates a type that can hold any instantiation of List on the
type MyDate or any of its supertypes. In our example world, that means the wildcard
type can be assigned one of only three types: List<MyDate>, List<Date>, or List<Ob
ject>. Here, we have cut off the object inheritance hierarchy after three generations.
No further subclasses of MyDate can be used.

As we hinted in the example, it may help to read ? super MyDate as “Assignable from
MyDate.” Lower bounds are useful for cases where we want to be sure that a particular

244 | Chapter 8: Generics

container instantiation can hold a particular element type, without limiting it to just the
specific type of the element. We’ll show a good example of this when we talk about
generic methods later. For now, just try to digest this as complementary to upper bounds.

One last thing about lower bounds: only the wildcard instantiation syntax can use the
super keyword to refer to lower bounds. Bounds of type variables in generic class dec‐
larations cannot have lower bounds. Erasure replaces all references to the type variables
with their upper bounds, so runtime types have no way to enforce the contract.

Reading, Writing, and Arithmetic
We’ve glossed over an important issue so far in our discussion of wildcard types: namely,
how can we use them? What kinds of types does the compiler enforce for variables and
arguments that referred to the type variables in the generic class? For example, if we
have a List<?> list of any instantiation type, what are the rules about putting objects
into it and getting them back out? What is their type?

We have to take the two cases separately. Drawing on the analogy of a container, we’ll
call getting a return value from a method on an object as a specific type reading the
object as a type. Conversely, we’ll call passing arguments of a specific type to methods
of the object writing the object as a type. So, for example, a List<Date> can be read and
written as the Date type and a Trap<Mouse> has methods that can be read and written
as the Mouse type.

To be more precise, though, we should say that List<Date> can be read as the Date type,
but can be written as any subtype of Date. After all, we could add a MyDate to a
List<Date>. Let’s look now at the wildcard instantiation List< ? extends Date >. We
know it holds an instantiation of the List type on some type of Date. What more can
we say about the elements of such a List, which could hold any instantiation of the
Date type? Well, the elements will always be subtypes of Date. This means that at a
minimum, we should be able to read the object through our wildcard type as type Date:

 List< ? extends Date > someDateList = new ArrayList<MyDate>();
 ...
 Date date = someDateList.get(0); // read as Date

The compiler lets us assign the value directly to a Date because it knows that whatever
the instantiation of the List, the elements must be a subtype of Date. (Of course, we
could have read the object as type Object or any supertype of Date if we’d wanted to as
well.)

But what about going the other way and writing? If someDatelist could be an instan‐
tiation of List on any subclass of Date, how can we know what type of objects to write
to it? (How can we safely call its add() method?) The answer is that we can’t. Since we
don’t know the correct type, the compiler won’t let us write anything to the List through
our wildcard instantiation of the type:

Wildcards | 245

 List< ? extends Date > someDateList = new ArrayList<MyDate>();
 someDatelist.add(new Date()); // Compile-time Error!
 someDatelist.add(new MyDate()); // Compile-time Error!

Another way to put this is that because our wildcard instantiation has an upper bound
of Date, we can only read the type as Date. We’ll reiterate that in the form of a rule in a
moment.

Recall that an unbounded wildcard is really just a wildcard with a bound of type Object
<? extends Object>. Obviously, even an unbounded wildcard instantiation holds ob‐
jects that can be assigned to Object, so it’s OK to read an unbounded wildcard as the
Object type:

 List<?> someList = new ArrayList<String>();
 ...
 Object object = someList.get(0); // read as Object

But, of course, we cannot know the actual type of the elements, so we cannot write to
the list through our unbounded wildcard type.

What about lower bounds? Well, the situation is neatly reversed with respect to reading
and writing. Because we know that the elements of any instantiation matching our lower
bounded wildcard must be a supertype of the lower bound, we can write to the object
as the lower bound type through our wildcard:

 List< ? super MyDate > listAssignableMyDate = new ArrayList<Date>();
 listAssignableMyDate.add(new MyDate());
 listAssignableMyDate.add(new Date()); // Compile-time Error!

But because we do not know what supertype of MyDate the elements are, we cannot read
the list as any specific type. Of course, the List must still hold some type of Object, so
we can always read the lower bounded list as type Object through the wildcard. The
type Object is the default upper bound:

 Object obj = listAssignableMyDate.get(0); // read as Object

Whew. Well, having gone through that explanation, we can now sum it up concisely in
an easy-to-remember rule:

Wildcard instantiations of generic types can be read as their upper bound and written as
their lower bound.

To elaborate: all wildcard instantiations have an upper bound of Object even if none
other is specified, so all wildcard instantiations can at least be read as type Object. But
not all wildcards have a lower bound. Only those using the super construct have a lower
bound and so only those wildcard instantiations can be written as a type more specific
than Object.

246 | Chapter 8: Generics

<?>, <Object>, and the Raw Type
We’ve covered a lot of ground and the semantics can be a bit hard to follow. Let’s exercise
our knowledge by reviewing a few cases that may or may not have similarities.

Natural questions to ask are, What good is the unbounded wildcard anyway? Why not
just use the raw type? How do unbounded wildcard instantiation and raw types com‐
pare? The first difference is that the compiler will issue unchecked warnings when we
use methods of the raw type. But that’s superficial. Why is the compiler warning us? It’s
because it cannot stop us from abusing our raw type by foisting the wrong type of objects
on it. Using an unbounded wildcard is like putting on boxing gloves and saying that we
want to play by the rules. Doing so comes at a cost. The compiler guarantees that we are
safe by allowing us only the operations that it knows are safe—namely, reading as type
Object (the upper bound of everything). The compiler does not let us write to an un‐
bounded wildcard at all. So why use the unbounded wildcard? To play by the rules of
generics and guarantee that we don’t do anything unsafe.

Next, we can knock down any notion that an unbounded wildcard instantiation is sim‐
ilar to an instantiation on the type Object. Remember that a List<?> holds some in‐
stantiation of List. It could be a List<Date> for all we know. But a List<Object> is
actually a list that holds concrete Object types. The List<Object> can be read and
written as Object. The List<?> can only be read (not written) and only read as Ob
ject in a degenerate sense. The elements of List<?> are actually all of some unknown
type. The elements of the unknown type list all have a common supertype that could be
Object or some other common type that is more restrictive than Object. The knowledge
of what “could be” in the List<?> doesn’t do much for us in practice, but means some‐
thing completely different from List<Object>.

Finally, let’s round out the comparisons by asking how List<Object> and the raw type
compare. Now we’re onto something. In fact, the raw type after erasure is effectively
List<Object> as you’ll recall. But in this case, we’re telling the compiler that this is OK.
Here, we are asking for a type with elements that can hold any type safely and the
compiler obliges. The answer to the question of how List<Object> and the raw type
List compare is that List<Object> is the “generic safe” version of the raw type of
yesterday.

Wildcard Type Relationships
Before we leave our wild discussion of wildcard types, let’s return one more time to the
notion of wildcard type instantiations as types in the Java type system. Earlier in this
chapter, we described how regular concrete instantiations of generic types are related
by virtue of their “base” generic type inheritance, only with the proviso that their type
parameters are exactly the same. Later, we tried to instill the idea that wildcard instan‐
tiations add an inheritance relationship to the type parameters, which is the other half

Wildcards | 247

of the generic instantiation. Now, we’ll bring the two together. Things can get arcane
pretty quickly, but the simple cases are easy to swallow.

The question is, if we have two different wildcard instantiations of a type or related
types, how, if at all, are they related? For example, can an unbounded wildcard be as‐
signed a value with a more restrictive bound because it can hold any instantiation?

 List< ? extends Date > dateLists = ...;
 List< ? > anylists;
 anyLists = dateLists; // Ok!

The answer is yes. For purposes of assignability, wildcard instantiations can be consid‐
ered as types with possible supertype or subtype relationships determined by their
bounds. Let’s spell out the unbounded wildcard instantiation as it really is, an instan‐
tiation with an upper bound of Object:

 List< ? extends Date > dateLists = ...;
 List< ? extends Object > objectLists;
 objectLists = dateLists; // Ok!

The rule is that if the “base” generic, raw type is assignable and the bounds of the wildcard
instantiation are also assignable, the overall types are assignable. Let’s look at another
example:

 List< ? extends Integer > intLists = ...;
 Collection< ? extends Number > numCollections;
 numCollections = intLists; // Ok!

What this effectively says is that some List of Integer types can be treated as some
Collection of Number types through the wildcard instantiation. If you think about it,
you’ll see that there is no conflict here. A List is certainly a Collection. And all we’re
doing is widening the type by which we can read the elements from Integer to Num
ber. In neither case could we have written to the collection via the wildcard instantiation
anyway.

What all this ultimately means is that with the introduction of wildcard instantiations,
the type relationships of Java generic classes become two-dimensional. There is the raw
type relationship to consider and then the wildcard parameter relationship. In fact, if
you consider that generic classes may have more than one type parameter, the relation‐
ships can get even more complicated (N-dimensional). Fortunately, none of this comes
up very often in the real world.

Generic Methods
Thus far in this chapter, we’ve talked about generic types and the implementation of
generic classes. Now, we’re going to look at a different kind of generic animal: generic
methods. Generic methods essentially do for individual methods what type parameters
do for generic classes. But as we’ll see, generic methods are smarter and can figure out

248 | Chapter 8: Generics

their parameter types from their usage context without having to be explicitly parame‐
terized. (In reality, of course, it is the compiler that does this.) Generic methods can
appear in any class (not just generic classes) and are very useful for a wide variety of
applications.

First, let’s quickly review the way that we’ve seen regular methods interact with generic
types. We’ve seen that generic classes can contain methods that use type variables in
their arguments and return types in order to adapt themselves to the parameterization
of the class. We’ve also mentioned that generic types themselves can be used in most of
the places that any other type can be used. So methods of generic or nongeneric classes
can use generic types as argument and return types as well. Here are examples of those
usages:

 // Not generic methods

 class GenericClass< T > {
 // method using generic class parameter type
 public void T cache(T entry) { ... }
 }
 class RegularClass {
 // method using concrete generic type
 public List<Date> sortDates(List<Date> dates) { ... }
 // method using wildcard generic type
 public List<?> reverse(List<?> dates) { ... }
 }

The cache() method in GenericClass accepts an argument of the parameter type T
and also returns a value of type T. The sortDates() method, which appears in the
nongeneric example class, works with a concrete generic type, and the reverse()
method works with a wildcard instantiation of a generic type. These are examples of
methods that work with generics, but they are not true generic methods.

Generic Methods Introduced
Like generic classes, generic methods have a parameter type declaration using the <>
syntax. This syntax appears before the return type of the method:

 // generic method
 <T> T cache(T entry) { ... }

This cache() method looks very much like our earlier example, except that it has its
own parameter type declaration that defines the type variable T. This method is a generic
method and can appear in either a generic or nongeneric class. The scope of T is limited
to the method cache() and hides any definition of T in any enclosing generic class. As
with generic classes, the type T can have bounds:

 <T extends Entry & Cacheable > T cache(T entry) { ... }

Generic Methods | 249

Unlike a generic class, it does not have to be instantiated with a specific parameter type
for T before it is used. Instead, it infers the parameter type T from the type of its argument,
entry. For example:

 BlogEntry newBlogEntry = ...;
 NewspaperEntry newNewspaperEntry = ...;

 BlogEntry oldEntry = cache(newBlogEntry);
 NewspaperEntry old = cache(newNewspaperEntry);

Here, our generic method cache() inferred the type BlogEntry (which we’ll presume
for the sake of the example is a type of Entry and Cacheable). BlogEntry became the
type T of the return type and may have been used elsewhere internally by the method.
In the next case, the cache() method was used on a different type of Entry and was able
to return the new type in exactly the same way. That’s what’s powerful about generic
methods: the ability to infer a parameter type from their usage context. We’ll go into
detail about that next.

Another difference with generic class components is that generic methods may be static:
 class MathUtils {
 public static <T extends Number> T max(T x, T y) { ... }
 }

Constructors for classes are essentially methods, too, and follow the same rules as
generic methods, minus the return type.

Type Inference from Arguments
In the previous section, we saw a method infer its type from an argument:

 <T> T cache(T entry) { ... }

But what if there is more than one argument? We saw just that situation in our last
snippet, the static generic method max(x, y). All looks well when we give it two
identical types:

 Integer max = MathUtils.max(new Integer(1), new Integer(2)) ;

But what does it make of the arguments in this invocation?
 MathUtils.max(new Integer(1), new Float(2)) ;

In this case, the Java compiler does something really smart. It climbs up the argument
type parent classes, looking for the nearest common supertype. Java also identifies the
nearest common interfaces implemented by both of the types. It identifies that both the
Integer and the Float types are subtypes of the Number type. It also recognizes that
each of these implements (a certain generic instantiation of) the Comparable interface.
Java then effectively makes this combination of types the parameter type of T for this
method invocation. The resulting type is, to use the syntax of bounds, Number &

250 | Chapter 8: Generics

Comparable. What this means to us is that the result type T is assignable to anything
matching that particular combination of types.

 Number max = MathUtils.max(new Integer(1), new Float(2));
 Comparable max = MathUtils.max(new Integer(1), new Float(2));

In English, this statement says that we can work with our Integer and our Float at the
same time only if we think of them as Numbers or Comparables, which makes sense. The
return type has become a new type, which is effectively a Number that also implements
the Comparable interface.

This same inference logic works with any number of arguments. But to be useful, the
arguments really have to share some important common supertype or interface. If they
don’t have anything in common, the result will be their de facto common ancestor, the
Object type. For example, the nearest common supertype of a String and a List is
Object along with the Serializeable interface. There’s not much a method could do
with a type lacking real bounds anyway.

Type Inference from Assignment Context
We’ve seen a generic method infer its parameter type from its argument types. But what
if the type variable isn’t used in any of the arguments or the method has no arguments?
Suppose the method only has a parametric return type:

 <T> T foo() { ... }

You might guess that this is an error because the compiler would appear to have no way
of determining what type we want. But it’s not! The Java compiler is smart enough to
look at the context in which the method is called. Specifically, if the result of the method
is assigned to a variable, the compiler tries to make the type of that variable the parameter
type. Here’s an example. We’ll make a factory for our Trap objects:

 <T> Trap<T> makeTrap() { return new Trap<T>(); }

 // usage
 Trap<Mouse> mouseTrap = makeTrap();
 Trap<Bear> bearTrap = makeTrap();

The compiler has, as if by magic, determined what kind of instantiation of Trap we want
based on the assignment context.

Before you get too excited about the possibilities, there’s not much you can do with a
plain type parameter in the body of that method. For example, we can’t create instances
of any particular concrete type T, so this limits the usefulness of factories. About all we
can do is the sort of thing shown here, where we create instances of generics parame‐
terized correctly for the context.

Furthermore, the inference only works on assignment to a variable. Java does not try to
guess the parameter type based on the context if the method call is used in other ways,

Generic Methods | 251

such as to produce an argument to a method or as the value of a return statement from
a method. In those cases, the inferred type defaults to type Object. (See the section
“Explicit Type Invocation” for a solution.)

Explicit Type Invocation
Although it should not be needed often, a syntax does exist for invoking a generic
method with specific parameter types. The syntax is a bit awkward and involves a class
or instance object prefix, followed by the familiar angle bracket type list, placed before
the actual method invocation. Here are some examples:

 Integer i = MathUtilities.<Integer>max(42, 42);
 String s = fooObject.<String>foo("foo");
 String s = this.<String>foo("foo");

The prefix must be a class or object instance containing the method. One situation where
you’d need to use explicit type invocation is if you are calling a generic method that
infers its type from the assignment context, but you are not assigning the value to a
variable directly. For example, if you wanted to pass the result of our makeTrap() method
as a parameter to another method, it would otherwise default to Object.

Wildcard Capture
Generic methods can do one more trick for us involving taming wildcard instantiations
of generic types. The term wildcard capture refers to the fact that generic methods can
work with arguments whose type is a wildcard instantiation of a type, just as if the type
were known:

 <T> Set<T> listToSet(List<T> list) {
 Set<T> set = new HashSet<T>();
 set.addAll(list);
 return set;
 }

 // usage
 List<?> list = new ArrayList<Date>();
 Set<?> set = listToSet(list);

The result of these examples is that we converted an unknown instantiation of List to
an unknown instantiation of Set. The type variable T represents the actual type of the
argument, list, for purposes of the method body. The wildcard instantiation must
match any bounds of the method parameter type. But because we can work with the
type variable only through its bounds types, the compiler is free to refer to it by this new
name, T, as if it were a known type. That may not seem very interesting, but it is useful
because it allows methods that accept wildcard instantiations of types to delegate their
work to other generic methods.

252 | Chapter 8: Generics

Another way to look at this is that generic methods are a more powerful alternative to
methods using wildcard instantiations of types. We’ll do a little comparison next.

Wildcard Types Versus Generic Methods
You’ll recall that trying to work with an object through a wildcard instantiation of its
generic type limits us to “reading” the object. We cannot “write” types to the object
because its parameter type is unknown. In contrast, because generic methods can infer
or “capture” an actual type for their arguments, they allow us to do a lot more with broad
ranges of types than we could with wildcard instantiations alone.

For example, suppose we wanted to write a utility method that swaps the first two ele‐
ments of a list. Using wildcards, we’d like to write something like this:

 // Bad implementation
 List<?> swap(List<?> list) {
 Object tmp = list.get(0);
 list.set(0, list.get(1)); // error, can't write
 list.set(1, tmp); // error, can't write
 return list;
 }

But we are not allowed to call the set() method of our list because we don’t know what
type it actually holds. We are really stuck and there isn’t much we can do. But the cor‐
responding generic method gives us a real type to hang our hat:

 <T> List<T> swapGeneric(List<T> list) {
 T tmp = list.get(0);
 list.set(0, list.get(1));
 list.set(1, tmp);
 return list;
 }

Here, we are able to declare a variable of the correct (inferred) type and write using the
set() methods appropriately. It would seem that generic methods are the only way to
go here. But there is a third path. Wildcard capture, as described in the previous section,
allows us to delegate our wildcard version of the method to our actual generic method
and use it as if the type were inferred, even though it’s open-ended:

 List<?> swap(List<?> list) {
 return swapGeneric(list); // delegate to generic form
 }

Here, we delegated to the generic version.

Arrays of Parameterized Types
There is one place where we haven’t yet considered how generic types affect the Java
language: array types. After everything we’ve seen, it would seem natural to expect that

Arrays of Parameterized Types | 253

arrays of generic types would come along for the ride. But as we’ll see, Java has a schiz‐
ophrenic relationship with arrays of parameterized types.

The first thing we need to do is recall how arrays work for regular Java types. An array
is a kind of built-in collection of some base type of element. Furthermore, array types
(including all multidimensional variations of the array) are true types in the Java lan‐
guage and are represented at runtime by unique class types. This is where the trouble
begins. Although arrays in Java act a lot like generic collections (they change their APIs
to adopt a particular type for “reading” and “writing”), they do not behave like Java
generics with respect to their type relationships. As we saw in Chapter 6, arrays exist in
the Java class hierarchy stemming from Object and extending down parallel branches
with the plain Java objects.

Arrays are covariant subtypes of other types of arrays, which means that, unlike concrete
generic types, although they change their method signatures, they are still related to
their parents. This means that Strings [] in Java is a subtype of Object []. This brings
up the aliasing problem that we mentioned earlier. An array of Strings can be aliased
as an array of Objects and we can attempt to put things into it illegally that won’t be
noticed until runtime:

 String [] strings = new String[5];
 Object [] objects = strings;
 objects[0] = new Date(); // Runtime ArrayStoreException!

To prevent disaster, Java must check every array assignment for the correct type at run‐
time. But recall that generic types do not have real representations at runtime; there is
only the raw type. So Java would have no way to know the difference between a
Trap<Mouse> and a Trap<Bear> element in an array once the array was aliased as, say,
an Object []. For this reason, Java does not allow you to create arrays of generic types—
at least not concrete ones. (More on that later in this chapter.)

Using Array Types
Now, because we just said that Java won’t let you make any of these arrays, you’d expect
that would be pretty much the end of the story. But no! Even though we don’t have real
array implementations that perform the needed runtime behavior, Java allows us to
declare the array type anyway. The catch is that you must break type safety in order to
use them by using an array of the raw type as their implementation:

 Trap<Mouse> [] tma = new Trap[10]; // unchecked warning
 Trap<Mouse> tm = new Trap<Mouse>();
 tma[0] = tm;
 Trap<Mouse> again = tma[0];

Here, we declared an array of a generic type, Trap<Mouse>. Assigning any value (other
than null) to this variable, tma, results in an unchecked warning from the compiler at
the point of the assignment.

254 | Chapter 8: Generics

What we are effectively telling the compiler here is to trust us to make sure that the array
contains only the correct generic types and asking it to allow us to use it thereafter as if
it were checked. We do not get warnings at each usage as we would with a raw type, only
at the point where we assign the array. The catch is that the compiler can’t prevent us
from abusing the array. The unchecked warning at the point where we assign the array
is just a representative warning that reminds us that it’s possible to abuse the array later.

What Good Are Arrays of Generic Types?
Why does Java even let us declare arrays of generic types? One important usage is that
it allows generic types to be used in variable-length argument methods. For example:

 void useLists(List<String> ... lists) {
 List<String> ls0 = lists[0];
 }

Another answer is that it’s an escape hatch to preserve our ability to use arrays when
necessary. You might want to do this for at least two reasons. First, arrays are faster than
collections in many cases. The Java runtime is very good at optimizing array access, and
sometimes it just might be worth it to you to eat the compiler warning to get the benefits.
Second, there is the issue of interfacing generic code to legacy code in which only the
Javadoc and your faith in the developer are your guarantees as to the contents. By as‐
signing raw arrays to generic instantiations, we can at least ensure that in simple usage
we don’t abuse the types in the new code.

Wildcards in Array Types
In general, wildcard instantiations of generics can be used as the base type for arrays in
the same way that concrete instantiations can. Let’s look at an example:

 ArrayList<?>[] arrayOfArrayLists = ...;

This type declaration is an array of unbounded wildcard instantiations of ArrayList.
Each element of the array can hold an instance of the wildcard type, meaning in this
case that each element of the array could hold a different instantiation of ArrayList.
For example:

 arrayOfArrayLists[0] = new ArrayList<Date>();
 arrayOfArrayLists[1] = new ArrayList<String>();

There is also a secret surprise that we are going to spring on you relating to wildcard
types in arrays. Although we said that Java won’t let us create arrays of generic types,
there is an exception to the rule. Java does allow us to create arrays of unbounded
wildcard instantiations. Here are two examples:

 ArrayList<?>[] arrayOfArrayLists = new ArrayList<?>[10];
 arrayOfArrayLists[0] = new ArrayList<Date>();

Arrays of Parameterized Types | 255

 Trap<?> [] arrayOfTraps = new Trap<?>[10];
 arrayOfTraps[0] = new Trap<Mouse>();

Here, we not only declared two arrays of wildcard instantiations, but we allocated the
arrays as well! The trick is that the arrays must be of the unbounded wildcard type. Why
does this work? Because each element in the unbounded wildcard instantiation of the
array can hold any instantiation, no runtime check of the generic portion of the type is
necessary at runtime. Any instantiation of ArrayList is assignable to the element of
type ArrayList<?>, so only the check of the raw type is required.

The term reifiable type is used to refer to any type that is unchanged by erasure. This
includes plain Java concrete types, primitives, and unbounded wildcard instantiations.
Reifiable types are kind of like the real people in The Matrix: they still exist when un‐
plugged from the simulation.

Case Study: The Enum Class
If you take a look at the definition of the java.lang.Enum class in Java 5 or later, you’ll
see a rather bizarre-looking generic type declaration:

 Enum< E extends Enum<E> > { ... }

In trying to parse this, you may be hampered by two thoughts, which we’ll try to dispel
right away. First, upon quick inspection this may appear to be recursive. The type vari‐
able E seems to be defined as something that’s not yet finished being defined. But it’s not
really. We often have mathematical equations of the form x = function(x) and they
are not recursive. What they really call for is a special value of x that satisfies the con‐
dition. Next, although it’s pretty clear that E is a subtype of some formulation of the
generic Enum type, you may jump to the conclusion that E itself must be a generic type.
Remember that concrete types can extend generics just as well as generics can.

With these thoughts in mind, let’s hunt for some arrangement that satisfies these bounds.
Let’s focus only on the bound for a moment:

 E extends Enum<E>

E is a subclass of some parameterization of Enum and, in particular, the parameterization
of Enum on the subclass type itself. To say this again, what it does is to require that any
invocations of the Enum type are by subclasses of some parameterization of the Enum
type. And specifically, the parameterizations of the Enum type supply their own type as
the type parameter to their parent, Enum. What kind of class satisfies this condition?

 class Foo extends Enum<Foo> { }

256 | Chapter 8: Generics

4. In real life, Java doesn’t let us extend the Enum type; that’s reserved for the enum keyword and the compiler.
But the structure is as shown.

This Foo class does. The declaration of Foo, in fact, reads just as the bound does. Foo is
a plain concrete type that extends Enum parameterized by its own type.4

What does this accomplish exactly? The first implication of this arrangement is that
Enum can be instantiated only by subclasses of itself. Next, we have the condition that
the Enum must be instantiated with the child type as its parameter type. This means that
any methods of the parent Enum class that refer to the type variable E will now refer to
the child type. This peculiar bound has guaranteed that child types customize their
parent with their own type. In fact, this is exactly what the Enum class in Java needs in
order to make enums work. The compareTo() method of a Java enum refers to the type
variable and is intended to be applicable only to other instances of the specific child
enum type:

 public int compareTo(E e) { ... }

For example, a Dog enum type should be able to compare only types of Dog and com‐
paring a Dog with a Cat should produce a compile-time error. The bound accomplishes
just that by adapting the compareTo() method to the Dog type:

 class Dog extends Enum<Dog> { ... }

Normally, a nonfinal base class, having no way to know what children it may have in
the future, could only refer to its own type as a general supertype for all of the children
when it wants to work with others of its own kind. Methods of a nongeneric Enum class
could only supply methods that work on any Enum. But through the magic of generics,
we can effectively change the API of the class based on how it is invoked with parameters.
In this case, we have arranged that all subclasses must supply themselves as the param‐
eter for the base class, tailoring its methods to themselves and pushing the base type
down a generation.

Case Study: The sort() Method
Poking around in the java.util.Collections class, we find all kinds of static utility
methods for working with collections. Among them is this goody—the static generic
method sort():

 <T extends Comparable<? super T>> void sort(List<T> list) { ... }

Another nut for us to crack. Let’s focus on the last part of the bound:
 Comparable<? super T>

This is a wildcard instantiation of the Comparable interface, so we can read the ex
tends as implements if it helps. Comparable holds a compareTo() method for some

Case Study: The sort() Method | 257

parameter type. A Comparable<String> means that the compareTo() method takes type
String. Therefore, Comparable<? super T> is the set of instantiations of Comparable
on T and all of its superclasses. A Comparable<T> suffices and, at the other end, so does
a Comparable<Object>. What this means in English is that the elements must be com‐
parable to their own type or some supertype of their own type. This is sufficient to ensure
that the elements can all be compared to one another, but not as restrictive as saying
that they must all implement the compareTo() method themselves. Some of the elements
may inherit the Comparable interface from a parent class that knows how to compare
only to a supertype of T, and that is exactly what is allowed here.

Conclusion
Java generics are a very powerful and useful addition to the language. Although some
of the details we delved into later in this chapter may seem daunting, the common usage
is very simple and compelling: generics make collections better. As you begin to write
more code using generics, you will find that your code becomes more readable and more
understandable. Generics make explicit what previously had to be inferred from usage.

258 | Chapter 8: Generics

CHAPTER 9

Threads

We take for granted that modern computer systems can manage many applications and
operating system (OS) tasks running concurrently and make it appear that all the soft‐
ware is running simultaneously. While most systems today do have multiple processors
and some processors can perform tricks to gain some degree of parallelism, for the most
part a processor can only really handle one job at at time and what we are seeing is sleight
of hand in the operating system, which juggles applications and turns its attention from
one to the next so quickly that they appear to run at once.

In the old days, the unit of concurrency for such systems was the application or pro‐
cess. To the OS, a process was more or less a black box that decided what to do on its
own. If an application required greater concurrency, it could get it only by running
multiple processes and communicating between them, but this was a heavyweight ap‐
proach and not very elegant. Later, the concept of threads was introduced. Threads
provide fine-grained concurrency within a process under the application’s own control.
Threads have existed for a long time, but have historically been tricky to use. In Java,
support for threading is built into the language, making it easier to work with threads.
The Java concurrency utilities address common patterns and practices in multithreaded
applications and raise them to the level of tangible Java APIs. Collectively, this means
that Java is a language that supports threading both natively and at a high level. It also
means that Java’s APIs take full advantage of threading, so it’s important that you gain
some degree of familiarity with these concepts early in your exploration of Java. Not all
developers will need to write applications that explicitly use threads or concurrency, but
most will use some feature that is impacted by them.

Threads are integral to the design of many Java APIs, especially those involved in client-
side applications, graphics, and sound. For example, when we look at GUI programming
later in this book, you’ll see that a component’s paint() method isn’t called directly by
the application but rather by a separate drawing thread within the Java runtime system.
At any given time, many such background threads may be performing activities in

259

parallel with your application. On the server side, writing code that does explicit thread
handling is less common and actively discouraged in the context of application servers
and web applications. In those scenarios, the server environment should control the
allocation of time. However, Java threads are there, servicing every request and running
your application components. It’s important to understand how your code fits into that
environment.

In this chapter, we’ll talk about writing applications that create and use their own threads
explicitly. We’ll talk about the low-level thread support built into the Java language first
and then discuss the java.util.concurrent thread utilities package in detail at the end
of this chapter.

Introducing Threads
Conceptually, a thread is a flow of control within a program. A thread is similar to the
more familiar notion of a process, except that threads within the same application are
much more closely related and share much of the same state. It’s kind of like a golf course,
which many golfers use at the same time. The threads cooperate to share a working area.
They have access to the same objects, including static and instance variables, within
their application. However, threads have their own copies of local variables, just as
players share the golf course but do not share some personal items like clubs and balls.

Multiple threads in an application have the same problems as the golfers—in a word,
synchronization. Just as you can’t have two sets of players blindly playing the same green
at the same time, you can’t have several threads trying to access the same variables
without some kind of coordination. Someone is bound to get hurt. A thread can reserve
the right to use an object until it’s finished with its task, just as a golf party gets exclusive
rights to the green until it’s done. And a thread that is more important can raise its
priority, asserting its right to play through.

The devil is in the details, of course, and those details have historically made threads
difficult to use. Fortunately, Java makes creating, controlling, and coordinating threads
simpler by integrating some of these concepts directly into the language.

It is common to stumble over threads when you first work with them because creating
a thread exercises many of your new Java skills all at once. You can avoid confusion by
remembering that two players are always involved in running a thread: a Java language
Thread object that represents the thread itself and an arbitrary target object that contains
the method that the thread is to execute. Later, you will see that it is possible to play
some sleight of hand and combine these two roles, but that special case just changes the
packaging, not the relationship.

260 | Chapter 9: Threads

The Thread Class and the Runnable Interface
All execution in Java is associated with a Thread object, beginning with a “main” thread
that is started by the Java VM to launch your application. A new thread is born when
we create an instance of the java.lang.Thread class. The Thread object represents a
real thread in the Java interpreter and serves as a handle for controlling and coordinating
its execution. With it, we can start the thread, wait for it to complete, cause it to sleep
for a time, or interrupt its activity. The constructor for the Thread class accepts infor‐
mation about where the thread should begin its execution. Conceptually, we would like
to simply tell it what method to run, but because there are no pointers to methods in
Java (not in this sense anyway), we can’t specify one directly. Instead, we have to take a
short detour and use the java.lang.Runnable interface to create or mark an object
that contains a “runnable” method. Runnable defines a single, general-purpose
run() method:

 public interface Runnable {
 abstract public void run();
 }

Every thread begins its life by executing the run() method in a Runnable object, which
is the “target object” that was passed to the thread’s constructor. The run() method can
contain any code, but it must be public, take no arguments, have no return value, and
throw no checked exceptions.

Any class that contains an appropriate run() method can declare that it implements the
Runnable interface. An instance of this class is then a runnable object that can serve as
the target of a new thread. If you don’t want to put the run() method directly in your
object (and very often you don’t), you can always make an adapter class that serves as
the Runnable for you. The adapter’s run() method can then call any method it wants
after the thread is started. We’ll show examples of these options later.

Creating and starting threads

A newly born thread remains idle until we give it a figurative slap on the bottom by
calling its start() method. The thread then wakes up and proceeds to execute the run()
method of its target object. start() can be called only once in the lifetime of a thread.
Once a thread starts, it continues running until the target object’s run() method returns
(or throws an unchecked exception of some kind). The start() method has a sort of
evil twin method called stop(), which kills the thread permanently. However, this
method is deprecated and should no longer be used. We’ll explain why and give some
examples of a better way to stop your threads later in this chapter. We will also look at
some other methods you can use to control a thread’s progress while it is running.

Let’s look at an example. The following class, Animation, implements a run() method
to drive its drawing loop:

Introducing Threads | 261

 class Animation implements Runnable {
 boolean animate = true;

 public void run() {
 while (animate) {
 // draw Frames
 ...
 }
 }
 }

To use it, we create a Thread object, passing it an instance of Animation as its target
object, and invoke its start() method. We can perform these steps explicitly:

 Animation happy = new Animation("Mr. Happy");
 Thread myThread = new Thread(happy);
 myThread.start();

We created an instance of our Animation class and passed it as the argument to the
constructor for myThread. When we call the start() method, myThread begins to exe‐
cute Animation’s run() method. Let the show begin!

This situation is not terribly object-oriented. More often, we want an object to handle
its own threads, as shown in Figure 9-1, which depicts a Runnable object that creates
and starts its own thread. We’ll show our Animation class performing these actions in
its constructor, although in practice it might be better to place them in a more explicit
controller method (e.g., startAnimation()):

n
 class Animation implements Runnable {
 Thread myThread;
 Animation (String name) {
 myThread = new Thread(this);
 myThread.start();
 }
 ...
 }

Figure 9-1. Interaction between Animation and its thread

262 | Chapter 9: Threads

In this case, the argument that we pass to the Thread constructor is this, the current
object (which is a Runnable). We keep the Thread reference in the instance variable
myThread in case we want to interrupt the show or exercise some other kind of control
later.

A natural-born thread

The Runnable interface lets us make an arbitrary object the target of a thread, as we did
in the previous example. This is the most important general usage of the Thread class.
In most situations in which you need to use threads, you’ll create a class (possibly a
simple adapter class) that implements the Runnable interface.

However, we’d be remiss not to show you the other technique for creating a thread.
Another design option is to make our target class a subclass of a type that is already
runnable. As it turns out, the Thread class itself conveniently implements the Runna
ble interface; it has its own run() method, which we can override directly to do our
bidding:

 class Animation extends Thread {
 boolean animate = true;

 public void run() {
 while (animate) {
 // draw Frames
 ...
 }
 }
 }

The skeleton of our Animation class looks much the same as before, except that our
class is now a subclass of Thread. To go along with this scheme, the default constructor
of the Thread class makes itself the default target—that is, by default, the Thread executes
its own run() method when we call the start() method, as shown in Figure 9-2. Now
our subclass can just override the run() method in the Thread class. (Thread itself
defines an empty run() method.)

Figure 9-2. Animation as a subclass of Thread

Introducing Threads | 263

Next, we create an instance of Animation and call its start() method (which it also
inherited from Thread):

 Animation bouncy = new Animation("Bouncy");
 bouncy.start();

Alternatively, we can have the Animation object start its thread when it is created, as
before:

 class Animation extends Thread {

 Animation (String name) {
 start();
 }
 ...
 }

Here, our Animation object just calls its own start() method when an instance is
created. (It’s probably better form to start and stop our objects explicitly after they’re
created rather than starting threads as a hidden side effect of object creation, but this
serves the example well.)

Subclassing Thread may seem like a convenient way to bundle a thread and its target
run() method. However, this approach often isn’t the best design. If you subclass Thread
to implement a thread, you are saying you need a new type of object that is a kind of
Thread, which exposes all of the public API of the Thread class. While there is something
satisfying about taking an object that’s primarily concerned with performing a task and
making it a Thread, the actual situations where you’ll want to create a subclass of Thread
should not be very common. In most cases, it is more natural to let the requirements
of your program dictate the class structure and use Runnables to connect the execution
and logic of your program.

Using an adapter

Finally, as we have suggested, we can build an adapter class to give us more control over
how to structure the code. It is particularly convenient to create an anonymous inner
class that implements Runnable and invokes an arbitrary method in our object. This
almost gives the feel of starting a thread and specifying an arbitrary method to run, as
if we had method pointers. For example, suppose that our Animation class provides a
method called startAnimating(), which performs setup (loads the images, etc.) and
then starts a thread to perform the animation. We’ll say that the actual guts of the ani‐
mation loop are in a private method called drawFrames(). We could use an adapter to
run drawFrames() for us:

 class Animation {

 public void startAnimating() {
 // do setup, load images, etc.
 ...

264 | Chapter 9: Threads

1. interrupt() has not worked consistently in all Java implementations historically.

 // start a drawing thread
 Thread myThread = new Thread (new Runnable() {
 public void run() { drawFrames(); }
 });
 myThread.start();
 }

 private void drawFrames() {
 // do animation ...
 }
 }

In this code, the anonymous inner class implementing Runnable is generated for us by
the compiler. We create a thread with this anonymous object as its target and have its
run() method call our drawFrames() method. We have avoided implementing a generic
run() method in our application code at the expense of generating an extra class.

Note that we could be even more terse in the previous example by simply having our
anonymous inner class extend Thread rather than implement Runnable. We could also
start the thread without saving a reference to it if we won’t be using it later:

 new Thread() {
 public void run() { drawFrames(); }
 }.start();

Controlling Threads
We have seen the start() method used to begin execution of a new thread. Several
other instance methods let us explicitly control a thread’s execution:

• The static Thread.sleep() method causes the currently executing thread to wait
for a designated period of time, without consuming much (or possibly any) CPU
time.

• The methods wait() and join() coordinate the execution of two or more threads.
We’ll discuss them in detail when we talk about thread synchronization later in this
chapter.

• The interrupt() method wakes up a thread that is sleeping in a sleep() or wait()
operation or is otherwise blocked on a long I/O operation.1

Deprecated methods

We should also mention three deprecated thread control methods: stop(), suspend(),
and resume(). The stop() method complements start(); it destroys the thread.
start() and the deprecated stop() method can be called only once in the thread’s

Introducing Threads | 265

lifecycle. By contrast, the deprecated suspend() and resume() methods were used to
arbitrarily pause and then restart the execution of a thread.

Although these deprecated methods still exist in the latest version of Java (and will
probably be there forever), they shouldn’t be used in new code development. The prob‐
lem with both stop() and suspend() is that they seize control of a thread’s execution
in an uncoordinated, harsh way. This makes programming difficult; it’s not always easy
for an application to anticipate and properly recover from being interrupted at an ar‐
bitrary point in its execution. Moreover, when a thread is seized using one of these
methods, the Java runtime system must release all its internal locks used for thread
synchronization. This can cause unexpected behavior and, in the case of suspend(),
can easily lead to deadlock.

A better way to affect the execution of a thread—which requires just a bit more work
on your part—is by creating some simple logic in your thread’s code to use monitor
variables (flags), possibly in conjunction with the interrupt() method, which allows
you to wake up a sleeping thread. In other words, you should cause your thread to stop
or resume what it is doing by asking it nicely rather than by pulling the rug out from
under it unexpectedly. The thread examples in this book use this technique in one way
or another.

The sleep() method

We often need to tell a thread to sit idle, or “sleep,” for a fixed period of time. While a
thread is asleep, or otherwise blocked from input of some kind, it doesn’t consume CPU
time or compete with other threads for processing. For this, we can call the static method
Thread.sleep(), which affects the currently executing thread. The call causes the thread
to go idle for a specified number of milliseconds:

 try {
 // The current thread
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // someone woke us up prematurely
 }

The sleep() method may throw an InterruptedException if it is interrupted by an‐
other thread via the interrupt() method. As you see in the previous code, the thread
can catch this exception and take the opportunity to perform some action—such as
checking a variable to determine whether or not it should exit—or perhaps just perform
some housekeeping and then go back to sleep.

The join() method

Finally, if you need to coordinate your activities with another thread by waiting for it
to complete its task, you can use the join() method. Calling a thread’s join() method
causes the caller to block until the target thread completes. Alternatively, you can poll

266 | Chapter 9: Threads

the thread by calling join() with a number of milliseconds to wait. This is a very coarse
form of thread synchronization. Later in this chapter, we’ll look at a much more general
and powerful mechanism for coordinating thread activity: wait(), notify(), and even
higher-level APIs in the java.util.concurrent package.

The interrupt() method

Earlier, we described the interrupt() method as a way to wake up a thread that is idle
in a sleep(), wait(), or lengthy I/O operation. Any thread that is not running contin‐
uously (not a “hard loop”) must enter one of these states periodically and so this is
intended to be a point where the thread can be flagged to stop. When a thread is inter‐
rupted, its interrupt status flag is set. This can happen at any time, whether the thread
is idle or not. The thread can test this status with the isInterrupted() method. isIn
terrupted(boolean), another form, accepts a Boolean value indicating whether or not
to clear the interrupt status. In this way, a thread can use the interrupt status as a flag
and a signal.

This is indeed the prescribed functionality of the method. However, historically, this
has been a weak spot, and Java implementations have had trouble getting it to work
correctly in all cases. In early Java VMs (prior to version 1.1), interrupt did not work
at all. More recent versions still have problems with interrupting I/O calls. By an I/O
call, we mean when an application is blocked in a read() or write() method, moving
bytes to or from a source such as a file or the network. In this case, Java is supposed to
throw an InterruptedIOException when the interrupt() is performed. However, this
has never been reliable across all Java implementations. To address this in Java 1.4, a
new I/O framework (java.nio) was introduced with one of its goals being to specifically
address these problems. When the thread associated with an NIO operation is inter‐
rupted, the thread wakes up and the I/O stream (called a “channel”) is automatically
closed. (See Chapter 12 for more about the NIO package.)

Death of a Thread
A thread continues to execute until one of the following happens:

• It explicitly returns from its target run() method.
• It encounters an uncaught runtime exception.
• The evil and nasty deprecated stop() method is called.

What happens if none of these things occurs, and the run() method for a thread never
terminates? The answer is that the thread can live on, even after what is ostensibly the
part of the application that created it has finished. This means we have to be aware of
how our threads eventually terminate, or an application can end up leaving orphaned

Introducing Threads | 267

threads that unnecessarily consume resources or keep the application alive when it
would otherwise quit.

In many cases, we really want to create background threads that do simple, periodic
tasks in an application. The setDaemon() method can be used to mark a thread as a
daemon thread that should be killed and discarded when no other nondaemon appli‐
cation threads remain. Normally, the Java interpreter continues to run until all threads
have completed. But when daemon threads are the only threads still alive, the interpreter
will exit.

Here’s a devilish example using daemon threads:
 class Devil extends Thread {
 Devil() {
 setDaemon(true);
 start();
 }
 public void run() {
 // perform evil tasks
 }
 }

In this example, the Devil thread sets its daemon status when it is created. If any Devil
threads remain when our application is otherwise complete, the runtime system kills
them for us. We don’t have to worry about cleaning them up.

Daemon threads are primarily useful in standalone Java applications and in the imple‐
mentation of server frameworks, but not in component applications such as applets.
Since an applet runs inside another Java application, any daemon threads it creates can
continue to live until the controlling application exits—probably not the desired effect.
A browser or any other application can use ThreadGroups to contain all the threads
created by subsystems of an application and then clean them up if necessary.

One final note about killing threads gracefully. A very common problem new developers
encounter the first time they create an application using an AWT or Swing component
is that their application never exits; the Java VM seems to hang indefinitely after ev‐
erything is finished. When working with graphics, Java has created an AWT thread to
process input and painting events. The AWT thread is not a daemon thread, so it doesn’t
exit automatically when other application threads have completed, and the developer
must call System.exit() explicitly. (If you think about it, this makes sense. Because
most GUI applications are event-driven and simply wait for user input, they would
otherwise simply exit after their startup code completed.)

Threading an Applet
Applets are embeddable Java applications that are expected to start and stop themselves
on command, possibly many times in their lifetime. A Java-enabled web browser

268 | Chapter 9: Threads

normally starts an applet when the applet is displayed and stops it when the user moves
to another page or (in theory) when the user scrolls the applet out of view. To conform
to this API, we would like an applet to cease its nonessential activity when it is stopped
and resume it when started again. We’ll talk about applets in Chapter 23, but it’s not
really essential to know about them here. We’ll just use this as a more realistic example
and as a transition to talk about our next topic, synchronization.

In this section, we will build UpdateApplet, a simple base class for an applet that main‐
tains a thread to automatically update its display at regular intervals. UpdateApplet
handles the basic creation and termination of the thread in the Applet’s start() and
stop() methods:

 public class UpdateApplet extends java.applet.Applet
 implements Runnable
 {
 Thread thread;
 boolean running;
 int updateInterval = 1000;

 public void run() {
 while (running)
 {
 repaint();
 try {
 Thread.sleep(updateInterval);
 } catch (InterruptedException e) {
 System.out.println("interrupted...");
 return;
 }
 }
 }

 public void start() {
 System.out.println("starting...");
 if (!running) // naive approach
 {
 running = true;
 thread = new Thread(this);
 thread.start();
 }
 }

 public void stop() {
 System.out.println("stopping...");
 thread.interrupt();
 running = false;
 }
 }

UpdateApplet is a Runnable object that alternately sleeps and calls its repaint() meth‐
od. (There’s nothing to paint, though, so running this applet is kind of boring. Later

Threading an Applet | 269

we’ll subclass it to implement a digital clock.) It has two other public methods: start()
and stop(). These are methods of the Applet class we are overriding; don’t confuse
them with the similarly named methods of the Thread class. These start() and stop()
methods are called by the web browser or applet viewer to tell the applet when it should
and should not be running.

UpdateApplet illustrates an environmentally friendly way to deal with threads in a sim‐
ple applet. UpdateApplet simply dismisses its thread each time the applet is stopped
and recreates it if the applet is restarted. When UpdateApplet’s start() method is called,
we first check to make sure there is no currently running thread by checking the run
ning flag. We then create one to begin our execution. When our applet is subsequently
asked to stop, we set the flag indicating that it should stop and make sure the thread is
awake by invoking its interrupt() method. In this way, we are sure to catch the thread
either at the beginning of its next iteration or when it goes to sleep.

With UpdateApplet doing all the work for us, we can create the world’s simplest clock
applet with just a few lines of code. Figure 9-3 shows our Clock.

Figure 9-3. The Clock applet

Here’s the code:
 //file: Clock.java
 public class Clock extends UpdateApplet {
 public void paint(java.awt.Graphics g) {
 g.drawString(new java.util.Date().toString(), 10, 25);
 }
 }

The java.util.Date().toString() method creates a string that contains the current
time.

Issues Lurking
Our applet seems pretty straightforward and, in fact, works as advertised. But some
things in it should concern us when we’re thinking about threads. Let’s look at that quick
check of the running flag before we start our new thread:

 if (!running) // naive approach
 {
 running = true;
 ... /* start thread */

270 | Chapter 9: Threads

Now, an Applet’s start() and stop() methods are guaranteed to be called in sequence
and probably by the same controlling thread. As a result, this check for the existence of
the running thread in start() may not seem necessary here. The stop() method should
always be called before the start() method is invoked again. But, in the style of de‐
fensive programming the test seems like a good thing to do, right? That may be so, but,
in general, it’s not enough to prevent bad things from happening. The test may prevent
a simple case of misaligned stop() and start() calls, but the bigger question lurking
here is, What happens if start() and stop() were called repeatedly or in very quick
succession in a multithreaded environment? In the extreme case, it would be possible
for two threads to enter the test at about the same time and there is the chance that we
could end up with multiple threads started and out of our control. What is needed is a
real way to gain exclusive access to a resource (our flag) for a period of time. That’s what
synchronization is all about, and we’ll cover it in detail in the next section and through‐
out the rest of this chapter.

With synchronization, we might also consider more complex scenarios for our applet,
such as keeping our thread alive but dormant while the applet is stopped. This would
allow us to preserve expensive setup like network connections and clean them up later
if necessary.

Synchronization
Every thread has a mind of its own. Normally, a thread goes about its business without
any regard for what other threads in the application are doing. Threads may be time-
sliced, which means they can run in arbitrary spurts and bursts as directed by the op‐
erating system. On a multiprocessor system, it is even possible for many different threads
to be running simultaneously on different CPUs. This section is about coordinating the
activities of two or more threads so that they can work together and not collide in their
use of the same variables and methods (coordinating their play on the golf course).

Java provides a few simple structures for synchronizing the activities of threads. They
are all based on the concept of monitors, a widely used synchronization scheme. You
don’t have to know the details about how monitors work to be able to use them, but it
may help you to have a picture in mind.

A monitor is essentially a lock. The lock is attached to a resource that many threads may
need to access, but that should be accessed by only one thread at a time. It’s very much
like a restroom with a lock on the door; if it’s unlocked, you can enter and lock the door
while you are using it. If the resource is not being used, the thread can acquire the lock
and access the resource. When the thread is done, it relinquishes the lock, just as you
unlock the restroom door and leave it open for the next person. However, if another
thread already has the lock for the resource, all other threads must wait until the current
thread is done and has released the lock. This is just like when the restroom is occupied
when you arrive: you have to wait until the current user is done and unlocks the door.

Synchronization | 271

2. Don’t confuse the term serialize in this context with Java object serialization, which is a mechanism for making
objects persistent. The underlying meaning (to place one thing after another) does apply to both, however.
In the case of object serialization, the object’s data is laid out, byte for byte, in a certain order.

Fortunately, Java makes the process of synchronizing access to resources fairly easy. The
language handles setting up and acquiring locks; all you need to do is specify the re‐
sources that require synchronization.

Serializing Access to Methods
The most common need for synchronization among threads in Java is to serialize their
access to some resource (an object)—in other words, to make sure that only one thread
at a time can manipulate an object or variable.2 In Java, every object has an associated
lock. To be more specific, every class and every instance of a class has its own lock. The
synchronized keyword marks places where a thread must acquire the lock before
proceeding.

For example, suppose we implemented a SpeechSynthesizer class that contains a say()
method. We don’t want multiple threads calling say() at the same time because we
wouldn’t be able to understand anything being said. So we mark the say() method as
synchronized, which means that a thread must acquire the lock on the SpeechSynthe
sizer object before it can speak:

 class SpeechSynthesizer {
 synchronized void say(String words) {
 // speak
 }
 }

Because say() is an instance method, a thread must acquire the lock on the SpeechSyn
thesizer instance it’s using before it can invoke the say() method. When say() has
completed, it gives up the lock, which allows the next waiting thread to acquire the lock
and run the method. It doesn’t matter whether the thread is owned by the SpeechSyn
thesizer itself or some other object; every thread must acquire the same lock, that of
the SpeechSynthesizer instance. If say() were a class (static) method instead of an
instance method, we could still mark it as synchronized. In this case, because no in‐
stance object is involved, the lock is on the class object itself.

Often, you want to synchronize multiple methods of the same class so that only one
method modifies or examines parts of the class at a time. All static synchronized meth‐
ods in a class use the same class object lock. By the same token, all instance methods in
a class use the same instance object lock. In this way, Java can guarantee that only one
of a set of synchronized methods is running at a time. For example, a SpreadSheet class
might contain a number of instance variables that represent cell values as well as some
methods that manipulate the cells in a row:

272 | Chapter 9: Threads

 class SpreadSheet {
 int cellA1, cellA2, cellA3;

 synchronized int sumRow() {
 return cellA1 + cellA2 + cellA3;
 }

 synchronized void setRow(int a1, int a2, int a3) {
 cellA1 = a1;
 cellA2 = a2;
 cellA3 = a3;
 }
 ...
 }

In this example, methods setRow() and sumRow() both access the cell values. You can
see that problems might arise if one thread were changing the values of the variables in
setRow() at the same moment another thread was reading the values in sumRow(). To
prevent this, we have marked both methods as synchronized. When threads are
synchronized, only one runs at a time. If a thread is in the middle of executing se
tRow() when another thread calls sumRow(), the second thread waits until the first one
finishes executing setRow() before it runs sumRow(). This synchronization allows us to
preserve the consistency of the SpreadSheet. The best part is that all this locking and
waiting is handled by Java; it’s invisible to the programmer.

In addition to synchronizing entire methods, the synchronized keyword can be used
in a special construct to guard arbitrary blocks of code. In this form, it also takes an
explicit argument that specifies the object for which it is to acquire a lock:

 synchronized (myObject) {
 // Functionality that needs exclusive access to resources
 }

This code block can appear in any method. When it is reached, the thread has to acquire
the lock on myObject before proceeding. In this way, we can synchronize methods (or
parts of methods) in different classes in the same way as methods in the same class.

A synchronized instance method is, therefore, equivalent to a method with its state‐
ments synchronized on the current object. Thus:

 synchronized void myMethod () {
 ...
}

is equivalent to:
 void myMethod () {
 synchronized (this) {
 ...
 }
 }

Synchronization | 273

Accessing class and instance Variables from Multiple Threads
In the SpreadSheet example, we guarded access to a set of instance variables with a
synchronized method in order to avoid changing one of the variables while someone
was reading the others. We wanted to keep them coordinated. But what about individual
variable types? Do they need to be synchronized? Normally, the answer is no. Almost
all operations on primitives and object reference types in Java happen atomically: that
is, they are handled by the VM in one step, with no opportunity for two threads to
collide. This prevents threads from looking at references while they are in the process
of being accessed by other threads.

But watch out—we did say almost. If you read the Java VM specification carefully, you
will see that the double and long primitive types are not guaranteed to be handled
atomically. Both of these types represent 64-bit values. The problem has to do with how
the Java VM’s stack handles them. It is possible that this specification will be beefed up
in the future. But for now, to be strict, you should synchronize access to your double
and long instance variables through accessor methods, or use the volatile keyword
or an atomic wrapper class, which we’ll describe next.

Another issue, independent of the atomicity of the values, is the notion of different
threads in the VM caching values for periods of time—that is, even though one thread
may have changed the value, the Java VM may not be obliged to make that value appear
until the VM reaches a certain state known as a “memory barrier.” While this should
not be a problem in most real-world programming cases, you can address this by de‐
claring the variable with the volatile keyword. This keyword indicates to the VM that
the value may be changed by external threads and effectively synchronizes access to it
automatically.

Finally, the java.util.concurrent.atomic package provides synchronized wrapper
classes for all primitive types and references. These wrappers provide not only simple
set() and get() operations on the values but also specialized “combo” operations, such
as compareAndSet(), that work atomically and can be used to build higher-level
synchronized application components. The classes in this package were designed specif‐
ically to map down to hardware-level functionality in many cases and can be very effi‐
cient. We’ll talk more about them later in this chapter.

Reentrant locking

The locks acquired by Java upon entering a synchronized method or block of code are
reentrant, meaning that the thread holding onto the lock may acquire the same lock
again any number of times and never blocks waiting for itself. In most cases, this means
that the code behaves as you’d expect; a thread can call a synchronized method recur‐
sively and can itself call upon other synchronized methods within the same object.

274 | Chapter 9: Threads

The wait() and notify() Methods
With the synchronized keyword, we can serialize the execution of methods and blocks
of code so that only one thread at a time can execute a synchronized item. The wait()
and notify() methods of the Object class extend this capability by allowing us to
explicitly coordinate the waiting and running threads. Every object in Java is a subclass
of Object, so every object inherits these methods. By using wait() and notify(), a
thread can effectively give up its hold on a lock at an arbitrary point and then wait for
another thread to give it back before continuing. All of the coordinated activity still
happens inside synchronized blocks, and still only one thread is executing at a given
time.

By executing wait() from a synchronized block, a thread gives up its hold on the lock
and goes to sleep. A thread might do this if it needs to wait for something to happen in
another part of the application, as we’ll see shortly. Later, when the necessary event
happens, the running thread calls notify() from a block synchronized on the same
object. The first thread wakes up and begins trying to acquire the lock again. When the
first thread manages to reacquire the lock, it continues from where it left off. However,
the thread that was waiting may not get the lock immediately (or perhaps ever). It de‐
pends on when the second thread eventually releases the lock and which thread manages
to snag it next. The first thread won’t wake up from the wait() unless another thread
calls notify(). An overloaded version of wait(), however, allows us to specify a timeout
period. If another thread doesn’t call notify() in the specified period, the waiting thread
automatically wakes up.

Let’s look at a simple scenario to see what’s going on. In the following example, we’ll
assume there are three threads—one waiting to execute each of the three synchronized
methods of the MyThing class. We’ll call them the waiter, notifier, and related threads.
Here’s a code fragment to illustrate:

 class MyThing {
 synchronized void waiterMethod() {
 // do some stuff
 wait(); // now wait for notifier to do something
 // continue where we left off
 }
 synchronized void notifierMethod() {
 // do some stuff
 notify(); // notify waiter that we've done it
 // continue doing stuff
 }
 synchronized void relatedMethod() {
 // do some related stuff
 }
 ...
 }

Synchronization | 275

Let’s assume that a thread named waiter gets through the gate first and begins executing
waiterMethod(). The two other threads are initially blocked when trying to acquire the
lock for the MyThing object. When waiter executes the wait() method, it relinquishes
its hold on the lock and goes to sleep. Now two viable threads are waiting for the lock.
Which thread gets it depends on several factors, including chance and the priorities of
the threads. (We’ll discuss thread scheduling in the next section.)

Let’s suppose that notifier is the next thread to acquire the lock, so it begins to run
notifierMethod(). waiter continues to sleep, and related languishes, waiting for its
turn. When notifier executes the call to notify(), the runtime system prods the wait‐
er thread, effectively telling it something has changed. waiter wakes up and rejoins
related in vying for the MyThing lock. It doesn’t receive the lock automatically; it just
changes its state from “Leave me alone” to “I want the lock.”

At this point, notifier still owns the lock and continues to hold it until the synchronized
notifierMethod() returns, or perhaps executes a wait() itself. At that point, the other
two methods get to fight over the lock. waiter would like to continue executing waiter
Method() from the point where it left off, while related, which has been patient, would
like to get started. We’ll let you choose your own ending for the story.

For each call to notify(), the runtime system wakes up just one thread that is asleep in
a wait() call. The group of threads waiting on a lock is called the wait set. If multiple
threads are waiting, Java picks a thread on an arbitrary basis, which may be
implementation-dependent. The Object class also provides a notifyAll() call to wake
up all waiting threads. In most cases, you’ll probably want to use notifyAll() rather
than notify(). Keep in mind that notify() really means, “Hey, something related to
this object has changed. The condition you are waiting for may have changed, so check
it again.” In general, there is no reason to assume only one thread at a time is interested
in the change or able to act upon it. Different threads might look upon whatever has
changed in different ways.

Wait conditions

In general, our waiter thread is waiting for a particular condition to change, and we will
want it to sit in a loop like the following:

 while (condition != true)
 wait();

This test is called the wait condition. Other synchronized threads call notify() or
notifyAll() when they have modified the environment so that the condition can be
checked again. It’s important to use a loop on the wait condition to be sure that the
thread has been awakened for the right reason. Threads may also use a timed version
of wait() to do periodic work while checking the condition in this way. Using wait
conditions like this is also an alternative to polling and sleeping, as you’ll see in the
following section.

276 | Chapter 9: Threads

Passing Messages
We’ll next illustrate a classic interaction between two threads: a Producer and a Consum
er. A producer thread creates messages and places them into a queue while a consumer
reads and displays them. To be realistic, we’ll give the queue a maximum depth. And to
make things really interesting, we’ll have our consumer thread be lazy and run much
more slowly than the producer. This means that Producer occasionally has to stop and
wait for Consumer to catch up. The Java concurrency package has a BlockingQueue
interface that provides exactly this kind of functionality, but we’ll build it ourselves here
using basic synchronization techniques first and then take a look at Queues and all of
the collection classes in Chapter 11.

Here are the Producer and Consumer classes:
 import java.util.*;

 public class Consumer implements Runnable {
 Producer producer;

 Consumer(Producer producer) {
 this.producer = producer;
 }

 public void run() {
 while (true) {
 String message = producer.getMessage();
 System.out.println("Got message: " + message);
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 new Thread(producer).start();
 Consumer consumer = new Consumer(producer);
 new Thread(consumer).start();
 }
 }

 public class Producer implements Runnable{
 static final int MAXQUEUE = 5;
 private List messages = new ArrayList();

 public void run() {
 while (true) {
 putMessage();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) { }

Synchronization | 277

 }
 }

 // called by Producer internally
 private synchronized void putMessage()
 {
 while (messages.size() >= MAXQUEUE)
 try {
 wait();
 } catch(InterruptedException e) { }

 messages.add(new java.util.Date().toString());
 notify();
 }

 // called by Consumer externally
 public synchronized String getMessage()
 {
 while (messages.size() == 0)
 try {
 notify();
 wait();
 } catch(InterruptedException e) { }
 String message = (String)messages.remove(0);
 notify();
 return message;
 }
 }

For convenience, we have included a main() method in the Consumer class that runs
the complete example. It creates a Consumer that is tied to a Producer and starts the two
classes. You can run the example as follows:

 % java Consumer

This produces the timestamp messages created by the Producer:
 Got message: Sun Dec 19 03:35:55 CST 2006
 Got message: Sun Dec 19 03:35:56 CST 2006
 Got message: Sun Dec 19 03:35:57 CST 2006
 ...

The timestamps initially show a spacing of one second even though they appear every
two seconds. Our Producer runs faster than our Consumer. Producer would like to
generate a new message every second, while Consumer gets around to reading and dis‐
playing a message only every two seconds. Can you see how long it will take the message
queue to fill up? What happens when it does?

Let’s look at the code. We are using a few new tools here. Producer and Consumer
implement the Runnable interface, and each has a thread associated with it. The Pro
ducer and Consumer classes pass messages through an instance of a java.util.List
object. We haven’t discussed the List class yet, but it is essentially a dynamic array of

278 | Chapter 9: Threads

elements. We use this one as a queue by simply adding and removing elements in first-
in, first-out order. The List has no maximum capacity of its own, but we impose one
with our own check.

The important activity is in the synchronized methods: putMessage() and getMes
sage(). Although one of the methods is used by the Producer thread and the other by
the Consumer thread, they both live in the Producer class so that we can coordinate them
simply by declaring them synchronized. Here, they both implicitly use the Producer
object’s lock. If the queue is empty, the Consumer blocks in a call in the Producer, waiting
for another message.

Another design option would implement the getMessage() method in the Consumer
class and use a synchronized code block to synchronize explicitly on the Producer
object. In either case, synchronizing on the Producer enables us to have multiple Con
sumer objects that feed from the same Producer. We’ll do that later in this section.

putMessage()’s job is to add a new message to the queue. It can’t do this if the queue is
already full, so it first checks the number of elements in messages. If there is room, it
stuffs in another timestamp message. If the queue is at its limit, however, putMes
sage() has to wait until there’s space. In this situation, putMessage() executes a wait()
and relies on the consumer to call notify() to wake it up after a message has been read.
Here, we have putMessage() testing the condition in a loop. In this simple example, the
test might not seem necessary; we could assume that when putMessage() wakes up,
there is a free spot. However, it’s important to always test our wait condition in a loop
like this when we synchronize threads because there is no other way to be certain why
our thread has been awakened. Before it finishes, putMessage() calls notify() itself to
prod any Consumer that might be waiting on an empty queue.

getMessage() retrieves a message for the Consumer. It enters a loop like that of putMes
sage(), waiting for the queue to have at least one element before proceeding. If the
queue is empty, it executes a wait() and expects the Producer to call notify() when
more items are available. Notice that getMessage() makes its own calls to notify(). It
does this any time the queue is empty, to prod a producer that might be sleeping and
also after it consumes a message, to give the producer the go-ahead to fill the queue
again. These scenarios are more plausible if there are more consumers, as we’ll see next.

Let’s add another consumer to the scenario, just to make things more interesting. Most
of the necessary changes are in the Consumer class; here’s the code for the modified class,
now called NamedConsumer:

 public class NamedConsumer implements Runnable
 {
 Producer producer;
 String name;

 NamedConsumer(String name, Producer producer) {
 this.producer = producer;

Synchronization | 279

 this.name = name;
 }

 public void run() {
 while (true) {
 String message = producer.getMessage();
 System.out.println(name + " got message: " + message);
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 new Thread(producer).start();

 NamedConsumer consumer = new NamedConsumer("One", producer);
 new Thread(consumer).start();
 consumer = new NamedConsumer("Two", producer);
 new Thread(consumer).start();
 }
 }

The NamedConsumer constructor takes a string name to identify each consumer. The
run() method uses this name in the call to println() to identify which consumer
received the message.

The only required modification to the Producer code is to change the notify() calls to
notifyAll() calls in putMessage() and getMessage(). (We could have used noti
fyAll() in the first place.) Now, instead of the consumer and producer playing tag with
the queue, we can have many players waiting for the condition of the queue to change.
We might have a number of consumers waiting for a message, or we might have the
producer waiting for a consumer to take a message. Any time the condition of the queue
changes, we prod all of the waiting methods to reevaluate the situation by calling noti
fyAll().

Here is some sample output when two NamedConsumers are running, as in the main()
method shown previously:

 One got message: Sat Mar 18 20:00:01 CST 2006
 Two got message: Sat Mar 18 20:00:02 CST 2006
 One got message: Sat Mar 18 20:00:03 CST 2006
 Two got message: Sat Mar 18 20:00:04 CST 2006
 One got message: Sat Mar 18 20:00:05 CST 2006
 Two got message: Sat Mar 18 20:00:06 CST 2006
 One got message: Sat Mar 18 20:00:07 CST 2006
 Two got message: Sat Mar 18 20:00:08 CST 2006
 ...

280 | Chapter 9: Threads

We see nice, orderly alternation between the two consumers as a result of the calls to
sleep() in the various methods. Interesting things would happen, however, if we were
to remove all calls to sleep() and let things run at full speed. The threads would com‐
pete, and their behavior would depend on whether the system is using time-slicing. On
a time-sliced system, there should be a fairly random distribution between the two
consumers, while on a non-time-sliced system, a single consumer could monopolize
the messages. We’ll talk shortly about how threads compete for time when we discuss
thread priority and scheduling.

Food for thought

Many things could be improved in this simple example. What we’ve tried to emphasize
is a defensive style of programming with respect to notifications by threads. You need
to rely on real-world conditions that you can test when synchronizing threads; it’s not
robust to simply assume that you’ll get the right notifications in the right place at the
right time. With that said, our example does generate extraneous notifications that wake
up threads at times when there may not be work for them. For example, we generate
notifications both when the queue is empty and when it’s full. A better design might
split these cases and use two different object locks. Fortunately, most programmers won’t
have to deal with issues at this level, especially because Java provides real Queues and
other high-level synchronization constructs.

ThreadLocal Objects
A common issue that arises is the need to maintain some information or state on a per-
thread basis. For example, we might want to carry some context with the current thread
as it executes our application. Or we might simply want to have a value that is different
for different threads in the same way that each thread “sees” its own local variables in a
method. Java supports this through the ThreadLocal class. A ThreadLocal is an object
wrapper that automatically maintains a separate value for any thread calling it. For
example:

 ThreadLocal userID = new ThreadLocal();
 userID.set("Pat"); // called by thread 1
 userID.set("Bob"); // called by thread 2
 userID.get(); // thread 1 gets "Pat"
 userID.get(); // thread 2 gets "Bob"

You can use an instance of ThreadLocal anywhere you might use a static or instance
variable to automatically maintain separate values for each thread. You can also extend
ThreadLocal and override its initialValue() method. The ThreadLocal will then use
this method to initialize its value once, the first time get() is called:

 class MyThreadLocalFactory extends ThreadLocal<Factory> {
 protected Factory initialValue() { return new MyFactory(); }
 }

Synchronization | 281

3. A notable alternative to this is the real-time Java specification that defines specialized thread behavior for
certain types of applications. It was developed under the Java community process and can be found at https://
rtsj.dev.java.net/.

4. Java Threads by Scott Oaks and Henry Wong (O’Reilly) includes a detailed discussion of synchronization,
scheduling, and other thread-related issues.

ThreadLocals are implemented using a Map attached to each Thread instance, so their
values will disappear when the Thread is no longer used and garbage is collected.

A useful addition in Java 7 is the ThreadLocalRandom class, which is an extension of the
java.util.Random class discussed in Chapter 11. The ThreadLocalRandom class elim‐
inates contention (waiting due to synchronization) on the random-number generator
when called from different threads.

Scheduling and Priority
Java makes few guarantees about how it schedules threads. Almost all of Java’s thread
scheduling is left up to the Java implementation and, to some degree, the application.
Although it might have made sense (and would certainly have made many developers
happier) if Java’s developers had specified a scheduling algorithm, a single algorithm
isn’t necessarily suitable for all the roles that Java can play. Instead, Java’s designers put
the burden on you to write robust code that works no matter the scheduling algorithm,
and let the implementation tune the algorithm for the best fit.3

The priority rules that we describe next are carefully worded in the Java language spec‐
ification to be a general guideline for thread scheduling. You should be able to rely on
this behavior overall (statistically), but it is not a good idea to write code that relies on
very specific features of the scheduler to work properly. You should instead use the
control and synchronization tools that we have described in this chapter to coordinate
your threads.4

Every thread has a priority value. In general, any time a thread of a higher priority than
the current thread becomes runnable (is started, stops sleeping, or is notified), it pre‐
empts the lower-priority thread and begins executing. By default, threads with the same
priority are scheduled round-robin, which means once a thread starts to run, it con‐
tinues until it does one of the following:

• Sleeps, by calling Thread.sleep() or wait()
• Waits for a lock, in order to run a synchronized method
• Blocks on I/O, for example, in a read() or accept() call
• Explicitly yields control, by calling yield()
• Terminates, by completing its target method or with a stop() call (deprecated)

282 | Chapter 9: Threads

This situation looks something like Figure 9-4.

Figure 9-4. Priority preemptive, round-robin scheduling

Thread State
At any given time, a thread is in one of five general states that encompass its lifecycle
and activities. These states are defined in the Thread.State enumeration and queried
via the getState() method of the Thread class:
NEW

The thread has been created but not yet started.

RUNNABLE

The normal active state of a running thread, including the time when a thread is
blocked in an I/O operation, like a read or write or network connection.

BLOCKED

The thread is blocked, waiting to enter a synchronized method or code block. This
includes the time when a thread has been awakened by a notify() and is attempting
to reacquire its lock after a wait().

WAITING, TIMED_WAITING

The thread is waiting for another thread via a call to wait() or join(). In the case
of TIMED_WAITING, the call has a timeout.

TERMINATED

The thread has completed due to a return, an exception, or being stopped.

We can show the state of all threads in Java (in the current thread group) with the
following snippet of code:

 Thread [] threads = new Thread [64]; // max threads to show
 int num = Thread.enumerate(threads);
 for(int i = 0; i < num; i++)
 System.out.println(threads[i] +":"+ threads[i].getState());

Scheduling and Priority | 283

You will probably not use this API in general programming, but it is interesting and
useful for experimenting and learning about Java threads.

Time-Slicing
In addition to prioritization, all modern systems (with the exception of some embedded
and “micro” Java environments) implement thread time-slicing. In a time-sliced system,
thread processing is chopped up so that each thread runs for a short period of time
before the context is switched to the next thread, as shown in Figure 9-5.

Figure 9-5. Priority preemptive, time-sliced scheduling

Higher-priority threads still preempt lower-priority threads in this scheme. The addi‐
tion of time-slicing mixes up the processing among threads of the same priority; on a
multiprocessor machine, threads may even be run simultaneously. This can introduce
a difference in behavior for applications that don’t use threads and synchronization
properly.

Strictly speaking, because Java doesn’t guarantee time-slicing, you shouldn’t write code
that relies on this type of scheduling; any software you write should function under
round-robin scheduling. If you’re wondering what your particular flavor of Java does,
try the following experiment:

 public class Thready {
 public static void main(String args []) {
 new ShowThread("Foo").start();
 new ShowThread("Bar").start();
 }

 static class ShowThread extends Thread {
 String message;

 ShowThread(String message) {
 this.message = message;
 }

284 | Chapter 9: Threads

 public void run() {
 while (true)
 System.out.println(message);
 }
 }
 }

The Thready class starts up two ShowThread objects. ShowThread is a thread that goes
into a hard loop (very bad form) and prints its message. Because we don’t specify a
priority for either thread, they both inherit the priority of their creator, so they have the
same priority. When you run this example, you will see how your Java implementation
does its scheduling. Under a round-robin scheme, only “Foo” should be printed; “Bar”
never appears. In a time-slicing implementation, you should occasionally see the “Foo”
and “Bar” messages alternate (which is most likely what you will see).

Priorities
As we said before, the priorities of threads exist as a general guideline for how the
implementation should allocate time among competing threads. Unfortunately, with
the complexity of how Java threads are mapped to native thread implementations, you
cannot rely upon the exact meaning of priorities. Instead, you should only consider
them a hint to the VM.

Let’s play with the priority of our threads:
 class Thready {
 public static void main(String args []) {
 Thread foo = new ShowThread("Foo");
 foo.setPriority(Thread.MIN_PRIORITY);
 Thread bar = new ShowThread("Bar");
 bar.setPriority(Thread.MAX_PRIORITY);
 bar.start();
 }
 }

We would expect that with this change to our Thready class, the Bar thread would take
over completely. If you run this code on the Solaris implementation of Java 5.0, that’s
what happens. The same is not true on Windows or with some older versions of Java.
Similarly, if you change the priorities to values other than min and max, you may not
see any difference at all. The subtleties relating to priority and performance relate to
how Java threads and priorities are mapped to real threads in the OS. For this reason,
thread priorities should be reserved for system and framework development.

Yielding
Whenever a thread sleeps, waits, or blocks on I/O, it gives up its time slot and another
thread is scheduled. As long as you don’t write methods that use hard loops, all threads
should get their due. However, a thread can also signal that it is willing to give up its

Scheduling and Priority | 285

time voluntarily at any point with the yield() call. We can change our previous example
to include a yield() on each iteration:

 ...
 static class ShowThread extends Thread {
 ...
 public void run() {
 while (true) {
 System.out.println(message);
 yield();
 }
 }
 }

You should see “Foo” and “Bar” messages strictly alternating. If you have threads that
perform very intensive calculations or otherwise eat a lot of CPU time, you might want
to find an appropriate place for them to yield control occasionally. Alternatively, you
might want to drop the priority of your compute-intensive thread so that more impor‐
tant processing can proceed around it.

Unfortunately, the Java language specification is very weak with respect to yield(). It
is another one of those things that you should consider an optimization hint rather than
a guarantee. In the worst case, the runtime system may simply ignore calls to yield().

Thread Groups
The ThreadGroup class allows us to deal with threads wholesale: we can use it to arrange
threads in groups and deal with the groups as a whole. A thread group can contain other
thread groups in addition to individual threads, so our arrangements can be hierarch‐
ical. Thread groups are particularly useful when we want to start a task that might create
many threads of its own. By assigning the task a thread group, we can later identify and
control all the task’s threads. Thread groups are also the subject of restrictions that can
be imposed by the Java Security Manager, so we can restrict a thread’s behavior according
to its thread group. For example, we can forbid threads in a particular group from
interacting with threads in other groups. This is one way web browsers can prevent
threads started by Java applets from stopping important system threads.

When we create a thread, it normally becomes part of the thread group to which the
currently running thread belongs. To create a new thread group of our own, we can call
the constructor:

 ThreadGroup

 myTaskGroup = new ThreadGroup("My Task Group");

The ThreadGroup constructor takes a name, which a debugger can use to help you
identify the group. (You can also assign names to the threads themselves.) Once we have

286 | Chapter 9: Threads

a group, we can put threads in the group by supplying the ThreadGroup object as an
argument to the Thread constructor:

 Thread myTask = new Thread(myTaskGroup, taskPerformer);

Here, myTaskGroup is the thread group, and taskPerformer is the target object (the
Runnable object that performs the task). Any additional threads that myTask creates also
belong to the myTaskGroup thread group.

Working with ThreadGroups
The ThreadGroup class exists so that you can control threads in batches. It has methods
that parallel the basic Thread control methods—even the deprecated stop(), sus
pend(), and resume(). These methods operate on all the threads in a thread group. You
can also mark a thread group as a “daemon”; a daemon thread group is automatically
removed when all of its children are gone. If a thread group isn’t a daemon, you have
to call destroy() in order to remove it when it is empty.

We can set the maximum priority for threads created in a thread group by calling
setMaximumPriority(). Thereafter, no threads can be created in the thread group with
a priority to be higher than the maximum; threads that change their priority can’t set
their new priority to be higher than the maximum.

Finally, you can get a list of all threads in a group. The method activeCount() tells you
how many threads are in the group; the method enumerate() gives you a list of them.
We used the enumerate() method earlier when we showed the state of all threads in the
default thread group using the static Thread.enumerate()method. The argument to
enumerate() is an array of Threads that enumerate() fills in with the group’s threads.
Both activeCount() and enumerate() operate recursively on all thread groups that are
contained in the group.

Uncaught Exceptions
In Java, unchecked exceptions that are not caught by any method eventually bubble up
to the run() method of the running thread and are thrown from there. By default, Java
deals with these by simply printing them to the system error stream or log and termi‐
nating the thread. However, you can specify your own “catchall” behavior for these
exceptions by subclassing ThreadGroup and overriding the uncaughtException()
method. When an uncaught exception is generated, it is handed to this method, which
can take some action or throw it again before the thread terminates.

In Java 5.0, this pattern was extended by defining an interface, Thread.UncaughtExcep
tionHandler, and adding both per-thread and systemwide uncaught exception handlers
in addition to the per-ThreadGroup exception handler. We can handle uncaught excep‐
tions for a single thread like this:

Thread Groups | 287

 Thread thread = new Thread();
 thread.setUncaughtExceptionHandler(
 new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread t, Throwable e) {
 System.err.println(t + " threw exception: " + e);
 }
 });

This example prints the exception before the thread dies. We could have set the same
handler on the ThreadGroup in the same way or assigned it for all exceptions using the
static Thread.setDefaultUncaughtExceptionHandler() method.

Thread Performance
The way that applications use threads and the associated costs and benefits have greatly
impacted the design of many Java APIs. We will discuss some of the issues in detail in
other chapters. But it is worth briefly mentioning some aspects of thread performance
and how the use of threads has dictated the form and functionality of several recent Java
packages.

The Cost of Synchronization
The act of acquiring locks to synchronize threads takes time, even when there is no
contention. In older implementations of Java, this time could be significant. With newer
VMs, it is almost negligible. However, unnecessary low-level synchronization can still
slow applications by blocking threads where legitimate concurrent access otherwise
could be allowed. Because of this, two important APIs, the Java Collections API and the
Swing GUI API, were specifically crafted to avoid unnecessary synchronization by
placing it under the developer’s control.

The java.util Collections API replaces earlier, simple Java aggregate types—namely,
Vector and Hashtable—with more fully featured and, notably, unsynchronized types
(List and Map). The Collections API instead defers to application code to synchronize
access to collections when necessary and provides special “fail fast” functionality to help
detect concurrent access and throw an exception. It also provides synchronization
“wrappers” that can provide safe access in the old style. Special concurrent-access-
friendly implementations of the Map and Queue collections are included as part of the
java.util.concurrent package. These implementations go even further in that they
are written to allow a high degree of concurrent access without any user synchroniza‐
tion. We’ll talk about these in Chapter 11.

The Java Swing GUI, which grew out of AWT, has taken a different approach to pro‐
viding speed and safety. Swing dictates that modification of its components (with no‐
table exceptions) must all be done by a single thread: the main event queue. Swing solves
performance problems as well as nasty issues of determinism in event ordering by

288 | Chapter 9: Threads

forcing a single super-thread to control the GUI. The application may access the event
queue thread indirectly by pushing commands onto a queue through a simple interface.

Thread Resource Consumption
A fundamental pattern in Java, which will be illustrated in Chapters 12 and 13, is to start
many threads to handle asynchronous external resources, such as socket connections.
For maximum efficiency, a web server might be tempted to create a thread for each client
connection it is servicing. With each client having its own thread, I/O operations may
block and restart as needed. But as efficient as this may be in terms of throughput, it is
a very inefficient use of server resources. Threads consume memory; each thread has
its own “stack” for local variables, and switching between running threads (context
switching) adds overhead to the CPU. While threads are relatively lightweight (in theory,
it is possible to have hundreds or thousands running on a large server), at a certain
point, the resources consumed by the threads themselves start defeating the purpose of
starting more threads. Often, this point is reached with only a few dozen threads. Cre‐
ating a thread per client is not always a scalable option.

An alternative approach is to create “thread pools” where a fixed number of threads pull
tasks from a queue and return for more when they are finished. This recycling of threads
makes for solid scalability, but it has historically been difficult to implement efficiently
for servers in Java because stream I/O (for things like sockets) has not fully supported
nonblocking operations. This changed with Java 1.4 and the introduction of the NIO
(new I/O) package, java.nio. The NIO package introduced asynchronous I/O chan‐
nels: nonblocking reads and writes plus the ability to “select” or test the readiness of
streams for moving data. Channels can also be asynchronously closed, allowing threads
to work with them gracefully. With the NIO package, it is possible to create servers with
much more sophisticated, scalable thread patterns.

With Java 5.0, thread pools and job “executor” services were codified as utilities as part
of the new java.util.concurrent package, meaning you don’t have to write these
yourself. We’ll talk about them next when we discuss the concurrency utilities in Java.

Concurrency Utilities
So far in this chapter, we’ve demonstrated how to create and synchronize threads at a
low level, using Java language primitives. The java.util.concurrent package and
subpackages introduced with Java 5.0 build on this functionality, adding important
threading utilities and codifying some common design patterns by supplying standard
implementations. Roughly in order of generality, these areas include:
Thread-aware Collections implementations

The java.util.concurrent package augments the Java Collections API with sev‐
eral implementations for specific threading models. These include timed wait and

Concurrency Utilities | 289

blocking implementations of the Queue interface, as well as nonblocking,
concurrent-access optimized implementations of the Queue and Map interfaces. The
package also adds “copy on write” List and Set implementations for extremely
efficient “almost always read” cases. These may sound complex, but actually cover
some fairly simple cases very well. We’ll cover the Collections API in Chapter 11.

Executors
Executors run tasks, including Runnables, and abstract the concept of thread cre‐
ation and pooling from the user. Executors are intended to be a high-level replace‐
ment for the idiom of creating new threads to service a series of jobs. Along with
Executors, the Callable and Future interfaces are introduced, which expand upon
Runnable to allow management, value return, and exception handling.

Low-level synchronization constructs
The java.util.concurrent.locks package holds a set of classes, including Lock
and Condition, that parallels the Java language-level synchronization primitives
and promotes them to the level of a concrete API. The locks package also adds the
concept of nonexclusive reader/writer locks, allowing for greater concurrency in
synchronized data access.

High-level synchronization constructs
This includes the classes CyclicBarrier, CountDownLatch, Semaphore, and Ex
changer. These classes implement common synchronization patterns drawn from
other languages and systems and can serve as the basis for new high-level tools.

Atomic operations (sounds very James Bond, doesn’t it?)
The java.util.concurrent.atomic package provides wrappers and utilities for
atomic, “all-or-nothing” operations on primitive types and references. This includes
simple combination atomic operations like testing a value before setting it and
getting and incrementing a number in one operation.

With the possible exception of optimizations done by the Java VM for the atomic
operations package, all of these utilities are implemented in pure Java, on top of the
standard Java language synchronization constructs. This means that they are in a sense
only convenience utilities and don’t truly add new capabilities to the language. Their
main role is to offer standard patterns and idioms in Java threading and make them
safer and more efficient to use. A good example of this is the Executor utility, which
allows a user to manage a set of tasks in a predefined threading model without having
to delve into creating threads at all. Higher-level APIs like this both simplify coding and
allow for greater optimization of the common cases.

We’ll look at each of these areas in the remainder of this chapter, with the exception of
the Collections implementations. We’ll discuss those when we cover the Java Collections
APIs in Chapter 11.

290 | Chapter 9: Threads

Before we dive in, we should give a shout-out to Doug Lea, the author of Concurrent
Programming in Java (Addison-Wesley), who led the group that added these packages
to Java and is largely responsible for creating them.

Executors
In this chapter, we’ve created a lot of Threads and hopefully shown how to use them
effectively. But in the grand scheme of things, threads are a fairly low-level programming
tool and, without care, can be error-prone. When we recognize certain common pat‐
terns that developers reproduce over and over again using threads, it’s natural to want
to elevate a pattern to the level of an API. One such related pair of patterns is the concept
of an executor service that manages tasks and that of a thread pool that services tasks in
an efficient way.

Thread pools have been implemented and reimplemented by vast numbers of devel‐
opers in one way or another over the years and when you add in features like scheduling
different threading models, they can get quite complex. To address these issues, the
java.util.concurrent package includes interfaces for many default implementations
of the executor pattern for common threading models. This includes sophisticated
scheduling as well as asynchronous collection of results from the tasks, if they require
it. In general, you can use an Executor as a replacement for creating one-off threads
anywhere you need to execute Runnable objects. The advantage is that understanding
and modifying the behavior of your code later is a lot easier when you work at this level.

For the simple case of running a number of tasks and watching for their completion,
we can consider the base Executor interface, which executes Runnable objects for us.
A convenient thing about Executor is that its companion utility class Executors is a
factory for creating different kinds of Executor implementations. We’ll talk about the
various types it can produce in a bit, but for now let’s use the method called newFixed
ThreadPool(), which, as its name suggests, returns an Executor that is implemented
using a thread pool of a fixed size:

 Executor executor = Executors.newFixedThreadPool(3) ; // 3 threads

 List<Runnable> runnables = ... ;
 for(Runnable task : runnables)
 executor.execute(task);

Here, we are submitting a number of Runnable tasks to our Executor, which executes
them using a pool with a maximum of three threads. If our list contains more than three
tasks, then some of them will have to wait until a thread is free to service it. So, what
happens when we submit the fourth item? The Executor interface doesn’t really specify
that. It’s up to the particular implementation to decide. Without specifying more about
its type, we don’t know if an Executor is going to queue tasks, or if it will use a pool to
service them. Some Executor implementations may block or even execute the Runna
ble right on the execute() call in the caller’s thread. But in this case (and for all

Concurrency Utilities | 291

Executor implementations created for us by the Executors factory methods), tasks are
effectively put onto an unbounded queue. In the example, our loop submits all of the
tasks immediately and they are queued by the executor until the three threads have
serviced them.

With just a line or two of code in our example, we’ve been able to throttle the concurrency
of our task list and avoid the details of constructing any threads ourselves. Later, if we
decide we’d rather execute the tasks one at a time, the change is trivial (allocate just one
thread!). Next, we’ll take a step up and look at manageable tasks that produce values
and executors that can schedule tasks for us.

Tasks with results: Callable and Future

Because the Runnable interface was created for Threads to consume, its API doesn’t
allow for direct feedback to the caller. The new Callable interface, which is effectively
a replacement for Runnable, rectifies this situation by providing a call() method that
both returns a result and can throw exceptions. Callable is a generic class that is par‐
ameterized by the type it returns. The following examples create a Callable that returns
an integer:

 class MyCallable implements Callable<Integer> {
 public Integer call() { return 2+2; }
 }

 // or anonymously
 Callable<Integer> callable = new Callable<Integer>() {
 public Integer call() { return 2+2; }
 };

There is also a convenience method for bridging Runnables to Callables in the Execu
tors class. It takes a Runnable and a fixed value to return as a value when it completes:

 Callable<Integer> callable = Executors.callable(runnable,
 42 /*return value*/);

The new Future class is used with Callable and serves as a handle to wait for and
retrieve the result of the task or cancel the task before it is executed. A Future is returned
by the submit() methods of an ExecutorService, which is essentially a beefed-up
Executor. We’ll discuss ExecutorServices in the next section.

 Future<Integer> result = executorService.submit(callable);
 int val = result.get(); // blocks until ready

Future is also a generic interface, which is parameterized by its return type. This explains
the somewhat cute name. For example, a Future<Integer> could be read as “a future
integer.” Future has both blocking and timed-wait get() methods to retrieve the result
when it is ready, as well as an isDone() test method and a cancel() method to stop the
task if it hasn’t started yet. If the task has been cancelled, you get a CancellationExcep
tion if you attempt to retrieve the result.

292 | Chapter 9: Threads

Enough said about these interfaces. Next, we’ll look at the ExecutorService, which uses
them.

ExecutorService

Our first Executor was little more than a sinkhole for Runnables and, as we described,
required knowledge of the implementation to know how it would handle tasks. By
contrast, an ExecutorService is intended to be an asynchronous task handler. Instead
of an execute() method, it has submit() methods that accept a Callable (or Runna
ble) and return immediately with a Future object that can be used to manage the task
and collect the result later. In addition to that, an ExecutorService has a lifecycle de‐
fined by its shutdown() method and related methods that can be used to stop the service
gracefully after tasks are completed.

ExecutorService extends Executor. In fact, all of the implementations returned by the
Executors factory methods are actually ExecutorServices—including the one we used
in our first example. We’ll look at these factory methods to see what kind of services are
offered.

Executors offers three types of ExecutorService implementations:
newFixedThreadPool(int)

This is the classic thread pool with a specified maximum pool size and an unboun‐
ded queue for task submission. If a thread dies for some reason while handling a
task, a new one will be created to replace it. Threads are never removed from the
pool until the service is shut down.

newCachedThreadPool()

This pool uses an open-ended number of threads that grows and shrinks with de‐
mand. The main advantage of this service is that threads are cached for a period of
time and reused, eliminating the overhead of creating new threads for short-lived
tasks. Threads that are not used for one minute are removed. Tasks are submitted
directly to threads; there is no real queuing.

newSingleThreadExecutor()

This ExecutorService uses a single thread to execute tasks from an unbounded
queue. In this sense, it is identical to a fixed thread pool with a pool size of 1.

Let’s look at a more realistic usage of an ExecutorService, drawn from the TinyHttpd
example in Chapter 13. In that chapter, we create a mini-web server to illustrate features
of the networking APIs. Here, we won’t show the networking details, but we’ll implement
the main request dispatching loop for the example using a thread pool executor service.
(Flip to Chapter 13 to see the implementation of the Runnable client-connection handler
class. That class works equally well with both examples.) Here we go:

 public class ExecutorHttpd
 {

Concurrency Utilities | 293

 ExecutorService executor = Executors.newFixedThreadPool(3);

 public void start(int port) throws IOException
 {
 final ServerSocket ss = new ServerSocket(port);
 while (!executor.isShutdown())
 executor.submit(new TinyHttpdConnection(ss.accept()));
 }

 public void shutdown() throws InterruptedException {
 executor.shutdown();
 executor.awaitTermination(30, TimeUnit.SECONDS);
 executor.shutdownNow();
 }

 public static void main(String argv[]) throws Exception
 {
 new ExecutorHttpd().start(Integer.parseInt(argv[0]));
 }
 }

The ExecutorHttpd class holds an instance of a fixed thread pool ExecutorService
with three threads to service client connections. In the start() method of our class, we
create a ServerSocket that accepts incoming network connections. We then enter a
loop that runs as long as our service is not flagged to shut down. Inside the loop, we
create a new connection handler (a Runnable instance of TinyHttpdConnection) for
each connection and submit it to the executor. The shutdown() method of our class
illustrates a graceful termination. First, we call shutdown() on the executor, which causes
the service to stop accepting new tasks and allow the currently running ones to complete.
Then we wait a reasonable period of time for all web requests to finish (30 seconds),
using the awaitTermination() method before trying a less graceful ending with shut
downNow(). shutdownNow() attempts to interrupt or otherwise stop threads as quickly
as possible. We leave things there, but the method actually returns a List of tasks that
remain hung after the attempt. Finally, we have a main() method that exercises our
example by creating an instance of ExecutorHttpd on a port specified as an argument
to the program.

Collective tasks

In addition to its individual task submit() methods, ExecutorService also offers a set
of collective invokeAll() and invokeAny() executor methods that submit multiple
tasks as a group and return results either when they are all complete or when the first
one completes, respectively. With this, we could reproduce our first example using a
List of Callables like this:

 List<Callable<Integer>> taskList = ...;
 ExecutorService execService = Executors.newFixedThreadPool(3);
 List<Future<Integer>> resultList = execService.invokeAll(taskList);

294 | Chapter 9: Threads

By contrast, the invokeAny() method returns just the first successfully completed task’s
result (cancelling all the remaining unexecuted tasks):

 int result = execService.invokeAny(taskList);

Both methods also offer timed wait versions that time out after a specified period of
time.

Scheduled tasks

For tasks that you’d like to run at a future time or on a periodic basis, use the Schedu
ledExecutorService. ScheduledExecutorService is an ExecutorService with addi‐
tional “schedule” methods that take a delay for a Runnable or Callable or a period
specification for a Runnable. Two additional factory methods of Executors produce
scheduled executors:

 Executors.newScheduledThreadPool(int);
 Executors.newSingleThreadScheduledExecutor();

These are exactly like the similarly named methods for regular executor services, with
the exception of returning a scheduled executor type.

To execute a task in the future, you specify a delay from the current time. For example:
 ScheduledExecutorService exec = Executors.newScheduledThreadPool(3);

 exec.schedule(runnable, 60, TimeUnit.SECONDS); // run one minute in the
 // future

 // run at specified date and time
 Calendar futureDate = ...; // convertfrom calendar
 Date date = futureDate.getTime(); // to Date
 long delay = date.getTime() - System.currentTimeMillis(); // to relative
 // millis
 exec.schedule(runnable, delay, TimeUnit.MILLISECONDS); // run at specified
 // date

For periodic work, there are two kinds of recurring schedules—fixed delay and fixed
rate. Fixed delay means that a fixed amount of time elapses between the end of the task’s
execution and the beginning of the next execution. Fixed rate means that the task should
begin execution at fixed time intervals, regardless of how long the task takes. The dif‐
ference comes into play when the time to execute the task is long relative to the interval.
The following snippet schedules a logfile cleanup to occur in 12 hours and every 12
hours thereafter:

 Runnable cleanup = new Runnable() {
 public void run() { cleanUpLogFiles(); }
 };

 long period = 12*60*60, delay = period; // seconds

Concurrency Utilities | 295

 Future<?> logService = executionService.scheduleAtFixedRate(
 cleanup, delay, period, TimeUnit.SECONDS);

Because the task for periodic schedules is a Runnable, the Future object does not return
a useful value (it returns null) so we don’t specify a parameter type in its generic type
instantiation. The Future is still useful for cancelling the task at a later time if we wish:

 logService.cancel();

We should mention that the ScheduledExecutorService bears a great deal of similarity
to the java.util.Timer class that we’ll discuss in Chapter 11, especially with regard to
the periodic schedules. A java.util.Timer is always single-threaded, however.

CompletionService

A CompletionService is a lightweight queue-like frontend to an executor. The Comple
tionService provides submit() methods, which delegate their tasks to a particular
instance of Executor, and then provides take() and poll() methods for retrieving
Future results for completed tasks. Think of a CompletionService as a babysitter for
the Futures, allowing you to easily gather up only completed results (as opposed to
having to check each Future yourself to see which ones have finished and in what order).
ExecutorCompletionService is a concrete implementation of CompletionService that
takes an Executor in its constructor:

 Executor executor = Executors.newFixedThreadPool(3);
 CompletionService<Integer> completionService =
 new ExecutorCompletionService<Integer>(executor);

 completionService.submit(callable);
 completionService.submit(runnable, resultValue);

 // poll for result
 Future<Integer> result = completionService.poll();
 if (result != null)
 // use value...

 // block, waiting for result
 Future<Integer> result = completionService.take();

The ThreadPoolExecutor implementation

At various times in this chapter, we’ve referred to the different executor services pro‐
duced by the Executors factory as different implementations of ExecutorService. But
these implementations are just different configurations of a single, highly flexible im‐
plementation of ExecutorService called ThreadPoolExecutorService. You can use
this implementation directly if you want; it offers some additional features. The primary
constructor for ThreadPoolExecutorService allows you to specify both a “core” thread
pool size and a maximum size, as well as a thread timeout value for removing idle
threads. The core size is a minimum number of threads which, once created, are allowed

296 | Chapter 9: Threads

to live indefinitely. The constructor also allows you to provide the task queue (an im‐
plementation of BlockingQueue) on which new tasks are placed. This last feature allows
you to govern the queuing policy yourself. You could specify a queue with a limited
capacity:

 ExecutorService executorService = new ThreadPoolExecutor(
 corePoolSize, maximumPoolSize, keepAliveTime, timeUnit, taskQueue);

The ThreadPoolExecutor implementation also has methods that allow you to change
the core and maximum pool size while the service is active or to “prestart” the core
threads before the service is used.

Actually, these last features bring up an interesting issue. If we know that our executor
service is an implementation of ThreadPoolExecutor, we can cast it at runtime to get
access to these extra methods and do things like change the pool size. This may not be
what the designers of some services had in mind; in fact, it could be downright dan‐
gerous in the wrong hands. For this reason, Executors offers a number of “unconfig‐
urable” wrapper methods that act something like the “unmodifiable” collection methods
we’ll see in the Java Collections API. These methods wrap an executor service in a
delegator object that does not expose the implementation to the caller:

 ExecutorService tweakable = Executors.newFixedThreadPool();
 ExecutorService safe = Executors.unconfigurableExecutorService(tweakable);

An application server might, for example, wrap a service to protect itself from individual
applications modifying (intentionally or accidentally) a global service used by many
applications.

Thread production

We said that the Executor pattern is a general replacement for using Threads to run
simple tasks. Although Executors shield us from Thread creation, there still may be
cases where we want some control over how the threads used in our various thread pool
implementations are constructed or set up. For this reason and to standardize Thread
production in general, the concurrency package adds an explicit, factory API for thread
creation.

The ThreadFactory interface provides a newThread() method. One of these factories
is used by all service implementations that create threads. All of the factory methods of
Executors have an additional form that accepts an explicit ThreadFactory as an argu‐
ment. You can get the default thread factory used by these with the Executors.default
ThreadFactory() method. You could supply your own ThreadFactory to perform cus‐
tom setup, such as ThreadLocal values or priorities.

Concurrency Utilities | 297

The Fork/Join framework

So far we’ve seen how the Java concurrency utilities can be used to manage simple
parallel programming scenarios. We’ve seen that we can submit many tasks to an Exec
utorService and collect result values if needed through Futures. We’ve seen that we
can schedule tasks to run at specified times and with specified frequencies. We’ve seen
that we can delve into the details of the pooling and control the degree of parallelism
(how many threads are used) if we wish. Later in this chapter, we’ll look at APIs that
help us coordinate threads so that we can do more complex jobs that require cooperation
or explicit phases of operation in their data handling. In this section, we’ll look at an
API that helps you coordinate tasks in another way—by helping you take “scaleable”
tasks and divide them up to match the processing power available at any given time.

Let’s imagine that you have a task that performs a complex computation like rendering
video or generating a complicated image. A natural place to start in parallizing it would
be to divide the work for one frame or image into a fixed number of parts and feed them
to an executor service. The executor service would be tuned to have as many threads as
you wish to use (perhaps the same number as the number of CPUs or “cores” on your
machine) and would assign each part to its own thread. If each task (each chunk of the
image) requires about the same amount of work to complete and nothing else is com‐
peting for time on your computer, then this scenario is pretty optimal. We’d expect that
each part of the image would be finished at about the same time and we’ll be able to
stitch them all together effectively. But what if some parts of the image are dramatically
harder to render than other parts? What if one chunk takes ten or a hundred or a
thousand times as much CPU power as another? (Imagine how much faster it may be
to render a empty part of an image, for example.) Then we may find ourselves in a
situation where many of the threads sit idle, while a few threads churn away doing all
of the hard work. What can we do to address this?

Well, one approach would be to simply make our tasks more finely grained. We could
make our individual jobs so small that no single one could possibly monopolize a thread
for long. However, when tasks can vary in degree of difficulty by many orders of mag‐
nitude, this could lead to creating a very large number of tiny tasks and would probably
be very inefficient, with threads switching jobs and, even worse, moving data around
to accommodate the somewhat random order in which they would service the work
requests. What is needed is a way for each task to keep itself busy, but allow other tasks
to help when they get overloaded. Ideally, we’d also like to minimize discontinuities in
the workflow and for data-intensive tasks, to avoid giving threads jobs that require
completely new data to be loaded at each turn.

298 | Chapter 9: Threads

The Fork/Join framework is a new API added in Java 7 that provides just this—a way
for you to structure your tasks so that they can be split up as needed to keep all of the
available threads busy working on data with as much continuity as possible. Specifically,
the Fork/Join framework relies on tasks that can be split up recursively (i.e., divided in
two or more parts, with those parts then subdivided if needed, and so on). When a task
is deemed too large to be completed quickly, the task is simply split up and the (now
smaller) pieces are placed into a queue for the current thread. The framework then
implements what is known as a “work stealing” algorithm, allowing threads that are free
to grab unstarted tasks from their neighbors’ queues. The combination of these tech‐
niques has some powerful advantages. First, it avoids unecessarily randomizing of the
workload. Threads will tend to get to work on contiguous parts of their tasks as long as
they stay busy. For data-intensive tasks, this may mean less loading of data across
threads. However, when necessary, a thread can grab work from a neighbor. And therein
comes the second advantage: by the nature of the recursive splitting of tasks, the largest/
least-broken-up pieces of tasks will sit at the bottom of each thread’s queue, which is
exactly where a neighbor thread will look to steal work if needed. This means that when
work is snatched, it will be redistributed in the largest possible chunks, further stabilizing
the workload per thread, reducing stealing operations and context switching. It’s a very
clever algorithm that originated in the Cilk programming language.

To show off the Fork/Join framework, we will do some image rendering, which we’ll
use as an excuse to draw some fractals! Fractals are amazing mathematical shapes that
arise from relatively simple iterative processes. The one that we’ll be drawing is called
the Mandelbrot set. Our Mandelbrot example code will do its drawing using the Fork/
Join framework to break up the job of drawing the image to the available number of
processors and keep them all busy (Figure 9-6). Before we start, a few caveats. First, we
won’t give a very good explanation of the drawing part that actually calculates the fractal.
In the interest of keeping the example focused on the framework, we have compacted
that code down to just a few lines that are very cryptic. Please see the footnotes for a
link to a proper explanation of what it is doing. Next, our example will blindly break up
the image chunks until they reach a fixed minimum size. While work stealing will indeed
happen between threads in this case, a better algorithm might make the determination
about when to split the job based on the actual rendering performance and reduce the
overhead of unecessary splitting. (We won’t have a large amount of data driving the
rendering and so we’re mainly focused on keeping the threads busy rather than mini‐
mizing splitting.)

Concurrency Utilities | 299

Figure 9-6. Mandelbrot Fork/Join

The Fork/Join framework API centers on a ForkJoinPool and various implementations
of a kind of Future called a ForkJoinTask. The Fork/Join framework can be used in
many different ways depending on how you wish to structure the tasks and make de‐
cisions about their division (forking) and collecting results (joining); however, we are
only going to look at one common case. We will be using a kind of ForkJoinTask called
RecursiveAction, which is just a ForkJoinTask that returns no value. We will subclass
RecursiveAction with our MandelbrotTask and implement the one required abstract
method: compute(). Within the compute() method, we will simply make a decision as
to whether to split up the task or do the work immediately. Here is the code:

public class Mandelbrot extends JFrame
{
 @Override public void paint(Graphics g) {
 BufferedImage image = new BufferedImage(getWidth(), getHeight(),

300 | Chapter 9: Threads

 BufferedImage.TYPE_INT_RGB);
 ForkJoinPool pool = new ForkJoinPool(); // defaults thread per processor
 pool.invoke(new MandelbrotTask(image, 0, image.getWidth()-1, 0,
 image.getHeight()-1));
 g.drawImage(image, 0, 0, null);
 }

 public static void main(String[] args) {
 Mandelbrot mandy = new Mandelbrot();
 mandy.setSize(768, 768);
 mandy.setVisible(true);
 }
}

class MandelbrotTask extends RecursiveAction
{
 private static double size = 3.0, offsetX = -0.7, thresholdSq = 100;
 private static int maxIterations = 30;
 private BufferedImage image;
 private int xStart, xEnd, yStart, yEnd;
 private static int taskSplitThreshold = 1024;

 MandelbrotTask(BufferedImage image, int xStart, int xEnd, int yStart,
 int yEnd) {

 this.image = image;

 this.xStart = xStart;
 this.xEnd = xEnd;
 this.yStart = yStart;
 this.yEnd = yEnd;
 }

 public void render()
 {
 for (int x = xStart; x <= xEnd; x++) {
 for (int y = yStart; y <= yEnd; y++) {
 double r = x * size / image.getWidth() -size/2 + offsetX;
 double i = y * size / image.getHeight() -size/2;
 double zr=0, zi=0;
 int iter;
 for (iter = 0; iter < maxIterations; iter++) {
 double nzr = zr*zr - zi*zi + r;
 double nzi = 2*zr*zi + i;
 if (nzr*nzr + nzi*nzi > thresholdSq) { break; }
 zr = nzr; zi=nzi;
 }
 image.setRGB(x, y, Color.HSBtoRGB(0.5f * iter / maxIterations,
 1.0f, 1.0f));
 }
 }
 }

Concurrency Utilities | 301

 @Override protected void compute()
 {
 int width = xEnd-xStart, height = yEnd-yStart;
 if (width*height < taskSplitThreshold) {
 render();
 } else {
 invokeAll(
 new MandelbrotTask(image, xStart, xStart+width/2, yStart,
 yStart+height/2),
 new MandelbrotTask(image, xStart+width/2+1, xEnd, yStart,
 yStart+height/2),
 new MandelbrotTask(image, xStart, xStart+width/2,
 yStart+height/2+1, yEnd),
 new MandelbrotTask(image, xStart+width/2+1, xEnd,
 yStart+height/2+1, yEnd)
);
 }
 }
}

Try running the example and then dragging the window out to different sizes. Watch
how it redraws as the window is dragged out to a large size. The fractal is generated by
treating each point in the image as a complex number (a two-dimensional number) and
applying a simple formula to it repeatedly: Z=Z2+C, where Z is initially zero and C is
related to the coordinate of the point. Then we color-code the point based on how fast
that value grows. In some areas of the image, the values will grow quickly and we’ll stop
iterating on them; in other areas, we’ll go on until we reach a number (maxItera
tions) of iterations. This means that some regions will take longer than others to gen‐
erate and some threads will therefore steal work from others.

The main() method of the Mandelbrot class creates the main window, a JFrame, for us.
(We saw some simple GUI programming in the introduction to the book and we’ll return
to it in Chapter 16 when we talk about Swing.) The main thing that we need to know
here is that the JFrame’s paint() method is displaying a buffered image and our various
MandelbrotTasks are competing to render small rectangles of that image.

When the paint() method is invoked to redraw the screen, it creates a new ForkJoin
Pool and constructs a single MandelbrotTask. The MandelbrotTask encapsulates
knowledge about a region of the image to draw—initially the entire image—and con‐
tains the method to render it. The initial MandelbrotTask is passed to the ForkJoin
Pool’s invoke()method, which is a blocking form of the submit method that will wait
for the task to complete before returning. The paint() method will then draw the fully
rendered image. As you can see, from the point of view of the paint() method, it has
prescribed one task for the entire image and simply asked the ForkJoinPool to invoke
it. All of the recursive division of labor is handled by the task in cooperation with the
framework.

302 | Chapter 9: Threads

Within the MandelbrotTask’s compute() method, we check to see how many pixels the
task is being asked to render. If the number of pixels exceeds a specified threshold, we
split the region into four quadrants and create a new MandelbrotTask for each of them.
The four subtasks are then passed to the inherited invokeAll() method, which executes
them and waits for all of them to complete before moving on (it effectively performs a
join operation on them). If the number of pixels is under the threshold, the com
pute() method directly invokes the render() method to generate the fractal for that
small portion of the image.

In our case, the division of tasks will proceed until the threshold has been reached and
each of the threads in the pool is busy rendering regions of the screen. Then the tree of
tasks will collapse back up, with each subdivided MandelbrotTask returning from its
invokeAll() method invocation until the initial, top-level task is completed.

One last thing before we move on: an exercise for you if you are really interested in this
topic. If you would like to visualize which threads are drawing which regions, you can
do the following purely as an experiment: within the render() method, look up the
name of the currently executing thread with the ThreadgetName() method. While this
name will not be meaningful, it will be unique to a thread. Use a HashMap to assign that
name a unique number and map it to that number each time you see it. Then use that
number to determine the color of the rendered pixel instead of the fractal logic (or
combine them to add a little tint or shade). This will allow you to see which threads are
rendering which patches of the screen. On a fast system, this may not be very interesting,
but if you stress the rendering by dragging the image to a very large size you should see
some variations.

Locks
The java.util.concurrent.locks package holds classes that mimic and expand upon
the built-in Java language synchronization primitives, adding “read/write” locks among
other things. As we mentioned, these classes are utilities written in Java and don’t strictly
add anything new to the language semantics. However, they do provide more flexible
usage at the expense of some of the built-in safety of Java language synchronization.

At the heart of the locks package are the Lock and Condition interfaces. Lock represents
the same concept as a Java lock (monitor) that is associated with each object and class
for use with synchronized methods and blocks. The Lock class provides for exclusive
access by the owner of the lock by allowing only one party to hold the lock at a time
through the lock() and unlock() methods. In Java language synchronization, this is
accomplished implicitly with the synchronized keyword:

 // synchronized method
 synchronized void writeData() { ... }

 // synchronized block
 synchronized (someObject) {

Concurrency Utilities | 303

 ...
 }

Upon entry to the synchronized method or block, Java acquires the lock and automat‐
ically releases it upon exiting. Even if an exception is thrown or the thread dies unex‐
pectedly, Java automatically releases all of the locks it acquired. Using the Lock class
instead requires us (or allows us, depending on how you look at it) to explicitly lock
when we want the resource and remember to unlock it when we are through. The locking
is not tied to any particular scope, such as a single method or code block. To reproduce
the effect of the synchronized method in the example, we’d use something like:

 Lock lock = new ReentrantLock();

 // method or block
 lock.lock();
 try {
 // body of method or block ...
 } finally {
 lock.unlock()
 }

The first caller to lock() acquires the lock and proceeds. Subsequent calls by other
threads block until the lock is released. We perform the body of our locked operation
in a try/finally block. This is generally important in order to ensure that we always
unlock before we leave, but you are free to implement arbitrary protocols at your own
risk.

The lock implementation in this example is called ReentrantLock. The name implies
that this kind of lock acts like Java locks do in that the lock is associated with the caller’s
thread. The owner of a lock may reacquire (“relock”) the lock as many times as it wishes.
For example, a recursive method that locks a resource upon entry is fine.

In addition to the standard-looking lock() method, the Lock interface has tryLock()
methods that do not block or that block for a specified period of time in order to acquire
the lock. These conditional and timed wait locking forms are something that ordinary
Java locks do not provide. The ReentrantLock implementation also has a notion of
“fairness” that can be turned on or off when it is constructed. When fair is on, the lock
attempts to hand out the lock to callers in the order in which they request it. Normal
Java locks (and the default, unfair policy of ReentrantLock) do not make this guarantee.

Read and write locks

The ReadWriteLock interface is a gateway to two different locks, one for reading and
one for writing. The idea behind read/write locks is that for most resources it is OK for
many “readers” to be viewing data, as long as it is not changing. Conversely, a writer of
the data generally requires exclusive access to it. This is just what read/write locks do.
Any number of readers may acquire the read lock as long as no write lock is in place.
Only one party may hold the write lock, and no readers may hold read locks while the

304 | Chapter 9: Threads

write lock is out. A writer may have to wait for readers to finish before acquiring the
write lock, and readers may have to wait for a writer to finish before they are allowed
to acquire read locks:

 ReadWriteLock rwLock = new ReentrantReadWriteLock(fair);

 // reader thread 1
 rwLock.readLock().lock();
 // reader thread 2
 rwLock.readLock().lock();

 // writer thread
 rwLock.writeLock().lock(); // blocks on threads 1 & 2

In this code snippet, two readers hold read locks while a writer blocks waiting on the
write lock. When both readers have unlock()ed their read locks, the writer gains ex‐
clusive access to the lock and any subsequent readers block until the writer is finished.

The owner of a write lock can acquire a read lock, too, but not vice versa. Acquiring a
read lock and then releasing the write lock is called downgrading the lock. Trying to
acquire a write lock while holding a read lock (upgrading) is not allowed and causes a
deadlock.

Conditions

To complete the picture of Lock as a parallel for Java language synchronization, we need
an analog to the wait(), notify(), and notifyAll()mechanism. The Condition in‐
terface represents this functionality with its await(), signal(), and signalAll()
methods. A Condition is associated with a Lock by the lock’s newCondition() method.
Unlike a normal Java lock, a Lock may have multiple Condition objects that represent
multiple wait sets of threads.

The Condition await() method is used just like the wait() method of a Java object
within a synchronized block:

 Lock lock = ...
 Condition condition = lock.newCondition();
 lock.lock();
 condition.await(); // block, waiting for signal()
 lock.unlock();

 // meanwhile, in another thread...
 lock.lock();
 condition.signal();
 lock.unlock();

Like wait(), the Condition await() method can be called only when the thread is the
owner of the lock associated with the condition and the signal() method may be called
only by another thread that has acquired the lock. Interestingly, though, in this case,
these restrictions are implementation details of the java.util.concurrent package;

Concurrency Utilities | 305

some other implementation of these classes could conceivably change those restrictions
in some way.

With the exception of the new reader/writer locks and some timed wait lock methods,
it may not seem that the Locks package adds a great deal to Java. However, if you delve
into it deeper, you’ll find that it’s also a toolkit for building new kinds of synchronization
primitives and higher-level constructs. The locks package opens up a concrete imple‐
mentation of Java’s synchronization mechanism for all to tinker with and extend. A brief
look at the implementation classes reveals nifty methods like getOwner() to tell you
which thread owns a lock or getReadLockCount() to tell you how many readers are
working on your data. Lots of things are possible with an open implementation like this,
including specialized synchronization packages that do things like automatically detect
deadlocks or tune themselves based on external information. There may also be cases
where using the explicit lock API provided by this package performs better than
language-level synchronization. But that probably doesn’t justify the additional burden
on developers except in special cases. Next, we’ll move up a bit and look at some higher-
level synchronization tools.

Synchronization Constructs
The java.util.concurrent package adds several higher-level synchronization utilities
borrowed from other languages, including CountDownLatch, Semaphore, CyclicBarri
er, and Exchanger.

CountDownLatch

The CountDownLatch is a very simple synchronization utility that allows any number of
threads to block, waiting for a countdown value to reach 0 before being “released” to
continue their activities. The CountDownLatch is initialized with the count when con‐
structed. Thereafter, threads may block using the await() method or block for a limited
period of time using the timed wait version of await(). Any running thread may dec‐
rement the counter at any time, whether threads are blocked or not. Once the counter
reaches 0, all waiting threads unblock and continue. Thereafter, any calls to await() do
not block and the await() method returns false, indicating that the count has passed.
The count cannot be reset.

 CountDownLatch latch = new CountDownLatch(2); // count from 2

 // thread 1
 latch.await(); // blocks thread 1

 // thread 2
 latch.countDown(); // count is 1
 latch.countDown(); // count is 0, thread 1 proceeds

306 | Chapter 9: Threads

Countdown latches are used in a wide variety of synchronization schemes to coordinate
a number of threads on one result or cause a thread to wait for a number of other threads
to produce results. Later we’ll talk about a related utility, CyclicBarrier, that explicitly
waits for a number of threads to synchronize in order to coordinate an action.

Semaphore

Semaphores are a very old synchronization construct that has been used in many other
languages. Conceptually, a semaphore is a pool of permits—intangible permission slips
to perform some activity. The semaphore is initialized with a specified number of per‐
mits. Callers can then use the acquire() and release() methods to take and return
these permits. Calling acquire() when no permits are available causes the caller to block
until one is released. In this way, for example, a semaphore could be used to limit access
to some resource to a specified number of threads:

 int concurrentReaders = 5;
 boolean fair = true;
 Semaphore sem = new Semaphore(concurrentReaders, fair);

 Data readData() throws InterruptedException {
 sem.acquire();
 // read data ...
 sem.release();

 return data;
 }

In this code snippet, readData() effectively limits itself to five concurrent reading
threads at any given time. Additional threads are blocked in the acquire() method until
a permit is free. In this sense, a semaphore is vaguely like a lock with multiple owners.
This is where the similarity ends, however.

In actuality, a semaphore differs from a lock in several ways. First, the “pool of permits”
is really just a number. No actual value is returned by acquire() and no association is
made with the acquirer of the lock. This means that any actual locking behavior is strictly
cooperative (by convention in the application). It also means that “permits” can be ac‐
quired and released by different callers without respect to who actually “acquired” them.
It’s really just incrementing or decrementing the number. Also, because there is no real
association with an “owner,” semaphores are not reentrant in the way that real locks are.
That is, if a thread calls acquire() multiple times, it simply decrements the counter
multiple times. This behavior could be useful in some cases to count levels of recursion
for security APIs, for example, but is not like a lock, in which one caller “owns” multiple
permits. Finally, because the permits pool is really just a number, calling acquire() and
release() out of sync can increase the permit pool beyond its starting point or decre‐
ment it below zero. It can even be initialized with a negative number if you wish to
require releases before anyone acquires a permit.

Concurrency Utilities | 307

In addition to acquire(), Semaphore has a tryAcquire() method that parallels the
tryLock() method of Lock. It returns immediately, acquiring a permit if one was avail‐
able and returning false otherwise. Another form of tryAcquire() accepts a timed
wait period. Semaphores also have a notion of “fairness” in the ordering of acquire
requests. By default, requests are not guaranteed to be ordered, but if the “fair” flag is
set when the Semaphore is constructed, acquire() doles out permits in first-in-first-
out (FIFO) order. The tradeoff is that ordering may impact performance a bit, depending
on the implementation.

CyclicBarrier

The CyclicBarrier class is a synchronization point where a specified number of related
threads meet after finishing their activities. When all of the threads have arrived, an
optional, shared barrier action can be executed and then all of the threads are “released”
to continue. The class is termed cyclic because it can then be used again in the case where
the threads repeat their activities in this manner. CyclicBarrier is an alternative to
using the join() method, which collects threads only after they have completed and
returned from their run() method.

The following example, SiteTimer, accepts a number of URLs on the command line
and times how long it takes to connect to each one, printing the results in sorted order.
It performs the connections in parallel using a dedicated thread per site and uses a
CyclicBarrier for the threads to rendezvous after each timing cycle. Then it prints the
coordinated results before they begin again. This example also illustrates a number of
Java features, including generics, collections, formatted printing, autoboxing, and an
inner class. Although we haven’t yet discussed collections or the network portion of the
example, the usage is fairly simple, and you can return to the example after reading the
relevant chapters later in this book.

 import java.util.*;
 import java.util.concurrent.*;
 import java.net.*;
 import java.io.IOException;

 public class SiteTimer
 {
 CyclicBarrier barrier;
 List<Result> results = new ArrayList<Result>();

 private class Result implements Comparable<Result>
 {
 Long time;
 String site;
 Result(Long time, String site) {
 this.time = time;
 this.site = site;
 }
 public int compareTo(Result r) { return time.compareTo(r.time); }

308 | Chapter 9: Threads

 }

 static long timeConnect(String site) {
 long start = System.currentTimeMillis();
 try {
 new URL(site).openConnection().connect();
 } catch (IOException e) {
 return -1;
 }
 return System.currentTimeMillis() - start;
 }

 void showResults() {
 Collections.sort(results);
 for(Result result : results)
 System.out.printf("%-30.30s : %d\n", result.site, result.time);
 System.out.println("------------------");
 }

 public void start(String [] args)
 {
 Runnable showResultsAction = new Runnable() {
 public void run() {
 showResults();
 results.clear();
 } };
 barrier = new CyclicBarrier(args.length, showResultsAction);

 for (final String site : args)
 new Thread() {
 public void run() {
 while(true) {
 long time = timeConnect(site);
 results.add(new Result(time, site));
 try {
 barrier.await();
 } catch (BrokenBarrierException e) { return;
 } catch (InterruptedException e) { return; }
 }
 }
 }.start();
 }

 public static void main(String [] args) throws IOException {
 new SiteTimer().start(args);
 }
 }

The start() method constructs the barrier, specifying the number of threads that must
be present before the group has fully arrived and the action to perform when all of the
threads are ready. For each site, a thread is created that loops, timing the connection to
the site and adding a result object to the list before blocking on the barrier’s await()

Concurrency Utilities | 309

method. When all of the threads reach the await() method, the barrier action fires,
printing the results. All of the threads are then released to begin the next cycle.

If any of the waiting threads is interrupted or times out (using the timed wait version
of the await() method) the barrier is said to be “broken” and all of the waiting threads
receive a BrokenBarrierException. In theory, the barrier can be “fixed” by calling its
reset() method, but this is complicated because only one thread from the group can
reset the barrier properly. A reset() while any other thread is waiting causes the barrier
to be broken and the waiting threads to receive the exception again, so it is probably
best to start over at this point.

One more detail: the await() method returns an integer that indicates the order in
which the threads arrived at the barrier. This can be used to divide up work for the next
iteration of the threads. For example, if the threads’ jobs are not identical, you could use
the number to “elect” a leader thread or divide the threads into two or more groups.

Phaser

No Star Trek jokes here. Java 7 introduced a new concurrency utility called Phaser.
Phaser is very similar to the CyclicBarrier except that it provides a bit more flexibility.
Phaser draws its name in part from the fact that it assigns a number to each cycle of its
threads (a phase number). Participating threads and bystanders can read this number
to monitor activity in the barrier. In CyclicBarrier, the number of threads that are
tracked by the barrier is fixed; new threads cannot join the party during its lifecycle.
This differs from Phaser, where the number of participants can change over the life of
the activity.

Exchanger

The Exchanger is a synchronization point for a pair of threads to exchange data items.
An item of the same type is passed in each direction using the exchange() method. The
first method to arrive at the Exchanger blocks, waiting for its mate. When the second
method arrives, they each receive the other’s argument to the exchange() method. Any
number of actual threads may be using the Exchanger; they are simply paired in some
order when they arrive. Exchanger is a generic class that is parameterized by the type
of object to be passed:

 Exchanger<ByteBuffer> xchange = new Exchanger<ByteBuffer>();

 // thread 1
 Buffer nextBuf = xchange.exchange(buffer1); // blocks

 // thread 2
 Buffer nextBuf = xchange.exchange(buffer2);

 // buffers exchanged, both threads continue...

310 | Chapter 9: Threads

The Exchanger pattern is primarily useful for reusing data objects or buffers between
threads, as indicated in this code snippet. Say that you have a reader thread filling buffers
with data and a writer thread writing the contents of the buffers somewhere. Using an
Exchanger, the reader and writer can trade a pair of buffers back and forth without
creating new ones. This may seem a bit arcane, but it has applications when using the
NIO advanced I/O package, which we discuss in Chapters 12 and 13.

We should note that the Exchanger is similar to the SynchronousQueue, which we’ll
discuss in Chapter 11 when we cover the Collections API. The Exchanger, however,
passes data in both directions, whereas SynchronousQueue simply passes elements in
one direction.

Atomic Operations
The java.util.concurrent.atomic package holds an interesting set of wrapper classes
for atomic, “all-or-nothing” operations on certain primitive types and reference values.
An atomic operation is a kind of transaction where some sequence of events either
completes or fails as a unit and there is no potential for any intermediate state to be seen.
In this case, the transactions we’re talking about are very simple operations that either
set or get a value, possibly in combination with a simple test or mathematical operation.
There are atomic wrapper classes for the following types: Booleans, integers, and long
values as well as arrays of integers and longs and object references:

 AtomicBoolean.java
 AtomicInteger.java
 AtomicIntegerArray.java
 AtomicLong.java
 AtomicLongArray.java
 AtomicReference.java
 AtomicReferenceArray.java

The AtomicBoolean class (which, by the way, has to compete with java.awt.Robot for
coolest class name in Java) serves as a good example. At first glance, it seems like an
oxymoron. After all, normal operations on Booleans in Java are atomic already. There
is supposed to be no possible “in between” state for a Boolean to be misread by any fiesty
multithreaded code (as there theoretically could be for long and double values). Instead,
the usefulness of the AtomicBoolean wrapper is in its combination operations:
compareAndSet() and getAndSet():

 AtomicBoolean bool = new AtomicBoolean(true);
 bool.compareAndSet(expectedValue, newValue);

The compareAndSet() method first performs a comparison to an expected value
(true or false in the case of a Boolean) and only if the value matches does it assign the
new value. The interesting thing is that both of these operations happen “atomically,”
together. This means that there is no possibility of someone changing the value between
the time that we checked it and assigned the new value. That may sound like a slim

Concurrency Utilities | 311

chance anyway, but it’s very important for guaranteeing the semantics of flags. For ex‐
ample, suppose we have a master “shutdown” switch in our application and the thread
that sets it wants to perform cleanup on the way out. Using compareAndSet() to test
first, we can guarantee that only one thread can possibly set the flag and perform the
procedure.

The getAndSet() method simply assigns the new value and returns the old value in the
same, safe way. It’s a little harder to see how this applies to a Boolean, so let’s move on
to AtomicInteger and AtomicLong. These numeric types have additional arithmetic
combination operations:

 int getAndIncrement()
 int getAndDecrement()
 int getAndAdd(int delta)
 int incrementAndGet()
 int decrementAndGet()
 int addAndGet(int delta)

getAndIncrement() increments the value and then returns the previous value. incre
mentAndGet() does the converse, returning the new value. These operations are very
useful for generating unique serial numbers. For example:

 AtomicInteger serialNum = new AtomicInteger(0);

 public int nextSerialNumber() {
 return serialNum.getAndIncrement();
 }

We could have accomplished the same thing by synchronizing the method, but this is
simpler and may be much faster.

Object-type references can also be wrapped for atomic operations, including
compareAndSet() and getAndSet(). The AtomicReference class is generic and para‐
meterized by the type of reference it wraps:

 AtomicReference<Node> ref = new AtomicReference<Node>(node);
 ref.compareAndSet(null, newNode);

Weak implementations

The compareAndSet() method has a strange twin named weakCompareAndSet(), which
has the dubious distinction that it simply may not work when called. It is, however, nice
enough to tell you when it doesn’t work by returning false. What’s the point of this?
Well, by allowing this fuzziness, Java may be able to make the implementation of the
weak method much faster than the “certain” one. You can loop and retry the weak
method instead and it may improve performance on some architectures. This is all
because the Java VM may be able to map these kinds of atomic operations all the way
down to the hardware level for performance, but restrictions may apply that make it
difficult to guarantee.

312 | Chapter 9: Threads

Field updaters

The atomic package also supplies a set of “field update” utilities for each of the types
that it can wrap. These utilities use reflection (see Chapter 7) to perform the kinds of
atomic operations we described previously on “naked” primitive types that are not al‐
ready wrapped in their atomic wrapper classes. The field updaters work on variables in
an object by name and type. The catch is that atomicity is guaranteed only with respect
to other callers that use the field updaters or the regular atomic wrapper classes. No
guarantees are made with respect to other threads that address the variables in arbitrary
ways.

Conclusion
Java was one of the first mainstream languages to provide support for threading at the
language level and is now one of the first languages to standardize high-level threading
utilities and APIs as well. At this point, we’ve come to the end of our discussion of threads
in Java and also, in a way, to the end of the first part of this book. In Chapters 1 through
9, we discussed the Java language: its syntax and “built-in” features. In the remainder of
the book, we will focus mainly on the APIs and libraries that make up the rest of the
Java platform. We will see that the real appeal of Java is the combination of this simple
language married with powerful tools and standards.

Conclusion | 313

CHAPTER 10

Working with Text

If you’ve been reading this book sequentially, you’ve read all about the core Java language
constructs, including the object-oriented aspects of the language and the use of threads.
Now it’s time to shift gears and start talking about the Java Application Programming
Interface (API), the collection of classes that compose the standard Java packages and
come with every Java implementation. Java’s core packages are one of its most distin‐
guishing features. Many other object-oriented languages have similar features, but none
has as extensive a set of standardized APIs and tools as Java does. This is both a reflection
of and a reason for Java’s success. Table 10-1 lists some of the important packages in the
API and their corresponding chapters in this book.

Table 10-1. Java API packages
Package Contents Chapter

java.lang Basic language classes 4–9

java.lang.reflect Reflection 7

java.util.concurrent Thread utilities 9

java.text

java.util.regex

International text classes and regular expressions 10

java.util Utilities and collections classes 10–12

java.io

java.nio

Input and output
Input and output

12
12

java.net Networking and Remote Method Invocation classes 13–14

java.rmi Remote Method Invocation classes 13

javax.servlet Web applications 15

javax.swing

java.awt

Swing GUI and 2D graphics 16–20

315

Package Contents Chapter

java.awt.image

javax.imageio

javax.media

Images, sound, and video 21

java.beans JavaBeans API 22

java.applet The Applet API 23

javax.xml The XML API 24

As you can see in Table 10-1, we have examined some classes in java.lang in earlier
chapters while looking at the core language constructs. Starting with this chapter, we
throw open the Java toolbox and begin examining the rest of the API classes, starting
with text-related utilities, because they are fundamental to all kinds of applications.

Text-Related APIs
In this chapter, we cover most of the special-purpose, text-related APIs in Java, from
simple classes for parsing words and numbers to advanced text formatting, interna‐
tionalization, and regular expressions. But because so much of what we do with com‐
puters is oriented around text, classifying APIs as strictly text-related can be somewhat
arbitrary. Some of the text-related packages we cover in the next chapter include the
Java Calendar API, the Properties and User Preferences APIs, and the Logging API. But
some of the most important tools in the text arena are those for working with the Ex‐
tensible Markup Language, XML. In Chapter 24, we cover XML in detail, along with
the XSL/XSLT stylesheet language. Together they provide a powerful framework for
rendering documents.

Strings
We’ll start by taking a closer look at the Java String class (or, more specifically,
java.lang.String). Because working with Strings is so fundamental, it’s important to
understand how they are implemented and what you can do with them. A String object
encapsulates a sequence of Unicode characters. Internally, these characters are stored
in a regular Java array, but the String object guards this array jealously and gives you
access to it only through its own API. This is to support the idea that Strings are
immutable; once you create a String object, you can’t change its value. Lots of operations
on a String object appear to change the characters or length of a string, but what they
really do is return a new String object that copies or internally references the needed
characters of the original. Java implementations make an effort to consolidate identical
strings used in the same class into a shared-string pool and to share parts of Strings
where possible.

316 | Chapter 10: Working with Text

1. When in doubt, measure it! If your String-manipulating code is clean and easy to understand, don’t rewrite
it until someone proves to you that it is too slow. Chances are that they will be wrong. And don’t be fooled
by relative comparisons. A millisecond is 1,000 times slower than a microsecond, but it still may be negligible
to your application’s overall performance.

The original motivation for all of this was performance. Immutable Strings can save
memory and be optimized for speed by the Java VM. The flip side is that a programmer
should have a basic understanding of the String class in order to avoid creating an
excessive number of String objects in places where performance is an issue. That was
especially true in the past, when VMs were slow and handled memory poorly. Nowadays,
string usage is not usually an issue in the overall performance of a real application.1

Constructing Strings
Literal strings, defined in your source code, are declared with double quotes and can be
assigned to a String variable:

 String quote = "To be or not to be";

Java automatically converts the literal string into a String object and assigns it to the
variable.

Strings keep track of their own length, so String objects in Java don’t require special
terminators. You can get the length of a String with the length() method. You can also
test for a zero length string by using isEmpty():

 int length = quote.length();
 boolean empty = quote.isEmpty();

Strings can take advantage of the only overloaded operator in Java, the + operator, for
string concatenation. The following code produces equivalent strings:

 String name = "John " + "Smith";
 String name = "John ".concat("Smith");

Literal strings can’t span lines in Java source files, but we can concatenate lines to produce
the same effect:

 String poem =
 "'Twas brillig, and the slithy toves\n" +
 " Did gyre and gimble in the wabe:\n" +
 "All mimsy were the borogoves,\n" +
 " And the mome raths outgrabe.\n";

Embedding lengthy text in source code is not normally something you want to do. In
this and the following chapter, we’ll talk about ways to load Strings from files, special
packages called resource bundles, and URLs. Technologies like Java Server Pages and
template engines also provide a way to factor out large amounts of text from your code.

Strings | 317

2. On Mac OS X, the default encoding is MacRoman. In Windows, it is CP1252. On some Unix platforms it is
ISO8859_1.

For example, in Chapter 14, we’ll see how to load our poem from a web server by opening
a URL like this:

 InputStream poem = new URL(
 "http://myserver/~dodgson/jabberwocky.txt").openStream();

In addition to making strings from literal expressions, you can construct a String
directly from an array of characters:

 char [] data = new char [] { 'L', 'e', 'm', 'm', 'i', 'n', 'g' };
 String lemming = new String(data);

You can also construct a String from an array of bytes:
 byte [] data = new byte [] { (byte)97, (byte)98, (byte)99 };
 String abc = new String(data, "ISO8859_1");

In this case, the second argument to the String constructor is the name of a character-
encoding scheme. The String constructor uses it to convert the raw bytes in the speci‐
fied encoding to the internally used standard 2-byte Unicode characters. If you don’t
specify a character encoding, the default encoding scheme on your system is used. We’ll
discuss character encodings more when we talk about the Charset class, IO, in Chap‐
ter 12.2

Conversely, the charAt() method of the String class lets you access the characters of
a String in an array-like fashion:

 String s = "Newton";
 for (int i = 0; i < s.length(); i++)
 System.out.println(s.charAt(i));

This code prints the characters of the string one at a time. Alternately, we can get the
characters all at once with toCharArray(). Here’s a way to save typing a bunch of single
quotes and get an array holding the alphabet:

 char [] abcs = "abcdefghijklmnopqrstuvwxyz".toCharArray();

The notion that a String is a sequence of characters is also codified by the String class
implementing the interface java.lang.CharSequence, which prescribes the methods
length() and charAt() as well as a way to get a subset of the characters.

Strings from Things
Objects and primitive types in Java can be turned into a default textual representation
as a String. For primitive types like numbers, the string should be fairly obvious; for
object types, it is under the control of the object itself. We can get the string

318 | Chapter 10: Working with Text

representation of an item with the static String.valueOf() method. Various overloa‐
ded versions of this method accept each of the primitive types:

 String one = String.valueOf(1); // integer, "1"
 String two = String.valueOf(2.384f); // float, "2.384"
 String notTrue = String.valueOf(false); // boolean, "false"

All objects in Java have a toString() method that is inherited from the Object class.
For many objects, this method returns a useful result that displays the contents of the
object. For example, a java.util.Date object’s toString() method returns the date it
represents formatted as a string. For objects that do not provide a representation, the
string result is just a unique identifier that can be used for debugging. The String.val
ueOf() method, when called for an object, invokes the object’s toString() method and
returns the result. The only real difference in using this method is that if you pass it a
null object reference, it returns the String “null” for you, instead of producing a Null
PointerException:

 Date date = new Date();
 // Equivalent, e.g., "Fri Dec 19 05:45:34 CST 1969"
 String d1 = String.valueOf(date);
 String d2 = date.toString();

 date = null;
 d1 = String.valueOf(date); // "null"
 d2 = date.toString(); // NullPointerException!

String concatenation uses the valueOf() method internally, so if you “add” an object or
primitive using the plus operator (+), you get a String:

 String today = "Today's date is :" + date;

You’ll sometimes see people use the empty string and the plus operator (+) as shorthand
to get the string value of an object. For example:

 String two = "" + 2.384f;
 String today = "" + new Date();

Comparing Strings
The standard equals() method can compare strings for equality; they contain exactly
the same characters in the same order. You can use a different method, equalsIgnore
Case(), to check the equivalence of strings in a case-insensitive way:

 String one = "FOO";
 String two = "foo";

 one.equals(two); // false
 one.equalsIgnoreCase(two); // true

A common mistake for novice programmers in Java is to compare strings with the ==
operator when they intend to use the equals() method. Remember that strings are

Strings | 319

objects in Java, and == tests for object identity; that is, whether the two arguments being
tested are the same object. In Java, it’s easy to make two strings that have the same
characters but are not the same string object. For example:

 String foo1 = "foo";
 String foo2 = String.valueOf(new char [] { 'f', 'o', 'o' });

 foo1 == foo2 // false!
 foo1.equals(foo2) // true

This mistake is particularly dangerous because it often works for the common case in
which you are comparing literal strings (strings declared with double quotes right in
the code). The reason for this is that Java tries to manage strings efficiently by combining
them. At compile time, Java finds all the identical strings within a given class and makes
only one object for them. This is safe because strings are immutable and cannot change.
You can coalesce strings yourself in this way at runtime using the String intern()
method. Interning a string returns an equivalent string reference that is unique across
the VM.

The compareTo() method compares the lexical value of the String to another String,
determining whether it sorts alphabetically earlier than, the same as, or later than the
target string. It returns an integer that is less than, equal to, or greater than zero:

 String abc = "abc";
 String def = "def";
 String num = "123";

 if (abc.compareTo(def) < 0) // true
 if (abc.compareTo(abc) == 0) // true
 if (abc.compareTo(num) > 0) // true

The compareTo() method compares strings strictly by their characters’ positions in the
Unicode specification. This works for simple text but does not handle all language var‐
iations well. The Collator class, discussed next, can be used for more sophisticated
comparisons.

The Collator class

The java.text package provides a sophisticated set of classes for comparing strings in
specific languages. German, for example, has vowels with umlauts and another character
that resembles the Greek letter beta and represents a double “s.” How should we sort
these? Although the rules for sorting such characters are precisely defined, you can’t
assume that the lexical comparison we used earlier has the correct meaning for lan‐
guages other than English. Fortunately, the Collator class takes care of these complex
sorting problems.

In the following example, we use a Collator designed to compare German strings. You
can obtain a default Collator by calling the Collator.getInstance() method with no

320 | Chapter 10: Working with Text

arguments. Once you have an appropriate Collator instance, you can use its com
pare() method, which returns values just like String’s compareTo() method. The fol‐
lowing code creates two strings for the German translations of “fun” and “later,” using
Unicode constants for these two special characters. It then compares them, using a
Collator for the German locale. (Locales help you deal with issues relevant to particular
languages and cultures; we’ll talk about them in detail later in this chapter.) The result
in this case is that “fun” (Spaß) sorts before “later” (später):

 String fun = "Spa\u00df";
 String later = "sp\u00e4ter";

 Collator german = Collator.getInstance(Locale.GERMAN);
 if (german.compare(fun, later) < 0) // true

Using collators is essential if you’re working with languages other than English. In
Spanish, for example, “ll” and “ch” are treated as unique characters and alphabetized
separately. A collator handles cases like these automatically.

Searching
The String class provides several simple methods for finding fixed substrings within a
string. The startsWith() and endsWith() methods compare an argument string with
the beginning and end of the String, respectively:

 String url = "http://foo.bar.com/";
 if (url.startsWith("http:")) // true

The indexOf() method searches for the first occurrence of a character or substring and
returns the starting character position, or -1 if the substring is not found:

 String abcs = "abcdefghijklmnopqrstuvwxyz";
 int i = abcs.indexOf('p'); // 15
 int i = abcs.indexOf("def"); // 3
 int I = abcs.indexOf("Fang"); // -1

Similarly, lastIndexOf() searches backward through the string for the last occurrence
of a character or substring.

The contains() method handles the very common task of checking to see whether a
given substring is contained in the target string:

 String log = "There is an emergency in sector 7!";
 if (log.contains("emergency")) pageSomeone();

 // equivalent to
 if (log.indexOf("emergency") != -1) ...

For more complex searching, you can use the Regular Expression API, which allows
you to look for and parse complex patterns. We’ll talk about regular expressions later
in this chapter.

Strings | 321

Editing
A number of methods operate on the String and return a new String as a result. While
this is useful, you should be aware that creating lots of strings in this manner can affect
performance. If you need to modify a string often or build a complex string from com‐
ponents, you should use the StringBuilder class, as we’ll discuss shortly.

trim() is a useful method that removes leading and trailing whitespace (i.e., carriage
return, newline, and tab) from the String:

 String str = " abc ";
 str = str.trim(); // "abc"

In this example, we threw away the original String (with excess whitespace), and it will
be garbage-collected.

The toUpperCase() and toLowerCase() methods return a new String of the appro‐
priate case:

 String down = "FOO".toLowerCase(); // "foo"
 String up = down.toUpperCase(); // "FOO"

substring() returns a specified range of characters. The starting index is inclusive; the
ending is exclusive:

 String abcs = "abcdefghijklmnopqrstuvwxyz";
 String cde = abcs.substring(2, 5); // "cde"

The replace() method provides simple, literal string substitution. One or more oc‐
currences of the target string are replaced with the replacement string, moving from
beginning to end. For example:

 String message = "Hello NAME, how are you?".replace("NAME", "Penny");
 // "Hello Penny, how are you?"
 String xy = "xxooxxxoo".replace("xx", "X");
 // "XooXxoo"

The String class also has two methods that allow you to do more complex pattern
substitution: replaceAll() and replaceFirst(). Unlike the simple replace() meth‐
od, these methods use regular expressions (a special syntax) to describe the replacement
pattern, which we’ll cover later in this chapter.

String Method Summary
Table 10-2 summarizes the methods provided by the String class.

Table 10-2. String methods
Method Functionality

charAt() Gets a particular character in the string

compareTo() Compares the string with another string

322 | Chapter 10: Working with Text

Method Functionality

concat() Concatenates the string with another string

contains() Checks whether the string contains another string

copyValueOf() Returns a string equivalent to the specified character array

endsWith() Checks whether the string ends with a specified suffix

equals() Compares the string with another string

equalsIgnoreCase() Compares the string with another string, ignoring case

getBytes() Copies characters from the string into a byte array

getChars() Copies characters from the string into a character array

hashCode() Returns a hashcode for the string

indexOf() Searches for the first occurrence of a character or substring in the string

intern() Fetches a unique instance of the string from a global shared-string pool

isEmpty() Returns true if the string is zero length

lastIndexOf() Searches for the last occurrence of a character or substring in a string

length() Returns the length of the string

matches() Determines if the whole string matches a regular expression pattern

regionMatches() Checks whether a region of the string matches the specified region of another string

replace() Replaces all occurrences of a character in the string with another character

replaceAll() Replaces all occurrences of a regular expression pattern with a pattern

replaceFirst() Replaces the first occurrence of a regular expression pattern with a pattern

split() Splits the string into an array of strings using a regular expression pattern as a delimiter

startsWith() Checks whether the string starts with a specified prefix

substring() Returns a substring from the string

toCharArray() Returns the array of characters from the string

toLowerCase() Converts the string to lowercase

toString() Returns the string value of an object

toUpperCase() Converts the string to uppercase

trim() Removes leading and trailing whitespace from the string

valueOf() Returns a string representation of a value

StringBuilder and StringBuffer
In contrast to the immutable string, the java.lang.StringBuilder class is a modifiable
and expandable buffer for characters. You can use it to create a big string efficiently.
StringBuilder and StringBuffer are twins; they have exactly the same API. String
Builder was added in Java 5.0 as a drop-in, unsynchronized replacement for String
Buffer. We’ll come back to that in a bit.

Strings | 323

First, let’s look at some examples of String construction:
 // Could be better
 String ball = "Hello";
 ball = ball + " there.";
 ball = ball + " How are you?";

This example creates an unnecessary String object each time we use the concatenation
operator (+). Whether this is significant depends on how often this code is run and how
big the string actually gets. Here’s a more extreme example:

 // Bad use of + ...
 while((line = readLine()) != EOF)
 text += line;

This example repeatedly produces new String objects. The character array must be
copied over and over, which can adversely affect performance. The solution is to use a
StringBuilder object and its append() method:

 StringBuilder sb = new StringBuilder("Hello");
 sb.append(" there.");
 sb.append(" How are you?");

 StringBuilder text = new StringBuilder();
 while((line = readline()) != EOF)
 text.append(line);

Here, the StringBuilder efficiently handles expanding the array as necessary. We can
get a String back from the StringBuilder with its toString() method:

 String message = sb.toString();

You can also retrieve part of a StringBuilder as a String by using one of the sub
string() methods.

You might be interested to know that when you write a long expression using string
concatenation, the compiler generates code that uses a StringBuilder behind the
scenes:

 String foo = "To " + "be " + "or";

It is really equivalent to:
 String foo = new
 StringBuilder().append("To ").append("be ").append("or").toString();

In this case, the compiler knows what you are trying to do and takes care of it for you.

The StringBuilder class provides a number of overloaded append() methods for
adding any type of data to the buffer. StringBuilder also provides a number of over‐
loaded insert() methods for inserting various types of data at a particular location in
the string buffer. Furthermore, you can remove a single character or a range of characters
with the deleteCharAt() and delete() methods. Finally, you can replace part of the

324 | Chapter 10: Working with Text

StringBuilder with the contents of a String using the replace() method. The String
and StringBuilder classes cooperate so that, in some cases, no copy of the data has to
be made; the string data is shared between the objects.

You should use a StringBuilder instead of a String any time you need to keep adding
characters to a string; it’s designed to handle such modifications efficiently. You can
convert the StringBuilder to a String when you need it, or simply concatenate or print
it anywhere you’d use a String.

As we said earlier, StringBuilder was added in Java 5.0 as a replacement for String
Buffer. The only real difference between the two is that the methods of StringBuff
er are synchronized and the methods of StringBuilder are not. This means that if you
wish to use StringBuilder from multiple threads concurrently, you must synchronize
the access yourself (which is easily accomplished). The reason for the change is that
most simple usage does not require any synchronization and shouldn’t have to pay the
associated penalty (slight as it is).

Internationalization
The Java VM lets us write code that executes in the same way on any Java platform. But
in a global marketplace, that is only half the battle. A big question remains: will the
application content and data be understandable to end users worldwide? Must users
know English to use your application? The answer is that Java provides thorough sup‐
port for localizing the text of your application for most modern languages and dialects.
In this section, we’ll talk about the concepts of internationalization (often abbreviated
“I18N”) and the classes that support them.

The java.util.Locale Class
Internationalization programming revolves around the Locale class. The class itself is
very simple; it encapsulates a country code, a language code, and a rarely used variant
code. Commonly used languages and countries are defined as constants in the Locale
class. (Maybe it’s ironic that these names are all in English.) You can retrieve the codes
or readable names, as follows:

 Locale l = Locale.ITALIAN;
 System.out.println(l.getCountry()); // IT
 System.out.println(l.getDisplayCountry()); // Italy
 System.out.println(l.getLanguage()); // it
 System.out.println(l.getDisplayLanguage()); // Italian

The country codes comply with ISO 3166. You will find a complete list of country codes
at the RIPE Network Coordination Centre. The language codes comply with ISO 639.
A complete list of language codes is online at the US government website. There is no
official set of variant codes; they are designated as vendor-specific or platform-specific.
You can get an array of all supported Locales with the static getAvailableLocales()

Internationalization | 325

method (which you might use to let your users choose). Or you can retrieve the default
Locale for the location where your code is running with the static Locale.getDe
fault() method and let the system decide for you.

Many classes throughout the Java API use a Locale to decide how to represent text. We
ran into one earlier when talking about sorting text with the Collator class. We’ll see
more later in this chapter used to format numbers and currency strings, and again in
the next chapter with the DateFormat class, which uses Locales to determine how to
format and parse dates and times. Without getting into the details yet, here is a quick
example:

 System.out.printf(Locale.ITALIAN, "%f\n", 3.14); // "3,14"

The preceding statement uses the Italian Locale to indicate that the decimal number
3.14 should be formatted as it would in Italian, using a comma instead of a decimal
point. We’ll talk more about formatting text later in this chapter.

Resource Bundles
Before we move on to the details of formatting messages and values, we might take a
step back and ask a bigger question: what about the messages themselves? How can we
write and manage applications that are truly multilingual in their user interfaces and in
all the messages they display to the user? We can discover our locale, but how do we
manage all of the application text in our code? The ResourceBundle class offers a clean,
flexible solution for factoring out the text and resources of your application into
language-specific classes or text files.

A ResourceBundle is a collection of objects that your application can access by name.
It acts much like the Hashtable or Map collections we’ll discuss in Chapter 11, looking
up objects based on Strings that serve as keys. A ResourceBundle of a given name may
be defined for many different Locales. To get a particular ResourceBundle, call the
factory method ResourceBundle.getBundle(), which accepts the name of the Resour
ceBundle and a Locale. The following example gets the ResourceBundle named “Mes‐
sage” for two Locales; from each bundle, it retrieves the message whose key is “Hello‐
Message” and prints the message:

 import java.util.*;

 public class Hello {
 public static void main(String[] args) {
 ResourceBundle bun;
 bun = ResourceBundle.getBundle("Message", Locale.ITALY);
 System.out.println(bun.getString("HelloMessage"));
 bun = ResourceBundle.getBundle("Message", Locale.US);
 System.out.println(bun.getString("HelloMessage"));
 }
 }

326 | Chapter 10: Working with Text

The getBundle() method throws the runtime exception MissingResourceException
if an appropriate ResourceBundle cannot be located.

You can provide ResourceBundles in two ways: either as compiled Java classes (hard-
coded Java) or as simple property files. Resource bundles implemented as classes are
either subclasses of ListResourceBundle or direct implementations of ResourceBun
dle. Resource bundles backed by a property file are represented at runtime by a Prop
ertyResourceBundle object. ResourceBundle.getBundle() returns either a matching
class or an instance of PropertyResourceBundle corresponding to a matching property
file. The algorithm used by getBundle() is based on appending the country and lan‐
guage codes of the requested Locale to the name of the resource. Specifically, it searches
for resources in this order:

 name_language_country_variant
 name_language_country
 name_language
 name
 name_default-language_default-country_default-variant
 name_default-language_default-country
 name_default-language

In this example, when we try to get the ResourceBundle named Message, specific to
Locale.ITALY, it searches for the following names (no variant codes are in the Locales
we are using):

 Message_it_IT
 Message_it
 Message
 Message_en_US
 Message_en

Let’s define the Message_it_IT ResourceBundle as a hardcoded class, a subclass of
ListResourceBundle:

 import java.util.*;

 public class Message_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }

 static final Object[][] contents = {
 {"HelloMessage", "Buon giorno, world!"},
 {"OtherMessage", "Ciao."},
 };
 }

ListResourceBundle makes it easy to define a ResourceBundle class; all we have to do
is override the getContents() method. This method simply returns a two-dimensional
array containing the names and values of its resources. In this example, contents[1]

Internationalization | 327

[0] is the second key (OtherMessage), and contents [1][1] is the corresponding
message (Ciao.).

Let’s define a ResourceBundle for Locale.US. This time, we’ll take the easy way and
make a property file. Save the following data in a file called Message_en_US.properties:

 HelloMessage=Hello, world!
 OtherMessage=Bye.

So what happens if somebody runs your program in Locale.FRANCE and no Resource
Bundle is defined for that Locale? To avoid a runtime MissingResourceException, it’s
a good idea to define a default ResourceBundle. In our example, you can change the
name of the property file to Message.properties. That way, if a language- or country-
specific ResourceBundle cannot be found, your application can still run (by falling back
to this English representation).

Parsing and Formatting Text
Parsing and formatting text is a large, open-ended topic. So far in this chapter, we’ve
looked at only primitive operations on strings—creation, basic editing, searching, and
turning simple values into strings. Now we’d like to move on to more structured forms
of text. Java has a rich set of APIs for parsing and printing formatted strings, including
numbers, dates, times, and currency values. We’ll cover most of these topics in this
chapter, but we’ll wait to discuss date and time formatting until Chapter 11.

We’ll start with parsing—reading primitive numbers and values as strings and chopping
long strings into tokens. Then we’ll go the other way and look at formatting strings and
the java.text package. We’ll revisit the topic of internationalization to see how Java
can localize parsing and formatting of text, numbers, and dates for particular locales.
Finally, we’ll take a detailed look at regular expressions, the most powerful text-parsing
tool Java offers. Regular expressions let you define your own patterns of arbitrary com‐
plexity, search for them, and parse them from text.

We should mention that you’re going to see a great deal of overlap between the new
formatting and parsing APIs (printf and Scanner) introduced in Java 5.0 and the older
APIs of the java.text package. The new APIs effectively replace much of the old ones
and in some ways are easier to use. Nonetheless, it’s good to know about both because
so much existing code uses the older APIs.

Parsing Primitive Numbers
In Java, numbers and Booleans are primitive types—not objects. But for each primitive
type, Java also defines a primitive wrapper class. Specifically, the java.lang package
includes the following classes: Byte, Short, Integer, Long, Float, Double, and
Boolean. We talked about these in Chapter 1, but we bring them up now because these

328 | Chapter 10: Working with Text

classes hold static utility methods that know how to parse their respective types from
strings. Each of these primitive wrapper classes has a static “parse” method that reads a
String and returns the corresponding primitive type. For example:

 byte b = Byte.parseByte("16");
 int n = Integer.parseInt("42");
 long l = Long.parseLong("99999999999");
 float f = Float.parseFloat("4.2");
 double d = Double.parseDouble("99.99999999");
 boolean b = Boolean.parseBoolean("true");
 // Prior to Java 5.0 use:
 boolean b = new Boolean("true").booleanValue();

Alternately, the java.util.Scanner provides a single API for not only parsing indi‐
vidual primitive types from strings, but reading them from a stream of tokens. This
example shows how to use it in place of the preceding wrapper classes:

 byte b = new Scanner("16").nextByte();
 int n = new Scanner("42").nextInt();
 long l = new Scanner("99999999999").nextLong();
 float f = new Scanner("4.2").nextFloat();
 double d = new Scanner("99.99999999").nextDouble();
 boolean b = new Scanner("true").nextBoolean();

We’ll see Scanner used to parse multiple values from a String or stream when we discuss
tokenizing text later in this chapter.

Working with alternate bases

It’s easy to parse integer type numbers (byte, short, int, long) in alternate numeric
bases. You can use the parse methods of the primitive wrapper classes by simply spec‐
ifying the base as a second parameter:

 long l = Long.parseLong("CAFEBABE", 16); // l = 3405691582
 byte b = Byte.parseByte ("12", 8); // b = 10

All methods of the Java 5.0 Scanner class described earlier also accept a base as an
optional argument:

 long l = new Scanner("CAFEBABE").nextLong(16); // l = 3405691582
 byte b = new Scanner("12").nextByte(8); // b = 10

You can go the other way and convert a long or integer value to a string value in a
specified base using special static toString() methods of the Integer and Long classes:

 String s = Long.toString(3405691582L, 16); // s = "cafebabe"

For convenience, each class also has a static toHexString() method for working with
base 16:

 String s = Integer.toHexString(255).toUpperCase(); // s = "FF";

Parsing and Formatting Text | 329

Number formats

The preceding wrapper class parser methods handle the case of numbers formatted
using only the simplest English conventions with no frills. If these parse methods do
not understand the string, either because it’s simply not a valid number or because the
number is formatted in the convention of another language, they throw a NumberFor
matException:

 // Italian formatting
 double d = Double.parseDouble("1.234,56"); // NumberFormatException

The Scanner API is smarter and can use Locales to parse numbers in specific languages
with more elaborate conventions. For example, the Scanner can handle comma-
formatted numbers:

 int n = new Scanner("99,999,999").nextInt();

You can specify a Locale other than the default with the useLocale() method. Let’s
parse that value in Italian now:

 double d = new Scanner("1.234,56").useLocale(Locale.ITALIAN).nextDouble();

If the Scanner cannot parse a string, it throws a runtime InputMismatchException:
 double d = new Scanner("garbage").nextDouble(); // InputMismatchException

Prior to Java 5.0, this kind of parsing was accomplished using the java.text package
with the NumberFormat class. The classes of the java.text package also allow you to
parse additional types, such as dates, times, and localized currency values, that aren’t
handled by the Scanner. We’ll look at these later in this chapter.

Tokenizing Text
A common programming task involves parsing a string of text into words or “tokens”
that are separated by some set of delimiter characters, such as spaces or commas. The
first example contains words separated by single spaces. The second, more realistic
problem involves comma-delimited fields.

 Now is the time for all good men (and women)...

 Check Number, Description, Amount
 4231, Java Programming, 1000.00

Java has several (unfortunately overlapping) APIs for handling situations like this. The
most powerful and useful are the String split() and Scanner APIs. Both utilize reg‐
ular expressions to allow you to break the string on arbitrary patterns. We haven’t talked
about regular expressions yet, but in order to show you how this works we’ll just give
you the necessary magic and explain in detail later in this chapter. We’ll also mention a
legacy utility, java.util.StringTokenizer, which uses simple character sets to split a

330 | Chapter 10: Working with Text

string. StringTokenizer is not as powerful, but doesn’t require an understanding of
regular expressions.

The String split() method accepts a regular expression that describes a delimiter
and uses it to chop the string into an array of Strings:

 String text = "Now is the time for all good men";
 String [] words = text.split("\\s");
 // words = "Now", "is", "the", "time", ...

 String text = "4231, Java Programming, 1000.00";
 String [] fields = text.split("\\s*,\\s*");
 // fields = "4231", "Java Programming", "1000.00"

In the first example, we used the regular expression \\s, which matches a single white‐
space character (space, tab, or carriage return). The split() method returned an array
of eight strings. In the second example, we used a more complicated regular expression,
\\s*,\\s*, which matches a comma surrounded by any number of contiguous spaces
(possibly zero). This reduced our text to three nice, tidy fields.

With the new Scanner API, we could go a step further and parse the numbers of our
second example as we extract them:

 String text = "4231, Java Programming, 1000.00";
 Scanner scanner = new Scanner(text).useDelimiter("\\s*,\\s*");
 int checkNumber = scanner.nextInt(); // 4231
 String description = scanner.next(); // "Java Programming"
 float amount = scanner.nextFloat(); // 1000.00

Here, we’ve told the Scanner to use our regular expression as the delimiter and then
called it repeatedly to parse each field as its corresponding type. The Scanner is conve‐
nient because it can read not only from Strings but directly from stream sources, such
as InputStreams, Files, and Channels:

 Scanner fileScanner = new Scanner(new File("spreadsheet.csv"));
 fileScanner.useDelimiter("\\s*,\\s*);
 // ...

Another thing that you can do with the Scanner is to look ahead with the “hasNext”
methods to see if another item is coming:

 while(scanner.hasNextInt()) {
 int n = scanner.nextInt();
 ...
 }

StringTokenizer

Even though the StringTokenizer class that we mentioned is now a legacy item, it’s
good to know that it’s there because it’s been around since the beginning of Java and is
used in a lot of code. StringTokenizer allows you to specify a delimiter as a set of

Parsing and Formatting Text | 331

characters and matches any number or combination of those characters as a delimiter
between tokens. The following snippet reads the words of our first example:

 String text = "Now is the time for all good men (and women)...";
 StringTokenizer st = new StringTokenizer(text);

 while (st.hasMoreTokens()) {
 String word = st.nextToken();
 ...
 }

We invoke the hasMoreTokens() and nextToken() methods to loop over the words of
the text. By default, the StringTokenizer class uses standard whitespace characters—
carriage return, newline, and tab—as delimiters. You can also specify your own set of
delimiter characters in the StringTokenizer constructor. Any contiguous combination
of the specified characters that appears in the target string is skipped between tokens:

 String text = "4231, Java Programming, 1000.00";
 StringTokenizer st = new StringTokenizer(text, ",");

 while (st.hasMoreTokens()) {
 String word = st.nextToken();
 // word = "4231", " Java Programming", "1000.00"
 }

This isn’t as clean as our regular expression example. Here we used a comma as the
delimiter so we get extra leading whitespace in our description field. If we had added
space to our delimiter string, the StringTokenizer would have broken our description
into two words, “Java” and “Programming,” which is not what we wanted. A solution
here would be to use trim() to remove the leading and trailing space on each element.

Printf-Style Formatting
A standard feature that Java adopted from the C language is printf-style string for‐
matting. printf-style formatting utilizes special format strings embedded into text to
tell the formatting engine where to place arguments and give detailed specification about
conversions, layout, and alignment. The printf formatting methods also make use of
variable-length argument lists, which makes working with them much easier. Here is a
quick example of printf-formatted output:

 System.out.printf("My name is %s and I am %d years old\n", name, age);

The printf formatting draws its name from the C language printf() function, so if
you’ve done any C programming, this will look familiar. Java has extended the concept,
adding some additional type safety and convenience features. Although Java has had
some text formatting capabilities in the past (we’ll discuss the java.text package and
MessageFormat later), printf formatting was not really feasible until variable-length

332 | Chapter 10: Working with Text

argument lists and autoboxing of primitive types were added in Java 5.0. (We mention
this to explain why these similar APIs both exist in Java.)

Formatter
The primary new tool in our text formatting arsenal is the java.util.Formatter class
and its format() method. Several convenience methods can hide the Formatter object
from you and you may not need to create a Formatter directly. First, the static
String.format() method can be used to format a String with arguments (like the C
language sprintf() method):

 String message =
 String.format("My name is %s and I am %d years old.", name, age);

Next, the java.io.PrintStream and java.io.PrintWriter classes, which are used for
writing text to streams, have their own format() method. We discuss streams in Chap‐
ter 12, but this simply means that you can use this same printf-style formatting for
writing strings to any kind of stream, whether it be to System.out standard console
output, to a file, or to a network connection.

In addition to the format() method, PrintStream and PrintWriter also have a version
of the format method that is actually called printf(). The printf() method is identical
to and, in fact, simply delegates to the format() method. It’s there solely as a shout-out
to the C programmers and ex-C programmers in the audience.

The Format String
The syntax of the format string is compact and a bit cryptic at first, but not bad once
you get used to it. The simplest format string is just a percent sign (%) followed by a
conversion character. For example, the following text has two embedded format strings:

 "My name is %s and I am %d years old."

The first conversion character is s, the most general format, which represents a string
value; and the second is d, which represents an integer value. There are about a dozen
basic conversion characters corresponding to different types and primitives and there
are a couple of dozen more that are specifically used for formatting dates and times. We
cover the basics here and return to date and time formatting in Chapter 11.

At first glance, some of the conversion characters may not seem to do much. For ex‐
ample, the %s general string conversion in our previous example would actually have
handled the job of displaying the numeric age argument just as well as %d. However,
these specialized conversion characters accomplish three things. First, they add a level
of type safety. By specifying %d, we ensure that only an integer type is formatted at that
location. If we make a mistake in the arguments, we get a runtime IllegalFormatCon
versionException instead of garbage in our string (and your IDE may flag it as well).
Second, the format method is Locale-sensitive and capable of displaying numbers,

Printf-Style Formatting | 333

percentages, dates, and times in many different languages just by specifying a Locale
as an argument. By telling the Formatter the type of argument with type-specific con‐
version characters, printf can take into account language-specific localizations. Third,
additional flags and fields can be used to govern layout with different meanings for
different types of arguments. For example, with floating-point numbers, you can specify
a precision in the format string.

The general layout of the embedded format string is as follows:
 %[argument_index$][flags][width][.precision]conversion_type

Following the literal % are a number of optional items before the conversion type char‐
acter. We’ll discuss these as they come up, but here’s the rundown. The argument in
dex can be used to reorder or reuse individual arguments in the variable-length argu‐
ment list by referring to them by number. The flags field holds one or more special
flag characters governing the format. The width and precision fields control the size
of the output for text and the number of digits displayed for floating-point numbers.

String Conversions
The conversion characters s represents the general string conversion type. Ultimately,
all of the conversion types produce a String. What we mean is that the general string
conversion takes the easy route to turning its argument into a string. Normally, this
simply means calling toString() on the object. Since all of the arguments in the variable
argument list are autoboxed, they are all Objects. Any primitives are represented by the
results of calling toString() on their wrapper classes, which generally return the value
as you’d expect. If the argument is null, the result is the String “null.”

More interesting are objects that implement the java.util.Formattable interface. For
these, the argument’s formatTo() method is invoked, passing it the flags, width, and
precision information and allowing it to return the string to be used. In this way, objects
can control their own printf string representation, just as an object can do so using
toString().

Width, precision, and justification

For simple text arguments, you can think of the width and precision as a minimum and
maximum number of characters to be output. As we’ll see later, for floating-point nu‐
meric types, the precision changes meaning slightly and controls the number of digits
displayed after the decimal point. We can see the effect on a simple string here:

 System.out.printf("String is '%5s'\n", "A");
 // String is ' A'
 System.out.printf("String is '%.5s'\n", "Happy Birthday!");
 // String is 'Happy'

334 | Chapter 10: Working with Text

In the first case, we specified a width of five characters, resulting in spaces being added
to pad our argument. In the second example, we used the literal . followed by the
precision value of 5 characters to limit the length of the string displayed, so our “Happy
Birthday” string is truncated after the first five characters.

When our string was padded, it was right-justified (leading spaces added). You can
control this with the flag character literal minus (-). Reversing our example:

 System.out.printf("String is '%-5s'\n", "A");
 // String is 'A '

And, of course, we can combine all three, specifying a justification flag and a minimum
and maximum width. Here is an example that prints words of varying lengths in two
columns:

 String [] words =
 new String [] { "abalone", "ape", "antidisestablishmentarianism" };
 System.out.printf("%-10s %s\n", "Word", "Length");
 for (String word : words)
 System.out.printf("%-10.10s %s\n", word, word.length());

 // output
 Word Length
 abalone 7
 ape 3
 antidisest 28

Uppercase

The s conversion’s big brother S indicates that the output of the conversion should be
forced to uppercase. Several other primitive and numeric conversion characters follow
this pattern, as we’ll see later. For example:

 String word = "abalone";
 System.out.println(" The lucky word is: %S\n", word);
 // The lucky word is: ABALONE

Numbered arguments

You can refer to an arbitrary argument by number from a format string using the %n$
notation. For example, the following code snippet uses the single argument three times:

 System.out.println("A %1$s is a %1$s is a %1$S...", "rose");
 // A rose is a rose is a ROSE...

Numbered arguments are useful for two reasons. The first, shown here, is simply for
reusing the same argument in different places and with different conversions. The use‐
fulness of this becomes more apparent when we look at Date and Time formatting in
Chapter 11, where we may refer to the same item half a dozen times to get individual
fields. The second advantage is that numbered arguments give the message the flexibility
to reorder the arguments. This is important when you’re using formatting strings to lay

Printf-Style Formatting | 335

out a message for internationalization or customization purposes where convention
may dictate a different ordering.

 log.format("Error %d : %s\n", errNo, errMsg);
 // Error 42 : Low Power
 log.format("%2$s (Error %1$d)\n", errNo, errMsg);
 // Low Power (Error 42)

Primitive and Numeric Conversions
Table 10-3 shows character and Boolean conversion characters.

Table 10-3. Character and Boolean conversion characters
Conversion Type Description Example output

c Character Formats the result as a Unicode character a

b, B Boolean Formats result as Boolean true, FALSE

The c conversion character produces a Unicode character:
 System.out.printf("The first letter is: %c\n", 'a');

The b and B conversion characters output the Boolean value of their arguments. If the
argument is null, the output is false. Strangely, if the argument is of a type other than
Boolean, the output is true. B is identical to b except that it forces the output to
uppercase.

 System.out.printf("The door is open: %b\n", (door.status() == OPEN));

As for String types, a width value can be specified on c and b conversions to pad the
result to a minimum length. Table 10-4 summarizes integer type conversion characters.

Table 10-4. Integer type conversion characters
Conversion Type Description Example output

d Integer Formats the result as an integer. 999

x, X Integer Formats result as hexadecimal. FF, 0xCAFE

o Integer Formats result as octal integer. 10, 010

h, H Integer or object Formats object as hexadecimal number. If object is not an integer, format
its hashCode() value or “null” for null value.

7a71e498

The d, x, and o conversion characters handle the integer type values byte, short, int,
and long. (The d apparently stands for decimal, which makes little sense in this context.)
The h conversion is an oddity probably intended for debugging. Several important flags
give additional control over the formatting of these numeric types. See the section
“Flags” on page 337 for details.

336 | Chapter 10: Working with Text

A width value can be specified on these conversions to pad the result. Precision values
are not allowed on integer conversions.

Table 10-5 lists floating-point type conversion characters.

Table 10-5. Floating-point type conversion characters
Conversion Type Description Example output

f Floating point Formats result as decimal number. 3.14

e, E Floating point Formats result in scientific notation. 3.000000e+08

g, G Floating point Formats result in either decimal or scientific notation depending on value
and precision.

3.14, 10.0e-15

a, A Floating point Formats result as hexadecimal floating-point number with significand and
exponent.

0x1.fep7

The f conversion character is the primary floating-point conversion character. e and g
conversions allow for values to be formatted in scientific notation. a complements the
ability in Java to assign floating-point values using hexadecimal significand and expo‐
nent notation, allowing bit-for-bit floating-point values to be displayed without
ambiguity.

As always, a width value may be used to pad results to a minimum length. The precision
value of the conversion, as its name suggests, controls the number of digits displayed
after the decimal point for floating-point values. The value is rounded as necessary. If
no precision value is specified, it defaults to six digits:

 printf("float is %f\n", 1.23456789); // float is 1.234568
 printf("float is %.3f\n", 1.23456789); // float is 1.235
 printf("float is %.1f\n", 1.23456789); // float is 1.2
 printf("float is %.0f\n", 1.23456789); // float is 1

The g conversion character determines whether to use decimal or scientific notation.
First, the value is rounded to the specified precision. If the result is less than 10−4 (less
than .0001) or if the result is greater than 10precision (10 to the power of the precision
value), it is displayed in scientific notation. Otherwise, decimal notation is displayed.

Flags
Table 10-6 summarizes supported flags to use in format strings.

Table 10-6. Flags for format strings
Flag Arg types Description Example output

- Any Left-justifies result (pad space on the right) 'foo '

+ Numeric Prefixes a + sign on positive results +1

' ' Numeric Prefixes a space on positive results (aligning them with negative values) ' 1'

0 Numeric Pads number with leading zeros to accommodate width requirement 000001

Printf-Style Formatting | 337

Flag Arg types Description Example output

, Numeric Formats numbers with commas or other Locale-specific grouping characters 1,234,567

(Numeric Encloses negative numbers in parentheses (a convention used to show credits) (42.50)

x,X,o Uses an alternate form for octal and hexadecimal output 0xCAFE, 010

As mentioned earlier, the - flag can be used to left-justify formatted output. The re‐
maining flags affect the display of numeric types as described.

The # alternate form flag can be used to print octal and hexadecimal values with their
standard prefixes—0x for hexadecimal or 0 for octal:

 System.out.printf("%1$X, %1$#X", 0xCAFE, 0xCAFE); // CAFE, 0xCAFE
 System.out.printf("%1$o, %1$#o", 8, 8); // 10, 010

Miscellaneous
Table 10-7 lists the remaining formatting items.

Table 10-7. Miscellaneous formatting items
Conversion Description

% Produces a literal % character (Unicode \u0025)

n Produces the platform-specific line separator (e.g., newline or carriage-return, newline)

Formatting with the java.text Package
The java.text package includes, among other things, a set of classes designed for gen‐
erating and parsing string representations of objects. In this section, we’ll talk about
three classes: NumberFormat, ChoiceFormat, and MessageFormat. Chapter 11 describes
the DateFormat class. As we said earlier, the classes of the java.text package overlap
to a large degree with the capabilities of the Scanner and printf-style Formatter. De‐
spite these new features, a number of areas in the parsing of currencies, dates, and times
can only be handled with the java.text package.

The NumberFormat class can be used to format and parse currency, percentages, or plain
old numbers. NumberFormat is an abstract class, but it has several useful factory methods
that produce formatters for different types of numbers. For example, to format or parse
currency strings, use getCurrencyInstance() :

 double salary = 1234.56;
 String here = // $1,234.56
 NumberFormat.getCurrencyInstance().format(salary);
 String italy = // L 1.234,56
 NumberFormat.getCurrencyInstance(Locale.ITALY).format(salary);

The first statement generates an American salary, with a dollar sign, a comma to separate
thousands, and a period as a decimal point. The second statement presents the same

338 | Chapter 10: Working with Text

string in Italian, with a lire sign, a period to separate thousands, and a comma as a
decimal point. Remember that NumberFormat worries about format only; it doesn’t at‐
tempt to do currency conversion. We can go the other way and parse a formatted value
using the parse() method, as we’ll see in the next example.

Likewise, getPercentInstance() returns a formatter you can use for generating and
parsing percentages. If you do not specify a Locale when calling a getInstance()
method, the default Locale is used:

 double progress = 0.44;
 NumberFormat pf = NumberFormat.getPercentInstance();
 System.out.println(pf.format(progress)); // "44%"
 try {
 System.out.println(pf.parse("77.2%")); // "0.772"
 }
 catch (ParseException e) {}

And if you just want to generate and parse plain old numbers, use a NumberFormat
returned by getInstance() or its equivalent, getNumberInstance() :

 NumberFormat guiseppe = NumberFormat.getInstance(Locale.ITALY);

 // defaults to Locale.US
 NumberFormat joe = NumberFormat.getInstance();

 try {
 double theValue = guiseppe.parse("34.663,252").doubleValue();
 System.out.println(joe.format(theValue)); // "34,663.252"
 }
 catch (ParseException e) {}

We use guiseppe to parse a number in Italian format (periods separate thousands,
comma is the decimal point). The return type of parse() is Number, so we use the
doubleValue() method to retrieve the value of the Number as a double. Then we use
joe to format the number correctly for the default (U.S.) locale.

Here’s a list of the factory methods for text formatters in the java.text package. Again,
we’ll look at the DateFormat methods in the next chapter.

 NumberFormat.getCurrencyInstance()
 NumberFormat.getCurrencyInstance(Locale inLocale)
 NumberFormat.getInstance()
 NumberFormat.getInstance(Locale inLocale)
 NumberFormat.getNumberInstance()
 NumberFormat.getNumberInstance(Locale inLocale)
 NumberFormat.getPercentInstance()
 NumberFormat.getPercentInstance(Locale inLocale)

 DateFormat.getDateInstance()
 DateFormat.getDateInstance(int style)
 DateFormat.getDateInstance(int style, Locale aLocale)
 DateFormat.getDateTimeInstance()

Formatting with the java.text Package | 339

 DateFormat.getDateTimeInstance(int dateStyle, int timeStyle)
 DateFormat.getDateTimeInstance(int dateStyle, int timeStyle, Locale aLocale)
 DateFormat.getInstance()
 DateFormat.getTimeInstance()
 DateFormat.getTimeInstance(int style)
 DateFormat.getTimeInstance(int style, Locale aLocale)

Thus far, we’ve seen how to format numbers as text. Now, we’ll take a look at a class,
ChoiceFormat, that maps numerical ranges to text. ChoiceFormat is constructed by
specifying the numerical ranges and the strings that correspond to them. One con‐
structor accepts an array of doubles and an array of Strings, where each string corre‐
sponds to the range running from the matching number up to (but not including) the
next number in the array:

 double[] limits = new double [] {0, 20, 40};
 String[] labels = new String [] {"young", "less young", "old"};
 ChoiceFormat cf = new ChoiceFormat(limits, labels);
 System.out.println(cf.format(12)); //"young"
 System.out.println(cf.format(26)); // "less young"

You can specify both the limits and the labels using a special string in an alternative
ChoiceFormat constructor:

 ChoiceFormat cf = new ChoiceFormat("0#young|20#less young|40#old");
 System.out.println(cf.format(40)); // old
 System.out.println(cf.format(50)); // old

The limit and value pairs are separated by vertical bars (|); the number sign (#) separates
each limit from its corresponding value.

ChoiceFormat is most useful for handling pluralization in messages, enabling you to
avoid hideous constructions such as, “you have one file(s) open.” You can create readable
error messages by using ChoiceFormat along with the MessageFormat class.

MessageFormat
MessageFormat is a string formatter that uses a pattern string in the same way that
printf() formatting does. MessageFormat has largely been replaced by printf(),
which has more options and is more widely used outside of Java. Nonetheless, some
may still prefer MessageFormat’s style, which is a bit less cryptic than that of printf().
MessageFormat has a static formatting method, MessageFormat.format(), paralleling
the print-style formatting of String.format().

Arguments in a MessageFormat format string are delineated by curly brackets and may
include information about how they should be formatted. Each argument consists of a
number, an optional type, and an optional style, as summarized in Table 10-8.

340 | Chapter 10: Working with Text

Table 10-8. MessageFormat arguments
Type Styles

Choice pattern

Date short, medium, long, full, pattern

Number integer, percent, currency, pattern

Time short, medium, long, full, pattern

Let’s use an example to clarify this:
 //Equivalent to String.format("You have %s messages.", "no");
 MessageFormat.format("You have {0} messages.", "no");

The special incantation {0} means “use element zero of the arguments supplied to the
format() method.” When we generate a message by calling format(), we pass in values
to replace the placeholders ({0}, {1}, ...) in the template. In this case, we pass the string
“no” as arguments[0], yielding the result, You have no messages.

Let’s try this example again, but this time, we’ll format a number and a date instead of
a string argument:

 MessageFormat mf = new MessageFormat(
 "You have {0, number, integer} messages on {1, date, long}.");
 // "You have 93 messages on April 10, 2002."

 System.out.println(mf.format(93, new Date()));

In this example, we need to fill in two spaces in the template, so we need two arguments.
The first must be a number and is formatted as an integer. The second must be a Date
and is printed in the long format.

This is still sloppy. What if there is only one message? To make this grammatically
correct, we can embed a ChoiceFormat-style pattern string in our MessageFormat pat‐
tern string:

 MessageFormat mf = new MessageFormat(
 "You have {0, number, integer} message{0, choice, 0#s|1#|2#s}.");
 // "You have 1 message."
 System.out.println(mf.format(1));

In this case, we use the first argument twice: once to supply the number of messages
and once to provide input to the ChoiceFormat pattern. The pattern says to add an s if
the argument has the value 0 or is 2 or more.

When writing internationalized programs, you can use resource bundles to supply not
only the text of messages, but also the format strings for your MessageFormat objects.
In this way, you can automatically format messages that are in the appropriate language
with dates and other language-dependent fields handled appropriately and in the ap‐
propriate order. Because arguments in the format string are numbered, you can refer

Formatting with the java.text Package | 341

to them in any location. For example, in English, you might say, “Disk C has 123 files”;
in some other language, you might say, “123 files are on Disk C.” You could implement
both messages with the same set of arguments:

 MessageFormat m1 = new MessageFormat(
 "Disk {0} has {1, number, integer} files.");
 MessageFormat m2 = new MessageFormat(
 "{1, number, integer} files are on disk {0}.");

In real life, the code could be more compact; you’d use only a single MessageFormat
object, initialized with a string taken from a resource bundle. Or you’d likely want to
use the static format method or switch to printf() entirely.

Regular Expressions
Now it’s time to take a brief detour on our trip through Java and enter the land of regular
expressions. A regular expression, or regex for short, describes a text pattern. Regular
expressions are used with many tools—including the java.util.regex package, text
editors, and many scripting languages—to provide sophisticated text-searching and
powerful string-manipulation capabilities.

If you are already familiar with the concept of regular expressions and how they are
used with other languages, you may wish to skim through this section. At the very least,
you’ll need to look at the “The java.util.regex API” section later in this chapter, which
covers the Java classes necessary to use them. On the other hand, if you’ve come to this
point on your Java journey with a clean slate on this topic and you’re wondering exactly
what regular expressions are, then pop open your favorite beverage and get ready. You
are about to learn about the most powerful tool in the arsenal of text manipulation and
what is, in fact, a tiny language within a language, all in the span of a few pages.

Regex Notation
A regular expression describes a pattern in text. By pattern, we mean just about any
feature you can imagine identifying in text from the literal characters alone, without
actually understanding their meaning. This includes features, such as words, word
groupings, lines and paragraphs, punctuation, case, and more generally, strings and
numbers with a specific structure to them, such as phone numbers, email addresses,
and quoted phrases. With regular expressions, you can search the dictionary for all the
words that have the letter “q” without its pal “u” next to it, or words that start and end
with the same letter. Once you have constructed a pattern, you can use simple tools to
hunt for it in text or to determine if a given string matches it. A regex can also be arranged
to help you dismember specific parts of the text it matched, which you could then use
as elements of replacement text if you wish.

342 | Chapter 10: Working with Text

Write once, run away

Before moving on, we should say a few words about regular expression syntax in general.
At the beginning of this section, we casually mentioned that we would be discussing a
new language. Regular expressions do, in fact, constitute a simple form of programming
language. If you think for a moment about the examples we cited earlier, you can see
that something like a language is going to be needed to describe even simple patterns
—such as email addresses—that have some variation in form.

A computer science textbook would classify regular expressions at the bottom of the
hierarchy of computer languages, in terms of both what they can describe and what you
can do with them. They are still capable of being quite sophisticated, however. As with
most programming languages, the elements of regular expressions are simple, but they
can be built up in combination to arbitrary complexity. And that is where things start
to get sticky.

Since regexes work on strings, it is convenient to have a very compact notation that can
be easily wedged between characters. But compact notation can be very cryptic, and
experience shows that it is much easier to write a complex statement than to read it
again later. Such is the curse of the regular expression. You may find that in a moment
of late-night, caffeine-fueled inspiration, you can write a single glorious pattern to sim‐
plify the rest of your program down to one line. When you return to read that line the
next day, however, it may look like Egyptian hieroglyphics to you. Simpler is generally
better. If you can break your problem down and do it more clearly in several steps,
maybe you should.

Escaped characters

Now that you’re properly warned, we have to throw one more thing at you before we
build you back up. Not only can the regex notation get a little hairy, but it is also some‐
what ambiguous with ordinary Java strings. An important part of the notation is the
escaped character, a character with a backslash in front of it. For example, the escaped
d character, \d, (backslash ‘d’) is shorthand that matches any single digit character (0-9).
However, you cannot simply write \d as part of a Java string, because Java uses the
backslash for its own special characters and to specify Unicode character sequences
(\uxxxx). Fortunately, Java gives us a replacement: an escaped backslash, which is two
backslashes (\\), means a literal backslash. The rule is, when you want a backslash to
appear in your regex, you must escape it with an extra one:

 "\\d" // Java string that yields backslash "d"

And just to make things crazier, because regex notation itself uses backslash to denote
special characters, it must provide the same “escape hatch” as well—allowing you to
double up backslashes if you want a literal backslash. So if you want to specify a regular
expression that includes a single literal backslash, it looks like this:

 "\\\\" // Java string yields two backslashes; regex yields one

Regular Expressions | 343

Most of the “magic” operator characters you read about in this section operate on the
character that precedes them, so these also must be escaped if you want their literal
meaning. This includes such characters as ., *, +, braces {}, and parentheses ().

If you need to create part of an expression that has lots of literal characters in it, you
can use the special delimiters \Q and \E to help you. Any text appearing between \Q and
\E is automatically escaped. (You still need the Java String escapes—double backslashes
for backslash, but not quadruple.) There is also a static method Pattern.quote(), which
does the same thing, returning a properly escaped version of whatever string you
give it.

Beyond that, my only suggestion to help maintain your sanity when working with these
examples is to keep two copies—a comment line showing the naked regular expression
and the real Java string, where you must double up all backslashes.

Characters and character classes

Now, let’s dive into the actual regex syntax. The simplest form of a regular expression
is plain, literal text, which has no special meaning and is matched directly (character
for character) in the input. This can be a single character or more. For example, in the
following string, the pattern “s” can match the character s in the words rose and is:

 "A rose is $1.99."

The pattern “rose” can match only the literal word rose. But this isn’t very interesting.
Let’s crank things up a notch by introducing some special characters and the notion of
character “classes.”
Any character: dot (.)

The special character dot (.) matches any single character. The pattern “.ose”
matches rose, nose, _ose (space followed by ose) or any other character followed
by the sequence ose. Two dots match any two characters, and so on. The dot operator
is not discriminating; it normally stops only for an end-of-line character (and, op‐
tionally, you can tell it not to; we discuss that later).

We can consider “.” to represent the group or class of all characters. And regexes
define more interesting character classes as well.

Whitespace or nonwhitespace character: \s, \S
The special character \s matches a literal-space character or one of the following
characters: \t (tab), \r (carriage return), \n (newline), \f (formfeed), and back‐
space. The corresponding special character \S does the inverse, matching any char‐
acter except whitespace.

Digit or nondigit character: \d, \D
\d matches any of the digits 0-9. \D does the inverse, matching all characters except
digits.

344 | Chapter 10: Working with Text

Word or nonword character: \w, \W
\w matches a “word” character, including upper- and lowercase letters A-Z, a-z, the
digits 0-9, and the underscore character (_). \W matches everything except those
characters.

Custom character classes

You can define your own character classes using the notation [...]. For example, the
following class matches any of the characters a, b, c, x, y, or z:

 [abcxyz]

The special x-y range notation can be used as shorthand for the alphabetic characters.
The following example defines a character class containing all upper- and lowercase
letters:

 [A-Za-z]

Placing a caret (^) as the first character inside the brackets inverts the character class.
This example matches any character except uppercase A-F:

 [^A-F] // G, H, I, ..., a, b, c, ... etc.

Nesting character classes simply adds them:
 [A-F[G-Z]] // A-Z

The && logical AND notation can be used to take the intersection (characters
in common):

 [a-p&&[l-z]] // l, m, n, o, p
 [A-Z&&[^P]] // A through Z except P

Position markers

The pattern “[Aa] rose” (including an upper- or lowercase A) matches three times in
the following phrase:

 "A rose is a rose is a rose"

Position characters allow you to designate the relative location of a match. The most
important are ^ and $, which match the beginning and end of a line, respectively:

 ^[Aa] rose // matches "A rose" at the beginning of line
 [Aa] rose$ // matches "a rose" at end of line

By default, ^ and $ match the beginning and end of “input,” which is often a line. If you
are working with multiple lines of text and wish to match the beginnings and endings
of lines within a single large string, you can turn on “multiline” mode as described later
in this chapter.

Regular Expressions | 345

The position markers \b and \B match a word boundary or nonword boundary, re‐
spectively. For example, the following pattern matches rose and rosemary, but not
primrose:

 \brose

Iteration (multiplicity)

Simply matching fixed character patterns would not get us very far. Next, we look at
operators that count the number of occurrences of a character (or more generally, of a
pattern, as we’ll see in “Capture groups” on page 347):
Any (zero or more iterations): asterisk (*)

Placing an asterisk (*) after a character or character class means “allow any number
of that type of character”—in other words, zero or more. For example, the following
pattern matches a digit with any number of leading zeros (possibly none):

 0*\d // match a digit with any number of leading zeros

Some (one or more iterations): plus sign (+)
The plus sign (+) means “one or more” iterations and is equivalent to XX* (pattern
followed by pattern asterisk). For example, the following pattern matches a number
with one or more digits, plus optional leading zeros:

 0*\d+ // match a number (one or more digits) with optional leading
 // zeros

It may seem redundant to match the zeros at the beginning of an expression because
zero is a digit and is thus matched by the \d+ portion of the expression anyway.
However, we’ll show later how you can pick apart the string using a regex and get
at just the pieces you want. In this case, you might want to strip off the leading zeros
and keep only the digits.

Optional (zero or one iteration): question mark (?)
The question mark operator (?) allows exactly zero or one iteration. For example,
the following pattern matches a credit-card expiration date, which may or may not
have a slash in the middle:

 \d\d/?\d\d // match four digits with an optional slash in the middle

Range (between x and y iterations, inclusive): {x,y}
The {x,y} curly-brace range operator is the most general iteration operator. It
specifies a precise range to match. A range takes two arguments: a lower bound and
an upper bound, separated by a comma. This regex matches any word with five to
seven characters, inclusive:

 \b\w{5,7}\b // match words with at least 5 and at most 7 characters

346 | Chapter 10: Working with Text

At least x or more iterations (y is infinite): {x,}
If you omit the upper bound, simply leaving a dangling comma in the range, the
upper bound becomes infinite. This is a way to specify a minimum of occurrences
with no maximum.

Grouping

Just as in logical or mathematical operations, parentheses can be used in regular ex‐
pressions to make subexpressions or to put boundaries on parts of expressions. This
power lets us extend the operators we’ve talked about to work not only on characters,
but also on words or other regular expressions. For example:

 (yada)+

Here we are applying the + (one or more) operator to the whole pattern yada, not just
one character. It matches yada, yadayada, yadayadayada, and so on.

Using grouping, we can start building more complex expressions. For example, while
many email addresses have a three-part structure (e.g., foo@bar.com), the domain name
portion can, in actuality, contain an arbitrary number of dot-separated components. To
handle this properly, we can use an expression like this one:

 \w+@\w+(\.\w)+ // Match an email address

This expression matches a word, followed by an @ symbol, followed by another word
and then one or more literal dot-separated words—e.g., pat@pat.net,
friend@foo.bar.com, or mate@foo.bar.co.uk.

Capture groups

In addition to basic grouping of operations, parentheses have an important, additional
role: the text matched by each parenthesized subexpression can be separately retrieved.
That is, you can isolate the text that matched each subexpression. There is then a special
syntax for referring to each capture group within the regular expression by number.
This important feature has two uses.

First, you can construct a regular expression that refers to the text it has already matched
and uses this text as a parameter for further matching. This allows you to express some
very powerful things. For example, we can show the dictionary example we mentioned
in the introduction. Let’s find all the words that start and end with the same letter:

 \b(\w)\w*\1\b // match words beginning and ending with the same letter

See the 1 in this expression? It’s a reference to the first capture group in the expression,
(\w). References to capture groups take the form \n where n is the number of the capture
group, counting from left to right. In this example, the first capture group matches a
word character on a word boundary. Then we allow any number of word characters up
to the special reference \1 (also followed by a word boundary). The \1 means “the value

Regular Expressions | 347

matched in capture group one.” Because these characters must be the same, this regex
matches words that start and end with the same character.

The second use of capture groups is in referring to the matched portions of text while
constructing replacement text. We’ll show you how to do that a bit later when we talk
about the Regular Expression API.

Capture groups can contain more than one character, of course, and you can have any
number of groups. You can even nest capture groups. Next, we discuss exactly how they
are numbered.

Numbering

Capture groups are numbered, starting at 1, and moving from left to right, by counting
the number of open parentheses it takes to reach them. The special group number 0
always refers to the entire expression match. For example, consider the following string:

 one ((two) (three (four)))

This string creates the following matches:
 Group 0: one two three four
 Group 1: two three four
 Group 2: two
 Group 3: three four
 Group 4: four

Before going on, we should note one more thing. So far in this section we’ve glossed
over the fact that parentheses are doing double duty: creating logical groupings for
operations and defining capture groups. What if the two roles conflict? Suppose we have
a complex regex that uses parentheses to group subexpressions and to create capture
groups? In that case, you can use a special noncapturing group operator (?:) to do
logical grouping instead of using parentheses. You probably won’t need to do this often,
but it’s good to know.

Alternation

The vertical bar (|) operator denotes the logical OR operation, also called alternation or
choice. The | operator does not operate on individual characters but instead applies to
everything on either side of it. It splits the expression in two unless constrained by
parentheses grouping. For example, a slightly naive approach to parsing dates might be
the following:

 \w+, \w+ \d+ \d+|\d\d/\d\d/\d\d // pattern 1 or pattern 2

In this expression, the left matches patterns such as Fri, Oct 12, 2001, and the right
matches 10/12/2001.

The following regex might be used to match email addresses with one of three domains
(net, edu, and gov):

348 | Chapter 10: Working with Text

 \w+@[\w\.]*\.(net|edu|gov) // email address ending in .net, .edu, or .gov

Special options

There are several special options that affect the way the regex engine performs its
matching. These options can be applied in two ways:

• You can pass in one or more flags during the Pattern.compile() step (discussed
later in this chapter).

• You can include a special block of code in your regex.

We’ll show the latter approach here. To do this, include one or more flags in a special
block (?x), where x is the flag for the option we want to turn on. Generally, you do this
at the beginning of the regex. You can also turn off flags by adding a minus sign (?-x),
which allows you to apply flags to select parts of your pattern.

The following flags are available:
Case-insensitive: (?i)

The (?i) flag tells the regex engine to ignore case while matching, for example:
 (?i)yahoo // match Yahoo, yahoo, yahOO, etc.

Dot all: (?s)
The (?s) flag turns on “dot all” mode, allowing the dot character to match anything,
including end-of-line characters. It is useful if you are matching patterns that span
multiple lines. The s stands for “single-line mode,” a somewhat confusing name
derived from Perl.

Multiline: (?m)
By default, ^ and $ don’t really match the beginning and end of lines (as defined by
carriage return or newline combinations); they instead match the beginning or end
of the entire input text. Turning on multiline mode with (?m) causes them to match
the beginning and end of every line as well as the beginning and end of input.
Specifically, this means the spot before the first character, the spot after the last
character, and the spots just after and before line terminators inside the string.

Unix lines: (?d)
The (?d) flag limits the definition of the line terminator for the ^, $, and . special
characters to Unix-style newline only (\n). By default, carriage return newline (\r
\n) is also allowed.

Greediness

We’ve seen hints that regular expressions are capable of sorting some complex patterns.
But there are cases where what should be matched is ambiguous (at least to us, though
not to the regex engine). Probably the most important example has to do with the

Regular Expressions | 349

number of characters the iterator operators consume before stopping. The .* operation
best illustrates this. Consider the following string:

 "Now is the time for <bold>action</bold>, not words."

Suppose we want to search for all the HTML-style tags (the parts between the < and >
characters), perhaps because we want to remove them.

We might naively start with this regex:
 </?.*> // match <, optional /, and then anything up to >

We then get the following match, which is much too long:
 <bold>action</bold>

The problem is that the .* operation, like all the iteration operators, is by default
“greedy,” meaning that it consumes absolutely everything it can, up until the last match
for the terminating character (in this case, >) in the file or line.

There are solutions for this problem. The first is to “say what it is”—that is, to be specific
about what is allowed between the braces. The content of an HTML tag cannot actually
include anything; for example, it cannot include a closing bracket (>). So we could
rewrite our expression as:

 </?\w*> // match <, optional /, any number of word characters, then >

But suppose the content is not so easy to describe. For example, we might be looking
for quoted strings in text, which could include just about any text. In that case, we can
use a second approach and “say what it is not.” We can invert our logic from the previous
example and specify that anything except a closing bracket is allowed inside the brackets:

 </?[^>]*>

This is probably the most efficient way to tell the regex engine what to do. It then knows
exactly what to look for to stop reading. This approach has limitations, however. It is
not obvious how to do this if the delimiter is more complex than a single character. It
is also not very elegant.

Finally, we come to our general solution: the use of “reluctant” operators. For each of
the iteration operators, there is an alternative, nongreedy form that consumes as few
characters as possible, while still trying to get a match with what comes after it. This is
exactly what we needed in our previous example.

Reluctant operators take the form of the standard operator with a “?” appended. (Yes,
we know that’s confusing.) We can now write our regex as:

 </?.*?> // match <, optional /, minimum number of any chars, then >

We have appended ? to .* to cause .* to match as few characters as possible while still
making the final match of >. The same technique (appending the ?) works with all the
iteration operators, as in the two following examples:

350 | Chapter 10: Working with Text

 .+? // one or more, nongreedy
 .{x,y}? // between x and y, nongreedy

Lookaheads and lookbehinds

In order to understand our next topic, let’s return for a moment to the position marking
characters (^, $, \b, and \B) that we discussed earlier. Think about what exactly these
special markers do for us. We say, for example, that the \b marker matches a word
boundary. But the word “match” here may be a bit too strong. In reality, it “requires” a
word boundary to appear at the specified point in the regex. Suppose we didn’t have
\b; how could we construct it? Well, we could try constructing a regex that matches the
word boundary. It might seem easy, given the word and nonword character classes
(\w and \W):

 \w\W|\W\w // match the start or end of a word

But now what? We could try inserting that pattern into our regular expressions wherever
we would have used \b, but it’s not really the same. We’re actually matching those char‐
acters, not just requiring them. This regular expression matches the two characters
composing the word boundary in addition to whatever else matches afterward, whereas
the \b operator simply requires the word boundary but doesn’t match any text. The
distinction is that \b isn’t a matching pattern but a kind of lookahead. A lookahead is a
pattern that is required to match next in the string, but is not consumed by the regex
engine. When a lookahead pattern succeeds, the pattern moves on, and the characters
are left in the stream for the next part of the pattern to use. If the lookahead fails, the
match fails (or it backtracks and tries a different approach).

We can make our own lookaheads with the lookahead operator (?=). For example, to
match the letter X at the end of a word, we could use:

 (?=\w\W)X // Find X at the end of a word

Here the regex engine requires the \W\w pattern to match but not consume the charac‐
ters, leaving them for the next part of the pattern. This effectively allows us to write
overlapping patterns (like the previous example). For instance, we can match the word
“Pat” only when it’s part of the word “Patrick,” like so:

 (?=Patrick)Pat // Find Pat only in Patrick

Another operator, (?!), the negative lookahead, requires that the pattern not match. We
can find all the occurrences of Pat not inside of a Patrick with this:

 (?!Patrick)Pat // Find Pat never in Patrick

It’s worth noting that we could have written all of these examples in other ways, by simply
matching a larger amount of text. For instance, in the first example we could have
matched the whole word “Patrick.” But that is not as precise, and if we wanted to use
capture groups to pull out the matched text or parts of it later, we’d have to play games
to get what we want. For example, suppose we wanted to substitute something for Pat

Regular Expressions | 351

(say, change the font). We’d have to use an extra capture group and replace the text with
itself. Using lookaheads is easier.

In addition to looking ahead in the stream, we can use the (?<=) and (?<!)lookbehind
operators to look backward in the stream. For example, we can find my last name, but
only when it refers to me:

 (?<=Pat)Niemeyer // Niemeyer, only when preceded by Pat

Or we can find the string “bean” when it is not part of the phrase “Java bean”:
 (?<!Java *)bean // The word bean, not preceded by Java

In these cases, the lookbehind and the matched text didn’t overlap because the
lookbehind was before the matched text. But you can place a lookahead or lookbehind
at either point—before or after the match—for example, we could also match Pat Nie‐
meyer like this:

 Niemeyer(?<=Pat Niemeyer)

The java.util.regex API
Now that we’ve covered the theory of how to construct regular expressions, the hard
part is over. All that’s left is to investigate the Java API for applying regexes: searching
for them in strings, retrieving captured text, and replacing matches with substitution
text.

Pattern

As we’ve said, the regex patterns that we write as strings are, in actuality, little programs
describing how to match text. At runtime, the Java regex package compiles these little
programs into a form that it can execute against some target text. Several simple con‐
venience methods accept strings directly to use as patterns. More generally, however,
Java allows you to explicitly compile your pattern and encapsulate it in an instance of a
Pattern object. This is the most efficient way to handle patterns that are used more than
once, because it eliminates needlessly recompiling the string. To compile a pattern, we
use the static method Pattern.compile():

 Pattern urlPattern = Pattern.compile("\\w+://[\\w/]*");

Once you have a Pattern, you can ask it to create a Matcher object, which associates
the pattern with a target string:

 Matcher matcher = urlPattern.matcher(myText);

The matcher executes the matches. We’ll talk about that next. But before we do, we’ll
just mention one convenience method of Pattern. The static method Pattern.match
es() simply takes two strings—a regex and a target string—and determines if the target

352 | Chapter 10: Working with Text

matches the regex. This is very convenient if you want to do a quick test once in your
application. For example:

 Boolean match = Pattern.matches("\\d+\\.\\d+f?", myText);

This line of code can test if the string myText contains a Java-style floating-point number
such as “42.0f.” Note that the string must match completely in order to be considered a
match.

The Matcher

A Matcher associates a pattern with a string and provides tools for testing, finding, and
iterating over matches of the pattern against it. The Matcher is “stateful.” For example,
the find() method tries to find the next match each time it is called. But you can clear
the Matcher and start over by calling its reset() method.

If you’re just interested in “one big match”—that is, you’re expecting your string to either
match the pattern or not—you can use matches() or lookingAt(). These correspond
roughly to the methods equals() and startsWith() of the String class. The match
es() method asks if the string matches the pattern in its entirety (with no string char‐
acters left over) and returns true or false. The lookingAt() method does the same,
except that it asks only whether the string starts with the pattern and doesn’t care if the
pattern uses up all the string’s characters.

More generally, you’ll want to be able to search through the string and find one or more
matches. To do this, you can use the find() method. Each call to find() returns true
or false for the next match of the pattern and internally notes the position of the
matching text. You can get the starting and ending character positions with the Matcher
start() and end() methods, or you can simply retrieve the matched text with the
group() method. For example:

 import java.util.regex.*;

 String text="A horse is a horse, of course of course...";
 String pattern="horse|course";

 Matcher matcher = Pattern.compile(pattern).matcher(text);
 while (matcher.find())
 System.out.println(
 "Matched: '"+matcher.group()+"' at position "+matcher.start());

The previous snippet prints the starting location of the words “horse” and “course” (four
in all):

 Matched: 'horse' at position 2
 Matched: 'horse' at position 13
 Matched: 'course' at position 23
 Matched: 'course' at position 33

Regular Expressions | 353

The method to retrieve the matched text is called group() because it refers to capture
group zero (the entire match). You can also retrieve the text of other numbered capture
groups by giving the group() method an integer argument. You can determine how
many capture groups you have with the groupCount() method:

 for (int i=1; i < matcher.groupCount(); i++)
 System.out.println(matcher.group(i));

Splitting and tokenizing strings

A very common need is to parse a string into a bunch of fields based on some delimiter,
such as a comma. It’s such a common problem that in Java 1.4, a method was added to
the String class for doing just this. The split() method accepts a regular expression
and returns an array of substrings broken around that pattern. For example:

 String text = "Foo, bar , blah";
 String [] fields = text.split("\s*,\s*");

yields a String array containing Foo, bar, and blah. You can control the maximum
number of matches and also whether you get “empty” strings (for text that might have
appeared between two adjacent delimiters) using an optional limit field.

If you are going to use an operation like this more than a few times in your code, you
should probably compile the pattern and use its split() method, which is identical to
the version in String. The String split() method is equivalent to:

 Pattern.compile(pattern).split(string);

Another look at Scanner

As we mentioned when we introduced it, the Scanner class in Java 5.0 can use regular
expressions to tokenize strings. You can specify a regular expression to use as the de‐
limiter (instead of the default whitespace) either at construction time or with the use
Delimiter() method. The Scanner next(), hasNext(), skip(), and findInLine()
methods all take regular expressions as well. You can specify these either as strings or
with a compiled Pattern object.

You can use the findInLine() method of Scanner as an improved Matcher. For
example:

 Scanner scanner = new Scanner("Quantity: 42 items, Price $2.34");
 scanner.findInLine("[Qq]uantity[:\\s]*");
 int quantity=scanner.nextInt();
 scanner.findInLine("[Pp]rice.*\\$");
 float price=scanner.nextFloat();

The previous snippet locates the quantity and price values, allowing for variations in
capitalization and spacing before the numbers.

354 | Chapter 10: Working with Text

Before we move on, we’ll also mention a “Stupid Scanner Trick” that, although we don’t
recommend it, you might find amusing. Using the \A boundary marker, which denotes
the beginning of input, as a delimiter, we can tell the Scanner to return the whole input
as a single string. This is an easy way to read the contents of any stream into one large
string:

 InputStream source = new URL("http://www.oreilly.com/").openStream();
 String text = new Scanner(source).useDelimiter("\\A").next();

This is probably not the most efficient or understandable way to do it, but it may save
you a little typing in your experimentation.

Replacing text

A common reason that you’ll find yourself searching for a pattern in a string is to change
it to something else. The regex package not only makes it easy to do this but also provides
a simple notation to help you construct replacement text using bits of the matched text.

The most convenient form of this API is Matcher’s replaceAll() method, which sub‐
stitutes a replacement string for each occurrence of the pattern and returns the result.
For example:

 String text = "Richard Nixon's social security number is: 567-68-0515.";
 Matcher matcher =
 Pattern.compile("\\d\\d\\d-\\d\\d\-\\d\\d\\d\\d").matcher(text);
 String output = matcher.replaceAll("XXX-XX-XXXX");

This code replaces all occurrences of U.S. government Social Security numbers with
“XXX-XX-XXXX” (perhaps for privacy considerations).

Using captured text in a replacement. . Literal substitution is nice, but we can make this
more powerful by using capture groups in our substitution pattern. To do this, we use
the simple convention of referring to numbered capture groups with the notation $n,
where n is the group number. For example, suppose we wanted to show just a little of
the Social Security number in the previous example, so that the user would know if we
were talking about him. We could modify our regex to catch, for example, the last four
digits like so:

 \d\d\d-\d\d-(\d\d\d\d)

We can then use that in the substitution text:
 String output = matcher.replaceAll("XXX-XX-$1");

The static method Matcher.quoteReplacement() can be used to escape a literal string
(so that it ignores the $ notation) before using it as replacement text.

Regular Expressions | 355

Controlling the substitution. The replaceAll() method is useful, but you may want more
control over each substitution. You may want to change each match to something dif‐
ferent or base the change on the match in some programmatic way.

To do this, you can use the Matcher appendReplacement() and appendTail() methods.
These methods can be used in conjunction with the find() method as you iterate
through matches to build a replacement string. appendReplacement() and append
Tail() operate on a StringBuffer that you supply. The appendReplacement() method
builds a replacement string by keeping track of where you are in the text and appending
all nonmatched text to the buffer for you as well as the substitute text that you supply.
Each call to find() appends the intervening text from the last call, followed by your
replacement, then skips over all the matched characters to prepare for the next one.
Finally, when you have reached the last match, you should call appendTail(), which
appends any remaining text after the last match. We’ll show an example of this next, as
we build a simple “template engine.”

Our simple template engine

Let’s tie what we’ve discussed together in a nifty example. A common problem in Java
applications is working with bulky, multiline text. In general, you don’t want to store
the text of messages in your application code because it makes them difficult to edit or
internationalize. But when you move them to external files or resources, you need a way
for your application to plug in information at runtime. The best example of this is in
Java servlets; a generated HTML page is often 99% static text with only a few “variable”
pieces plugged in. Technologies such as JSP and XSL were developed to address this.
But these are big tools, and we have a simple problem. So let’s create a simple solution
—a template engine.

Our template engine reads text containing special template tags and substitutes values
that we provide. And because generating HTML or XML is one of the most important
applications of this, we’ll be friendly to those formats by making our tags conform to
the style of an XML comment. Specifically, our engine searches the text for tags that
look like this:

 <!--TEMPLATE:name This is the template for the user name -->

XML-style comments start with <!— and can contain anything up to a closing —>. We’ll
add the convention of requiring a TEMPLATE:name field to specify the name of the value
we want to use. Aside from that, we’ll still allow any descriptive text the user wants to
include. To be friendly (and consistent), we’ll allow any amount of whitespace to appear
in the tags, including multiline text in the comments. We’ll also ignore the text case of
the “TEMPLATE” identifier, just in case. Now, we could do this all with low-level String
commands, looping over whitespace and taking many substrings. But using the power
of regexes, we can do it much more cleanly and with only about seven lines of relevant
code. (We’ve rounded out the example with a few more to make it more useful.)

356 | Chapter 10: Working with Text

 import java.util.*;
 import java.util.regex.*;

 public class Template
 {
 Properties values = new Properties();
 Pattern templateComment =
 Pattern.compile("(?si)<!--\\s*TEMPLATE:(\\w+).*?-->");

 public void set(String name, String value) {
 values.setProperty(name, value);
 }

 public String fillIn(String text) {
 Matcher matcher = templateComment.matcher(text);

 StringBuffer buffer = new StringBuffer();
 while(matcher.find()) {
 String name = matcher.group(1);
 String value = values.getProperty(name);
 matcher.appendReplacement(buffer, value);
 }
 matcher.appendTail(buffer);
 return buffer.toString();
 }
 }

You’d use the Template class like this:
 String input = "<!-- TEMPLATE:name --> lives at "
 +"<!-- TEMPLATE:address -->";
 Template template = new Template();
 template.set("name", "Bob");
 template.set("address", "1234 Main St.");
 String output = template.fillIn(input);

In this code, input is a string containing tags for name and address. The set() method
provides the values for those tags.

Let’s start by picking apart the regex, templatePattern, in the example:
 (?si)<!--\s*TEMPLATE:(\w+).*?-->

It looks scary, but it’s actually very simple. Just start reading from left to right. First, we
have the special flags declaration (?si) telling the regex engine that it should be in
single-line mode, with .* matching all characters including newlines (s), and ignoring
case (i). Next, there is the literal <!— followed by any amount of whitespace (\s) and
the TEMPLATE: identifier. After the colon, we have a capture group (\w+), which reads
our name identifier and saves it for us to retrieve later. We allow anything (.*) up to
the —>, being careful to specify that .* should be nongreedy (.*?). We don’t want .* to

Regular Expressions | 357

consume other opening and closing comment tags all the way to the last one, but instead
to find the smallest match (one tag).

Our fillIn() method does the work, accepting a template string, searching it, and
“replacing” the tag values with the values from set(), which we have stored in a Prop
erties table. Each time fillIn() is called, it creates a Matcher to wrap the input string
and get ready to apply the pattern. It then creates a temporary StringBuffer to hold
the output and loops, using the Matcher find() method to get each tag. For each match,
it retrieves the value of the capture group (group one) that holds the tag name. It looks
up the corresponding value and replaces the tag with this value in the output string
buffer using the appendReplacement() method. (Remember that appendReplace
ment() fills in the intervening text on each call, so we don’t have to.) All that remains is
to call appendTail() at the end to get the remaining text after the last match and return
the string value. That’s it!

We hope this section has shown you some of the power provided by these tools and
whetted your appetite for more. Regexes allow you to work in ways you may not have
considered before. Especially now, when the software world is focused on textual rep‐
resentations of almost everything—from data to user interfaces—via XML and HTML,
having powerful text-manipulation tools is fundamental. Just remember to keep those
regexes simple so you can reuse them again and again.

358 | Chapter 10: Working with Text

CHAPTER 11

Core Utilities

In this chapter, we’ll continue our look at the core Java APIs, covering more of the tools
of the java.util package. The java.util package includes a wide range of utilities
including tools for mathematical operations, fundamental data structures (collections),
working with dates and times, storing user preference data, and logging.

Math Utilities
Java supports integer and floating-point arithmetic directly in the language. Higher-
level math operations are supported through the java.lang.Math class. As you may
have seen by now, wrapper classes for primitive data types allow you to treat them as
objects. Wrapper classes also hold some methods for basic conversions.

First, a few words about built-in arithmetic in Java. Java handles errors in integer arith‐
metic by throwing an ArithmeticException:

 int zero = 0;

 try {
 int i = 72 / zero;
 } catch (ArithmeticException e) {
 // division by zero
 }

To generate the error in this example, we created the intermediate variable zero. The
compiler is somewhat crafty and would have caught us if we had blatantly tried to per‐
form division by a literal zero.

Floating-point arithmetic expressions, on the other hand, don’t throw exceptions. In‐
stead, they take on the special out-of-range values shown in Table 11-1.

359

Table 11-1. Special floating-point values
Value Mathematical representation

POSITIVE_INFINITY 1.0/0.0

NEGATIVE_INFINITY -1.0/0.0

NaN 0.0/0.0

The following example generates an infinite result:
 double zero = 0.0;
 double d = 1.0/zero;

 if (d == Double.POSITIVE_INFINITY)
 System.out.println("Division by zero");

The special value NaN (not a number) indicates the result of dividing zero by zero. This
value has the special mathematical distinction of not being equal to itself (NaN != NaN
evaluates to true). Use Float.isNaN() or Double.isNaN() to test for NaN.

The java.lang.Math Class
The java.lang.Math class is Java’s math library. It holds a suite of static methods cov‐
ering all of the usual mathematical operations like sin(), cos(), and sqrt(). The Math
class isn’t very object-oriented (you can’t create an instance of Math). Instead, it’s really
just a convenient holder for static methods that are more like global functions. As we
saw in Chapter 6, it’s possible to use the static import functionality to import the names
of static methods and constants like this directly into the scope of our class and use them
by their simple, unqualified names.

Table 11-2 summarizes the methods in java.lang.Math.

Table 11-2. Methods in java.lang.Math
Method Argument type(s) Functionality

Math.abs(a) int, long, float, double Absolute value

Math.acos(a) double Arc cosine

Math.asin(a) double Arc sine

Math.atan(a) double Arc tangent

Math.atan2(a,b) double Angle part of rectangular-to-polar coordinate transform

Math.ceil(a) double Smallest whole number greater than or equal to a

Math.cbrt(a) double Cube root of a

Math.cos(a) double Cosine

Math.cosh(a) double Hyperbolic cosine

Math.exp(a) double Math.E to the power a

Math.floor(a) double Largest whole number less than or equal to a

360 | Chapter 11: Core Utilities

Method Argument type(s) Functionality

Math.hypot(a,b) double Precision calculation of the sqrt() of a2 + b2

Math.log(a) double Natural logarithm of a

Math.log10(a) double Log base 10 of a

Math.max(a, b) int, long, float, double The value a or b closer to Long.MAX_VALUE

Math.min(a, b) int, long, float, double The value a or b closer to Long.MIN_VALUE

Math.pow(a, b) double a to the power b

Math.random() None Random-number generator

Math.rint(a) double Converts double value to integral value in double format

Math.round(a) float, double Rounds to whole number

Math.signum(a) double, float Get the sign of the number at 1.0, –1.0, or 0

Math.sin(a) double Sine

Math.sinh(a) double Hyperbolic sine

Math.sqrt(a) double Square root

Math.tan(a) double Tangent

Math.tanh(a) double Hyperbolic tangent

Math.toDegrees(a) double Convert radians to degrees

Math.toRadians(a) double Convert degrees to radians

log(), pow(), and sqrt() can throw a runtime ArithmeticException. abs(), max(),
and min() are overloaded for all the scalar values, int, long, float, or double, and
return the corresponding type. Versions of Math.round() accept either float or dou
ble and return int or long, respectively. The rest of the methods operate on and return
double values:

 double irrational = Math.sqrt(2.0); // 1.414...
 int bigger = Math.max(3, 4); // 4
 long one = Math.round(1.125798); // 1

For convenience, Math also contains the static final double values E and PI:
 double circumference = diameter * Math.PI;

Big/Precise Numbers
If the long and double types are not large or precise enough for you, the java.math
package provides two classes, BigInteger and BigDecimal, that support arbitrary-
precision numbers. These full-featured classes have a bevy of methods for performing
arbitrary-precision math and precisely controlling rounding of remainders. In the fol‐
lowing example, we use BigDecimal to add two very large numbers and then create a
fraction with a 100-digit result:

Math Utilities | 361

 long l1 = 9223372036854775807L; // Long.MAX_VALUE
 long l2 = 9223372036854775807L;
 System.out.println(l1 + l2); // -2 ! Not good.

 try {
 BigDecimal bd1 = new BigDecimal("9223372036854775807");
 BigDecimal bd2 = new BigDecimal(9223372036854775807L);
 System.out.println(bd1.add(bd2)); // 18446744073709551614

 BigDecimal numerator = new BigDecimal(1);
 BigDecimal denominator = new BigDecimal(3);
 BigDecimal fraction =
 numerator.divide(denominator, 100, BigDecimal.ROUND_UP);
 // 100 digit fraction = 0.333333 ... 3334
 }
 catch (NumberFormatException nfe) { }
 catch (ArithmeticException ae) { }

If you implement cryptographic or scientific algorithms for fun, BigInteger is crucial.
Other than that, you’re not likely to need these classes.

Floating-Point Components
As we mentioned in Chapter 4, Java uses the IEEE 754 standard to represent floating-
point numbers (float and double types) internally. Those of you familiar with how
floating-point math works will already know that “decimal” numbers are represented
in binary in this standard by separating the number into three components: a sign
(positive or negative), an exponent representing the magnitude in powers of 2 of the
number, and a mantissa using up most of the bits to represent the precise value irre‐
spective of its magnitude. While for most applications the precision of float and double-
type floating-point numbers is sufficient enough that we don’t need to worry about
running into limitations, there are times when specialized apps may wish to work with
the floating-point values more directly.

By definition, floating-point numbers trade off precision and scale. Even the smallest
Java floating-point type, float, can represent (literally) astronomical numbers ranging
from negative 10–45 to positive 1038. This is accomplished, put in decimal terms, by
having the mantissa part of the floating-point value represent a fixed number of “digits”
and the exponent tell us where to put the decimal point. As the numbers get larger in
magnitude, the “precision” therefore gets shifted to the “left” as more digits appear to
the left of the decimal point. What this means is that floating-point numbers can very
precisly (with a large number of digits) represent small values like pi, but for bigger
numbers (in the billions and trillions) those digits will be taken up with the more sig‐
nifcant digits. Therefore, the gap between any two consecutive numbers that can be
represented by a floating-point value grows larger as the numbers get bigger.

362 | Chapter 11: Core Utilities

1. The generator uses a linear congruential formula. See The Art of Computer Programming, Volume 2: Semi-
numerical Algorithms by Donald Knuth (Addison-Wesley).

For some applications, knowing the limitations may be important. The java.lang.Math
class therefore provides a few methods for interrogating floats and doubles about their
precision. The Math.ulp() method retrieves the “unit of least precision” for a given
floating-point number, which is the smallest value that bits in the mantissa represent at
their current exponent. Another way to say this is that the ulp() is the approximate
distance from the floating-point number to the next closest higher or lower floating-
point number that can be represented. Adding positive values smaller than half the ULP
to a float will not yield a new number. Adding values between half and the full ULP will
result in the value plus the ULP. The Math.nextUp() method is a convenience that will
take a float and tell you the next number that can be represented by adding the ULP.

 float trillionish = (float)1e12; // trillionish ~= 999,999,995,904
 float ulp = Math.ulp(f); // ulp = 65536
 float next = Math.nextUp(f); // next ~= 1000000061440
 trillionish += 32767; // trillionish still ~= 999,999,995,904. No change!

Additionally, the java.lang.Math class contains the method getExponent(), which
retrieves the exponent part of a floating-point number (and from there one could de‐
termine the mantissa by division). It is also possible to get the raw bits of a float or double
using their corresponding wrapper class methods floatToIntBits() and
doubleToRawLongBits() and pick out the (IEEE standard) bits yourself.

Random Numbers
You can use the java.util.Random class to generate random values. It’s a
pseudorandom-number generator that is initialized with a 48-bit seed.1 Because it’s a
pseudorandom algorithm, you’ll get the same series of values every time you use the
same seed value. The default constructor uses the current time to produce a seed, but
you can specify your own value in the constructor:

 long seed = mySeed;
 Random rnums = new Random(seed);

After you have a generator, you can ask for one or more random values of various types
using the methods listed in Table 11-3.

Table 11-3. Random-number methods
Method Range

nextBoolean() true or false

nextInt() –2147483648 to 2147483647

nextInt(int n) 0 to (n – 1) inclusive

nextLong() –9223372036854775808 to 9223372036854775807

Math Utilities | 363

2. Prior to Java 1.1, the Date class handled some of the functions of a calendar as well. Most of these methods
have now been deprecated. Today, the only purpose of the Date class is to represent a point in time.

3. Java’s GregorianCalendar class is actually both a Julian and Gregorian calendar with a programmable cut-
over date. For a wealth of information about time and world time-keeping conventions, see the U.S. Navy
Directorate of Time.

Method Range

nextFloat() 0.0 inclusive to 1.0 exclusive

nextDouble() 0.0 inclusive to 1.0 exclusive

nextGaussian() Gaussian distributed double with mean 0.0 and standard deviation of 1.0

By default, the values are uniformly distributed. You can use the nextGaussian()
method to create a Gaussian (bell curve) distribution of double values, with a mean of
0.0 and a standard deviation of 1.0. (Lots of natural phenomena follow a Gaussian
distribution rather than a strictly uniform random one.)

The static method Math.random() retrieves a random double value. This method
initializes a private random-number generator in the Math class the first time it’s used,
using the default Random constructor. Thus, every call to Math.random() corresponds
to a call to nextDouble() on that random-number generator.

Dates and Times
Working with dates and times without the proper tools can be a chore. Fortunately, Java
has three classes that handle most of the work for you. The java.util.Date class en‐
capsulates a point in time. The java.util.GregorianCalendar class, which extends the
abstract java.util.Calendar, translates between a point in time and calendar fields
like month, day, and year. Finally, the java.text.DateFormat class knows how to gen‐
erate and parse string representations of dates and times in many languages.2

The separation of the Date and Calendar classes is analogous to having a class repre‐
senting temperature and a class that translates that temperature to Celsius units. A Date
represents an absolute point in time as defined by a number of milliseconds from the
reference point: midnight, Jan 1, 1970, GMT. This is the same frame of reference used
by the System.currentTimeMillis() call. A Calendar encapsulates a point in time and
maps it to higher-level (and messier) notions like years, months, weeks, and days, and
deals with discontinuities like leap years. Conceivably, we could define subclasses of
Calendar other than the default GregorianCalendar, say JulianCalendar or LunarCa
lendar, that map time using other sociological or cultural conventions.3

364 | Chapter 11: Core Utilities

Working with Calendars
The default GregorianCalendar constructor creates a calendar initialized to the current
time, in the current time zone:

 GregorianCalendar now = new GregorianCalendar();

However, more generally we can just ask the Calendar class for an appropriate calendar
instance without worrying about what type of calendar system the world is using this
century:

 Calendar now = Calendar.getInstance();

In either case, all the real work is done through the main set() and get() methods of
Calendar. These methods use static identifiers to refer to calendar fields and values. For
example:

 Calendar birthday = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 1972);
 birthday.set(Calendar.MONTH, Calendar.MAY);
 birthday.set(Calendar.DATE, 20);

Here, we set the year, month, and day values on the calendar, altering the internal Date
of the Calendar object. Any remaining fields that we did not set are left as they were
initialized (to the current date and time when it was constructed). In this case, we did
not really specify a full date and time; we simply overrode individual fields in the
calendar.

The Calendar class contains identifiers for all of the standard date and time fields, as
well as values such as days of the week and months of the year. The following are the
most common identifiers:

• YEAR, MONTH
• WEEK_OF_YEAR, WEEK_OF_MONTH
• DATE, DAY_OF_YEAR, DAY_OF_MONTH, DAY_OF_WEEK
• HOUR, HOUR_OF_DAY, AM_PM
• MINUTE, SECOND, MILLISECOND
• ZONE_OFFSET, DST_OFFSET

DATE and DAY_OF_MONTH are synonymous. HOUR is a 12-hour clock that can be combined
with AM_PM. The values are just what you would expect, as shown in the following:

• SUNDAY, MONDAY, TUESDAY...
• JANUARY, FEBRUARY, MARCH...
• AM, PM

Dates and Times | 365

In addition to the set() method for changing field values, the Calendar class has two
additional methods for performing date math, add() and roll(). Using add(), you can
move a calendar forward or backward in any unit of time easily, without having to
calculate the other fields. For example, we can move our calendar forward four weeks:

 Calendar cal = Calendar.getInstance();
 System.out.println(cal.getTime());
 // Thu Nov 04 16:39:06 CST 2004

 cal.add(Calendar.WEEK_OF_YEAR, 4);
 System.out.println(cal.getTime());
 // Thu Dec 02 16:39:06 CST 2004

The roll() method, by contrast, does not alter the other fields of the calendar, but
arbitrarily adjusts individual fields. See the Spinner example in Chapter 17 for addi‐
tional information about adding and subtracting time periods using the add() method.

Finally, you can always get the internal Date of the Calendar object or reinitialize the
calendar to a specific Date using the getTime() and setTime() method:

 // Get the absolute time the Calendar references
 Date date = calendar.getTime();

 // Reinitialize this calendar to the current date and time
 Date now = new Date();
 calendar.setTime(now);

Time Zones
An instance of the TimeZone class represents a time zone and the knowledge of daylight
savings time at that location. You can construct a time zone from a string specifier in a
number of ways. The most general approach is to use an offset from GMT, but many
human-readable formats are included. (For a list, use TimeZone.getAvailableIDs().)

 TimeZone.getTimeZone("US/Central"); // CST
 TimeZone.getTimeZone("GMT-06"); // CST
 TimeZone.getTimeZone("America/Chicago"); // CST

A Calendar inherits the default time zone from the platform on which it was created.
You can set a different time zone with the setTimeZone() method:

 GregorianCalendar smokey = new
 GregorianCalendar();
 smokey.setTimeZone(TimeZone.getTimeZone("US/Mountain"));

It’s important to think about dates and time zones in the right way. Remember that a
Date is an absolute point in time, while a Calendar translates that Date into localized
fields that may depend on where you are. In a sense, it is meaningless to talk about the
date “Nov 1, 2004,” without specifying a time zone because at any given moment on
earth, “now” could be one of two different calendar days. Even specifying a date and

366 | Chapter 11: Core Utilities

time such as “Nov 1, 2004, 9:01 pm” is ambiguous, because that particular combination
of calendar and time fields occurs at 24 separate times over the span of a day as the world
turns (see Figure 11-1). Only a complete date, time, and time zone specifies an absolute
point in time, such as “Nov 1, 2004, 9:01 pm EST.” So it’s important to remember that
the Calendar class defaults all of these fields for you even if you haven’t set them.

Figure 11-1. Calendars translate an absolute point in time to a localized data and time

The following example prints the day of the week for the same Date object in two dif‐
ferent time zones:

 Date date = new Date(); // point in time

 TimeZone CST = TimeZone.getTimeZone("America/Chicago");
 Calendar usa = Calendar.getInstance(CST);
 usa.setTime(date);
 System.out.println(usa.get(Calendar.DAY_OF_WEEK)); // 1

 TimeZone GMT8 = TimeZone.getTimeZone("GMT+08"); // Beijing
 Calendar china = Calendar.getInstance(GMT8);
 china.setTime(date);
 System.out.println(china.get(Calendar.DAY_OF_WEEK)); // 2

Dates and Times | 367

In this example, we could also have simply changed the time zone on the calendar usa
using the setTimeZone() method. Unlike the field set() methods, setting the time zone
does not change the underlying Date value of the calendar, only the interpretation of
the fields.

The meaning of the Date object and its relationship to Calendar become particularly
important when dealing with APIs for things such as databases that construct dates from
incomplete date and time fields. If, as is entirely possible, you end up sending your Date
object from a client application in one part of the world to a server in another, you may
be surprised that the calendar fields have changed. In these situations, it’s important to
work with Calendars to translate the date fields and avoid the temptation to “fix” the
problem by adding or subtracting real time from the date.

Locale

It should be clear now that Calendar is not just a fancy Date, but rather is something in
between a time-keeping device and a time-formatting device. This point is brought
home by the fact that the Calendar class is also locale-sensitive. In addition to the notion
of a time zone, a Calendar has a Locale that governs conventions such as on which day
the week begins and ends. You can specify an alternate locale with the setLocale()
method. Most locale-specific details, however, are handled by the DateFormat class,
which we’ll discuss next.

Parsing and Formatting with DateFormat
As its name suggests, the DateFormat class formats Date objects and not Calendars, so
the first step in formatting dates and times from a Calendar is to get back to a Date with
the getTime() method:

 Date birthDate = calendar.getTime();

To create string representations of dates and times, create a DateFormat object and apply
its format() method to a Date object. Like the NumberFormat object we looked at in the
previous chapter, DateFormat itself is abstract, but it has several static (“factory”) meth‐
ods that return useful DateFormat subclass instances. To get a default DateFormat, sim‐
ply call getInstance():

 DateFormat simple = DateFormat.getInstance();
 String now = simple.format(new Date()); // 4/12/06 6:06 AM

You can generate a date string or a time string, or both, using the getDateInstance(),
getTimeInstance(), and getDateTimeInstance() factory methods. The argument to
these methods describes what level of detail you’d like to see. DateFormat defines four
constants representing detail levels: they are SHORT, MEDIUM, LONG, and FULL. There is
also a DEFAULT, which is the same as MEDIUM. The following code creates three DateFor
mat instances: one to format a date, one to format a time, and one to format a date and

368 | Chapter 11: Core Utilities

time together. getDateTimeInstance() requires two arguments: the first specifies how
to format the date, the second how to format the time:

 // 12-Apr-06
 DateFormat df = DateFormat.getDateInstance(DateFormat.DEFAULT);

 // 9:18:27 AM
 DateFormat tf = DateFormat.getTimeInstance(DateFormat.DEFAULT);

 // Wednesday, April 12, 2006 9:18:27 o'clock AM EDT
 DateFormat dtf =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);

We’re showing only how to create the DateFormat objects here. In order to actually
generate a String from a date, you’ll need to call the format() method of these objects,
passing a Date as an argument.

Formatting dates and times for other countries is just as easy. Overloaded factory meth‐
ods accept a Locale argument:

 // 12 avr. 06
 DateFormat df =
 DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.FRANCE);

 // 9:27:49
 DateFormat tf =
 DateFormat.getTimeInstance(DateFormat.DEFAULT, Locale.GERMANY);

 // mercoledi 12 aprile 2006 9.27.49 GMT-04:00
 DateFormat dtf =
 DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, Locale.ITALY);

To parse a string representing a date, we use the parse() method of the DateFormat
class. The result is a Date object. The parsing algorithms are finicky, so it’s safest to parse
dates and times that are in the same format produced by the DateFormat. The parse()
method throws a ParseException if it doesn’t understand the string you give it. All of
the following calls to parse() succeed except the last; we don’t supply a time zone, but
the format for the time is LONG. Other exceptions are occasionally thrown from the
parse() method. To cover all the bases, catch NullPointerExceptions and StringIn
dexOutOfBoundsExceptions also:

 try {
 Date d;
 DateFormat df;

 df = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL);
 d = df.parse("Wednesday, April 12, 2006 2:22:22 o'clock PM EDT");

 df = DateFormat.getDateTimeInstance(

Dates and Times | 369

 DateFormat.MEDIUM, DateFormat.MEDIUM);
 d = df.parse("12-Apr-06 2:22:22 PM");

 df = DateFormat.getDateTimeInstance(
 DateFormat.LONG, DateFormat.LONG);
 d = df.parse("April 12, 2006 2:22:22 PM EDT");

 // throws a ParseException; detail level mismatch
 d = df.parse("12-Apr-06 2:22:22 PM");
 }
 catch (Exception e) { ... }

Printf-Style Date and Time Formatting
The printf-style formatting covered in Chapter 10 can render dates and times to strings
in completely arbitrary ways, without having to resort to Calendar methods to get
components.

All date and time format strings use the same conversion character, t or T, followed by
a suffix character that identifies the actual format or date/time component to be gen‐
erated. For example, the format string %tc turns a Date argument into the string equiv‐
alent of what you get with the standard Date toString() method:

 System.out.printf("The date is %tc\n", new Date());
 // The date is Thu Nov 04 22:32:00 CST 2004

As with other conversion characters, the only difference between t and T is that the
latter forces all of the output to uppercase. All time and date formatting is locale-
sensitive, including the names of days and months and the A.M./P.M. identifier. To
format a Date for another language, simply pass the Locale as the first argument:

 System.out.printf(Locale.ITALIAN, "The date is %tc\n", new Date());
 // The date is gio nov 04 22:32:00 CST 2004

There are two additional composite, date-only formats and three composite time-only
formats, as shown in the following table. The format string description in the third
column of Table 11-4 refers to date and time component formats discussed in Tables
11-5 and 11-6.

Table 11-4. Composite date and time formats
Format suffix Example Components

c Thu Nov 04 22:32:00 CST 2004 %ta %tb %td %tT %tZ %tY

D 11/04/04 %tm/%td/%ty

F 2004-11-04 %tY-%tm-%td

r 10:32:00 PM %tI:%tM:%tS %Tp

R 22:32 %tH:%tM

T 22:32:00 %tH:%tM:%tS

370 | Chapter 11: Core Utilities

Table 11-5 lists formats for accessing date components.

Table 11-5. Date component formats
Format suffix Examples Description

a Sun, Mon, Tue... Abbreviated day of week

A Sunday, Monday... Full day of week

b Jan, Feb, Mar, ... Abbreviated month

B January, February, ... Full month

Y 1999, 2004 Four-digit year

C 2004 = 20 High two digits of year

y 1999 = 99 Low two digits of year

j 001 ... 366 Day of year

m 01 ... 13 Month of year

d 01 ... 31 Day of month

e 1 ... 31 Day of month, no leading zeros

Table 11-6 lists formats for accessing time components.

Table 11-6. Time component formats
Format suffix Examples Description

H 00 ... 23 24-hour clock

k 0 ... 23 24-hour clock, no leading zeros

I 01 ... 12 12-hour clock

l 1 ... 12 12-hour clock, no leading zeros

M 00 ... 59 Minute

S 00 ... 60a Second

L 000 ... 999 Millisecond

p am, pm Morning or afternoon designator

Z CST, EST Time zone name

z -0600 Time zone GMT offset
a The second value (60) is a convention used to support leap seconds.

Timers
Java includes two handy classes for timed code execution. If you write a clock applica‐
tion, for example, you might want to update the display every second. You might want
to play an alarm sound at some predetermined time. You could accomplish these tasks
using multiple threads and calls to Thread.sleep(). But the java.util.Timer and
java.util.TimerTask classes handle this for you.

Timers | 371

The Timer class is a scheduler. Each instance of Timer has a single thread that runs in
the background, watching the clock and executing one or more TimerTasks at appro‐
priate times. You could, for example, schedule a task to run once at a specific time like
this:

 import java.util.*;

 public class Y2K {
 public static void main(String[] args) {
 Timer timer = new Timer();

 TimerTask task = new TimerTask() {
 public void run() {
 System.out.println("Y2K!");
 }
 };

 Calendar cal = new GregorianCalendar(2000, Calendar.JANUARY, 1);
 timer.schedule(task, cal.getTime());
 }
 }

TimerTask implements the Runnable interface. To create a task, you can simply subclass
TimerTask and supply a run() method. Here, we’ve created a simple anonymous sub‐
class of TimerTask that prints a message to System.out. Using the schedule() method
of Timer, we’ve asked that the task be run on January 1, 2000. If the scheduled time has
already passed (as in our example), the task is run immediately.

There are some other varieties of schedule(); you can run tasks once or at recurring
intervals. There are two kinds of recurring tasks—fixed delay and fixed rate. Fixed de‐
lay means that a fixed amount of time elapses between the end of the task’s execution
and the beginning of the next execution. Fixed rate means that the task should begin
execution at fixed time intervals. The difference comes into play when the time to ex‐
ecute the task is long relative to the interval. Keep in mind that tasks are executed by
the Timer’s single scheduler thread. If one task takes a very long time, other tasks may
be delayed, in which case they run as soon as the thread becomes available.

You could, for example, update a clock display every second with code like this:
 Timer timer = new Timer();

 TimerTask task = new TimerTask() {
 public void run() {
 repaint(); // update the clock display
 }
 };

 timer.scheduleAtFixedRate(task, 0, 1000);

A TimerTask can be canceled before its execution with its cancel() method.

372 | Chapter 11: Core Utilities

Collections
Collections are data structures that are fundamental to all types of programming. When‐
ever we need to refer to a group of objects, we have some kind of collection. At the core
language level, Java supports collections in the form of arrays. But arrays are static and
because they have a fixed length, they are awkward for groups of things that grow and
shrink over the lifetime of an application. Arrays also do not represent abstract rela‐
tionships between objects well. In the early days, the Java platform had only two basic
classes to address these needs: the java.util.Vector class, which represents a dynamic
list of objects, and the java.util.Hashtable class, which holds a map of key/value
pairs. Today, Java has a more comprehensive approach to collections called the Collec‐
tions Framework. The older classes still exist, but they have been retrofitted into the
framework (with some eccentricities) and are generally no longer used.

Though conceptually simple, collections are one of the most powerful parts of any pro‐
gramming language. Collections implement data structures that lie at the heart of man‐
aging complex problems. A great deal of basic computer science is devoted to describing
the most efficient ways to implement certain types of algorithms over collections. Hav‐
ing these tools at your disposal and understanding how to use them can make your code
both much smaller and faster. It can also save you from reinventing the wheel.

Prior to Java 5, the Collections Framework had two major drawbacks. The first was that
—not having generic types to work with—collections were by necessity untyped and
worked only with anonymous Objects instead of real types like Dates and Strings. This
meant that you had to perform a type cast every time you took an object out of a col‐
lection. This flew in the face of Java’s compile-time type safety. But in practice, this was
less a problem than it was just plain cumbersome and tedious. The second issue was
that, for practical reasons, collections could work only with objects and not with prim‐
itive types. This meant that any time you wanted to put a number or other primitive
type into a collection, you had to store it in a wrapper class first and unpack it later upon
retrieving it. The combination of these factors made code working with collections less
readable and more dangerous to boot.

This all changed with the introduction of generic types and autoboxing of primitive
values. First, the introduction of generic types, as we described in Chapter 8, has made
it possible for truly typesafe collections to be under the control of the programmer.
Second, the introduction of autoboxing and unboxing of primitive types means that
you can generally treat objects and primitives as equals where collections are concerned.
The combination of these new features can significantly reduce the amount of code you
write and add safety as well. As we’ll see, all of the collections classes now take advantage
of these features.

The Collections Framework is based around a handful of interfaces in the java.util
package. These interfaces are divided into two hierarchies. The first hierarchy descends

Collections | 373

from the Collection interface. This interface (and its descendants) represents a con‐
tainer that holds other objects. The second, separate hierarchy is based on the Map
interface, which represents a group of key/value pairs where the key can be used to
retrieve the value in an efficient way.

The Collection Interface
The mother of all collections is an interface appropriately named Collection. It serves
as a container that holds other objects, its elements. It doesn’t specify exactly how the
objects are organized; it doesn’t say, for example, whether duplicate objects are allowed
or whether the objects are ordered in any way. These kinds of details are left to child
interfaces. Nevertheless, the Collection interface defines some basic operations com‐
mon to all collections:
public boolean add(element)

This method adds the supplied object to this collection. If the operation succeeds,
this method returns true. If the object already exists in this collection and the
collection does not permit duplicates, false is returned. Furthermore, some col‐
lections are read-only. Those collections throw an UnsupportedOperationExcep
tion if this method is called.

public boolean remove(element)
This method removes the specified object from this collection. Like the add()
method, this method returns true if the object is removed from the collection. If
the object doesn’t exist in this collection, false is returned. Read-only collections
throw an UnsupportedOperationException if this method is called.

public boolean contains(element)
This method returns true if the collection contains the specified object.

public int size()

Use this method to find the number of elements in this collection.

public boolean isEmpty()

This method returns true if this collection has no elements.

public Iterator iterator()

Use this method to examine all the elements in this collection. This method returns
an Iterator, which is an object you can use to step through the collection’s ele‐
ments. We’ll talk more about iterators in the next section.

Additionally, the methods addAll(), removeAll(), and containsAll() accept another
Collection and add, remove, or test for all of the elements of the supplied collection.

374 | Chapter 11: Core Utilities

Generics and collections

When using generics, the Collection type is parameterized with a specific type of el‐
ement that the collection will hold. This makes a generic collection of “anything” into
a specific collection of some type of element. The parameter type becomes the compile-
time type of the element arguments in all of the methods of Collection (in this case,
the add(), remove(), and contains() methods listed earlier). For example, in the fol‐
lowing code, we create a Collection that works with Dates:

 Collection<Date> dates = new ArrayList<Date>(); // = new ArrayList<>() would
 // also work.
 dates.add(new Date());
 dates.add("foo") // Error; string type where Date expected!!

ArrayList is just one implementation of Collection; we’ll talk about it a bit later. The
important thing is that we’ve declared the variable dates to be of the type Collec
tion<Date>; that is, a collection of Dates, and we’ve allocated our ArrayList to match.
Because our collection has been parameterized with the type Date, the add() method
of the collection becomes add(Date date) and attempting to add any type of object
other than a Date to the list would have caused a compile-time error.

If you are working with very old Java code that predates generics, you can simply drop
the types and perform the appropriate casts. For example:

 Collection dates = new ArrayList();
 dates.add(new Date()); // unchecked, compile-time warning
 Date date = (Date)dates.get(0);

In this case, we’ll get a compile time warning that we’re using ArrayList in a potentially
unsafe (nongeneric typesafe) way.

As we’ve described earlier in the book, this is essentially what the Java compiler is doing
for us with generics. When using collections (or any generic classes) in this way under
Java 5 or later, you will get compile-time warnings indicating that the usage is unchecked,
meaning that it is possible to get an error at runtime if you have made a mistake. In this
example, a mistake would not be caught until someone tried to retrieve the object from
the collection and cast it to the expected type.

Legacy code and runtime type safety

If you are working with legacy Java code that predates Java 5 generics and you do not
wish to introduce generics to it, you can still add a layer of type safety at runtime by
switching to a runtime type-checked version of your collection types. Java supplies
runtime-checked wrappers for all of the basic collection types. These wrappers enforce
a specific Java element type at runtime by throwing ClassCastException if the wrong
element is inserted. For example:

 List list = new ArrayList();
 list = Collections.checkedList(list, Date.class);

Collections | 375

 list.add(new Date());
 list.add("foo"); // Runtime ClassCastException!

Here, the static Collections.checkedList() method has wrapped our collection,
list, in a wrapper that implements all of the methods of List, but checks that we are
only holding Dates. The second argument to the method is the literal Date.class
reference to the Class of Date. This serves to tell the wrapper what type we want to
enforce. Corresponding “checked” collection methods exist for all of the basic collection
interfaces that we’ll see, including the base Collection, List, Set, and Map.

Converting between collections and arrays

Converting between collections and arrays is easy. For convenience, the elements of a
collection can be retrieved as an array using the following methods:

 public Object[] toArray()
 public <E> E[] toArray(E[] a)

The first method returns a plain Object array. With the second form, we can be more
specific and get back an array of the correct element type. If we supply an array of
sufficient size, it will be filled in with the values. But if the array is too short (e.g., zero
length), a new array of the same type but the required length will be created and returned
to us. So you can just pass in an empty array of the correct type like this:

 Collection<String> myCollection = ...;
 String [] myStrings = myCollection.toArray(new String[0]);

(This trick is a little awkward and it would be nice if Java let us specify the type explicitly
using a Class reference, but for some reason, this isn’t the case.) Going the other way,
you can convert an array of objects to a List collection with the static asList() method
of the java.util.Arrays class:

 String [] myStrings = ...; List list = Arrays.asList(myStrings);

Iterator
An iterator is an object that lets you step through a sequence of values. This kind of
operation comes up so often that it is given a standard interface: java.util.Itera
tor. The Iterator interface has only two primary methods:
public E next()

This method returns the next element (an element of generic type E) of the asso‐
ciated collection.

public boolean hasNext()

This method returns true if you have not yet stepped through all the Collection’s
elements. In other words, it returns true if you can call next() to get the next
element.

376 | Chapter 11: Core Utilities

The following example shows how you could use an Iterator to print out every element
of a collection:

 public void printElements(Collection c, PrintStream out) {
 Iterator iterator = c.iterator();
 while (iterator.hasNext())
 out.println(iterator.next());
 }

In addition to the traversal methods, Iterator provides the ability to remove an element
from a collection:
public void remove()

This method removes the most recent object returned from next() from the as‐
sociated Collection.

Not all iterators implement remove(). It doesn’t make sense to be able to remove an
element from a read-only collection, for example. If element removal is not allowed, an
UnsupportedOperationException is thrown from this method. If you call remove()
before first calling next(), or if you call remove() twice in a row, you’ll get an Illegal
StateException.

For loop over collections

A form of the for loop, described in Chapter 4, can operate over all types of Collec
tion objects. For example, we can now step over all of the elements of a typed collection
of Date objects like so:

 Collection<Date> col = ...
 for(Date date : col)
 System.out.println(date);

This feature of the Java built-in for loop is called the “enhanced” for loop (as opposed
to the pregenerics, numeric-only for loop). The enhanced for loop applies only to
Collection type collections, not Maps. Maps are another type of beast that really contain
two distinct sets of objects (keys and values), so it’s not obvious what your intentions
would be in such a loop.

java.util.Enumeration

Prior to the introduction of the Collections API there was another iterator interface:
java.util.Enumeration. It used the slightly more verbose names nextElement() and
hasMoreElements(), but accomplished the same thing. Many older classes provide
Enumerations where they would now use Iterator. If you aren’t worried about per‐
formance, you can just convert your Enumeration into a List with a static convenience
method of the java.util.Collections class:

 Enumeration myEnumeartion = ...;
 List list = Collections.list(myEnumeration);

Collections | 377

Collection Types
The Collection interface has three child interfaces. Set represents a collection in which
duplicate elements are not allowed. List is a collection whose elements have a specific
order. The Queue interface is a buffer for objects with a notion of a “head” element that’s
next in line for processing.

Set

Set has no methods besides the ones it inherits from Collection. It simply enforces its
no-duplicates rule. If you try to add an element that already exists in a Set, the add()
method simply returns false. SortedSet maintains elements in a prescribed order; like
a sorted list that can contain no duplicates. It adds the methods add() and remove() to
the Set interface. You can retrieve subsets (which are also sorted) using the subSet(),
headSet(), and tailSet() methods. These methods accept one or a pair of elements
that mark the boundaries. The first(), last(), and comparator() methods provide
access to the first element, the last element, and the object used to compare elements
(more on this later).

Java 7 adds NavigableSet, which extends SortedSet and adds methods for finding the
closest match greater or lesser than a target value within the sort order of the Set. This
interface can be implemented efficiently using techniques such as skip lists, which make
finding ordered elements fast (Java 7 supplies such an implementation, which we’ll note
later).

List

The next child interface of Collection is List. The List is an ordered collection, similar
to an array but with methods for manipulating the position of elements in the list:
public boolean add(E element)

This method adds the specified element to the end of the list.

public void add(int index , E element)
This method inserts the given object at the supplied position in the list. If the po‐
sition is less than zero or greater than the list length, an IndexOutOfBoundsExcep
tion will be thrown. The element that was previously at the supplied position, and
all elements after it, are moved up one index position.

public void remove(int index)
This method removes the element at the specified position. All subsequent elements
move down one index position.

public E get(int index)
This method returns the element at the given position.

378 | Chapter 11: Core Utilities

public Object set(int index , E element)
This method changes the element at the given position to the specified object. There
must already be an object at the index or else an IndexOutOfBoundsException is
thrown.

The type E in these methods refers to the parameterized element type of the List class.
Collection, Set, and List are all interface types. We’ll look at concrete implementations
of these shortly.

Queue

A Queue is a collection that acts like a buffer for elements. The queue maintains the
insertion order of items placed into it and has the notion of a “head” item. Queues may
be first in, first out (FIFO) or last in, first out (LIFO) depending on the implementation:
public boolean offer(E element)

public boolean add(E element)

The offer() method attempts to place the element into the queue, returning true
if successful. Different Queue types may have different limits or restrictions on el‐
ement types (including capacity). This method differs from the add() method in‐
herited from Collection in that it returns a Boolean value instead of throwing an
exception to indicate that the element cannot be accepted.

public E poll()
public E remove()

The poll() method removes the element at the head of the queue and returns it.
This method differs from the Collection method remove() in that if the queue is
empty, null is returned instead of throwing an exception.

public E peek()
This method returns the head element without removing it from the queue. If the
queue is empty, null is returned.

Java 7 added Deque, which is a “double-ended” queue that supports adding, querying,
and removing elements from either end of the queue (the head or the tail). Dequeue has
versions of the queue methods—offer, poll, and peek—that operate on the first or last
element: offerFirst(), pollFirst(), peekFirst(), offerLast(), pollLast(), peek
Last(). Note that Deque extends Queue and so is still a type of Queue. If you use the plain
Queue methods offer(), poll(), and peek() on a Deque, they operate as a FIFO queue.
Specifically, calling offer() is equivalent to offerLast() and calling poll() or peek()
is the same as calling pollFirst() or peekFirst(), respectively.

Finally, Java has a legacy Stack class that acts as a LIFO queue with “push” and “pop”
operations, but Deque is generally better and should serve as a general replacement for
Stack. Simply use addFirst() for “push” and pollFirst() for “pop.”

Collections | 379

BlockingQueue

BlockingQueue is part of the java.util.concurrent package. It extends the Queue
interface for queues that may have a fixed capacity or other time-based limitations and
allows the user to block, waiting for insertion of an item or for an available item to
retrieve. It adds timed wait versions of offer() and poll() and additional, blocking
take() and put() methods:
public boolean offer(E element, long time, TimeUnit units)

This method attempts to place the element into the queue, just like the method of
the base Queue interface, but blocks for up to the specified period of time as it waits
for space to become available.

public E poll(long time, timeUnit unit)

This method attempts to remove the element at the head of the queue, just like the
method of the base Queue interface, but blocks for up to the specified period of time
as it waits for an element to become available.

public E take()

This method retrieves the element at the head of the queue, blocking if necessary
until one becomes available.

public void put(E element)

This method adds an element to the queue, blocking if necessary until space be‐
comes available.

public boolean add(E element)

This method attempts to add an element to the queue immediately. If successful, it
returns true. If no space is available, it throws an IllegalStateException. This
method is useful for cases where you are not expecting the queue to ever reject an
item.

The Map Interface
The Collections Framework also includes the java.util.Map, which is a collection of
key/value pairs. Other names for map are “dictionary” or “associative array.” Maps store
and retrieve elements with key values; they are very useful for things like caches or
minimalist databases. When you store a value in a map, you associate a key object with
a value. When you need to look up the value, the map retrieves it using the key.

With generics, a Map type is parameterized with two types: one for the keys and one for
the values. The following snippet uses a HashMap, which is an efficient type of map
implementation that we’ll discuss later:

 Map<String, Date> dateMap = new HashMap<String, Date>();
 dateMap.put("today", new Date());
 Date today = dateMap.get("today");

380 | Chapter 11: Core Utilities

In legacy code, maps simply map Object types to Object types and require the appro‐
priate cast to retrieve values.

The basic operations on Map are straightforward. In the following methods, the type K
refers to the key parameter type and the type V refers to the value parameter type:
public V put(K key , V value)

This method adds the specified key/value pair to the map. If the map already con‐
tains a value for the specified key, the old value is replaced and returned as the result.

public V get(K key)
This method retrieves the value corresponding to key from the map.

public V remove(K key)
This method removes the value corresponding to key from the map. The value
removed is returned.

public int size()

Use this method to find the number of key/value pairs in this map.

You can retrieve all the keys or values in the map:
public Set keySet()

This method returns a Set that contains all the keys in this map.

public Collection values()

Use this method to retrieve all the values in this map. The returned Collection can
contain duplicate elements.

Map has one child interface, SortedMap. A SortedMap maintains its key/value pairs sorted
in a particular order according to the key values. It provides the subMap(), headMap(),
and tailMap() methods for retrieving sorted map subsets. Like SortedSet, it also pro‐
vides a comparator() method, which returns an object that determines how the map
keys are sorted. We’ll talk more about that later. Java 7 adds a NavigableMap with func‐
tionality parallel to that of NavigableSet; namely, it adds methods to search the sorted
elements for an element greater or lesser than a target value.

Finally, we should make it clear that although related, Map is not literally a type of
Collection (Map does not extend the Collection interface). You might wonder why.
All of the methods of the Collection interface would appear to make sense for Map,
except for iterator(). A Map, again, has two sets of objects: keys and values, and separate
iterators for each. This is why a Map does not implement Collection.

One more note about maps: some map implementations (including Java’s standard
HashMap) allow null to be used as a key or value, but others may not.

Collections | 381

ConcurrentMap

The ConcurrentMap interface is part of the java.util.concurrent package. It extends
the base Map interface and adds atomic put, remove, and replace functionality that is
useful for concurrent programming:
public V putIfAbsent(K key, V value)

This method associates the value with the key only if the key was not already in use.
If the key exists, no action is taken. If the key does not exist, it is created. The
resulting value (existing or new) is returned.

public boolean remove(Object key, Object value)

This method removes the mapping (key and value) only if the current value asso‐
ciated with the key equals the supplied value. It returns true if the value was re‐
moved, false if not.

public boolean replace(K key, V existingValue, V newValue)

This method replaces the value associated with the key only if the existing value
equals the existingValue argument. It returns true if the value was replaced.

public boolean replace(K key, V value)

This method replaces the value associated with the key only if a mapping already
exists for the key (i.e., it already has some value).

Collection Implementations
Up until this point, we’ve talked only about interfaces. But you can’t instantiate inter‐
faces; you need concrete implementations. Of course, the Collections Framework in‐
cludes useful implementations of all of the collections interfaces. In some cases, there
are several alternatives from which to choose. To understand the tradeoffs between these
implementations, it helps to have a basic understanding of a few of the most common
data structures used in all programming: arrays, linked lists, trees, and hash maps. Many
books have been written about these data structures, and we will not drag you into the
mind-numbing details here. We’ll hit the highlights briefly as a prelude to our discussion
of the Java implementations. We should stress before we go on that the differences in
the implementations of Java collections are only significant when working with very
large numbers of elements or with extreme time sensitivity. For the most part, they all
behave well enough to be interchangeable.

Arrays

It should be fairly obvious that plain old Java arrays, shown in Figure 11-2, would be
good at holding an ordered collection of elements. As we mentioned earlier, however,
one limitation of arrays is that they cannot grow. This means that to support a true
Collection, arrays must be copied into larger arrays as capacity demands increase.
Another problem with using arrays for lists is that inserting an element into the middle

382 | Chapter 11: Core Utilities

of an array or taking one out generally also involves copying large parts of the array to
and fro, which is an expensive operation.

Figure 11-2. Array structure

Because of this, arrays are described as consuming constant time for retrieval, but linear
time for insertion into or deletion from the body of the array. The term constant time
here means that, in general, the time to retrieve an element stays roughly constant even
as you add more elements to the array (this is due to the fact that arrays are fully indexed).
Linear time means that the time to insert or delete an element takes longer and longer
as the array adds elements; the time expense grows linearly with the number of elements.
There are worse things too: exponential time, as you might imagine, means that an
algorithm is useless for very large numbers of elements. Unless otherwise stated, all of
the Java collection implementations work in linear time or better.

Arrays are useful when you are mostly reading or exclusively appending to the end of
the collection.

Linked lists

A linked list, shown in Figure 11-3, holds its elements in a chain of nodes, each refer‐
encing the node before and after it (if any). In this way, the linked list forms an ordered
collection that looks something like an array. Unlike the magic of an array, however, to
retrieve an element from a linked list, you must traverse the list from either the head or
tail to reach the correct spot. As you might have guessed, this is a linear-time operation
that gets more expensive as the number of elements grows. The flip side is that once
you’re at the spot, inserting or deleting an element is a piece of cake: simply change the
references and you’re done. This means that insertions and deletions—at least near the
head and tail of a linked list—are said to be in constant time.

Figure 11-3. Linked list structure

Linked lists are useful when you are doing a lot of insertions or deletions on a collection.
An interesting variation on the basic linked list is the “skip list,” which is a kind of linked
list that maintains a hierarchy of references spanning increasing ranges of elements
instead of only pointing to the next element in the chain. The idea is that when you need
to jump to the middle, you can use one of these “express lane” pointers to jump to the

Collections | 383

approximate location and then move forward or backward with finer granularity as
needed by descending the pointer hierarchy. Java 7 adds skip list implementations of
the NavigableMap and NavigableSet interfaces in the java.util.concurrent package
for concurrent programming.

Trees

A tree is like a linked list in that it holds its elements in nodes that point to their neigh‐
bors. However, a tree, as its name suggests, does not have a linear structure, but instead
arranges its elements in a cascade of branches like a family tree. The power of the tree
structure is in sorting and searching elements that have a specified order. A binary search
tree, as shown in Figure 11-4, arranges its elements such that the children divide up a
range of values. One child holds values greater than the node and one child holds values
lower. By applying this knowledge recursively on a properly “balanced” tree, we can
rapidly find any value. The effort to search the tree is described as log(n) time, which
means that it grows only with the logarithm of the number of elements, which is much
better than the linear time it would take to check all of the elements by brute force.

Figure 11-4. Tree structure

Trees are useful for maintaining and searching large collections of sorted elements. A
similar concept that can be used for data that rarely requires updates is to use a plain
sorted array with a binary search algorithm. In a binary search, you make (exponen‐
tially) decreasing size jumps into the sorted array to approximate locations for the ele‐
ment and then choose your next jump based on whether you have overshot or undershot
the target. The Java Arrays class has several binarySearch() methods that operate on
different types of arrays.

Hash maps

Hash maps are strange and magical beasts. A hash map (or hash table, as it is also called)
uses a mathematical hash algorithm applied to its key value to distribute its element

384 | Chapter 11: Core Utilities

values into a series of “buckets.” The algorithm relies on the hash algorithm to distribute
the elements as uniformly (randomly) as possible. To retrieve an element by its key
simply involves searching the correct bucket. Because the hash calculation is fast and
can have a large number of buckets, there are few elements to search and retrieval is
very fast. As we described in Chapter 7, all Java Objects have a hash value as determined
by the hashCode() method. We’ll say more about hash codes and key values for maps
later in this chapter.

Hash map performance is governed by many factors, including the sophistication of the
hash algorithm implemented by its elements (see Figure 11-5). In general, with a good
hash function implementation, the Java HashMap operates in constant time for putting
and retrieving elements. Hash maps are fast at mapping unsorted collections.

Figure 11-5. Hash map structure

Java Collections implementations

Table 11-7 lists the implementations of the Java Collections Framework by interface
type.

Table 11-7. Collections Framework implementation classes
Interface Implementation

Set HashSet

LinkedHashSet

CopyOnWriteArraySet

EnumSet

CopyOnWriteArraySet

SortedSet TreeSet

ConcurrentSkipListSet

List ArrayList

LinkedList

Vector a

Stack

CopyOnWriteArrayList

Collections | 385

Interface Implementation

Map HashMap

EnumMap

LinkedHashMap

IdentityHashMap

Hashtable a

ConcurrentMap ConcurrentHashMap

ConcurrentSkipListMap

SortedMap TreeMap

Queue / Dequeue LinkedList

ArrayDeque

PriorityQueue

DelayQueue

SynchronousQueue

ConcurrentLinkedQueue

ConcurrentLinkedDequeue

BlockingQueue ArrayBlockingQueue

LinkedBlockingQueue

PriorityBlockingQueue

a Vector and Hashtable are legacy classes and should generally be avoided in favor of ArrayList and HashMap,
respectively.

ArrayList and LinkedList provide the array and linked list implementations of the
List interface that was described earlier. ArrayList is satisfactory for most purposes,
but you should use LinkedList when you plan to do a lot of insertions or deletions at
various points in the list.

HashSet and HashMap provide a good hash map implementation of the Set and Map
interfaces. The LinkedHashSet and LinkedHashMap implementations combine the hash
algorithm with a linked list that maintains the insertion order of the elements. Note that
these linked collections are ordered, but not sorted collections.

TreeSet and TreeMap maintain sorted collections using a tree data structure. In the case
of TreeMap, it is the key values that are sorted. The sorting is accomplished by a com‐
parator object. We’ll discuss sorting later in this chapter.

Queue is implemented both by LinkedList (which implements List, Queue, and—as of
Java 7, Deque) and PriorityQueue. A PriorityQueue’s prioritization comes from a
sorting order determined by a comparator supplied with its constructor. Elements that
sort “least” or “lowest” have the highest priority. The various implementations of Block
ingQueue mirror these for concurrency-aware queues.

Finally, IdentityHashMap is an alternate type of HashMap that uses object identity instead
of object equality to determine which keys match which objects. Normally, any two
objects that test equal with equals() operate as the same key in a Map. With Identity

386 | Chapter 11: Core Utilities

HashMap, only the original object instance retrieves the element. We’ll talk about hash
codes and keys more in the next section.

We should also mention three specialized collections that we’ll talk about later: Enum
Set and EnumMap are specifically designed to work with Java enumerations. WeakHash
Map uses weak references to cooperate with Java garbage collection.

Hash Codes and Key Values
The term hash in Hashtable and HashMap refers to the key hash value that these col‐
lections use to make their associations. Specifically, an element in a Hashtable or Hash
Map is not associated with a key strictly by the key object’s identity but rather by a function
of the key’s contents. This allows keys that are equivalent to access the same object. By
“equivalent,” we mean those objects that compare true with equals(). If you store an
object in a Hashtable using one object as a key, you can use any other object that
equals() tells you is equivalent to retrieve the stored object.

It’s easy to see why equivalence is important if you remember our discussion of strings.
You may create two String objects that have the same characters in them but that are
different objects in Java. In this case, the == operator tells you that the String objects
are different, but the equals() method of the String class tells you that they are equiv‐
alent. Because they are equivalent, if we store an object in a HashMap using one of the
String objects as a key, we can retrieve it using the other.

The hash code of an object makes this association based on content. As we mentioned
in Chapter 7, the hash code is like a fingerprint of the object’s data content. HashMap uses
it to store the objects so that they can be retrieved efficiently. The hash code is nothing
more than a number (an integer) that is a function of the data. The number is always
the same for identical data, but the hashing function is intentionally designed to generate
as different (random looking) a number as possible for different combinations of data.
In other words, a very small change in the data should produce a big difference in the
number. It should be unlikely that two nonidentical datasets, even very similar ones,
would produce the same hash code.

As we described earlier, internally, HashMap really just keeps a number of lists of objects,
but it puts objects into the lists based on their hash code. When it wants to find the
object again, it can look at the hash code and know immediately how to get to the
appropriate list. The HashMap still might end up with a number of objects to examine,
but the list should be short. For each object in the short list it finds, it does the following
comparison to see if the key matches:

 if ((keyHashcode == storedKeyHashcode) && key.equals(storedKey))
 return object;

There is no prescribed way to generate hash codes. The only requirement is that they
be somewhat randomly distributed and reproducible (based on the data). This means

Collections | 387

that two objects that are not the same could end up with the same hash code by accident.
This is unlikely (there are 232 possible integer values); moreover, it shouldn’t cause a
problem because as you can see in the preceding snippet, the HashMap ultimately checks
the actual keys using equals(), as well as the hash codes, to find the match. Therefore,
even if two key objects have the same hash code, they can still coexist in the HashMap as
long as they don’t test equal to one another as well. (To put it another way, if two keys’
hashcodes are the same and the equals method says they are the same, then they will be
considered the same key and retrieve the same value object.)

Hash codes are computed by an object’s hashCode() method, which is inherited from
the Object class if it isn’t overridden. The default hashCode() method simply assigns
each object instance a unique number to be used as a hash code. If a class does not
override this method, each instance of the class will have a unique hash code. This goes
along well with the default implementation of equals() in Object, which only compares
objects for identity using ==; the effect being that these arbitrary objects serve as unique
keys in maps.

You must override equals() in any classes for which equivalence of different objects is
meaningful. Likewise, if you want equivalent objects to serve as equivalent keys, you
must override the hashCode() method as well to return identical hash code values. To
do this, you need to create some suitably randomizing, arbitrary function of the contents
of your object. The only criterion for the function is that it should be almost certain to
return different values for objects with different data, but the same value for objects
with identical data.

Synchronized and Unsynchronized Collections
The java.util.Collections class contains important static utility methods for work‐
ing with Sets and Maps. All the methods in Collections operate on interfaces, so they
work regardless of the actual implementation classes you’re using. The first methods
we’ll look at involve creating synchronized versions of our collections.

Most of the default collection implementations are not synchronized; that is, they are
not safe for concurrent access by multiple threads. The reason for this is performance.
In many applications, there is no need for synchronization, so the Collections API does
not provide it by default. Instead, you can create a synchronized version of any collection
using the following methods of the Collections class:

 public static Collection synchronizedCollection(Collection c)
 public static Set synchronizedSet(Set s)
 public static List synchronizedList(List list)
 public static Map synchronizedMap(Map m)
 public static SortedSet synchronizedSortedSet(SortedSet s)
 public static SortedMap synchronizedSortedMap(SortedMap m)

388 | Chapter 11: Core Utilities

These methods return synchronized, threadsafe versions of the supplied collection, by
wrapping them (in a new object that implements the same interface and delegates the
calls to the underlying collection). For example, the following shows how to create a
threadsafe List:

 List list = new ArrayList();
 List syncList = Collections.synchronizedList(list);

Multiple threads can call methods on this list safely and they will block as necessary to
wait for the other threads to complete.

In contrast to the norm, the older Hashtable and Vector collections are synchronized
by default (and, therefore, may be a bit slower when that’s not needed). The “copy on
write” collection implementations that we’ll talk about later also do not require syn‐
chronization for their special applications. Finally, the ConcurrentHashMap and Concur
rentLinkedQueue implementations that we’ll cover later are threadsafe and designed
specifically to support a high degree of concurrent access without incurring a significant
penalty for their internal synchronization.

Synchronizing iterators

This is important, so remember this! Although synchronized collections are threadsafe,
the Iterators returned from them are not. If you obtain an Iterator from a collection,
you should do your own synchronization to ensure that the collection does not change
as you’re iterating through its elements. A convention does this by synchronizing on
the collection itself with a synchronized block:

 synchronized(syncList) {
 Iterator iterator = syncList.iterator();
 // do stuff with the iterator here
 }

If you do not synchronize on the collection while iterating and the collection changes,
Java attempts to throw a ConcurrentModificationException. However, this is not
guaranteed.

ConcurrentHashMap and ConcurrentLinkedQueue

The java.util.concurrent.ConcurrentHashMap class is part of the concurrency util‐
ities package and provides a Map that performs well under multithreaded access. A
ConcurrentHashMap is safe for access from multiple threads, but it does not necessarily
block threads during operations. Instead, some degree of overlapping operations, such
as concurrent reads, are permitted safely. The ConcurrentHashMap can even allow a
limited number of concurrent writes to happen while reads are being performed. These
operations and iterators over the map do not throw a ConcurrentModificationExcep
tion, but no guarantees are made as to exactly when one thread will see another thread’s
work. All views of the map are based upon the most recently committed writes.

Collections | 389

Similarly, the ConcurrentLinkedQueue implementation provides the same sort of ben‐
efits for a linked queue, allowing some degree of overlapping writes and reads by con‐
current users.

Read-Only and Read-Mostly Collections
You can use the Collections class to create read-only versions of any collection:

 public static Collection unmodifiableCollection(Collection c)
 public static Set unmodifiableSet(Set s)
 public static List unmodifiableList(List list)
 public static Map unmodifiableMap(Map m)
 public static SortedSet unmodifiableSortedSet(SortedSet s)
 public static SortedMap unmodifiableSortedMap(SortedMap m)

Making unmodifiable versions of collections is a useful way to ensure that a collection
handed off to another part of your code is not modified intentionally or inadvertently.
Attempting to modify a read-only collection results in an UnsupportedOperationEx
ception.

Copy-on-write (“read-mostly”) collections

The java.util.concurrent package contains the CopyOnWriteArrayList and CopyOn
WriteArraySet List and Set implementations. These classes are threadsafe and do not
require explicit synchronization, but are heavily optimized for read operations. Any
write operation causes the entire data structure to be copied internally in a blocking
operation. The advantage is that if you are almost always reading, these implementations
are extremely fast and no synchronization is required.

WeakHashMap
In Chapter 5, we introduced the idea of weak references—object references that don’t
prevent their objects from being removed by the garbage collector. WeakHashMap is an
implementation of Map that makes use of weak references in its keys and values. This
means that you don’t have to remove key/value pairs from a Map when you’re finished
with them. Normally, if you removed all references to a key object from the rest of your
application, the Map would still contain a reference and keep the object “alive,” preventing
garbage collection. WeakHashMap changes this; once you remove all references to a key
object from the rest of the application, the WeakHashMap lets go of it, too and both the
key and its corresponding value (if it is similarly unreferenced) are eligible for garbage
collection.

EnumSet and EnumMap
EnumSet and EnumMap are collections designed to work specifically with the limited
domain of objects defined by a Java enumerated type. (Enums are discussed in

390 | Chapter 11: Core Utilities

Chapter 5.) Java enums are Java objects and there is no reason you can’t use them as
keys or values in collections otherwise. However, the EnumSet and EnumMap classes are
highly optimized, taking advantage of the knowledge that the set or keys in the map,
respectively, may be one of only a few individual objects. With this knowledge, storage
can be compact and fast using bit fields internally. The idea is to make using collection
operations on enumerations efficient enough to replace the general usage pattern of bit-
flags and make binary logic operations unnecessary. Instead of using:

 int flags = getFlags();
 if (flags & (Constants.ERROR | Constants.WARNING) != 0)

we could use set operations:
 EnumSet flags = getFlags();
 if (flags.contains(Constants.Error) ||
 flags.contains(Constants.Warning))

This code may not be as terse, but it is easier to understand and should be just as fast.

Sorting Collections
The Collections utilities include methods for performing common operations like sort‐
ing. Sorting comes in two varieties:
public static void sort(List list)

This method sorts the given list. You can use this method only on lists whose
elements implement the java.lang.Comparable interface. Luckily, many classes
already implement this interface, including String, Date, BigInteger, and the
wrapper classes for the primitive types (Integer, Double, etc.).

public static void sort(List list, Comparatorc)
Use this method to sort a list whose elements don’t implement the Comparable
interface. The supplied java.util.Comparator does the work of comparing ele‐
ments. You might, for example, write an ImaginaryNumber class and want to sort a
list of them. You would then create a Comparator implementation that knew how
to compare two imaginary numbers.

The sorted collections we discussed earlier, SortedSet and SortedMap, maintain their
collections in a specified order using the Comparable interface of their elements. If the
elements do not implement Comparable, you must supply a Comparator object yourself
in the constructor of the implementation. For example:

 Comparator myComparator = ...
 SortedSet mySet = new TreeSet(myComparator);

Collections give you some other interesting capabilities, too. If you’re interested in
learning more, check out the min(), max(), binarySearch(), and reverse() methods.

Collections | 391

A Thrilling Example
Collections is a bread-and-butter topic, which means it’s hard to create exciting exam‐
ples. The example in this section reads a text file, parses all its words, counts the number
of occurrences, sorts them, and writes the results to another file. It gives you a good feel
for how to use collections in your own programs. This example also shows features
including generics, autoboxing, and the Scanner API.

 import java.io.*;
 import java.util.*;

 public class WordSort
 {
 public static void main(String[] args) throws IOException
 {
 if (args.length < 2) {
 System.out.println("Usage: WordSort inputfile outputfile");
 return;
 }
 String inputfile = args[0];
 String outputfile = args[1];

 /* Create the word map. Each key is a word and each value is an
 Integer that represents the number of times the word occurs
 in the input file.
 */
 Map<String,Integer> map = new TreeMap<>();

 Scanner scanner = new Scanner(new File(inputfile));
 while (scanner.hasNext()) {
 String word = scanner.next();
 Integer count = map.get(word);
 count = (count == null ? 1 : count +1);
 map.put(word, count);
 }
 scanner.close();

 // get the map's keys
 List<String> keys = new ArrayList<>(map.keySet());

 // write the results to the output file
 PrintWriter out = new PrintWriter(new FileWriter(outputfile));
 for (String key : keys)
 out.println(key + " : " + map.get(key));
 out.close();
 }
 }

Suppose, for example, that you have an input file named Ian Moore.txt:
 Well it was my love that kept you going
 Kept you strong enough to fall

392 | Chapter 11: Core Utilities

 And it was my heart you were breaking
 When he hurt your pride

 So how does it feel
 How does it feel
 How does it feel
 How does it feel

You could run the example on this file using the following command:
 % java WordSort "Ian Moore.txt" count.txt

The output file, count.txt, looks like this:
 And : 1
 How : 3
 Kept : 1
 So : 1
 Well : 1
 When : 1
 breaking : 1
 does : 4
 enough : 1
 ...

The results are case-sensitive: “How” and “how” are recorded separately. You could
modify this behavior by converting words to all lowercase after retrieving them from
the Scanner.

Properties
The java.util.Properties class is a specialized hash table for strings. Properties are
generally used to hold textual configuration data. Examples of this are the Java System
properties, which are passed to a Java application on the command line. We’ll cover
those later in this section. More generally, you can use a Properties table to hold ar‐
bitrary configuration information for an application in an easily accessible format. The
neat thing about a Properties object is that it can load and store its information in a
plain text or XML text format using streams (see Chapter 12 for information on
streams).

Any string values can be stored as key/value pairs in a Properties table. However, the
convention is to use a dot-separated naming hierarchy to group property names into
logical structures. (Unfortunately, this is just a convention, and you can’t really work
with groups of properties in a hierarchical way as this might imply.) For example, you
can create an empty Properties object and add String key/value pairs just as you could
with a Map:

 Properties props = new Properties();
 props.setProperty("myApp.xsize", "52");
 props.setProperty("myApp.ysize", "79");

Properties | 393

Thereafter, you can retrieve values with the getProperty() method:
 String xsize = props.getProperty("myApp.xsize");

If the named property doesn’t exist, getProperty() returns null. You can get an Enu
meration of the property names with the propertyNames() method:

 for (Enumeration e = props.propertyNames(); e.hasMoreElements();) {
 String name = e.nextElement();
 ...
 }

When you create a Properties object, you can specify a second object for default prop‐
erty values:

 Properties defaults = ...
 Properties props = new Properties(defaults);

Now, when you call getProperty(), the method searches the default table if it doesn’t
find the named property in the current table. An alternative version of getProper
ty() also accepts a default value; this value is returned instead of null if the property
is not found in the current or default lists:

 String xsize = props.getProperty("myApp.xsize", "50");

Loading and Storing
You can save a Properties table to an OutputStream using the save() method. The
property information is output in a flat ASCII format. We’ll talk about I/O in the next
chapter, but bear with us for now. Continuing with the previous example, output the
property information using the System.out stream as follows:

 props.save(System.out, "Application Parameters");

System.out is a standard output stream that prints to the console or command line of
an application. We could also save the information to a file using a FileOutputStream
as the first argument to save(). The second argument to save() is a String that is used
as a header for the data. The previous code outputs something like the following to
System.out:

 #Application Parameters
 #Mon Feb 12 09:24:23 CST 2001
 myApp.ysize=79
 myApp.xsize=52

The load() method reads the previously saved contents of a Properties object from
an InputStream:

 FileInputStream fin;
 ...
 Properties props = new Properties()
 props.load(fin);

394 | Chapter 11: Core Utilities

The list() method is useful for debugging. It prints the contents to an Output
Stream in a format that is more human-readable but not retrievable by load(). It trun‐
cates long lines with an ellipsis (...).

The Properties class also contains storeToXML() and loadFromXML() methods. These
operate just like the save() and load() methods but write an XML file like the following:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"
 >
 <properties>
 <comment>My Properties</comment>
 <entry key="myApp.ysize">79</entry>
 <entry key="myApp.xsize">52</entry>
 </properties>

We’ll cover XML in detail in Chapter 24.

System Properties
The java.lang.System class provides access to basic system environment information
through the static System.getProperties() method. This method returns a Proper
ties table that contains system properties. System properties take the place of envi‐
ronment variables in some programming environments. Table 11-8 summarizes system
properties that are guaranteed to be defined in any Java environment.

Table 11-8. System properties
System property Meaning

java.vendor Vendor-specific string

java.vendor.url URL of vendor

java.version Java version

java.home Java installation directory

java.class.version Java class version

java.class.path The classpath

os.name Operating system name

os.arch Operating system architecture

os.version Operating system version

file.separator File separator (such as / or \)

path.separator Path separator (such as : or ;)

line.separator Line separator (such as \n or \r\n)

user.name User account name

user.home User’s home directory

Properties | 395

Java applets and other Java applications that run with restrictions may be prevented
from reading the following properties: java.home, java.class.path, user.name,
user.home, and user.dir. As you’ll see later, these restrictions are implemented by a
SecurityManager object.

Your application can set system properties with the static method System.setProper
ty() . You can also set your own system properties when you run the Java interpreter,
using the -D option:

 % java -Dfoo=bar -Dcat=Boojum MyApp

Because it is common to use system properties to provide parameters such as numbers
and colors, Java provides some convenience routines for retrieving property values and
parsing them into their appropriate types. The classes Boolean, Integer, Long, and
Color each come with a “get” method that looks up and parses a system property. For
example, Integer.getInteger("foo") looks for a system property called foo and then
returns it as an Integer.

The Preferences API
The Java Preferences API accommodates the need to store both system and per-user
configuration data persistently across executions of the Java VM. The Preferences API
is like a portable version of the Windows registry, a mini-database in which you can
keep small amounts of information, accessible to all applications. Entries are stored as
name/value pairs, where the values may be of several standard types including strings,
numbers, Booleans, and even short byte arrays. We should stress that the Preferences
API is not intended to be used as a true database and you can’t store large amounts of
data in it.

Preferences are stored logically in a tree. A preferences object is a node in the tree located
by a unique path. You can think of preferences as files in a directory structure; within
the file are stored one or more name/value pairs. To store or retrieve items, you ask for
a preferences object for the correct path. Here is an example; we’ll explain the node
lookup shortly:

 Preferences prefs = Preferences.userRoot().node("oreilly/learningjava");

 prefs.put("author", "Niemeyer");
 prefs.putInt("edition", 4);

 String author = prefs.get("author", "unknown");
 int edition = prefs.getInt("edition", -1);

In addition to the String and int type accessors, there are the following get methods
for other types: getLong(), getFloat(), getDouble(), getByteArray(), and getBoo
lean(). Each of these get methods takes a key name and default value to be used if no
value is defined. And, of course, for each get method, there is a corresponding “put”

396 | Chapter 11: Core Utilities

method that takes the name and a value of the corresponding type. Providing defaults
in the get methods is mandatory. The intent is for applications to function even if there
is no preference information or if the storage for it is not available, as we’ll discuss later.

Preferences are stored in two separate trees: system preferences and user preferences.
System preferences are shared by all users of the Java installation. But user preferences
are maintained separately for each user; each user sees his or her own preference in‐
formation. In our example, we used the static method userRoot() to fetch the root node
(preference object) for the user preferences tree. We then asked that node to find the
child node at the path oreilly/learningjava, using the node() method. The corresponding
systemRoot() method provides the system root node.

The node() method accepts either a relative or an absolute path. A relative path asks
the node to find the path relative to itself as a base. We also could have gotten our node
this way:

 Preferences prefs =
 Preferences.userRoot().node("oreilly").node("learningjava");

But node() also accepts an absolute path, in which case the base node serves only to
designate the tree that the path is in. We could use the absolute path /oreilly/learning‐
java as the argument to any node() method and reach our preferences object.

Preferences for Classes
Java is an object-oriented language, and so it’s natural to wish to associate preference
data with classes. In Chapter 12, we’ll see that Java provides special facilities for loading
resource files associated with class files. The Preferences API follows this pattern by
associating a node with each Java package. Its convention is simple: the node path is just
the package name with the dots (.) converted to slashes (/). All classes in the package
share the same node.

You can get the preference object node for a class using the static Preferences.user
NodeForPackage() or Preferences.systemNodeForPackage() methods, which take a
Class as an argument and return the corresponding package node for the user and
system trees, respectively. For example:

 Preferences datePrefs = Preferences.systemNodeForPackage(Date.class);
 Preferences myPrefs = Preferences.userNodeForPackage(MyClass.class);
 Preferences morePrefs =
 Preferences.userNodeForPackage(myObject.getClass());

Here, we’ve used the .class construct to refer to the Class object for the Date class in
the system tree and to our own MyClass class in the user tree. The Date class is in the
java.util package, so we’ll get the node /java/util in that case. You can get the Class
for any object instance using the getClass() method.

The Preferences API | 397

Preferences Storage
There is no need to “create” nodes. When you ask for a node, you get a preferences object
for that path in the tree. If you write something to it, that data is eventually placed in
persistent storage, called the backing store. The backing store is the implementation-
dependent storage mechanism used to hold the preference data. All the put methods
return immediately, and no guarantees are made as to when the data is actually stored.
You can force data to the backing store explicitly using the flush() method of the
Preferences class. Conversely, you can use the sync() method to guarantee that a
preferences object is up-to-date with respect to changes placed into the backing store
by other applications or threads. Both flush() and sync() throw a BackingStoreEx
ception if data cannot be read or written for some reason.

You don’t have to create nodes, but you can test for the existence of a data node with the
nodeExists() method, and you can remove a node and all its children with the
removeNode() method. To remove a data item from a node, use the remove() method,
specifying the key; or you can remove all the data from a node with the clear() method
(which is not the same as removing the node).

Although the details of the backing store are implementation-dependent, the Prefer‐
ences API provides a simple import/export facility that can read and write parts of a
preference tree to an XML file. (The format for the file is available at http://java.sun.com/
dtd/.) A preference object can be written to an output stream with the exportNode()
method. The exportSubtree() method writes the node and all its children. Going the
other way, the static Preferences.importPreferences() method can read the XML
file and populate the appropriate tree with its data. The XML file records whether it is
user or system preferences, but user data is always placed into the current user’s tree,
regardless of who generated it.

It’s interesting to note that because the import mechanism writes directly to the tree,
you can’t use this as a general data-to-XML storage mechanism (other APIs play that
role). Also, although we said that the implementation details are not specified, it’s in‐
teresting how things really work in the current implementation. On some systems, Java
creates a directory hierarchy for each tree at $JAVA_HOME/jre/.systemPrefs and
$HOME/.java/.userPrefs, respectively. In each directory, there is an XML file called
prefs.xml corresponding to that node.

Change Notification
Often your application should be notified if changes are made to the preferences while
it’s running. You can get updates on preference changes using the PreferenceChange
Listener and NodeChangeListener interfaces. These interfaces are examples of event
listener interfaces, and we’ll see many examples of these in Chapters 16 through 18. We’ll
also talk about the general pattern later in this chapter in the section “Observers and

398 | Chapter 11: Core Utilities

Observables” on page 406. For now, we’ll just say that by registering an object that imple‐
ments PreferenceChangeListener with a node, you can receive updates on added,
removed, and changed preference data for that node. The NodeChangeListener allows
you to be told when child nodes are added to or removed from a specific node. Here is
a snippet that prints all the data changes affecting our /oreilly/learningjava node:

 Preferences prefs =
 Preferences.userRoot().node("/oreilly/learningjava");

 prefs.addPreferenceChangeListener(new PreferenceChangeListener() {
 public void preferenceChange(PreferenceChangeEvent e) {
 System.out.println("Value: " + e.getKey()
 + " changed to "+ e.getNewValue());
 }
 });

In brief, this example listens for changes to preferences and prints them. If this example
isn’t immediately clear, it should be after you’ve read about events in Chapter 16 and
beyond.

The Logging API
The java.util.logging package provides a highly flexible and easy-to-use logging
framework for system information, error messages, and fine-grained tracing (debug‐
ging) output. With the logging package, you can apply filters to select log messages,
direct their output to one or more destinations (including files and network services),
and format the messages appropriately for their consumers.

Most importantly, much of this basic logging configuration can be set up externally at
runtime through the use of a logging setup properties file or an external program. For
example, by setting the right properties at runtime, you can specify that log messages
are to be sent both to a designated file in XML format and also logged to the system
console in a digested, human-readable form. Furthermore, for each of those destina‐
tions, you can specify the level or priority of messages to be logged, discarding those
below a certain threshold of significance. By following the correct source conventions
in your code, you can even make it possible to adjust the logging levels for specific parts
of your application, allowing you to target individual packages and classes for detailed
logging without being overwhelmed by too much output. The Logging API can even
be controlled remotely via Java Management Extensions MBean APIs.

Overview
Any good logging API must have at least two guiding principles. First, performance
should not inhibit the developer from using log messages freely. As with Java language
assertions (discussed in Chapter 4), when log messages are turned off, they should not
consume any significant amount of processing time. This means that there’s no

The Logging API | 399

performance penalty for including logging statements as long as they’re turned off.
Second, although some users may want advanced features and configuration, a logging
API must have some simple mode of usage that is convenient enough for time-starved
developers to use in lieu of the old standby System.out.println(). Java’s Logging API
provides a simple model and many convenience methods that make it very tempting.

Loggers

The heart of the logging framework is the logger, an instance of java.util.log
ging.Logger. In most cases, this is the only class your code will ever have to deal with.
A logger is constructed from the static Logger.getLogger() method, with a logger
name as its argument. Logger names place loggers into a hierarchy with a global, root
logger at the top and a tree and children below. This hierarchy allows the configuration
to be inherited by parts of the tree so that logging can be automatically configured for
different parts of your application. The convention is to use a separate logger instance
in each major class or package and to use the dot-separated package and/or class name
as the logger name. For example:

 package com.oreilly.learnjava;
 public class Book {
 static Logger log = Logger.getLogger("com.oreilly.learnjava.Book");

The logger provides a wide range of methods to log messages; some take very detailed
information, and some convenience methods take only a string for ease of use. For
example:

 log.warning("Disk 90% full.");
 log.info("New user joined chat room.");

We cover methods of the logger class in detail a bit later. The names warning and info
are two examples of logging levels; there are seven levels ranging from SEVERE at the
top to FINEST at the bottom. Distinguishing log messages in this way allows us to select
the level of information that we want to see at runtime. Rather than simply logging
everything and sorting through it later (with negative performance impact) we can
tweak which messages are generated. We’ll talk more about logging levels in the next
section.

We should also mention that for convenience in very simple applications or experi‐
ments, a logger for the name “global” is provided in the static field Logger.global. You
can use it as an alternative to the old standby System.out.println() for those cases
where that is still a temptation:

 Logger.global.info("Doing foo...")

400 | Chapter 11: Core Utilities

Handlers

Loggers represent the client interface to the logging system, but the actual work of
publishing messages to destinations (such as files or the console) is done by handler
objects. Each logger may have one or more Handler objects associated with it, which
includes several predefined handlers supplied with the Logging API: ConsoleHandler,
FileHandler, StreamHandler, and SocketHandler. Each handler knows how to deliver
messages to its respective destination. ConsoleHandler is used by the default configu‐
ration to print messages on the command line or system console. FileHandler can
direct output to files using a supplied naming convention and automatically rotate the
files as they become full. The others send messages to streams and sockets, respectively.
There is one additional handler, MemoryHandler, that can hold a number of log messages
in memory. MemoryHandler has a circular buffer, which maintains a certain number of
messages until it is triggered to publish them to another designated handler.

As we said, loggers can be set to use one or more handlers. Loggers also send messages
up the tree to each of their parent logger’s handlers. In the simplest configuration, this
means that all messages end up distributed by the root logger’s handlers. We’ll soon see
how to set up output using the standard handlers for the console, files, etc.

Filters

Before a logger hands off a message to its handlers or its parent’s handlers, it first checks
whether the logging level is sufficient to proceed. If the message doesn’t meet the re‐
quired level, it is discarded at the source. In addition to level, you can implement arbi‐
trary filtering of messages by creating Filter classes that examine the log message
before it is processed. A Filter class can be applied to a logger externally at runtime in
the same way that the logging level, handlers, and formatters, which are discussed next,
can be. A Filter may also be attached to an individual Handler to filter records at the
output stage (as opposed to the source).

Formatters

Internally, messages are carried in a neutral format, including all the source information
provided. It is not until they are processed by a handler that they are formatted for output
by an instance of a Formatter object. The logging package comes with two basic for‐
matters: SimpleFormatter and XMLFormatter. The SimpleFormatter is the default used
for console output. It produces short, human-readable summaries of log messages.
XMLFormatter encodes all the log message details into an XML record format. The DTD
for the format can be found at http://java.sun.com/dtd/.

Logging Levels
Table 11-9 lists the logging levels from most to least significant.

The Logging API | 401

Table 11-9. Logging API logging levels
Level Meaning

SEVERE Application failure

WARNING Notification of potential problem

INFO Messages of general interest to end users

CONFIG Detailed system configuration information for administrators

FINE,
FINER,
FINEST

Successively more detailed application tracing information for developers

These levels fall into three camps: end user, administrator, and developer. Applications
often default to logging only messages of the INFO level and above (INFO, WARNING, and
SEVERE). These levels are generally seen by end users and messages logged to them
should be suitable for general consumption. In other words, they should be written
clearly so they make sense to an average user of the application. Often these kinds of
messages are presented to the end user on a system console or in a pop-up message
dialog.

The CONFIG level should be used for relatively static but detailed system information
that could assist an administrator or installer. This might include information about the
installed software modules, host system characteristics, and configuration parameters.
These details are important, but probably not as meaningful to an end user.

The FINE, FINER, and FINEST levels are for developers or others with knowledge of the
internals of the application. These should be used for tracing the application at succes‐
sive levels of detail. You can define your own meanings for these. We’ll suggest a rough
outline in our example, coming up next.

A Simple Example
In the following (admittedly very contrived) example, we use all the logging levels so
that we can experiment with logging configuration. Although the sequence of messages
is nonsensical, the text is representative of messages of that type.

 import java.util.logging.*;

 public class LogTest {
 public static void main(String argv[])
 {
 Logger logger = Logger.getLogger("com.oreilly.LogTest");

 logger.severe("Power lost - running on backup!");
 logger.warning("Database connection lost, retrying...");
 logger.info("Startup complete.");
 logger.config("Server configuration: standalone, JVM version 1.5");
 logger.fine("Loading graphing package.");

402 | Chapter 11: Core Utilities

 logger.finer("Doing pie chart");
 logger.finest("Starting bubble sort: value ="+42);
 }
 }

There’s not much to this example. We ask for a logger instance for our class using the
static Logger.getLogger() method, specifying a class name. The convention is to use
the fully qualified class name, so we’ll pretend that our class is in a com.oreilly package.

Now, run LogTest. You should see output like the following on the system console:
 Jan 6, 2002 3:24:36 PM LogTest main
 SEVERE: Power lost - running on backup!
 Jan 6, 2002 3:24:37 PM LogTest main
 WARNING: Database connection lost, retrying...
 Jan 6, 2002 3:24:37 PM LogTest main
 INFO: Startup complete.

We see the INFO, WARNING, and SEVERE messages, each identified with a date and time‐
stamp and the name of the class and method (LogTest main) from which they came.
Notice that the lower-level messages did not appear. This is because the default logging
level is normally set to INFO, meaning that only messages of severity INFO and above are
logged. Also note that the output went to the system console and not to a logfile some‐
where; that’s also the default. Now we’ll describe where these defaults are set and how
to override them at runtime.

Logging Setup Properties
As we said in the introduction, probably the most important feature of the Logging API
is the ability to configure so much of it at runtime through the use of external properties
or applications. The default logging configuration is stored in the file jre/lib/
logging.properties in the directory where Java is installed. It’s a standard Java properties
file (of the kind we described earlier in this chapter).

The format of this file is simple. You can make changes to it, but you don’t have to.
Instead, you can specify your own logging setup properties file on a case-by-case basis
using a system property at runtime, as follows:

 % java -Djava.util.logging.config.file=myfile.properties

In this command line, myfile is your properties file that contains the directive, which
we’ll describe next. If you want to make this file designation more permanent, you can
do so by setting the filename in the corresponding entry using the Java Preferences API
described earlier in this chapter. You can go even further and instead of specifying a
setup file, supply a class that is responsible for setting up all logging configuration, but
we won’t get into that here.

A very simple logging properties file might look like this:

The Logging API | 403

 # Set the default logging level
 .level = FINEST
 # Direct output to the console
 handlers = java.util.logging.ConsoleHandler

Here, we have set the default logging level for the entire application using the .level
(that’s dot-level) property. We have also used the handlers property to specify that an
instance of the ConsoleHandler should be used (just like the default setup) to show
messages on the console. If you run our application again, specifying this properties file
as the logging setup, you will now see all our log messages.

But we’re just getting warmed up. Next, let’s look at a more complex configuration:
 # Set the default logging level
 .level = INFO

 # Ouput to file and console
 handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

 # Configure the file output
 java.util.logging.FileHandler.level = FINEST
 java.util.logging.FileHandler.pattern = %h/Test.log
 java.util.logging.FileHandler.limit = 25000
 java.util.logging.FileHandler.count = 4
 java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

 # Configure the console output
 java.util.logging.ConsoleHandler.level = WARNING

 # Levels for specific classes
 com.oreilly.LogTest.level = FINEST

In this example, we have configured two log handlers: a ConsoleHandler with the log‐
ging level set to WARNING and also an instance of FileHandler that sends the output to
an XML file. The file handler is configured to log messages at the FINEST level (all
messages) and to rotate logfiles every 25,000 lines, keeping a maximum of four files.

The filename is controlled by the pattern property. Forward slashes in the filename are
automatically localized to backslash (\) if necessary. The special symbol %h refers to the
user home. You can use %t to refer to the system temporary directory. If filenames
conflict, a number is appended automatically after a dot (starting at zero). Alternatively,
you can use %u to indicate where a unique number should be inserted into the name.
Similarly, when files rotate, a number is appended after a dot at the end. You can take
control of where the rotation number is placed with the %g identifier.

In our example, we specified the XMLFormatter class. We could also have used the
SimpleFormatter class to send the same kind of simple output to the console. The
ConsoleHandler also allows us to specify any formatter we wish, using the formatter
property.

404 | Chapter 11: Core Utilities

Finally, we promised earlier that you could control logging levels for parts of your ap‐
plications. To do this, set properties on your application loggers using their hierarchical
names:

 # Levels for specific logger (class) names
 com.oreilly.LogTest.level = FINEST

Here, we’ve set the logging level for just our test logger, by name. The log properties
follow the hierarchy, so we could set the logging level for all classes in the oreilly
package with:

 com.oreilly.level = FINEST

Logging levels are set in the order in which they are read in the properties file, so set the
general ones first. Also note that the levels set on the handlers allow the file handler to
filter only the messages being supplied by the loggers. So setting the file handler to
FINEST won’t revive messages squelched by a logger set to SEVERE (only the SEVERE
messages will make it to the handler from that logger).

The Logger
In our example, we used the seven convenience methods named for the various logging
levels. There are also three groups of general methods that can be used to provide more
detailed information. The most general are:

 log(Level level, String msg)
 log(Level level, String msg, Object param1)
 log(Level level, String msg, Object params[])
 log(Level level, String msg, Throwable thrown)

These methods accept as their first argument a static logging level identifier from the
Level class, followed by a parameter, array, or exception type. The level identifier is one
of Level.SEVERE, Level.WARNING, Level.INFO, and so on.

In addition to these four methods, there are four corresponding methods named logp()
that also take a source class and method name as the second and third arguments. In
our example, we saw Java automatically determine that information, so why would we
want to supply it? The answer is that Java may not always be able to determine the exact
method name because of runtime dynamic optimization. The p in logp stands for “pre‐
cise” and allows you to control this yourself.

There is yet another set of methods named logrb()—which probably should have been
named logprb()—that take both the class and method names and a resource bundle
name. The resource bundle localizes the messages (see the section “Resource Bun‐
dles” on page 326 in Chapter 10). More generally, a logger may have a resource bundle
associated with it when it is created, using another form of the getLogger method:

 Logger.getLogger("com.oreilly.LogTest", "logMessages");

The Logging API | 405

In either case, the resource bundle name is passed along with the log message and can
be used by the formatter. If a resource bundle is specified, the standard formatters treat
the message text as a key and try to look up a localized message. Localized messages
may include parameters using the standard message format notation and the form of
log(), which accepts an argument array.

Finally, there are convenience methods called entering(), exiting(), and throw
ing() that developers can use to log detailed trace information.

Performance
In the introduction, we said that performance is a priority of the Logging API. To that
end we’ve described that log messages are filtered at the source, using logging levels to
cut off processing of messages early. This saves much of the expense of handling them.
However, it cannot prevent certain kinds of setup work that you might do before the
logging call. Specifically, because we’re passing things into the log methods, it’s common
to construct detailed messages or render objects to strings as arguments. Often this kind
of operation is costly. To avoid unnecessary string construction, you should wrap ex‐
pensive log operations in a conditional test using the Logger isLoggable() method to
test whether you should carry out the operation:

 if (log.isLoggable(Level.CONFIG)) {
 log.config("Configuration: "+ loadExpensiveConfigInfo());
 }

Observers and Observables
The java.util.Observer interface and java.util.Observable class are relatively
small utilities, but they provide a glimpse of a fundamental design pattern in Java. Ob‐
servers and observables are part of the MVC (Model-View-Controller) framework. It
is an abstraction that lets a number of client objects (the observers) be notified whenever
a certain object or resource (the observable) changes in some way. We will see this pattern
used extensively in Java’s event mechanism, which is covered in Chapters 16 through
19. Although these classes are not often used directly, it’s worth looking at them in order
to understand the pattern.

The Observable object has a method that an Observer calls to register its interest. When
a change happens, the Observable sends a notification by calling a method in each of
the Observers. The observers implement the Observer interface, which specifies that
notification causes an Observer object’s update() method to be called.

406 | Chapter 11: Core Utilities

In the following example, we create a MessageBoard object that holds a String message.
MessageBoard extends Observable, from which it inherits the mechanism for register‐
ing observers (addObserver()) and notifying observers (notifyObservers()). To ob‐
serve the MessageBoard, we have Student objects that implement the Observer interface
so that they can be notified when the message changes:

 //file: MessageBoard.java
 import java.util.*;

 public class MessageBoard extends Observable {
 private String message;

 public String getMessage() {
 return message;
 }
 public void changeMessage(String message) {
 this.message = message;
 setChanged();
 notifyObservers(message);
 }
 public static void main(String [] args) {
 MessageBoard board = new MessageBoard();
 Student bob = new Student();
 Student joe = new Student();
 board.addObserver(bob);
 board.addObserver(joe);
 board.changeMessage("More Homework!");
 }
 } // end of class MessageBoard

 class Student implements Observer {
 public void update(Observable o, Object arg) {
 System.out.println("Message board changed: " + arg);
 }
 }

Our MessageBoard object extends Observable, which provides a method called addOb
server(). Each Student object registers itself using this method and receives updates
via its update() method. When a new message string is set using the MessageBoard’s
changeMessage() method, the Observable calls the setChanged() and notifyObserv
ers() methods to notify the observers. notifyObservers() can take as an argument
an Object to pass along as an indication of the change. This object—in this case, the
String containing the new message—is passed to the observer’s update() method as
its second argument. The first argument to update() is the Observable object itself.

The main() method of MessageBoard creates a MessageBoard and registers two Stu
dent objects with it. Then it changes the message. When you run the code, you should
see each Student object print the message as it is notified.

Observers and Observables | 407

You can imagine how you could implement the observer/observable relationship your‐
self using a List to hold the list of observers. In Chapter 16 and beyond, we’ll see that
the Java AWT and Swing event model extends this design pattern to use strongly typed
observables and observers, which are called events and event listeners. But for now, we
turn our discussion of core utilities to another fundamental topic: I/O.

408 | Chapter 11: Core Utilities

CHAPTER 12

Input/Output Facilities

In this chapter, we continue our exploration of the Java API by looking at many of the
classes in the java.io and java.nio packages. These packages offer a rich set of tools
for basic I/O and also provide the framework on which all file and network communi‐
cation in Java is built.

Figure 12-1 shows the class hierarchy of these packages.

We’ll start by looking at the stream classes in java.io, which are subclasses of the basic
InputStream, OutputStream, Reader, and Writer classes. Then we’ll examine the File
class and discuss how you can read and write files using classes in java.io. We also take
a quick look at data compression and serialization. Along the way, we’ll also introduce
the java.nio package. The NIO, or “new” I/O, package (introduced in Java 1.4) adds
significant functionality tailored for building high-performance services and in some
cases simply provides newer, better APIs that can be used in place of some java.io
features.

Streams
Most fundamental I/O in Java is based on streams. A stream represents a flow of data
with (at least conceptually) a writer at one end and a reader at the other. When you are
working with the java.io package to perform terminal input and output, reading or
writing files, or communicating through sockets in Java, you are using various types of
streams. Later in this chapter, we’ll look at the NIO package, which introduces a similar
concept called a channel. One difference betwen the two is that streams are oriented
around bytes or characters while channels are oriented around “buffers” containing
those data types—yet they perform roughly the same job. Let’s start by summarizing the
available types of streams:

409

InputStream, OutputStream
Abstract classes that define the basic functionality for reading or writing an un‐
structured sequence of bytes. All other byte streams in Java are built on top of the
basic InputStream and OutputStream.

Reader, Writer
Abstract classes that define the basic functionality for reading or writing a sequence
of character data, with support for Unicode. All other character streams in Java are
built on top of Reader and Writer.

InputStreamReader, OutputStreamWriter
Classes that bridge byte and character streams by converting according to a specific
character encoding scheme. (Remember: in Unicode, a character is not a byte!)

DataInputStream, DataOutputStream
Specialized stream filters that add the ability to read and write multibyte data types,
such as numeric primitives and String objects in a universal format.

ObjectInputStream, ObjectOutputStream
Specialized stream filters that are capable of writing whole groups of serialized Java
objects and reconstructing them.

BufferedInputStream, BufferedOutputStream, BufferedReader, BufferedWriter
Specialized stream filters that add buffering for additional efficiency. For real-world
I/O, a buffer is almost always used.

PrintStream, PrintWriter
Specialized streams that simplify printing text.

PipedInputStream, PipedOutputStream, PipedReader, PipedWriter
“Loopback” streams that can be used in pairs to move data within an application.
Data written into a PipedOutputStream or PipedWriter is read from its corre‐
sponding PipedInputStream or PipedReader.

FileInputStream, FileOutputStream, FileReader, FileWriter
Implementations of InputStream, OutputStream, Reader, and Writer that read
from and write to files on the local filesystem.

410 | Chapter 12: Input/Output Facilities

Figure 12-1. The java.io package

Streams | 411

Streams in Java are one-way streets. The java.io input and output classes represent the
ends of a simple stream, as shown in Figure 12-2. For bidirectional conversations, you’ll
use one of each type of stream.

Figure 12-2. Basic input and output stream functionality

InputStream and OutputStream are abstract classes that define the lowest-level inter‐
face for all byte streams. They contain methods for reading or writing an unstructured
flow of byte-level data. Because these classes are abstract, you can’t create a generic input
or output stream. Java implements subclasses of these for activities such as reading from
and writing to files and communicating with sockets. Because all byte streams inherit
the structure of InputStream or OutputStream, the various kinds of byte streams can
be used interchangeably. A method specifying an InputStream as an argument can
accept any subclass of InputStream. Specialized types of streams can also be layered or
wrapped around basic streams to add features such as buffering, filtering, or handling
higher-level data types.

Reader and Writer are very much like InputStream and OutputStream, except that they
deal with characters instead of bytes. As true character streams, these classes correctly
handle Unicode characters, which is not always the case with byte streams. Often, a
bridge is needed between these character streams and the byte streams of physical de‐
vices, such as disks and networks. InputStreamReader and OutputStreamWriter are
special classes that use a character-encoding scheme to translate between character and
byte streams.

This section describes all the interesting stream types with the exception of FileInput
Stream, FileOutputStream, FileReader, and FileWriter. We postpone the discussion
of file streams until the next section, where we cover issues involved with accessing the
filesystem in Java.

Basic I/O
The prototypical example of an InputStream object is the standard input of a Java ap‐
plication. Like stdin in C or cin in C++, this is the source of input to a command-line
(non-GUI) program. It is an input stream from the environment—usually a terminal

412 | Chapter 12: Input/Output Facilities

1. Standard error is a stream that is usually reserved for error-related text messages that should be shown to the
user of a command-line application. It is differentiated from the standard output, which often might be
redirected to a file or another application and not seen by the user.

window or possibly the output of another command. The java.lang.System class, a
general repository for system-related resources, provides a reference to the standard
input stream in the static variable System.in. It also provides a standard output
stream and a standard error stream in the out and err variables, respectively.1 The
following example shows the correspondence:

 InputStream stdin = System.in;
 OutputStream stdout = System.out;
 OutputStream stderr = System.err;

This snippet hides the fact that System.out and System.err aren’t just OutputStream
objects, but more specialized and useful PrintStream objects. We’ll explain these later,
but for now we can reference out and err as OutputStream objects because they are
derived from OutputStream.

We can read a single byte at a time from standard input with the InputStream’s read()
method. If you look closely at the API, you’ll see that the read() method of the base
InputStream class is an abstract method. What lies behind System.in is a particular
implementation of InputStream that provides the real implementation of the read()
method:

 try {
 int val = System.in.read();
 } catch (IOException e) {
 ...
 }

Although we said that the read() method reads a byte value, the return type in the
example is int, not byte. That’s because the read() method of basic input streams in
Java uses a convention carried over from the C language to indicate the end of a stream
with a special value. Data byte values are returned as unsigned integers in the range 0
to 255 and the special value of -1 is used to indicate that end of stream has been reached.
You’ll need to test for this condition when using the simple read() method. You can
then cast the value to a byte if needed. The following example reads each byte from an
input stream and prints its value:

 try {
 int val;
 while((val=System.in.read()) != -1)
 System.out.println((byte)val);
 } catch (IOException e) { ... }

As we’ve shown in the examples, the read() method can also throw an IOException if
there is an error reading from the underlying stream source. Various subclasses of

Streams | 413

IOException may indicate that a source such as a file or network connection has had
an error. Additionally, higher-level streams that read data types more complex than a
single byte may throw EOFException (“end of file”), which indicates an unexpected or
premature end of stream.

An overloaded form of read() fills a byte array with as much data as possible up to the
capacity of the array and returns the number of bytes read:

 byte [] buff = new byte [1024];
 int got = System.in.read(buff);

In theory, we can also check the number of bytes available for reading at a given time
on an InputStream using the available() method. With that information, we could
create an array of exactly the right size:

 int waiting = System.in.available();
 if (waiting > 0) {
 byte [] data = new byte [waiting];
 System.in.read(data);
 ...
 }

However, the reliability of this technique depends on the ability of the underlying stream
implementation to detect how much data can be retrieved. It generally works for files
but should not be relied upon for all types of streams.

These read() methods block until at least some data is read (at least one byte). You
must, in general, check the returned value to determine how much data you got and if
you need to read more. (We look at nonblocking I/O later in this chapter.) The skip()
method of InputStream provides a way of jumping over a number of bytes. Depending
on the implementation of the stream, skipping bytes may be more efficient than reading
them.

The close() method shuts down the stream and frees up any associated system re‐
sources. It’s important for performance to remember to close most types of streams
when you are finished using them. In some cases, streams may be closed automatically
when objects are garbage-collected, but it is not a good idea to rely on this behavior. In
Java 7, the try-with-resources language feature was added to make automatically closing
streams and other closeable entities easier. We’ll see some examples of that later in this
chapter. The flag interface java.io.Closeable identifies all types of stream, channel,
and related utility classes that can be closed.

Finally, we should mention that in addition to the System.in and System.out standard
streams, Java provides the java.io.Console API through System.console(). You can
use the Console to read passwords without echoing them to the screen.

414 | Chapter 12: Input/Output Facilities

Character Streams
In early versions of Java, some InputStream and OutputStream types included methods
for reading and writing strings, but most of them operated by naively assuming that a
16-bit Unicode character was equivalent to an 8-bit byte in the stream. This works only
for Latin-1 (ISO 8859-1) characters and not for the world of other encodings that are
used with different languages. In Chapter 10, we saw that the java.lang.String class
has a byte array constructor and a corresponding getBytes() method that each accept
character encoding as an argument. In theory, we could use these as tools to transform
arrays of bytes to and from Unicode characters so that we could work with byte streams
that represent character data in any encoding format. Fortunately, however, we don’t
have to rely on this because Java has streams that handle this for us.

The java.io Reader and Writer character stream classes were introduced as streams
that handle character data only. When you use these classes, you think only in terms of
characters and string data and allow the underlying implementation to handle the con‐
version of bytes to a specific character encoding. As we’ll see, some direct implemen‐
tations of Reader and Writer exist, for example, for reading and writing files. But more
generally, two special classes, InputStreamReader and OutputStreamWriter, bridge the
gap between the world of character streams and the world of byte streams. These are,
respectively, a Reader and a Writer that can be wrapped around any underlying byte
stream to make it a character stream. An encoding scheme is used to convert between
possible multibyte encoded values and Java Unicode characters. An encoding scheme
can be specified by name in the constructor of InputStreamReader or OutputStream
Writer. For convenience, the default constructor uses the system’s default encoding
scheme.

For example, let’s parse a human-readable string from the standard input into an integer.
We’ll assume that the bytes coming from System.in use the system’s default encoding
scheme:

 try {
 InputStream in = System.in;
 InputStreamReader charsIn = new InputStreamReader(in);
 BufferedReader bufferedCharsIn = new BufferedReader(inReader);

 String line = bufferedCharsIn.readLine();
 int i = NumberFormat.getInstance().parse(line).intValue();
 } catch (IOException e) {
 } catch (ParseException pe) { }

First, we wrap an InputStreamReader around System.in. This reader converts the in‐
coming bytes of System.in to characters using the default encoding scheme. Then, we
wrap a BufferedReader around the InputStreamReader. BufferedReader adds the
readLine() method, which we can use to grab a full line of text (up to a platform-

Streams | 415

specific, line-terminator character combination) into a String. The string is then parsed
into an integer using the techniques described in Chapter 10.

The important thing to note is that we have taken a byte-oriented input stream, Sys
tem.in, and safely converted it to a Reader for reading characters. If we wished to use
an encoding other than the system default, we could have specified it in the Input
StreamReader’s constructor like so:

 InputStreamReader reader = new InputStreamReader(System.in, "UTF-8");

For each character that is read from the reader, the InputStreamReader reads one or
more bytes and performs the necessary conversion to Unicode.

In Chapter 13, we use an InputStreamReader and a Writer in our simple web server
example, where we must use a character encoding specified by the HTTP protocol. We
also return to the topic of character encodings when we discuss the java.nio.char
set API, which allows you to query for and use encoders and decoders explicitly on
buffers of characters and bytes. Both InputStreamReader and OutputStreamWriter can
accept a Charset codec object as well as a character encoding name.

Stream Wrappers
What if we want to do more than read and write a sequence of bytes or characters? We
can use a “filter” stream, which is a type of InputStream, OutputStream, Reader, or
Writer that wraps another stream and adds new features. A filter stream takes the target
stream as an argument in its constructor and delegates calls to it after doing some ad‐
ditional processing of its own. For example, we can construct a BufferedInput
Stream to wrap the system standard input:

 InputStream bufferedIn = new BufferedInputStream(System.in);

The BufferedInputStream is a type of filter stream that reads ahead and buffers a certain
amount of data. (We’ll talk more about it later in this chapter.) The BufferedInput
Stream wraps an additional layer of functionality around the underlying stream.
Figure 12-3 shows this arrangement for a DataInputStream, which is a type of stream
that can read higher-level data types, such as Java primitives and strings.

416 | Chapter 12: Input/Output Facilities

Figure 12-3. Layered streams

As you can see from the previous code snippet, the BufferedInputStream filter is a type
of InputStream. Because filter streams are themselves subclasses of the basic stream
types, they can be used as arguments to the construction of other filter streams. This
allows filter streams to be layered on top of one another to provide different combina‐
tions of features. For example, we could first wrap our System.in with a BufferedIn
putStream and then wrap the BufferedInputStream with a DataInputStream for read‐
ing special data types with buffering.

Java provides base classes for creating new types of filter streams: FilterInputStream,
FilterOutputStream, FilterReader, and FilterWriter. These superclasses provide
the basic machinery for a “no op” filter (a filter that doesn’t do anything) by delegating
all their method calls to their underlying stream. Real filter streams subclass these and
override various methods to add their additional processing. We’ll make an example
filter stream later in this chapter.

Data streams

DataInputStream and DataOutputStream are filter streams that let you read or write
strings and primitive data types composed of more than a single byte. DataInput
Stream and DataOutputStream implement the DataInput and DataOutput interfaces,
respectively. These interfaces define methods for reading or writing strings and all of
the Java primitive types, including numbers and Boolean values. DataOutputStream
encodes these values in a machine-independent manner and then writes them to its
underlying byte stream. DataInputStream does the converse.

You can construct a DataInputStream from an InputStream and then use a method
such as readDouble() to read a primitive data type:

Streams | 417

 DataInputStream dis = new DataInputStream(System.in);
 double d = dis.readDouble();

This example wraps the standard input stream in a DataInputStream and uses it to read
a double value. The readDouble() method reads bytes from the stream and constructs
a double from them. The DataInputStream methods expect the bytes of numeric data
types to be in network byte order, a standard that specifies that the high-order bytes are
sent first (also known as “big endian,” as we discuss later).

The DataOutputStream class provides write methods that correspond to the read meth‐
ods in DataInputStream. For example, writeInt() writes an integer in binary format
to the underlying output stream.

The readUTF() and writeUTF() methods of DataInputStream and DataOutput
Stream read and write a Java String of Unicode characters using the UTF-8 “transfor‐
mation format” character encoding. UTF-8 is an ASCII-compatible encoding of Uni‐
code characters that is very widely used. Not all encodings are guaranteed to preserve
all Unicode characters, but UTF-8 does. You can also use UTF-8 with Reader and Writer
streams by specifying it as the encoding name.

Buffered streams

The BufferedInputStream, BufferedOutputStream, BufferedReader, and Buffered
Writer classes add a data buffer of a specified size to the stream path. A buffer can
increase efficiency by reducing the number of physical read or write operations that
correspond to read() or write() method calls. You create a buffered stream with an
appropriate input or output stream and a buffer size. (You can also wrap another stream
around a buffered stream so that it benefits from the buffering.) Here’s a simple buffered
input stream called bis:

 BufferedInputStream bis = new BufferedInputStream(myInputStream, 32768);
 ...
 bis.read();

In this example, we specify a buffer size of 32 KB. If we leave off the size of the buffer
in the constructor, a reasonably sized one is chosen for us. (Currently the default is 8
KB.) On our first call to read(), bis tries to fill our entire 32 KB buffer with data, if it’s
available. Thereafter, calls to read() retrieve data from the buffer, which is refilled as
necessary.

A BufferedOutputStream works in a similar way. Calls to write() store the data in a
buffer; data is actually written only when the buffer fills up. You can also use the flush()
method to wring out the contents of a BufferedOutputStream at any time. The flush()
method is actually a method of the OutputStream class itself. It’s important because it
allows you to be sure that all data in any underlying streams and filter streams has been
sent (before, for example, you wait for a response).

418 | Chapter 12: Input/Output Facilities

Some input streams such as BufferedInputStream support the ability to mark a location
in the data and later reset the stream to that position. The mark() method sets the return
point in the stream. It takes an integer value that specifies the number of bytes that can
be read before the stream gives up and forgets about the mark. The reset() method
returns the stream to the marked point; any data read after the call to mark() is read
again.

This functionality could be useful when you are reading the stream in a parser. You may
occasionally fail to parse a structure and so must try something else. In this situation,
you can have your parser generate an error and then reset the stream to the point before
it began parsing the structure:

 BufferedInputStream input;
 ...
 try {
 input.mark(MAX_DATA_STRUCTURE_SIZE);
 return(parseDataStructure(input));
 }
 catch (ParseException e) {
 input.reset();
 ...
 }

The BufferedReader and BufferedWriter classes work just like their byte-based coun‐
terparts, except that they operate on characters instead of bytes.

PrintWriter and PrintStream

Another useful wrapper stream is java.io.PrintWriter. This class provides a suite of
overloaded print() methods that turn their arguments into strings and push them out
the stream. A complementary set of println() convenience methods appends a new
line to the end of the strings. For formatted text output, printf() and the identical
format() methods allow you to write printf-style formatted text to the stream.

PrintWriter is an unusual character stream because it can wrap either an Output
Stream or another Writer. PrintWriter is the more capable big brother of the legacy
PrintStream byte stream. The System.out and System.err streams are PrintStream
objects; you have already seen such streams strewn throughout this book:

 System.out.print("Hello, world...\n");
 System.out.println("Hello, world...");
 System.out.printf("The answer is %d", 17);
 System.out.println(3.14);

Early versions of Java did not have the Reader and Writer classes and used Print
Stream, which convert bytes to characters by simply made assumptions about the char‐
acter encoding. You should use a PrintWriter for all new development.

Streams | 419

When you create a PrintWriter object, you can pass an additional Boolean value to the
constructor, specifying whether it should “auto-flush.” If this value is true, the Print
Writer automatically performs a flush() on the underlying OutputStream or Writer
each time it sends a newline:

PrintWriter pw = new PrintWriter(myOutputStream, true /*autoFlush*/);
 pw.println("Hello!"); // Stream is automatically flushed by the newline.

When this technique is used with a buffered output stream, it corresponds to the be‐
havior of terminals that send data line by line.

The other big advantage that print streams have over regular character streams is that
they shield you from exceptions thrown by the underlying streams. Unlike methods in
other stream classes, the methods of PrintWriter and PrintStream do not throw
IOExceptions. Instead, they provide a method to explicitly check for errors if required.
This makes life a lot easier for printing text, which is a very common operation. You
can check for errors with the checkError() method:

 System.out.println(reallyLongString);
 if (System.out.checkError()){ ... // uh oh

Pipes
Normally, our applications are directly involved with one side of a given stream at a
time. PipedInputStream and PipedOutputStream (or PipedReader and PipedWriter),
however, let us create two sides of a stream and connect them, as shown in
Figure 12-4. This can be used to provide a stream of communication between threads,
for example, or as a “loopback” for testing. Often it’s used as a crutch to interface a
stream-oriented API to a non-stream-oriented API.

Figure 12-4. Piped streams

To create a bytestream pipe, we use both a PipedInputStream and a PipedOutput
Stream. We can simply choose a side and then construct the other side using the first
as an argument:

420 | Chapter 12: Input/Output Facilities

 PipedInputStream pin = new PipedInputStream();
 PipedOutputStream pout = new PipedOutputStream(pin);

Alternatively:
 PipedOutputStream pout = new PipedOutputStream();
 PipedInputStream pin = new PipedInputStream(pout);

In each of these examples, the effect is to produce an input stream, pin, and an output
stream, pout, that are connected. Data written to pout can then be read by pin. It is also
possible to create the PipedInputStream and the PipedOutputStream separately and
then connect them with the connect() method.

We can do exactly the same thing in the character-based world, using PipedReader and
PipedWriter in place of PipedInputStream and PipedOutputStream.

After the two ends of the pipe are connected, use the two streams as you would other
input and output streams. You can use read() to read data from the PipedInput
Stream (or PipedReader) and write() to write data to the PipedOutputStream (or
PipedWriter). If the internal buffer of the pipe fills up, the writer blocks and waits until
space is available. Conversely, if the pipe is empty, the reader blocks and waits until some
data is available.

One advantage to using piped streams is that they provide stream functionality in our
code without compelling us to build new, specialized streams. For example, we can use
pipes to create a simple logging or “console” facility for our application. We can send
messages to the logging facility through an ordinary PrintWriter, and then it can do
whatever processing or buffering is required before sending the messages off to their
ultimate destination. Because we are dealing with string messages, we use the character-
based PipedReader and PipedWriter classes. The following example shows the skeleton
of our logging facility:

 class LoggerDaemon extends Thread
 {
 PipedReader in = new PipedReader();

 LoggerDaemon() {
 start();
 }

 public void run() {
 BufferedReader bin = new BufferedReader(in);
 String s;
 try {
 while ((s = bin.readLine()) != null) {
 // process line of data
 }
 } catch (IOException e) { }
 }

Streams | 421

 PrintWriter getWriter() throws IOException {
 return new PrintWriter(new PipedWriter(in));
 }
 }

 class myApplication {
 public static void main (String [] args) throws IOException {
 PrintWriter out = new LoggerDaemon().getWriter();

 out.println("Application starting...");
 // ...
 out.println("Warning: does not compute!");
 // ...
 }
 }

LoggerDaemon reads strings from its end of the pipe, the PipedReader named in. Log
gerDaemon also provides a method, getWriter(), which returns a PipedWriter that is
connected to its input stream. To begin sending messages, we create a new LoggerDae
mon and fetch the output stream. In order to read strings with the readLine() method,
LoggerDaemon wraps a BufferedReader around its PipedReader. For convenience, it
also presents its output pipe as a PrintWriter rather than a simple Writer.

One advantage of implementing LoggerDaemon with pipes is that we can log messages
as easily as we write text to a terminal or any other stream. In other words, we can use
all our normal tools and techniques, including printf(). Another advantage is that the
processing happens in another thread, so we can go about our business while any pro‐
cessing takes place.

Streams from Strings and Back
StringReader is another useful stream class; it essentially wraps stream functionality
around a String. Here’s how to use a StringReader:

 String data = "There once was a man from Nantucket...";
 StringReader sr = new StringReader(data);

 char T = (char)sr.read();
 char h = (char)sr.read();
 char e = (char)sr.read();

Note that you will still have to catch IOExceptions that are thrown by some of the
StringReader’s methods.

The StringReader class is useful when you want to read data from a String as if it were
coming from a stream, such as a file, pipe, or socket. Suppose you create a parser that
expects to read from a stream, but you want to provide an alternative method that also
parses a big string. You can easily add one using StringReader.

422 | Chapter 12: Input/Output Facilities

Turning things around, the StringWriter class lets us write to a character buffer via an
output stream. The internal buffer grows as necessary to accommodate the data. When
we are done, we can fetch the contents of the buffer as a String. In the following example,
we create a StringWriter and wrap it in a PrintWriter for convenience:

 StringWriter buffer = new StringWriter();
 PrintWriter out = new PrintWriter(buffer);

 out.println("A moose once bit my sister.");
 out.println("No, really!");

 String results = buffer.toString();

First, we print a few lines to the output stream to give it some data and then retrieve the
results as a string with the toString() method. Alternately, we could get the results as
a StringBuffer object using the getBuffer() method.

The StringWriter class is useful if you want to capture the output of something that
normally sends output to a stream, such as a file or the console. A PrintWriter wrapped
around a StringWriter is a viable alternative to using a StringBuffer to construct
large strings piece by piece.

The ByteArrayInputStream and ByteArrayOutputStream work with bytes in the same
way the previous examples worked with characters. You can write byte data to a Byte
ArrayOutputStream and retrieve it later with the toByteArray() method. Conversely,
you can construct a ByteArrayInputStream from a byte array as StringReader does
with a String. For example, if we want to see exactly what our DataOutputStream is
writing when we tell it to encode a particular value, we could capture it with a byte array
output stream:

 ByteArrayOutputStream bao = new ByteArrayOutputStream();
 DataOutputStream dao = new DataOutputStream(bao);
 dao.writeInt(16777216);
 dao.flush();

 byte [] bytes = bao.toByteArray();
 for(byte b : bytes)
 System.out.println(b); // 1, 0, 0, 0

Implementing a Filter Stream
Before we leave streams, let’s try making one of our own. We mentioned earlier that
specialized stream wrappers are built on top of the FilterInputStream and Filter
OutputStream classes. It’s quite easy to create our own subclass of FilterInput
Stream that can be wrapped around other streams to add new functionality.

The following example, rot13InputStream, performs a rot13 (rotate by 13 letters) op‐
eration on the bytes that it reads. rot13 is a trivial obfuscation algorithm that shifts
alphabetic characters to make them not quite human-readable (it simply passes over

Streams | 423

nonalphabetic characters without modifying them). rot13 is cute because it’s symmetric:
to “un-rot13” some text, you simply rot13 it again. Here’s our rot13InputStream class:

 public class rot13InputStream extends FilterInputStream
 {
 public rot13InputStream (InputStream i) {
 super(i);
 }

 public int read() throws IOException {
 return rot13(in.read());
 }

 // should override additional read() methods

 private int rot13 (int c) {
 if ((c >= 'A') && (c <= 'Z'))
 c=(((c-'A')+13)%26)+'A';
 if ((c >= 'a') && (c <= 'z'))
 c=(((c-'a')+13)%26)+'a';
 return c;
 }
 }

The FilterInputStream needs to be initialized with an InputStream; this is the stream
to be filtered. We provide an appropriate constructor for the rot13InputStream class
and invoke the parent constructor with a call to super(). FilterInputStream contains
a protected instance variable, in, in which it stores a reference to the specified Input
Stream, making it available to the rest of our class.

The primary feature of a FilterInputStream is that it delegates its input tasks to the
underlying InputStream. For instance, a call to FilterInputStream’s read() method
simply turns around and calls the read() method of the underlying InputStream to
fetch a byte. The filtering happens when we do our extra work on the data as it passes
through. In our example, the read() method fetches a byte from the underlying Input
Stream, in, and then performs the rot13 shift on the byte before returning it. The
rot13() method shifts alphabetic characters while simply passing over all other values,
including the end-of-stream value (-1). Our subclass is now a rot13 filter.

read() is the only InputStream method that FilterInputStream overrides. All other
normal functionality of an InputStream, such as skip() and available(), is unmodi‐
fied, so calls to these methods are answered by the underlying InputStream.

Strictly speaking, rot13InputStream works only on an ASCII byte stream because the
underlying algorithm is based on the Roman alphabet. A more generalized character-
scrambling algorithm would have to be based on FilterReader to handle 16-bit Uni‐
code classes correctly. (Anyone want to try rot32768?) We should also note that we have
not fully implemented our filter: we should also override the version of read() that

424 | Chapter 12: Input/Output Facilities

takes a byte array and range specifiers, perhaps delegating it to our own read. Unless
we do so, a reader using that method would get the raw stream.

File I/O
In this chapter, we’re going to talk about the Java file I/O API. To be more precise, we
are going to talk about two file APIs: first, there is the core java.io File I/O facility that
has been part of Java since the beginning. Then there is the “new” java.nio.file API
introduced in Java 7. In general the NIO packages, which we’ll cover in detail later and
which touch upon not only files but all types of network and channel I/O, were intro‐
duced to add advanced features that make Java more scaleable and higher performance.
However, in the case of file NIO, the new package is also just somewhat of a “do-over”
on the original API. In movie terms, you can think of the two APIs as the “classic” and
the “reboot” of the series. The new API completely duplicates the functionality of the
original, but because the core API is so fundamental (and in some cases simpler), it is
likely that many people will prefer to keep using it. We’ll start with the classic API
centering on java.io.File and later we’ll cover the new API, which centers on the
analogous java.nio.Path.

Working with files in Java is easy, but poses some conceptual problems. Real-world
filesystems can vary widely in architecture and implementation: think of the differences
between Mac, PC, and Unix systems when it comes to filenames. Java tries to mask some
of these differences and provide information to help an application tailor itself to the
local environment, but it leaves a lot of the details of file access implementation depen‐
dent. We’ll talk about techniques for dealing with this as we go.

Before we leave File I/O we’ll also show you some tools for the special case of application
“resource” files packaged with your app and loaded via the Java classpath.

The java.io.File Class
The java.io.File class encapsulates access to information about a file or directory. It
can be used to get attribute information about a file, list the entries in a directory, and
perform basic filesystem operations, such as removing a file or making a directory.
While the File object handles these “meta” operations, it doesn’t provide the API for
reading and writing file data; there are file streams for that purpose.

File constructors

You can create an instance of File from a String pathname:
 File fooFile = new File("/tmp/foo.txt");
 File barDir = new File("/tmp/bar");

You can also create a file with a relative path:

File I/O | 425

 File f = new File("foo");

In this case, Java works relative to the “current working directory” of the Java interpreter.
You can determine the current working directory by reading the user.dir property in
the System Properties list:

 System.getProperty("user.dir"); // e.g.,"/Users/pat"

An overloaded version of the File constructor lets you specify the directory path and
filename as separate String objects:

 File fooFile = new File("/tmp", "foo.txt");

With yet another variation, you can specify the directory with a File object and the
filename with a String:

 File tmpDir = new File("/tmp"); // File for directory /tmp
 File fooFile = new File (tmpDir, "foo.txt");

None of these File constructors actually creates a file or directory, and it is not an error
to create a File object for a nonexistent file. The File object is just a handle for a file
or directory whose properties you may wish to read, write, or test. For example, you can
use the exists() instance method to learn whether the file or directory exists.

Path localization

One issue with working with files in Java is that pathnames are expected to follow the
conventions of the local filesystem. Two differences are that the Windows filesystem
uses “roots” or drive letters (for example, C:) and a backslash (\) instead of the forward
slash (/) path separator that is used in other systems.

Java tries to compensate for the differences. For example, on Windows platforms, Java
accepts paths with either forward slashes or backslashes. (On others, however, it only
accepts forward slashes.)

Your best bet is to make sure you follow the filename conventions of the host filesystem.
If your application has a GUI that is opening and saving files at the user’s request, you
should be able to handle that functionality with the Swing JFileChooser class. This
class encapsulates a graphical file-selection dialog box. The methods of the JFileChoos
er take care of system-dependent filename features for you.

If your application needs to deal with files on its own behalf, however, things get a little
more complicated. The File class contains a few static variables to make this task
possible. File.separator defines a String that specifies the file separator on the local
host (e.g., / on Unix and Macintosh systems and \ on Windows systems); File.sepa
ratorChar provides the same information as a char.

You can use this system-dependent information in several ways. Probably the simplest
way to localize pathnames is to pick a convention that you use internally, such as the

426 | Chapter 12: Input/Output Facilities

forward slash (/), and do a String replace to substitute for the localized separator
character:

 // we'll use forward slash as our standard
 String path = "mail/2004/june/merle";
 path = path.replace('/', File.separatorChar);
 File mailbox = new File(path);

Alternatively, you could work with the components of a pathname and build the local
pathname when you need it:

 String [] path = { "mail", "2004", "june", "merle" };

 StringBuffer sb = new StringBuffer(path[0]);
 for (int i=1; i< path.length; i++)
 sb.append(File.separator + path[i]);
 File mailbox = new File(sb.toString());

One thing to remember is that Java interprets a literal backslash char‐
acter (\) in source code as an escape character when used in a String.
To get a backslash in a String, you have to use \\.

To grapple with the issue of filesystems with multiple “roots” (for example, C:\ on Win‐
dows), the File class provides the static method listRoots(), which returns an array
of File objects corresponding to the filesystem root directories. Again, in a GUI ap‐
plication, a graphical file chooser dialog shields you from this problem entirely.

File operations

Once we have a File object, we can use it to ask for information about and perform
standard operations on the file or directory it represents. A number of methods let us
ask questions about the File. For example, isFile() returns true if the File represents
a regular file, while isDirectory() returns true if it’s a directory. isAbsolute() indi‐
cates whether the File encapsulates an absolute path or relative path specification. An
absolute path is a system-dependent notion that means that the path doesn’t depend on
the application’s working directory or any concept of a working root or drive (e.g., in
Windows, it is a full path including the drive letter: c:\\Users\pat\foo.txt).

Components of the File pathname are available through the following methods: get
Name(), getPath(), getAbsolutePath(), and getParent(). getName() returns a
String for the filename without any directory information. If the File has an absolute
path specification, getAbsolutePath() returns that path. Otherwise, it returns the rel‐
ative path appended to the current working directory (attempting to make it an absolute
path). getParent() returns the parent directory of the file or directory.

File I/O | 427

The string returned by getPath() or getAbsolutePath() may not follow the same case
conventions as the underlying filesystem. You can retrieve the filesystem’s own or “can‐
onical” version of the file’s path by using the method getCanonicalPath(). In Windows,
for example, you can create a File object whose getAbsolutePath() is C:\Autoex‐
ec.bat but whose getCanonicalPath() is C:\AUTOEXEC.BAT; both actually point to
the same file. This is useful for comparing filenames that may have been supplied with
different case conventions or for showing them to the user.

You can get or set the modification time of a file or directory with lastModified() and
setLastModified() methods. The value is a long that is the number of milliseconds
since the epoch (Jan 1, 1970, 00:00:00 GMT). We can also get the size of the file in bytes
with length().

Here’s a fragment of code that prints some information about a file:
 File fooFile = new File("/tmp/boofa");

 String type = fooFile.isFile() ? "File " : "Directory ";
 String name = fooFile.getName();
 long len = fooFile.length();
 System.out.println(type + name + ", " + len + " bytes ");

If the File object corresponds to a directory, we can list the files in the directory with
the list() method or the listFiles() method:

 File tmpDir = new File("/tmp");
 String [] fileNames = tmpDir.list();
 File [] files = tmpDir.listFiles();

list() returns an array of String objects that contains filenames. listFiles() returns
an array of File objects. Note that in neither case are the files guaranteed to be in any
kind of order (alphabetical, for example). You can use the Collections API to sort strings
alphabetically like so:

 List list = Arrays.asList(sa);
 Collections.sort(list);

If the File refers to a nonexistent directory, we can create the directory with mkdir()
or mkdirs(). The mkdir() method creates at most a single directory level, so any in‐
tervening directories in the path must already exist. mkdirs() creates all directory levels
necessary to create the full path of the File specification. In either case, if the directory
cannot be created, the method returns false. Use renameTo() to rename a file or di‐
rectory and delete() to delete a file or directory.

Although we can create a directory using the File object, this isn’t the most common
way to create a file; that’s normally done implicitly when we intend to write data to it
with a FileOutputStream or FileWriter, as we’ll discuss in a moment. The exception
is the createNewFile() method, which can be used to attempt to create a new zero-
length file at the location pointed to by the File object. The useful thing about this

428 | Chapter 12: Input/Output Facilities

method is that the operation is guaranteed to be “atomic” with respect to all other file
creation in the filesystem. createNewFile() returns a Boolean value that tells you
whether the file was created or not. This is sometimes used as a primitive locking
feature—whoever creates the file first “wins.” (The NIO package supports true file locks,
as we’ll see later.) This is useful in combination deleteOnExit(), which flags the file to
be automatically removed when the Java VM exits. This combination allows you to
guard resources or make an application that can only be run in a single instance at a
time. Another file creation method that is related to the File class itself is the static
method createTempFile(), which creates a file in a specified location using an auto‐
matically generated unique name. This, too, is useful in combination with deleteOnEx
it().

The toURL() method converts a file path to a file: URL object. URLs are an abstraction
that allows you to point to any kind of object anywhere on the Net. Converting a File
reference to a URL may be useful for consistency with more general utilities that deal
with URLs. See Chapter 14 for details. File URLs also come into greater use with the
NIO File API where they can be used to reference new types of filesystems that are
implemented directly in Java code.

Table 12-1 summarizes the methods provided by the File class.

Table 12-1. File methods
Method Return type Description

canExecute() Boolean Is the file executable?

canRead() Boolean Is the file (or directory) readable?

canWrite() Boolean Is the file (or directory) writable?

createNewFile() Boolean Creates a new file.

createTempFile

(String pfx,
Stringsfx)

File Static method to create a new file, with the specified prefix and
suffix, in the default temp file directory.

delete() Boolean Deletes the file (or directory).

deleteOnExit() Void When it exits, Java runtime system deletes the file.

exists() Boolean Does the file (or directory) exist?

getAbsolutePath() String Returns the absolute path of the file (or directory).

getCanonicalPath() String Returns the absolute, case-correct path of the file (or directory).

getFreeSpace() long Get the number of bytes of unallocated space on the partition
holding this path or 0 if the path is invalid.

getName() String Returns the name of the file (or directory).

getParent() String Returns the name of the parent directory of the file (or directory).

getPath() String Returns the path of the file (or directory). (Not to be confused
with toPath()).

File I/O | 429

Method Return type Description

getTotalSpace() long Get the size of the partition that contains the file path in bytes
or 0 if the path is invalid.

getUseableSpace() long Get the number of bytes of user-accessible unallocated space on
the partition holding this path or 0 if the path is invalid. This
method attempts to take into account user write permissions.

isAbsolute() boolean Is the filename (or directory name) absolute?

isDirectory() boolean Is the item a directory?

isFile() boolean Is the item a file?

isHidden() boolean Is the item hidden? (System-dependent.)

lastModified() long Returns the last modification time of the file (or directory).

length() long Returns the length of the file.

list() String [] Returns a list of files in the directory.

listFiles() File[] Returns the contents of the directory as an array of File objects.

listRoots() File[] Returns array of root filesystems if any (e.g., C:/, D:/).

mkdir() boolean Creates the directory.

mkdirs() boolean Creates all directories in the path.

renameTo(File dest) boolean Renames the file (or directory).

setExecutable() boolean Sets execute permissions for the file.

setLastModified() boolean Sets the last-modified time of the file (or directory).

setReadable() boolean Sets read permissions for the file.

setReadOnly() boolean Sets the file to read-only status.

setWriteable() boolean Sets the write permissions for the file.

toPath() java.nio.file.Path Convert the File to an NIO File Path (see the NIO File API). (Not
to be confused with getPath().)

toURL() java.net.URL Generates a URL object for the file (or directory).

File Streams
OK, you’re probably sick of hearing about files already and we haven’t even written a
byte yet! Well, now the fun begins. Java provides two fundamental streams for reading
from and writing to files: FileInputStream and FileOutputStream. These streams
provide the basic byte-oriented InputStream and OutputStream functionality that is
applied to reading and writing files. They can be combined with the filter streams de‐
scribed earlier to work with files in the same way as other stream communications.

You can create a FileInputStream from a String pathname or a File object:
 FileInputStream in = new FileInputStream("/etc/passwd");

430 | Chapter 12: Input/Output Facilities

When you create a FileInputStream, the Java runtime system attempts to open the
specified file. Thus, the FileInputStream constructors can throw a FileNotFoundEx
ception if the specified file doesn’t exist or an IOException if some other I/O error
occurs. You must catch these exceptions in your code. Wherever possible, it’s a good
idea to get in the habit of using the new Java 7 try-with-resources construct to auto‐
matically close files for you when you are finished with them:

try (FileInputStream fin = new FileInputStream("/etc/passwd")) {

 // Fin will be closed automatically if needed upon exiting the try clause.
}

When the stream is first created, its available() method and the File object’s length()
method should return the same value.

To read characters from a file as a Reader, you can wrap an InputStreamReader around
a FileInputStream. If you want to use the default character-encoding scheme for the
platform, you can use the FileReader class instead, which is provided as a convenience.
FileReader is just a FileInputStream wrapped in an InputStreamReader with some
defaults. For some crazy reason, you can’t specify a character encoding for the FileR
eader to use, so it’s probably best to ignore it and use InputStreamReader with FileIn
putStream.

The following class, ListIt , is a small utility that sends the contents of a file or directory
to standard output:

 //file: ListIt.java
 import java.io.*;

 class ListIt {
 public static void main (String args[]) throws Exception {
 File file = new File(args[0]);

 if (!file.exists() || !file.canRead()) {
 System.out.println("Can't read " + file);
 return;
 }

 if (file.isDirectory()) {
 String [] files = file.list();
 for (String file : files)
 System.out.println(file);
 } else
 try {
 Reader ir = new InputStreamReader(
 new FileInputStream(file));

 BufferedReader in = new BufferedReader(ir);
 String line;
 while ((line = in.readLine()) != null)

File I/O | 431

 System.out.println(line);
 }
 catch (FileNotFoundException e) {
 System.out.println("File Disappeared");
 }
 }
 }

ListIt constructs a File object from its first command-line argument and tests the
File to see whether it exists and is readable. If the File is a directory, ListIt outputs
the names of the files in the directory. Otherwise, ListIt reads and outputs the file, line
by line.

For writing files, you can create a FileOutputStream from a String pathname or a File
object. Unlike FileInputStream, however, the FileOutputStream constructors don’t
throw a FileNotFoundException. If the specified file doesn’t exist, the FileOutput
Stream creates the file. The FileOutputStream constructors can throw an IOExcep
tion if some other I/O error occurs, so you still need to handle this exception.

If the specified file does exist, the FileOutputStream opens it for writing. When you
subsequently call the write() method, the new data overwrites the current contents of
the file. If you need to append data to an existing file, you can use a form of the con‐
structor that accepts a Boolean append flag:

 FileInputStream fooOut =
 new FileOutputStream(fooFile); // overwrite fooFile
 FileInputStream pwdOut =
 new FileOutputStream("/etc/passwd", true); // append

Another way to append data to files is with RandomAccessFile, which we’ll discuss
shortly.

Just as with reading, to write characters (instead of bytes) to a file, you can wrap an
OutputStreamWriter around a FileOutputStream. If you want to use the default
character-encoding scheme, you can use the FileWriter class instead, which is pro‐
vided as a convenience.

The following example reads a line of data from standard input and writes it to the
file /tmp/foo.txt:

 String s = new BufferedReader(
 new InputStreamReader(System.in)).readLine();
 File out = new File("/tmp/foo.txt");
 FileWriter fw = new FileWriter (out);
 PrintWriter pw = new PrintWriter(fw)
 pw.println(s);pw.close();

Notice how we wrapped the FileWriter in a PrintWriter to facilitate writing the data.
Also, to be a good filesystem citizen, we called the close() method when we’re done

432 | Chapter 12: Input/Output Facilities

with the FileWriter. Here, closing the PrintWriter closes the underlying Writer for
us. We also could have used try-with-resources here.

RandomAccessFile
The java.io.RandomAccessFile class provides the ability to read and write data at a
specified location in a file. RandomAccessFile implements both the DataInput and
DataOutput interfaces, so you can use it to read and write strings and primitive types
at locations in the file just as if it were a DataInputStream and DataOutputStream.
However, because the class provides random, rather than sequential, access to file data,
it’s not a subclass of either InputStream or OutputStream.

You can create a RandomAccessFile from a String pathname or a File object. The
constructor also takes a second String argument that specifies the mode of the file. Use
the string r for a read-only file or rw for a read/write file.

 try {
 RandomAccessFile users = new RandomAccessFile("Users", "rw")
 } catch (IOException e) { ... }

When you create a RandomAccessFile in read-only mode, Java tries to open the specified
file. If the file doesn’t exist, RandomAccessFile throws an IOException. If, however,
you’re creating a RandomAccessFile in read/write mode, the object creates the file if it
doesn’t exist. The constructor can still throw an IOException if another I/O error occurs,
so you still need to handle this exception.

After you have created a RandomAccessFile, call any of the normal reading and writing
methods, just as you would with a DataInputStream or DataOutputStream. If you try
to write to a read-only file, the write method throws an IOException.

What makes a RandomAccessFile special is the seek() method. This method takes a
long value and uses it to set the byte offset location for reading and writing in the file.
You can use the getFilePointer() method to get the current location. If you need to
append data to the end of the file, use length() to determine that location, then seek()
to it. You can write or seek beyond the end of a file, but you can’t read beyond the end
of a file. The read() method throws an EOFException if you try to do this.

Here’s an example of writing data for a simplistic database:
 users.seek(userNum * RECORDSIZE);
 users.writeUTF(userName);
 users.writeInt(userID);
 ...

In this naive example, we assume that the String length for userName, along with any
data that comes after it, fits within the specified record size.

File I/O | 433

Resource Paths
A big part of packaging and deploying an application is dealing with all of the resource
files that must go with it, such as configuration files, graphics, and application data. Java
provides several ways to access these resources. One way is to simply open files and read
the bytes. Another is to construct a URL pointing to a well-known location in the file‐
system or over the network. (We’ll discuss working with URLs in detail in Chapter 14.)
The problem with these methods is that they generally rely on knowledge of the appli‐
cation’s location and packaging, which could change or break if it is moved. What is
really needed is a universal way to access resources associated with our application,
regardless of how it’s installed. The Class class’s getResource() method and the Java
classpath provides just this. For example:

 URL resource = MyApplication.class.getResource("/config/config.xml");

Instead of constructing a File reference to an absolute file path, or relying on composing
information about an install directory, the getResource() method provides a standard
way to get resources relative to the classpath of the application. A resource can be located
either relative to a given class file or to the overall system classpath. getResource() uses
the classloader that loads the application’s class files to load the data. This means that
no matter where the application classes reside—a web server, the local filesystem, or
even inside a JAR file or other archive—we can load resources packaged with those
classes consistently.

Although we haven’t discussed URLs yet, we can tell you that many APIs for loading
data (for example, images) accept a URL directly. If you’re reading the data yourself,
you can ask the URL for an InputStream with the URL openStream() method and treat
it like any other stream. A convenience method called getResourceAsStream() skips
this step for you and returns an InputStream directly.

getResource() takes as an argument a slash-separated resource path for the resource
and returns a URL. There are two kinds of resource paths: absolute and relative. An
absolute path begins with a slash (for example, /config/config.xml). In this case, the
search for the object begins at the “top” of the classpath. By the “top” of the classpath,
we mean that Java looks within each element of the classpath (directory or JAR file) for
the specified file. Given /config/config.xml, it would check each directory or JAR file in
the path for the file config/config.xml. In this case, the class on which getResource() is
called doesn’t matter as long as it’s from a class loader that has the resource file in its
classpath. For example:

 URL data = AnyClass.getResource("/config/config.xml");

On the other hand, a relative URL does not begin with a slash (for example, myda‐
ta.txt). In this case, the search begins at the location of the class file on which getRe
source() is called. In other words, the path is relative to the package of the target class
file. For example, if the class file foo.bar.MyClass is located at the path foo/bar/

434 | Chapter 12: Input/Output Facilities

MyClass.class in some directory or JAR of the classpath and the file mydata.txt is in the
same directory (foo/bar/mydata.txt), we can request the file via MyClass with:

 URL data = MyClass.getResource("mydata.txt");

In this case, the class and file come from the same logical directory. We say logical
because the search is not limited to the classpath element from which the class was
loaded. Instead, the same relative path is searched in each element of the classpath—
just as with an absolute path—until it is found. Although we’d expect the file myda‐
ta.txt to be packaged physically with MyClass.class, it might be found in another JAR
file or directory at the same relative and corresponding location.

For example, here’s an application that looks up some resources:
 package mypackage;
 import java.net.URL;
 import java.io.IOException;

 public class FindResources {
 public static void main(String [] args) throws IOException {
 // absolute from the classpath
 URL url = FindResources.class.getResource("/mypackage/foo.txt");
 // relative to the class location
 url = FindResources.class.getResource("foo.txt");
 // another relative document
 url = FindResources.class.getResource("docs/bar.txt");
 }
 }

The FindResources class belongs to the mypackage package, so its class file will live in
a mypackage directory somewhere on the classpath. FindResources locates the docu‐
ment foo.txt using an absolute and then a relative URL. At the end, FindResources uses
a relative path to reach a document in the mypackage/docs directory. In each case, we
refer to the FindResources’s Class object using the static .class notation. Alternatively,
if we had an instance of the object, we could use its getClass() method to reach the
Class object.

Again, getResource() returns a URL for whatever type of object you reference. This
could be a text file or properties file that you want to read as a stream, or it might be an
image or sound file or some other object. You can open a stream to the URL to parse
the data yourself or hand the URL over to an API that deals with URLs. We discuss
URLs in depth in Chapter 14. We should also emphasize that loading resources in this
way completely shields your application from the details of how it is packaged or de‐
ployed. You may start with your application in loose files and then package it into a JAR
file and the resources will still be loaded. Java applets (discussed in a later chapter) may
even load files in this way over the network because the applet class loader treats the
server as part of its classpath.

File I/O | 435

The NIO File API
We are now going to turn our attention from the original, “classic” Java File API to the
new, NIO, File API introduced with Java 7. As we mentioned earlier, the NIO File API
can be thought of as either a replacement for or a complement to the classic API. In‐
cluded in the NIO package, the new API is nominally part of an effort to move Java
toward a higher performance and more flexible style of I/O supporting selectable and
asynchronously interruptable channels. However, in the context of working with files,
the new API’s strength is that it provides a fuller abstraction of the filesystem in Java.

In addition to better support for existing, real world, filesystem types—including for
the first time the ability to copy and move files, manage links, and get detailed file
attributes like owners and permissions—the new File API allows entirely new types of
filesystems to be implemented directly in Java. The best example of this is the new ZIP
filesystem provider that makes it possible to “mount” a ZIP archive file as a filesystem
and work with the files within it directly using the standard APIs, just like any other
filesystem. Additionally, the NIO File package provides some utilities that would have
saved Java developers a lot of repeated code over the years, including directory tree
change monitoring, filesystem traversal (a visitor pattern), filename “globbing,” and
convenience methods to read entire files directly into memory.

We’ll cover the basic File API in this section and return to the NIO API again at the end
of the chapter when we cover the full details of NIO buffers and channels. In particular,
we’ll talk about ByteChannels and FileChannel, which you can think of as alternate,
buffer-oriented streams for reading and writing files and other types of data.

FileSystem and Path
The main players in the java.nio.file package are: the FileSystem, which represents
an underlying storage mechanism and serves as a factory for Path objects; the Path,
which represents a file or directory within the filesystem; and the Files utility, which
contains a rich set of static methods for manipulating Path objects to perform all of the
basic file operations analogous to the classic API.

The FileSystems (plural) class is our starting point. It is a factory for a FileSystem
object:

// The default host computer filesystem
FileSystem fs = FileSystems.getDefault();

// A custom filesystem
URI zipURI = URI.create("jar:file:/Users/pat/tmp/MyArchive.zip");
FileSystem zipfs = FileSystems.newFileSystem(zipURI, env));

As shown in this snippet, often we’ll simply ask for the default filesystem to manipulate
files in the host computer’s environment, as with the classic API. But the FileSys

436 | Chapter 12: Input/Output Facilities

tems class can also construct a FileSystem by taking a URI (a special identifier) that
references a custom filesystem type. We’ll show an example of working with the ZIP
filesystem provider later in this chapter when we discuss data compression.

FileSystem implements Closeable and when a FileSystem is closed, all open file
channels and other streaming objects associated with it are closed as well. Attempting
to read or write to those channels will throw an exception at that point. Note that the
default filesystem (associated with the host computer) cannot be closed.

Once we have a FileSystem, we can use it as a factory for Path objects that represent
files or directories. A Path can be constructed using a string representation just like the
classic File, and subsequently used with methods of the Files utility to create, read,
write, or delete the item.

Path fooPath = fs.getPath("/tmp/foo.txt");
OutputStream out = Files.newOutputStream(fooPath);

This example opens an OutputStream to write to the file foo.txt. By default, if the file
does not exist, it will be created and if it does exist, it will be truncated (set to zero length)
before new data is written—but you can change these results using options. We’ll talk
more about Files methods in the next section.

The Path object implements the java.lang.Iterable interface, which can be used to
iterate through its literal path components (e.g., the slash separated “tmp” and “foo.txt”
in the preceding snippet). Although if you want to traverse the path to find other files
or directories, you might be more interested in the DirectoryStream and FileVisi
tor that we’ll discuss later. Path also implements the java.nio.file.Watchable inter‐
face, which allows it to be monitored for changes. We’ll also discuss watching file trees
for changes in an upcoming section.

Path has convenience methods for resolving paths relative to a file or directory.
Path patPath = fs.getPath("/User/pat/");

Path patTmp = patPath.resolve("tmp"); // "/User/pat/tmp"

// Same as above, using a Path
Path tmpPath = fs.getPath("tmp");
Path patTmp = patPath.resolve(tmpPath); // "/User/pat/tmp"

// Resolving a given absolute path against any path just yields given path
Path absPath = patPath.resolve("/tmp"); // "/tmp"

// Resolve sibling to Pat (same parent)
Path danPath = patPath.resolveSibling("dan"); // "/Users/dan"

In this snippet, we’ve shown the Pathresolve() and resolveSibling() methods used
to find files or directories relative to a given Path object. The resolve() method is
generally used to append a relative path to an existing Path representing a directory. If

The NIO File API | 437

the argument provided to the resolve() method is an absolute path, it will just yield
the absolute path (it acts kind of like the Unix or DOS “cd” command). The resolve
Sibling() method works the same way, but it is relative to the parent of the target
Path; this method is useful for describing the target of a move() operation.

Path to classic file and back

To bridge the old and new APIs, corresponding toPath() and toFile() methods have
been provided in java.io.File and java.nio.file.Path, respectively, to convert to
the other form. Of course, the only types of Paths that can be produced from File are
paths representing files and directories in the default host filesystem.

Path tmpPath = fs.getPath("/tmp");
File file = tmpPath.toFile();
File tmpFile = new File("/tmp");
Path path = tmpFile.toPath();

NIO File Operations
Once we have a Path, we can operate on it with static methods of the Files utility to
create the path as a file or directory, read and write to it, and interrogate and set its
properties. We’ll list the bulk of them and then discuss some of the more important ones
as we proceed.

The following table summarizes these methods of the java.nio.file.Files class. As
you might expect, because the Files class handles all types of file operations, it contains
a large number of methods. To make the table more readable, we have elided overloaded
forms of the same method (those taking different kinds of arguments) and grouped
corresponding and related types of methods together.

Table 12-2. NIO Files methods
Method Return type Description

copy() long or Path Copy a stream to a file path, file path to
stream, or path to path. Returns the number of
bytes copied or the target Path. A target file
may optionally be replaced if it exists (the
default is to fail if the target exists). Copying a
directory results in an empty directory at the
target (the contents are not copied). Copying a
symbolic link copies the linked files data
(producing a regular file copy).

createDirectory(), createDirecto
ries()

Path Create a single directory or all directories in a
specified path. createDirectory()
throws an exception if the directory already
exists, whereas createDirectories()
will ignore existing directories and only create
as needed.

438 | Chapter 12: Input/Output Facilities

Method Return type Description

createFile() Path Creates an empty file. The operation is atomic
and will only succeed if the file does not exist.
(This property can be used to create flag files to
guard resources, etc.)

createTempDirectory(), createTemp
File()

Path Create a temporary, guaranteed, uniquely
named directory or file with the specified
prefix. Optionally place it in the system default
temp directory.

delete(), deleteIfExists() void Delete a file or an empty directory.
deleteIfExists() will not throw an
exception if the file does not exist.

exists(), notExists() boolean Determine whether the file exists (notEx
ists() simply returns the opposite).
Optionally specify whether links should be
followed (by default they are).

exists(), isDirectory(), isExecuta
ble(), isHidden(), isReadable(), isRe
gularFile(), isWriteable()

boolean Tests basic file features: whether the path
exists, is a directory, and other basic attributes.

createLink(), createSymbolicLink(),
isSymbolicLink(),
readSymbolicLink(), createLink()

boolean or Path Create a hard or symbolic link, test to see if a
file is a symbolic link, or read the target file
pointed to by the symbolic link. Symbolic links
are files that reference other files. Regular
(“hard”) links are low-level mirrors of a file
where two filenames point to the same
underlying data. If you don’t know which to
use, use a symbolic link.

getAttribute(), setAttribute(), get
FileAttributeView(), readAttri
butes()

Object, Map, or
FileAttribute

View

Get or set filesystem-specific file attributes such
as access and update times, detailed
permissions, and owner information using
implementation-specific names.

getFileStore() FileStore Get a FileStore object that represents the
device, volume, or other type of partition of the
filesystem on which the path resides.

getLastModifiedTime(), setLastModi
fiedTime()

FileTime or
Path

Get or set the last modified time of a file or
directory.

getOwner(), setOwner() UserPrincipal Get or set a UserPrincipal object
representing the owner of the file. Use to
String() or getName() to get a string
representation of the user name.

getPosixFilePermissions(), setPosix
FilePermissions()

Set or Path Get or set the full POSIX user-group-other style
read and write permissions for the path as a
Set of PosixFilePermission enum
values.

The NIO File API | 439

Method Return type Description

isSameFile() boolean Test to see whether the two paths reference
the same file (which may potentially be true
even if the paths are not identical).

move() Path Move a file or directory by renaming or copying
it, optionally specifying whether to replace any
existing target. Rename will be used unless a
copy is required to move a file across file stores
or filesystems. Directories can be moved using
this method only if the simple rename is
possible or if the directory is empty. If a
directory move requires copying files across file
stores or filesystems, the method throws an
IOException. (In this case, you must copy
the files yourself. See walkFileTree().)

newBufferedReader(), newBuffered
Writer()

BufferedRead

er or Buffered
Writer

Open a file for reading via a BufferedRead
er, or create and open a file for writing via a
BufferedWriter. In both cases, a
character encoding is specified.

newByteChannel() SeekableByte

Channel

Create a new file or open an existing file as a
seekable byte channel. (See the full discussion
of NIO later in this chapter.) Consider using
FileChannelopen() as an alternative.

newDirectoryStream() Directory

Stream

Return a DirectoryStream for iterating
over a directory hierarchy. Optionally, supply a
glob pattern or filter object to match files.

newInputStream(), newOutputStream() InputStream or
OutputStream

Open a file for reading via an InputStream
or create and open a file for writing via an Ou
putStream. Optionally, specify file
truncation for the output stream; the default is
to create a truncate on write.

probeContentType() String Returns the MIME type of the file if it can be
determined by installed FileTypeDetec
tor services or null if unknown.

readAllBytes(), readAllLines() byte[] or
List<String>

Read all data from the file as a byte [] or all
characters as a list of strings using a specified
character encoding.

size() long Get the size in bytes of the file at the specified
path.

walkFileTree() Path Apply a FileVisitor to the specified
directory tree, optionally specifying whether to
follow links and a maximum depths of
traversal.

440 | Chapter 12: Input/Output Facilities

Method Return type Description

write() Path Write an array of bytes or a collection of strings
(with a specified character encoding) to the file
at the specified path and close the file,
optionally specifying append and truncation
behavior. The default is to truncate and write
the data.

With the preceding methods, we can fetch input or output streams or buffered readers
and writers to a given file. We can also create paths as files and dirctories and iterate
through file hierarchies. We’ll discuss directory operations in the next section.

As a reminder, the resolve() and resolveSibling() methods of Path are useful for
constructing targets for the copy() and move() operations.

// Move the file /tmp/foo.txt to /tmp/bar.txt
Path foo = fs.getPath("/tmp/foo.txt");
Files.move(foo, foo.resolveSibling("bar.txt"));

For quickly reading and writing the contents of files without streaming, we can use the
read all and write methods that move byte arrays or strings in and out of files in a
single operation. These are very convenient for files that easily fit into memory.

// Read and write collection of String (e.g. lines of text)
Charset asciiCharset = Charset.forName("US-ASCII");
List<String> csvData = Files.readAllLines(csvPath, asciiCharset);
Files.write(newCSVPath, csvData, asciiCharset);

// Read and write bytes
byte [] data = Files.readAllBytes(dataPath);
Files.write(newDataPath, data);

Directory Operations
In addition to basic directory creation and manipulation methods of the Files class,
there are methods for listing the files within a given directory and traversing all files
and directories in a directory tree. To list the files in a single directory, we can use one
of the newDirectoryStream() methods, which returns an iterable DirectoryStream.

// Print the files and directories in /tmp
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"))) {

 for (Path path : paths) { System.out.println(path); }
}

The snippet lists the entries in “/tmp,” iterating over the directory stream to print the
results. Note that we open the DirectoryStream within a try-with-resources clause so
that it is automatically closed for us. A DirectoryStream is implemented as a kind of
one-way iterable that is analogous to a stream, and it must be closed to free up associated

The NIO File API | 441

resources. The order in which the entries are returned is not defined by the API and
you may need to store and sort them if ordering is required.

Another form of newDirectoryStream() takes a glob pattern to limit the files matched
in the listing:

// Only files in /tmp matching "*.txt" (globbing)
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"), "*.txt")) {
 ...

File globbing filters filenames using the familiar “*” and a few other patterns to specify
matching names. Table 12-3 provides some additional examples of file globbing
patterns.

Table 12-3. File globbing pattern examples
Pattern Example

*.txt Filenames ending in “.txt”

*.{java,class} Filenames ending in “java” or “class”

[a,b,c]* Filenames starting with “a”, “b”, or “c”

[0-9]* Filenames starting with the digits 0 through 9

[!0-9]* Filenames starting with any character except 0 through 9

pass?.dat Filenames starting with “pass” plus any character plus “.dat” (e.g., pass1.dat, passN.dat)

If globbing patterns are not sufficient, we can provide our own stream filter by imple‐
menting the DirectoryStream.Filter interface. The following snippet is the proce‐
dural (code) version of the “*.txt” glob pattern; matching filenames ending with “.txt”.
We’ve implemented the filter as an anonymous inner class here because it’s short:

// Same as above using our own (anonymous) filter implementation
try (DirectoryStream<Path> paths = Files.newDirectoryStream(
 fs.getPath("/tmp"),
 new DirectoryStream.Filter<Path>() {
 @Override
 public boolean accept(Path entry) throws IOException {
 return entry.toString().endsWith(".txt");
 }
})) {
 ...

Finally, if we need to iterate through a whole directory hierarchy instead of just a single
directory, we can use a FileVisitor. The FileswalkFileTree() method takes a starting
path and performs a depth-first traversal of the file hierarchy, giving the provided
FileVisitor a chance to “visit” each path element in the tree. The following short
snippet prints all file and directory names under the /Users/pat path:

// Visit all of the files in a directory tree
Files.walkFileTree(fs.getPath("/Users/pat"), new SimpleFileVisitor<Path>() {

442 | Chapter 12: Input/Output Facilities

 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 {
 System.out.println("path = " + file);
 return FileVisitResult.CONTINUE;
 }
});

For each entry in the file tree, our visitor’s visitFile() method is invoked with the
Path element and attributes as arguments. The visitor can perform any action it likes
in relation to the file and then indicate whether or not the traversal should continue by
returning one of a set of enumerated result types: FileVisitResultCONTINUE or TERMI
NATE. Here we have subclassed the SimpleFileVisitor, which is a convenience class
that implements the methods of the FileVisitor interface for us with no-op (empty)
bodies, allowing us to override only those of interest. Other methods available include
visitFileFailed(), which is called if a file or directory cannot be visited (e.g., due to
permissions), and the pair preVisitDirectory() and postVisitDirectory(), which
can be used to perform actions before and after a new directory is visited. The preVi
sitDirectory() has additional usefulness in that it is allowed to return the value
SKIP_SUBTREE to continue the traversal without descending into the target path and
SKIP_SIBLINGS value, which indicates that traversal should continue, skipping the re‐
maining entries at the same level as the target path.

As you can see, the file listing and traversal methods of the NIO File package are much
more sophisticated than those of the classic java.io API and are a welcome addition.

Watching Paths
One of the nicest features of the NIO File API is the WatchService, which can monitor
a Path for changes to any file or directory in the hierarchy. We can choose to receive
events when files or directories are added, modified, or deleted. The following snippet
watches for changes under the folder /Users/pat:

Path watchPath = fs.getPath("/Users/pat");
WatchService watchService = fs.newWatchService();
watchPath.register(watchService, ENTRY_CREATE, ENTRY_MODIFY, ENTRY_DELETE);

while(true)
{
 WatchKey changeKey = watchService.take();
 List<WatchEvent<?>> watchEvents = changeKey.pollEvents();
 for (WatchEvent<?> watchEvent : watchEvents)
 {
 // Ours are all Path type events:
 WatchEvent<Path> pathEvent = (WatchEvent<Path>)watchEvent;

 Path path = pathEvent.context();
 WatchEvent.Kind<Path> eventKind = pathEvent.kind();

The NIO File API | 443

 System.out.println(eventKind + " for path: " + path);
 }

 changeKey.reset(); // Important!
}

We construct a WatchService from a FileSystem using the newWatchService() call.
Thereafter, we can register a Watchable object with the service (currently, Path is the
only type of Watchable) and poll it for events. As shown, in actuality the API is the other
way around and we call the watchable object’s register() method, passing it the watch
service and a variable length argument list of enumerated values representing the event
types of interest: ENTRY_CREATE, ENTRY_MODIFY, or ENTRY_DELETE. One additonal type,
OVERFLOW, can be registered in order to get events that indicate when the host imple‐
mentation has been too slow to process all changes and some changes may have been
lost.

After we are set up, we can poll for changes using the watch service take() method,
which returns a WatchKey object. The take() method blocks until an event occurs;
another form, poll(), is nonblocking. When we have a WatchKey containing events, we
can retrieve them with the pollEvents() method. The API is, again, a bit awkward here
as WatchEvent is a generic type parameterized on the kind of Watchable object. In our
case, the only types possible are Path type events and so we cast as needed. The type of
event (create, modify, delete) is indicated by the WatchEventkind() method and the
changed path is indicated by the context() method. Finally, it’s important that we call
reset() on the WatchKey object in order to clear the events and be able to receive further
updates.

Performance of the WatchService depends greatly on implementation. On many sys‐
tems, filesystem monitoring is built into the operating system and we can get change
events almost instantly. But in many cases, Java may fall back on its generic, background
thread-based implementation of the watch service, which is very slow to detect changes.
At the time of this writing, for example, Java 7 on Mac OS X does not take advantage of
the OS-level file monitoring and instead uses the slow, generic polling service.

Serialization
Using a DataOutputStream, you could write an application that saves the data content
of your objects one at a time as simple types. However, Java provides an even more
powerful mechanism called object serialization that does almost all the work for you.
In its simplest form, object serialization is an automatic way to save and load the state
of an object. However, object serialization has greater depths that we cannot plumb
within the scope of this book, including complete control over the serialization process
and interesting twists such as class versioning.

444 | Chapter 12: Input/Output Facilities

Basically, an instance of any class that implements the Serializable interface can be
saved to and restored from a stream. The stream subclasses, ObjectInputStream and
ObjectOutputStream, are used to serialize primitive types and objects. Subclasses of
Serializable classes are also serializable. The default serialization mechanism saves
the value of all of the object’s fields (public and private), except those that are static and
those marked transient.

One of the most important (and tricky) things about serialization is that when an object
is serialized, any object references it contains are also serialized. Serialization can capture
entire “graphs” of interconnected objects and put them back together on the receiving
end (we’ll demonstrate this in an upcoming example). The implication is that any object
we serialize must contain only references to other Serializable objects. We can prune
the tree and limit the extent of what is serialized by marking nonserializable variables
as transient or overriding the default serialization mechanisms. The transient modi‐
fier can be applied to any instance variable to indicate that its contents are not useful
outside of the current context and should not be saved.

In the following example, we create a Hashtable and write it to a disk file called
hash.ser. The Hashtable object is already serializable because it implements the Seri
alizable interface.

 import java.io.*;
 import java.util.*;

 public class Save {
 public static void main(String[] args) {
 Hashtable hash = new Hashtable();
 hash.put("string", "Gabriel Garcia Marquez");
 hash.put("int", new Integer(26));
 hash.put("double", new Double(Math.PI));

 try {
 FileOutputStream fileOut = new FileOutputStream("hash.ser");
 ObjectOutputStream out = new ObjectOutputStream(fileOut);
 out.writeObject(hash);
 out.close();
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
 }

First, we construct a Hashtable with a few elements in it. Then, in the lines of code
inside the try block, we write the Hashtable to a file called hash.ser, using the write
Object() method of ObjectOutputStream. The ObjectOutputStream class is a lot
like the DataOutputStream class, except that it includes the powerful writeOb
ject()method.

Serialization | 445

The Hashtable that we created has internal references to the items it contains. Thus,
these components are automatically serialized along with the Hashtable. We’ll see this
in the next example when we deserialize the Hashtable.

 import java.io.*;
 import java.util.*;

 public class Load {
 public static void main(String[] args) {
 try {
 FileInputStream fileIn = new FileInputStream("hash.ser");
 ObjectInputStream in = new ObjectInputStream(fileIn);
 Hashtable hash = (Hashtable)in.readObject();
 System.out.println(hash.toString());
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
 }

In this example, we read the Hashtable from the hash.ser file, using the readOb
ject() method of ObjectInputStream. The ObjectInputStream class is a lot like Da
taInputStream, except that it includes the readObject() method. The return type of
readObject() is Object, so we need to cast it to a Hashtable. Finally, we print the
contents of the Hashtable using its toString() method.

Initialization with readObject()
Often, simple deserialization alone is not enough to reconstruct the full state of an object.
For example, the object may have had transient fields representing state that could not
be serialized, such as network connections, event registration, or decoded image data.
Objects have an opportunity to do their own setup after deserialization by implementing
a special method named readObject().

Not to be confused with the readObject() method of the ObjectInputStream, this
method is implemented by the serializable object itself. To be recognized and used, the
readObject() method must have a specific signature, and it must be private. The fol‐
lowing snippet is taken from an animated JavaBean that we’ll talk about in Chapter 22:

 private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException
 {
 s.defaultReadObject();
 initialize();
 if (isRunning)
 start();
 }

446 | Chapter 12: Input/Output Facilities

When the readObject() method with this signature exists in an object, it is called during
the deserialization process. The argument to the method is the ObjectInputStream
doing the object construction. We delegate to its defaultReadObject() method to do
the normal deserialization from the stream and then do our custom setup. In this case,
we call one of our methods named initialize() and, depending on our state, a method
called start().

Using a custom implementation of readObject() and a corresponding writeOb
ject() method, we could take complete control of the serialized form of the object by
reading and writing to the stream using lower-level write operations (bytes, strings, etc.)
instead of delegating to the default implementation as we did before.

We’ll talk a little more about serialization in Chapter 22 when we discuss JavaBeans.

SerialVersionUID
Java object serialization was designed to accommodate certain kinds of compatible class
changes or evolution in the structure of classes. For example, changing the methods of
a class does not necessarily mean that its serialized representation must change because
only the data of variables is stored. Nor would simply adding a new field to a class
necessarily prohibit us from loading an old serialized version of the class. We could
simply allow the new variable to take its default value. By default, however, Java is very
picky and errs on the side of caution. If you make any kind of change to the structure
of your class, by default you’ll get an InvalidClassException when trying to read
previously serialized forms of the class.

Java detects these versions by performing a hash function on the structure of the class
and storing a 64-bit value called the Serial Version UID (SUID), along with the serialized
data. It can then compare the hash to the class when it is loaded.

Java allows us to take control of this process by looking for a special, magic field in our
classes that looks like the following:

 static final long serialVersionUID = -6849794470754667710L;

(The value is, of course, different for every class.) If it finds this static serialVersionUID
long field in the class, it uses its value instead of performing the hash on the class. This
value will be written out with serialized versions of the class and used for comparison
when they are deserialized. This means that we are now in control of which versions of
the class are compatible with which serialized representations. For example, we can
create our serializable class from the beginning with our own SUID and then only in‐
crement it if we make a truly incompatible change and want to prevent older forms of
the class from being loaded:

 class MyDataObject implements Serializable {
 static final long serialVersionUID = 1; // Version 1

Serialization | 447

 ...
 }

A utility called serialver that comes with the JDK allows you to calculate the hash that
Java would otherwise use for the class. This is necessary if you did not plan ahead and
already have serialized objects stored and need to modify the class afterward. Running
the serialver command on the class displays the SUID that is necessary to match the
value already stored:

 % serialver SomeObject

 static final long serialVersionUID = -6849794470754667710L;

By placing this value into your class, you can “freeze” the SUID at the specified value,
allowing the class to change without affecting versioning.

Data Compression
The java.util.zip package contains classes you can use for data compression in
streams or files. The classes in the java.util.zip package support two widespread
compression formats: GZIP and ZIP. In this section, we’ll talk about how to use these
classes. We’ll also present two useful example programs that build on what you have
learned in this chapter. After that, we’ll talk about a higher-level way to work with ZIP
archives—as filesystems—introduced with Java 7.

Archives and Compressed Data
The java.util.zip package provides two filter streams for writing compressed data.
The GZIPOutputStream is for writing data in GZIP compressed format. The ZIPOut
putStream is for writing compressed ZIP archives, which can contain one or many files.
To write compressed data in the GZIP format, simply wrap a GZIPOutputStream around
an underlying stream and write to it. The following is a complete example that shows
how to compress a file using the GZIP format, but the stream could just as well be sent
over a network connection or to any other type of stream destination. Our GZip example
is a command line utility that compresses a file.

 import java.io.*;
 import java.util.zip.*;

 public class GZip {
 public static int sChunk = 8192;

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GZip source");
 return;
 }
 // create output stream

448 | Chapter 12: Input/Output Facilities

 String zipname = args[0] + ".gz";
 GZIPOutputStream zipout;
 try {
 FileOutputStream out = new FileOutputStream(zipname);
 zipout = new GZIPOutputStream(out);
 }
 catch (IOException e) {
 System.out.println("Couldn't create " + zipname + ".");
 return;
 }
 byte[] buffer = new byte[sChunk];
 // compress the file
 try {
 FileInputStream in = new FileInputStream(args[0]);
 int length;
 while ((length = in.read(buffer, 0, sChunk)) != -1)
 zipout.write(buffer, 0, length);
 in.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't compress " + args[0] + ".");
 }
 try { zipout.close(); }
 catch (IOException e) {}
 }
 }

First, we check to make sure we have a command-line argument representing a filename.
We then construct a GZIPOutputStream wrapped around a FileOutputStream repre‐
senting the given filename, with the .gz suffix appended. With this in place, we open the
source file. We read chunks of data and write them into the GZIPOutputStream. Finally,
we clean up by closing our open streams.

Zip archives

While GZIP is simple compression format for a stream or file, a ZIP archive is a file that
is actually a collection of files, some (or all) of which may be compressed. Writing data
to a ZIP archive file is a little more involved than simply wrapping a stream, but not
difficult. Each item in the ZIP file is represented by a ZipEntry object. When writing
to a ZipOutputStream, you’ll need to call putNextEntry() before writing the data for
each item. The following example shows how to create a ZipOutputStream. You’ll notice
that it starts out with a stream wrapper just like it did when creating a GZIPOutput
Stream:

 ZipOutputStream zipout;
 try {
 FileOutputStream out = new FileOutputStream("archive.zip");
 zipout = new ZipOutputStream(out);
 }
 catch (IOException e) {}

Data Compression | 449

Let’s say we have two files we want to write into this archive. Before we begin writing,
we need to call putNextEntry() to set the name of the file within the archive and ini‐
tialize the stream to the correct position for it. Here we create a simple ZipEntry with
just a file name. You can set other ZIP format specific fields in ZipEntry, but most of
the time, you won’t need to bother with them.

 try {
 ZipEntry entry = new ZipEntry("first.dat");
 zipout.putNextEntry(entry);
 zipout.write(...) // Write data for first file

 ZipEntry entry = new ZipEntry("second.dat");
 zipout.putNextEntry(entry);
 zipout.write(...) // Write data for second file
 . . .
 zipout.close();
 }
 catch (IOException e) {}

Decompressing Data
To decompress data in the GZIP format, simply wrap a GZIPInputStream around an
underlying FileInputStream and read from it. The following example complements
our earlier GZip example and shows how to decompress a GZIP file:

 import java.io.*;
 import java.util.zip.*;

 public class GUnzip {
 public static int sChunk = 8192;
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GUnzip source");
 return;
 }
 // create input stream
 String zipname, source;
 if (args[0].endsWith(".gz")) {
 zipname = args[0];
 source = args[0].substring(0, args[0].length() - 3);
 }
 else {
 zipname = args[0] + ".gz";
 source = args[0];
 }
 GZIPInputStream zipin;
 try {
 FileInputStream in = new FileInputStream(zipname);
 zipin = new GZIPInputStream(in);
 }
 catch (IOException e) {

450 | Chapter 12: Input/Output Facilities

 System.out.println("Couldn't open " + zipname + ".");
 return;
 }
 byte[] buffer = new byte[sChunk];
 // decompress the file
 try {
 FileOutputStream out = new FileOutputStream(source);
 int length;
 while ((length = zipin.read(buffer, 0, sChunk)) != -1)
 out.write(buffer, 0, length);
 out.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't decompress " + args[0] + ".");
 }
 try { zipin.close(); }
 catch (IOException e) {}
 }
 }

First, we check to make sure we have a command-line argument representing a filename.
If the argument ends with .gz, we figure out what the filename for the uncompressed
file should be. Otherwise, we use the given argument and assume the compressed file
has the .gz suffix. Then we construct a GZIPInputStream wrapped around a FileInput
Stream that represents the compressed file. With this in place, we open the target file.
We read chunks of data from the GZIPInputStream and write them into the target file.
Finally, we clean up by closing our open streams.

Reading a ZIP archive is also the mirror of writing. When reading from a ZipInput
Stream, you should call getNextEntry() before reading each item. When getNextEn
try() returns null, there are no more items to read. The following example shows how
to create a ZipInputStream:

 ZipInputStream zipin;
 try {
 FileInputStream in = new FileInputStream("archive.zip");
 zipin = new ZipInputStream(in);
 }
 catch (IOException e) {}

Suppose we want to read two files from this archive. Before we begin reading, we need
to call getNextEntry(). At the very least, the entry gives us a name of the item we are
reading from the archive:

 try {
 ZipEntry first = zipin.getNextEntry();
 zipin.read(...) // Read the file data
 } catch (IOException e) {}

Now, you can read the contents of the first item in the archive. When you come to the
end of the item, the read() method returns -1. At this point, you can call

Data Compression | 451

2. The Zip Filesystem Provider is also supplied as an example along with sample source code even though it’s
unclear if Oracle intends it to be a standard. But at the time of this writing, it is bundled with the JDK and
JRE of Java 7 on all platforms.

getNextEntry() again to read the second item from the archive. If you call getNextEn
try() and it returns null, there are no more items and you have reached the end of the
archive.

Zip Archive As a Filesystem
One of the benefits of the new java.nio.file package introduce with Java 7 is the
ability to implement custom filesystems in Java. (We talked about the File API for the
NIO file package earlier in this chapter and we’ll return to the more general NIO facilities
in the next section.) Java 7 ships with one such custom filesystem implementation bun‐
dled within it: the Zip Filesystem Provider.2 Using the Zip Filesystem Provider, we can
open a ZIP archive and treat it like a filesystem: reading, writing, copying, and renaming
files using all of the standard java.nio.file APIs, except that all of these operations
happen inside the ZIP archive file instead of on the host computer filesystem (as you
might otherwise expect).

The key to making this possible is that the NIO File API starts with a FileSystem
abstraction that serves as a factory for Path objects. In our previous discussion of the
NIO File API we always simply asked for the default filesystem using Filesystems.get
Default(). This time, we are going to target a particular custom filesystem type and
destination by constructing a special URI for our ZIP archive. (As we’ll discuss in the
networking chapters, a URI is kind of like a URL except that it can be more abstract).

 // Construct the URI pointing to the ZIP archive
 URI zipURI = URI.create("jar:file:/Users/pat/tmp/MyArchive.zip");

 // Open or create it and write a file
 Map<String, String> env = new HashMap<>();
 env.put("create", "true");
 try (FileSystem zipfs = FileSystems.newFileSystem(zipURI, env))
 {
 Path path = zipfs.getPath("/README.txt");
 OutputStream out = Files.newOutputStream(path);
 try (PrintWriter pw = new PrintWriter(
 new OutputStreamWriter(out))) {

 pw.println("Hello World!");
 }
 }

In this snippet, we constructed a URI for our ZIP archive using the URIcreate() method
and the special jar:file: prefix. (The Java JAR format is really just the ZIP format with
some additional conventions.) We then used that URI with the Filesystems newFile

452 | Chapter 12: Input/Output Facilities

System() method to create the right kind of filesystem reference for us. The FileSys
tem it returns will perform all of its operations on entries within the ZIP, but otherwise
will behave just like we’ve seen previously. The other argument to the newFileSys
tem() method is a Map containing string properties that are specific to the provider. In
this case, we pass in the value “create” as “true,” indicating that we want the ZIP filesystem
provider to create the archive if it does not already exist. In order to know what prop‐
erties can be passed, you’ll have to consult the documentation for the particular file‐
system provider.

In our preceding snippet, we then create a Path for a file /README.txt at the root folder
of the filesystem and write a string to it. Because we are using try-with-resources clauses
to encapsulate opening the filesystem and writing to the file, the resources will be au‐
tomatically closed for us when the operation is complete.

Other operations proceed just as with “normal” files. For example, we can move a file
by creating a path for the existing file and a path for the new location and then using
the standard Files move() method.

 // Move the file
 try (FileSystem zipfs = FileSystems.newFileSystem(fsURI, env))
 {
 Path path = zipfs.getPath("/README.txt");
 Path toPath = zipfs.getPath("/README2.txt");
 Files.move(path, toPath);
 }

The NIO Package
We are now going to complete our introduction to core Java I/O facilities by returning
to the java.nio package. The name NIO stands for “New I/O” and, as we saw earlier
in this chapter in our discussion of java.nio.file, one aspect of NIO is simply to
update and enhance features of the legacy java.io package. Much of the general NIO
functionality does indeed overlap with existing APIs. However, NIO was first introduced
to address specific issues of scalability for large systems, especially in networked appli‐
cations. The following section outlines the basic elements of NIO, which center on
working with buffers and channels.

Asynchronous I/O
Most of the need for the NIO package was driven by the desire to add nonblocking and
selectable I/O to Java. Prior to NIO, most read and write operations in Java were bound
to threads and were forced to block for unpredictable amounts of time. Although certain
APIs such as Sockets (which we’ll see in Chapter 13) provided specific means to limit
how long an I/O call could take, this was a workaround to compensate for the lack of a
more general mechanism. In many languages, even those without threading, I/O could

The NIO Package | 453

still be done efficiently by setting I/O streams to a nonblocking mode and testing them
for their readiness to send or receive data. In a nonblocking mode, a read or write does
only as much work as can be done immediately—filling or emptying a buffer and then
returning. Combined with the ability to test for readiness, this allows a single-threaded
application to continuously service many channels efficiently. The main thread “selects”
a stream that is ready and works with it until it blocks and then moves on to another.
On a single-processor system, this is fundamentally equivalent to using multiple threads.
It turns out that this style of processing has scalability advantages even when using a
pool of threads (rather than just one). We’ll discuss this in detail in Chap‐
ter 13when we discuss networking and building servers that can handle many clients
simultaneously.

In addition to nonblocking and selectable I/O, the NIO package enables closing and
interrupting I/O operations asynchronously. As discussed in Chapter 9, prior to NIO
there was no reliable way to stop or wake up a thread blocked in an I/O operation. With
NIO, threads blocked in I/O operations always wake up when interrupted or when the
channel is closed by anyone. Additionally, if you interrupt a thread while it is blocked
in an NIO operation, its channel is automatically closed. (Closing the channel because
the thread is interrupted might seem too strong, but usually it’s the right thing to do.)

Performance
Channel I/O is designed around the concept of buffers, which are a sophisticated form
of array, tailored to working with communications. The NIO package supports the
concept of direct buffers—buffers that maintain their memory outside the Java VM in
the host operating system. Because all real I/O operations ultimately have to work with
the host OS by maintaining the buffer space there, some operations can be made much
more efficient. Data moving between two external endpoints can be transferred without
first copying it into Java and back out.

Mapped and Locked Files
NIO provides two general-purpose file-related features not found in java.io: memory-
mapped files and file locking. We’ll discuss memory-mapped files later, but suffice it to
say that they allow you to work with file data as if it were all magically resident in
memory. File locking supports the concept of shared and exclusive locks on regions of
files—useful for concurrent access by multiple applications.

Channels
While java.io deals with streams, java.nio works with channels. A channel is an
endpoint for communication. Although in practice channels are similar to streams, the
underlying notion of a channel is more abstract and primitive. Whereas streams in
java.io are defined in terms of input or output with methods to read and write bytes,

454 | Chapter 12: Input/Output Facilities

the basic channel interface says nothing about how communications happen. It simply
has the notion of being open or closed, supported via the methods isOpen() and
close(). Implementations of channels for files, network sockets, or arbitrary devices
then add their own methods for operations, such as reading, writing, or transferring
data. The following channels are provided by NIO:

• FileChannel

• Pipe.SinkChannel, Pipe.SourceChannel
• SocketChannel, ServerSocketChannel, DatagramChannel

We’ll cover FileChannel in this chapter. The Pipe channels are simply the channel
equivalents of the java.io Pipe facilities. We’ll talk about Socket and Datagram chan‐
nels in Chapter 13. Additionally, in Java 7 there are now asynchronous versions of both
the file and socket channels: AsynchronousFileChannel, AsynchronousSocketChan
nel, AsynchronousServerSocketChannel, and AsynchronousDatagramChannel. These
asynchronous versions essentially buffer all of their operations through a thread pool
and report results back through an asynchronous API. We’ll talk about the asynchro‐
nous file channel later in this chapter.

All these basic channels implement the ByteChannel interface, designed for channels
that have read and write methods like I/O streams. ByteChannels read and write Byte
Buffers, however, as opposed to plain byte arrays.

In addition to these channel implementations, you can bridge channels with java.io
I/O streams and readers and writers for interoperability. However, if you mix these
features, you may not get the full benefits and performance offered by the NIO package.

Buffers
Most of the utilities of the java.io and java.net packages operate on byte arrays. The
corresponding tools of the NIO package are built around ByteBuffers (with character-
based buffer CharBuffer for text). Byte arrays are simple, so why are buffers necessary?
They serve several purposes:

• They formalize the usage patterns for buffered data, provide for things like read-
only buffers, and keep track of read/write positions and limits within a large buffer
space. They also provide a mark/reset facility like that of java.io.BufferedInput
Stream.

• They provide additional APIs for working with raw data representing primitive
types. You can create buffers that “view” your byte data as a series of larger primi‐
tives, such as shorts, ints, or floats. The most general type of data buffer, Byte
Buffer, includes methods that let you read and write all primitive types just like
DataOutputStream does for streams.

The NIO Package | 455

• They abstract the underlying storage of the data, allowing for special optimizations
by Java. Specifically, buffers may be allocated as direct buffers that use native buffers
of the host operating system instead of arrays in Java’s memory. The NIO Chan
nel facilities that work with buffers can recognize direct buffers automatically and
try to optimize I/O to use them. For example, a read from a file channel into a Java
byte array normally requires Java to copy the data for the read from the host oper‐
ating system into Java’s memory. With a direct buffer, the data can remain in the
host operating system, outside Java’s normal memory space until and unless it is
needed.

Buffer operations

A buffer is a subclass of a java.nio.Buffer object. The base Buffer class is something
like an array with state. It does not specify what type of elements it holds (that is for
subtypes to decide), but it does define functionality that is common to all data buffers.
A Buffer has a fixed size called its capacity. Although all the standard Buffers provide
“random access” to their contents, a Buffer generally expects to be read and written
sequentially, so Buffers maintain the notion of a position where the next element is read
or written. In addition to position, a Buffer can maintain two other pieces of state
information: a limit, which is a position that is a “soft” limit to the extent of a read or
write, and a mark, which can be used to remember an earlier position for future recall.

Implementations of Buffer add specific, typed get and put methods that read and write
the buffer contents. For example, ByteBuffer is a buffer of bytes and it has get() and
put() methods that read and write bytes and arrays of bytes (along with many other
useful methods we’ll discuss later). Getting from and putting to the Buffer changes the
position marker, so the Buffer keeps track of its contents somewhat like a stream. At‐
tempting to read or write past the limit marker generates a BufferUnderflowExcep
tion or BufferOverflowException, respectively.

The mark, position, limit, and capacity values always obey the following formula:
 mark <= position <= limit <= capacity

The position for reading and writing the Buffer is always between the mark, which
serves as a lower bound, and the limit, which serves as an upper bound. The capacity
represents the physical extent of the buffer space.

You can set the position and limit markers explicitly with the position() and lim
it() methods. Several convenience methods are provided for common usage patterns.
The reset() method sets the position back to the mark. If no mark has been set, an
InvalidMarkException is thrown. The clear() method resets the position to 0 and
makes the limit the capacity, readying the buffer for new data (the mark is discarded).
Note that the clear() method does not actually do anything to the data in the buffer;
it simply changes the position markers.

456 | Chapter 12: Input/Output Facilities

The flip() method is used for the common pattern of writing data into the buffer and
then reading it back out. flip makes the current position the limit and then resets the
current position to 0 (any mark is thrown away), which saves having to keep track of
how much data was read. Another method, rewind(), simply resets the position to 0,
leaving the limit alone. You might use it to write the same size data again. Here is a
snippet of code that uses these methods to read data from a channel and write it to two
channels:

 ByteBuffer buff = ...
 while (inChannel.read(buff) > 0) { // position = ?
 buff.flip(); // limit = position; position = 0;
 outChannel.write(buff);
 buff.rewind(); // position = 0
 outChannel2.write(buff);
 buff.clear(); // position = 0; limit = capacity
 }

This might be confusing the first time you look at it because here, the read from the
Channel is actually a write to the Buffer and vice versa. Because this example writes all
the available data up to the limit, either flip() or rewind() have the same effect in this
case.

Buffer types

As stated earlier, various buffer types add get and put methods for reading and writing
specific data types. Each of the Java primitive types has an associated buffer type: Byte
Buffer, CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer, and Double
Buffer. Each provides get and put methods for reading and writing its type and arrays
of its type. Of these, ByteBuffer is the most flexible. Because it has the “finest grain” of
all the buffers, it has been given a full complement of get and put methods for reading
and writing all the other data types as well as byte. Here are some ByteBuffer methods:

 byte get()
 char getChar()
 short getShort()
 int getInt()
 long getLong()
 float getFloat()
 double getDouble()

 void put(byte b)
 void put(ByteBuffer src)
 void put(byte[] src, int offset, int length)
 void put(byte[] src)
 void putChar(char value)
 void putShort(short value)
 void putInt(int value)
 void putLong(long value)

The NIO Package | 457

3. The terms big endian and little endian come from Jonathan Swift’s novel Gulliver’s Travels, where it denoted
two camps of Lilliputians: those who eat their eggs from the big end and those who eat them from the little
end.

 void putFloat(float value)
 void putDouble(double value)

As we said, all the standard buffers also support random access. For each of the afore‐
mentioned methods of ByteBuffer, an additional form takes an index; for example:

 getLong(int index)
 putLong(int index, long value)

But that’s not all. ByteBuffer can also provide “views” of itself as any of the coarse-
grained types. For example, you can fetch a ShortBuffer view of a ByteBuffer with the
asShortBuffer() method. The ShortBuffer view is backed by the ByteBuffer, which
means that they work on the same data, and changes to either one affect the other. The
view buffer’s extent starts at the ByteBuffer’s current position, and its capacity is a
function of the remaining number of bytes, divided by the new type’s size. (For example,
shorts consume two bytes each, floats four, and longs and doubles take eight.) View
buffers are convenient for reading and writing large blocks of a contiguous type within
a ByteBuffer.

CharBuffers are interesting as well, primarily because of their integration with
Strings. Both CharBuffers and Strings implement the java.lang.CharSequence in‐
terface. This is the interface that provides the standard charAt() and length() methods.
Because of this, newer APIs (such as the java.util.regex package) allow you to use a
CharBuffer or a String interchangeably. In this case, the CharBuffer acts like a mod‐
ifiable String with user-configurable, logical start and end positions.

Byte order

Because we’re talking about reading and writing types larger than a byte, the question
arises: in what order do the bytes of multibyte values (e.g., shorts and ints) get written?
There are two camps in this world: “big endian” and “little endian.”3 Big endian means
that the most significant bytes come first; little endian is the reverse. If you’re writing
binary data for consumption by some native application, this is important. Intel-
compatible computers use little endian, and many workstations that run Unix use big
endian. The ByteOrder class encapsulates the choice. You can specify the byte order to
use with the ByteBuffer order() method, using the identifiers ByteOrder.BIG_ENDI
AN and ByteOrder.LITTLE_ENDIAN like so:

 byteArray.order(ByteOrder.BIG_ENDIAN);

You can retrieve the native ordering for your platform using the static ByteOrder.na
tiveOrder() method. (I know you’re curious.)

458 | Chapter 12: Input/Output Facilities

Allocating buffers

You can create a buffer either by allocating it explicitly using allocate() or by wrapping
an existing plain Java array type. Each buffer type has a static allocate() method that
takes a capacity (size) and also a wrap() method that takes an existing array:

 CharBuffer cbuf = CharBuffer.allocate(64*1024);

A direct buffer is allocated in the same way, with the allocateDirect() method:
 ByteBuffer bbuf = ByteBuffer.allocateDirect(64*1024);
 ByteBuffer bbuf2 = ByteBuffer.wrap(someExistingArray);

As we described earlier, direct buffers can use operating system memory structures that
are optimized for use with some kinds of I/O operations. The tradeoff is that allocating
a direct buffer is a little slower and heavier weight operation than a plain buffer, so you
should try to use them for longer-term buffers.

Character Encoders and Decoders
Character encoders and decoders turn characters into raw bytes and vice versa, mapping
from the Unicode standard to particular encoding schemes. Encoders and decoders
have long existed in Java for use by Reader and Writer streams and in the methods of
the String class that work with byte arrays. However, early on there was no API for
working with encoding explicitly; you simply referred to encoders and decoders wher‐
ever necessary by name as a String. The java.nio.charset package formalized the
idea of a Unicode character set encoding with the Charset class.

The Charset class is a factory for Charset instances, which know how to encode char‐
acter buffers to byte buffers and decode byte buffers to character buffers. You can look
up a character set by name with the static Charset.forName() method and use it in
conversions:

 Charset charset = Charset.forName("US-ASCII");
 CharBuffer charBuff = charset.decode(byteBuff); // to ascii
 ByteBuffer byteBuff = charset.encode(charBuff); // and back

You can also test to see if an encoding is available with the static Charset.isSuppor
ted() method.

The following character sets are guaranteed to be supplied:

• US-ASCII
• ISO-8859-1
• UTF-8
• UTF-16BE
• UTF-16LE

The NIO Package | 459

• UTF-16

You can list all the encoders available on your platform using the static availableChar
sets() method:

 Map map = Charset.availableCharsets();
 Iterator it = map.keySet().iterator();
 while (it.hasNext())
 System.out.println(it.next());

The result of availableCharsets() is a map because character sets may have “aliases”
and appear under more than one name.

In addition to the buffer-oriented classes of the java.nio package, the InputStream
Reader and OutputStreamWriter bridge classes of the java.io package have been up‐
dated to work with Charset as well. You can specify the encoding as a Charset object
or by name.

CharsetEncoder and CharsetDecoder

You can get more control over the encoding and decoding process by creating an in‐
stance of CharsetEncoder or CharsetDecoder (a codec) with the Charset newEncod
er() and newDecoder() methods. In the previous snippet, we assumed that all the data
was available in a single buffer. More often, however, we might have to process data as
it arrives in chunks. The encoder/decoder API allows for this by providing more general
encode() and decode() methods that take a flag specifying whether more data is ex‐
pected. The codec needs to know this because it might have been left hanging in the
middle of a multibyte character conversion when the data ran out. If it knows that more
data is coming, it does not throw an error on this incomplete conversion. In the fol‐
lowing snippet, we use a decoder to read from a ByteBuffer bbuff and accumulate
character data into a CharBuffer cbuff:

 CharsetDecoder decoder = Charset.forName("US-ASCII").newDecoder();

 boolean done = false;
 while (!done) {
 bbuff.clear();
 done = (in.read(bbuff) == -1);
 bbuff.flip();
 decoder.decode(bbuff, cbuff, done);
 }
 cbuff.flip();
 // use cbuff. . .

Here, we look for the end of input condition on the in channel to set the flag done. Note
that we take advantage of the flip() method on ByteBuffer to set the limit to the
amount of data read and reset the position, setting us up for the decode operation in
one step. The encode() and decode() methods also return a result object, CoderRe
sult, that can determine the progress of encoding (we do not use it in the previous

460 | Chapter 12: Input/Output Facilities

snippet). The methods isError(), isUnderflow(), and isOverflow() on the CoderRe
sult specify why encoding stopped: for an error, a lack of bytes on the input buffer, or
a full output buffer, respectively.

FileChannel
Now that we’ve covered the basics of channels and buffers, it’s time to look at a real
channel type. The FileChannel is the NIO equivalent of the java.io.RandomAccess
File , but it provides several core new features in addition to some performance opti‐
mizations. In particular, use a FileChannel in place of a plain java.io file stream if you
wish to use file locking, memory-mapped file access, or highly optimized data transfer
between files or between file and network channels.

A FileChannel can be created for a Path using the static FileChannelopen() method.
 FileSystem fs = FileSystems.getDefault();
 Path p = fs.getPath("/tmp/foo.txt");

 // Open default for reading
 try (FileChannel channel = FileChannel.open((p)) {
 ...
 }

 // Open with options for writing
 import static java.nio.file.StandardOpenOption.*;

 try (FileChannel channel = FileChannel.open(p, WRITE, APPEND, ...)) {
 ...
 }

By default, open() creates a read-only channel for the file. We can open a channel for
writing or appending and control other more advanced features such as atomic create
and data syncing by passing additional options as shown in the second part of the
previous example. Table 12-4 summarizes these options.

Table 12-4. java.nio.file.StandardOpenOption
Option Description

READ, WRITE Open the file for read-only or write-only (default is read-only). Use both for read-write.

APPEND Open the file for writing; all writes are positioned at the end of the file.

CREATE Use with WRITE to open the file and create it if needed.

CREATE_NEW Use with WRITE to create a file atomically; failing if the file already exists.

DELETE_ON_CLOSE Attempt to delete the file when it is closed or, if open, when the VM exits.

SYNC, DSYNC Wherever possible, guarantee that write operations block until all data is written to storage.
SYNC does this for all file changes including data and metadata (attributes) whereas DSYNC
only adds this requirement for the data content of the file.

The NIO Package | 461

Option Description

SPARSE Use when creating a new file, requests the file be sparse. On filesystems where this is supported,
a sparse file handles very large, mostly empty files without allocating as much real storage for
empty portions.

TRUNCATE_EXISTING Use WRITE on an existing file, set the file length to zero upon opening it.

A FileChannel can also be constructed from a classic FileInputStream, FileOutput
Stream, or RandomAccessFile:

 FileChannel readOnlyFc = new FileInputStream("file.txt").getChannel();
 FileChannel readWriteFc = new RandomAccessFile("file.txt", "rw")
 .getChannel();

FileChannels created from these file input and output streams are read-only or write-
only, respectively. To get a read/write FileChannel, you must construct a RandomAc
cessFile with read/write permissions, as in the previous example.

Using a FileChannel is just like a RandomAccessFile, but it works with ByteBuffer
instead of byte arrays:

 ByteBuffer bbuf = ByteBuffer.allocate(...);
 bbuf.clear();
 readOnlyFc.position(index);
 readOnlyFc.read(bbuf);
 bbuf.flip();
 readWriteFc.write(bbuf);

You can control how much data is read and written either by setting buffer position and
limit markers or using another form of read/write that takes a buffer starting position
and length. You can also read and write to a random position by supplying indexes with
the read and write methods:

 readWriteFc.read(bbuf, index)
 readWriteFc.write(bbuf, index2);

In each case, the actual number of bytes read or written depends on several factors. The
operation tries to read or write to the limit of the buffer, and the vast majority of the
time that is what happens with local file access. The operation is guaranteed to block
only until at least one byte has been processed. Whatever happens, the number of bytes
processed is returned, and the buffer position is updated accordingly, preparing you to
repeat the operation until it is complete if needed. This is one of the conveniences of
working with buffers; they can manage the count for you. Like standard streams, the
channel read() method returns -1 upon reaching the end of input.

The size of the file is always available with the size() method. It can change if you write
past the end of the file. Conversely, you can truncate the file to a specified length with
the truncate() method.

462 | Chapter 12: Input/Output Facilities

Concurrent access

FileChannels are safe for use by multiple threads and guarantee that data “viewed” by
them is consistent across channels in the same VM. Unless you specify the SYNC or DSYNC
options, no guarantees are made about how quickly writes are propagated to the storage
mechanism. If you only intermittently need to be sure that data is safe before moving
on, you can use the force() method to flush changes to disk. The force() method takes
a Boolean argument indicating whether or not file metadata, including timestamp and
permissions, must be written (sync or dsync). Some systems keep track of reads on files
as well as writes, so you can save a lot of updates if you set the flag to false, which
indicates that you don’t care about syncing that data immediately.

As with all Channels, a FileChannel may be closed by any thread. Once closed, all its
read/write and position-related methods throw a ClosedChannelException.

File locking

FileChannels support exclusive and shared locks on regions of files through the lock()
method:

 FileLock fileLock = fileChannel.lock();
 int start = 0, len = fileChannel2.size();
 FileLock readLock = fileChannel2.lock(start, len, true);

Locks may be either shared or exclusive. An exclusive lock prevents others from ac‐
quiring a lock of any kind on the specified file or file region. A shared lock allows others
to acquire overlapping shared locks but not exclusive locks. These are useful as write
and read locks, respectively. When you are writing, you don’t want others to be able to
write until you’re done, but when reading, you need only to block others from writing,
not reading concurrently.

The no-args lock() method in the previous example attempts to acquire an exclusive
lock for the whole file. The second form accepts a starting and length parameter as well
as a flag indicating whether the lock should be shared (or exclusive). The FileLock
object returned by the lock() method can be used to release the lock:

 fileLock.release();

Note that file locks are only guaranteed be a cooperative API; they do not necessarily
prevent anyone from reading or writing to the locked file contents. In general, the only
way to guarantee that locks are obeyed is for both parties to attempt to acquire the lock
and use it. Also, shared locks are not implemented on some systems, in which case all
requested locks are exclusive. You can test whether a lock is shared with the is
Shared() method.

FileChannel locks are held until the channel is closed or interrupted, so performing
locks within a try-with-resources statement will help ensure that locks are released
more robustly.

The NIO Package | 463

try (FileChannel channel = FileChannel.open(p, WRITE)) {
 channel.lock();
 ...
}

Memory-mapped files

One of the most interesting features offered through FileChannel is the ability to map
a file into memory. When a file is memory-mapped, like magic it becomes accessible
through a single ByteBuffer—as if the entire file was read into memory at once. The
implementation of this is extremely efficient, generally among the fastest ways to access
the data. For working with large files, memory mapping can save a lot of resources and
time.

This may seem counterintuitive; we’re getting a conceptually easier way to access our
data and it’s also faster and more efficient? What’s the catch? There really is no catch.
The reason for this is that all modern operating systems are based on the idea of virtual
memory. In a nutshell, that means that the operating system makes disk space act like
memory by continually paging (swapping 4KB blocks called “pages”) between memory
and disk, transparent to the applications. Operating systems are very good at this; they
efficiently cache the data that the application is using and let go of what is not in use.
Memory-mapping a file is really just taking advantage of what the OS is doing internally.

A good example of where a memory-mapped file would be useful is in a database.
Imagine a 10 GB file containing records indexed at various positions. By mapping the
file, we can work with a standard ByteBuffer, reading and writing data at arbitrary
positions and letting the native operating system read and write the underlying data in
fine-grained pages as necessary. We could emulate this behavior with RandomAccess
File or FileChannel, but we would have to explicitly read and write data into buffers
first, and the implementation would almost certainly not be as efficient.

A mapping is created with the FileChannel map() method. For example:
 FileChannel fc =FileChannel.open(fs.getPath("index.db"), CREATE, READ,
 WRITE);
 MappedByteBuffer mappedBuff =
 fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());

The map() method returns a MappedByteBuffer, which is simply the standard Byte
Buffer with a few additional methods relating to the mapping. The most important is
force(), which ensures that any data written to the buffer is flushed out to permanent
storage on the disk. The READ_ONLY and READ_WRITE constant identifiers of the File
Channel.MapMode static inner class specify the type of access. Read/write access is avail‐
able only when mapping a read/write file channel. Data read through the buffer is always
consistent within the same Java VM. It may also be consistent across applications on
the same host machine, but this is not guaranteed.

464 | Chapter 12: Input/Output Facilities

Again, a MappedByteBuffer acts just like a ByteBuffer. Continuing with the previous
example, we could decode the buffer with a character decoder and search for a pattern
like so:

 CharBuffer cbuff = Charset.forName("US-ASCII").decode(mappedBuff);
 Matcher matcher = Pattern.compile("abc*").matcher(cbuff);
 while (matcher.find())
 System.out.println(matcher.start()+": "+matcher.group(0));

Here, we have implemented something like the Unix grep command by relying on the
Regular Expression API working with our CharBuffer as a CharSequence. We’ve cheat‐
ed a bit in this example since the CharBuffer allocated by the decode() method is as
large as the mapped file and must be held in memory. To do this efficiently, we could
use the CharsetDecoder discussed earlier in this chapter to iterate through the large
mapped space without pulling everything into memory.

Direct transfer

The final feature of FileChannel that we’ll examine is performance optimization. Fil
eChannel supports two highly optimized data transfer methods: transferFrom() and
transferTo(), which move data between the file channel and another channel. These
methods can take advantage of direct buffers internally to move data between the chan‐
nels as fast as possible, often without copying the bytes into Java’s memory space at all.
The following example should be the fastest way to implement a file copy in Java short
of using the built-in Filescopy() method:

import java.nio.channels.*;
import java.nio.file.*;
import static java.nio.file.StandardOpenOption.*;

public class CopyFile
{
 public static void main(String [] args) throws Exception
 {
 FileSystem fs = FileSystems.getDefault();
 Path fromFile = fs.getPath(args[0]);
 Path toFile = fs.getPath(args[1]);

 try (
 FileChannel in = FileChannel.open(fromFile);
 FileChannel out = FileChannel.open(toFile, CREATE, WRITE);)
 {
 in.transferTo(0, (int)in.size(), out);
 }
 }
}

The NIO Package | 465

AsynchronousFileChannel

When we return to NIO in the next chapter, we will see that network channels are types
of SelectableChannel, which means that they can be managed with a selector to poll
for when the channels are ready to be read or written and manage them efficiently
without blocking threads. File channels are not selectable channels and most regular
file operations simply block until they are completed. This is not to say that file opera‐
tions always block until all the bytes we want are read from or written to disk. In general,
read operations may return fewer bytes than requested and write operations may boh
write fewer bytes and also may buffer data in memory unless we use the SYNC or
DSYNC open options. But in a world where disk access can be many, many orders of
magnitude slower than in-memory operations even these partial reads and writes may
be slow enough that we do not wish to block waiting for them.

The obvious solution is to use multithreading and coordinate our reads and writes in a
separate thread from our main logic. Java 7 has made this easier by introducing the
AysnchronousFileChannel, which is a file channel that delegates all of its operations to
a thread pool and can report results using a Future object or asynchronous callback.
All read and write operations on asynchronous file channels must specify the byte offset
for the operation (as there is no well-defined “current” offset into the file at any given
time). The simplest example is to write a file update in the background without gathering
results:

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path,
 WRITE);

 // Write logBuffer to the end of the file in the background, returning
 // immediately
 channel.write(logBuffer, channel.size());
 ...

Here, we have constructed an AsynchronousFileChannel analogous to the way we’d
open a regular file channel. Our write happens in the background and the write()
method returns immediately. By default, the channel will use a system default thread
pool to perform our write in the background. Alternately, we could have supplied our
own Executor service for the thread pool as an argument to the open() call. If at some
point we need to sync up and guarantee that all data is written, we can use the channel’s
force() method to block until all writes are complete.

A more interesting case is a read operation where we need the bytes returned from the
operation. In this case we can supply a callback CompletionHandler object that will
push the results to us when they are ready.

 AsynchronousFileChannel channel = AsynchronousFileChannel.open(path);
 ByteBuffer bbuff = ByteBuffer.allocate(1024);
 Object attachment = ...;
 channel.read(bbuff, offset, attachment,
 new CompletionHandler<Integer, Object>() {

466 | Chapter 12: Input/Output Facilities

 @Override
 public void completed(Integer result, Object attachment) {
 System.out.println("read bytes = " + result);
 }

 @Override
 public void failed(Throwable exc, Object attachment){
 ...
 }
 });

The additional argument attachment in the read call can be any object we like, and it
is simply returned to us in the callback as a way for us to maintain any context needed
to service the result. Here, we print the number of bytes ready, which as usual may be
fewer than we requested, but at least didn’t require us to wait for them. The other pos‐
sibility illustrated here is that the read may fail, in which case our failed() method is
invoked with the associated exception.

Scalable I/O with NIO
We’ve laid the groundwork for using the NIO package in this chapter, but left out some
of the important pieces. In the next chapter, we’ll see more of the real motivation for
java.nio when we talk about nonblocking and selectable I/O. In addition to the per‐
formance optimizations that can be made through direct buffers, these capabilities make
possible designs for network servers that use fewer threads and can scale well to large
systems. In that chapter, we’ll look at the other significant Channel types: SocketChan
nel, ServerSocketChannel, and DatagramChannel.

The NIO Package | 467

CHAPTER 13

Network Programming

The network is the soul of Java. Most of what is interesting about Java centers on the
potential for dynamic, networked applications. As Java’s networking APIs have matured,
Java has also become the language of choice for implementing traditional client/server
applications and services. In this chapter, we start our discussion of the java.net pack‐
age, which contains the fundamental classes for communications and working with
networked resources (we’ll finish this discussion in Chapter 14). This chapter next dis‐
cusses the java.rmi package, which provides Java’s native, high-level, Remote Method
Invocation (RMI) facilities. Finally, building on the material in Chapter 12, we complete
our discussion of the java.nio package, which is highly efficient for implementing large
servers.

The classes of java.net fall into two general categories: the Sockets API for working
with low-level Internet protocols and higher-level, web-oriented APIs that work with
uniform resource locators (URLs). Figure 13-1 shows the java.net package.

Java’s Sockets API provides access to the standard network protocols used for commu‐
nications between hosts on the Internet. Sockets are the mechanism underlying all other
kinds of portable networked communications. Sockets are the lowest-level tool in the
general networking toolbox—you can use sockets for any kind of communications be‐
tween client and server or peer applications on the Net, but you have to implement your
own application-level protocols for handling and interpreting the data. Higher-level
networking tools, such as remote method invocation, HTTP, and web services are im‐
plemented on top of sockets.

Java RMI is a powerful tool that leverages Java object serialization, allowing you to
transparently work with Java objects on remote machines almost as if they were local.
With RMI, it is easy to write distributed applications in which clients and servers work
with each other’s data as full-fledged Java objects rather than raw streams or packets of
data.

469

Figure 13-1. The java.net package

470 | Chapter 13: Network Programming

1. For a discussion of sockets in general, see Unix Network Programming by Richard Stevens (Prentice-Hall).

In contrast to RMI, which can only be used between two Java applications, web serv‐
ices is the term for the more general technology that provides platform-independent,
loosely coupled invocation of services on remote servers using web standards such as
HTTP and XML. We talk about web services in Chapters 14 and 15 when we discuss
programming for the Web.

In this chapter, we’ll provide some simple, practical examples of both high- and low-
level Java network programming using sockets and RMI. In Chapter 14, we’ll look at
the other half of the java.net package, which lets clients work with web servers and
services via URLs. Chapter 15 covers Java servlets and the tools that allow you to write
web applications and services for web servers.

Sockets
Sockets are a low-level programming interface for networked communications. They
send streams of data between applications that may or may not be on the same host.
Sockets originated in BSD Unix and are, in some programming languages, hairy, com‐
plicated things with lots of small parts that can break off and endanger little children.
The reason for this is that most socket APIs can be used with almost any kind of un‐
derlying network protocol. Since the protocols that transport data across the network
can have radically different features, the socket interface can be quite complex.1

The java.net package supports a simplified, object-oriented socket interface that
makes network communications considerably easier. If you’ve done network program‐
ming using sockets in other languages, you should be pleasantly surprised at how simple
things can be when objects encapsulate the gory details. If this is the first time you’ve
come across sockets, you’ll find that talking to another application over the network
can be as simple as reading a file or getting user input. Most forms of I/O in Java,
including most network I/O, use the stream classes described in Chapter 12. Streams
provide a unified I/O interface so that reading or writing across the Internet is similar
to reading or writing on the local system. In addition to the stream-oriented interfaces,
the Java networking APIs can work with the Java NIO buffer-oriented API for highly
scalable applications. We’ll see both in this chapter.

Java provides sockets to support three distinct classes of underlying protocols: Sockets,
DatagramSockets, and MulticastSockets. In this first section, we look at Java’s basic
Socket class, which uses a connection-oriented and reliable protocol. A connection-
oriented protocol provides the equivalent of a telephone conversation. After establish‐
ing a connection, two applications can send streams of data back and forth and the
connection stays in place even when no one is talking. Because the protocol is reliable,

Sockets | 471

it also ensures that no data is lost (resending data as necessary) and that whatever you
send always arrives in the order in which you sent it.

In the next section, we look at the DatagramSocket class, which uses a connectionless,
unreliable protocol. A connectionless protocol is like the postal service. Applications
can send short messages to each other, but no end-to-end connection is set up in advance
and no attempt is made to keep the messages in order. It’s not even guaranteed that the
messages will arrive at all. A MulticastSocket is a variation of a DatagramSocket that
performs multicasting—simultaneously sending data to multiple recipients. Working
with multicast sockets is very much like working with datagram sockets. However, be‐
cause multicasting is currently not widely supported across the Internet, we do not cover
it here.

In theory, just about any protocol can be used underneath the socket layer (old-schoolers
will remember things like Novell’s IPX, Apple’s AppleTalk, etc.). But in practice, there’s
only one important protocol family used on the Internet, and only one protocol family
that Java supports: the Internet Protocol (IP). The Socket class speaks TCP, the
connection-oriented flavor of IP, and the DatagramSocket class speaks UDP, the con‐
nectionless kind.

Clients and Servers
When writing network applications, it’s common to talk about clients and servers. The
distinction is increasingly vague, but the side that initiates the conversation is usually
considered the client. The side that accepts the request is usually the server. In the case
where two peer applications use sockets to talk, the distinction is less important, but for
simplicity we’ll use this definition.

For our purposes, the most important difference between a client and a server is that a
client can create a socket to initiate a conversation with a server application at any time,
while a server must be prepared in advance to listen for incoming conversations. The
java.net.Socket class represents one side of an individual socket connection on both
the client and server. In addition, the server uses the java.net.ServerSocket class to
listen for new connections from clients. In most cases, an application acting as a server
creates a ServerSocket object and waits, blocked in a call to its accept() method, until
a connection arrives. When it arrives, the accept() method creates a Socket object that
the server uses to communicate with the client. A server may carry on conversations
with multiple clients at once; in this case, there is still only a single ServerSocket, but
the server has multiple Socket objects—one associated with each client, as shown in
Figure 13-2.

At the socket level, a client needs two pieces of information to locate and connect to a
server on the Internet: a hostname (used to find the host computer’s network address)
and a port number. The port number is an identifier that differentiates between multiple
clients or servers on the same host. A server application listens on a prearranged port

472 | Chapter 13: Network Programming

while waiting for connections. Clients use the port number assigned to the service they
want to access. If you think of the host computers as hotels and the applications as guests,
the ports are like the guests’ room numbers. For one person to call another, he or she
must know the other party’s hotel name and room number.

Figure 13-2. Clients and servers, Sockets and ServerSockets

Clients

A client application opens a connection to a server by constructing a Socket that speci‐
fies the hostname and port number of the desired server:

 try {
 Socket sock = new Socket("wupost.wustl.edu", 25);
 } catch (UnknownHostException e) {
 System.out.println("Can't find host.");
 } catch (IOException e) {
 System.out.println("Error connecting to host.");
 }

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service)
of the host wupost.wustl.edu. The client handles the possibility that the hostname can’t
be resolved (UnknownHostException) and that it might not be able to connect to it
(IOException). In the preceding case, Java used DNS, the standard Domain Name Ser‐
vice, to resolve the hostname to an IP address for us. The constructor can also accept a
string containing the host’s raw IP address:

 Socket sock = new Socket("22.66.89.167", 25);

After a connection is made, input and output streams can be retrieved with the Socket
getInputStream() and getOutputStream() methods. The following (rather arbitrary)
code sends and receives some data with the streams:

 try {
 Socket server = new Socket("foo.bar.com", 1234);
 InputStream in = server.getInputStream();

Sockets | 473

 OutputStream out = server.getOutputStream();

 // write a byte
 out.write(42);

 // write a newline or carriage return delimited string
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Hello!");

 // read a byte
 byte back = (byte)in.read();

 // read a newline or carriage return delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String response = bin.readLine();

 // send a serialized Java object
 ObjectOutputStream oout = new
 ObjectOutputStream(out);
 oout.writeObject(new java.util.Date());
 oout.flush();

 server.close();
 }
 catch (IOException e) { ... }

In this exchange, the client first creates a Socket for communicating with the server.
The Socket constructor specifies the server’s hostname (foo.bar.com) and a prearranged
port number (1234). Once the connection is established, the client writes a single byte
to the server using the OutputStream’s write() method. To send a string of text more
easily, it then wraps a PrintWriter around the OutputStream. Next, it performs the
complementary operations: reading a byte back from the server using InputStream’s
read() method and then creating a BufferedReader from which to get a full string of
text. Finally, we do something really funky and send a serialized Java object to the server,
using an ObjectOutputStream. (We’ll talk in depth about sending serialized objects later
in this chapter.) The client then terminates the connection with the close() method.
All these operations have the potential to generate IOExceptions; our application will
deal with these using the catch clause.

Servers

After a connection is established, a server application uses the same kind of Socket
object for its side of the communications. However, to accept a connection from a client,
it must first create a ServerSocket, bound to the correct port. Let’s recreate the previous
conversation from the server’s point of view:

 // Meanwhile, on foo.bar.com...
 try {

474 | Chapter 13: Network Programming

 ServerSocket listener = new ServerSocket(1234);

 while (!finished) {
 Socket client = listener.accept(); // wait for connection

 InputStream in = client.getInputStream();
 OutputStream out = client.getOutputStream();

 // read a byte
 byte someByte = (byte)in.read();

 // read a newline or carriage-return-delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String someString = bin.readLine();

 // write a byte
 out.write(43);

 // say goodbye
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Goodbye!");

 // read a serialized Java object
 ObjectInputStream oin = new ObjectInputStream(in);
 Date date = (Date)oin.readObject();

 client.close();
 }

 listener.close();
 }
 catch (IOException e) { ... }
 catch (ClassNotFoundException e2) { ... }

First, our server creates a ServerSocket attached to port 1234. On some systems, there
are rules about which ports an application can use. Port numbers below 1024 are usually
reserved for system processes and standard, well-known services, so we pick a port
number outside of this range. The ServerSocket is created only once; thereafter, we
can accept as many connections as arrive.

Next, we enter a loop, waiting for the accept() method of the ServerSocket to return
an active Socket connection from a client. When a connection has been established, we
perform the server side of our dialog, then close the connection and return to the top
of the loop to wait for another connection. Finally, when the server application wants
to stop listening for connections altogether, it calls the close() method of the Server
Socket.

This server is single-threaded; it handles one connection at a time, not calling ac
cept() to listen for a new connection until it’s finished with the current connection. A

Sockets | 475

more realistic server would have a loop that accepts connections concurrently and
passes them off to their own threads for processing. There is a lot to be said about
implementing multithreaded servers. Later in this chapter, we’ll create a tiny web server
that starts a new thread for each connection and also a slightly more complex web server
that uses the NIO package to handle many connections with a small number of threads.

Sockets and security

The previous examples presuppose that the client has permission to connect to the
server and that the server is allowed to listen on the specified socket. If you’re writing a
general, standalone application, this is normally the case (and you can probably skip
this section). However, untrusted applications (such as Java applets in a web browser)
run under the auspices of a security policy that can impose arbitrary restrictions on
what hosts they may or may not talk to and whether or not they can listen for
connections.

For example, the security policy imposed on applets by most browsers allow untrusted
applets to open socket connections only to the host that served them—that is, they can
talk back only to the server from which their class files were retrieved. Untrusted applets
are generally not allowed to open server sockets for incoming connections themselves.
This doesn’t mean that an untrusted applet can’t cooperate with its server to commu‐
nicate with anyone, anywhere. The applet’s server could run a proxy that lets the applet
communicate indirectly with anyone it likes. What this security policy prevents is ma‐
licious applets poking around inside corporate firewalls, making connections to trusted
services. It places the burden of security on the originating server, not the client machine.
Restricting access to the originating server limits the usefulness of Trojan applications
that do annoying things from the client side. (You probably won’t let your proxy spam
people, because you’ll be blamed.)

If you are going to run your own application under a security manager, you should be
aware that the default security manager dissallows all network access. So in order to
make network connections, you would have to modify your policy file to grant the
appropriate permissions to your code (see Chapter 3 for details). The following policy
file fragment sets the socket permissions to allow connections to or from any host on
any nonprivileged port:

 grant {
 permission java.net.SocketPermission
 "*:1024-", "listen,accept,connect";
 };

When starting the Java interpreter, you can install the security manager and use this file
(call it mysecurity.policy):

 % java -Djava.security.manager ↵

 \-Djava.security.policy=mysecurity.policy MyApplication

476 | Chapter 13: Network Programming

The DateAtHost Client
In the past, many networked computers ran a simple time service that dispensed their
clock’s local time on a well-known port. This was a precursor of NTP, the more general
Network Time Protocol. The next example, DateAtHost, includes a subclass of
java.util.Date that fetches the time from a remote host instead of initializing itself
from the local clock. (See Chapter 11 for a complete discussion of the Date class.)

DateAtHost connects to the time service (port 37) and reads four bytes representing the
time on the remote host. These four bytes have a peculiar specification that we decode
to get the time. Here’s the code:

 //file: DateAtHost.java
 import java.net.Socket;
 import java.io.*;

 public class DateAtHost extends java.util.Date {
 static int timePort = 37;
 // seconds from start of 20th century to Jan 1, 1970 00:00 GMT
 static final long offset = 2208988800L;

 public DateAtHost(String host) throws IOException {
 this(host, timePort);
 }

 public DateAtHost(String host, int port) throws IOException {
 Socket server = new Socket(host, port);
 DataInputStream din =
 new DataInputStream(server.getInputStream());
 int time = din.readInt();
 server.close();

 setTime((((1L << 32) + time) - offset) * 1000);
 }
 }

That’s all there is to it. It’s not very long, even with a few frills. We have supplied two
possible constructors for DateAtHost. Normally we’d expect to use the first, which sim‐
ply takes the name of the remote host as an argument. The second constructor specifies
the hostname and the port number of the remote time service. (If the time service were
running on a nonstandard port, we would use the second constructor to specify the
alternate port number.) This second constructor does the work of making the connec‐
tion and setting the time. The first constructor simply invokes the second (using the
this() construct) with the default port as an argument. Supplying simplified construc‐
tors that invoke their siblings with default arguments is a common and useful pattern
in Java; that is the main reason we’ve shown it here.

The second constructor opens a socket to the specified port on the remote host. It creates
a DataInputStream to wrap the input stream and then reads a four-byte integer using

Sockets | 477

the readInt() method. It’s no coincidence that the bytes are in the right order. Java’s
DataInputStream and DataOutputStream classes work with the bytes of integer types
in network byte order (most significant to least significant). The time protocol (and other
standard network protocols that deal with binary data) also uses the network byte order,
so we don’t need to call any conversion routines. Explicit data conversions would prob‐
ably be necessary if we were using a nonstandard protocol, especially when talking to
a non-Java client or server. In that case, we’d have to read byte by byte and do some
rearranging to get our four-byte value. After reading the data, we’re finished with the
socket, so we close it, terminating the connection to the server. Finally, the constructor
initializes the rest of the object by calling Date’s setTime() method with the calculated
time value.

The four bytes of the time value are interpreted as an integer representing the number
of seconds since the beginning of the 20th century. DateAtHost converts this to Java’s
notion of absolute time—the count of milliseconds since January 1, 1970 (an arbitrary
date standardized by C and Unix). The conversion first creates a long value, which is
the unsigned equivalent of the integer time. It subtracts an offset to make the time
relative to the epoch (January 1, 1970) rather than the century, and multiplies by 1,000
to convert to milliseconds. The converted time is used to initialize the object.

The DateAtHost class can work with a time retrieved from a remote host almost as easily
as Date is used with the time on the local host. The only additional overhead is dealing
with the possible IOException that can be thrown by the DateAtHost constructor:

 try {
 Date d = new DateAtHost("someserver.net");
 System.out.println("The time over there is: " + d);
 }
 catch (IOException e) { ... }

This example fetches the time at the host someserver.net and prints its value.

The TinyHttpd Server
Have you ever wanted to write your very own web server? Well, you’re in luck. In this
section, we’re going to build TinyHttpd, a minimal but functional web server. Ti
nyHttpd listens on a specified port and services simple HTTP GET requests. GET requests
are simple text commands that look something like this:

 GET /path/filename [optional stuff]

Your web browser sends one or more of these requests for each document it retrieves
from a web server. Upon reading a request, our server attempts to open the specified
file and send its contents. If that document contains references to images or other items
to be displayed inline, the browser follows up with additional GET requests. For
best performance, TinyHttpd services each request in its own thread. Therefore,
TinyHttpd can service several requests concurrently.

478 | Chapter 13: Network Programming

This example works, but it’s a bit oversimplified. First, it implements a very old subset
of the HTTP protocol, so some browsers may turn their nose up at it. (I tested this in
Safari on my Mac at the time of this writing and it worked well enough for this example’s
purposes.) Also remember that file pathnames are still somewhat architecture-
dependent in Java. This example should work as it is on most systems, but would require
some enhancement to be more robust. It’s possible to write slightly more elaborate code
that uses the environmental information provided by Java to tailor itself to the local
system. (Chapter 12 gives some hints about how.)

Unless you have a firewall or other security in place, the next exam‐
ple serves files from your host without protection. Don’t try this at
work!

Now, without further ado, here’s TinyHttpd:
 //file: TinyHttpd.java
 import java.net.*;
 import java.io.*;
 import java.util.regex.*;
 import java.util.concurrent.*;

 public class TinyHttpd {
 public static void main(String argv[]) throws IOException {
 Executor executor = Executors.newFixedThreadPool(3);
 ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
 while (true)
 executor.execute(new TinyHttpdConnection(ss.accept()));
 }
 }

 class TinyHttpdConnection implements Runnable {
 Socket client;
 TinyHttpdConnection (Socket client) throws SocketException {
 this.client = client;
 }
 public void run() {
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(client.getInputStream(), "8859_1"));
 OutputStream out = client.getOutputStream();
 PrintWriter pout = new PrintWriter(
 new OutputStreamWriter(out, "8859_1"), true);
 String request = in.readLine();
 System.out.println("Request: "+request);

 Matcher get = Pattern.compile("GET /?(\\S*).*").matcher(request);
 if (get.matches()) {
 request = get.group(1);
 if (request.endsWith("/") || request.equals(""))

Sockets | 479

 request = request + "index.html";
 try {
 FileInputStream fis = new FileInputStream (request);
 byte [] data = new byte [64*1024];
 for(int read; (read = fis.read(data)) > -1;)
 out.write(data, 0, read);
 out.flush();
 } catch (FileNotFoundException e) {
 pout.println("404 Object Not Found"); }
 } else
 pout.println("400 Bad Request");
 client.close();
 } catch (IOException e) {
 System.out.println("I/O error " + e); }
 }
 }

Compile TinyHttpd and place it in your classpath, as described in Chapter 3. Go to a
directory with some interesting documents and start the server, specifying an unused
port number as an argument. For example:

 % java TinyHttpd 1234

You should now be able to use your web browser to retrieve files from your host. You’ll
have to specify the port number you chose in the URL. For example, if your hostname
is foo.bar.com, and you started the server as shown, you could reference a file as in:

 http://foo.bar.com:1234/welcome.html

Or, more likely, if you’re running both the server and your web browser on the same
machine, you could reference a file as in:

 http://localhost:1234/welcome.html

TinyHttpd looks for files relative to its current directory, so the pathnames you provide
should be relative to that location. (Retrieved some files? Did you notice that when you
retrieved an HTML file, your web browser automatically generated more requests for
items like images that were contained within it?) Let’s take a closer look.

The TinyHttpd application has two classes. The public TinyHttpd class contains the
main() method of our standalone application. It begins by creating a ServerSocket,
attached to the specified port. It then loops, waiting for client connections and creating
instances of the second class, a TinyHttpdConnection, to service each request. The
while loop waits for the ServerSocket accept() method to return a new Socket
for each client connection. The Socket is passed as an argument to construct the
TinyHttpdConnection that handles it. We use an Executor with a fixed pool size of
three threads to service all of our connections.

TinyHttpdConnection is a Runnable object. For each connection we start a thread,
which lives long enough to handle the single client connection and then dies. The body
of TinyHttpdConnection’s run() method is where all the magic happens. First, we fetch

480 | Chapter 13: Network Programming

an OutputStream for talking back to our client. The second line reads the GET request
from the InputStream into the variable request. This request is a single newline-
terminated String that looks like the GET request we described earlier. For this, we use
a BufferedInputStream wrapped around an InputStreamReader. (We’ll say more
about the InputStreamReader in a moment.)

We then parse the contents of request to extract a filename. Here, we are using the
Regular Expression API (see Chapter 10 for a full discussion of regular expressions and
the Regular Expression API). The pattern simply looks for the "GET" followed by an
optional slash and then any string of nonwhitespace characters. We add the ".*" at the
end to cause the pattern to match the whole input, so that we can use the Matcher
match() method to test if the whole request made sense to us or not. The part that
matches the filename is in a capture group: "(\\S*)". This allows us to retrieve that text
with the Matcher group() method. Finally, we check to see if the requested filename
looks like a directory name (i.e., ends in a slash) or is empty. In these cases, we append
the familiar default filename index.html as a convenience.

Once we have the filename, we try to open the specified file and send its contents using
a large byte array. Here we loop, reading one buffer at a time and writing to the client
via the OutputStream. If we can’t parse the request or the file doesn’t exist, we use the
PrintStream to send a textual message. Then we return a standard HTTP error message.
Finally, we close the socket and return from run(), completing our task.

Do French web servers speak French?

In TinyHttpd, we explicitly created the InputStreamReader for our BufferedRead and
the OutputStreamWriter for our PrintWriter. We do this so that we can specify the
character encoding to use when converting to and from the byte representation of the
HTTP protocol messages. (Note that we’re not talking about the body of the file to be
sent—that is simply a stream of raw bytes to us; rather we’re talking about the GET and
response messages.) If we didn’t specify, we’d get the default character encoding for the
local system. For many purposes that may be correct, but in this case, we are speaking
of a well-defined international protocol and we should be specific. The RFC for HTTP
specifies that web clients and servers should use the ISO8859-1 character encoding. We
specify this encoding explicitly when we construct the InputStreamReader and Out
putStreamWriter. As it turns out, ISO8859-1 is just plain ASCII and conversion to and
from Unicode should always leave ASCII values unchanged, so again we would probably
not be in any trouble if we did not specify an encoding. But it’s important to think about
these things at least once—and now you have.

Taming the daemon

An important problem with TinyHttpd is that there are no restrictions on the files it
serves. With a little trickery, the daemon would happily send any file on your computer
to the client. It would be nice if we could enforce the restriction that TinyHttpd serve

Sockets | 481

only files that are in the current working directory or a subdirectory, as it normally does.
An easy way to do this is to activate the Java Security Manager. Normally, a security
manager is used to prevent Java code downloaded over the Net from doing anything
suspicious. However, we can press the security manager into service to restrict file access
in our application as well.

You can use a policy like the simple one that we provided earlier in this chapter; it allows
the server to accept connections on a specified range of sockets. Fortuitously, the default
file-access granted by the security policy does just what we‘d like for this example: it
allows an application access to files in its current working directory and subdirectories.
So simply installing the security manager provides exactly the kind of file protection
that we wanted in this case. (It would be easy to add additional permissions if you wish
to extend the server’s range to other well-defined areas.)

With the security manager in place, the daemon cannot access anything outside the
current directory and its subdirectories. If it tries to, the security manager throws an
exception and prevents access to the file. In that case, we should have TinyHttpd catch
the SecurityException and return a proper message to the web browser. Add the fol‐
lowing catch clause after the FileNotFoundException’s catch clause:

 ...
 } catch (Security Exception e) {
 pout.println("403 Forbidden");
 }

Room for improvement

TinyHttpd still has quite a bit of room for improvement. Technically, it implements only
an obsolete subset of the HTTP protocol (version 0.9) in which the server expects only
the GET request and returns just the content. All modern servers speak HTTP 1.1, which
allows for additional metadata in both the HTTP request and response and requires
certain data such as version number and content length. You could extend our simple
server to add these extra bits of the header without a great deal of effort. HTTP 1.1 also
has more sophisticated features such as allowing multiple client requests to be sent over
one socket connection, which requires more elaborate code.

Of course, real web servers can do all sorts of other things. For example, you might
consider adding a few lines of code to read directories and generate linked HTML list‐
ings as most web servers do. Have fun with this example, and you can learn quite a bit.

Socket Options
As we’ve said, the Java Sockets API is a somewhat simplified interface to the general
socket mechanisms. In other environments, where all the gory details of the network
are visible to you, a lot of complex and sometimes esoteric options can be set on sockets

482 | Chapter 13: Network Programming

to govern the behavior of the underlying protocols. Java gives us access to a few
important ones.

SO_TIMEOUT

The SO_TIMEOUT option sets a timer on all I/O methods of a socket that block so that
you don’t have to wait forever if they don’t return. This works for operations such as
accept() on server sockets and read() or write() on all sockets. If the timer expires
before the operation would complete, an InterruptedIOException is thrown. You can
catch the exception and continue to use the socket normally if it is appropriate, or you
can take the opportunity to bail out of the operation. Multithreaded, blocking servers,
such as TinyHttpd, can use this sort of technique for their shutdown logic:

 serverSocket.setSoTimeout(2000); // 2 seconds

 while (!shutdown) {
 try {
 Socket client = serverSocket.accept();
 handleClient(client);
 } catch (InterruptedIOException e) {
 // ignore the exception
 }

 // exit
 }

You set the timer by calling the setSoTimeout() method of the Socket class with the
timeout period, in milliseconds, as an int argument. This works for regular Sockets,
ServerSockets (TCP), and DatagramSockets (UDP), discussed later in this chapter. To
find the current timeout value, call getSoTimeout() .

This feature is a workaround for the fact that stream-oriented I/O operations in Java
are blocking, and there is no way to test or poll them for activity. Later in this chapter,
we’ll complete our discussion of the NIO package, which provides full nonblocking I/O
for all types of operations, including sockets.

TCP_NODELAY

This option turns off a feature of TCP called Nagle’s algorithm, which tries to prevent
certain interactive applications from flooding the network with very tiny packets. For
example, in our very first network example we sent a single byte to the network in one
write. With this option on, under certain conditions, the TCP implementation might
have decided to hold that byte for a very brief period, hoping for more data to fill the
next packet. You can turn this “delay” off if you have a fast network and you want all
packets sent as soon as possible. The Socket setTcpNoDelay() method takes a Boolean
argument specifying whether the delay is on or off. To find out whether the TCP_NODE
LAY option is enabled, call getTcpNoDelay(), which returns a boolean.

Sockets | 483

SO_LINGER

This option controls what happens to any unsent data when you perform a close() on
an active socket connection. Normally, the system blocks on the close and tries to deliver
any network buffered data and close the connection gracefully. The setSoLinger()
method of the Socket class takes two arguments: a boolean that enables or disables the
option and an int that sets the time to wait (the linger value), in seconds. If you set the
linger value to 0, any unsent data is discarded and the TCP connection is aborted (ter‐
minated with a reset). To find the current linger value, call getSoLinger().

TCP_KEEPALIVE

This option can be enabled with the setKeepAlive() method. It triggers a feature of
TCP that polls the other side every two hours if there is no other activity. Normally,
when no data is flowing on a TCP connection, no packets are sent. This can make it
difficult to tell whether the other side is simply being quiet or has disappeared. If one
side of the connection closes properly, this is detected. But if the other side simply
disappears, we don’t know unless and until we try to talk to it. For this reason, servers
often use TCP_KEEPALIVE to detect lost client connections (where they might otherwise
only respond to requests, rather than initiate them). Keepalive is not part of the TCP
specification; it’s an add-on that’s not guaranteed to be implemented everywhere. If you
can, the best way to detect lost clients is to implement the polling as part of your own
protocol.

Half-close

In TCP, it is technically possible to close one direction of a stream but not the other. In
other words, you can shut down sending but not receiving, or vice versa. A few protocols
use this to indicate the end of a client request by closing the client side of the stream,
allowing the end of stream to be detected by the server. You can shut down either half
of a socket connection with shutdownOutput() or shutdownInput().

Proxies and Firewalls
Most networks today are behind firewalls. Some firewalls not only prevent outsiders
from getting in, but by default, prevent applications inside the firewall from opening
direct socket-level connections to the outside network. Instead, firewalls that do this
often provide a service called SOCKS (named for sockets) that acts as a proxy server for
socket connections, giving the administrators more control over what connections are
allowed. Firewalls may also be set up with direct proxies for higher-level protocols, such
as HTTP and FTP, which allow even greater control and possibly screening of content.
It’s all about attempting to control who connects to whom and for what.

If your firewall does not allow any direct outside socket connections, even via SOCKS,
your application may still be able to communicate with the outside world by using HTTP

484 | Chapter 13: Network Programming

to send and receive data in this way. See Chapter 14 for an example of how to perform
HTTP POST and GET operations to send and retrieve data through firewalls that allow
web traffic.

Java has built-in support for SOCKS as well as HTTP and FTP protocol proxies. All you
have to do is set some system properties in your application (in an applet, this should
be already taken care of for you through your browser configuration, because you
wouldn’t have authority to set those properties). To configure Java to use a SOCKS
(version 4 or 5) proxy server, set the following system properties:
socksProxyHost

The SOCKS proxy server name.

socksProxyPort

The SOCKS proxy port number.

If the SOCKS proxy requires a username and password, you can supply them in the
additional properties java.net.socks.username and java.net.socks.password.

It’s similar for HTTP and FTP proxies, which are set with separate properties:
http.proxyHost

ftp.proxyHost

The proxy server name.

http.proxyPort

The proxy port number.

http.nonProxyHosts

A list of hosts for which direct connections should always be made. Hosts in the list
are separated by vertical bars (|) and may include asterisks (*) as wildcards—for
example, myserver|*.mydomain.

You can set these properties on the command line using the Java interpreter’s -D option
or by calling the System.setProperty() method. The following command runs MyPro
gram using the HTTP proxy server at foo.bar.com on port 1234:

 % java -Dhttp.proxyServer=foo.bar.com -Dhttp.proxyPort=1234 MyProgram

ProxySelector

Java also has an API to allow programmatic control of Java’s use of proxies. The
java.net.ProxySelector class has a method that takes a uniform resource identifier
(URI) object (a generalization of the URLs we use for web addresses; see Chapter 14)
and returns a list of java.net.Proxy objects representing the proxies or direct con‐
nections to be used for the protocol specified. The default ProxySelector obeys the
system properties we listed earlier. If required, you can create and install your own proxy
selector to take control of the process and direct different destinations to different

Sockets | 485

proxies. To see what decisions are being made, you can get the default selector with the
static method ProxySelector.getDefault() and query it for various protocols with
its select() method. The following example prints some string information about the
preferred proxy (if any) for a specific HTTP URL:

 ProxySelector ps = java.net.ProxySelector.getDefault();
 List list = ps.select(new URI("http://java.sun.com/"));
 System.out.println(list.get(0));//e.g. HTTP@myserver:1234

Detailed information can be obtained from the proxy object, which contains a type
identifier specifying DIRECT, HTTP, or SOCKS and a proxy address. To query for a SOCKS
socket proxy for a given host and port, use a URI string of the form socket://
host:port.

Datagram Sockets
TinyHttpd used a Socket to create a connection to the client using the TCP protocol.
In that example, the TCP protocol took care of data integrity; we didn’t have to worry
about data arriving out of order or incorrect. Now, let’s take a walk on the wild side,
building an applet that uses a java.net.DatagramSocket, which uses the UDP protocol.
A datagram is sort of like a letter sent via the postal service: it’s a discrete chunk of data
transmitted in one packet. Unlike the previous example, where we could get a conve‐
nient OutputStream from our Socket and write the data as if writing to a file with a
DatagramSocket, we have to work one datagram at a time. (Of course, the TCP protocol
was taking our OutputStream and slicing the data into packets, too, but we didn’t have
to worry about those details.)

UDP doesn’t guarantee that the data is received. If the data packets are received, they
may not arrive in the order in which they were sent; it’s even possible for duplicate
datagrams to arrive (under rare circumstances). Using UDP is something like cutting
the pages out of the encyclopedia, putting them into separate envelopes, and mailing
them to your friend. If your friend wants to read the encyclopedia, it’s his or her job to
put the pages in order. If some pages get lost in the mail, your friend has to send you a
letter asking for replacements.

Obviously, you wouldn’t use UDP to send a huge amount of data without error correc‐
tion. However, it’s significantly more efficient than TCP, particularly if you don’t care
about the order in which messages arrive or whether 100 percent of their arrival is
guaranteed. For example, in a simple periodic database lookup, the client can send a
query; the server’s response itself constitutes an acknowledgment. If the response
doesn’t arrive within a certain time, the client can just send another query. It shouldn’t
be hard for the client to match responses to its original queries. Some important appli‐
cations that use UDP are the Domain Name System (DNS) and Sun’s Network File
System (NFS).

486 | Chapter 13: Network Programming

The HeartBeat Applet
In this section, we build a simple applet, HeartBeat, that runs in a web browser and
sends a datagram to its server each time it’s started and stopped. We also build a simple
standalone server application, Pulse, that receives these datagrams and prints them.
Tracking the output could give you a crude measure of who is currently looking at your
web page at any given time (assuming that firewalls do not block the UDP packets).
This is the kind of thing UDP is good for: we don’t want the overhead of a TCP socket,
and if the datagrams get lost, it’s no big deal.

First, the HeartBeat applet:
 //file: HeartBeat.java
 import java.net.*;
 import java.io.*;

 public class HeartBeat extends java.applet.Applet {
 String myHost;
 int myPort;

 public void init() {
 myHost = getCodeBase().getHost();
 myPort = Integer.parseInt(getParameter("myPort"));
 }

 private void sendMessage(String message) {
 try {
 byte [] data = message.getBytes("UTF-8");
 InetAddress addr = InetAddress.getByName(myHost);
 DatagramPacket packet =
 new DatagramPacket(data, data.length, addr, myPort);
 DatagramSocket ds = new DatagramSocket();
 ds.send(packet);
 ds.close();
 } catch (IOException e) {
 System.out.println(e); // Error creating socket
 }
 }

 public void start() {
 sendMessage("Arrived");
 }
 public void stop() {
 sendMessage("Departed");
 }
 }

Compile the applet and include it in an HTML document with an <applet> tag:
<html><body>
 <h1>Heartbeat!</h1>
 <applet height="1 " width="1 " code="HeartBeat ">

Datagram Sockets | 487

 <param name="myPort" value="1234">
 </applet>
 </body></html>

Make sure to place the compiled HeartBeat.class file in the same directory as the HTML
document (which we’ll refer to as heartbeat.html). We talk more about embedding
applets in HTML documents in Chapter 23.

The myPort parameter should specify the port number on which our server application
listens for data (“1234” as just shown).

Next, the server-side application, Pulse:
 //file: Pulse.java
 import java.net.*;
 import java.io.*;

 public class Pulse {
 public static void main(String [] argv) throws IOException {
 DatagramSocket s =
 new DatagramSocket(Integer.parseInt(argv[0]));

 while (true) {
 DatagramPacket packet =
 new DatagramPacket(new byte [1024], 1024);
 s.receive(packet);
 String message = new String(
 packet.getData(), 0, packet.getLength(),"UTF-8");
 System.out.println("Heartbeat from: "
 + packet.getAddress().getHostName()
 + " - " + message);
 }
 }
 }

Compile Pulse and run it on your web server, specifying the port number as an
argument:

 % java Pulse 1234

The port number should be the same as the one you used in the myPort parameter of
the <applet> tag for HeartBeat.

Now to run the example we’re going to need a web server. Opening the file directly in
your browser will not work here because, as we mentioned earlier, applets are only
allowed to talk to the host that served them and when no web server is involved, the
security manager doesn’t allow any network communications at all. Fortunately, we
wrote a satisfactory web server, TinyHttpd, earlier in this chapter! Just run TinyHttpd
in the directory with your heartbeat.html file—being careful to specify a different port
number than our HeartBeat client and Pulse server—and use it to serve up the page.

488 | Chapter 13: Network Programming

We tested this in Safari on a Mac at the time of this writing and it worked as expected.
But if you have issues you can try a “real” web server and we won’t be offended.

Now, pull up the web page in your browser. You won’t see much there (a better appli‐
cation might do something visual as well), but you should get a blip from the Pulse
application. Leave the page and return to it a few times. Each time the applet is started
or stopped, it sends a message that Pulse reports:

 Heartbeat from: foo.bar.com - Arrived
 Heartbeat from: foo.bar.com - Departed
 Heartbeat from: foo.bar.com - Arrived
 Heartbeat from: foo.bar.com - Departed
 ...

Cool, eh? Just remember that the datagrams are not guaranteed to arrive (although it’s
highly unlikely you’ll ever see them fail on a normal network), and it’s possible that you
could miss an arrival or a departure. Now let’s look at the code.

The HeartBeat applet code

HeartBeat overrides the init(), start(), and stop() methods of the Applet class and
implements one private method of its own, sendMessage(), which sends a datagram.
(We haven’t covered applets yet, so if you want more details, refer to Chapter 23.)
HeartBeat begins its life in init(), where it determines the destination for its messages.
It uses the Applet getCodeBase() and getHost() methods to find the name of its
originating host and fetches the correct port number from the myPort parameter of the
<applet> tag. After init() has finished, the start() and stop() methods are called
whenever the applet is started or stopped. These methods merely call sendMessage()
with the appropriate message.

sendMessage() is responsible for sending a String message to the server as a datagram.
It takes the text as an argument, constructs a datagram packet containing the message,
and then sends the datagram. All the datagram information is packed into a
java.net.DatagramPacket object, including the destination and port number. The
DatagramPacket is like an addressed envelope, stuffed with our bytes. After the Data
gramPacket is created, sendMessage() simply has to open a DatagramSocket and
send it.

The first five lines of sendMessage() build the DatagramPacket:
 try {
 byte [] data = message.getBytes("UTF-8");
 InetAddress addr = InetAddress.getByName(myHost);
 DatagramPacket pack =
 new DatagramPacket(data, data.length, addr, myPort);

First, the contents of message are placed into an array of bytes called data. Next a
java.net.InetAddress object is created by looking up the hostname myHost. An

Datagram Sockets | 489

InetAddress holds the network IP address for a host. This class also provides the static
getByName() method for looking up an IP address by hostname using the system’s name
service. (We’ll say more about InetAddress in the next section.) Finally, we call the
DatagramPacket constructor with four arguments: the byte array containing our data,
the length of the data, the destination address object, and the port number. We ask for
the string to be encoded using the UTF-8 charset; we’ll use the same character set to
decode it.

The remaining lines construct a default client DatagramSocket and call its send()
method to transmit the DatagramPacket. After sending the datagram, we close the
socket:

 DatagramSocket ds = new DatagramSocket();
 ds.send(pack);
 ds.close();

Two operations throw a type of IOException: the InetAddress.getByName() lookup
and the DatagramSocket send() method. InetAddress.getByName() can throw an
UnknownHostException, which is a type of IOException that indicates the hostname
can’t be resolved. If send() throws an IOException, it implies a serious client-side
communication problem with the network. We need to catch these exceptions; our
catch block simply prints a message telling us that something went wrong. If we get
one of these exceptions, we can assume the datagram never arrived. However, we can’t
assume the inverse: even if we don’t get an exception, we still don’t know that the host
is actually accessible or that the data actually arrived; with a DatagramSocket, we never
find out from the API.

The Pulse server code

The Pulse server corresponds to the HeartBeat applet. First, it creates a DatagramSock
et to listen on our prearranged port. This time, we specify a port number in the con‐
structor; we get the port number from the command line as a string (argv[0]) and
convert it to an integer with Integer.parseInt(). Note the difference between this call
to the constructor and the call in HeartBeat. In the server, we need to listen for incoming
datagrams on a prearranged port, so we need to specify the port when creating the
DatagramSocket. The client just sends datagrams, so we don’t have to specify the port
in advance; we build the port number into the DatagramPacket itself.

Second, Pulse creates an empty DatagramPacket of a fixed maximum size to receive an
incoming datagram. This form of the constructor for DatagramPacket takes a byte array
and a length as arguments. As much data as possible is stored in the byte array when it’s
received. (A practical limit on the size of a UDP datagram that can be sent over the
Internet is 8K, although datagrams can be larger for local network use—theoretically
up to 64K.) Finally, Pulse calls the DatagramSocket’s receive() method to wait for a
packet to arrive. When a packet arrives, its contents are printed by turning them to a

490 | Chapter 13: Network Programming

string using UTF-8 encoding. We determine the actual number of received bytes from
the packet’s getLength() method.

As you can see, DatagramSockets are slightly more tedious than regular Sockets. With
datagrams, it’s harder to spackle over the messiness of the socket interface. The Java API
rather slavishly follows the Unix interface, and that doesn’t help. But all in all, it’s not
that hard to use datagrams for simple tasks.

InetAddress
The java.net.InetAddress class is the lowest-level Java API for working with IP ad‐
dresses. Instances of InetAddress represent individual addresses and the InetAd
dress class provides the API for using the platform’s name service to map a string
hostname to a numeric IP address. Most of our networking examples showed the use
of hostnames to identify remote servers, but under the covers, Java utilized the static
InetAddress.getByName() method to map the name to a physical IP address. Java
normally uses the DNS to perform this lookup (and it caches the results for efficiency).
Most Java networking APIs (such as Sockets) will accept either a hostname or an
InetAddress as a destination. The InetAddress class can also be used to perform reverse
IP lookups (get a name for an IP address) as well as to find the primary address of the
local host via the static InetAddress.getLocalHost() method.

A useful feature of InetAddress is the method isReachable(), which attempts to use
the ICMP ping protocol to determine whether a remote address can be reached over
the network. The ping protocol is the standard mechanism used to check reachability
and latency on networks. It is a low-level IP protocol (along with TCP and UDP) and
is not guaranteed to be supported everywhere. If isReachable() can’t use ICMP, it
attempts to use TCP to reach the echo service (port 7) on the remote host. For example:

 InetAddress server = InetAddress.getByName("myserver");
 If (!server.isReachable(timeout)) // milliseconds
 pageSomeone();

Simple Serialized Object Protocols
Earlier in this chapter, we showed a hypothetical conversation in which a client and
server exchanged some primitive data and a serialized Java object. Passing an object
between two programs may not have seemed like a big deal at the time, but, in the context
of Java as a portable bytecode language, it has big implications. In this section, we show
how a protocol can be built using serialized Java objects.

Before we move on, it’s worth considering network protocols. Most programmers would
consider working with sockets to be tedious and complex. Even though Java makes
sockets much easier to use than many other languages, sockets still provide only an
unstructured flow of bytes between their endpoints. If you want to do serious

Simple Serialized Object Protocols | 491

communications using sockets, the first thing you have to do is come up with a protocol
that defines the data you are sending and receiving. The most complex part of that
protocol usually involves how to marshal (package) your data for transfer over the Net
and unpack it on the other side.

As we’ve seen, Java’s DataInputStream and DataOuputStream classes solve this problem
for simple data types. We can read and write numbers, Strings, and Java primitives in
a standard format that can be understood on any other Java platform. To do real work,
however, we need to be able to put simple types together into larger structures. Java
object serialization solves this problem elegantly by allowing us to send our data in the
state in which we will use it—as Java objects. Serialization can even pack up entire graphs
of interconnected objects and put them back together at a later time in another Java
VM.

A Simple Object-Based Server
In the following example, a client sends a serialized object to the server, and the server
responds in kind. The object sent by the client represents a request and the object re‐
turned by the server represents the response. The conversation ends when the client
closes the connection. It’s hard to imagine a simpler protocol. All the hairy details are
taken care of by object serialization, which allows us to work with standard Java objects
as we are used to doing.

To start, we define a class—Request—to serve as a base class for the various kinds of
requests we make to the server. Using a common base class is a convenient way to identify
the object as a type of request. In a real application, we might also use it to hold basic
information, such as client names and passwords, timestamps, serial numbers, and
so on. In our example, Request can be an empty class that exists so that others can
extend it:

 //file: Request.java
 public class Request implements java.io.Serializable {}

Request implements Serializable, so all its subclasses are serializable by default. Next,
we create some specific kinds of Requests. The first, DateRequest, is also a trivial class.
We use it to ask the server to send us a java.util.Date object as a response:

 //file: DateRequest.java
 public class DateRequest extends Request {}

Next, we create a generic WorkRequest object. The client sends a WorkRequest to get the
server to perform some computation. The server calls the WorkRequest object’s exe
cute() method to do the work on the server side and then returns the resulting object
as a response:

 //file: WorkRequest.java
 public abstract class WorkRequest extends Request {

492 | Chapter 13: Network Programming

 public abstract Object execute();
 }

For our application, we subclass WorkRequest to create MyCalculation, which adds
code that performs a specific calculation; in this case, we just square a number:

 //file: MyCalculation.java
 public class MyCalculation extends WorkRequest {
 int n;

 public MyCalculation(int n) {
 this.n = n;
 }
 public Object execute() {
 return new Integer(n * n);
 }
 }

As far as data content is concerned, MyCalculation really doesn’t do much; it only really
transports an integer value for us. But keep in mind that a request object could hold lots
of data, including references to many other objects in complex structures, such as arrays
or linked lists. The only requirement is that all the objects to be sent must be serializable
or must be able to be discarded by marking them as transient (see Chapter 12). Note
that MyCalculation also contains behavior—the execute() operation. While Java ob‐
ject serialization sends only the data content of a class, in our discussion of RMI later
in this chapter, we’ll see how Java’s ability to dynamically download bytecode for classes
can make both the data content and behavior portable over the network.

It’s also important to note that even without dynamically loading classes over the net‐
work (which is uncommon in practice), this design pattern, sometimes called the com‐
mand pattern, is an important one. Using polymorphism to hide behavior details of
tasks from the server allows the application to be easily extended. Polymorphism and
Java object serialization are a powerful combination.

Now that we have our protocol, we need the server. The following Server class looks a
lot like the TinyHttpd server we developed earlier in this chapter:

 //file: Server.java
 import java.net.*;
 import java.io.*;

 public class Server {
 public static void main(String argv[]) throws IOException {
 ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
 while (true)
 new ServerConnection(ss.accept()).start();
 }
 } // end of class Server

 class ServerConnection extends Thread {
 Socket client;

Simple Serialized Object Protocols | 493

 ServerConnection (Socket client) throws SocketException {
 this.client = client;
 }

 public void run() {
 try {
 ObjectInputStream in =
 new ObjectInputStream(client.getInputStream());
 ObjectOutputStream out =
 new ObjectOutputStream(client.getOutputStream());
 while (true) {
 out.writeObject(processRequest(in.readObject()));
 out.flush();
 }
 } catch (EOFException e3) { // Normal EOF
 try {
 client.close();
 } catch (IOException e) { }
 } catch (IOException e) {
 System.out.println("I/O error " + e); // I/O error
 } catch (ClassNotFoundException e2) {
 System.out.println(e2); // unknown type of request object
 }
 }

 private Object processRequest(Object request) {
 if (request instanceof DateRequest)
 return new java.util.Date();
 else if (request instanceof WorkRequest)
 return ((WorkRequest)request).execute();
 else
 return null;
 }
 }

The Server handles each request in a separate thread. For each connection, the run()
method creates an ObjectInputStream and an ObjectOutputStream, which the server
uses to receive the request and send the response. The processRequest() method de‐
cides what the request means and comes up with the response. To figure out what kind
of request we have, we use the instanceof operator to look at the object’s type.

Finally, we get to our Client, which is even simpler:
 //file: Client.java
 import java.net.*;
 import java.io.*;

 public class Client {
 public static void main(String argv[]) {
 try {
 Socket server =
 new Socket(argv[0], Integer.parseInt(argv[1]));

494 | Chapter 13: Network Programming

 ObjectOutputStream out =
 new ObjectOutputStream(server.getOutputStream());
 ObjectInputStream in =
 new ObjectInputStream(server.getInputStream());

 out.writeObject(new DateRequest());
 out.flush();
 System.out.println(in.readObject());

 out.writeObject(new MyCalculation(2));
 out.flush();
 System.out.println(in.readObject());

 server.close();
 } catch (IOException e) {
 System.out.println("I/O error " + e); // I/O error
 } catch (ClassNotFoundException e2) {
 System.out.println(e2); // unknown type of response object
 }
 }
 }

Just like the server, Client creates the pair of object streams. It sends a DateRequest
and prints the response; it then sends a MyCalculation object and prints the response.
Finally, it closes the connection. On both the client and the server, we call the flush()
method after each call to writeObject(). This method forces the system to send any
buffered data, ensuring that the other side sees the entire request before we wait for a
response. When the client closes the connection, our server catches the EOFException
that is thrown and ends the session. Alternatively, our client could write a special object,
perhaps null, to end the session; the server could watch for this item in its main loop.

The order in which we construct the object streams is important. We create the output
streams first because the constructor of an ObjectInputStream tries to read a header
from the stream to make sure that the InputStream really is an object stream. If we tried
to create both of our input streams first, we would deadlock waiting for the other side
to write the headers.

Finally, we run the example, giving it a port number as an argument:
 % java Server 1234

Then we run the Client, telling it the server’s hostname and port number:
 % java Client flatland 1234

The result should look something like this:
 Sun Mar 5 14:25:25 PDT 2006
 4

All right, the result isn’t that impressive, but it’s easy to think of more substantial appli‐
cations. Imagine that you need to perform a complex computation on many large

Simple Serialized Object Protocols | 495

datasets. Using serialized objects makes maintenance of the data objects natural and
sending them over the wire trivial. There is no need to deal with byte-level protocols at
all.

Limitations

As we mentioned earlier, there is one catch in this scenario: both the client and server
need access to the necessary classes. That is, all the Request classes—including MyCal
culation, which is really the property of the Client—must be deployed in the classpath
on both the client and the server machines. In the next section, we’ll see that it’s possible
to send the Java bytecode along with serialized objects to allow completely new kinds
of objects to be transported dynamically over the network. We could create this solution
on our own, adding to the earlier example using a network class loader to load the classes
for us. But we don’t have to: Java’s RMI facility handles that for us. The ability to send
both serialized data and class definitions over the network is not always needed, but it
makes Java a powerful tool for prototyping and developing advanced distributed
applications.

Remote Method Invocation
The most fundamental means of communication in Java is method invocation. Mech‐
anisms such as the Java event model are built on simple method invocations between
objects in the same virtual machine. Therefore, when we want to communicate between
virtual machines on different hosts, it’s natural to want a mechanism with similar ca‐
pabilities and semantics—to run a method “over there.” Java’s RMI mechanism does just
that. It lets us get a reference to an object on a remote host and use it almost as if it were
in our own virtual machine. RMI lets us invoke methods on remote objects, passing real
Java objects as arguments and getting real Java objects as returned values.

Remote invocation is nothing new. For many years, C programmers have used remote
procedure calls (RPC) to execute a C function on a remote host and return the results.
The primary difference between RPC in other languages and RMI is that RPC is usually
primarily concerned with data structures. It’s relatively easy to pack up data and ship it
around, but RMI tries to do one better. In Java, we don’t just work with data structures;
we work with objects that contain both data and methods for operating on the data. Not
only do we have to be able to ship the state of an object (the data) over the wire, but the
recipient has to be able to interact with the object (use its methods) after receiving it.
With Java RMI, you can work with network services in an object-oriented fashion, using
real, extensible types and pass “live” references between client and server.

It should be no surprise that RMI uses object serialization, which allows us to send
graphs of objects (objects and the tree of all the connected objects that they reference).
When necessary, RMI can also use dynamic class loading and the security manager to
transport Java classes safely. In addition to making remote method calls almost as easy

496 | Chapter 13: Network Programming

to use as local calls, RMI makes it possible to ship both data and behavior (code) around
the Net.

Real-World Usage
Now that the introduction has you all excited, we should put things in a little more
context. While Java RMI has proven to be very powerful, it has never really caught on
as a way to build general applications. Instead, RPC-like web services using XML and
HTTP to transfer data using standardized network protocols have ruled for many years.
The reason for this is primarily that they are cross-platform and can be easily consumed
by JavaScript running within web browsers. Web services that run over HTTP are also
generally immune to firewall issues since they use the same mechanism as all web pages.
Since the tools to develop applications using web services have become mature and easy
to use, developers tend to use them even when building applications purely in Java,
where RMI might otherwise be more powerful. In this section we’ll go ahead and show
you what can be done with RMI; however, you will definitely want to check out the
chapters on web services and web applications later in this book as well.

Remote and Nonremote Objects
Before an object can be used remotely through RMI, it must be serializable. But that’s
not sufficient. Remote objects in RMI are real distributed objects. As the name suggests,
a remote object can be an object on a different machine or an object on the local host.
The term remote means that the object is used through a special kind of object interface
that can be passed over the network. Like normal Java objects, remote objects are passed
by reference. Regardless of where the reference is used, the method invocation occurs
on the original object, which still lives on its original host. If a remote host returns a
reference to one of its remote objects to you, you can call the object’s methods; the actual
method invocations happen on the remote host where the underlying object resides.

Nonremote objects are simpler; they’re just normal serializable objects. (You can pass
these over the network as we did in the previous section.) The catch is that when you
pass a nonremote object over the network, it is simply copied, so references to the object
on one host are not the same as those on the remote host. Nonremote objects are passed
by value (copying) as opposed to by reference. This may be acceptable for many kinds
of data holder objects on your host, such as the client requests and server responses in
our previous example. These types of objects are sometimes called value objects or data
transfer objects (DTOs).

Remote interfaces

Remote objects implement a special remote interface that specifies which of the object’s
methods can be invoked remotely. The remote interface is part of the application that
you create by extending the java.rmi.Remote interface. Your remote object then

Remote Method Invocation | 497

implements its remote interface as it would any other Java interface. In your client-side
code, you should then refer to the remote object as an instance of the remote interface—
not as an instance of its implementation class. Because both the real object and stub that
the client receives implement the remote interface, they are equivalent as far as we are
concerned (for method invocation); locally, we never have to worry about whether we
have a reference to a stub or to an actual object. This type equivalence means that we
can use normal language features such as casting with remote objects. Of course, public
fields (variables) of the remote object are not accessible through an interface, so you
must make accessor methods if you want to manipulate the remote object’s fields.

One additional requirement for remote objects distinguishes them from local objects.
All methods in the remote interface must declare that they can throw the exception
java.rmi.RemoteException. This exception (or one of its subclasses) is thrown when
any kind of networking error happens (for example, a server crash, network failure, or
timeout). Some people see this as a limitation and try to paper over it in various ways.
However, the RemoteException is there for a reason—remote objects can behave dif‐
ferently from local objects and your code needs to deal with that issue explicitly. There
is no magic bullet (automatic retries, transactions) that truly makes the difference go
away.

Here’s a simple example of the remote interface that defines the behavior of RemoteOb
ject; we give it two methods that can be invoked remotely, both of which return some
kind of Value object:

 import java.rmi.*;

 public interface RemoteObject extends Remote {
 public Value doSomething() throws RemoteException;
 public Value doSomethingElse() throws RemoteException;
 }

Exporting remote objects

You make a remote object available to the outside world by using the java.rmi.serv
er.UnicastRemoteObject class. One way is simply to have the implementation of your
remote object extend UnicastRemoteObject. When a subclass of UnicastRemoteOb
ject is constructed, the RMI runtime system automatically “exports” it to start listening
for network connections from clients. Like java.lang.Object, this superclass also pro‐
vides implementations of equals(), hashcode(), and toString() that make sense for
a remote object.

Here’s a remote object class that implements the RemoteObject interface we showed
earlier and extends UnicastRemoteObject; we haven’t shown implementations for the
two methods or the constructor:

 public class MyRemoteObject implements RemoteObject
 extends java.rmi.UnicastRemoteObject

498 | Chapter 13: Network Programming

 {
 public MyRemoteObject() throws RemoteException {...}
 public Value doSomething() throws RemoteException {...}
 public Value doSomethingElse() throws RemoteException {...}
 // nonremote methods
 private void doSomethingInternal() { ... }
 }

Note that we have to supply a constructor that can throw a RemoteException (even if
it does nothing) because UnicastRemoteObject’s default constructor throws RemoteEx
ception and, even if it’s not shown, the Java language always delegates to the superclass
constructor. This class can have as many additional methods as it needs (presumably
most of them will be private, but that isn’t strictly necessary), but these nonremote
methods are not required to throw the remote exception.

Now, what if we can’t or don’t want to make our remote object implementation a subclass
of UnicastRemoteObject? Suppose, for example, that it has to be a subclass of BankAc
count or some other special base type for our system. Well, we can simply take over the
job of exporting the object ourselves, using the static method exportObject() of Uni
castRemoteObject. The exportObject() method takes as an argument a Remote in‐
terface and accomplishes what the UnicastRemoteObject constructor normally does
for us. It returns as a value the remote object’s client stub. However, you will normally
not do anything with this directly. In the next section, we’ll discuss how clients actually
find your service, through the RMI registry (a lookup service).

Normally, exported objects listen on individual ephemeral (randomly assigned) port
numbers by default. (This is implementation-dependent.) You can control the port
number allocation explicitly by exporting your objects using another form of Unicast
RemoteObject.exportObject(), which takes both a Remote interface and a port num‐
ber as arguments.

Finally, the name UnicastRemoteObject begs the question, “What other kinds of remote
objects are there?” Right now, few. There is another type of object called Activatable
that is for RMI objects that require persistence over time. We’ll say a few more words
about RMI activation later in this chapter, but it’s not something we will get into in detail.

The RMI registry

The registry is RMI’s phone book. You use the registry to look up a reference to a
registered remote object on another host, using an application-specified name. We’ve
already described how remote references can be passed back and forth by remote meth‐
od calls. The registry is needed to bootstrap the process by allowing the client to look
up an initial object on the remote host.

The registry is implemented by a class called Naming and an application called rmireg
istry. The rmiregistry application must be running on a host before you start a Java
program that wants to advertise in the registry. You can then create instances of remote

Remote Method Invocation | 499

objects and bind them to particular names in the registry. A registry name can be any‐
thing you choose; it takes the form of a slash-separated path. When a client object wants
to find your object, it constructs a special URL with the rmi: protocol, the hostname,
and the object name. On the client, the RMI Naming class then talks to the registry and
returns the remote object reference.

So, which objects need to register themselves with the registry? Initially, this can be any
object that the client has no other way of finding. After that, a call to a remote method
can return another remote object without using the registry. Likewise, a call to a remote
method can have another remote object as its argument, without requiring the registry.
You could design your system such that only one object registers itself and then serves
as a factory for any other remote objects you need. In other words, it wouldn’t be hard
to build a simple object request factory that returns references to all the remote objects
your application uses. Depending on how you structure your application, this may
happen naturally anyway.

The RMI registry is just one implementation of a lookup mechanism for remote objects.
It is not very sophisticated, and lookups tend to be slow. It is not intended to be a general-
purpose directory service, but simply to bootstrap RMI communications. More gener‐
ally, the Java Naming and Directory Interface (JNDI) is a Java API allowing access to
other widely used name services that can provide this kind of functionality. JNDI is used
with RMI as part of the Enterprise JavaBeans APIs.

An RMI Example
In our first example using RMI, we duplicate the simple serialized object protocol from
the previous section. We make a remote RMI object called MyServer on which we can
invoke methods to get a Date object or execute a WorkRequest object. First, we define
our Remote interface:

 //file: ServerRemote.java
 import java.rmi.*;
 import java.util.*;

 public interface ServerRemote extends Remote {
 Date getDate() throws RemoteException;
 Object execute(WorkRequest work) throws RemoteException;
 }

The ServerRemote interface extends the java.rmi.Remote interface, which identifies
objects that implement it as remote objects. We supply two methods that take the place
of our old protocol: getDate() and execute().

Next, we implement this interface in a class called MyServer that defines the bodies of
these methods. (Another common convention for naming the implementation of re‐
mote interfaces is to append Impl to the class name. Using that convention, MyServer
would instead be named something like ServerImpl.)

500 | Chapter 13: Network Programming

 //file: MyServer.java
 import java.rmi.*;
 import java.util.*;

 public class MyServer
 extends java.rmi.server.UnicastRemoteObject
 implements ServerRemote {

 public MyServer() throws RemoteException { }

 // implement the ServerRemote interface
 public Date getDate() throws RemoteException {
 return new Date();
 }

 public Object execute(WorkRequest work)
 throws RemoteException {
 return work.execute();
 }

 public static void main(String args[]) {
 try {
 ServerRemote server = new MyServer();
 Naming.rebind("NiftyServer", server);
 } catch (java.io.IOException e) {
 // problem registering server
 }
 }
 }

MyServer extends UnicastRemoteObject so that when we create an instance of MyServ
er, it is automatically exported and starts listening to the network. We start by providing
a constructor that must throw RemoteException, which accommodates errors that
might occur in exporting an instance. Next, MyServer implements the methods of the
remote interface ServerRemote. These methods are straightforward.

The last method in this class is main(). This method lets the object set itself up as a
server. main() creates an instance of the MyServer object and then calls the static method
Naming.rebind() to place the object in the registry. The arguments to rebind() include
the name of the remote object in the registry (NiftyServer)—which clients use to look
up the object—and a reference to the server object itself. We could have called bind()
instead, but rebind() handles the case where there’s already a NiftyServer registered
by replacing it.

We wouldn’t need the main() method or this Naming business if we weren’t expecting
clients to use the registry to find the server—that is, we could omit main() and still use
this object as a remote object. We would just be limited to passing the object in method
invocations or returning it from method invocations—but that could be part of a factory
pattern, as we discussed before.

Remote Method Invocation | 501

Now we need our client:
 //file: MyClient.java
 import java.rmi.*;
 import java.util.*;

 public class MyClient {

 public static void main(String [] args)
 throws RemoteException {
 new MyClient(args[0]);
 }

 public MyClient(String host) {
 try {
 ServerRemote server = (ServerRemote)
 Naming.lookup("rmi://"+host+"/NiftyServer");
 System.out.println(server.getDate());
 System.out.println(
 server.execute(new MyCalculation(2)));
 } catch (java.io.IOException e) {
 // I/O Error or bad URL
 } catch (NotBoundException e) {
 // NiftyServer isn't registered
 }
 }
 }

When we run MyClient, we pass it the hostname of the server on which the registry is
running. The main() method creates an instance of the MyClient object, passing the
hostname from the command line as an argument to the constructor.

The constructor for MyClient uses the hostname to construct a URL for the object. The
URL looks like this: rmi://hostname/NiftyServer. (Remember, NiftyServer is the name
under which we registered our ServerRemote.) We pass the URL to the static Nam
ing.lookup() method. If all goes well, we get back a reference to a ServerRemote (the
remote interface). The registry has no idea what kind of object it will return; look
up() therefore returns an Object, which we must cast to ServerRemote, the remote
interface type.

Running the example

You can run the client and server on the same machine or on different machines. First,
make sure all the classes are in your classpath (or the current directory if there is no
classpath) and then start the rmiregistry and MyServer on your server host:

 % rmiregistry &(on Windows:start rmiregistry)
 %java MyServer

Next, run the client, passing the name of the server host (or “localhost” for the local
machine):

502 | Chapter 13: Network Programming

 % java MyClientmyhost

The client should print the date and the number 4, which the server graciously calcu‐
lated. Hooray! With just a few lines of code, you have created a powerful client/server
application.

Dynamic class loading

Before running the example, we told you to distribute all of the class files to both the
client and server machines. However, RMI was designed to ship classes in addition to
data around the network; you shouldn’t have to distribute all the classes in advance. Let’s
go a step further and have RMI load classes for us as needed. This involves a few extra
steps.

First, we need to tell RMI where to find any other classes it needs. We can use the system
property java.rmi.server.codebase to specify a URL on a web server (or FTP server)
when we run our client or server. This URL specifies the location of a JAR file or a base
directory where RMI begins its search for classes. When RMI sends a serialized object
(i.e., an object’s data) to a client, it also sends this URL. If the recipient needs the class
file in addition to the data, it fetches the file at the specified URL. In addition to stub
classes, other classes referenced by remote objects in the application can be loaded
dynamically. Therefore, we don’t have to distribute many class files to the client; we can
let the client download them as necessary. In Figure 13-3, we see an example of My
Client going to the registry to get a reference to the ServerRemote object. Once there,
MyClient dynamically downloads the stub class for MyServer from a web server running
on the server object’s host.

We can now split our class files more logically between the server and client machines.
For example, we could withhold the MyCalculation class from the server because it
really belongs to the client. Instead, we can make the MyCalculation class available via
a web server on some machine (probably our client’s) and specify the URL when we run
MyClient:

 % java -Djava.rmi.server.codebase='http://myserver/foo/'...

The trailing slash in the codebase URL is important: it says that the location is a base
directory that contains the class files. In this case, we would expect that MyCalcula
tion would be accessible at the URL http://myserver/foo/MyCalculation.class.

Next, we have to set up security. Since we are loading class files over the network and
executing their methods, we must have a security manager in place to restrict the kinds
of things those classes may do, at least when they are not coming from a trusted code
source. RMI will not load any classes dynamically unless a security manager is installed.
One easy way to meet this condition is to install the RMISecurityManager as the system
security manager for your application. It is an example security manager that works
with the default system policy and imposes some basic restrictions on what downloaded

Remote Method Invocation | 503

classes can do. To install the RMISecurityManager, simply add the following line to the
beginning of the main() method of both the client and server applications (yes, we’ll be
sending code both ways in the next section):

 main() {
 System.setSecurityManager(new RMISecurityManager());
 ...

Figure 13-3. RMI applications and dynamic class loading

The RMISecurityManager works with the system security policy file to enforce restric‐
tions. You have to provide a policy file that allows the client and server to do basic
operations like make network connections. Unfortunately, allowing all the operations
needed to load classes dynamically requires listing a lot of permission information and
we don’t want to get into that here. We suggest that for this example, you simply grant
the code all permissions. Here is an example policy file—call it mysecurity.policy:

 grant {
 permission java.security.AllPermission ;
 };

(It’s exceedingly lame, not to mention risky, to install a security manager and then tell
it to enforce no real security, but we’re more interested in looking at the networking
code at the moment.)

504 | Chapter 13: Network Programming

To run our MyServer application, we would use a command such as:
 % java -Djava.rmi.server.codebase='http://myserver/foo/' \
 -Djava.security.policy=mysecurity.policy MyServer

Finally, one last trick is required to enable dynamic class loading. As of the current
implementation, the rmiregistry must be run without the classes that are to be loaded
in its classpath. If the classes are in the classpath of rmiregistry, it does not annotate
the serialized objects with the URLs of their class files, and no classes are dynamically
loaded. This limitation is really annoying; all we can say is to heed the warning for now.

If you follow these directions, you should be able to run our client with only the My
Client class and the ServerRemote remote interface in its classpath. All the other classes
are loaded dynamically from the specified server as needed.

Passing remote object references

So far, we haven’t done anything that we couldn’t have done with the simple object
protocol. We used only one remote object, MyServer, and we got its reference from the
RMI registry. Now we extend our example to pass some remote references between the
client and server, allowing additional remote calls in both directions. We’ll add two
methods to our remote ServerRemoteinterface:

 public interface ServerRemote extends Remote {
 ...
 StringIterator getList() throws RemoteException;
 void asyncExecute(WorkRequest work, WorkListener
 listener)
 throws RemoteException;
 }

getList() retrieves a new kind of object from the server: a StringIterator. The
StringIterator we’ve created is a simple list of strings with some methods for accessing
the strings in order. We make it a remote object so that implementations of StringIt
erator stay on the server.

Next, we spice up our work request feature by adding an asyncExecute() method.
asyncExecute() lets us hand off a WorkRequest object as before, but it does the calcu‐
lation on its own time. The return type for asyncExecute() is void because it doesn’t
actually return a value; we get the result later. Along with the request, our client passes
a reference to a WorkListener object that is to be notified when the WorkRequest is
done. We’ll have our client implement WorkListener itself.

Because this is to be a remote object, our interface must extend Remote and its methods
must throw RemoteExceptions:

 //file: StringIterator.java
 import java.rmi.*;

 public interface StringIterator extends Remote {

Remote Method Invocation | 505

 public boolean hasNext() throws RemoteException;
 public String next() throws RemoteException;
 }

Next, we provide a simple implementation of StringIterator, called My

StringIterator:
 //file: MyStringIterator.java
 import java.rmi.*;

 public class MyStringIterator
 extends java.rmi.server.UnicastRemoteObject
 implements StringIterator {

 String [] list;
 int index = 0;

 public MyStringIterator(String [] list)
 throws RemoteException {
 this.list = list;
 }
 public boolean hasNext() throws RemoteException {
 return index < list.length;
 }
 public String next() throws RemoteException {
 return list[index++];
 }
 }

MyStringIterator extends UnicastRemoteObject. Its methods are simple: it can give
you the next string in the list, and it can tell you if there are any strings you haven’t seen
yet.

Next, we discuss the WorkListener remote interface that defines how an object should
listen for a completed WorkRequest. It has one method, workCompleted(), which the
server executing a WorkRequest calls when the job is done:

 //file: WorkListener.java
 import java.rmi.*;

 public interface WorkListener extends Remote {
 public void workCompleted(WorkRequest request, Object result)
 throws RemoteException;
 }

Let’s add the new features to MyServer. We need to add implementations of the get
List() and asyncExecute() methods, which we just added to the ServerRemote
interface:

 public class MyServer extends java.rmi.server.UnicastRemoteObject
 implements ServerRemote {
 ...
 public StringIterator getList() throws RemoteException {

506 | Chapter 13: Network Programming

 return new MyStringIterator(
 new String [] { "Foo", "Bar", "Gee" });
 }

 public void asyncExecute(
 final WorkRequest request, final WorkListener listener)
 throws java.rmi.RemoteException
 {
 new Thread() {
 public void run() {
 Object result = request.execute();
 try {
 listener.workCompleted(request, result);
 } catch (RemoteException e) {
 System.out.println(e); // error calling client
 }
 }}.start();
 }
 }

getList() just returns a StringIterator with some stuff in it. asyncExecute() calls
a WorkRequest’s execute() method and notifies the listener when it’s done. asyncExe
cute() runs the request in a separate thread, allowing the remote method call to return
immediately. Later, when the work is done, the server uses the client’s WorkListener
interface to return the result.

We have to modify MyClient to implement the remote WorkListener interface. This
turns MyClient into a remote object, so we will have it extend UnicastRemoteObject.
We also add the workCompleted() method the WorkListener interface requires. Finally,
we want MyClient to exercise the new features. We’ve put all of this in a new version of
the client called MyClientAsync:

 //file: MyClientAsync.java
 import java.rmi.*;
 import java.util.*;

 public class MyClientAsync
 extends java.rmi.server.UnicastRemoteObject implements WorkListener
 {

 public MyClientAsync(String host) throws RemoteException
 {
 try {
 ServerRemote server = (ServerRemote)
 Naming.lookup("rmi://"+host+"/NiftyServer");

 server.asyncExecute(new MyCalculation(100), this);
 System.out.println("call done...");
 } catch (java.io.IOException e) {
 // I/O Error or bad URL
 } catch (NotBoundException e) {

Remote Method Invocation | 507

 // NiftyServer isn't registered
 }
 }

 public void workCompleted(WorkRequest request, Object result)
 throws RemoteException
 {
 System.out.println("Async result: "+result);
 }

 public static void main(String [] args) throws RemoteException {
 new MyClientAsync(args[0]);
 }

 }

We use getList() to get the iterator from the server and then loop, printing the strings.
We also call asyncExecute() to perform another calculation; this time, we square the
number 100. The second argument to asyncExecute() is the WorkListener to notify
when the data is ready; we pass a reference to ourselves (this).

Restart the RMI registry and MyServer on your server, and run the client somewhere.
You should get the following:

 Foo
 Bar
 Gee
 Async result = 10000

We hope that this introduction has given you a feel for the tremendous power that RMI
offers through object serialization and dynamic class loading. Java is one of the first
programming languages to offer this kind of powerful framework for distributed ap‐
plications. Although some of the advanced features are not used widely in business
applications, RMI was the underpinning for the very widely used J2EE Enterprise
JavaBeans architecture and is an important technology. For more information on RMI
and J2EE, see Java Enterprise in a Nutshell (O’Reilly).

RMI and CORBA
Java supports an important alternative to RMI, called CORBA (Common Object Re‐
quest Broker Architecture). We won’t say much about CORBA here, but you should
know that it exists. CORBA is an older distributed object standard developed by the
Object Management Group (OMG), of which Sun Microsystems was one of the found‐
ing members. Its major advantage is that it works across languages: a Java program can
use CORBA to talk to objects written in other languages, like C or C++. This may be a
considerable advantage if you want to build a Java frontend for an older program that
you can’t afford to reimplement. CORBA also provides other services similar to those

508 | Chapter 13: Network Programming

in the Java Enterprise APIs. CORBA’s major disadvantages are that it’s complex, inele‐
gant, and somewhat arcane.

Scalable I/O with NIO
We’ll now conclude the discussion of the NIO package we began in Chapter 12 by talking
about nonblocking and selectable network communications. All our server examples
in this chapter thus far have used a thread-bound pattern (one thread per I/O operation).
In Java, this is very natural because of the ease with which we can create threads. It’s also
very efficient, within limits. Problems arise when you try to build very large-scale servers
using this style of client handling. While on a large machine it’s certainly possible to
have hundreds or even thousands of threads (especially if they’re mostly idle, waiting
for I/O), this is a resource-hungry solution. Every thread you start in Java consumes
memory for its internal stack, and the performance of managing this number of threads
is highly system-dependent.

An alternate approach is to take a lesson from the old, dark days before threading was
available and use nonblocking I/O operations to manage numerous communications
from a single thread. Better yet, our server uses a configurable pool of threads, taking
advantage of machines with many processors.

At the heart of this process is the concept of selectable I/O. It’s not good enough to simply
have nonblocking I/O operations if you have no way to efficiently poll for work to be
done. The NIO package provides for efficient polling using selectable channels. A se‐
lectable channel allows for the registration of a special kind of listener called a selector
that can check the readiness of the channel for operations, such as reading and writing
or accepting or creating network connections.

The selector and the selection process are not typical Java listeners of the kind we’ll see
elsewhere in this book, but instead rather slavishly follow the conventions of C language
systems. This is mainly for performance reasons; because this API is primarily intended
for high-volume servers, it is bound very tightly to the traditional, underlying operating
system facilities with less regard for ease of use. This, combined with the other details
of using the NIO package, mean that this section is somewhat dense and the server we
create here is one of the longer and more complex examples in the book. Don’t be
discouraged if you are a bit put off by this section. You can use the general techniques
earlier in this chapter for most applications and reserve this knowledge for creating
services that handle the very highest volumes of simultaneous client requests.

Selectable Channels
A selectable channel implements the SelectableChannel interface, which specifies that
the channel can be set to a nonblocking mode and that it supports the select API that
makes efficient polling possible. The primary implementations of selectable channels

Scalable I/O with NIO | 509

are those for working with the network: SocketChannel, ServerSocketChannel, and
DatagramChannel. The only other selectable channel is the Pipe (which can be used in
an analogous way for intra-VM communication).

At the heart of the process is the Selector object, which knows about a particular set
of selectable channels and provides a select() method for determining their readiness
for I/O operations. Conceptually, the process is simple; you register one or more chan‐
nels with a selector and then poll it, asking it to tell you which set of channels is ready
to go. In actuality, there are a few additional pieces involved.

First, the Selector does not work directly with channels but instead operates on Se
lectionKey objects. A SelectionKey object is created implicitly when the channel is
registered with the Selector. It encapsulates the selectable channel as well as informa‐
tion about what types of operations (e.g., read, write) we are interested in waiting for.
That information is held in the SelectionKey in a set of flags called the interest set,
which can be changed by the application at any time. SelectionKeys are also used to
return the results of a select operation. Each call to select() returns the number of
SelectionKeys that are ready for some type of I/O. The keys are then retrieved with the
selectedKeys() method. Each key also has a set of flags called the ready set that indi‐
cates which operation of interest is actually ready (possibly more than one). For example,
a SelectionKey interest set might indicate that we want to know when its channel is
ready for reading or writing. After a select operation, if that key is in the set returned
by the selector, we know that it is ready for one or more of those operations, and we can
check the key’s ready set to find out which one.

Before we go on, we should say that although we have been saying that channels are
registered with selectors, the API is (confusingly) the other way around. Selectors are
actually registered with the one or more channels they manage, but it’s better to mentally
spackle over this and think of them the other way around.

Using Select
A Selector object is created using the Selector.open() method (Selector uses a
factory pattern):

 Selector selector = Selector.open();

To register one or more channels with the selector, set them to nonblocking mode:
 SelectableChannel channelA = // ...
 channelA.configureBlocking(false);

Next, register the channels:
 int interestOps = SelectionKey.OP_READ | SelectionKey.OP_WRITE;
 SelectionKey key = channelA.register(selector, interestOps);

510 | Chapter 13: Network Programming

When we register the channel, we have an opportunity to set the initial interest opera‐
tions (or “interest ops”). These are defined by constant fields in the SelectionKey class:
OP_READ

Ready to read

OP_WRITE

Ready to write

OP_CONNECT

Client-socket connection ready

OP_ACCEPT

Server-socket connection ready

These fields are bit flags; you can logically OR them together as in this example to express
interest in more than one type of operation.

The result of the register() method is a SelectionKey object. We can use the key to
change the interest ops at any time with the SelectionKey interestOps() method or
to unregister the channel from the Selector with the key’s cancel() method.

This same key is also returned as the result of selection operations when its channel is
ready. When the SelectionKey is returned, its ready set holds flags for the operations
that do not block if called. We can retrieve the value of the flags with the readySet()
method. Convenience methods are available to test for each operation in the ready set:
isReadable(), isWritable(), isConnectable(), and isAcceptable().

Depending on how you structure your application, it may not be necessary to save the
SelectionKey at registration time. In our example, we let the Selector keep track of
the keys for us, simply using them when they are ready. In fact, we go even further and
put the SelectionKey to work by asking it to hold a reference for us! The SelectionKey
attach() method is a convenience method that can attach an arbitrary object to the
key for use by our application. We show how this can be useful in a bit.

After one or more channels are registered with the Selector, we can perform a se
lect operation using one of its select() methods:

 int readyCount = selector.select();

Without arguments, the method blocks until at least one channel is ready for some
operation or until the Selector’s wakeup() method is called. Alternatively, you can use
the form of select() that takes a timeout (in milliseconds) to wait for a ready channel
before returning. There is also selectNow(), which always returns immediately. Both
of these return methods count the number of ready channels.

You can use select() and wakeup() somewhat like wait() and notify(). The wakeup
is necessary because once a selection is started, it will not see any changes to its key’s
interest ops until the next invocation. If another thread changes the interest ops, it must

Scalable I/O with NIO | 511

use wakeup() to prompt the selecting thread to select() again. The Selector is also
heavily synchronized; for example, calls to register new channels block until the select
is finished. Often it’s much easier to simply use select with a short timeout and a loop,
like this:

 while (selector.select(50) == 0);

However, if another thread is allowed to change the interest ops, you still need to use
wakeup() to maximize throughput. Otherwise, in the worst case, you could end up
waiting the full select wait period on every iteration, even when there is work to be
done.

Next, we can get the set of ready channels from the Selector with the selected
Keys() method and iterate through them, doing whatever our application dictates:

 Set readySet = selector.selectedKeys();
 for(Iterator it = readySet.iterator(); it.hasNext();) {
 SelectionKey key = (SelectionKey)it.next();
 it.remove(); // remove the key from the ready set
 // use the key
 }

The ready set is returned to us as a java.util.Set, which we walk through with an
Iterator (see Chapter 1). One important thing to note is that we’ve used the Itera
tor’s remove() method to remove the key from the ready set. The select() methods
add keys only to the ready set or add flags to keys already in the set; they never remove
them, so we must clear the keys when we handle them. You can get the full set of keys
a Selector is managing with the keys() method, but you should not attempt to remove
keys from that set; use the cancel() method on individual keys instead. Or you can
close the entire Selector with its close() method, unregistering all its keys.

LargerHttpd
Let’s put this information to use. In this section, we’ll create the big brother of
TinyHttpd (our minimalist web server) called LargerHttpd. The LargerHttpd server
is a nonblocking web server that uses SocketChannels and a pool of threads to service
requests. In this example, a single thread executes a main loop that accepts new con‐
nections and checks the readiness of existing client connections for reading or writing.
Whenever a client needs attention, it places the job in a queue where a thread from our
thread pool waits to service it. As we said, this example is a bit longer than we would
like, but it is really the minimum that is necessary to show a realistic usage of the APIs:

import java.io.*;
import java.util.*;
import java.util.concurrent.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;

512 | Chapter 13: Network Programming

import java.nio.charset.*;
import java.util.regex.*;

public class LargerHttpd
{
 Selector clientSelector;

 public void run(int port, int threads) throws IOException
 {
 clientSelector = Selector.open();
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);
 InetSocketAddress sa = new InetSocketAddress(InetAddress
 .getLoopbackAddress(), port);
 ssc.socket().bind(sa);
 ssc.register(clientSelector, SelectionKey.OP_ACCEPT);

 Executor executor = Executors.newFixedThreadPool(threads);

 while (true) {
 try {
 while (clientSelector.select(100) == 0);
 Set<SelectionKey> readySet = clientSelector.selectedKeys();
 for(Iterator<SelectionKey> it=readySet.iterator();
 it.hasNext();)
 {
 final SelectionKey key = it.next();
 it.remove();
 if (key.isAcceptable()) {
 acceptClient(ssc);
 } else {
 key.interestOps(0);
 executor.execute(new Runnable() {
 public void run() {
 try {
 handleClient(key);
 } catch (IOException e) {
 System.out.println(e);
 }
 }
 });
 }
 }
 } catch (IOException e) { System.out.println(e); }
 }
 }

 void acceptClient(ServerSocketChannel ssc) throws IOException
 {
 SocketChannel clientSocket = ssc.accept();
 clientSocket.configureBlocking(false);

Scalable I/O with NIO | 513

 SelectionKey key = clientSocket.register(clientSelector,
 SelectionKey.OP_READ);
 HttpdConnection client = new HttpdConnection(clientSocket);
 key.attach(client);
 }

 void handleClient(SelectionKey key) throws IOException
 {
 HttpdConnection client = (HttpdConnection)key.attachment();
 if (key.isReadable()) {
 client.read(key);
 } else {
 client.write(key);
 }
 clientSelector.wakeup();
 }

 public static void main(String argv[]) throws IOException {
 //new LargerHttpd().run(Integer.parseInt(argv[0]), 3/*threads*/);
 new LargerHttpd().run(1235, 3/*threads*/);
 }
}

class HttpdConnection
{
 static Charset charset = Charset.forName("8859_1");
 static Pattern httpGetPattern = Pattern.compile("(?s)GET /?(\\S*).*");
 SocketChannel clientSocket;
 ByteBuffer buff = ByteBuffer.allocateDirect(64*1024);
 String request;
 String response;
 FileChannel file;
 int filePosition;

 HttpdConnection (SocketChannel clientSocket) {
 this.clientSocket = clientSocket;
 }

 void read(SelectionKey key) throws IOException {
 if (request == null && (clientSocket.read(buff) == -1
 || buff.get(buff.position()-1) == '\n'))
 processRequest(key);
 else
 key.interestOps(SelectionKey.OP_READ);
 }

 void processRequest(SelectionKey key) {
 buff.flip();
 request = charset.decode(buff).toString();
 Matcher get = httpGetPattern.matcher(request);
 if (get.matches()) {
 request = get.group(1);

514 | Chapter 13: Network Programming

 if (request.endsWith("/") || request.equals(""))
 request = request + "index.html";
 System.out.println("Request: "+request);
 try {
 file = new FileInputStream (request).getChannel();
 } catch (FileNotFoundException e) {
 response = "404 Object Not Found";
 }
 } else
 response = "400 Bad Request" ;

 if (response != null) {
 buff.clear();
 charset.newEncoder().encode(
 CharBuffer.wrap(response), buff, true);
 buff.flip();
 }
 key.interestOps(SelectionKey.OP_WRITE);
 }

 void write(SelectionKey key) throws IOException {
 if (response != null) {
 clientSocket.write(buff);
 if (buff.remaining() == 0)
 response = null;
 } else if (file != null) {
 int remaining = (int)file.size()-filePosition;
 long sent = file.transferTo(filePosition, remaining,
 clientSocket);
 if (sent >= remaining || remaining <= 0) {
 file.close();
 file = null;
 } else
 filePosition += sent;
 }
 if (response == null && file == null) {
 clientSocket.close();
 key.cancel();
 } else
 key.interestOps(SelectionKey.OP_WRITE);
 }
}

From a bird’s-eye view, the structure of LargerHttpd is the same as TinyHttpd. The
main class, LargerHttpd, accepts connections, and a connection class, HttpdConnec
tion, encapsulates a socket and handles the conversation with the client. However, this
time, instead of each connection object being a Runnable serviced in its own thread, its
functionality is broken into two primary methods called read() and write(). The job
of our LargerHttpd is to accept new client socket connections, wrap them in an instance
of HttpdConnection, and then watch the client’s status with a Selector. Whenever we
detect that a client is ready to send or receive data, we hand off a Runnable task to our

Scalable I/O with NIO | 515

Executor. The task calls read() or write() on the corresponding client, based on the
operation that is is ready.

The HttpConnection object encapsulates the state of the conversation with the client.
Because its interface is rather coarse, it must keep track of whether it is waiting to read
more input, generate a response, or write file output. The HttpdConnection also man‐
ages the interest set of its key so that it can effectively schedule itself to be woken up
when it’s ready for reading or writing. The association between the HttpdConnection
and the key is made by using the key’s attach() and attachment() methods.

LargerHttpd’s acceptClient() method does several things. First, it accepts the new
socket connection. Next, it configures and registers it with the selector with an initial
interest set for reading. Finally, it creates the HttpdConnection for the socket, and at‐
taches the HttpdConnection object to the key for later retrieval.

The main loop of LargerHttpd is fairly straightforward. First, we set up the Server
SocketChannel. This is similar to setting up a plain ServerSocket, except that we must
first create an InetSocketAddress object to hold the local loopback address and port
combination of our server socket and then explicitly bind our socket to that address
with the ServerSocketChannel bind() method. We also configure the server socket
to nonblocking mode and register it with our main Selector so that we can select for
client connections in the same loop that we use to select for client read and write
readiness.

In the main select loop, we check to see whether the key is ready for an accept
operation and if so, we call acceptClient(); if not, we set the key’s interest set to zero
with the interestOps() method and dispatch the key to our handleClient() method
via a Runnable task. It’s important that we change the interest set to zero to clear it before
the next loop; otherwise, we’d be in a race to see whether the thread pool performed its
maximum work before we detected another ready condition. Setting the interest ops to
0 and resetting it in the HttpdConnection object upon completion ensures that only
one thread is handling a given client at a time.

For each operation that is ready, we dispatch a task to our Executor. The task calls
handleClient(), passing it the selection key. From the key, we retrieve the associated
HttpdConnection object and call the appropriate service method based on whether the
key is ready for reading or writing. After that, it’s up to the connection object to do its
job. Each call to the read() method simply does what would be one iteration of a read
loop in a thread-bound application. Each read gets as much data as available and checks
to see whether we’ve reached the end of a line (a \n newline character). Upon reaching
the end of a line, we dispatch the call to the processRequest() method, which turns
the byte buffer into text and uses the same techniques as our TinyHttpd to parse the
request into a file pathname. On each incomplete call to read(), we set the interest ops
of our key back to OP_READ. Upon completing the read and processing the request, we
switch to using OP_WRITE because we are now ready to send a response.

516 | Chapter 13: Network Programming

The write() method keeps track of whether it’s sending a text response (error message)
or a file by using the response and file instance variables. When sending a file, we use
the FileChannel’s transferTo() method to transfer bytes from the file directly to the
network socket without copying them into Java’s memory space. (This is indeed an
efficient little web server.) And that’s about it. When we’re done, we close the client
socket and cancel our key, which causes it to be removed from the Selector’s key set
during the next select operation (discarding our HttpdConnection object with it).

Nonblocking Client-Side Operations
Our example showed SocketChannel used for nonblocking, selectable I/O in a typical
server application. It’s less common to need nonblocking I/O from a client, but there is
certainly no reason you can’t do it. Perhaps you’re writing a peer-to-peer (P2P) appli‐
cation that manages many connections from both sides.

For the client side of communications, one additional tool is provided: a nonblocking
socket-connect operation. The process of creating a TCP connection from the client
side involves contacting the remote host in a two-phase acknowledgment. This process
normally blocks until the connection is established. However, the NIO package provides
an alternative that allows you to initiate the connection and then poll for its status. When
set to nonblocking mode, a call to a SocketChannel’s connect() method returns im‐
mediately. The connection is then attempted (and possibly succeeds or fails) in the
background. Later, a Selector can be used, checking for the OP_CONNECT flag to see
when the socket is ready to “finish connecting.” The connection is finished by invoking
the SocketChannel’s finishConnect() method, which either returns or throws an
IOException indicating the failure. The process of finishing the connection is really
more about collecting the results of the asynchronous connection—acknowledging its
success or failure—than about doing work.

Scalable I/O with NIO | 517

CHAPTER 14

Programming for the Web

When you think about the Web, you probably think of web-based applications and
services. If you are asked to go deeper, you may consider tools such as web browsers
and web servers that support those applications and move data around the network.
But it’s important to note that standards and protocols, not the applications and tools
themselves, have enabled the Web’s growth. Since the earliest days of the Internet, there
have been ways to move files from here to there, and document formats that were just
as powerful as HTML, but there was not a unifying model for how to identify, retrieve,
and display information, nor was there a universal way for applications to interact with
that data over the network. Since the web explosion began, HTML has reigned supreme
as a common format for documents, and most developers have at least some familiarity
with it. In this chapter, we’re going to talk a bit about its cousin, HTTP, the protocol that
handles communications between web clients and servers, and URLs, which provide a
standard for naming and addressing objects on the Web. Java provides a very simple
API for working with URLs to address objects on the Web. In this chapter, we’ll discuss
how to write web clients that can interact with the servers using the HTTP GET and POST
methods and also say a bit about web services, which are the next step up the evolu‐
tionary chain. In Chapter 15, we’ll jump over to the server side and take a look at servlets
and web services, which are Java programs that run on web servers and implement the
other side of these conversations.

Uniform Resource Locators (URLs)
A URL points to an object on the Internet. It’s a text string that identifies an item, tells
you where to find it, and specifies a method for communicating with it or retrieving it
from its source. A URL can refer to any kind of information source. It might point to
static data, such as a file on a local filesystem, a web server, or an FTP site; or it can point
to a more dynamic object such as an RSS news feed or a record in a database. URLs can

519

even refer to more dynamic resources such as communication sessions and email
addresses.

Because there are many different ways to locate an item on the Net and different me‐
diums and transports require different kinds of information, URLs can have many
forms. The most common form has four components: a network host or server, the
name of the item, its location on that host, and a protocol by which the host should
communicate:

 protocol://hostname/path/item-name

protocol (also called the “scheme”) is an identifier such as http or ftp; hostname is
usually an Internet host and domain name; and the path and item components form a
unique path that identifies the object on that host. Variants of this form allow extra
information to be packed into the URL, specifying, for example, port numbers for the
communications protocol and fragment identifiers that reference sections inside docu‐
ments. Other, more specialized types of URLs such as “mailto” URLs for email addresses
or URLs for addressing things like database components may not follow this format
precisely, but do conform to the general notion of a protocol followed by a unique
identifier. (Some of these would more properly be called URIs, which we’ll discuss later.)

Because most URLs have the notion of a hierarchy or path, we sometimes speak of a
URL that is relative to another URL, called a base URL. In that case, we are using the
base URL as a starting point and supplying additional information to target an object
relative to that URL. For example, the base URL might point to a directory on a web
server and a relative URL might name a particular file in that directory or in a
subdirectory.

The URL Class
Bringing this down to a more concrete level is the Java URL class. The URL class rep‐
resents a URL address and provides a simple API for accessing web resources, such as
documents and applications on servers. It can use an extensible set of protocol and
content handlers to perform the necessary communication and in theory even data
conversion. With the URL class, an application can open a connection to a server on
the network and retrieve content with just a few lines of code. As new types of servers
and new formats for content evolve, additional URL handlers can be supplied to retrieve
and interpret the data without modifying your applications.

A URL is represented by an instance of the java.net.URL class. A URL object manages
all the component information within a URL string and provides methods for retrieving
the object it identifies. We can construct a URL object from a URL string or from its
component parts:

520 | Chapter 14: Programming for the Web

try {
 URL aDoc =
 new URL("http://foo.bar.com/documents/homepage.html");
 URL sameDoc =
 new URL("http","foo.bar.com","documents/homepage.html");
} catch (MalformedURLException e) { ... }

These two URL objects point to the same network resource, the homepage.html document
on the server foo.bar.com. Whether the resource actually exists and is available isn’t
known until we try to access it. When initially constructed, the URL object contains only
data about the object’s location and how to access it. No connection to the server has
been made. We can examine the various parts of the URL with the getProtocol(),
getHost(), and getFile() methods. We can also compare it to another URL with the
sameFile() method (which has an unfortunate name for something that may not point
to a file). sameFile() determines whether two URLs point to the same resource. It can
be fooled, but sameFile() does more than compare the URL strings for equality; it takes
into account the possibility that one server may have several names as well as other
factors. (It doesn’t go as far as to fetch the resources and compare them, however.)

When a URL is created, its specification is parsed to identify just the protocol component.
If the protocol doesn’t make sense, or if Java can’t find a protocol handler for it, the URL
constructor throws a MalformedURLException. A protocol handler is a Java class that
implements the communications protocol for accessing the URL resource. For example,
given an http URL, Java prepares to use the HTTP protocol handler to retrieve docu‐
ments from the specified web server.

As of Java 7, URL protocol handlers are guaranteed to be provided for http, https
(secure HTTP), and ftp, as well as local file URLs and jar URLs that refer to files
inside JAR archives. Outside of that, it gets a little dicey. We’ll talk more about the issues
surrounding content and protocol handlers a bit later in this chapter.

Stream Data
The lowest-level and most general way to get data back from a URL is to ask for an
InputStream from the URL by calling openStream(). Getting the data as a stream may
also be useful if you want to receive continuous updates from a dynamic information
source. The drawback is that you have to parse the contents of the byte stream yourself.
Working in this mode is basically the same as working with a byte stream from socket
communications, but the URL protocol handler has already dealt with all of the server
communications and is providing you with just the content portion of the transaction.
Not all types of URLs support the openStream() method because not all types of URLs
refer to concrete data; you’ll get an UnknownServiceException if the URL doesn’t.

The following code prints the contents of an HTML file on a web server:
try {
 URL url = new URL("http://server/index.html");

The URL Class | 521

 BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

 String line;
 while ((line = bin.readLine()) != null) {
 System.out.println(line);
 }
 bin.close();
} catch (Exception e) { }

We ask for an InputStream with openStream() and wrap it in a BufferedReader to read
the lines of text. Because we specify the http protocol in the URL, we enlist the services
of an HTTP protocol handler. Note that we haven’t talked about content handlers yet.
In this case, because we’re reading directly from the input stream, no content handler
(no transformation of the content data) is involved.

Getting the Content as an Object
As we said previously, reading raw content from a stream is the most general mechanism
for accessing data over the Web. openStream() leaves the parsing of data up to you. The
URL class, however, was intended to support a more sophisticated, pluggable, content-
handling mechanism. We’ll discuss this now, but be aware that it is not widely used
because of lack of standardization and limitations in how you can deploy new handlers.
Although the Java community made some progress in recent years in standardizing a
small set of protocol handlers, no such effort was made to standardize content handlers.
This means that although this part of the discussion is interesting, its usefulness is
limited.

The way it’s supposed to work is that when Java knows the type of content being retrieved
from a URL and a proper content handler is available, you can retrieve the URL content
as an appropriate Java object by calling the URL’s getContent() method. In this mode
of operation, getContent() initiates a connection to the host, fetches the data for you,
determines the type of data, and then invokes a content handler to turn the bytes into
a Java object. It acts sort of as if you had read a serialized Java object, as in Chapter 13.
Java will try to determine the type of the content by looking at its MIME type, its file
extension, or even by examining the bytes directly.

For example, given the URL http://foo.bar.com/index.html , a call to getContent() uses
the HTTP protocol handler to retrieve data and might use an HTML content handler
to turn the data into an appropriate document object. Similarly, a GIF file might be
turned into an AWT ImageProducer object using a GIF content handler. If we access
the GIF file using an FTP URL, Java would use the same content handler but a different
protocol handler to receive the data.

Since the content handler must be able to return any type of object, the return type of
getContent() is Object. This might leave us wondering what kind of object we got. In

522 | Chapter 14: Programming for the Web

a moment, we’ll describe how we could ask the protocol handler about the object’s
MIME type. Based on this, and whatever other knowledge we have about the kind of
object we are expecting, we can cast the Object to its appropriate, more specific type.
For example, if we expect an image, we might cast the result of getContent() to Image
Producer:

try {
 ImageProducer ip = (ImageProducer)myURL.getContent();
} catch (ClassCastException e) { ... }

Various kinds of errors can occur when trying to retrieve the data. For example, get
Content() can throw an IOException if there is a communications error. Other kinds
of errors can occur at the application level: some knowledge of how the application-
specific content and protocol handlers deal with errors is necessary. One problem that
could arise is that a content handler for the data’s MIME type wouldn’t be available. In
this case, getContent() invokes a special “unknown type” handler that returns the data
as a raw InputStream (back to square one).

In some situations, we may also need knowledge of the protocol handler. For example,
consider a URL that refers to a nonexistent file on an HTTP server. When requested, the
server returns the familiar “404 Not Found” message. To deal with protocol-specific
operations like this, we may need to talk to the protocol handler, which we’ll discuss
next.

Managing Connections
Upon calling openStream() or getContent() on a URL, the protocol handler is consulted
and a connection is made to the remote server or location. Connections are represented
by a URLConnection object, subtypes of which manage different protocol-specific com‐
munications and offer additional metadata about the source. The HttpURLConnec
tion class, for example, handles basic web requests and also adds some HTTP-specific
capabilities such as interpreting “404 Not Found” messages and other web server errors.
We’ll talk more about HttpURLConnection later in this chapter.

We can get a URLConnection from our URL directly with the openConnection() method.
One of the things we can do with the URLConnection is ask for the object’s content type
before reading data. For example:

URLConnection connection = myURL.openConnection();
String mimeType = connection.getContentType();
InputStream in = connection.getInputStream();

Despite its name, a URLConnection object is initially created in a raw, unconnected state.
In this example, the network connection was not actually initiated until we called the
getContentType() method. The URLConnection does not talk to the source until data
is requested or its connect() method is explicitly invoked. Prior to connection, network

The URL Class | 523

parameters and protocol-specific features can be set up. For example, we can set time‐
outs on the initial connection to the server and on reads:

URLConnection connection = myURL.openConnection();
connection.setConnectTimeout(10000); // milliseconds
connection.setReadTimeout(10000); // milliseconds
InputStream in = connection.getInputStream();

As we’ll see in the section “Using the POST Method,” we can get at the protocol-specific
information by casting the URLConnection to its specific subtype.

Handlers in Practice
The content- and protocol-handler mechanisms we’ve described are very flexible; to
handle new types of URLs, you need only add the appropriate handler classes. One
interesting application of this would be Java-based web browsers that could handle new
and specialized kinds of URLs by downloading them over the Net. The idea for this was
touted in the earliest days of Java. Unfortunately, it never came to fruition. There is no
API for dynamically downloading new content and protocol handlers. In fact, there is
no standard API for determining what content and protocol handlers exist on a given
platform.

Java currently mandates protocol handlers for HTTP, HTTPS, FTP, FILE, and JAR.
While in practice you will generally find these basic protocol handlers with all versions
of Java, that’s not entirely comforting, and the story for content handlers is even less
clear. The standard Java classes don’t, for example, include content handlers for HTML,
GIF, JPEG, or other common data types. Furthermore, although content and protocol
handlers are part of the Java API and an intrinsic part of the mechanism for working
with URLs, specific content and protocol handlers aren’t defined. Even those protocol
handlers that have been bundled in Java are still packaged as part of the Sun imple‐
mentation classes and are not truly part of the core API for all to see.

In summary, the Java content- and protocol-handler mechanism was a forward-
thinking approach that never quite materialized. The promise of web browsers that
dynamically extend themselves for new types of protocols and new content is, like flying
cars, always just a few years away. Although the basic mechanics of the protocol-handler
mechanism are useful (especially now with some standardization) for decoding content
in your own applications, you should probably turn to other, newer frameworks that
have a bit more specificity.

Useful Handler Frameworks
The idea of dynamically downloadable handlers could also be applied to other kinds of
handler-like components. For example, the Java XML community is fond of referring
to XML as a way to apply semantics (meaning) to documents and to Java as a portable

524 | Chapter 14: Programming for the Web

way to supply the behavior that goes along with those semantics. It’s possible that an
XML viewer could be built with downloadable handlers for displaying XML tags.

The JavaBeans APIs touch upon this subject with the Java Activation Framework (JAF),
which provides a way to detect the data stream type and “encapsulate access to it” in a
Java bean. If this sounds suspiciously like the content handler’s job, it is. Unfortunately,
it looks like these APIs will not be merged and, outside of the Java Mail API, the JAF
has not been widely used.

Fortunately, for working with URL streams of images, music, and video, very mature
APIs are available. The Java Advanced Imaging API (JAI) includes a well-defined, ex‐
tensible set of handlers for most image types, and the Java Media Framework (JMF) can
play most common music and video types found online.

Talking to Web Applications
Web browsers are the universal clients for web applications. They retrieve documents
for display and serve as a user interface, primarily through the use of HTML, JavaScript,
and linked documents. In this section, we‘ll show how to write client-side Java code that
uses HTTP through the URL class to work with web applications directly using GET and
POST operations to retrieve and send data. Later in this chapter, we’ll begin a discussion
of web services, which marry HTTP with XML to enable cross-platform application-
to-application communications using web standards.

There are many reasons an application might want to communicate via HTTP. For
example, compatibility with another browser-based application might be important, or
you might need to gain access to a server through a firewall where direct socket con‐
nections (and RMI) are problematic. HTTP is the lingua franca of the Net, and despite
its limitations (or more likely because of its simplicity), it has rapidly become one of the
most widely supported protocols in the world. As for using Java on the client side, all
the other reasons you would write a client-side GUI or non-GUI application (as opposed
to a pure web/HTML-based application) also present themselves. A client-side GUI can
perform sophisticated presentation and validation while, with the techniques presented
here, still using web-enabled services over the network.

The primary task we discuss here is sending data to the server, specifically HTML form-
encoded data. In a web browser, the name/value pairs of HTML form fields are encoded
in a special format and sent to the server using one of two methods. The first method,
using the HTTP GET command, encodes the user’s input into the URL and requests the
corresponding document. The server recognizes that the first part of the URL refers to
a program and invokes it, passing along the information encoded in the URL as a pa‐
rameter. The second method uses the HTTP POST command to ask the server to accept
the encoded data and pass it to a web application as a stream. In Java, we can create a
URL that refers to a server-side program and request or send it data using the GET and

Talking to Web Applications | 525

POST methods. (In Chapter 15, we’ll see how to build web applications that implement
the other side of this conversation.)

Using the GET Method
Using the GET method of encoding data in a URL is pretty easy. All we have to do is
create a URL pointing to a server program and use a simple convention to tack on the
encoded name/value pairs that make up our data. For example, the following code
snippet opens a URL to an old-school CGI program called login.cgi on the server my‐
host and passes it two name/value pairs. It then prints whatever text the CGI sends back:

URL url = new URL(
 // this string should be URL-encoded
 "http://myhost/cgi-bin/login.cgi?Name=Pat&Password=foobar");

BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

String line;
while ((line = bin.readLine()) != null) {
 System.out.println(line);
}

To form the URL with parameters, we start with the base URL of login.cgi; we add a
question mark (?), which marks the beginning of the parameter data, followed by the
first name/value pair. We can add as many pairs as we want, separated by ampersand
(&) characters. The rest of our code simply opens the stream and reads back the response
from the server. Remember that creating a URL doesn’t actually open the connection.
In this case, the URL connection was made implicitly when we called openStream().
Although we are assuming here that our server sends back text, it could send anything.

It’s important to point out that we have skipped a step here. This example works because
our name/value pairs happen to be simple text. If any “nonprintable” or special char‐
acters (including ? or &) are in the pairs, they must be encoded first. The
java.net.URLEncoder class provides a utility for encoding the data. We’ll show how to
use it in the next example.

Another important thing is that although this small example sends a password field,
you should never send sensitive data using this simplistic approach. The data in this
example is sent in clear text across the network (it is not encrypted). And in this case,
the password field would appear anywhere the URL is printed as well (e.g., server logs
and bookmarks). We’ll talk about secure web communications later in this chapter and
when we discuss writing web applications using servlets in Chapter 15.

526 | Chapter 14: Programming for the Web

Using the POST Method
Here’s a small application that acts like an HTML form. It gathers data from two text
fields—name and password—and posts the data to a specified URL using the HTTP POST
method. This Swing-based client application works with a server-side web-based ap‐
plication, just like a web browser.

Here’s the code:
//file: Post.java
import java.net.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Post extends JPanel implements ActionListener {
 JTextField nameField, passwordField;
 String postURL;

 GridBagConstraints constraints = new GridBagConstraints();

 void addGB(Component component, int x, int y) {
 constraints.gridx = x; constraints.gridy = y;
 add (component, constraints);
 }

 public Post(String postURL) {

 this.postURL = postURL;

 setBorder(BorderFactory.createEmptyBorder(5, 10, 5, 5));
 JButton postButton = new JButton("Post");
 postButton.addActionListener(this);
 setLayout(new GridBagLayout());
 constraints.fill = GridBagConstraints.HORIZONTAL;
 addGB(new JLabel("Name ", JLabel.TRAILING), 0, 0);
 addGB(nameField = new JTextField(20), 1, 0);
 addGB(new JLabel("Password ", JLabel.TRAILING), 0, 1);
 addGB(passwordField = new JPasswordField(20), 1, 1);
 constraints.fill = GridBagConstraints.NONE;
 constraints.gridwidth = 2;
 constraints.anchor = GridBagConstraints.EAST;
 addGB(postButton, 1, 2);
 }

 public void actionPerformed(ActionEvent e) {
 postData();
 }

 protected void postData() {
 StringBuffer sb = new StringBuffer();

Talking to Web Applications | 527

 sb.append(URLEncoder.encode("Name") + "=");
 sb.append(URLEncoder.encode(nameField.getText()));
 sb.append("&" + URLEncoder.encode("Password") + "=");
 sb.append(URLEncoder.encode(passwordField.getText()));
 String formData = sb.toString();

 try {
 URL url = new URL(postURL);
 HttpURLConnection urlcon =
 (HttpURLConnection) url.openConnection();
 urlcon.setRequestMethod("POST");
 urlcon.setRequestProperty("Content-type",
 "application/x-www-form-urlencoded");
 urlcon.setDoOutput(true);
 urlcon.setDoInput(true);
 PrintWriter pout = new PrintWriter(new OutputStreamWriter(
 urlcon.getOutputStream(), "8859_1"), true);
 pout.print(formData);
 pout.flush();

 // read results...
 if (urlcon.getResponseCode() != HttpURLConnection.HTTP_OK)
 System.out.println("Posted ok!");
 else {
 System.out.println("Bad post...");
 return;
 }
 //InputStream in = urlcon.getInputStream();
 // ...

 } catch (MalformedURLException e) {
 System.out.println(e); // bad postURL
 } catch (IOException e2) {
 System.out.println(e2); // I/O error
 }
 }

 public static void main(String [] args) {
 JFrame frame = new JFrame("SimplePost");
 frame.add(new Post(args[0]), "Center");
 frame.pack();
 frame.setVisible(true);
 }
}

When you run this application, you must specify the URL of the server program on the
command line. For example:

% java Post http://www.myserver.example/cgi-bin/login.cgi

The beginning of the application creates the form; there’s nothing here that won’t be
obvious after you’ve read Chapters 16 through 18, which cover the AWT and Swing

528 | Chapter 14: Programming for the Web

GUI toolkits. All the magic happens in the protected postData() method. First, we
create a StringBuffer and load it with name/value pairs, separated by ampersands. (We
don’t need the initial question mark when we’re using the POST method because we’re
not appending to a URL string.) Each pair is first encoded using the static URLEncod
er.encode() method. We run the name fields through the encoder as well as the value
fields, even though we know that in this case they contain no special characters.

Next, we set up the connection to the server program. In our previous example, we
weren’t required to do anything special to send the data because the request was made
by the simple act of opening the URL on the server. Here, we have to carry some of the
weight of talking to the remote web server. Fortunately, the HttpURLConnection object
does most of the work for us; we just have to tell it that we want to do a POST to the URL
and the type of data we are sending. We ask for the URLConnection object that is using
the URL’s openConnection() method. We know that we are using the HTTP protocol
so we should be able to cast it to an HttpURLConnection type, which has the support we
need. Because HTTP is one of the guaranteed protocols, we can safely make this
assumption.

We then use setRequestMethod() to tell the connection we want to do a POST operation.
We also use setRequestProperty() to set the Content-Type field of our HTTP request
to the appropriate type—in this case, the proper MIME type for encoded form data.
(This is necessary to tell the server what kind of data we’re sending.) Finally, we use the
setDoOutput() and setDoInput() methods to tell the connection that we want to both
send and receive stream data. The URL connection infers from this combination that
we are going to do a POST operation and expects a response. Next, we get an output
stream from the connection with getOutputStream() and create a PrintWriter so that
we can easily write our encoded data.

After we post the data, our application calls getResponseCode() to see whether the
HTTP response code from the server indicates that the POST was successful. Other
response codes (defined as constants in HttpURLConnection) indicate various failures.
At the end of our example, we indicate where we could have read back the text of the
response. For this application, we’ll assume that simply knowing that the post was suc‐
cessful is sufficient.

Although form-encoded data (as indicated by the MIME type we specified for the
Content-Type field) is the most common, other types of communications are possible.
We could have used the input and output streams to exchange arbitrary data types with
the server program. The POST operation could send any kind of data; the server appli‐
cation simply has to know how to handle it. One final note: if you are writing an appli‐
cation that needs to decode form data, you can use the java.net.URLDecoder to undo
the operation of the URLEncoder. If you use the Servlet API, this happens automatically,
as you’ll see in Chapter 15.

Talking to Web Applications | 529

The HttpURLConnection
Other information from the request is available from the HttpURLConnection as well.
We could use getContentType() and getContentEncoding() to determine the MIME
type and encoding of the response. We could also interrogate the HTTP response head‐
ers by using getHeaderField(). (HTTP response headers are metadata name/value
pairs carried with the response.) Convenience methods can fetch integer and
date-formatted header fields, getHeaderFieldInt() and getHeaderFieldDate(),
which return an int and a long type, respectively. The content length and last modifi‐
cation date are provided through getContentLength() and getLastModified().

SSL and Secure Web Communications
The previous examples sent a field called Password to the server. However, standard
HTTP doesn’t provide encryption to hide our data. Fortunately, adding security for GET
and POST operations like this is easy (trivial in fact, for the client-side developer). Where
available, you simply have to use a secure form of the HTTP protocol—HTTPS:

https://www.myserver.example/cgi-bin/login.cgi

HTTPS is a version of the standard HTTP protocol run over Secure Sockets Layer (SSL),
which uses public-key encryption techniques to encrypt the browser-to-server com‐
munications. Most web browsers and servers currently come with built-in support for
HTTPS (or raw SSL sockets). Therefore, if your web server supports HTTPS and has it
configured, you can use a browser to send and receive secure data simply by specifying
the https protocol in your URLs. There is much more to learn about SSL and related
aspects of security such as authenticating whom you are actually talking to, but as far
as basic data encryption goes, this is all you have to do. It is not something your code
has to deal with directly. The Java JRE standard edition ships with SSL and HTTPS
support, and beginning with Java 5.0, all Java implementations must support HTTPS
as well as HTTP for URL connections. We’ll discuss writing secure web applications in
more detail in Chapter 15.

URLs, URNs, and URIs
Earlier, we discussed URLs and distinguished them from the concept of URNs. Whereas
a URL points to a specific location on the Net and specifies a protocol or scheme for
accessing its contents, a URN is simply a globally unique name. A URL is analogous to
giving someone your phone number. But a URN is more like giving them your social
security number. Your phone number may change, but your social security number is
supposed to uniquely identify you forever.

While it’s possible that some mechanism might be able to look at a given URN and tie
it to a location (a URL), it is not necessarily so. URNs are intended only to be permanent,
unique, abstract identifiers for an item, whereas a URL is a mechanism you can use to

530 | Chapter 14: Programming for the Web

get in touch with a resource right now. You can use a phone number to contact me today,
but you can use my social security number to uniquely identify me anytime.

An example of a URN is http://www.w3.org/1999/XSL/Transform, which is the identifier
for a version of the Extensible Stylesheet Language, standardized by the W3C. Now, it
also happens that this is a URL (you can go to that address and find information about
the standard), but that is for convenience only. This URN’s primary mission is to
uniquely label the version of the programming language in a way that never changes.

Collectively, URLs and URNs are called Uniform Resource Identifiers or URIs. A URI
is simply a URL or URN. So, URLs and URNs are kinds of URIs. The reason for this
abstraction is that URLs and URNs, by definition, have some things in common. All
URIs are supposed to be human-readable and “transcribable” (it should be possible to
write them on the back of a napkin). They always have a hierarchical structure, and they
are always unique. Both URLs and URNs also share some common syntax, which is
described by RFC 2396.

The java.net.URI class formalizes these distinctions. The difference between the URI
and URL classes is that the URI class does not try to parse the contents of the identifier
and apply any “meaning.” Whereas the URL class immediately attempts to parse the
scheme portion of the URL and locate a protocol handler, the URI class doesn’t interpret
its content. It serves only to allow us to work with the identifier as structured text,
according to the general rules of URI syntax. With the URI class, you can construct the
string, resolve relative paths, and perform equality or comparison operations, but no
hostname or protocol resolution is done.

Web Services
Web services is a big, fast-moving topic and the subject of many other fine O’Reilly
books. However, because we have already covered so many of the basic networking
concepts (and we’ll cover XML in detail in Chapter 24), we would be shirking our duties
if we didn’t provide an introduction to this important area of application development.
We conclude this chapter on client-side web communications with a small example of
invoking a web service.

In contrast to regular web applications intended to be visited by web browsers, web
services are application-level APIs intended to be invoked by other application com‐
ponents. The primary distinction from other types of interapplication communications
mechanisms is that they use web standards and XML to maximize cross-platform in‐
teroperability. We will leave the analysis of when exactly this is important and the cost
versus benefits tradeoffs out of our discussion here. But the value in this idea should be
evident from the explosion of web-based business applications in the past few years.
Web services allow web-based applications to provide well-defined, cross-platform in‐
terfaces for other web-based applications.

Web Services | 531

XML-RPC
The term web services means different things to different people and has spawned many
(too many) new standards in recent years. In fact, there are so many web service stand‐
ards named with the prefix “WS” now that they are collectively known as “WS-*”
(affectionately referred to as WS “splat” or WS “death star”). However, the original con‐
cept is simple: web services take the ubiquitous, universally understood, and easily im‐
plemented HTTP transaction and marry it with XML to define a standard for invoking
application services over the Web. The process is a type of remote procedure call in which
HTTP plays its traditional role as the basic communication provider and XML adds a
“business envelope” in which structured data is passed. This RPC-style web service
interaction defines both the basic structure of an invocation request and also a set of
XML encodings for marshaling the primitive data types, allowing data parameters and
results to be exchanged in a truly cross-platform way. In contrast, another form of web
services—termed “document style”—places more emphasis on the exchange of
application-specific XML documents than on RPC-style data marshaling and un‐
marshaling. We will concentrate on RPC-style web services because they currently pro‐
vide the tightest coupling to Java.

WSDL
A key component of web services technology is the Web Services Description Language
(WSDL). Using this standard, a structured XML document describes a web service, the
individual functions (methods) it offers, and the XML data types for their respective
arguments and return values. WSDL is a type of interface definition language (IDL) and
plays that role for web services. However, a WSDL document can also specify the service
location and other features that are not traditionally part of the service definitely.

For the client-side web services developer, the WSDL document describing a service
contains all of the information needed to generate the client-side code used to invoke
the service from Java or any other language. As we’ll see in our example, it is not even
necessary to have an understanding of WSDL to use the service. One can simply generate
the client-side interfaces and use them from a Java language viewpoint. We’ll see in
Chapter 15 that we can generate the WSDL document for a new service directly from
our own Java code as well.

The Tools
The Java JAX-WS Java API for XML Web Services comes bundled with Java 6 and later
and contains all of the tools necessary to use, create, and work with web services in Java.
It’s even possible to deploy web services for testing in simple scenarios using out-of-the-
box tools. As you might imagine, Java web services make extensive use of the JAXP APIs
for working with XML. JAX-WS adds the classes necessary for remote calls, as well as
the development-time wsimport and wsgen tools. The wsimport tool reads a WSDL

532 | Chapter 14: Programming for the Web

description file and generates the required Java interface and implementation classes to
invoke it. The wsgen tool reads Java code containing web service annotations and can
generate WSDL and other deployment-related files.

There are many application servers that provide their own mechanisms for deploying
web services and generating client-side code. The Apache CXF project is another pop‐
ular Java web services alternative that can work with JAX-WS and other standards.

The Weather Service Client
This example shows just how easy it is to use a web service from client-side code. We’re
going to create a client for a web-based weather lookup service. The service accepts a
U.S. zip code as an argument and returns the city, state, and weather conditions as a
result. Please note that the server-side component of this example is hosted by a com‐
pany called cdyne.com, which is a professional web services provider. Because this is a
third-party site, we cannot guarantee that it will remain active. If for any reason this
service disappears, don’t fret—we’ll build our own example in Chapter 15, where we
implement a simple web service ourselves.

All that we need to get started is the web service WSDL description file. You can view
the weather service at the WSDL website. It’s an XML file that defines a set of operations
and data types for arguments and results. The file is not intended to be human readable,
and should make more sense after we discuss XML in Chapter 24.

To generate the client code needed to interact with the service, we run the wsimport
utility that is found in the JDK bin and pass it the WSDL location like so:

% wsimport http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

When wsimport completes, you should find a new directory tree named com/cdyne/ws/
weatherws that contains compiled Java classes for the temperature service client inter‐
face and an implementation. The wsimport command has many useful options: you
may wish to use the -keep option to retain the generated source code for the client
classes so that you can store the source with your application. There is also a -p option
that lets you override the generated Java package name.

The generated code contains a class called Weather that represents the overall service
and an interface called WeatherSoap that represents various ports or groups of methods
on the service, among other implementation classes. (The “port” is WSDL terminology
for a group of functions on a web service.) If you retain the soure code (with -keep)
and take a look at it, you’ll see that the generated classes use Java annotations to identify
the service elements. The Weather class is marked with @WebServiceClient and the
WeatherSoap interface is marked as @WebService. Furthermore, the methods of the
WeatherSoap interface are marked with @WebMethod. These annotations add metadata
to the code to identify the service and capture the information needed from the WSDL
to map to the service XML. We’ll discuss web service annotations more when we build

Web Services | 533

and deploy the server side of a web service in the next chapter. We’ll also see annotations
used in analogous ways when we discuss XML binding with JAXB in Chapter 24.

Our client application can now use these classes to invoke the service. The following
code looks up the current weather in the 63132 zip code:

import com.cdyne.ws.weatherws.*;

public class WSTest {
 public static void main(String[] args)
 {
 WeatherSoap weatherService = new Weather().getWeatherSoap();
 WeatherReturn weather = weatherService.getCityWeatherByZIP("63132");
 System.out.format("%s, %s : %s : Temperature: %s, Wind: %s",
 weather.getCity(), weather.getState(), weather.getDescription(),
 weather.getTemperature(), weather.getWind());
 }
}

Remember that you need to either add the compiled service classes to your classpath or
compile the generated source files along with the example code. If you run it, you should
see output like the following. Note that although this service has returned the values as
strings, in general, web service bindings to Java would allow elements like the temper‐
ature to be returned as numeric types.

Saint Louis, MO : Partly Cloudy : Temperature: 25, Wind: CALM

We’ll return to the topic of web services and implement our own web service in the next
chapter, where we hop over to the server side of things and start building web
applications.

534 | Chapter 14: Programming for the Web

CHAPTER 15

Web Applications and Web Services

We’re now going to take a leap from the client side to the server side to learn how to
write web-based Java applications and services. What distinguishes a web-based appli‐
cation from a regular Java program is that much of the code, logic, or data resides on
the server, at least initally, and the user utilizes a web browser or a lightweight client to
access it. This is a very appealing model of software deployment facilitated by the in‐
creased standardization and power of HTML and JavaScript in web browsers as well as
higher-speed Internet connectivity and better application-to-application web service
standards.

Most of this chapter is about the mechanics of the Servlet API, which is a Java framework
for writing application components for servers. The Servlet API is used in both Java web
applications and often in the implementation of application-to-application web serv‐
ices. We’ll deal with servlets directly in the first part of this chapter, when writing ex‐
amples used from a web browser. Later, we’ll look at application-level web services that
are designed to provide data and services to all types of client applications in a more
behind-the-scenes fashion. The two types of server-side applications have some things
in common, including how they can be deployed to an application server using a Web
Archive (WAR) file and the fact that they are often combined in advanced applications
that both render pages on the server and use JavaScript to pull data from web services
on the client side.

The Servlet API lives in the javax.servlet package, which is a standard Java API ex‐
tension. Deploying and running servlets requires an application server or servlet con‐
tainer—a Java-based server that acts like a web server and handles requests bound for
servlet components—and so the Servlet API is not bundled with the standard edition
of Java. We will recommend that you download Apache Tomcat to run the examples in
this chapter and at that time, you can grab the Servlet API JAR file from that distribution
in order to compile the example classes. Many Java IDEs can also install the necessary
JAR file for you automatically.

535

The APIs used for building and deploying application-to-application web services are
part of the javax.jws package. Although the JWS API is also technically a standard
extension, it is bundled with the standard edition of Java and so you can write Java web
service clients out-of-the-box, with no additional components. You can even deploy
web services directly using a minimal built-in server functionality bundled with the
standard edition of Java with no additional application server required. However, this
feature is mostly useful for testing, as the built-in server does not perform as well as the
various other application servers such as Tomcat. This chapter covers Java Servlet API
3.0 and JWS (JAX-WS) version 2.2.

Servers that support the full set of Java Enterprise APIs including servlets, web services,
JSPs, and older technology like Enterprise JavaBeans are called application servers. JBoss
is a free, open source Java application server, and BEA’s WebLogic is a popular com‐
mercial application server. The free Apache Tomcat server that we’ll use in this chapter
started out primarily as a servlet container, but now runs web services and everything
needed for serious application development. Tomcat can be used by itself or in con‐
junction with another web server such as Apache. Tomcat is easy to configure and is a
pure Java application, so you can use it on any platform that has a Java VM. You can
download it from http://jakarta.apache.org/tomcat/.

Web Application Technologies
Many different ways of writing server-side software for web applications have evolved
over the years. Early on, the standard was CGI, which provided a way to service web
browser requests with scripting language such as Perl. Various web servers also offered
native-language APIs, such as modules for the Apache web server written in C and
C++. The Java Servlet API, however, rapidly became the most popular architecture for
building web-based applications because it offered portability, security, and high
performance. Today, Java-based web services compete with similar services offered by
Microsoft .NET and alternatives such as Ruby on Rails for building web application
components. However, the overriding trend in web applications today is to focus less
on the server technology and more on client-side technologies such as JavaScript and
HTML5 in communication with server-side components and web services regardless
of the implementation language. We’ll try to offer some perspective on this throughout
this chapter.

Page-Oriented Versus “Single Page” Applications
For most of the lifetime of Java, web-based applications followed the same basic para‐
digm: the browser makes a request to a particular URL; the server generates a page of
HTML in response; and actions by the user drive the browser to the next page. In this
exchange, most or all of the work is done on the server side, which is seemingly logical
given that that’s where data and services often reside. The problem with this application

536 | Chapter 15: Web Applications and Web Services

model is that it is inherently limited by the loss of responsiveness, continuity, and state
experienced by the user when loading new “pages” in the browser. It’s difficult to make
a web-based application as seamless as a desktop application when the user must jump
through a series of discrete pages and it is technically more challenging to maintain
application data across those pages. After all, web browsers were not designed to host
applications, they were designed to host documents.

But a lot has changed in web application development in recent years. Standards for
HTML and JavaScript have matured to the point where it is practical to write applica‐
tions in which most of the user interface and logic reside on the client side and back‐
ground calls are made to the server for data and services. In this paradigm, the server
effectively returns just a single “page” of HTML that references the bulk of the JavaScript,
CSS, and other resources used to render the application interface. JavaScript then takes
over, manipulating elements on the page or creating new ones dynamically using ad‐
vanced HTML DOM features to produce the UI. JavaScript also makes asynchronous
(background) calls to the server to fetch data and invoke services. In many cases, the
results are returned as XML, leading to the term Asynchronous JavaScript and XML
(AJAX) for this style of interaction.

This new model simplifies and empowers web development in many ways. No longer
must the client work in a single-page, request-response regime where views and requests
are ping-ponged back and forth. The client is now more equivalent to a desktop appli‐
cation in that it can respond to user input fluidly and manage remote data and services
without interrupting the user.

Before we move on to our discussion of the Servlet API, we will briefly describe Java’s
relationship to some related web technologies, old and new.

JSPs
JSPs are a document-centric (page-oriented) way to write server-side applications. They
consist of HTML source utilizing custom tag libraries along with a Java-like syntax
embedded within the pages. JSPs are compiled dynamically by the web server into Java
servlets and can work with Java APIs directly and indirectly in order to generate dynamic
content for the pages. Although all of the work still occurs on the server side, JSPs allow
the developer to work as if code was running directly in the page, which has both benefits
and drawbacks. The benefit of this sort of “immediate mode” programming style is that
it is easy to grasp and quick to crank out. The drawback is that it can lead to an un‐
manageable mix of business logic and presentation logic in the pages. The more code
that appears mixed in with the static content, the greater the maintenance headache.

Most large-scale JSP projects utilize custom tag libraries to minimize ad hoc code in the
pages. JSPs are also used in combination with controller servlets that can do the heavy
lifting and business logic for them. In this case, the term controller refers to the
Model-View-Controller (MVC) separation of concerns that we introduced earlier when

Web Application Technologies | 537

talking about Swing GUIs. Maintaining this separation leverages the advantages of JSP
while avoiding its pitfalls.

XML and XSL
XML is a set of standards for working with structured information in text form. The
Extensible Stylesheet Language (XSL) is a language for transforming XML documents
into other kinds of documents, including HTML. The combination of servlets that can
generate XML content and XSL stylesheets that can transform content for presentation
is a very powerful combination, covered in detail in Chapter 24. As we’ll discuss later,
web services also use XML as their native data format, making them completely portable
across platforms and languages. And, of course, XML is the basis for returning data to
JavaScript applications in the original AJAX style of web development.

Web Application Frameworks
If we think about web applications in terms of the classic MVC model, then a traditional
page-oriented application generally has “view” components rendered in the browser,
while the model (data) and controllers (logic) reside on the server side. We’ve mentioned
some reasons why this style of web application is fading in favor of “single page” appli‐
cations where more of these components move into the browser; however, over the years
many frameworks have been developed to support this classic web app arrangement.
Generally these frameworks work at a higher level than servlets, providing a convenient
way to write controller components, connect them, and configure page views for the
results.

One of the most popular frameworks for building page-oriented web applications has
been the Apache Foundation’s Struts Web Application Framework. Struts implements
the MVC paradigm by providing both a modular controller component architecture
and an extensive tag library for JSP page view development. Struts abstracts some of the
mapping and navigation aspects required to glue together a web application through
the use of an XML-based configuration file and also adds the ability to do declarative
mapping of HTML forms to Java objects as well as automated validation of form fields.

JSF was Sun’s response to Struts. Developed through the Java Community Process (in‐
cluding some of the original Struts people) it was intended to become the “official” Java-
sanctioned web-application framework. JSF built upon lessons learned with Struts and
refined the MVC model with server-side application components and more fine-
grained navigation and event management. JSF met mixed reviews and never really
surpassed Struts in popularity.

Spring Web Flow is another popular web application MVC system that is based on the
Spring application framework. There are many, many examples of Java web application
frameworks.

538 | Chapter 15: Web Applications and Web Services

Google Web Toolkit
Google Web Toolkit, or GWT, is a free framework produced by Google that allows
developers to write web applications using the Java programming language. GWT com‐
piles Java components to JavaScript that runs in a web browser and communicates with
the server via a custom RPC mechanism that acts something like Java RMI. The GWT
environment provides its own set of Java GUI classes and a substantial subset of the
standard Java libraries. GWT is a very powerful framework that makes it possible to
write large and complex applications with most of the benefits of the Java programming
language while running in a web browser. However, GWT has a somewhat steeper
learning curve than some other web frameworks (especially for those unfamiliar with
both Java and JavaScript).

HTML5, AJAX, and More...
Java lives on the server side of web applications. To build the client pieces of applications
that run in browsers, we must cooperate with Java’s namesake, JavaScript. As we’ve
mentioned, in recent years efforts to standardize advanced features of HTML and Java‐
Script have paid off in a real revolution in the capabilities of web applications and the
way in which they are built. Much of this began with adding more dynamic behavior to
clients via AJAX calls. More recently, the explosion of mobile browsers has fueled the
adoption of the HTML5 standard, bringing web browsers a richer feature set including
a more complete DOM, native video and audio media support, general canvas drawing
and vector graphics support, and offline data storage. Even more exciting technologies
can be used today while working their way through the standards process. One to keep
an eye on is WebSockets, which provides for low-latency messaging between the browser
and server and should enable many new types of applications.

Java Web Applications
So far we’ve used the term web application generically, referring to any kind of browser-
based application that is located on a web server. Now we are going to be more precise
with that term. In the context of the Java Servlet API, a web application is a collection
of servlets and Java web services that support Java classes, content such as HTML or JSP
pages and images, and configuration information. For deployment (installation on a
web server), a web application is bundled into a WAR file. We’ll discuss WAR files in
detail later, but suffice it to say that they are really just JAR archives that contain all the
application files along with some deployment information. The important thing is that
the standardization of WAR files means not only that the Java code is portable, but also
that the process of deploying the application to a server is standardized.

Most WAR archives have at their core a web.xml file. This is an XML configuration file
that describes which servlets are to be deployed, their names and URL paths, their

Java Web Applications | 539

initialization parameters, and a host of other information, including security and au‐
thentication requirements. In recent years, however, the web.xml file has become op‐
tional for many applications due to the introduction of Java annotations that take the
place of the XML configuration. In most cases, you can now deploy your servlets and
Java web services simply by annotating the classes with the necessary information and
packaging them into the WAR file, or using a combination of the two. We’ll discuss this
in detail later in the chapter.

Web applications, or web apps, also have a well-defined runtime environment. Each
web app has its own “root” path on the web server, meaning that all the URLs addressing
its servlets and files start with a common unique prefix (e.g., http://www.oreilly.com/
someapplication/). The web app’s servlets are also isolated from those of other web ap‐
plications. Web apps cannot directly access each other’s files (although they may be
allowed to do so through the web server, of course). Each web app also has its own
servlet context. We’ll discuss the servlet context in more detail, but in brief, it is a com‐
mon area for servlets within an application to share information and get resources from
the environment. The high degree of isolation between web applications is intended to
support the dynamic deployment and updating of applications required by modern
business systems and to address security and reliability concerns. Web apps are intended
to be coarse-grained, relatively complete applications—not to be tightly coupled with
other web apps. Although there’s no reason you can’t make web apps cooperate at a high
level, for sharing logic across applications you might want to consider web services,
which we’ll discuss later in this chapter.

The Servlet Lifecycle
Let’s jump now to the Servlet API and get started building servlets. We’ll fill in the gaps
later when we discuss various parts of the APIs and WAR file structure in more detail.
The Servlet API is very simple (reminiscent of the old Applet API). The base Servlet
class has three lifecycle methods—init(), service(), and destroy()—along with
some methods for getting configuration parameters and servlet resources. However,
these methods are not often used directly by developers. Generally developers will im‐
plement the doGet() and doPost() methods of the HttpServlet subclass and access
shared resources through the servlet context, as we’ll discuss shortly.

Generally, only one instance of each deployed servlet class is instantiated per container.
More precisely, it is one instance per servlet entry in the web.xml file, but we’ll talk more
about servlet deployment later. In the past, there was an exception to that rule when
using the special SingleThreadModel type of servlet. As of Servlet API 2.4, single-
threaded servlets have been deprecated.

By default, servlets are expected to handle requests in a multithreaded way; that is, the
servlet’s service methods may be invoked by many threads at the same time. This means
that you should not store per-request or per-client data in instance variables of your

540 | Chapter 15: Web Applications and Web Services

servlet object. (Of course, you can store general data related to the servlet’s operation,
as long as it does not change on a per-request basis.) Per-client state information can
be stored in a client session object on the server or in a client-side cookie, which persists
across client requests. We’ll talk about client state later as well.

The service() method of a servlet accepts two parameters: a servlet “request” object
and a servlet “response” object. These provide tools for reading the client request and
generating output; we’ll talk about them (or rather their HttpServlet versions) in detail
in the examples.

Servlets
The package of primary interest to us here is javax.servlet.http, which contains APIs
specific to servlets that handle HTTP requests for web servers. In theory, you can write
servlets for other protocols, but nobody really does that and we are going to discuss
servlets as if all servlets were HTTP-related.

The primary tool provided by the javax.servlet.http package is the HttpServlet
base class. This is an abstract servlet that provides some basic implementation details
related to handling an HTTP request. In particular, it overrides the generic servlet
service() request and breaks it out into several HTTP-related methods, including
doGet(), doPost(), doPut(), and doDelete(). The default service() method exam‐
ines the request to determine what kind it is and dispatches it to one of these methods,
so you can override one or more of them to implement the specific protocol behavior
you need.

doGet() and doPost() correspond to the standard HTTP GET and POST operations. GET
is the standard request for retrieving a file or document at a specified URL. POST is the
method by which a client sends an arbitrary amount of data to the server. HTML forms
utilize POST to send data as do most web services.

To round these out, HttpServlet provides the doPut() and doDelete() methods. These
methods correspond to a less widely used part of the HTTP protocol, which is meant
to provide a way to upload and remove files or file-like entities. doPut() is supposed to
be like POST but with slightly different semantics (a PUT is supposed to logically replace
the item identified by the URL, whereas POST presents data to it); doDelete() would be
its opposite.

HttpServlet also implements three other HTTP-related methods for you: doHead(),
doTrace(), and doOptions(). You don’t normally need to override these methods.
doHead() implements the HTTP HEAD request, which asks for the headers of a GET
request without the body. HttpServlet implements this by default in the trivial way, by
performing the GET method and then sending only the headers. You may wish to over‐
ride doHead() with a more efficient implementation if you can provide one as an opti‐
mization. doTrace() and doOptions() implement other features of HTTP that allow

Java Web Applications | 541

for debugging and simple client/server capabilities negotiation. You shouldn’t normally
need to override these.

Along with HttpServlet, javax.servlet.http also includes subclasses of the objects
ServletRequest and ServletResponse, HttpServletRequest and HttpServletRes
ponse. These subclasses provide, respectively, the input and output streams needed to
read and write client data. They also provide the APIs for getting or setting HTTP header
information and, as we’ll see, client session information. Rather than document these
dryly, we’ll show them in the context of some examples. As usual, we’ll start with the
simplest possible example.

The HelloClient Servlet
Here’s our servlet version of “Hello, World,” HelloClient:

@WebServlet(urlPatterns={"/hello"})
public class HelloClient extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html"); // must come first
 PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Hello Client!</title></head><body>"
 + "<h1>Hello Client!</h1>"
 + "</body></html>");
 }
}

If you want to try this servlet right away, skip ahead to “WAR Files and Deployment”
on page 559, where we walk through the process of deploying this servlet. Because we’ve
included the WebServlet annotation in our class, this servlet does not need a web.xml
file for deployment. All you have to do is bundle the class file into a particular folder
within a WAR archive (a fancy ZIP file) and drop it into a directory monitored by the
Tomcat server. For now, we’re going to focus on just the servlet example code itself,
which is pretty simple in this case.

Let’s have a look at the example. HelloClient extends the base HttpServlet class and
overrides the doGet() method to handle simple requests. In this case, we want to re‐
spond to any GET request by sending back a one-line HTML document that says “Hello
Client!” First, we tell the container what kind of response we are going to generate, using
the setContentType() method of the HttpServletResponse object. We specify the
MIME type “text/html” for our HTML response. Then, we get the output stream using
the getWriter() method and print the message to it. It is not necessary for us to ex‐
plicitly close the stream. We’ll talk more about managing the output stream throughout
this chapter.

542 | Chapter 15: Web Applications and Web Services

ServletExceptions

The doGet() method of our example servlet declares that it can throw a ServletExcep
tion. All of the service methods of the Servlet API may throw a ServletException to
indicate that a request has failed. A ServletException can be constructed with a string
message and an optional Throwable parameter that can carry any corresponding ex‐
ception representing the root cause of the problem:

 throw new ServletException("utter failure", someException);

By default, the web server determines exactly what is shown to the user whenever a
ServletException is thrown; often there is a “development mode” where the exception
and its stack trace are displayed. Using the web.xml file, you can designate custom error
pages. (See the section “Error and Index Pages” on page 564 for details.)

Alternatively, a servlet may throw an UnavailableException, a subclass of ServletEx
ception, to indicate that it cannot handle requests. This exception can be thrown to
indicate that the condition is permanent or that it should last for a specified period of
seconds.

Content type

Before fetching the output stream and writing to it, we must specify the kind of output
we are sending by calling the response parameter’s setContentType() method. In this
case, we set the content type to text/html, which is the proper MIME type for an HTML
document. In general, though, it’s possible for a servlet to generate any kind of data,
including audio, video, or some other kind of text or binary document. If we were writing
a generic FileServlet to serve files like a regular web server, we might inspect the
filename extension and determine the MIME type from that or from direct inspection
of the data. (This is a good use for the java.nio.file.Files probeConentType()
method!) For writing binary data, you can use the getOutputStream() method to get
an OutputStream as opposed to a Writer.

The content type is used in the Content-Type: header of the server’s HTTP response,
which tells the client what to expect even before it starts reading the result. This allows
your web browser to prompt you with the “Save File” dialog when you click on a ZIP
archive or executable program. When the content-type string is used in its full form to
specify the character encoding (for example, text/html; charset=ISO-8859-1), the
information is also used by the servlet engine to set the character encoding of the
PrintWriter output stream. As a result, you should always call the setContent
Type() method before fetching the writer with the getWriter() method. The character
encoding can also be set separately via the servlet response setCharacterEncoding()
method.

Java Web Applications | 543

The Servlet Response
In addition to providing the output stream for writing content to the client, the
HttpServletResponse object provides methods for controlling other aspects of the
HTTP response, including headers, error result codes, redirects, and servlet container
buffering.

HTTP headers are metadata name/value pairs sent with the response. You can add
headers (standard or custom) to the response with the setHeader() and addHead
er() methods (headers may have multiple values). There are also convenience methods
for setting headers with integer and date values:

 response.setIntHeader("MagicNumber", 42);
 response.setDateHeader("CurrentTime", System.currentTimeMillis());

When you write data to the client, the servlet container automatically sets the HTTP
response code to a value of 200, which means OK. Using the sendError() method, you
can generate other HTTP response codes. HttpServletResponse contains predefined
constants for all of the standard codes. Here are a few common ones:

 HttpServletResponse.SC_OK
 HttpServletResponse.SC_BAD_REQUEST
 HttpServletResponse.SC_FORBIDDEN
 HttpServletResponse.SC_NOT_FOUND
 HttpServletResponse.SC_INTERNAL_SERVER_ERROR
 HttpServletResponse.SC_NOT_IMPLEMENTED
 HttpServletResponse.SC_SERVICE_UNAVAILABLE

When you generate an error with sendError(), the response is over and you can’t write
any actual content to the client. You can specify a short error message, however, which
may be shown to the client. (See the section “A Simple Filter” on page 572.)

An HTTP redirect is a special kind of response that tells the client web browser to go
to a different URL. Normally this happens quickly and without any interaction from
the user. You can send a redirect with the sendRedirect() method:

 response.sendRedirect("http://www.oreilly.com/");

While we’re talking about the response, we should say a few words about buffering.
Most responses are buffered internally by the servlet container until the servlet service
method has exited or a preset maximum size has been reached. This allows the container
to set the HTTP content-length header automatically, telling the client how much data
to expect. You can control the size of this buffer with the setBufferSize() method,
specifying a size in bytes. You can even clear it and start over if no data has been written
to the client. To clear the buffer, use isCommitted() to test whether any data has been
set, then use resetBuffer() to dump the data if none has been sent. If you are sending
a lot of data, you may wish to set the content length explicitly with the setContent
Length() method.

544 | Chapter 15: Web Applications and Web Services

Servlet Parameters
Our first example showed how to accept a basic request. Of course, to do anything really
useful, we’ll need to get some information from the client. Fortunately, the servlet engine
handles this for us, interpreting both GET and POST form-encoded data from the client
and providing it to us through the simple getParameter() method of the servlet request.

GET, POST, and “extra path”

There are two common ways to pass information from your web browser to a servlet
or CGI program. The most general is to “post” it, meaning that your client encodes the
information and sends it as a stream to the program, which decodes it. Posting can be
used to upload large amounts of form data or other data, including files. The other way
to pass information is to somehow encode the information in the URL of your client’s
request. The primary way to do this is to use GET-style encoding of parameters in the
URL string. In this case, the web browser encodes the parameters and appends them to
the end of the URL string. The server decodes them and passes them to the application.

As we described in Chapter 14, GET-style encoding takes the parameters and appends
them to the URL in a name/value fashion, with the first parameter preceded by a ques‐
tion mark (?) and the rest separated by ampersands (&). The entire string is expected
to be URL-encoded: any special characters (such as spaces, ?, and & in the string) are
specially encoded.

Another way to pass data in the URL is called extra path. This simply means that when
the server has located your servlet or CGI program as the target of a URL, it takes any
remaining path components of the URL string and hands them over as an extra part of
the URL. For example, consider these URLs:

 http://www.myserver.example/servlets/MyServlet
 http://www.myserver.example/servlets/MyServlet/foo/bar

Suppose the server maps the first URL to the servlet called MyServlet. When given the
second URL, the server also invokes MyServlet, but considers /foo/bar to be “extra
path” that can be retrieved through the servlet request getExtraPath() method. This
technique is useful for making more human-readable and meaningful URL pathnames,
especially for document-centric content.

Both GET and POST encoding can be used with HTML forms on the client by specifying
get or post in the action attribute of the form tag. The browser handles the encoding;
on the server side, the servlet engine handles the decoding.

The content type used by a client to post form data to a servlet is: “application/x-www-
form-urlencoded.” The Servlet API automatically parses this kind of data and makes it
available through the getParameter() method. However, if you do not call the get
Parameter() method, the data remains available, unparsed, in the input stream and can
be read by the servlet directly.

Java Web Applications | 545

GET or POST: Which one to use?

To users, the primary difference between GET and POST is that they can see the GET
information in the encoded URL shown in their web browser. This can be useful because
the user can cut and paste that URL (the result of a search, for example) and mail it to
a friend or bookmark it for future reference. POST information is not visible to the user
and ceases to exist after it’s sent to the server. This behavior goes along with the protocol’s
intent that GET and POST are to have different semantics. By definition, the result of a
GET operation is not supposed to have any side effects; that is, it’s not supposed to cause
the server to perform any persistent operations (such as making a purchase in a shopping
cart). In theory, that’s the job of POST. That’s why your web browser warns you about
reposting form data again if you hit reload on a page that was the result of a form posting.

The extra path style would be useful for a servlet that retrieves files or handles a range
of URLs in a human-readable way. Extra path information is often useful for URLs that
the user must see or remember, because it looks like any other path.

The ShowParameters Servlet
Our first example didn’t do much. This next example prints the values of any parameters
that were received. We’ll start by handling GET requests and then make some trivial
modifications to handle POST as well. Here’s the code:

import java.io.*;
import javax.servlet.http.*;
import java.util.*;

public class ShowParameters extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException
 {
 showRequestParameters(request, response);
 }

 void showRequestParameters(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Show Parameters</title></head><body>"
 + "<h1>Parameters</h1>");

 Map<String, String[]> params = request.getParameterMap();
 for (String name : params.keySet())
 {

546 | Chapter 15: Web Applications and Web Services

 String [] values = params.get(name);
 out.println(""+ name +" = "+ Arrays.asList(values));
 }

 out.close();
 }
}

As in the first example, we override the doGet() method. We delegate the request to a
helper method that we’ve created, called showRequestParameters(), a method that
enumerates the parameters using the request object’s getParameterMap() method,
which returns a map of parameter name to values, and prints the names and values.
Note that a parameter may have multiple values if it is repeated in the request from the
client, hence the map contains String []. To make thing pretty, we listed each param‐
eter in HTML with tag.

As it stands, our servlet would respond to any URL that contains a GET request. Let’s
round it out by adding our own form to the output and also accommodating POST
method requests. To accept posts, we override the doPost() method. The implemen‐
tation of doPost() could simply call our showRequestParameters() method, but we
can make it simpler still. The API lets us treat GET and POST requests interchangeably
because the servlet engine handles the decoding of request parameters. So we simply
delegate the doPost() operation to doGet().

Add the following method to the example:
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 doGet(request, response);
 }

Now, let’s add an HTML form to the output. The form lets the user fill in some param‐
eters and submit them to the servlet. Add this line to the showRequestParameters()
method before the call to out.close():

 out.println("<p><form method=\"POST\" action=\""
 + request.getRequestURI() + "\">"
 + "Field 1 <input name=\"Field 1\" size=20>
"
 + "Field 2 <input name=\"Field 2\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\"></form>"
);

The form’s action attribute is the URL of our servlet so that our servlet will get the data
back. We use the getRequestURI() method to get the location of our servlet. For the
method attribute, we’ve specified a POST operation, but you can try changing the oper‐
ation to GET to see both styles.

So far, we haven’t done anything terribly exciting. In the next example, we’ll add some
power by introducing a user session to store client data between requests. But before

Java Web Applications | 547

we go on, we should mention a useful standard servlet, SnoopServlet, that is akin to
our previous example.

User Session Management
One of the nicest features of the Servlet API is its simple mechanism for managing a
user session. By a session, we mean that the servlet can maintain information over
multiple pages and through multiple transactions as navigated by the user; this is also
called maintaining state. Providing continuity through a series of web pages is important
in many kinds of applications, such as handling a login process or tracking purchases
in a shopping cart. In a sense, session data takes the place of instance data in your servlet
object. It lets you store data between invocations of your service methods.

Session tracking is supported by the servlet container; you normally don’t have to worry
about the details of how it’s accomplished. It’s done in one of two ways: using client-side
cookies or URL rewriting. Client-side cookies are a standard HTTP mechanism for get‐
ting the client web browser to cooperate in storing state information for you. A cookie
is basically just a name/value attribute that is issued by the server, stored on the client,
and returned by the client whenever it is accessing a certain group of URLs on a specified
server. Cookies can track a single session or multiple user visits.

URL rewriting appends session-tracking information to the URL, using GET-style en‐
coding or extra path information. The term rewriting applies because the server rewrites
the URL before it is seen by the client and absorbs the extra information before it is
passed back to the servlet. In order to support URL rewriting, a servlet must take the
extra step to encode any URLs it generates in content (e.g., HTML links that may return
to the page) using a special method of the HttpServletResponse object. We’ll describe
this later. You need to allow for URL rewriting by the server if you want your application
to work with browsers that do not support cookies or have them disabled. Many sites
simply choose not to work without cookies.

To the servlet programmer, state information is made available through an HttpSes
sion object, which acts like a hashtable for storing any objects you would like to carry
through the session. The objects stay on the server side; a special identifier is sent to the
client through a cookie or URL rewriting. On the way back, the identifier is mapped to
a session, and the session is associated with the servlet again.

The ShowSession Servlet
Here’s a simple servlet that shows how to store some string information to track a session:

 import java.io.*;
 import javax.servlet.ServletException;
 import javax.servlet.http.*;
 import java.util.Enumeration;

548 | Chapter 15: Web Applications and Web Services

 public class ShowSession extends HttpServlet {

 public void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 doGet(request, response);
 }

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession();
 boolean clear = request.getParameter("clear") != null;
 if (clear)
 session.invalidate();
 else {
 String name = request.getParameter("Name");
 String value = request.getParameter("Value");
 if (name != null && value != null)
 session.setAttribute(name, value);
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Show Session</title></head><body>");

 if (clear)
 out.println("<h1>Session Cleared:</h1>");
 else {
 out.println("<h1>In this session:</h1>");
 Enumeration names = session.getAttributeNames();
 while (names.hasMoreElements()) {
 String name = (String)names.nextElement();
 out.println(""+name+" = " +session.getAttribute(
 name));
 }
 }

 out.println(
 "<p><hr><h1>Add String</h1>"
 + "<form method=\"POST\" action=\""
 + request.getRequestURI() +"\">"
 + "Name: <input name=\"Name\" size=20>
"
 + "Value: <input name=\"Value\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\">"
 + "<input type=\"submit\" name=\"clear\" value=\"Clear\"></form>"
);
 }
 }

Java Web Applications | 549

When you invoke the servlet, you are presented with a form that prompts you to enter
a name and a value. The value string is stored in a session object under the name pro‐
vided. Each time the servlet is called, it outputs the list of all data items associated with
the session. You will see the session grow as each item is added (in this case, until you
restart your web browser or the server).

The basic mechanics are much like our ShowParameters servlet. Our doGet() method
generates the form, which points back to our servlet via a POST method. We override
doPost() to delegate back to our doGet() method, allowing it to handle everything.
Once in doGet(), we attempt to fetch the user session object from the request object
using getSession(). The HttpSession object supplied by the request functions like a
hashtable. There is a setAttribute() method, which takes a string name and an Ob
ject argument, and a corresponding getAttribute() method. In our example, we use
the getAttributeNames() method to enumerate the values currently stored in the ses‐
sion and to print them.

By default, getSession() creates a session if one does not exist. If you want to test for
a session or explicitly control when one is created, you can call the overloaded version
getSession(false), which does not automatically create a new session and returns
null if there is no session. Alternately, you can check to see if a session was just created
with the isNew() method. To clear a session immediately, we can use the invalid
ate() method. After calling invalidate() on a session, we are not allowed to access it
again, so we set a flag in our example and show the “Session Cleared” message. Sessions
may also become invalid on their own by timing out. You can control session timeout
in the application server or through the web.xml file (via the “session-timeout” value of
the “session config” section). It is possible, through an interface we’ll talk about later in
this chapter, to find out when a session times out. In general, this appears to the appli‐
cation as either no session or a new session on the next request. User sessions are private
to each web application and are not shared across applications.

We mentioned earlier that an extra step is required to support URL rewriting for web
browsers that don’t support cookies. To do this, we must make sure that any URLs we
generate in content are first passed through the HttpServletResponse encodeURL()
method. This method takes a string URL and returns a modified string only if URL
rewriting is necessary. Normally, when cookies are available, it returns the same string.
In our previous example, we could have encoded the server form URL that was retrieved
from getRequestURI() before passing it to the client if we wanted to allow for users
without cookies.

The ShoppingCart Servlet
Now we build on the previous example to make a servlet that could be used as part of
an online store. ShoppingCart lets users choose items and add them to their basket until
checkout time. The page generated is not that pretty, but you can have your web designer

550 | Chapter 15: Web Applications and Web Services

guy clean that up with some CSS (smiley). Here we are just concentrating on the Servlet
API:

 import java.io.*;
 import javax.servlet.ServletException;
 import javax.servlet.http.*;
 import java.util.Enumeration;

 public class ShoppingCart extends HttpServlet
 {
 String [] items = new String [] {
 "Chocolate Covered Crickets", "Raspberry Roaches",
 "Buttery Butterflies", "Chicken Flavored Chicklets(tm)" };

 public void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);
 }

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // get or create the session information
 HttpSession session = request.getSession();
 int [] purchases = (int [])session.getAttribute("purchases");
 if (purchases == null) {
 purchases = new int [items.length];
 session.setAttribute("purchases", purchases);
 }

 out.println("<html><head><title>Shopping Cart</title>"
 + "</title></head><body><p>");

 if (request.getParameter("checkout") != null)
 out.println("<h1>Thanks for ordering!</h1>");
 else {
 if (request.getParameter("add") != null) {
 addPurchases(request, purchases);
 out.println(
 "<h1>Purchase added. Please continue</h1>");
 } else {
 if (request.getParameter("clear") != null)
 for (int i=0; i<purchases.length; i++)
 purchases[i] = 0;
 out.println("<h1>Please Select Your Items!</h1>");
 }

Java Web Applications | 551

 doForm(out, request.getRequestURI());
 }
 showPurchases(out, purchases);
 out.close();
 }

 void addPurchases(HttpServletRequest request, int [] purchases) {
 for (int i=0; i<items.length; i++) {
 String added = request.getParameter(items[i]);
 if (added !=null && !added.equals(""))
 purchases[i] += Integer.parseInt(added);
 }
 }

 void doForm(PrintWriter out, String requestURI) {
 out.println("<form method=POST action="+ requestURI +">");

 for(int i=0; i< items.length; i++)
 out.println("Quantity <input name=\"" + items[i]
 + "\" value=0 size=3> of: " + items[i] + "
");
 out.println(
 "<p><input type=submit name=add value=\"Add To Cart\">"
 + "<input type=submit name=checkout value=\"Check Out\">"
 + "<input type=submit name=clear value=\"Clear Cart\">"
 + "</form>");
 }

 void showPurchases(PrintWriter out, int [] purchases)
 throws IOException {

 out.println("<hr><h2>Your Shopping Basket</h2>");
 for (int i=0; i<items.length; i++)
 if (purchases[i] != 0)
 out.println(purchases[i] +" "+ items[i] +"
");
 }
 }

Note that ShoppingCart has some instance data: a String array that holds a list of
products. We’re making the assumption that the product selection is the same for all
customers. If it’s not, we’d have to generate the product list on the fly or put it in the
session for the user. We cannot store any per-request or per-user data in instance
variables.

We see the same basic pattern as in our previous servlets, with doPost() delegating to
doGet(), and doGet() generating the body of the output and a form for gathering new
data. We’ve broken down the work using a few helper methods: doForm(), addPurcha
ses(), and showPurchases(). Our shopping cart form has three submit buttons: one
for adding items to the cart, one for checkout, and one for clearing the cart. In each
case, we display the contents of the cart. Depending on the button pressed (indicated

552 | Chapter 15: Web Applications and Web Services

by the name of the parameter), we add new purchases, clear the list, or show the results
as a checkout window.

The form is generated by our doForm() method, using the list of items for sale. As in
the other examples, we supply our servlet’s address as the target of the form. Next, we
placed an integer array called purchases into the user session. Each element in purcha
ses holds a count of the number of each item the user wants to buy. We create the array
after retrieving the session simply by asking the session for it. If this is a new session,
and the array hasn’t been created, getAttribute() gives us a null value and we create
an empty array to populate. Because we generate the form using the names from the
items array, it’s easy for addPurchases() to check for each name using getParame
ter() and increment the purchases array for the number of items requested. We also
test for the value being equal to the empty string, because some web browsers send
empty strings for unused field values. Finally, showPurchases() loops over the pur‐
chases array and prints the name and quantity for each item that the user has purchased.

Cookies
In our previous examples, a session lived only until you shut down your web browser
or the server. You can do more long-term user tracking or identification that lasts beyond
a single browser session by managing cookies explicitly. You can send a cookie to the
client by creating a javax.servlet.http.Cookie object and adding it to the servlet
response using the addCookie() method. Later, you can retrieve the cookie information
from the servlet request and use it to look up persistent information in a database. The
following servlet sends a “Learning Java” cookie to your web browser and displays it
when you return to the page:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieCutter extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (request.getParameter("setcookie") != null) {
 Cookie cookie = new Cookie("Learningjava", "Cookies!");
 cookie.setMaxAge(3600);
 response.addCookie(cookie);
 out.println("<html><body><h1>Cookie Set...</h1>");
 } else {
 out.println("<html><body>");
 Cookie[] cookies = request.getCookies();
 if (cookies.length == 0) {

Java Web Applications | 553

 out.println("<h1>No cookies found...</h1>");
 } else {
 for (int i = 0; i < cookies.length; i++)
 out.print("<h1>Name: "+ cookies[i].getName() + "
"
 + "Value: " + cookies[i].getValue() + "</h1>");
 }
 out.println("<p><a href=\""+ request.getRequestURI()
 +"?setcookie=true\">"
 +"Reset the Learning Java cookie.");
 }
 out.println("</body></html>");
 }
}

This example simply enumerates the cookies supplied by the request object using the
getCookies() method and prints their names and values. We provide a GET-style link
that points back to our servlet with a parameter setcookie, indicating that we should
set the cookie. In that case, we create a Cookie object using the specified name and value
and add it to the response with the addCookie() method. We set the maximum age of
the cookie to 3,600 seconds, so it remains in the browser for an hour before being
discarded (we’ll talk about tracking a cookie across multiple sessions later). Specifying
a negative time period indicates that the cookie should not be stored persistently and
should be erased when the browser exits. A time period of 0 deletes any existing cookie
immediately.

Two other Cookie methods are of interest: setDomain() and setPath(). These methods
allow you to specify the domain name and path component that determines where the
client will send the cookie. If you’re writing some kind of purchase applet for L.L. Bean,
you don’t want clients sending your cookies over to Eddie Bauer. In practice, however,
this cannot happen. The default domain is the domain of the server sending the cookie.
(You cannot in general specify other domains for security reasons.) The path parameter
defaults to the base URL of the servlet, but you can specify a wider (or narrower) range
of URLs on the host server by manually setting this parameter.

The ServletContext API
Web applications have access to the server environment through the ServletContext
API, a reference to which can be obtained from the HttpServlet getServletCon
text() method:

 ServletContext context = getServletContext();

Each web app has its own ServletContext. The context provides a shared space in
which a web app’s servlets may rendezvous and share objects. Objects may be placed
into the context with the setAttribute() method and retrieved by name with the
getAttribute() method:

554 | Chapter 15: Web Applications and Web Services

 context.setAttribute("myapp.statistics", myObject);
 Object stats = context.getAttribute("myapp.statistics");

Attribute names beginning with “java.” and “javax.” are reserved for use by Java. You can
opt to use the standard package-naming conventions for your attributes to avoid
conflicts.

The ServletContext provides a listener API that can be used to add items to the servlet
context when the application server starts up and to tear them down when it shuts down.
This is a good way to initiate shared services. We’ll show an example of this in the next
section when we talk about asynchronous servlets.

One standard attribute that can be accessed through the servlet context is a reference
to a private working directory represented by a java.io.File object. This temp direc‐
tory is guaranteed unique to the web app. No guarantees are made about it being cleared
upon exit, however, so you should use the temporary file API to create files here (unless
you wish to try to keep them beyond the server exit). For example:

 File tmpDir = (File)context.getAttribute("javax.servlet.context.tempdir");
 File tmpFile = File.createTempFile("appprefix", "appsuffix", tmpDir);

The servlet context also provides direct access to the web app’s files from its root direc‐
tory. The getResource() method is similar to the Class getResource() method (see
Chapter 12). It takes a pathname and returns a special local URL for accessing that
resource. In this case, it takes a path rooted in the servlet base directory (WAR file). The
servlet may obtain references to files, including those in the WEB-INF directory, using
this method. For example, a servlet could fetch an input stream for its own web.xml file:

 InputStream in = context.getResourceAsStream("/WEB-INF/web.xml");

It could also use a URL reference to get one of its images:
 URL bunnyURL = context.getResource("/images/happybunny.gif");

The method getResourcePaths() may be used to fetch a directory-style listing of all
the resource files available matching a specified path. The return value is a
java.util.Set collection of strings naming the resources available under the specified
path. For example, the path / lists all files in the WAR; the path /WEB-INF/ lists at least
the web.xml file and classes directory.

The ServletContext is also a factory for RequestDispatcher objects, which we won’t
cover here, but which allow for servlets to forward to or include the results of other
servlets in their responses.

Asynchronous Servlets
The following is a somewhat advanced topic, but we’ll cover it now to round out our
discussion of the Servlet API. Servlets may run in an asynchronous mode, where the
servlet service method is allowed to exit, but the response to the user is held open until

Java Web Applications | 555

it can be completed efficiently. While the response is held open, it does not actively
consume resources or block threads in the servlet container. This is intended to support
nonblocking, NIO-style services as discussed in Chapters 13 and 14.

Asynchronous servlets are an excellent way to handle very slow servlet processes, as
long as there is a way to efficiently poll for or receive some truly asynchronous notifi‐
cation of their completion. As we discussed when talking about NIO, one of the limiting
factors in the scalability of web services is thread consumption. Threads hold a lot of
resources and so simply allowing them to block and wait for completion of a task is
inefficient. As we saw earlier, NIO supports a style of programming where one thread
can manage a large number of network connections. Asynchronous servlets allow serv‐
lets to participate in this model. The basic idea is that you pass a job to a background
service and put the servlet request on the shelf until it can be completed. As long as the
background processor is implemented in such a way that it can manage the jobs without
waiting (via polling or receiving updates asynchronously), then there is no point where
threads must block.

Later in this chapter, we’ll utilize a simple test servlet called WaitServlet that simply
goes to sleep for a specified period of time before returning a result. This is a prime
example of an inefficient use of threads. Our dumb WaitServlet blocks a thread (by
sleeping) until it is “ready” to complete the transaction. In the following example, we’ll
get ahead of ourselves a bit and create a more efficient version of this tool, Background
WaitServlet, that will not block any threads in the servlet container while it waits.

Before we start, let’s check our preconditions for whether an asynchronous servlet will
be useful: do we have an efficient way to poll or receive notification when our “task” is
complete without blocking a thread? (It’s important to ask this to avoid simply moving
thread blocking from the servlet to another location.) Yes, in our case, we can use a timer
to notify us when the time has passed. An efficient timer implementation like
java.util.Timer will use only one thread to manage many timed requests. We’ll choose
to use a ScheduledExecutorService from the java.util.concurrent package for this.
It will execute any Runnable for us after a specified delay and makes a perfect shared
background service for our asynchronous servlet.

The following example servlet returns a generic response after a delay of five seconds.
The difference between this servlet and the naive one we use elsewhere in this chapter
would become apparent if we flooded our server with requests. We should find that the
asynchronous version would be limited primarily by TCP/IP resources in the host OS
and not by more valuable memory on the server.

import javax.servlet.*;
import javax.servlet.annotation.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.concurrent.*;

556 | Chapter 15: Web Applications and Web Services

@WebServlet(
 urlPatterns={"/bgwait"},
 asyncSupported = true
)
public class BackgroundWaitServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 final AsyncContext asyncContext = request.startAsync();
 ScheduledExecutorService executor =
 (ScheduledExecutorService)request.getServletContext().getAttribute(
 "BackgroundWaitExecutor");
 executor.schedule(new RespondLaterJob(asyncContext), 5,
 TimeUnit.SECONDS);
 }
}

class RespondLaterJob implements Runnable
{
 private AsyncContext asyncContext;

 RespondLaterJob(AsyncContext asyncContext) {
 this.asyncContext = asyncContext;
 }

 @Override
 public void run()
 {
 try {
 ServletResponse response = asyncContext.getResponse();
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><body><h1>WaitServlet Response</h1></body></html>"
);
 } catch (IOException e) { throw new RuntimeException(e); }

 asyncContext.complete();
 }
}

We’ve included the WebServlet annotation in this example in order to show the asyn
cSupported attribute. This attribute must be set on any servlets and servlet filters (dis‐
cussed later) that will be involved in the request.

The implementation of our doGet() method is straightforward: we initiate the asyn‐
chronous behavior by calling the startAsync() method on the servlet request. That
method returns to us an AsyncContext object that represents the caller context and
includes the servlet request and response objects. At this point, we are free to arrange
to service the request using any means we wish; the only requirement is that we must

Java Web Applications | 557

keep the AsyncContext object with our task so that it can be used later to send the results
and close the transaction.

In our example, we look up our shared ScheduledExcecutorService from the servlet
context by name (“BackgroundWaitExecutor”) and pass it a custom Runnable object.
(We’ll talk about how the service got there in a bit.) We’ve created a RespondLaterJob
that implements Runnable and holds onto the AsyncContext for later use. When the
job runs in the future, we simply get the servlet response from the AsyncContext
and send our response as usual. The final step is to call the complete() method on
AsyncContext in order to close the call and return to the client.

The final step raises a couple of interesting issues: first, we do not necessarily have to
call complete() immediately after writing to the response. Instead, we could write part
of the result and go back to sleep, waiting for our service to wake us up when there is
more data. Indeed, this is how we might work with an NIO data source. Second, instead
of calling complete() to finalize the results for the client, we could use an alternate
method, dispatch(), to forward the servlet request to another servlet, perhaps in a
chain of servlets. The next servlet could write additional content or perhaps simply use
resources put into the servlet context by the first servlet to handle the request. The
dispatch() method accepts a URL string for the target servlet or, when called with no
arguments, sends the request back to the original servlet.

OK, so how did our ScheduledExecutorService get into the servlet context? The best
way to manage shared services and resources in the servlet context is via a ServletCon
textListener. A context listener has two lifecycle methods that can be used to set up
and tear down services when the servlet container starts up and shuts down, respectively.
We can deploy our listener simply by marking the class with a WebListener annotation
and placing it in the WAR file as usual.

import javax.servlet.*;
import javax.servlet.annotation.*;
import java.util.concurrent.*;

@WebListener
public class BackgroundWaitService implements ServletContextListener
{
 ScheduledExecutorService executor;

 public void contextInitialized(ServletContextEvent sce)
 {
 this.executor = Executors.newScheduledThreadPool(3);
 sce.getServletContext().setAttribute("BackgroundWaitExecutor",
 executor);
 }

 public void contextDestroyed(ServletContextEvent sce)
 {
 ScheduledExecutorService executor =

558 | Chapter 15: Web Applications and Web Services

 Executors.newScheduledThreadPool(3);
 executor.shutdownNow();
 }
}

WAR Files and Deployment
As we described in the introduction to this chapter, a WAR file is an archive that contains
all the parts of a web application: Java class files for servlets and web services, JSPs,
HTML pages, images, and other resources. The WAR file is simply a JAR file (which is
itself a fancy ZIP file) with specified directories for the Java code and one designated
configuration file: the web.xml file, which tells the application server what to run and
how to run it. WAR files always have the extension .war, but they can be created and
read with the standard jar tool.

The contents of a typical WAR might look like this, as revealed by the jar tool:
 $ jar tvf shoppingcart.war

 index.html
 purchase.html
 receipt.html
 images/happybunny.gif
 WEB-INF/web.xml
 WEB-INF/classes/com/mycompany/PurchaseServlet.class
 WEB-INF/classes/com/mycompany/ReturnServlet.class
 WEB-INF/lib/thirdparty.jar

When deployed, the name of the WAR becomes, by default, the root path of the web
application—in this case, shoppingcart. Thus, the base URL for this web app, if deployed
on http://www.oreilly.com, is http://www.oreilly.com/shoppingcart/, and all references
to its documents, images, and servlets start with that path. The top level of the WAR file
becomes the document root (base directory) for serving files. Our index.html file ap‐
pears at the base URL we just mentioned, and our happybunny.gif image is referenced
as http://www.oreilly.com/shoppingcart/images/happybunny.gif.

The WEB-INF directory (all caps, hyphenated) is a special directory that contains all
deployment information and application code. This directory is protected by the web
server, and its contents are not visible to outside users of the application, even if you
add WEB-INF to the base URL. Your application classes can load additional files from
this area using getResource() on the servlet context, however, so it is a safe place to
store application resources. The WEB-INF directory also contains the web.xml file,
which we’ll talk more about in the next section.

The WEB-INF/classes and WEB-INF/lib directories contain Java class files and JAR li‐
braries, respectively. The WEB-INF/classes directory is automatically added to the class‐
path of the web application, so any class files placed here (using the normal Java package
conventions) are available to the application. After that, any JAR files located in

WAR Files and Deployment | 559

WEB-INF/lib are appended to the web app’s classpath (the order in which they are
appended is, unfortunately, not specified). You can place your classes in either location.
During development, it is often easier to work with the “loose” classes directory and use
the lib directory for supporting classes and third-party tools. It’s also possible to install
JAR files directly in the servlet container to make them available to all web apps running
on that server. This is often done for common libraries that will be used by many web
apps. The location for placing the libraries, however, is not standard and any classes that
are deployed in this way cannot be automatically reloaded if changed—a feature of WAR
files that we’ll discuss later. Servlet API requires that each server provide a directory for
these extension JARs and that the classes there will be loaded by a single classloader and
made visible to the web application.

Configuration with web.xml and Annotations
The web.xml file is an XML configuration file that lists servlets and related entities to
be deployed, the relative names (URL paths) under which to deploy them, their initi‐
alization parameters, and their deployment details, including security and authoriza‐
tion. For most of the history of Java web applications, this was the only deployment
configuration mechanism. However, as of the Servlet 3.0 API, there are additional op‐
tions. Most configuration can now be done using Java annotations. We saw the Web‐
Servlet annotation used in the first example, HelloClient, to declare the servlet and
specify its deployment URL path. Using the annotation, we could deploy the servlet to
the Tomcat server without any web.xml file. Another option with the Servlet 3.0 API is
to deploy servlet procedurally—using Java code at runtime.

In this section we will describe both the XML and annotation style of configuration. For
most purposes, you will find it easier to use the annotations, but there are a couple of
reasons to understand the XML configuration as well. First, the web.xml can be used to
override or extend the hardcoded annotation configuration. Using the XML, you can
change configuration at deployment time without recompiling the classes. In general,
configuration in the XML will take precedence over the annotations. It is also possible
to tell the server to ignore the annotations completely, using an attribute called
metadata-complete in the web.xml. Next, there may be some residual configuration,
especially relating to options of the servlet container, which can only be done through
XML.

We will assume that you have at least a passing familiarity with XML, but you can simply
copy these examples in a cut-and-paste fashion. (For details about working with Java
and XML, see Chapter 24.) Let’s start with a simple web.xml file for our HelloClient
servlet example. It looks like this:

 <web-app>
 <servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>

560 | Chapter 15: Web Applications and Web Services

 </servlet>
 <servlet-mapping>
 <servlet-name>helloclient1</servlet-name>
 <url-pattern>/hello</url-pattern>
 </servlet-mapping>
 </web-app>

The top-level element of the document is called <web-app>. Many types of entries may
appear inside the <web-app>, but the most basic are <servlet> declarations and
<servlet-mapping> deployment mappings. The <servlet> declaration tag is used to
declare an instance of a servlet and, optionally, to give it initialization and other pa‐
rameters. One instance of the servlet class is instantiated for each <servlet> tag ap‐
pearing in the web.xml file.

At minimum, the <servlet> declaration requires two pieces of information: a
<servlet-name>, which serves as a handle to reference the servlet elsewhere in the
web.xml file, and the <servlet-class> tag, which specifies the Java class name of the
servlet. Here, we named the servlet helloclient1. We named it like this to emphasize
that we could declare other instances of the same servlet if we wanted to, possibly giving
them different initialization parameters, etc. The class name for our servlet is, of course,
HelloClient. In a real application, the servlet class would likely have a full package
name, such as com.oreilly.servlets.HelloClient.

A servlet declaration may also include one or more initialization parameters, which are
made available to the servlet through the ServletConfig object’s getInitParame
ter() method:

 <servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>
 <init-param>
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </init-param>
 </servlet>

Next, we have our <servlet-mapping>, which associates the servlet instance with a path
on the web server:

 <servlet-mapping>
 <servlet-name>helloclient1</servlet-name>
 <url-pattern>/hello</url-pattern>
 </servlet-mapping>

Here we mapped our servlet to the path /hello. (We could include additional url-patterns
in the mapping if desired.) If we later name our WAR learningjava.war and deploy it
on www.oreilly.com, the full path to this servlet would be http://www.oreilly.com/lear‐
ningjava/hello. Just as we could declare more than one servlet instance with the <serv
let> tag, we could declare more than one <servlet-mapping> for a given servlet

WAR Files and Deployment | 561

instance. We could, for example, redundantly map the same helloclient1 instance to
the paths /hello and /hola. The <url-pattern> tag provides some very flexible ways to
specify the URLs that should match a servlet. We’ll talk about this in detail in the next
section.

Finally, we should mention that although the web.xml example listed earlier will work
on some application servers, it is technically incomplete because it is missing formal
information that specifies the version of XML it is using and the version of the web.xml
file standard with which it complies. To make it fully compliant with the standards, add
a line such as:

 <?xml version="1.0" encoding="ISO-8859-1"?>

As of Servlet API 2.5, the web.xml version information takes advantage of XML Sche‐
mas. (We’ll talk about XML DTDs and XML Schemas in Chapter 24.) The additional
information is inserted into the <web-app> element:

 <web-app
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd”
 version=”2.5”>

If you leave them out, the application may still run, but it will be harder for the servlet
container to detect errors in your configuration and give you clear error messages.

The equivalent of the preceding servlet declaration and mapping is, as we saw earlier,
our one line annotation:

@WebServlet(urlPatterns={"/hello", "/hola"})
public class HelloClient extends HttpServlet {
 ...
}

Here the WebServlet attribute urlPatterns allows us to specify one or more URL pat‐
terns that are the equivalent to the url-pattern declaration in the web.xml.

URL Pattern Mappings
The <url-pattern> specified in the previous example was a simple string, /hello. For
this pattern, only an exact match of the base URL followed by /hello would invoke our
servlet. The <url-pattern> tag is capable of more powerful patterns, however, includ‐
ing wildcards. For example, specifying a <url-pattern> of /hello* allows our servlet
to be invoked by URLs such as http://www.oreilly.com/learningjava/helloworld or .../
hellobaby. You can even specify wildcards with extensions (e.g., *.html or *.foo,
meaning that the servlet is invoked for any path that ends with those characters).

562 | Chapter 15: Web Applications and Web Services

Using wildcards can result in more than one match. Consider URLs ending in /scoo
by* and /scoobydoo*. Which should be matched for a URL ending in .../scoobydoo
biedoo? What if we have a third possible match because of a wildcard suffix extension
mapping? The rules for resolving these are as follows.

First, any exact match is taken. For example, /hello matches the /hello URL pattern
in our example regardless of any additional /hello*. Failing that, the container looks
for the longest prefix match. So /scoobydoobiedoo matches the second pattern, /scoo
bydoo*, because it is longer and presumably more specific. Failing any matches there,
the container looks at wildcard suffix mappings. A request ending in .foo matches a
*.foo mapping at this point in the process. Finally, failing any matches there, the con‐
tainer looks for a default, catchall mapping named /*. A servlet mapped to /* picks up
anything unmatched by this point. If there is no default servlet mapping, the request
fails with a “404 not found” message.

Deploying HelloClient
Once you’ve deployed the HelloClient servlet, it should be easy to add examples to the
WAR as you work with them in this chapter. In this section, we’ll show you how to build
a WAR by hand. In “Building WAR Files with Ant” later in this chapter, we’ll show a
more realistic way to manage your applications using the popular build tool, Ant. You
can also grab the full set of examples, along with their source code, in the learningja‐
va.war file from this book’s website at http://oreil.ly/Java_4E.

To create the WAR by hand, we first create the WEB-INF and WEB-INF/classes direc‐
tories. If you are using a web.xml file, place it into WEB-INF. Put the HelloClient.class
into WEB-INF/classes. Use the jar command to create learningjava.war (WEB-INF at
the “top” level of the archive):

 $ jar cvf learningjava.war WEB-INF

You can also include documents and other resources in the WAR by adding their names
after the WEB-INF directory. This command produces the file learningjava.war. You
can verify the contents using the jar command:

 $ jar tvf learningjava.war
 document1.html
 WEB-INF/web.xml
 WEB-INF/classes/HelloClient.class

Now all that is necessary is to drop the WAR into the correct location for your server.
If you have not already, you should download and install Apache Tomcat. The location
for WAR files is the webapps directory within your Tomcat installation directory. Place
your WAR here, and start the server. If Tomcat is configured with the default port num‐
ber, you should be able to point to the HelloClient servlet with one of two URLs:
http://localhost:8080/learningjava/hello or http://<yourserver>:8080/learningjava/

WAR Files and Deployment | 563

hello, where <yourserver> is the name or IP address of your server. If you have trouble,
look in the logs directory of the Tomcat folder for errors.

Reloading web apps

All servlet containers are supposed to provide a facility for reloading WAR files; many
support reloading of individual servlet classes after they have been modified. Reloading
WARs is part of the servlet specification and is especially useful during development.
Support for reloading web apps varies from server to server. Normally, all that you have
to do is drop a new WAR in place of the old one in the proper location (e.g., the webapps
directory for Tomcat) and the container shuts down the old application and deploys the
new version. This works in Tomcat when the “autoDeploy” attribute is set (it is on by
default) and also in BEA’s WebLogic application server when it is configured in devel‐
opment mode.

Some servers, including Tomcat, “explode” WARs by unpacking them into a directory
under the webapps directory, or they allow you explicitly to configure a root directory
(or “context”) for your unpacked web app through their own configuration files. In this
mode, they may allow you to replace individual files, which can be especially useful for
tweaking HTML or JSPs. Tomcat automatically reloads WAR files when they change
them (unless configured not to), so all you have to do is drop an updated WAR over the
old one and it will redeploy it as necessary. In some cases, it may be necessary to restart
the server to make all changes take effect. When in doubt, shut down and restart.

Tomcat also provides a client-side “deployer” package that integrates with Ant to auto‐
mate building, deploying, and redeploying applications. We’ll discuss Ant later in this
chapter.

Error and Index Pages
One of the finer points of writing a professional-looking web application is taking care
to handle errors well. Nothing annoys a user more than getting a funny-looking page
with some technical mumbo-jumbo error information on it when he expected the re‐
ceipt for his Christmas present. Through the web.xml file, it is possible to specify docu‐
ments or servlets to handle error pages that are shown for various conditions, as well
as the special case of welcome files (index files) that are invoked for paths corresponding
to directories. At this time, there is no corresponding way to declare error pages or
welcome files using annotations.

You can designate a page or servlet that can handle various HTTP error status codes,
such as “404 Not Found” and “403 Forbidden,” using one or more <error-
page>declarations:

 <web-app>
 ...
 <error-page>

564 | Chapter 15: Web Applications and Web Services

 <error-code>404</error-code>
 <location>/notfound.html</location>
 </error-page>
 <error-page>
 <error-code>403</error-code>
 <location>/secret.html</location>
 </error-page>

Additionally, you can designate error pages based on Java exception types that may be
thrown from the servlet. For example:

 <error-page>
 <exception-type>java.lang.IOException</exception-type>
 <location>/ioexception.html</location>
 </error-page>

This declaration catches any IOExceptions generated from servlets in the web app and
displays the ioexception.html page. If no matching exceptions are found in the <error-
page> declarations, and the exception is of type ServletException (or a subclass), the
container makes a second try to find the correct handler. It looks for a wrapped exception
(the “cause” exception) contained in the ServletException and attempts to match it to
an error page declaration.

In the Servlet 3.0 API, you can also designate a catchall error page that will handle any
unhandled error codes and exception types as follows:

 <error-page>
 <location>/anyerror.html</location>
 </error-page>

As we’ve mentioned, you can use a servlet to handle your error pages, just as you can
use a static document. In fact, the container supplies several helpful pieces of informa‐
tion to an error-handling servlet, which the servlet can use in generating a response.
The information is made available in the form of servlet request attributes through the
method getAttribute():

 Object requestAttribute = servletRequest.getAttribute("name");

Attributes are like servlet parameters, except that they can be arbitrary objects. We have
seen attributes of the ServletContext in “The ServletContext API” on page 554 section.
In this case, we are talking about attributes of the request. When a servlet (or JSP or
filter) is invoked to handle an error condition, the following string attributes are set in
the request:

 javax.servlet.error.servlet_name
 javax.servlet.error.request_uri
 javax.servlet.error.message

Depending on whether the <error-page> declaration was based on an <error-code>
or <exception-type> condition, the request also contains one of the following two
attributes:

WAR Files and Deployment | 565

 // status code Integer or Exception object
 javax.servlet.error.status_code
 javax.servlet.error.exception

In the case of a status code, the attribute is an Integer representing the code. In the case
of the exception type, the object is the actual instigating exception.

Indexes for directory paths can be designated in a similar way. Normally, when a user
specifies a directory URL path, the web server searches for a default file in that directory
to be displayed. The most common example of this is the ubiquitous index.html file.
You can designate your own ordered list of files to look for by adding a <welcome-file-
list> entry to your web.xml file. For example:

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 </welcome-file-list>

<welcome-file-list> specifies that when a partial request (directory path) is received,
the server should search first for a file named index.html and, if that is not found, a file
called index.htm. If none of the specified welcome files is found, it is left up to the server
to decide what kind of page to display. Servers are generally configured to display a
directory-like listing or to produce an error message.

Security and Authentication
One of the most powerful features of web app deployment with the Servlet API is the
ability to define declarative security constraints, meaning that you can spell out in the
web.xml file exactly which areas of your web app (URL paths to documents, directories,
servlets, etc.) are login-protected, the types of users allowed access to them, and the class
of security protocol required for communications. It is not necessary to write code in
your servlets to implement these basic security procedures.

There are two types of entries in the web.xml file that control security and authentication.
First are the <security-constraint> entries, which provide authorization based on
user roles and secure transport of data, if desired. Second is the <login-config> entry,
which determines the kind of authentication used for the web application.

Protecting Resources with Roles
Let’s take a look at a simple example. The following web.xml excerpt defines an area
called “Secret documents” with a URL pattern of /secret/* and designates that only users
with the role “secretagent” may access them. It specifies the simplest form of login
process: the BASIC authentication model, which causes the browser to prompt the user
with a simple pop-up username and password dialog box:

 <web-app>
 ...

566 | Chapter 15: Web Applications and Web Services

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secret documents</web-resource-name>
 <url-pattern>/secret/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>secretagent</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

Each <security-constraint> block has one <web-resource-collection> section that
designates a named list of URL patterns for areas of the web app, followed by an <auth-
constraint> section listing user roles that are allowed to access those areas.

We can do the equivalent configuration for a given servlet using the SecurityServlet
annotation with an HttpConstraint annotation element as follows:

@ServletSecurity(
 @HttpConstraint(rolesAllowed = "secretagent")
)
public class SecureHelloClient extends HttpServlet
{ ...

You can add this annotation to our test servlet or add the XML example setup to the
web.xml file for the learningjava.war file and prepare to try it out. However, there is one
additional step that you’ll have to take to get this working: create the user role
“secretagent” and an actual user with this role in our application server environment.

Access to protected areas is granted to user roles, not individual users. A user role is
effectively just a group of users; instead of granting access to individual users by name,
you grant access to roles, and users are assigned one or more roles. A user role is an
abstraction from users. Actual user information (name and password, etc.) is handled
outside the scope of the web app, in the application server environment (possibly inte‐
grated with the host platform operating system). Generally, application servers have
their own tools for creating users and assigning individuals (or actual groups of users)
their roles. A given username may have many roles associated with it.

When attempting to access a login-protected area, the user’s valid login will be assessed
to see if she has the correct role for access. For the Tomcat server, adding test users and
assigning them roles is easy; simply edit the file conf/tomcat-users.xml. To add a user
named “bond” with the “secretagent” role, you’d add an entry such as:

 <user username="bond" password="007" roles="secretagent"/>

For other servers, you’ll have to refer to the documentation to determine how to add
users and assign security roles.

WAR Files and Deployment | 567

Secure Data Transport
Before we move on, there is one more piece of the security constraint to discuss: the
transport guarantee. Each <security-constraint> block may end with a <user-data-
constraint> entry, which designates one of three levels of transport security for the
protocol used to transfer data to and from the protected area over the Internet. For
example:

 <security-constraint>
 ...
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

The three levels are NONE, INTEGRAL, and CONFIDENTIAL. NONE is equivalent
to leaving out the section, which indicates that no special transport is required. This is
the standard for normal web traffic, which is generally sent in plain text over the net‐
work. The INTEGRAL level of security specifies that any transport protocol used must
guarantee the data sent is not modified in transit. This implies the use of digital signa‐
tures or some other method of validating the data at the receiving end, but it does not
require that the data be encrypted and hidden while it is transported. Finally, CONFI‐
DENTIAL implies both INTEGRAL and encrypted. In practice, the only widely used
secure transport in web browsers is SSL. Requiring a transport guarantee other than
NONE typically forces the use of SSL by the client browser.

We can configure the equivalent transport security for a servlet using the ServletSe
curity annotation along with the HttpMethodConstraint annotation, as follows:

@ServletSecurity(
 httpMethodConstraints = @HttpMethodConstraint(value="GET",
 transportGuarantee = ServletSecurity.TransportGuarantee.CONFIDENTIAL)
)
public class SecureHelloClient extends HttpServlet { ... }

@ServletSecurity(
 value = @HttpConstraint(rolesAllowed = "secretagent"),
 httpMethodConstraints = @HttpMethodConstraint(value="GET",
 transportGuarantee = ServletSecurity.TransportGuarantee.CONFIDENTIAL)
)
public class SecureHelloClient extends HttpServlet { ... }

Here we use the httpMethodConstraints attribute with an HttpMethodConstraint
annotation to designate that the servlet may only be accessed using the HTTP GET
method and only with CONFIDENTIAL level security. Combining the transport security
with a rolesAllowed annotation can be done as shown in the preceding example.

568 | Chapter 15: Web Applications and Web Services

Authenticating Users
This section shows how to declare a custom login form to perform user login. First,
we’ll show the web.xml style and then discuss the Servlet 3.0 alternative, which gives us
more flexibility.

The <login-conf> section determines exactly how a user authenticates herself (logs in)
to the protected area. The <auth-method> tag allows four types of login authentication
to be specified: BASIC, DIGEST, FORM, and CLIENT-CERT. In our example, we
showed the BASIC method, which uses the standard web browser login and password
dialog. BASIC authentication sends the user’s name and password in plain text over the
Internet unless a transport guarantee has been used separately to start SSL and encrypt
the data stream. DIGEST is a variation on BASIC that obscures the text of the password
but adds little real security; it is not widely used. FORM is equivalent to BASIC, but
instead of using the browser’s dialog, we can use our own HTML form to post the
username and password data to the container. The form data can come from a static
HTML page or from one generated by a servlet. Again, form data is sent in plain text
unless otherwise protected by a transport guarantee (SSL). CLIENT-CERT is an inter‐
esting option. It specifies that the client must be identified using a client-side public key
certificate. This implies the use of a protocol like SSL, which allows for secure exchange
and mutual authentication using digital certificates. The exact method of setting up a
client-side certificate is browser-dependent.

The FORM method is most useful because it allows us to customize the look of the login
page (we recommend using SSL to secure the data stream). We can also specify an error
page to use if the authentication fails. Here is a sample <login-config> using the form
method:

 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/login_error.html</form-error-page>
 </form-login-config>
 </login-config>

The login page must contain an HTML form with a specially named pair of fields for
the name and password. Here is a simple login.html file:

 <html>
 <head><title>Login</title></head>
 <body>
 <form method="POST" action="j_security_check">
 Username: <input type="text" name="j_username">

 Password: <input type="password" name="j_password">

 <input type="submit" value="submit">
 </form>

WAR Files and Deployment | 569

 </body>
 </html>

The username field is called j_username, the password field is called j_password, and
the URL used for the form action attribute is j_security_check. There are no special
requirements for the error page, but normally you will want to provide a “try again”
message and repeat the login form.

In the Servlet 3.0 API, the HttpServletRequest API contains methods for explicitly log‐
ging in and logging out a user. However, it is also specified that a user’s login is no longer
valid after the user session times out or is invalidated. Therefore, you can effectively log
out the user by calling invalidate() on the session:

 request.logout(); request.getSession().invalidate();

With Servlet 3.0, we can also take control of the login process ourselves by utilizing the
ServletRequest login() method to perform our own login operation. All we have to
do is arrange our own login servlet that accepts a username and password (securely)
and then calls the login method. This gives you great flexibility over how and when the
user login occurs. And, of course, you can log the user out with the corresponding
logout() method.

@ServletSecurity(
 httpMethodConstraints = @HttpMethodConstraint(value="POST",
 transportGuarantee = ServletSecurity.TransportGuarantee.CONFIDENTIAL)
)
@WebServlet(urlPatterns={"/mylogin"})
public class MyLogin extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 String user = request.getParameter("user");
 String password = request.getParameter("pass");
 request.login(user, password);
 // Dispatch or redirect to the next page...
 }

Procedural Authorization
We should mention that in addition to the declarative security offered by the web.xml
file, servlets may perform their own active procedural (or programmatic) security using
all the authentication information available to the container. We won’t cover this in
detail, but here are the basics.

The name of the authenticated user is available through the method
HttpServletRequest getRemoteUser(), and the type of authentication provided can
be determined with the getAuthType() method. Servlets can work with security roles
using the isUserInRole() method. (Doing this requires adding some additional

570 | Chapter 15: Web Applications and Web Services

mappings in the web.xml file, which allows the servlet to refer to the security roles by
reference names.)

For advanced applications, a java.security.Principal object for the user can be re‐
trieved with the getUserPrincipal() method of the request. In the case where a secure
transport like SSL was used, the method isSecure() returns true, and detailed infor‐
mation about how the principal was authenticated—the cipher type, key size, and cer‐
tificate chain—is made available through request attributes. It is useful to note that the
notion of being “logged in” to a web application, from the servlet container’s point of
view, is defined as there being a valid (non-null) value returned by the getUserPrin
cipal() method.

Servlet Filters
The servlet Filter API generalizes the Java Servlet API to allow modular component
“filters” to operate on the servlet request and responses in a sort of pipeline. Filters are
chained, meaning that when more than one filter is applied, the servlet request is passed
through each filter in succession, with each having an opportunity to act upon or modify
the request before passing it to the next filter. Similarly, upon completion, the servlet
result is effectively passed back through the chain on its return trip to the browser.
Servlet filters may operate on any requests to a web application, not just those handled
by the servlets; they may filter static content, as well. You can also control whether filters
are applied to error and welcome pages as well as pages forwarded or included using
the request dispatcher (from servlet to servlet).

Filters can be declared and mapped to servlets in the web.xml file or using annotations.
There are two ways to map a filter: using a URL pattern like those used for servlets or
by specifying a servlet by its servlet name as defined in its servlet config. Filters obey
the same basic rules as servlets when it comes to URL matching, but when multiple
filters match a path, they are each invoked.

When using web.xml, the order of the chain is determined by the order in which match‐
ing filter mappings appear in the web.xml file, with <url-pattern> matches taking
precedence over <servlet-name> matches. This is contrary to the way in which servlet
URL matching is done, with specific matches taking the highest priority. Filter chains
are constructed as follows. First, each filter with a matching URL pattern is called in the
order in which it appears in the web.xml file; next, each filter with a matching servlet
name is called, also in order of appearance. URL patterns take a higher priority than
filters specifically associated with a servlet, so in this case, patterns such as /* have first
crack at an incoming request.

Servlet filters may be declared and mapped using the WebFilter annotation. There is
no corresponding way to control filter ordering using annotations; however, as always
you can mix annotations and web.xml to minimize the XML configuration by only

Servlet Filters | 571

declaring the filter mappings in the XML. (We’ll discuss configuration more later in this
chapter.)

The Filter API is very simple and mimics the Servlet API. A servlet filter implements
the javax.servlet.Filter interface and implements three methods: init(), doFil
ter(), and destroy(). The doFilter() method is where the work is performed. For
each incoming request, the ServletRequest and ServletResponse objects are passed
to doFilter(). Here, we have a chance to examine and modify these objects—or even
substitute our own objects for them—before passing them to the next filter and, ulti‐
mately, the servlet (or user) on the other side. Our link to the rest of the filter chain is
another parameter of doFilter(), the FilterChain object. With FilterChain, we can
invoke the next element in the pipeline. The following section presents an example.

A Simple Filter
For our first filter, we’ll do something easy but practical: create a filter that limits the
number of concurrent connections to its URLs. We’ll simply have our filter keep a
counter of the active connections passing through it and turn away new requests when
they exceed a specified limit:

import java.io.*;
import javax.servlet.*;
import javax.servlet.annotation.*;
import javax.servlet.http.*;

public class ConLimitFilter implements Filter
{
 int limit;
 volatile int count;

 public void init(FilterConfig filterConfig)
 throws ServletException
 {
 String s = filterConfig.getInitParameter("limit");
 if (s == null)
 throw new ServletException("Missing init parameter: "+limit);
 limit = Integer.parseInt(s);
 }

 public void doFilter (
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 if (count > limit) {
 HttpServletResponse httpRes = (HttpServletResponse)res;
 httpRes.sendError(httpRes.SC_SERVICE_UNAVAILABLE, "Too Busy.");
 } else {
 ++count;
 chain.doFilter(req, res);

572 | Chapter 15: Web Applications and Web Services

 --count;
 }
 }

 public void destroy() { }
}

ConLimitFilter implements the three lifecycle methods of the Filter interface: in
it(), doFilter(), and destroy(). In our init() method, we use the FilterConfig
object to look for an initialization parameter named “limit” and turn it into an integer.
Users can set this value in the section of the web.xml file where the instance of our filter
is declared or in the annotation as shown. The doFilter() method implements all our
logic. First, it receives ServletRequest and ServletResponse object pairs for incoming
requests. Depending on the counter, it then either passes them down the chain by in‐
voking the next doFilter() method on the FilterChain object, or rejects them by
generating its own response. We use the standard HTTP message “504 Service Un‐
available” when we deny new connections.

Calling doFilter() on the FilterChain object continues processing by invoking the
next filter in the chain or by invoking the servlet if ours is the last filter. Alternatively,
when we choose to reject the call, we use the ServletResponse to generate our own
response and then simply allow doFilter() to exit. This stops the processing chain at
our filter, although any filters called before us still have an opportunity to intervene as
the request effectively traverses back to the client.

Notice that ConLimitFilter increments the count before calling doFilter() and dec‐
rements it after. Prior to calling doFilter(), we can work on the request before it reaches
the rest of the chain and the servlet. After the call to doFilter(), the chain to the servlet
has completed, and the request is sent back to the client. This is our opportunity to do
any post-processing of the response.

Finally, we should mention that although we’ve been talking about the servlet request
and response as if they were HttpServletRequest and HttpServletResponse, the do
Filter() method actually takes the more generic ServletRequest and ServletRes
ponse objects as parameters. As filter implementers, we are expected to determine when
it is safe to treat them as HTTP traffic and perform the cast as necessary (which we do
here in order to use the sendError() HTTP response method).

A Test Servlet
Before we go on, here is a simple test servlet you can use to try out this filter and the
other filters we’ll develop in this section. It’s called WaitServlet and, as its name implies,
it simply waits. You can specify how long it waits as a number of seconds with the servlet
parameter time. (This is the “dumb” version of the BackgroundWaitServlet that we
created earlier in this chapter when discussing asynchronous servlets.)

Servlet Filters | 573

 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.http.*;

 public class WaitServlet extends HttpServlet
 {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 String waitStr = request.getParameter("time");
 if (waitStr == null)
 throw new ServletException("Missing parameter: time");
 int wait = Integer.parseInt(waitStr);

 try {
 Thread.sleep(wait * 1000);
 } catch(InterruptedException e) {
 throw new ServletException(e);
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><body><h1>WaitServlet Response</h1></body></html>");
 out.close();
 }
 }

By making multiple simultaneous requests to the WaitServlet, you can try out the
ConLimitFilter. Note that some web browsers won’t open multiple requests to the
same URL or may delay opening multiple tabs. You may have to add extraneous pa‐
rameters to trick the web browser. Alternately, you may wish to use the curl command-
line utility to make the requests if you have it.

Declaring and Mapping Filters
In the web.xml file filters are declared and mapped much as servlets are. Like servlets,
one instance of a filter class is created for each filter declaration in the web.xml file. A
filter declaration looks like this:

 <filter>
 <filter-name>defaultsfilter1</filter-name>
 <filter-class>RequestDefaultsFilter</filter-class>
 </filter>

It specifies a filter handle name to be used for reference within the web.xml file and the
filter’s Java class name. Filter declarations may also contain <init-param> parameter
sections, just like servlet declarations.

574 | Chapter 15: Web Applications and Web Services

Filters are mapped to resources with <filter-mapping> declarations that specify the
filter handle name and either the specific servlet handle name or a URL pattern, as we
discussed earlier:

 <filter-mapping>
 <filter-name>conlimitfilter1</filter-name>
 <servlet-name>waitservlet1</servlet-name>
 </filter-mapping>

 <filter-mapping>
 <filter-name>conlimitfilter1</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

The corresponding WebFilter annotation can declare and map filters as well as supply
filter parameters. The annotation will accept either a urlPatterns or a servletNames
attribute for the mapping.

@WebFilter(
 urlPatterns = "/*",
 initParams = {
 @WebInitParam(name="limit", value="3")
 }
)

Filtering the Servlet Request
Our first filter example was not very exciting because it did not actually modify any
information going to or coming from the servlet. Next, let’s do some actual “filtering”
by modifying the incoming request before it reaches a servlet. In this example, we’ll
create a request “defaulting” filter that automatically supplies default values for specified
servlet parameters when they are not provided in the incoming request. Here is the
RequestDefaultsFilter:

 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.http.*;

 public class RequestDefaultsFilter implements Filter
 {
 FilterConfig filterConfig;

 public void init(FilterConfig filterConfig) throws ServletException
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter (
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {

Servlet Filters | 575

 WrappedRequest wrappedRequest =
 new WrappedRequest((HttpServletRequest)req);
 chain.doFilter(wrappedRequest, res);
 }

 public void destroy() { }

 class WrappedRequest extends HttpServletRequestWrapper
 {
 WrappedRequest(HttpServletRequest req) {
 super(req);
 }

 public String getParameter(String name) {
 String value = super.getParameter(name);
 if (value == null)
 value = filterConfig.getInitParameter(name);
 return value;
 }
 }
 }

To interpose ourselves in the data flow, we must do something drastic. We kidnap the
incoming HttpServletRequest object and replace it with an imposter that does our
bidding. The technique, which we’ll use here for modifying the request object and later
for modifying the response, is to wrap the real request with an adapter, allowing us to
override some of its methods. Here, we will take control of the HttpServletRequest’s
getParameter() method, modifying it to look for default values where it would other‐
wise return null.

Again, we implement the three lifecycle methods of Filter, but this time, before in‐
voking doFilter() on the filter chain to continue processing, we wrap the incoming
HttpServletRequest in our own class, WrappedRequest. WrappedRequest extends a
special adapter called HttpServletRequestWrapper. This wrapper class is a conve‐
nience utility that extends HttpServletRequest. It accepts a reference to a target
HttpServletRequest object and, by default, delegates all of its methods to that target.
This makes it very convenient for us to simply override one or more methods of interest
to us. All we have to do is override getParameter() in our WrappedRequest class and
add our functionality. Here, we simply call our parent’s getParameter(), and in the case
where the value is null, we try to substitute a filter initialization parameter of the same
name.

Try this example using the WaitServlet with a filter declaration and mapping or an‐
notation as follows:

<filter>
 <filter-name>defaultsfilter1</filter-name>
 <filter-class>RequestDefaultsFilter</filter-class>
 <init-param>

576 | Chapter 15: Web Applications and Web Services

 <param-name>time</param-name>
 <param-value>3</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>defaultsfilter1</filter-name>
 <servlet-name>waitservlet1</servlet-name>
</filter-mapping>

@WebFilter(
 servletNames = "waitservlet1",
 initParams = {
 @WebInitParam(name="time", value="3")
 }
)

Now the WaitServlet receives a default time value of three seconds even when you
don’t specify one.

Filtering the Servlet Response
Filtering the request was fairly easy, and we can do something similar with the response
object using exactly the same technique. There is a corresponding HttpServletRespon
seWrapper that we can use to wrap the response before the servlet uses it to communicate
back to the client. By wrapping the response, we can intercept methods that the servlet
uses to write the response, just as we intercepted the getParameter() method that the
servlet used in reading the incoming data. For example, we could override the sendEr
ror() method of the HttpServletResponse object and modify it to redirect to a speci‐
fied page. In this way, we could create a servlet filter that emulates the programmable
error page control offered in the web.xml file. But the most interesting technique avail‐
able to us, and the one we’ll show here, involves actually modifying the data written by
the servlet before it reaches the client. In order to do this, we have to pull a double
“switcheroo.” We wrap the servlet response to override the getWriter() method and
then create our own wrapper for the client’s PrintWriter object supplied by this meth‐
od, one that buffers the data written and allows us to modify it. This is a useful and
powerful technique, but it can be tricky.

Our example, LinkResponseFilter, is an automatic hyperlink-generating filter that
reads HTML responses and searches them for patterns supplied as regular expressions.
When it matches a pattern, it turns it into an HTML link. The pattern and links are
specified in the filter initialization parameters. You could extend this example with
access to a database or XML file and add more rules to make it into a useful site-
management helper. Here it is:

 import java.io.*;
 import java.util.*;
 import javax.servlet.*;
 import javax.servlet.http.*;

Servlet Filters | 577

 public class LinkResponseFilter implements Filter
 {
 FilterConfig filterConfig;

 public void init(FilterConfig filterConfig)
 throws ServletException
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter (
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 WrappedResponse wrappedResponse =
 new WrappedResponse((HttpServletResponse)res);
 chain.doFilter(req, wrappedResponse);
 wrappedResponse.close();
 }

 public void destroy() { }

 class WrappedResponse extends HttpServletResponseWrapper
 {
 boolean linkText;
 PrintWriter client;

 WrappedResponse(HttpServletResponse res) {
 super(res);
 }

 public void setContentType(String mime) {
 super.setContentType(mime);
 if (mime.startsWith("text/html"))
 linkText = true;
 }

 public PrintWriter getWriter() throws
 IOException {
 if (client == null)
 if (linkText)
 client = new LinkWriter(
 super.getWriter(), new ByteArrayOutputStream());
 else
 client = super.getWriter();
 return client;
 }

 void close() {
 if (client != null)
 client.close();

578 | Chapter 15: Web Applications and Web Services

 }
 }

 class LinkWriter extends PrintWriter
 {
 ByteArrayOutputStream buffer;
 Writer client;

 LinkWriter(Writer client, ByteArrayOutputStream buffer) {
 super(buffer);
 this.buffer = buffer;
 this.client = client;
 }

 public void close() {
 try {
 flush();
 client.write(linkText(buffer.toString()));
 client.close();
 } catch (IOException e) {
 setError();
 }
 }

 String linkText(String text) {
 Enumeration en = filterConfig.getInitParameterNames();
 while (en.hasMoreElements()) {
 String pattern = (String)en.nextElement();
 String value = filterConfig.getInitParameter(pattern);
 text = text.replaceAll(
 pattern, "$0");
 }
 return text;
 }
 }
 }

That was a bit longer than our previous examples, but the basics are the same. We
wrapped the HttpServletResponse object with our own WrappedResponse class using
the HttpServletResponseWrapper helper class. Our WrappedResponse overrides two
methods: getWriter() and setContentType(). We override setContentType() in or‐
der to set a flag that indicates whether the output is of type “text/html” (an HTML
document). We don’t want to be performing regular-expression replacements on binary
data such as images, for example, should they happen to match our filter. We also over‐
ride getWriter() to provide our substitute writer stream, LinkWriter. Our LinkWrit
er class is a PrintStream that takes as arguments the client PrintWriter and a ByteAr
rayOutputStream that serves as a buffer for storing output data before it is written. We
are careful to substitute our LinkWriter only if the linkText Boolean set by setCon
tent() is true. When we do use our LinkWriter, we cache the stream so that any
subsequent calls to getWriter() return the same object. Finally, we have added one

Servlet Filters | 579

method to the response object: close(). A normal HttpServletResponse does not have
a close() method. We use ours on the return trip to the client to indicate that the
LinkWriter should complete its processing and write the actual data to the client. We
do this in case the client does not explicitly close the output stream before exiting the
servlet service methods.

This explains the important parts of our filter-writing example. Let’s wrap up by looking
at the LinkWriter, which does the magic in this example. LinkWriter is a Print
Stream that holds references to two other Writers: the true client PrintWriter and a
ByteArrayOutputStream. The LinkWriter calls its superclass constructor, passing the
ByteArrayOutputStream as the target stream, so all of its default functionality (its
print() methods) writes to the byte array. Our only real job is to intercept the close()
method of the PrintStream and add our text linking before sending the data. When
LinkWriter is closed, it flushes itself to force any data buffered in its superclass out to
the ByteArrayOutputStream. It then retrieves the buffered data (with the ByteAr
rayOutputStream toString() method) and invokes its linkText() method to create
the hyperlinks before writing the linked data to the client. The linkText() method
simply loops over all the filter initialization parameters, treating them as patterns, and
uses the StringreplaceAll() method to turn them into hyperlinks. (See Chapter 1 for
more about replaceAll().)

This example works, but it has limitations. First, we cannot buffer an infinite amount
of data. A better implementation would make a decision about when to start writing
data to the client, potentially based on the client-specified buffer size of the HttpServ
letResponse API. Next, our implementation of linkText() could probably be speeded
up by constructing one large regular expression using alternation. You will undoubtedly
find other ways in which it can be improved.

Building WAR Files with Ant
Thus far in this book, we have not become too preoccupied with special tools to help
you construct Java applications. Partly, this is because it’s outside the scope of this text,
and partly it reflects a small bias of the authors against getting too entangled with par‐
ticular development environments. There is, however, one universal tool that should be
in the arsenal of every Java developer: the Jakarta Project’s Ant. Ant is a project builder
for Java, a pure Java application that fills the role that make does for C applications. Ant
has many advantages over make when building Java code, not the least of which is that
it comes with a wealth of special “targets” (declarative commands) to perform common
Java-related operations such as building WAR files. Ant is fast, portable, and easy to
install and use. Make it your friend.

We won’t cover the usage of Ant in detail here. You can learn more and download it
from its home page. To get you started, we give you a sample build file here. The Ant

580 | Chapter 15: Web Applications and Web Services

build file supplied with the examples for this chapter will compile the source and build
the completed WAR file for you. You can find it with the example source.

A Development-Oriented Directory Layout
At the beginning of this chapter, we described the layout of a WAR, including the stan‐
dard files and directories that must appear inside the archive. While this file organization
is necessary for deployment inside the archive, it may not be the best way to organize
your project during development. Maintaining web.xml and libraries inside a directory
named WEB-INF under all of your content may be convenient for running the jar
command, but it doesn’t line up well with how those areas are created or maintained
from a development perspective. Fortunately, with a simple Ant build file, we can create
our WAR from an arbitrary project layout.

Let’s choose a directory structure that is a little more oriented toward project develop‐
ment. For example:

 myapplication
 |
 |-- src
 |-- lib
 |-- docs
 |-- web.xml

We place our source code tree under src, our required library JAR files under lib, and
our content under docs. We leave web.xml at the top where it’s easy to tweak parameters,
etc.

Here is a simple Ant build.xml file for constructing a WAR from the new directory
structure:

 <project name="myapplication" default="compile" basedir=".">

 <property name="war-file" value="${ant.project.name}.war"/>
 <property name="src-dir" value="src" />
 <property name="build-dir" value="classes" />
 <property name="docs-dir" value="docs" />
 <property name="webxml-file" value="web.xml" />
 <property name="lib-dir" value="lib" />

 <target name="compile" depends="">
 <mkdir dir="${build-dir}"/>
 <javac srcdir="${src-dir}" destdir="${build-dir}"/>
 </target>

 <target name="war" depends="compile">
 <war warfile="${war-file}" webxml="${webxml-file}">
 <classes dir="${build-dir}"/>
 <fileset dir="${docs-dir}"/>
 <lib dir="${lib-dir}"/>

Building WAR Files with Ant | 581

 </war>
 </target>

 <target name="clean">
 <delete dir="${build-dir}"/>
 <delete file="${war-file}"/>
 </target>

 </project>

A build.xml file such as this comes with the source code for the examples from this
chapter. You can use it to compile your code (the default target) simply by running
ant, or you can compile and build the WAR by specifying the war target like this:

 % ant war

Our build.xml file tells Ant to find all the Java files under the src tree that need building
and compile them into a “build” directory named classes. Running ant war creates the
file myapplication.war, placing all of the docs and the web.xml file in the correct loca‐
tions. You can clean up everything and remove the generated classes directory and WAR
by typing antclean on the command line.

There is nothing really project-specific in this sample build file except the project name
attribute in the first line, which you replace with your application’s name. And we ref‐
erence that name only to specify the name of the WAR to generate. You can customize
the names of any of the files or directories for your own layout by changing the Ant
<property> declarations. The learningjava.war file example for this chapter comes with
a version of this Ant build.xml file.

Deploying and Redeploying WARs with Ant
With Tomcat, you can download a client-side “deployer” package, which provides Ant
targets for deploying, redeploying, starting, stopping, and undeploying a web app on a
running Tomcat server. The deployer package utilizes the Tomcat manager. Similar Ant
tasks exist for other servers, such as WebLogic. Making these tasks part of your Ant
build script can save a great deal of time and effort. The deployer package can be found
along with the main Tomcat download.

Implementing Web Services
Now that we’ve covered servlets and web applications in detail, we’d like to return to
the topic of web services. In the previous chapter, we introduced the concept of a web
service as an extension of the basic HTTP web transaction, using XML content for
application-to-application communication instead of consumption by a web browser
client. In that chapter, we showed how easy it is to invoke an RPC-style web service, by
using client-side classes generated from a WSDL description file. In this section, we’ll

582 | Chapter 15: Web Applications and Web Services

show the other side of that equation and demonstrate how to implement and deploy a
web service.

The world of web services has evolved quickly, as have the APIs, buzzwords, and hype.
The appeal of this style of interapplication communication using simple web protocols
has, to some extent, been tarnished by the design-by-committee approach of many
standards bodies and competitors adding features and layers to the web services con‐
cept. The truth is that web services were originally simple and elegant when compared
to more elaborate protocols, largely because they did not support all of the same se‐
mantics—state management, callbacks, transactions, authentication, and security. As
these features are added, the complexity returned. We will not cover all aspects of web
services in detail but instead focus on the basic RPC style that is appealing for a wide
variety of simple applications.

In Chapter 14, we walked through generating and running the client side of a web service
(the weather service). In this chapter, we’ll build and deploy our own web service, a
simple one that echoes parameters back to the client: EchoService. We’ll be using the
built in JAX-WS APIs tools and services container to run this example, although you
could deploy the service to Tomcat as well with some additional configuration and
packaging into a WAR file.

Defining the Service
To build our client-side API in Chapter 14, we began by downloading the WSDL de‐
scription file for the (existing) weather service. The WSDL, again, is an XML file that
describes the functions of the service and the types of arguments and return values they
use. From this description, the wsimport command was able to generate the client-side
classes that we needed to invoke the service remotely from Java.

In creating our own web service, we have (at least) two choices. We could follow an
analogous process, writing a WSDL document describing our service and using it to
generate the necessary server-side framework. The wsimport class that we used before
can be used to generate the necessary, annotated service interface for us and we could
implement it with our code. However, there is a much easier way: going code-first.

The wsgen command complements wsimport by adding the capability to read annotated
Java classes and generate WSDL and related service classes for us. Even better, if we
deploy our class using the built-in JAX-WS endpoint publisher, it will take care of gen‐
erating all of this for us. This means that to test a simple web service, all we really have
to do is write a service class that marks the class and service methods with the correct
annotations and invoke the publisher. It really couldn’t get much easier.

Implementing Web Services | 583

Our Echo Service
We’ll create a simple service that echoes a few different kinds of values: an int, a
String, and one of our own object types (a data holder object), MyObject. In the next
section, we’ll examine the data types and how they are handled in more detail. Here is
the code:

package learningjava.service;

import javax.jws.*;
import javax.xml.ws.Endpoint;

@WebService
public class Echo
{
 @WebMethod
 public int echoInt(int value) { return value; }

 @WebMethod
 public String echoString(String value) { return value; }

 @WebMethod
 public MyObject echoMyObject(MyObject value) { return value; }

 public static void main(String[] args)
 {
 Endpoint endpoint = Endpoint.publish("http://localhost:8080/echo",
 new Echo());
 }
}

public class MyObject
{
 int intValue;
 String stringValue;

 public MyObject() { }

 public MyObject(int i, String s) {
 this.intValue = i;
 this.stringValue = s;
 }

 public int getIntValue() { return intValue; }
 public void setIntValue(int intValue) { this.intValue = intValue; }

 public String getStringValue() {
 return stringValue;
 }
 public void setStringValue(String stringValue) {
 this.stringValue = stringValue;

584 | Chapter 15: Web Applications and Web Services

 }
}

We’ve named our {[QUOTE-REPLACEMENT]}echo” methods individually to differ‐
entiate them because WSDL doesn’t really handle overloaded methods. (If we’d had a
name collision, JAX-WS would give us a runtime warning and choose one for us.) We’ve
placed these into a learningjava.service package because it will be easier to work
with the tools that way. This package name will be used in the default namespace and
package name for generated client code. We could override the default using the tar
getNamespace attribute of the WebService annotation (and it would probably be wise
to do so in order to keep your interface stable).

To deploy our web service, we use the JAX-WS Endpoint class publish() method. This
method takes a URI string that indicates the desired host, port, and service path as well
as an instance of our class. Obviously, the only host that will work in this arrangement
is our local computer, which can normally be accessed by the name: “localhost.” Here,
we ran the service on port 8080 under the path “/echo”.

Using the Service
After running the service, drive your web browser to the service URL to get a test page.
If you are running the server on the same machine, the URL should be the same as the
URI you passed to the publish() method. However, under some circumstances you
may have to substitute “127.0.0.1” for “localhost.”

http://localhost:8080/echo
http://127.0.0.1:8080/echo

You should see a description of the service similar to the one shown in Figure 15-1. This
tells you that the service is active and gives you its configuration information. You can
click on the WSDL link to view the WSDL description file that was generated for our
service. The WSDL URL should be your base service URL with “?wsdl” appended.

We can use the WSDL to generate a client and test our service, just as we did in Chap‐
ter 14. In the following command, we’ve specified that the generated classes should go
into a separate package, learningjava.client.impl, to avoid confusion between the
generated classes and our original. We’ve also used the -keep option to retain the source
code instead of just the compiled class files (you may want to look at them). The final
argument is the URL for our generated WSDL, which you can copy from the test page
as shown previously.

Implementing Web Services | 585

Figure 15-1. Web services description

% wsimport -p learningjava.client.impl -keep http://localhost:8080/echo?wsdl

Next, we’ll create a small client that uses these generated classes to test the service:
package learningjava.client;

import learningjava.client.impl.*;

public class EchoClient
{
 public static void main(String [] args) throws java.rmi.RemoteException
 {
 Echo service = new EchoService().getEchoPort();
 int i = service.echoInt(42);
 System.out.println(i);
 String s = service.echoString("Hello!");
 System.out.println(s);
 MyObject myObject = new MyObject();
 myObject.setIntValue(42);
 myObject.setStringValue("Foo!");
 MyObject myObj = service.echoMyObject(myObject);
 System.out.println(myObj.getStringValue());
 }
}

As you can infer from our code, wsimport has generated an EchoService class that
represents our service. Service classes may contain multiple service groups, so in order
to get our Echo interface, we ask for the Echo “port” with getEchoPort(). (Port is WSDL
terminology for a service interface.)

Run the client, and it should bounce the values between the client and server and display
them. And there we are! As we said in the introduction, the actual code required to
implement and invoke our service is quite minimal and the fact that Java now bundles
a simple web service container with the standard edition makes Java an ideal platform
for working with web services.

586 | Chapter 15: Web Applications and Web Services

Data Types
As you might guess, because the data for our service has to be expressed as XML in a
standard way, there are some limitations to the type of objects that can be transferred.
JAX-WS and WSDL support most of the common Java data types and many standard
classes directly. Actually, it would be more appropriate to say that JAXB—the Java XML
binding API—supports these Java types, as JAX-WS uses JAXB for this aspect. We’ll talk
more about Java XML data binding and XML Schemas in Chapter 24.

JAX-WS and JAXB can also decompose JavaBeans-compliant data classes composed of
these standard types so that you can use your own classes, as we saw with the MyOb
ject argument in our Echo service.

Standard types

Table 15-1 summarizes the directly supported types (those types that map directly to
W3C Schema types; see Chapter 24 for more on XML mapping of Java types.

Table 15-1. Standard types
Category Types

Primitives and their
wrappers

boolean, Boolean, byte, Byte, short, Short, float, Float, int, Integer, long,
Long, double, Double

Class types java.lang.String, java.math.BigDecimal, java.math.BigInteger,
java.util.Calendar, java.util.Date, java.util.UUID, java.net.URI,
java.awt.Image (as byte [])

Collections Array types, List types, Set types

Maps and other complex collection types are not currently supported. To maintain the
widest compatability for cross-platform web services, it’s best to stick with objects com‐
posed of simple data types and arrays or lists of those types.

Value data objects

As we said, JAX-WS can also work with our own object types, although there are several
requirements and a caveat to mention. First, to be able to be marshaled, our objects
must contain only fields that are supported data types (or further compositions of those).
Next, our objects must follow two JavaBeans design patterns. It must have a public, no-
args constructor and, if it contains any nonpublic fields, they must have “getter” and
“setter” accessor methods. Chapter 22 provides more details about these issues.

Finally, unlike Java RMI, web services do not support the “behavior” or the real identity
of our domain objects from end to end. When a Java client uses our WSDL document
to generate implementation classes, they will be getting simple data-holder replicas of
the classes we specify. These “value objects” will pass along all of the data content of our
objects, but are not related to the originals in any other way. Our server-side

Implementing Web Services | 587

implementation will, of course, receive the data in the form of our own “real” domain
objects. That is why they need to have available constructors so that the server-side
framework can create and populate them for us to consume.

Conclusion
This chapter, covering Java web applications and Java web services, is one of the fastest-
changing topics that we cover in this book. It is a big topic, and we could only really
address it here in the context of the Java APIs that support it. We recommend that you
supplement what you have learned here with additional reading, especially on the
techniques for building applications using HTML5 and JavaScript that communicate
with Java using servlets or web services.

588 | Chapter 15: Web Applications and Web Services

CHAPTER 16

Swing

Swing is Java’s graphical user interface toolkit. The javax.swing package (and its nu‐
merous subpackages) contain classes representing interface items such as windows,
buttons, combo boxes, trees, tables, and menus—everything you need to build a
modern, rich client-side application.

Swing is part of a larger collection of software called the Java Foundation Classes (JFC),
which includes the following APIs:

• The Abstract Window Toolkit (AWT), the original user interface toolkit and base
graphics classes

• Swing, the pure Java user interface toolkit
• Accessibility, which provides tools for integrating nonstandard input and output

devices into your user interfaces
• The 2D API, a comprehensive set of classes for high-quality drawing
• Drag and Drop, an API that supports the drag-and-drop metaphor

JFC is one of the largest and most complex parts of the standard Java platform, so it
shouldn’t be any surprise that we’ll take several chapters to discuss it. In fact, we won’t
even get to talk about all of it, just the most important parts—Swing and the 2D API.
Here’s the lay of the land:

• This chapter covers the basic concepts you need to understand how to build user
interfaces with Swing.

• Chapter 17 discusses the basic components from which user interfaces are built:
buttons, lists, text fields, checkboxes, and so on.

• Chapter 18 dives further into the Swing toolkit, describing text components, trees,
tables, and other advanced components.

589

• Chapter 19 discusses layout managers, which are responsible for arranging com‐
ponents within a window.

• Chapter 20 discusses the fundamentals of drawing, including simple image display.
• Chapter 21 covers the image generation and processing tools of the java.awt.im
age package. We’ll throw in audio and video for good measure.

We can’t cover the full functionality of Swing in this book; if you want the whole story,
see Java Swing by Marc Loy, Robert Eckstein, Dave Wood, Brian Cole, and James Elliott
(O’Reilly). Instead, we’ll cover the basic tools you are most likely to use and show some
examples of what can be done with some of the more advanced features. Figure 16-1
shows the user interface component classes of the javax.swing package.

To understand Swing, it helps to understand its predecessor, AWT. As its name suggests,
AWT is an abstraction. Like the rest of Java, it was designed to be portable; its func‐
tionality is the same for all Java implementations. However, people generally expect their
applications to have a consistent look and feel and that is usually different on different
platforms. So AWT was designed to provide the same functionality on all platforms, yet
have the appearance of a native application. The idea is that you could choose to write
your code under Windows, then run it on an X Window System or a Macintosh and get
more or less the native look and feel on each platform for free.To achieve platform
binding, AWT uses interchangeable toolkits that interact with the host windowing sys‐
tem to display user interface components. This shields the Java application from the
details of its environment in which it’s running and keeps the APIs pure. Let’s say you
ask AWT to create a button. When your application or applet runs, a toolkit appropriate
to the host environment renders the button appropriately: on Windows, you can get a
button that looks like other Windows buttons; on a Macintosh, you can get a Mac button;
and so on.

AWT had some serious shortcomings, however. The worst was that the use of platform-
specific toolkits meant that AWT applications might be subtly incompatible on different
platforms. Furthermore, AWT lacked advanced user interface components, such as trees
and grids, which were not common to all environments. AWT provided the desired
look and feel, but limited the features and true portability of Java GUI applications.

Swing takes a fundamentally different approach. Instead of using native toolkits to sup‐
ply interface items, such as buttons and combo boxes, components in Swing are im‐
plemented in Java itself. This means that, whatever platform you’re using, by default a
Swing button (for example) looks the same. However, Swing also provides a powerful,
pluggable look-and-feel API that allows the native operating system appearance to be
rendered at the Java level. Working purely in Java makes Swing much less prone to
platform-specific bugs, which were a problem for AWT. It also means that Swing com‐
ponents are much more flexible and can be extended and modified in your applications
in ways that native components could never be.

590 | Chapter 16: Swing

Figure 16-1. User interface components in the javax.swing package

Working with user interface components in Swing is meant to be easy. When building
a user interface for your application, you’ll be working with a large set of prefabricated
components. It’s easy to assemble a collection of user interface components (buttons,
text areas, etc.) and arrange them inside containers to build complex layouts. However,
when necessary, you can build upon these simple components to make entirely new
kinds of interface gadgets that are completely portable and reusable.

Swing | 591

Swing uses layout managers to arrange components inside containers and control their
sizing and positioning. Layout managers define a strategy for arranging components
instead of specifying absolute positions. For example, you can define a user interface
with a collection of buttons and text areas and be reasonably confident that it will always
display correctly, even if the user resizes the application window. It doesn’t matter what
platform or user interface look-and-feel you’re using; the layout manager should still
position them sensibly with respect to each other.

The next two chapters contain examples using most of the components in the jav
ax.swing package. Before we dive into those examples, we need to spend some time
talking about the concepts Swing uses for creating and handling user interfaces. This
material should get you up to speed on GUI concepts and how they are used in Java.

Components
A component is the fundamental user interface object in Java. Everything you see on the
display in a Java application is a component. This includes things like windows, panels,
buttons, checkboxes, scrollbars, lists, menus, and text fields. To be used, a component
usually must be placed in a container. Container objects group components, arrange
them for display using a layout manager, and associate them with a particular display
device. All Swing components are derived from the abstract javax.swing.JCompo
nent class, as you saw in Figure 16-1. For example, the JButton class is a subclass of
AbstractButton, which is itself a subclass of the JComponent class.

JComponent is the root of the Swing component hierarchy, but it descends from the
AWT Container class. At this bottom level, Swing is based on AWT, so our conversation
occasionally delves into the AWT package. Container’s superclass is Component, the
root of all AWT components, and Component’s superclass is, finally, Object. Because
JComponent inherits from Container, it has the capabilities of both a component and a
container.

AWT and Swing, then, have parallel hierarchies. The root of AWT’s hierarchy is Compo
nent, while Swing’s components are based on JComponent. You’ll find similar classes in
both hierarchies, such as Button and JButton, List, and JList. But Swing is much more
than a replacement for AWT—it contains sophisticated components as well as a real
implementation of the Model-View-Controller (MVC) paradigm, which we’ll discuss
later.

For the sake of simplicity, we can split the functionality of the JComponent class into two
categories: appearance and behavior. The JComponent class contains methods and vari‐
ables that control an object’s general appearance. This includes basic attributes, such as
its visibility, its current size and location, and certain common graphical defaults, such
as font and background color, used by different subclasses in different ways. The

592 | Chapter 16: Swing

JComponent class also contains graphics and event-handling methods, which are over‐
ridden by subclasses to produce all of the different kinds of widgets that we will see.

When a component is first displayed, it’s associated with a particular display device. The
JComponent class encapsulates access to its display area on that device. It includes tools
for rendering graphics, for working with off-screen resources, and for receiving user
input. Under the covers, JComponent makes heavy use of the Java 2D API to handle
things like font smoothing, rendering optimizations, and rendering hints. With recent
versions of Java (6 and later), rendering speed and quality are often indistinguishable
from native applications on popular operating systems.

When we talk about a component’s behavior, we mean the way it responds to user-driven
events. When the user performs an action (such as pressing the mouse button) within
a component’s display area, a Swing thread delivers an event object that describes what
happened. The event is delivered to objects that have registered themselves as listeners
for that type of event from that component. For example, when the user clicks on a
button, the button generates an ActionEvent object. To receive those events, an object
registers with the button as an ActionListener.

Events are delivered by invoking designated event handler methods within the receiving
object (the “listener”). A listener object receives specific types of events through methods
of its listener interfaces (for example, through the actionPerformed() method of the
ActionListener interface) for the types of events in which it is interested. Specific types
of events cover different categories of component user interaction. For example,
MouseEvents describe activities of the mouse within a component’s area, KeyEvents
describe keypresses, and higher-level events (such as ActionEvents) indicate that a user
interface component has done its job.

We will describe events thoroughly in this chapter because they are so fundamental to
the way in which user interfaces function in Java. But they aren’t limited to building user
interfaces; they are an important interobject communications mechanism, which may
be used by completely nongraphical parts of an application, as well. They are particularly
important in the context of JavaBeans, which uses events as a generalized change-
notification mechanism.

Swing’s event architecture is very flexible. Instead of requiring every component to listen
for and handle events for its own bit of the user interface, an application may register
arbitrary event “handler” objects to receive the events for one or more components and
“glue” those events to the correct application logic. A container might, for example,
process some of the events relating to its child components.

In the graphical realm, the primary responsibility of a container is to lay out the com‐
ponents it contains visually, within its borders. A component informs its container when
it does something that might affect other components in the container, such as changing

Components | 593

its size or visibility. The container then tells its layout manager that it is time to rearrange
the child components.

As we mentioned, Swing components are all fundamentally derived from Container.
This doesn’t mean that all Swing components can meaningfully contain arbitrary GUI
elements within themselves. It does mean that the container-component relationship is
built in at a low level. Containers can manage and arrange JComponent objects without
knowing what they are or what they are doing. Components can be swapped and re‐
placed with new versions easily and combined into composite user interface objects that
can be treated as individual components themselves. This lends itself well to building
larger, reusable user interface items.

Peers and Look-and-Feel
Swing components are sometimes referred to as peerless, or lightweight. These terms
refer to the relationship that AWT has (and Swing does not have, respectively) with the
native toolkits for rendering components on each platform. To get native components
on the screen, AWT utilizes a set of peer objects that bridge the gap from pure Java to
the host operating system.

At some level, of course, all our components have to talk to objects that contain native
methods to interact with the host operating environment; the difference is at what level
this occurs. AWT uses a set of peer interfaces. The peer interface makes it possible for
a pure Java-language graphic component to use a corresponding real component—the
peer object—in the native environment. With AWT, you don’t generally deal directly
with peer interfaces or the objects behind them; peer handling is encapsulated within
the Component class.

AWT relies heavily on peers. For example, if you create a window and add eight buttons
to it, AWT creates nine peers for you—one for the window and one for each of the
buttons. As an application programmer, you don’t have to worry about the peers, but
they are always lurking under the surface, doing the real work of interacting with the
operating system’s windowing toolkit.

In Swing, by contrast, most components are peerless, or lightweight. This means that
Swing components don’t have any direct interaction with the underlying windowing
system. They draw themselves in their parent container and respond to user events in
pure Java, with no native code involved. In Swing, only the top-level (lowest API level)
windows interact with the windowing system. These Swing containers descend from
AWT counterparts, and, thus, still have peers. In Swing, if you create a window and add
eight buttons to it, only one peer is created—for the window. Because it has fewer in‐
teractions with the underlying windowing system than AWT, Swing is less vulnerable
to the peculiarities of any particular platform.

594 | Chapter 16: Swing

With lightweight components, it is easy to change their appearance. Because each com‐
ponent draws itself instead of relying on a peer, it can decide at runtime how to render
itself. Accordingly, Swing supports different look-and-feel schemes, which can be
changed at runtime. (A look-and-feel is the collected appearance of components in an
application.) Look-and-feels based on Windows, Macintosh, and Motif are available
(though licensing issues may encumber their use on various platforms), as well as several
entirely original Java creations, including Metal, Synth and Nimbus. Metal is the default
cross-platform look-and-feel. It has a flat minimalist aesthetic and is very functional
but, at this point, appears dated when compared to current versions of popular desktop
environments. Synth makes Java applications “skinnable” at a high level using an XML
descriptor file and images as resources. Java SE 6 update 10 introduced Nimbus, the
first Java look-and-feel that is aesthetically on par with modern desktop operating sys‐
tems such as OS X and Windows. Nimbus is vector-based, which allows components
to be smoothly scaled for use on the new generation of high-density displays. If you
want a consistent cross-platform look-and-feel, Nimbus is the best option.

The MVC Framework
Before continuing our discussion of GUI concepts, we want to make a brief aside and
talk about the MVC framework. As we’ve discussed, MVC is a method of building
reusable components that logically separates the structure, presentation, and behavior
of a component into separate pieces. MVC is primarily concerned with building user
interface components, but the basic ideas can be applied to many design issues; its
principles can be seen throughout Java.

The fundamental idea behind MVC is the separation of the data model for an item from
its presentation. For example, we can draw different representations of the data in a
spreadsheet (e.g., bar graphs, pie charts). The data is the model; the particular repre‐
sentation is the view. A single model can have many views that present the data differ‐
ently. A user interface component’s controller defines and governs its behavior. Typically,
this includes changes to the model, which, in turn, cause the view(s) to change. For a
checkbox component, the data model could be a single Boolean variable, indicating
whether it’s checked or not. The behavior for handling mouse-click events would alter
the model, and the view would examine that data when it draws the on-screen
representation.

Components | 595

1. In Chapter 11, we described the Observer class and Observable interface of the java.util package. Swing
doesn’t use these classes directly, but it does use exactly the same design pattern for handling event sources
and listeners.

The way in which Swing objects communicate, by passing events from sources to lis‐
teners, is part of this MVC concept of separation. Event listeners are “observers” (con‐
trollers) and event sources are “observables” (models).1 When an observable changes
or performs a function, it notifies all its observers of the activity.

Swing components explicitly support MVC. Each component is actually composed of
two pieces. One piece, called the UI-delegate, is responsible for the “view” and “con‐
troller” roles. It takes care of drawing the component and responding to user events.
The second piece is the data model itself. This separation makes it possible for multiple
Swing components to share a single data model. For example, a read-only text box and
a drop-down list box could use the same list of strings as a data model.

Painting
In an event-driven environment such as Swing, components can be asked to draw
themselves at any time. In a more procedural programming environment, you might
expect a component to be involved in drawing only when first created or when it changes
its appearance. In Java, however, components act in a way that is closely tied to the
underlying behavior of the display environment. For example, when you obscure a
component with another window and then reexpose it, a Swing thread may ask the
component to redraw itself.

Swing asks a component to draw itself by calling its paint() method. paint() may be
called at any time, but in practice, it’s called when the object is first made visible, when‐
ever it changes its appearance, or whenever some tragedy in the display system messes
up its area. Because paint() can’t generally make any assumptions about why it was
called, it must redraw the component’s entire display. The system may limit the drawing
if only part of the component needs to be redrawn, but you don’t have to worry about
this. Swing is fairly smart and will do everything it can to avoid asking components to
redraw themselves (including using “backing store” where applicable).

A component never calls its paint() method directly. Instead, if a component requires
redrawing, it requests a call to paint() by invoking repaint(). The repaint() method
asks Swing to schedule the component for repainting. At some point after that, a call to
paint() occurs. Swing is allowed to manage these requests in whatever way is most
efficient. If there are too many requests to handle, or if there are multiple requests for
the same component, the thread can collapse a number of repaint requests into a single
call to paint(). This means that you don’t normally know exactly when paint() is called
in response to a repaint(); all you can expect is that it happens at least once, after you
request it.

596 | Chapter 16: Swing

Calling repaint() is normally an implicit request to be updated as soon as possible.
Another form of repaint() allows you to specify a time period within which you would
like an update, giving the system more flexibility in scheduling the request. The system
tries to repaint the component within the time you specify, but if you happen to make
more than one repaint request within that time period, the system may simply condense
them to carry out a single update within the time you specified. An application per‐
forming simple animation could use this method to govern its refresh rate (by specifying
a period that is the inverse of the desired frame rate).

As we’ve mentioned, Swing components can act as containers holding other compo‐
nents. Because every Swing component does its own drawing, Swing components are
responsible for telling any contained components to draw themselves. Fortunately, this
is all taken care of for you by a component’s default paint() method. If you override
this method, however, you have to make sure to call the superclass’s implementation
like this:

 public void paint(Graphics g) {
 super.paint(g);
 ...
 }

There’s a cleaner way around this problem. All Swing components have a method called
paintComponent(). While paint() is responsible for drawing the component as well
as its contained components, paintComponent()’s sole responsibility is drawing the
component itself. If you override paintComponent() instead of paint(), you won’t have
to worry about drawing contained components.

Both paint() and paintComponent() receive a single argument: a Graphics object. The
Graphics object represents the component’s graphics context. It corresponds to the area
of the screen on which the component can draw and provides the methods for per‐
forming primitive drawing and image manipulation. (We’ll look at the Graphics class
in detail in Chapter 18.)

Enabling and Disabling Components
Standard Swing components can be turned on and off by calling the setEnabled()
method. When a component such as a JButton or JTextField is disabled, it becomes
“ghosted” or “greyed out” and doesn’t respond to user input.

For example, let’s see how to create a component that can be used only once. This re‐
quires getting ahead of the story; we won’t explain some aspects of this example until
later. Earlier, we said that a JButton generates an ActionEvent when it is pressed. This
event is delivered to the listeners’ actionPerformed() method. The following code dis‐
ables the component that generated the event:

Components | 597

 public boolean void actionPerformed(ActionEvent e) {
 ((JComponent)e.getSource()).setEnabled(false);
 }

This code calls getSource() to find out which component generated the event. We cast
the result to JComponent because we don’t necessarily know what kind of component
we’re dealing with; it might not be a button, because other kinds of components can
generate action events. Once we know which component generated the event, we
disable it.

You can also disable an entire container. Disabling a JPanel, for instance, disables all
the components it contains.

Focus, Please
In order to receive keyboard events, a component has to have keyboard focus. The
component with the focus is the currently selected component on the screen and is
usually highlighted visually. It receives all keyboard event information until the focus
changes to a new component. Typically, a component receives focus when the user clicks
on it with the mouse or navigates to it using the keyboard. A component can ask for
focus with the JComponent ’s requestFocus() method. You can configure whether a
given component is eligible to receive focus with the setFocusable() method. By de‐
fault, most components, including things such as buttons and checkboxes, are “focus‐
able.” To make an entire window and its components nonfocusable, use the Window
setFocusableWindowState() method.

The control of focus is often at the heart of the user’s experience with an application.
Especially with text entry fields and forms, users are accustomed to a smooth transfer
of focus with the use of keyboard navigation cues (e.g., Tab and Shift-Tab for forward
and backward field navigation). The management of focus in a large GUI with many
components could be complex. Fortunately, in Java 1.4 and later, Swing handles almost
all this behavior for you, so, in general, you don’t have to implement code to specify how
focus is transferred. Java 1.4 introduced an entirely new focus subsystem. The flexible
KeyboardFocusManager API provides the expected common behavior by default and
allows customization via FocusTraversalPolicy objects. We’ll discuss focus-related
events later in this chapter and focus navigation more in Chapter 18.

Other Component Methods
The JComponent class is very large; it has to provide the base-level functionality for all
the various kinds of Java GUI objects. It inherits a lot of functionality from its parent
Container and Component classes. We don’t have room to document every method of
the JComponent class here, but we’ll flesh out our discussion by covering some of the
more important ones:

598 | Chapter 16: Swing

Container getParent()

String getName()

void setName(String name)

Get or assign the String name of this component. Naming a component is useful
for debugging. The name is returned by toString().

void setVisible(boolean visible)

Make the component visible or invisible within its container. If you change the
component’s visibility, the container’s layout manager automatically lays out its
visible components.

Color getForeground()

void setForeground(Color c)

void setBackground(Color c)

Color getBackground()

Get and set the foreground and background colors for this component. The fore‐
ground color of any component is the default color used for drawing. For example,
it is the color used for text in a text field as well as the default drawing color for the
Graphics object passed to the component’s paint() and paintComponent() meth‐
ods. The background color is used to fill the component’s area when it is cleared by
the default implementation of update().

Dimension getSize()

void setSize(int width, int height)

Get and set the current size of the component. Note that a layout manager may
change the size of a component even after you’ve set its size yourself. To change the
size a component “wants” to be, use setPreferredSize(). There are other methods
in JComponent to set its location, but this is normally the job of a layout manager.

Dimension getPreferredSize()

void setPreferredSize(Dimension preferredSize)

Use these methods to examine or set the preferred size of a component. Layout
managers attempt to set components to their preferred sizes. If you change a com‐
ponent’s preferred size, you must call the method revalidate() on the component
to get it laid out again.

Cursor getCursor()

void setCursor(Cursor cursor)

Get or set the type of cursor (mouse pointer) used when the mouse is over this
component’s area. For example:
 JComponent myComponent = ...;
 Cursor crossHairs =
 Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR);
 myComponent.setCursor(crossHairs);

Components | 599

Containers

A container is a kind of component that holds and manages other components. Three
of the most useful general container types are JFrame, JPanel, and JApplet. A JFrame
is a top-level window on your display. JFrame is derived from java.awt.Window, which
is pretty much the same but lacks a border (JWindow is the swing version of Window). A
JPanel is a generic container element that groups components inside JFrames and other
JPanels. The JApplet class is a kind of container that provides the foundation for applets
that run inside web browsers. Like other containers, a JApplet can hold other user-
interface components. You can also use the JComponent class directly, like a JPanel, to
hold components inside another container. With the exception of JFrame, JWindow,
JApplet, and JDialog (another window-like container), which are derived from AWT
components, all the components and containers in Swing are lightweight.

A container maintains the list of “child” components it manages and has methods for
dealing with those components. Note that this child relationship refers to a visual
hierarchy, not a subclass/superclass hierarchy. By themselves, most components aren’t
very useful until they are added to a container and displayed. The add() method of the
Container class adds a component to the container. Thereafter, this component can be
displayed in the container’s display area and positioned by its layout manager. You can
remove a component from a container with the remove() method.

Layout Managers
A layout manager is an object that controls the placement and sizing of components
within the display area of a container. A layout manager is like a window manager in a
display system; it controls where the components go and how big they are. Every con‐
tainer has a default layout manager, but you can install a new one by calling the con‐
tainer’s setLayout() method.

Swing comes with a few layout managers that implement common layout schemes. The
default layout manager for a JPanel is a FlowLayout, which tries to place objects at their
preferred size from left to right and top to bottom in the container. The default for a
JFrame is a BorderLayout, which places objects at specific locations within the window,
such as NORTH, SOUTH, and CENTER. Another layout manager, GridLayout, arranges
components in a rectangular grid. The most general (and difficult to use) layout manager
is GridBagLayout, which lets you do the kinds of things you can do with HTML tables.
(We’ll get into the details of all these layout managers in Chapter 19.)

When you add a component to a container using a simple layout manager, you’ll often
use the version of add() that takes a single Component as an argument. However, if you’re
using a layout manager that uses “constraints,” such as BorderLayout or GridBagLay
out, you must specify additional information about where to put the new component.
For that, you can use the version that takes a constraint object. Here’s how to place a
component at the top edge of a container that uses a BorderLayout manager:

600 | Chapter 16: Swing

 myContainer.add(myComponent, BorderLayout.NORTH);

In this case, the constraint object is the static member variable NORTH. GridBagLayout
uses a much more complex constraint object to specify positioning.

Insets
Insets specify a container’s margins; the space specified by the container’s insets won’t
be used by a layout manager. Insets are described by an Insets object, which has four
public int fields: top, bottom, left, and right. You normally don’t need to worry about
the insets; the container sets them automatically, taking into account extras like the
menu bar that may appear at the top of a frame. To find the insets, call the component’s
getInsets() method, which returns an Insets object.

Z-Ordering (Stacking Components)
With the standard layout managers, components are not allowed to overlap. However,
if you use custom-built layout managers or absolute positioning, components within a
container may overlap. If they do, the order in which components were added to a
container matters. When components overlap, they are “stacked” in the order in which
they were added: the first component added to the container is on top, and the last is
on the bottom. To give you more control over stacking, two additional forms of the
add() method take an extra integer argument that lets you specify the component’s exact
position in the container’s stacking order. Again, you don’t normally need to think about
this, but it’s nice to know for the sake of completeness that it’s there.

The revalidate() and doLayout() Methods
A layout manager arranges the components in a container only when it is asked to do
so. Several things can mess up a container after it’s initially laid out:

• Changing its size
• Resizing or moving one of its child components
• Adding, showing, removing, or hiding a child component

Any of these actions cause the container to be marked invalid. This means that it needs
to have its child components readjusted by its layout manager. In most cases, Swing
readjusts the layout automatically. All components, not just containers, maintain a no‐
tion of when they are valid or invalid. If the size, location, or internal layout of a Swing
component changes, its revalidate() method is automatically called. Internally, the
revalidate() method first calls the method invalidate() to mark the component and
all its enclosing containers as invalid. It then validates the tree. Validation descends the
hierarchy, starting at the nearest validation root container, recursively validating each
child. Validating a child Container means invoking its doLayout() method, which asks

Components | 601

the layout manager to do its job and then notes that the Container has been reorganized
by setting its state to valid again. A validation root is a container that can accommodate
children of any size such as JScrollPane (and, hence, can accommodate any possible
changes in its child hierarchy without upsetting its own parents).

There are a few cases in which you may need to tell Swing to fix things manually. One
example is when you change the preferred size of a component (as opposed to its actual
onscreen size). To clean up the layout, call the revalidate() method. For example, if
you have a small JPanel—say, a keypad holding some buttons—and you change the
preferred size of the JPanel by calling its setPreferredSize() method, you should also
call revalidate() on the panel or its immediate container. The layout manager of the
panel then rearranges its buttons to fit inside its new area.

Managing Components
There are a few additional tools of the Container class we should mention:
Component[] getComponents()

Returns the container’s components in an array.

void list(PrintWriter out, int indent)

Generates a list of the components in this container and writes them to the specified
PrintWriter.

Component getComponentAt(int x, int y)

Tells you what component is at the specified coordinates in the container’s coordi‐
nate system.

Listening for Components
You can use the ContainerListener interface to automate setting up a container’s new
components. A container that implements this interface can receive an event whenever
it gains or loses a component. This facility makes it easy for a container to micromanage
its components.

Windows, Frames and Splash Screens
Windows and frames are the top-level containers for Java components. A JWindow is
simply a plain, graphical screen that displays in your windowing system. Windows have
no frills; they are mainly suitable for pop-up windows and in situations where drop-
down components such as menus and combo boxes extend outside their parent frame.
JFrame, on the other hand, is a subclass of JWindow that has a titlebar, window-managed
buttons (close, minimize, etc.), and border. You can drag a frame around on the screen
and resize it, using the ordinary controls for your windowing environment. Figure 16-2
shows a JFrame on the left and a JWindow on the right.

602 | Chapter 16: Swing

All other Swing components and containers must be held, at some level, inside a JWind
ow or JFrame. Applets are a kind of Container. Even applets must be housed in a frame
or window, though normally you don’t see an applet’s parent frame because it is part of
(or simply is) the browser or appletviewer displaying the applet.

Figure 16-2. A frame and a window

JFrames and JWindows are the only components that can be displayed without being
added or attached to another Container. After creating a JFrame or JWindow, you can
call the setVisible() method to display it. The following short application creates a
JFrame and a JWindow and displays them side by side, just as in Figure 16-2.

 //file: TopLevelWindows.java
 import javax.swing.*;

 public class TopLevelWindows {
 public static void main(String[] args) {
 JFrame frame = new JFrame("The Frame");
 frame.setSize(300, 300);
 frame.setLocation(100, 100);

 JWindow window = new JWindow();
 window.setSize(300, 300);
 window.setLocation(500, 100);

 frame.setVisible(true);
 window.setVisible(true);
 }
 }

The JFrame constructor can take a String argument that supplies a title, displayed in
the JFrame’s titlebar. (Or you can create the JFrame with no title and call setTitle() to
supply the title later.) The JFrame’s size and location on your desktop are determined
by the calls to setSize() and setLocation(). After creating the JFrame, we create a

Components | 603

JWindow in almost exactly the same way. The JWindow doesn’t have a titlebar, so there
are no arguments to the JWindow constructor.

Once the JFrame and JWindow are set up, we call setVisible(true) to get them on the
screen. The setVisible() method returns immediately, without blocking. Fortunately,
our application does not exit, even though we’ve reached the end of the main() method,
because the windows are still visible. You can close the JFrame by clicking on the close
button in the titlebar. JFrame’s default behavior is to hide itself when you click on the
box by calling setVisible(false). You can alter this behavior by calling the setDe
faultCloseOperation() method or by adding an event listener, which we’ll cover later.
Because we haven’t arranged any other means here, you will need to hit Ctrl-C or what‐
ever keystroke kills a process on your machine in order to stop execution of the TopLe
velWindows application.

Use of a SplashScreen, which is an AWT class used to control a specialized container,
is the preferred way to display a start-up screen for Swing applications. Prior to Java 1.6,
applications were forced to use Window or JWindow for this purpose, but these are
suboptimal solutions for a splash screen because they are only displayed after the JVM,
AWT, and Swing libraries are initialized. The new splash screen object allows you to
specify an image file in your application jar’s manifest (see Chapter 3) that will be dis‐
played immediately after launch without having to wait for the JVM to initialize. Spec‐
ifying a splash screen image in your jar manifest is trivial.

Manifest-Version: 1.0
Main-Class: MangoMango1
SplashScreen-Image: ripe_mango.png

No code is required to display a splash screen. The ripe_mango.png image will appear
centered on the screen until the first AWT or Swing window is shown by the Mango‐
Mango1 application. Supported image types are GIF, JPEG, and PNG.

Other Methods for Controlling Frames
The setLocation() method of the Component class can be used on a JFrame or JWind
ow to set its position on the screen. The x and y coordinates are relative to the screen’s
origin (the top-left corner).

You can use the toFront() and toBack() methods to place a JFrame or JWindow in front
of, or behind, other windows. By default, a user is allowed to resize a JFrame, but you
can prevent resizing by calling setResizable(false) before showing the JFrame.

On most systems, frames can be “iconified”—that is, they can be shrunk down and
represented by a little icon image. You can get and set a frame’s icon image by calling
getIconImage() and setIconImage(). As you can with all components, you can set the
cursor by calling the setCursor() method.

604 | Chapter 16: Swing

Content Panes
Windows and frames have a little more structure than simple containers. Specifically,
to support some of the fancier GUI features that require overlaying graphics (such as
pop ups and menus), windows and frames actually consist of a number of separate
overlapping container “panes” (as in glass) with names such as the root pane, layered
pane, and glass pane. The primary pane of interest is usually the content pane. The
content pane is just a Container that covers the visible area of the JFrame or JWindow;
it is the container to which we want to add child components.

For convenience, JFrame and JWindow delegate methods such as add() and setLay
out() to their ContentPane. In other words, calling myFrame.add(component) is equiv‐
alent to calling myFrame.getContentPane().add(component).

 //file: MangoMango1.java
 import java.awt.*;
 import javax.swing.*;

 public class MangoMango1 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("The Frame");
 // The three methods below are delegated to the frame's ContentPane.
 frame.setLayout(new FlowLayout());
 frame.add(new JLabel("Mango"));
 frame.add(new JButton("Mango"));

 frame.setLocation(100, 100);
 frame.pack();
 frame.setVisible(true);
 }
 }

The call to JFrame’s pack() method tells the frame window to resize itself to the mini‐
mum size required to hold all its components. Instead of having to determine the size
of the JFrame, pack tells it to be “just big enough.” If you do want to set the absolute size
of the JFrame yourself, call setSize() instead.

We’ll cover labels and buttons in Chapter 17 and layouts in Chapter 19.

Desktop Integration
One of the focuses of Java 6 was improving desktop integration so that Swing apps can
stand toe-to-toe with native apps. The new desktop features provide access to the system
tray, browser, email client and file/application associations.

The Desktop class in java.awt provides the ability to:

• Navigate to a URI with the default browser
• Launch the default mail client and populate the “To:” field

Components | 605

• Open, edit, or print a file utilizing its associated application

The Desktop class has a very simple API. The following example opens the default
browser and navigates to the Duke Lemur Center’s home page.

 //file: DisplayLemur.java
 import java.awt.*;
 import java.io.*;
 import java.net.*;

 public class DisplayLemur {
 public static void main(String[] args) {
 URI uri = null;
 try {
 uri = new URI("http://lemur.duke.edu");
 Desktop.getDesktop().browse(uri);
 } catch(IOException ioe) {
 System.out.println("Cannot browse to " + uri);
 } catch(URISyntaxException use) {
 System.out.println("The URI " + uri + " is malformed");
 }
 }
 }

All the aforementioned desktop features are similarly available as single method calls
on the Desktop singleton: open(File file), edit(File file), print(File file),
and mail(URI mailtoURI).

The SystemTray class, also found in java.awt, provides access to the area of the desktop
that allows menu items to perform actions on currently running programs. On Win‐
dows, this is the Taskbar Status Area. On OS X, it’s the Menu Extras area on the right of
the system menu. On GNOME, it’s the Notification Area.

The following example creates a TrayIcon, places it in the SystemTray, and attaches a
single menu item. Selecting the menu item will cause a greeting dialog to appear.

 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;
 import javax.swing.*;

 public class AlohaTray {

 public static void main(String[] args) throws AWTException {
 MenuItem greetItem = new MenuItem("Greet me");

 // Listen for a menu selection and display a greeting dialog
 greetItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Aloha!");
 System.exit(0);
 }

606 | Chapter 16: Swing

 });

 // Create the TrayIcon's PopupMenu and add the MenuItem
 PopupMenu popup = new PopupMenu();
 popup.add(greetItem);

 // Create the TrayIcon and add it to the SystemTray
 TrayIcon trayIcon = new TrayIcon(getIconImage(),
 "A friendly greeting", popup);
 SystemTray.getSystemTray().add(trayIcon);
 }

 // Grabbing a default Swing icon for the SystemTray
 private static Image getIconImage() {
 Icon icon = UIManager.getIcon("OptionPane.informationIcon");
 BufferedImage image = new BufferedImage(icon.getIconWidth(),
 icon.getIconHeight(), BufferedImage.TYPE_INT_ARGB);
 icon.paintIcon(null, image.getGraphics(), 0, 0);
 return image;
 }
 }

Events
We’ve spent a lot of time discussing the different kinds of objects in Swing—components,
containers, and special containers such as frames and windows. Now it’s time to discuss
interobject communication in detail.

Swing objects communicate by sending events. The way we talk about events—“firing”
them and “handling” them—makes it sound as if they are part of some special Java
language feature. But they aren’t. An event is simply an ordinary Java object that is
delivered to its receiver by invoking an ordinary Java method. Everything else, however
interesting, is purely convention. The entire Java event mechanism is really just a set of
conventions for the kinds of descriptive objects that should be delivered; these conven‐
tions prescribe when, how, and to whom events should be delivered.

Events are sent from a single source object to one or more listeners. A listener imple‐
ments prescribed event-handling methods that enable it to receive a type of event. It
then registers itself with a source of that kind of event. Sometimes an adapter object
may be interposed between the event source and the listener, but in any case, registration
of a listener is always established before any events are delivered.

An event object is an instance of a subclass of java.util.EventObject; it holds infor‐
mation about something that’s happened to its source. The EventObject parent class
itself serves mainly to identify event objects; the only information it contains is a ref‐
erence to the event source (the object that sent the event). Components don’t normally
send or receive EventObjects as such; they work with subclasses that provide more
specific information.

Events | 607

AWTEvent is a subclass of java.awt.EventObject; further subclasses of AWTEvent pro‐
vide information about specific event types. Swing has events of its own that descend
directly from EventObject. For the most part, you’ll just be working with specific event
subclasses from the AWT or Swing packages.

ActionEvents correspond to a decisive “action” that a user has taken with the compo‐
nent, such as clicking a button or pressing Enter. An ActionEvent carries the name of
an action to be performed (the action command) by the program. MouseEvents are
generated when a user uses the mouse within a component’s area. They describe the
state of the mouse and therefore carry such information as the x and y coordinates and
the state of your mouse buttons at the time the MouseEvent was created.

ActionEvent operates at a higher semantic level than MouseEvent: an ActionEvent lets
us know that a component has performed its job; a MouseEvent simply confers a lot of
information about the mouse at a given time. You could figure out that somebody clicked
on a JButton by examining mouse events, but it is simpler to work with action events.
The precise meaning of an event can also depend on the context in which it is received.

Event Receivers and Listener Interfaces
An event is delivered by passing it as an argument to the receiving object’s event handler
method. ActionEvents, for example, are always delivered to a method called action
Performed() in the receiver:

 public void actionPerformed(ActionEvent e) {
 ...
 }

For each type of event, a corresponding listener interface prescribes the method(s) it
must provide to receive those events. In this case, any object that receives
ActionEvents must implement the ActionListener interface:

 public interface ActionListener extends
 java.util.EventListener {
 public void actionPerformed(ActionEvent e);
 }

All listener interfaces are subinterfaces of java.util.EventListener, which is an emp‐
ty interface. It exists only to help Java-based tools such as IDEs identify listener
interfaces.

Listener interfaces are required for a number of reasons. First, they help to identify
objects that can receive a given type of event—they make event hookups “strongly
typed.” Event listener interfaces allow us to give the event handler methods friendly,
descriptive names and still make it easy for documentation, tools, and humans to rec‐
ognize them in a class. Next, listener interfaces are useful because several methods can
be specified for an event receiver. For example, the FocusListener interface contains
two methods:

608 | Chapter 16: Swing

2. This rule is not complete. The JavaBeans conventions (see Chapter 22) allows event handler methods to take
additional arguments when absolutely necessary and also to throw checked exceptions.

 abstract void focusGained(FocusEvent e);
 abstract void focusLost(FocusEvent e);

Although these methods each take a FocusEvent as an argument, they correspond to
different reasons (contexts) for firing the event—in this case, whether the FocusEvent
means that focus was received or lost. In this case, you could also figure out what hap‐
pened by inspecting the event; all AWTEvents contain a constant specifying the event’s
type. But by using two methods, the FocusListener interface saves you the effort: if
focusGained() is called, you know the event type was FOCUS_GAINED.

Similarly, the MouseListener interface defines five methods for receiving mouse events
(and MouseMotionListener defines two more), each of which gives you some additional
information about why the event occurred. In general, the listener interfaces group sets
of related event handler methods; the method called in any given situation provides a
context for the information in the event object.

There can be more than one listener interface for dealing with a particular kind of event.
For example, the MouseListener interface describes methods for receiving
MouseEvents when the mouse enters or exits an area or a mouse button is pressed or
released. MouseMotionListener is an entirely separate interface that describes methods
to get mouse events when the mouse is moved (no buttons pressed) or dragged (buttons
pressed). By separating mouse events into these two categories, Java lets you be a little
more selective about the circumstances under which you want to receive MouseEvents.
You can register as a listener for mouse events without receiving mouse motion events;
because mouse motion events are extremely common, you don’t want to handle them
if you don’t need to.

Two simple patterns govern the naming of Swing event listener interfaces and handler
methods:

• Event handler methods are public methods that return type void and take a single
event object (a subclass of java.util.EventObject) as an argument.2

• Listener interfaces are subclasses of java.util.EventListener that are named
with the suffix “Listener”—for example, MouseListener and ActionListener.

These may seem obvious, but they are nonetheless important because they are our first
hint of a design pattern governing how to build components that work with events.

Events | 609

Event Sources
The previous section described the machinery an event receiver uses to listen for events.
In this section, we’ll describe how a receiver tells an event source to send it events as
they occur.

To receive events, an eligible listener must register itself with an event source. It does
this by calling an “add listener” method in the event source and passing a reference to
itself. (Thus, this scheme implements a callback facility.) For example, the Swing JBut
ton class is a source of ActionEvents. Here’s how a TheReceiver object might register
to receive these events:

 // receiver of ActionEvents
 class TheReceiver implements ActionListener
 {
 // source of ActionEvents
 JButton theButton = new JButton("Belly");

 TheReceiver() {
 ...
 theButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 // Belly Button pushed...
 }

TheReciever makes a call to the button’s addActionListener() to receive ActionE
vents from the button when they occur. It passes the reference this to register itself as
an ActionListener.

To manage its listeners, an ActionEvent source (like the JButton) always implements
two methods:

 // ActionEvent source
 public void addActionListener(ActionListener listener) {
 ...
 }
 public void removeActionListener(ActionListener listener) {
 ...
 }

The removeActionListener() method removes the listener from the list so that it will
not receive future events of that kind. Swing components supply implementations of
both methods; normally, you won’t need to implement them yourself. It’s important to
pay attention to how your application uses event sources and listeners. It’s OK to throw
away an event source without removing its listeners, but it isn’t necessarily OK to throw
away listeners without removing them from the source first because the event source
might maintain references to them, preventing them from being garbage-collected.

610 | Chapter 16: Swing

You may be expecting some kind of “event source” interface listing these two methods
and identifying an object as a source of this event type, but there isn’t one. There are no
event source interfaces in the current conventions. If you are analyzing a class and trying
to determine what events it generates, you have to look for the paired add and remove
methods. For example, the presence of the addActionListener() and removeAction
Listener() methods define the object as a source of ActionEvents. If you happen to
be a human being, you can simply look at the documentation, but if the documentation
isn’t available, or if you’re writing a program that needs to analyze a class (a process
called reflection), you can look for this design pattern. (The java.beans.Introspec
tor utility class can do this for you.)

A source of FooEvent events for the FooListener interface must implement a pair of
add/remove methods:

• addFooListener(FooListener listener)
• removeFooListener(FooListener listener)

If an event source can support only one event listener (unicast delivery), the add listener
method can throw the java.util.TooManyListenersException.

What do all the naming patterns up to this point accomplish? For one thing, they make
it possible for automated tools and integrated development environments to divine
sources of particular events. Tools that work with JavaBeans will use the Java reflection
and introspection APIs to search for these kinds of design patterns and identify the
events that can be fired by a component.

At a more concrete level, it also means that event hookups are strongly typed, just like
the rest of Java. So it’s impossible to accidentally hook up the wrong kind of components;
for example, you can’t register to receive ItemEvents from a JButton because a button
doesn’t have an addItemListener() method. Java knows at compile time what types of
events can be delivered to whom.

Event Delivery
Swing and AWT events are multicast; every event is associated with a single source but
can be delivered to any number of receivers. When an event is fired, it is delivered
individually to each listener on the list (see Figure 16-3).

Events | 611

Figure 16-3. Event delivery

There are no guarantees about the order in which events are delivered. Nor are there
any guarantees about what happens if you register yourself more than once with an
event source; you may or may not get the event more than once. Similarly, you should
assume that every listener receives the same event data. In general, events are immutable;
they can’t be changed by their listeners.

To be complete, we could say that event delivery is synchronous with respect to the event
source, but that is because the event delivery is really just the invocation of a normal
Java method. The source of the event calls the handler method of each listener. However,
listeners shouldn’t assume that all the events will be sent in the same thread unless they
are AWT/Swing events, which are always sent serially by a global event dispatcher
thread.

Event Types
All the events used by Swing GUI components are subclasses of java.util.EventOb
ject. You can use or subclass any of the EventObject types for use in your own com‐
ponents. We describe the important event types here.

The events and listeners that are used by Swing fall into two packages: java.awt.event
and javax.swing.event. As we’ve discussed, the structure of components has changed
significantly between AWT and Swing. The event mechanism, however, is fundamen‐
tally the same, so the events and listeners in java.awt.event are used by Swing com‐
ponents. In addition, Swing has added event types and listeners in the package jav
ax.swing.event.

java.awt.event.ComponentEvent is the base class for events that can be fired by any
component. This includes events that provide notification when a component changes
its dimensions or visibility, as well as the other event types for mouse operations and
keypresses. ContainerEvents are fired by containers when components are added or
removed.

612 | Chapter 16: Swing

The java.awt.event.InputEvent Class
MouseEvents, which track the state of the mouse, and KeyEvents, which are fired when
the user uses the keyboard, are kinds of java.awt.event.InputEvents. When the user
presses a key or moves the mouse within a component’s area, the events are generated
with that component identified as the source.

Input events and GUI events are processed in a special event queue that is managed by
Swing. This gives Swing control over how all its events are delivered. First, under some
circumstances, a sequence of the same type of event may be compressed into a single
event. This is done to make some event types more efficient—in particular, mouse events
and some special internal events used to control repainting. Perhaps more important to
us, input events are delivered with extra information that lets listeners decide if the
component itself should act on the event.

Mouse and Key Modifiers on InputEvents
InputEvents come with a set of flags for special modifiers. These let you detect whether
the Shift, Control, or Alt keys were held down during a mouse button or keypress, and,
in the case of a mouse button press, distinguish which mouse button was involved. The
following are the flag values contained in java.awt.event.InputEvent:
SHIFT_MASK

Shift key with event

CTRL_MASK

Control key with event

ALT_MASK

Windows Alt key or Mac Option/Alt with event; equivalent to BUTTON2_MASK

META_MASK

Mac Command key with event; equivalent to BUTTON3_MASK

BUTTON1_MASK

Mouse Button 1

BUTTON2_MASK

Mouse Button 2; equivalent to ALT_MASK

BUTTON3_MASK

Mouse Button 3; equivalent to META_MASK

To check for one or more flags, evaluate the bitwise AND of the complete set of modifiers
and the flag or flags you’re interested in. The complete set of modifiers involved in the
event is returned by the InputEvent’s getModifiers() method:

 public void mousePressed (MouseEvent e) {
 int mods = e.getModifiers();

Events | 613

 if ((mods & InputEvent.SHIFT_MASK) != 0) {
 // shifted Mouse Button press
 }
 }

The three BUTTON flags can determine which mouse button was pressed on a two- or
three-button mouse. BUTTON2_MASK is equivalent to ALT_MASK, and BUTTON3_MASK is
equivalent to META_MASK. This means that pushing the second mouse button is equiv‐
alent to pressing the first (or only) button with the Alt key depressed, and the third
button is equivalent to the first with the “Meta” key depressed. These provide some
minimal portability even for systems that don’t provide multibutton mice. However, for
the most common uses of these buttons—pop-up menus—you don’t have to write ex‐
plicit code; Swing provides special support that automatically maps to the correct ges‐
ture in each environment (see the PopupMenu class in Chapter 17).

Mouse-wheel events

Java 1.4 added support for the mouse wheel, which is a scrolling device in place of a
middle mouse button. By default, Swing handles mouse-wheel movement for scrollable
components, so you should not have to write explicit code to handle this. Mouse-wheel
events are handled a little differently from other events because the conventions for
using the mouse wheel don’t always require the mouse to be over a scrolling component.
If the immediate target component of a mouse-wheel event is not registered to receive
it, a search is made for the first enclosing container that wants to consume the event.
This allows components enclosed in ScrollPanes to operate as expected.

If you wish to explicitly handle mouse-wheel events, you can register to receive them
using the MouseWheelListener interface shown in Table 16-1 in the next section.
Mouse-wheel events encapsulate information about the amount of scrolling and the
type of scroll unit, which on most systems may be configured externally to be fine-
grained scroll units or large blocks. If you want a physical measure of how far the wheel
was turned, you can get that with the getWheelRotation() method, which returns a
number of clicks.

Focus Events
As we mentioned earlier, focus handling is largely done automatically in Swing appli‐
cations and we’ll discuss it further in Chapter 18. However, understanding how focus
events are handled will help you understand and customize components.

As we described, a component can make itself eligible to receive focus using the JCom
ponent setFocusable() method (Windows may use setFocusableWindowState()).
A component normally receives focus when the user clicks on it with the mouse. It can
also programmatically request focus using the requestFocus() or requestFocusIn
Window() methods. The requestFocusInWindow() method acts just like requestFo
cus() except that it does not ask for transfer across windows. (There are currently

614 | Chapter 16: Swing

limitations on some platforms that prevent focus transfer from native applications to
Java applications, so using requestFocusInWindow() guarantees portability by adding
this restriction.)

Although a component can request focus explicitly, the only way to verify when a com‐
ponent has received or lost focus is by using the FocusListener interface (see Tables
16-1 and 16-2). You can use this interface to customize the behavior of your component
when it is ready for input (e.g., the TextField’s blinking cursor). Also, input components
often respond to the loss of focus by committing their changes. For example, JText
Fields and other components can be arranged to validate themselves when the user
attempts to move to a new field and to prevent the focus change until the field is valid
(as we’ll see in Chapter 18).

Assuming that there is currently no focus, the following sequence of events happens
when a component receives focus:

 WINDOW_ACTIVATED
 WINDOW_GAINED_FOCUS
 FOCUS_GAINED

The first two are WindowEvents delivered to the component’s containing Window, and
the third is a FocusEvent that is sent to the component itself. If a component in another
window subsequently receives focus, the following complementary sequence will occur:

 FOCUS_LOST
 WINDOW_FOCUS_LOST
 WINDOW_DEACTIVATED

These events carry a certain amount of context with them. The receiving component
can determine the component and window from which the focus is being transferred.
The yielding component and window are called “opposites” and are available with the
FocusEventgetOppositeComponent() and WindowEvent getOppositeWindow() meth‐
ods. If the opposite is part of a native non-Java application, then these values may be
null.

Focus gained and lost events may also be marked as “temporary,” as determined by the
FocusEvent isTemporary() method. The concept of a temporary focus change is used
for components such as pop-up menus, scrollbars, and window manipulation where
control is expected to return to the primary component later. The distinction is made
for components to “commit” or validate data upon losing focus. No commit should
happen on a temporary loss of focus.

Events | 615

Event Summary
Tables 16-1 and 16-2 summarize commonly used Swing events, which Swing compo‐
nents fire them, and the methods of the listener interfaces that receive them. The events
and listeners are divided between the packages java.awt.event and jav

ax.swing.event.

Table 16-1. Swing component and container events
Event Fired by Listener interface Handler methods

java.awt.event.ComponentEvent All components ComponentListener componentResized()

componentMoved()

componentShown()

componentHidden()

java.awt.event.FocusEvent All components FocusListener focusGained()

focusLost()

java.awt.event.KeyEvent All components KeyListener keyTyped()

keyPressed()

keyReleased()

java.awt.event.MouseEvent All components MouseListener mouseClicked()

mousePressed()

mouseReleased()

mouseEntered()

mouseExited()

 MouseMotionListener mouseDragged()

mouseMoved()

java.awt.event.ContainerEvent All containers ContainerListener componentAdded()

componentRemoved()

Table 16-2. Component-specific swing events
Event Fired by Listener interface Handler method

java.awt.event.ActionEvent JButton

JCheckBoxMenuItem

JComboBox

JFileChooser

JList

JRadioButtonMenuI

tem

JTextField

JToggleButton

ActionListener actionPerformed()

java.awt.event.AdjustmentEvent JScrollBar Adjustment-

Listener

adjustmentValue-

Changed()

javax.swing.event.CaretEvent JTextComponent CaretListener caretUpdate()

616 | Chapter 16: Swing

Event Fired by Listener interface Handler method

javax.swing.event.

HyperlinkEvent

JEditorPane

JTextPane

Hyperlink-

Listener

hyperlinkUpdate()

java.awt.event.Internal

FrameEvent

JInternalFrame InternalFrame-

Listener

internalFrame-

Activated()

internalFrame-

Closed()

internalFrame-

Closing()

internalFrame-

Deactivated()

internalFrame-

Deiconified()

internalFrame-

Iconified()

internalFrame-

Opened()

java.awt.event.ItemEvent JCheckBoxMenuItem

JComboBox

JRadioButtonMenuI

tem

JToggleButton

ItemListener itemStateChanged()

javax.swing.event.List

DataEvent

ListModel ListDataListen

er

contentsChanged()

intervalAdded()

intervalRemoved()

javax.swing.event.List

SelectionEvent

JList

ListSelectionModel

ListSelection-

Listener

valueChanged()

javax.swing.event.MenuEvent JMenu MenuListener menuCanceled()

menuDeselected()

menuSelected()

javax.swing.event.PopupMenuE

vent

JPopupMenu PopupMenu-

Listener

popupMenuCanceled()

popupMenuWill-

BecomeInvisible()

popupMenuWill-

BecomeVisible()

javax.swing.event.MenuKeyEvent JMenuItem MenuKeyListener menuKeyPressed()

menuKeyReleased()

menuKeyTyped()

Event Summary | 617

Event Fired by Listener interface Handler method

javax.swing.event.MenuDrag

MouseEvent

JMenuItem MenuDragMouse-

Listener

menuDragMouse-

Dragged()

menuDragMouse-

Entered()

menuDragMouse-

Exited()

menuDragMouse-

Released()

javax.swing.event.TableColumn

ModelEvent
TableColumnModel a TableColumn-

ModelListener

columnAdded()

columnMargin-

Changed()

columnMoved()

columnRemoved()

columnSelection-

Changed()

javax.swing.event.TableModelE

vent

TableModel TableModel-

Listener

tableChanged()

javax.swing.event.Tree

ExpansionEvent

Jtree TreeExpansion-

Listener

treeCollapsed()

treeExpanded()

javax.swing.event.TreeModelE

vent

TreeModel TreeModel-

Listener

treeNodesChanged()

treeNodesInserted()

treeNodesRemoved()

treeStructure-

Changed()

javax.swing.event.Tree

SelectionEvent

JTree

TreeSelectionModel

TreeSelection-

Listener

valueChanged()

javax.swing.event.Undoable

EditEvent

jav

ax.swing.text.Docu

ment

UndoableEdit-

Listener

undoableEdit-

Happened()

java.awt.event.WindowEvent JDialog

JFrame

JWindow

WindowListener windowOpened()

windowClosing()

windowClosed()

windowIconified()

windowDeiconified()

windowActivated()

windowDeactivated()

a The TableColumnModel class breaks with convention in the names of the methods that add listeners. They are
addColumnModelListener() and removeColumnModelListener().

In Swing, a component’s model and view are distinct. Strictly speaking, components
don’t fire events; models do. When you press a JButton, for example, it’s actually the
button’s data model that fires an ActionEvent, not the button itself. But JButton has a
convenience method for registering ActionListeners; this method passes its argument

618 | Chapter 16: Swing

through to register the listener with the button model. In many cases (as with JBut
tons), you don’t have to deal with the data model separately from the view, so we can
speak loosely of the component itself firing the events. InputEvents are, of course, gen‐
erated by the native input system and fired for the appropriate component, although
the listener responds as though they’re generated by the component.

Adapter Classes
It’s not ideal to have your application components implement a bunch of listener inter‐
faces and receive events directly. Sometimes it’s not even possible. Being an event re‐
ceiver forces you to modify or subclass your objects to implement the appropriate event
listener interfaces and add the code necessary to handle the events. And because we are
talking about Swing events here, a more subtle issue is that you would be, of necessity,
building GUI logic into parts of your application that shouldn’t have to know anything
about the GUI. Let’s look at an example.

In Figure 16-4, we drew the plans for our Vegomatic food processor. We made our
Vegomatic object implement the ActionListener interface so that it can receive events
directly from the three JButton components: Chop, Puree, and Frappe. The problem is
that our Vegomatic object now has to know more than how to mangle food. It also has
to be aware that it is driven by three controls—specifically, buttons that send action
commands—and be aware of which methods it should invoke for those commands.
Our boxes labeling the GUI and application code overlap in an unwholesome way. If
the marketing people should later want to add or remove buttons or perhaps just change
the names, we have to be careful. We may have to modify the logic in our Vegomatic
object. All is not well.

An alternative is to place an adapter class between our event source and receiver. An
adapter is a simple object whose sole purpose is to map an incoming event to an outgoing
method.

Event Summary | 619

Figure 16-5 shows a better design that uses three adapter classes, one for each button.
The implementation of the first adapter might look like:

 class VegomaticAdapter1 implements ActionListener {
 Vegomatic vegomatic;
 VegomaticAdapter1 (Vegomatic vegomatic) {
 this.vegomatic = vegomatic;
 }
 public void actionPerformed(ActionEvent e) {
 vegomatic.chopFood();
 }
 }

Figure 16-4. Implementing the ActionListener interface directly

620 | Chapter 16: Swing

Figure 16-5. Implementing the ActionListener interface using adapter classes

So somewhere in the code where we build our GUI, we could register our listener like
this:

 Vegomatic theVegomatic = ...;
 Button chopButton = ...;

 // make the hookup
 chopButton.addActionListener(new VegomaticAdapter1(theVegomatic));

Instead of registering itself (this) as the Button’s listener, the adapter registers the
Vegomatic object (theVegomatic). In this way, the adapter acts as an intermediary,
hooking up an event source (the button) with an event receiver (the virtual chopper).

We have completely separated the messiness of our GUI from the application code.
However, we have added three new classes to our application, none of which does very
much. Is that good? It depends on your vantage point.

Under different circumstances, our buttons may have been able to share a common
adapter class that was simply instantiated with different parameters. Various tradeoffs
can be made between size, efficiency, and elegance of code. Adapter classes will often
be generated automatically by development tools. The way we’ve named our adapter
classes VegomaticAdapter1, VegomaticAdapter2, and VegomaticAdapter3 hints at this.
More often, when handcoding, you’ll use an anonymous inner class, as we’ll see in the
next section. At the other extreme, we can forsake Java’s strong typing and use the

Event Summary | 621

Reflection API to create a completely dynamic hookup between an event source and its
listener.

Dummy Adapters
Many listener interfaces contain more than one event handler method. Unfortunately,
this means that to register yourself as interested in any one of those events, you must
implement the whole listener interface. To accomplish this, you might find yourself
typing dummy “stubbed-out” methods to complete the interface. There is nothing
wrong with this, but it is a bit tedious. To save you some trouble, AWT and Swing provide
some helper classes that implement these dummy methods for you. For each of the most
common listener interfaces containing more than one method, there is an adapter class
containing the stubbed methods. You can use the adapter class as a base class for your
own adapters. When you need a class to patch together your event source and listener,
you can subclass the adapter and override only the methods you want.

For example, the MouseAdapter class implements the MouseListener interface and
provides the following minimalist implementation:

 public void mouseClicked(MouseEvent e) {};
 public void mousePressed(MouseEvent e) {};
 public void mouseReleased(MouseEvent e) {};
 public void mouseEntered(MouseEvent e) {};
 public void mouseExited(MouseEvent e) {};

This isn’t a tremendous time saver; it’s simply a bit of sugar. The primary advantage
comes into play when we use the MouseAdapter as the base for our own adapter in an
anonymous inner class. For example, suppose we want to catch a mousePressed() event
in some component and blow up a building. We can use the following to make the
hookup:

 someComponent.addMouseListener(new MouseAdapter() {
 public void MousePressed(MouseEvent e) {
 building.blowUp();
 }
 });

We’ve taken artistic liberties with the formatting, but it’s pretty readable. Moreover, we’ve
avoided creating stub methods for the four unused event handler methods. Writing
adapters is common enough that it’s nice to avoid typing those extra few lines and
perhaps stave off the onset of carpal tunnel syndrome for a few more hours. Remember
that any time you use an inner class, the compiler is generating a class for you, so the
messiness you’ve saved in your source still exists in the output classes.

622 | Chapter 16: Swing

The AWT Robot!
This topic may not be of immediate use to everyone, but sometimes an API is just
interesting enough that it deserves mentioning. In Java 1.3, a class with the intriguing
name java.awt.Robot was added. The AWT robot provides an API for generating input
events such as keystrokes and mouse gestures programmatically. It could be used to
build automated GUI testing tools and the like. The following example uses the Robot
class to move the mouse to the upper-left area of the screen and perform a series of
events corresponding to a double-click. On most Windows systems, this opens up the
My Computer folder that lives in that region of the screen.

 public class RobotExample
 {
 public static void main(String [] args) throws Exception
 {
 Robot r = new Robot();
 r.mouseMove(35,35);
 r.mousePress(InputEvent.BUTTON1_MASK);
 r.mouseRelease(InputEvent.BUTTON1_MASK);
 Thread.sleep(50);
 r.mousePress(InputEvent.BUTTON1_MASK);
 r.mouseRelease(InputEvent.BUTTON1_MASK);
 }
 }

In addition to its magic fingers, the AWT robot also has eyes! You can use the Robot
class to capture an image of the screen or a rectangular portion of it by using the
createScreenCapture() method. (Note that you can get the exact dimensions of the
screen from the AWT’s getScreenSize() method.)

Java 5.0 added a correspondingly useful API, java.awt.MouseInfo, which allows the
gathering of mouse movement information from anywhere on the screen (not restricted
to the area within the Java application’s windows). The combination of Robot and
MouseInfo should make it easier to record and play back events occurring anywhere on
the screen from within Java.

Multithreading in Swing
An important compromise was made early in the design of Swing relating to speed, GUI
consistency, and thread safety. To provide maximum performance and simplicity in the
common case, Swing does not explicitly synchronize access to most Swing component
methods. This means that most Swing components are, technically, not threadsafe for
multithreaded applications. Now don’t panic: it’s not as bad as it sounds because there
is a plan. All event processing in AWT/Swing is handled by a single system thread using
a single system event queue. The queue serves two purposes. First, it eliminates thread
safety issues by making all GUI modifications happen in a single thread. Second, the

The AWT Robot! | 623

queue imposes a strict ordering of all activity in Swing. Because painting is handled in
Swing using events, all screen updating is also ordered with respect to all event handling.

What this means for you is that multithreaded programs need to be careful about how
they update Swing components after they are realized (added to a visible container). If
you make arbitrary modifications to Swing components from your own threads, you
run the risk of malformed rendering on the screen and inconsistent behavior.

There are several conditions under which it is always safe to modify a Swing component.
First, Swing components can be modified before they are realized. The term realized
originates from the days when the component would have created its peer object. It is
the point when it is added to a visible container or when it is made visible in the case of
a window. Most of our examples in this book set up GUI components in their main()
method, add them to a JFrame, and then, as their final action, cause the JFrame to be
displayed using setVisible(). This setup style is safe because components are not
realized until the container is made visible. Actually, that last sentence is not entirely
true. Technically, components can also be realized by the JFrame() pack() method.
However, because no GUI is shown until the container is made visible, it is unlikely that
any GUI activity can be mishandled.

Second, it’s safe to modify Swing components from code that is already running from
the system event handler’s thread. Because all events are processed by the event queue,
the methods of all Swing event listeners are normally invoked by the system event-
handling thread. This means that event handler methods and, transitively, any methods
called from those methods during the lifetime of that call, can freely modify Swing GUI
components because they are already running in the system event-dispatching thread.
If unsure of whether some bit of code will ever be called outside the normal event thread,
you can use the static method SwingUtilities.isEventDispatchThread() to test the
identity of the current thread. You can then perform your activity using the event-queue
mechanism we’ll talk about next.

Finally, Swing components can be safely modified when the API documentation ex‐
plicitly says that the method is threadsafe. Many important methods of Swing compo‐
nents are explicitly documented as threadsafe. These include the JComponent re
paint() and revalidate() methods, many methods of Swing text components, and
all listener add and remove methods.

If you can’t meet any of the requirements for thread safety listed previously, you can use
a simple API to get the system event queue to perform arbitrary activities for you on
the event-handling thread. This is accomplished using the invokeAndWait() or invo
keLater() static methods of the javax.swing.SwingUtilities class:
public static void invokeLater(Runnable doRun)

Use this method to ask Swing to execute the run() method of the specified
Runnable.

624 | Chapter 16: Swing

public static void invokeAndWait(Runnable doRun)throwsInterruptedExcep

tion,InvocationTargetException

This method is just like invokeLater() except that it waits until the run() method
has completed before returning.

You can put any activities you want inside a Runnable object and cause the event dis‐
patcher to perform them using these methods. Often you’ll use an inner class; for
example:

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 MyComponent.setVisible(false);
 }
 });

Java 7 introduced the SwingWorker class to assist in situations where you have a back‐
ground process that needs to update a Swing UI after the process is complete or incre‐
mentally as it’s running. In the former case, it’s a simple matter of subclassing Swing
Worker, and putting your long-running code in doInBackground() and your UI update
code in done().

 package learning;

 import java.awt.BorderLayout;
 import java.awt.event.ActionEvent;
 import java.awt.event.ActionListener;

 import javax.swing.*;

 public class MysteryOfTheUniverse extends JFrame {

 JTextArea textArea;
 JButton solveButton;

 public MysteryOfTheUniverse() {
 super("Mystery of the Universe Solver");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(300, 300);

 textArea = new JTextArea();

 solveButton = new JButton("Solve Mystery");
 solveButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 solveButton.setEnabled(false);
 solveMysteryOfTheUniverse();
 }
 });

 add(solveButton, BorderLayout.NORTH);

Multithreading in Swing | 625

 add(new JScrollPane(textArea));
 add(new JButton("Click me! I'm not blocking."),
 BorderLayout.SOUTH);
 }

 public void solveMysteryOfTheUniverse() {
 (new MysteryWorker()).execute();
 }

 class MysteryWorker extends SwingWorker<String, Object> {

 @Override
 public String doInBackground() {

 // Thinking for 4 seconds, but not blocking the UI
 try {
 Thread.currentThread().sleep(4000);
 } catch (InterruptedException ignore) {}

 solveButton.setEnabled(true);

 return "Egg salad";
 }

 @Override
 protected void done() {
 try {
 textArea.setText(get());
 } catch (Exception ignore) {}
 }
 }

 public static void main(String[] args) {
 new MysteryOfTheUniverse().setVisible(true);
 }
 }

When you click the Solve button, the application spends four seconds solving the mys‐
tery of the universe. If we weren’t using SwingWorker, the event dispatch thread would
block, making the Click Me button at the bottom of the screen unclickable. Thanks to
SwingWorker, the UI remains usable during the time the background task is executing.
Don’t trust us. Try it!

SwingWorker can be used in more complex situations such as incremental updates of a
progress bar. See SwingWorker’s JavaDoc introduction for an example of this usage.

You may find that you won’t have to use the event dispatcher or SwingWorker in simple
GUI applications because most activity happens in response to user interface events
where it is safe to modify components. However, consider these caveats when you create
threads to perform long-running tasks such as loading data or communicating over the
network.

626 | Chapter 16: Swing

CHAPTER 17

Using Swing Components

In the previous chapter, we discussed a number of concepts, including how Java’s user
interface facility is put together and how the fundamental pieces work. You should
understand components and containers and how they work together to create a display,
events and how components use them to communicate with the rest of your application,
and layout managers.

Now that we’re done reviewing general concepts and background, we’ll get to the fun
stuff: how to do things with Swing. We will cover most of the components that the Swing
package supplies, how to use these components in applets and applications, and how to
build your own components. We will have lots of code and lots of pretty examples to
look at.

There’s more material on this topic than fits in a single chapter. In this chapter, we’ll
cover all the basic user interface components. In the next chapter, we’ll cover some of
the more involved topics: text components, trees, tables, and creating your own
components.

Buttons and Labels
We’ll start with the simplest components: buttons and labels. Frankly, there isn’t much
to say about them. If you’ve seen one button, you’ve seen them all, and you’ve already
seen buttons in the applications in Chapter 2 (HelloJava3 and HelloJava4). A button
generates an ActionEvent when the user presses it. To receive these events, your pro‐
gram registers an ActionListener, which must implement the actionPerformed()
method. The argument passed to actionPerformed() is the event itself.

There’s one more thing worth saying about buttons, which applies to any component
that generates an action event. Java lets us specify an “action command” string for but‐
tons (and other components, like menu items, that can generate action events). The
action command is less interesting than it sounds. It is just a String that serves to

627

identify the component that sent the event. By default, the action command of a JBut
ton is the same as its label; it is included in action events so that you could use it to figure
out which button an event came from. However, you’ll often know this from the context
of your event listener.

To get the action command from an action event, call the event’s getActionCom
mand() method. The following code checks whether the user pressed the button labeled
Yes:

 public void actionPerformed(ActionEvent e){
 if (e.getActionCommand().equals("Yes") {
 //the user pressed "Yes"; do something
 ...
 }
 }

Yes is a string, not a command per se. You can change the action command by calling
the button’s setActionCommand() method. The following code changes button myBut
ton’s action command to “confirm:”

 myButton.setActionCommand("confirm");

It’s a good idea to get used to setting action commands explicitly; this helps to prevent
your code from breaking when you or some other developer internationalizes it or
otherwise changes the button’s label. If you rely on the button’s label, your code stops
working as soon as that label changes; a French user might see the label Oui rather than
Yes.

Swing buttons can have an image in addition to a label. The JButton class includes
constructors that accept an Icon object, which knows how to draw itself. You can create
buttons with captions, images, or both. A handy class called ImageIcon takes care of
loading an image for you and can be used to add an image to a button. The following
example shows how this works:

 //file: PictureButton.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class PictureButton {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 Icon icon = new ImageIcon("rhino.gif");
 JButton button = new JButton(icon);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 System.out.println("Urp!");
 }

628 | Chapter 17: Using Swing Components

 });

 frame.getContentPane().add(button);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

The example creates an ImageIcon from the rhino.gif file. Then, a JButton is created
from the ImageIcon. The whole thing is displayed in a JFrame. This example also shows
the idiom of using an anonymous inner class as an ActionListener.

There’s even less to be said about JLabel components. They’re just text strings or images
housed in a component. There aren’t any special events associated with labels; about all
you can do is specify the text’s alignment, which controls the position of the text within
the label’s display area. As with buttons, JLabels can be created with Icons if you want
to create a picture label. The following code creates some labels with different options:

 // default alignment (CENTER)
 JLabel label1 = new JLabel("Lions");

 // left aligned
 JLabel label2 = new JLabel("Tigers", SwingConstants.LEFT);

 //label with no text, default alignment
 JLabel label3 = new JLabel();

 // create image icon
 Icon icon = new ImageIcon("rhino.gif");

 // create image label
 JLabel label4 = new JLabel(icon);

 // assigning text to label3
 label3.setText("and Bears");

 // set alignment
 label3.setHorizontalAlignment(SwingConstants.RIGHT);

The alignment constants are defined in the SwingConstants interface.

We’ve built several labels using a variety of constructors and several of the class’s meth‐
ods. To display the labels, just add them to a container by calling the container’s add()
method.

Buttons and Labels | 629

You can set other label characteristics, such as changing their font or color, using the
methods of the Component class, JLabel’s distant ancestor. For example, you can call
setFont() and setBackground() on a label, as with any other component.

Given that labels are so simple, why do we need them at all? Why not find a way to draw
a text string directly on the container object? Remember that a JLabel is a JCompo
nent. That means that labels have the normal complement of methods for setting fonts
and colors that we mentioned earlier as well as the ability to be persistently and sensibly
managed by a layout manager. Therefore, they’re much more flexible than a text string
drawn procedurally at an arbitrary location within a container. Speaking of layouts—if
you use the setText() method to change the text of your label, the label’s preferred size
may change. But the label’s container automatically lays out its components when this
happens so you don’t have to worry about it.

HTML Text in Buttons and Labels
A neat feature of Swing is that it can interpret HTML-formatted text in JLabel and
JButton labels. The following example shows how to create a button with some HTML-
formatted text:

 JButton button = new JButton(
 "<html>"
 + "SMALL "
 + "CAPITALS");

Older versions of Java may not render complex HTML very well. But as of JDK 1.4,
most basic HTML features are supported, including crazy things such as images and
tables.

Figure 17-1 uses an HTML table to arrange its text.

Figure 17-1. Button using HTML table

Figure 17-2 uses an HTML image tag to display an image.

630 | Chapter 17: Using Swing Components

Figure 17-2. Button using HTML img tag

The code for the two figures looks like this:
 String html=
 "<html><table border=1>"
 +"<tr><td>One</td><td>Two</td></tr>"
 +"<tr><td>Three</td><td>Four</td></tr>"
 +"</table>";
 JButton button = new JButton(html);

 String html2=
 "<html><h3>Learning Java</h3>"
 +"";
 Jbutton button2 = new JButton(html2);

Checkboxes and Radio Buttons
A checkbox is a labeled toggle switch. Each time the user clicks it, its state toggles be‐
tween checked and unchecked. Swing implements the checkbox as a special kind of
button. Radio buttons are similar to checkboxes, but they are normally used in groups.
Clicking on one radio button in the group automatically turns the others off. They are
named for the mechanical preset buttons on old car radios (like some of us had in high
school).

Checkboxes and radio buttons are represented by instances of JCheckBox and JRadio
Button, respectively. Radio buttons can be tethered together using an instance of an‐
other class called ButtonGroup . By now you’re probably well into the swing of things
(no pun intended) and could easily master these classes on your own. We’ll use an
example to illustrate a different way of dealing with the state of components and to show
off a few more things about containers.

A JCheckBox sends ItemEvents when it’s pushed. Because a checkbox is a kind of button,
it also fires ActionEvents when checked. For something like a checkbox, we might want
to be lazy and check on the state of the buttons only at some later time, such as when

Checkboxes and Radio Buttons | 631

the user commits an action. For example, when filling out a form you may only care
about the user’s choices when the submit button is finally pressed.

The next application, DriveThrough, lets us check off selections on a fast food menu, as
shown in Figure 17-3.

Figure 17-3. The DriveThrough application

DriveThrough prints the results when you press the Place Order button. Therefore, we
can ignore all the events generated by our checkboxes and radio buttons and listen only
for the action events generated by the submit button:

 //file: DriveThrough.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class DriveThrough
 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Lister v1.0");

 JPanel entreePanel = new JPanel();
 final ButtonGroup entreeGroup = new ButtonGroup();
 JRadioButton radioButton;
 entreePanel.add(radioButton = new JRadioButton("Beef"));
 radioButton.setActionCommand("Beef");
 entreeGroup.add(radioButton);
 entreePanel.add(radioButton = new JRadioButton("Chicken"));
 radioButton.setActionCommand("Chicken");
 entreeGroup.add(radioButton);
 entreePanel.add(radioButton = new JRadioButton("Veggie", true));
 radioButton.setActionCommand("Veggie");
 entreeGroup.add(radioButton);

 final JPanel condimentsPanel = new JPanel();
 condimentsPanel.add(new JCheckBox("Ketchup"));
 condimentsPanel.add(new JCheckBox("Mustard"));
 condimentsPanel.add(new JCheckBox("Pickles"));

 JPanel orderPanel = new JPanel();
 JButton orderButton = new JButton("Place Order");

632 | Chapter 17: Using Swing Components

 orderPanel.add(orderButton);

 Container content = frame.getContentPane(); // unnecessary in 5.0+
 content.setLayout(new GridLayout(3, 1));
 content.add(entreePanel);
 content.add(condimentsPanel);
 content.add(orderPanel);

 orderButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 String entree =
 entreeGroup.getSelection().getActionCommand();
 System.out.println(entree + " sandwich");
 Component[] components = condimentsPanel.getComponents();
 for (Component c : components) {
 JCheckBox cb = (JCheckBox)c;
 if (cb.isSelected())
 System.out.println("With " + cb.getText());
 }
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 150);
 frame.setVisible(true);
 }
 }

DriveThrough lays out three panels. The radio buttons in the entreePanel are tied
together through a ButtonGroup object. We add() the buttons to a ButtonGroup to make
them mutually exclusive. The ButtonGroup object is an odd animal. One might expect
it to be a container or a component, but it isn’t; it’s simply a helper object that allows
only one RadioButton to be selected at a time.

In this example, the button group forces you to choose a beef, chicken, or veggie entree,
but not more than one. The condiment choices, which are JCheckBoxes, aren’t in a
button group, so you can request any combination of ketchup, mustard, and pickles on
your sandwich.

When the Place Order button is pushed, we receive an ActionEvent in the actionPer
formed() method of our inner ActionListener. At this point, we gather the information
in the radio buttons and checkboxes and print it. actionPerformed() simply reads the
state of the various buttons. We could have saved references to the buttons in a number
of ways; this example demonstrates two. First, we find out which entree was selected.
To do so, we call the ButtonGroup’s getSelection() method. This returns a ButtonMo
del, upon which we immediately call getActionCommand(). This returns the action
command as we set it when we created the radio buttons. The action commands for the
buttons are the entrée names, which is exactly what we need.

Checkboxes and Radio Buttons | 633

To find which condiments were selected, we use a more complicated procedure. The
problem is that condiments aren’t mutually exclusive, so we don’t have the convenience
of a ButtonGroup. Instead, we ask the condiments JPanel for a list of its components.
The getComponents() method returns an array of references to the container’s child
components. We’ll use this to loop over the components and print the results. We cast
each element of the array back to JCheckBox and call its isSelected() method to see
if the checkbox is on or off. If we were dealing with different types of components in
the array, we could determine each component’s type with the instanceof operator. Or,
more generally, we could maintain references to the elements of our form in some
explicit way (a map by name, perhaps).

Lists and Combo Boxes
JLists and JComboBoxes are a step up on the evolutionary chain from JButtons and
JLabels. Lists let the user choose from a group of alternatives. They can be configured
to force a single selection or allow multiple choices. Usually, only a small group of choices
is displayed at a time; a scrollbar lets the user move to the choices that aren’t visible. The
user can select an item by clicking on it. She can expand the selection to a range of items
by holding down Shift and clicking on another item. To make discontinuous selections,
the user can hold down the Control key instead of the Shift key (on a Mac, this is the
Command key).

A combo box is a crossbreed between a text field and a list. It displays a single line of
text (possibly with an image) and a downward-pointing arrow on one side. If you click
on the arrow, the combo box opens up and displays a list of choices. You can select a
single choice by clicking on it. After a selection is made, the combo box closes up; the
list disappears, and the new selection is shown in the text field.

Like other components in Swing, lists and combo boxes have data models that are dis‐
tinct from visual components. The list also has a selection model that controls how
selections can be made on the list data.

Lists and combo boxes are similar because they have similar data models. Each is simply
an array of acceptable choices. This similarity is reflected in Swing, of course: the type
of a JComboBox’s data model is a subclass of the type used for a JList’s data model. The
next example demonstrates this relationship.

The following example creates a window with a combo box, a list, and a button. The
combo box and the list use the same data model. When you press the button, the pro‐
gram writes out the current set of selected items in the list (see Figure 17-4).

634 | Chapter 17: Using Swing Components

Figure 17-4. A combo box and a list using the same data model

Here’s the code for the example:
 //file: Lister.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Lister {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Lister v1.0");

 // create a combo box
 String [] items = { "uno", "due", "tre", "quattro", "cinque",
 "sei", "sette", "otto", "nove", "deici",
 "undici", "dodici" };
 JComboBox comboBox = new JComboBox(items);
 comboBox.setEditable(true);

 // create a list with the same data model
 final JList list = new JList(comboBox.getModel());

 // create a button; when it's pressed, print out
 // the selection in the list
 JButton button = new JButton("Per favore");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 Object[] selection = list.getSelectedValues();
 System.out.println("-----");
 for (Object o : selection)
 System.out.println(o);
 }
 });

 // put the controls the content pane
 Container c = frame.getContentPane(); // unnecessary in 5.0+
 JPanel comboPanel = new JPanel();
 comboPanel.add(comboBox);
 c.add(comboPanel, BorderLayout.NORTH);
 c.add(new JScrollPane(list), BorderLayout.CENTER);

Lists and Combo Boxes | 635

 c.add(button, BorderLayout.SOUTH);

 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

The combo box is created from an array of strings. This is a convenience—behind the
scenes, the JComboBox constructor creates a data model from the strings you supply and
sets the JComboBox to use that data model. Our list is then created using the data model
of the combo box. This works because JList expects to use a ListModel for its data
model, and the ComboBoxModel used by the JComboBox is a subclass of ListModel.

The button’s action event handler simply prints out the selected items in the list, which
are retrieved with a call to getSelectedValues(). This method actually returns an
object array, not a string array. List and combo box items, like many other things in
Swing, are not limited to text. You can use images, drawings, or some combination of
text and images. We simply print the result as a string.

You might expect that selecting one item in the combo box would select the same item
in the list. In Swing components, selection is controlled by a selection model. The combo
box and the list have distinct selection models; after all, you can select only one item
from the combo box, while it’s possible to select multiple items from the list. Thus, while
the two components share a data model, they have separate selection models.

We’ve made the combo box editable. By default, it would not be editable: the user could
choose only one item in the drop-down list. With an editable combo box, the user can
type in a selection, as if it were a text field. Noneditable combo boxes are useful if you
just want to offer a limited set of choices; editable combo boxes are handy when you
want to accept any input but offer some common choices.

There’s a great class tucked away in the last example that deserves some recognition. It’s
JScrollPane. In Lister, you’ll notice that we created one when we added the List to
the main window. JScrollPane simply wraps itself around another Component and
provides scrollbars as necessary. The scrollbars show up if the contained Component’s
preferred size (as returned by getPreferredSize()) is greater than the size of the
JScrollPane itself. In the previous example, the scrollbars show up whenever the size
of the List exceeds the available space.

You can use JScrollPane to wrap any Component, including components with drawings,
images, or complex user interface panels. We’ll discuss JScrollPane in more detail later
in this chapter, and we’ll use it frequently with the text components in Chapter 18.

636 | Chapter 17: Using Swing Components

The Spinner
JList and JComboBox are two ways to let the user choose from a set of values. A JCom
boBox has added flexibility when it is made editable, but, in general, both of these com‐
ponents are limited in that they can only prompt the user from a fixed set of choices. In
Java 1.4, Swing added a component called JSpinner that is useful for large or open-
ended sequences of values such as numbers or dates. The JSpinner is a cousin of the
JComboBox; it displays a value in a field, but instead of providing a drop-down list of
choices, it gives the user a small pair of up and down arrows for moving over a range
of values (see Figure 17-5). Like the combo box, a JSpinner can also be made editable,
allowing the user to type a valid value directly into the field.

Figure 17-5. Image of DateSelector application

Swing provides three basic types of Spinners, represented by three different data models
for the JSpinner component: SpinnerListModel, SpinnerNumberModel, and Spinner
DateModel.

The SpinnerListModel acts like a combo box, specifying a fixed set of objects:
 String [] options = new String [] { "small", "medium", "large", "huge" };
 SpinnerListModel model = new SpinnerListModel(options);
 JSpinner spinner = new JSpinner(model);

You can retrieve the current value from the model at any time:
 String value = (String)model.getValue();

Alternatively, you can register a ChangeListener to receive updates as the user changes
values. With a SpinnerListModel, if the spinner is editable and the user enters a value
directly, it is validated against the set of choices before being accepted. This behavior is
a little different from the other types of SpinnerModels which, when editable, accept
any valid value of the correct type (e.g., a number or date).

The SpinnerNumberModel displays numeric values. It can be configured with initial,
minimum, and maximum values:

 double initial=5.0, min=0.0, max=10.0, increment=0.1;
 SpinnerNumberModel model =
 new SpinnerNumberModel(initial, min, max, increment);
 JSpinner spinner = new JSpinner(model);

The Spinner | 637

Here we have constructed a spinner with an initial value of 5.0 that allows the user to
change the value to between 0 and 10.0 in increments of 0.1. The SpinnerNumberModel
getNumber() method retrieves the current value.

Perhaps the most interesting feature of the JSpinner is the SpinnerDateModel, which
allows the user to choose calendar dates by moving in specified increments of time. The
SpinnerDateModel accepts a range, such as the SpinnerNumberModel, but the values are
Date objects and the increment is a java.util.Calendar constant field such as Calen
dar.DAY, Calendar.WEEK, and so on. The following example, DateSelector, creates a
JSpinner showing the current date and time. It allows the user to change the date in
increments of one week, over a range of one year (six months forward or back). A
ChangeListener is registered with the model to display the values as they are modified:

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;
 import java.util.*;

 public class DateSelector {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("DateSelector v1.0");

 Calendar now = Calendar.getInstance();
 Calendar earliest = (Calendar)now.clone();
 earliest.add(Calendar.MONTH, -6);
 Calendar latest = (Calendar)now.clone();
 latest.add(Calendar.MONTH, 6);
 SpinnerModel model = new SpinnerDateModel(
 now.getTime(), earliest.getTime(), latest.getTime(),
 Calendar.WEEK_OF_YEAR);
 final JSpinner spinner = new JSpinner(model);
 // Disable the built-in date editor
 spinner.setEditor(new JSpinner.DefaultEditor(spinner));

 model.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 System.out.println(((SpinnerDateModel)e.getSource())
 .getDate());
 }
 });

 frame.getContentPane().add("North", new JLabel("Choose a week"));
 frame.getContentPane().add("Center", spinner);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

638 | Chapter 17: Using Swing Components

As we said, the SpinnerCalendarModel acts just like the SpinnerNumberModel, except
that it works with Date objects and uses the special Calendar constants as increments.
To create dates, we construct a Calendar object for the correct time and use its get
Time() method. In this example, we used the Calendar’s add() method to set the min‐
imum and maximum values six months in each direction. Table 17-1 shows values for
increments in the Calendar.

Table 17-1. Calendar field values
Field value Increment

Calendar.MILLISECOND One millisecond

Calendar.SECOND One second

Calendar.MINUTE One minute

Calendar.HOUR Calendar.HOUR_OF_DAY One hour

Calendar.AM_PM A.M. or P.M.

Calendar.DAY_OF_WEEK

Calendar.DAY_OF_MONTH

Calendar.DAY_OF_YEAR

One day

Calendar.MONTH One month

Calendar.YEAR One year

Calendar.ERA B.C. or A.D. in the Gregorian calendar

The SpinnerDateModel uses the Calendar add() method with a value of 1 or -1 and
the corresponding constant value to increment or decrement the value. Increments of
one have the same effect on several of the constants, as indicated in Table 17-1.

Borders
Any Swing component can have a decorative border. JComponent includes a method
called setBorder() ; all you have to do is call it, passing it an appropriate implementation
of the Border interface.

Swing provides many useful Border implementations in the javax.swing.border
package. You could create an instance of one of these classes and pass it to a component’s
setBorder() method, but there’s an even simpler technique.

The BorderFactory class creates any kind of border for you using static “factory” meth‐
ods. Creating and setting a component’s border, then, is simple:

 JLabel labelTwo = new JLabel("I have an etched border.");
 labelTwo.setBorder(BorderFactory.createEtchedBorder());

Every component has a setBorder() method, from simple labels and buttons right up
to the fancy text and table components that we cover in Chapter 18.

Borders | 639

BorderFactory is convenient, but it does not offer every option of every border type.
For example, if you want to create a raised EtchedBorder instead of the default lowered
border, you’ll need to use EtchedBorder’s constructor, like this:

 JLabel labelTwo = new JLabel("I have a raised etched border.");
 labelTwo.setBorder(new EtchedBorder(EtchedBorder.RAISED));

The Border implementation classes are listed and briefly described here:
BevelBorder

This border draws raised or lowered beveled edges, giving an illusion of depth.

SoftBevelBorder

This border is similar to BevelBorder, but thinner.

EmptyBorder

Doesn’t do any drawing, but does take up space. You can use it to give a component
a little breathing room in a crowded user interface.

EtchedBorder

A lowered etched border gives the appearance of a rectangle that has been chiseled
into a piece of stone. A raised etched border looks like it is standing out from the
surface of the screen.

LineBorder

Draws a simple rectangle around a component. You can specify the color and width
of the line in LineBorder’s constructor.

MatteBorder

A souped-up version of LineBorder. You can create a MatteBorder with a certain
color and specify the size of the border on the left, top, right, and bottom of the
component. MatteBorder also allows you to pass in an Icon that will be used to
draw the border. This could be an image (ImageIcon) or any other implementation
of the Icon interface.

TitledBorder

A regular border with a title. TitledBorder doesn’t actually draw a border; it just
draws a title in conjunction with another border object. You can specify the loca‐
tions of the title, its justification, and its font. This border type is particularly useful
for grouping different sets of controls in a complicated interface.

CompoundBorder

A border that contains two other borders. This is especially handy if you want to
enclose a component in an EmptyBorder and then put something decorative around
it, such as an EtchedBorder or a MatteBorder.

The following example shows off some different border types. It’s only a sampler, though;
many more border types are available. Furthermore, the example only encloses labels

640 | Chapter 17: Using Swing Components

with borders. You can put a border around any component in Swing. The example is
shown in Figure 17-6.

Figure 17-6. A bevy of borders

Here is the source code:
 //file: Borders.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class Borders {
 public static void main(String[] args) {
 // create a JFrame to hold everything
 JFrame frame = new JFrame("Borders");

 // Create labels with borders.
 int center = SwingConstants.CENTER;
 JLabel labelOne = new JLabel("raised BevelBorder", center);
 labelOne.setBorder(
 BorderFactory.createBevelBorder(BevelBorder.RAISED));
 JLabel labelTwo = new JLabel("EtchedBorder", center);
 labelTwo.setBorder(BorderFactory.createEtchedBorder());
 JLabel labelThree = new JLabel("MatteBorder", center);
 labelThree.setBorder(
 BorderFactory.createMatteBorder(10, 10, 10, 10, Color.pink));
 JLabel labelFour = new JLabel("TitledBorder", center);
 Border etch = BorderFactory.createEtchedBorder();
 labelFour.setBorder(
 BorderFactory.createTitledBorder(etch, "Title"));
 JLabel labelFive = new JLabel("TitledBorder", center);
 Border low = BorderFactory.createLoweredBevelBorder();
 labelFive.setBorder(
 BorderFactory.createTitledBorder(low, "Title",
 TitledBorder.RIGHT, TitledBorder.BOTTOM));

Borders | 641

 JLabel labelSix = new JLabel("CompoundBorder", center);
 Border one = BorderFactory.createEtchedBorder();
 Border two =
 BorderFactory.createMatteBorder(4, 4, 4, 4, Color.blue);
 labelSix.setBorder(BorderFactory.createCompoundBorder(one, two));

 // add components to the content pane
 Container c = f.getContentPane(); // unnecessary in 5.0+
 c.setLayout(new GridLayout(3, 2));
 c.add(labelOne);
 c.add(labelTwo);
 c.add(labelThree);
 c.add(labelFour);
 c.add(labelFive);
 c.add(labelSix);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 }

Menus
A JMenu is a standard pull-down menu with a fixed name. Menus can hold other menus
as submenu items, enabling you to implement complex menu structures. In Swing,
menus are first-class components, just like everything else. You can place them any place
a component would go. Another class, JMenuBar, holds menus in the conventional hor‐
izontal bar. Menu bars are real components, too, so you can place them any place you
want in a container: top, bottom, or middle. But in the middle of a container, it usually
makes more sense to use a JComboBox rather than some kind of menu.

Menu items may have associated images and shortcut keys; there are even menu items
that look like checkboxes and radio buttons. Menu items are really a kind of button.
Like buttons, menu items fire action events when they are selected. You can respond to
menu items by registering action listeners with them.

There are two ways to use the keyboard with menus. The first is called mnemonics. A
mnemonic is one character in the menu name. If you hold down the Alt key and type
a menu’s mnemonic, the menu drops down, just as if you had clicked on it with the
mouse. Menu items may also have mnemonics. Once a menu is dropped down, you can
select individual items in the same way.

Menu items may also have accelerators. An accelerator is a key combination that selects
the menu item, whether or not the menu that contains it is showing. A common example
is the accelerator Ctrl-C, which is frequently used as a shortcut for the Copy item in the
Edit menu.

642 | Chapter 17: Using Swing Components

The next example demonstrates several different features of menus. It creates a menu
bar with three different menus. The first, Utensils, contains several menu items, a sub‐
menu, a separator, and a Quit item that includes both a mnemonic and an accelerator.
The second menu, Spices, contains menu items that look and act like checkboxes. Fi‐
nally, the Cheese menu demonstrates radio button menu items.

The application is shown in Figure 17-7 with one of its menus dropped down. Choosing
Quit from the Utensils menu (or pressing Ctrl-Q) removes the window.

 //file: DinnerMenu.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class DinnerMenu
 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Dinner Menu");

 // create the Utensils menu
 JMenu utensils = new JMenu("Utensils");
 utensils.setMnemonic(KeyEvent.VK_U);
 utensils.add(new JMenuItem("Fork"));
 utensils.add(new JMenuItem("Knife"));
 utensils.add(new JMenuItem("Spoon"));
 JMenu hybrid = new JMenu("Hybrid");
 hybrid.add(new JMenuItem("Spork"));
 hybrid.add(new JMenuItem("Spife"));
 hybrid.add(new JMenuItem("Knork"));
 utensils.add(hybrid);
 utensils.addSeparator();

 // do some fancy stuff with the Quit item
 JMenuItem quitItem = new JMenuItem("Quit");
 quitItem.setMnemonic(KeyEvent.VK_Q);
 quitItem.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK));
 quitItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });
 utensils.add(quitItem);

 // create the Spices menu
 JMenu spices = new JMenu("Spices");
 spices.setMnemonic(KeyEvent.VK_S);
 spices.add(new JCheckBoxMenuItem("Thyme"));
 spices.add(new JCheckBoxMenuItem("Rosemary"));
 spices.add(new JCheckBoxMenuItem("Oregano", true));
 spices.add(new JCheckBoxMenuItem("Fennel"));

 // create the Cheese menu
 JMenu cheese = new JMenu("Cheese");

Menus | 643

 cheese.setMnemonic(KeyEvent.VK_C);
 ButtonGroup group = new ButtonGroup();
 JRadioButtonMenuItem rbmi;
 rbmi = new JRadioButtonMenuItem("Regular", true);
 group.add(rbmi);
 cheese.add(rbmi);
 rbmi = new JRadioButtonMenuItem("Extra");
 group.add(rbmi);
 cheese.add(rbmi);
 rbmi = new JRadioButtonMenuItem("Blue");
 group.add(rbmi);
 cheese.add(rbmi);

 // create a menu bar and use it in this JFrame
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(utensils);
 menuBar.add(spices);
 menuBar.add(cheese);
 frame.setJMenuBar(menuBar);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200,200);
 frame.setVisible(true);
 }
 }

Yes, we know. Quit doesn’t belong in the Utensils menu. If it’s driving you crazy, you
can go back and add a File menu as an exercise when we’re through.

Creating menus is pretty simple work. You create a JMenu object, specifying the menu’s
title. Like the text of JButtons and JLabels, menu labels can contain simple HTML.
Then you just add JMenuItems to the JMenu. You can also add JMenus to a JMenu; they
show up as submenus. This is shown in the creation of the Utensils menu:

 JMenu utensils = new JMenu("Utensils");
 utensils.setMnemonic(KeyEvent.VK_U);
 utensils.add(new JMenuItem("Fork"));
 utensils.add(new JMenuItem("Knife"));
 utensils.add(new JMenuItem("Spoon"));
 JMenu hybrid = new JMenu("Hybrid");
 hybrid.add(new JMenuItem("Spork"));
 hybrid.add(new JMenuItem("Spife"));
 hybrid.add(new JMenuItem("Knork"));
 utensils.add(hybrid);

644 | Chapter 17: Using Swing Components

Figure 17-7. The DinnerMenu application

In the second line, we set the mnemonic for this menu using a constant defined in the
KeyEvent class, which has static identifiers for all keys on the keyboard.

You can add those pretty separator lines with a single call:
 utensils.addSeparator();

The Quit menu item has some bells and whistles we should explain. First, we create the
menu item and set its mnemonic, just as we did before for the Utensils menu:

 JMenuItem quitItem = new JMenuItem("Quit");
 quitItem.setMnemonic(KeyEvent.VK_Q);

Now we want to create an accelerator for the menu item. We do this with the help of a
class called KeyStroke :

 quitItem.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK));

Finally, to actually do something in response to the menu item, we register an action
listener:

 quitItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });

Our action listener exits the application when the Quit item is selected.

Creating the Spices menu is just as easy, except that we use JCheckBoxMenuItems instead
of regular JMenuItems. The result is a menu full of items that behave like checkboxes.

The next menu, Cheese, is a little more tricky. We want the items to be radio buttons,
but we need to place them in a ButtonGroup to ensure they are mutually exclusive. Each
item, then, is created, added to the button group, and added to the menu itself.

The final step is to place the menus we’ve just created in a JMenuBar. This is simply a
component that lays out menus in a horizontal bar. We have two options for adding it
to our JFrame. Because the JMenuBar is a real component, we could add it to the content
pane of the JFrame. Instead, we use a convenience method called setJMenuBar(), which

Menus | 645

automatically places the JMenuBar at the top of the frame’s content pane. This saves us
the trouble of altering the layout or size of the content pane; it is adjusted to coexist
peacefully with the menu bar.

Pop-Up Menus
One of Swing’s nifty components is JPopupMenu, a context menu that appears at the
mouse location when you press the appropriate mouse button or keystroke. (On a two-
button mouse, clicking the right mouse button invokes a pop-up menu. On a single-
button Mac, you Command-click.) Which button you press depends on the platform
you’re using; fortunately, from the code’s point of view you don’t have to care—Swing
figures it out for you.

The care and feeding of JPopupMenu is basically the same as any other menu. You use a
different constructor—JPopupMenu()—to create it, but otherwise, you build a menu
and add elements to it the same way. The big difference is that you don’t attach it to a
JMenuBar. Instead, just pop up the menu whenever and wherever you need it. Prior to
Java 5.0, this process is a little cumbersome; you have to register to receive the appro‐
priate mouse events, check them to see if they are the pop-up trigger and then pop the
menu manually. With Java 5.0, the process is simplified by having components manage
their own pop-up menus.

First, we’ll show an example of explicit pop-up handling. The following example, Pop
upColorMenu, contains three buttons. You can use a JPopupMenu to set the color of each
button or the background frame itself, depending on where you click the mouse.

 //file: PopUpColorMenu.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class PopUpColorMenu implements ActionListener
 {
 Component selectedComponent;

 public PopUpColorMenu() {
 JFrame frame = new JFrame("PopUpColorMenu v1.0");

 final JPopupMenu colorMenu = new JPopupMenu("Color");
 colorMenu.add(makeMenuItem("Red"));
 colorMenu.add(makeMenuItem("Green"));
 colorMenu.add(makeMenuItem("Blue"));

 MouseListener mouseListener = new MouseAdapter() {
 public void mousePressed(MouseEvent e) { checkPopup(e); }
 public void mouseClicked(MouseEvent e) { checkPopup(e); }
 public void mouseReleased(MouseEvent e) { checkPopup(e); }
 private void checkPopup(MouseEvent e) {

646 | Chapter 17: Using Swing Components

 if (e.isPopupTrigger()) {
 selectedComponent = e.getComponent();
 colorMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 };

 Container content = frame.getContentPane(); // unnecessary in 5.0+
 content.setLayout(new FlowLayout());
 JButton button = new JButton("Uno");
 button.addMouseListener(mouseListener);
 content.add(button);
 button = new JButton("Due");
 button.addMouseListener(mouseListener);
 content.add(button);
 button = new JButton("Tre");
 button.addMouseListener(mouseListener);
 content.add(button);

 frame.getContentPane().addMouseListener(mouseListener);

 frame.setSize(200,50);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {
 String color = e.getActionCommand();
 if (color.equals("Red"))
 selectedComponent.setBackground(Color.red);
 else if (color.equals("Green"))
 selectedComponent.setBackground(Color.green);
 else if (color.equals("Blue"))
 selectedComponent.setBackground(Color.blue);
 }

 private JMenuItem makeMenuItem(String label) {
 JMenuItem item = new JMenuItem(label);
 item.addActionListener(this);
 return item;
 }

 public static void main(String[] args) {
 new PopUpColorMenu();
 }
 }

Figure 17-8 shows the example in action; the user is preparing to change the color of
the bottom button.

Pop-Up Menus | 647

Figure 17-8. The PopupColorMenu application

Because the pop-up menu is triggered by mouse events (in this example), we need to
register a MouseListener for any of the components to which it applies. In this example,
all three buttons and the content pane of the frame are eligible for the color pop-up
menu. Therefore, we add a mouse event listener for all these components explicitly. The
same instance of an anonymous inner MouseAdapter subclass is used in each case. In
this class, we override the mousePressed(), mouseReleased(), and mouseClicked()
methods to display the pop-up menu when we get an appropriate event. How do we
know what an “appropriate event” is? Fortunately, we don’t need to worry about the
specifics of our user’s platform; we just need to call the event’s isPopupTrigger()
method. If this method returns true, we know the user has done whatever normally
displays a pop-up menu on his system.

Once we know that the user wants to raise a pop-up menu, we display it by calling its
show() method with the mouse event coordinates as arguments.

If we want to provide different menus for different types of components or the back‐
ground, we create different mouse listeners for each different kind of component. The
mouse listeners invoke different kinds of pop-up menus as appropriate.

The only thing left is to handle the action events from the pop-up menu items. We use
a helper method called makeMenuItem() to register the PopUpColorMenu window as an
action listener for every item we add. The example implements ActionListener and
has the required actionPerformed() method. This method reads the action command
from the event, which is equal to the selected menu item’s label by default. It then sets
the background color of the selected component appropriately.

Component-Managed Pop Ups
Things get a bit easier in Java 5.0, using the new pop-up menu API for components. In
Java 5.0, any JComponent can manage a JPopupMenu directly with the setComponentPo
pupMenu() method. JComponents can also be told to simply inherit their parent con‐
tainer’s pop-up menu via the setInheritsPopupMenu() method. This combination
makes it very simple to implement a context menu that should appear in many com‐
ponents within a container.

648 | Chapter 17: Using Swing Components

1. Components such as JPanel and JLabel by default do not expect to handle mouse events. When you register
a listener such as MouseListener, it registers itself internally to begin processing these events. Unfortunately,
at the time of this writing, using setInheritsPopupMenu() does not trigger this functionality. As a work‐
around, you could register a dummy mouse listener with these components to prompt them to expect mouse
events and properly trigger context menus if you want them.

Unfortunately, this doesn’t lend itself well to our previous example (PopupColorMenu)
for two reasons. First, we need to know which component the mouse was in when the
pop up was triggered and we don’t get that information using this API. The pop-up
handling is actually delegated to the container, not inherited. Second, not all types of
components are registered to receive mouse events by default.1 As a result, we’ll create
a new example that is more appropriate for a “one context menu to rule them all” ap‐
plication. The following example, ContextMenu, shows a TextArea and TextField that
both inherit the same JPopupMenu from their JPanel container. When you select a menu
item, the action is displayed in the text area.

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class ContextMenu implements ActionListener
 {
 JTextArea textArea = new JTextArea();

 public ContextMenu()
 {
 final JPopupMenu contextMenu = new JPopupMenu("Edit");
 contextMenu.add(makeMenuItem("Save"));
 contextMenu.add(makeMenuItem("Save As"));
 contextMenu.add(makeMenuItem("Close"));

 JFrame frame = new JFrame("ContextMenu v1.0");
 JPanel panel = new JPanel();
 panel.setLayout(new BorderLayout());
 frame.getContentPane().add(panel);
 panel.setComponentPopupMenu(contextMenu);

 textArea.setInheritsPopupMenu(true);
 panel.add(BorderLayout.CENTER, textArea);

 JTextField textField = new JTextField();
 textField.setInheritsPopupMenu(true);
 panel.add(BorderLayout.SOUTH, textField);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(400,200);
 frame.setVisible(true);
 }

Pop-Up Menus | 649

 public void actionPerformed(ActionEvent e) {
 textArea.append(e.getActionCommand() +"\n");
 }

 private JMenuItem makeMenuItem(String label) {
 JMenuItem item = new JMenuItem(label);
 item.addActionListener(this);
 return item;
 }

 public static void main(String[] args) {
 new ContextMenu();
 }
 }

We’ve constructed our JPopupMenu as before, but this time we are not responsible for
listening for mouse clicks or triggering the pop up explicitly. Instead, we use the set
ComponentPopupMenu() method to ask the JPanel to handle it for us. We use setIn
heritsPopupMenu() on both the JTextArea and JTextField so that they will both del‐
egate pop-up trigger mouse clicks to the JPanel automatically.

The JScrollPane Class
We used JScrollPane earlier in this chapter without explaining much about it. In this
section, we’ll remedy the situation.

A JScrollPane is a container that can hold one component. Said another way, a
JScrollPanewraps another component. By default, if the wrapped component is larger
than the JScrollPane itself, the JScrollPane supplies scrollbars. JScrollPane handles
the events from the scrollbars and displays the appropriate portion of the contained
component.

Technically, JScrollPane is a Container, but it’s a funny one. It has its own layout
manager, which can’t be changed, and it accommodates only one component at a time.
This isn’t really a limitation. If you want to put a lot of stuff in a JScrollPane, just collect
your components in a JPanel, with whatever layout manager you like, and put that
panel into the JScrollPane.

When you create a JScrollPane, you specify the conditions under which its scrollbars
are displayed. This is called the scrollbar display policy; a separate policy is used for the
horizontal and vertical scrollbars. The following constants can be used to specify the
policy for each of the scrollbars:
HORIZONTAL_SCROLLBAR_AS_NEEDED

VERTICAL_SCROLLBAR_AS_NEEDED

Displays a scrollbar only if the wrapped component doesn’t fit.

650 | Chapter 17: Using Swing Components

HORIZONTAL_SCROLLBAR_ALWAYS

VERTICAL_SCROLLBAR_ALWAYS

Always shows a scrollbar, regardless of the contained component’s size.

HORIZONTAL_SCROLLBAR_NEVER

VERTICAL_SCROLLBAR_NEVER

Never shows a scrollbar, even if the contained component won’t fit. If you use this
policy, you should provide some other way to manipulate the JScrollPane.

By default, the policies are HORIZONTAL_SCROLLBAR_AS_NEEDED and VERTICAL_SCROLL
BAR_AS_NEEDED.

Support for scrolling with mouse wheels is automatic as of Java 1.4. You do not have to
do anything explicit in your application to get this to work.

The following example uses a JScrollPane to display a large image (see Figure 17-9).
The application itself is very simple; all we do is place the image in a JLabel, wrap a
JScrollPane around it, and put the JScrollPane in a JFrame’s content pane.

Figure 17-9. The ScrollPaneFrame application

Here’s the code:
 //file: ScrollPaneFrame.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class ScrollPaneFrame
 {
 public static void main(String[] args) {
 String filename = "Piazza di Spagna.jpg";
 if (args.length > 0)
 filename = args[0];

The JScrollPane Class | 651

 JFrame frame = new JFrame("ScrollPaneFrame v1.0");
 JLabel image = new JLabel(new ImageIcon(filename));
 frame.getContentPane().add(new JScrollPane(image));

 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

To hold the image, we have used a JLabel and ImageIcon. The ImageIcon class preloads
the image using a MediaTracker and determines its dimensions. It’s also possible to have
the ImageIcon show the image as it loads or to ask it for information on the status of
loading the image. We’ll discuss image management in Chapter 21.

The JSplitPane Class
A split pane is a special container that holds two components, each in its own subpane.
A splitter bar adjusts the sizes of the two subpanes. In a document viewer, for example,
you might use a split pane to show a table of contents next to a page of text.

The following example uses two JLabels containing ImageIcons, like the previous ex‐
ample. It displays the two labels, wrapped in JScrollPanes, on either side of a JSplit
Pane (see Figure 17-10). You can drag the splitter bar back and forth to adjust the sizes
of the two contained components.

 //file: SplitPaneFrame.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class SplitPaneFrame {
 public static void main(String[] args) {
 String fileOne = "Piazza di Spagna.jpg";
 String fileTwo = "L1-Light.jpg";
 if (args.length > 0) fileOne = args[0];
 if (args.length > 1) fileTwo = args[1];

 JFrame frame = new JFrame("SplitPaneFrame");

 JLabel leftImage = new JLabel(new ImageIcon(fileOne));
 Component left = new JScrollPane(leftImage);
 JLabel rightImage = new JLabel(new ImageIcon(fileTwo));
 Component right = new JScrollPane(rightImage);

 JSplitPane split =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, left, right);
 split.setDividerLocation(100);
 frame.getContentPane().add(split);

652 | Chapter 17: Using Swing Components

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 200);
 frame.setVisible(true);
 }
 }

Figure 17-10. Using a split pane

The JTabbedPane Class
If you’ve ever right-clicked on the desktop to set your Display Properties in Windows,
you already know what a JTabbedPane is. It’s a container with labeled tabs (e.g., Themes,
Screen Saver, Appearance). When you click on a tab, a new set of controls is shown in
the body of the JTabbedPane. In Swing, JTabbedPane is simply a specialized container.

Each tab has a name. To add a tab to the JTabbedPane, simply call addTab(). You’ll need
to specify the name of the tab as well as a component that supplies the tab’s contents.
Typically, it’s a container holding other components.

Even though the JTabbedPane only shows one set of components at a time, be aware
that all the components on all the pages are alive and in memory at one time. If you
have components that hog processor time or memory, try to put them into a “sleep”
state when they are not showing.

The following example shows how to create a JTabbedPane. It adds standard Swing
components to a tab named Controls. The second tab is filled with a scrollable image,
which was presented in the previous examples.

 //file: TabbedPaneFrame.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class TabbedPaneFrame {
 public static void main(String[] args)

The JTabbedPane Class | 653

 {
 JFrame frame = new JFrame("TabbedPaneFrame");
 JTabbedPane tabby = new JTabbedPane();

 // create the controls pane
 JPanel controls = new JPanel();
 controls.add(new JLabel("Service:"));
 JList list = new JList(
 new String[] { "Web server", "FTP server" });
 list.setBorder(BorderFactory.createEtchedBorder());
 controls.add(list);
 controls.add(new JButton("Start"));

 // create an image pane
 String filename = "Piazza di Spagna.jpg";
 JLabel image = new JLabel(new ImageIcon(filename));
 JComponent picture = new JScrollPane(image);
 tabby.addTab("Controls", controls);
 tabby.addTab("Picture", picture);

 frame.getContentPane().add(tabby);

 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

The code isn’t especially fancy, but the result is an impressive-looking user interface.
The first tab is a JPanel that contains some other components, including a JList with
an etched border. The second tab simply contains the JLabel with ImageIcon wrapped
in a JScrollPane. The running example is shown in Figure 17-11.

Our example has only two tabs and they fit quite easily, but in a realistic application it
is easy to run out of room. By default, when there are too many tabs to display in a single
row, JTabbedPane automatically wraps them into additional rows. This behavior fits
with the tab notion quite well, giving the appearance of a filing cabinet, but it also
necessitates that when you select a tab from the back row, the tabs must be rearranged
to bring the selected tab to the foreground. Many users find this confusing, and it violates
a principal of user interface design that says that controls should remain in the same
location. Alternatively, you can configure the tabbed pane to use a single, scrolling row
of tabs by specifying a scrolling tab layout policy like this:

 setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

654 | Chapter 17: Using Swing Components

Figure 17-11. Using a tabbed pane

Java 6 introduced the ability to add custom components to tabs. The most common use
of this capability is the addition of buttons on tabs for functions such as close, info, tear
away, etc. The following example demonstrates how to use the new setTabComponen
tAt(int index, Component component) method to add a close button on each tab.

 //file: ClosableTabs.java
 import javax.swing.*;
 import java.awt.*;
 import java.awt.event.*;

 public class ClosableTabs extends JTabbedPane {

 public void addTab(String title, Color color) {
 JPanel pane = new JPanel();
 pane.setBackground(color);
 int loc = getTabCount();
 insertTab(title, null, pane, null, loc);
 setTabComponentAt(loc, new Tab(title));
 }

 public static void main(String[] args) {
 SwingUtilities.invokeLater(new Runnable(){
 public void run(){
 JFrame frame = new JFrame("Closable Tabs");

 ClosableTabs tabs = new ClosableTabs();
 tabs.addTab("Blue", Color.BLUE);
 tabs.addTab("Green", Color.GREEN);
 tabs.addTab("Red", Color.RED);
 frame.add(tabs);

 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 frame.setSize(new Dimension(300, 150));
 frame.setLocationRelativeTo(null);
 frame.setVisible(true);
 }});
 }

The JTabbedPane Class | 655

 /**
 * The component used as a tab (i.e., the tab itself as opposed
 * to the content)
 */
 private class Tab extends JPanel {

 public Tab(String title) {
 super(new FlowLayout(FlowLayout.LEFT, 0, 0));
 setOpaque(false);

 // The tab's title
 JLabel label = new JLabel(title);

 // Creating a space to the right of the close button
 label.setBorder(BorderFactory.createEmptyBorder(0, 0,
 0, 2));

 add(label);

 // The tab's close button
 JButton button = new CloseButton();
 add(button);

 // This is necessary for vertical alignment of the
 // tab's content
 setBorder(BorderFactory.createEmptyBorder(2, 0, 0, 0));
 }

 private class CloseButton extends JButton
 implements ActionListener {

 public CloseButton() {
 setPreferredSize(new Dimension(17, 17));
 setOpaque(false);
 setContentAreaFilled(false);
 setBorderPainted(false);
 setRolloverEnabled(true);
 setFocusable(false);
 addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 int i = ClosableTabs.this.indexOfTabComponent(
 Tab.this);
 if (i != -1) {
 ClosableTabs.this.remove(i);
 }
 }

 protected void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(2));

656 | Chapter 17: Using Swing Components

 // Show red on roll-over
 g2.setColor(Color.BLACK);
 if (getModel().isRollover()) {
 g2.setColor(Color.RED);
 }

 // Paint the "X"
 int offset = 5;
 g2.drawLine(offset, offset, getWidth() -
 offset - 1, getHeight() - offset - 1);
 g2.drawLine(getWidth() - offset - 1, offset,
 offset, getHeight() - offset - 1);
 g2.dispose();
 }
 }
 }
 }

Scrollbars and Sliders
JScrollPane is such a handy component that you may not ever need to use scrollbars
by themselves. In fact, if you ever do find yourself using a scrollbar by itself, chances
are that you really want to use another component called a slider.

There’s not much point in describing the appearance and functionality of scrollbars and
sliders. Instead, let’s jump right in with an example that includes both components.
Figure 17-12 shows a simple example with both a scrollbar and a slider.

Figure 17-12. Using a scrollbar and a slider

Here is the source code for this example:
 //file: Slippery.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class Slippery {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Slippery v1.0");

Scrollbars and Sliders | 657

 Container content = frame.getContentPane(); // unnecessary in 5.0+

 JPanel main = new JPanel(new GridLayout(2, 1));
 JPanel scrollBarPanel = new JPanel();
 final JScrollBar scrollBar =
 new JScrollBar(JScrollBar.HORIZONTAL, 0, 48, 0, 255);
 int height = scrollBar.getPreferredSize().height;
 scrollBar.setPreferredSize(new Dimension(175, height));
 scrollBarPanel.add(scrollBar);
 main.add(scrollBarPanel);

 JPanel sliderPanel = new JPanel();
 final JSlider slider =
 new JSlider(JSlider.HORIZONTAL, 0, 255, 128);
 slider.setMajorTickSpacing(48);
 slider.setMinorTickSpacing(16);
 slider.setPaintTicks(true);
 sliderPanel.add(slider);
 main.add(sliderPanel);

 content.add(main, BorderLayout.CENTER);

 final JLabel statusLabel =
 new JLabel("Welcome to Slippery v1.0");
 content.add(statusLabel, BorderLayout.SOUTH);

 // wire up the event handlers
 scrollBar.addAdjustmentListener(new AdjustmentListener() {
 public void adjustmentValueChanged(AdjustmentEvent e) {
 statusLabel.setText("JScrollBar's current value = "
 + scrollBar.getValue());
 }
 });

 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 statusLabel.setText("JSlider's current value = "
 + slider.getValue());
 }
 });

 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

All we’ve really done here is added a JScrollBar and a JSlider to our main window.
If the user adjusts either of these components, the current value of the component is
displayed in a JLabel at the bottom of the window.

658 | Chapter 17: Using Swing Components

You create both the JScrollBar and JSlider by specifying an orientation, either HORI
ZONTAL or VERTICAL. You can also specify the minimum and maximum values for the
components, as well as the initial value. The JScrollBar supports one additional pa‐
rameter, the extent. The extent simply refers to what range of values is represented by
the slider within the scroll bar. For example, in a scrollbar that runs from 0 to 255, an
extent of 128 means that the slider will be half the width of the scrollable area of the
scrollbar.

JSlider supports the idea of tick marks, lines drawn at certain values along the slider’s
length. Major tick marks are slightly larger than minor tick marks. To draw tick marks,
just specify an interval for major and minor tick marks, and then paint the tick marks:

 slider.setMajorTickSpacing(48);
 slider.setMinorTickSpacing(16);
 slider.setPaintTicks(true);

JSlider also supports labeling the ticks with text strings, using the setLabelTable()
method.

Responding to events from the two components is straightforward. The JScrollBar
sends out AdjustmentEvents every time something happens; the JSlider fires off
ChangeEvents when its value changes. In our simple example, we display the new value
of the changed component in the JLabel at the bottom of the window.

Dialogs
A dialog is another standard feature of user interfaces. Dialogs are frequently used to
present information to the user (“Your fruit salad is ready.”) or to ask a question (“Shall
I bring the car around?”). Dialogs are used so commonly in GUI applications that Swing
includes a handy set of prebuilt dialogs. These are accessible from static methods in the
JOptionPane class. Many variations are possible; JOptionPane groups them into four
basic types:
Message dialog

Displays a message to the user, usually accompanied by an OK button.

Confirmation dialog
Ask a question and displays answer buttons—usually Yes, No, and Cancel.

Input dialog
Asks the user to type in a string.

Option dialogs
The most general type. You pass it your own components, which are displayed in
the dialog.

A confirmation dialog is shown in Figure 17-13.

Dialogs | 659

Figure 17-13. Using a confirmation dialog

Let’s look at examples of each kind of dialog. The following code produces a message
dialog:

 JOptionPane.showMessageDialog(frame, "You have mail.");

The first parameter to showMessageDialog() is the parent component (in this case,
frame, an existing JFrame). The dialog will be centered on the parent component. If you
pass null for the parent component, the dialog is centered in your screen. The dialogs
that JOptionPane displays are modal, which means they block other input to your ap‐
plication while they are showing.

Here’s a slightly fancier message dialog. We’ve specified a title for the dialog and a mes‐
sage type, which affects the icon that is displayed:

 JOptionPane.showMessageDialog(frame, "You are low on memory.",
 "Apocalyptic message", JOptionPane.WARNING_MESSAGE);

Here’s how to display the confirmation dialog shown in Figure 17-13:
 int result = JOptionPane.showConfirmDialog(null,
 "Do you want to remove Windows now?");

In this case, we’ve passed null for the parent component and it will be displayed centered
on the screen. Special values are returned from showConfirmDialog() to indicate which
button was pressed. A full example later in this section shows how to use this return
value.

Sometimes you need to ask the user to type some input. The following code puts up a
dialog requesting the user’s name:

 String name = JOptionPane.showInputDialog(null,
 "Please enter your name.");

Whatever the user types is returned as a String or null if the user presses the Cancel
button.

The most general type of dialog is the option dialog. You supply an array of objects you
wish to be displayed; JOptionPane takes care of formatting them and displaying the

660 | Chapter 17: Using Swing Components

dialog. The following example displays a text label, a JTextField, and a JPassword
Field. (Text components are described in the next chapter.)

 JTextField userField = new JTextField();
 JPasswordField passField = new JPasswordField();
 String message = "Please enter your user name and password.";
 result = JOptionPane.showOptionDialog(frame,
 new Object[] { message, userField, passField },
 "Login", JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);

We’ve also specified a dialog title (“Login”) in the call to showOptionDialog(). We want
OK and Cancel buttons, so we pass OK_CANCEL_OPTION as the dialog type. The QUES
TION_MESSAGE argument indicates we’d like to see the question mark icon. The last three
items are optional: an Icon, an array of different choices, and a current selection. Because
the icon parameter is null, a default is used. If the array of choices and the current
selection parameters were not null, JOptionPane might try to display the choices in a
list or combo box.

The following application includes all the examples we’ve covered:
 import javax.swing.*;

 public class ExerciseOptions {
 public static void main(String[] args) {
 JFrame frame = new JFrame("ExerciseOptions v1.0");
 frame.setSize(200, 200);
 frame.setVisible(true);

 JOptionPane.showMessageDialog(frame, "You have mail.");
 JOptionPane.showMessageDialog(frame, "You are low on memory.",
 "Apocalyptic message", JOptionPane.WARNING_MESSAGE);

 int result = JOptionPane.showConfirmDialog(null,
 "Do you want to remove Windows now?");
 switch (result) {
 case JOptionPane.YES_OPTION:
 System.out.println("Yes"); break;
 case JOptionPane.NO_OPTION:
 System.out.println("No"); break;
 case JOptionPane.CANCEL_OPTION:
 System.out.println("Cancel"); break;
 case JOptionPane.CLOSED_OPTION:
 System.out.println("Closed"); break;
 }

 String name = JOptionPane.showInputDialog(null,
 "Please enter your name.");
 System.out.println(name);

 JTextField userField = new JTextField();

Dialogs | 661

 JPasswordField passField = new JPasswordField();
 String message = "Please enter your user name and password.";
 result = JOptionPane.showOptionDialog(frame,
 new Object[] { message, userField, passField },
 "Login", JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);
 if (result == JOptionPane.OK_OPTION)
 System.out.println(userField.getText() +
 " " + new String(passField.getPassword()));

 System.exit(0);
 }
 }

File Selection Dialog
A JFileChooser is a standard file selection box. As with other Swing components,
JFileChooser is implemented in pure Java, so it can look and act the same on different
platforms or take on the native appearance of the operating system, depending on what
look and feel is in effect.

Selecting files all day can be pretty boring without a greater purpose, so we’ll exercise
the JFileChooser in a mini-editor application. Editor provides a text area in which we
can load and work with files. (The JFileChooser created by Editor is shown in
Figure 17-14.) We’ll stop just shy of the capability to save and let you fill in the blanks
(with a few caveats).

Figure 17-14. Using a JFileChooser

Here’s the code:

662 | Chapter 17: Using Swing Components

 import java.awt.*;
 import java.awt.event.*;
 import java.io.*;
 import javax.swing.*;

 public class Editor extends JFrame implements ActionListener
 {
 private JEditorPane textPane = new JEditorPane();

 public Editor() {
 super("Editor v1.0");
 Container content = getContentPane(); // unnecessary in 5.0+
 content.add(new JScrollPane(textPane), BorderLayout.CENTER);
 JMenu menu = new JMenu("File");
 menu.add(makeMenuItem("Open"));
 menu.add(makeMenuItem("Save"));
 menu.add(makeMenuItem("Quit"));
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(menu);
 setJMenuBar(menuBar);
 setSize(300, 300);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void actionPerformed(ActionEvent e) {
 String command = e.getActionCommand();
 if (command.equals("Quit")) System.exit(0);
 else if (command.equals("Open")) loadFile();
 else if (command.equals("Save")) saveFile();
 }

 private void loadFile () {
 JFileChooser chooser = new JFileChooser();
 int result = chooser.showOpenDialog(this);
 if (result == JFileChooser.CANCEL_OPTION) return;
 try {
 File file = chooser.getSelectedFile();
 java.net.URL url = file.toURL();
 textPane.setPage(url);
 }
 catch (Exception e) {
 textPane.setText("Could not load file: " + e);
 }
 }

 private void saveFile() {
 JFileChooser chooser = new JFileChooser();
 chooser.showSaveDialog(this);
 // Save file data...
 }

 private JMenuItem makeMenuItem(String name) {

Dialogs | 663

 JMenuItem m = new JMenuItem(name);
 m.addActionListener(this);
 return m;
 }

 public static void main(String[] s) {
 new Editor().setVisible(true);
 }
 }

Editor is a JFrame that lays itself out with a JEditorPane (which is covered in Chap‐
ter 18) and a pull-down menu. From the pull-down File menu, we can Open, Save, or
Quit. The actionPerformed() method catches the events associated with these menu
selections and takes the appropriate action.

The interesting parts of Editor are the private methods loadFile() and save
File(). The loadFile() method creates a new JFileChooser and calls its showOpen
Dialog() method.

A JFileChooser does its work when the showOpenDialog() method is called. This
method blocks the caller until the dialog completes its job, at which time the file chooser
disappears. After that, we can retrieve the designated file with the getFile() method.
In loadFile(), we convert the selected File to a URL and pass it to the JEditorPane,
which displays the selected file. As you’ll learn in the next chapter, JEditorPane can
display HTML and RTF files.

You can fill out the unfinished saveFile() method if you wish, but it would be prudent
to add the standard safety precautions. For example, you could use one of the confir‐
mation dialogs we just looked at to prompt the user before overwriting an existing file.

The Color Chooser
Swing is chock full of goodies. JColorChooser is yet another ready-made dialog supplied
with Swing; it allows your users to choose colors. The following brief example shows
how easy it is to use JColorChooser:

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class LocalColor {
 public static void main(String[] args) {
 final JFrame frame = new JFrame("LocalColor v1.0");
 final Container content = frame.getContentPane(); // unnecessary in 5.0+
 content.setLayout(new GridBagLayout());
 JButton button = new JButton("Change color...");
 content.add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

664 | Chapter 17: Using Swing Components

 Color c = JColorChooser.showDialog(frame,
 "Choose a color", content.getBackground());
 if (c != null) content.setBackground(c);
 }
 });

 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

This example shows a frame window with a single button. When you click on the button,
a color chooser pops up. After you select a color, it becomes the background color of
the frame window.

Basically, all we have to do is call JColorChooser’s static method showDialog(). In this
example, we specified a parent component, a dialog title, and an initial color value. But
you can get away with just specifying a parent component. Whatever color the user
chooses is returned; if the user presses the Cancel button, null is returned.

Dialogs | 665

CHAPTER 18

More Swing Components

In the previous chapter, we described most of the components that Swing offers for
building user interfaces. In this chapter, you’ll find out about the rest. These include
Swing’s text components, trees, and tables. These types of components have considerable
depth but are quite easy to use if you accept their default options. We’ll show you the
easy way to use these components and start to describe the more advanced features of
each. Later in this chapter, we’ll also give an example of how to implement your own,
custom components in Swing.

Text Components
Swing offers sophisticated text components, from plain-text entry boxes to HTML ren‐
derers. For full coverage of Swing’s text capabilities, see O’Reilly’s Java Swing. In that
encyclopedic book, several meaty chapters are devoted to text. It’s a huge subject; we’ll
just scratch the surface here.

Let’s begin by examining the simpler text components. JTextField is a single-line text
editor and JTextArea is a simple, multiline text editor. Both JTextField and JTextAr
ea derive from the JTextComponent class, which provides the functionality they have
in common. This includes methods for setting and retrieving the displayed text, spec‐
ifying whether the text is “editable” or read-only, manipulating the cursor position
within the text, and manipulating text selections.

Observing changes in text components requires an understanding of how the compo‐
nents implement the Model-View-Controller (MVC) architecture. You may recall from
the last chapter that Swing components implement a true MVC architecture. It’s in the
text components that you first get an inkling of a clear separation between the M and
VC parts of the MVC architecture. The model for text components is an object called
a Document. When you add or remove text from a JTextField or a JTextArea, the
corresponding Document is changed. It’s the document itself, not the visual components,

667

that generates text-related events when something changes. To receive notification of
JTextArea changes, therefore, you register with the underlying Document, not with the
JTextArea component itself:

 JTextArea textArea = new JTextArea();
 Document doc = textArea.getDocument();
 doc.addDocumentListener(someListener);

As you’ll see in an upcoming example, you can easily have more than one visual text
component use the same underlying Document data model.

In addition, JTextField components generate ActionEvents whenever the user presses
the Return key within the field. To get these events, just implement the ActionListen
er interface and register your listener using the addActionListener() method.

The next sections contain a couple of simple applications that show you how to work
with text areas and fields.

The TextEntryBox Application
Our first example, TextEntryBox, creates a JTextArea and ties it to a JTextField, as
you can see in Figure 18-1.

Figure 18-1. The TextEntryBox application

When the user hits Return in the JTextField, we receive an ActionEvent and add the
line to the JTextArea’s display. Try it out. You may have to click your mouse in the
JTextField to give it focus before typing in it. If you fill up the display with lines, you
can test-drive the scroll bar:

 //file: TextEntryBox.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class TextEntryBox {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Text Entry Box");

668 | Chapter 18: More Swing Components

 final JTextArea area = new JTextArea();
 area.setFont(new Font("Serif", Font.BOLD, 18));
 area.setText("Howdy!\n");
 final JTextField field = new JTextField();

 frame.add(new JScrollPane(area), BorderLayout.CENTER);
 frame.add(field, BorderLayout.SOUTH);
 field.requestFocus();

 field.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 area.append(field.getText() + '\n');
 field.setText("");
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 300);
 frame.setVisible(true);
 }
 }

TextEntryBox is exceedingly simple; we’ve done a few things to make it more interesting.
We give the text area a bigger font using Component’s setFont() method; fonts are
discussed in Chapter 20. Finally, we want to be notified whenever the user presses Return
in the text field, so we register an anonymous inner class as a listener for action events.

Pressing Return in the JTextField generates an action event, and that’s where the fun
begins. We handle the event in the actionPerformed() method of our inner Action
Listener implementation. Then, we use the getText() and setText() methods to
manipulate the text that the user has typed. These methods can be used for JText
Field and JTextArea, as these components are both derived from the JTextCompo
nent class and, therefore, have some common functionality.

The event handler, actionPerformed(), calls field.getText() to read the text that the
user typed into our JTextField. It then adds this text to the JTextArea by calling
area.append(). Finally, we clear the text field by calling the method field.set
Text(""), preparing it for more input.

Remember, the text components really are distinct from the text data model, the Docu
ment. When you call setText(), getText(), or append(), these methods are shorthand
for operations on an underlying Document.

By default, JTextField and JTextArea are editable; you can type and edit in both text
components. They can be changed to output-only areas by calling setEdita
ble(false). Both text components also support selections. A selection is a range of text
that is highlighted for copying, cutting, or pasting in your windowing system. You select
text by dragging the mouse over it; you can then cut, copy, and paste it into other text
windows using the default keyboard gestures. On most systems, these are Ctrl-C for

Text Components | 669

copy, Ctrl-V for paste, and Ctrl-X for cut (on the Mac it’s Command-C, Command-V,
and Command-X). You can also programmatically manage these operations using the
JTextComponent’s cut() , copy(), and paste() methods. You could, for example, create
a pop-up menu with the standard cut, copy, and paste options using these methods. The
current text selection is returned by getSelectedText(), and you can set the selection
using selectText(), which takes an index range or selectAll().

Notice how JTextArea fits neatly inside a JScrollPane. The scroll pane gives us the
expected scrollbars and scrolling behavior if the text in the JTextArea becomes too large
for the available space.

Formatted Text
The JFormattedTextField component provides explicit support for editing complex
formatted values such as numbers and dates. JFormattedTextField acts somewhat like
a JTextField, except that it accepts a format-specifying object in its constructor and
manages a complex object type (such as Date or Integer) through its setValue() and
getValue() methods. The following example shows the construction of a simple form
with different types of formatted fields:

 import java.text.*;
 import javax.swing.*;
 import javax.swing.text.*;
 import java.util.Date;

 public class

 FormattedFields
 {
 public static void main(String[] args) throws Exception {
 Box form = Box.createVerticalBox();
 form.add(new JLabel("Name:"));
 form.add(new JTextField("Joe User"));

 form.add(new JLabel("Birthday:"));
 JFormattedTextField birthdayField =
 new JFormattedTextField(new SimpleDateFormat("MM/dd/yy"));
 birthdayField.setValue(new Date());
 form.add(birthdayField);

 form.add(new JLabel("Age:"));
 form.add(new JFormattedTextField(new Integer(32)));

 form.add(new JLabel("Hairs on Body:"));
 JFormattedTextField hairsField
 = new JFormattedTextField(new DecimalFormat("###,###"));
 hairsField.setValue(new Integer(100000));
 form.add(hairsField);

670 | Chapter 18: More Swing Components

 form.add(new JLabel("Phone Number:"));
 JFormattedTextField phoneField =
 new JFormattedTextField(new MaskFormatter("(###)###-####"));
 phoneField.setValue("(314)555-1212");
 form.add(phoneField);

 JFrame frame = new JFrame("User Information");
 frame.getContentPane().add(form);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

JFormattedTextField can be constructed in a variety of ways. You can use a plain
instance of java.lang.Number (e.g., Integer and Float) as a prototype or set the layout
explicitly using a formatting object from the java.text package: java.text.Number
Format, java.text.DateFormat, or the more arbitrary java.text.MaskFormatter.
The NumberFormat and DateFormat classes of the java.text package are discussed in
Chapters 10 and 11. MaskFormatter allows you to construct arbitrary physical layout
conventions. In a moment, we’ll discuss input filtering and component validation, which
also allow you to restrict the kinds of characters that could fill the fields or perform
arbitrary checks on the data. Finally, we should mention that in this example, we’ve used
a Box container. A Box is just a Swing container that uses a BoxLayout, which we’ll discuss
more in Chapter 19.

After construction, you can set a valid value using setValue() and retrieve the last valid
value with getValue(). To do this, you’ll have to cast the value back to the correct type
based on the format you are using. For example, this statement retrieves the date from
our birthday field:

 Date bday = (Date)birthdayField.getValue();

JFormattedTextField validates its text when the user attempts to shift focus to a new
field (either by clicking with the mouse outside of the field or using keyboard naviga‐
tion). By default, JFormattedTextField handles invalid input by simply reverting to
the last valid value. If you wish to allow invalid input to remain in the field for further
editing, you can set the setFocusLostBehavior() method with the value JFormatted
TextField.COMMIT (the default is COMMIT_OR_REVERT). In any case, invalid input does
not change the value property retrieved by getValue().

Filtering Input
JFormattedTextField does not know about all format types itself; instead, it uses
AbstractFormatter objects that know about particular format types. The Abstract
Formatters, in turn, provide implementations of two interfaces: DocumentFilter and
NavigationFilter. A DocumentFilter attaches to implementations of Document and

Text Components | 671

allows you to intercept editing commands, modifying them as you wish. A Navigation
Filter can be attached to JTextComponents to control the movement of the cursor (as
in a mask-formatted field). You can implement your own AbstractFormatters for use
with JFormattedTextField, and, more generally, you can use the DocumentFilter
interface to control how documents are edited in any type of text component. For ex‐
ample, you could create a DocumentFilter that maps characters to uppercase or strange
symbols. DocumentFilter provides a low-level, edit-by-edit means of controlling or
mapping user input. We will show an example of this now. In the following section, we
discuss how to implement higher-level field validation that ensures the correctness of
data after it is entered, in the same way that the formatted text field did for us earlier.

DocumentFilter

The following example, DocFilter, applies a document filter to a JTextField. Our
DocumentFilter simply maps any input to uppercase. Here is the code:

 import java.text.*;
 import javax.swing.*;
 import javax.swing.text.*;

 public class DocFilter
 {
 public static void main(String[] args) throws Exception
 {
 JTextField field = new JTextField(30);

 ((AbstractDocument)(field.getDocument())).setDocumentFilter(
 new DocumentFilter()
 {
 public void insertString(
 FilterBypass fb, int offset, String string, AttributeSet attr)
 throws BadLocationException
 {
 fb.insertString(offset, string.toUpperCase(), attr);
 }

 public void replace(
 FilterBypass fb, int offset, int length, String string,
 AttributeSet attr) throws BadLocationException
 {
 fb.replace(offset, length, string.toUpperCase(), attr);
 }
 });

 JFrame frame = new JFrame("User Information");
 frame.add(field);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);

672 | Chapter 18: More Swing Components

 }
 }

The methods insertString() and replace() of the DocumentFilter are called when
text is added to the document or modified. Within them, we have an opportunity to
filter the text before passing it on. When we are ready to apply the text, we use the
FilterBypass reference to pass it along. FilterBypass has the same set of methods,
which apply the changes directly to the document. The DocumentFilter remove()
method can also be used to intercept edits to the document that remove characters. One
thing to note in our example is that not all Documents have a setDocumentFilter()
method. Instead, we have to cast our document to an AbstractDocument. Only docu‐
ment implementations that extend AbstractDocument accept filters (unless you imple‐
ment your own). This sad state of affairs is because the Document Filter API was added
in Java 1.4, and it was decided that changes could not be made to the original Docu
ment interface.

Validating Data
Low-level input filtering prevents you from doing such things as entering a number
where a character should be. In this section, we’re going to talk about high-level vali‐
dation, which accounts for things like February having only 28 days or a credit card
number being for a Visa or MasterCard. Whereas character filtering prevents you from
entering incorrect data, field validation happens after data has been entered. Normally,
validation occurs when the user tries to change focus and leave the field, either by click‐
ing the mouse or through keyboard navigation. Java 1.4 added the InputVerifier API,
which allows you to validate the contents of a component before focus is transferred.
Although we are going to talk about this in the context of text fields, an InputVerifi
er can actually be attached to any JComponent to validate its state in this way.

The following example creates a pair of text fields. The first allows any value to be
entered, while the second accepts only numbers between 0 and 100. When both fields
are happy, you can freely move between them. However, when you enter an invalid value
in the second field and try to leave, the program just beeps and selects the text. The
focus remains trapped until you correct the problem.

 import javax.swing.*;

 public class Validator
 {
 public static void main(String[] args) throws Exception {
 Box form = Box.createVerticalBox();
 form.add(new JLabel("Any Value"));
 form.add(new JTextField("5000"));

 form.add(new JLabel("Only 0-100"));
 JTextField rangeField = new JTextField("50");
 rangeField.setInputVerifier(new InputVerifier() {

Text Components | 673

 public boolean verify(JComponent comp) {
 JTextField field = (JTextField)comp;
 boolean passed = false;
 try {
 int n = Integer.parseInt(field.getText());
 passed = (0 <= n && n <= 100);
 } catch (NumberFormatException e) { }
 if (!passed) {
 comp.getToolkit().beep();
 field.selectAll();
 }
 return passed;
 }
 });
 form.add(rangeField);

 JFrame frame = new JFrame("User Information");
 frame.add(form);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
 }

We’ve created an anonymous inner class extending InputVerifier with this code. The
API is very simple; at validation time, our verify() method is called, and we are passed
a reference to the component needing checking. Here we cast to the correct type (we
know what we are verifying, of course) and parse the number. If it is out of range, we
beep and select the text. We then return true or false indicating whether the value
passes validation.

You can use an InputVerifier in combination with a JFormattedTextField to both
guide user input into the correct format and validate the semantics of what the user
entered.

Say the Magic Word
Before we move on from our discussion of formatted text, we should mention that Swing
includes a class just for typing passwords, called JPasswordField. A JPasswordField
behaves just like a JTextField (it’s a subclass), except every character typed is echoed
as the same, obfuscating character, typically an asterisk. Figure 18-2 shows the option
dialog example that was presented in Chapter 17. The example includes a JTextField
and a JPasswordField.

The creation and use of JPasswordField is basically the same as for JTextField. If you
find asterisks distasteful, you can tell the JPasswordField to use a different character
using the setEchoChar() method.

674 | Chapter 18: More Swing Components

Normally, you would use getText() to retrieve the text typed into the JPassword
Field. This method, however, is deprecated; you should use getPassword() instead.
The getPassword() method returns a character array rather than a String object. This
is done because character arrays are a little less vulnerable than Strings to discover by
memory-snooping password sniffer programs and they can be erased directly and easily.
If you’re not that concerned, you can simply create a new String from the character
array. Note that methods in the Java cryptographic classes accept passwords as character
arrays, not strings, so you can pass the results of a getPassword() call directly to meth‐
ods in the cryptographic classes without ever creating a String.

Figure 18-2. Using a JPasswordField in a dialog

Sharing a Data Model
Our next example shows how easy it is to make two or more text components share the
same Document; Figure 18-3 shows what the application looks like.

Figure 18-3. Three views of the same data model

Anything the user types into any text area is reflected in all of them. All we had to do is
make all the text areas use the same data model, like this:

Text Components | 675

 JTextArea areaFiftyOne = new JTextArea();
 JTextArea areaFiftyTwo = new JTextArea();
 areaFiftyTwo.setDocument(areaFiftyOne.getDocument());
 JTextArea areaFiftyThree = new JTextArea();
 areaFiftyThree.setDocument(areaFiftyOne.getDocument());

We could just as easily make seven text areas sharing the same document—or seventy.
While this example may not look very useful, keep in mind that you can scroll different
text areas to different places in the same document. That’s one of the beauties of putting
multiple views on the same data; you get to examine different parts of it. Another useful
technique is viewing the same data in different ways. You could, for example, view some
tabular numerical data as both a spreadsheet and a pie chart. The MVC architecture
that Swing uses means that it’s possible to do this in an intelligent way so that if numbers
in a spreadsheet are updated, a pie chart that uses the same data is automatically updated,
too.

This example works because, behind the scenes, there are a lot of events flying around.
When you type in one of the text areas, the text area receives the keyboard events. It
calls methods in the document to update its data. In turn, the document sends events
to the other text areas telling them about the updates so that they can correctly display
the document’s new data. But don’t worry about any of this; you just tell the text areas
to use the same data, and Swing takes care of the rest:

 //file: SharedModel.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class SharedModel {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Shared Model");

 JTextArea areaFiftyOne = new JTextArea();
 JTextArea areaFiftyTwo = new JTextArea();
 areaFiftyTwo.setDocument(areaFiftyOne.getDocument());
 JTextArea areaFiftyThree = new JTextArea();
 areaFiftyThree.setDocument(areaFiftyOne.getDocument());

 frame.setLayout(new GridLayout(3, 1));
 frame.add(new JScrollPane(areaFiftyOne));
 frame.add(new JScrollPane(areaFiftyTwo));
 frame.add(new JScrollPane(areaFiftyThree));

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
 }

676 | Chapter 18: More Swing Components

Setting up the display is simple. We use a GridLayout (discussed in the next chapter)
and add three text areas to the layout. Then, all we have to do is tell the text areas to use
the same Document.

HTML and RTF for Free
Most user interfaces will use only two subclasses of JTextComponent. These are the
simple JTextField and JTextArea classes that we just covered. That’s just the tip of the
iceberg, however. Swing offers sophisticated text capabilities through two other sub‐
classes of JTextComponent: JEditorPane and JTextPane.

The first of these, JEditorPane, can display HTML and Rich Text Format (RTF) docu‐
ments out of the box and provides a plug-in framework for support of other content
types. It fires one more type of event, a HyperlinkEvent. Subtypes of this event are fired
off when the mouse enters, exits, or clicks on a hyperlink. Combined with JEditor
Pane’s HTML display capabilities, it’s easy to build a simple browser. The following
browser, as shown in Figure 18-4, has only about 70 lines of code.

 //file: CanisMinor.java
 import java.awt.*;
 import java.awt.event.*;
 import java.net.*;
 import javax.swing.*;
 import javax.swing.event.*;

 public class CanisMinor extends JFrame {
 protected JEditorPane mEditorPane;
 protected JTextField mURLField;

 public CanisMinor(String urlString) {
 super("CanisMinor v1.0");
 createGUI(urlString);
 }

 protected void createGUI(String urlString) {
 setLayout(new BorderLayout());

 JToolBar urlToolBar = new JToolBar();
 mURLField = new JTextField(urlString, 40);
 urlToolBar.add(new JLabel("Location "));
 urlToolBar.add(mURLField);
 add(urlToolBar, BorderLayout.NORTH);

Text Components | 677

 mEditorPane = new JEditorPane();
 mEditorPane.setEditable(false);
 add(new JScrollPane(mEditorPane), BorderLayout.CENTER);

 openURL(urlString);

 mURLField.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 openURL(ae.getActionCommand());
 }
 });

 mEditorPane.addHyperlinkListener(new LinkActivator());

 setSize(500, 600);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 protected void openURL(String urlString) {
 try {
 URL url = new URL(urlString);
 mEditorPane.setPage(url);
 mURLField.setText(url.toExternalForm());
 }
 catch (Exception e) {
 System.out.println("Couldn't open " + urlString + ":" + e);
 }
 }

 class LinkActivator implements HyperlinkListener {
 public void hyperlinkUpdate(HyperlinkEvent he) {
 HyperlinkEvent.EventType type = he.getEventType();
 if (type == HyperlinkEvent.EventType.ACTIVATED)
 openURL(he.getURL().toExternalForm());
 }
 }

 public static void main(String[] args) {
 String urlString = "http://en.wikinews.org/wiki/Special:Random";
 if (args.length > 0)
 urlString = args[0];
 new CanisMinor(urlString).setVisible(true);
 }
 }

678 | Chapter 18: More Swing Components

Figure 18-4. The CanisMinor application, a simple web browser

JEditorPane is the center of this little application. Passing a URL to setPage() causes
the JEditorPane to load a new page, either from a local file or from somewhere across
the Internet. To go to a new page, enter it in the text field at the top of the window and
press Return. This fires an ActionEvent that sets the new page location of the JEditor
Pane. It can display RTF files, too (RTF is the text or nonbinary storage format for
Microsoft Word documents).

Responding to hyperlinks correctly is simply a matter of responding to the Hyperlin
kEvents thrown by the JEditorPane. This behavior is encapsulated in the LinkActiva
tor inner class. In this case, the only activity we are interested in is when the user
“activates” the hyperlink by clicking on it. We respond by setting the location of the
JEditorPane to the location given under the hyperlink. Surf away!

Behind the scenes, something called an EditorKit handles displaying documents for
the JEditorPane. Different kinds of EditorKits can display different kinds of docu‐
ments. For HTML, the HTMLEditorKit class (in the javax.swing.text.html package)
handles the display. Currently, this class supports HTML 3.2. Sun says that future en‐
hancements will move the HTMLEditorKit toward the HTML 4.0 standard, but even
with Java 7 this area hasn’t seen much progress. The HTMLEditorKit handles other fea‐
tures of HTML, including HTML forms, in the expected way—automatically submitting
results when a submit button is pushed. A FormSubmitEvent enables programmatic
involvement in form submission.

Text Components | 679

If you browse around with this example browser, you will quickly find that most modern
web pages can’t be rendered well by the current HTMLEditorKit. In their current state,
JEditorPane and HTMLEditorKit are best suited for simple uses such as an HTML help
system. There is an excellent commercial Java browser component from JadeLiquid
called WebRenderer.

There’s another component here that we haven’t covered before—the JToolBar. This
nifty container houses our URL text field. Initially, the JToolBar starts out at the top of
the window. But you can pick it up by clicking on the little dotted box near its left edge,
then drag it around to different parts of the window. You can place this toolbar at the
top, left, right, or bottom of the window, or you can drag it outside the window entirely,
where it will inhabit a window of its own. This behavior comes for free from the JTool
Bar class. We only had to create a JToolBar and add some components to it. The
JToolBar is just a container, so we add it to the content pane of our window to give it
an initial location.

Managing Text Yourself
Swing offers one last subclass of JTextComponent that can do just about anything you
want: JTextPane. The basic text components, JTextField and JTextArea, are limited
to a single font in a single style. But JTextPane, a subclass of JEditorPane, can display
multiple fonts and multiple styles in the same component. It also includes support for
highlighting, image embedding, and other advanced features.

We’ll take a peek at JTextPane by creating a text pane with some styled text. Remember,
the text itself is stored in an underlying data model, the Document. To create styled text,
we simply associate a set of text attributes with different parts of the document’s text.
Swing includes classes and methods for manipulating sets of attributes, like specifying
a bold font or a different color for the text. Attributes themselves are contained in a class
called SimpleAttributeSet; these attribute sets are manipulated with static methods
in the StyleConstants class. For example, to create a set of attributes that specifies the
color red, you could do this:

 SimpleAttributeSet redstyle = new SimpleAttributeSet();
 StyleConstants.setForeground(redstyle, Color.red);

To add some red text to a document, you would just pass the text and the attributes to
the document’s insertString() method, like this:

 document.insertString(6, "Some red text", redstyle);

The first argument to insertString() is an offset into the text. An exception is thrown
if you pass in an offset that’s greater than the current length of the document. If you pass
null for the attribute set, the text is added in the JTextPane’s default font and style.

Our simple example creates several attribute sets and uses them to add plain and styled
text to a JTextPane, as shown in Figure 18-5:

680 | Chapter 18: More Swing Components

 //file: Styling.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.text.*;

 public class Styling extends JFrame {
 private JTextPane textPane;

 public Styling() {
 super("Stylin' v1.0");
 setSize(300, 200);

 textPane = new JTextPane();
 textPane.setFont(new Font("Serif", Font.PLAIN, 24));

 // create some handy attribute sets
 SimpleAttributeSet red = new SimpleAttributeSet();
 StyleConstants.setForeground(red, Color.red);
 StyleConstants.setBold(red, true);
 SimpleAttributeSet blue = new SimpleAttributeSet();
 StyleConstants.setForeground(blue, Color.blue);
 SimpleAttributeSet italic = new SimpleAttributeSet();
 StyleConstants.setItalic(italic, true);
 StyleConstants.setForeground(italic, Color.orange);

 // add the text
 append("In a ", null);
 append("sky", blue);
 append(" full of people\nOnly some want to ", null);
 append("fly", italic);
 append("\nIsn't that ", null);
 append("crazy", red);
 append("?", null);

 add(new JScrollPane(textPane), BorderLayout.CENTER);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 protected void append(String s, AttributeSet attributes) {
 Document d = textPane.getDocument();
 try { d.insertString(d.getLength(), s, attributes); }
 catch (BadLocationException ble) {}
 }

 public static void main(String[] args) {
 new Styling().setVisible(true);
 }
 }

Text Components | 681

Figure 18-5. Using styled text in a JTextPane

This example creates a JTextPane, which is saved in a member variable. Three different
attribute sets are created using combinations of text styles and foreground colors. Then,
using a helper method called append(), text is added to the JTextPane.

The append() method tacks a text String on the end of the JTextPane’s document,
using the supplied attributes. Remember that if the attributes are null, the text is dis‐
played with the JTextPane’s default font and style.

You can go ahead and add your own text if you wish. If you place the caret inside one
of the differently styled words and type, the new text comes out in the appropriate style.
Pretty cool, eh? You’ll also notice that JTextPane gives us word-wrapping behavior for
free. And because we’ve wrapped the JTextPane in a JScrollPane, we get scrolling for
free, too. Swing allows you to do some really cool stuff without breaking a sweat. Just
wait—there’s plenty more to come.

This simple example should give you some idea of what JTextPane can do. It’s reasonably
easy to build a simple word processor with JTextPane, and complex commercial-grade
word processors are definitely possible.

If JTextPane still isn’t good enough for you, or you need some finer control over char‐
acter, word, and paragraph layout, you can actually draw text, carets, and highlight
shapes yourself. A class in the 2D API called TextLayout simplifies much of this work,
but it’s outside the scope of this book. For coverage of TextLayout and other advanced
text drawing topics, see Java 2D Graphics by Jonathan Knudsen (O’Reilly).

Focus Navigation
We’ve brought up the topic of focus many times in our discussion so far, and we’ve told
you that the handling and user navigation of focus is mostly done automatically. The
focus system is very powerful and can be heavily customized through the use of “focus
traversal policy” objects that control keyboard navigation. For typical application be‐
havior, you won’t have to deal with this directly, but we’ll explain a few features you
should know about.

Swing handles keyboard focus navigation through the KeyboardFocusManager class.
This class uses FocusTraversalPolicy “strategy” objects that implement the actual

682 | Chapter 18: More Swing Components

schemes for locating the next component to receive focus. There are two primary Fo
cusTraversalPolicy types supplied with Java. The first, DefaultFocusTraversalPo
licy, is part of the AWT package. It emulates the legacy AWT-style focus management
that navigated components in the order in which they were added to their container.
The next, LayoutFocusTraversalPolicy, is the default for all Swing applications. It
examines the layout and attempts to provide the more typical navigation from left to
right and top to bottom, based on component position and size.

The focus traversal policy is inherited from containers and oriented around groups of
components known as “root cycles.” By default, each individual window and JInter
nalFrame is its own root cycle. In other words, focus traverses all of its child components
repeatedly (jumping from the last component back to the first), and won’t, by default,
leave the container through keyboard navigation.

The default Swing policy uses the following keys for keyboard navigation:
Forward

Tab or Ctrl-Tab (Ctrl-Tab also works inside text areas)

Back
Shift-Tab or Ctrl-Shift-Tab (Ctrl-Shift-Tab also works inside text areas)

You can define your own focus traversal keys for forward and back navigation, as well
as for navigation across root cycles using the setFocusTraversalKeys() method of a
container. Here is an example that adds the keystroke Ctrl-N to the list of forward key
navigation for components in a Frame:

 frame.getFocusTraversalKeys(
 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS);
 AWTKeyStroke ks = AWTKeyStroke.getAWTKeyStroke(
 KeyEvent.VK_N, InputEvent.CTRL_DOWN_MASK);
 Set new = new HashSet(old);
 set.add(ks);
 frame.setFocusTraversalKeys(
 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS,set);

Keys are defined by the AWTKeyStroke class, which encapsulates the key and input
modifiers—in this case, the Control key. Constants in the KeyboardFocusManager
specify forward, back, and up or down root cycle transfer across windows.

Finally, you can also move focus programmatically using the following methods of
KeyboardFocusManager:

 focusNextComponent()
 focusPreviousComponent()
 upFocusCycle()
 downFocusCycle()

Focus Navigation | 683

Trees
One of Swing’s advanced components is JTree. Trees are good for representing hier‐
archical information, like the contents of a disk drive or a company’s organizational
chart. As with all Swing components, the data model is distinct from the visual repre‐
sentation. This means you can do things such as update the data model and trust that
the visual component will be updated properly.

JTree is powerful and complex. It’s big enough, in fact, that like the text tools, the classes
that support JTree have their own package, javax.swing.tree. However, if you accept
the default options for almost everything, JTree is very easy to use. Figure 18-6 shows
a JTree running in a Swing application that we’ll describe later.

Figure 18-6. The JTree class in action

Nodes and Models
A tree’s data model is made up of interconnected nodes. A node has a name—typically,
a parent—and some number of children (possibly 0). In Swing, a node is represented
by the TreeNode interface. Nodes that can be modified are represented by MutableTree
Node. A concrete implementation of this interface is DefaultMutableTreeNode. One
node, called the root node, usually resides at the top of the hierarchy.

A tree’s data model is represented by the TreeModel interface. Swing provides an im‐
plementation of this interface called DefaultTreeModel. You can create a DefaultTree
Model by passing a root TreeNode to its constructor.

You could create a TreeModel with just one node like this:
 TreeNode root = new DefaultMutableTreeNode("Root node");
 TreeModel model = new DefaultTreeModel(root);

Here’s another example with a real hierarchy. The root node contains two nodes, Node
1 and Group. The Group node contains Node 2 and Node 3 as subnodes.

684 | Chapter 18: More Swing Components

 MutableTreeNode root = new DefaultMutableTreeNode("Root node");
 MutableTreeNode group = new DefaultMutableTreeNode("Group");
 root.insert(group, 0);
 root.insert(new DefaultMutableTreeNode("Node 1"), 1);
 group.insert(new DefaultMutableTreeNode("Node 2"), 0);
 group.insert(new DefaultMutableTreeNode("Node 3"), 1);

The second parameter to the insert() method is the index of the node in the parent.
After you organize your nodes, you can create a TreeModel in the same way as before:

 TreeModel model = new DefaultTreeModel(root);

Save a Tree
Once you have a tree model, creating a JTree is simple:

 JTree tree = new JTree(model);

The JTree behaves like a souped-up JList. As Figure 18-6 shows, the JTree automat‐
ically shows nodes with no children as a sheet of paper, while nodes that contain other
nodes are shown as folders. You can expand and collapse nodes by clicking on the little
knobs to the left of the folder icons. You can also expand and collapse nodes by double-
clicking on them. You can select nodes; multiple selections are possible using the Shift
and Control keys. And, as with a JList, you should put a JTree in a JScrollPane if you
want it to scroll.

Tree Events
A tree fires off several flavors of events. You can find out when nodes have been expanded
and collapsed, when nodes are about to be expanded or collapsed (because the user has
clicked on them), and when selections occur. Three distinct event listener interfaces
handle this information.

 TreeExpansionListener
 TreeWillExpandListener
 TreeSelectionListener

Tree selections are a tricky business. You can select any combination of nodes by using
the Control key and clicking on nodes. Tree selections are described by a TreePath,
which describes how to get from the root node to the selected nodes.

The following example registers an event listener that prints out the last selected node:
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 System.out.println(tp.getLastPathComponent());
 }
 });

Focus Navigation | 685

A Complete Example
This section contains an example that showcases the following tree techniques:

• Construction of a tree model, using DefaultMutableTreeNode
• Creation and display of a JTree
• Listening for tree selection events
• Modifying the tree’s data model while the JTree is showing

Here’s the source code for the example:
 //file: PartsTree.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.event.*;
 import javax.swing.tree.*;

 public class PartsTree {
 public static void main(String[] args) {
 // create a hierarchy of nodes
 MutableTreeNode root = new DefaultMutableTreeNode("Parts");
 MutableTreeNode beams = new DefaultMutableTreeNode("Beams");
 MutableTreeNode gears = new DefaultMutableTreeNode("Gears");
 root.insert(beams, 0);
 root.insert(gears, 1);
 beams.insert(new DefaultMutableTreeNode("1x4 black"), 0);
 beams.insert(new DefaultMutableTreeNode("1x6 black"), 1);
 beams.insert(new DefaultMutableTreeNode("1x8 black"), 2);
 beams.insert(new DefaultMutableTreeNode("1x12 black"), 3);
 gears.insert(new DefaultMutableTreeNode("8t"), 0);
 gears.insert(new DefaultMutableTreeNode("24t"), 1);
 gears.insert(new DefaultMutableTreeNode("40t"), 2);
 gears.insert(new DefaultMutableTreeNode("worm"), 3);
 gears.insert(new DefaultMutableTreeNode("crown"), 4);

 // create the JTree
 final DefaultTreeModel model = new DefaultTreeModel(root);
 final JTree tree = new JTree(model);

 // create a text field and button to modify the data model
 final JTextField nameField = new JTextField("16t");
 final JButton button = new JButton("Add a part");
 button.setEnabled(false);
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 TreePath tp = tree.getSelectionPath();
 MutableTreeNode insertNode =
 (MutableTreeNode)tp.getLastPathComponent();
 int insertIndex = 0;

686 | Chapter 18: More Swing Components

 if (insertNode.getParent() != null) {
 MutableTreeNode parent =
 (MutableTreeNode)insertNode.getParent();
 insertIndex = parent.getIndex(insertNode) + 1;
 insertNode = parent;
 }
 MutableTreeNode node =
 new DefaultMutableTreeNode(nameField.getText());
 model.insertNodeInto(node, insertNode, insertIndex);
 }
 });
 JPanel addPanel = new JPanel(new GridLayout(2, 1));
 addPanel.add(nameField);
 addPanel.add(button);

 // listen for selections
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 button.setEnabled(tp != null);
 }
 });

 // create a JFrame to hold the tree
 JFrame frame = new JFrame("PartsTree v1.0");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.add(new JScrollPane(tree));
 frame.add(addPanel, BorderLayout.SOUTH);
 frame.setVisible(true);
 }
 }

The example begins by creating a node hierarchy. The root node is called Parts. It
contains two subnodes named Beams and Gears, as shown:

 MutableTreeNode root = new DefaultMutableTreeNode("Parts");
 MutableTreeNode beams = new DefaultMutableTreeNode("Beams");
 MutableTreeNode gears = new DefaultMutableTreeNode("Gears");
 root.insert(beams, 0);
 root.insert(gears, 1);

The Beams and Gears nodes contain a handful of items each.

The “Add a part” button inserts a new item into the tree at the level of the current node,
and just after it. You can specify the name of the new node by typing it in the text field
above the button. To determine where the node should be added, the current selection
is first obtained in the anonymous inner class ActionListener:

 TreePath tp = tree.getSelectionPath();
 MutableTreeNode insertNode =
 (MutableTreeNode)tp.getLastPathComponent();

Focus Navigation | 687

The new node should be added to the parent node of the current node, so it ends up
being a sibling of the current node. The only hitch here is that if the current node is the
root node, it won’t have a parent. If a parent does exist, we determine the index of the
currently selected node, and then add the new node at the next index:

 int insertIndex = 0;
 if (insertNode.getParent() != null) {
 MutableTreeNode parent =
 (MutableTreeNode)insertNode.getParent();
 insertIndex = parent.getIndex(insertNode) + 1;
 insertNode = parent;
 }
 MutableTreeNode node =
 new DefaultMutableTreeNode(nameField.getText());
 model.insertNodeInto(node, insertNode, insertIndex);

You must add the new node to the tree’s data model using insertNodeInto()—not to
the MutableTableNode itself. The model notifies the JTree that it needs to update itself.

We have another event handler in this example, one that listens for tree selection events.
Basically, we want to enable our “Add a part” button only if a current selection exists:

 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 button.setEnabled(tp != null);
 }
 });

When you first start this application, the button is disabled. As soon as you select some‐
thing, it is enabled, and you can add nodes to the tree with abandon. If you want to see
the button disabled again, you can unselect everything by holding the Control key and
clicking on the current selection.

Tables
Tables present information in orderly rows and columns. This is useful for presenting
financial figures or representing data from a relational database. Like trees, tables in
Swing are incredibly powerful and customizable. If you go with the default options,
they’re also pretty easy to use.

The JTable class represents a visual table component. A JTable is based on a TableMo
del, one of a dozen or so supporting interfaces and classes in the javax.swing.table
package.

A First Stab: Freeloading
JTable has one constructor that creates a default table model for you from arrays of
data. You just need to supply it with the names of your column headers and a 2D array

688 | Chapter 18: More Swing Components

of Objects representing the table’s data. The first index selects the table’s row; the second
index selects the column. The following example shows how easy it is to get going with
tables using this constructor:

 //file: DullShipTable.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.table.*;

 public class DullShipTable {
 public static void main(String[] args) {
 // create some tabular data
 String[] headings =
 new String[] {"Number", "Hot?", "Origin",
 "Destination", "Ship Date", "Weight" };
 Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },
 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",
 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 // create the data model and the JTable
 JTable table = new JTable(data, headings);

 JFrame frame = new JFrame("DullShipTable v1.0");
 frame.add(new JScrollPane(table));

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(500, 200);
 frame.setVisible(true);
 }
 }

This small application produces the display shown in Figure 18-7.

Figure 18-7. A rudimentary JTable

Tables | 689

For very little typing, we’ve gotten some pretty impressive stuff. Here are a few things
that come for free:
Column headings

The JTable has automatically formatted the column headings differently than the
table cells. It’s clear that they are not part of the table’s data area.

Cell overflow
If a cell’s data is too long to fit in the cell, it is automatically truncated and shown
with an ellipsis (...). This is shown in the Origin cell in the second row in Figure 18-7.

Row selection
You can click on any cell in the table to select its entire row. This behavior is con‐
trollable; you can select single cells, entire rows, entire columns, or some combi‐
nation of these. To configure the JTable’s selection behavior, use the setCellSe
lectionEnabled(), setColumnSelectionAllowed(), and setRowSelectionAl
lowed() methods.

Cell editing
Double-clicking on a cell opens it for editing; you’ll get a little cursor in the cell.
You can type directly into the cell to change the cell’s data.

Column sizing
If you position the mouse cursor between two column headings, you’ll get a little
left-right arrow cursor. Click and drag to change the size of the column to the left.
Depending on how the JTable is configured, the other columns may also change
size. The resizing behavior is controlled with the setAutoResizeMode() method.

Column reordering
If you click and drag on a column heading, you can move the entire column to
another part of the table.

Play with this for a while. It’s fun!

Round Two: Creating a Table Model
JTable is a very powerful component. You get a lot of very nice behavior for free. How‐
ever, the default settings are not quite what we wanted for this simple example. In par‐
ticular, we intended the table entries to be read-only; they should not be editable. Also,
we’d like entries in the Hot? column to be checkboxes instead of words. Finally, it would
be nice if the Weight column were formatted appropriately for numbers rather than for
text.

To achieve more flexibility with JTable, we’ll write our own data model by implement‐
ing the TableModel interface. Fortunately, Swing makes this easy by supplying a class
that does most of the work, AbstractTableModel. To create a table model, we’ll just
subclass AbstractTableModel and override whatever behavior we want to change.

690 | Chapter 18: More Swing Components

At a minimum, all AbstractTableModel subclasses have to define the following three
methods:
public int getRowCount(), public int getColumnCount()

Returns the number of rows and columns in this data model

public Object getValueAt(int row , int column)
Returns the value for the given cell

When the JTable needs data values, it calls the getValueAt() method in the table model.
To get an idea of the total size of the table, JTable calls the getRowCount() and getCo
lumnCount() methods in the table model.

A very simple table model looks like this:
 public static class ShipTableModel extends AbstractTableModel {
 private Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },
 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",
 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }

 public Object getValueAt(int row, int column) {
 return data[row][column];
 }
 }

We’d like to use the same column headings that we used in the previous example. The
table model supplies these through a method called getColumnName(). We could add
column headings to our simple table model like this:

 private String[] headings = new String[] {
 "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight"
 };

 public String getColumnName(int column) {
 return headings[column];
 }

By default, AbstractTableModel makes all its cells noneditable, which is what we want‐
ed. No changes need to be made for this.

The final modification is to have the Hot? column and the Weight column formatted
specially. To do this, we give our table model some knowledge about the column types.

Tables | 691

JTable automatically generates checkbox cells for Boolean column types and specially
formatted number cells for Number types. To give the table model some intelligence
about its column types, we override the getColumnClass() method. The JTable calls
this method to determine the data type of each column. It may then represent the data
in a special way. This table model returns the class of the item in the first row of its data:

 public Class getColumnClass(int column) {
 return data[0][column].getClass();
 }

That’s really all there is to do. The following complete example illustrates how you can
use your own table model to create a JTable using the techniques just described:

 //file: ShipTable.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.table.*;

 public class ShipTable {
 public static class ShipTableModel extends AbstractTableModel {
 private String[] headings = new String[] {
 "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight"
 };
 private Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },
 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",
 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }

 public Object getValueAt(int row, int column) {
 return data[row][column];
 }

 public String getColumnName(int column) {
 return headings[column];
 }

 public Class getColumnClass(int column) {
 return data[0][column].getClass();
 }
 }

 public static void main(String[] args)

692 | Chapter 18: More Swing Components

 {
 // create the data model and the JTable
 TableModel model = new ShipTableModel();
 JTable table = new JTable(model);

 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

 JFrame frame = new JFrame("ShipTable v1.0");
 frame.getContentPane().add(new JScrollPane(table));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(500, 200);
 frame.setVisible(true);
 }
 }

The running application is shown in Figure 18-8.

Figure 18-8. Customizing a table

Round Three: A Simple Spreadsheet
To illustrate just how powerful and flexible the separation of the data model from the
GUI can be, we’ll show a more complex model. In the following example, we’ll imple‐
ment a very slim but functional spreadsheet (see Figure 18-9) using almost no custom‐
ization of the JTable. All of the data processing is in a TableModel called SpreadSheet
Model.

Figure 18-9. A simple spreadsheet

Tables | 693

1. You may need to double-click on a cell to edit it.

Our spreadsheet does the expected stuff—allowing you to enter numbers or mathe‐
matical expressions such as (A1*B2)+C3 into each cell.1 All cell editing and updating is
driven by the standard JTable. We implement the methods necessary to set and retrieve
cell data. Of course, we don’t do any real validation here, so it’s easy to break our table.
(For example, there is no check for circular dependencies, which may be undesirable.)

As you will see, the bulk of the code in this example is in the inner class used to parse
the value of the equations in the cells. If you don’t find this part interesting, you might
want to skip ahead. But if you have never seen an example of this kind of parsing before,
we think you will find it to be very cool. Through the magic of recursion and Java’s
powerful String manipulation, it takes us only about 50 lines of code to implement a
parser capable of handling basic arithmetic with arbitrarily nested parentheses.

Here’s the code:
 //file: SpreadsheetModel.java
 import java.util.StringTokenizer;
 import javax.swing.*;
 import javax.swing.table.AbstractTableModel;
 import java.awt.event.*;

 public class SpreadsheetModel extends AbstractTableModel {
 Expression [][] data;

 public SpreadsheetModel(int rows, int cols) {
 data = new Expression [rows][cols];
 }

 public void setValueAt(Object value, int row, int col) {
 data[row][col] = new Expression((String)value);
 fireTableDataChanged();
 }

 public Object getValueAt(int row, int col) {
 if (data[row][col] != null)
 try { return data[row][col].eval() + ""; }
 catch (BadExpression e) { return "Error"; }
 return "";
 }
 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }
 public boolean isCellEditable(int row, int col) { return true; }

 class Expression {
 String text;
 StringTokenizer tokens;
 String token;

694 | Chapter 18: More Swing Components

 Expression(String text) { this.text = text.trim(); }

 float eval() throws BadExpression {
 tokens = new StringTokenizer(text, " */+-()", true);
 try { return sum(); }
 catch (Exception e) { throw new BadExpression(); }
 }

 private float sum() {
 float value = term();
 while(more() && match("+-"))
 if (match("+")) { consume(); value = value + term(); }
 else { consume(); value = value - term(); }
 return value;
 }
 private float term() {
 float value = element();
 while(more() && match("*/"))
 if (match("*")) { consume(); value = value * element(); }
 else { consume(); value = value / element(); }
 return value;
 }
 private float element() {
 float value;
 if (match("(")) { consume(); value = sum(); }
 else {
 String svalue;
 if (Character.isLetter(token().charAt(0))) {
 int col = findColumn(token().charAt(0) + "");
 int row = Character.digit(token().charAt(1), 10);
 svalue = (String)getValueAt(row, col);
 } else
 svalue = token();
 value = Float.parseFloat(svalue);
 }
 consume(); // ")" or value token
 return value;
 }
 private String token() {
 if (token == null)
 while ((token=tokens.nextToken()).equals(" "));
 return token;
 }
 private void consume() { token = null; }
 private boolean match(String s) { return s.indexOf(token())!=-1; }
 private boolean more() { return tokens.hasMoreTokens(); }
 }

 class BadExpression extends Exception { }

 public static void main(String [] args) {

Tables | 695

 JFrame frame = new JFrame("Excelsior!");
 JTable table = new JTable(new SpreadsheetModel(15, 5));
 table.setPreferredScrollableViewportSize(table.getPreferredSize());
 table.setCellSelectionEnabled(true);
 frame.getContentPane().add(new JScrollPane(table));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.show();
 }
 }

Our model extends AbstractTableModel and overrides just a few methods. As you can
see, our data is stored in a 2D array of Expression objects. The setValueAt() method
of our model creates Expression objects from the strings typed by the user and stores
them in the array. The getValueAt() method returns a value for a cell by calling the
expression’s eval() method. If the user enters some invalid text in a cell, a BadExpres
sion exception is thrown, and the word error is placed in the cell as a value. The only
other methods of TableModel we must override are getRowCount(), getColumn
Count(), and isCellEditable() in order to determine the dimensions of the spread‐
sheet and to allow the user to edit the fields. That’s it! The helper method findCol
umn() is inherited from the AbstractTableModel.

Now on to the good stuff. We’ll employ our old friend StringTokenizer to read the
expression string as separate values and the mathematical symbols (+-*/()) one by one.
These tokens are then processed by the three parser methods: sum(), term(), and
element(). The methods call one another generally from the top down, but it might be
easier to read them in reverse to see what’s happening.

At the bottom level, element() reads individual numeric values or cell names (e.g., 5.0
or B2). Above that, the term() method operates on the values supplied by element()
and applies any multiplication or division operations. And at the top, sum() operates
on the values that are returned by term() and applies addition or subtraction to them.
If the element() method encounters parentheses, it makes a call to sum() to handle the
nested expression. Eventually, the nested sum returns (possibly after further recursion),
and the parenthesized expression is reduced to a single value, which is returned by
element(). The magic of recursion has untangled the nesting for us. The other small
piece of magic here is in the ordering of the three parser methods. Having sum() call
term() and term() call element() imposes the precedence of operators; that is, “atomic”
values are parsed first (at the bottom), then multiplication, and finally, addition or
subtraction.

The grammar parsing relies on four simple helper methods that make the code more
manageable: token(), consume(), match(), and more(). token() calls the string to‐
kenizer to get the next value, and match() compares it with a specified value. con
sume() is used to move to the next token, and more() indicates when the final token
has been processed.

696 | Chapter 18: More Swing Components

Sorting and Filtering
Java 6 introduced easy-to-use sorting and filtering for JTables. The following example
demonstrates use of the default TableRowSorter and a simple regular expression filter.

 //file: SortFilterTable.java
 import javax.swing.*;
 import javax.swing.table.*;
 import javax.swing.event.*;

 import java.awt.BorderLayout;
 import java.util.regex.PatternSyntaxException;

 public class SortFilterTable extends JFrame {

 private JTable table;
 private JTextField filterField;

 public SortFilterTable() {

 super("Table Sorting & Filtering");
 setSize(500, 200);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a simple table model
 TableModel model = new AbstractTableModel() {
 private String[] columns = {"Name", "Pet", "Children"};

 private Object[][] people = {
 {"Dan Leuck", "chameleon", 1},
 {"Pat Niemeyer", "sugar glider", 2},
 {"John Doe", "dog", 3},
 {"Jane Doe", "panda", 2}
 };

 public int getColumnCount() { return columns.length; }

 public int getRowCount() { return people.length; }

 public Object getValueAt(int row, int col) {
 return people[row][col];
 }

 public Class getColumnClass(int col) {
 return getValueAt(0, col).getClass();
 }

 };

 table = new JTable(model);
 table.setAutoCreateRowSorter(true);
 table.setFillsViewportHeight(true);

Tables | 697

 // Create the filter area
 JPanel filterPanel = new JPanel(new BorderLayout());
 JLabel filterLabel = new JLabel("Filter ",
 SwingConstants.TRAILING);
 filterPanel.add(filterLabel, BorderLayout.WEST);
 filterField = new JTextField();
 filterLabel.setLabelFor(filterField);
 filterPanel.add(filterField);

 // Apply the filter when the filter text field changes
 filterField.getDocument().addDocumentListener(
 new DocumentListener() {
 public void changedUpdate(DocumentEvent e) {
 filter();
 }
 public void insertUpdate(DocumentEvent e) {
 filter();
 }
 public void removeUpdate(DocumentEvent e) {
 filter();
 }
 });

 filterPanel.setBorder(BorderFactory.createEmptyBorder(2,
 2, 2, 2));

 add(filterPanel, BorderLayout.NORTH);

 add(new JScrollPane(table));
 }

 // Filter on the first column
 private void filter() {
 RowFilter<TableModel, Object> filter = null;

 // Update if the filter expression is valid
 try {
 // Apply the regular expression to columns 0 and 1
 filter = RowFilter.regexFilter(filterField.getText(),
 0, 1);
 } catch (PatternSyntaxException e) {
 return;
 }
 ((TableRowSorter)table.getRowSorter()).setRowFilter(
 filter);
 }

 public static void main(String[] args) {
 new SortFilterTable().setVisible(true);
 }
 }

698 | Chapter 18: More Swing Components

Try clicking on the column headers to sort. We are using the default sorting behavior,
which utilizes the natural sort order of cell values (i.e., alphabetical for strings, value for
numbers, etc.). You can easily override the sorting behavior by implementing your own
comparator and setting it on the TableRowSorter:

 TableRowSorter<TableModel> reverseSorter
 = new TableRowSorter<TableModel>(table.getModel());
 reverseSorter.setComparator(0, new Comparator<String>() {
 public int compare(String a, String b) {
 return -a.compareTo(b);
 }
 });
 table.setRowSorter(reverseSorter);

If you require more advanced sorting, you can subclass TableRowSorter or its super‐
class, DefaultRowSorter.

Entering text in the field above the table will apply a filter using the text as a regular
expression over the values in the first two columns (indices 0 and 1). For example, try
entering “Doe”. The table will now display only John Doe and Jane Doe.

Printing JTables
Swing makes the printing of JTables a snap. Think we’re kidding? If you accept the basic
default behavior, all that is required to pop up a print dialog box is the following:

 myJTable.print();

That’s it. The default behavior scales the printed table to the width of the page. This is
called “fit width” mode. You can control that setting using the PrintMode enumeration
of JTable, which has values of NORMAL and FIT_WIDTH:

 table.print(JTable.PrintMode.NORMAL);

The “normal” (ironically, nondefault) mode will allow the table to split across multiple
pages horizontally to print without sizing down. In both cases, the table rows may span
multiple pages vertically.

Other forms of the JTable print() method allow you to add header and footer text to
the page and to take greater control of the printing process and attributes. We’ll talk a
little more about printing when we cover 2D drawing in Chapter 20.

Desktops
At this point, you might be thinking that there’s nothing more that Swing could possibly
do, but it just keeps getting better. If you’ve ever wished that you could have windows
within windows in Java, Swing makes it possible with JDesktopPane and JInternal
Frame. Figure 18-10 shows how this appears.

Desktops | 699

You get a lot of behavior for free from JInternalFrame. Internal frames can be moved
by clicking and dragging the titlebar. They can be resized by clicking and dragging on
the window’s borders. Internal frames can be iconified, which means reducing them to
a small icon representation on the desktop. Internal frames may also be made to fit the
entire size of the desktop (maximized). To you, the programmer, the internal frame is
just a kind of special container. You can put your application’s data inside an internal
frame just as with any other type of container.

Figure 18-10. Using internal frames on a JDesktopPane

The following brief example shows how to create the windows shown in Figure 18-10:
 //file: Desktop.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.border.*;

 public class Desktop {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Desktop");

 JDesktopPane desktop = new JDesktopPane();
 for (int i = 0; i < 5; i++) {
 JInternalFrame internal =
 new JInternalFrame("Frame " + i, true, true, true, true);
 internal.setSize(180, 180);
 internal.setLocation(i * 20, i * 20);
 internal.setVisible(true);
 desktop.add(internal);
 }

 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(desktop);

700 | Chapter 18: More Swing Components

 frame.setVisible(true);
 }
 }

All we’ve done here is to create a JDesktopPane and add internal frames to it. When
each JInternalFrame is constructed, we specify a window title. The four true values
passed in the constructor specify that the new window should be resizable, closable,
maximizable, and iconifiable.

JInternalFrames fire off their own set of events. However, InternalFrameEvent and
InternalFrameListener are just like WindowEvent and WindowListener with the
names changed. If you want to hear about a JInternalFrame closing, just register an
InternalFrameListener and define the internalFrameClosing() method. This is just
like defining the windowClosing() method for a JFrame.

Pluggable Look-and-Feel
We mentioned before that Swing components can easily change their appearance, like
master spies or thespians. Generally, different kinds of components within an applica‐
tion have coordinated appearances that are similar in some way. For example, they
probably use the same font and the same basic color scheme. The collection of appear‐
ances and common behavior of GUI components is called a look-and-feel (L&F).

Part of the job of designing a GUI for an operating system is designing the L&F. Mac
OS, therefore, has its own distinctive L&F, as does Windows. Java offers several different
L&F schemes for Swing components. If you’re adept at graphic design, you can write
your own L&F schemes and easily convince Swing to use them. This chameleon-like
ability to change appearance is called pluggable look-and-feel, sometimes abbreviated
PLAF (don’t pronounce that out loud if others are eating).

Seeing is believing. Here’s an example that creates a handful of Swing components. Menu
items allow you to change the L&F dynamically while the application is running:

 //file: QuickChange.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class QuickChange extends JFrame {

 public QuickChange() {
 super("QuickChange v1.0");
 createGUI();
 }

 protected void createGUI() {
 setSize(300, 200);

Pluggable Look-and-Feel | 701

 // create a simple File menu
 JMenu file = new JMenu("File", true);
 JMenuItem quit = new JMenuItem("Quit");
 file.add(quit);
 quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });

 // create the Look & Feel menu
 JMenu lnf = new JMenu("Look & Feel", true);
 ButtonGroup buttonGroup = new ButtonGroup();
 final UIManager.LookAndFeelInfo[] info =
 UIManager.getInstalledLookAndFeels();
 for (int i = 0; i < info.length; i++) {
 JRadioButtonMenuItem item = new
 JRadioButtonMenuItem(info[i].getName(), i == 0);
 final String className = info[i].getClassName();
 item.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 try { UIManager.setLookAndFeel(className); }
 catch (Exception e) { System.out.println(e); }
 SwingUtilities.updateComponentTreeUI(QuickChange.this);
 }
 });
 buttonGroup.add(item);
 lnf.add(item);
 }

 // add the menu bar
 JMenuBar mb = new JMenuBar();
 mb.add(file);
 mb.add(lnf);
 setJMenuBar(mb);

 // add some components
 JPanel jp = new JPanel();
 jp.add(new JCheckBox("JCheckBox"));
 String[] names =
 new String[] { "Tosca", "Cavaradossi", "Scarpia",
 "Angelotti", "Spoletta", "Sciarrone",
 "Carceriere", "Il sagrestano", "Un pastore" };
 jp.add(new JComboBox(names));
 jp.add(new JButton("JButton"));
 jp.add(new JLabel("JLabel"));
 jp.add(new JTextField("JTextField"));
 JPanel main = new JPanel(new GridLayout(1, 2));
 main.add(jp);
 main.add(new JScrollPane(new JList(names)));
 setContentPane(main);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

702 | Chapter 18: More Swing Components

 public static void main(String[] args) {
 new QuickChange().setVisible(true);
 }
 }

The interesting part of this application is creating a menu of the available L&Fs. First,
we ask a class called UIManager to tell us all about the available L&Fs on our computer:

 final UIManager.LookAndFeelInfo[] info =
 UIManager.getInstalledLookAndFeels();

Information about L&Fs is returned as instances of UIManager.LookAndFeelInfo. De‐
spite the long name, there’s not much to this class; it just associates a name, such as
Metal, and the name of the class that implements the L&F, such as javax
.swing.plaf.metal.MetalLookAndFeel. In the QuickChange example, we create a
menu item from each L&F name. If the menu item is selected, we tell the UIManager to
use the selected L&F class. To make sure all the components are redrawn with the new
L&F, we call updateComponentTreeUI(), a static method in the SwingUtilities class.

The JDK includes several L&Fs: Windows, OS X, Motif, the original Metal L&F, the
highly customizable Synth, and the newest edition, Nimbus. Windows, OS X, and Motif
are recreations of their corresponding native desktop environments. If you’re running
Swing on Mac OS X, the default L&F is an implementation of Aqua, the UI design for
all new Mac applications. Unfortunately, you cannot use this L&F on any other platforms
because of licensing issues (the Windows L&F has similar restrictions).

The Metal L&F and its Ocean theme are the default on some platforms, but at this point
they appear dated compared to modern windowing systems. The newest edition, Nim‐
bus, is a far superior alternative. Its aethetics are on par with modern windowing systems
and its use of scaleable vector graphics allows it to shine on high-density displays at
various sizes. Nimbus is actually a highly evolved subclass of the Synth L&F.

Synth accommodates the new trend in skinnable user interfaces. Many applications now
allow users to customize the L&F very easily, using only images and simple preferences
files to create new appearances. Skinnability is not the same as a full-blown pluggable
L&F, but it lets you do a lot without any programming required. Synth acts like an
ordinary L&F, but can be customized through the use of images and XML description
files to create new looks. For example, the borders of components (such as the shiny
metal look of the Metal L&F) can be described by providing an example image and then
specifying the offsets of the interior “corners” as well as the method to use (stretch or
tile) to cover larger areas. Synth then uses the image to paint the borders of whatever
components you specify. Synth can do quite a lot and even allows you to specify Java
objects to be involved in painting, so you can resort to programming again if your L&F
gets too complex.

Pluggable Look-and-Feel | 703

Creating Custom Components
In this chapter and the previous one, we’ve worked with different user interface objects.
We’ve used Swing’s impressive repertoire of components as building blocks and exten‐
ded their functionality, but we haven’t actually created any new components. In this
section, we create an entirely new component from scratch, a dial.

Until now, our examples have been fairly self-contained; they generally know everything
about what to do and don’t rely on additional parts to do processing. Our menu example
created a DinnerFrame class that had a menu of dinner options, but it included all the
processing needed to handle the user’s selections. If we wanted to process the selections
differently, we’d have to modify the class. A true component separates the detection of
user input from the handling of those choices. It lets the user take some action and then
informs other interested parties by emitting events.

Generating Events
Because we want our new classes to be components, they should communicate the way
components communicate: by generating event objects and sending those events to
listeners. So far, we’ve written a lot of code that listened for events but haven’t seen an
example that generated its own custom events.

Generating events sounds like it might be difficult, but it isn’t. You can either create new
kinds of events by subclassing java.util.EventObject, or use one of the standard event
types. In either case, you just need to allow registration of listeners for your events and
provide a means to deliver events to those listeners. Swing’s JComponent class provides
a protected member variable called listenerList, which you can use to keep track of
event listeners. It’s an instance of EventListenerList; basically it acts like the maître d’
at a restaurant, keeping track of all event listeners, sorted by type.

Often, you won’t need to worry about creating a custom event type. JComponent has
methods that support firing of generic PropertyChangeEvents whenever one of a com‐
ponent’s properties changes. The example we’ll look at next uses this infrastructure to
fire PropertyChangeEvents whenever a value changes.

A Dial Component
The standard Swing classes don’t have a component that’s similar to an old-fashioned
dial—for example, the volume control on your radio. (The JSlider fills this role, of
course.) In this section, we implement a Dial class. The dial has a value that can be
adjusted by clicking and dragging to “twist” the dial (see Figure 18-11). As the value of
the dial changes, DialEvents are fired off by the component. The dial can be used just
like any other Java component. We even have a custom DialListener interface that
matches the DialEvent class.

704 | Chapter 18: More Swing Components

Figure 18-11. The Dial component

Here’s the Dial code:
 //file: Dial.java
 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;
 import javax.swing.*;

 public class Dial extends JComponent {
 int minValue, nvalue, maxValue, radius;

 public Dial() { this(0, 100, 0); }

 public Dial(int minValue, int maxValue, int value) {
 setMinimum(minValue);
 setMaximum(maxValue);
 setValue(value);
 setForeground(Color.lightGray);

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) { spin(e); }
 });
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) { spin(e); }
 });
 }

 protected void spin(MouseEvent e) {
 int y = e.getY();
 int x = e.getX();
 double th = Math.atan((1.0 * y - radius) / (x - radius));
 int value=(int)(th / (2 * Math.PI) * (maxValue - minValue));
 if (x < radius)
 setValue(value + (maxValue-minValue) / 2 + minValue);
 else if (y < radius)
 setValue(value + maxValue);
 else
 setValue(value + minValue);
 }

Creating Custom Components | 705

 public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 int tick = 10;
 radius = Math.min(getSize().width,getSize().height)/2 - tick;
 g2.setPaint(getForeground().darker());
 g2.drawLine(radius * 2 + tick / 2, radius,
 radius * 2 + tick, radius);
 g2.setStroke(new BasicStroke(2));
 draw3DCircle(g2, 0, 0, radius, true);
 int knobRadius = radius / 7;
 double th = nvalue * (2 * Math.PI) / (maxValue - minValue);
 int x = (int)(Math.cos(th) * (radius - knobRadius * 3)),
 y = (int)(Math.sin(th) * (radius - knobRadius * 3));
 g2.setStroke(new BasicStroke(1));
 draw3DCircle(g2, x + radius - knobRadius,
 y + radius - knobRadius, knobRadius, false);
 }

 private void draw3DCircle(
 Graphics g, int x, int y, int radius, boolean raised)
 {
 Color foreground = getForeground();
 Color light = foreground.brighter();
 Color dark = foreground.darker();
 g.setColor(foreground);
 g.fillOval(x, y, radius * 2, radius * 2);
 g.setColor(raised ? light : dark);
 g.drawArc(x, y, radius * 2, radius * 2, 45, 180);
 g.setColor(raised ? dark : light);
 g.drawArc(x, y, radius * 2, radius * 2, 225, 180);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }

 public void setValue(int value) {
 this.nvalue = value - minValue;
 repaint();
 fireEvent();
 }
 public int getValue() { return nvalue+minValue; }
 public void setMinimum(int minValue) { this.minValue = minValue; }
 public int getMinimum() { return minValue; }
 public void setMaximum(int maxValue) { this.maxValue = maxValue; }
 public int getMaximum() { return maxValue; }

 public void addDialListener(DialListener listener) {
 listenerList.add(DialListener.class, listener);
 }
 public void removeDialListener(DialListener listener) {
 listenerList.remove(DialListener.class, listener);

706 | Chapter 18: More Swing Components

 }

 void fireEvent() {
 Object[] listeners = listenerList.getListenerList();
 for (int i = 0; i < listeners.length; i += 2)
 if (listeners[i] == DialListener.class)
 ((DialListener)listeners[i + 1]).dialAdjusted(
 new DialEvent(this, getValue()));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Dial v1.0");
 final JLabel statusLabel = new JLabel("Welcome to Dial v1.0");
 final Dial dial = new Dial();
 frame.add(dial, BorderLayout.CENTER);
 frame.add(statusLabel, BorderLayout.SOUTH);

 dial.addDialListener(new DialListener() {
 public void dialAdjusted(DialEvent e) {
 statusLabel.setText("Value is " + e.getValue());
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(150, 150);
 frame.setVisible(true);
 }
 }

Here’s DialEvent, a simple subclass of java.util.EventObject:
 //file: DialEvent.java
 import java.awt.*;

 public class DialEvent extends java.util.EventObject {
 int value;

 DialEvent(Dial source, int value) {
 super(source);
 this.value = value;
 }

 public int getValue() {
 return value;
 }
 }

Finally, here’s the code for DialListener:
 //file: DialListener.java
 public interface DialListener extends java.util.EventListener {
 void dialAdjusted(DialEvent e);
 }

Creating Custom Components | 707

Let’s start from the top of the Dial class. We’ll focus on the structure and leave you to
figure out the trigonometry on your own.

Dial’s main() method demonstrates how to use the dial to build a user interface. It
creates a Dial and adds it to a JFrame. Then main() registers a dial listener on the dial.
Whenever a DialEvent is received, the value of the dial is examined and displayed in a
JLabel at the bottom of the frame window.

The constructor for the Dial class stores the dial’s minimum, maximum, and current
values; a default constructor provides a minimum of 0, a maximum of 100, and a current
value of 0. The constructor sets the foreground color of the dial and registers listeners
for mouse events. If the mouse is pressed or dragged, Dial’s spin() method is called to
update the dial’s value. spin() performs some basic trigonometry to figure out what the
new value of the dial should be.

paintComponent() and draw3DCircle() do a lot of trigonometry to figure out how to
display the dial. draw3DCircle() is a private helper method that draws a circle that
appears either raised or depressed; we use this to make the dial look three-dimensional.

The next group of methods provides ways to retrieve or change the dial’s current setting
and the minimum and maximum values. The important thing to notice here is the
pattern of get and set methods for all of the important values used by the Dial. We will
talk more about this in Chapter 22. Also, notice that the setValue() method does
two important things: it repaints the component to reflect the new value and fires the
DialEvent signifying the change.

The final group of methods in the Dial class provides the plumbing necessary for our
event firing. addDialListener() and removeDialListener() take care of maintaining
the listener list. Using the listenerList member variable we inherited from JCompo
nent makes this an easy task. The fireEvent() method retrieves the registered listeners
for this component. It sends a DialEvent to any registered DialListeners.

Model and View Separation
The Dial example is overly simplified. All Swing components, as we’ve discussed, keep
their data model and view separate. In the Dial component, we’ve combined these
elements in a single class, which limits its reusability. To have Dial implement the MVC
paradigm, we would have developed a dial data model and something called a UI-
delegate that handled displaying the component and responding to user events. For a
full treatment of this subject, see the JogShuttle example in O’Reilly’s Java Swing.

In Chapter 19, we’ll take what we know about components and containers and put them
together using layout managers to create complex GUIs.

708 | Chapter 18: More Swing Components

CHAPTER 19

Layout Managers

A layout manager arranges the child components of a container, as shown in
Figure 19-1. It positions and sets the size of components within the container’s display
area according to a particular layout scheme. The layout manager’s job is to fit the
components into the available area while maintaining some spatial relationships among
them. AWT and Swing come with several standard layout managers that will collectively
handle most situations; you can also make your own layout managers if you have special
requirements.

Figure 19-1. A layout manager at work

Every container has a default layout manager. When you make a new container, it comes
with a LayoutManager object of the appropriate type. You can install a new layout man‐
ager at any time by using the setLayout() method. For example, we can set the layout
manager of a Swing container to a type called BorderLayout like so:

 myContainer.setLayout(new BorderLayout());

709

Notice that although we have created a BorderLayout, we haven’t bothered to save a
reference to it. This is typical; after installing a layout manager, it usually does its work
behind the scenes by interacting with the container. You rarely call the layout manager’s
methods directly, so you don’t usually need a reference (a notable exception is CardLay
out). However, you do need to know what the layout manager is going to do with your
components as you work with them.

The LayoutManager is consulted whenever a container’s doLayout() method is called
to reorganize the contents. It does its job by calling the setLocation() or set
Bounds() methods of the individual child components to arrange them in the container’s
display area. A container is laid out the first time it is displayed and thereafter whenever
the container’s revalidate() method is called. Containers that are a subclass of the
Window class (Frame, JFrame, and JWindow) are automatically validated whenever they
are packed or resized. Calling pack() sets the window’s size as small as possible while
granting all its components their preferred sizes.

Every component provides three important pieces of information used by the layout
manager in placing and sizing it: a minimum size, a maximum size, and a preferred size.
These sizes are reported by the getMinimumSize(), getMaximumSize(), and getPre
ferredSize() methods of Component, respectively. For example, a plain JButton object
can normally be changed to any size. However, the button’s designer can provide a
preferred size for a good-looking button. The layout manager might use this size when
there are no other constraints, or it might ignore it, depending on its scheme. If we give
the button a label, the button may need a new minimum size to display itself properly.
The layout manager should generally respect the button’s minimum size and guarantee
that it has at least that much space. Similarly, a particular component might not be able
to display itself properly if it is too large (perhaps it has to scale up an image); it can use
getMaximumSize() to report the largest size it considers acceptable.

The preferred size of a Container object has the same meaning as for any other type of
component. However, because a Container may hold its own components and want to
arrange them in its own layout, its preferred size is a function of its layout manager. The
layout manager is, therefore, involved in both sides of the issue. It asks the components
in its container for their preferred (or minimum) sizes in order to arrange them. Based
on those values, it calculates the preferred size for its own container (which can then be
communicated to the container’s parent and so on).

When a layout manager is called to arrange its components, it is working within a fixed
area. It usually begins by looking at its container’s dimensions and the preferred or
minimum sizes of the child components. It then doles out screen area and sets the sizes
of components according to its scheme and specific constraints.

You can set the minimum, preferred, and maximum sizes for a component with the
setMinimumSize(), setMaximumSize(), and setPreferredSize() methods. Take care
when setting these properties because generally those values should be calculated based

710 | Chapter 19: Layout Managers

on the real conditions of the component, not just fixed at a static value that looks good
in one particular case. You can override the getMinimumSize(), getMaximumSize(),
and getPreferredSize() methods of your own components to allow them to calculate
those values, but you should do this only if you are specializing the component and it
has new needs. In general, if you find yourself fighting with a layout manager because
it’s changing the size of one of your components, you are probably using the wrong kind
of layout manager or not composing your user interface properly. Often it’s easier to
use a number of JPanel objects in a given display, each one with its own LayoutManag
er. Try breaking down the problem: place related components in their own JPanel and
then arrange the panels in the container. When that becomes unwieldy, use a constraint-
based layout manager such as GridBagLayout or SpringLayout, which we’ll discuss
later in this chapter.

FlowLayout
FlowLayout is a simple layout manager that tries to arrange components at their pre‐
ferred sizes, from left to right and top to bottom in the container. A FlowLayout can
have a specified row justification of LEFT, CENTER, or RIGHT and a fixed horizontal and
vertical padding. By default, a flow layout uses CENTER justification, meaning that all
components are centered within the area allotted to them. FlowLayout is the default for
JPanels.

The following example adds five buttons to the content pane of a JFrame using the
default FlowLayout:

 //file: Flow.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Flow extends JPanel {

 public Flow() {
 // FlowLayout is default layout manager for a JPanel
 add(new JButton("One"));
 add(new JButton("Two"));
 add(new JButton("Three"));
 add(new JButton("Four"));
 add(new JButton("Five"));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Flow");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(400, 75);
 frame.setLocation(200, 200);
 Flow flow = new Flow();

FlowLayout | 711

1. Calling new GridLayout(0, 0) causes a runtime exception; either the rows or columns parameter must be
greater than zero.

 frame.setContentPane(flow);
 frame.setVisible(true);
 }
 }

The result is shown in Figure 19-2.

Figure 19-2. A flow layout

Try resizing the window. If it is made narrow enough, some of the buttons will spill over
to a second or third row.

GridLayout
GridLayout arranges components into regularly spaced rows and columns. The com‐
ponents are arbitrarily resized to fit the grid; their minimum and preferred sizes are
consequently ignored. GridLayout is most useful for arranging identically sized
objects—perhaps a set of JPanels, each using a different layout manager.

GridLayout takes the number of rows and columns in its constructor. If you subse‐
quently give it too many objects to manage, it adds extra columns to make the objects
fit. You can also set the number of rows or columns to 0, which means that you don’t
care how many elements the layout manager packs in that dimension. For example,
GridLayout(2,0) requests a layout with two rows and an unlimited number of columns;
if you put 10 components into this layout, you’ll get 2 rows of 5 columns each.1

The following example sets a GridLayout with three rows and two columns as its layout
manager:

 //file: Grid.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Grid extends JPanel {

 public Grid() {
 setLayout(new GridLayout(3, 2));

712 | Chapter 19: Layout Managers

 add(new JButton("One"));
 add(new JButton("Two"));
 add(new JButton("Three"));
 add(new JButton("Four"));
 add(new JButton("Five"));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Grid");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new Grid());
 frame.setVisible(true);
 }
 }

The results are shown in Figure 19-3.

Figure 19-3. A grid layout

The five buttons are laid out in order from left to right, top to bottom, with one empty
spot.

BorderLayout
BorderLayout is a little more interesting. It tries to arrange objects in one of five geo‐
graphical locations, represented by constants in the BorderLayout class: NORTH, SOUTH,
EAST, WEST, and CENTER, optionally with some padding between. BorderLayout is the
default layout for the content panes of JWindow and JFrame objects. Because each com‐
ponent is associated with a direction, BorderLayout can manage at most five compo‐
nents; it squashes or stretches those components to fit its constraints. As we’ll see in the
second example, this means that you often want to have BorderLayout manage sets of
components in their own panels.

When we add a component to a container with a border layout, we need to specify both
the component and the position at which to add it. To do so, we use an overloaded

BorderLayout | 713

version of the container’s add() method that takes an additional argument as a con‐
straint. The constraint specifies the name of a position within the BorderLayout.

The following application sets a BorderLayout and adds our five buttons again, named
for their locations:

 //file: Border1.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Border1 extends JPanel {

 public Border1() {
 setLayout(new BorderLayout());
 add(new JButton("North"), BorderLayout.NORTH);
 add(new JButton("South"), BorderLayout.SOUTH);
 add(new JButton("East"), BorderLayout.EAST);
 add(new JButton("West"), BorderLayout.WEST);
 add(new JButton("Center"), BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Border1");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setLocation(200, 200);
 frame.setContentPane(new Border1());
 frame.setVisible(true);
 }
 }

The result is shown in Figure 19-4.

Figure 19-4. A border layout

So, how exactly is the area divided up? Well, the objects at NORTH and SOUTH get their
preferred height and fill the display area horizontally. EAST and WEST components, on
the other hand, get their preferred width and fill the remaining area between NORTH and

714 | Chapter 19: Layout Managers

SOUTH vertically. Finally, the CENTER object takes all the rest of the space. As you can see
in Figure 19-4, our buttons get distorted into interesting shapes.

What if we don’t want BorderLayout messing with the sizes of our components? One
option would be to put each button in its own JPanel. The default layout for a JPa
nel is FlowLayout, which respects the preferred size of components. The preferred sizes
of the panels are effectively the preferred sizes of the buttons, but if the panels are
stretched, they won’t pull their buttons with them. The following application illustrates
this approach:

 //file: Border2.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Border2 extends JPanel {

 public Border2() {
 setLayout(new BorderLayout());
 JPanel p = new JPanel();
 p.add(new JButton("North"));
 add(p, BorderLayout.NORTH);
 p = new JPanel();
 p.add(new JButton("South"));
 add(p, BorderLayout.SOUTH);
 p = new JPanel();
 p.add(new JButton("East"));
 add(p, BorderLayout.EAST);
 p = new JPanel();
 p.add(new JButton("West"));
 add(p, BorderLayout.WEST);
 p = new JPanel();
 p.add(new JButton("Center"));
 add(p, BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Border2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new Border2());
 frame.setVisible(true);
 }
 }

The result is shown in Figure 19-5.

In the example, we create a number of panels, put our buttons inside the panels, and put
the panels into the frame window, which has the BorderLayout manager. Now,
the JPanel for the CENTER button soaks up the extra space that comes from the

BorderLayout | 715

BorderLayout. Each JPanel’s FlowLayout centers the button in the panel and uses the
button’s preferred size. In this case, it’s all a bit awkward. We’ll see how we could ac‐
complish this more directly using GridBagLayout shortly.

Figure 19-5. Another border layout

BoxLayout
Most layout managers are part of the java.awt package and were defined back when
Java was first released. Swing adds a couple of new general-purpose layout managers in
the javax.swing package; one is BoxLayout. This layout manager is useful for creating
simple toolbars or vertical button bars. It lays out components in a single row or column.
It is similar to FlowLayout except that it does not wrap components into new rows.

Although you can use BoxLayout directly, Swing includes a handy container called Box
that takes care of the details for you. Every Box uses BoxLayout, but you don’t really have
to worry about it; the Box class includes some very useful methods for laying out
components.

You can create a horizontal or vertical box using Box’s static methods.
 Container horizontalBox = Box.createHorizontalBox();
 Container verticalBox = Box.createVerticalBox();

Once the Box is created, you can add() components as usual:
 Container box = Box.createHorizontalBox();
 box.add(new JButton("In the"));

Box includes several other static methods that create special invisible components that
can be used to guide the BoxLayout. The first of these is glue; glue is really space between
components in the Box. When the Box is resized, glue expands or contracts as more or
less space is available. The other special invisible component type is a strut. Like glue, a
strut represents space between components, but it doesn’t resize.

The following example creates a horizontal Box (shown in Figure 19-6) that includes
both glue and struts. Play around by resizing the window to see the effect of the glue
and the struts.

 //file: Boxer.java
 import java.awt.*;

716 | Chapter 19: Layout Managers

 import java.awt.event.*;
 import javax.swing.*;

 public class Boxer extends JPanel {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Boxer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(250, 250);
 frame.setLocation(200, 200);
 Container box = Box.createHorizontalBox();
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("In the"));
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("clearing"));
 box.add(Box.createHorizontalStrut(10));
 box.add(new JButton("stands"));
 box.add(Box.createHorizontalStrut(10));
 box.add(new JButton("a"));
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("boxer"));
 box.add(Box.createHorizontalGlue());
 frame.getContentPane().add(box, BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
 }

Figure 19-6. Using the Box class

Components are added sequentially for display from left to right or top to bottom with
optional glue or strut constraints placed between them. By default, components simply
line up one after another with no space between them. Glue acts like a spring, allowing
its adjacent components to move to occupy the space evenly. A strut imposes a fixed
space between adjacent components.

CardLayout
CardLayout is a special layout manager for creating the effect of a “stack” of components.
Instead of arranging all of the container’s components, it displays only one at a time.
You might use this kind of layout to implement a custom-tabbed panel of some kind.
In fact, there’s probably little reason to use this layout given the Swing JTabbedPane
component described in Chapter 17. We include it here mainly for completeness.

CardLayout | 717

To add a component to a CardLayout, use a two-argument version of the container’s
add() method; the extra argument is an arbitrary string that serves as the card’s name:

 add("netconfigscreen", myComponent);

To bring a particular card to the top of the stack, call the CardLayout’s show() method
with two arguments: the parent Container and the name of the card you want to show.
There are also methods—first(), last(), next(), and previous()—for working with
the stack of cards. These are all CardLayout instance methods. To invoke them, you
need a reference to the CardLayout object itself, not to the container it manages. Each
method takes a single argument: the parent Container. Here’s an example:

 //file: Card.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class Card extends JPanel {
 CardLayout cards = new CardLayout();

 public Card() {
 setLayout(cards);
 ActionListener listener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 cards.next(Card.this);
 }
 };
 JButton button;
 button = new JButton("one");
 button.addActionListener(listener);
 add(button, "one");
 button = new JButton("two");
 button.addActionListener(listener);
 add(button, "two");
 button = new JButton("three");
 button.addActionListener(listener);
 add(button, "three");
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Card");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new Card());
 frame.setVisible(true);
 }
 }

We add three buttons to the layout and cycle through them as they are pressed. An
anonymous inner class serves as an action listener for each button; it simply calls

718 | Chapter 19: Layout Managers

CardLayout’s next() method whenever a button is pressed. Card.this refers to the
Card object, which is the container in this case. In a more realistic example, we would
build a group of panels, each of which might implement some part of a complex user
interface and add those panels to the layout. Each panel would have its own layout
manager. The panels would be resized to fill the entire area available (i.e., the area of the
Container they are in), and their individual layout managers would arrange their in‐
ternal components.

GridBagLayout
GridBagLayout is a very flexible layout manager that allows you to position components
relative to one another using constraints. With GridBagLayout (and a fair amount of
effort), you can create almost any imaginable layout. Components are arranged at logical
coordinates on an abstract grid. We call them “logical” coordinates because they des‐
ignate positions in the space of rows and columns formed by the set of components.
Rows and columns of the grid stretch to different sizes, based on the sizes and constraints
of the components they hold.

A row or column in a GridBagLayout expands to accommodate the dimensions and
constraints of the largest component it contains. Individual components may also be
told to span more than one row or column. Components that aren’t as large as their grid
cell can be anchored (positioned to one side) within their cell. They can also be set to
fill or expand their size in either dimension. Extra area in the grid rows and columns
can be parceled out according to the weight constraints of the components. In this way,
you can control how various components will grow and stretch when a window is
resized.

GridBagLayout is much easier to use in a graphical WYSIWYG GUI builder environ‐
ment. That’s because working with GridBag is kind of like messing with the old rabbit-
ears antennae on your television. It’s not particularly difficult to get the results that you
want through trial and error, but writing out hard and fast rules for how to go about it
is difficult. In short, GridBagLayout is complex and has some quirks. It is also simply a
bit ugly both in model and implementation. Remember that you can do a lot with nested
panels and by composing simpler layout managers within one another. If you look back
through this chapter, you’ll see some examples of composite layouts; it’s up to you to
determine how far you should go before making the break from simpler layout managers
to a more complex all-in-one layout manager like GridBagLayout.

The GridBagConstraints Class
Having stated that GridBagLayout is complex and a bit ugly, we’re going to contradict
ourselves a little and say that its API is surprisingly simple. There is only one constructor
with no arguments—GridBagLayout()—and there aren’t a lot of fancy methods to
control how the display works.

GridBagLayout | 719

The appearance of a grid bag layout is controlled by sets of GridBagConstraints, and
that’s where things get hairy. Each component that is managed by a GridBagLayout is
associated with a GridBagConstraints object. GridBagConstraints holds the follow‐
ing variables, which we’ll describe in detail shortly:
int gridx

int gridy

Controls the position of the component on the layout’s grid

int weightx

int weighty

Controls how additional space in the row or column is allotted to the component

int fill

Controls whether the component expands to fill the allotted space

int gridheight

int gridwidth

Controls the number of rows or columns the component spans

int anchor

Controls the position of the component if there is extra room within the allotted
space

int ipadx

int ipady

Controls padding between the component and the borders of its area

Insets insets

Controls padding between the component and neighboring components

To make a set of constraints for a component or components, create a new instance of
GridBagConstraints and set these public variables to the appropriate values. (There is
also a large constructor that takes all 11 arguments.)

The easiest way to associate a set of constraints with a component is to use the version
of add() that takes both a component object and a layout object as arguments. This puts
the component in the container and associates the GridBagConstraints object with it:

 Container content = getContentPane();
 JComponent component = new JLabel("constrain me, please...");
 GridBagConstraints constraints = new GridBagConstraints();
 constraints.gridx = x;
 constraints.gridy = y;
 ...
 content.add(component, constraints);

720 | Chapter 19: Layout Managers

You can also add a component to a GridBagLayout using the single argument add()
method and then calling the layout’s setConstraints() method directly to pass it the
GridBagConstraints object for that component:

 add(component);
 ...
 myGridBagLayout.setConstraints(component, constraints);

In either case, the set of constraints is copied when it is applied to the component. It’s
the individual constraints that apply to the component, not the GridBagConstraints
object. Therefore, you’re free to create a single set of GridBagConstraints, modify it as
needed, and apply it as needed to different objects. You might want to create a helper
method that sets the constraints appropriately, then adds the component with its con‐
straints to the layout. That’s the approach we’ll take in our examples; our helper method
is called addGB(), and it takes a component plus a pair of coordinates as arguments.
These coordinates become the gridx and gridy values for the constraints. We could
expand upon this later and overload addGB() to take more parameters for other con‐
straints that we often change from component to component.

Grid Coordinates
One of the biggest surprises in the GridBagLayout is that there’s no way to specify the
size of the grid. There doesn’t have to be. The grid size is determined implicitly by the
constraints of all the objects; the layout manager picks dimensions large enough so that
everything fits. Thus, if you put one component in a layout and set its gridx and gridy
constraints each to 25, the layout manager creates a virtual 25 × 25 grid, with rows and
columns numbered from 0 to 24. If you then add a second component with a gridx of
30 and a gridy of 13, the virtual grid’s dimensions change to 30 × 25. You don’t have to
worry about setting up an appropriate number of rows and columns. The layout man‐
ager does it automatically as you add components.

With this knowledge, we’re ready to create some simple displays. We’ll start by arranging
a group of components in a cross shape. We maintain explicit x and y local variables,
setting them as we add the components to our grid. This is partly for clarity, but it can
be a handy technique when you want to add a number of components in a row or
column. You can simply increment gridx or gridy before adding each component. This
is a simple and problem-free way to achieve relative placement. (Later, we’ll describe
GridBagConstraints’s RELATIVE constant, which performs relative placement auto‐
matically.) The following code shows the first layout (see Figure 19-7):

 //file: GridBag1.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class GridBag1 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

GridBagLayout | 721

 public GridBag1() {
 setLayout(new GridBagLayout());
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 addGB(new JButton("West"), x = 0, y = 1);
 addGB(new JButton("Center"), x = 1, y = 1);
 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag1");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag1());
 frame.setVisible(true);
 }
 }

Figure 19-7. A simple GridBagLayout

The buttons in this example are “clumped” together in the center of their display area.
Each button is displayed at its preferred size, without stretching to fill the available space.
This is how the layout manager behaves when the “weight” constraints are left unset.
We’ll talk more about weights in the next two sections.

The fill Constraint
Let’s make the buttons expand to fill the entire JFrame window. To do so, we must take
two steps: we must set the fill constraint for each button to the value BOTH, and we
must set the weightx and weighty to nonzero values, as shown in this example:

722 | Chapter 19: Layout Managers

 //file: GridBag2.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class GridBag2 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag2() {
 setLayout(new GridBagLayout());
 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.fill = GridBagConstraints.BOTH;
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 addGB(new JButton("West"), x = 0, y = 1);
 addGB(new JButton("Center"), x = 1, y = 1);
 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag2());
 frame.setVisible(true);
 }
 }

Figure 19-8 shows the resulting layout.

Figure 19-8. Making buttons fill the available space

GridBagLayout | 723

BOTH is one of the constants of the GridBagConstraints class; it tells the component to
fill the available space in both directions. Here are the constants you can use to set the
fill field:
HORIZONTAL

Fill the available horizontal space.

VERTICAL

Fill the available vertical space.

BOTH

Fill the available space in both directions.

NONE

Don’t fill the available space; display the component at its preferred size.

We set the weight constraints to 1.0; in this example, it doesn’t matter what they are,
provided each component has the same nonzero weight. Filling doesn’t occur if the
component’s weight in the direction you’re filling is 0, which is the default value.

Spanning Rows and Columns
One of the most important features of GridBaglayout is that it lets you create arrange‐
ments in which components span two or more rows or columns. To do so, set the
gridwidth and gridheight variables of the GridBagConstraints. The following ex‐
ample creates such a display; button one spans two columns vertically and button four
spans two horizontally. Figure 19-9 shows the resulting layout.

 //file: GridBag3.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class GridBag3 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag3() {
 setLayout(new GridBagLayout());
 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.fill = GridBagConstraints.BOTH;
 int x, y; // for clarity
 constraints.gridheight = 2; // span two rows
 addGB(new JButton("one"), x = 0, y = 0);
 constraints.gridheight = 1; // set it back
 addGB(new JButton("two"), x = 1, y = 0);
 addGB(new JButton("three"), x = 2, y = 0);
 constraints.gridwidth = 2; // span two columns
 addGB(new JButton("four"), x = 1, y = 1);
 constraints.gridwidth = 1; // set it back

724 | Chapter 19: Layout Managers

 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag3");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag3());
 frame.setVisible(true);
 }
 }

Figure 19-9. Making components span rows and columns

The size of each element is controlled by the gridwidth and gridheight values of its
constraints. For button one, we set gridheight to 2; therefore, it is two cells high. Its
gridx and gridy positions are both 0, so it occupies cell (0,0) and the cell directly below
it, (0,1). Likewise, button four has a gridwidth of 2 and a gridheight of 1, so it occupies
two cells horizontally. We place this button in cell (1,1), so it occupies that cell and its
neighbor, (2,1).

In this example, we set the fill to BOTH and weightx and weighty to 1 for all compo‐
nents. By doing so, we tell each button to occupy all the space available and give them
all equal weighting. Strictly speaking, this isn’t necessary. However, it makes it easier to
see exactly how much space each button occupies.

Weighting
The weightx and weighty variables of a GridBagConstraints object determine how
“extra” space in the container is distributed among the columns or rows in the layout.

GridBagLayout | 725

As long as you keep things simple, the effect these variables have is fairly intuitive: the
larger the weight, the greater the amount of space allocated to the component, relative
to its peers. Figure 19-10 shows what happens if we vary the weightx constraint from
0.1 to 1.0 as we place three buttons in a row.

Here’s the code:
 //file: GridBag4.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class GridBag4 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag4() {
 setLayout(new GridBagLayout());
 constraints.fill = GridBagConstraints.BOTH;
 constraints.weighty = 1.0;
 int x, y; // for clarity
 constraints.weightx = 0.1;
 addGB(new JButton("one"), x = 0, y = 0);
 constraints.weightx = 0.5;
 addGB(new JButton("two"), ++x, y);
 constraints.weightx = 1.0;
 addGB(new JButton("three"), ++x, y);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag4");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 100);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag4());
 frame.setVisible(true);
 }
 }

Figure 19-10. Using weight to control component size

726 | Chapter 19: Layout Managers

The specific values of the weights are not meaningful; it is only their relative proportions
that matter. After the preferred sizes of the components (including padding and insets—
see the next section) are determined, any extra space is doled out in proportion to the
component’s weights. For example, if each of our three components had the same weight,
each would receive a third of the extra space. To make this more obvious, you may prefer
to express the weights for a row or column as fractions totaling 1.0—for example: 0.25,
0.25, 0.50. Components with a weight of 0 receive no extra space.

The situation is a bit more complicated when there are multiple rows or columns and
when there is even the possibility of components spanning more than one cell. In the
general case, GridBagLayout calculates an effective overall weight for each row and
column and then distributes the extra space to them proportionally. Note that the pre‐
vious single-row example is just a special case where the columns each have one com‐
ponent. The gory details of the calculations follow.

Calculating the weights of rows and columns

For a given row or column (“rank”), GridBagLayout first considers the weights of all
the components contained strictly within that rank—ignoring those that span more
than one cell. The greatest individual weight becomes the overall weight of the row or
column. Intuitively, this means that GridBagLayout is trying to accommodate the needs
of the weightiest component in that rank.

Next, GridBagLayout considers the components that occupy more than one cell and
things get a little weird. GridbagLayout wants to evaluate them to see whether they
affect the determination of the largest weight in a row or column. However, because
these components occupy more than one cell, GridBagLayout divides their weight
among the ranks (rows or columns) that they span.

GridBagLayout tries to calculate an effective weight for the portion of the component
that occupies each row or column. It does this by trying to divide the weight of the
component among the ranks in the same proportions that the length (or height) of the
component will be shared by the ranks. But how does it know what the proportions will
be before the whole grid is determined? That’s what it’s trying to calculate, after all. It
simply guesses based on the row or column weights already determined. GridBagLay
out uses the weights determined by the first round of calculations to split up the weight
of the component over the ranks that it occupies. For each row or column, it then
considers that fraction of the weight to be the component’s weight for that rank. That
weight then contends for the “heaviest weight” in the row or column, possibly changing
the overall weight of that row or column, as we described earlier.

GridBagLayout | 727

Anchoring
If a component is smaller than the space available for it, it is centered by default. But
centering isn’t the only possibility. The anchor constraint tells a grid bag layout how to
position a component within its cell in the grid. Possible values are GridBagCon
straints.CENTER, NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, and
NORTHWEST. For example, an anchor of GridBagConstraints.NORTH centers a compo‐
nent at the top of its display area; SOUTHEAST places a component at the bottom-right
corner of its area.

Padding and Insets
Another way to control the behavior of a component in a grid bag layout is to use padding
and insets. Padding is determined by the ipadx and ipady fields of GridBagCon
straints. They specify horizontal and vertical “growth factors” for the component. In
Figure 19-11, the West button is larger because we have set the ipadx and ipady values
of its constraints to 25. Therefore, the layout manager gets the button’s preferred size
and adds 25 pixels in each direction to determine the button’s actual size. The sizes of
the other buttons are unchanged because their padding is set to 0 (the default), but their
spacing is different. The West button is unnaturally tall, which means that the middle
row of the layout must be taller than the others.

 //file: GridBag5.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class GridBag5 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag5() {
 setLayout(new GridBagLayout
 ());
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 constraints.ipadx = 25; // add padding
 constraints.ipady = 25;
 addGB(new JButton("West"), x = 0, y = 1);
 constraints.ipadx = 0; // remove padding
 constraints.ipady = 0;
 addGB(new JButton("Center"), x = 1, y = 1);
 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;

728 | Chapter 19: Layout Managers

 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag5");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(250, 250);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag5());
 frame.setVisible(true);
 }
 }

Figure 19-11. Using padding and insets in a layout

Notice that the horizontal padding, ipadx, is added on both the left and right sides of
the button. Therefore, the button grows horizontally by twice the value of ipadx. Like‐
wise, the vertical padding, ipady, is added on both the top and the bottom.

Insets add space between the edges of the component and its cell. They are stored in the
insets field of GridBagConstraints, which is an Insets object. An Insets object has
four fields to specify the margins on the component’s top, bottom, left, and right. The
relationship between insets and padding can be confusing. As shown in Figure 19-12,
padding is added to the component itself, increasing its size. Insets are external to the
component and represent the margin between the component and its cell.

GridBagLayout | 729

Figure 19-12. The relationship between padding and insets

Padding and weighting have an odd interaction with each other. If you use padding, it’s
best to use the default weightx and weighty values for each component.

Relative Positioning
In all our grid bag layouts so far, we have specified the gridx and gridy coordinates of
each component explicitly using its constraints. Another alternative is relative
positioning.

Conceptually, relative positioning is simple: we just say, “put this component to the right
of (or below) the previous component.” To do so, you can set gridx or gridy to the
constant GridBagConstraints.RELATIVE. Unfortunately, it’s not as simple as this. Here
are a couple of warnings:

• To place a component to the right of the previous one, set gridx to RELATIVEand
use the same value for gridy that you used for the previous component.

• Similarly, to place a component below the previous one, set gridy to RELA
TIVEand leave gridx unchanged.

• Setting both gridx and gridy to RELATIVE places all the components in one row,
not in a diagonal line, as you might expect. (This is the default.)

In other words, if gridx or gridy is RELATIVE, you had better leave the other value
unchanged. RELATIVE makes it easy to arrange a lot of components in a row or a column.
That’s what it was intended for; if you try to do something else, you’re fighting against
the layout manager, not working with it.

GridBagLayout allows another kind of relative positioning in which you specify where,
in a row or a column, the component should be placed overall using the gridwidth and
gridheight fields of GridBagConstraints. Setting either of these to the constant RE
MAINDER says that the component should be the last item in its row or column and,

730 | Chapter 19: Layout Managers

2. If you’re curious, this calculator is based on the ELORG-801, encountered in an online “calculator museum”.

therefore, should occupy all the remaining space. Setting either gridwidth or grid
height to RELATIVE says that it should be the second to the last item in its row or column.
Unfortunately, you can use these constants to create constraints that can’t possibly be
met; for example, you can say that two components must be the last component in a
row. In these cases, the layout manager tries to do something reasonable, but it will
almost certainly be something you don’t want done.

Composite Layouts
Sometimes things don’t fall neatly into little boxes. This is true of layouts as well as life.
For example, if you want to use some of GridBagLayout’s weighting features for part of
your GUI, you could create separate layouts for different parts of the GUI and combine
them with yet another layout. That’s how we’ll build the pocket calculator interface in
Figure 19-13. We will use three grid bag layouts: one for the first row of buttons (C, %,
+), one for the last (0, ., =) and one for the window itself. The master layout (the win‐
dow’s) manages the text field we use for the display, the panels containing the first and
last rows of buttons, and the 12 buttons in the middle.2

Figure 19-13. The Calculator application

Here’s the code for the Calculator example. It implements only the user interface (i.e.,
the keyboard); it collects everything you type in the display field until you press C (clear).
Figuring out how to connect the GUI to some other code that would perform the op‐
erations is up to you. One strategy would be to send an event to the object that does the
computation whenever the user presses the equals sign. That object could read the
contents of the text field, parse it, do the computation, and display the results.

 //file: Calculator.java
 import java.awt.*;
 import java.awt.event.*;

GridBagLayout | 731

 import javax.swing.*;

 public class Calculator extends JPanel implements ActionListener {
 GridBagConstraints gbc = new GridBagConstraints();
 JTextField theDisplay = new JTextField();

 public Calculator() {
 gbc.weightx = 1.0; gbc.weighty = 1.0;
 gbc.fill = GridBagConstraints.BOTH;
 ContainerListener listener = new ContainerAdapter() {
 public void componentAdded(ContainerEvent e) {
 Component comp = e.getChild();
 if (comp instanceof JButton)
 ((JButton)comp).addActionListener(Calculator.this);
 }
 };
 addContainerListener(listener);
 gbc.gridwidth = 4;
 addGB(this, theDisplay, 0, 0);
 // make the top row
 JPanel topRow = new JPanel();
 topRow.addContainerListener(listener);
 gbc.gridwidth = 1;
 gbc.weightx = 1.0;
 addGB(topRow, new JButton("C"), 0, 0);
 gbc.weightx = 0.33;
 addGB(topRow, new JButton("%"), 1, 0);
 gbc.weightx = 1.0;
 addGB(topRow, new JButton("+"), 2, 0);
 gbc.gridwidth = 4;
 addGB(this, topRow, 0, 1);
 gbc.weightx = 1.0; gbc.gridwidth = 1;
 // make the digits
 for(int j=0; j<3; j++)
 for(int i=0; i<3; i++)
 addGB(this, new JButton("" + ((2-j)*3+i+1)), i, j+2);
 // -, x, and divide
 addGB(this, new JButton("-"), 3, 2);
 addGB(this, new JButton("x"), 3, 3);
 addGB(this, new JButton("\u00F7"), 3, 4);
 // make the bottom row
 JPanel bottomRow = new JPanel();
 bottomRow.addContainerListener(listener);
 gbc.weightx = 1.0;
 addGB(bottomRow, new JButton("0"), 0, 0);
 gbc.weightx = 0.33;
 addGB(bottomRow, new JButton("."), 1, 0);
 gbc.weightx = 1.0;
 addGB(bottomRow, new JButton("="), 2, 0);
 gbc.gridwidth = 4;
 addGB(this, bottomRow, 0, 5);
 }

732 | Chapter 19: Layout Managers

 void addGB(Container cont, Component comp, int x, int y) {
 if ((cont.getLayout() instanceof GridBagLayout) == false)
 cont.setLayout(new GridBagLayout());
 gbc.gridx = x; gbc.gridy = y;
 cont.add(comp, gbc);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("C"))
 theDisplay.setText("");
 else
 theDisplay.setText(theDisplay.getText()
 + e.getActionCommand());
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Calculator");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 250);
 frame.setLocation(200, 200);
 frame.setContentPane(new Calculator());
 frame.setVisible(true);
 }
 }

Once again, we use an addGB() helper method to add components with their constraints
to the layout. Before discussing how to build the layout, let’s take a look at addGB(). We
said earlier that three layout managers are in our user interface: one for the application
panel itself, one for the panel containing the first row of buttons (topRow), and one for
the panel containing the bottom row of buttons (bottomRow). We use addGB() for all
three layouts; its first argument specifies the container to which to add the component.
Thus, when the first argument is this, we’re adding an object to the content pane of the
JFrame. When the first argument is topRow, we’re adding a button to the first row of
buttons. addGB() first checks the container’s layout manager and sets it to GridBagLay
out if it isn’t already set properly. It sets the object’s position by modifying a set of
constraints, gbc, and then uses these constraints to add the object to the container.

We use a single set of constraints throughout the example, modifying fields as we see
fit. The constraints are initialized in Calculator’s constructor. Before calling addGB(),
we set any fields of gbc for which the defaults are inappropriate. Thus, for the answer
display, we set the grid width to 4 and add the answer display directly to the application
panel (this). The add() method, which is called by addGB(), makes a copy of the con‐
straints, so we’re free to reuse gbc throughout the application.

The first and last rows of buttons motivate the use of multiple GridBagLayout contain‐
ers, each with its own grid. These buttons appear to straddle grid lines, but you really
can’t accomplish this using a single grid. Therefore, topRow has its own layout manager,
with three horizontal cells, allowing each button in the row to have a grid width of 1.

GridBagLayout | 733

To control the size of the buttons, we set the weightx variables so that the clear and plus
buttons take up more space than the percent button. We then add the topRow as a whole
to the application, with a grid width of 4. The bottom row is built similarly.

To build the buttons for the digits 1–9, we use a doubly nested loop. There’s nothing
particularly interesting about this loop, except that it’s probably a bit too cute. The minus,
multiply, and divide buttons are also simple: we create a button with the appropriate
label and use addGB() to place it in the application. It’s worth noting that we used a
Unicode constant to request a real division sign rather than wimping out and using a
slash.

That’s it for the user interface; what’s left is event handling. Each button generates action
events; we need to register listeners for these events. We’ll make the application panel,
the Calculator, the listener for all the buttons. To register the Calculator as a listener,
we’ll be clever. Whenever a component is added to a container, the container generates
a ContainerEvent. We use an anonymous inner class ContainerListener to register
listeners for our buttons. This means that the Calculator must register as a Contain
erListener for itself and for the two panels, topRow and bottomRow. The componentAd
ded() method is very simple. It calls getChild() to find out what component caused
the event (i.e., what component was added). If that component is a button, it registers
the Calculator as an ActionListener for that button.

actionPerformed() is called whenever the user presses any button. It clears the display
if the user pressed the C button; otherwise, it appends the button’s action command (in
this case, its label) to the display.

Combining layout managers is an extremely useful trick. Granted, this example verges
on overkill. You won’t often need to create a composite layout using multiple grid bags.
Composite layouts are common, however, with BorderLayout; you’ll frequently use
different layout managers for each of a border layout’s regions. For example, the CEN
TER region might be a ScrollPane, which has its own special-purpose layout manager;
the EAST and SOUTH regions might be panels managed by grid layouts or flow layouts,
as appropriate.

Other Layout Managers
We’ve covered the most commonly used layout managers; with them, you should be
able to create just about any user interface you like. There are two other layout managers
in the javax.swing package, SpringLayout and GroupLayout. They are designed pri‐
marily for use with visual GUI builders but can be handcoded. O’Reilly’s Java Swing
covers these layout managers in detail. Additionally, there are many useful third-party
LayoutManagers, including MigLayout and JGoodies FormLayout.

734 | Chapter 19: Layout Managers

Absolute Positioning
It’s possible to set the layout manager to null: no layout control. You might do this to
position an object on the display at absolute coordinates. This is usually not the right
approach. Components might have different minimum sizes on different platforms, so
your interface would not be very portable.

The following example doesn’t use a layout manager and works with absolute coordi‐
nates instead:

 //file: MoveButton.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class MoveButton extends JPanel {
 JButton button = new JButton("I Move");

 public MoveButton() {
 setLayout(null);
 add(button);
 button.setSize(button.getPreferredSize());
 button.setLocation(20, 20);
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 button.setLocation(e.getX(), e.getY());
 }
 });
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("MoveButton");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(250, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new MoveButton());
 frame.setVisible(true);
 }
 }

Click in the window area outside of the button to move the button to a new location.
Try resizing the window and note that the button stays at a fixed position relative to the
window’s upper-left corner.

Absolute Positioning | 735

CHAPTER 20

Drawing with the 2D API

In previous chapters, we looked at the components and component architecture of
graphical user interfaces (GUIs) using Java’s Swing and AWT packages. Now, we’re going
to drop down a level and look at the procedural APIs for rendering graphics in Java
applications. These APIs are used by components to paint themselves on the screen and
to display icons and graphics. As of Java 7, Java2D is hardware-accelerated on all major
platforms, so well-constructed Java clients should enjoy performance similar to native
applications.

This chapter goes into some detail about Java’s sophisticated 2D, resolution-independent
drawing API and the core tools for loading and displaying images. In the next chapter,
we’ll explore dynamic image-processing tools in more detail and look at the classes that
allow you to generate and modify image data, pixel by pixel.

The Big Picture
The classes you’ll use for drawing come from six packages: java.awt, java.awt.col
or, java.awt.font, java.awt.geom, java.awt.image, and java.awt.print. Collec‐
tively, these classes make up most of the 2D API and cover the drawing of shapes, text,
and images. Figure 20-1 shows a bird’s-eye view of these classes. There’s much more in
the 2D API than we can cover in two chapters. For a full treatment, see Jonathan Knud‐
sen’s Java 2D Graphics (O’Reilly).

An instance of java.awt.Graphics2D is called a graphics context. It represents a drawing
surface—such as a component’s display area, a page on a printer, or an offscreen image
buffer. A graphics context provides methods for drawing three kinds of graphics objects:
shapes, text, and images. Graphics2D is called a graphics context because it also holds
contextual information about the drawing area. This information includes the drawing
area’s clipping region, painting color, transfer mode, text font, and geometric
transformation. If you consider the drawing area to be a painter’s canvas, you might

737

think of a graphics context as an easel that holds a set of tools and marks off the work
area.

Figure 20-1. Graphics classes of the 2D API

There are four ways to acquire a Graphics2D object. The following list describes them
in order from the most common to the least:
From AWT or Swing as the result of a painting request on a component

In this case, a new graphics context for the appropriate area is created and passed
to your component’s paint() or update() method. (The update() method really
applies only to AWT components, not the newer Swing components.)

738 | Chapter 20: Drawing with the 2D API

Directly from an offscreen image buffer
In this case, we ask the image buffer for a graphics context directly. We’ll use this
when we discuss techniques such as double buffering.

By copying an existing Graphics2D object
Duplicating a graphics object can be useful for more elaborate drawing operations;
different copies of a Graphics2D object can draw on the same area, but with different
attributes and clipping regions. A Graphics2D object can be copied by calling the
create() method.

Directly from an onscreen component
It’s possible to ask a component to give you a Graphics2D object for its display area.
However, this is almost always a mistake; if you feel tempted to do this, think about
why you’re trying to circumvent the normal paint()/repaint() mechanism.

Each time a component’s paint() method is called, the windowing system provides the
component with a new Graphics2D object for drawing in the display area. This means
that attributes set during one painting session, such as the drawing color or clipping
region, are reset the next time paint() is called. (Each call to paint() starts with a tidy
new easel.) For the most common attributes, such as foreground color, background
color, and font, we can set defaults in the component itself. Thereafter, the graphics
contexts for painting in that component come with those properties initialized
appropriately.

The paint() method can make no assumptions about what is already drawn on the
screen. It is responsible for rendering its entire work area. Higher-level APIs are nor‐
mally responsible for buffering output and limiting the number of times paint() is
invoked for a component. AWT components may use an additional method called
update(), which allows them to update their appearance under the assumption that
their previous artwork is still on the screen. However, this method is not used by Swing
components.

For backward compatibility, a graphics context is always passed to the paint() method
as an object of type Graphics. If you want to take advantage of the nifty features in the
2D API (as you almost undoubtedly will), you need to cast this reference to a Graph
ics2D object. You’ll see how this works in the upcoming examples.

The Rendering Pipeline
One of the strengths of the 2D API is that shapes, text, and images are manipulated in
many of the same ways. In this section, we’ll describe what happens to shapes, text, and
images after you give them to a Graphics2D object. Rendering is the process of taking
some collection of shapes, text, and images and figuring out how to represent them by
coloring pixels on a screen or printer. Graphics2D supports four rendering operations:

The Rendering Pipeline | 739

• Draw a shape’s outline with the draw() method.
• Fill a shape’s interior with the fill() method.
• Draw some text with the drawString() method.
• Draw an image with any of the many forms of the drawImage() method.

The graphics context represented by a Graphics2D object holds the following properties,
whose values are controlled by corresponding accessor methods—for example, get
Font() and setFont():
Paint

The current paint (an object of type java.awt.Paint) determines what color or
pattern will be used to fill a shape. This affects the drawing of shape outlines and
text as well. You can change the current paint using Graphics2D’s setPaint()
method. Note that the Color class implements the Paint interface, so you can pass
Colors to setPaint() if you want to use solid colors.

Stroke
Graphics2D uses the stroke to determine how to draw the outline of shapes that are
passed to its draw() method. In graphics terminology, to “stroke” a shape means to
take a path defined by the shape and effectively trace it with a pen or brush of a
certain size and characteristics. For example, drawing the shape of a circle using a
stroke that acts like a solid line would yield a washer or ring shape. The stroke
object in the Graphics2D API is a little more abstract than that. It accepts the input
shape to be stroked and returns an enclosed shape representing the outline, which
Graphics2D then fills. You can set the current stroke by using setStroke(). The
2D API comes with a handy class, java.awt.BasicStroke, that implements dif‐
ferent line widths, end styles, join styles, and dashing.

Font
Text is rendered by creating a shape that represents the characters to be drawn. The
current font determines the shapes that are created for a given set of characters. The
resulting text shape is then filled. The current font is set using setFont(). The 2D
API gives applications access to all the TrueType and PostScript Type 1 fonts that
are installed. As of Java 7, OpenType/CFF fonts are also supported.

Transformation
Shapes, text, and images can be geometrically transformed before they are rendered.
This means that they may be moved, rotated, and stretched. Graphics2D’s trans‐
formation converts coordinates from “user space” to “device space.” By default,
Graphics2D uses a transformation that maps 72 units in user space to one inch on
the output device. If you draw a line from point (0, 0) to point (72, 0) using the
default transformation, it will be one inch long, regardless of whether it is drawn

740 | Chapter 20: Drawing with the 2D API

on your monitor or your printer. The current transformation can be modified using
the translate(), rotate(), scale(), and shear() methods.

Compositing rule
A compositing rule determines how the colors of a new drawing operation are com‐
bined with existing colors on the Graphics2D’s drawing surface. This attribute is
set using setComposite(), which accepts an instance of java.awt.AlphaCompo
site. Compositing allows you to make parts of a drawing or image completely or
partially transparent, or to combine them in other interesting ways.

Clipping shape
All rendering operations are limited to the interior of the clipping shape. No pixels
outside this shape are modified. By default, the clipping shape allows rendering on
the entire drawing surface (usually, the rectangular area of a Component). However,
you can further limit this using any simple or complex shape (for example, text
shapes).

Rendering hints
There are different techniques that can be used to render graphics primitives. Usu‐
ally these represent a tradeoff between rendering speed and visual quality or vice
versa. Rendering hints (constants defined in the RenderingHints class) specify
which techniques to use.

Graphics primitives (shapes, text, and images) pass through the rendering engine in a
series of operations called the rendering pipeline. Let’s walk through the pipeline. It can
be reduced to four steps; the first step depends on the rendering operation:

1. Transform the shape. For shapes that will be filled, the shape is simply transformed
using the Graphics2D’s current transformation. For shapes whose outlines are
drawn using draw(), the current stroke is used to stroke the shape’s outline. Then
the stroked outline is transformed like any other filled shape. Text is displayed by
mapping characters to shapes using the current font. The resulting text shapes are
transformed like any other filled shape. Images are also transformed using the cur‐
rent transformation.

2. Determine the colors to be used. For a filled shape, the current paint object deter‐
mines the colors that should be used to fill the shape. For drawing an image, the
colors are taken from the image itself.

3. Combine the colors with the existing drawing surface using the current compositing
rule.

4. Clip the results using the current clipping shape.

The rendering hints are used throughout to control the rendering quality.

The Rendering Pipeline | 741

A Quick Tour of Java 2D
Next we’ll embark on a quick tour of Java 2D, including working with shapes and text.
We’ll finish with an example of Java 2D in action.

Filling Shapes
The simplest path through the rendering pipeline is filling shapes. For example, the
following code creates an ellipse and fills it with a solid color. (This code would live
inside a paint() method somewhere. We’ll present a complete, ready-to-run example
a little later.)

 Shape c = new Ellipse2D.Float(50, 25, 150, 150); // x,y,width,height
 g2.setPaint(Color.blue);
 g2.fill(c);

Here, g2 is our Graphics2D object. The Ellipse2D shape class is abstract, but is imple‐
mented by concrete inner subclasses called Float and Double that work with float or
double precision, respectively. The Rectangle2D class, similarly, has concrete subclasses
Rectangle2D.Float and Rectangle2D.Double.

In the call to setPaint(), we tell Graphics2D to use a solid color, blue, for all subsequent
filling operations. Next, the call to fill() tells Graphics2D to fill the given shape.

All geometric shapes in the 2D API are represented by implementations of the
java.awt.geom.Shape interface. This interface defines methods that are common to all
shapes, like returning a rectangle bounding box or testing if a point is inside the shape.
The java.awt.geom package is a smorgasbord of useful shape classes, including Rec
tangle2D, RoundRectangle2D (a rectangle with rounded corners), Arc2D, Ellipse2D,
and others. In addition, a few more basic classes in java.awt are Shapes: Rectangle,
Polygon, and Area.

Drawing Shape Outlines
Drawing a shape’s outline is only a little bit more complicated. Consider the following
example:

 Shape r = new Rectangle2D.Float(100, 75, 100, 100);
 g2.setStroke(new BasicStroke(4));
 g2.setPaint(Color.yellow);
 g2.draw(r);

Here, we tell Graphics2D to use a stroke that is four units wide and a solid color, yellow,
for filling the stroke. When we call draw(), Graphics2D uses the stroke to create a new
shape, the outline, from the given rectangle. The outline shape is then filled just as before;
this effectively draws the rectangle’s outline. The rectangle itself is not filled.

742 | Chapter 20: Drawing with the 2D API

Convenience Methods
Graphics2D includes quite a few convenience methods for drawing and filling common
shapes; these methods are actually inherited from the Graphics class. Table 20-1 sum‐
marizes these methods. It’s a little easier to call fillRect() rather than instantiating a
rectangle shape and passing it to fill().

Table 20-1. Shape-drawing methods in the graphics class
Method Description

draw3DRect() Draws a highlighted, 3D rectangle

drawArc() Draws an arc

drawLine() Draws a line

drawOval() Draws an oval

drawPolygon() Draws a polygon, closing it by connecting the endpoints

drawPolyline() Draws a line connecting a series of points, without closing it

drawRect() Draws a rectangle

drawRoundRect() Draws a rounded-corner rectangle

fill3DRect() Draws a filled, highlighted, 3D rectangle

fillArc() Draws a filled arc

fillOval() Draws a filled oval

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

FillRoundRect() Draws a filled, rounded-corner rectangle

As you can see, for each of the fill() methods in the table, there is a corresponding
draw() method that renders the shape as an unfilled line drawing. With the exception
of fillArc() and fillPolygon(), each method takes a simple x, y specification for the
top-left corner of the shape and a width and height for its size.

The most flexible convenience method draws a polygon, which is specified by two arrays
that contain the x and y coordinates of the vertices. Methods in the Graphics class take
two such arrays and draw the polygon’s outline or fill the polygon.

The methods listed in Table 20-1 are shortcuts for more general methods in Graph
ics2D. The more general procedure is to first create a java.awt.geom.Shape object and
then pass it to the draw() or fill() method of Graphics2D. For example, you could
create a Polygon object from coordinate arrays. Since a Polygon implements the Shape
interface, you can pass it to Graphics2D’s general draw() or fill() method.

The fillArc() method requires six integer arguments. The first four specify the
bounding box for an oval—just like the fillOval() method. The final two arguments
specify what portion of the oval we want to draw, as a starting angular position and an

A Quick Tour of Java 2D | 743

offset, both of which are specified in degrees. The zero-degree mark is at three o’clock;
a positive angle is clockwise. For example, to draw the right half of a circle, you might
call:

 g.fillArc(0, 0, radius * 2, radius * 2, -90, 180);

draw3DRect() automatically chooses shading colors by “darkening” the current color.
So you should set the color to something other than black, which is the default (maybe
gray or white); if you don’t, you’ll just get a black rectangle with a thick outline.

Drawing Text
Like drawing a shape’s outline, drawing text is just a simple variation on filling a shape.
When you ask Graphics2D to draw text, it determines the shapes that need to be drawn
and fills them. The shapes that represent characters are called glyphs. A font is a collec‐
tion of glyphs. Here’s an example of drawing text:

 g2.setFont(new Font("Times New Roman", Font.PLAIN, 64));
 g2.setPaint(Color.red);
 g2.drawString("Hello, 2D!", 50, 150);

When we call drawString(), Graphics2D uses the current font to retrieve the glyphs
that correspond to the characters in the string. Then the glyphs (which are really just
Shapes) are filled using the current Paint.

Drawing Images
Images are treated a little differently than shapes. In particular, the current Paint is not
used to render an image because the image contains its own color information for each
pixel (it is the paint, effectively). The following example loads an image from a file and
displays it:

 Image i = Toolkit.getDefaultToolkit().getImage("camel.gif");
 g2.drawImage(i, 75, 50, this);

In this case, the call to drawImage() tells Graphics2D to place the image at the given
location. We’ll explain the fourth argument, which is used for monitoring image loading
later.

Transformations and rendering

Four parts of the pipeline affect every graphics operation. In particular, all rendering is
subject to being transformed, composited, and clipped. Rendering hints are used to
affect all of Graphics2D’s rendering.

This example shows how to modify the current transformation with a translation and
a rotation:

744 | Chapter 20: Drawing with the 2D API

 g2.translate(50, 0);
 g2.rotate(Math.PI / 6);

Every graphics primitive drawn by g2 will now have this transformation applied to it (a
shift of 50 units right and a rotation of 30 degrees clockwise). We can have a similarly
global effect on compositing:

 AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).5);
 g2.setComposite(ac);

Now, every graphics primitive we draw will be half transparent; we’ll explain more about
this later.

All drawing operations are clipped by the current clipping shape, which is any object
implementing the Shape interface. In the following example, the clipping shape is set to
an ellipse:

 Shape e = new Ellipse2D.Float(50, 25, 250, 150);
 g2.clip(e);

You can obtain the current clipping shape using getClip(); this is handy if you want
to restore it later using the setClip() method.

Finally, the rendering hints influence all drawing operations. In the following example,
we tell Graphics2D to use anti-aliasing, a technique that smoothes out the rough pixel
edges of shapes and text:

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

The RenderingHints class contains other keys and values that represent other rendering
hints. If you really like to fiddle with knobs and dials, this is a good class to check out.

The Whole Iguana
Let’s put everything together now, just to show how graphics primitives travel through
the rendering pipeline. The following example demonstrates the use of Graphics2D
from the beginning to the end of the rendering pipeline. With very few lines of code,
we are able to draw some pretty complicated stuff (see Figure 20-2).

Here’s the code:
 //file: Iguana.java
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.geom.*;
 import javax.swing.*;

 public class Iguana extends JComponent {
 private Image image;
 private int theta;

A Quick Tour of Java 2D | 745

 public Iguana() {
 image = Toolkit.getDefaultToolkit().getImage(
 "Piazza di Spagna.small.jpg");
 theta = 0;
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 theta = (theta + 15) % 360;
 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 int cx = getSize().width / 2;
 int cy = getSize().height / 2;

 g2.translate(cx, cy);
 g2.rotate(theta * Math.PI / 180);

 Shape oldClip = g2.getClip();
 Shape e = new Ellipse2D.Float(-cx, -cy, cx * 2, cy * 2);
 g2.clip(e);

 Shape c = new Ellipse2D.Float(-cx, -cy, cx * 3 / 4, cy * 2);
 g2.setPaint(new GradientPaint(40, 40, Color.blue,
 60, 50, Color.white, true));
 g2.fill(c);

 g2.setPaint(Color.yellow);
 g2.fillOval(cx / 4, 0, cx, cy);

 g2.setClip(oldClip);

 g2.setFont(new Font("Times New Roman", Font.PLAIN, 64));
 g2.setPaint(new GradientPaint(-cx, 0, Color.red,
 cx, 0, Color.black, false));
 g2.drawString("Hello, 2D!", -cx * 3 / 4, cy / 4);

 AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).75);
 g2.setComposite(ac);

 Shape r = new RoundRectangle2D.Float(0, -cy * 3 / 4,
 cx * 3 / 4, cy * 3 / 4, 20, 20);
 g2.setStroke(new BasicStroke(4));
 g2.setPaint(Color.magenta);

746 | Chapter 20: Drawing with the 2D API

 g2.fill(r);
 g2.setPaint(Color.green);
 g2.draw(r);

 g2.drawImage(image, -cx / 2, -cy / 2, this);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Iguana");
 frame.setLayout(new BorderLayout());
 frame.add(new Iguana(), BorderLayout.CENTER);
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

Figure 20-2. Exercising the 2D API

The Iguana class is a subclass of JComponent with a very fancy paint() method. The
main() method takes care of creating a JFrame that holds the Iguana component.

Iguana’s constructor loads a small image (we’ll talk more about this later) and sets up
a mouse event handler. This handler changes a member variable, theta, and repaints
the component. Each time you click, the entire drawing is rotated by 15 degrees.

Iguana’s paint() method does some pretty interesting stuff, but none of it is very dif‐
ficult. First, user space is transformed so that the origin is at the center of the component.
The user space is then rotated by theta:

 g2.translate(cx, cy);
 g2.rotate(theta * Math.PI / 180);

Iguana saves the current (default) clipping shape before setting it to a large ellipse. Then,
Iguana draws two filled ellipses. The first is drawn by instantiating an Ellipse2D and

A Quick Tour of Java 2D | 747

filling it; the second is drawn using the fillOval() convenience method. (We’ll talk
about the color gradient in the first ellipse in the next section.) As you can see in
Figure 20-2, both ellipses are clipped by the elliptical clipping shape. After filling the
two ellipses, Iguana restores the old clipping shape.

Next, Iguana draws some text (see the section “Using Fonts” on page 751). The next action
is to modify the compositing rule as follows:

 AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).75);
 g2.setComposite(ac);

The only thing this means is that we want everything to be drawn with transparency.
The AlphaComposite class defines constants that represent different compositing rules,
much the way the Color class contains constants that represent different predefined
colors. In this case, we’re asking for the source over destination rule (SRC_OVER), but with
an additional alpha multiplier of 0.75. Source over destination means that whatever
we’re drawing (the source) should be placed on top of whatever’s already there (the
destination). The alpha multiplier means that everything we draw will be treated at 0.75,
or three quarters, of its normal opacity, allowing the existing drawing to “show through.”

You can see the effect of the new compositing rule in the rounded rectangle and the
image, which both allow previously drawn elements to show through.

Filling Shapes
Iguana fills its shapes with a number of colors, using the setPaint() method of Graph
ics2D. This method sets the current color in the graphics context, so we set it to a
different color before each drawing operation. setPaint() accepts any object that im‐
plements the Paint interface. The 2D API includes three implementations of this in‐
terface, representing solid colors, color gradients, and textures.

Solid Colors
The java.awt.Color class represents color in Java. A Color object describes a single
color and implements the Paint interface for filling an area with it. You can create an
arbitrary Color by specifying the red, green, and blue values, either as integers between
0 and 255 or as floating-point values between 0.0 and 1.0. The (somewhat strange)
getColor() method can be used to look up a named color in the system properties table,
as described in Chapter 11.

The Color class also defines a number of static final color values; we used these in
the Iguana example. These constants, such as Color.black and Color.red, provide a
convenient set of basic color objects for your drawings.

748 | Chapter 20: Drawing with the 2D API

Excessive creation of redundant color instances is a common cause of
memory bloat in Java clients. Consider using a factory pattern to en‐
sure you don’t have 200 instances of periwinkle.

Color Gradients
A color gradient is a smooth blend between two or more colors. The GradientPaint
class encapsulates this idea in a handy implementation of the Paint interface. All you
need to do is specify two points and the color at each point. GradientPaint takes care
of the details so that the color fades smoothly from one point to the other. In the previous
example, the ellipse is filled with a gradient this way:

 g2.setPaint(new GradientPaint(40, 40, Color.blue,
 60, 50, Color.white, true));

The last parameter in GradientPaint’s constructor determines whether the gradient is
cyclic. In a cyclic gradient, the colors keep fluctuating beyond the two points that you’ve
specified. Otherwise, the gradient just draws a single blend from one point to the other.
Beyond each endpoint, the color is solid.

Java 6 added multistop gradient capabilities to LinearGradientPaint and RadialGra
dientPaint. A multistop gradient can, for example, smoothly fade from green to blue
to red.

Textures
A texture is simply an image repeated over and over like a floor tile. This concept is
represented in the 2D API with the TexturePaint class. To create a texture, just specify
the image to be used and the rectangle that will be used to reproduce it. To do this, you
also need to know how to create and use images, which we’ll get to a little later.

Desktop Colors
The Color class makes it easy to construct a particular color; however, that’s not always
what you want to do. Sometimes you want to match a preexisting color scheme. This is
particularly important when you are designing a user interface; you might want your
components to have the same colors as other components on that platform and to
change automatically if the user redefines his or her color scheme.

That’s where the SystemColor class comes in. A system color represents the color used
by the local windowing system in a certain context. The SystemColor class holds lots
of predefined system colors, just like the Color class holds some predefined basic colors.
For example, the field activeCaption represents the color used for the background of
the titlebar of an active window; activeCaptionText represents the color used for the
title itself. menu represents the background color of menu selections; menuText

Filling Shapes | 749

represents the color of a menu item’s text when it is not selected; textHighlightText
is the color used when the menu item is selected; and so on. You could use the window
value to set the color of a Window to match the other windows on the user’s screen—
whether or not they’re generated by Java programs.

 myWindow.setBackground(SystemColor.window);

Because the SystemColor class is a subclass of Color, you can use it wherever you would
use a Color. However, the SystemColor constants are tricky. They are constant, im‐
mutable objects as far as you, the programmer, are concerned (your code is not allowed
to modify them), but they can be modified at runtime by the system. If the user changes
his color scheme, the system colors are automatically updated to follow suit; as a result,
anything displayed with system colors will automatically change color the next time it
is redrawn. For example, the window myWindow would automatically change its back‐
ground color to the new background color.

The SystemColor class has one noticeable shortcoming. You can’t compare a system
color to a Color directly; the Color.equals() method doesn’t return reliable results.
For example, if you want to find out whether the window background color is red, you
can’t call:

 Color.red.equals(SystemColor.window);

Instead, you should use getRGB() to find the color components of both objects and
compare them, rather than comparing the objects themselves.

Stroking Shape Outlines
Just as a Graphics2D object’s current paint determines how its shapes are filled, its cur‐
rent stroke determines how its shapes are outlined. The current stroke determines such
drawing features as line thickness, line dashing, and end styles. In the old days, lines
were one pixel wide and that was that. With Java 2D, line thickness can be set with
floating-point accuracy and the results, like everything else, are subject to the rendering
pipeline’s transformations and scaling.

To set the current stroke in Graphics2D, call setStroke() with any implementation of
the Stroke interface. Fortunately, the 2D API includes a BasicStroke class that probably
does everything you need. Using BasicStroke, you can create dashed lines, control the
decoration that is added to line ends, and decide how the corners in an outline should
be drawn.

By default, Graphics2D uses a solid stroke with a width of 1. In the previous Iguana
example, the line width is changed just before the outline of the rounded rectangle is
drawn, like so:

 g2.setStroke(new BasicStroke(4));

750 | Chapter 20: Drawing with the 2D API

Using Fonts
Text fonts in Java are represented by instances of the java.awt.Font class. A Font object
is constructed from a name, style identifier, and a point size. We can create a Font object
at any time, but it’s meaningful only when applied to a particular component on a given
display device. Here are a couple of fonts:

 Font smallFont = new Font("Monospaced", Font.PLAIN, 10);
 Font bigFont = new Font("Serif", Font.BOLD, 18);

Font names come in three varieties: family names, face names (also called font names),
and logical names. Family and font names are closely related. For example, Garamond
Italic is a font name for a font whose family name is Garamond.

A logical name is a generic name for the font family. The following logical font names
should be available on all platforms:

• Serif (generic name for TimesRoman)
• SansSerif (generic name for Helvetica)
• Monospaced (generic name for Courier)
• Dialog

• DialogInput

The logical font name is mapped to an actual font on the local platform. Java’s fonts.prop‐
erties file maps the font names to the available fonts, covering as much of the Unicode
character set as possible. If you request a font that doesn’t exist, you get the default font.

One of the big wins in the 2D API is that it can use most of the fonts you have installed
on your computer. The following program prints out a full list of the fonts that are
available to the 2D API:

 //file: ShowFonts.java
 import java.awt.*;

 public class ShowFonts {
 public static void main(String[] args) {
 Font[] fonts;
 fonts =
 GraphicsEnvironment.getLocalGraphicsEnvironment().getAllFonts();
 for (int i = 0; i < fonts.length; i++) {
 System.out.print(fonts[i].getFontName() + " : ");
 System.out.print(fonts[i].getFamily() + " : ");
 System.out.print(fonts[i].getName());
 System.out.println();
 }
 }
 }

Using Fonts | 751

Note, however, that the fonts installed on your system may not match the fonts installed
on someone else’s system. For true portability, you can use one of the logical names
(although your application won’t look exactly the same on all platforms) or go with the
defaults. Alternatively, you can test for the existence of your preferred font and fall back
on a logical font, or you can allow your users to configure the application by choosing
fonts themselves.

The static method Font.getFont() looks up a font by name in the system properties
list just like Color.getColor(). And as with Color.getColor(), this is interesting but
useless. Normally, you’ll either choose a Font from one that is available in the environ‐
ment (as in the ShowFonts example) or use identifiers to describe the font you want in
the Font constructor.

The Font class defines three static style identifiers: PLAIN, BOLD, and ITALIC. You can
use these values on all fonts, although some fonts may not provide bold or italic versions.
The point size determines the size of the font on a display. If a given point size isn’t
available, Font substitutes a default size.

You can retrieve information about an existing Font with a number of routines. The
getName(), getSize(), and getStyle() methods retrieve the logical name, point size,
and style, respectively. You can use the getFamily() method to find out the family name,
while getFontName() returns the face name of the font.

Finally, to actually use a Font object, you can simply specify it as an argument to the
setFont() method of a Component or Graphics2D object. Subsequent text drawing
commands such as drawString() for that component or in that graphics context use
the specified font.

Font Metrics
To get detailed size and spacing information for text rendered in a font, we can ask for
a java.awt.font.LineMetrics object. Different systems have different real fonts avail‐
able; the available fonts may not match the font you request. Furthermore, the meas‐
urements of different characters within a single font may be different, especially in
multilingual text. Thus, a LineMetrics object presents information about a particular
set of text in a particular font on a particular system, not general information about a
font. For example, if you ask for the metrics of a nine-point Monospaced font, what you
get isn’t some abstract truth about Monospaced fonts; you get the metrics of the font that
the particular system uses for nine-point Monospaced—which may not be exactly nine
points or even fixed width.

Use the getLineMetrics() method for a Font to retrieve the metrics for text as it would
appear for that component. This method also needs to know some information about
how you plan to render the text—if you’re planning to use anti-aliasing, for instance,
which affects the text measurements. This extra information is encapsulated in the

752 | Chapter 20: Drawing with the 2D API

FontRenderContext class. Fortunately, you can just ask Graphics2D for its current
FontRenderContext rather than having to create one yourself:

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 ...
 FontRenderContext frc = g2.getFontRenderContext();
 LineMetrics metrics = font.getLineMetrics("Monkey", frc);
 ...
 }

The Font class also has a getStringBounds() method that returns the bounding box of
a piece of text:

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 ...
 FontRenderContext frc = g2.getFontRenderContext();
 float messageWidth =
 (float)font.getStringBounds("Monkey", frc).getWidth();
 ...
 }

The following application, FontShow, displays a word and draws reference lines showing
certain characteristics of its font, as shown in Figure 20-3. Clicking in the application
window toggles the point size between a small and a large value.

 //file: FontShow.java
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.font.*;
 import javax.swing.*;

 public class FontShow extends JComponent
 {
 private static final int PAD = 25; // frilly line padding
 private boolean bigFont = true;
 private String message;

 public FontShow(String message) {
 this.message = message;
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 bigFont = !bigFont;
 repaint();
 }
 });
 }

 public void paint(Graphics g)
 {
 Graphics2D g2 = (Graphics2D)g;

Using Fonts | 753

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 int size = bigFont ? 96 : 64;
 Font font = new Font("Dialog", Font.PLAIN, size);
 g2.setFont(font);
 int width = getSize().width;
 int height = getSize().height;

 FontRenderContext frc = g2.getFontRenderContext();
 LineMetrics metrics = font.getLineMetrics(message, frc);
 float messageWidth =
 (float)font.getStringBounds(message, frc).getWidth();

 // center text
 float ascent = metrics.getAscent();
 float descent = metrics.getDescent();
 float x = (width - messageWidth) / 2;
 float y = (height + metrics.getHeight()) / 2 - descent;

 g2.setPaint(getBackground());
 g2.fillRect(0, 0, width, height);

 g2.setPaint(getForeground());
 g2.drawString(message, x, y);

 g2.setPaint(Color.white); // Base lines
 drawLine(g2, x - PAD, y, x + messageWidth + PAD, y);
 drawLine(g2, x, y + PAD, x, y - ascent - PAD);
 g2.setPaint(Color.green); // Ascent line
 drawLine(g2, x - PAD, y - ascent,
 x + messageWidth + PAD, y - ascent);
 g2.setPaint(Color.red); // Descent line
 drawLine(g2, x - PAD, y + descent,
 x + messageWidth + PAD, y + descent);
 }

 private void drawLine(Graphics2D g2,
 double x0, double y0, double x1, double y1) {
 Shape line = new java.awt.geom.Line2D.Double(x0, y0, x1, y1);
 g2.draw(line);
 }

 public static void main(String args[]) {
 String message = "Lemming";
 if (args.length > 0) message = args[0];

 JFrame frame = new JFrame("FontShow");
 frame.setSize(420, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new FontShow(message));
 frame.setVisible(true);

754 | Chapter 20: Drawing with the 2D API

 }
 }

Figure 20-3. The FontShow application

You can specify the text to be displayed as a command-line argument:
 % java FontShow "When in the course of human events ..."

FontShow may look a bit complicated, but there’s really not much to it. The bulk of the
code is in paint(), which sets the font, draws the text, and adds a few lines to illustrate
some of the font’s characteristics (metrics). For fun, we also catch mouse clicks (using
an event handler defined in the constructor) and alternate the font size by setting the
bigFont toggle variable and repainting.

By default, text is rendered above and to the right of the coordinates specified in the
drawString() method. Think of that starting point as the origin of a coordinate system;
the axes are the baselines of the font. FontShow draws these lines in white. The greatest
height the characters stretch above the baseline is called the ascent and is shown by a
green line. Some fonts also have parts of letters that fall below the baseline. The farthest
distance any character reaches below the baseline is called the descent, which is illus‐
trated with a red line.

We ask for the ascent and descent of our font with the LineMetrics class’s getAs
cent() and getDescent() methods. We also ask for the width of our string (when
rendered in this font) with Font’s getStringBounds() method. This information is used
to center the word in the display area. To center the word vertically, we use the height
and adjust with the descent to calculate the baseline location. Table 20-2 provides a short
list of methods that return useful font metrics.

Using Fonts | 755

Table 20-2. LineMetrics methods
Method Description

getAscent() Height above baseline

getDescent() Depth below baseline

getLeading() Standard vertical spacing between lines

getHeight() Total line height (ascent + descent + leading)

Leading space is the padding between lines of text. The getHeight() method reports
the total height of a line of text, including the leading space.

Displaying Images
So far, we’ve worked with methods for drawing simple shapes and displaying text. For
more complex graphics, we’ll be working with images. In a typical Swing application,
the simplest way to display an image in your application is to use an ImageIcon with a
JLabel component. Here, we are talking about working with image data at a lower level,
for painting. The 2D API has a powerful set of tools for generating and displaying image
data. We’ll start with the basics of the java.awt.Image class and see how to load an
image into an application and draw it where you want it. The Java AWT toolkit will
handle most of the details for us. In the next chapter, we’ll go further to discuss how to
manage image loading manually as well as how to create and manipulate raw pixel data,
allowing you to create any kind of graphics you can dream up.

The core AWT supports images encoded in JPEG, PNG, and GIF. (This includes GIF89a
animations so that you can work with simple animations as easily as static images.) If
you need to work with other types of images, you can turn to the Java Advanced Imaging
javax.imageio framework. We’ll mention it briefly here and again in the next chapter
when we discuss the BufferedImage class.

In many ways, the ImageIO framework supercedes and replaces the older image han‐
dling functionality of the core AWT just as Swing extends and replaces the old AWT
components. The ImageIO framework is easily extensible for new image types through
plug-ins. However, out of the box, all that it adds in terms of image type support is the
ability to read bitmap (BMP) and wireless bitmap (WBMP) images. Since most Java
code can and does use the original AWT functionality, that is where we’ll focus.

The Image Class
The java.awt.Image class represents a view of an image. The view is created from an
image source that produces pixel data. Images can be from a static source, such as a
JPEG file, or a dynamic one, such as a video stream or a graphics engine.

756 | Chapter 20: Drawing with the 2D API

AWT Images are created with the getImage() and createImage() methods of the
java.awt.Toolkit class. There are two forms of each method, which accept a URL or
plain filename, respectively. createImage() can also accept a byte array of image data
directly.

When bundling images with your application, you should use the Class class’s getRe
source() method (discussed in Chapter 1) to construct a URL reference to the file from
the application classpath. getResource() allows you to bundle images along with your
application, inside JAR files or anywhere else in the classpath. The following code frag‐
ment shows some examples of loading images with the getImage() method:

 Toolkit toolkit = Toolkit.getDefaultToolkit();

 // Application resource URL - Best method
 URL daffyURL = getClass().getResource("/cartoons/images/daffy.gif");
 Image daffyDuckImage = toolkit.getImage(daffyURL);

 // Absolute URL -
 URL monaURL = new URL("http://myserver/images/mona_lisa.png");
 Image monaImage = toolkit.getImage(monaURL);

 // Local file -
 Image elvisImage = toolkit.getImage("c:/elvis/lateryears/fatelvis1.jpg");

The createImage() method looks just like getImage(); the difference is that get
Image() “interns” images and shares them when it receives multiple requests for the
same data. The createImage() method does not do this (it creates a new Image object
every time) and relies on you to cache and share the image. getImage() is convenient
in an application that uses a limited number of images for the life of the application, but
it may not ever release the image data. You should use createImage() and cache the
Image objects yourself when it’s an issue.

The javax.imageio.ImageIO class similarly provides several static read() methods that
can load images from a File, URL, or InputStream:

 URL daffyURL = getClass().getResource("/cartoons/images/daffy.gif");
 Image daffyDuckImage = ImageIO.read(daffyURL);

We’ll discuss image loading with AWT and the ImageIO framework in more detail in
Chapter 21.

Once we have an Image object, we can draw it into a graphics context with the draw
Image() method of the Graphics class. The simplest form of the drawImage() method
takes four parameters: the Image object, the x, y coordinates at which to draw it, and a
reference to a special image observer object. We’ll show an example involving draw
Image() soon, but first let’s say a word about image observers.

Displaying Images | 757

Image Observers
Images are processed asynchronously, which means that Java performs image opera‐
tions, such as loading and scaling in the background (allowing the user code to con‐
tinue). In a typical client application, this might not be important; images may be small
for things like buttons, and are probably bundled with the application for almost instant
retrieval. However, Java was designed to work with image data over the Web as well as
locally, and you will see this expressed in the APIs for working with image data.

For example, the getImage() method always returns immediately, even if the image
data has to be retrieved over the network from Mars and isn’t available yet. In fact, if it’s
a new image, Java won’t even begin to fetch the data until we try to display or manipulate
it. The advantage of this technique is that Java can do the work of a powerful, multi‐
threaded image processing environment for us. However, it also introduces several
problems. If Java is loading an image for us, how do we know when it’s completely
loaded? What if we want to work with the image as it arrives? What if we need to know
properties of the image (like its dimensions) before we can start working with it? What
if there’s an error in loading the image?

These issues are handled by image observers, objects that implement the ImageObserv
er interface. All operations that draw or examine Image objects are asynchronous and
take an image observer object as a parameter. The ImageObserver monitors the image
operation’s status and can make that information available to the rest of the application.
When image data is loaded from its source by the graphics system, your image observer
is notified of its progress, including when new pixels are available, when a complete
frame of the image is ready, and if there is an error during loading. The image observer
also receives attribute information about the image, such as its dimensions and prop‐
erties, as soon as they are known.

The drawImage() method, like other image operations, takes a reference to an Image
Observer object as a parameter. drawImage() returns a boolean value specifying wheth‐
er or not the image was painted in its entirety. If the image data has not yet been loaded
or is only partially available, drawImage() paints whatever fraction of the image it can
and returns. In the background, the graphics system starts (or continues) loading the
image data. The image observer object is registered as interested in information about
the image. The observer is then called repeatedly as more pixel information is available
and again when the entire image is complete. The image observer can do whatever it
wants with this information. Most often the information is used to call repaint() to
prompt the application to draw the image again with the updated data. In this way, an
application or applet can draw the image as it arrives for a progressive loading effect.
Alternatively, it could wait until the entire image is loaded before displaying it.

Image observers are covered in Chapter 21. For now, let’s avoid the issue by using a
prefabricated image observer. The Component class implements the ImageObserver
interface and provides some simple repainting behavior, which means every component

758 | Chapter 20: Drawing with the 2D API

1. The awt.image.incrementaldraw and awt.image.redrawrate system properties control this behavior.
redrawrate limits how often repaint() is called; the default value is every 100 milliseconds. incremental
draw’s default value, true, enables this behavior. Setting it to false delays drawing until the entire image has
arrived.

can serve as its own default image observer. We can simply pass a reference to whatever
component is doing the painting as the image observer parameter of a drawImage()
call:

 public void paint(Graphics g) {
 g.drawImage(monaImage, x, y, this);
 ...

Our component serves as the image observer and calls repaint() for us to redraw the
image as necessary. If the image arrives slowly, our component is notified repeatedly as
new chunks become available. As a result, the image appears gradually as it’s loaded.1

Preloading images

We’ll discuss image loading in more detail in the next chapter when we look at the
MediaTracker utility, which monitors the load progress of one or more images. How‐
ever, we’ll skip ahead a bit here and show you the easy shortcut for loading a single
image and making sure it’s complete and ready to draw. You can use the javax.swing.Im
ageIcon class to do the dirty work for you:

 ImageIcon icon = new ImageIcon("myimage.jpg");
 Image image = icon.getImage();

Images loaded by the ImageIO read() methods are returned fully loaded. ImageIO
provides its own API for monitoring image loading progress. That API follows a more
standard event source/listener pattern, but we won’t get into it here.

Scaling and Size
Another version of drawImage() renders a scaled version of the image:

 g.drawImage(monaImage, x, y, x2, y2, this);

This draws the entire image within the rectangle formed by the points x, y and x2, y2,
scaling as necessary. drawImage() behaves the same as before; the image is processed
by the component as it arrives, and the image observer is notified as more pixel data
and the completed image are available. Several other overloaded versions of draw
Image() provide more complex options: you can scale, crop, and perform some simple
transpositions.

Normally, however, for performance you want to make a scaled copy of an image (as
opposed to simply painting one at draw time); you can use getScaledInstance() for
this purpose. Here’s how:

Displaying Images | 759

 Image scaledDaffy =
 daffyImage.getScaledInstance(100, 200, Image.SCALE_AREA_AVERAGING);

This method scales the original image to the given size—in this case, 100 by 200 pixels.
It returns a new Image that you can draw like any other image. SCALE_AREA_AVERAG
ING is a constant that tells getScaledImage() what scaling algorithm to use. The algo‐
rithm used here tries to do a decent job of scaling at the expense of time. Some alter‐
natives that take less time are SCALE_REPLICATE, which scales by replicating scan lines
and columns (which is fast, but probably not pretty). You can also specify either
SCALE_FAST or SCALE_SMOOTH and let the implementation choose an appropriate algo‐
rithm that optimizes for time or quality. If you don’t have specific requirements, you
should use SCALE_DEFAULT, which ideally would be set by a preference in the user’s
environment.

If you are going to draw the image more than once (which you almost always will),
creating a scaled copy of the image can improve performance dramatically. Otherwise,
repeated calls to drawImage() with scaling requirements cause the image to be scaled
every time, which wastes processing time.

The Image getHeight() and getWidth() methods retrieve the dimensions of an image.
Because this information may not be available until the image data is completely loaded,
both methods also take an ImageObserver object as a parameter. If the dimensions aren’t
yet available, they return values of -1 and notify the observer when the actual value is
known. We’ll see how to deal with these and other problems a bit later. For now, we’ll
continue to use our Component as the image observer and move on to some general
painting techniques.

Drawing Techniques
Now that we’ve learned about the basic tools, let’s put a few of them together. In this
section, we’ll look at some techniques for doing fast and flicker-free drawing and paint‐
ing. If you’re interested in animation, this is for you. Drawing operations take time, and
time spent drawing leads to delays and imperfect results. Our goals are to minimize the
amount of drawing work we do and, as much as possible, to do that work away from
the eyes of the user. To do this, we use two techniques: clipping and double buffering.
Fortunately, Swing now handles double buffering by default. You won’t have to imple‐
ment this logic on your own, but it’s useful to understand it.

Our first example, DragImage, illustrates some of the issues in updating a display. Like
many animations, it has two parts: a constant background and a changing object in the
foreground. In this case, the background is a checkerboard pattern, and the object is a
small, scaled that image we can drag around on top of it, as shown in Figure 20-4:

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

760 | Chapter 20: Drawing with the 2D API

 public class DragImage extends JComponent
 implements MouseMotionListener
 {
 static int imageWidth=60, imageHeight=60;
 int grid = 10;
 int imageX, imageY;
 Image image;

 public DragImage(Image i) {
 image = i;
 addMouseMotionListener(this);
 }

 public void mouseDragged(MouseEvent e) {
 imageX = e.getX();
 imageY = e.getY();
 repaint();
 }
 public void mouseMoved(MouseEvent e) {}

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;

 int w = getSize().width / grid;
 int h = getSize().height / grid;
 boolean black = false;
 for (int y = 0; y <= grid; y++)
 for (int x = 0; x <= grid; x++) {
 g2.setPaint(black ? Color.black : Color.white);
 black = !black;
 g2.fillRect(x * w, y * h, w, h);
 }
 g2.drawImage(image, imageX, imageY, this);
 }

 public static void main(String[] args) {
 String imageFile = "L1-Light.jpg";
 if (args.length > 0)
 imageFile = args[0];

 // Turn off double buffering
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);

 Image image = Toolkit.getDefaultToolkit().getImage(
 DragImage.class.getResource(imageFile));
 image = image.getScaledInstance(
 imageWidth,imageHeight,Image.SCALE_DEFAULT);
 JFrame frame = new JFrame("DragImage");
 frame.add(new DragImage(image));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Drawing Techniques | 761

 frame.setVisible(true);
 }
 }

Figure 20-4. The DragImage application

Run the application, optionally specifying an image file as a command-line argument.
Then try dragging the image around on the pattern.

DragImage is a custom component that overrides the JComponent paint() method to
do its drawing. In the main() method, we load the image and prescale it to improve
performance. We then create the DragImage component and place it in the content pane.
As the mouse is dragged, DragImage keeps track of its most recent position in two
instance variables, imageX and imageY. On each call to mouseDragged(), the coordinates
are updated, and repaint() is called to ask that the display be updated. When paint()
is called, it looks at some parameters, draws the checkerboard pattern to fill the applet’s
area and finally paints the small version of the image at the latest coordinates.

Now for a few arcane details about differences between JComponent and a plain AWT
Component. First, the default JComponent update() method simply calls our paint()
method. Prior to Java 1.4, the AWT Component class’s default update() method first
cleared the screen area using a clearRect() call before calling paint. Remember that
the difference between paint() and update() is that paint() draws the entire area and
update() assumes the screen region is intact from the last draw. In AWT, update() was
overly conservative; in Swing, it’s more optimistic. This is noteworthy if you are working
with an older AWT-based application. In that case, you can simply override update()
to call paint().

A more important difference between AWT and Swing is that Swing components by
default perform double buffering of the output of their paint() method.

762 | Chapter 20: Drawing with the 2D API

Double Buffering
Double buffering means that instead of drawing directly on the screen, Swing first per‐
forms drawing operations in an offscreen buffer and then copies the completed work
to the display in a single painting operation, as shown in Figure 20-5. It takes the same
amount of time to do the drawing work, but once it’s done, double buffering instanta‐
neously updates our display so that the user does not perceive any flickering or pro‐
gressively rendered output.

You’ll see how to implement this technique yourself when we use an offscreen buffer
later in this chapter. However, Swing does this kind of double buffering for you whenever
you use a Swing component in a Swing container. AWT components do not have au‐
tomatic double buffering capability.

It is interesting to take our example and turn off double buffering to see the effect. Each
Swing JComponent has a method called setDoubleBuffered() that can be set to false
in order to disable the technique. Or you can disable it for all components using a call
to the Swing RepaintManager, as we’ve indicated in comments in the example. Try
uncommenting that line of DragImage and observe the difference in appearance.

Figure 20-5. Double buffering

The difference is most dramatic when you are using a slow system or performing com‐
plex drawing operations. Double buffering eliminates all of the flickering. However, on
a slow system, it can decrease performance noticeably. In extreme cases (such as a game),
it may be beneficial to provide an option to disable double buffering.

Our example is pretty fast, but we’re still doing some wasted drawing. Most of the back‐
ground stays the same each time it’s painted. You might try to make paint() smarter,
so that it wouldn’t redraw these areas, but remember that paint() has to be able to draw
the entire scene because it might be called in situations when the display isn’t intact. The
solution is to draw only part of the picture whenever the mouse moves. Next, we’ll talk
about clipping.

Drawing Techniques | 763

Limiting Drawing with Clipping
Whenever the mouse is dragged, DragImage responds by updating its coordinates and
calling repaint(). But repaint() by default causes the entire component to be redrawn.
Most of this drawing is unnecessary. It turns out that there’s another version of re
paint() that lets you specify a rectangular area that should be drawn—in essence, a
clipping region.

Why does it help to restrict the drawing area? Foremost, drawing operations that fall
outside the clipping region are not displayed. If a drawing operation overlaps the clip‐
ping region, we see only the part that’s inside. A second effect is that, in a good imple‐
mentation, the graphics context can recognize drawing operations that fall completely
outside the clipping region and ignore them altogether. Eliminating unnecessary op‐
erations can save time if we’re doing something complex, such as filling a bunch of
polygons. This doesn’t save the time our application spends calling the drawing methods,
but the overhead of calling these kinds of drawing methods is usually negligible com‐
pared to the time it takes to execute them. (If we were generating an image pixel by
pixel, this would not be the case, as the calculations would be the major time sink, not
the drawing.)

So we can save some time in our application by redrawing only the affected portion of
the display. We can pick the smallest rectangular area that includes both the old image
position and the new image position, as shown in Figure 20-6. This is the only portion
of the display that really needs to change; everything else stays the same.

Figure 20-6. Determining the clipping region

A smarter algorithm could save even more time by redrawing only those regions that
have changed. However, the simple clipping strategy we’ve implemented here can be
applied to many kinds of drawing and gives good performance, particularly if the area
being changed is small.

764 | Chapter 20: Drawing with the 2D API

One important thing to note is that, in addition to looking at the new position, our
updating operation now has to remember the last position at which the image was
drawn. Let’s fix our application so it will use a specified clipping region. To keep this
short and emphasize the changes, we’ll take some liberties with design and make our
next example a subclass of DragImage. Let’s call it ClippedDragImage.

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class ClippedDragImage extends DragImage {
 int oldX, oldY;

 public ClippedDragImage(Image i) { super(i); }

 public void mouseDragged(MouseEvent e) {
 imageX = e.getX();
 imageY = e.getY();
 Rectangle r = getAffectedArea(
 oldX, oldY, imageX, imageY, imageWidth, imageHeight);
 repaint(r); // repaint just the affected part of the component
 oldX = imageX;
 oldY = imageY;
 }

 private Rectangle getAffectedArea(
 int oldx, int oldy, int newx, int newy, int width, int height)
 {
 int x = Math.min(oldx, newx);
 int y = Math.min(oldy, newy);
 int w = (Math.max(oldx, newx) + width) - x;
 int h = (Math.max(oldy, newy) + height) - y;
 return new Rectangle(x, y, w, h);
 }

 public static void main(String[] args) {
 String imageFile = "L1-Light.jpg";
 if (args.length > 0)
 imageFile = args[0];

 // Turn off double buffering
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);

 Image image = Toolkit.getDefaultToolkit().getImage(
 ClippedDragImage.class.getResource(imageFile));
 image = image.getScaledInstance(
 imageWidth,imageHeight,Image.SCALE_DEFAULT);
 JFrame frame = new JFrame("ClippedDragImage");
 frame.add(new ClippedDragImage(image));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);

Drawing Techniques | 765

 }
 }

You may or may not find that ClippedDragImage is significantly faster. Modern desktop
computers are so fast that this kind of operation is child’s play for them. However, the
fundamental technique is important and applicable to more sophisticated applications.

What have we changed? First, we’ve overridden mouseDragged() so that instead of set‐
ting the current coordinates of the image, it figures out the area that has changed by
using a new private method. getAffectedArea() takes the new and old coordinates
and the width and height of the image as arguments. It determines the bounding rec‐
tangle as shown in Figure 20-6, then calls repaint() to draw only the affected area of
the screen. mouseDragged() also saves the current position by setting the oldX and oldY
variables.

Try turning off double buffering on this example and compare it to the unbuffered
previous example to see how much less work is being done. You probably won’t see the
difference; computers are just too fast nowadays. If you were using the 2D API to do
some fancy rendering, it might help a lot.

Offscreen Drawing
In addition to serving as buffers for double buffering, offscreen images are useful for
saving complex, hard-to-produce, background information. We’ll look at a fun, simple
example: the doodle pad. DoodlePad is a simple drawing tool that lets us scribble by
dragging the mouse, as shown in Figure 20-7. It draws into an offscreen image; its
paint() method simply copies the image to the display area.

 //file: DoodlePad.java
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class DoodlePad
 {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("DoodlePad");
 frame.setLayout(new BorderLayout());
 final DrawPad drawPad = new DrawPad();
 frame.add(drawPad, BorderLayout.CENTER);
 JPanel panel = new JPanel();
 JButton clearButton = new JButton("Clear");
 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 drawPad.clear();
 }
 });
 panel.add(clearButton);

766 | Chapter 20: Drawing with the 2D API

 frame.add(panel, BorderLayout.SOUTH);
 frame.setSize(280, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 } // end of class DoodlePad

 class DrawPad extends JComponent
 {
 Image image;
 Graphics2D graphics2D;
 int currentX, currentY, oldX, oldY;

 public DrawPad() {
 setDoubleBuffered(false);
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 oldX = e.getX();
 oldY = e.getY();
 }
 });
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 currentX = e.getX();
 currentY = e.getY();
 if (graphics2D != null)
 graphics2D.drawLine(oldX, oldY, currentX, currentY);
 repaint();
 oldX = currentX;
 oldY = currentY;
 }
 });
 }

 public void paintComponent(Graphics g) {
 if (image == null) {
 image = createImage(getSize().width, getSize().height);
 graphics2D = (Graphics2D)image.getGraphics();
 graphics2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 clear();
 }
 g.drawImage(image, 0, 0, null);
 }

 public void clear() {
 graphics2D.setPaint(Color.white);
 graphics2D.fillRect(0, 0, getSize().width, getSize().height);
 graphics2D.setPaint(Color.black);
 repaint();

Drawing Techniques | 767

 }
 }

Figure 20-7. The DoodlePad application

Give it a try. Draw a nice moose or a sunset. We just drew a lovely cartoon of Bill Gates.
If you make a mistake, hit the Clear button and start over.

The parts should be familiar by now. We made a type of JComponent called DrawPad.
The new DrawPad component uses inner classes to supply handlers for the MouseLis
tener and MouseMotionListener interfaces. We used the JComponent create

Image() method to create an empty offscreen image buffer to hold our scribble. Mouse-
dragging events trigger us to draw lines into the offscreen image and call repaint() to
update the display. DrawPad’s paint() method does a drawImage() to copy the offscreen
drawing area to the display. In this way, DrawPad saves our sketch information.

What is unusual about DrawPad is that it does some drawing outside of paint(). In this
example, we want to let the user scribble with the mouse, so we should respond to every
mouse movement. Therefore, we do our work, drawing to the offscreen buffer in mouse
Dragged() itself. As a rule, we should be careful about doing heavy work in event-
handling methods because we don’t want to interfere with other tasks that the window‐
ing system’s painting thread is performing. In this case, our line drawing option should
not be a burden, and our primary concern is getting as close a coupling as possible
between the mouse movement events and the sketch on the screen. A more elaborate
example might push coordinates into a queue for some other drawing thread to con‐
sume, thus freeing up the event handler thread.

In addition to drawing a line as the user drags the mouse, the mouseDragged() handler
maintains a pair of previous coordinates to be used as a starting point for the next line
segment. The mousePressed() handler resets the previous coordinates to the current
mouse position whenever the user moves the mouse. Finally, DrawPad provides a
clear() method that clears the offscreen buffer and calls repaint() to update the

768 | Chapter 20: Drawing with the 2D API

display. The DoodlePad application ties the clear() method to an appropriately labeled
button through another anonymous inner class.

What if we wanted to do something with the image after the user has finished scribbling
on it? As we’ll see in the next chapter, we could get the pixel data for the image and work
with that. It wouldn’t be hard to create a save facility that stores the pixel data and
reproduces it later. Think about how you might go about creating a networked “bath‐
room wall,” where people could scribble on your web pages.

Printing
Earlier in this chapter, we hinted at the possibility that you could draw the same stuff
on the screen and the printer. It’s true; all you really need to do is get a Graphics2D object
that represents a printer rather than an area of the screen. Java’s printing API provides
the necessary plumbing. There isn’t room here to describe the whole Printing API, but
we will provide you with a short example that will let you get your feet wet (and your
paper flowing).

The printing classes are tucked away in the java.awt.print package. You can print
anything that implements the Printable interface. This interface has only one
method—you guessed it, print()—which is like the paint() methods we’ve already
worked with. It accepts a Graphics object that represents the drawing surface of the
printer’s page. It also accepts a PageFormat object that encapsulates information about
the paper on which you’re printing. Finally, print() is passed the number of the page
that is being rendered. All Swing components implement a print() method, which you
can use or override to customize their printed appearance.

Your print() implementation should either render the requested page or state that it
doesn’t exist. You can do this by returning special values from print(), either Print
able.PAGE_EXISTS or Printable.NO_SUCH_PAGE.

You can control a print job, including showing print and page setup dialogs, using the
PrinterJob class. The following class enables you to get something on paper. In this
example, we work both sides of the printing equation: implementing a simple Print
able interface to generate our data and printing it with the PrinterJob API.

 //file: UnbelievablySimplePrint.java
 import java.awt.*;
 import java.awt.print.*;

 public class UnbelievablySimplePrint implements Printable
 {
 private static Font sFont = new Font("Serif", Font.PLAIN , 64);

 public int print(Graphics g, PageFormat Pf, int pageIndex)
 throws PrinterException
 {

Printing | 769

 if (pageIndex > 0) return NO_SUCH_PAGE;
 Graphics2D g2 = (Graphics2D)g;
 g2.setFont(sFont);
 g2.setPaint(Color.black);
 g2.drawString("Save a tree!", 96, 144);
 return PAGE_EXISTS;
 }

 public static void main(String[] args) {
 PrinterJob job = PrinterJob.getPrinterJob();
 job.setPrintable(new UnbelievablySimplePrint());
 if (job.printDialog()) {
 try {
 job.print();
 }
 catch (PrinterException e) {}
 }
 System.exit(0);
 }
 }

There’s not much to this example. We’ve created an implementation of Printable, called
UnbelievablySimplePrint. It has a very simple print() method that draws some text.

The rest of the work, in the main() method, has to do with setting up the print job. First,
we create a new PrinterJob and tell it what we want to print:

 PrinterJob job = PrinterJob.getPrinterJob();
 job.setPrintable(new UnbelievablySimplePrint());

Then, we use the printDialog() method to show the standard print dialog. If the user
presses the OK button, printDialog() returns true and main() goes ahead with the
printing.

Notice that in the print() method, we perform the familiar cast from Graphics to
Graphics2D. The full power of the 2D API is available for printing. In a real application,
you’d probably have some subclass of Component that was also a Printable. The print()
method could simply call the component’s paint() method to create a component that
performs the same rendering to both the screen and the printer.

770 | Chapter 20: Drawing with the 2D API

CHAPTER 21

Working with Images and Other Media

Until this point, we’ve confined ourselves to working with the high-level drawing com‐
mands of the Graphics2D class, using images in a hands-off mode. In this section, we’ll
clear up some of the mystery surrounding images and see how they can be created and
transformed. The classes in the java.awt.image package handle images and their in‐
ternals; Figure 21-1 shows the important classes in this package.

First, we’ll return to our discussion of image loading and see how we can get more
control over image data using an ImageObserver to watch as it’s processed asynchro‐
nously by GUI components. We’ll also see how to use the MediaTracker utility to handle
the details for us. Then, we’ll move on to the good stuff and have a look at Buffered
Image, which is an image whose pixel data is exposed to you through a memory buffer.
If you’re interested in creating sophisticated graphics, rendered images, or video, this
will teach you about the foundations of image construction in Java.

Looking in the other directions, we will also be referring occasionally to the
javax.imageio package, which is part of the Java Advanced Imaging API (JAI). If you
need even more advanced capabilities such as image tiling, loading scaled versions of
images over the network, and deferred execution of image data processing for working
with really large images, you’ll want to look at JAI.

771

Figure 21-1. The java.awt.image package

Loading Images
One of the challenges in building software for networked applications is that data is not
always instantly available. Since some of Java’s roots are in Internet applications such as
web browsers, its image handling APIs were designed specifically to accommodate the
fact that images might take some time to load over a slow network, providing for detailed
information about image-loading progress. While many client applications do not re‐
quire handling of image data in this way, it’s still useful to understand this mechanism
if for no other reason than it appears in the most basic image-related APIs. The Swing
toolkit adds its own layer of image handling over this with components such as Image
Icon, which encapsulates an image source for you. After reading this chapter, you’ll have
an understanding of how the layers fit together.

772 | Chapter 21: Working with Images and Other Media

ImageObserver
In the previous chapter, we mentioned that all operations on image data (e.g., loading,
drawing, scaling) allow you to specify an “image observer” object as a participant. An
image observer implements the ImageObserver interface, allowing it to receive notifi‐
cation as information about the image becomes available. The image observer is essen‐
tially a callback that is notified progressively as the image is loaded. For a static image,
such as a GIF or JPEG data file, the observer is notified as chunks of image data arrive
and also when the entire image is complete. For a video source or animation (e.g.,
GIF89), the image observer is notified at the end of each frame as the continuous stream
of pixel data is generated.

The image observer can do whatever it wants with this information. For example, in the
last chapter we used the image observer built into the base Component class. Although
you probably didn’t see it happen in our examples, the Component image observer in‐
voked repaint() for us each time a new section of the image became available so that
the picture, if it had taken a long time to load, would have displayed progressively. A
different kind of image observer might have waited for the entire image before telling
the application to display it; yet another use for an observer might be to update a loading
meter showing how far the image loading had progressed.

To be an image observer, implement the imageUpdate() method, which is defined by
the java.awt.image.ImageObserver interface:

 public boolean imageUpdate(Image image, int flags, int x, int y,
 int width, int height)

imageUpdate() is called by the graphics system, as needed, to pass the observer infor‐
mation about the construction of its view of the image. The image parameter holds a
reference to the Image object in question. flags is an integer whose bits specify what
information about the image is now available. The flag values are defined as static
variables in the ImageObserver interface, as illustrated in this example:

 //file: ObserveImageLoad.java
 import java.awt.*;
 import java.awt.image.*;

 public class ObserveImageLoad {

 public static void main(String [] args)
 {
 ImageObserver myObserver = new ImageObserver() {
 public boolean imageUpdate(
 Image image, int flags, int x, int y, int width, int height)
 {
 if ((flags & HEIGHT) !=0)
 System.out.println("Image height = " + height);
 if ((flags & WIDTH) !=0)
 System.out.println("Image width = " + width);

Loading Images | 773

 if ((flags & FRAMEBITS) != 0)
 System.out.println("Another frame finished.");
 if ((flags & SOMEBITS) != 0)
 System.out.println("Image section :"
 + new Rectangle(x, y, width, height));
 if ((flags & ALLBITS) != 0)
 System.out.println("Image finished!");
 if ((flags & ABORT) != 0)
 System.out.println("Image load aborted...");
 return true;
 }
 };

 Toolkit toolkit = Toolkit.getDefaultToolkit();
 Image img = toolkit.getImage(args[0]);
 toolkit.prepareImage(img, -1, -1, myObserver);
 }
 }

Run the example, supplying an image file as the command-line argument and observe
the output. You’ll see a number of incremental messages about loading the image.

The flags integer determines which of the other parameters—x, y, width, and height
—hold valid data and what that data means. To test whether a particular flag in the flags
integer is set, we have to resort to some binary shenanigans—using the & (AND) operator).
The width and height parameters play a dual role. If SOMEBITS is set, they represent the
size of the chunk of the image that has just been delivered. If HEIGHT or WIDTH is set,
however, they represent the overall image dimensions. Finally, imageUpdate() returns
a boolean value indicating whether or not it’s interested in future updates.

In this example, after requesting the Image object with getImage(), we kick-start the
loading process with the Toolkit’s prepareImage() method, which takes our image ob‐
server as an argument. Using an Image API method such as drawImage(), scale
Image(), or asking for image dimensions with getWidth() or getHeight() will also
suffice to start the operation. Remember that although the getImage() method created
the image object, it doesn’t begin loading the data until one of the image operations
requires it.

The example shows the lowest-level general mechanism for starting and monitoring
the process of loading image data. You should be able to see how we could implement
all sorts of sophisticated image loading and tracking schemes with this. The two most
important strategies (to draw an image progressively, as it’s constructed, or to wait until
it’s complete and draw it in its entirety) are handled for us. We have already seen that
the Component class implements the first scheme. Another class, java.awt.Me
diaTracker, is a general utility that tracks the loading of a number of images or other
media types for us. We’ll look at it in the next section.

774 | Chapter 21: Working with Images and Other Media

MediaTracker
java.awt.MediaTracker is a utility class that simplifies life if we have to wait for one
or more images to be loaded completely before they’re displayed. A MediaTracker
monitors the loading of an image or a group of images and lets us check on them
periodically or wait until they are finished. MediaTracker implements the ImageOb
server interface that we just discussed, allowing it to receive image updates.

The following code snippet illustrates how to use a MediaTracker to wait while an image
is prepared:

 //file: StatusImage.java
 import java.awt.*;
 import javax.swing.*;

 public class StatusImage extends JComponent
 {
 boolean loaded = false;
 String message = "Loading...";
 Image image;

 public StatusImage(Image image) { this.image = image; }

 public void paint(Graphics g) {
 if (loaded)
 g.drawImage(image, 0, 0, this);
 else {
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 g.drawString(message, 20, 20);
 }
 }
 public void loaded() {
 loaded = true;
 repaint();
 }
 public void setMessage(String msg) {
 message = msg;
 repaint();
 }

 public static void main(String [] args) {
 JFrame frame = new JFrame("TrackImage");
 Image image = Toolkit.getDefaultToolkit().getImage(args[0]);
 StatusImage statusImage = new StatusImage(image);
 frame.add(statusImage);
 frame.setSize(300,300);
 frame.setVisible(true);

 MediaTracker tracker = new MediaTracker(statusImage);
 int MAIN_IMAGE = 0;
 tracker.addImage(image, MAIN_IMAGE);

Loading Images | 775

 try {
 tracker.waitForID(MAIN_IMAGE); }
 catch (InterruptedException e) {}
 if (tracker.isErrorID(MAIN_IMAGE))
 statusImage.setMessage("Error");
 else
 statusImage.loaded();
 }
 }

In this example, we created a trivial component called StatusImage that accepts an
image and draws a text status message until it is told that the image is loaded. It then
displays the image. The only interesting part here is that we use a MediaTracker to load
the image data for us, simplifying our logic.

First, we create a MediaTracker to manage the image. The MediaTracker constructor
takes a Component as an argument; this is supposed to be the component onto which
the image is later drawn. This argument is somewhat of a holdover from earlier Java
days with AWT. If you don’t have the component reference handy, you can simply sub‐
stitute a generic component reference like so:

 Component comp = new Component();

After creating the MediaTracker, we assign it images to manage. Each image is associ‐
ated with an integer that identifier we can use later for checking on its status or to wait
for its completion. Multiple images can be associated with the same identifier, letting
us manage them as a group. The value of the identifier is also meant to prioritize loading
when waiting on multiple sets of images; lower IDs have higher priority. In this case,
we want to manage only a single image, so we created one identifier called MAIN_IM
AGE and passed it as the ID for our image in the call to addImage().

Next, we call the MediaTracker waitforID() routine, which blocks on the image,
waiting for it to finish loading. If successful, we tell our example component to use the
image and repaint. Another MediaTracker method, waitForAll(), waits for all images
to complete, not just a single ID. It’s possible to be interrupted here by an Interrup
tedException. We should also test for errors during image preparation with isError
ID(). In our example, we change the status message if we find one.

The MediaTracker checkID() and checkAll() methods may be used to poll periodi‐
cally the status of images loading, returning true or false to indicate whether loading
is finished. The checkAll() method does this for the union of all images being loaded.
Additionally, the statusID() and statusAll() methods return a constant indicating
the status or final condition of an image load. The value is one of the MediaTracker
constant values: LOADING, ABORTED, ERROR, or COMPLETE. For statusAll(), the value is
the bitwise OR value of all of the various statuses.

This may seem like a lot of work to go through just to put up a status message while
loading a single image. MediaTracker is more valuable when you are working with many

776 | Chapter 21: Working with Images and Other Media

raw images that have to be available before you can begin parts of an application. It saves
implementing a custom ImageObserver for every application. For general Swing ap‐
plication work, you can use yet another simplification by employing the ImageIcon
component to use a MediaTracker. This is covered next.

ImageIcon
In Chapter 17, we discussed Swing components that can work with images using the
Icon interface. In particular, the ImageIcon class accepts an image filename or URL and
can render it into a component. Internally, ImageIcon uses a MediaTracker to fully load
the image in the call to its constructor. It can also provide the Image reference back. So,
a shortcut to what we did in the last few sections—getting an image loaded fully before
using it—would be:

 ImageIcon icon = new ImageIcon("myimage.jpg");
 Image image = icon.getImage();

This quirky approach saves a few lines of typing, but uses an icon in an odd way and is
not very clear. ImageIcon also gives you direct access to the MediaTracker it’s using
through the getMediaTracker() method or tells you the MediaTracker load status
through the getImageLoadStatus() method. This returns one of the MediaTracker
constants: ABORTED, ERROR, or COMPLETE.

ImageIO
As we mentioned in the introduction to Chapter 1, the javax.imageio package is a
standard extension that deals with reading and writing many image formats. It is a part
of the larger Java Advanced Imaging (JAI) API. This API supports advanced manipu‐
lation and display of images. While the AWT has a relatively fixed set of functionality,
JAI is an extensible framework that accepts plug-ins for new image formats and features.
The imageio portion of JAI is bundled with Java 1.4 and later, so we can take advantage
of it on all current Java releases. ImageIO effectively supercedes the APIs we’ve talked
about here with new ones for loading and monitoring image data, and although we
won’t cover it in detail, we will discuss it briefly here for several reasons. First, it is fairly
easy to use. Second, ImageIO natively works with BufferedImages and not just plain
AWT Images. As we’ll discuss throughout the rest of this chapter, buffered images can
expose their pixel data for you to read or manipulate. Finally, using ImageIO allows you
both to load and save BufferedImages to files. The core AWT has no tools for encoding
image data for saving to files.

Previously, we showed how easy it is to load an image with the static read() methods
of the ImageIO class, which accept either a File, URL, or InputStream:

 File file = new File("/Users/pat/images/boojum.gif");
 BufferedImage bi = ImageIO.read(file);

Loading Images | 777

In this example, we revealed that the type returned is actually a BufferedImage, which
is a subtype of Image. The ImageIO.read() method, like the AWT getImage() method,
automatically detects the image type and decodes it properly. Because ImageIO is ex‐
tensible, it’s useful to be able to list the types of images it can decode. You get this
information with the ImageIO.getReaderFormatNames() method, which returns an
array of strings corresponding roughly to file extensions for the image types it under‐
stands. (ImageIO does not rely on file extensions to detect image types; rather, it looks
at the content of the file.)

Images loaded by the ImageIO.read() methods are fully loaded before they are re‐
turned, so the method blocks until they are done. If you want more fine-grained infor‐
mation on the progress of image loading, you can use the IIOReadProgressListener
interface of the javax.imageio.event package, which roughly corresponds to the AWT
ImageObserver. To use it, you must delve a little deeper into the ImageIO API by first
looking up an appropriate ImageReader object with which to register the listener:

 import javax.imageio.*;
 import javax.imageio.stream.*;
 import javax.imageio.event.*;

 File file = new File("image.jpg");
 ImageInputStream iis = ImageIO.createImageInputStream(file);

 Iterator readers = ImageIO.getImageReaders(iis);
 ImageReader reader = (ImageReader)readers.next(); // choose first one

 reader.addIIOReadProgressListener(readProgressListener);
 reader.setInput(iis, true);
 BufferedImage bi = reader.read(0/*index*/);

This code is fairly straightforward. The ReadProgressListener is used like any of the
AWT or Swing event interfaces we’ve seen before. You can refer to the Javadoc for the
exact methods you must implement.

Finally, in addition to the progress listener, two other listener APIs, IIOReadUpdateLis
tener and IIOReadWarningListener, offer information on pixel changes (e.g., for pro‐
gressive loading) and loading errors. There are also, of course, “write” versions of all of
these tools that handle the flip side, saving image data. We’ll return to that topic later in
this chapter.

Producing Image Data
There are two approaches to generating image data. The high-level method is to treat
the image as a drawing surface and use the methods of Graphics2D to render things
into the image. The second way is to twiddle the bits that represent the pixels of the
image data yourself. This is harder, but gives you arbitrary control for handling specific
formats or mathematically analyzing or creating image data.

778 | Chapter 21: Working with Images and Other Media

Drawing Animations
Let’s begin with the simpler approach, rendering an image through drawing. We’ll throw
in a twist to make things interesting: we’ll build an animation. Each frame will be ren‐
dered as we go along. This is very similar to the double buffering we examined in the
last chapter, except that this time we’ll use a timer instead of mouse events as the signal
to generate new frames.

Swing performs double buffering automatically, so we don’t even need to worry about
the animation flickering. Although it looks like we’re drawing directly to the screen,
we’re really drawing into an image that Swing uses for double buffering. All we need to
do is draw the right thing at the right time.

Let’s look at an example, Hypnosis, that illustrates the technique. This example shows
a constantly shifting shape that bounces around the inside of a component. When screen
savers first came of age, this kind of thing was pretty hot stuff. Hypnosis is shown in
Figure 21-2.

Figure 21-2. A simple animation

Here is its source code:
 //file: Hypnosis.java
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.geom.GeneralPath;
 import javax.swing.*;

 public class Hypnosis extends JComponent implements Runnable {
 private int[] coordinates;
 private int[] deltas;
 private Paint paint;

 public Hypnosis(int numberOfSegments) {

Producing Image Data | 779

 int numberOfCoordinates = numberOfSegments * 4 + 2;
 coordinates = new int[numberOfCoordinates];
 deltas = new int[numberOfCoordinates];
 for (int i = 0 ; i < numberOfCoordinates; i++) {
 coordinates[i] = (int)(Math.random() * 300);
 deltas[i] = (int)(Math.random() * 4 + 3);
 if (deltas[i] > 4) deltas[i] = -(deltas[i] - 3);
 }
 paint = new GradientPaint(0, 0, Color.BLUE,
 20, 10, Color.RED, true);

 Thread t = new Thread(this);
 t.start();
 }

 public void run() {
 try {
 while (true) {
 timeStep();
 repaint();
 Thread.sleep(1000 / 24);
 }
 }
 catch (InterruptedException ie) {}
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 Shape s = createShape();
 g2.setPaint(paint);
 g2.fill(s);
 g2.setPaint(Color.WHITE);
 g2.draw(s);
 }

 private void timeStep() {
 Dimension d = getSize();
 if (d.width == 0 || d.height == 0) return;
 for (int i = 0; i < coordinates.length; i++) {
 coordinates[i] += deltas[i];
 int limit = (i % 2 == 0) ? d.width : d.height;
 if (coordinates[i] < 0) {
 coordinates[i] = 0;
 deltas[i] = -deltas[i];
 }
 else if (coordinates[i] > limit) {
 coordinates[i] = limit - 1;
 deltas[i] = -deltas[i];
 }
 }

780 | Chapter 21: Working with Images and Other Media

 }

 private Shape createShape() {
 GeneralPath path = new GeneralPath();
 path.moveTo(coordinates[0], coordinates[1]);
 for (int i = 2; i < coordinates.length; i += 4)
 path.quadTo(coordinates[i], coordinates[i + 1],
 coordinates[i + 2], coordinates[i + 3]);
 path.closePath();
 return path;
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Hypnosis");
 frame.add(new Hypnosis(4));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

The main() method does the usual grunt work of setting up the JFrame that holds our
animation component.

The Hypnosis component has a very basic strategy for animation. It holds some number
of coordinate pairs in its coordinates member variable. A corresponding array, del
tas, holds “delta” amounts that are added to the coordinates every time the figure is
supposed to change. To render the complex shape you see in Figure 21-2, Hypnosis
creates a special Shape object from the coordinate array every time the component is
drawn.

Hypnosis’s constructor has two important tasks. First, it fills up the coordinate and delta
arrays with random values. The number of array elements is determined by an argument
to the constructor. The constructor’s second task is to start up a new thread that drives
the animation.

The animation is done in the run() method. This method calls timeStep(), which
repaints the component and waits for a short time (details to follow). Every time time
Step() is called, the coordinates array is updated and repaint() is called. This results
in a call to paint(), which creates a shape from the coordinate array and draws it.

The paint() method is relatively simple. It uses a helper method, called create
Shape(), to create a shape from the coordinate array. The shape is then filled, using a
Paint stored as a member variable. The shape’s outline is also drawn in white.

The timeStep() method updates all the elements of the coordinate array by adding the
corresponding element of deltas. If any coordinates are now out of the component’s
bounds, they are adjusted and the corresponding delta is negated. This produces the
effect of bouncing off the sides of the component.

Producing Image Data | 781

createShape() creates a shape from the coordinate array. It uses the GeneralPath class,
a useful Shape implementation that allows you to build shapes using straight and curved
line segments. In this case, we create a shape from a series of quadratic curves, close it
to create an area, and fill it.

BufferedImage Anatomy
So far, we’ve talked about java.awt.Images and how they can be loaded and drawn.
What if you really want to get inside the image to examine and update its data? Image
doesn’t give you access to its data. You’ll need to use a more sophisticated kind of image:
java.awt.image.BufferedImage. The classes are closely related—BufferedImage, in
fact, is a subclass of Image. BufferedImage gives you all sorts of control over the actual
data that makes up the image and provides many capabilities beyond the basic Image
class. Because it’s a subclass of Image, you can still pass a BufferedImage to any of
Graphics2D’s methods that accept an Image. Why aren’t all Images BufferedImages?
Because BufferedImages are memory intensive.

To create an image from raw data, you need to understand exactly how a Buffered
Image is put together. The full details can get quite complex—the BufferedImage class
was designed to support images in nearly any storage format you can imagine. But, for
common operations, it’s not that difficult to use. Figure 21-3 shows the elements of a
BufferedImage.

Figure 21-3. Inside a BufferedImage

An image is simply a rectangle of colored pixels, which is a simple enough concept.
There’s a lot of complexity underneath the BufferedImage class because there are a lot
of different ways to represent the colors of pixels. For example, you might have an image
with RGB data in which each pixel’s red, green, and blue values were stored as the
elements of byte arrays. Or you might have an RGB image where each pixel was repre‐
sented by an integer that contained red, green, and blue component values. Or you could
have a 16-level grayscale image with eight pixels stored in each element of an integer

782 | Chapter 21: Working with Images and Other Media

array. You get the idea; there are many different ways to store image data, and Buffer
edImage is designed to support all of them.

A BufferedImage consists of two pieces, a Raster and a ColorModel. The Raster con‐
tains the actual image data. You can think of it as an array of pixel values. It can answer
the question, “What are the color data values for the pixel at 51, 17?” The Raster for an
RGB image would return three values, while a Raster for a grayscale image would return
a single value. WritableRaster, a subclass of Raster, also supports modifying pixel data
values.

The ColorModel’s job is to interpret the image data as colors. The ColorModel can
translate the data values that come from the Raster into Color objects. An RGB color
model, for example, would know how to interpret three data values as red, green, and
blue. A grayscale color model could interpret a single data value as a gray level. Con‐
ceptually, at least, this is how an image is displayed on the screen. The graphics system
retrieves the data for each pixel of the image from the Raster. Then the ColorModel
tells what color each pixel should be, and the graphics system is able to set the color of
each pixel.

The Raster itself is made up of two pieces: a DataBuffer and a SampleModel. A Data
Buffer is a wrapper for the raw data arrays, which are byte, short, or int arrays.
DataBuffer has handy subclasses—DataBufferByte, DataBufferShort, and DataBuf
ferInt—that allow you to create a DataBuffer from raw data arrays. You’ll see an ex‐
ample of this technique later in the StaticGenerator example.

The SampleModel knows how to extract the data values for a particular pixel from the
DataBuffer. It knows the layout of the arrays in the DataBuffer and is ultimately re‐
sponsible for answering the question, “What are the data values for pixel x, y?” Sample
Models are a little tricky to work with, but fortunately you’ll probably never need to
create or use one directly. As we’ll see, the Raster class has many static (“factory”)
methods that create preconfigured Rasters for you, including their component Data
Buffers and SampleModels.

As Figure 21-1 shows, the 2D API comes with various flavors of ColorModels, Sample
Models, and DataBuffers. These serve as handy building blocks that cover most com‐
mon image storage formats. You’ll rarely need to subclass any of these classes to create
a BufferedImage.

Color Models
As we’ve said, there are many different ways to encode color information: red, green,
blue (RGB) values; hue, saturation, value (HSV); hue, lightness, saturation (HLS); and
more. In addition, you can provide full-color information for each pixel, or you can just
specify an index into a color table (palette) for each pixel. The way you represent a color

Producing Image Data | 783

is called a color model. The 2D API provides tools to support any color model you could
imagine. Here, we’ll just cover two broad groups of color models: direct and indexed.

As you might expect, you must specify a color model in order to generate pixel data;
the abstract class java.awt.image.ColorModel represents a color model. By default,
Java 2D uses a direct color model called ARGB. The A stands for “alpha,” which is the
historical name for transparency. RGB refers to the red, green, and blue color compo‐
nents that are combined to produce a single, composite color. In the default ARGB
model, each pixel is represented by a 32-bit integer that is interpreted as four 8-bit fields;
in order, the fields represent the alpha (transparency), red, green, and blue components
of the color, as shown in Figure 21-4.

Figure 21-4. ARGB color encoding

To create an instance of the default ARGB model, call the static getRGBdefault()
method in ColorModel. This method returns a DirectColorModel object; DirectCo
lorModel is a subclass of ColorModel. You can also create other direct color models by
calling a DirectColorModel constructor, but you shouldn’t need to do this unless you
have a fairly exotic application.

In an indexed color model, each pixel is represented by a smaller piece of information:
an index into a table of real color values. Several common image formats, including GIF,
use an indexed color model. For some applications, generating data with an indexed
model may be more convenient. If you are writing an application for an 8-bit display
or smaller, using an indexed model may be more efficient, because your hardware is
internally using an indexed color model of some form.

Creating an Image
Let’s take a look at producing some image data. A picture is worth a thousand words,
and, fortunately, we can generate a pretty picture in significantly fewer than a thousand
words of Java. If we just want to render image frames byte by byte, you can put together
a BufferedImage pretty easily.

The following application, ColorPan, creates an image from an array of integers holding
RGB pixel values:

784 | Chapter 21: Working with Images and Other Media

 //file: ColorPan.java
 import java.awt.*;
 import java.awt.image.*;
 import javax.swing.*;

 public class ColorPan extends JComponent {
 BufferedImage image;

 public void initialize() {
 int width = getSize().width;
 int height = getSize().height;
 int[] data = new int [width * height];
 int i = 0;
 for (int y = 0; y < height; y++) {
 int red = (y * 255) / (height - 1);
 for (int x = 0; x < width; x++) {
 int green = (x * 255) / (width - 1);
 int blue = 128;
 data[i++] = (red << 16) | (green << 8) | blue;
 }
 }
 image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 image.setRGB(0, 0, width, height, data, 0, width);
 }

 public void paint(Graphics g) {
 if (image == null)
 initialize();
 g.drawImage(image, 0, 0, this);
 }

 public void setBounds(int x, int y, int width, int height) {
 super.setBounds(x,y,width,height);
 initialize();
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("ColorPan");
 frame.add(new ColorPan());
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

Give it a try. The size of the image is determined by the size of the application window.
You should get a very colorful box that pans from deep blue at the upper-left corner to
bright yellow at the bottom right, with green and red at the other extremes.

Producing Image Data | 785

We create a BufferedImage in the initialize() method and then display the image in
paint(). The variable data is a 1D array of integers that holds 32-bit RGB pixel values.
In initialize(), we loop over every pixel in the image and assign it an RGB value. The
blue component is always 128, half its maximum intensity. The red component varies
from 0 to 255 along the y-axis; likewise, the green component varies from 0 to 255 along
the x-axis. This statement combines these components into an RGB value:

 data[i++] = (red << 16) | (green << 8) | blue;

The bitwise left-shift operator (<<) should be familiar to anyone who has programmed
in C. It simply shoves the bits over by the specified number of positions in our 32-bit
value.

When we create the BufferedImage, all its data is zeroed out. All we specify in the
constructor is the width and height of the image and its type. BufferedImage includes
quite a few constants representing image storage types. We’ve chosen TYPE_INT_RGB
here, which indicates that we want to store the image as RGB data packed into integers.
The constructor takes care of creating an appropriate ColorModel, Raster, SampleMo
del, and DataBuffer for us. Then we simply use the setRGB() method to assign our
data to the image. In this way, we’ve side-stepped the messy innards of Buffered
Image. In the next example, we’ll take a closer look at the details.

Once we have the image, we can draw it on the display with the standard draw
Image() method. We also override the Component setBounds() method in order to
determine when the frame is resized and reinitialize the image to the new size.

Updating a BufferedImage
BufferedImage can also be used to update an image dynamically. Because the image’s
data arrays are directly accessible, you can simply change the data and redraw the picture
whenever you want. This is probably the easiest way to build your own low-level ani‐
mation software. The following example simulates the static on an old black-and-white
television screen. It generates successive frames of random black and white pixels and
displays each frame when it is complete. Figure 21-5 shows one frame of random static.

786 | Chapter 21: Working with Images and Other Media

Figure 21-5. A frame of random static

Here’s the code:
 //file: StaticGenerator.java
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;
 import java.util.Random;
 import javax.swing.*;

 public class StaticGenerator extends JComponent implements Runnable {
 byte[] data;
 BufferedImage image;
 Random random;

 public void initialize() {
 int w = getSize().width, h = getSize().height;
 int length = ((w + 7) * h) / 8;
 data = new byte[length];
 DataBuffer db = new DataBufferByte(data, length);
 WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null);
 ColorModel cm = new IndexColorModel(1, 2,
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 });
 image = new BufferedImage(cm, wr, false, null);
 random = new Random();
 }

 public void run() {
 if (random == null)
 initialize();
 while (true) {
 random.nextBytes(data);
 repaint();
 try { Thread.sleep(1000 / 24); }

Producing Image Data | 787

 catch(InterruptedException e) { /* die */ }
 }
 }

 public void paint(Graphics g) {
 if (image == null) initialize();
 g.drawImage(image, 0, 0, this);
 }

 public void setBounds(int x, int y, int width, int height) {
 super.setBounds(x,y,width,height);
 initialize();
 }

 public static void main(String[] args) {
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);
 JFrame frame = new JFrame("StaticGenerator");
 StaticGenerator staticGen = new StaticGenerator();
 frame.add(staticGen);
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 new Thread(staticGen).start();
 }
 }

The initialize() method sets up the BufferedImage that produces the sequence of
images. We build this image from the bottom up, starting with the raw data array. Since
we’re only displaying two colors here, black and white, we need only one bit per pixel.
We want a 0 bit to represent black and a 1 bit to represent white. This calls for an indexed
color model, which we’ll create a little later.

We’ll store our image data as a byte array, where each array element holds eight pixels
from our black-and-white image. The array length, then, is calculated by multiplying
the width and height of the image and dividing by eight. To keep things simple, we’ll
arrange for each image row to start on a byte boundary. For example, an image 13 pixels
wide actually uses 2 bytes (16 bits) for each row:

 int length = (w + 7)/8 * h;

This calculation rounds upward the number of bytes required to fill a row and then
multiplies by the number of rows. Next, the actual byte array is created. The member
variable data holds a reference to this array. Later, we’ll use data to change the image
data dynamically. Once we have the image data array, it’s easy to create a DataBuffer
from it:

 data = new byte[length];
 DataBuffer db = new DataBufferByte(data, length);

DataBuffer has several subclasses, such as DataBufferByte, that make it easy to create
a data buffer from raw arrays.

788 | Chapter 21: Working with Images and Other Media

Logically, the next step is to create a SampleModel. We could then create a Raster from
the SampleModel and the DataBuffer. Lucky for us, though, the Raster class contains
a bevy of useful static methods that create common types of Rasters. One of these
methods creates a Raster from data that contains multiple pixels packed into array
elements. We simply use this method, supplying the data buffer, the width and height,
and indicating that each pixel uses one bit:

 WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null/*ul corner*/);

The last argument to this method is a java.awt.Point that indicates where the upper-
left corner of the Raster should be. By passing null, we use the default of 0, 0.

The last piece of the puzzle is the ColorModel. Each pixel is either 0 or 1, but how should
that be interpreted as color? In this case, we use an IndexColorModel with a very small
palette. The palette has only two entries, one each for black and white:

 ColorModel cm = new IndexColorModel(1, 2,
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 });

The IndexColorModel constructor that we’ve used here accepts the number of bits per
pixel (one), the number of entries in the palette (two), and three byte arrays that are the
red, green, and blue components of the palette colors. Our palette consists of two colors:
black (0, 0, 0) and white (255, 255, 255).

Now that we’ve got all the pieces, we just need to create a BufferedImage. This image
is also stored in a member variable so we can draw it later. To create the Buffered
Image, we pass the color model and writable raster we just created:

 image = new BufferedImage(cm, wr, false, null);

All the hard work is done now. Our paint() method just draws the image, using draw
Image().

The init() method starts a thread that generates the pixel data. The run() method
takes care of generating the pixel data. It uses a java.util.Random object to fill the data
image byte array with random values. Because the data array is the actual image data
for our image, changing the data values changes the appearance of the image. After we
fill the array with random data, a call to repaint() shows the new image on the screen.

You can also try turning off double buffering by uncommenting the line involving the
RepaintManager. Now it will look even more like an old TV screen, flickering and all!

That’s about all there is. It’s worth noting how simple it is to create this animation. Once
we have the BufferedImage, we treat it like any other image. The code that generates
the image sequence can be arbitrarily complex. But that complexity never infects the
simple task of getting the image on the screen and updating it.

Producing Image Data | 789

Filtering Image Data
An image filter is an object that performs transformations on image data. The Java 2D
API supports image filtering through the BufferedImageOp interface. An image filter
takes a BufferedImage as input (the source image) and performs some processing on
the image data, producing another BufferedImage (the destination image).

The 2D API comes with a handy toolbox of BufferedImageOp implementations, as
summarized in Table 21-1.

Table 21-1. Image operators in the 2D API
Name Description

AffineTransformOp Transforms an image geometrically

ColorConvertOp Converts from one color space to another

ConvolveOp Performs a convolution, a mathematical operation that can be used to blur, sharpen, or otherwise
process an image

LookupOp Uses one or more lookup tables to process image values

RescaleOp Uses multiplication to process image values

Let’s take a look at two of the simpler image operators. First, try the following application.
It loads an image (the first command-line argument is the filename) and processes it in
different ways as you select items from the combo box. The application is shown in
Figure 21-6.

Figure 21-6. The ImageProcessor application

Here’s the source code:
 //file: ImageProcessor.java
 import java.awt.*;

790 | Chapter 21: Working with Images and Other Media

 import java.awt.event.*;
 import java.awt.geom.*;
 import java.awt.image.*;
 import javax.swing.*;

 public class ImageProcessor extends JComponent {
 private BufferedImage source, destination;
 private JComboBox options;

 public ImageProcessor(BufferedImage image) {
 source = destination = image;
 setBackground(Color.white);
 setLayout(new BorderLayout());
 // create a panel to hold the combo box
 JPanel controls = new JPanel();
 // create the combo box with the names of the area operators
 options = new JComboBox(
 new String[] { "[source]", "brighten", "darken", "rotate", "scale" }
);
 // perform some processing when the selection changes
 options.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent ie) {
 // retrieve the selection option from the combo box
 String option = (String)options.getSelectedItem();
 // process the image according to the selected option
 BufferedImageOp op = null;
 if (option.equals("[source]"))
 destination = source;
 else if (option.equals("brighten"))
 op = new RescaleOp(1.5f, 0, null);
 else if (option.equals("darken"))
 op = new RescaleOp(.5f, 0, null);
 else if (option.equals("rotate"))
 op = new AffineTransformOp(
 AffineTransform.getRotateInstance(Math.PI / 6), null);
 else if (option.equals("scale"))
 op = new AffineTransformOp(
 AffineTransform.getScaleInstance(.5, .5), null);
 if (op != null) destination = op.filter(source, null);
 repaint();
 }
 });
 controls.add(options);
 add(controls, BorderLayout.SOUTH);
 }

 public void paintComponent(Graphics g) {
 int imageWidth = destination.getWidth();
 int imageHeight = destination.getHeight();
 int width = getSize().width;
 int height = getSize().height;
 g.drawImage(destination,

Filtering Image Data | 791

 (width - imageWidth) / 2, (height - imageHeight) / 2, null);
 }

 public static void main(String[] args) {
 String filename = args[0];

 ImageIcon icon = new ImageIcon(filename);
 Image i = icon.getImage();

 // draw the Image into a BufferedImage
 int w = i.getWidth(null), h = i.getHeight(null);
 BufferedImage buffImage = new BufferedImage(w, h,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D imageGraphics = buffImage.createGraphics();
 imageGraphics.drawImage(i, 0, 0, null);

 JFrame frame = new JFrame("ImageProcessor");
 frame.add(new ImageProcessor(buffImage));
 frame.setSize(buffImage.getWidth(), buffImage.getHeight());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

There’s quite a bit packed into the ImageProcessor application. After you’ve played
around with it, come back and read about the details.

How ImageProcessor Works
The basic operation of ImageProcessor is very straightforward. It loads a source image,
specified with a command-line argument in its main() method. The image is displayed
along with a combo box. When you select different items from the combo box, Image
Processor performs some image-processing operation on the source image and dis‐
plays the result (the destination image). Most of this work occurs in the ItemListen
er event handler that is created in ImageProcessor’s constructor (a dubious design
because we don’t want to tie up event-handling threads for too long, but we’ll let it slide
here). Depending on the option that is selected, a BufferedImageOp (called op) is in‐
stantiated and used to process the source image, like this:

 destination = op.filter(source, null);

The destination image is returned from the filter() method. If we already had a des‐
tination image of the right size to hold the output, we could have passed it as the second
argument to filter(), which would improve the performance of the application a bit.
If you just pass null, as we have here, an appropriate destination image is created and
returned to you. Once the destination image is created, paint()’s job is very simple; it
just draws the destination image, centered on the component.

792 | Chapter 21: Working with Images and Other Media

Converting an Image to a BufferedImage
Image processing can be performed only on BufferedImages, not Images. Remember
that the core AWT tools all work with Image and that only if you are loading images
using the ImageIO package will you get BufferedImages. Our ImageProcessor example
demonstrates an important technique: how to convert a plain AWT Image to a Buffer
edImage. You do it by painting into the buffer, effectively copying the data. The main()
method loads an Image from a file using Toolkit’s getImage() method:

 Image i = Toolkit.getDefaultToolkit().getImage(filename);

Next, main() uses a MediaTracker to make sure the image data is fully loaded.

Finally, the trick of converting an Image to a BufferedImage is to draw the Image into
the drawing surface of the BufferedImage. Because we know the Image is fully loaded,
we just need to create a BufferedImage, get its graphics context, and draw the Image
into it:

 BufferedImage bi = new BufferedImage(w, h,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D imageGraphics = bi.createGraphics();
 imageGraphics.drawImage(i, 0, 0, null);

Using the RescaleOp Class
Rescaling is an image operation that multiplies all the pixel values in the image by some
constant. It doesn’t affect the size of the image in any way (in case you thought rescal‐
ing meant scaling), but it does affect the brightness of its pixel’s colors. In an RGB image,
for example, each of the red, green, and blue values for each pixel would be multiplied
by the rescaling multiplier. If you want, you can also adjust the results by adding an
offset. In the 2D API, rescaling is performed by the java.awt.image.RescaleOp class.
To create such an operator, specify the multiplier, offset, and a set of hints that control
the quality of the conversion. In this case, we’ll use a zero offset and not bother with the
hints (by passing null):

 op = new RescaleOp(1.5f, 0, null);

Here, we’ve specified a multiplier of 1.5 and an offset of 0. All values in the destination
image will be 1.5 times the values in the source image, which has the net result of making
the image brighter. To perform the operation, we call the filter() method from the
BufferedImageOp interface.

Using the AffineTransformOp Class
An affine transformation is a kind of 2D transformation that preserves parallel lines;
this includes operations like scaling, rotating, and shearing. The java.awt.image.Af
fineTransformOp image operator geometrically transforms a source image to produce
the destination image. To create an AffineTransformOp, specify the transformation you

Filtering Image Data | 793

want in the form of an java.awt.geom.AffineTransform. The ImageProcessor appli‐
cation includes two examples of this operator, one for rotation and one for scaling. As
before, the AffineTransformOp constructor accepts a set of hints; we’ll just pass null
to keep things simple:

 else if (option.equals("rotate"))
 op = new AffineTransformOp(
 AffineTransform.getRotateInstance(Math.PI / 6), null);
 else if (option.equals("scale"))
 op = new AffineTransformOp(
 AffineTransform.getScaleInstance(.5, .5), null);

In both cases, we obtain an AffineTransform by calling one of its static methods. In the
first case, we get a rotational transformation by supplying an angle. This transformation
is wrapped in an AffineTransformOp. This operator has the effect of rotating the source
image around its origin to create the destination image. In the second case, a scaling
transformation is wrapped in an AffineTransformOp. The two scaling values, .5
and .5, specify that the image should be reduced to half its original size in both the x
and y axes.

When using an AffineTransformOp to scale images, it’s important to note two things.
Scaling an image up will always result in poor quality. When scaling an image down,
and more generally with any affine transform, you can choose between speed and qual‐
ity. Using AffineTransformOp.TYPE_NEAREST_NEIGHBOR as the second argument in
your AffineTransformOp constructor will give you speed. For the best quality use
AffineTransformOp.TYPE_BICUBIC. AffineTransformOp.TYPE_BILINEAR balances
speed and quality.

One interesting aspect of AffineTransformOp is that you may “lose” part of your image
when it’s transformed. For example, when using the rotate image operator in the Image
Processor application, the destination image will have clipped some of the original
image out. Both the source and destination images have the same origin, so if any part
of the image gets transformed into negative x or y space, it is lost. To work around this
problem, you can structure your transformations such that the entire destination image
is in positive coordinate space.

Saving Image Data
We’ve spent a lot of time talking about loading images from files and generating and
transforming image data, but nothing about saving it. First, let’s remember that saving
an image to a file such as a JPG or GIF really implies doing two things: encoding it
(highly compressing the data in a way optimized for the type of image) and then writing
it to a file, possibly with various metadata. As we mentioned earlier, the core AWT does
not provide tools for encoding image data, only decoding it. By contrast, the ImageIO
framework has the capability of writing images in any format that it can read.

794 | Chapter 21: Working with Images and Other Media

Writing a BufferedImage is simply a matter of calling the static ImageIO write()
method:

 File outFile = new File("/tmp/myImage.png");
 ImageIO.write(bufferedImage , "png", outFile);

The second argument is a string identifier that names the image type. You can get the
list of supported formats by calling ImageIO.getWriterFormatNames(). We should note
that the actual type of the image argument is something called RenderedImage, but
BufferedImage implements that interface.

You can get more control over the encoding (for example, JPG quality settings) by
getting an ImageWriter for the output format and using ImageWriteParams. The process
is similar to that in the reader progress listener snippet from the section “ImageIO” on
page 777.

Simple Audio
Now we’ll turn from images and open our ears to audio. Java Sound API provides fine-
grained support for the creation and manipulation of both sampled audio and MIDI
music, as well as control over MIDI devices. There’s space here only to scratch the surface
by examining how to play simple sampled sound and MIDI music files. With the stan‐
dard Java Sound support bundled with Java, you can play a wide range of file formats
including AIFF, AU, Windows WAV, standard MIDI files, and Rich Music Format
(RMF) files. We’ll discuss other formats (such as MP3) along with video media in the
next section.

java.applet.AudioClip defines the simplest interface for objects that can play sound.
An object that implements AudioClip can be told to play() its sound data, stop()
playing the sound, or loop() continuously.

The Applet class provides a handy static method, newAudioClip(), that retrieves sounds
from files or over the network. (And there is no reason we can’t use it in a non-applet
application.) The method takes an absolute or relative URL to specify where the audio
file is located and returns an AudioClip. The following application, NoisyButton, gives
a simple example:

 //file: NoisyButton.java
 import java.applet.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 public class NoisyButton {

 public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("NoisyButton");
 java.io.File file = new java.io.File(args[0]);

Simple Audio | 795

 final AudioClip sound = Applet.newAudioClip(file.toURL());

 JButton button = new JButton("Woof!");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { sound.play(); }
 });

 Container content = frame.getContentPane();
 content.setBackground(Color.pink);
 content.setLayout(new GridBagLayout());
 content.add(button);
 frame.setVisible(true);
 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
 }

Run NoisyButton, passing the name of the audio file you wish to use as the argument.
(We’ve supplied one called bark.aiff.)

NoisyButton retrieves the AudioClip using a File and the toURL()method to reference
it as a URL. When the button is pushed, we call the play() method of the AudioClip
to start things. After that, it plays to completion unless we call the stop() method to
interrupt it.

This interface is simple, but there is a lot of machinery behind the scenes. Next, we’ll
look at the Java Media Framework, which supports a wider range of media types.

Java Media Framework
Get some popcorn—Java can play movies! To do this, though, we’ll need one of Java’s
standard extension APIs, the Java Media Framework (JMF). The JMF defines a set of
interfaces and classes in the javax.media and javax.media.protocol packages. You
can download the latest JMF from Oracle’s website. To use the JMF, add jmf.jar to your
classpath. Or, depending on what version of the JMF you download, a friendly instal‐
lation program may do this for you.

We’ll only scratch the surface of JMF here, by working with an important interface called
Player. Specific implementations of Player deal with different media “container” types,
such as Apple QuickTime (.mov) and Windows Video (.avi). For a full list of supported
media types and codecs, consult the latest JMF documentation. There are also players
for audio types, including MP3. Players are handed out by a high-level class in the JMF
called Manager. One way to obtain a Player is to specify the URL of a movie.

What about Windows media player format as well as MP3?
 Player player = Manager.createPlayer(url);

796 | Chapter 21: Working with Images and Other Media

Because video files are so large and playing them requires significant system resources,
Players have a multistep lifecycle from the time they’re created to the time they actually
play something. We’ll look at only one step, realizing. In this step, the Player determines
(by looking at the media file) the system resources that it needs to play the media file.

 player.realize();

The realize() method returns right away; it kicks off the realizing process in a separate
thread. When the Player is finished realizing, it sends out an event. Once you receive
this event, you can obtain one of two Components from the Player. The first is a visual
component that, for visual media types, shows the media. The second is a control com‐
ponent that provides a prefab user interface for controlling the media presentation. The
control normally includes start, stop, and pause buttons, along with volume controls
and attendant goodies.

The Player has to be realized before you ask for these components so that it has im‐
portant information, like how big the component should be. After that, getting the
component is easy. Here’s an example:

 Component c = player.getVisualComponent();

Now, we just need to add the component to the screen somewhere. We can play the
media right away (although this actually moves the Player through several other in‐
ternal states):

 player.start();

The following example, MediaPlayer, uses the JMF to load and display a movie or audio
file from a specified URL:

 //file: MediaPlayer.java
 import java.awt.*;
 import java.net.URL;
 import javax.swing.*;
 import javax.media.*;

 public class MediaPlayer
 {
 public static void main(String[] args) throws Exception {
 final JFrame frame = new JFrame("MediaPlayer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 URL url = new URL(args[0]);
 final Player player = Manager.createPlayer(url);

 player.addControllerListener(new ControllerListener() {
 public void controllerUpdate(ControllerEvent ce) {
 if (ce instanceof RealizeCompleteEvent)
 {
 Component visual = player.getVisualComponent();
 Component control = player.getControlPanelComponent();
 if (visual != null)

Java Media Framework | 797

 frame.add(visual, BorderLayout.CENTER);
 frame.add(control, BorderLayout.SOUTH);
 frame.pack();
 frame.setVisible(true);
 player.start();
 }
 }
 });

 player.realize();
 }
 }

This class creates a JFrame that holds the media. Then, it creates a Player from the URL
specified on the command line and tells the Player to realize(). There’s nothing else
we can do until the Player is realized, so the rest of the code operates inside a Control
lerListener after the RealizeCompleteEvent is received.

In the event handler, we get the Player’s visual and controller components and add
them to the JFrame. We display the JFrame and, finally, we play the movie. It’s very
simple!

To use the MediaPlayer, pass it the URL of a movie or audio file on the command line.
Here are a couple of examples:

 % java MediaPlayer file:dancing_baby.avi
 % java MediaPlayerhttp://myserver/mp3s/TheCure/KissMe/catch.mp3

Figure 21-7 shows the “dancing baby” AVI running in the MediaPlayer. Feel free to
dance along if you want.

Figure 21-7. Image of the dancing baby AVI

798 | Chapter 21: Working with Images and Other Media

CHAPTER 22

JavaBeans

JavaBeans is a design pattern and a component architecture for Java. It is a set of rules
for writing highly reusable software elements that can be understood by both developers
and development tools. Writing components to the JavaBeans specification means your
code will be easier to read and you won’t have to write as much custom code to glue
components together. It also allows you to leverage JavaBean-aware development en‐
vironments that can recognize the features of these components automatically and con‐
nect them in a plug-and-play fashion to build parts of applications.

In this chapter, we’ll use the NetBeans IDE to create simple applications by connecting
Java beans visually. We will also create our own reusable beans to add to the palette of
components in the IDE. Although this type of visual application design has never quite
reached the level it was expected to (we’ll talk about some of the reasons why later), it
is still very useful in GUI development. Perhaps more important though, the funda‐
mental JavaBeans patterns are firmly entrenched in all aspects of the core Java APIs, so
understanding them is important. We will cover all of these aspects in this chapter,
including hand-coding with Java beans and some related APIs.

What’s a Bean?
What exactly is or are JavaBeans? JavaBeans (the architecture) defines a set of rules;
Java beans are ordinary Java objects that play by these rules. That is, Java beans are Java
objects that conform to the JavaBeans API and design patterns. By doing so, they can
be recognized and manipulated by tools (especially visual application builder environ‐
ments) as well as by hand coding. Beans live and work in the Java runtime system, as
do all Java objects. They communicate with their neighbors using events and other
normal method invocations.

For examples of Java beans, we need look no further than the javax.swing packages.
All the familiar components, such as JButton, JTextArea, and JScrollpane, follow the

799

JavaBeans design patterns and are beans. Much of what you learned in Chapter 16 about
Swing components prepared you for understanding beans. Although most of the Swing
components aren’t very useful in isolation, in general, beans can also be large and com‐
plex application components, such as spreadsheets or document editors. We’ll talk more
about exactly what makes a bean a bean in a moment. For now, we want to give you a
better sense of how they are used.

One of the goals of JavaBeans is to allow components to be manipulated visually within
a graphical application builder. Beans can be chosen from a palette of tools and ma‐
nipulated graphically by an application designer. The Swing components we mentioned
earlier are obvious candidates for this kind of usage. But Java beans can be not only
simple UI components, such as buttons and sliders, but also more complex and abstract
components. It is easy to get the impression that beans are, themselves, always graphical
objects, but Java beans can implement any part of an application, including “invisible”
parts that perform calculations, storage, and communications. Three characteristics of
the JavaBeans architecture aim to make it possible to work with application components
in this way:
Design patterns

The most important characteristic of a Java bean is simply a layer of standardization.
Design patterns (i.e., coding conventions) let tools and humans recognize the basic
features of a bean and manipulate it without knowing how it is implemented. We
might say that beans are “self-documenting.” By examining a bean, we can tell what
events it can fire and receive; we can also learn about its properties (the equivalent
of its public variables) and methods. Beans can also provide explicit (“bean info”)
information about their features tailored specifically for IDEs.

Reflection
Reflection is an important feature of the Java language. (It’s discussed in Chap‐
ter 7.) Reflection makes it possible for Java code to inspect and manipulate new Java
objects at runtime. In the context of JavaBeans, reflection lets a development tool
analyze a bean’s capabilities, examine the values of its fields, and invoke its methods.
Essentially, reflection allows Java objects that hook up at runtime to do all the things
that could be done if the objects had been put together at compile time. Even if a
bean doesn’t come bundled with any “built-in” documentation, we can still gather
information about its capabilities and properties by directly inspecting the class
using reflection.

Object serialization
Finally, the Java Serialization API allows us to “freeze-dry” a live application or
application component and revive it later. This is an important capability that makes
it possible to piece together applications without extensive code generation. Rather
than customizing and compiling large amounts of Java code to build our application
on startup, we can simply configure beans, tweak their appearance, and save them.

800 | Chapter 22: JavaBeans

Later, the beans can be restored with all their state and interconnections intact. This
makes possible a fundamentally different way of thinking about the design process.
It is easy to use serialized objects from handwritten Java code as well, so we can
freely mix serialized beans with plain-old bean classes and other Java code. There
is also a “long-term” object serialization mechanism that saves Java beans in an XML
format that is very resilient to changes in classes.

What Constitutes a Bean?
The bean examples we mentioned have ranged from simple buttons to spreadsheets.
Obviously, a button bean would be much less complex than a spreadsheet and would
be used at a different level of the application’s design. At what level are beans intended
to be used? The JavaBeans architecture is supposed to scale well from small to large;
simple beans can be used to build larger beans. A small bean may consist of a single
class; a large bean may have many. Beans can also work together through their container
to provide services to other beans.

Simple beans are little more than ordinary Java objects. In fact, any Java class that has
a default (empty) constructor could be considered a bean. A bean should also be seri‐
alizable, although the JavaBeans specification doesn’t strictly require that. These two
criteria ensure that we can create an instance of the bean dynamically and that we can
later save the bean as part of a group or composition of beans. There are no other
requirements. Beans are not required to inherit from a base bean class, and they don’t
have to implement any special interface.

A useful bean should send and receive events and expose its properties to the world. To
do so, it follows the appropriate design patterns for naming the relevant methods so
that these features can be automatically discovered. Most nontrivial beans intended for
use in a visual application builder IDE also provide information about themselves in
the form of a BeanInfo class. A BeanInfo class implements the BeanInfo interface,
which holds methods that describe a bean’s features in more detail, along with extra
packaging, such as icons for display to the user. Normally, this “bean info” is supplied
by a separate class that is named for and supplied with the bean.

The NetBeans IDE
We can’t have a full discussion of beans without spending a little time talking about the
builder environments in which they are used. In this chapter, we use the NetBeans IDE
version 7.2 to demonstrate our beans. NetBeans is a popular, pure Java development
environment. In this case, the integrated in integrated development environment means
that NetBeans offers powerful source and visual editor capabilities, templates that aid
in the creation of various types of Java classes, and the ability to compile, run, and debug
applications, all in one tool. In particular, we’ll be using the visual development envi‐
ronment of NetBeans to glue together our Java beans and try them out. Other IDEs offer

The NetBeans IDE | 801

similar capabilities. See Appendix A for a brief comparison of NetBeans and the Eclipse
IDE. We’ve chosen NetBeans to use in this chapter because its mature GUI builder
environment makes it easy to illustrate the concepts here.

Because NetBeans is a full-blown production development environment, it has many
features we don’t use in these examples. For that reason, we can’t really provide a full
introduction to it here. We will provide only bare-bones directions here for demon‐
strating the Java beans in this chapter. Most of the techniques you see here will apply in
some form in other IDEs as well.

Installing and Running NetBeans
You should install Java 7.0 before you install NetBeans. If you installed the JDK from
Sun’s website, you may have downloaded a combined JDK and NetBeans bundle, so you
may already have it installed. The standalone installation of NetBeans can be found at
http://www.netbeans.org. Follow the simple installation instructions for those packages
(you may have to reboot if you just installed Java). When you’re all set, launch NetBeans.
When you first start NetBeans, a welcome screen appears. Close it for now by clicking
the small x on its tab. (If you want to return to this welcome screen later to take the
NetBeans tutorials, choose Help → Welcome Screen.)

Installing our example beans

Before we get started, we’ll have to add the example beans used in this chapter to the
NetBeans palette. NetBeans installs Java beans in a central location that can be used by
multiple projects in the editor.

1. To install our beans, grab our demonstration beans JAR file, magicbeans.jar, from
this book’s website.

2. Save the file locally and then select Tools → Palette → Swing/AWT Components to
add the beans.

3. Click “Add from Jar,” then navigate to and select the magicbeans.jar file and click
Next. The wizard then shows you a list of beans that our JAR contains (there should
be eight altogether).

4. Select all of them (click the first and shift-click the last), then click Next.
5. NetBeans prompts you for the palette category under which you wish to file these;

select Beans (which would otherwise be empty), then click Finish and Close.

We’ll see these beans soon when we start editing an application.

802 | Chapter 22: JavaBeans

Creating a project and file

Now, we must create a new project to hold our work. To create a new project, select New
Project from the File menu. In the Categories pane of the wizard, select General and in
the Projects pane, select Java Application, and then click Next. Give your project a name,
such as LearningJava, and specify a location or leave the defaults. Uncheck the box
labeled Create Main Class because we will create our own, then click Finish to create
our empty project. If this is the first time you’ve created a project in NetBeans, you may
see a message that says that NetBeans is scanning project classpaths; this may take a few
minutes.

Next, we need to create a class file to put into our project. Select New File from the File
menu. NetBeans prompts you with a wizard. In the Categories pane, select Java GUI
Forms and in the File Types pane, select JFrame Form. Choosing JFrame Form gives us
a Java class file extending JFrame with the basic structure of a GUI application already
set up for us. Click Next, then give the file a name, such as LearningJava1. You may leave
the package set to the default package if you wish. Now click Finish; the screen looks
like Figure 22-1.

The NetBeans workspace

Figure 22-1 shows the NetBeans application. The screen has three main areas with a
toolbar at the top. The left area is the explorer window. Tabs in the explorer window
can show a Java package and class-oriented view of our project, a filesystem view, or a
runtime environment view. The explorer is shown with our LearningJava1.java class
selected. The bottom left is the Navigator area, which shows the methods and properties
of the class, and in the case of a GUI component the child component layout within it.
In the center area is our workspace with tabs for each open file (currently one). Because
we selected a GUI-type file, NetBeans has placed us into GUI “design” mode and shows
us an empty box where we will place our beans. Click alternately on the Source and
Design buttons to switch between the Java source code and this view (try it out).

On the right side are a Palette pane and a Properties pane, which is currently showing
some properties of the currently selected file, but will show the properties of the cur‐
rently selected bean component when we add one to the design area. The Palette has
groupings for different types of beans. The Swing group includes all the standard Swing
components. AWT holds older AWT components. Layouts holds Java layout managers.

The NetBeans IDE | 803

Figure 22-1. The NetBeans workspace

Under Palette, select Swing (it may be selected by default) to see some of the available
Swing components (they appear as icons at the top of the window). Now scroll down
and select Beans to see the beans we imported earlier. You should see the friendly Dial
component bean from Chapter 18, along with a tiny person bean. The rest of our beans
lack pretty icons because these example beans aren’t packaged with them. (We’ll talk
about packaging later in the chapter.) Figure 22-2 shows the bean palette.

To place a bean into the workspace, click on it and then click in the workspace. Before
you do that, though, you may want to set an appropriate layout manager. The Inspector
holds a tree that shows all the components (visible and invisible) in the project. By right-
clicking on the JFrame (our top-level container) in either the workspace or the tree, you
can select Set Layout to specify the layout manager for the frame. For now, try using
AbsoluteLayout, provided by NetBeans. This allows you to arbitrarily place and move
beans within the container. You wouldn’t want to do this in general, but for our examples
it will make life a bit easier. The other layout managers are easy enough to use, but we’ll
refer you to NetBeans tutorials for the details.

804 | Chapter 22: JavaBeans

Figure 22-2. The bean palette

Properties and Customizers
Properties represent the “state” or “data” content of a bean. These features can be ma‐
nipulated externally to configure the bean. For a bean that’s a GUI component, you
might expect its properties to include its size, colors, and other features of its basic
appearance. Properties are similar in concept to an object’s public variables. Like a vari‐
able, a property can be a primitive type (such as a number or Boolean), or it can be a
complex object type (such as a String or a collection of spreadsheet data). Unlike vari‐
ables, properties are always manipulated using methods to set and get the value; this
enables a bean to take action whenever a property changes. By sending an event when
a property changes, a bean can notify other interested beans of the change (which we
will discuss later in this chapter).

Let’s pull a couple of beans into NetBeans and take a look at their properties. Click on
a button (this will be a JButton) from the Swing Controls group of the palette, and then
click in the workspace. When the JButton was first loaded by NetBeans, it was inspected
to discover its properties. When we select an instance of the button, NetBeans displays
these properties in the Properties pane and allows us to modify them.

The button has about eight basic properties, followed by a few additional groupings.
The list called Other Properties adds more detail. There is also a Layout properties
section (these are in actuality not properties of the JButton, but are here for
convenience) as well as an Accessibility properties list (for components that have
accessibility-related properties). The foreground and background properties are colors;
their current values are displayed in the corresponding box. font is the font for the label
text; an example of the font is shown. text is the text of the button’s label. You can also

Properties and Customizers | 805

set an image icon for the button, the tooltip text that appears when the mouse hovers
over the item, and a keyboard shortcut identifier, called a mnemonic. Try typing some‐
thing new for the value of the text property and hit return to see the button label change.
Click on the background color to enter a numeric color value, or, better yet, press the
“...” button to pop up a color-chooser dialog.

Most of these basic properties will be familiar to you because many GUI beans inherit
them from the base JComponent class. The Other Properties section lists almost 50
additional properties inherited from JComponent. NetBeans is making an effort to cat‐
egorize these for us. As we’ll see when we create our own beans, we can limit which
properties are included in the Properties pane.

Now place a Juggler bean in the workspace (this is one of Sun’s original demonstration
Java beans that we have updated). The animation starts, and the juggler begins juggling
some roughly drawn beans, as shown in Figure 22-3. If he gets annoying, don’t worry;
we’ll have him under our control soon enough.

You can see that this bean has a different set of properties, including an interesting one
called animationRate. It is an integer property that controls the delay in milliseconds
between displays of the juggler’s frames. Try changing its value. The juggler changes
speed as you type each value. Good beans give you immediate feedback when you change
their properties. Uncheck the checkbox next to the Boolean juggling property to stop
the show if you want.

Notice that the Properties pane provides a way to display and edit each of the different
property types. For the foreground and background properties of the JButton, the pane
displays the color; if you click on them, a color selection dialog pops up. Similarly, if
you click on the font property, you get a font selection dialog. For integer and string
values, you can type a new value into the field. NetBeans understands and can edit the
most useful basic Java types.

Since the property types are open-ended, beans with more complex property types can
supply their own property editor. The Molecule bean that we’ll play with in the next
section, for example, uses a custom property editor that lets us choose the type of mol‐
ecule. If it needs even more control over how its properties are displayed, a bean can
provide a customizer, which allows a bean to provide its own GUI for editing its prop‐
erties. (For example, a customizer could let you draw an icon for a button.)

806 | Chapter 22: JavaBeans

Figure 22-3. Juggling beans

Event Hookups and Adapters
Beans use events to communicate. As we mentioned in Chapter 16, events are not limited
to GUI components but can be used for signaling and passing information in more
general applications. An event is simply a notification; information describing the event
and other data are wrapped up in a subclass of EventObject and passed to the receiving
object by a method invocation. Event sources register listeners that want to receive the
events when they occur. Event receivers implement the appropriate listener interface
containing the method needed to receive the events. This is Java’s general event mech‐
anism in a nutshell.

It’s often useful to place an adapter between an event source and a listener. An adapter
can be used when an object doesn’t know how to receive a particular event; it enables
the object to handle the event anyway. The adapter can translate the event into some
other action, such as a call to a different method or an update of some data. One of the

Event Hookups and Adapters | 807

jobs of NetBeans is to help us hook up event sources to event listeners. Another job is
to produce adapter code that allows us to hook up events in more complex ways.

Taming the Juggler
Let’s get our juggler under control with the following steps:

1. Using the Properties pane, change the label of your button to read “Start.”
2. Now click the small Connection Mode icon at the top of the GUI builder (the second

icon, showing two items with arrows pointing at one another).
3. After pressing the button, NetBeans is waiting for us to select two components to

“hook up.” Click first on the Start button and then on the Juggler. NetBeans pops
up the Connection Wizard, indicating the source component (the button) and
prompting you to choose from a large list of events (see Figure 22-4). Most of them
are standard Swing events that can be generated by any kind of JComponent. What
we’re after is the button’s action event.

4. Expand the folder named action, and select actionPerformed as the source event.
5. At the bottom of the dialog box NetBeans indicates the name of an event handler

method that it will generate for us. Leave the method name as is. Click Next to go
to the Specify Target Operation screen for the Juggler.

6. The wizard prompts us to choose a property to set on the Juggler, as shown in
Figure 22-5. The display shows three of the Juggler’s properties. Choose the jug
gling property as the target and click Next.

7. Enter true in the Value field and click Finish. NetBeans takes you to the source
view and shows you the method it has generated to respond to the button action.

We have completed a hookup between the button and the Juggler. When the button
fires an action event, the juggling property of the Juggler is set to true.

Scroll around the source view and take a look at the code that NetBeans has generated
to make this connection for us. Specifically, in the initComponents() method of our
class, it has created an anonymous inner class to serve as the ActionListener for
ActionEvents from our button (which it has named jButton1):

 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

The adapter calls a private method that sets the property on our Juggler:
 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
 juggler1.setJuggling(true);
 }

808 | Chapter 22: JavaBeans

Figure 22-4. Selecting a source event in the Connection Wizard

Figure 22-5. Specifying a target operation in the Connection Wizard

You’ll notice that most of the code that was written for us is shaded grey to indicate that
it is autogenerated code and can’t be directly modified. The body of the private method
is open, however, and we could modify it to perform arbitrary activities when the button
is pushed. In NetBeans, the hookup is just a starting point.

This may all seem a little obtuse. After all, if we had made the Juggler an ActionLis
tener in the first place, we would expect to hook it directly to the button. The use of
adapters provides a great deal of flexibility, however, as we’ll see next.

To complete our example, click the Design button, then repeat the process, adding a
second JButton labeled “Stop.” We could implement the Stop button in the same way
that we did the Start button, by passing a specific value to the juggling method, but we’re
going to try an alternative here. Click the Connection Wizard icon; select the Stop button
and the Juggler as its target. Again, choose the actionPerformed method as the source,
but this time, instead of selecting a property on the Juggler, click the Method Call radio

Event Hookups and Adapters | 809

1. As of this writing, Sun’s Molecule example has some problems when used in NetBeans. Selecting a molecule
type other than the default causes a compile-time error. You can use the Preview Design button on the
NetBeans form editor to try the other molecule types.

2. A Timer bean used to come with the NetBeans distribution but disappeared in version 4.0, so we’ve added
our own replacement. We won’t discuss it here, but the source code is with the other bean examples and there
is nothing special that isn’t covered elsewhere.

button to see a list of available methods on the Juggler bean. Scroll all the way down
and select the stopJuggling() method. Click Finish to complete the hookup, and look
at the generated code if you wish. With this, we have seen an example of hooking up a
source of action events to generate an arbitrary method call on a bean. (Of course, there
is a startJuggling() method as well, which we could have used for the first button.)

Running the example

Now, the Juggler will do our bidding. Right-click on the LearningJava1.java file in the
Projects tab of the Explorer pane (or in the source view of the file) and select Run File.
Watch as NetBeans compiles and runs our example. You should be able to start and stop
the juggler using the buttons! When you are done, quit the juggler application and return
to the GUI editor. Close this example by closing its tab in the workspace, and let’s move
on. (There is no need to save the file explicitly; NetBeans saves automatically as you
edit.)

Molecular Motion
Let’s look at one more interesting example, shown in Figure 22-6. Create a new file in
our project as before, choosing Java GUI Forms from the Categories pane and JFrame
Form in the File Types pane. Call this file LearningJava2.

Grab a Molecule bean and place it in the workspace. (The default BorderLayout max‐
imizes its area if you place the bean in the center.) If you run the example now, you will
see that by dragging the mouse within the image, you can rotate the model in three
dimensions. Try changing the type of molecule by using the Properties pane: ethane is
fun.1

Let’s see what we can do with our molecule. Grab a Timer bean from the palette. Tim
er is a clock.2 Every so many milliseconds, Timer fires an event. The timer is controlled
by an long property called delay, which determines the number of milliseconds be‐
tween events. Timer is an “invisible” bean; it is not derived from a JComponent and
doesn’t have a graphical appearance, just as an internal timer in an application doesn’t
normally have a presence on the screen. NetBeans shows these invisible beans just like
any other bean in the Navigator pane on the left. When you wish to select the Timer,
click on it in the tree in the Navigator pane.

810 | Chapter 22: JavaBeans

Let’s hook the Timer to our Molecule. Start the Connection Wizard and select the Timer
(from the tree) and then the Molecule. Choose the Timer’s timerFired() event from
the list (expand the folder to display it). Click Next and select the Method Call radio
button. Find and select the rotateOnX() method and click Finish. Run the example.
Now the Molecule should turn on its own every time it receives an event from the timer.
Try changing the timer’s delay property. You can also hook the Timer to the Mole
cule’s rotateOnY() method. Use a different instance of Timer and, by setting different
delay values, make it turn at different rates in each dimension. Fun!

Figure 22-6. The Molecule bean and the Timer

Binding Properties
By using a combination of events and adapters, we can connect beans in many inter‐
esting ways. We can even “bind” two beans together so that if a property changes in the
first bean, the corresponding property is automatically changed in the second bean. In
this scenario, the beans don’t necessarily have to be of the same type, but in order to
make sense, the properties do.

Close the Molecule file and start a new one. Grab two NumericField beans from the
palette, drop them in the workspace, and select one of them. You’ll probably want to set
the AbsoluteLayout again. You can also adjust the width of the fields by dragging them
at the sides. You’ll notice that a NumericField has many of the standard properties of a
Swing component. If you look in the Other Properties section of the Properties pane,
you can find an integer property called value that represents the numeric value of the
field. You can set it there or enter a number directly into the field when you run the
program. NumericField rejects nonnumeric text.

Binding Properties | 811

Let’s bind the value property of one of the fields to the other. Activate the Connection
Wizard to create a connection between the two fields. Click first on numericField1 and
then on numericField2 so that numericField1 is the source. In the wizard, choose the
propertyChange() event of the source field. This is the listener method for Property
ChangeEvent, a generic event sent by beans when one of their properties changes. When
a bean fires property change events in response to changes in a particular property, that
property is said to be “bound.” This means that it is possible to bind the property to
another bean through the generic mechanism. In this case, the value property of our
NumericField beans is a bound property, so whenever it changes, a Property
ChangeEvent is fired.

Choose Next, and select the value property as the target for numericField2. Click Next
again, and select the Property radio button on the Parameters screen. Click the “...” editor
button to pop up a Select Property dialog. Select the source numeric field (probably
named numericField1, if that is your source button) from the pull-down menu, and
then choose the value property. Click OK and Finish to complete the hookup.

Run the application, and try entering values in the first field (numericField1). The
second field should change each time. The second bean’s value property has been bound
to the first.

Try binding the value property in the other direction as well so that you can change the
value in either bean, and the changes are propagated in both directions. (Some simple
logic in the beans prevents infinite loops from happening here.)

NetBeans has again generated an adapter for us. This time, the adapter listens for
PropertyChangeEvents and invokes the setValue() method of our target field. We
haven’t done anything earth shattering. The PropertyChangeEvent does carry some
extra information—the old and new values of the property—but we’re not using them
here. And with the Connection Wizard, you can use any event source as the impetus to
set a property on your target bean. Finally, as we’ve seen, the property can derive its
value from any other bean in the layout. The flexibility of the Connection Wizard is, to
some extent, masking the purpose of the events, but that’s OK. If we are interested in
the specific property that changed, or if we want to apply logic about the value, we can
fill in the generated method with our own code.

Many Swing components have bound properties, which are usually documented in the
Javadoc for the class.

Constraining Properties
In the previous section, we discussed how beans fire PropertyChangeEvents to notify
other beans (and adapters) that a property has changed. In that scenario, the object that
receives the event is simply a passive listener as far as the event’s source is concerned.
JavaBeans also supports constrained properties, in which the event listener gets to say

812 | Chapter 22: JavaBeans

whether it will allow a bean to change the property’s value. If the new value is rejected,
the change is cancelled; the event source keeps its old value.

The concept of constrained properties has not been heavily used in the normal operation
of Swing, so we won’t cover it in detail here. But it goes something like this. Normally,
PropertyChangeEvents are delivered to a propertyChange() method in the listener.
Constrained properties are implemented by delivering PropertyChangeEvents to a
separate listener method called vetoableChange(). The vetoableChange() method
throws a PropertyVetoException if it doesn’t like a proposed change. In this way, com‐
ponents can govern the acceptable values set by other components.

Building Beans
Now that you have a feel for how beans look from the user’s perspective, let’s build some.
In this section, we will become the Magic Beans Company. We will create some beans,
package them for distribution, and use them in NetBeans to build a very simple appli‐
cation. (The complete JAR file, along with all the example code for this chapter, is online
at http://oreil.ly/Learn_Java_4E.)

The first thing we’ll remind you of is that absolutely anything can be a bean. Even the
following class is a bean, albeit an invisible one:

 public class Trivial implements java.io.Serializable {}

Of course, this bean isn’t very useful: it doesn’t have any properties, and it doesn’t do
anything. But it’s a bean nonetheless, and we can drag it into NetBeans as long as we
package it correctly. If we modify this class to extend JComponent, we suddenly have a
graphical bean that be seen in the layout, with lots of standard Swing properties, such
as size and color information:

 public class TrivialComponent extends JComponent {}

Next, let’s look at a bean that’s a bit more useful.

The Dial Bean
We created a nifty Dial component in Chapter 18. What would it take to turn it into a
bean? Surprise: it is already a bean! The Dial has a number of properties that it exposes
in the way prescribed by JavaBeans. A get method retrieves the value of a property; for
example, getValue() retrieves the dial’s current value. Likewise, a set method, setVal
ue(), modifies the dial’s value. The dial has two other properties, which also have get
and set methods: minimum and maximum. This is all the Dial needs to inform a tool such
as NetBeans what properties it has and how to work with them. Because Dial is a
JComponent, it also has all the standard Swing properties, such as color and size. The
JComponent provides the set and get methods for all its properties.

Building Beans | 813

To use our Dial, we’ll put it in a Java package named magicbeans and store it in a JAR
file that can be loaded by NetBeans. The source code, which can be found online, in‐
cludes an Ant build file (see Chapter 15) that compiles the code and creates the final
JAR file.

If you were starting from scratch, it would go like this: first, create a directory called
magicbeans to hold our beans, add a package statement to the source files Dial.java,
DialEvent.java, and DialListener.java (from Chapter 18), put the source files into the
magicbeans directory, and compile them (using the command javac magicBeans/
Dial.java) to create class files.

Next, we need to create a manifest file that tells NetBeans which of the classes in the
JAR file are beans and which are support files or unrelated. At this point, we have only
one bean, Dial.class, so create the following file, called magicBeans.manifest:

 Name: magicbeans/Dial.class
 Java-Bean: True

The Name: label identifies the class file as it will appear in the JAR: magicbeans/
Dial.class. Specifications appearing after an item’s Name: line and before an empty
line apply to that item. (See Chapter 3 for more details.) We have added the attribute
Java-Bean: True, which flags this class as a bean to tools that read the manifest. We
will add an entry like this for each bean in our package. We don’t need to flag support
classes (such as DialEvent and DialListener) as beans because we won’t want to ma‐
nipulate them directly with NetBeans; in fact, we don’t need to mention them in the
manifest at all.

To create the JAR file, including our manifest information, enter this command:
 % jar -cvmf magicbeans.manifest magicbeans.jar magicbeans/*.class

If you loaded the precompiled examples as instructed earlier, then you already have
the Dial bean loaded into NetBeans. The version supplied in the precompiled
magicbeans.jar file has additional packaging that allows it to appear with a spiffy icon
in the palette, as we’ll discuss a bit later. (If you haven’t loaded the example JAR, you can
import the one we just created by selecting Palette → Swing/AWT Components dialog
from the Tools menu, as described earlier in this chapter.) If you want to replace the
Dial bean on your palette, you can remove it by right-clicking on the icon and selecting
Delete before importing the new JAR. (Actually, NetBeans 7.2 should reload the JAR
automatically if you overwrite it.)

You should now have an entry for Dial in the bean palette. Drop an instance of the Dial
bean into a new JFrame Form file in NetBeans.

As Figure 22-7 shows, the Dial’s properties—maximum, minimum, and value—appear
in the Properties pane and can be modified by NetBeans. If you just created the Dial
JAR following our minimal instructions, you’ll see these properties along with all the

814 | Chapter 22: JavaBeans

Swing properties inherited from the JComponent class. The figure shows the Dial bean
as it appears later in this chapter (with the supplied packaging), after we’ve learned about
the BeanInfo class. We’re almost there.

Now we’re ready to put the Dial to use. Reopen the Juggler file that we created in the
first section of this chapter. Add an instance of our new magic Dial bean to the scenario,
as shown in Figure 22-8.

Bind the value property of the Dial to the animationRate of the Juggler. Use the
Connection Wizard, as before, selecting the Dial and then the Juggler. Select the
DialEvent source and bind the animationRate property, selecting the Dial’s value as
the property source. When you complete the hookup, you should be able to vary the
speed of the juggler by turning the dial. Try changing the maximum and minimum
values of the dial to change the range.

Figure 22-7. The Dial component as a bean

Building Beans | 815

Figure 22-8. The Juggler with a dialable animation rate

Design Patterns for Properties
We said earlier that tools such as NetBeans found out about a bean’s properties by look‐
ing at its get and set methods. The easiest way to make properties visible is to follow
these simple design patterns:

• Method for getting the current value of a property:
 public PropertyType getPropertyName()

• Method for setting the value of a property:
 public void setPropertyName(PropertyType arg)

• Method for determining whether a Boolean-valued property is currently true:
 public boolean isPropertyName()

The last method is optional and is used only for properties with Boolean values. (You
could use the get method for Boolean values as well.)

The appropriate set and get methods for these features of our bean are already in the
Dial class, either methods that we added or methods inherited from the java.awt.Com
ponent and javax.swing.JComponent classes:

 // inherited from Component
 public Color getForeground()
 public void setForeground(Color c)

 public Color getBackground()
 public void setBackground(Color c)

 public Font getFont()
 public void setFont(Font f)

816 | Chapter 22: JavaBeans

 // many others from Component and JComponent

 // part of the Dial itself
 public int getValue()
 public void setValue(int v)

 public int getMinimum()
 public void setMinimum(int m)

 public int getMaximum()
 public void setMaximum(int m)

JavaBeans allows read and write-only properties, which are implemented simply by
leaving out the get or set method.

NetBeans uses the Reflection API to find out about the Dial bean’s methods; it then
uses these naming conventions to learn what properties are available. When we use the
properties editor to change a value, NetBeans dynamically invokes the correct set meth‐
od to change the value.

If you look further at the JComponent class, you’ll notice that other methods match the
design pattern. For example, what about the setCursor() and getCursor() pair? Net‐
Beans doesn’t know how to display or edit a cursor, and we didn’t supply an editor, so
it ignores those properties in the properties sheet.

NetBeans automatically pulls the property’s name from the name of its accessor meth‐
ods; it then lowercases the name for display on the properties sheet. For example, the
font property is derived from getFont. Later, we’ll show how to provide a BeanInfo
class that overrides the way these properties are displayed, which allows you to provide
your own friendly property names. Again, if you used the Dial bean from our precom‐
piled example JAR, you’ll see only our three Dial properties. The JComponent properties
are hidden by our packaging a BeanInfo class that determines the properties we wish
to show.

Generating bean patterns in NetBeans

NetBeans automatically recognizes JavaBeans getter and setter method patterns in
classes. In the source code view, select the Source menu Insert Code option and choose
Getter and Setter to automatically generate getter and setter methods for fields in your
class. This can save you a bit of typing if you need to add a lot of properties.

Limitations of Visual Design
These examples have pointed to the idea that we can create at least a trivial application
by hooking beans together in a mostly visual way. In other development environments,
this kind of bean hookup has been pushed even further. For example, Sun’s original

Limitations of Visual Design | 817

“BeanBox” experimental Java bean container took a different approach than NetBeans.
It allowed the developer to work with “live” Java bean instances, dynamically generating
adapter code at runtime and relying solely on object serialization to save the resulting
work. This kind of design is, in a sense, the real goal of the JavaBeans architecture. It is
true “what you see is what you get” (WYSIWYG) programming. However, pure visual
design without the ability to integrate handwritten code, as we can do in NetBeans, has
not yet proven to scale beyond these kinds of simple applications, and pure visual
programming environments beyond just GUI screen layout have thus far failed to
catch on.

Serialization Versus Code Generation
If you’ve been keeping an eye on the NetBeans source window while we’ve been working,
you may have noticed the code that is being generated when you modify properties of
beans. By default, NetBeans generates method calls to set values on beans in the init
Components() method. For example, if you set the value of one of your NumericField
beans to 42 in the Properties pane, this value gets hardcoded into the application as an
initial value of the bean by a call to setValue() on the bean object at initialization time.
But if you click on the Code button in the Properties pane, you’ll see that we have another
option. This area holds properties that govern how NetBeans generates the application
code. By changing the Code Generation property from Generate Code to Serialize, you
change NetBeans’ behavior. Instead of generating method calls in the source code, it
saves your fully configured bean as a serialized object and then generates the appropriate
code to load the freeze-dried bean into the application from a file.

Try changing the code generation property for a Juggler bean to Serialize. Switching
to the source code view and looking at the initComponents() method, you’ll see a line
for that bean that uses the static Beans.instantiate() method to load a serialized copy
of the bean.

NetBeans treats the serialized bean file as part of the source code and will regenerate it
whenever it saves the source file. In order to run this example, we must first perform a
manual build. Select Build → Build Main Project, then you can run the file as before
with the Run File context menu. The reason for the explicit build is to prompt NetBeans
to copy the serialized bean file from the source folder of your source file over to the
compiled classes directory (it should be smart enough to do this itself). You should see
the serialized bean file, named something like: LearnJava1_juggler1.ser alongside your
source file (and deployed to the classes directory). You can run the example and confirm
that it behaves exactly like the code-generated version. (This is pretty neat if you think
about it.)

We’ll discuss working with serialized beans in more detail later in this chapter and ask
you to refer to this stored bean file.

818 | Chapter 22: JavaBeans

Customizing with BeanInfo
So far, everything NetBeans has known about our beans has been determined by low-
level reflection—that is, by looking at the methods of our classes. The java.Beans.In
trospector class gathers information on a bean using reflection, then analyzes and
describes a bean to any tool that wants to know about it. The introspection process
works only if the class follows the JavaBeans naming conventions for its methods; fur‐
thermore, it gives us little control over exactly what properties and events appear in
NetBeans menus. For example, we’ve seen that NetBeans by default shows all the stuff
we inherit from the base Swing component. We can change that by creating BeanInfo
classes for our beans. A BeanInfo class provides the JavaBeans introspector with explicit
information about the properties, methods, and events of a bean; we can even use it to
customize the text that appears in menus in NetBeans (and in other IDEs).

A BeanInfo class implements the BeanInfo interface. That’s a complicated proposition;
in most situations, the introspector’s default behavior is reasonable. Instead of
implementing the BeanInfo interface, we extend the SimpleBeanInfo class, which im‐
plements all of BeanInfo’s methods. We can override specific methods to provide the
information we want; when we don’t override a method, we’ll get the introspector’s
default behavior.

In the next few sections, we’ll develop the DialBeanInfo class that provides explicit
information about our Dial bean.

Getting Properties Information
We’ll start out by describing the Dial’s properties. To do so, we must implement
the getPropertyDescriptors() method. This method simply returns an array of
PropertyDescriptor objects—one for each property we want to publicize.

To create a PropertyDescriptor, call its constructor with two arguments: the property’s
name and the class. In the following code, we create descriptors for the Dial’s value,
minimum, and maximum properties. We next call a few methods of the PropertyDescrip
tor class to provide additional information about each property. If our methods were
bound (generated PropertyChangeEvents when modified), we’d call the setBound()
method of their PropertyDescriptors. Our code is prepared to catch an Introspec
tionException, which can occur if something goes wrong while creating the property
descriptors, such as encountering a nonexistent method:

 //file: DialBeanInfo.java
 package magicbeans;
 import java.beans.*;

 public class DialBeanInfo extends SimpleBeanInfo {

 public PropertyDescriptor[] getPropertyDescriptors() {

Customizing with BeanInfo | 819

 try {
 PropertyDescriptor value =
 new PropertyDescriptor("value", Dial.class);
 PropertyDescriptor minimum =
 new PropertyDescriptor("minimum", Dial.class);
 PropertyDescriptor maximum =
 new PropertyDescriptor("maximum", Dial.class);

 return new PropertyDescriptor [] { value, minimum, maximum };
 }
 catch (IntrospectionException e) {
 return null;
 }
 }
 }

Perhaps the most useful thing about DialBeanInfo is that by providing explicit infor‐
mation for our properties, we automatically hide other properties that introspection
might find. After compiling DialBeanInfo and packaging it with the Dial, you’ll see
that its JComponent properties no longer appear in the NetBeans properties editor. (This
has been the case all along if you started with the precompiled example JAR.)

A PropertyDescriptor can provide a lot of other information about a property: the
names of the accessor methods (if you decide not to use the standard naming conven‐
tion), information about whether the property is constrained, and a class to use as a
property editor (if the standard property editors aren’t sufficient).

Getting events information

The Dial bean defines its own event: the DialEvent. We’d like to tell development tools
about this event so that we can build applications using it. The process for telling the
world about our event is similar to what we did previously: we add a method to
the DialBeanInfo class called getEventSetDescriptors(), which returns an array of
EventSetDescriptors.

Events are described in terms of their listener interfaces, not in terms of the event classes
themselves, so our getEventSetDescriptors() method creates a descriptor for the
DialListener interface. Here’s the code to add to the DialBeanInfo class:

 public EventSetDescriptor[] getEventSetDescriptors() {
 try {
 EventSetDescriptor dial = new EventSetDescriptor(
 Dial.class, "dialAdjusted",
 DialListener.class, "dialAdjusted");
 dial.setDisplayName("Dial Adjusted");

 return new EventSetDescriptor [] { dial };
 }
 catch (IntrospectionException e) {
 return null;

820 | Chapter 22: JavaBeans

 }
 }

In this method, we create an EventSetDescriptor object: dial. The constructor for an
EventSetDescriptor takes four arguments: the class that generates the event, the name
of the event (the name that is displayed, by default, by a development tool), the listener
class, and the name of the method to which the event can be delivered. (Other con‐
structors let you deal with listener interfaces that have several methods.) After creating
the descriptor, we call the setDisplayName() method to provide a friendly name to be
displayed by development tools such as NetBeans. (This overrides the default name
specified in the constructor.)

Just as the property descriptors we supply hide the properties that were discovered by
reflection, the EventSetDescriptors can hide the other events that are inherited from
the base component classes. In theory, when you recompile DialBeanInfo, package it
in a JAR, and load it into NetBeans, you should see only the two events that we have
explicitly described: our own DialEvent and PropertyChangeEvent (displayed as “Dial
Adjusted” and “Bound property change”). Unfortunately, the current version of Net‐
Beans ignores this information.

Once we have an EventSetDescriptor, we can provide other kinds of information
about the event. For example, we can state that the event is unicast, which means that
it can have only one listener.

Supplying icons

Some of the beans that come with NetBeans are displayed on the palette with a cute
icon. This makes life more pleasant for everyone. To supply an icon for the BeanInfo
object we have been developing, we have it implement the getIcon() method. You can
supply up to four icons, with sizes of 16 × 16 or 32 × 32, in color or monochrome. Here’s
the getIcon() method for DialBeanInfo:

 public class DialBeanInfo extends SimpleBeanInfo {
 ...
 public java.awt.Image getIcon(int iconKind) {

 if (iconKind == BeanInfo.ICON_COLOR_16x16) {
 return loadImage("DialIconColor16.gif");
 } else
 if (iconKind == BeanInfo.ICON_COLOR_32x32) {
 return loadImage("DialIconColor32.gif");
 } else
 if (iconKind == BeanInfo.ICON_MONO_16x16) {
 return loadImage("DialIconMono16.gif");
 } else
 if (iconKind == BeanInfo.ICON_MONO_32x32) {
 return loadImage("DialIconMono32.gif");
 }

Customizing with BeanInfo | 821

 return null;
 }

This method is called with a constant, indicating what kind of icon is being requested;
for example, BeanInfo.ICON_COLOR_16x16 requests a 16 × 16 color image. If an appro‐
priate icon is available, it loads the image and returns an Image object. If the icon isn’t
available, it returns null. For convenience, you can package the images in the same JAR
file as the bean and its BeanInfo class.

Though we haven’t used them here, you can also use a BeanInfo object to provide
information about other public methods of your bean (for example, array-valued prop‐
erties) and other features.

Creating customizers and property editors

JavaBeans lets you provide a customizer for your beans. Customizers are objects that do
advanced customization for a bean as a whole; they let you provide your own GUI for
tweaking your bean. We won’t show you how to write a customizer; it’s not too difficult,
but it’s beyond the scope of this chapter. Suffice it to say that a customizer must imple‐
ment the java.beans.Customizer interface and should extend Component (or JCompo
nent) so that it can be displayed.

Property editors are a way of giving the properties sheet additional capabilities. For
example, you could supply a property editor to let you edit a property type that is specific
to your bean. You could provide a property editor that would let you edit an object’s
price in dollars and cents. We’ve already seen a couple of property editors: the editor
used for Color-valued properties is fundamentally the same as a property editor you
might write yourself. In addition, the Molecule bean uses a property editor to specify
its moleculeName property. A property editor isn’t quite as fancy as a customizer, but
describing it fully is also beyond the scope of this chapter.

Again, describing how to write a property editor is also beyond the scope of this chapter.
However, it might help you to know that a property editor must implement the Prop
ertyEditor interface; it usually does so by extending the PropertyEditorSupport class,
which provides default implementations for most of the methods.

Handcoding with Beans
So far, we’ve seen how to create and use beans within a bean application builder envi‐
ronment. That is the primary motivation for JavaBeans, at least in GUI development.
But beans are not limited to being used by automated tools. There’s no reason we can’t
use beans in handwritten code. You could use a builder to assemble beans for the user
interface of your application and then load that serialized bean or a collection of beans
in your own code, just as NetBeans does when told to use object serialization. We’ll give
an example of that in a moment.

822 | Chapter 22: JavaBeans

3. This feature would seemingly be applicable to XML-serialized Java beans using the XMLOutputStream as well,
but it is not currently implemented for them. This is another sign that the JavaBeans APIs have stagnated.

Bean Instantiation and Type Management
Beans are an abstraction over simple Java classes. They add, by convention, features that
are not part of the Java language. To enable certain additional capabilities of JavaBeans,
we use special tools that take the place of basic language operations. Specifically, when
working with beans, we are provided with replacements for three basic Java operations:
creating an object with new, checking the type of an object with the instanceof operator,
and casting a type with a cast expression. In place of these, use the corresponding static
methods of the java.beans.Beans class, shown in Table 22-1.

Table 22-1. Methods of the java.beans.Beans class
Operator Equivalent

New Beans.instantiate(classloader, name)

Instanceof Beans.isInstanceOf(object, class)

Beans.instantiate() is the new operation for beans. It takes a class loader and the
name of a bean class or serialized bean as arguments. Its advantage over the plain new
operator is that it can also load beans from a serialized form. If you use instanti
ate(), you don’t have to specify in advance whether you will provide the bean as a class
or as a serialized object. The instantiate() method first tries to load a resource file
based on the name bean, by turning package-style names (with dots) into a path-style
name with slashes and then appending the suffix .ser. For example, magicbeans.Numer
icField becomes magicbeans/NumericField.ser. If the serialized form of the bean
is not found, the instantiate() method attempts to create an instance of the class by
name.3

Beans.isInstanceOf() and Beans.getInstanceOf() do the jobs of checking a bean’s
type and casting it to a new type. These methods were intended to allow one or more
beans to work together to implement “virtual” or dynamic types. They are supposed to
allow beans to take control of this behavior, providing different “views” of themselves.
However, they currently don’t add any functionality and aren’t widely used.

Working with Serialized Beans
Remember the Juggler we serialized a while back? Well, it’s time to revive him, just like
Han Solo from his “Carbonite” tomb in Star Wars. We’ll assume that you saved the
Juggler by flipping on the Serialization property while working with the LearnJava1
class and that NetBeans, therefore, saved him in the file LearnJava1_juggler1.ser. If you
didn’t do this, you can use the following snippet of code to serialize the bean to a file of
your choice:

Handcoding with Beans | 823

 // Serialize a Juggler instance to a file...
 import magicbeans.sunw.demo.juggler.Juggler;
 import java.io.*;

 public class SerializeJuggler {
 public static void main(String [] args) throws Exception
 {
 Juggler duke = new Juggler();
 ObjectOutputStream oout = new ObjectOutputStream(
 new FileOutputStream("juggler.ser"));
 oout.writeObject(duke);
 oout.close();
 }
 }

Once you have the frozen Juggler, compile the following small application:
 //file: BackFromTheDead.java
 import java.awt.Component;
 import javax.swing.*;
 import java.beans.*;

 public class BackFromTheDead extends JFrame {

 public BackFromTheDead(String name) {
 super("Revived Beans!");
 try {
 Object bean = Beans.instantiate(
 getClass().getClassLoader(), name);

 if (Beans.isInstanceOf(bean, JComponent.class)) {
 JComponent comp = (JComponent)
 Beans.getInstanceOf(bean, JComponent.class);
 getContentPane().add("Center", comp);
 } else {
 System.out.println("Bean is not a JComponent...");
 }
 } catch (java.io.IOException e1) {
 System.out.println("Error loading the serialized object");
 } catch (ClassNotFoundException e2) {
 System.out.println(
 "Can't find the class that goes with the object");
 }
 }

 public static void main(String [] args) {
 JFrame frame = new BackFromTheDead(args[0]);
 frame.pack();
 frame.setVisible(true);
 }
 }

824 | Chapter 22: JavaBeans

Run this program, passing the name of your serialized object as an argument and making
sure that our magicbeans.jar file is in your classpath. The name should not include
the .ser extension in the name; the Beans.instantiate() method adds this automati‐
cally in its search for the serialized or class version. The juggler should spring back to
life, juggling once again as shown in Figure 22-9.

Figure 22-9. The restored Juggler

In BackFromTheDead, we use Beans.instantiate() to load our serialized bean by name.
We then check to see whether it is a GUI component using Beans.isInstanceOf(). (It
is, because the Juggler is a subclass of java.awt.Component.) Finally, we cast the in‐
stantiated object to a Component with Beans.getInstanceOf() and add it to our appli‐
cation’s JFrame. Notice that we still need a static Java cast to turn the Object returned
by getInstanceOf() into a JComponent. This cast may seem gratuitous, but it is the
bridge between the dynamic beans lookup of the type and the static, compile-time view
of the type.

Everything we’ve done here could be done using the plain java.io.ObjectInput
Stream discussed in Chapter 12. But these bean management methods are intended to
shield the user from details of how the beans are implemented and stored.

One more thing before we move on. We blithely noted that when the Juggler was
restored, the bean began juggling again. This implies that threads were started when the
bean was deserialized. Serialization doesn’t automatically manage transient resources
such as threads or even loaded images, but it’s easy to take control of the process to finish
reconstructing the bean’s state when it is deserialized. Have a look at the Juggler source
code (provided with the examples) and refer to Chapter 12 for a discussion of object
deserialization using the readObject() method.

Runtime Event Hookups with Reflection
We’ve discussed reflection largely in terms of how design tools use it to analyze classes.
Today, reflection is frequently finding its way into applications to perform dynamic
activities that wouldn’t be possible otherwise. In this section, we’ll look at a dynamic
event adapter that can be configured at runtime.

Handcoding with Beans | 825

In Chapter 16, we saw how adapter classes could be built to connect event firings to
arbitrary methods in our code, allowing us to cleanly separate GUI and logic in our
applications. In this chapter, we have seen how NetBeans interposes this adapter code
between beans to do this for us.

The AWT/Swing event model reduces the need to subclass components to perform
simple hookups. If we start relying heavily on special adapter classes, we can quickly
end up with as many adapters as components. Anonymous inner classes let us hide these
classes, but they’re still there. A potential solution for large or specialized applications
is to create generic event adapters that serve a number of event sources and targets
simultaneously.

The java.beans.EventHandler is a dynamic event dispatcher that simply calls methods
in response to events. What makes the EventHandler unusual in Java is that it is the first
standard utility to use reflection to allow us to specify the method by name. In other
words, you ask the EventHandler to direct events to a handler by specifying the handler
object and the string name of the method to invoke on that object.

We can use the create() method of EventHandler to get an adapter for a specified type
of event listener, specifying a target object and method name to call when that event
occurs. The target object doesn’t have to be a listener for the particular event type or any
other particular kind of object. The following application, DynamicHookup, uses the
EventHandler to connect a button to a launchTheMissiles() method in our class:

 //file: DynamicHookup.java
 import javax.swing.*;
 import java.awt.event.*;
 import java.beans.EventHandler;

 public class DynamicHookup extends JFrame {
 JLabel label = new JLabel("Ready...", JLabel.CENTER);
 int count;

 public DynamicHookup() {
 JButton launchButton = new JButton("Launch!");
 getContentPane().add(launchButton, "South");
 getContentPane().add(label, "Center");
 launchButton.addActionListener(
 (ActionListener)EventHandler.create(
 ActionListener.class, this, "launchTheMissiles"));
 }
 public void launchTheMissiles() {
 label.setText("Launched: "+ count++);
 }

 public static void main(String[] args) {
 JFrame frame = new DynamicHookup();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(150, 150);

826 | Chapter 22: JavaBeans

 frame.setVisible(true);
 }
 }

Here, we call the EventHandler’s create() method, passing it the ActionListener class,
the target object (this), and a string with the name of the method to invoke on the
target when the event arrives. EventHandler internally creates a listener of the appro‐
priate type and registers our target information. Not only do we eliminate an inner class,
but the implementation of EventHandler may allow it to share adapters internally, pro‐
ducing very few objects.

This example shows how we would call a method that takes no arguments—but the
EventHandler can actually do more, setting JavaBeans properties in response to events.
The following form of create() tells EventHandler to call the launchTheMissiles()
method, passing the source property of the ActionEvent as an argument:

 EventHandler.create(
 ActionListener.class, target, "launchTheMissiles", "source")

All events have a source property (via the getSource() method), but we can go further,
specifying a chain of property “gets” separated by dots, which are applied before the
value is passed to the method. For example:

 EventHandler.create(
 ActionListener.class, target, "launchTheMissiles", "source.text")

The source.text parameter causes the value getSource().getText() to be passed as
an argument to launchTheMissiles(). In our case, that would be the label of our button.
Other forms of create() allow more flexibility in selecting which methods of a multi‐
method listener interface are used as well as other options. We won’t cover every detail
of the tool here.

How it works

The EventHandler uses the java.lang.reflect.Proxy, which is a factory that can
generate adapters implementing any type of interface at runtime. By specifying one or
more event listener interfaces (e.g., ActionListener), we get an adapter that implements
those listener interfaces generated for us on the fly. The adapter is a specially created
class that delegates all the method calls on its interfaces to a designated InvocationHan
dler object. See Chapter 1 for more information about proxy classes.

BeanContext and BeanContextServices
So far we’ve talked about some sophisticated mechanisms for connecting Java beans
together at design time and runtime. However, we haven’t talked at all about the envi‐
ronment in which Java beans live. To build advanced, extensible applications, we’d
like a way for Java beans to find each other or “rendezvous” at runtime. The

BeanContext and BeanContextServices | 827

java.beans.beancontext package provides this kind of container environment. It also
provides a generic “services” lookup mechanism for beans that wish to advertise their
capabilities. These mechanisms have existed for some time, but they haven’t found much
use in the standard Java packages. Still, they are interesting and important facilities that
you can use in your own applications.

You can find a full explanation and example of how to use the bean context to find beans
and listen for services in the expanded material on this book’s website.

The Java Activation Framework
The Java Activation Framework (JAF) can be used by beans that work with many ex‐
ternal data types, such as media retrieved from files and streams. It is essentially a gen‐
eralized content/protocol handler mechanism for JavaBeans. The javax.activation
package contains an extensible set of classes that wrap arbitrary, raw data sources to
provide access to their data as streams or objects, identify the MIME type of the data,
and enumerate a registered set of “commands” for operating on the data.

The JAF provides two primary interfaces: DataSource and DataHandler. The Data
Source acts like the protocol handlers we discussed in Chapter 14. It wraps the data
source and determines a MIME type for the data stream. The DataHandler acts like a
content handler, except it provides a great deal more than access to the data. A Data
Handler is constructed to wrap a DataSource and interpret the data in different forms.
It also provides a list of command operations that can be used to access the data. Data
Handler also implements the java.awt.datatransfer.Transferable interface, allow‐
ing data to be passed among application components in a well-defined way.

Enterprise JavaBeans and POJO-Based Enterprise
Frameworks
Enterprise JavaBeans (EJB) is a very big topic, and we can’t do more than provide a few
paragraphs of insight here. If you want more information, see Enterprise JavaBeans by
Richard Monson-Haefel (O’Reilly). The thrust of EJB takes the JavaBeans philosophy
of portable, pluggable components and extends it to the server side to accommodate
the sorts of things that multitiered, networked, and database-centric applications re‐
quire. Although EJB pays homage to the basic JavaBeans concepts, it is much larger and
more specialized. It doesn’t have a lot in common with the kinds of things we’ve been
talking about in this chapter. EJBs are server-side components for networked applica‐
tions. EJBs and plain Java beans are both reusable, portable components that can be
deployed and configured for specific environments. But in the case of EJBs, the com‐
ponents encapsulate access to business logic and database tables instead of GUI and
program elements.

828 | Chapter 22: JavaBeans

EJB ties together a number of other Java enterprise-oriented APIs—including database
access, transactions, and name services—into a single component model for server ap‐
plications. EJB imposes a lot more structure on how you write code than plain-old Java
beans. It does so to allow the server-side EJB container to take on a lot of responsibility
and optimize your application’s activities without your having to write a lot of code.

The first two major releases of Java Enterprise Edition, which include EJBs, were con‐
sidered by many to be overly complicated. Many classes, interfaces, and configuration
files were required to support EJBs. As a result, a number of popular open source
frameworks that make use of Plain Old Java Objects (POJOs) to accomplish the same
tasks quickly rose to prominence. POJOs are Java objects that are not required to follow
any convention, implement any interface, or inherit from any base class, although in
practice they are often JavaBeans. The most notable of the POJO-based frameworks are
Hibernate, a framework for mapping Java object state to a database, and Spring, a
general-purpose enterprise application development framework.

Enterprise JavaBeans and POJO-Based Enterprise Frameworks | 829

CHAPTER 23

Applets

One of the original promises of Java was that applications could be delivered over the
network to your computer as needed. Instead of the old days of buying a shrink-wrapped
box containing a word processor, installing it, and upgrading it every few years, it would
now be possible to obtain and use software directly from the Internet, safely and on any
platform. Today, we take networked distribution of software for granted. Mobile devices
have driven the advent of app stores for installed software, and many (if not the majority)
of the most highly used applications are now purely browser-based. Unfortunately for
Java fans, these advances took different paths, arguably less elegant, than the Java plat‐
form offered and took longer to arrive than they likely could have.

This chapter is about the applet API, which was Java’s earliest mechanism for delivering
applications to the web browser. Applets are not widely used today, but they are part of
the vernacular and are still doing well in some niches. While you may not wish to write
applets going forward, it is useful to understand their basic functionality. As we review
applets, we will also touch on general areas of interest along the way, such as the Java
security model.

An applet is a Java program that runs within the context of a web page. Like an image
or hyperlink, it “owns” some rectangular area of the user’s screen. When the web browser
loads a page that contains a Java applet, it knows how to load the classes of the applet
and run them. This chapter describes how applets work and how they are incorporated
into web pages. We’ll also talk about the Java Plug-in and related technologies such as
Java Web Start briefly.

The Politics of Browser-Based Applications
First, a bit of history. The potential for applets to add dynamic content to web pages was
one of the driving forces behind the spread of the Java programming language. Prior to
Java’s introduction in 1994, there was really no standard way to do this; even the

831

now-ubiquitous animated GIF images were not yet widely supported. Sun’s HotJava
Java-based web browser was the first to support applets. It was Java’s original “killer
application.” Later, in 1995, Netscape announced that it would support the Applet API
in its browsers, and soon after that Microsoft jumped on the bandwagon. For a while,
it seemed that Java would power the future of the Web, but there were many bumps in
the road to come.

Many problems, both technical and political, plagued the early years of Java’s use in
browsers and client-side applications. Performance issues were to be expected in such
a young platform. But what really crippled Java early on was the nonportable and buggy
AWT, Java’s original GUI toolkit. Many people overlook the fact that Java’s success as a
portable language is in large part a result of just how much of the Java API is imple‐
mented in Java. You might be surprised to learn just how many Java internals involve
no native code—everything from cryptography to DNS is done in Java—requiring no
porting for new platforms. Similarly, the renaissance of Java GUI applications seen in
later years was due almost entirely to the introduction of the pure Java Swing GUI toolkit.
In contrast, the original AWT system was based on native code, which had to be ported
to each new system, taking into account subtle and tricky platform dependencies. AWT
was effectively a large, graphical C program that Java talked to through a set of interfaces
and Java was, to some extent, unfairly painted as nonportable and buggy by association.

Java faced other, less technical obstacles as well. Netscape foisted the original AWT upon
the world when it insisted that Java be released with “native look and feel” in lieu of a
less capable, but truly portable, graphical toolkit. It later introduced a pure Java GUI
toolkit called IFC (an ancestor of Swing), but it struggled to gain traction. Later,
Microsoft effectively stuck us with AWT by freezing the level of the Applet API in its
browsers at Java 1.1. Applets languished with poor GUIs while lawsuits between Sun
and Microsoft dragged on in the 1990s. The result was that support for applets in web
browsers remained a mess.

Sun made an attempt to insulate Java from the browser battles with the introduction of
the Java Plug-in. The Plug-in allowed applets to run in an up-to-date Java VM, but by
this point lacked the critical mass and near-universal adoption necessary to make such
a plug-in useful. The weaker but more prevalent Adobe Flash plug-in flourished, as
developers desperately wanted a way to deploy richer applications to the browser. In the
2000s, JavaScript and HTML matured greatly and made the browser itself more of a
viable platform for deploying software, leading to the great irony that JavaScript, the
slower and less capable namesake of Java, became the de facto programming language
of the Web.

Find it a bit depressing? Well, take heart; JavaScript has evolved into a worthy platform
for the client side, Flash is fading, and Java has dominated server-side development and
made possible portable libraries that have fueled much of the Internet revolution. We

832 | Chapter 23: Applets

cannot say what the future holds, but Java in some form will likely be a player in it for
many decades to come.

Applet Support and the Java Plug-in
As we mentioned earlier, the state of support for Java in web browsers has always been
a mess. The most reliable way to run Java in a web browser has always been the Java
Plug-in. The Plug-in is a free, user-installed component (implemented differently for
each browser) that supports Java itself. Using the Plug-in makes an end-run around the
poor support built into the browser by using a separate software package that can be
installed and updated independently of the browser releases.

Recently, some platforms—notably Mac OS X—have dropped the built-in support for
Java in the browser entirely and rely on users to install the Java Plug-in if they wish to
run applets. This is not ideal, but does simplify things by eliminating some of the am‐
biguity. If you have installed Java 7 on OS X or Windows, then you should already have
the Java Plug-in needed to run the applets discussed in this chapter. In some cases, the
first time you attempt to view a page containing an applet, you may be prompted to
enable Java in the browser. You may also want to consult the Java “control panel” in
Windows or “preference pane” in Mac OS X for additional preferences related to Java
after installing Java 7.

The JApplet Class
A JApplet is a Swing JPanel with a mission. It is a GUI container that has some extra
structure to allow it to be used in the “alien” environment of a web browser. Applets also
have a lifecycle that lets them act more like an application than a static component.
Although applets tend to be relatively simple, there’s no inherent restriction on their
complexity other than the issues of downloading and caching their content. Historically,
applets have tended to be small “widgets.”

The javax.swing.JApplet class defines the core functionality of an applet.
(java.awt.Applet is the older, AWT-based form.)

Structurally, an applet is a wrapper for your Java code. In contrast to a standalone
graphical Java application, which starts up from a main() method and creates a GUI,
an applet itself is a component that expects to be dropped into someone else’s GUI. Thus,
an applet can’t run by itself; it runs in the context of a web browser or a special applet-
viewer program (which we’ll talk about later). Instead of having your application create
a JFrame to hold your GUI, you stuff your application inside a JApplet (which itself
extends Container) and let the browser add your applet to the page.

Applet Support and the Java Plug-in | 833

Applets are placed on web pages with the <applet> HTML tag, which we’ll cover later
in this chapter. At its simplest, you just specify the name of the applet class and a size
in pixels for the applet:

 <applet code="AnalogClock" width="100" height="100"></applet>

Pragmatically, an applet is an intruder into someone else’s environment and therefore
has to be treated with suspicion. The web browsers that run applets impose restrictions
on what the applet is allowed to do. The restrictions are enforced by an applet security
manager. The browser provides everything the applet needs through an applet context—
the API the applet uses to interact with its environment.

A JApplet expects to be embedded in a page and used in a viewing environment that
provides it with resources. In all other respects, however, applets are just ordinary Panel
objects. As Figure 23-1 shows, an applet is a kind of Panel. Like any other Panel, a
JApplet can contain user interface components and use all the basic drawing and event-
handling capabilities of the Component class. You can draw on a JApplet by overriding
its paint() method and respond to events in the JApplet’s display area by providing
the appropriate event listeners. Applets also have additional structure that helps them
interact with the browser environment.

Aside from the top-level structure and the security restrictions, there is no difference
between an applet and an application. If your application can live within the limits
imposed by a browser’s security manager, you can structure it to function as both an
applet and a standalone application. Normally, you’ll use your applet class itself only as
a thin wrapper to manage the lifecycle and appearance of your application—create the
GUI, start, and stop. So, the bulk of your code should be easily adaptable to either a
standalone or applet deployment.

Applet Lifecycle
The Applet class contains four methods that can be overridden to guide it through its
lifecycle. The init(), start(), stop(), and destroy() methods are called by the ap
pletviewer or web browser to direct the applet’s behavior. init() is called once, after
the applet is created. The init() method is where you perform basic setup such as
parsing parameters, building a user interface, and loading resources.

By convention, applets don’t provide an explicit constructor to do any setup. The reason
for this is that the constructor is meant to be called by the applet’s environment, for
simple creation of the applet. This might happen before the applet has access to certain
resources, such as information about its environment. Therefore, an applet doesn’t nor‐
mally do any work there; instead it should rely on the default constructor for the JApp
let class and do its initialization in the init() method.

The start() method is called whenever the applet becomes visible; it shouldn’t be a
surprise then that the stop() method is called whenever the applet becomes invisible.

834 | Chapter 23: Applets

Figure 23-1. The java.applet package

init() is called only once in the life of an applet, but start() and stop() can be called
any number of times (although always in the logical sequence). The start() method is
called when the applet is displayed, such as when it scrolls onto the screen; stop() will
be called if the applet scrolls off the screen, or the viewer leaves the document. start()
tells the applet it should be active. The applet may want to create threads, animate, or
otherwise perform useful (or annoying) activity. stop() is called to let the applet know
it should go dormant. Applets should cease CPU-intensive or wasteful activity when
they are stopped and resume when (and if) they are restarted. However, there’s no
requirement that an invisible applet stop computing; in some applications, it may be
useful for the applet to continue running in the background. Just be considerate of your
user, who doesn’t want an invisible applet dragging down system performance.

Finally, the destroy() method gives the applet a last chance to clean up before it’s
removed—some time after the last call to stop(). For example, an applet might want
to gracefully close down suspended communications channels at this time. Exactly when
destroy() is called depends on the browser; Netscape calls destroy() just prior to
deleting the applet from its cache. This means that although an applet can cling to life
after being told to stop(), how long it can go on is unpredictable. If you want to maintain
an applet as the user progresses through other pages of activities, you may have to put
it in an HTML frame, so that it remains visible and won’t be told to stop() (see “Applet
persistence and navigation” on page 841).

The JApplet Class | 835

If you’ve read this entire book up until now, you’ve already seen a couple of applets that
snuck in among other topics. In Chapter 9, we created a simple clock applet, and in
Chapter 13, we used an applet to send packets of information from a web browser. Now
let’s try a simple Swing-based example using JApplet. The following example, ShowApp
let, shown in Figure 23-2, does nothing special, but you can use it to test the version
of Java that’s running in your browser (and see if the Plug-in is installed) and to see
when the applet is started and stopped. It’s a good reference.

 import javax.swing.*;
 import java.awt.event.*;

 public class ShowApplet extends JApplet {
 JTextArea text = new JTextArea();
 int startCount;

 public void init() {
 JButton button = new JButton("Press Me");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 text.append("Button Pressed!\n");
 }
 });
 getContentPane().add("Center", new JScrollPane(text));
 JPanel panel = new JPanel();
 panel.add(button);
 getContentPane().add("South", panel);
 text.append("Java Version: "
 +System.getProperty("java.version")+"\n");
 text.append("Applet init()\n");
 }
 public void start() {
 text.append("Applet started: "+ startCount++ +"\n");
 }
 public void stop() {
 text.append("Applet stopped.\n");
 }
 }

Figure 23-2. ShowApplet

836 | Chapter 23: Applets

After compiling the applet, we have to create an HTML page in which to embed it. The
following will do:

 <html><head><title>ShowApplet</title></head>
 <body>
 <applet code="ShowApplet" width="300" height="300">
 Your browser does not understand Java.</applet>
 </body>
 </html>

We’ll discuss the applet tag and other issues related to embedding applets in documents
in detail later in this chapter. For now, just save this in a file called showapplet.html. Load
the file with your favorite web browser and see what happens. (We’re assuming you have
installed Java on your computer by this point; you may have to enable Java in your
browser to see the applet if it is disabled by default.) If you have access to a web server,
you can use it. Otherwise, you can open the file locally using either the browser’s Open
File menu option or a URL such as:

 file:///Users/somedir/showapplet.html

The applet shows the version of Java running it and prints messages when its button is
pressed. If you have installed the latest Java Plug-in you should see “Java version: 1.7”
in the box, regardless of which browser you are using (including Microsoft Internet
Explorer). The applet prints messages when its start() and stop() methods are called,
along with a count. You can use this to experiment with different browsers and page-
layout configurations to see when your applet is reloaded or restarted. If your browser
fails to display the applet with the correct version of Java, don’t worry. Later in this
chapter, we’ll talk about how to convert the HTML to force the browser to use the Java
Plug-in explicitly.

The Applet Security Sandbox
Applets are quarantined within the browser by an applet SecurityManager. The Secur
ityManager is part of the web browser or appletviewer application. It is installed before
the browser loads any applets and implements the basic restrictions that let the user run
untrusted applets (loaded over the Internet) safely. Remember, there are no inherent
security restrictions on a standalone Java application. It is the browser that limits what
applets are allowed to do using a security policy.

Most browsers impose the following restrictions on untrusted applets:

• Untrusted applets can’t read or write files on the local host.
• Untrusted applets can open network connections (sockets) only to the server from

which they originated.
• Untrusted applets can’t start other processes on the local host.

The JApplet Class | 837

• Untrusted applets can’t have native methods.

The motivation for these restrictions should be fairly obvious: you clearly wouldn’t want
a program coming from some random Internet site to access your files or run arbitrary
programs. Although untrusted applets can’t directly read and write files on the client
side or talk to arbitrary hosts on the network, applets can work with servers to store
data and communicate. For example, an applet can use Java’s RMI facility to do pro‐
cessing on its server. An applet can communicate with other applets on the Net by proxy
through its server.

Trusted applets

We’ve been using the term untrusted applet, so it should come as no surprise that it is
also possible to have such a thing as a trusted applet. Applets become trusted through
the use of digital signatures, by signing the JAR file containing your applet code. Because
a signature identifies the applet’s origin unambiguously, the user can distinguish be‐
tween trusted applets (i.e., applets that come from a site or person you trust not to do
anything harmful) and run-of-the-mill untrusted applets. In browser environments that
support signing, trusted applets can be granted permission to “go outside” of the applet
security sandbox. Trusted applets can be allowed to do all of the things that standalone
Java applications can do: read and write files, open network connections to arbitrary
machines, and interact with the local operating system by starting processes. Trusted
applets still can’t have native methods, but including native methods in an applet would
destroy its portability anyway.

Because signed applets are now a fairly niche topic, we no longer cover them in this
chapter. If you need more details on them, please visit the “extras” page for this book,
where we post additional material not included in the book as well as the example source
code.

Getting Applet Resources
An applet must communicate with its browser or applet viewer. For example, it may
need configuration parameters from the HTML document in which it appears. An
applet may also need to load images, audio clips, and other items. It may also want to
ask the viewer about other applets on the same HTML page in order to communicate
with them. To get resources from the environment, applets use the AppletStub and
AppletContext interfaces, provided by the browser.

Applet parameters

An applet can get configuration parameters from <param> tags placed inside the <app
let> tag in the HTML document, as we’ll describe later. You can retrieve these param‐
eters using Applet’s getParameter() method. For example, the following code reads
parameters called imageName and sheep from its HTML page:

838 | Chapter 23: Applets

 String imageName = getParameter("imageName");
 try {
 int numberOfSheep = Integer.parseInt(getParameter("sheep"));
 } catch (NumberFormatException e) { /* use default */ }

There is an API that allows an applet to provide information (help) about the parameters
it accepts. The applet’s getParameterInfo() can return an array of string arrays, listing
and describing the applet’s parameters. However, it’s unclear that anyone uses this API.

Applet resources

An applet can find out where it lives using the getDocumentBase() and getCode
Base() methods. getDocumentBase() returns the base URL of the document in which
the applet appears; getCodeBase() returns the base URL of the Applet’s class files (these
two are often the same). An applet can use these methods to construct relative URLs
from which to load other resources from its server, such as images, sounds, and other
data. The getImage() method takes a URL and asks for an image from the viewer
environment. The image may be cached or loaded when later used. The getAudio
Clip() method, similarly, retrieves sound clips.

The following example uses getCodeBase() to construct a URL and load a properties
configuration file, located in the same remote directory on the web server as the applet’s
class file:

 Properties props = new Properties();
 try {
 URL url = new URL(getCodeBase(), "appletConfig.props");
 props.load(url.openStream());
 } catch (IOException e) { /* failed */ }

A better way to load resources is by calling the getResource() and getResourceAs
Stream() methods of the Class class, which search the applet’s JAR files (if any) as well
as its codebase, which is an extension of the classpath for applets. The following code
loads the same properties file in a more portable way:

 Properties props = new Properties();
 try {
 props.load(getClass().getResourceAsStream("appletConfig.props"));
 } catch (IOException e) { /* failed */ }

An applet can ask its viewer to retrieve an image by calling the getImage() method.
The location of the image to be retrieved is given as a URL, either absolute or fetched
from an applet’s resources:

 public class MyApplet extends javax.swing.JApplet {
 public void init() {
 try {
 // absolute URL
 URL monaURL =
 new URL("http://myserver/images/mona_lisa.gif");

The JApplet Class | 839

 Image monaImage = getImage(monaURL);
 // applet resource URL
 URL daffyURL =
 getClass().getResource("cartoons/images/daffy.gif");
 Image daffyDuckImage = getImage(daffyURL);
 }
 catch (MalformedURLException e) {
 // unintelligable url
 }
 }
 // ...
 }

Again, using getResource() is preferred; it looks for the image in the applet’s JAR file
(if there is one), before looking elsewhere in the applet’s classpath on the server. (We’ll
talk more later about how classes are located for applets.)

Driving the browser

The status line is a blurb of text that usually appears somewhere in the web browser’s
display, indicating a current activity. An applet can request that some text be placed in
the status line with the showStatus() method. (The browser isn’t required to do any‐
thing in response to this call, but most browsers will oblige you.)

An applet can also ask the browser to show a new document. To do this, the applet makes
a call to the showDocument(url) method of the AppletContext. You can get a reference
to the AppletContext with the applet’s getAppletContext() method. Calling showDo
cument(url) replaces the currently showing document, which means that your cur‐
rently running applet will be stopped.

Another version of showDocument() takes an additional String argument to tell the
browser where to display the new URL:

 getAppletContext().showDocument(url, name);

The name argument can be the name of an existing labeled HTML frame; the document
referenced by the URL is displayed in that frame. You can use this method to create an
applet that “drives” the browser to new locations dynamically but keeps itself active on
the screen in a separate frame. This is common for applets that act like navigation
controls or menus. If the named frame doesn’t exist, the browser creates a new top-level
window to hold it. Alternatively, name can have one of the following special values:
self

Show in the current frame

_parent

Show in the parent of our frame

_top

Show in outermost (top-level) frame

840 | Chapter 23: Applets

_blank

Show in a new top-level browser window

Both showStatus() and showDocument() requests may be ignored by a cold-hearted
viewer or web browser. Nothing in browser-land is ever certain.

Inter-applet communication

Although it’s not very common, applets that are embedded in documents loaded from
the same location on a website can use a simple mechanism to locate one another and
coordinate their activities on a page. Once an applet has a reference to another applet,
it can communicate with it just as with any other object, by invoking methods and
sending events. The getApplet() method of the applet context looks for an applet by
name:

 Applet clock = getAppletContext().getApplet("theClock");

Give an applet a name within your HTML document using the name attribute of the
<applet> tag. Alternatively, you can use the getApplets() method to enumerate all the
available applets in the pages.

The tricky thing with applet communications is that applets run inside the security
sandbox. An untrusted applet can “see” and communicate only with objects that were
loaded by the same class loader. Currently, the only reliable criterion for when applets
share a class loader is when they share a common base URL. For example, all the applets
contained in web pages loaded from the base URL of http://foo.bar.com/mypages/
should share a class loader and should be able to see each other. This includes documents
such as mypages/foo.html and mypages/bar.html, but not mypages/morestuff/foo.html.

When applets do share a class loader, other techniques are possible, too. As with any
other class, you can call static methods in applets by name. So you could use static
methods in one of your applets as a “registry” to coordinate your activities.

Applet persistence and navigation

One of the biggest shortcomings of the Applet API is the lack of a real context for
coordinating their activities during navigation across a multipage document or web
application. The Applet API simply wasn’t designed for this. Although an applet’s life
cycle is well defined in terms of its API, it is not well defined in terms of management
by the browser or scope of visibility. As we described in the previous section, applets
loaded from the same codebase can rendezvous at runtime using their name attributes.
But there are no guarantees about how long an applet will live—or whether it will be
stopped as opposed to being destroyed—once it is out of view. If you experiment with
our ShowApplet in various browsers and in the Java Plug-in (which we’ll discuss later),
you’ll see that, in some cases, the applet is stopped and restarted when the user leaves

The JApplet Class | 841

1. If you aren’t familiar with HTML or other markup languages, you may want to refer to HTML & XHTML:
The Definitive Guide by Chuck Musciano and Bill Kennedy (O’Reilly) for a complete reference on HTML
and structured web documents.

the page, but more often the applet is reinitialized from scratch. This makes designing
multipage applications that work in all browsers difficult.

One solution has been to use static methods as a shared “registry,” as mentioned earlier.
However, the details governing how classes loaded by applets are managed are even less
well-defined than the management of the applets themselves. In Java 1.4, a pair of
methods was added to the AppletContext to support short-term applet persistence:
setStream() and getStream(). With these methods, an applet can ask the context to
save a stream of byte data by a key value and return it later. The notion of providing the
state to the context as a stream is a little odd, but easy enough to accommodate. Here is
an example:

 getAppletContext.setStream("myStream",
 new ByteArrayInputStream("This is some test data...".getBytes()));

Later, the stream data can be retrieved:
 InputStream in = getAppletContext.getStream("myStream");

Currently, the data is retained only as long as the browser is running. If you need more
complex state and navigation capabilities, you might consider using a signed applet to
write to a file or taking advantage of the Java Web Start API to install your application
locally.

The <applet> Tag
Applets are embedded in HTML documents with the <applet> tag. The <applet> tag
resembles the HTML image tag. It contains attributes that identify the applet
to be displayed and, optionally, give the web browser hints about how it should be
shown.1

The standard image tag sizing and alignment attributes, such as height and width, can
be used inside the applet tag. However, unlike images, applets have both an opening
<applet> and a closing </applet> tag. Sandwiched between these can be any number
of <param> tags that contain configuration data to be passed to the applet:

 <applet attributeattribute ... >
 <param parameter >
 <param parameter >
 ...
 </applet>

842 | Chapter 23: Applets

Attributes
Attributes are name/value pairs that are interpreted by a web browser or applet viewer.
Attributes of the <applet> tag specify general features that apply to any applet, such as
size and alignment. The definition of the <applet> tag lists a fixed set of recognized
attributes; specifying an incorrect or nonexistent attribute should be considered an
HTML error.

Three attributes are required in the <applet> tag. Two of these attributes, width and
height, specify the space that the applet occupies on the screen. The third required
attribute must be either code or object; you must supply one of these attributes, and
you can’t specify both. The code attribute specifies the class file from which the applet
is loaded; the object attribute specifies a serialized representation of an applet. Most
often, you’ll use the code attribute.

The following is an HTML fragment for a simple clock applet that takes no parameters
and requires no special HTML layout:

 <applet code="AnalogClock" width="100" height="100"></applet>

The HTML file that contains this <applet> tag must be stored in the same directory as
the AnalogClock.class class file. The applet tag is not sensitive to spacing in the HTML,
so the previous tag could be also be formatted a little more readably like so:

 <applet
 code="AnalogClock"
 width="100"
 height="100">
 </applet>

Parameters
Parameters are analogous to command-line arguments; they provide a way to pass in‐
formation to an applet. Each <param> tag contains a name and a value that are passed
as string values to the applet:

 <param name = "parameter_name" value = "parameter_value">

Parameters provide a means of embedding application-specific data and configuration
information within an HTML document. Our AnalogClock applet, for example, might
accept a parameter that selects between local and universal time:

 <applet code="AnalogClock" width="100" height="100">
 <param name="zone" value="GMT">
 </applet>

Presumably, this AnalogClock applet is designed to look for a parameter named zone
with a possible value of GMT.

The JApplet Class | 843

Parameter names and values should be quoted and can contain spaces and other white‐
space characters. The parameters a given applet expects are, of course, determined by
the developer of that applet. There is no standard set of parameter names or values; it’s
up to the applet to interpret the parameter name/value pairs that are passed to it. Any
number of parameters can be specified, and the applet may choose to use or ignore them
as it sees fit.

¿Habla Applet?
Web browsers are supposed to ignore tags they don’t understand; if the web browser
doesn’t know about the <applet> or <param> tags, we would expect them to disappear,
and any HTML between the <applet> and </applet> tags to appear normally. By con‐
vention, Java-enabled web browsers ignore any extra HTML between the <applet> and
</applet> tags. Combined, this means we can place some alternative HTML inside the
<applet> tag, which is displayed only by web browsers that can’t run the applet.

For our AnalogClock example, we could display a small text explanation and an image
of the clock applet as a teaser:

 <applet code="AnalogClock" width="100" height="100">
 <param name="zone" value="GMT">
 If you see this, you don't have a Java-enabled Web
 browser. Here's a picture of what you are missing.

 </applet>

The Complete <applet> Tag
We’ll now spell out the complete syntax for the <applet> tag:

 <applet
 code = class_name

or:
 object = serialized_applet_name

 width = pixels_high
 height = pixels_wide

 [codebase = location_URL]
 [archive = comma_separated_list_of_archive_files]
 [name = applet_instance_name]
 [alt = alternate_text]
 [align = style]
 [vspace = vertical pad pixels]
 [hspace = horizontal pad pixels]
 >
 [<param name = parameter_name value = parameter_value>]
 [<param ...]

844 | Chapter 23: Applets

 [HTML code for non-Java-aware browsers]
 </applet>

Either the code attribute or the object attribute must be present to specify the applet
to run. The code attribute specifies the applet’s class file; you’ll see this most frequently.
The object attribute specifies a serialized representation of an applet. When you use
the object attribute to load an applet, the applet’s init() method is not called. However,
the serialized applet’s start() method is called.

The width, height, align, vspace, and hspace attributes determine the preferred size,
alignment, and padding, respectively. The width and height attributes are required.

The codebase attribute specifies the base URL to be searched for the applet’s class files.
If this attribute isn’t present, the browser looks in the same location as the HTML file.
The archive attribute specifies a list of JAR or ZIP files in which the applet’s class files
are located. To put two or more files in the list, separate the filenames with commas; for
example, the following attribute tells the browser to load and search three archives for
the applet’s classes:

 archive="Part1.jar,Part2.jar,Utilities.jar"

The archive files listed by the archive tag are loaded from the codebase URL. When
searching for classes, a browser checks the archives before searching any other locations
on the server.

The alt attribute specifies alternate text that is displayed by browsers that understand
the <applet> tag and its attributes but have Java disabled or don’t run applets. This
attribute can also describe the applet because in this case, any alternate HTML between
<applet> and </applet> is, by convention, ignored by Java-enabled browsers.

The name attribute specifies an instance name for the executing applet. This is a name
specified as a unique label for each copy of an applet on a particular HTML page. For
example, if we include our clock twice on the same page (using two applet tags), we
should give each instance a unique name to differentiate them:

 <applet code="AnalogClock" name="bigClock" width="300" height="300">
 </applet>
 <applet code="AnalogClock" name="smallClock" width="50" height="50">
 </applet>

Applets can use instance names to recognize and communicate with other applets on
the same page. We could, for instance, create a “clock setter” applet that knows how to
set the time on an AnalogClock applet and pass it the instance name of a particular
target clock on this page as a parameter. This might look something like:

 <applet code="ClockSetter">
 <param name="clockToSet" value="bigClock">
 </applet>

The JApplet Class | 845

Loading Class Files
The code attribute of the <applet> tag should specify the name of an applet. This is
either a simple class name or a package path and class name. For now, let’s look at simple
class names; we’ll discuss packages in a moment. By default, the Java runtime system
looks for the class file in the same location as the HTML document that contains it. This
location is known as the base URL for the document.

Consider an HTML document, clock.html, that contains our clock applet example:
 <applet code="AnalogClock" width="100" height="100"></applet>

Let’s say we retrieve the document at the following URL:
 http://www.time.ch/documents/clock.html

Java tries to retrieve the applet class file from the same base location:
 http://www.time.ch/documents/AnalogClock.class

The codebase attribute of the <applet> tag specifies an alternative base URL for the
class file search. Let’s say our HTML document now specifies codebase, as in the fol‐
lowing example:

 <applet
 codebase="http://www.joes.ch/stuff/"
 code="AnalogClock"
 width="100"
 height="100">
 </applet>

Java now looks for the applet class file at:
 http://www.joes.ch/stuff/AnalogClock.class

Packages
For “loose” applet class files that are not packaged into archives, Java uses the standard
package name to directory path mapping to locate files on the server. The only difference
is that the requests are not local file lookups, but instead are requests to the web server
at the applet’s codebase URL. Before a class file is retrieved from a server, its package
name component is translated by the client into a relative pathname under the applet’s
codebase.

Let’s suppose that our AnalogClock has been placed into a package called time.clock
(a subordinate package for clock-related classes, within a package for time-related
classes). The fully qualified name of our class is time.clock.AnalogClock. Our simple
<applet> tag would now look like:

 <applet code="time.clock.AnalogClock" width="100" height="100"></applet>

Let’s say the clock.html document is once again retrieved from:

846 | Chapter 23: Applets

 http://www.time.ch/documents/clock.html

Java now looks for the class file in the following location:
 http://www.time.ch/documents/time/clock/AnalogClock.class

The same is true when specifying an alternative codebase:
 <applet
 codebase="http://www.joes.ch/stuff/"
 code="time.clock.AnalogClock"
 width="100"
 height="100">
 </applet>

Java now tries to find the class in the corresponding path under this base URL:
 http://www.joes.ch/stuff/time/clock/AnalogClock.class

appletviewer
The Java SDK comes with an applet viewer program, aptly called appletviewer. To use
appletviewer, specify the URL of the document on the command line. For example, to
view our (still only theoretical) AnalogClock at the URL shown earlier, use the following
command:

 % appletviewer http://www.time.ch/documents/clock.html

appletviewer retrieves all applets in the specified document and displays each one in a
separate window. appletviewer isn’t a web browser; it doesn’t attempt to display HTML.
It was primarily useful before the Java Plug-in as a way to test an applet in a specific
version of the Java runtime.

Java Web Start
The Java Web Start API is an alternative to using applets. Java Web Start uses the Java
Network Launching Protocol (JNLP) to transparently download and install Java appli‐
cations locally. The only thing the user has to do is to click on the install link on a web
page. The installed applications can then be launched just like any installed application,
by clicking on an icon on the desktop or through the Start menu, but they continue to
be managed by the Java security policy unless otherwise authorized by the user. Web
Start applications also automatically check for upgrades and update themselves over the
Net. Java Web Start is a form of zero administration client installation, which implies
that the client doesn’t have to do any work to install or maintain the application. JNLP
applications may be signed (allowing the user to grant them fine-grained privileges), or
unsigned. But even unsigned JNLP applications can take advantage of standard APIs
that prompt the user for permission to perform basic operations, such as opening files
and printing.

Java Web Start | 847

Packaging your application to use JNLP is relatively easy, but we won’t get into it here.
The process mainly involves creating a JNLP deployment file that lists your JARs and
specifies any special permission they require. You must then include an appropriate link
in your web page that uses Web Start. The first time a user tries to install a JNLP appli‐
cation, he will have to install the Java Plug-in. Thereafter, the Java Web Start component
manages all JNLP installs. See Oracle’s website for more information.

Conclusion
In this chapter, we covered some of the events that led to the current, fractured world
of Java in the web browser and set the scene as it is. The Java Plug-in is currently your
only real option for running Java in the browser. New technologies such as Java Web
Start provide alternative directions for client-side deployment that may also be appeal‐
ing. Finally, there are a variety of third-party products that produce clickable installers
for Java applications that you may wish to consider.

848 | Chapter 23: Applets

CHAPTER 24

XML

Every now and then, an idea comes along that in retrospect seems just so simple and
obvious that everyone wonders why it hadn’t been seen all along. Often when that hap‐
pens, it turns out that the idea isn’t really all that new after all. The Java revolution began
by drawing on ideas from generations of programming languages that came before it.
XML—the Extensible Markup Language—does for content what Java did for program‐
ming: draws on some old ideas and uses them to provide a portable way to describe
data.

XML is a simple, common format for representing structured information as text. The
concept of XML follows the success of HTML as a universal document presentation
format and generalizes it to handle any kind of data. In the process, XML has not only
recast HTML, but has transformed the way many businesses think about their infor‐
mation. In the context of a world driven more and more by documents and data ex‐
change, XML is an important foundation technology.

The Butler Did It
This chapter is one of the longest in this book and deals with many APIs and concepts.
Part of the reason for this is that there has been a great deal of evolution of XML tools
over time in order to support working with XML at different levels of abstraction. We’re
going to introduce you to the APIs that we think remain important and useful in this
chapter and to some extent we’ll do this by starting at the bottom level and working our
way up. First we’ll cover basic XML concepts and low-level APIs such as the event-driven
SAX (Simple API for Java) and model-building DOM (Document Object Model). We’ll
also discuss related technologies such as XML Schema validation, XPath queries, and
XSL (Extensible Style Sheet) transformation. Later in this chapter, we’ll discuss the
higher-level JAXB, Java XML Binding API, for mapping plain Java objects directly to
XML and back.

849

This means that for some of you, the most useful material may be toward the end of this
chapter where we cover the high-level tools. So we want to reassure you that things get
more interesting as the chapter progresses. When we reach the section on JAXB we’ll
see that we can take plain old Java objects (POJOs) and write them to XML by adding
(in the simplest case) a one-line annotation. The following snippet shows a Java Per
son and Address class and the corresponding XML that they would map to by default.

@XmlRootElement
public class Person {
 public String name;
 public Address address;
 public int age;
}
public class Address {
 public String city, street;
 public int number, zip;
}

<person>
 <name>Pat Niemeyer</name>
 <address>
 <city>St. Louis</city>
 <street>Java St.</street>
 <number>1234</number>
 <zip>54321</zip>
 </address>
 <age>42</age>
</person>

But before we go there, let’s take a step back and talk about the motivation and “rules”
of XML documents and some of the ways we can parse and generate them.

A Bit of Background
XML and HTML are called markup languages because of the way they add structure to
plain-text documents—by surrounding parts of the text with tags that indicate structure
or meaning, much as someone with a pen might highlight a sentence and add a note.
While HTML predefines a set of tags and their structure, XML is a blank slate in which
the author gets to define the tags, the rules, and their meanings.

Both XML and HTML owe their lineage to Standard Generalized Markup Language
(SGML)—the mother of all markup languages. SGML has been used in the publishing
industry for decades (including at O’Reilly). But it wasn’t until the Web captured the
world that it came into the mainstream through HTML. HTML started as a very small
application of SGML, and if HTML has done anything at all, it has proven that simplicity
reigns.

850 | Chapter 24: XML

1. To read Berners-Lee’s original proposal to CERN, go to http://www.w3.org/History/1989/proposal.html.

Text Versus Binary
When Tim Berners-Lee began postulating the Web back at CERN in the late 1980s, he
wanted to organize project information using hypertext with links embedded in plain
text.1 When the Web needed a protocol, HTTP—a simple, text-based client-server
protocol—was invented. So, what exactly is so enchanting about the idea of plain text?
Why, for example, didn’t Tim turn to the Microsoft Word format as the basis for web
documents? Surely a binary, non-human-readable format and a similarly machine-
oriented protocol would be more efficient? Since the Web’s inception, there have now
been literally trillions of HTTP transactions. Was it really a good idea for them to use
(English) words like “GET” and “POST” as part of the protocol?

The answer, as we’ve all seen, is yes! Whatever humans can read and undertstand, human
developers can work with more easily. There is a time and place for a high level of
optimization (and obscurity), but when the goal is universal acceptance and cross-
platform portability, simplicity and transparency are paramount. This is the first fun‐
damental proposition of XML: simple and nominally human-readable data.

A Universal Parser
Using text to exchange data is not exactly a new idea, either, but historically, for every
new document format that came along, a new parser would have to be written. A parser
is an application that reads a document and understands its formatting conventions,
usually enforcing some rules about the content. For example, the Java Properties class
has a parser for the standard properties file format (Chapter 11). In our simple spread‐
sheet in Chapter 18, we wrote a parser capable of understanding basic mathematical
expressions. As we’ve seen, depending on complexity, parsing can be quite tricky.

With XML, we can represent data without having to write this kind of custom parser.
This isn’t to say that it’s reasonable to use XML for everything (e.g., typing math ex‐
pressions into our spreadsheet), but for the common types of information that we ex‐
change on the Net, we shouldn’t have to write parsers that deal with basic syntax and
string manipulation. In conjunction with document-verifying components (Document
Type Definitions [DTDs] or XML Schema), much of the complex error checking is also
done automatically. This is the second fundamental proposition of XML: standardized
parsing and validation.

The State of XML
The APIs we’ll discuss in this chapter are powerful and popular. They are being used
around the world to build enterprise-scale systems every day. In recent years, JAXB Java
to XML binding has been vastly streamlined and simplified (primarily through the use

A Bit of Background | 851

of Java annotations to replace configuration files and support a “code first” methodol‐
ogy). However, as with any popular technology, there has been a recognition of its
limitations and some complexity has crept into what began as simple concepts. In the
area of browser-based applications, some have turned to JavaScript Object Notation
(JSON) as an even lighter-weight approach that maps natively to JavaScript, especially
for transient communications between client and server. However, XML tools are still
widely used in this area as well. Google’s Protocol Buffers-encoding scheme is another
example of a system-to-system communication format that has been used in place of
XML; in this case, where very high performance trumps flexibility. But XML remains
the most powerful general format for document and data exchange with the widest array
of tools support.

The XML APIs
All the basic APIs for working with XML are now bundled with the standard release of
Java. This included the javax.xml standard extension packages for working with Simple
API for XML (SAX), Document Object Model (DOM), XML Binding JAXB, and
Extensible Stylesheet Language (XSL) transforms, as well as APIs such as XPath, and
XInclude. If you are using an older version of Java, you can still use many of these tools
but you will have to download these packages separately.

XML and Web Browsers
All modern web browsers support XML explicitly, both in terms of simple rendering of
XML content and also client-side transformation of XML into HTML for display. If you
load an XML document in you browser it will generally be displayed as a tree with
controls to allow you to collapse and expand nodes (like an outline). Displaying XML
in this way is used mainly for debugging, but JavaScript can also support client-side XSL
transformation directly in the browser. XSL is a language for transforming XML into
other documents; we’ll talk about it later in this chapter.

When viewed in older browsers or in contexts that do not explicitly format XML for
viewing, the browser will generally simply display the text of the document with all the
tags (structural information) stripped off. This is the prescribed behavior for working
with unknown XML markup in a viewing environment. Remember that you can always
use the “view source” option to display the text of a file in your browser if you want to
see the original source.

XML Basics
The basic syntax of XML is extremely simple. If you’ve worked with HTML, you’re
already halfway there. As with HTML, XML represents information as text using tags
to add structure. A tag begins with a name sandwiched between less than (<) and greater

852 | Chapter 24: XML

than (>) characters. Unlike HTML, XML tags must always be balanced; in other words,
an opening tag must always be followed by a closing tag. A closing tag looks just like
the opening tag but starts with a less than sign and a slash (</). An opening tag, closing
tag, and any content in between are collectively referred to as an element of the XML
document. Elements can contain other elements, but they must be properly nested (all
tags started within an element must be closed before the element itself is closed). Ele‐
ments can also contain plain text or a mixture of elements and text (called mixed con‐
tent). Comments are enclosed between <!— and —> markers. Here are a few examples:

<!-- Simple -->
<Sentence>This is text.</Sentence>

<!-- Element -->
<Paragraph><Sentence>This is text.</Sentence></Paragraph>

<!-- Mixed -->
<Paragraph>
 <Sentence>This <verb>is</verb> text.</Sentence>
</Paragraph>

<!-- Empty -->
<PageBreak></PageBreak>

An empty tag can be written more compactly in a special form using a single tag ending
with a slash and a greater-than sign (/>):

<PageBreak/>

Attributes
An XML element can contain attributes, which are simple name-value pairs supplied
inside the start tag.

<Document type="LEGAL"id="42">...</Document>
<Image name="truffle.jpg"/>

The attribute value must always be enclosed in quotes. You can use double (") or single
(') quotes. Single quotes are useful if the value contains double quotes.

Attributes are intended to be used for simple, unstructured properties or compact iden‐
tifiers associated with the element data. It is always possible to make an attribute into a
child element, so, strictly speaking, there is no real need for attributes. But they often
make the XML easier to read and more logical. In the case of the Document element in
our preceding snippet, the attributes type and ID represent metadata about the docu‐
ment. We might expect that a Java class representing the Document would have an enu‐
meration of document types such as LEGAL. In the case of the Image element, the attribute
is simply a more compact way of including the filename. As a rule, attributes should be
compact, with little significant internal structure (URLs push the envelope); by contrast,
child elements can have arbitrary complexity.

XML Basics | 853

The id attribute in the previous example may have special significance when used with
a corresponding idref attribute. Together, these standard attributes are used with
document validation to enforce referential integrity in documents. When validated, an
id attribute value must be unique within the document and an idref attribute value
must refer to a valid id within the document.

XML Documents
An XML document begins with a header like the following and one root element:

<?xml version="1.0" encoding="UTF-8"?>
<MyDocument>
</MyDocument>

The header identifies the version of XML and the character encoding used. The root
element is simply the top of the element hierarchy, which can be considered a tree. If
you omit this header or have XML text without a single root element (as in our earlier
simple examples), technically what you have is called an XML fragment.

Encoding
The default encoding for an XML document is UTF-8, the ASCII-friendly 8-bit Unicode
encoding. This encoding preserves ASCII values, so English text is unaltered by it. It
also allows Unicode values to be stored in a reasonably efficient way. An XML document
may specify another encoding using the encoding attribute of the XML header.

Within an XML document, certain characters are necessarily sacrosanct: for example,
the < and > characters that indicate element tags. When you need to include these in
your text, you must encode them. XML provides an escape mechanism called “entities”
that allows for encoding special structures. XML has five predefined entities, as shown
in Table 24-1.

Table 24-1. XML entities
Entity Encodes

& & (ampersand)

< < (less than)

> > (greater than)

" " (quotation mark)

' ' (apostrophe)

An alternative to encoding text in this way is to use a special “unparsed” section of text
called a character data (CDATA) section. A CDATA section starts with the cryptic string
<![CDATA[and ends with]]>, like this:

<![CDATA[Learning Java, O'Reilly & Associates]]>

854 | Chapter 24: XML

The CDATA section looks a little like a comment, but the data is still part of the docu‐
ment, just opaque to the parser.

There is one more alternative, which is to use a special <include> directive to include
the contents of a URL or file either as pre-escaped text or optionally parsed as XML.
XML includes are very convenient, and we’ll talk about them later in this chapter.

Namespaces
You’ve probably seen that HTML has a <body> tag that is used to structure web pages.
Suppose for a moment that we are writing XML for a funeral home that also uses the
tag <body> for some other, more macabre, purpose. This could be a problem if we want
to mix HTML with our mortuary information.

If you consider HTML and the funeral home tags to be languages in this case, the
elements (tag names) used in a document are really the vocabulary of those languages.
An XML namespace is a way of saying whose dictionary you are using for a given ele‐
ment, allowing us to mix them freely. (Later, we’ll talk about XML Schemas, which
enforce the grammar and syntax of the language.)

A namespace is specified with the xmlns attribute, whose value is a Uniform Resource
Identifier (URI) that uniquely defines the set (and usually the meaning) of tags from
that namespace:

<element xmlns="namespaceURI">

Recall from Chapter 14 that a URI is not necessarily a URL. URIs are more general than
URLs. In practical terms, a URI is to be treated as a unique string. Often, the URI is in
fact also a URL for a document describing the namespace, but when true it is only by
convention.

An xmlns namespace attribute can be applied to an element and affects all its (nested)
children; this is called a default namespace for the element:

<body xmlns="http://funeral-procedures.org/">

Often it is desirable to mix and match namespaces on a tag-by-tag basis. To do this, we
can use the special xmlns attribute to define a special identifier for the namespace and
use that identifier as a prefix on the tags in question. For example:

<funeral xmlns:fun="http://funeral-procedures.org/">
 <html><head></head><body>
 <fun:body>Corpse #42</fun:body>
</funeral>

In the preceding snippet of XML, we’ve qualified the body tag with the prefix “fun:”,
which we defined in the <funeral> tag. In this case, we should qualify the root tag as
well, reflexively:

<fun:funeral xmlns:fun="http://funeral-procedures.org/">

XML Basics | 855

The XML parser factories supplied with Java have a switch to specify whether you want
the parser to interpret namespaces. This switch defaults to off for historical reasons.

parserFactory.setNamespaceAware(true);

We’ll talk more about parsing in the sections on SAX and DOM later in this chapter.

Validation
A document that conforms to the basic rules of XML with proper encoding and balanced
tags is called a well-formed document. Just because a document is syntactically correct,
however, doesn’t mean that it makes sense. Two related sets of tools, DTDs and XML
Schemas, define ways to provide a grammar for your XML elements. They allow you to
create syntactic rules, such as “a City element can appear only once inside an Address
element and comes before a State element.” XML Schema goes further to provide a
flexible language for describing the validity of data content of the tags, including both
simple and compound data types made of numbers and strings.

A document that is checked against a DTD or XML Schema description and follows the
rules is called a valid document. A document can be well formed without being valid,
but not vice versa.

HTML to XHTML
To speak very loosely, we could say that the most popular and widely used form of XML
in the world today is HTML. The terminology is loose because HTML is not really well-
formed XML. HTML tags violate XML’s rule forbidding unbalanced elements; the com‐
mon <p> tag is typically used without a closing tag, for example. HTML attributes also
don’t require quotes. XML tags are also case-sensitive; <P> and <p> are two different
tags in XML. We could generously say that HTML is “forgiving” with respect to details
like this, but as a developer, you know that sloppy syntax results in ambiguity. XHTML
is an alternate, strict XML version of HTML that is clear and unambiguous. This form
of HTML works in modern browsers. Fortunately, if you want to switch, you don’t have
to manually clean up all your HTML documents; Tidy is an open source program that
automatically converts HTML to XHTML, validates it, and corrects common mistakes.

SAX
SAX is a low-level, event-style API for parsing XML documents. SAX originated in Java,
but has been implemented in many languages. We’ll begin our discussion of the Java
XML APIs here at this lower level, and work our way up to higher-level (and often more
convenient) APIs as we go.

856 | Chapter 24: XML

The SAX API
To use SAX, we’ll draw on classes from the org.xml.sax package, standardized by the
W3C. This package holds interfaces common to all implementations of SAX. To perform
the actual parsing, we’ll need the javax.xml.parsers package, which is the standard
Java package for accessing XML parsers. The java.xml.parsers package is part of the
Java API for XML Processing (JAXP), which allows different parser implementations
to be used with Java in a portable way.

To read an XML document with SAX, we first register an org.xml.sax.ContentHan
dler class with the parser. The ContentHandler has methods that are called in response
to parts of the document. For example, the ContentHandler’s startElement() method
is called when an opening tag is encountered, and the endElement() method is called
when the tag is closed. Attributes are provided with the startElement() call. Text con‐
tent of elements is passed through a separate method called characters(). The char
acters() method may be invoked repeatedly to supply more text as it is read, but it
often gets the whole string in one bite. The following are the method signatures of these
methods of the ContentHandler class.

public void startElement(
 String namespace, String localname, String qname, Attributes atts);
public void characters(
 char[] ch, int start, int len);
public void endElement(
 String namespace, String localname, String qname);

The qname parameter is the qualified name of the element: this is the element name,
prefixed with any namespace that may be applied. When you’re working with name‐
spaces, the namespace and localname parameters are also supplied, providing the
namespace and unqualified element name separately.

The ContentHandler interface also contains methods called in response to the start and
end of the document, startDocument() and endDocument(), as well as those for han‐
dling namespace mapping, special XML instructions, and whitespace that is not part of
the text content and may optionally be ignored. We’ll confine ourselves to the three
previous methods for our examples. As with many other Java interfaces, a simple im‐
plementation, org.xml.sax.helpers.DefaultHandler, is provided for us that allows
us to override only the methods in which we’re interested.

JAXP

To perform the parsing, we’ll need to get a parser from the javax.xml.parsers package.
JAXP abstracts the process of getting a parser through a factory pattern, allowing dif‐
ferent parser implementations to be plugged into the Java platform. The following snip‐
pet constructs a SAXParser object and then gets an XMLReader used to parse a file:

SAX | 857

 import javax.xml.parsers.*;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();
 XMLReader reader = saxParser.getXMLReader();

 reader.setContentHandler(myContentHandler);
 reader.parse("myfile.xml");

You might expect the SAXParser to have the parse method. The XMLReader interme‐
diary was added to support changes in the SAX API between 1.0 and 2.0. Later, we’ll
discuss some options that can be set to govern how XML parsers operate. These options
are normally set through methods on the parser factory (e.g., SAXParserFactory) and
not the parser itself. This is because the factory may wish to use different implementa‐
tions to support different required features.

SAX’s strengths and weaknesses

The primary motivation for using SAX instead of the higher-level APIs that we’ll discuss
later is that it is lightweight and event-driven. SAX doesn’t require maintaining the entire
document in memory. So if, for example, you need to grab the text of just a few elements
from a document, or if you need to extract elements from a large stream of XML, you
can do so efficiently with SAX. The event-driven nature of SAX also allows you to take
actions as the beginning and end tags are parsed. This can be useful for directly ma‐
nipulating your own models without first going through another representation. The
primary weakness of SAX is that you are operating on a tag-by-tag level with no help
from the parser to maintain context. We’ll talk about how to overcome this limitation
next. Later, we’ll also talk about the new XPath API, which combines much of the ben‐
efits of both SAX and DOM in a form that is easier to use.

Building a Model Using SAX
The ContentHandler mechanism for receiving SAX events is very simple. It should be
easy to see how one could use it to capture the value or attributes of a single element in
a document. What may be harder to see is how one could use SAX to populate a real
Java object model. Creating or pushing data into Java objects from XML is such a com‐
mon activity that it’s worth considering how the SAX API applies to this problem. The
following example, SAXModelBuilder, does just this, reading an XML description and
creating Java objects on command. This example is a bit unusual in that we resort to
using some reflection to do the job, but this is a case where we’re trying to interact with
Java objects dynamically.

In this section, we’ll start by creating some XML along with corresponding Java classes
that serve as the model for this XML. The focus of the example code here is to create
the generic model builder that uses SAX to read the XML and populate the model classes
with their data. The idea is that the developer is creating only XML and model classes—
no custom code—to do the parsing. You might use code like this to read configuration

858 | Chapter 24: XML

files for an application or to implement a custom XML “language” for describing work‐
flows. The advantage is that there is no real parsing code in the application at all, only
in the generic builder tool. Finally, late in this chapter when we discuss the more pow‐
erful JAXB APIs, we’ll reuse the Java object model from this example simply by adding
a few annotations.

Creating the XML file

The first thing we’ll need is a nice XML document to parse. Luckily, it’s inventory time
at the zoo! The following document, zooinventory.xml, describes two of the zoo’s resi‐
dents, including some vital information about their diets:

<?xml version="1.0" encoding="UTF-8"?>
 <inventory>
 <animal animalClass="mammal">
 <name>Song Fang</name>
 <species>Giant Panda</species>
 <habitat>China</habitat>
 <food>Bamboo</food>
 <temperament>Friendly</temperament>
 <weight>45.0</weight>
 </animal>
 <animal animalClass="mammal">
 <name>Cocoa</name>
 <species>Gorilla</species>
 <habitat>Central Africa</habitat>
 <foodRecipe>
 <name>Gorilla Chow</name>
 <ingredient>fruit</ingredient>
 <ingredient>shoots</ingredient>
 <ingredient>leaves</ingredient>
 </foodRecipe>
 <temperament>Know-it-all</temperament>
 <weight>45.0</weight>
 </animal>
 </inventory>

The document is fairly simple. The root element, <inventory>, contains two <ani
mal> elements as children. <animal> contains several simple text elements for things
like name, species, and habitat. It also contains either a simple <food> element or a
complex <foodRecipe> element. Finally, note that the <animal> element has one at‐
tribute, animalClass, that describes the zoological classification of the creature (e.g.,
Mammal, Bird, Fish, etc.). This gives us a representative set of XML features to play with
in our examples.

The model

Now let’s make a Java object model for our zoo inventory. This part is very mechanical—
we simply create a class for each of the complex element types in our XML; anything

SAX | 859

other than a simple string or number. Best practices would probably be to use the stan‐
dard JavaBeans property design pattern here—that is, to use a private field (instance
variable) plus a pair of get and set methods for each property. However, because these
classes are just simple data holders and we want to keep our example small, we’re going
to opt to use public fields. Everything we’re going to do in this example and, much more
importantly, everything we’re going to do when we reuse this model in the later JAXB
binding example, can be made to work with either field or JavaBeans-style method-
based properties equivalently. In this example, it would just be a matter of how we set
the values and later in the JAXB case, it would be a matter of where we put the anno‐
tations. So here are the classes:

 public class Inventory {
 public List<Animal> animal = new ArrayList<>();
 }

 public class Animal
 {
 public static enum AnimalClass { mammal, reptile, bird, fish, amphibian,
 invertebrate }

 public AnimalClass animalClass;
 public String name, species, habitat, food, temperament;
 public Double weight;
 public FoodRecipe foodRecipe;

 public String toString() { return name +"("+animalClass+",
 "+species+")"; }
 }

 public class FoodRecipe
 {
 public String name;
 public List<String> ingredient = new ArrayList<String>();

 public String toString() { return name + ": "+ ingredient.toString(); }
 }

As you can see, for the cases where we need to represent a sequence of elements (e.g.,
animal in inventory), we have used a List collection. Also note that the property that
will serve to hold our animalClass attribute (e.g., mammal) is represented as an enum
type. We’ve also throw in simple toString() methods for later use. One more thing—
we’ve chosen to name our collections in the singular form here (e.g., “animal,” as opposed
to “animals”) just because it is convenient. We’ll talk about mapping names more in the
JAXB example.

The SAXModelBuilder

Let’s get down to business and write our builder tool. Now we could do this by using
the SAX API in combination with some “hardcoded” knowledge about the incoming

860 | Chapter 24: XML

tags and the classes we want to output (imagine a whole bunch of switches or if/then
statements); however, we’re going do better than that and make a more generic model
builder that maps our XML to classes by name. The SAXModelBuilder that we create in
this section receives SAX events from parsing an XML file and dynamically constructs
objects or sets properties corresponding to the names of the element tags. Our model
builder is small, but it handles the most common structures: nested elements and ele‐
ments with simple text or numeric content. We treat attributes as equivalent to element
data as far as our model classes go and we support three basic types: String, Double,
and Enum.

Here is the code:
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.util.*;
import java.lang.reflect.*;

public class SAXModelBuilder extends DefaultHandler
{
 Stack<Object> stack = new Stack<>();

 public void startElement(String namespace, String localname, String qname,
 Attributes atts) throws SAXException
 {
 // Construct the new element and set any attributes on it
 Object element;
 try {
 String className = Character.toUpperCase(qname.charAt(0)) +
 qname.substring(1);
 element = Class.forName(className).newInstance();
 } catch (Exception e) {
 element = new StringBuffer();
 }

 for(int i=0; i<atts.getLength(); i++) {
 try {
 setProperty(atts.getQName(i), element, atts.getValue(i));
 } catch (Exception e) { throw new SAXException("Error: ", e); }
 }

 stack.push(element);
 }

 public void endElement(String namespace, String localname, String qname)
 throws SAXException
 {
 // Add the element to its parent
 if (stack.size() > 1) {
 Object element = stack.pop();
 try {
 setProperty(qname, stack.peek(), element);

SAX | 861

 } catch (Exception e) { throw new SAXException("Error: ", e); }
 }
 }

 public void characters(char[] ch, int start, int len)
 {
 // Receive element content text
 String text = new String(ch, start, len);
 if (text.trim().length() == 0) { return; }
 ((StringBuffer)stack.peek()).append(text);
 }

 void setProperty(String name, Object target, Object value)
 throws SAXException, IllegalAccessException, NoSuchFieldException
 {
 Field field = target.getClass().getField(name);

 // Convert values to field type
 if (value instanceof StringBuffer) {
 value = value.toString();
 }
 if (field.getType() == Double.class) {
 value = Double.parseDouble(value.toString());
 }
 if (Enum.class.isAssignableFrom(field.getType())) {
 value = Enum.valueOf((Class<Enum>)field.getType(),
 value.toString());
 }

 // Apply to field
 if (field.getType() == value.getClass()) {
 field.set(target, value);
 } else
 if (Collection.class.isAssignableFrom(field.getType())) {
 Collection collection = (Collection)field.get(target);
 collection.add(value);
 } else {
 throw new RuntimeException("Unable to set property...");
 }
 }

 public Object getModel() { return stack.pop(); }
}

The code may be a little hard to digest at first: we are using reflection to construct the
objects and set the properties on the fields. But the gist of it is really just that the three
methods, startElement(), characters(), and endElement()‚ are called in response to
the tags of the input and we store the data as we receive it. Let’s take a look.

The SAXModelBuilder extends DefaultHandler to help us implement the Con
tentHandler interface. Because SAX events follow the hierarchical structure of the XML

862 | Chapter 24: XML

document, we use a simple stack to keep track of which object we are currently parsing.
At the start of each element, the model builder attempts to create an instance of a class
with the same name (uppercase) as the element and push it onto the top of the stack.
Each nested opening tag creates a new object on the stack until we encounter a closing
tag. Upon reaching an end of an element, we pop the current object off the stack and
attempt to apply its value to its parent (the enclosing XML element), which is the new
top of the stack. For elements with simple content that do not have a corresponding
class, we place a StringBuffer on the stack as a stand-in to hold the character content
until the tag is closed. In this case, the name of the tag indicates the property on the
parent that should get the text and upon seeing the closing tag, we apply it in the same
way. Attributes are applied to the current object on the stack within the startEle
ment() method using the same technique. The final closing tag leaves the top-level
element (inventory in this case) on the stack for us to retrieve.

To set values on our objects, we use our setProperty() method. It uses reflection to
look for a field matching the name of the tag within the specified object. It also handles
some simple type conversions based on the type of the field found. If the field is of type
Double, we parse the text to a number; if it is an Enum type, we find the matching enum
value represented by the text. Finally, if the field is not a simple field but is a Collec
tion representing an XML sequence, then we invoke its add() method to add the child
to the collection instead of trying to assign to the field itself.

Test drive

Finally, we can test drive the model builder with the following class, TestSAXModel
Builder, which calls the SAX parser, setting an instance of our SAXModelBuilder as the
content handler. The test class then prints some of the information parsed from the
zooinventory.xml file:

 import org.xml.sax.*;
 import javax.xml.parsers.*;

 public class TestSAXModelBuilder
 {
 public static void main(String [] args) throws Exception
 {
 SAXParserFactory factory = SAXParserFactory
 .newInstance();
 SAXParser saxParser = factory.newSAXParser();
 XMLReader parser = saxParser.getXMLReader();
 SAXModelBuilder mb = new SAXModelBuilder();
 parser.setContentHandler(mb);

 parser.parse(new InputSource("zooinventory.xml"));
 Inventory inventory = (Inventory)mb.getModel();
 System.out.println("Animals = "+inventory.animal);
 Animal cocoa = (Animal)(inventory.animal.get(1));
 FoodRecipe recipe = cocoa.foodRecipe;

SAX | 863

 System.out.println("Recipe = "+recipe);
 }
 }

The output should look like this:
Animals = [Song Fang(mammal, Giant Panda), Cocoa(mammal, Gorilla)]
Recipe = Gorilla Chow: [fruit, shoots, leaves]

In the following sections, we’ll generate the equivalent output using different tools.

Limitations and possibilities

To make our model builder more complete, we could use more robust naming
conventions for our tags and model classes (taking into account packages and mixed
capitalization, etc.). More generally, we might want to introduce arbitrary mappings
(bindings) between names and classes or properties. And of course, there is the problem
of taking our model and going the other way, using it to generate an XML document.
You can see where this is going: JAXB will do all of that for us, coming up later in this
chapter.

XMLEncoder/Decoder
Java includes a standard tool for serializing JavaBeans classes to XML. The java.beans
package XMLEncoder and XMLDecoder classes are analogous to java.ioObjectInput
Stream and ObjectOutputStream. Instead of using the native Java serialization format,
they store the object state in a high-level XML format. We say that they are analogous,
but the XML encoder is not a general replacement for Java object serialization. Instead,
it is specialized to work with objects that follow the JavaBeans design patterns (setter
and getter methods for properties), and it can only store and recover the state of the
object that is expressed through a bean’s public properties in this way.

When you call it, the XMLEncoder attempts to construct an in-memory copy of the graph
of beans that you are serializing using only public constructors and JavaBean properties.
As it works, it writes out the steps required as “instructions” in an XML format. Later,
the XMLDecoder executes these instructions and reproduces the result. The primary
advantage of this process is that it is highly resilient to changes in the class implemen‐
tation. While standard Java object serialization can accommodate many kinds of “com‐
patible changes” in classes, it requires some help from the developer to get it right.
Because the XMLEncoder uses only public APIs and writes instructions in simple XML,
it is expected that this form of serialization will be the most robust way to store the state
of JavaBeans. The process is referred to as long-term persistence for JavaBeans.

It might seem at first like this would obviate the need for our SAXModelBuilder example.
Why not simply write our XML in the format that XMLDecoder understands and use it
to build our model? Although XMLEncoder is very efficient at eliminating redundancy,
you would see that its output is still very verbose (about two to three times larger than

864 | Chapter 24: XML

our original XML) and not very human-friendly. Although it’s possible to write it by
hand, this XML format wasn’t designed for that. Finally, although XMLEncoder can be
customized for how it handles specific object types, it suffers from the same problem
that our model builder does, in that “binding” (the namespace of tags) is determined
strictly by our Java class names. As we’ve said before, what is really needed is a more
general tool to map our own classes to XML and back.

DOM
In the last section, we used SAX to parse an XML document and build a Java object
model representing it. In that case, we created specific Java types for each of our complex
elements. If we were planning to use our model extensively in an application, this tech‐
nique would give us a great deal of flexibility. But often it is sufficient (and much easier)
to use a “generic” model that simply represents the content of the XML in a neutral form.
The Document Object Model (DOM) is just that. The DOM API parses an XML docu‐
ment into a generic representation consisting of classes with names such as Element
and Attribute that hold their own values. You could use this to inspect the document
structure and pull out the parts you want in a way that is perhaps more convenient than
the low-level SAX. The tradeoff is that the entire document is parsed and read into
memory—but for most applications, that is fine.

As we saw in our zoo example, once you have an object model, using the data is a breeze.
So a generic DOM would seem like an appealing solution, especially when working
mainly with text. One catch in this case is that DOM didn’t evolve first as a Java API
and it doesn’t map well to Java. DOM is very complete and provides access to every facet
of the original XML document, but it’s so generic (and language-neutral) that it’s cum‐
bersome to use in Java. Later, we’ll also mention a native Java alternative to DOM called
JDOM that is more pleasant to use.

The DOM API
The core DOM classes belong to the org.w3c.dom package. The result of parsing an
XML document with DOM is a Document object from this package (see Figure 24-1).
The Document is both a factory and a container for a hierarchical collection of Node
objects, representing the document structure. A node has a parent and may have chil‐
dren, which can be traversed using its getChildNodes(), getFirstChild(), or get
LastChild() methods. A node may also have “attributes” associated with it, which
consist of a named map of nodes.

DOM | 865

Figure 24-1. The parsed DOM

Subtypes of Node—Element, Text, and Attr—represent elements, text, and attributes
in XML. Some types of nodes (including these) have a text “value.” For example, the
value of a Text node is the text of the element it represents. The same is true of an
attribute, cdata, or comment node. The value of a node can be accessed by the getNo
deValue() and setNodeValue() methods. We’ll also make use of Node’s getTextCon
tent() method, which retrieves the plain-text content of the node and all of its child
nodes.

The Element node provides “random” access to its child elements through its getEle
mentsByTagName() method, which returns a NodeList (a simple collection type). You
can also fetch an attribute by name from the Element using the getAttribute()
method.

The javax.xml.parsers package contains a factory for DOM parsers, just as it does
for SAX parsers. An instance of DocumentBuilderFactory can be used to create a
DocumentBuilder object to parse the file and produce a Document result.

Test-Driving DOM
Here is our TestDOM class:

 import javax.xml.parsers.*;
 import org.w3c.dom.*;

 public class TestDOM
 {
 public static void main(String [] args) throws Exception
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory
 .newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document document = parser.parse("zooinventory.xml");

866 | Chapter 24: XML

 Element inventory = document.getDocumentElement();
 NodeList animals = inventory.getElementsByTagName("animal");
 System.out.println("Animals = ");
 for(int i=0; i<animals.getLength(); i++) {
 Element item = (Element)animals.item(i);
 String name = item.getElementsByTagName("name").item(0)
 .getTextContent();
 String species = item.getElementsByTagName("species")
 .item(0).getTextContent();
 String animalClass = item.getAttribute("animalClass");
 System.out.println(" "+ name +" ("+animalClass+",
 "+species+")");
 }

 Element cocoa = (Element)animals.item(1);
 Element recipe = (Element)cocoa.getElementsByTagName("foodRecipe")
 .item(0);
 String recipeName = recipe.getElementsByTagName("name").item(0)
 .getTextContent();
 System.out.println("Recipe = " + recipeName);
 NodeList ingredients = recipe.getElementsByTagName("ingredient");
 for(int i=0; i<ingredients.getLength(); i++) {
 System.out.println(" " + ingredients.item(i)
 .getTextContent());
 }
 }
 }

TestDOM creates an instance of a DocumentBuilder and uses it to parse our zooinvento‐
ry.xml file. We use the DocumentgetDocumentElement() method to get the root element
of the document, from which we will begin our traversal. From there, we ask for all the
animal child nodes. The getElementbyTagName() method returns a NodeList object,
which we then use to iterate through our creatures. For each animal, we use the Ele
mentgetElementsByTagName() method to retrieve the name and species child element
information. Each of those queries can potentially return a list of matching elements,
but we only allow for one here by taking the first element returned and asking for its
text content. We also use the getAttribute() method to retrieve the animalClass
attribute from the element.

Next, we use the getElementsByTagName() to retrieve the element called foodRecipe
from the second animal. We use it to fetch a NodeList for all of the tags matching
ingredient and print them as before. The output should contain the same information
as our SAX-based example. But as you can see, the tradeoff in not having to create our
own model classes is that we have to suffer through the use of the generic model and
produce code that is considerably harder to read and less flexible.

DOM | 867

Generating XML with DOM
Thus far, we’ve used the SAX and DOM APIs to parse XML. But what about generating
XML? Sure, it’s easy to generate trivial XML documents simply by printing the appro‐
priate strings. But if we plan to create a complex document on the fly, we might want
some help with all those quotes and closing tags. We may also want to validate our model
against an XML DTD or Schema before writing it out. What we can do is to build a
DOM representation of our object in memory and then transform it to text. This is also
useful if we want to read a document and then make some alterations to it. To do this,
we’ll use of the java.xml.transform package. This package does a lot more than just
printing XML. As its name implies, it’s part of a general transformation facility. It in‐
cludes the XSL/XSLT languages for generating one XML document from another. (We’ll
talk about XSL later in this chapter.)

We won’t discuss the details of constructing a DOM in memory here, but it follows fairly
naturally from what you’ve learned about traversing the tree in our previous example.
The following example, PrintDOM, simply parses our zooinventory.xml file to a DOM
and then prints that DOM back to the screen. The same output code would print any
DOM whether read from a file or created in memory using the factory methods on the
DOM Document and Element, etc.

 import javax.xml.parsers.*;
 import org.xml.sax.InputSource;
 import org.w3c.dom.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.DOMSource;
 import javax.xml.transform.stream.StreamResult;

 public class PrintDOM {
 public static void main(String [] args) throws Exception
 {
 DocumentBuilder parser = DocumentBuilderFactory.newInstance()
 .newDocumentBuilder();
 Document document = parser.parse(
 new InputSource("zooinventory.xml"));
 Transformer transformer = TransformerFactory.newInstance()
 .newTransformer();
 Source source = new DOMSource(document);
 Result output = new StreamResult(System.out);
 transformer.transform(source, output);
 }
 }

Note that the imports are almost as long as the entire program! Here, we are using an
instance of a Transformer object in its simplest capacity to copy from a source to an
output. We’ll return to the Transformer later when we discuss XSL, at which point it
will be doing a lot more work for us.

868 | Chapter 24: XML

JDOM
As we promised earlier, we’ll now describe an easier DOM API: JDOM, created by Jason
Hunter and Brett McLaughlin, two fellow O’Reilly authors (Java Servlet Programming
and Java and XML, respectively). It is a more natural Java DOM that uses real Java
collection types such as List for its hierarchy and provides marginally more streamlined
methods for building documents. You can get the latest JDOM from http://
www.jdom.org/. Here’s the JDOM version of our standard “test” program:

 import org.jdom.*;
 import org.jdom.input.*;
 import org.jdom.output.*;
 import java.util.*;

 public class TestJDOM {
 public static void main(String[] args) throws Exception {
 Document doc = new SAXBuilder().build("zooinventory.xml");
 List animals = doc.getRootElement().getChildren("Animal");
 System.out.println("Animals = ");
 for(int i=0; i<animals.size(); i++) {
 String name = ((Element)animals.get(i)).getChildText("Name");
 String species = ((Element)animals.get(i))
 .getChildText("Species");
 System.out.println(" "+ name +" ("+species+")");
 }
 Element foodRecipe = ((Element)animals.get(1))
 .getChild("FoodRecipe");
 String name = foodRecipe.getChildText("Name");
 System.out.println("Recipe = " + name);
 List ingredients = foodRecipe.getChildren("Ingredient");
 for(int i=0; i<ingredients.size(); i++)
 System.out.println(" "+((Element)ingredients.get(i))
 .getText());
 }
 }

The JDOM Element class has some convenient getChild() and getChildren() meth‐
ods, as well as a getChildText() method for retrieving node text by element name.

Now that we’ve covered the basics of SAX and DOM, we’re going to look at a new API
that, in a sense, straddles the two. XPath allows us to target only the parts of a document
that we want and gives us the option of getting at those components in DOM form.

XPath
XPath is an expression language for addressing parts of an XML document. You can
think of XPath expressions as sort of like regular expressions for XML. They let you pull
out parts of an XML document based on patterns. In the case of XPath, the patterns are
more concerned with structural information than with character content and the values

XPath | 869

returned may be either simple text or “live” DOM nodes. With XPath, we can query an
XML document for all of the elements with a certain name or in a certain parent-child
relationship. We can also apply fairly sophisticated tests or predicates to the nodes, which
allows us to construct complex queries such as this one: give me all of the Animals with
a Weight greater than the number 400 and a Temperament of irritable whose animal
Class attribute is mammal.

The full XPath specification has many features and includes both a compact and more
verbose syntax. We won’t try to cover it all here, but the basics are easy and it’s important
to know them because XPath expressions are at the core of XSL transformations and
other APIs that refer to parts of XML documents. The full specification does not make
great bedtime reading, but can be found at http://www.w3.org/TR/xpath.

Nodes
An XPath expression addresses a Node in an XML document tree. The node may be an
element (possibly with children) like <animal>...</animal> or it may be a lower-level
document node representing an attribute (e.g., animalClass="mammal"), a CDATA
block, or even a comment. All of the structure of an XML document is accessible through
the XPath syntax. Once we’ve addressed the node, we can either reduce the content to
a text string (as we might with a simple text content element like name) or we can access
it as a proper DOM tree to further read or manipulate it.

Table 24-2 shows the most basic node-related syntax.

Table 24-2. Basic node-related syntax
Syntax Example Description

/Name /inventory/animal All animal nodes under /inventory.

//Name //animal All animal nodes anywhere in document. A foodRecipe/animal would also
match.

Name/* /inventory/* All child nodes of inventory (animals and any other elements directly under
inventory).

@Name //animal/@animalClass All animalClass attributes of animals.

. /inventory/animal/. The current node (all animals).

.. /inventory/animal/.. The parent node (inventory).

Nodes are addressed with a slash-separated path based on name. For example, /Inven
tory/Animal refers to the set of all Animal nodes under the Inventory node. If we want
to list the names of all Animals, we would use /Inventory/Animal/Name. The // syntax
matches a node anywhere in a document, at any level of nesting, so //Name would match
the name elements of Animals, FoodRecipes, and possibly many other elements. We
could be more specific, using //Animal/Name to match only Name elements whose parent
is an Animal element. The at sign (@) matches attributes. This becomes much more

870 | Chapter 24: XML

useful with predicates, which we describe next. Finally, the familiar . and .. notation
can be used to “move” relative to a node; read on to see how this is used.

Predicates
Predicates let us apply a test to a node. Nodes that pass the test are included in the result
set or used to select other nodes (child or parent) relative to them. There are many types
of tests available in XPath. Table 24-3 lists a few examples.

Table 24-3. Predicates
Syntax Example Description

[n] /inventory/animal[1] Select the nth element of a set. (Starts with 1 rather than 0.) For
example, select the first animal in the inventory.

[@name=value] //animal[@animal

Class="mammal"]

Match nodes with the specified attribute value. For example, ani
mals with the animalClass attribute "mammal".

[element=val

ue]

//animal[name="Cocoa"] Match nodes with a child node whose text value is specified. For
example, match the animal with a name element containing the
simple text "Cocoa".

=!=>< //animal[weight > 400] Predicates may also test for inequality and numeric greater-/lesser-
than value.

and, or //animal[@animalClass=

"mammal" or @class="rep
tile"]]

Predicates may use logical AND and OR to test. For example,
animals whose animalClass is mammal or reptile.

Predicates can be compounded (AND’ed) using this syntax or simply by adding more
predicates, like so:

 //animal[@animalClass="mammal"][weight > 400]

Here, we’ve asked for animals with a class attribute of "mammal" and a weight element
containing a number greater than 400.

We can now also see the usefulness of the .. operator. Suppose we want to find all of
the animals with a foodRecipe that uses Fruit as an ingredient:

 //animal/foodRecipe[ingredient="Fruit"]/..

The .. means that instead of returning the matching foodRecipe node itself, we return
its parent—the animal element. The . (current node) operator is useful in other cases
where we use XPath functions to manipulate values in more refined ways. We’ll say a
few words about functions next.

Functions
The XPath specification includes not only the basic node traversal and predicate syntax
we’ve shown, but also the ability to invoke more open-ended functions that operate on

XPath | 871

nodes and the node context. These XPath functions cover a wide range of duties and
we’ll just give a couple of examples here. The functions fall into a few general categories.

Some functions select node types other than an element. For example, there is no special
syntax for selecting an XML comment. Instead you invoke a special method called
comment(), like this:

/inventory/comment()

This expression returns any XML comment nodes that are children of the inventory
element. XPath also offers functions that duplicate all of the (compact) syntax we’ve
discussed, including methods like child() and parent() (corresponding to . and ..).

Other functions look at the context of nodes—for example, last() and count().
/inventory/animal[last()]

This expression selects the last animal child element of inventory in the same way that
[n] selects the nth.

//foodRecipe[count(ingredient)>2]

This expression matches all of the foodRecipe elements with more than two ingredients.
(Cool, eh?)

Finally, there are many string-related functions. Some are useful for simple tests, but
others are really useful only in the context of XSL, where they help out the language (in
an awkward way) with basic formatting and string manipulation. For example, the
contains() and starts-with() methods can be used to look at the text values inside
XML documents:

//animal[starts-with(name,"S")]

This expression matches animals whose name starts with the character S (e.g., Song
Fang). The contains() method, similarly, can be used to look for a substring in text.

The XPath API
Now that we’ve got a taste for the syntax, let’s look at how to use the API. The procedure
is similar to that of the Java regular expression API for strings. We use a factory to create
an XPath object. We can then either evaluate expressions with it or “compile” an ex‐
pression down to an XPathExpression for better performance if we’re going to use it
more than once.

XPath xpath = XPathFactory.newInstance().newXPath();
InputSource source = new InputSource(filename);

String result = xpath.evaluate("//animal/name", source);
// Song Fang

872 | Chapter 24: XML

Here we’ve used the simplest form of the evaluate() method, which returns only the
first match and takes the value as a string. This method is useful for pulling simple text
values from elements. However, if we want the full set of values (e.g., the names of all
the animals matched by this expression), we need to return the results as a set of Node
objects instead.

The return type of (the overloaded forms of) evaluate() is controlled by identifiers of
the XPathConstants class. We can get the result as one of the following: STRING, BOOLEAN,
NUMBER, NODE, or NODESET. The default is STRING, which strips out child element tags
and returns just the text of the matching nodes. BOOLEAN and NUMBER are conveniences
for getting primitive types. NODE and NODESET return org.w3c.dom.Node and NodeList
objects, respectively. We need the NodeList to get all the values.

NodeList elements = (NodeList)xpath.evaluate(
 expression, inputSource, XPathConstants.NODESET);

Next, let’s put this together in a useful example.

XMLGrep
This simple example can be used as a command-line utility, such as grep, for testing
XPath expressions against a file. It applies an XPath expression and then prints the
resulting elements as XML text using the same technique we used in our PrintDOM
example. Nodes that are not elements (e.g., attributes, comments, and so on) are simply
printed with their toString() method, which normally serves well enough to identify
them, but you can expand the example to your taste. Here it is:

 import org.w3c.dom.*;
 import org.xml.sax.InputSource;
 import javax.xml.xpath.*;
 import javax.xml.transform.*;
 import javax.xml.transform.dom.DOMSource;
 import javax.xml.transform.stream.StreamResult;

 public class XMLGrep {

 public static void printXML(Element element)
 throws TransformerException {

 Transformer transformer =
 TransformerFactory.newInstance().newTransformer();
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,
 "yes");
 Source source = new DOMSource(element);
 Result output = new StreamResult(System.out);
 transformer.transform(source, output);
 System.out.println();
 }

XPath | 873

 public static void main(String [] args) throws Exception {
 if (args.length != 2) {
 System.out.println("usage: PrintXPath expression file.xml");
 System.exit(1);
 }
 String expression = args[0], filename = args[1];

 XPath xpath = XPathFactory.newInstance().newXPath();
 InputSource inputSource = new InputSource(filename);

 NodeList elements = (NodeList)xpath.evaluate(
 expression, inputSource, XPathConstants.NODESET);

 for(int i=0; i<elements.getLength(); i++)
 if (elements.item(i) instanceof Element) {
 printXML((Element)elements.item(i));
 } else
 System.out.println(elements.item(i));
 }

 }

There are again a lot of imports in this example. The transform code in our printXML()
method is drawn from the PrintDOM example with one addition. We’ve set a property
on the transformer to omit the standard XML declaration that would normally be output
for us at the head of our document. Since we may print more than one (root) element,
the output is not well formed XML anyway.

Run the example by passing an XPath expression and the name of an XML file as
arguments:

% java XMLGrep "//animal[starts-with(name,'C')]" zooinventory.xml

This example really is useful for trying out XPath. Please give it a whirl. Mastering these
expressions (and learning more) will give you great power over XML documents and,
again, form the basis for learning about XSL transformations.

XInclude
XInclude is a very simple “import” facility for XML documents. With the XInclude
directive, you can easily include one XML document in another either as XML or as
plain (and escaped) text. This means that you can break down your documents into as
many files as you see fit and reference the pieces in a simple, standard way. We should
note that it is also possible to do this in another way, using XML entity declarations, but
they are fraught with problems. XInclude is simpler and does what its name implies,
including the specified document at the current location; you just have to declare the
proper namespace for the new <include> element. Here is an example:

874 | Chapter 24: XML

 <Book xmlns:xi="http://www.w3.org/2001/XInclude">
 <Title>Learning Java</Title>
 <xi:include href="chapter1.xml"/>
 <xi:include href="chapter2.xml"/>
 <xi:include href="chapter3.xml"/>
 ...
 </Book>

We’ve used the namespace identifier xi to qualify the <include> elements that we use
to import the chapters of our book. By default, the file is imported as XML content,
which means that the parser incorporates the included document as part of our docu‐
ment. The resulting DOM or SAX view will show the merged documents as one. Al‐
ternatively, we can use the parse attribute to specify that we want the target included
as text only. In this case, the text is automatically escaped for us like a CDATA section.
For example, we could use it to include an XML example in our book without danger
of it being intepreted as part of our file:

 <Example>
 <Title>The Zoo Inventory Example</Title>
 <xi:include parse="text" href="zooinventory.xml"/>
 </Example>

Here, the entire zooinventory.xml file will be included as nicely escaped text for us (not
added to our document as XML).

XInclude also allows for “fallback” content to be specified using a nested fallback
element. The fallback element may point to another file or simply hold XML to be
used if the included file can’t be found. For example:

<xi:include parse="text " href="zooinventory.xml">
 <xi:fallback href="filenotfound.xml"/>
</xi:include>

<xi:include parse="text" href="example.xml">
 <xi:fallback>This example is missing...</xi:fallback>
</xi:include>

In the first case, if zooinventory.xml is not found, the filenotfound.xml file will be in‐
cluded. In the second case, the “missing” text will be included instead of the file. If there
is no fallback specified, a parse-time fatal error occurs. An empty fallback element can
be used to suppress any error. Fallbacks may also be nested within fallbacks to combine
these behaviors.

Enabling XInclude
Getting XInclude to work for us requires simply turning on a couple of flags before we
begin parsing our file. First, because the XInclude facility uses namespaces, we have to
turn on namespace processing in our parser factory. Second, we have to explicitly tell
the parser to interpret the include directives. To modify our PrintDOM example to

XInclude | 875

Words, words, mere words, no matter from
the heart.

—William Shakespeare, Troilus and Cressida

perform the includes before printing the result, we turn these flags on the factory before
creating a DocumentBuilder instance:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

// enable XInclude processing
factory.setNamespaceAware(true);
factory.setXIncludeAware(true);

DocumentBuilder parser = factory.newDocumentBuilder();
Document document = parser.parse(input);

Both of those options should really be the defaults these days. But they have historically
come later to XML and so been treated as special features that have to be enabled. We
should also mention before we move on that XInclude can make use of XPath expres‐
sions (via an API called XPointer) in order to include just selected parts of an XML
document.

Validating Documents

In this section, we talk about DTDs and XML Schema, two ways to enforce rules in an
XML document. A DTD is a simple grammar guide for an XML document, defining
which tags may appear where, in what order, with what attributes, etc. XML Schema is
the next generation of DTD. With XML Schema, you can describe the data content of
the document as well as the structure. XML Schemas are written in terms of primitives,
such as numbers, dates, and simple regular expressions, and also allow the user to define
complex types in a grammar-like fashion. The word schema means a blueprint or plan
for structure, so we’ll refer to DTDs and XML Schema collectively as schema where
either applies.

DTDs, although much more limited in capability, are still widely used. This may be
partly due to the complexity involved in writing XML Schemas by hand. The W3C XML
Schema standard is verbose and cumbersome, which may explain why several alterna‐
tive syntaxes have sprung up. The javax.xml.validation API performs XML valida‐
tion in a pluggable way. Out of the box, it supports only W3C XML Schema, but new
schema languages can be added in the future. Validating with a DTD is supported as an
older feature directly in the SAX parser. We’ll use both in this section.

Using Document Validation
XML’s validation of documents is a key piece of what makes it useful as a data format.
Using a schema is somewhat analogous to the way Java classes enforce type checking in

876 | Chapter 24: XML

the language. A schema defines document types. Documents conforming to a given
schema are often referred to as instance documents of the schema.

This type safety provides a layer of protection that eliminates having to write complex
error-checking code. However, validation may not be necessary in every environment.
For example, when the same tool generates XML and reads it back in a short time span,
validation may not be necessary. It is invaluable, though, during development. Some‐
times document validation is used during development and turned off in production
environments.

DTDs
The DTD language is fairly simple. A DTD is primarily a set of special tags that define
each element in the document and, for complex types, provide a list of the elements it
may contain. The DTD <!ELEMENT> tag consists of the name of the tag and either a
special keyword for the data type or a parenthesized list of elements.

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Document (Head, Body)>

The special identifier #PCDATA (parsed character data) indicates a string. When a list is
provided, the elements are expected to appear in that order. The list may contain sublists,
and items may be made optional using a vertical bar (|) as an OR operator. Special
notation can also be used to indicate how many of each item may appear; two examples
of this notation are shown in Table 24-4.

Table 24-4. DTD notation defining occurrences
Character Meaning

* Zero or more occurrences

? Zero or one occurrences

Attributes of an element are defined with the <!ATTLIST> tag. This tag enables the DTD
to enforce rules about attributes. It accepts a list of identifiers and a default value:

<!ATTLIST Animal animalClass (unknown | mammal | reptile) "unknown">

This ATTLIST says that the animal element has an animalClass attribute that can have
one of several values (e.g.: unknown, mammal, reptile). The default is unknown.

We won’t cover everything you can do with DTDs here. But the following example will
guarantee zooinventory.xml follows the format we’ve described. Place the following in
a file called zooinventory.dtd (or grab this file from http://oreil.ly/Java_4E):

<!ELEMENT inventory (animal*)>
<!ELEMENT animal (name, species, habitat, (food | foodRecipe), temperament,
 weight)>
<!ATTLIST animal animalClass (unknown | mammal | reptile | bird | fish)
 "unknown">

Validating Documents | 877

<!ELEMENT name (#PCDATA)>
<!ELEMENT species (#PCDATA)>
<!ELEMENT habitat (#PCDATA)>
<!ELEMENT food (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT foodRecipe (name, ingredient+)>
<!ELEMENT ingredient (#PCDATA)>
<!ELEMENT temperament (#PCDATA)>

The DTD says that an inventory consists of any number of animal elements. An ani
mal has a name, species, and habitat tag followed by either a food or foodRecipe.
foodRecipe’s structure is further defined later.

To use a DTD, we associate it with the XML document. We can do this by placing a
DOCTYPE declaration in the XML document itself and allow the XML parser to recognize
and enforce it. The Java validation API that we’ll talk about in the next section separates
the roles of parsing and validation and can be used to validate arbitrary XML against
any kind of schema, including DTDs. The problem is that out of the box, the validation
API only implements the (newer) XML schema syntax. So we’ll have to rely on the parser
to validate the DTD for us here.

In this case, when a validating parser encounters the DOCTYPE, it attempts to load the
DTD and validate the document. There are several forms the DOCTYPE can have, but the
one we’ll use is:

<!DOCTYPE Inventory SYSTEM "zooinventory.dtd">

Both SAX and DOM parsers can automatically validate documents as they read them,
provided that the documents contain a DOCTYPE declaration. However, you have to ex‐
plicitly ask the parser factory to provide a parser that is capable of validation. To do this,
just set the validating property of the parser factory to true before you ask it for an
instance of the parser. For example:

...
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setValidating(true);

Again, this setValidating() method is an older, more simplistic way to enable vali‐
dation of documents that contain DTD references and it is tied to the parser. The new
validation package that we’ll discuss later is independent of the parser and more flexible.
You should not use the parser-validating method in combination with the new valida‐
tion API unless you want to validate documents twice for some reason.

Try inserting the setValidating() line in our model builder example after the factory
is created. Abuse the zooinventory.xml file by adding or removing an element or attribute
and then see what happens when you run the example. You should get useful error
messages from the parser indicating the problems and parsing should fail. To get more
information about the validation, we can register an org.xml.sax.ErrorHandler object
with the parser, but by default, Java installs one that simply prints the errors for us.

878 | Chapter 24: XML

XML Schema
Although DTDs can define the basic structure of an XML document, they don’t provide
a very rich vocabulary for describing the relationships between elements and say very
little about their content. For example, there is no reasonable way with DTDs to specify
that an element is to contain a numeric type or even to govern the length of string data.
The XML Schema standard addresses both the structural and data content of an XML
document. It is the next logical step and it (or one of the competing schema languages
with similar capabilities) should replace DTDs in the future.

XML Schema brings the equivalent of strong typing to XML by drawing on many pre‐
defined primitive element types and allowing users to define new complex types of their
own. These schemas even allow for types to be extended and used polymorphically, like
types in the Java language. Although we can’t cover XML Schema in any detail, we’ll
present the equivalent W3C XML Schema for our zooinventory.xml file here:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inventory">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="animal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="name" type="xs:string"/>

<xs:element name="animal">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element name="species" type="xs:string"/>
 <xs:element name="habitat" type="xs:string"/>
 <xs:choice>
 <xs:element name="food" type="xs:string"/>
 <xs:element ref="foodRecipe"/>
 </xs:choice>
 <xs:element name="temperament" type="xs:string"/>
 <xs:element name="weight" type="xs:double"/>
 </xs:sequence>
 <xs:attribute name="animalClass" default="unknown">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="mammal"/>
 <xs:enumeration value="reptile"/>
 <xs:enumeration value="bird"/>
 </xs:restriction>

Validating Documents | 879

 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

<xs:element name="foodRecipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element maxOccurs="unbounded" name="ingredient" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

This schema would normally be placed into an XML Schema Definition file, which has
a .xsd extension. The first thing to note is that this schema file is a normal, well-formed
XML file that uses elements from the W3C XML Schema namespace. In it, we use nested
element declarations to define the elements that will appear in our document. As with
most languages, there is more than one way to accomplish this task. Here, we have
broken out the “complex” animal and foodRecipe elements into their own separate
element declarations and referred to them in their parent elements using the ref at‐
tribute. In this case, we did it mainly for readability; it would have been legal to have
one big, deeply nested element declaration starting at inventory. However, referring to
elements by reference in this way also allows us to reuse the same element declaration
in multiple places in the document, if needed. Our name element is a small example of
this. Although it didn’t do much for us here, we have broken out the name element and
referred to it for both the Animal/Name and the FoodRecipe/Name. Breaking out name
like this would allow us to use more advanced features of schema and write rules for
what a name can be (e.g., how long, what kind of characters are allowed) in one place
and reuse that “type” where needed.

Control directives like sequence and choice allow us to define the structure of the child
elements allowed and attributes like minOccurs and maxOccurs let us specify cardinality
(how many instances). The sequence directive says that the enclosed elements should
appear in the specified order (if they are required). The choice directive allows us to
specify alternative child elements like food or foodRecipe. We declared the legal values
for our animalClass attribute using a restriction declaration and enumeration tags.

Simple types

Although we’ve not really exercised it here, the type attribute of our elements touches
on the standardization of types in XML Schema. All of our “text” elements specify a type
xs:string, which is a standard XML Schema string type (kind of equivalent to PCDATA
in our DTD). There are many other standard types covering things such as dates, times,
periods, numbers, and even URLs. These are called simple types (though some of them

880 | Chapter 24: XML

are not so simple) because they are standardized or “built-in.” Table 24-5 lists W3C
Schema simple types and their corresponding Java types. The correspondence will be‐
come useful later when we talk about JAXB and automated binding of XML to Java
classes.

Table 24-5. W3C Schema simple types
Schema element type Java type Example

xsd:string java.lang.String "This is text"

xsd:boolean boolean true, false, 1, 0

xsd:byte byte

xsd:unsignedByte short

xsd:integer java.math.BigInteger

xsd:int int

xsd:unsignedInt long

xsd.long long

xsd:short short

xsd:unsignedShort int

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:Qname javax.xml.namespace.QName funeral:corpse

xsd:dateTime java.util.Calendar 2004-12-27T15:39:05.000-06:00

xsd:base64Binary byte[] PGZv

xsd:hexBinary byte[] FFFF

xsd:time java.util.Calendar 15:39:05.000-06:00

xsd:date java.util.Calendar 2004-12-27

xsd:anySimpleType java.lang.String

For example, we have a floating-point weight element like this in our animal:
<Weight>400.5</Weight>

We can now validate it in our schema by inserting the following entry at the appropriate
place:

<xs:element name="weight" type="xs:double"/>

In addition to enforcing that the content of elements matches these simple types, XML
Schema can give us much more control over the text and values of elements in our
document using simple rules and patterns analogous to regular expressions.

Validating Documents | 881

Complex types

In addition to the predefined simple types listed in Table 24-5, we can define our own,
complex types in our schema. Complex types are element types that have internal struc‐
ture and possibly child elements. Our inventory, animal, and foodRecipe elements are
all complex types and their content must be declared with the complexType tag in our
schema. Complex type definitions can be reused, similar to the way that element defi‐
nitions can be reused in our schema; that is, we can break out a complex type definition
and give it a name. We can then refer to that type by name in the type attributes of other
elements. Because all of our complex types were only used once in their corresponding
elements, we didn’t give them names. They were considered anonymous type defini‐
tions, declared and used in the same spot. For example, we could have separated our
animal’s type from its element declaration, like so:

<xs:element name="inventory">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="animal" maxOccurs="unbounded"
 type="AnimalType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="AnimalType">
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element name="species" type="xs:string"/>
 <xs:element name="habitat" type="xs:string"/>
 ...

Declaring the AnimalType separately from the instance of the animal element declara‐
tion would allow us to have other, differently named elements with the same structure.
For example, our inventory element may hold another element, mainAttraction,
which is a type of animal with a different tag name.

There’s a lot more to say about W3C XML Schema and they can get quite a bit more
complex than our simple example. However, you can do a lot with the few pieces we’ve
previously shown. Some tools are available to help you get started. We’ll talk about one
called Trang in a moment. For more information about XML Schema, see the W3C’s
site or XML Schema by Eric van der Vlist (O’Reilly). In the next section, we’ll show how
to validate a file or DOM model against the XML Schema we’ve just created, using the
new validation API.

Generating Schema from XML samples

Many tools can help you write XML Schema. One helpful tool is called Trang. It is part
of an alternative schema language project called RELAX NG (which we mention later
in this chapter), but Trang is very useful in and of itself. It is an open source tool that

882 | Chapter 24: XML

can not only convert between DTDs and XML Schema, but also create a rough DTD or
XML Schema by reading an “example” XML document. This is a great way to sketch
out a basic, starting schema for your documents.

The Validation API
To use our example’s XML schema, we need to exercise the new javax.xml.valida
tion API. As we said earlier, the validation API is an alternative to the simple, parser-
based validation supported through the setValidating() method of the parser facto‐
ries. To use the validation package, we create an instance of a SchemaFactory, specifying
the schema language. We can then validate a DOM or stream source against the schema.

The following example, Validate, is in the form of a simple command-line utility that
you can use to test out your XML and schemas. Just give it the XML filename and an
XML Schema file (.xsd file) as arguments:

 import javax.xml.XMLConstants;
 import javax.xml.validation.*;
 import org.xml.sax.*;
 import javax.xml.transform.sax.SAXSource;
 import javax.xml.transform.Source;
 import javax.xml.transform.stream.StreamSource;

 public class Validate
 {
 public static void main(String [] args) throws Exception {
 if (args.length != 2) {
 System.err.println("usage: Validate xmlfile.xml xsdfile.xsd");
 System.exit(1);
 }
 String xmlfile = args[0], xsdfile = args[1];

 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 Schema schema = factory.newSchema(new StreamSource(xsdfile));
 Validator validator = schema.newValidator();

 ErrorHandler errHandler = new ErrorHandler() {
 public void error(SAXParseException e) {
 System.out.println(e);
 }
 public void fatalError(SAXParseException e) {
 System.out.println(e);
 }
 public void warning(SAXParseException e) {
 System.out.println(e);
 }
 };
 validator.setErrorHandler(errHandler);

Validating Documents | 883

 try {
 validator.validate(new SAXSource(
 new InputSource("zooinventory.xml")));
 } catch (SAXException e) {
 // Invalid Document, no error handler
 }
 }
 }

The schema types supported initially are listed as constants in the XMLConstants class.
Right now, only W3C XML Schema is implemented and there is also another intriguing
type in there that we’ll mention later. Our validation example follows the pattern we’ve
seen before, creating a factory, then a Schema instance. The Schema represents the gram‐
mar and can create Validator instances that do the work of checking the document
structure. Here, we’ve called the validate() method on a SAXSource, which comes from
our file, but we could just as well have used a DOMSource to check an in-memory DOM
representation:

validator.validate(new DOMSource(document));

Any errors encountered will cause the validate method to throw a SAXException, but
this is just a coarse means of detecting errors. More generally, and as we’ve shown in
this example, we’d want to register an ErrorHandler object with the validator. The
error handler can be told about many errors in the document and convey more infor‐
mation. When the error handler is present, the exceptions are given to it and not thrown
from the validate method.

The errors generated by these parsers can be a bit cryptic. In some cases, the errors may
not be able to report line numbers because the validation is not necessarily being done
against a stream.

Alternative schema languages

In addition to DTDs and W3C XML Schema, several other popular schema languages
are being used today. One interesting alternative that is tantalizingly referenced in the
XMLConstants class is called RELAX NG. This schema language offers the most widely
used features of XML Schema in a more human-readable format. In fact, it offers both
a very compact, non-XML syntax and a regular XML-based syntax. RELAX NG doesn’t
offer the same text pattern and value validation that W3C XML Schema does. Instead,
these aspects of validation are left to other tools (many people consider this to be “busi‐
ness logic,” more appropriately implemented outside of the schema anyway). If you are
interested in exploring other schema languages, be sure to check out RELAX NG and
its useful schema conversion utility, Trang.

884 | Chapter 24: XML

JAXB Code Binding and Generation
We’ve said that our ultimate goal in this chapter is automated binding of XML to Java
classes. Now we’ll discuss the standard Java API for XML Binding, JAXB. (This should
not be confused with JAXP, the parser API.) JAXB is a standard extension that is bundled
with Java 6 and later. With JAXB, the developer does not need to create any fragile parsing
code. An XML schema or Java code can be used as the starting point for transforming
XML to Java and back. (“Schema first” and “code first” are both supported.) With JAXB,
you can either mark up your Java classes with simple annotations that map (bind) them
to XML or start with an XML schema and generate plain Java classes (POJOs) with the
necessary annotations included. You can even derive an XML schema from your Java
classes to use as a starting point or contract with non-Java systems.

At runtime, JAXB can read an XML document and parse it into the model that you have
defined or you can go the other way, populating your object model and then writing it
out to XML. In both cases, JAXB can validate the data to make sure it matches a schema.
This may sound like the DOM interface, but in this case we’re not using generic classes—
we’re using our own model. In this section, we’ll reuse the class model that we created
for the SAX example with our zooinventory.xml file. We’ll use the familiar Inventory,
Animal, and FoodRecipe classes directly, but this time you’ll see that we’ll be more
focused on the schema and names and less on the parsing machinery.

Annotating Our Model
JAXB gives us a great deal of flexibility in mapping our Java classes to XML elements
and there are a lot of special cases. But if we accept most of the default behavior for our
model, we can get started with very little work. Let’s start by taking our zoo inventory
classes and adding the necessary annotations to allow JAXB to bind it to XML:

@XmlRootElement
public class Inventory {
 public List<Animal> animal = new ArrayList<>();
}

Well, that was easy! Yes, in fact as we hinted at the beginning of the chapter, adding just
the @XmlRootElement annotation to the “top level” or root class of our model will yield
nearly the same XML that we used before. To generate the XML, we’ll use the following
test harness:

 import javax.xml.bind.JAXBContext;
 import javax.xml.bind.JAXBException;
 import javax.xml.bind.Marshaller;

 public class TestJAXBMarshall
 {
 public static void main(String [] args) throws JAXBException {
 Inventory inventory = new Inventory();

JAXB Code Binding and Generation | 885

 FoodRecipe recipe = new FoodRecipe();
 recipe.name = "Gorilla Chow";
 recipe.ingredient.addAll(Arrays.asList("leaves", "insects",
 "fruit"));
 Animal animal = new Animal(Animal.AnimalClass.mammal, "Song Fang",
 "Giant Panda", "China", "Bamboo", "Friendly", 45.0, recipe);
 inventory.animal.add(animal);

 marshall(inventory);
 }

 public static void marshall(Object jaxbObject) throws JAXBException {
 JAXBContext context = JAXBContext.newInstance(
 jaxbObject.getClass());
 Marshaller marshaller = context.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 marshaller.marshal(jaxbObject, System.out);
 }
 }

We’ve taken the liberty of adding some constructors to shorten the code for creating the
model, but it doesn’t change the behavior here. It’s just the four lines of our mar
shall() method that actually use JAXB to write out the XML. We first create a JAXB
Context, passing in the class type to be marshalled. We’ve made our marshall() method
somewhat reusable by getting the class type from the object passed in. However, it’s
sometimes necessary to pass in additional classes to the newInstance() method in order
for JAXB to be aware of all of the bound classes that may be needed. In that case, we’d
simpy pass more class types to the newInstance() method (it accepts a variable argu‐
ment list with any number of arguments—of class types). We then create a Marshal
ler from the context and, for our purposes, set a flag indicating that we would like nice,
human-readable output (the default output is one long line of XML). Finally, we tell the
marshaller to send our object to System.out.

The output looks like this:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<inventory>
 <animal>
 <animalClass>mammal</animalClass>
 <name>Song Fang</name>
 <species>Giant Panda</species>
 <habitat>China</habitat>
 <food>Bamboo</food>
 <temperament>Friendly</temperament>
 <weight>45.0</weight>
 </animal>
 <animal>
 <animalClass>mammal</animalClass>
 <name>Cocoa</name>

886 | Chapter 24: XML

 <species>Gorilla</species>
 <habitat>Ceneral Africa</habitat>
 <temperament>Know-it-all</temperament>
 <weight>45.0</weight>
 <foodRecipe>
 <name>Gorilla Chow</name>
 <ingredient>fruit</ingredient>
 <ingredient>shoots</ingredient>
 <ingredient>leaves</ingredient>
 </foodRecipe>
 </animal>
</inventory>

As we said, it’s almost identical to the XML we worked with earlier. Admittedly, we chose
to create our XML using the same (common) conventions that JAXB uses, so it’s not
entirely magic. The first thing to notice is that JAXB automatically mapped our class
names to lowercase XML element names (e.g., class Animal to <animal>). If we had used
JavaBeans-style getter methods instead of public fields, the same would be true; for
example, a getSpecies() method would produce a default element name of species.

If we wanted to map our class names and property names to completely different XML
names, we could easily accomplish that using the name attribute of the @XmlRootEle
ment and @XmlElement annotations. For example, we can call our Animal “creature” and
rename temperament to “personality” like so:

@XmlRootElement(name="creature")
public class Animal
{
 ...
 @XmlElement(name="personality")
 public String temperament;

The real difference between our generated XML and our earlier sample is that our
animalClass attribute is not acting like an attribute. By default, is has been mapped to
an element, like the other properties of Animal. We can rectify that with another anno‐
tation, @XmlAttribute:

public class Animal
{
 @XmlAttribute
 public AnimalClass animalClass;
 ...

// Produces...

<inventory>
 <animal animalClass="mammal">
 <name>Song Fang</name>

Also note that JAXB has shown the food element in the first animal and the foodRe
cipe in the second. JAXB will ignore a field or property that is null (as is the case here)

JAXB Code Binding and Generation | 887

unless you specify that the property is “nillable” using @XmlElement(nillable=true).
That behavior automatically supported the alternation between our two properties.

There are many additional annotations that provide support for mapping Java classes,
fields, and properties to other features of XML. Table 24-6 attempts to provide a concise
description of what each annotation is used for. Some of the usages get a little complex,so
you may want to refer to the Javadoc for more details.

Table 24-6. JAXB Annotations
Annotation Description

@XmlAccessorOrder Used on a package or class to set alphabetic ordering of marshalled fields and properties.
(The default ordering is undefined.) See @XmlType to specify the ordering yourself. As a
reminder: package-level annotations in Java are placed on a (lonely) package statement in a
special file named package-info.java within the corresponding package structure. (See
“Annotations” on page 219.)

@XmlAccessorType Used on a package or class to specify whether fields and properties are marshalled by default.
You can choose: only fields, only properties (getters/setters), none (only those annotated by
the user), or all public fields and properties. See @XmlTransient to exclude items.

@XmlAnyAttribute Designates a Java Map object to receive any unbound XML attribute name-value pairs for an
entity (i.e., the Map will collect any leftover attributes for which no corresponding property
or field can be found).

@XmlAnyElement Designates a Java List or Array object to receive any unbound XML elements for an
entity (i.e., the List will accumulate any leftover elements for which no corresponding
property or field can be found).

@XmlAttachmentRef Designates a java.activation.DataHandler object to handle an XML MIME
attachment.

@XmlAttribute Binds a Java field or property to an XML attribute. The name attribute can be used to specify
an XML attribute name that is different from the name of the field or property. Use the
required attribute to specify whether the attribute is required.

@XmlElement Binds a a Java field or property to an XML element. The name attribute can be used to
specify an XML element name different from the name of the field or property. Use the
required attribute to specify whether the element is required.

@XmlElements Used on a Java collection to specify distinct element names for contained items based on
their Java type. Holds a list of @XmlElement annotations with name and type attributes
that explicitly map Java types in the collection to XML element names (e.g., in our example,
inventory contains animal elements because our List property is named “animal”). If
we chose to have subclasses of Animal in our inventory collection, we could map them to
XML element names such as gorilla and lemur. See @XmlElementRef.

888 | Chapter 24: XML

Annotation Description

@XmlElementRef Similar to @XmlElements, used to generate individualized names for Java types in a
collection. However, instead of the names for each type being specified directly, they are
determined at runtime by the individual types’ Java type bindings (e.g., in our example,
inventory contains animal elements because our List is named “animal”). Using
@XmlElementRef, we could subclass Animal and have our inventory contain
elements like gorilla and lemur, with the names determined by @XmlRootElement
annotations on the respective subclasses. See important class binding info in @XmlElemen
tRefs.

@XmlElementRefs Used on a Java collection to provide a list of @XmlElementRef annotations with type
attributes that explicitly specify the Java types that may appear in the collection. The effect is
the same as using a simple @XmlElementRef on the collection, but we actively tell JAXB
the class names that have bindings. If not supplied in this way, we have to provide the full
list of bound classes to the JAXBContextnewInstance() method in order for them to
be recognized.

@XmlElementWrapper Used on a Java collection to cause the sequence of XML elements to be wrapped in the
specified element instead of appearing directly inline in the XML (e.g., our animal elements
appear directly in inventory). Using this annotation, we could nest them all within a new
animals element.

@XmlEnum Binds a Java Enum to XML and allows @XmlEnumValues annotations to be used to map the
enum values for XML if required.

@XmlEnumValue Binds an individual Java Enum value to a string to be used in the XML (e.g., our mammal
enum value could be mapped to “mammalia”).

@XmlID Supports referential integrity by designating a Java property or field of a class as being the
XML ID attribute (a unique key) for the XML element within the document.

@XmlIDREF Supports referential integrity by designating a Java property or field as an idref attribute
pointing to an element with an @XmlID. The annotated property or field must contain an
instance of a Java type containing an @XmlID annotation. When marshalled, the attribute
name will be the property name and the value will be the contained XML ID value.

@XmlInlineBinaryData Bind a Java byte array to receive base64 binary data encoded in the XML.

@XmlList Used on a Java collection to map items to a single simple content element with a
whitespace-separated list of values instead of a series of elements.

@XmlMimeType Used with a Java Image or Source type to specify a MIME type for XML base64-encoded
binary data bound to it.

@XmlMixed Binds a Java object collection to XML “mixed content” (i.e., XML containing both text and
element tags within it). Text will be added to the collection as String objects interleaved
with the usual Java types representing the other elements.

@XmlRootElement Bind a Java class to an XML element optionally provide a name. This is the minimum
annotation required on your class to make it possible to marshal it to XML and back.

@XmlElementDecl Used in binding XML schema elements to methods in Java object factories created in some
code generation scenarios.

@XmlRegistry Used with @XmlElementDecl in designating Java object factories used in some code
generation scenarios.

@XmlSchema Binds a Java package to a default XML namespace.

JAXB Code Binding and Generation | 889

Annotation Description

@XmlNs Used with @XmlSchema to bind a Java package to one or more XML namespace prefixes.

@XmlSchemaType Used on a Java property, field, or package. Specifies a Java type to be used for a standard
XML schema built-in types, such as date or a numeric type.

@XmlSchemaTypes Used on a Java package. Holds a list of @XmlSchemaType annotations mapping Java types
to built-in XML schema types.

@XmlTransient Designates that a Java property or field should not be marshaled to the XML. This can be
used in conjunction with defaults that marshal all properties or fields to exclude individual
items. See @XmlAccessorType.

@XmlType Binds a Java class to an XML schema type. Additionally, the propOrder attribute may be
used to explicitly list the order in which elements are marshalled to XML.

@XmlValue Designates that a Java property or field contains the “simple” XML content for the Java type;
that is, instead of marshalling the class as an XML element containing a nested element for
the property, the value of the annotated property will appear directly as the content. The
Java type may have only one property designated as @XmlValue.

Unmarshalling from XML

Creating our object model from XML just requires a few lines to create an Unmarshal
ler from our JAXBContext and a cast to the Java type of our root element:

JAXBContext context = JAXBContext.newInstance(Inventory.class);
Unmarshaller unmarshaller = context.createUnmarshaller();
Inventory inventory = (Inventory)unmarshaller.unmarshal(
 new File("zooinventory.xml"));

The Unmarshaller class has a setValidating() method like the SAXParser, but it is
deprecated. Instead, we could use the setSchema() method to set an XML Schema
representation if we want validation as part of the parsing process. Alternately, we could
just validate the schema separately. See “XML Schema” on page 879.

Generating a Java Model from an XML Schema
If you are starting with an XML Schema (xsd file), you can generate annotated Java
classes from the schema using the JAXB xjc command-line tool that comes with the
JDK.

xjc zooinventory.xsd

// Output
parsing a schema...
compiling a schema...
generated/Animal.java
generated/FoodRecipe.java
generated/Inventory.java
generated/ObjectFactory.java

890 | Chapter 24: XML

By default, the output is placed in the default package in a directory named generated.
You can control the package name with the -p switch and the directory with -d. See the
xjc documentation for more options.

Studying the generated classes will give you some hints as to how many annotations are
used, although xjc is a little more verbose than it has to be. Also note that xjc produces
a class called ObjectFactory that contains factory methods for each type, such as cre
ateInventory() and createAnimal(). If you look at these methods, you’ll see that they
really just call new on the plain Java objects and they seem superfluous. The ObjectFac
tory is mainly there for legacy reasons. In ealier versions of JAXB, before annotations,
the generated classes were not as simple to construct. Additionally, the ObjectFacto
ry contains a helper method to create a JAXBElement type, which may be useful in special
situations. For the most part, you can ignore these.

Generating an XML Schema from a Java Model
You can also generate an XML Schema directly from your annotated Java classes using
the JAXB XML Schema binding generator: schemagen. The schemagen command-line
tool comes with the JDK. It can generate a schema starting with Java source or class files.
Use the -classpath argument to specify the location of the classes or source files and
then provide the name of the root class in your hierarchy:

schemagen -classpath . Inventory

Having worked our way through the options for bridging XML to Java, we’ll now turn
our attention to transformations on XML itself with XSL, the styling language for XML.

Transforming Documents with XSL/XSLT
Earlier in this chapter, we used a Transformer object to copy a DOM representation of
an example back to XML text. We mentioned that we were not really tapping the po‐
tential of the Transformer. Now, we’ll give you the full story.

The javax.xml.transform package is the API for using the XSL/XSLT transformation
language. XSL stands for Extensible Stylesheet Language. Like Cascading Stylesheets
(CSS) for HTML, XSL allows us to “mark up” XML documents by adding tags that
provide presentation information. XSL Transformation (XSLT) takes this further by
adding the ability to completely restructure the XML and produce arbitrary output. XSL
and XSLT together make up their own programming language for processing an XML
document as input and producing another (usually XML) document as output. (From
here on in, we’ll refer to them collectively as XSL.)

XSL is extremely powerful, and new applications for its use arise every day. For example,
consider a website that is frequently updated and that must provide access to a variety
of mobile devices and traditional browsers. Rather than recreating the site for these and

Transforming Documents with XSL/XSLT | 891

additional platforms, XSL can transform the content to an appropriate format for each
platform. More generally, rendering content from XML is simply a better way to preserve
your data and keep it separate from your presentation information. XSL can be used to
render an entire website in different styles from files containing “pure data” in XML,
much like a database. Multilingual sites also benefit from XSL to lay out text in different
ways for different audiences.

You can probably guess the caveat that we’re going to issue: XSL is a big topic worthy
of its own books (see, for example, O’Reilly’s Java and XSLT by Eric Burke), and we can
only give you a taste of it here. Furthermore, some people find XSL difficult to under‐
stand at first glance because it requires thinking in terms of recursively processing
document tags. In recent years, much of the impetus behind XSL as a way to produce
web-based content has fallen away in favor of using more JavaScript on the client. How‐
ever, XSL remains a powerful way to transform XML and is widely used in other
document-oriented applications.

XSL Basics
XSL is an XML-based standard, so it should come as no surprise that the language is
based on XML. An XSL stylesheet is an XML document using special tags defined by
the XSL namespace to describe the transformation. The most basic XSL operations
involve matching parts of the input XML document and generating output based on
their contents. One or more XSL templates live within the stylesheet and are called in
response to tags appearing in the input. XSL is often used in a purely input-driven way,
whereas input XML tags trigger output in the order in which they appear, using only
the information they contain. But more generally, the output can be constructed from
arbitrary parts of the input, drawing from it like a database, composing elements and
attributes. The XSLT transformation part of XSL adds things like conditionals and iter‐
ation to this mix, which enable any kind of output to be generated based on the input.

An XSL stylesheet contains a stylesheet tag as its root element. By convention, the style‐
sheet defines a namespace prefix xsl for the XSL namespace. Within the stylesheet, are
one or more template tags contain a match attribute that describes the element upon
which they operate.

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/">
 I found the root of the document!
 </xsl:template>

</xsl:stylesheet>

When a template matches an element, it has an opportunity to handle all the children
of the element. The simple stylesheet shown here has one template that matches the root

892 | Chapter 24: XML

of the input document and simply outputs some plain text. By default, input not matched
is simply copied to the output with its tags stripped (HTML convention). But here we
match the root so we consume the entire input and nothing but our message appears
on the output.

The match attribute can refer to elements using the XPath notation that we described
earlier. This is a hierarchical path starting with the root element. For example, match="/
inventory/animal" would match only the animal elements from our zooinvento‐
ry.xml file. In XSL, the path may be absolute (starting with “/”) or relative, in which case,
the template detects whenever that element appears in any subcontext (equivalent to
“//” in XPath).

Within the template, we can put whatever we want as long as it is well-formed XML (if
not, we can use a CDATA section or XInclude). But the real power comes when we use
parts of the input to generate output. The XSL value-of tag is used to output the content
or child of the element. For example, the following template would match an animal
element and output the value of its Name child element:

<xsl:template match="animal">
 Name: <xsl:value-of select="name"/>
</xsl:template>

The select attribute uses an XPath expression relative to the current node. In this case,
we tell it to print the value of the name element within animal. We could have used a
relative path to a more deeply nested element within animal or even an absolute path
to another part of the document. To refer to the “current” element (in this case, the
animal element itself), a select expression can use “.” as the path. The select ex‐
pression can also retrieve attributes from the elements that it references.

If we try to add the animal template to our simple example, it won’t generate any output.
What’s the problem? If you recall, we said that a template matching an element has the
opportunity to process all its children. We already have a template matching the root
(“/”), so it is consuming all the input. The answer to our dilemma—and this is where
things get a little tricky—is to delegate the matching to other templates using the apply-
templates tag. The following example correctly prints the names of all the animals in
our document:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/
 Transform" version="1.0">

 <xsl:template match="/">
 Found the root!
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="animal">
 Name: <xsl:value-of select="name"/>

Transforming Documents with XSL/XSLT | 893

 </xsl:template>

</xsl:stylesheet>

We still have the opportunity to add output before and after the apply-templates tag.
But upon invoking it, the template matching continues from the current node. Next,
we’ll use what we have so far and add a few bells and whistles.

Transforming the Zoo Inventory
Your boss just called, and it’s now imperative that your zoo clients have access to the
zoo inventory through the Web, today! After reading Chapter 15, you should be thor‐
oughly prepared to build a nice “zoo app.” Let’s get started by creating an XSL stylesheet
to turn our zooinventory.xml into HTML:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="inventory">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="animal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="name" type="xs:string"/>

<xs:element name="animal">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element name="species" type="xs:string"/>
 <xs:element name="habitat" type="xs:string"/>
 <xs:choice>
 <xs:element name="food" type="xs:string"/>
 <xs:element ref="foodRecipe"/>
 </xs:choice>
 <xs:element name="temperament" type="xs:string"/>
 <xs:element name="weight" type="xs:double"/>
 </xs:sequence>
 <xs:attribute name="animalClass" default="unknown">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="mammal"/>
 <xs:enumeration value="reptile"/>
 <xs:enumeration value="bird"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

894 | Chapter 24: XML

 </xs:complexType>
</xs:element>

<xs:element name="foodRecipe">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element maxOccurs="unbounded" name="ingredient" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

The stylesheet contains three templates. The first matches /inventory and outputs the
beginning of our HTML document (the header) along with the start of a table for the
animals. It then delegates using apply-templates before closing the table and adding
the HTML footer. The next template matches inventory/animal, printing one row of
an HTML table for each animal. Although there are no other animal elements in the
document, it still doesn’t hurt to specify that we will match an animal only in the context
of an inventory, because, in this case, we are relying on inventory to start and end our
table. (This template makes sense only in the context of an inventory.) Finally, we
provide a template that matches foodRecipe and prints a small, nested table for that
information. foodRecipe makes use of the "for-each" operation to loop over child
nodes with a select specifying that we are only interested in ingredient children. For
each ingredient, we output its value in a row.

There is one more thing to note in the animal template. Our apply-templates element
has a select attribute that limits the elements affected. In this case, we are using the "|"
regular expression-like syntax to say that we want to apply templates for only the
foodorfoodRecipe child elements. Why do we do this? Because we didn’t match the
root of the document (only inventory), we still have the default stylesheet behavior of
outputting the plain text of nodes that aren’t matched anywhere else. We take advantage
of this behavior to print the text of the food element. But we don’t want to output the
text of all of the other elements of animal that we’ve already printed explicitly, so we
process only the food and foodRecipe elements. Alternatively, we could have been more
verbose, adding a template matching the root and another template just for the food
element. That would also mean that new tags added to our XML would, by default, be
ignored and not change the output. This may or may not be the behavior you want, and
there are other options as well. As with all powerful tools, there is usually more than
one way to do something.

Transforming Documents with XSL/XSLT | 895

XSLTransform
Now that we have a stylesheet, let’s apply it! The following simple program, XSLTrans
form, uses the javax.xml.transform package to apply the stylesheet to an XML docu‐
ment and print the result. You can use it to experiment with XSL and our example code.

 import javax.xml.transform.*;
 import javax.xml.transform.stream.*;

 public class XSLTransform
 {
 public static void main(String [] args) throws Exception {
 if (args.length < 2 || !args[0].endsWith(".xsl")) {
 System.err.println("usage: XSLTransform file.xsl file.xml");
 System.exit(1);
 }
 String xslFile = args[0], xmlFile = args[1];

 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer =
 factory.newTransformer(new StreamSource(xslFile));
 StreamSource xmlsource = new StreamSource(xmlFile);
 StreamResult output = new StreamResult(System.out);
 transformer.transform(xmlsource, output);
 }
 }

Run XSLTransform, passing the XSL stylesheet and XML input, as in the following
command:

% java XSLTransform zooinventory.xsl zooinventory.xml > zooinventory.html

The output should look like Figure 24-2.

Figure 24-2. Image of the zoo inventory table

Constructing the transform is a similar process to that of getting a SAX or DOM parser.
The difference from our earlier use of the TransformerFactory is that this time,
we construct the transformer, passing it the XSL stylesheet source. The resulting

896 | Chapter 24: XML

Transformer object is then a dedicated machine that knows how to take input XML
and generate output according to its rules.

One important thing to note about XSLTransform is that it is not guaranteed thread-
safe. In our example, we run the transform only once. If you are planning to run the
same transform many times, you should take the additional step of getting a Tem
plates object for the transform first, then using it to create Transformers.

Templates templates =
 factory.newTemplates(new StreamSource(args[0]));
Transformer transformer = templates.newTransformer();

The Templates object holds the parsed representation of the stylesheet in a compiled
form and makes the process of getting a new Transformer much faster. The transform‐
ers themselves may also be more highly optimized in this case. The XSL transformer
actually generates bytecode for very efficient “translets” that implement the transform.
This means that instead of the transformer reading a description of what to do with
your XML, it actually produces a small compiled program to execute the instructions!

XSL in the Browser
With our XSLTransform example, you can see how you’d go about rendering XML to
an HTML document on the server side. But as mentioned in the introduction, modern
web browsers support XSL on the client side as well. Browsers can automatically down‐
load an XSL stylesheet and use it to transform an XML document. To make this happen,
just add a standard XSL stylesheet reference in your XML. You can put the stylesheet
directive next to your DOCTYPE declaration in the zooinventory.xml file:

<?xml-stylesheet type="text/xsl" href="zooinventory.xsl"?>

As long as the zooinventory.xsl file is available at the same location (base URL) as the
zooinventory.xml file, the browser will use it to render HTML on the client side.

Web Services
As we saw in our web services examples in Chapters 14 and 15, one of the most inter‐
esting uses for XML is web services. A web service is simply an application service
supplied over the network, making use of XML to describe the request and response.
Normally, web services run over HTTP and use an XML-based protocol called Simple
Object Access Protocol (SOAP), a W3C standard. The combination of XML and HTTP
provides a widely accessible interface for services.

SOAP and other XML-based remote procedure call mechanisms can be used in place
of Java RMI for cross-platform communications. Web services are widely used and it is
likely that they will continue to grow in importance in coming years. To learn more

Web Services | 897

about Java APIs related to web services, check out the networking chapters of this book
and take a look at http://java.sun.com/webservices/.

That’s it for our brief introduction to XML. There is a lot more to learn about this exciting
area, and many of the APIs are evolving rapidly. We hope we’ve given you a good start.

The End of the Book
With this chapter, we also wrap up the main part of our book. We hope that you’ve
enjoyed Learning Java. This, the fourth edition of Learning Java, is really the sixth ed‐
ition of the series that began seventeen years ago with Exploring Java. It’s been a long
and amazing trip watching Java develop in that time, and we thank those of you who
have come along with us over the years. As always, we welcome your feedback to help
us keep making this book better in the future. Ready for another decade of Java? We
are!

898 | Chapter 24: XML

APPENDIX A

The Eclipse IDE

In this book, we have tried to focus on the Java language and APIs without spending
too much time talking about specific tools. But Java programming today really requires
the use of an Integrated Development Envrionment (IDE). Modern languages and de‐
veloment tools are intertwined to such an extent that it’s hard to imagine working on
large projects without the support of a good IDE. Modern development tools “under‐
stand” the language deeply and give you great power to create, search, modify, and fix
problems with your code.

A wide array of Java IDEs with varying features are available. Like all power tools, IDEs
are constantly changing and improving. Our preferred development environment of
many years is Intellij IDEA by JetBrains. However, by far the most widely used IDE for
Java is the open source Eclipse project. In the tutorial introduction to this book, we
briefly introduced Eclipse. In this appendix, we will go a little farther and use it to load
and explore the example code from this book, which have been packaged for you as an
Eclipse project.

IDEs offer many benefits as well as a few drawbacks, especially for the new Java
programmer. The benefits include an all-in-one view of Java source code with syntax
highlighting, navigation help, source control, integrated documentation, building, re‐
factoring, and deployment all at your fingertips. The downside, historically at least, has
been that the all-in-one tool tends to become an all-or-nothing tool that locks users into
the product and makes them all but helpless without it. IDEs tend to encourage an overly
simplistic project layout with no structure or partitioning to help humans understand
it. IDEs can also become hairballs of state and information about the project that cannot
be easily shared with other developers or across projects. Many of these problems are
being addressed by the latest generation of IDEs and for most people, the benefits far
outweigh the negatives.

899

The IDE Wars
Comparing IDEs on features alone is futile because all modern IDEs are based on a
plug-in architecture that allows new tools to be added by third parties. Saying that an
IDE has feature X is just an invitation for someone to retort that her IDE has plug-ins
for X and Y. Still, it is worth taking a moment to draw some comparisons here (if we
dare). In this book, we have used both the NetBeans 7.2 and Eclipse 4.2 editors. How
do they stack up? The short answer is that, at the time of this writing, Eclipse is more
popular and a bit more polished at the expense of being platform-dependent, whereas
the latest release of NetBeans offers a few more advanced features out of the box.
NetBeans offers a visual application builder and a web application development envi‐
ronment. Of course, you can add those to Eclipse, but you must choose from (possibly
pay-ware) alternatives. Another important feature of NetBeans 4.x is that it uses a fully
externalized Ant build process. This means that you can build your application inside
or outside of the IDE in exactly the same way. With that said, let’s move on to Eclipse.

Getting Started with Eclipse
Let’s get started. First, you’ll need to install Eclipse. Download the latest version of
“Eclipse IDE for Java Developers”. Choose the correct version for your platform. Unpack
the ZIP file to a location of your choice and then launch the application.

The first time you run Eclipse, you’ll be prompted to select a workspace. This is a root
directory to hold new projects that you create within Eclipse. The default location may
be inside the application’s install folder itself, which is probably not what you want. Pick
a location and click OK.

Eclipse greets you with the Welcome screen. Close this window by closing the Welcome
tab within the application. If you want to come back later and go through the Eclipse
tutorials and related help topics, you can get this window back by choosing Help →
Welcome.

One last thing before we move on: Eclipse stores all of its configuration information in
the configuration folder inside the Eclipse installation directory. If, at any point in this
introduction, you feel that things are not right and you want to start from scratch, you
can quit the application and remove this folder. You may also wish to remove your
workspace items as they hold per-project state. Less drastically, if you wish to reset all
of the application windows to their default locations, you can choose Window → Reset
Perspective. We’ll talk more about perspectives later.

Importing the Learning Java Examples
Before we talk about the IDE itself, let’s load the examples from this book. You can find
a ZIP file containing all of the examples from this book nicely packaged as an Eclipse

900 | Appendix A: The Eclipse IDE

project at http://oreil.ly/Java_4E. The Eclipse version of the examples is called examples-
eclipse.zip.

Open the Import Wizard with File → Import and select General → Existing Projects Into
Workspace as the source and click Next. Choose Select Archive File. Click the Browse
button and locate the examples-eclipse.zip file. The Import wizard should look like
Figure A-1. Click Finish.

Eclipse will now import all of the files from the archive and immediately begin building
the source in the background (a small progress bar at the bottom of the screen will show
this).

Figure A-1. The import projects dialog box

Using Eclipse
The first thing we need to do is set up the IDE for browsing and editing our Java source
code. If you downloaded the standard Java developer version of Eclipse, it should be set
up for Java development. If you chose another package, you may need to select
Window → Open Perspective → Java to put Eclipse into the Java editing perspective. A
perspective in Eclipse is an arrangement of different tools, menu bars, and shortcuts
geared toward a particular kind of task, such as Java editing or source repository brows‐
ing. You can open additional tools and move things around to your liking, but the
predefined perspectives give you a good start. Now the Learning Java examples appear
in Eclipse, as shown in Figure A-2.

On the left is the Package Explorer. It shows a tree view of the Java packages, libraries,
and resources of our project. Click the folder handles to expand the tree and see source
folders for each chapter in the book.

The bottom area holds tabs related to Java editing. The tab that is open in Figure A-2,
Problems, shows errors and warnings associated with our project code. Eclipse has
already compiled our code in the background. In general, you don’t have to tell it to do

Using Eclipse | 901

so. You’ll also notice red Xs on some of the source folders and files. These files have
errors. We’ll talk about why some of our examples are being flagged in a moment. The
other tabs, Javadoc and Declaration, give information about the file we’re editing or the
source code item selected. The Declaration tab can show a preview of the source for an
item selected in the main editor window without requiring you to open it explicitly.

To clear up some of those red Xs, we need to make sure that Eclipse is in Java 7.0-
compatible mode. Choose Eclipse (or Window) → Preferences → Java → Compiler and
set the Compiler Compliance Level to 7.0. Click OK and select Yes to rebuild the source.
(It is also possible to set the compiler level on a per-project basis through the project
preferences.)

Figure A-2. Learning Java examples in Eclipse’s Java editing perspective

If there are still some red Xs left, double-click the README-Eclipse.txt file in the project
tree to read the latest explanations for these issues. Some of these issues relate to gen‐
erating source code or installing additional libraries to make the examples work
properly.

902 | Appendix A: The Eclipse IDE

Getting at the Source
Let’s navigate to a source file. Go to the Calculator.java file located in the ch19/default
package. Double-click it to open the source, as shown in Figure A-3.

When you’re expanding the source folder tree, you can actually continue “deeper” than
the Java source file level, expanding elements of the file itself. By moving into the source
file in the explorer, you can expose parts of the Java source like methods, variables, and
inner classes. By double-clicking these elements, you can open the file and jump right
to the corresponding line. This is similar to the outline view that we’ll see in the next
section.

Figure A-3. Opening Calculator.java

The Lay of the Land
In the center of the screen, the open file is displayed in a new editor tab. The editor is,
of course, the center of much of the action in a Java IDE. Note the color-coded syntax
highlighting. Also, notice the little arrows immediately to the left of the source code.
These are folds. A fold groups a section of Java code, such as a Java method or comment,
and allows you to collapse or expand it like an outline. For example, the import

Using Eclipse | 903

statements in the file are folded by default. Click the blue arrow to the left of the import
line to expand them and see all of the imports.

Next, warnings and errors are highlighted in the column to the left of the folds column.
Try making a small error in the file. For example, try changing the javax.swing import
to javax.boofa and see what happens. Note all the red Xs indicating problems. When
you hover over a red X, you get a pop-up report of the problem. The column on the
right of the scrollbar provides a view of the location of warnings and errors. Clicking
on these areas takes you to the corresponding line of code. The problems area in the
bottom tab is also linked; clicking on a problem report opens the corresponding file at
the correct line.

On the right side of the IDE is the outline pane that shows a structured view of the Java
code similar to what we saw by expanding the source file tab in the project browser. By
clicking on a field, method, or inner class, you jump to the corresponding line in the
source editor. Options at the top of the pane let you filter which members are shown
for quick access.

Running the Examples
To run the Calculator example, you can simply hit the large green arrow Run button
while the source file is open or select the source file in the explorer and choose Run →
Run As → Java Application. The Calculator runs, as shown in Figure A-4.

You may use Run As to tell Eclipse that this file actually is a standalone class with a
main() method. Normally, a project has a lot of code and only one or a few main()
methods. In that case, the Run menu option (and large green “play” button icon on the
toolbar) can be configured to launch the default class for the overall application. An
individual file can also be launched from its context menu, which you display by right-
clicking on the file (control-click on the Mac). If we had chosen an application that
printed output to System.out, Eclipse would have opened a Console tab in the bottom
panel to capture the output. To see this in action, run the ch10/PrintfExamples.java
example. To run an example that requires arguments, you choose the more general Run
option from the Run menu instead. This option pops up a dialog box that lets you
configure, among other things, command-line arguments for the launch. The Run menu
also includes a Run History option with recent launches so you can run them again
quickly.

904 | Appendix A: The Eclipse IDE

Figure A-4. Running the calculator

Building the Ant-Based Examples
Some of the chapters include components that must be built with the supplied Ant build
file. For example, the JavaBeans JAR in Chapter 22 and the Web Application WAR file
in Chapter 15 have Ant builds. You can run Ant from within Eclipse simply by right-
clicking the build.xml file in the folder and selecting Run As → Ant Build. However, in
order to see it you’ll have to open the Project Explorer using Windows → Show View →
Project Explorer. (The Project Explorer shows all files in the project as opposed to the
view of the Java class hierarchy shown by the Package Explorer.) There are two Ant
Build options. The first runs the default target for the build, while the second lets you
choose a target (analogous to Run As and Run in the Run menu). For example, to build
the magicbeans.jar file from Chapter 22, navigate to sr/ch22/magicbeans/build.xml,
right-click, and select Run As → Ant Build (the first option). You may have to use the
File → Refresh option to see new files generated by the Ant build in the project tree.

Using Eclipse | 905

Loner Examples
Some of the examples in the book may be a little easier to deal with outside of Eclipse,
at least until you become immersed in the IDE. For example, some of the networking
examples may be more easily run on the command line. There’s no reason to stay in the
IDE for everything. Get comfortable in both environments.

Eclipse Features
Eclipse has too many interesting features to really do them justice here, but we’ll mention
a few to show you why people love this IDE.

Coding Shortcuts
Of course, you’ve noticed all the color coding and meta-information present when
viewing Java source code in Eclipse. You can customize all of this behavior to suit your
taste through the Eclipse → Preferences → Java → Editor → Syntax Coloring panel. Many
other options can be set through the Eclipse → Preferences → Java → Code Style and
Editor panes.

What may not be immediately obvious is that editing is also enhanced. When typing,
try pressing Ctrl-Space to attempt autocompletion or have Eclipse present you with
relevant options. For example, instead of typing JButton, try typing JBu plus Ctrl-Space.
Eclipse completes the name for you. If the portion of the name you type is ambiguous,
a drop-down list appears, similar to that shown in Figure A-5.

Eclipse also provides abbreviations for common items. Try typing sysout and pressing
Crtl-Space. Eclipse expands this to System.out.println() and places the cursor in the
parentheses automatically. If you type a quotation mark, Eclipse closes the quotation
for you. Note the green bar that it places after the closing quote. Pressing Tab takes you
to that point so that you don’t have to use the arrow keys. Pressing Tab again takes you
to the next green bar spot, which is the end of the line.

906 | Appendix A: The Eclipse IDE

Figure A-5. Using completion in Eclipse

Autocorrection
Eclipse can offer fixes for simple problems in your code when it detects them. To see
suggested fixes, click on the red X next to a problem line. Eclipse presents a drop-down
menu of possible fixes for the problem. Selecting an option shows you the code changes
that Eclipse will make before you choose it.

For example, try changing the name of one of the JButtons in our Calculator to JBBut
ton. Now, click the red X and a screen similar to Figure A-6 appears. Eclipse offers
several possible corrections; the best one is to fix the misspelling and change it back to
JButton. Of course, if we’d really meant to refer to a new kind of button, we could choose
the option to create the new class right there and Eclipse would help us do that by
creating a skeleton for us.

Eclipse Features | 907

Figure A-6. Autocorrection in Eclipse

Refactoring
Eclipse offers a number of tools under the collective title refactoring. These include the
ability to rename and move members, automatically tracking down references to them
and changing them throughout the project. More advanced options allow you to do
things like create an interface for your class by copying all of its public methods or add
a factory pattern to your code to encapsulate all object creation for a type. You can even
encapsulate access to a variable, changing the code to use an accessor method instead.
These tools can save you a lot of typing (or retyping, as the case may be).

As an example, let’s look at our Calculator again. Click on the addGB() method in the
outline or select the method definition yourself. We use this method a lot, so let’s give
it a better name. Select Refactor → Rename and change the name to addToGridBag. If
you want to see what it’s going to do in advance, press the preview button to get a diff
view of the code. By selecting OK, Eclipse changes the name and all references to the
method in your project (in this case that would include all of the source directories for
all chapters). You can also refactor methods in order to change the method signature
and add or remove arguments.

908 | Appendix A: The Eclipse IDE

Diffing Files
Eclipse provides the ability to quickly diff two files. Select two files simultaneously in
the Package Explorer. Right-click one of the files to display a context menu and select
Compare With → Each Other. Eclipse opens a dual-source view editor pane that shows
the differences between the files graphically. You can even resolve conflicts by copying
differences from one file to the other with the arrows at the top of the pane. For example,
open ch15/webapp-xml/all-web.xml and ch15/webapp-xml/filters-web.xml and view the
differences. You can also review changes made to a file using the Compare With → Local
History option that lets you compare the current state of the file with previous saves in
the project. These are very useful tools.

Organizing Imports
Eclipse can tidy up the import statements in your source code. Selecting Source →
Organize Imports causes Eclipse to turn package imports into single class imports.
Eclipse automatically determines exactly which classes from each package are used and
breaks the package imports into individual imports. This makes the code a little more
explicit, but some people prefer package imports when too many classes are used.

Formatting Source Code
Eclipse can autoformat your source code using the Source → Format option. This applies
standard Java conventions and indentation. The style is highly customizable; choose
Window → Preferences → Java → Code Style → Formatter to see the available options.

Conclusion
This appendix provides the briefest of introductions to the sorts of things that you can
do in Eclipse and other Java IDEs. Please investigate more on your own to learn about
what these tools can do to increase your productivity as a Java developer. You should
also compare Eclipse, NetBeans, and others such as Intellij IDEA to see which you prefer.
And don’t forget to read more about Apache Ant for building Java applications.

Conclusion | 909

APPENDIX B

BeanShell: Java Scripting

In this book, we (in this case, I, Pat) have avoided talking about many third-party tools
that aren’t part of the standard JDK. I’m going to make an exception here to give a shout
out to a nifty, free Java tool called BeanShell. As its name suggests, BeanShell can be
used as a Java “shell.” It allows you to type standard Java syntax—statements, expressions,
and even classes—on the command line or evaluate bits of source code from within
your applications. With BeanShell, you can try out bits of code as you work through the
book. You can access all Java APIs and even create graphical user interface components
and manipulate them “live.” BeanShell uses only reflection, so there is no need to compile
class files.

I wrote BeanShell while developing the examples for this book, and I think it makes a
fun companion to have along on your journey through Java. BeanShell is an open source
software project and at the time of this writing is in the process of being adopted by the
Apache foundation. You can find the latest updates and more information at its current
home. Over the years, BeanShell has been a popular tool and has been widely used in
tools and projects that require scripting. However, today there are probably better op‐
tions for serious scripting integration with Java. For example, you may wish to look at
Jython, an implementation of the Python scripting language, as another option. Many
scripting languages can be accessed in a plug-in/ provider fashion using the
java.scripting API (JSR-223). The JDK 7 is bundled with the Mozilla Rhino imple‐
mentation of JavaScript, as another option.

Running BeanShell
All you need to run BeanShell is the Java runtime system (version 1.1 or greater) and
the bsh JAR file. Under Mac OS X and Windows, you can launch a graphical desktop
for BeanShell by simply double-clicking the JAR file. More generally, you can add the
JAR to your classpath:

911

 Unix: export CLASSPATH=$CLASSPATH:bsh.jar
 Windows: set classpath %classpath%;bsh.jar

You can then run BeanShell interactively in either a GUI or command-line mode:
 java bsh.Console // run the graphical desktop
 java bsh.Interpreter // run as text-only on the command line

Running BeanShell with the GUI console brings up a simple, Swing-based desktop that
allows you to open multiple shell windows with basic command history, line editing,
and cut-and-paste capability. There are some other GUI tools available as well, including
a simple text editor and class browser. Alternately, you can run BeanShell on the com‐
mand line, in text-only mode.

You can run BeanShell scripts from files, like so:
 % java bsh.Interpreter myfile.bsh

Within some versions of the NetBeans and Sun Java Studio IDEs, you can create Bean‐
Shell script files using the New File wizard or run any file with a .bsh extension just as
you would execute Java code.

Java Statements and Expressions
At the prompt or in a BeanShell script, you can type standard Java statements and
expressions. Statements and expressions are all of the normal things that you’d include
in a Java method: variable declarations and assignments, method calls, loops, and con‐
ditionals. You can declare classes in the usual way if you want to, but BeanShell allows
you to write statements outside of a class or method in an unstructured way as well.

You can type statements exactly as they would appear in Java. You also have the option
of working in a more scripting-language-like fashion, with “loosely typed” variables and
arguments. In other words, you can be lazy and not declare the types of variables that
you use (both primitives and objects). BeanShell will still give you an error if you attempt
to misuse the actual contents of the variable. If you do declare types of variables or
primitives, BeanShell will enforce them.

Here are some examples:
 foo = "Foo";
 four = (2 + 2)*2/2;
 print(foo + " = " + four); // print() is a bsh command
 // do a loop
 for (i=0; i<5; i++)
 print(i);
 // pop up an AWT frame with a button in it
 button = new JButton("My Button");
 frame = new JFrame("My Frame");
 frame.getContentPane().add(button, "Center");

912 | Appendix B: BeanShell: Java Scripting

 frame.pack();
 frame.setVisible(true);

If you don’t like the idea of “loosening” Java syntax at all, you can turn off this feature
of BeanShell with the following command:

 setStrictJava(true);

Imports
By default, BeanShell imports all of the core Java packages for you. You can import your
own classes using the standard Java import declaration:

 import mypackage.*;

In addition to regular package, class, and static imports, BeanShell can also import the
methods and variables of an object instance into the current context using the impor
tObject() command. For example:

 Map map = new HashMap();
 importObject(map);
 put("foo", "bar");
 print(get("foo")); // "bar"

BeanShell Commands
BeanShell comes with a number of useful built-in commands in the form of Java meth‐
ods. These commands are implemented as BeanShell scripts, and are supplied in the
bsh JAR file. You can make your own commands by defining methods in your own
scripts or adding them to your classpath. See the BeanShell user’s manual for more
information.

One important BeanShell command is print(), which displays values. print() does
pretty much the same thing as System.out.println() except that it ensures the output
always goes to the command line (if you have multiple windows open). print() also
displays some types of objects (such as arrays) more verbosely than Java would. Another
very useful command is show(), which toggles on and off automatic printing of the
result of every line you type. (You can turn this on if you want to see every result value.)

Here are a few other examples of BeanShell commands:
source(), run()

Reads a script into this interpreter, or runs it in a new interpreter

frame()

Displays an AWT or Swing component in a frame

load(), save()
Loads or saves serializable objects (such as JavaBeans)

BeanShell Commands | 913

cd()

cat()

dir()

pwd()

Unix-like shell commands

exec()

Runs a native application

addClassPath()

reloadClasses()

Modifies the classpath or reload classes

javap()

Prints a javap-style class description for the class or object specified

See the BeanShell user’s manual for a full list of commands.

Scripted Methods and Objects
You can declare and use methods in BeanShell, just as you would inside a Java class:

 int addTwoNumbers(int a, int b) {
 return a + b;
 }
 sum = addTwoNumbers(5, 7); // 12

BeanShell methods may also have dynamic (loose) argument and return types.
 add(a, b) {
 return a + b;
 }
 foo = add(1, 2); // 3
 foo = add("Hello ", "Kitty"); // "Hello Kitty"

In BeanShell, as in JavaScript and Perl, method closures can take the place of classes for
scripting objects (but in BeanShell you can also use the regular class syntax). You can
turn the context of a method call into an object reference by having the method return
the special value this. You can then use the this reference to refer to any variables that
were set during the method call. To be useful, an object may also need methods; so in
BeanShell, methods may also contain methods at any level. Here is a simple example:

 user(n) {
 name = n;
 reset() {
 print("Reset user:"+name);
 }
 return this; // return user as object
 }
 bob = user("Bob");

914 | Appendix B: BeanShell: Java Scripting

 print(bob.name); // "Bob"
 bob.reset(); // prints "Reset user: Bob"

This example assigns the context of the user() method to the variable bob and refers
to the field bob.name and the method bob.reset().

If you find this strange, don’t worry. The most common reason you’d want to script an
object is to implement a Java interface, and you can do that using the standard Java
anonymous inner class syntax, as we’ll discuss next, or just use a regular class. BeanShell
gives you a lot of options.

Scripting Interfaces and Adapters
One of the most powerful features of BeanShell is that you can “script” any interface
type. BeanShell-scripted objects can automatically implement any required interface
type. The only thing you need to do is implement the necessary method (or at least the
ones that are going to be invoked). You can use this feature either by explicitly referring
to a BeanShell script using a this-style reference as described earlier, or by using the
standard Java anonymous inner class syntax. Here is an example:

 actionPerformed(event) { print(event); }
 button = new JButton("Press Me!");
 button.addActionListener(this);
 frame(button);

You can type this code right on the command line and press the button to see the events
it generates. In this case, the this reference refers to the current context, just as in a
method. BeanShell automatically implements the ActionListener interface and dele‐
gates calls to its actionPerformed() method to our scripted method.

Alternately, we could use the anonymous inner class syntax to create an ActionListen
er for our button:

 button = new JButton("Press Me!");
 button.addActionListener(new ActionListener() {
 actionPerformed(event) { print(event); }
 });
 frame(button);

In this case the “anonymous inner class” is actually a BeanShell script that implements
the ActionListener interface for us in the same way as the previous example.

One more thing: we hinted earlier that you only have to implement those methods of
the interface that you want to use. If you don’t script a method, it’s OK as long as it’s not
invoked (in which case, you’d get an exception). For convenience in implementing a
large interface, you can define the special invoke() method, which handles calls to
scripted methods that don’t exist:

 invoke(name, args) { print("Method: "+name+" invoked!"); }

Scripted Methods and Objects | 915

This invoke() method will handle method calls for methods that are not defined and
simply print their names. See the user manual for more details.

Changing the Classpath
Within BeanShell, you can add to your classpath and even reload classes:

 addClassPath("mystuff.jar");
 addClassPath("http://examples.oreilly.com/learnjava3/magicbeans.jar");

To reload all classes in the classpath, simply use:
 reloadClasses();

You can do more elaborate things as well, such as reloading individual classes, if you
know what you’re doing. See the user manual for more details.

Learning More . . .
BeanShell has many more features than I’ve described here. You can embed BeanShell
into your applications as a lightweight scripting engine, passing live Java objects into
and out of scripts. You can even run BeanShell in a remote server mode, which lets you
work in a shell inside your running application, for debugging and experimentation.
There is also a BeanShell servlet that can be used for running scripts inside an application
server.

BeanShell is small (only about 200 KB) and it’s free, licensed under multiple open source
licenses. You can learn more by checking out the full user’s manual and FAQ on the
website.

Please feel free to send feedback using the book’s web page. So long until the next edition!

916 | Appendix B: BeanShell: Java Scripting

Glossary

abstract
The abstract keyword is used to declare
abstract methods and classes. An abstract
method has no implementation defined; it
is declared with arguments and a return
type as usual, but the body enclosed in curly
braces is replaced with a semicolon. The
implementation of an abstract method is
provided by a subclass of the class in which
it is defined. If an abstract method appears
in a class, the class is also abstract.

annotations
Metadata added to Java source code using
the @ tag syntax. Annotations can be used
by the compiler or at runtime to augment
classes, provide data or mappings, or flag
additional services.

Ant
A popular, XML-based build tool for Java
applications. Ant builds can compile, pack‐
age, and deploy Java source code as well as
generate documentation and perform other
activities through pluggable “targets.”

API (Application Programming Interface)
An API consists of the methods and vari‐
ables programmers use to work with a com‐
ponent or tool in their applications. The
Java language APIs consist of the classes
and methods of the java.lang, java.util,

java.io, java.text, and java.net pack‐
ages and many others.

applet
An embedded Java application that runs in
the context of an applet viewer, such as a
web browser.

<applet> tag
An HTML tag that embeds an applet within
a web document.

appletviewer
Sun’s application that runs and displays Java
applets outside of a web browser.

application
A Java program that runs standalone, as
compared with an applet.

apt (Annotation Processing Tool)
A frontend for the Java compiler that pro‐
cesses annotations via a pluggable factory
architecture, allowing users to implement
custom compile-time annotations.

assertion
A language feature used to test for condi‐
tions that should be guaranteed by program
logic. If a condition checked by an assertion
is found to be false, a fatal error is thrown.
For added performance, assertions can be
disabled when an application is deployed.

917

atomic
Discrete or transactional in the sense that
an operation happens as a unit, in an all-or-
nothing fashion. Certain operations in the
Java virtual machine (VM) and provided by
the Java concurrency API are atomic.

AWT (Abstract Window Toolkit)
Java’s original platform-independent win‐
dowing, graphics, and user interface
toolkit.

BeanShell
An open source, lightweight, Java-
compatible scripting language that can be
used for Java experimentation, teaching,
application extension, configuration, and
debugging.

Boojum
The mystical, spectral, alter ego of a Snark.
From the 1876 Lewis Carroll poem “The
Hunting of the Snark.”

Boolean
A primitive Java data type that contains a
true or false value.

bounds
In Java generics, a limitation on the type of
a type parameter. An upper bound specifies
that a type must extend (or is assignable to)
a specific Java class. A lower bound is used
to indicate that a type must be a supertype
of (or is assignable from) the specified type.

boxing
Wrapping of primitive types in Java by their
object wrapper types. See also unboxing.

byte
A primitive Java data type that’s an 8-bit
two’s-complement signed number.

callback
A behavior that is defined by one object and
then later invoked by another object when
a particular event occurs. The Java event
mechanism is a kind of callback.

cast
The changing of the apparent type of a Java
object from one type to another, specified

type. Java casts are checked both statically
by the Java compiler and at runtime.

catch
The Java catch statement introduces an
exception-handling block of code follow‐
ing a try statement. The catch keyword is
followed by an exception type and argu‐
ment name in parentheses and a block of
code within curly braces.

certificate
An electronic document using a digital sig‐
nature to assert the identity of a person,
group, or organization. Certificates attest to
the identity of a person or group and con‐
tain that organization’s public key. A certif‐
icate is signed by a certificate authority with
its digital signature.

certificate authority (CA)
An organization that is entrusted to issue
certificates, taking whatever steps are nec‐
essary to verify the real-world identity for
which it is issuing the certificate.

char
A primitive Java data type; a variable of type
char holds a single 16-bit Unicode
character.

class
1. The fundamental unit that defines an

object in most object-oriented pro‐
gramming languages. A class is an en‐
capsulated collection of variables and
methods that may have privileged ac‐
cess to one another. Usually a class can
be instantiated to produce an object
that’s an instance of the class, with its
own unique set of data.

2. The class keyword is used to declare
a class, thereby defining a new object
type.

classloader
An instance of the class java.lang.Class
Loader, which is responsible for loading
Java binary classes into the Java VM. Class‐
loaders help partition classes based on their
source for both structural and security

atomic

918 | Glossary

purposes and can also be chained in a
parent-child hierarchy.

class method
See static method.

classpath
The sequence of path locations specifying
directories and archive files containing
compiled Java class files and resources,
which are searched in order to find com‐
ponents of a Java application.

class variable
See static variable.

client
The consumer of a resource or the party
that initiates a conversation in the case of a
networked client/server application. See al‐
so server.

Collections API
Classes in the core java.util package for
working with and sorting structured col‐
lections or maps of items. This API includes
the Vector and Hashtable classes as well as
newer items such as List, Map, and Queue.

compilation unit
The unit of source code for a Java class. A
compilation unit normally contains a single
class definition and in most current devel‐
opment environments is simply a file with
a .java extension.

compiler
A program that translates source code into
executable code.

component architecture
A methodology for building parts of an ap‐
plication. It is a way to build reusable ob‐
jects that can be easily assembled to form
applications.

composition
Combining existing objects to create an‐
other, more complex object. When you
compose a new object, you create complex
behavior by delegating tasks to the internal
objects. Composition is different from
inheritance, which defines a new object by

changing or refining the behavior of an old
object. See also inheritance.

constructor
A special method that is invoked automat‐
ically when a new instance of a class is cre‐
ated. Constructors are used to initialize the
variables of the newly created object. The
constructor method has the same name as
the class and no explicit return value.

content handler
A class that is called to parse a particular
type of data and that converts it to an ap‐
propriate object.

datagram
A packet of data normally sent using a con‐
nectionless protocol such as UDP, which
provides no guarantees about delivery or
error checking and provides no control
information.

data hiding
See encapsulation.

deep copy
A duplicate of an object along with all of the
objects that it references, transitively. A
deep copy duplicates the entire “graph” of
objects, instead of just duplicating refer‐
ences. See also shallow copy.

DOM (Document Object Model)
An in-memory representation of a fully
parsed XML document using objects with
names like Element, Attribute, and Text.
The Java XML DOM API binding is stand‐
ardized by the World Wide Web Consorti‐
um (W3C).

double
A Java primitive data type; a double value
is a 64-bit (double-precision) floating-
point number.

DTD (Document Type Definition)
A document containing specialized lan‐
guage that expresses constraints on the
structure of XML tags and tag attributes.
DTDs are used to validate an XML docu‐
ment and can constrain the order and

class method

Glossary | 919

nesting of tags as well as the allowed values
of attributes.

EJB (Enterprise JavaBeans)
A server-side business component archi‐
tecture named for, but not significantly
related to, the JavaBeans component archi‐
tecture. EJBs represent business services
and database components and provide de‐
clarative security and transactions.

encapsulation
The object-oriented programming techni‐
que of limiting the exposure of variables
and methods to simplify the API of a class
or package. Using the private and protected
keywords, a programmer can limit the ex‐
posure of internal (“black box”) parts of a
class. Encapsulation reduces bugs and pro‐
motes reusability and modularity of classes.
This technique is also known as data hiding.

enum
The Java keyword for declaring an enumer‐
ated type. An enum holds a list of constant
object identifiers that can be used as a type‐
safe alternative to numeric constants that
serve as identifiers or labels.

enumeration
See enum.

erasure
The implementation technique used by
Java generics in which generic type infor‐
mation is removed (erased) and distilled to
raw Java types at compilation. Erasure
provides backward compatibility with non‐
generic Java code, but introduces some dif‐
ficulties in the language.

event
1. A user’s action, such as a mouse-click

or keypress.

2. The Java object delivered to a regis‐
tered event listener in response to a
user action or other activity in the
system.

exception
A signal that some unexpected condition
has occurred in the program. In Java, ex‐

ceptions are objects that are subclasses of
Exception or Error(which themselves are
subclasses of Throwable). Exceptions in
Java are “raised” with the throw keyword
and handled with the catch keyword. See
also catch, throw, and throws.

exception chaining
The design pattern of catching an exception
and throwing a new, higher-level, or more
appropriate exception that contains the un‐
derlying exception as its cause. The “cause”
exception can be retrieved if necessary.

extends
A keyword used in a class declaration to
specify the superclass of the class being de‐
fined. The class being defined has access to
all the public and protected variables and
methods of the superclass (or, if the class
being defined is in the same package, it has
access to all nonprivate variables and
methods). If a class definition omits the ex
tends clause, its superclass is taken to be
java.lang.Object.

final
A keyword modifier that may be applied to
classes, methods, and variables. It has a sim‐
ilar, but not identical, meaning in each case.
When final is applied to a class, it means
that the class may never be subclassed.
java.lang.System is an example of a fi
nal class. When final is applied to a vari‐
able, the variable is a constant—that is, it
can’t be modified.

finalize
A reserved method name. The final
ize() method is called by the Java VM
when an object is no longer being used (i.e.,
when there are no further references to it)
but before the object’s memory is actually
reclaimed by the system. A finalizer should
perform cleanup tasks and free system re‐
sources before the object is discarded by
Java’s garbage collection system.

finally
A keyword that introduces the finally
block of a try/catch/finally construct.
catch and finally blocks provide

EJB (Enterprise JavaBeans)

920 | Glossary

exception handling and routine cleanup for
code in a try block. The finally block is
optional and appears after the try block,
and after zero or more catch blocks. The
code in a finally block is executed once,
regardless of how the code in the try block
executes. In normal execution, control rea‐
ches the end of the try block and proceeds
to the finally block, which generally per‐
forms any necessary cleanup.

float
A Java primitive data type; a float value is
a 32-bit (single-precision) floating-point
number represented in IEEE 754 format.

garbage collection
The process of reclaiming the memory of
objects no longer in use. An object is no
longer in use when there are no references
to it from other objects in the system and
no references in any local variables on the
method call stack.

generics
The syntax and implementation of para‐
meterized types in the Java language, added
in Java 5.0. Generic types are Java classes
that are parameterized by the user on one
or more additional Java types to specialize
the behavior of the class. Generics are
sometimes referred to as templates in other
languages.

generic class
A class that uses the Java generics syntax
and is parameterized by one or more type
variables, which represent class types to be
substituted by the user of the class. Generic
classes are particularly useful for container
objects and collections that can be special‐
ized to operate on a specific type of element.

generic method
A method that uses the Java generics syntax
and has one or more arguments or return
types that refer to type variables represent‐
ing the actual type of data element the
method will use. The Java compiler can
often infer the types of the type variables
from the usage context of the method.

graphics context
A drawable surface represented by the
java.awt.Graphics class. A graphics con‐
text contains contextual information about
the drawing area and provides methods for
performing drawing operations in it.

GUI (graphical user interface)
A traditional, visual user interface consist‐
ing of a window containing graphical items
such as buttons, text fields, pull-down me‐
nus, dialog boxes, and other standard in‐
terface components.

hashcode
A random-looking identifying number,
based on the data content of an object, used
as a kind of signature for the object. A hash‐
code is used to store an object in a hash table
(or hash map). See also hash table.

hash table
An object that is like a dictionary or an as‐
sociative array. A hash table stores and re‐
trieves elements using key values called
hashcodes. See also hashcode.

hostname
The human-readable name given to an in‐
dividual computer attached to the Internet.

HotJava
An early web browser written in Java, ca‐
pable of downloading and running Java
applets.

HTTP (Hypertext Transfer Protocol)
The protocol used by web browsers or other
clients to talk to web servers. The simplest
form of the protocol uses the commands
GET to request a file and POST to send data.

IDE (Integrated Development Environment)
A GUI tool such as NetBeans or Eclipse that
provides source editing, compiling, run‐
ning, debugging, and deployment func‐
tionality for developing Java applications.

implements
A keyword used in class declarations to in‐
dicate that the class implements the named
interface or interfaces. The implements
clause is optional in class declarations; if it

float

Glossary | 921

appears, it must follow the extends clause
(if any). If an implements clause appears in
the declaration of a non-abstract class,
every method from each specified interface
must be implemented by the class or by one
of its superclasses.

import
The import statement makes Java classes
available to the current class under an ab‐
breviated name or disambiguates classes
imported in bulk by other import state‐
ments. (Java classes are always available by
their fully qualified name, assuming the ap‐
propriate class file can be found relative to
the CLASSPATH environment variable and
that the class file is readable. import doesn’t
make the class available; it just saves typing
and makes your code more legible.) Any
number of import statements may appear
in a Java program. They must appear, how‐
ever, after the optional package statement
at the top of the file, and before the first class
or interface definition in the file.

inheritance
An important feature of object-oriented
programming that involves defining a new
object by changing or refining the behavior
of an existing object. Through inheritance,
an object implicitly contains all of the non-
private variables and methods of its su‐
perclass. Java supports single inheritance of
classes and multiple inheritance of
interfaces.

inner class
A class definition that is nested within an‐
other class or a method. An inner class
functions within the lexical scope of anoth‐
er class.

instance
An occurrence of something, usually an ob‐
ject. When a class is instantiated to produce
an object, we say the object is an instance of
the class.

instance method
A non-static method of a class. Such a
method is passed an implicit this reference

to the object that invoked it. See also static;
static method.

instanceof
A Java operator that returns true if the ob‐
ject on its left side is an instance of the class
(or implements the interface) specified on
its right side. instanceof returns false if
the object isn’t an instance of the specified
class or doesn’t implement the specified in‐
terface. It also returns false if the specified
object is null.

instance variable
A non-static variable of a class. Each in‐
stance of a class has an independent copy of
all of the instance variables of the class. See
also class variable; static.

int
A primitive Java data type that’s a 32-bit
two’s-complement signed number.

interface
1. A keyword used to declare an inter‐

face.

2. A collection of abstract methods that
collectively define a type in the Java
language. Classes implementing the
methods may declare that they imple‐
ment the interface type and instances
of them may be treated as that type.

internationalization
The process of making an application ac‐
cessible to people who speak a variety of
languages. Sometimes abbreviated I18N.

interpreter
The module that decodes and executes Java
bytecode. Most Java bytecode is not, strictly
speaking, interpreted any longer but com‐
piled to native code dynamically by the Java
VM.

introspection
The process by which a JavaBean provides
additional information about itself, supple‐
menting information learned by reflection.

import

922 | Glossary

ISO 8859-1
An 8-bit character encoding standardized
by the ISO. This encoding is also known as
Latin-1 and contains characters from the
Latin alphabet suitable for English and
most languages of western Europe.

JavaBeans
A component architecture for Java. It is a
way to build interoperable Java objects that
can be manipulated easily in a visual appli‐
cation builder environment.

Java beans
Java classes that are built following the
JavaBeans design patterns and conventions.

JavaScript
A language developed early in the history
of the Web by Netscape for creating dy‐
namic web pages. From a programmer’s
point of view, it’s unrelated to Java, although
some of its syntax is similar.

JAXB (Java API for XML Binding)
A Java API that allows for generation of Java
classes from XML DTD or Schema descrip‐
tions and the generation of XML from Java
classes.

JAXP (Java API for XML Parsers)
The Java API that allows for pluggable im‐
plementations of XML and XSL engines.
This API provides an implementation-
neutral way to construct parsers and
transforms.

JAX-RPC
The Java API for XML Remote Procedure
Calls, used by web services.

JDBC (Java Database Connectivity)
The standard Java API for talking to an SQL
(Structured Query Language) database.

JDOM
A native Java XML DOM created by Jason
Hunter and Brett McLaughlin. JDOM is
easier to use than the standard DOM API
for Java. It uses the Java collections API and
standard Java conventions. Available at
http://www.jdom.org/.

JWSDP (Java Web Services Developer Pack)
A bundle of standard extension APIs pack‐
aged as a group with an installer from Sun.
The JWSDP includes JAXB, JAX-RPC, and
other XML and web services-related
packages.

Latin-1
A nickname for ISO 8859-1.

layout manager
An object that controls the arrangement of
components within the display area of a
Swing or AWT container.

lightweight component
A pure Java GUI component that has no
native peer in the AWT.

local variable
A variable that is declared inside a method.
A local variable can be seen only by code
within that method.

Logging API
The Java API for structured logging and
reporting of messages from within applica‐
tion components. The Logging API sup‐
ports logging levels indicating the impor‐
tance of messages, as well as filtering and
output capabilities.

long
A primitive Java data type that’s a 64-bit
two’s-complement signed number.

message digest
A cryptographically computed number
based on the content of a message, used to
determine whether the message’s contents
have been changed in any way. A change to
a message’s contents will change its message
digest. When implemented properly, it is
almost impossible to create two similar
messages with the same digest.

method
The object-oriented programming term for
a function or procedure.

method overloading
Provides definitions of more than one
method with the same name but with

ISO 8859-1

Glossary | 923

different argument lists. When an overloa‐
ded method is called, the compiler deter‐
mines which one is intended by examining
the supplied argument types.

method overriding
Defines a method that matches the name
and argument types of a method defined in
a superclass. When an overridden method
is invoked, the interpreter uses dynamic
method lookup to determine which method
definition is applicable to the current ob‐
ject. Beginning in Java 5.0, overridden
methods can have different return types,
with restrictions.

Model-View-Controller (MVC) framework
A user interface design that originated in
Smalltalk. In MVC, the data for a display
item is called the model. A view displays a
particular representation of the model, and
a controller provides user interaction with
both. Java incorporates many MVC
concepts.

modifier
A keyword placed before a class, variable,
or method that alters the item’s accessibility,
behavior, or semantics. See also abstract;
final; native method; private; protected;
public; static; synchronized.

NaN (not-a-number)
This is a special value of the double and
float data types that represents an unde‐
fined result of a mathematical operation,
such as zero divided by zero.

native method
A method that is implemented in a native
language on a host platform, rather than
being implemented in Java. Native methods
provide access to such resources as the net‐
work, the windowing system, and the host
filesystem.

new
A unary operator that creates a new object
or array (or raises an OutOfMemoryExcep
tion if there is not enough memory
available).

NIO
The Java “new” I/O package. A core pack‐
age introduced in Java 1.4 to support asyn‐
chronous, interruptible, and scalable I/O
operations. The NIO API supports non-
threadbound “select” style I/O handling.

null
null is a special value that indicates that a
reference-type variable doesn’t refer to any
object instance. Static and instance vari‐
ables of classes default to the value null if
not otherwise assigned.

object
1. The fundamental structural unit of an

object-oriented programming lan‐
guage, encapsulating a set of data and
behavior that operates on that data.

2. An instance of a class, having the
structure of the class but its own copy
of data elements. See also instance.

<object> tag
An HTML tag used to embed media objects
and applications into web browsers like the
<applet> tag.

package
The package statement specifies the Java
package for a Java class. Java code that is
part of a particular package has access to all
classes (public and non-public) in the
package, and all non-private methods and
fields in all those classes. When Java code is
part of a named package, the compiled class
file must be placed at the appropriate posi‐
tion in the CLASSPATH directory hierarchy
before it can be accessed by the Java inter‐
preter or other utilities. If the package state‐
ment is omitted from a file, the code in that
file is part of an unnamed default package.
This is convenient for small test programs
run from the command line, or during de‐
velopment because it means that the code
can be interpreted from the current
directory.

<param> tag
An HTML tag used within <applet> ...
</applet> to specify a named parameter

method overriding

924 | Glossary

and string value to an applet within a web
page.

parameterized type
A class, using Java generics syntax, that is
dependent on one or more types to be speci‐
fied by the user. The user-supplied param‐
eter types fill in type values in the class and
adapt it for use with the specified types.

plug-in
A modular application component for a
web browser designed to extend the brows‐
er’s capabilities to handle a specific type of
data (MIME type). The Java Plug-in sup‐
ports Java applets in browsers that do not
have up-to-date Java runtime support.

polymorphism
One of the fundamental principles of an
object-oriented language. Polymorphism
states that a type that extends another type
is a “kind of ” the parent type and can be
used interchangeably with the original type
by augmenting or refining its capabilities.

Preferences API
The Java API for storing small amounts of
information on a per-user or systemwide
basis across executions of the Java VM. The
Preferences API is analogous to a small da‐
tabase or the Windows registry.

primitive type
One of the Java data types: boolean, char,
byte, short, int, long, float, double.
Primitive types are manipulated, assigned,
and passed to methods “by value” (i.e., the
actual bytes of the data are copied). See also
reference type.

printf
A style of text formatting originating in the
C language, relying on an embedded iden‐
tifier syntax and variable-length argument
lists to supply parameters.

private
The private keyword is a visibility modi‐
fier that can be applied to method and field
variables of classes. A private method or
field is not visible outside its class definition
and cannot be accessed by subclasses.

protected
A keyword that is a visibility modifier; it can
be applied to method and field variables of
classes. A protected field is visible only
within its class, within subclasses, and with‐
in the package of which its class is a part.
Note that subclasses in different packages
can access only protected fields within
themselves or within other objects that are
subclasses; they cannot access protected
fields within instances of the superclass.

protocol handler
A URL component that implements the
network connection required to access a
resource for a type of URL scheme (such as
HTTP or FTP). A Java protocol handler
consists of two classes: a StreamHandler
and a URLConnection.

public
A keyword that is a visibility modifier; it can
be applied to classes and interfaces and to
the method and field variables of classes
and interfaces. A public class or interface
is visible everywhere. A non-public class
or interface is visible only within its pack‐
age. A public method or variable is visible
everywhere its class is visible. When none
of the private, protected, or public mod‐
ifiers are specified, a field is visible only
within the package of which its class is a
part.

public-key cryptography
A cryptographic system that requires pub‐
lic and private keys. The private key can
decrypt messages encrypted with the cor‐
responding public key, and vice versa. The
public key can be made available to the
public without compromising security and
used to verify that messages sent by the
holder of the private key must be genuine.

queue
A list-like data structure normally used in
a first in, first out fashion to buffer work
items.

raw type
In Java generics, the plain Java type of a class
without any generic type parameter

parameterized type

Glossary | 925

information. This is the true type of all Java
classes after they are compiled. See also
erasure.

reference type
Any object or array. Reference types are
manipulated, assigned, and passed to meth‐
ods “by reference.” In other words, the
underlying value is not copied; only a ref‐
erence to it is. See also primitive type.

reflection
The ability of a programming language to
interact with structures of the language it‐
self at runtime. Reflection in Java allows a
Java program to examine class files at run‐
time to find out about their methods and
variables, and to invoke methods or modify
variables dynamically.

regular expression
A compact yet powerful syntax for describ‐
ing a pattern in text. Regular expressions
can be used to recognize and parse most
kinds of textual constructs, allowing for
wide variation in their form.

Regular Expression API
The core java.util.regex package for us‐
ing regular expressions. The regex package
can be used to search and replace text based
on sophisticated patterns.

Remote Method Invocation (RMI)
RMI is a native Java distributed object sys‐
tem. With RMI, you can pass references to
objects on remote hosts and invoke meth‐
ods in them as if they were local objects.

SAX (Simple API for XML)
SAX is an event-driven API for parsing
XML documents in which the client re‐
ceives events in response to activities such
as the opening of tags, character data, and
the closing of tags.

Schema
XML Schemas are a replacement for DTDs.
Introduced by the W3C, XML Schema is an
XML-based language for expressing con‐
straints on the structure of XML tags and
tag attributes, as well as the structure and
type of the data content. Other types of

XML schema languages have different
syntaxes.

SDK (Software Development Kit)
A package of software distributed by Sun
Microsystems for Java developers. It in‐
cludes the Java interpreter, Java classes, and
Java development tools: compiler, debug‐
ger, disassembler, applet viewer, stub file
generator, and documentation generator.
Also called the JDK.

SecurityManager
The Java class that defines the methods the
system calls to check whether a certain op‐
eration is permitted in the current
environment.

serialize
To serialize means to put in order or make
sequential. A serialized object is an object
that has been packaged so that it can be
stored or transmitted over the network. Se‐
rialized methods are methods that have
been synchronized with respect to threads
so that only one may be executing at a given
time.

server
The party that provides a resource or ac‐
cepts a request for a conversation in the case
of a networked client/server application.
See also client.

servlet
A Java application component that imple‐
ments the javax.servlet.Servlet API,
allowing it to run inside a servlet container
or web server. Servlets are widely used in
web applications to process user data and
generate HTML or other forms of output.

servlet context
In the Servlet API, this is the web applica‐
tion environment of a servlet that provides
server and application resources. The base
URL path of the web application is also
often referred to as the servlet context.

shadow
To declare a variable with the same name as
a variable defined in a superclass. We say
the variable “shadows” the superclass’s

reference type

926 | Glossary

variable. Use the super keyword to refer to
the shadowed variable or refer to it by cast‐
ing the object to the type of the superclass.

shallow copy
A copy of an object that duplicates only
values contained in the object itself. Refer‐
ences to other objects are repeated as ref‐
erences and are not duplicated themselves.
See also deep copy.

short
A primitive Java data type that’s a 16-bit
two’s-complement signed number.

signature
1. Referring to a digital signature. A

combination of a message’s message
digest, encrypted with the signer’s pri‐
vate key, and the signer’s certificate,
attesting to the signer’s identity. Some‐
one receiving a signed message can get
the signer’s public key from the certif‐
icate, decrypt the encrypted message
digest, and compare that result with
the message digest computed from the
signed message. If the two message di‐
gests agree, the recipient knows that
the message has not been modified
and that the signer is who he or she
claims to be.

2. Referring to a Java method. The meth‐
od name and argument types and pos‐
sibly return type, collectively uniquely
identifying the method in some
context.

signed applet
An applet packaged in a JAR file signed with
a digital signature, allowing for authentica‐
tion of its origin and validation of the in‐
tegrity of its contents.

signed class
A Java class (or Java archive) that has a sig‐
nature attached. The signature allows the
recipient to verify the class’s origin and that
it is unmodified. The recipient can there‐
fore grant the class greater runtime
privileges.

sockets
A networking API originating in BSD Unix.
A pair of sockets provide the endpoints for
communication between two parties on the
network. A server socket listens for con‐
nections from clients and creates individual
server-side sockets for each conversation.

spinner
A GUI component that displays a value and
a pair of small up and down buttons that
increment or decrement the value. The
Swing JSpinner can work with number
ranges and dates as well as arbitrary
enumerations.

static
A keyword that is a modifier applied to
method and variable declarations within a
class. A static variable is also known as a
class variable as opposed to nonstatic in‐
stance variables. While each instance of a
class has a full set of its own instance vari‐
ables, there is only one copy of each static
class variable, regardless of the number of
instances of the class (perhaps zero) that are
created. static variables may be accessed
by class name or through an instance. Non-
static variables can be accessed only
through an instance.

static import
A statement, similar to the class and pack‐
age import, that imports the names of static
methods and variables of a class into a class
scope. The static import is a convenience
that provides the effect of global methods
and constants.

static method
A method declared static. Methods of this
type are not passed implicit this references
and may refer only to class variables and
invoke other class methods of the current
class. A class method may be invoked
through the class name, rather than
through an instance of the class.

static variable
A variable declared static. Variables of this
type are associated with the class, rather
than with a particular instance of the class.

shallow copy

Glossary | 927

There is only one copy of a static variable,
regardless of the number of instances of the
class that are created.

stream
A flow of data, or a channel of communi‐
cation. All fundamental I/O in Java is based
on streams. The NIO package uses chan‐
nels, which are packet oriented.

String
A sequence of character data and the Java
class used to represent this kind of character
data. The String class includes many meth‐
ods for operating on string objects.

subclass
A class that extends another. The subclass
inherits the public and protected meth‐
ods and variables of its superclass. See also
extends.

super
A keyword used by a class to refer to vari‐
ables and methods of its parent class. The
special reference super is used in the same
way as the special reference this is used to
qualify references to the current object
context.

superclass
A parent class, extended by some other
class. The superclass’s public and protect
ed methods and variables are available to
the subclass. See also extends.

synchronized
A keyword used in two related ways in Java:
as a modifier and as a statement. First, it is
a modifier applied to class or instance
methods. It indicates that the method
modifies the internal state of the class or the
internal state of an instance of the class in a
way that is not threadsafe. Before running
a synchronized class method, Java obtains
a lock on the class to ensure that no other
threads can modify the class concurrently.
Before running a synchronized instance
method, Java obtains a lock on the instance
that invoked the method, ensuring that no
other threads can modify the object at the
same time.

Java also supports a synchronized state‐
ment that serves to specify a “critical sec‐
tion” of code. The synchronized keyword
is followed by an expression in parentheses
and a statement or block of statements. The
expression must evaluate to an object or
array. Java obtains a lock on the specified
object or array before executing the state‐
ments.

TCP (Transmission Control Protocol)
A connection-oriented, reliable protocol.
One of the protocols on which the Internet
is based.

this
Within an instance method or constructor
of a class, this refers to “this object”— the
instance currently being operated on. It is
useful to refer to an instance variable of the
class that has been shadowed by a local
variable or method argument. It is also use‐
ful to pass the current object as an argument
to static methods or methods of other
classes. There is one additional use of
this: when it appears as the first statement
in a constructor method, it refers to one of
the other constructors of the class.

thread
An independent stream of execution within
a program. Because Java is a multithreaded
programming language, more than one
thread may be running within the Java in‐
terpreter at a time. Threads in Java are rep‐
resented and controlled through the Thread
object.

thread pool
A group of “recyclable” threads used to ser‐
vice work requests. A thread is allocated to
handle one item and then returned to the
pool.

throw
The throw statement signals that an excep‐
tional condition has occurred by throwing
a specified Throwable (exception) object.
This statement stops program execution
and passes it to the nearest containing
catch statement that can handle the speci‐
fied exception object.

stream

928 | Glossary

throws
The throws keyword is used in a method
declaration to list the exceptions the meth‐
od can throw. Any exceptions a method can
raise that are not subclasses of Error or Run
timeException must either be caught with‐
in the method or declared in the method’s
throws clause.

try
The try keyword indicates a guarded block
of code to which subsequent catch and fi
nally clauses apply. The try statement it‐
self performs no special action. See also
catch and finally for more information on
the try/catch/finally construct.

type instantiation
In Java generics, the point at which a generic
type is applied by supplying actual or wild‐
card types as its type parameters. A generic
type is instantiated by the user of the type,
effectively creating a new type in the Java
language specialized for the parameter
types.

type invocation
See type instantiation. The term type invo‐
cation is sometimes used by analogy with
the syntax of method invocation.

UDP (User Datagram Protocol)
A connectionless unreliable protocol. UDP
describes a network data connection based
on datagrams with little packet control.

unboxing
Unwrapping a primitive value that is held
in its object wrapper type and retrieving the
value as a primitive.

Unicode
A universal standard for text character en‐
coding, accommodating the written forms
of almost all languages. Unicode is stand‐
ardized by the Unicode Consortium. Java
uses Unicode for its char and String types.

UTF-8 (UCS transformation format 8-bit form)
An encoding for Unicode characters (and
more generally, UCS characters) common‐
ly used for transmission and storage. It is a
multibyte format in which different char‐

acters require different numbers of bytes to
be represented.

variable-length argument list
A method in Java may indicate that it can
accept any number of a specified type of
argument after its initial fixed list of argu‐
ments. The arguments are handled by pack‐
aging them as an array.

varargs
See variable-length argument list.

vector
A dynamic array of elements.

verifier
A kind of theorem prover that steps
through the Java bytecode before it is run
and makes sure that it is well behaved and
does not violate the Java security model.
The bytecode verifier is the first line of de‐
fense in Java’s security model.

WAR file (Web Applications Resources file)
A JAR file with additional structure to hold
classes and resources for web applications.
A WAR file includes a WEB-INF directory
for classes, libraries, and the web.xml de‐
ployment file.

web application
An application that runs on a web server or
application server, normally using a web
browser as a client.

web service
An application-level service that runs on a
server and is accessed in a standard way us‐
ing XML for data marshalling and HTTP as
its network transport.

wildcard type
In Java generics, a “*” syntax used in lieu of
an actual parameter type for type instantia‐
tion to indicate that the generic type repre‐
sents a set or supertype of many concrete
type instantiations.

XInclude
An XML standard and Java API for inclu‐
sion of XML documents.

throws

Glossary | 929

XML (Extensible Markup Language)
A universal markup language for text and
data, using nested tags to add structure and
meta-information to the content.

XPath
An XML standard and Java API for match‐
ing elements and attributes in XML using a
hierarchical, regex-like expression
language.

XSL/XSLT (Extensible Stylesheet Language/XSLTransformations)
An XML-based language for describing
styling and transformation of XML docu‐
ments. Styling involves simple addition of
markup, usually for presentation. XSLT al‐
lows complete restructuring of documents,
in addition to styling.

XML (Extensible Markup Language)

930 | Glossary

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! (exclamation) operator, 101, 871
! (not operator), 63
!= operator, 101, 871
" (double quote), 853
flag, 338
$ (dollar sign), 199, 345
% (percent sign), 101, 333, 338
%b conversion character, 336
%B conversion character, 336
%c conversion character, 336
%d conversion character, 333
%g identifier, 404
%h identifier, 404
%n$ conversion character, 335
%s conversion character, 333, 334
%S conversion character, 335
%t conversion character, 370
%T conversion character, 370
%t identifier, 404
%u identifier, 404
& (ampersand), 101, 240, 243, 854
&& operator, 101, 345, 854
' (single quote), 337, 853
() parentheses, 338, 344, 347
(?<!) lookbehind operator, 352
(?<=) lookbehind operator, 352
(?=) lookahead operator, 351
(?d) flag, 349

(?i) flag, 349
(?m) flag, 349
(?s) flag, 349
* (asterisk), 84

as operator, 101
as wildcard, 39
importing all classes in package, 185
in DTD notations, 877
in regular expressions, 344, 346, 350
in XPath expressions, 870
using in CLASSPATH, 71

+ (plus sign) operator, 93, 101
concatenating strings, 317
formatting strings, 337
in regular expressions, 344, 346

++ operator, 101
+= operator, 93
, (comma), 338
- (dash), 101, 337
-- operator, 101
. (dot), 397

as operator, 102
for string formatting, 335
in regular expressions, 344
in XPath expressions, 870

.bsh extension, 912

.class property, 207
/ (forward slash), 84, 85, 101, 397, 870
0 (zero) flag, formatting strings, 337

931

-1 special value, 105
2D API (see drawing with 2D API)
< > (angle brackets), 225, 236, 854, 871
< operator, 101
<< operator, 101
<= operator, 101
<?>, 247
= (equal sign) operator, 70, 101, 871
== operator, 55, 101, 202, 319
> operator, 101
>= operator, 101
>> operator, 101
>>> operator, 101
? (question mark)

as type parameter, 242
encoding in URLs, 526
in DTD notations, 877
in regular expressions, 346, 350

? (unbounded wildcard), 242, 243, 247
?: operator, 101
?<! (lookbehind) operator, 352
?<= (lookbehind) operator, 352
?= (lookahead) operator, 351
@ character, 85, 870, 871
[] brackets

as index operator, 122
in regular expressions, 345
in XPath expressions, 871

\ (backslash), 343, 427
\b metacharacter, 346
\B metacharacter, 346
\d metacharacter, 343, 344
\D metacharacter, 344
\E metacharacter, 344
\f metacharacter, 344
\n metacharacter, 344
\Q metacharacter, 344
\r metacharacter, 344
\s metacharacter, 344
\S metacharacter, 344
\t metacharacter, 344
\w metacharacter, 345
\W metacharacter, 345
^ (caret)

as operator, 101
in regular expressions, 345

{ } braces, 43, 56
code blocks, 94
creating arrays, 124, 125

in regular expressions, 344
| (vertical bar), 101, 348, 877
|| operator, 101
~ (tilde) operator, 101

A
a conversion character, 337
A conversion character, 337
a format suffix, 371
A format suffix, 371
ABORTED constant, 776
abs() method, 360, 361
abstract methods and classes, 176–177
abstract modifier, 176, 917
Abstract Window Toolkit (AWT), 20, 39, 589,

918
AbstractButton class, 592
AbstractFormatter class, 671
AbstractTableModel class, 690, 696
accelerator, 642
accept() method, 472, 475
AccessibleObject class, 211
accessor methods, 132
acos() method, 360
acquire() method, 307
ActionEvent class, 45, 593, 608, 616
ActionListener interface, 54, 593, 608
actionPerformed() method, 54, 57, 608, 616
activeCaption field, 749
activeCaptionText field, 749
activeCount() method, 287
ad-hoc polymorphism, 148
adapter classes, 619–622
adaptive compilation, 6
adClassPath() command, 914
add() method

Calendar class, 366
Collection interface, 374
List interface, 378
Queue interface, 379

addActionListener() method, 611
addAll() method, 374
addCookie() method, 553
addFirst() method, 379
addHeader() method, 544
addMouseMotionListener() method, 44, 46, 48
addObserver() method, 407
addTab() method, 653
AdjustmentEvent class, 616

932 | Index

adjustmentValue-Changed() method, 616
AffineTransformOp class, 790, 793–794
AIFF files, 795
AJAX (Asynchronous JavaScript and XML),

537, 539
allocate() method, 459
allocateDirect() method, 459
AlphaComposite class, 741, 748
alt attribute, 845
alternation, 348–348
ALT_MASK modifier, 613
ampersand (&), 101, 240, 243, 854
AM_PM identifier, 365, 639
anchor variable, 720
anchoring, 728
AND operator, 101, 871
Android operating system, 4
angle brackets (< >), 225, 236, 854, 871
Animation class, 261, 264
Annotation Processing Tool (apt), 222, 917
annotations

apt tool, 222–222
defined, 917
for JAXB, 888–890
package annotations, 221
standard, 221–222
using, 220–221

anonymous arrays, 127
anonymous inner classes, 190, 196–198

(see also inner classes)
Ant tool

defined, 917
deploying and redeploying WARs, 582
development-oriented directory layout, 581–

582
Apache Tomcat, 563
API (application programming interface), 917
APPEND file open option, 461
append() method, 324, 669, 682
appendReplacement() method, 356
appendTail() method, 356
Apple Newton, 3
Applet class, 270, 489, 833
<applet> tag, 487, 834, 846, 917
AppletContext interface, 838, 840, 842
applets, 2

applet support and Java plug-in, 833
defined, 917
history of, 831–833

JApplet class
<applet> tag, 842–842
applet lifecycle, 834–837
applet resources, 838–842
appletviewer, 847–847
attributes, 843–843
Complete <applet> tag, 844–845
loading class files, 846
packages, 846
parameters, 843
security, 837

Java Web Start, 847
threading, 268–271

AppletStub interface, 838
appletviewer tool, 847, 917
application programming interface (API), 917
applications, Java, 68–70
apply-templates tag, 893, 895
apt (Annotation Processing Tool), 222, 917
arch property, 395
architecture-dependent methods, 5
archives, 448–450
Area class, 742
args parameter, 35, 44
argument passing and references, 35, 44, 142–

144
arithmetic operators, 101
ArithmeticException class, 359, 361
Array class, 122, 216
ArrayBlockingQueue class, 386
arraycopy() method, 126
ArrayDeque class, 386
ArrayIndexOutOfBoundsException, 126
ArrayList class, 385, 386
arrays, 382–383

anonymous, 127
class hierarchy and, 189–190
converting between collections and, 376
creating and initializing, 123–125
as first-class objects, 14
in HelloJava application, 56–56
multidimensional arrays, 127–129
of parameterized types

purpose of, 255
using array types, 254–255

types, 123
using, 125–127

ArrayStoreException, 190
ascent, 755

Index | 933

ASCII characters, 84
asin() method, 360
assert statement, 107, 120, 122
AssertionError, 107, 120
assertions

as added feature, 21
defined, 11, 917
enabling and disabling, 120–121
using, 121–122

asShortBuffer() method, 458
assignment operator, 101
asterisk (*), 84

using in CLASSPATH, 71
in DTD notations, 877
importing all classes in package, 185
as operator, 101
in regular expressions, 344, 346, 350
as wildcard, 39
in XPath expressions, 870

AsyncContext class, 557
asynchronous I/O, 453–454
Asynchronous JavaScript and XML (AJAX),

537, 539
AsynchronousFileChannel, 466–467
asyncSupported attribute, 557
atan() method, 360
atomic operations

defined, 918
field updaters, 313
weak implementations, 312

AtomicBoolean class, 311
AtomicInteger class, 312
AtomicLong class, 312
<!ATTLIST> tag, 877
attributes, 853–854
AU files, 795
AudioClip class, 795
<auth-constraint> element, 567
<auth-method> element, 569
authenticating users, 569–570
@author annotation, 86, 219, 221
autoboxing of primitives, 146–147
AutoCloseable interface, 118
autocompletion in Eclipse, 906
availability of Java, 23–24
available() method, 424
availableCharsets() method, 460
await() method, 305, 306, 309, 310

AWT (Abstract Window Toolkit), 20, 39, 589,
918

AWT robot, 623
AWTEvent class, 608
AWTKeyStroke class, 683
AysnchronousFileChannel, 466

B
b format suffix, 371
B format suffix, 371
backing store, 398
backslash (\), 343, 427
baselines, 755
BASIC authentication model, 566, 569
BasicStroke class, 740
BasicStroke interface, 750
BeanContext and BeanContextServices, 827–

828
BeanInfo class, customizing with

getting properties information, 819–822
overview, 819

beans (see JavaBeans)
BeanShell, 219–219

changing classpath, 916
commands, 913–914
defined, 918
Java statements and expressions, 912–913,

913
learning more, 916–916
running, 911–912
scripted methods and objects, 914–916
scripting interfaces and adapters, 915–916

Berners-Lee, Tim, 851
BevelBorder class, 640
big endian, 458
BigDecimal class, 361, 587
BigInteger class, 361, 587
bin directory, 67
binary search tree, 384
binding

dynamic, 167
method calls to definitions, 12
methods, 11–12
static method, 168

_blank value, 841
<BLINK> tag, 58
block comments, 84
BLOCKED thread state, 283
BlockingQueue interface, 277, 380, 386

934 | Index

BOLD identifier, 752
Boojum, 918
Boolean class, 144, 328, 587
boolean data type, 87, 144, 587, 918
Boolean operators, 101
Border interface, 639
BorderLayout class, 53, 600, 710, 713–716
borders, 639–641
BOTH value, 724
bottom field, 601
bounded wildcards, 243
bounds

defined, 918
erasure and bounds, 241–242
for parameter types, 232

Box class, 671, 716
boxing

autoboxing and unboxing of primitives,
146–147

defined, 87, 918
performance implications of, 146

BoxLayout class, 716–717
braces { }, 43, 56

code blocks, 94
creating arrays, 124, 125
in regular expressions, 344

brackets []
as index operator, 122
in regular expressions, 345
in XPath expressions, 871

break/continue statements, 99–100
bsh.jar file, 911
bubbling up of exceptions, 109–110
Buffer class, 456
buffered streams, 418–419
BufferedImage class

composition of, 782–783
converting image to, 793
updating, 786–789

BufferedImageOp interface, 790
BufferedInputStream, 416, 418
BufferedOutputStream, 418
BufferedReader class, 415, 418
BufferedWriter class, 418
BufferOverflowException, 456
buffers

allocating, 459
byte order, 458
operations, 456–457

types, 457–458
BufferUnderflowException, 456
build.xml file, 581
Burke, Eric, 892
business applications using Java, 2
Button class, 49
BUTTON1_MASK modifier, 613
BUTTON2_MASK modifier, 613
BUTTON3_MASK modifier, 613
ButtonGroup class, 631, 633
buttons, 627–631
Byte class, 144, 328, 587
byte data type, 87, 587

defined, 918
parsing, 329
wrapper for, 144

ByteArrayInputStream, 423
ByteArrayOutputStream, 423, 580
ByteBuffer class, 455–457, 464
bytecode

defined, 4
verifier for, 9, 17–18

ByteOrder class, 458

C
C, 105

and Java syntax, 83
vs. Java, 7–8
type checking in, 11

C (longjmp() statement), 105
C (setjmp() statement), 105
c format suffix, 370
C format suffix, 371
-c option, 230
C#, 4, 8
C++, 86

fragile base class problem, 13
vs. Java, 7–8
type checking in, 11
virtual methods in, 166

C++ (virtual method), 166
CA (certificate authority), 918
Calendar class, 364, 366, 368, 587
calendars, 365–366
Callable interface and Future class, 292–293
callbacks

defined, 918
interfaces as, 179–180

cancel() method, 292, 372

Index | 935

CancellationException, 292
canExecute() method, 429
canRead() method, 429
canWrite() method, 429
capture groups, 347–348
captured text (regular expressions), 355
CardLayout class, 717–719
caret (^)

as operator, 101
in regular expressions, 345

CaretEvent class, 616
caretUpdate() method, 616
Cascading Stylesheets (CSS), 891
case branches, 97
casting, 172–174, 918
casts, 235–236
cat() command, 914
catch statement, 63, 108, 116, 482, 918
cbrt() method, 360
cd() command, 914
<![CDATA[]]> section, 854
ceil() method, 360
CENTER value

BorderLayout class, 713
FlowLayout class, 711
GridBagConstants class, 728

CERN, 851
certificate authority (CA), 918
certificates, 918
chaining exceptions, 113–115
chaining method calls, 103
channels, 454–455
char data type, 87

defined, 918
Unicode support, 84
wrapper for, 144

Character class, 144
character encoders and decoders, 459–461
character streams, 415–416
characters

and character classes, 344–345
escaped, 343–344

characters() method, 857, 862
charAt() method, 318, 322
CharBuffer class, 455, 457
CharSequence interface, 458
Charset class, 459
CharsetDecoder class, 460–461
CharsetEncoder class, 460–461

checkAll() method, 776
checkboxes, 631–634
checked exceptions, 111–112
checkedList() method, 376
checkError() method, 420
child() method, 872
Choice argument, 341
ChoiceFormat class, 338, 340
Class class (see classes)
.class files, 68, 72, 211
class keyword, 132
class loader, Java, 10
Class<T>, 239–240
ClassCastException, 173, 173, 375
classes

abstract, 176–177
accessing fields and methods, 133–135
annotations

apt tool, 222
(see also inner classes)

package annotations, 221
(see also relationships among classes)

standard, 221–222
using, 220–221

Class class, 206–208
defined, 5, 32, 918
directory, 582
error classes, 105–107
generic, writing

exceptions and generics, 238–239
parameter type limitations, 239–240
subclassing generics, 237–238
type variable, 236–237

in HelloJava application
class types, 34–35
JComponent class, 37–38
Thread class, 61

importing
static imports, 185
unnamed package, 185

and interfaces, 48–49
Object class

cloning objects, 203–206
equality and equivalence, 202–203
hashcodes, 203

preferences for, 397
references pointing to, 14
reflection

accessing annotation data, 217

936 | Index

accessing constructors, 215
accessing fields, 212–213
accessing generic type information, 216
accessing methods, 213–214
arrays, 216–216
BeanShell Java scripting language, 219–

219
dynamic interface adapters, 217–218
modifiers and security, 211–212
purpose of, 218–219

static members, 135–138
classloader, 918
ClassNotFoundException, 208
classpath, 18, 69, 72–72, 919
Classpath, 70–72
CLASSPATH environment variable, 70, 71
clear() method, 398, 456
clients, 473–474, 919
clipping, 764–766
clone() method, 203–206
Cloneable interface interface, 204
CloneNotSupportedException, 204
cloning objects, 203–206
close() method, 414
ClosedChannelException, 463
closures, 191, 914
code attribute, 843
code blocks, 94
code, using examples of, xxvi
codebase property, 80, 503
Collator class, 320–321
collections

Collection interface
converting between collections and ar‐

rays, 376
generics and collections, 375
legacy code and runtime type safety, 375–

376
collection types

BlockingQueue interface, 380
List interface, 378–379
Queue interface, 379
Set interface, 378

defined, 373
EnumSet and EnumMap collections, 390–

391
example, 392–393
using with for loops, 377
hash codes and key values, 387–388

implementations
arrays, 382–383
hash maps, 384–385
linked lists, 383–384
list of, 385–387
trees, 384

Iterator interface
for loop over collections, 377
java.util.Enumeration, 377

Map interface, 380–382
read-only and read-mostly collections, 390
sorting collections, 391
synchronized and unsynchronized collec‐

tions
ConcurrentHashMap class, 389–390
ConcurrentLinkedQueue class, 389–390
synchronizing iterators, 389

WeakHashMap, 390
collective tasks, 294–295
Color class, 55, 740, 748
color models, 783–784
ColorConvertOp class, 790
ColorModel class, 783, 784
colors in HelloJava application, 55–58
columnAdded() method, 618
columnMargin-Changed() method, 618
columnMoved() method, 618
columnRemoved() method, 618
columns, spanning, 724–725
columnSelection-Changed() method, 618
combo boxes, 634–636
comma (,), 338
command line, passing arguments via, 44
comment() method, 872
comments, 84–86
Common Object Request Broker Architecture

(CORBA), 508–509
Comparable interface, 257
comparator() method, 378
compare() method, 321
compareAndSet() method, 274, 311
compareTo() method, 158, 320, 322

Comparable interface, 257
Enum class, 257

compilation units, 182–183, 919
compiled langage, 4
compiler, 72–74, 919
compiler optimizations, 168–169
Complete <applet> tag, 844–845

Index | 937

COMPLETE constant, 776
CompletionService interface, 296
complexType tag, 882
component architecture, 919
Component class, 38
componentAdded() method, 616
ComponentEvent class, 616
componentHidden() method, 616
componentMoved() method, 616
componentRemoved() method, 616
componentResized() method, 616
components

content panes, 605
defined, 52
desktop integration, 605–606
doLayout() method, 601–602
enabling and disabling, 597–598
with focus, 598–598
frames, 602–604
in HelloJava application, 52
insets, 601
layout managers, 600–601
listening for, 602
look-and-feel schemes, 595
managing, 602
MVC framework, 595–596
painting, 596–597
peerless, 594–595
revalidate() method, 601–602
splash screens, 602–604
z-ordering (stacking), 601

componentShown() method, 616
composite layouts, 731–734
composition, 919
CompoundBorder class, 640
compressed data, 448–450
compute() method, 300, 303
concat() method, 323
concatenation operator, 101
concurrency package, 15
concurrency utilities

atomic operations
field updaters, 313
weak implementations, 312

executors
Callable interface and Future class, 292–

293
collective tasks, 294–295
CompletionService, 296

ExecutorService, 293–294
Fork/Join framework, 298–303
scheduled tasks, 295–296
thread production, 297
ThreadPoolExecutor implementation,

296–297
locks

conditions, 305–306
read and write locks, 304–305

synchronization constructs
CountDownLatch, 306–307
CyclicBarrier class, 308–310
Exchanger, 310–311
Phaser utility, 310
semaphore, 307–308

ConcurrentHashMap class, 386, 389–390
ConcurrentLinkedDequeue class, 386
ConcurrentLinkedQueue class, 386, 390
ConcurrentMap interface, 382, 386
ConcurrentModificationException, 389
ConcurrentSkipListMap class, 386
ConcurrentSkipListSet class, 385
Condition class, 290
Condition interface, 303, 305
conditional source compilation, 10
conditional ternary operator, 101
CONFIDENTIAL level security, 568
CONFIG logging level, 402
configuring Eclipse, 26–29
connect() method, 421
connection-oriented protocol, 471
connectionless protocol, 472
Console tab, Eclipse, 904
ConsoleHandler, 401, 404
constant time, 383
constraint, 714
Constructor class, 209, 215
constructors

defined, 44, 919
in HelloJava application, 44–45
and initialization, 175
method, 103
overloaded, 151–153
superclass, 174–175

Container class, 38, 592
ContainerEvent class, 616
ContainerListener interface, 602
containers, 224–225, 592

defined, 52

938 | Index

in HelloJava application, 52–53
contains() method, 321, 323, 374, 872
containsAll() method, 374
content handler, 919
content panes, 605
Content-Type, 529, 543
ContentHandler class, 857
contentsChanged() method, 617
context() method, 444
continue statement, 117
contract between compiler and class, 49
controller (MVC pattern), 537, 595
conventions used in this book, xxv–xxvi
ConvolveOp class, 790
Cookie class, 553
cookies, 553–554
copy() method, 438
copy-on-write (read-mostly) collections, 390
copyOf() method, 126
copyOfRange() method, 126
CopyOnWriteArrayList class, 385, 390
CopyOnWriteArraySet class, 385, 390
copyValueOf() method, 323
CORBA (Common Object Request Broker Ar‐

chitecture), 508–509
core utilities

collections
collection implementations, 382–387
Collection interface, 374–376
collection types, 378–380
EnumSet and EnumMap collections,

390–391
example, 392–393
hash codes and key values, 387–388
Iterator interface, 376–377
Map interface, 380–382
read-only and read-mostly collections,

390
sorting collections, 391
WeakHashMap, 390

dates and times
calendars, 365–366
parsing and formatting with DateFormat,

368–369
printf-style date and time formatting,

370–371
time zones, 366–368

Logging API
example, 402–403

filters, 401
formatters, 401
handlers, 401
loggers, 400
logging levels, 401–402
logging setup properties, 403–405
methods, 405–406
overview, 399–401
performance, 406

math utilities
big/precise numbers, 361–362
floating-point components, 362–363
java.lang.Math class, 360–361
random numbers, 363–364

observers and observables, 406–408
Preferences API

change notification, 398–399
preferences for classes, 397
preferences storage, 398

properties
loading and storing, 394–395
system properties, 395–396

timers, 371–372
cos() method, 360
cosh() method, 360
count() method, 872
CountDownLatch class, 290, 306–307
covariant subtypes, 254
covariant typing, 170
CREATE file open option, 461
createDirectories() method, 438
createDirectory() method, 438
createFile() method, 438
createImage() method, 757
createLink() method, 438
createNewFile() method, 428, 429
createScreenCapture() method, 623
createSymbolicLink() method, 438
createTempDirectory() method, 438
createTempFile() method, 429, 438
CREATE_NEW file open option, 461
CSS (Cascading Stylesheets), 891
Ctrl-Space keyboard shortcut, Eclipse, 906
CTRL_MASK modifier, 613
curl command line utility, 574
currentTimeMillis() method, 364
custom character classes, 345–345
Customizer interface, 822
cyclic, 749

Index | 939

CyclicBarrier class, 290, 308–310

D
d conversion character, 336
D format suffix, 370
d format suffix, 371
-d option, 73
-d switch, 891
-da flag, 120
daemon threads, 70, 268–268
dash (-), 101, 101, 337
data compression

decompressing data, 450–452
zip archives as filesystem, 452–453

data models, 675–677
data streams, 417–418
data types (see types)
datagram, 919
datagram sockets

HeartBeat applet
code, 489–490
Pulse server code, 490–491

InetAddress class, 491
DatagramChannel class, 510
DatagramPacket class, 489, 490
DatagramSocket class, 471, 472, 486, 490
DataInput interface, 417
DataInputStream interface, 416, 417, 477
DataOutput interface, 417
DataOutputStream interface, 417
Date argument, 341
Date class, 103, 364, 366, 368, 587
DATE identifier, 365
DateAtHost client, 477–478
DateFormat class, 368–369, 671
dates and times

calendars, 365–366
parsing and formatting with DateFormat,

368–369
printf-style date and time formatting, 370–

371
time zones, 366–368

DAY_OF_MONTH identifier, 365, 639
DAY_OF_WEEK identifier, 365, 639
DAY_OF_YEAR identifier, 365, 639
deallocating resources in finally statement, 117–

119
declarative security system, 78
decode() method, 460

decrement operator, 101
deep copy, 919
default case, 97
DEFAULT constant, 368
default security manager, 79, 81
DefaultFocusTraversalPolicy, 683
DefaultMutableTreeNode, 684
defaultThreadFactory() method, 297
#define statements, 10
DelayQueue class, 386
delete() method, 324, 428, 429, 438
deleteCharAt() method, 324
deleteIfExists() method, 438
deleteOnExit() method, 429
DELETE_ON_CLOSE file open option, 461
@deprecated annotation, 85, 86, 219, 220, 221
deprecated methods, 265–266
Deque interface, 379
descent, 755
Design Patterns: Elements of Reusable Object-

Oriented Software, 131
desktops, 699–701
destroy() method, 287, 540, 834, 835
destroying objects

finalization, 155
garbage collection, 154–155
weak and soft references, 155–156

development environments, 23–24
Dial bean, 813–815
dial component, 704–708
Dialog font family, 751
DialogInput font family, 751
dialogs, 659–665
digital signatures, 20
dir() command, 914
direct color models, 784
DIRECT identifier, 486
direct transfer, 465–465
DirectoryStream, 441
-disableassertions flag, 120
disabling components, 597–598
distribution, lawsuits over, 4
division operator, 101
DNS (Domain Name System), 486
do/while loops, 95
doc comments, 85
docs directory, 581
DOCTYPE declaration, 878
Document class, 618, 865

940 | Index

Document Object Model (see DOM)
Document Type Definition (DTD), 919
documentation, and javap command, 72
DocumentBuilder class, 866
DocumentFilter interface, 672–673
documents, XML, 854
doDelete() method, 541
dog tags, 4
doGet() method, 540–543, 547
doHead() method, 541
doInBackground() method, 625
doLayout() method, 601–602, 710
dollar sign ($), 199, 345
DOM (Document Object Model)

defined, 919
DOM API, 865–866
generating XML with, 868
JDOM, 869
test-driving, 866–867

Domain Name System (DNS), 486
domain objects, 37
done() method, 625
doOptions() method, 541
doPost() method, 540, 541, 547
doPut() method, 541
dot (.), 397

as operator, 102
in regular expressions, 344
for string formatting, 335
in XPath expressions, 870

doTrace() method, 541
double buffering, 763
Double class, 144, 328, 587
double data type, 88, 90, 587

defined, 919
handling atomically, 274
wrapper for, 144

double quote (“), 853
DoubleBuffer class, 457
doubleToRawLongBits() method, 363
doubleValue() method, 339
downcast type, 173
DragImage class, 763, 765
draw() method, 740, 742
draw3DRect() method, 743
drawArc() method, 743
drawImage() method, 740, 757, 758, 759, 774
drawing animations, 779–782

drawing with 2D API
classes making up 2D API, 737–739
convenience methods, 743–744
filling shapes

color gradients, 749
desktop colors, 749–750
overview, 742
solid colors, 748–749
textures, 749

fonts, 751–756
images

Image class, 756–757
image observers, 758–759
overview, 744–745
preloading, 759
scaling and size, 759–760
transformations and rendering, 744–745

printing, 769–770
rendering pipeline, 739–741
shape outlines

overview, 742
stroking, 750

techniques
double buffering, 763
limiting drawing with clipping, 764–766
offscreen drawing, 766–769

text, 744
drawLine() method, 743
drawOval() method, 743
drawPolygon() method, 743
drawPolyline() method, 743
drawRect() method, 743
drawRoundRect() method, 743
drawString() method, 41, 740
DST_OFFSET identifier, 365
DSYNC file open option, 461
DTD (Document Type Definition), 919
dummy adapters, 622
dynamic binding, 167
dynamic class loading, 503–505
dynamic compilation, 6
dynamic languages, 11
dynamic memory management, 13–14
DynamicallyScaleable interface, 181

E
e conversion character, 337
E conversion character, 337
e format suffix, 371

Index | 941

-ea flag, 120
EAST value

BorderLayout class, 713
GridBagConstants class, 728

Eclipse IDE
compatibility modes in, 902
configuring, 26–29
creating projects, 26–29
downloading, 26
features

autocorrection, 907
coding shortcuts, 906
diffing files, 909
formatting source code, 909
organizing imports, 909
refactoring, 908

setting up to work with, 900–901
using

building ant-based examples, 905
getting at source, 903
loner examples, 906
running examples, 904–904

editing strings, 322
EditorKit, 679
EJB (Enterprise JavaBeans), 23, 828–829, 920
Element class, 869
EmptyBorder class, 640
-enableassertions flag, 120
enabling components, 597–598
encapsulation, 15, 32, 57, 186, 920
encode() method, 460, 529
encoding

text, 83–84
XML, 854–855

endElement() method, 857
endsWith() method, 321, 323
entering() method, 406
Enterprise JavaBeans (EJB), 23, 828–829, 920
entities for XML, 854
Enum class, 158, 256–257
enum data type, 920
enumerate() method, 287
enumerations, 377

customizing, 158–159
defined, 98
enum values, 158

EnumSet and EnumMap collections, 390–391
environment variable, 69
EOFException, 433

ephemeral, 499
equal sign (=) operator, 70, 101, 871
equality operator, 101
equals() method, 55, 323

overview, 202–203
for String class, 319
string comparisons using, 97

equalsIgnoreCase() method, 319, 323
ERA value, 639
erasure, 230–231

bounds and, 241–242
defined, 229, 920

err variable, 413
Error class, 107
error classes, 105–107
ERROR constant, 776
error handling, 14
error page declaration, 564–566
<error-code> element, 565
<error-page> element, 564, 565
escaped characters, 343–344
EtchedBorder class, 640
eval() method, 696
evaluate() method, 873
event

defined, 45, 920
package, 45

event hookups, NetBeans
Juggler, 808–810
molecular motion, 810–811

event listener interfaces, 398
event-driven, 58
EventListener interface, 608
EventObject class, 612
events in HelloJava application, 45–47, 54–55
events, Swing

delivery, 611
focus events, 614–615
generating, 704
java.awt.event.InputEvent Class, 613
mouse and key modifiers on InputEvents,

613–614
mouse-wheel events, 614
receivers and listener interfaces, 608–609
sources, 610–611
types, 612–612

examples in this book, 25
@exception annotation, 86, 86
Exception class, 105, 112

942 | Index

<exception-type> element, 565
exceptions

bubbling up, 109–110
chaining, 113–115, 920
checked and unchecked exceptions, 111–112
defined, 63, 920
error classes and, 105–107
finally clause, 116–117
generics and, 238–239
handling, 107–109
in HelloJava application, 63–64
and overridden methods, 169–171
performance issues, 119
stack traces, 110–111
throwing, 112–115
try statements, 115–116
try with resources, 117–119

exchange() method, 310
Exchanger class, 290, 310–311
exclamation (!) operator, 101, 871
exclusive locks, 463
exec() command, 914
execute() method, 291
ExecutorCompletionService interface, 296
executors

Callable interface and Future class, 292–293
collective tasks, 294–295
CompletionService, 296
ExecutorService, 293–294
Fork/Join framework, 298–303
scheduled tasks, 295–296
thread production, 297
ThreadPoolExecutor implementation, 296–

297
Executors interface, 290
ExecutorService, 293–294
exists() method, 429, 438
exit() method, 268
exiting() method, 406
exp() method, 360
exportNode() method, 398
exportObject() method, 499
exportSubtree() method, 398
expressions

assignment, 102–102
defined, 93
instanceof operator, 104
method invocation, 103
null value, 102

object creation, 103–104
operators, 101–102
variable access, 102–103

extending, 36
extends keyword, 36, 161, 240

using bounded wildcard, 243
defined, 920
extending interfaces, 182

Extensible HyperText Markup Language
(XHTML), 856

Extensible Markup Language (see XML)
Extensible Stylesheet Language (XSL), 538, 849,

852
Extensible Stylesheet Language Transformations

(see XSLT)
extent, 659

F
f conversion character, 337
F format suffix, 90, 370
facade, 184
fallback element, 875
false value, 43, 95
family names, fonts, 751
Field class, 209, 212
fields, 32
File class

file constructors, 425–426
file operations, 427–430
path localization, 426–427

file globbing patterns, 442
file I/O

java.io.File class
file constructors, 425–426
file operations, 427–430
path localization, 426–427

RandomAccessFile class, 433
resource paths, 434–435

file protocol, 521
File Selection dialog, 662–664
FileChannel class

AsynchronousFileChannel, 466–467
concurrent access, 463
direct transfer, 465
file locking, 463
memory-mapped files, 464–465

FileHandler class, 401, 404
FileInputStream, 430
FileNotFoundException, 431

Index | 943

FileOutputStream, 430
FileSystem class, 436–438
FileSystems class, 436
FileVisitor class, 442
fill constraint, 722–724
fill variable, 720
fill() method, 722, 740, 742, 743
fill3DRect() method, 743
fillArc() method, 743
fillOval() method, 743
fillPolygon() method, 743
fillRect() method, 743, 743
fillRoundRect() method, 743
Filter interface, 401, 572
filter streams, implementing, 423–425
<filter-mapping> element, 575
FilterBypass class, 673
filtering

image data
BufferedImage, 793
ImageProcessor, 792
using AffineTransformOp class, 793–794
using RescaleOp class, 793

table input, 671–673
tables, 697–699

FilterInputStream, 417, 423
FilterOutputStream, 417, 423
FilterReader class, 417
FilterWriter class, 417
final keyword, 136, 137, 168

defined, 920
and inner classes, 195
and interface variables, 180

finalize() method, 155, 920
finally clause, 116–117, 920
find() method, 353
findInLine() method, 354
FINE logging level, 402
FINER logging level, 402
FINEST logging level, 402, 404, 405
firewalls, 484–486
first() method, 378
first-class objects, 56
FirstPerson, Inc., 3
fixed delay/fixed rate, 295, 372
flag annotation, 220
flag interfaces, 181
flags, 337–338
flags field, 334

Flanagan, David, 9
flip, 457
Float class, 144, 328, 587
float data type, 35, 88, 90, 144, 362, 587, 921
FloatBuffer class, 457
floatToIntBits() method, 363
floor() method, 360
FlowLayout class, 53, 600, 711–712
flush() method, 398, 418
focus events, 614–615
focus navigation

complete example, 686–688
nodes and models, 684–685
tree events, 685–685
trees, 684–684

focus, components with, 598
FocusEvent class, 609, 616
focusGained() method, 616
FocusListener interface, 608, 615
focusLost() method, 616
FocusTraversalPolicy, 682
folds, in Eclipse, 903
Font class, 751
FontRenderContext class, 752
fonts, 751–756
for loop, 95–96

and break statements, 99
enhancements to, 21
over collections, 377

force() method, 463
Fork/Join framework, 298–303
ForkJoinPool class, 300
ForkJoinTask class, 300
FORM method, 569
format string, 333–334
format() method, 333, 368
Formattable interface, 334
formatted text, 670–671
Formatter class, 333
formatting text, 328–332
formatTo() method, 334
FormSubmitEvent, 679
forward slash (/), 84, 85, 101, 397, 870
fractals, 299–303
fragile base class problem, 13
frame() command, 913
frames, 602–604
frameworks for Web applications, 538
ftp protocol, 521

944 | Index

FULL constant, 368
fully qualified class names, 184
functions, XPath, 871–872
Future interface, 290
future of Java, 23–23

G
g conversion character, 337
G conversion character, 337
Gamma, 131
garbage collection, 154–155

defined, 921
and finalize() method, 155
in Java, 13–13

gc() method method, 155
generics

as added feature, 21
and collections, 375
arrays of parameterized types

purpose of, 255
using array types, 254–255
wildcards in array types, 255–256

bounds, 240–242
casts, 235–236
containers, 224–225
defined, 921
Enum class, 256–257
erasure, 230–231
generic classes

compatibility with raw types, 231
defined, 921
one-dimensional inheritance, 233

generic classes, writing
exceptions and generics, 238–239
parameter type limitations, 239–240
subclassing generics, 237–238
type variable, 236–237

generic methods
defined, 921
explicit type invocation, 252
overview, 249–250
type inference from arguments, 250–251
type inference from assignment context,

251–252
vs. wildcard types, 253
wildcard capture, 252–253

overview, 225–228
parameterized type relationships, 232–235
raw types, 231–232

sort() method, 257–258
type inference, 227
types, 92, 228
wildcards

<?>, 247
<Object>, 247
bounded, 243–243
lower bounds, 244–245
raw type, 247
supertype of all instantiations, 243
thinking outside the container, 243–244
using, 245–246
wildcard type relationships, 247–248

GET method, 481, 525, 526, 541
get() method, 212

ByteBuffer class, 456
Calendar class, 365
List interface, 378
Map interface, 381

GET-style encoding, 545
getAbsolutePath() method, 427, 429
getActionCommand() method, 628
getAffectedArea() method, 766
getAndIncrement() method, 312
getAndSet() method, 312
getApplet() method, 841
getAppletContext() method, 840
getApplets() method, 841
getAscent() method, 756
getAttribute() method, 438, 554, 866, 867
getAudioClip() method, 839
getAuthType() method, 570
getAvailableIDs() method, 366
getAvailableLocales() method, 325
getBackground() method, 599
getBoolean() method, 212
getBuffer() method, 423
getBundle() method, 327
getByName() method, 490, 491
getBytes() method, 323
getCanonicalPath() method, 428, 429
getCause() method, 114
getChars() method, 323
getChild() method, 869
getChildNodes() method, 865
getChildren() method, 869
getChildText() method, 869
getClass() method, 207, 211, 435
getClip() method, 745

Index | 945

getColor() method, 748, 752
getColumnClass() method, 692
getColumnCount() method, 691, 696
getColumnName() method, 691
getComponentAt() method, 602
getComponents() method, 602
getConstructor() method, 210
getConstructors() method, 209, 210
getContent() method, 522, 523
getContentEncoding() method, 530
getContentLength() method, 530
getContents() method, 327
getContentType() method, 523, 530
getCookies() method, 554
getCurrencyInstance() method, 338
getCursor() method, 599
getDateInstance() method, 368
getDateTimeInstance() method, 368, 369
getDeclaredClasses() method, 210
getDeclaredConstructor() method, 210
getDeclaredConstructors() method, 209, 210
getDeclaredField() method, 210
getDeclaredFields() method, 209, 210
getDeclaredMethod() method, 210
getDeclaredMethods() method, 210
getDefault() method, 326, 486
getDescent() method, 756
getDocumentBase() method, 839
getDocumentElement() method, 867
getElementbyTagName() method, 867
getElementsByTagName() method method, 866
getEventSetDescriptors() method, 820
getExponent() method, 363
getExtraPath() method, 545
getFamily() method, 752
getField() method, 210
getFields() method, 209, 210
getFile() methods, 521
getFileAttributeView() method, 438
getFilePointer() method, 433
getFileStore() method, 438
getFirstChild() method, 865
getFont() method, 752
getFontName() method, 752
getForeground() method, 599
getFreeSpace() method, 429
getHeaderField() method, 530
getHeaderFieldDate() method, 530
getHeaderFieldInt() method, 530

getHeight() method, 756, 774
getHost() method, 489, 521
getHours() method, 103
getIcon() method, 821
getIconImage() method, 604
getImage() method, 757, 758, 774, 839
getImageLoadStatus() method, 777
getInsets() method, 601
getInstanceOf() method, 823
getInt() method, 212
getInterfaces() method, 211
getLastChild() method, 865
getLastModified() method, 530
getLastModifiedTime() method, 438
getLeading() method, 756
getLineMetrics() method, 752
getLogger() method, 400
getMaximumSize() method, 710, 711
getMediaTracker() method, 777
getMessage() method, 112
getMethod() method, 210
getMethods() method, 210
getMinimumSize() method, 710, 711
getModifiers() method, 211, 613
getName() method, 427, 429, 599, 752
getNextEntry() method, 451
getNodeValue() method, 866
getNumberInstance() method, 339
getOppositeComponent() method, 615
getOutputStream() method, 473, 543
getOwner() method, 306, 438
getParameter() method, 545, 838
getParameterMap() method, 547
getParent() method, 427, 429
getPassword() method, 675
getPath() method, 427, 429
getPercentInstance() method, 339
getPosixFilePermissions() method, 438
getPreferredSize() method, 599, 710, 711
getProperties() method, 395
getProperty() method, 70, 394
getPropertyDescriptors() method, 819
getProtocol() method, 521
getReadLockCount() method, 306
getRequestURI() method, 547
getResource() method, 74, 434, 839
getResourceAsStream() method, 434, 839
getResourcePaths() method, 555
getResponseCode() method, 529

946 | Index

getRowCount() method, 691, 696
getScaledInstance() method, 759
getSelectedText() method, 670
getSelectedValues() method, 636
getSelection() method, 633
getSession() method, 550
getSize() method, 599, 752
getSource() method, 55, 598
getStackTrace() method, 111
getState() method, 283
getStream() method, 842
getStringBounds() method, 753, 755
getStyle() method, 752
getTcpNoDelay() method, 483
getText() method, 669
getTextContent() method, 866
getTime() method, 366
getTimeInstance() method, 368
getTotalSpace() method, 430
getUseableSpace() method, 430
getUserPrincipal() method, 571
getValue() method, 670
getValueAt() method, 691, 696
getWheelRotation() method, 614
getWidth() method, 774
getWriter() method, 422
getWriterFormatNames() method, 795
global field, 400
glyphs, 744
Google Web Toolkit, 539–539
Gosling Emacs, 2
Gosling, James, 2
GradientPaint class, 749
graphical user interface (GUI), 921
Graphics class, 36
graphics context, 921
greediness, 349–350
GREEN value, 56
GregorianCalendar class, 364
grep command line utility, 873
grid coordinates, 721–722
GridBagConstraints class, 719–721
GridBagLayout class, 600

anchoring, 728–728
composite layouts, 731–734
fill constraint, 722–724
grid coordinates, 721–722
GridBagConstraints class, 719–721
padding and insets, 728–730

relative positioning, 730–731
spanning rows and columns, 724–725
weighting, 725–727

gridheight variable, 720, 724
GridLayout class, 600, 712–713
gridwidth variable, 720, 724
gridx variable, 720, 721, 730
gridy variable, 720, 721, 730
group() method, 353
groupCount() method, 354
grouping, 347–347
GUI (graphical user interface), 921
.gz files, 451
GZIPInputStream, 450
GZIPOutputStream, 448

H
h conversion character, 336
H conversion character, 336
H format suffix, 371
handler frameworks, 524–525
handlers property, 404
hash codes, 387–388
hash maps, 384–385
hash table, 921
hashCode() method, 203–203, 323
hashcodes, 203, 921
HashMap class, 386, 387
HashSet class, 385, 386
Hashtable class, 203, 386, 387
hasMoreElements() method, 377
hasMoreTokens() method, 332
hasNext() method, Iterator interface, 376
headMap() method, 381
headSet() method, 378
HeartBeat applet

code, 489–490
Pulse server code, 490–491

height attribute, 843
HelloClient servlet

Content type, 543
deploying, 563–564
ServletExceptions, 543

HelloComponent, 35–36
HelloJava application

arrays, 56–56
classes

class types, 34–35
JComponent class, 37–38

Index | 947

Thread class, 61
colors, 55–55, 56–58
components, 52
constructors, 44–45
containers, 52–53
events, 45–47, 54–55
exceptions, 63–64
HelloComponent, 35–36
inheritance, 36–37
instance variables, 43
interfaces, 48–49, 54–55
layout, 53–53
methods

color methods, 56–58
main() method, 33–34
overloading, 51–52
paintComponent() method, 40–41
repaint() method, 47

objects, 34
packages and imports, 39–40
relationships, 38–39
Runnable interface, 61
static members, 55
subclassing and subtypes, 54
synchronization, 64
threads in

running code in, 62–63
starting, 62–62

variables, 34–35
Helm, 131
hexadecimal numbers, 89
hierarchy of packages, 39, 183
history of Java, 3–4, 20–21
home property, 395, 395
HORIZONTAL value, 659, 724
HORIZONTAL_SCROLLBAR_ALWAYS dis‐

play policy, 651
HORIZONTAL_SCROLLBAR_AS_NEEDED

display policy, 650
HORIZONTAL_SCROLLBAR_NEVER display

policy, 651
hostname, 921
HotJava, 921
HotSpot, 6, 13
HOUR identifier, 365
HOUR_OF_DAY identifier, 365
HTML (Hypertext Markup Language)

HTML5, 539
Swing component for, 677–680

text in buttons and labels, 630–631
HTMLEditorKit, 679
HTTP (Hypertext Transfer Protocol), 921
HTTP identifier, 486
http protocol, 521
HTTP Secure Sockets Layer (HTTPS), 530
@HttpConstraint annotation, 567
@HttpMethodConstraint annotation, 568
HTTPS (HTTP Secure Sockets Layer), 530
https protocol, 521, 530
HttpServlet class, 540, 541
HttpServletRequest class, 542, 576
HttpServletResponse class, 542, 544, 580
HttpServletResponseWrapper class, 577
HttpSession class, 548, 550
HttpURLConnection class, 530
Hunter, Jason, 869
HyperlinkEvent class, 617, 677
hyperlinkUpdate() method, 617
Hypertext Markup Language (HTML) (see

HTML)
Hypertext Transfer Protocol (HTTP), 921
hypot() method, 361

I
I format suffix, 371
I/O (input/output)

data compression
decompressing data, 450–452
zip archives as filesystem, 452–453

file I/O
file streams, 430–433
java.io.File class, 425–430
RandomAccessFile class, 433
resource paths, 434–435

NIO File API
directory operations, 441–443
FileSystem and Path, 436–438
NIO File operations, 438–441
watching paths, 443–444

NIO package
asynchronous I/O, 453–454
buffers, 455–459
channels, 454–455
character encoders and decoders, 459–

461
FileChannel, 461–467
mapped and locked files, 454
performance, 454

948 | Index

scalable I/O with, 467
with NIO

LargerHttpd server, 512–517
non-blocking client-side operations, 517
selectable channels, 509
using Select, 510–512

serialization
initialization with readObject() method,

446–447
SerialVersionUID, 447–448

streams
basic I/O, 412–414
character streams, 415–416
filter streams, implementing, 423–425
pipes, 420–422
stream wrappers, 416–420
streams from strings, 422–423

ID Software, 8
IDE (Integrated Development Environment),

25, 899, 921
identity, testing for, 55
IdentityHashMap class, 386, 386
IEEE 754 international specification, 88
if/else conditionals, 94–95
IIOReadProgressListener interface, 778
IIOReadUpdateListener interface, 778
IIOReadWarningListener interface, 778
IllegalAccessException, 207
IllegalArgumentException, 215
IllegalFormatConversionException, 333
IllegalStateException, 380
Image class, 587, 756–757, 756
ImageIcon class, 628, 759, 777
ImageIO class, 757, 777–778
ImageObserver interface, 758, 773–774
ImageProcessor class, 792
ImageProducer class, 522
ImageReader class, 778
images

filtering image data
BufferedImage, 793
ImageProcessor, 792
using AffineTransformOp class, 793–794
using RescaleOp class, 793

Image class, 756–757
image observers, 758–759
JMF (Java Media Framework), 796–798
loading

ImageIcon, 777

ImageIO, 777–778
ImageObserver, 773–774
MediaTracker, 775–777

overview, 744–745
preloading, 759
producing image data

BufferedImage, 782–783, 786–789
color models, 783–784
creating images, 784–786
drawing animations, 779–782

rendering, 744–745
saving image data, 794–795
scaling and size, 759–760
simple audio, 795–796
transformations, 744–745

imageUpdate() method, 773, 774
immutable, 316
implements keyword, 178, 921
import statement, 30

defined, 922
in HelloJava application, 39–40
static imports using, 185

importObject() command, 913
importPreferences() method, 398
in variable, 413, 415
<include> element, 855, 874
increment operator, 101
incremental development, 12–13
incrementAndGet() method, 312
index operator, 122
IndexColorModel class, 789
indexed color models, 784
indexOf() method, 321, 323
inequality operator, 101
InetAddress class, 489, 491
InetSocketAddress class, 516
INFO logging level, 402
inheritance, 161

(see also subclassing and inheritance)
defined, 922
in HelloJava application, 36–37
in Java, 11

init() method
Applet class, 489
JApplet class, 834
Servlet class, 540

<init-param> element, 574
initCause() method, 114
initComponents() method, 818

Index | 949

initialize() method, 786, 788
initializer blocks, 153
inner classes

as adapters, 192–194
defined, 922
within methods

anonymous inner classes, 196–198
limitations on, 195–195
scoping of “this” reference, 198–198
security implications, 200
static inner classes, 195–196
whether really work, 199

input/output (see I/O)
InputStream class, 412, 412
InputStreamReader class, 415, 481
InputVerifier class, 673
insert() method, 324
insertString() method, 673, 680
insets, 601–601, 728–730
Insets class, 601
insets variable, 720
installing NetBeans, 802–804
instance methods, 922
instance variables, 133

defined, 922
in HelloJava application, 43–43

instanceof operator, 104–104
Beans class, 823
using before casting, 173
defined, 922

instances, 34, 132, 922
instantiate() method, 823
instantiating the type, 226
InstantiationException, 207, 215
int data type, 35, 87, 89, 587

defined, 922
parsing, 329
wrapper for, 144

IntBuffer class, 457
Integer class, 144, 328, 587
integral operators, 101
Integrated Development Environment (IDE),

25, 899, 921
interactive TV (ITV), 3
interface keyword, 177, 922
interface variables, 180–181
interfaces

as callbacks, 179–180
defined, 11, 177

in HelloJava application, 48–49, 54–55
interface variables, 180–181
subinterfaces, 181

intern() method, 323
internalFrame-Activated() method, 617
internalFrame-Closed() method, 617
internalFrame-Closing() method, 617, 701
internalFrame-Deactivated() method, 617
internalFrame-Deiconified() method, 617
internalFrame-Iconified() method, 617
internalFrame-Opened() method, 617
InternalFrameEvent class, 617
InternalFrameListener method, 701
internationalization of text

defined, 22, 922
java.util.Locale class, 325–326
resource bundles, 326–328
and Unicode character set, 83

interned, 146
Internet Protocol (IP), 472
interpreted language, 4, 6
interpreter, 922
interpreter, Java, 5
interrupt() method, 265–267
InterruptedException, 266
InterruptedIOException, 267, 483
intervalAdded() method, 617
intervalRemoved() method, 617
introspection, 922
Introspector class, 819
invalidate() method, 550
invoke() command, 915
invoke() method, 213, 214
invokeAll() method, 294, 303
invokeAndWait() method, 624
invokeAny() method, 294
invokeLater() method, 624
invoking the type, 226
IOException, 106, 413, 422, 431, 433, 474, 478,

523, 565
IP (Internet Protocol), 472
ipadx variable, 720, 728
ipady variable, 720, 728
isAbsolute() method, 427, 430
isAcceptable() method, 511
isCellEditable() method, 696
isConnectable() method, 511
isDirectory() method, 427, 430, 438
isDone() method, 292

950 | Index

isEmpty() method, 323
isError() method, 461
isErrorID() method, 776
isExecutable() method, 438
isFile() method, 427, 430
isHidden() method, 430, 438
isInstanceOf() method, 823
isInterrupted() method, 267
ISO 3166, 325
ISO 639, 325
ISO-8859-1, 459, 923
isOverflow() method, 461
isPopupTrigger() method, 648
isReachable() method, 491
isReadable() method, 438, 511
isRegularFile() method, 438
isSameFile() method, 438
isSecure() method, 571
isSelected() method, 634
isShared() method, 463
isSymbolicLink() method, 438
isUnderflow() method, 461
isUserInRole() method, 570
isWritable() method, 438, 511
ITALIC style identifier, 752
ItemEvent class, 617
itemStateChanged() method, 617
Iterable interface, 96
iteration (multiplicity), 346–347
Iterator interface, 376, 389

for loop over collections, 377
java.util.Enumeration, 377

iterator() method, 374
iterators

defined, 376
synchronizing, 389

ITV (interactive TV), 3

J
JAF (Java Activation Framework), 525, 828
JAI (Java Advanced Imaging API), 525, 771
JApplet class, 600

<applet> tag, 842–842
applet lifecycle, 834–837
applet resources

applet parameters, 838
applet persistence and navigation, 841
driving the browser, 840–841
inter-applet communication, 841

appletviewer, 847
attributes, 843
Complete <applet> tag, 844–845
loading class files, 846
packages, 846–847
parameters, 843
security, 837–838

JAR files
compression, 74
jar utility, 75–77
launching, 69
pack200 format, 78

jar protocol, 521
jar utility, 70, 75–77, 563
Java

availability of, 23–24
compared with other languages, 7–10
future of, 23

(see also sytax)
history of, 3–4, 20–21
tools and environment, 25–26
version 7 (current), 21–23
versions for, xxii
versions Java 1.0â€“Java 1.6, 20–21
and XML, 869
and XSLT, 892

Java 2D, 22
Java 3D API, 22
Java Activation Framework (JAF), 525, 828
Java Advanced Imaging API (JAI), 525, 771
Java API for XML Processing (JAXP), 857–858,

923
Java Architecture for XML Binding (see JAXB)
Java beans, 923
java command, 67, 69
Java compiler, 72–74
Java Cryptography API, 22
Java Database Connectivity (JDBC), 21, 923
Java Development Kit (see JDK)
.java files, 72, 182
Java Foundation Classes (JFC), 21, 22, 589
Java Media API, 22
Java Media Framework (JMF), 525, 796–798
Java Naming and Directory Interface (JNDI), 22
Java Network Launching Protocol (JNLP), 847
Java Runtime Environment (JRE), 26
Java Servlet Programming, 869
Java Servlets API, 22, 220
Java Sound API, 22

Index | 951

Java Speech API, 22
Java Threads, 282
Java TV API, 22
Java VM, 68–68
Java Web Services (JAX-WS), 220
Java Web Services Developer Pack (JWSDP),

923
Java-Bean attribute, 77
java.applet package, 316
java.awt package, 39, 315, 716, 737, 742
java.awt.color package, 737
java.awt.event package, 45, 612, 616
java.awt.event.InputEvent Class, 613
java.awt.font package, 737
java.awt.geom package, 737
java.awt.image package, 316, 737
java.awt.print package, 737, 769
java.awt.Robot package, 623
java.beans package, 316, 864
java.beans.beancontext package, 827
java.beans.EventHandler package, 826
java.io package, 106, 315, 409
java.lang package, 105, 315, 328
java.lang.annotations package, 222
java.lang.ref package, 156
java.lang.reflect package, 208, 315
java.net package, 315, 471
java.nio package, 289, 315, 409, 453
java.nio.charset package, 459
java.nio.file package, 436
java.rmi package, 106, 315, 469
java.scripting package, 911
java.text package, 315, 338–342, 671
java.util package, 315, 359
java.util.concurrent package, 260, 267, 288, 289,

291, 305, 315, 380, 556
java.util.concurrent.atomic package, 274, 290,

311
java.util.concurrent.locks package, 290, 303
java.util.Enumeration, 377
java.util.Locale class, 325–326
java.util.logging package, 399
java.util.Random package, 282
java.util.regex package, 315, 342
java.util.zip package, 448
java.xml.transform package, 868
JavaBeans

BeanContext and BeanContextServices,
827–828

binding properties, 811–813
building beans

design patterns for properties, 816–817
Dial bean, 813–815

customizing with BeanInfo class
getting properties information, 819–822
overview, 819

defined, 799, 923
EJB (Enterprise JavaBeans), 828–829
event hookups and adapters

Juggler, 808–810
molecular motion, 810–811

handcoding with beans
bean instantiation and type management,

823
runtime event hookups with reflection,

825–827
working with serialized beans, 823–825

JAF (Java Activation Framework), 828
limitations of visual design, 817–818
NetBeans

creating project and file, 803–803
example beans, 802
generating bean patterns in, 817
installing and running, 802–804
workspace, 803–804

POJOs-based enterprise frameworks, 828–
829

properties and customizers, 805–806
serialization vs. code generation, 818
what beans are, 799–801

javac command
and apt, 222
-classpath option, 71
optimizations for, 168
overview, 72–74

javadoc comments, 85–86
JavaHelp API, 23
JavaMail API, 22
javap command, 72
javap() command, 914
JavaScript, 9, 923
JavaScript Object Notation (JSON), 852
JavaServer Pages (JSPs), 537–538
javax. package, 39
javax.activation package, 828
javax.imageio package, 316, 777
javax.jws package, 536
javax.media package, 316, 796

952 | Index

javax.media.protocol package, 796
javax.servlet package, 315, 535
javax.servlet.http package, 541
javax.swing package, 39, 315, 590, 716
javax.swing.border package, 639
javax.swing.event package, 612, 616
javax.swing.table package, 688
javax.swing.tree package, 684
javax.xml package, 316, 852
javax.xml.parsers package, 857, 857
javax.xml.transform package, 891
javax.xml.validation package, 876, 883
JAX-RPC, 923
JAX-WS (Java Web Services), 220
JAXB (Java Architecture for XML Binding), 220

annotating model, 885–890
defined, 923
generating model from XML Schema, 890–

891
generating XML Schema from model, 891

JAXBContext class, 886
JAXP (Java API for XML Processing), 857–858,

923
JButton class, 51, 592, 597, 616, 628
JCheckBox class, 631, 634
JCheckBoxMenuItem class, 616
JColorChooser class, 664–665
JComboBox class, 617, 636
JComponent class, 36, 52, 592
JDBC (Java Database Connectivity), 21, 923
JDesktopPane class, 699
JDialog class, 600, 618
JDK (Java Development Kit), 23

environment, 67–68
requirements, 25
vs. SDK, xxii

JDOM, 869, 923
JEditorPane class, 617, 677
JetBrains, 899
JFC (Java Foundation Classes), 21, 22, 589
JFileChooser class, 426, 616, 662
JFormattedTextField class, 670
JFrame class, 30, 33, 600, 602, 618
Jini, 23
JInternalFrame class, 617, 683, 700
JIT (just-in-time) compilation, 6, 6
JLabel class, 30, 629
JList class, 616, 617, 636
JMenu class, 617, 642

JMenuBar class, 49, 642
JMenuItem class, 617, 618, 644
JMF (Java Media Framework), 525, 796–798
jmf.jar file, 796
JNDI (Java Naming and Directory Interface), 22
JNLP (Java Network Launching Protocol), 847
join() method, 265, 266–267
JOptionPane class, 659
Joy, Bill, 2, 2
JPanel class, 600, 600
JPasswordField class, 674
JPopupMenu class, 617, 646
JRadioButton class, 631
JRadioButtonMenuItem class, 616
JRE (Java Runtime Environment), 26
JScrollBar class, 616
JScrollPane class, 636, 650–652
JSlider class, 658
JSON (JavaScript Object Notation), 852
JSpinner class, 637–639
JSPs (JavaServer Pages), 537–538
JTabbedPane class, 653–655
JTable class, 688, 690, 694, 697, 699
JTextArea class, 667, 668
JTextComponent class, 616, 667
JTextField class, 597, 616, 667, 668
JTextPane class, 617, 680, 682
JToggleButton class, 616
JToolBar class, 680
JTree class, 618, 684, 685
Juggler bean, 806, 808–810
Julian calendar, 364
just-in-time (JIT) compilation, 6
JWindow class, 600, 602, 618
JWSDP (Java Web Services Developer Pack),

923
Jython, 911

K
k format suffix, 371
key values, 387–388
KeyboardFocusManager class, 682
KeyEvent class, 45, 593, 616
keyPressed() method, 616
keyReleased() method, 616
keySet() method, Map interface, 381
KeyStroke class, 645
keyTyped() method, 616
kind() method, 444

Index | 953

Knuth, Donald, 363

L
L format suffix, 89, 371
l format suffix, 371
labels, 627–631
LargerHttpd server, 512–517
last() method, 378, 872
lastIndexOf() method, 323
lastModified() method, 428, 430
late binding, 12
Latin-1 character set, 923
layout in HelloJava application, 53
layout managers, 592

absolute positioning, 735
BorderLayout, 713–716
BoxLayout, 716–717
CardLayout, 717–719
defined, 923
FlowLayout, 711–712
GridBagLayout

anchoring, 728–728
composite layouts, 731–734
fill constraint, 722–724
grid coordinates, 721–722
GridBagConstraints class, 719–721
padding and insets, 728–730
relative positioning, 730–731
spanning rows and columns, 724–725
weighting, 725–727

GridLayout, 712–713
LayoutFocusTraversalPolicy, 683
LayoutManager class, 53, 709
left field, 601
LEFT value, 711
leftmost bound, 241
legacy code, 375–376
length attribute, 122, 125
length() method, 323

File class, 428, 430
String class, 317

Level class, 405
lib directory, 581
lightweight components, 594–595, 923
limit() method, 456
line comments, 84
linear congruential formula, 363
linear time, 383
LineBorder class, 640

LineMetrics class, 752
linked lists, 383–384
LinkedBlockingQueue class, 386
LinkedHashMap class, 386
LinkedHashSet class, 385, 386
LinkedList class, 385, 386
Lisp, 7, 11, 86
List interface, 378–379, 385
list() method

Container class, 602
File class, 428, 430
Properties class, 395

List<Date>, 234–235
List<Object>, 234–235
ListDataEvent class, 617
listener, 46
listener interfaces, 608–609
listening for components, 602
listFiles() method, 428, 430
ListModel class, 617
ListResourceBundle class, 327
listRoots() method, 427, 430
lists, 634–636
ListSelectionEvent class, 617
ListSelectionModel class, 617
little endian, 458
load() command, BeanShell, 913
load() method, 394
loadFromXML() method, 395
loading

images
ImageIcon, 777
ImageIO, 777–778
ImageObserver, 773–774
MediaTracker, 775–777

properties, 394–395
LOADING constant, 776
local variables, 43, 139, 923
Locale, 368
localizing text, 325
Lock class, 290, 303
lock() method, 303, 463
locked files, 454
locks

conditions, 305–306
defined, 65
read and write locks, 304–305

log() method, 361
Logger class, 400

954 | Index

LoggerDaemon class, 422
Logging API

defined, 923
example, 402–403
filters, 401
formatters, 401
handlers, 401–401
loggers, 400
logging levels, 401–402
logging setup properties, 403–405
methods, 405–406
overview, 399–401
performance, 406–406

logical names, fonts, 751
<login-conf> element, 569
<login-config> element, 566
logout() method, 570
logp() method, 405
logrb() method, 405
logs directory, 564
Long class, 144, 328, 587
LONG constant, 368
long data type, 88, 89, 587

defined, 923
handling atomically, 274
parsing, 329
wrapper for, 144

LongBuffer class, 457
longjmp() statement (C), 105
look-and-feel schemes, 595
lookahead (?=) operator, 351
lookaheads and lookbehinds, 351–352
lookbehind (?<!) operator, 352
lookbehind (?<=) operator, 352
lookingAt() method, 353
LookupOp class, 790
loop() method, 795

M
m format suffix, 371
M format suffix, 371
Mac OS X, 67
macros, 10
MAGENTA value, 56
magicbeans directory, 814
magnitude, 362
main() method, 33–34, 68, 69
Main-Class value, 77
MAIN_IMAGE identifier, 776

make utility, 11, 73, 183
MalformedURLException, 521
Manager class, 796
Manifest class, 77
MANIFEST.MF file, 76
mantissa, 362
Map interface, 227, 228, 290, 380–382, 386
map() method, 464
mapped files, 454
MappedByteBuffer class, 464
mapping servlet filters, 574–575
mark() method, 419
markup languages, 850
MaskFormatter class, 671
match attribute, 892, 893
Matcher class, 352–355
matches() method, 323, 353
Math class, 140, 359
math utilities

big/precise numbers, 361–362
floating-point components, 362–363
java.lang.Math class, 360–361
random numbers, 363–364

MatteBorder class, 640
max() method, 361
McLaughlin, Brett, 869
MediaTracker class, 652, 775–777
MEDIUM constant, 368
memory management, 13–14
memory-mapped files, 464–465
MemoryHandler class, 401
menu field, 749
MenuBar class, 49
menuCanceled() method, 617
menuDeselected() method, 617
menuDragMouse-Dragged() method, 618
menuDragMouse-Entered() method, 618
menuDragMouse-Exited() method, 618
menuDragMouse-Released() method, 618
MenuDragMouseEvent class, 618
MenuEvent class, 617
MenuKeyEvent class, 617
menuKeyPressed() method, 617
menuKeyReleased() method, 617
menuKeyTyped() method, 617
menus, 642–646
menuSelected() method, 617
menuText field, 749
message digest, 923

Index | 955

MessageFormat class, 338, 340–342
META-INF directory, 76
metadata

adding using annotations, 219
defined, 86
javadoc as, 86

metadata-complete attribute, 560
MetalLookAndFeel class, 703
META_MASK modifier, 613
Method class, 209, 213
methods

abstract, 176–177
architecture-dependent, 5
argument passing and references, 142–144
autoboxing and unboxing of primitives,

146–147
binding, 11–12
declaring, 94
defined, 32, 923
generic

explicit type invocation, 252
overview, 249–250
type inference from arguments, 250–251
type inference from assignment context,

251–252
vs. wildcard types, 253
wildcard capture, 252–253

in HelloJava application
color methods, 56–58
main() method, 33–34
overloading, 51–52
paintComponent() method, 40–41
repaint() method, 47

initializing local variables, 141–142
inner classes within

anonymous inner classes, 196–198
limitations on, 195–195
scoping of “this” reference, 198–198
security implications, 200–200
static inner classes, 195–196
whether really work, 199–199

invoking, 103
local variables, 139
method overloading, 148–149
overloading, 923
overriding

@Override, 167
and dynamic binding, 167
compiler optimizations, 168–169

defined, 924
exceptions and overridden methods,

169–171
final methods and performance, 168
method selection, 169
return types and overridden methods,

171–172
static method binding, 168

selection of, 169
shadowing, 139–140
static, 55
static methods, 140–141
variable-length argument lists, 147–148
visibility of

basic access modifiers, 186–188
interfaces and, 189
subclasses and, 188–188

wrappers for primitive types, 144–145
Microsoft Windows, 67
MIDI files, 795
MILLISECOND identifier, 365, 639
MIME type, 522
min() method, 361
minus operator, 101
MINUTE value, 365, 639
MissingResourceException, 327
mkdir() method, 428, 430
mkdirs() method, 428, 430
mnemonics, 642
model (MVC pattern), 595
Modifier class, 211
modifiers, 41, 924
Molecule bean, 810
monitor and condition model, 15
monitors, 271
Monospaced font family, 751
Monson-Haefel, Richard, 828
MONTH identifier, 365, 639
mouse-wheel events, 614
mouseClicked() method, 198, 616, 648
mouseDragged() method, 45, 46, 616, 766
mouseEntered() method, 616
MouseEvent class, 45, 593, 608, 616
mouseExited() method, 616
MouseInfo class, 623
MouseInputAdapter class, 198
MouseListener interface, 609
MouseMotionListener interface, 48, 54, 609
mouseMoved() method, 45, 46, 616

956 | Index

mousePressed() method, 616, 622, 648
mouseReleased() method, 616, 648
MouseWheelListener interface, 614
move() method, 438
MulticastSocket class, 471, 472
multidimensional arrays, 127–129
multiplication operator, 101
multiplicity (iteration), 346–347
multiprocessor systems, 271
multithreaded, 60
MutableTreeNode class, 684
MVC framework, 595–596, 924
MVC pattern (controller), 537, 595
MVC pattern (model), 595
MVC pattern (view), 595

N
n conversion character, 338
name attribute, 845
name property, 395
name() method, 158
namespaces, XML, 855–856
NaN (not-a-number), 360, 924
narrow type, 173
native methods, 5, 924
NavigableMap interface, 381, 384
NavigableSet interface, 384
NavigationFilter interface, 671
nearest common interface, 250
nearest common supertype, 250
NEGATIVE_INFINITY value, 360
nesting character classes in regular expressions,

345
NetBeans, 24, 900

creating project and file, 803–803
example beans, 802
generating bean patterns in, 817
installing and running, 802–804
workspace, 803–804

Netscape, 9
network programming

datagram sockets
HeartBeat applet, 487–491
InetAddress class, 491

RMI (remote method invocation)
and CORBA, 508–509
example, 500–508
remote and nonremote objects, 497–500
usage, 497

scalable I/O with NIO
LargerHttpd server, 512–517
nonblocking client-side operations, 517
selectable channels, 509
using Select, 510–512

simple serialized object protocols, 491–496
sockets

and security, 476–476
clients, 473–474
DateAtHost client, 477–478
options, 482–484
proxies and firewalls, 484–486
servers, 474–476
TinyHttpd server, 478–482

New I/O (see NIO)
new operator, 33, 44, 51, 103, 150

for anonymous inner classes, 197
Beans class, 823
creating arrays, 123
creating classes, 133
creating multidimensional arrays, 128
defined, 924
for generic classes, 226, 227
for inner classes, 192

NEW thread state, 283
newAudioClip() method, 795
newBufferedReader() method, 438
newBufferedWriter() method, 438
newByteChannel() method, 438
newCachedThreadPool() method, 293
newCondition() method, 305
newDirectoryStream() method, 438, 441
newFileSystem() method, 453
newFixedThreadPool() method, 291, 293
newInputStream() method, 438
newInstance() method, 207, 216
newOutputStream() method, 438
NeWS, 2
newSingleThreadExecutor() method, 293
newThread() method, 297
newWatchService() method, 444
next() method, Iterator interface, 376
nextBoolean() method, 363
nextDouble() method, 364
nextElement() method, 377
nextFloat() method, 364
nextGaussian() method, 364
nextInt() method, 363
nextLong() method, 363

Index | 957

nextToken() method, 332
nextUp() method, 363
NIO (New I/O)

defined, 924
scalable I/O with

LargerHttpd server, 512–517
nonblocking client-side operations, 517
selectable channels, 509
using Select, 510–512

NIO File API
directory operations, 441–443
FileSystem and Path, 436–438
NIO File operations, 438–441
watching paths, 443–444

NIO package
asynchronous I/O, 453–454
buffers

allocating buffers, 459
buffer operations, 456–457
buffer types, 457–458
byte order, 458

channels, 454–455
character encoders and decoders, 459–461
FileChannel

AsynchronousFileChannel, 466–467
concurrent access, 463
direct transfer, 465–465
file locking, 463–463
memory-mapped files, 464

mapped and locked files, 454
performance, 454
scalable I/O with, 467

node() method, 397
NodeChangeListener interfaces, 398
nodeExists() method, 398
NodeList class, 873
nodes

defined, 383
XPath, 870–871

NONE value, 724
nonProxyHosts property, 485
nonstatic initializer blocks, 153
NORTH value

BorderLayout class, 713
GridBagConstants class, 728

NORTHEAST value, 728
NORTHWEST value, 728
not operator (!), 63
not-a-number (NaN), 360, 924

Notepad, 25
notExists() method, 438
notify() method, 275–276, 279
notifyAll() method, 276
null value, 35, 43, 102, 924
NullPointerException, 35, 102, 369
Number argument, 341
numbered arguments, 335–336
NumberFormat class, 330, 338, 671
NumberFormatException, 144, 330
numbering, 348
NumericField bean, 811

O
o conversion character, 336
-O switch, 168
Oaks, Scott, 282
Object class, 36, 38

cloning objects, 203–206
equality and equivalence, 202–203
hashcodes, 203–203
thread methods, 275, 276

Object Management Group (OMG), 508
<Object> tag, 247, 924
object-oriented design, 131
ObjectInputStream, 445
ObjectOutputStream, 445
objects

annotations
apt tool, 222
package annotations, 221
standard, 221–222
using, 220–221

Class class, 206–208
classes

accessing fields and methods, 133–135
static members, 135–138

creating, 149–153
constructors, 150–151
overloaded constructors, 151–153
static and nonstatic initializer blocks, 153

defined, 34, 924
destroying

finalization, 155
garbage collection, 154–155
weak and soft references, 155–156

enumerations
customizing, 158–159
enum values, 158

958 | Index

in HelloJava application, 34
methods

argument passing and references, 142–
144

autoboxing and unboxing of primitives,
146–147

initializing local variables, 141–142
local variables, 139–139
method overloading, 148–149
shadowing, 139–140
static methods, 140–141
variable-length argument lists, 147–148
wrappers for primitive types, 144–145

Object class
cloning objects, 203–206
equality and equivalence, 202–203
hashcodes, 203

reflection
accessing annotation data, 217
accessing constructors, 215–215
accessing fields, 212–213
accessing generic type information, 216
accessing methods, 213–214
arrays, 216–216
BeanShell Java scripting language, 219
dynamic interface adapters, 217–218
modifiers and security, 211–212
purpose of, 218–219

Observable interface, 406, 596
Observer interface, 406, 596
observers and observables, 406–408
octal numbers, 89
offer() method, 379, 380
offerFirst() method, 379
offerLast() method, 379
offscreen drawing, 766–769
OK_CANCEL_OPTION argument, 661
OMG (Object Management Group), 508
online resources, xxv
open() method, 510
openStream() method, 521, 523
operator overloading, 10
operators, 101–102
OP_ACCEPT field, 511
OP_CONNECT field, 511
OP_READ field, 511
OP_WRITE field, 511
OR operator, 101–101, 871
Oracle, 4

org.w3c.dom package, 865
org.xml.sax package, 857
origin of Java, 2–3
out variable, 413
outlines of shapes

overview, 742
stroking, 750

OutputStream class, 412, 543
OutputStreamWriter class, 415, 432, 481
overloaded constructors, 151–153
overloading operators, 10
@Override annotation, 167, 221
overriding methods

compiler optimizations, 168–169
and dynamic binding, 167
exceptions and overridden methods, 169–

171
final methods and performance, 168
method selection, 169
@Override, 167
overview, 51–52, 148–149
return types and overridden methods, 171–

172
static method binding, 168
in subclass, 36

P
p format suffix, 371
-p switch, 891
<p> tag, 856
P2P (peer-to-peer), 517
pack() method, 605, 710
pack200 format, 78
package annotations, 221
Package Explorer, Eclipse, 901
package-info.java file, 221
packages

class visibility, 183
defined, 11, 182, 924
in HelloJava application, 39–40
importing classes

static imports, 185
unnamed package, 185

naming of, 39
package names, 183
statement, 183

padding, 728–730
page-oriented Web applications, 536–537

Index | 959

paint() method, 738, 739
using Fork/Join framework with, 302
JApplet class, 834
and Swing, 596
and threads, 259

paintComponent() method, 36, 37, 40–41, 597
painting, 596–597
parallelism, 14
@param annotation, 86
<param> element, 838, 843, 924
parameter type, 239–240
parameterized types

arrays of
purpose of, 255
using array types, 254–255

defined, 92, 223, 925
relationships, 232–235

parameters, 35, 232
_parent value, 840
parent() method, 872
parentheses (), 338, 344, 347
parse attribute, 875
parse() method, 369
ParseException, 113, 369
parser, 851
parsing

with DateFormat, 368–369
text, 328–332

passwords, 674–675
path

adding directory to, 67
defined, 70

Path class, 436–438
PATH environment variable, 70
path property, 395
Pattern class, 352–353
#PCDATA identifier, 877
peek method, 379
peek() method, 379
peekFirst() method, 379
peekLast() method, 379
peer-to-peer (P2P), 517
peerless components, 594–595
percent sign (%), 101, 333, 338
performance

and compilation, 6–7
issues, 119
throwing exceptions, 119

Perl, 8

Phaser utility, 310
PI value, 361
Pipe class, 510
PipedInputStream class, 420
PipedOutputStream class, 420
PipedReader class, 421
PipedWriter class, 421
pipes, 420–422
Plain Old Java Objects (POJOs), 828–829
PLAIN style identifier, 752
platforms using Java, 4
play() method, 795
Player interface, 796
plug-in, 925
plus sign (+) operator, 93, 101

concatenating strings, 317
formatting strings, 337
in regular expressions, 344, 346

POJOs (Plain Old Java Objects), 828–829
policy files

default security manager, 79, 81
policytool utility, 79–81

poll() method, 296, 379, 379, 380, 444
pollFirst() method, 379
pollLast() method, 379
Polygon class, 742
polymorphism, 37, 52, 925
pop-up menus, 646–650
popupMenuCanceled() method, 617
PopupMenuEvent class, 617
popupMenuWill-BecomeInvisible() method,

617
popupMenuWill-BecomeVisible() method, 617
portability of Java, 5, 7
position markers, 345–346
position() method, 456
POSITIVE_INFINITY value, 360
POST method, 525, 527–529, 541
post-conditions, 121
POSTencoding, 545
postVisitDirectory() method, 443
pow() method, 361, 361
precision field, 334
preconditions, 121
predicates, 871–871
PreferenceChangeListener interface, 398
Preferences API

change notification, 398–399
defined, 925

960 | Index

preferences for classes, 397
preferences storage, 398

Preferences class, 398
prefs.xml file, 398
preloading images, 759
prepareImage() method, 774
prerequisites, xxi–xxii
preVisitDirectory() method, 443
primitive and numeric conversions, 336–337
primitive numbers, 328–330
primitive operators, 101
primitive types

autoboxing and unboxing of, 146–147
binary literals, 90
character literals, 90
defined, 925
floating-point literals, 90
floating-point precision, 88
integer literals, 89–90
variable declaration and initialization, 88–89
wrappers for, 144–145

Principal class, 571
print() command, BeanShell, 913
print() method, 148, 769
Printable interface, 769
printDialog() method, 770
printf() method, 147, 419, 925
printf-style formatting

date and time, 370–371
flags, 337–338
format string, 333–334
Formatter class, 333
miscellaneous, 338
primitive and numeric conversions, 336–337
string conversions

numbered arguments, 335–336
uppercase, 335
width, precision, and justification, 334–

335
printing, 769–770
println() method, 29, 30
printStackTrace() method, 110
PrintStream class, 148, 333, 419–420
PrintWriter class, 333, 419–420, 423
PriorityBlockingQueue class, 386
PriorityQueue class, 386
private keyword, 16, 56, 135

for constructors, 151
defined, 41, 925

for inner classes, 196
overview, 186, 188
and subclass inheritance, 162

private methods, 188
probeContentType() method, 438
problems area, Eclipse, 904
procedural authorization, 570–571
process, 259
programming for Web (see Web, programming

for)
promotion of data types, 89
properties

loading and storing, 394–395
system properties, 395–396

Properties class, 393
<property> element, 582
PropertyChangeEvents, 812, 813
propertyNames() method, 394
PropertyResourceBundle class, 327
propietary software, 2–3
protected keyword, 135

for constructors, 151
defined, 925
for inner classes, 196
overview, 187
and subclasses, 188

protocol handler, 521, 925
protocol, defined, 520
proxies, 484–486
Proxy class, 217, 827
proxyHost property, 485
proxyPort property, 485
ProxySelector class, 485–486
public keyword, 135

for constructors, 151
defined, 41, 925
for inner classes, 196
and interface methods, 177
and interfaces, 189
and main() method, 69
overview, 186, 188

public methods, 188
public-key cryptography, 925
Pulse server code, 490–491
put() method, 26–29, 380, 381, 456
putIfAbsent() method, 382
putNextEntry() method, 449
pwd() command, 914
Python, 8

Index | 961

Q
Quake2 video game, 8
question mark (?)

in DTD notations, 877
encoding in URLs, 526
in regular expressions, 346, 350
as type parameter, 242

QUESTION_MESSAGE argument, 661
queue, 925
Queue interface, 290, 379
quote() method, 344
quoted text, 44
quoteReplacement() method, 355

R
r format suffix, 370
R format suffix, 370
radio buttons, 631–634
Random class, 363
random() method, 361
RandomAccessFile class, 433
Raster class, 783, 789
raw types, 231–232, 925
READ file open option, 461
read locks, 304–305
read() method, 413, 418
read-mostly (copy-on-write) collections, 390
read-only and read-mostly collections, 390
readAllBytes() method, 438
readAllLines() method, 438
readAttributes() method, 438
readDouble() method, 417
Reader class, 412, 415
readInt() method, 478
readLine() method, 415, 422
readObject() method, 446–447
readSymbolicLink() method, 438
readUTF() method, 418
ReadWriteLock interface, 304
readySet() method, 511
READ_ONLY identifier, 464
READ_WRITE identifier, 464
receivers, 608–609
Rectangle class, 742
RED value, 56
reentrant locking, 274
ref attribute, 880
reference, 35, 91

Reference class, 155
reference types, 91–92, 926
reflection

accessing annotation data, 217
accessing constructors, 215
accessing fields, 212–213
accessing generic type information, 216
accessing methods, 213–214
arrays, 216
BeanShell Java scripting language, 219
defined, 926
dynamic interface adapters, 217–218
modifiers and security, 211–212
purpose of, 218–219

regex API
Matcher, 353–354
Pattern object, 352–353
replacing text, 355–356
Scanner class, 354–355
simple template engine, 356–358
splitting and tokenizing strings, 354

regionMatches() method, 323
register() method, 511
regular expressions

as added feature, 21
defined, 926
java.util.regex API

Matcher, 353–354
Pattern object, 352–353
replacing text, 355–356
Scanner class, 354–355
simple template engine, 356–358
splitting and tokenizing strings, 354

regex notation
alternation, 348
capture groups, 347–348
characters and character classes, 344–345
custom character classes, 345
escaped characters, 343–344
greediness, 349–350
grouping, 347
iteration (multiplicity), 346–347
lookaheads and lookbehinds, 351–352
numbering, 348
position markers, 345–346
special options, 349
write once, run away, 343

regular expressions (captured text), 355
reifiable type, 256

962 | Index

relationships among classes
arrays and class hierarchy, 189–190
compilation units, 182–183
inner classes

as adapters, 192–194
within methods, 194–200

interfaces
as callbacks, 179–180
interface variables, 180–181
subinterfaces, 181–182

packages
class visibility, 183
importing classes, 184–186
package names, 183–183

subclassing and inheritance
abstract methods and classes, 176–177
casting, 172–174
constructors and initialization, 175
overriding methods, 165–172
shadowed variables, 163–165
super reference, 172
superclass constructors, 174–175
this reference, 172

visibility of variables and methods
basic access modifiers, 186–188
interfaces and, 189
subclasses and, 188–188

relative positioning, 730–731
release() method, 307
reloadClasses() command, 914
reloading, 564–564
remainder operator, 101
Remote interface, 497
remote method invocation, 496–509 (see RMI)
remote procedure calls (RPC), 496
RemoteException class, 106, 498, 501
remove() method

Collection interface, 374
ConcurrentMap interface, 382
Iterator interface, 377
List interface, 378
Map interface, 381
Queue interface, 379

removeActionListener() method, 610
removeAll() method, 374
removeNode() method, 398
renameTo() method, 428, 430
render() method, 303
rendering images, 744–745

RenderingHints class, 745
repaint() method, 47, 596, 739, 758, 764
RepaintManager class, 763
replace() method, 322, 323

ConcurrentMap interface, 382
DocumentFilter class, 673
StringBuilder class, 325

replaceAll() method, 322, 323, 355
replaceFirst() method, 322, 323
replacing text, 355–356
requestFocus() method, 598, 614
requestFocusInWindow() method, 614
RescaleOp class, 790, 793–793
reset() method, 310, 353, 419, 456
resetBuffer() method, 544
resolve() method, 437
resolveSibling() method, 437
resource bundles, 326–328
resource paths, 434–435
ResourceBundle class, 326
resources, deallocating, 117–119
resources, online, xxv
resume() method

deprecated, 265
ThreadGroup class, 287

@return annotation, 86
return keyword, 117, 138
return types, 171–172
revalidate() method, 601–602, 710
rewriting URLs, 548
Rich Music Format (RMF), 795
right field, 601
RIGHT value, 711
rint() method, 361
RMF (Rich Music Format), 795
RMI (remote method invocation), 106, 926

and COBRA, 508–509
defined, 21
example

dynamic class loading, 503–505
passing remote object references, 505–

508
running example, 502–503

remote and nonremote objects
exporting remote objects, 498–499
remote interfaces, 497–498
RMI registry, 499–500

usage, 497
rmi: protocol, 500

Index | 963

rmiregistry application, 505
overview, 499
starting, 502

RMISecurityManager, 503, 504
Robot class, 623
roles, 566–567
@rolesAllowed annotation, 568
roll() method, 366
root element, 854
rotate() method, 741
rotateOnX() method, 811
rotateOnY() method, 811
round() method, 361, 361
rows, spanning, 724–725
RPC (remote procedure calls), 496
RTF files, 677–680
Ruby, 8
run() command, BeanShell, 913
run() method, 61–63, 261, 263, 280
Runnable interface, 61, 261, 263, 269
RUNNABLE thread state, 283
running flag, 270
runtime type safety, 375–376
runtime, absence of generics in, 234
RuntimeException class, 105

S
S format suffix, 371
safety of design, 10–15

dynamic memory management, 13–14
error handling, 14–14
incremental development, 12–13
scalability, 15–15
simplicity of language, 10–11
threads, 14–15
type safety and method binding, 11–12

safety of implementation, 15–19
class loaders, 18
security managers, 19
verifier, 17–18

sameFile() method, 521
SansSerif font family, 751
save() command, BeanShell, 913
save() method, 394
SAX (Simple API for XML)

building model using
creating XML file, 859
limitations and possibilities, 864
SAXModelBuilder, 860–863

test-driving, 863–864
defined, 926
SAX API, 857–858
strengths and weaknesses of, 858–858
XMLEncoder/Decoder, 864–865

SAXException class, 884
SAXModelBuilder class, 858
SAXParser class, 857
SAXSource class, 884
scalability, 15
scalable I/O with NIO

LargerHttpd server, 512–517
nonblocking client-side operations, 517
using Select, 510–512
selectable channels, 509

scalar values, 145
scale() method, 741
scaleImage() method, 774
SCALE_AREA_AVERAGING constant, 760
SCALE_DEFAULT constant, 760
SCALE_FAST constant, 760
SCALE_REPLICATE constant, 760
SCALE_SMOOTH constant, 760
scaling images, 759–760
Scanner class, 329–331, 354–355
schedule() method, 372
scheduled tasks, 295–296
ScheduledExecutorService interface, 295, 296,

556, 558
Schema class, 884
Schema, XML, 926
schemagen command-line utility, 891
scripting (see BeanShell)
scrollbars, 657–659
ScrollPanes class, 614
SDK (Software Development Kit)

defined, 926
vs. JDK, xxii

searching strings, 321
SECOND value, 365, 639
secure data transport, 568
Secure Sockets Layer (SSL), 530
security

application and user-level security, 19–20
policies, 17
safety of design

dynamic memory management, 13–14
error handling, 14
incremental development, 12–13

964 | Index

scalability, 15
simplicity of language, 10–11
threads, 14–15
type safety and method binding, 11–12

safety of implementation
class loaders, 18
security managers, 19
verifier, 17–18

sockets and, 476–476
and universal programming languages, 7

<security-constraint> element, 566, 567
SecurityException, 113, 482
SecurityManager class, 837, 926
@see annotation, 86
seeds, 363
seek() method, 433
select attribute, 893, 895
select() method, 486, 510, 511
SelectableChannel interface, 509
selectAll() method, 670
selectedKeys() method, 510, 512
SelectionKey class, 510, 511
selections in text components, 669
selectNow() method, 511
Selector class, 510, 511
selectText() method, 670
self value, 840
semaphore, 307–308
Semaphore class, 290
send() method, 490
sendError() method, 544
sendRedirect() method, 544
separator property, 395
separatorChar variable, 426
Serializable interface, 445
serialization

initialization with readObject() method,
446–447

SerialVersionUID, 447–448
serialize, 926
Serializeable interface, 181
serializing access to thread, 272
serialver utility, 448
Serif font family, 751
servers, 474–476, 926
ServerSocket class, 472, 474, 480
ServerSocketChannel class, 510, 516
service() method, 540, 541
Servlet class, 540

servlet context, 926
<servlet> element, 561
<servlet-class> element, 561
<servlet-mapping> element, 561
<servlet-name> element, 561, 571
ServletContextListener class, 558
ServletExceptions, 543, 565
servletNames attribute, 575
ServletRequest class, 542, 573
ServletResponse class, 542, 573
servlets

asynchronous, 555–558
defined, 926
HelloClient servlet

Content type, 543
ServletExceptions, 543

lifecycle, 540–541
parameters, 545–546
response, 544–544
servlet filters

declaring and mapping, 574–575
filtering request, 575–577
filtering response, 577–580
simple filter, 572–573
test servlet, 573–574

ServletContext API, 554–555
ShoppingCart servlet, 550–553
ShowParameters servlet, 546–548
ShowSession servlet, 548–550

@ServletSecurity annotation, 568
Set interface, 378, 385
set() method, 212, 365, 379
setActionCommand() method, 628
setAttribute() method, 438, 550, 554
setAutoResizeMode() method, 690
setBackground() method, 599
setBoolean() method, 212
setBorder() method, 639
setBound() method, 819
setBounds() method, 710
setBufferSize() method, 544
setCellSelectionEnabled() method, 690
setChanged() method, 407
setClip() method, 745
setColumnSelectionAllowed() method, 690
setComponentPopupMenu() method, 648, 650
setComposite() method, 741
setContentLength() method, 544
setContentType() method, 542, 543

Index | 965

setcookie parameter, 554
setCursor() method, 599
setDaemon() method, 268
setDefaultCloseOperation() method, 604
setDefaultUncaughtExceptionHandler() meth‐

od, 288
setDisplayName() method, 821
setDocumentFilter() method, 673
setDoInput() method, 529
setDomain() method, 554
setDoOutput() method, 529
setDoubleBuffered() method, 763
setEchoChar() method, 674
setEditable() method, 669
setEnabled() method, 597
setExecutable() method, 430
setFocusable() method, 598
setFocusTraversalKeys() method, 683
setFont() method, 669, 740, 752
setForeground() method, 57, 599
setHeader() method, 544
setIconImage() method, 604
setInheritsPopupMenu() method, 648, 650
setInt() method, 212
setJMenuBar() method, 645
setjmp() statement (C), 105
setKeepAlive() method, 484
setLabelTable() method, 659
setLastModified() method, 428, 430
setLastModifiedTime() method, 438
setLayout() method, 600, 709
setLocation() method, 603, 604
setMaximumPriority() method, 287
setMaximumSize() method, 710
setMinimumSize() method, 710
setName() method, 599
setNodeValue() method, 866
setOwner() method, 438
setPage() method, 679
setPaint() method, 740, 742, 748
setPath() method, 554
setPosixFilePermissions() method, 438
setPreferredSize() method, 599, 710
setProperty() method, 485, 863
setReadable() method, 430
setReadOnly() method, 430
setRequestMethod() method, 529
setRequestProperty() method, 529
setResizable() method, 604

setRGB() method, 786
setRowSelectionAllowed() method, 690
setSchema() method, 890
setSize() method, 30, 33, 599, 603
setSoLinger() method, 484
setSoTimeout() method, 483
setStream() method, 842
setStroke() method, 740, 750
setText() method, 630
setText() methods, 669
setTime() method, 366, 478
setTimeZone() method, 366
setTitle() method, 603
setValidating() method, 878, 883, 890
setValue() method, 670, 818
setValueAt() method, 696
setVisible() method, 30, 599, 603
setWriteable() method, 430
SEVERE logging level, 402, 405
SGML (Standard Generalized Markup Lan‐

guage), 850
shadow, 926
shadowed variables, 163–165
shadowing methods, 139–140
shallow copy, 205, 927
Shape interface, 745
shapes

filling
color gradients, 749
desktop colors, 749–750
overview, 742
solid colors, 748–749
textures, 749

outlines of
overview, 742
stroking, 750

shared locks, 463
sharing data models, 675–677
shear() method, 741
SHIFT_MASK modifier, 613
Short class, 144, 328, 587
SHORT constant, 368
short data type, 87, 587

defined, 927
parsing, 329
wrapper for, 144

ShortBuffer class, 457
show() command, BeanShell, 913
show() method, 648

966 | Index

showConfirmDialog() method, 660
showDialog() method, 665
showDocument() method, 840
showMessageDialog() method, 660
showOpenDialog() method, 664
showOptionDialog() method, 661
ShowParameters servlet, 546–548
showRequestParameters() method, 547
shutdown() method, 293
shutdownInput() method, 484
shutdownOutput() method, 484
signal() method, 305
signalAll() method, 305
signature, 927
signed applet, 927
signed class, 927
signing JAR files, 838
signum() method, 361
Simple API for XML (see SAX)
simple audio, 795–796
Simple Object Access Protocol (SOAP), 897
simple serialized object protocols, 491–496
simple template engine, 356–358
SimpleAttributeSet class, 680
SimpleFormatter class, 401
simplicity of language, 10–11
sin() method, 360, 361
@since annotation, 86
single page Web applications, 536–537
single quote ('), 337, 853
size() method

Collection interface, 374
Files class, 438
Map interface, 381

skip() method, 414, 424
sleep() method, 63, 265, 266, 281
sliders, 657–659
Smalltalk, 7, 11, 86
smart cards, 4
SOAP (Simple Object Access Protocol), 897
Socket class, 472, 473
SocketChannel class, 510, 512
SocketHandler class, 401
sockets

and security, 476
clients, 473–474
DateAtHost client, 477–478
defined, 927

options
half-close, 484
SO_LINGER, 484
SO_TIMEOUT, 483
TCP_KEEPALIVE, 484
TCP_NODELAY, 483

proxies and firewalls, 484–486
servers, 474–476
TinyHttpd server, 478–482

SOCKS identifier, 486
socksProxyHost property, 485
socksProxyPort property, 485
soft references, 155–156
SoftBevelBorder class, 640
SoftReference class, 156, 156
Software Development Kit (see SDK)
sort() method, 257–258, 391
SortedMap interface, 381, 386
SortedSet interface, 381, 385
sorting

collections, 391
tables, 697–699

source() command, 913
sources, 610–611
SOUTH value

BorderLayout class, 713
GridBagConstants class, 728

SOUTHEAST value, 728
SOUTHWEST value, 728
SO_LINGER option, 484
SO_TIMEOUT option, 483
SPARSE file open option, 461
speed, 7
spinner, 927
SpinnerDateModel class, 637
SpinnerListModel class, 637
SpinnerNumberModel class, 637
splash screens, 602–604
SplashScreen class, 604
split() method, 323, 331, 354
splitting strings, 354
spreadsheets, 693–696
Spring Web Flow, 538
sqrt() method, 140, 360, 361
src directory, 581
SSL (Secure Sockets Layer), 530
Stack class, 379, 385
stack traces, 110–111
stacking (z-ordering), 601

Index | 967

StackTraceElement class, 111
standard annotations, 221–222
standard error stream, 413
Standard Generalized Markup Language

(SGML), 850
standard output stream, 413
start() method, 61, 261, 262, 264, 271, 489, 834
startAnimating() method, 264
startAsync() method, 557
startElement() method, 857, 862, 863
starts-with() method, 872
startsWith() method, 321, 323
State property, 283
statements

break/continue, 99–100
do/while loops, 95
enhanced for loop, 96–97
for loop, 95–96
if/else conditionals, 94–95
switch statements, 97–99
unreachable statements, 100

static imports, 185, 927
static initializer blocks, 153
static inner classes, 195
static keyword, 135–137

defined, 927
for inner classes, 196
and interface variables, 180
languages, 11
and main() method, 69

static members, 55
static methods, 55, 140–141

binding, 168
defined, 927

static variables, 55, 133, 927
statusAll() method, 776
statusID() method, 776
Stevens, Richard, 471
stop() method, 261, 271, 795, 834, 835

Applet class, 489
deprecated, 265
ThreadGroup class, 287

storeToXML() method, 395
storing properties, 394–395
StreamHandler class, 401
streaming data, 521–522
streams

basic I/O, 412–414
character streams, 415–416

defined, 927
filter streams, implementing, 423–425
pipes, 420–422
stream wrappers

buffered streams, 418–419
data streams, 417–418
PrintWriter and PrintStream, 419–420

streams from strings, 422–423
strictfp modifier, 88
String class, 43, 44, 93, 587

defined, 928
Unicode support, 84

string conversions
numbered arguments, 335–336
uppercase, 335
width, precision, and justification, 334–335

StringBuffer class, 323–325, 423
StringBuilder class, 323–325
StringIndexOutOfBoundsExceptions, 369
StringReader class, 422
strings, 93

comparing, 319–321
constructing, 317–318
editing, 322
from things, 318–319
searching, 321
streams from, 422–423
string method summary, 322–323
StringBuilder and StringBuffer, 323–325

StringTokenizer class, 331–332
StringWriter class, 423
Stroustrup, Bjarne, 16
Struts Web Application Framework, 538
StyleConstants class, 680
stylesheet, 892
subclassing and inheritance

abstract methods and classes, 176–177
casting, 172–174
constructors and initialization, 175
defined, 928
overriding methods

@Override, 167
and dynamic binding, 167
compiler optimizations, 168–169
exceptions and overridden methods,

169–171
final methods and performance, 168
method selection, 169

968 | Index

return types and overridden methods,
171–172

static method binding, 168
shadowed variables, 163–165
superclass constructors, 174
this reference, 172

subclassing and subtypes, 54
subclassing generics, 237–238
subinterfaces, 181–182
subMap() method, 381
subSet() method, 378
substring() method, 322–324
subtype polymorphism, 91, 165
Sun Aspen Smallworks, 2
Sun Microsystems, 2
super keyword, 165, 172

defined, 928
and lower bounds, 244

super() statement, 174–175
superclass, 36, 928
superclass constructors, 174
@SuppressWarnings annotation, 222
suspend() method

deprecated, 265
ThreadGroup class, 287

Swing, 21
commonly used, 616–622
components

borders, 639–641
buttons, 627–631
checkboxes, 631–634
combo boxes, 634–636
content panes, 605
custom, 704–708
desktops, 605–606, 699–701
dialogs, 659–665
doLayout() method, 601–602
enabling and disabling, 597–598
focus navigation, 682–688
frames, 602–604
insets, 601–601
JScrollPane class, 650–652
JSpinner, 637–639
JTabbedPane class, 653–655
labels, 627–631
layout managers, 600–601
listening for, 602–602
lists, 634–636
look-and-feel schemes, 595

managing, 602
menus, 642–646
MVC framework, 595–596
painting, 596–597
peerless, 594–595
pluggable look-and-feel, 701–703
pop-up menus, 646–650
radio buttons, 631–634
revalidate() method, 601–602
scrollbars, 657–659
sliders, 657–659
splash screens, 602–604
tables, 688–699
text components, 667–682
with focus, 598
z-ordering (stacking), 601

defined, 2
events

delivery, 611
focus events, 614–615
java.awt.event.InputEvent Class, 613
mouse and key modifiers on InputE‐

vents, 613–614
mouse-wheel events, 614
receivers and listener interfaces, 608–609
sources, 610–611
types, 612

multithreading in, 623–626
naming of components in, 49

SwingUtilities class, 624, 703
SwingWorker class, 625
switch statements, 97–99
sychronized keyword, 928
SYNC file open option, 461
sync() method, 398
synchronization constructs

CountDownLatch, 306–307
CyclicBarrier class, 308–310
Exchanger, 310–311
Phaser utility, 310
semaphore, 307–308

synchronization in HelloJava application, 64
synchronized and unsynchronized collections,

389–390
synchronized keyword, 57, 272, 273, 279, 303
synchronized threads, 15
SynchronousQueue class, 386

Index | 969

syntax
arrays

anonymous, 127
creating and initializing, 123–125
multidimensional, 127–129
types, 123–123
using, 125–127

assertions
enabling and disabling, 120–121
using, 121–122

comments, 84–86
exceptions

bubbling up, 109–110
chaining, 113–115
checked and unchecked exceptions, 111–

112
exception handling, 107–109
exceptions and error classes, 105–107
finally clause, 116–117
performance issues, 119
stack traces, 110–111
throwing, 112–115
try creep, 115–116
try with resources, 117–119

expressions
assignment, 102–102
instanceof operator, 104
method invocation, 103
null value, 102
object creation, 103–104
operators, 101–102
variable access, 102–103

statements
break/continue, 99–100
do/while loops, 95–95
enhanced for loop, 96–97
for loop, 95–96
if/else conditionals, 94–95
switch statements, 97–99
unreachable statements, 100

text encoding, 83–84
types

primitive, 87–90
reference, 91–92
strings, 93–93

System class, 413
system preferences, 397
system properties, 395–396
SystemColor class, 749, 750

systemNodeForPackage() methods, 397
systemRoot() method, 397

T
T format suffix, 370
T type parameter, 236, 249
tableChanged() method, 618
TableColumnModel-Event class, 618
TableModel interface, 618, 690
TableModelEvent class, 618
TableRowSorter class, 699
tables

creating table model, 690–693
default table model, 688–690
JTables, 699
simple spreadsheet, 693–696
sorting and filtering, 697–699

tags, 852
tailMap() method, 381
tailSet() method, 378
take() method, 296, 380, 444
tan() method, 361
tar command, 75
.tar.gz files, 26
targetNamespace attribute, 585
TCP (Transmission Control Protocol), 472, 928
TCP_KEEPALIVE option, 484
TCP_NODELAY option, 483
templates

defined, 223
in XSL stylesheets, 892

TERMINATED thread state, 283
@TestValues annotation, 221
text

2D API and, 744
encoding, 83–84
formatting with java.text package, 338–342
internationalization

java.util.Locale class, 325–326
resource bundles, 326–328

parsing and formatting, 328–332
printf-style formatting

flags, 337–338
format string, 333–334
Formatter class, 333
primitive and numeric conversions, 336–

337
string conversions, 334–336

970 | Index

regular expressions
java.util.regex API, 352–358
regex notation, 342–352

strings
comparing, 319–321
constructing, 317–318
editing, 322
from things, 318–319
searching, 321
string method summary, 322–323
StringBuilder and StringBuffer, 323–325

text-related APIs, 316
tokenizing, 330–332

text components, Swing
filtering input, 671–673
formatted text, 670–671
HTML and RTF, 677–680
managing text, 680–682
passwords, 674–675
sharing data models, 675–677
TextEntryBox application, 668–670
validating data, 673–674

TextEntryBox application, 668–670
textHighlightText field, 750
TexturePaint class, 749
this reference, 45, 172

in BeanShell, 914, 915
defined, 928
using with event listeners, 46
scoping of, 198–198

this() statement, 151, 175
Thread class, 61, 283

using adapter, 264–265
creating and starting threads, 261–263
in HelloJava application, 61
natural-born thread, 263–264
subclassing, 264

thread pools, 291, 928
ThreadFactory interface, 297
ThreadGroup class, 268, 287
ThreadLocal class, 281–282
ThreadLocalRandom class, 282
ThreadPoolExecutor interface, 296–297
ThreadPoolExecutorService interface, 296
threads

concurrency utilities
atomic operations, 311–313
executors, 291–303
locks, 303–306

synchronization constructs, 306–311
controlling

deprecated methods, 265–266
interrupt() method, 267
join() method, 266–267
sleep() method, 266

defined, 60, 259, 928
in HelloJava application

running code in, 62–63
starting, 62

overview, 14–15
performance

cost of synchronization, 288–289
thread resource consumption, 289

Runnable interface, 261
scheduling and priority

priorities, 285
thread state, 283–284
time-slicing, 284–285
yielding, 285–286

synchronizing activities of
accessing class and instance variables

from multiple threads, 274
notify() method, 275–276
passing messages, 277–281
serializing access to methods, 272–273
ThreadLocal objects, 281–282
wait() method, 275–276

termination of, 267–268
Thread class

creating and starting threads, 261–263
natural-born thread, 263–264
using adapter, 264–265

thread groups
uncaught exceptions, 287–288
working with, 287

threading applets, 268–271
throw statement, 112

defined, 928
and overridden methods, 169–171

Throwable class, 107, 114, 238
throwing exceptions, 112–115, 119
throwing() method, 406
throws keyword, 929
tilde (~) operator, 101
Time argument, 341
time zones, 366–368
TIMED_WAITING thread state, 283
Timer bean, 810

Index | 971

Timer class, 371
timerFired() method, 811
timers, 371–372
TimerTask class, 371
times (see dates and times)
TimeUnit enumeration, 158
TimeZone class, 366
TinyHttpd server, 478–482
TitledBorder class, 640
toBack() method, 604
toByteArray() method, 423
toCharArray() method, 318, 323
toDegrees() method, 361
toFile() method, 438
toFront() method, 604
toHexString() method, 329
tokenizing strings, 330–332, 354
toLowerCase() method, 322, 323
Toolkit class, 757
tools

Classpath, 70–72
JAR files

compression, 74
jar utility, 75–77
pack200, 78

Java compiler, 72–74
Java VM, 68
JDK environment, 67–68
policy files

default security manager, 79, 81
policytool utility, 79–81

TooManyListenersException, 611
top field, 601
_top value, 840
toPath() method, 430, 438
toRadians() method, 361
toString() method, 323

for all objects, 201, 319
parsing numbers using, 329

toUpperCase() method, 322, 323
toURL() method, 429, 430, 796
Trang schema conversion utility, 884
transferFrom() method, 465
transferTo() method, 465, 517
Transformer class, 891
translate() method, 741
Transmission Control Protocol (TCP), 472, 928
tree events, 685–685
treeCollapsed() method, 618

treeExpanded() method, 618
TreeExpansionEvent class, 618
TreeMap class, 386
TreeModel class, 618
TreeModelEvent class, 618
TreeNode interface interface, 684
treeNodesChanged() method, 618
treeNodesInserted() method, 618
treeNodesRemoved() method, 618
TreePath class, 685
trees, 384, 684
TreeSelectionEvent class, 618
TreeSelectionModel class, 618
TreeSet class, 385, 386
treeStructure-Changed() method, 618
trim() method, 322, 323
Trojan horses, 10
true value, 55, 95
TRUNCATE_EXISTING file open option, 461
try keyword, 929
try/catch statement, 63–64

exception bubbling, 109
for exception handling, 107
overview, 117–119

type attribute, 880, 882
type checking, 11
Type class, 216
TYPE field, 214
type instantiation, 929
type invocation, 929
type safety, 11–12
type variable, 225
types

defined, 34
parameterized, arrays of, 253–256
primitive

binary literals, 90
character literals, 90
floating-point literals, 90
floating-point precision, 88
integer literals, 89–90
variable declaration and initialization,

88–89
reference, 91–92
strings, 93

typesafe enumerations, 21
TYPE_INT_RGB constant, 786

972 | Index

U
UCS transformation format 8-bit form (UTF-8),

84, 459, 929
UDP (User Datagram Protocol), 472, 486, 929
UIManager class, 703
ulp() method, 363
UnavailableException, 543
unbounded wildcard (?), 242, 243, 247
unboxing, 87, 146–147, 929
uncaughtException() method, 287
UncaughtExceptionHandler, 287
unchecked exceptions, 111–112
undoableEdit-Happened() method, 618
UnicastRemoteObject class, 498, 501
Unicode character set, 83, 929
Uniform Resource Identifier (URI), 530–531,

855
Uniform Resource Locators (URLs), 519–520,

530–531, 562–563
Uniform Resource Names (URNs), 530–531
Unix Network Programming, 471
UnknownHostException, 490
UnknownServiceException, 521
unlock() method, 303
Unmarshaller class, 890
unnamed package, 185–185
unpack200 command, 78
unreachable objects, 100, 154
UnsupportedOperationException, 390
unsynchronized collections

ConcurrentHashMap class and Concurren‐
tLinkedQueue class, 389–390

synchronizing iterators, 389–389
update() method, 738, 739
updateComponentTreeUI() method, 703
upper bound, 232
URI (Uniform Resource Identifier), 530–531,

855
URI class, 587
URL class, 525, 531

getting content as object, 522–523
handlers in practice, 524
managing connections, 523–524
streaming data, 521–522
useful handler frameworks, 524–525

url property, 395
<url-pattern> element, 562, 571
URLConnection class, 523
URLEncoder class class, 526

urlPatterns attribute, 562, 575
URLs (Uniform Resource Locators), 519–520,

530–531, 562–563
URNs (Uniform Resource Names), 530–531
useLocale() method, 330
User Datagram Protocol (UDP), 472, 486, 929
user preferences, 397
user session management, 548
<user-data-constraint> element, 568
userNodeForPackage() method, 397
userRoot() method, 397
users, authenticating, 569–570
US_ASCII character set, 459
UTF-16 character set, 460
UTF-16BE character set, 459
UTF-16LE character set, 459
UTF-8 (UCS transformation format 8-bit form),

84, 459, 929
UUID class, 587

V
valid documents, 856
validate() method, 884
validating

data, 673–674
XML, 856–856

Validator class, 884
value() method, 381
value-of tag, 893
valueChanged() method, 617, 618
valueOf() method, 158, 319, 323
values() method method, 158
variable-length argument list, 929
variables

declaring, 94
defined, 32
in HelloJava application, 34–35
instance variables, 43
local variables, 43
shadowed, 163–165
static, 55
this, 45
visibility of

basic access modifiers, 186–188
interfaces and, 189–189
subclasses and, 188

vector, 929
Vector class, 385
vendor property, 395

Index | 973

verifier, 929
verify() method, 674
@version annotation, 86
-version flag, 26, 68
version property, 395
versions of Java, xxii

1.0-Java 1.6, 20–21
7 (current), 21–23

vertical bar (|), 101, 348, 877
VERTICAL orientation, 659
VERTICAL value, 724
VERTICAL_SCROLLBAR_ALWAYS display

policy, 651
VERTICAL_SCROLLBAR_AS_NEEDED dis‐

play policy, 650
VERTICAL_SCROLLBAR_NEVER display pol‐

icy, 651
vetoableChange() method, 813
vi text editor, 25
view (MVC pattern), 595
virtual machine, Java, 4–5, 6
virtual method (C++), 166
viruses, 10
visitFile() method, 443
Vlissides, 131
Void class, 144
void data type, 144
void keyword, 100, 138
volatile keyword, 274

W
wait() method, 265, 275–276, 279
waitForAll() method, 776
WAITING thread state, 283
wakeup() method, 511
walkFileTree() method, 438, 442
WAR (Web Applications Resources) files

authenticating users, 569–570
building with Ant

deploying and redeploying WARs, 582–
582

development-oriented directory layout,
581–582

configuring with web.xml, 560–562
defined, 929
deploying HelloClient, 563–564
error and index pages, 564–566
procedural authorization, 570–571
protecting resources with roles, 566–567

secure data transport, 568
security and authentication, 566
URL pattern mappings, 562–563

WARNING logging level, 402, 404
@WarningMessage annotation, 221
Watchable interface, 437
WatchKey class, 444
WatchService interface, 443
WAV files, 795
weak references, 155–156
weakCompareAndSet() method, 312
WeakHashMap, 390
WeakReference class, 156
wearable devices, 4
web applications

cookies, 553–554
defined, 929
reloading, 564–564
servlets

asynchronous, 555–558
HelloClient servlet, 542–543
lifecycle, 540–541
parameters, 545–546
response, 544
servlet filters, 571–580
ServletContext API, 554–555
ShoppingCart servlet, 550–553
ShowParameters servlet, 546–548
ShowSession servlet, 548–550

technologies
AJAX, 539

(see also web services)
frameworks, 538
Google Web Toolkit, 539
HTML5, 539
JSPs, 537–538
page-oriented vs. single page applica‐

tions, 536–537
XML and XSL, 538

user session management, 548
WAR files

authenticating users, 569–570
building with Ant, 580–582
configuration with web.xml and annota‐

tions, 560–562
deploying HelloClient, 563–564
error and index pages, 564–566
procedural authorization, 570–571
protecting resources with roles, 566–567

974 | Index

secure data transport, 568
security and authentication, 566
URL pattern mappings, 562–563

Web Applications Resources files (see WAR
files)

web services
data types, 587–588
defined, 929
defining, 583
echo service, 584–585
tools, 532–533
using, 585–586
weather service client, 533–534
WSDL, 532
XML-RPC, 532

web, programming for
talking to Web applications

HttpURLConnection, 530
SSL and secure web communications,

530
URLs, URNs, and URIs, 530–531
using GET method, 526
using POST method, 527–529

URL class
getting content as object, 522–523
handlers in practice, 524
managing connections, 523–524
streaming data, 521–522
useful handler frameworks, 524–525

URLs, 519–520
Web services

tools, 532–533
weather service client, 533–534
WSDL, 532–532
XML-RPC, 532

WEB-INF directory, 555, 559
WEB-INF/classes directory, 559
WEB-INF/lib directory, 559
<web-resource-collection> element, 567
web.xml file

configuring WAR files with, 560–562
controlling sessions with, 550

webapps directory, 563
@WebFilter annotation, 571
@WebMethod annotation, 533
@WebService annotation, 533
@WebServiceClient annotation, 533
@WebServlet annotation, 542, 557
WEEK_OF_MONTH identifier, 365

WEEK_OF_YEAR identifier, 365
weighting rows and columns, 725–727
weightx variable, 720, 722, 725
weighty variable, 720, 722, 725
<welcome-file-list> element, 566
well-formed documents, 856
WEST value

BorderLayout class, 713
GridBagConstants class, 728

what you see is what you get (WYSIWYG) pro‐
gramming, 817

while loop, 63, 99, 480
width attribute, 843
width field, 334
wildcard type, 929
wildcards

<?>, 247
bounded, 243
lower bounds, 244–245
supertype of all instantiations, 243–243
thinking outside container, 243–244
type relationships, 247–248
using, 245–246

window field, 750
windowActivated() method, 618
windowClosed() method, 618
windowClosing() method, 618
windowDeactivated() method, 618
windowDeiconified() method, 618
WindowEvent class, 618
windowIconified() method, 618
windowOpened() method, 618
Wong, Henry, 282
workCompleted() method, 506, 507
WorkListener interface, 506
WorkRequest class, 506
workspace in Eclipse, 26
wrappers for primitive types, 144–145
WritableRaster class, 783
WRITE file open option, 461
write locks, 305–306
write() method, 418, 438
writeInt() method, 418
writeObject() method, 445
Writer class, 412, 415
writeUTF() method, 418
wsgen tool, 532, 583
wsimport tool, 532, 533, 583, 586

Index | 975

WYSIWYG (what you see is what you get) pro‐
gramming, 817

X
X Consortium, 2
x conversion character, 336
X conversion character, 336
X Window System, 2
XHTML (Extensible HyperText Markup Lan‐

guage), 856–856
XInclude, 874–876, 929
xjc command line utility, 890
-Xlint:unchecked option, 231
XML (Extensible Markup Language), 538

attributes, 853–854
defined, 930
documents, 854
DOM

DOM API, 865–866
generating XML with, 868
JDOM, 869
test-driving, 866–867

encoding, 854–855
history of, 850–852
JAXB code binding and generation

annotating model, 885–890
generating model from XML Schema,

890–891
generating XML Schema from model,

891
logging to XML files, 404
namespaces, 855–856
SAX

building model using, 858–864
SAX API, 857–858
strengths and weaknesses of, 858
XMLEncoder/Decoder, 864–865

state of, 851–852
text vs. binary, 851
transforming documents with XSL/XSLT

overview, 892–894
XSL in browser, 897
XSLTransform, 896–897

universal parser, 851
validating documents

DTDs, 877–878
Validation API, 883–884
XML Schema, 879–883

validation, 856

web browsers and, 852
web services, 897–898
XInclude, 874–876
XML APIs, 852
XPath

functions, 871–872
nodes, 870–871
predicates, 871
XMLGrep, 873–874
XPath API, 872–873

XML/XSL API, 23
@XmlAccessorOrder annotation, 888
@XmlAccessorType annotation, 888
@XmlAnyAttribute annotation, 888
@XmlAnyElement annotation, 888
@XmlAttribute annotation, 888
XMLConstants class, 884
@XmlElement annotation, 887, 888
@XmlElementDecl annotation, 888
@XmlElementRef annotation, 888
@XmlElements annotation, 888
@XmlElementWrapper annotation, 888
XMLEncoder/Decoder, 864–865
@XmlEnum annotation, 888
@XmlEnumValue annotation, 888
XMLFormatter class, 401
XMLGrep, 873–874
@XmlID annotation, 888
@XmlIDREF annotation, 888
@XmlInlineBinaryData annotation, 888
@XmlList annotation, 888
@XmlMimeType annotation, 888
@XmlMixed annotation, 888
@XmlNs annotation, 888
xmlns attribute, 855
XMLReader class, 857
@XmlRegistry annotation, 888
@XmlRootElement annotation, 885, 887, 888
@XmlSchema annotation, 888
@XmlSchemaType annotation, 888
@XmlSchemaTypes annotation, 888
@XmlTransient annotation, 888
@XmlType annotation, 888
@XmlValue annotation, 888
XOR operator, 101
XPath

defined, 930
functions, 871–872
nodes, 870–871

976 | Index

predicates, 871
XMLGrep, 873–874
XPath API, 872–873

XPathConstants class, 873
XPathExpression class, 872
.xsd files, 880
xsd.long type, 881
xsd:anySimpleType type, 881
xsd:base64Binary type, 881
xsd:boolean type, 881
xsd:byte type, 881
xsd:date type, 881
xsd:dateTime type, 881
xsd:decimal type, 881
xsd:double type, 881
xsd:float type, 881
xsd:hexBinary type, 881
xsd:int type, 881
xsd:integer type, 881
xsd:Qname type, 881
xsd:short type, 881
xsd:string type, 881
xsd:time type, 881
xsd:unsignedByte type, 881
xsd:unsignedInt type, 881
xsd:unsignedShort type, 881
XSL (Extensible Stylesheet Language), 538, 849,

852

XSLT (Extensible Stylesheet Language Transfor‐
mations)
defined, 930
overview, 892–894
XSL in browser, 897
XSLTransform, 896–897

Y
y format suffix, 371
YEAR value, 365, 639
yield() method, 286

Z
Z format suffix, 371
z format suffix, 371
z-ordering (stacking), 601
zero (0) flag, formatting strings, 337
zip archives, 449–450

compression used in JAR files, 74
Java support for, 70

.zip files, 26
ZipEntry class, 449
ZipInputStream, 451
ZIPOutputStream, 448
ZipOutputStream, 449
ZONE_OFFSET identifier, 365

Index | 977

About the Authors
Patrick Niemeyer became involved with Oak (Java’s predecessor) while working at
Southwestern Bell Technology Resources. He is the CTO of Ikayzo, Inc., and an inde‐
pendent consultant and author. Pat is the creator of BeanShell, a popular Java scripting
language. He has served as a member of several JCP expert groups that guided features
of the Java language and is a contributor to many open source projects. Most recently,
Pat has been developing analytics software for the financial industry as well as advanced
mobile applications. He currently lives in St. Louis with his family and various creatures.

Dan Leuck is the CEO of Ikayzo, Inc., a Tokyo- and Honolulu-based interactive design
and software development firm with customers that include Sony, Oracle, Nomura,
PIMCO, and the federal government. He previously served as Senior Vice President of
Research and Development for Tokyo-based ValueCommerce, Asia’s largest online
marketing company; Global Head of Development for London-based LastMinute.com,
Europe’s largest B2C website; and President of the US division of DML. Dan has ex‐
tensive experience managing teams of 150-plus developers in five countries. He has
served on numerous advisory boards and panels for companies such as Macromedia
and Sun Microsystems. Dan is active in the Java community, is a contributor to Bean‐
Shell and the project lead for SDL, and sits on numerous Java Community Process expert
groups.

Colophon
The animals on the cover of Learning Java, Fourth Edition are a Bengal tigress and her
cubs. The Bengal tiger (Panthera tigris) lives in Southern Asia. It has been hunted prac‐
tically to extinction, principally for its bone, which is reputed to have medicinal value.
It now lives mostly in natural preserves and national parks, where it is strictly protected.
It’s estimated that there are fewer than 3,000 Bengal tigers left in the wild.

The Bengal tiger is reddish orange with narrow black, gray, or brown stripes, generally
in a vertical direction. Males can grow to nine feet long and weigh as much as 500
pounds; they are the largest existing members of the cat family. Preferred habitats in‐
clude dense thickets, long grass, or tamarisk shrubs along river banks. Maximum lon‐
gevity can be 26 years but is usually only about 15 years in the wild.

Tigers most commonly conceive after the monsoon rains; the majority of cubs are born
between February and May after a gestation of three and a half months. Females bear
single litters every two to three years. Cubs weigh under three pounds at birth and are
striped. Litters consist of one to four cubs, with occasionally as many as six, but it’s
unusual for more than two or three to survive. Cubs are weaned at four to six months
but depend on their mother for food and protection for another two years. Female tigers
are mature at three to four years, males at four to five years.

Their white ear spots may help mothers and cubs to keep track of each other in the dim
forests at night.

The cover image is an original engraving from the book Forest and Jungle: An Illustrated
History of the Animal Kingdom by P.T. Barnum (1899). The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	New Developments
	New in This Edition (Java 6 and 7)

	Using This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter€1.€A Modern Language
	Enter Java
	Java’s Origins
	Growing Up

	A Virtual Machine
	Java Compared with Other Languages
	Safety of Design
	Simplify, Simplify, Simplify...
	Type Safety and Method Binding
	Incremental Development
	Dynamic Memory Management
	Error Handling
	Threads
	Scalability

	Safety of Implementation
	The Verifier
	Class Loaders
	Security Managers

	Application and User-Level Security
	A Java Road Map
	The Past: Java 1.0–Java 1.6
	The Present: Java 7
	The Future
	Availability

	Chapter€2.€A First Application
	Java Tools and Environment
	Configuring Eclipse and Creating a Project
	Importing the Learning Java Examples

	HelloJava
	Classes
	The main() Method
	Classes and Objects
	Variables and Class Types
	HelloComponent
	Inheritance
	The JComponent Class
	Relationships and Finger Pointing
	Package and Imports
	The paintComponent() Method

	HelloJava2: The Sequel
	Instance Variables
	Constructors
	Events
	The repaint() Method
	Interfaces

	HelloJava3: The Button Strikes!
	Method Overloading
	Components
	Containers
	Layout
	Subclassing and Subtypes
	More Events and Interfaces
	Color Commentary
	Static Members
	Arrays
	Our Color Methods

	HelloJava4: Netscape’s Revenge
	Threads
	The Thread Class
	The Runnable Interface
	Starting the Thread
	Running Code in the Thread
	Exceptions
	Synchronization

	Chapter€3.€Tools of the Trade
	JDK Environment
	The Java VM
	Running Java Applications
	System Properties

	The Classpath
	javap

	The Java Compiler
	JAR Files
	File Compression
	The jar Utility
	The pack200 Utility

	Policy Files
	The Default Security Manager
	The policytool Utility
	Using a Policy File with the Default Security Manager

	Chapter€4.€The Java Language
	Text Encoding
	Comments
	Javadoc Comments

	Types
	Primitive Types
	Reference Types
	A Word About Strings

	Statements and Expressions
	Statements
	Expressions

	Exceptions
	Exceptions and Error Classes
	Exception Handling
	Bubbling Up
	Stack Traces
	Checked and Unchecked Exceptions
	Throwing Exceptions
	try Creep
	The finally Clause
	Try with Resources
	Performance Issues

	Assertions
	Enabling and Disabling Assertions
	Using Assertions

	Arrays
	Array Types
	Array Creation and Initialization
	Using Arrays
	Anonymous Arrays
	Multidimensional Arrays
	Inside Arrays

	Chapter€5.€Objects in Java
	Classes
	Accessing Fields and Methods
	Static Members

	Methods
	Local Variables
	Shadowing
	Static Methods
	Initializing Local Variables
	Argument Passing and References
	Wrappers for Primitive Types
	Autoboxing and Unboxing of Primitives
	Variable-Length Argument Lists
	Method Overloading

	Object Creation
	Constructors
	Working with Overloaded Constructors
	Static and Nonstatic Initializer Blocks

	Object Destruction
	Garbage Collection
	Finalization
	Weak and Soft References

	Enumerations
	Enum Values
	Customizing Enumerations

	Chapter€6.€Relationships Among Classes
	Subclassing and Inheritance
	Shadowed Variables
	Overriding Methods
	Special References: this and super
	Casting
	Using Superclass Constructors
	Full Disclosure: Constructors and Initialization
	Abstract Methods and Classes

	Interfaces
	Interfaces as Callbacks
	Interface Variables
	Subinterfaces

	Packages and Compilation Units
	Compilation Units
	Package Names
	Class Visibility
	Importing Classes

	Visibility of Variables and Methods
	Basic Access Modifiers
	Subclasses and Visibility
	Interfaces and Visibility

	Arrays and the Class Hierarchy
	ArrayStoreException

	Inner Classes
	Inner Classes as Adapters
	Inner Classes Within Methods

	Chapter€7.€Working with Objects and Classes
	The Object Class
	Equality and Equivalence
	Hashcodes
	Cloning Objects

	The Class Class
	Reflection
	Modifiers and Security
	Accessing Fields
	Accessing Methods
	Accessing Constructors
	What About Arrays?
	Accessing Generic Type Information
	Accessing Annotation Data
	Dynamic Interface Adapters
	What Is Reflection Good For?

	Annotations
	Using Annotations
	Standard Annotations
	The apt Tool

	Chapter 8. Generics
	Containers: Building a Better Mousetrap
	Can Containers Be Fixed?

	Enter Generics
	Talking About Types

	“There Is No Spoon”
	Erasure
	Raw Types

	Parameterized Type Relationships
	Why Isn’t a List<Date> a List<Object>?

	Casts
	Writing Generic Classes
	The Type Variable
	Subclassing Generics
	Exceptions and Generics
	Parameter Type Limitations

	Bounds
	Erasure and Bounds (Working with Legacy Code)

	Wildcards
	A Supertype of All Instantiations
	Bounded Wildcards
	Thinking Outside the Container
	Lower Bounds
	Reading, Writing, and Arithmetic
	<?>, <Object>, and the Raw Type
	Wildcard Type Relationships

	Generic Methods
	Generic Methods Introduced
	Type Inference from Arguments
	Type Inference from Assignment Context
	Explicit Type Invocation
	Wildcard Capture
	Wildcard Types Versus Generic Methods

	Arrays of Parameterized Types
	Using Array Types
	What Good Are Arrays of Generic Types?
	Wildcards in Array Types

	Case Study: The Enum Class
	Case Study: The sort() Method
	Conclusion

	Chapter€9.€Threads
	Introducing Threads
	The Thread Class and the Runnable Interface
	Controlling Threads
	Death of a Thread

	Threading an Applet
	Issues Lurking

	Synchronization
	Serializing Access to Methods
	Accessing class and instance Variables from Multiple
 Threads
	The wait() and notify() Methods
	Passing Messages
	ThreadLocal Objects

	Scheduling and Priority
	Thread State
	Time-Slicing
	Priorities
	Yielding

	Thread Groups
	Working with ThreadGroups
	Uncaught Exceptions

	Thread Performance
	The Cost of Synchronization
	Thread Resource Consumption

	Concurrency Utilities
	Executors
	Locks
	Synchronization Constructs
	Atomic Operations

	Conclusion

	Chapter€10.€Working with Text
	Text-Related APIs
	Strings
	Constructing Strings
	Strings from Things
	Comparing Strings
	Searching
	Editing
	String Method Summary
	StringBuilder and StringBuffer

	Internationalization
	The java.util.Locale Class
	Resource Bundles

	Parsing and Formatting Text
	Parsing Primitive Numbers
	Tokenizing Text

	Printf-Style Formatting
	Formatter
	The Format String
	String Conversions
	Primitive and Numeric Conversions
	Flags
	Miscellaneous

	Formatting with the java.text Package
	MessageFormat

	Regular Expressions
	Regex Notation
	The java.util.regex API

	Chapter€11.€Core Utilities
	Math Utilities
	The java.lang.Math Class
	Big/Precise Numbers
	Floating-Point Components
	Random Numbers

	Dates and Times
	Working with Calendars
	Time Zones
	Parsing and Formatting with DateFormat
	Printf-Style Date and Time Formatting

	Timers
	Collections
	The Collection Interface
	Iterator
	Collection Types
	The Map Interface
	Collection Implementations
	Hash Codes and Key Values
	Synchronized and Unsynchronized Collections
	Read-Only and Read-Mostly Collections
	WeakHashMap
	EnumSet and EnumMap
	Sorting Collections
	A Thrilling Example

	Properties
	Loading and Storing
	System Properties

	The Preferences API
	Preferences for Classes
	Preferences Storage
	Change Notification

	The Logging API
	Overview
	Logging Levels
	A Simple Example
	Logging Setup Properties
	The Logger
	Performance

	Observers and Observables

	Chapter€12.€Input/Output Facilities
	Streams
	Basic I/O
	Character Streams
	Stream Wrappers
	Pipes
	Streams from Strings and Back
	Implementing a Filter Stream

	File I/O
	The java.io.File Class
	File Streams
	RandomAccessFile
	Resource Paths

	The NIO File API
	FileSystem and Path
	NIO File Operations
	Directory Operations
	Watching Paths

	Serialization
	Initialization with readObject()
	SerialVersionUID

	Data Compression
	Archives and Compressed Data
	Decompressing Data
	Zip Archive As a Filesystem

	The NIO Package
	Asynchronous I/O
	Performance
	Mapped and Locked Files
	Channels
	Buffers
	Character Encoders and Decoders
	FileChannel
	Scalable I/O with NIO

	Chapter€13.€Network Programming
	Sockets
	Clients and Servers
	The DateAtHost Client
	The TinyHttpd Server
	Socket Options
	Proxies and Firewalls

	Datagram Sockets
	The HeartBeat Applet
	InetAddress

	Simple Serialized Object Protocols
	A Simple Object-Based Server

	Remote Method Invocation
	Real-World Usage
	Remote and Nonremote Objects
	An RMI Example
	RMI and CORBA

	Scalable I/O with NIO
	Selectable Channels
	Using Select
	LargerHttpd
	Nonblocking Client-Side Operations

	Chapter€14.€Programming for the Web
	Uniform Resource Locators (URLs)
	The URL Class
	Stream Data
	Getting the Content as an Object
	Managing Connections
	Handlers in Practice
	Useful Handler Frameworks

	Talking to Web Applications
	Using the GET Method
	Using the POST Method
	The HttpURLConnection
	SSL and Secure Web Communications
	URLs, URNs, and URIs

	Web Services
	XML-RPC
	WSDL
	The Tools
	The Weather Service Client

	Chapter€15.€Web Applications and Web Services
	Web Application Technologies
	Page-Oriented Versus “Single Page” Applications
	JSPs
	XML and XSL
	Web Application Frameworks
	Google Web Toolkit
	HTML5, AJAX, and More...

	Java Web Applications
	The Servlet Lifecycle
	Servlets
	The HelloClient Servlet
	The Servlet Response
	Servlet Parameters
	The ShowParameters Servlet
	User Session Management
	The ShowSession Servlet
	The ShoppingCart Servlet
	Cookies
	The ServletContext API
	Asynchronous Servlets

	WAR Files and Deployment
	Configuration with web.xml and Annotations
	URL Pattern Mappings
	Deploying HelloClient
	Error and Index Pages
	Security and Authentication
	Protecting Resources with Roles
	Secure Data Transport
	Authenticating Users
	Procedural Authorization

	Servlet Filters
	A Simple Filter
	A Test Servlet
	Declaring and Mapping Filters
	Filtering the Servlet Request
	Filtering the Servlet Response

	Building WAR Files with Ant
	A Development-Oriented Directory Layout
	Deploying and Redeploying WARs with Ant

	Implementing Web Services
	Defining the Service
	Our Echo Service
	Using the Service
	Data Types

	Conclusion

	Chapter€16.€Swing
	Components
	Peers and Look-and-Feel
	The MVC Framework
	Painting
	Enabling and Disabling Components
	Focus, Please
	Other Component Methods
	Layout Managers
	Insets
	Z-Ordering (Stacking Components)
	The revalidate() and doLayout() Methods
	Managing Components
	Listening for Components
	Windows, Frames and Splash Screens
	Other Methods for Controlling Frames
	Content Panes
	Desktop Integration

	Events
	Event Receivers and Listener Interfaces
	Event Sources
	Event Delivery
	Event Types
	The java.awt.event.InputEvent Class
	Mouse and Key Modifiers on InputEvents
	Focus Events

	Event Summary
	Adapter Classes
	Dummy Adapters

	The AWT Robot!
	Multithreading in Swing

	Chapter€17.€Using Swing Components
	Buttons and Labels
	HTML Text in Buttons and Labels

	Checkboxes and Radio Buttons
	Lists and Combo Boxes
	The Spinner
	Borders
	Menus
	Pop-Up Menus
	Component-Managed Pop Ups

	The JScrollPane Class
	The JSplitPane Class
	The JTabbedPane Class
	Scrollbars and Sliders
	Dialogs
	File Selection Dialog
	The Color Chooser

	Chapter€18.€More Swing Components
	Text Components
	The TextEntryBox Application
	Formatted Text
	Filtering Input
	Validating Data
	Say the Magic Word
	Sharing a Data Model
	HTML and RTF for Free
	Managing Text Yourself

	Focus Navigation
	Trees
	Nodes and Models
	Save a Tree
	Tree Events
	A Complete Example

	Tables
	A First Stab: Freeloading
	Round Two: Creating a Table Model
	Round Three: A Simple Spreadsheet
	Sorting and Filtering
	Printing JTables

	Desktops
	Pluggable Look-and-Feel
	Creating Custom Components
	Generating Events
	A Dial Component
	Model and View Separation

	Chapter€19.€Layout Managers
	FlowLayout
	GridLayout
	BorderLayout
	BoxLayout
	CardLayout
	GridBagLayout
	The GridBagConstraints Class
	Grid Coordinates
	The fill Constraint
	Spanning Rows and Columns
	Weighting
	Anchoring
	Padding and Insets
	Relative Positioning
	Composite Layouts

	Other Layout Managers
	Absolute Positioning

	Chapter€20.€Drawing with the 2D API
	The Big Picture
	The Rendering Pipeline
	A Quick Tour of Java 2D
	Filling Shapes
	Drawing Shape Outlines
	Convenience Methods
	Drawing Text
	Drawing Images
	The Whole Iguana

	Filling Shapes
	Solid Colors
	Color Gradients
	Textures
	Desktop Colors

	Stroking Shape Outlines
	Using Fonts
	Font Metrics

	Displaying Images
	The Image Class
	Image Observers
	Scaling and Size

	Drawing Techniques
	Double Buffering
	Limiting Drawing with Clipping
	Offscreen Drawing

	Printing

	Chapter€21.€Working with Images and Other Media
	Loading Images
	ImageObserver
	MediaTracker
	ImageIcon
	ImageIO

	Producing Image Data
	Drawing Animations
	BufferedImage Anatomy
	Color Models
	Creating an Image
	Updating a BufferedImage

	Filtering Image Data
	How ImageProcessor Works
	Converting an Image to a BufferedImage
	Using the RescaleOp Class
	Using the AffineTransformOp Class

	Saving Image Data
	Simple Audio
	Java Media Framework

	Chapter€22.€JavaBeans
	What’s a Bean?
	What Constitutes a Bean?

	The NetBeans IDE
	Installing and Running NetBeans

	Properties and Customizers
	Event Hookups and Adapters
	Taming the Juggler
	Molecular Motion

	Binding Properties
	Constraining Properties

	Building Beans
	The Dial Bean
	Design Patterns for Properties

	Limitations of Visual Design
	Serialization Versus Code Generation
	Customizing with BeanInfo
	Getting Properties Information

	Handcoding with Beans
	Bean Instantiation and Type Management
	Working with Serialized Beans
	Runtime Event Hookups with Reflection

	BeanContext and BeanContextServices
	The Java Activation Framework
	Enterprise JavaBeans and POJO-Based Enterprise Frameworks

	Chapter€23.€Applets
	The Politics of Browser-Based Applications
	Applet Support and the Java Plug-in
	The JApplet Class
	Applet Lifecycle
	The Applet Security Sandbox
	Getting Applet Resources
	The <applet> Tag
	Attributes
	Parameters
	¿Habla Applet?
	The Complete <applet> Tag
	Loading Class Files
	Packages
	appletviewer

	Java Web Start
	Conclusion

	Chapter€24.€XML
	The Butler Did It
	A Bit of Background
	Text Versus Binary
	A Universal Parser
	The State of XML
	The XML APIs
	XML and Web Browsers

	XML Basics
	Attributes
	XML Documents
	Encoding
	Namespaces
	Validation
	HTML to XHTML

	SAX
	The SAX API
	Building a Model Using SAX
	XMLEncoder/Decoder

	DOM
	The DOM API
	Test-Driving DOM
	Generating XML with DOM
	JDOM

	XPath
	Nodes
	Predicates
	Functions
	The XPath API
	XMLGrep

	XInclude
	Enabling XInclude

	Validating Documents
	Using Document Validation
	DTDs
	XML Schema
	The Validation API

	JAXB Code Binding and Generation
	Annotating Our Model
	Generating a Java Model from an XML Schema
	Generating an XML Schema from a Java Model

	Transforming Documents with XSL/XSLT
	XSL Basics
	Transforming the Zoo Inventory
	XSLTransform
	XSL in the Browser

	Web Services
	The End of the Book

	Appendix€A.€The Eclipse IDE
	The IDE Wars
	Getting Started with Eclipse
	Importing the Learning Java Examples

	Using Eclipse
	Getting at the Source
	The Lay of the Land
	Running the Examples
	Building the Ant-Based Examples
	Loner Examples

	Eclipse Features
	Coding Shortcuts
	Autocorrection
	Refactoring
	Diffing Files
	Organizing Imports
	Formatting Source Code

	Conclusion

	Appendix€B.€BeanShell: Java Scripting
	Running BeanShell
	Java Statements and Expressions
	Imports

	BeanShell Commands
	Scripted Methods and Objects
	Scripting Interfaces and Adapters

	Changing the Classpath
	Learning More . . .

	Glossary
	Index
	About the Authors

