
Java Programming employs a distinctive pedagogy that is both challenging and engaging. The
text begins with programming fundamentals, moves through the object-oriented paradigm,
and concludes with basic graphics and event-driven programming. The modularity of the text
makes the book suitable for introductory and intermediate-level programming courses while
the separation of graphics from basic programming structures makes the text easily adaptable to
different styles of courses. Moreover, this approach is especially helpful to beginners, who when
presented with programs that mix fundamentals with GUI design, events, and OOP, have
difficulty separating these concepts.

Pedagogical Highlights:

 Just the Facts, a summary of the fundamental ideas at the end of each chapter

 Bug Extermination, tips on some commonly occurring bugs and hints for how best to avoid them

 Examples that follow an easy-to-understand format: problem description, Java solution,
typical output, and discussion. Programming examples are stand-alone applications that are
dissected line by line

 Crossword puzzles that test student understanding of terminology

 Short answer questions that check basic comprehension

 Debugging and tracing exercises that can be done without a computer

 Short programming problems that reinforce the concepts of the chapter

 Longer programming assignments that require some creativity and algorithm development

 The Bigger Picture, optional topics in computer science that explore a larger framework of
ideas introduced in the chapter and extend beyond the study of programming

“The authors have done a fantastic job in explaining object-oriented concepts in simple terms.”
 Shyamal Mitra, University of Texas at Austin

“Sensible, clear, coherent explanations of interfaces, inheritance and polymorphism….
The examples are so interesting and fun.… The exercises are great.”
 Kathy Liszka, University of Akron

“The text does a good job of focusing on the core concepts important to beginners, without
getting bogged down with the esoteric and seldom-used aspects of Java and OOP…. The Bigger
Picture sections are excellent.”
 Blayne Mayfield, Oklahoma State University

Java Program
m

ing:

From the Ground Up

Ralph Bravaco Shai Simonson

Bravaco
Simonson

From
 the G

round U
p

Java Programming:

M
d. D

alim
 #995054 12/3/08 C

yan M
ag Y

elo B
lack

 Java Programming
 From the Ground Up

 Ralph Bravaco Shai Simonson
 Stonehill College Stonehill College

sim23356_FM_USE.indd isim23356_FM_USE.indd i 12/15/08 7:30:44 PM12/15/08 7:30:44 PM

JAVA PROGRAMMING: FROM THE GROUND UP

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a

database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,

but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 VNH/VNH 0 9

ISBN 978–0–07–352335–4

MHID 0–07–352335–6

Global Publisher: Raghothaman Srinivasan
Director of Development: Kristine Tibbetts
Developmental Editor: Lora Neyens
Senior Marketing Manager: Curt Reynolds
Project Manager: Melissa M. Leick
Senior Production Supervisor: Laura Fuller
Senior Media Project Manager: Tammy Juran
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
(USE) Cover Image: © Getty Images
Lead Photo Research Coordinator: Carrie K. Burger
Compositor: Macmillan Publishing Solutions
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley, Jefferson City, MO

Library of Congress Cataloging-in-Publication Data

Bravaco, Ralph.

 Java programming : from the ground up / Ralph Bravaco, Charles Simonson. -- 1st ed.

 p. cm.

 Includes index.

 ISBN 978–0–07–352335–4 --- ISBN 0–07–352335–6 (hard copy : alk. paper)

1. Java (Computer program language) I. Simonson, Charles. II. Title.

 QA76.73.J38B68 2010

 005.13'3--dc22

 2008047782

www.mhhe.com

sim23356_FM_USE.indd iisim23356_FM_USE.indd ii 12/15/08 7:30:48 PM12/15/08 7:30:48 PM

http://www.mhhe.com

 DEDICATION
 For Kathryn and Emily

 —R.B.

 For Andrea, Zosh, Yair, and Yona

 —S.S.

sim23356_FM_USE.indd iiisim23356_FM_USE.indd iii 12/15/08 7:30:48 PM12/15/08 7:30:48 PM

sim23356_FM_USE.indd ivsim23356_FM_USE.indd iv 12/15/08 7:30:48 PM12/15/08 7:30:48 PM

 v

 CONTENTS CONTENTS
 Preface xi

 Part 1
 The Fundamental Tools 1

 Chapter 1
 An Introduction to Computers and Java 2
 1.1 Introduction 2

 1.2 What Is a Computer? 3

 1.3 The Hardware 3

 1.4 The Software 6

 1.5 Programming and Algorithms 10

 1.6 In Conclusion 11

 Exercises 13

 The Bigger Picture:

1. Machine Language and
Computer Architecture 16

2. Algorithms 16

3. Storing Integers 17

 Chapter 2
 Expressions and Data Types 23
 2.1 Introduction 23

 2.2 In the Beginning… 23

 2.3 Data Types and Expressions 30

 2.4 In the Beginning . . . Again 47

 2.5 In Conclusion 50

 Exercises 53

 The Bigger Picture:

1. Binary Encoding I
—ASCII Encoding 58

2. Binary Encoding II
—Decimal Encoding 59

3. Boolean Types 60

 Chapter 3
 Variables and Assignment 61
 3.1 Introduction 61

 3.2 Variables 61

 3.3 Variable Declarations: How a Program Obtains
Storage for Data 64

 3.4 How a Program Stores Data: Initialization and
Assignment 65

 3.5 How a Program Uses Stored Data 67

 3.6 Obtaining Data from Outside a Program 69

 3.7 A Scanner Object for Interactive Input 70

 3.8 Final Variables 72

 3.9 Type Compatibility and Casting 73

 3.10 A Few Shortcuts 76

 3.11 Increment and Decrement Operators 80

 3.12 An Expanded Precedence Table 82

 3.13 Style 82

 3.14 In Conclusion 82

 Exercises 86

 The Bigger Picture:

Bitwise Operators, Boolean Operators,
and an Interesting Puzzle 93

 Chapter 4
 Selection and Decision: if Statements 97
 4.1 Introduction 97

 4.2 The if Statement 98

 4.3 The if-else Statement 102

 4.4 The switch Statement 115

 4.5 In Conclusion 123

 Exercises 127

 The Bigger Picture:

“Go To” Statement Considered
Harmful 135

 Chapter 5
 Repetition 137
 5.1 Introduction 137

 5.2 The while statement 137

 5.3 Loops: A Source of Power, a Source
of Bugs 144

 5.4 The do-while Statement 147

 5.5 The for Statement 151

 5.6 Nested Loops 160

sim23356_FM_USE.indd vsim23356_FM_USE.indd v 12/15/08 7:30:49 PM12/15/08 7:30:49 PM

vi Contents

 5.7 The break Statement Revisited 168

 5.8 In Conclusion 171

 Exercises 174

 The Bigger Picture:

1. Floating-Point Arithmetic 185

2. Loops and Computability 188

 Chapter 6
 Methods 191
 6.1 Introduction 191

 6.2 Java’s Predefi ned Methods 192

 6.3 Writing Your Own Methods 200

 6.4 Method Overloading 216

 6.5 In Conclusion 222

 Exercises 224

 The Bigger Picture:

1. Time Complexity 234

2. Recursion, a Preview 236

 Chapter 7
 Arrays and Lists: One Name for Many
Data 239
 7.1 Introduction 239

 7.2 Array Fundamentals: Declaration and
Instantiation 240

 7.3 Using an Array 242

 7.4 Array Initialization 249

 7.5 A Caveat: Using the � and the ��
Operators 250

 7.6 Arrays and Methods 252

 7.7 Sorting an Array with Insertion Sort 255

 7.8 Searching an Array 259

 7.9 Two-Dimensional Arrays 264

 7.10 A Case Study—Putting It All Together 271

 7.11 In Conclusion 278

 Exercises 281

 The Bigger Picture:

1. Array Implementation 295

2. Sorting 296

 Chapter 8
 Recursion 298
 8.1 Introduction 298

 8.2 A Simple Recursive Method 299

 8.3 Recursive Thinking 301

 8.4 The Runtime Stack: Tail Recursion versus
Classic Recursion 311

 8.5 Quicksort—A Classic Recursive
Algorithm 315

 8.6 A Case Study—Designing an Anagram
Generator 319

 8.7 In Conclusion 326

 Exercises 329

 The Bigger Picture:

The Complexity of Recursive
Algorithms 337

 Part 2
Principles of Object-Oriented
Programming 347

 Chapter 9
 Objects and Classes I: Encapsulation, Strings,
and Things 348
 9.1 Introduction 348

 9.2 Objects 349

 9.3 From Classes Come Objects 350

 9.4 Java Libraries and Packages 352

 9.5 Strings are Objects 354

 9.6 The StringBuilder Class 369

 9.7 The Mysterious String[] args 374

 9.8 Classes for Handling Files 375

 9.9 The DecimalFormat Class 381

 9.10 In Conclusion 385

 Exercises 387

 The Bigger Picture:

Bioinformatics 394

 Chapter 10
 Objects and Classes II: Writing Your Own
Classes 403
 10.1 Introduction 403

 10.2 A Dice Class 403

 10.3 A More General Look at Classes 408

 10.4 Using the Dice Class 410

 10.5 A TriviaTest Class 413

 10.6 Encapsulation and Information
Hiding 418

sim23356_FM_USE.indd visim23356_FM_USE.indd vi 12/15/08 7:30:49 PM12/15/08 7:30:49 PM

 Contents vii

 10.7 The Keyword static 420

 10.8 The Omnipresent main(String[] args)
Method 431

 10.9 The Keyword this 432

 10.10 Garbage Collection 436

 10.11 A Case Study: Classy Sounds 438

 10.12 In Conclusion 447

 Exercises 450

 The Bigger Picture:

Software Engineering 460

 Chapter 11
 Designing with Classes and Objects 463
 11.1 Introduction 463

 11.2 The Problem: A Video Poker Game 464

 11.3 Problem Statement 466

 11.4 Determine the Classes 467

 11.5 Determine Responsibilities of
Each Class 468

 11.6 Iterative Refi nement 470

 11.7 Some Attributes 473

 11.8 Video Poker After Some
Refi nement 473

 11.9 Implementing the Video Poker
Application 474

 11.10 In Conclusion 501

 11.11 Appendix: The Complete
Application 501

 Exercises 513

 The Bigger Picture:

Software Design and the Model-View-
Controller Paradigm 520

 Chapter 12
 Inheritance 523
 12.1 Introduction 523

 12.2 A Basic Remote Control Unit 523

 12.3 Inheritance and Encapsulation 535

 12.4 The is-a Relationship: A DirectRemote is-a
Remote 535

 12.5 Inheritance via Factoring: Movies
and Plays 535

 12.6 Inheritance via Abstract
Classes 540

 12.7 Extending the Hierarchy 541

 12.8 Upcasting and Downcasting 543

 12.9 Everything Inherits: The Object Class 547

 12.10 Interfaces 553

 12.11 A Generic Sort 558

 12.12 Composition and the has-a Relationship 561

 12.13 In Conclusion 562

 Exercises 565

 The Bigger Picture:

Multiple Inheritance 583

 Chapter 13
 Polymorphism 589
 13.1 Introduction 589

 13.2 Two Simple Forms of Polymorphism 589

 13.3 Dynamic (or Late) Binding 591

 13.4 Polymorphism Makes Programs Extensible 598

 13.5 Interfaces and Polymorphism 600

 13.6 Polymorphism and the Object Class 604

 13.7 In Conclusion 612

 Exercises 614

 The Bigger Picture:

Programming Paradigms and Styles 628

 Part 3
 More Java Classes 637

 Chapter 14
 More Java Classes: Wrappers and
Exceptions 638
 14.1 Introduction 638

 14.2 The Wrapper Classes 639

 14.3 Exceptions and Exception Handling 651

 14.4 In Conclusion 672

 Exercises 676

 The Bigger Picture:

APIs and Exceptions 686

 Chapter 15
 Stream I/O and Random Access Files 691
 15.1 Introduction 691

 15.2 The Stream Classes 691

sim23356_FM_USE.indd viisim23356_FM_USE.indd vii 12/15/08 7:30:50 PM12/15/08 7:30:50 PM

viii Contents

 15.3 The Byte Stream and the Character Stream
Classes 692

 15.4 Console Input 695

 15.5 Console Output 701

 15.6 Files 703

 15.7 Text File Input 705

 15.8 Text File Output 711

 15.9 Binary Files and Data Streams 716

 15.10 Object Serialization 724

 15.11 Random Access Files 728

 15.12 In Conclusion 737

 Exercises 742

 The Bigger Picture:

Streams and Networks 750

 Chapter 16
 Data Structures and Generics 758
 16.1 Introduction 758

 16.2 The “Old” ArrayList Class 759

 16.3 Generics and ArrayList<E> 765

 16.4 A Stack 768

 16.5 A Queue 781

 16.6 A Linked List 791

 16.7 In Conclusion 807

 Exercises 810

 The Bigger Picture:

Abstract Data Types 821

 Chapter 17
 The Java Collections Framework 827
 17. 1 Introduction 827

 17.2 The Collection Hierarchy 828

 17.3 The Set<E> Interface 831

 17.4 Lists 849

 17.5 Performance Issues: Choosing the
Right Collection 858

 17.6 The for-each Loop 863

 17.7 In Conclusion 864

 Exercises 866

 The Bigger Picture:

Trees 877

 Part 4
 Basic Graphics, GUIs, and Event-
Driven Programming 885

 Chapter 18
 Graphics: AWT and Swing 886
 18.1 Introduction 886

 18.2 Components and Containers 886

 18.3 Abstract Windows Toolkit and
Swing 889

 18.4 Windows and Frames 889

 18.5 Layout Managers 896

 18.6 Panels 906

 18.7 Some Basic Graphics 910

 18.8 Displaying an Image 925

 18.9 The repaint () Method 927

 18.10 In Conclusion 930

 Exercises 932

 The Bigger Picture:

Fractals and Computer
Graphics 944

 Chapter 19
 Event-Driven Programming 954
 19.1 Introduction 954

 19.2 The Delegation Event Model 955

 19.3 Component and JComponent 964

 19.4 Buttons 965

 19.5 Labels 970

 19.6 Text Fields 978

 19.7 Text Areas 984

 19.8 Dialog Boxes 992

 19.9 Mouse Events 998

 19.10 Checkboxes and Radio Buttons 1014

 19.11 Menus 1019

 19.12 Designing Event Listener
Classes 1028

 19.13 In Conclusion 1029

 Exercises 1032

The Bigger Picture:

Artifi cial Intelligence 1045

sim23356_FM_USE.indd viiisim23356_FM_USE.indd viii 12/18/08 10:58:12 PM12/18/08 10:58:12 PM

 Contents ix

 Chapter 20
 A Case Study: Video Poker, Revisited 1054
 20.1 Introduction 1054

 20.2 A Quick Review 1054

 20.3 A Visual Poker Game 1055

 20.4 Laying Out the Frame 1058

 20.5 Adding Coins 1060

 20.6 The First Hand 1061

 20.7 Hold Those Cards 1064

 20.8 The New Hand 1064

 20.9 The Complete Player Class 1066

 20.10 In Conclusion 1072

 Projects 1072

 Appendix A: Java Keywords A-2
 Appendix B: The ASCII Character Set A-3
 Appendix C: Operator Precedence A-5
 Appendix D: Javadoc A-6
 Appendix E: Packages A-12

 Index I-1

sim23356_FM_USE.indd ixsim23356_FM_USE.indd ix 12/15/08 7:30:51 PM12/15/08 7:30:51 PM

sim23356_FM_USE.indd xsim23356_FM_USE.indd x 12/15/08 7:30:51 PM12/15/08 7:30:51 PM

 xi

 Java Programming: From the Ground Up begins with the fundamentals of program-

ming, moves through the object-oriented paradigm, and concludes with an introduction

to graphics and event-driven programming. The broad coverage of topics as well as

the modularity of the text makes the book suitable for both introductory and intermediate-

level programming courses. The text requires no prerequisites other than an enthusiasm for

problem solving and a willingness to persevere.

 KEY FEATURES OF THE TEXT

 The style of this text is based on the following four principles:

 1. Fundamentals fi rst
 Our approach is neither “objects fi rst” nor “objects late”; it’s “fundamentals fi rst.”

Our method is bottom up, starting with the basic concepts common to most program-

ming languages: variables, selection, iteration, and methods. Once students under-

stand the basic control structures, they can use them to build classes. Programming

tools such as iteration, selection, and recursion are not the exclusive property of the

object-oriented paradigm. Virtually every programming language, from Ada to ZPL,

provides these tools. The text discusses these common features fi rst before using

them to build classes.

 Our experience in the classroom convinces us that this bottom-up approach is ped-

agogically sound and the best way to teach the material. Certainly, one learns how to

use the tools of carpentry before building a house. We believe that the same principle

applies to building classes. You might say that we present Java from the “grounds” up.

 2. Independent presentation of fundamental programming concepts, object- oriented
concepts, GUIs, and event-driven paradigms

 The text is modular. We fi rst tackle basic programming structures, then the funda-

mentals of object-oriented programming, followed by graphics, GUIs, and events.

The separation of graphics from basic programming structures is especially helpful to

beginners, who when presented early with programs that mix fundamentals with GUI

design, events, and OOP, have diffi culty separating these concepts.

 Because the text is modular, it is appropriate for a variety of courses. For example,

a course that teaches Java as a second language can proceed directly to “Part 2: Prin-

ciples of Object-Oriented Programming.” The basics common to most programming

languages (selection, iteration, recursion, methods, arrays) are covered in Part 1 and not

spread throughout the text. A student familiar with another language, such as C��, can

easily fi nd the Java counterpart to any fundamental control structure.

 3. Examples, examples, and more examples
 Examples lead to understanding. Understanding leads to abstraction. Expecting stu-

dents to immediately digest an abstraction that took a professional perhaps years to

distill is unrealistic. Regardless of how clever or articulate the presentation, the prac-

tical teacher quickly resorts to examples so that the student can extract the general

principles in context. Our text contains dozens of examples in the form of fully imple-

mented programs. Moreover, our experience teaching introductory courses convinces

 PREFACE PREFACE

sim23356_FM_USE.indd xisim23356_FM_USE.indd xi 12/15/08 7:30:51 PM12/15/08 7:30:51 PM

us that students rarely read examples spanning four or fi ve pages. With that in mind,

we have tried to keep our examples short, succinct, and occasionally entertaining.

 4. Independent and parallel presentation of related computer science topics
 We present a variety of computer science topics that expand upon and enhance the

study of a particular part of the Java toolbox. Optional “Bigger Picture” sections appear

after the exercises of most chapters and are independent of each other. These optional

segments provide an introduction to more advanced topics such as fractals, computer

architecture, artifi cial intelligence, computer theory, bioinformatics, and trees.

 PEDAGOGICAL FEATURES

 Each chapter contains the following features:

 1. Objectives —Each chapter begins with a list of concepts that the student will learn in

that chapter.

 2. Just the Facts —At the conclusion of each chapter, a summary of the fundamental

ideas of the chapter can be reviewed at a glance.

 3. Bug Extermination —At the end of each chapter is a short section on debugging with

a summary of some commonly occurring bugs, and hints for how best to avoid them.

 4. Examples —Examples permeate each chapter. Almost every numbered example is a

standalone program. Many examples are dissected line by line. Each example follows

the same easy-to-understand format: a problem description, a Java solution, typical

output, and fi nally a discussion of the solution.

 5. Exercises —Each chapter contains a variety of exercises and programming problems.

The style and diffi culty of the exercises and problems vary. There are:

• crossword puzzles that test terminology,

• short answer questions that check basic understanding,

• debugging and tracing exercises that do not require a computer,

• short programming problems that reinforce the concepts of the chapter, and

• longer programming assignments that require some creativity and algorithm

development.

 6. The Bigger Picture— Following the exercises, a section entitled The Bigger Picture builds

upon and extends the ideas covered in the chapter. Topics range from two’s complement

number representation, to the halting problem, to DNA sequencing. The material in The
Bigger Picture sections is not prerequisite to any subsequent section of the text. Further-

more, one Bigger Picture segment does not depend upon another. Each stands entirely

on its own. These sections may be included, assigned as supplemental reading, used in

a closed lab setting, or skipped entirely, depending on the audience or time constraints.

However, students who choose to tackle some or all of these sections will fi nd a wealth of

topics, each opening new roads of inquiry into computer science. The effort will provide

students with a larger framework of ideas that extend beyond the study of programming.

 THE CONTENTS

 The text is divided into four parts:

 1. The Fundamental Tools; 2. Principles of Object-Oriented Programming; 3. More Java

Classes; and 4. Basic Graphics, GUIs, and Event-Driven Programming

xii Preface

sim23356_FM_USE.indd xiisim23356_FM_USE.indd xii 12/15/08 7:30:51 PM12/15/08 7:30:51 PM

 Part 1: The Fundamental Tools
 Part 1 consists of the standard programming constructs that exist in most program-

ming languages: storage and control structures.

1. Introduction to Computers and Java
 Chapter 1 is a brief introduction to the hardware and software of a computer sys-

tem. The chapter includes a discussion of programming languages, compilers, and

the Java Virtual Machine.

2. Expressions and Data Types
 Chapter 2 begins with a few applications that display string output and moves

gradually to examples that evaluate expressions. The chapter includes an intro-

duction to the primitive data types: int, double, char , and boolean .

3. Variables and Assignment
 Variables are introduced in this chapter. Specifi cally, Chapter 3 addresses three

questions:

• How does an application obtain storage for data?

• How does an application store data?

• How does an application utilize stored data?

Java’s Scanner class is used for interactive input.

4. Selection and Decision: if Statements
 Chapter 4 covers selection via

• the if statement,

• the if-else statement, and

• the switch statement.

The chapter also includes a discussion of nested if statements.

5. Repetition
 Repetition is first introduced with the while statement, then the do-while
statement, and finally the for loop. The chapter explains the stylistic dif-

ferences among the loops and when each type of loop may be appropriate.

There is a discussion of common errors that may lead to infinite loops or

loops that are “off by one.” The chapter includes examples of applications

with nested loops.

6. Methods
 Methods are introduced as “black boxes” that accept input and return a value.

Here, we present a number of methods from Java’s Math class. The bulk of the

chapter deals with “home grown” methods. Because we have not yet introduced

classes and objects, all methods are static .
7. Arrays and Lists: One Name for Many Data

 This chapter covers arrays and array instantiation. Here, we fi rst introduce the

concept of a reference. The chapter includes an introduction to sorting and search-

ing. After discussing two-dimensional arrays, the chapter concludes with a case

study: The Fifteen Puzzle. The case study uses most of the concepts introduced in

Part 1.

8. Recursion
 Recursion is the fi nal topic of Part 1. The chapter begins with a simple example

that does no more than print a message. Subsequent examples grow in complex-

ity, leading to a discussion of tail recursion versus “classic” recursion as well as

the Quicksort algorithm. A fi nal case study, The Design of an Anagram Genera-
tor , ties the concepts together. The chapter emphasizes recursive thinking .

 Preface xiii

sim23356_FM_USE.indd xiiisim23356_FM_USE.indd xiii 12/15/08 7:30:51 PM12/15/08 7:30:51 PM

 Part 2: Principles of Object-Oriented Programming
 The heart of Part 2 is the object-oriented paradigm. With the tools of Part 1 mastered,

students can concentrate on the principles of object-oriented programming. The

concepts of Parts 1 and 2 are not in any way tied to building GUIs or event-driven

programming. No side trips to loop-land or “by-the-ways” are necessary. Part 2 is

comprised of the following chapters:

9. Objects and Classes I: Encapsulation, Strings, and Things
 Chapter 9 introduces encapsulation, classes, and objects. This fi rst introduction

to classes and objects is accomplished with examples of several Java classes,

including:

• Random

• String

• StringBuilder

• File

• DecimalFormat

Here, students learn how to use text fi les for simple I/O.

10. Objects and Classes II: Writing Your Own Classes
 In Chapter 9, students learn about objects and classes by using a few prepack-

aged classes. In this chapter students learn how to write their own classes. The

chapter discusses encapsulation and information hiding and gives meaning to

a few mysterious words, such as public and static , that have been used in previ-

ous chapters. A fi nal case study builds a simple audio player, which we dub a

 myPod .

11. Designing with Classes and Objects
 The sole topic of Chapter 11 is program design. This chapter consists of a single

case study: an interactive poker game. We formulate a methodology for deter-

mining the appropriate classes and objects and how these objects interact. Our

focus here is not the syntax, semantics, or mechanics of Java but problem solv-

ing and object-oriented design.

12. Inheritance
 We introduce inheritance as the second principle of object-oriented program-

ming. Here, we contrast inheritance and composition. We also discuss the Object
class and those Object methods inherited by all classes. The chapter includes a

discussion of abstract classes and interfaces.

13. Polymorphism
 The fi nal chapter of Part 2 is a discussion of polymorphism. If inheritance

emphasizes the “sameness” of classes in a hierarchy, then polymorphism under-

scores the differences. The chapter discusses dynamic binding, using polymor-

phism with interfaces, and polymorphism as it relates to Object .

 Part 3: More Java Classes
 Part 3 is the most technical section of the text. Here, we examine the wrapper

classes, exception classes, stream classes, and classes for random access fi les.

We also introduce generics and several elementary data structures such as stacks,

queues, and linked lists. Part 3 ends with a discussion of the Java Collections

Framework.

14. More Java Classes: Wrappers and Exceptions
 Chapter 14 begins with a discussion of the wrapper classes. The chapter includes

a discussion of auto-boxing and unboxing. The remainder of the chapter is

xiv Preface

sim23356_FM_USE.indd xivsim23356_FM_USE.indd xiv 12/15/08 7:30:52 PM12/15/08 7:30:52 PM

devoted to Java’s Exception hierarchy. The chapter explains the throw-catch

mechanism, the fi nally block, checked and unchecked exceptions, the throws

clause, and how to create an Exception class.

15. Stream I/O and Random Access Files
 By far the most technical chapter of the text, Chapter 15 is a selective discus-

sion of some of the Byte Stream and Character Stream classes as well as the

connection between the Byte Stream hierarchy and the Character Stream hier-

archy. The chapter contrasts text and binary fi les, gives examples of binary fi le

I/O, and discusses object serialization. Random access fi les are also covered in

this chapter.

16. Data Structures and Generics
 Chapter 16 begins with an introduction to Java’s ArrayList class and gener-

ics. This leads to a discussion of several elementary data structures: stacks,

queues, and linked lists. An implementation for each type of data structure is

discussed.

17. The Java Collections Framework
 By examining the implementations of several classes in the Java Collections

Framework, this chapter demonstrates how choosing the “wrong” class an lead

to an ineffi cient application.

 Part 4: Basic Graphics, GUIs, and Event-Driven Programming

 Part 4 introduces graphics, graphical user interfaces, and event-driven programming.

18. Graphics: AWT and Swing
 Chapter 18 discusses Swing and AWT. The chapter emphasizes frame layout and

discusses several layout managers . Here, we explain how to arrange graphical com-

ponents within a window. We also include an introduction to the Graphics class.

19. Event-Driven Programming
 Event-driven programming is discussed in terms of the delegation event model.

Applications that include buttons, labels, text fi elds, text areas, dialog boxes,

checkboxes, radio buttons, mouse events, and menus fi ll out the rest of the

chapter.

20. A Case Study: Video Poker, Revisited
 Chapter 20 revisits the case study of Chapter 11. Here the focus is on the design

and implementation of a GUI for the text-based poker game developed in Chap-

ter 11. The objective of this chapter is an understanding of the design principle

that entails the separation of the data model from the interface, or more simply,

the model from the view.

 Appendix A: Java Keywords

 Appendix B: The ASCII Character Set

 Appendix C: Operator Precedence

 Appendix D: Javadoc

 This appendix describes how to use Sun’s Javadoc tool to automatically generate

documentation from Java source fi les.

 Appendix E: Packages

 Appendix E focuses on the use of packages to better organize large-scale applica-

tions with many classes.

 Preface xv

sim23356_FM_USE.indd xvsim23356_FM_USE.indd xv 12/15/08 7:30:52 PM12/15/08 7:30:52 PM

 TO THE INSTRUCTOR

 How to Use This Book
 This book is fl exible and is designed to serve several audiences:

• For a college-level introduction to programming in Java, Parts 1 and 2 can be used

alone or followed by Part 4 with selections from Part 3, depending on the pace and

focus of the course. In a fi rst course, we would omit the chapter on Stream classes

(Chapter 15). Basic text fi le I/O is covered in Chapter 9.

• A course for students who already know a programming language can begin with

Part 2 and refer to Part 1 as needed. This same approach could be used by an instructor

who prefers “objects early.”

• For high school students in an AP course, Parts 1 and 2 and selections from Part 3

cover the required Java topics. Chapter 15 can be skipped entirely.

 Recursion appears as Chapter 8 at the conclusion of Part 1, prior to our introduction to

object-oriented programming. We present recursion independent of object-oriented pro-

gramming because recursion is a fundamental concept of program control independent of

the programming paradigm. Although recursion appears at the end of Part 1, the topic can

be delayed until the end of Part 2, or skipped entirely. Any example or exercise in the book

that requires recursion is explicitly marked (R) so that an instructor can choose whether or

not to assign it.

 Arrays are storage structures common to most programming languages. Consequently,

we have included the topic of arrays in Part 1. On the other hand, Java arrays are objects.

The book is structured so that arrays (Chapter 7) can be covered at the end of Part 1, or

delayed until after Chapter 9, Objects and Classes I: Encapsulation, Strings, and Things .

Chapter 7 includes a discussion of two-dimensional arrays. These sections can be post-

poned without loss of continuity.

 Simple data structures (stacks, queues, and linked lists) and the Java Collections

Framework are covered at the end of Part 3 because the implementation of data structures

is heavily dependent on the object-oriented paradigm.

 Chapter Dependency Chart
 The following chart gives general chapter prerequisites. The chart can be used to confi gure

many different types of courses. Although Chapters 1 through 6 are shown as prerequisite

to Chapter 9, for those instructors eager to start with objects, a course might begin with

Chapters 1–3, skip to 9, and cover the material in 4–6 as needed.

 Online Resources
 Online resources to accompany Java Programming are available on the text’s website at

www.mhhe.com/bravaco. Some of those resources include:

• Code and data for all program examples in the text

• Lecture PowerPoint slides

• An image library of all line art in the text

• An instructor’s manual containing solutions to exercises

To access these resources, contact your McGraw-Hill representative.

xvi Preface

sim23356_FM_USE.indd xvisim23356_FM_USE.indd xvi 12/15/08 7:30:52 PM12/15/08 7:30:52 PM

http://www.mhhe.com/bravaco

 TO THE STUDENT

 You are about to study Java, a popular object-oriented programming language. There are

many reasons why you may be studying Java:

• Knowledge of Java and computer programming is required in your discipline
(business, information technology, science, etc.) .

 Programming is a useful tool. Even if you do not become a programmer yourself, this

text will provide you with an appreciation for what a programmer does. Long after you

have forgotten the details in this book, the principles that you have learned will allow

you to communicate better with programmers.

 Preface xvii

1. Computers and Java

2. Expressions and Data Types

3. Variables and Assignment

5. Repetition

6. Methods

10. Objects and Classes II

9. Objects and Classes I

8.1–8.4 Recursion 11. Designing with Classes

13. Polymorphism

12. Inheritance8.5–8.6 Recursion

7.1–7.5 Arrays

7.6–7.10 Arrays

16. Data Structures and Generics

14.1–14.2 The Wrapper
Classes

17. Java Collections
Framework

15. Stream IQ
18. Graphics:

AWT and Swing

19. Event Driven
Programming

20. A Case Study

14.3 Exceptions

4. Selection

sim23356_FM_USE.indd xviisim23356_FM_USE.indd xvii 12/15/08 7:30:52 PM12/15/08 7:30:52 PM

• You hope to secure an interesting job.
 Profi ciency in Java is a marketable skill. Many interactive websites are written

using Java. There is much to learn and Java’s learning curve is steep, but greater

profi ciency comes with experience.

• You are beginning a college major in computer science .
 Unlike introductory courses in other sciences such as chemistry and physics, a fi rst

course in computer science is generally not an overview of the discipline but an

intense introduction to programming and the tools of the discipline. While there are

breadth-fi rst courses that provide an overview of computer science, these courses

are rare, and most computer science programs have retained the tradition of teaching

programming fi rst.

Java may very well be the fi rst of many programming languages that you will learn. A good

fi rst language is one with a rich set of features that enables you to learn other languages

quickly. A good fi rst language is one powerful enough to implement sophisticated algo-

rithms without tedious effort. A good language gives you enough power to easily imple-

ment an abstract concept.

 There is no best fi rst language, but there are many good ones such as Scheme, C,

C��, C#, Visual Basic, Python, and of course, Java. Each language has its fans as well as

its detractors. Java, like any programming language, has its strengths and weaknesses as a

fi rst language.

 Strengths:

• Internet friendly

• Platform independent

• Reliable

• Secure

• Sophisticated GUI and event-driven paradigm

• Designed from the ground up as an object-oriented language

• Widely used

• Has huge collection of object libraries allowing fast, effi cient reuse of code

 Weaknesses:

• Huge collection of object libraries is intimidating to beginners.

• Steep learning curve, especially for GUI and event-driven models.

• Slow execution relative to standard compiled languages.

 There is no perfect choice, but Java is certainly a good one. Thousands of people consider

Java their “native” programming language, and Java will not likely disappear soon from

industry or the classroom. Java is an excellent fi rst language.

 The only way to become fl uent in Java is to write programs. You can and should listen

to lectures; you can and should read the text. And, unquestionably, you must do the exer-

cises. With practice and perseverance, you can become a skilled and successful program-

mer and have a bit of fun along the way. Enjoy your journey.

 Electronic Textbook Option
This text is offered through CourseSmart for both instructors and students. CourseSmart

is an online resource where students can purchase the complete text online at almost half

the cost of a traditional text. Purchasing the eTextbook allows students to take advan-

tage of CourseSmart’s web tools for learning, which include full text search, notes and

xviii Preface

sim23356_FM_USE.indd xviiisim23356_FM_USE.indd xviii 12/15/08 7:30:52 PM12/15/08 7:30:52 PM

highlighting, and email tools for sharing notes between classmates. To learn more about

CourseSmart options, contact your sales representative or visit www.CourseSmart.com.

 ACKNOWLEDGMENTS

 Many people have contributed to the development of this book. We owe a debt of gratitude

to our reviewers, who graciously gave of their time and expertise:

 Suzanne Balik, North Carolina State University

 Julia I. Couto, Georgia Gwinnet College

 Jeanne Douglas, University of Vermont

 William E. Duncan, Louisiana State University

 H. E. Dunsmore, Purdue University

 Joseph D. Hurley, Texas A & M University

 Dennis Kellermeier, Wright State University

 Lorrie Lehman, University of North Carolina, Charlotte

 Kathy Liszka, University of Akron

 Mark Llewellyn, University of Central Florida

 Hunter Lloyd, Montana State University

 Blayne E. Mayfi eld, Oklahoma State University

 Robert J. McGlinn, Southern Illinois University, Carbondale

 Rodrigo A. Obando, Columbus State University

 Kevin O’Gorman, California Polytechnic Institute of Technology

 Rayno D. Niemi, Rochester Institute of Technology

 Juan Pavón, Facultad de Informática

 Cyndi Rader, Colorado School of Mines

 Michael D. Scott, University of Texas at Austin

 Harish Sethu, Drexel University

 Monica Sweat, Georgia Institute of Technology

 Bahram Zartoshty, California State University, Northridge

We also wish to thank the members of the academic administration at Stonehill College for

their encouragement and support, especially Provost and Academic Vice President Katie

Conboy, Dean Karen Talentino, and Dean Joseph Favazza.

 Colleagues, friends, and students who helped us along our way include Ryan Amari,

Tanya Berger-Wolf, Jennifer Burge, Kathy Conroy, Robert Dugan, Matthew Fuller, Thomas

Gariepy, Michael Haney, Andrew Harmon, Matthew Hinds, Antonio “Thumbs” Martinez,

Nan Mulford, Elizabeth Patterson, Annemarie Ryan, Bonnie Troupe, and Thomas Wall.

 Our gratitude goes to our students at Stonehill College and to the participants in our

NSF Java workshops. You have contributed to this book in ways great and small.

 Our editorial, production, and marketing staff helped this book take shape and we

thank them all: Alan Apt, Carrie Burger, Kevin Campbell, Bonnie Coakley, Edwin Durbin,

Tammy Juran, Melissa Leick, Rebecca Olson, Curt Reynolds, Brenda Rolwes, Michael

Ryder, Raghu Srinivasan, and most especially Lora Kalb-Neyens, who patiently guided us

throughout the creation of this book.

 Lastly, we thank our families, Kathryn Kalinak and Emily Bravaco, and Andrea, Zosh,

Yair, and Yona Simonson, for their love, their encouragement, and their endless patience

without which this book would not have been possible.

 Preface xix

sim23356_FM_USE.indd xixsim23356_FM_USE.indd xix 12/15/08 7:30:53 PM12/15/08 7:30:53 PM

http://www.CourseSmart.com

sim23356_FM_USE.indd xxsim23356_FM_USE.indd xx 12/15/08 7:30:53 PM12/15/08 7:30:53 PM

 Java Programming
 From the Ground Up

sim23356_FM_USE.indd xxisim23356_FM_USE.indd xxi 12/15/08 7:30:53 PM12/15/08 7:30:53 PM

sim23356_FM_USE.indd xxiisim23356_FM_USE.indd xxii 12/15/08 7:30:53 PM12/15/08 7:30:53 PM

PA
R

T

 1

PART 1
 The Fundamental Tools

1. An Introduction to Computers and Java

2. Expressions and Data Types

3. Variables and Assignment

4. Selection and Decision: i f Statements

5. Repetition

6. Methods

7. Arrays and Lists: One Name for Many Data

8. Recursion

sim23356_ch01.indd 1sim23356_ch01.indd 1 12/15/08 6:26:09 PM12/15/08 6:26:09 PM

2

CHAPTER CHAPTER 1

 An Introduction to
Computers and Java

 “I think there is a world market for maybe fi ve computers.”
 — Thomas Watson, IBM (1943)

 “Computers in the future may weigh no more than 1.5 tons.”
 — Popular Mechanics (1949)

 “There is no reason anyone would want a computer in their home.”
 — Ken Olson, Digital Equipment Corp (1977)

 Objectives

 The objectives of Chapter 1 include an understanding of

� the basic components of a computer system: hardware and software,

� high-level languages and compilation,

� Java’s place among programming languages, and

� the concept of an algorithm.

 1.1 INTRODUCTION

 In 1946, the ENIAC (Electronic Numerical Integrator and Computer), weighing 30 tons and

fi lling a 1000-square-foot room was the world’s fi rst electronic digital computer. Today,

computers far more powerful than the ENIAC weigh just a few pounds and can fi t inside a

briefcase with room to spare. And, contrary to the predictions of yesteryear, computers are

everywhere: in homes, offi ces, schools, bus terminals, bookstores, and even coffee shops

and cafes. Is there anyone who hasn’t used a word processor, sent email, or played a com-

puter game? And who has not “googled” for some information? Today, computer usage

is as common as driving a car, reading a book, or watching television. So what exactly is

a computer? What’s going on inside the “little box” that processes data so quickly? What

are “bits and bytes”? What is a computer program? This chapter addresses such questions.

We begin with a general overview of a computer system: both the hardware—the physical

components of a computer—as well as the software—the programs that manipulate the

hardware. We conclude with a discussion of programming languages, and in particular,

the programming language Java. Software development using Java is the focus of this

book. And, as you will see in subsequent chapters, Java is a very powerful programming

language, easy to learn, and undeniably fun.

sim23356_ch01.indd 2sim23356_ch01.indd 2 12/15/08 6:26:11 PM12/15/08 6:26:11 PM

 Chapter 1 An Introduction to Computers and Java 3

 1.2 WHAT IS A COMPUTER?

A computer is a machine that performs computations, logical operations, or more

generally, data manipulation according to some prescribed sequence of instructions

called a computer program. The physical components of a computer are termed

hardware and the programs software.

 Hardware and software work in tandem to perform tasks as varied as word processing,

playing chess, fi nding the fastest route to your destination, or even calculating � to three

hundred and seventy-eight decimal places. Together the hardware and software comprise

a computer system .

 1.3 THE HARDWARE

 Although computer hardware consists of many complex parts, the major hardware com-

ponents are:

• the central processing unit (CPU),

• primary or random access memory (RAM),

• secondary or long-term memory, and

• input and output devices (I/O devices).

 1.3.1 The Central Processing Unit
 The CPU is the heart, muscle, and brain of the machine.

The CPU does the computing, the processing, the bulk of the work.

The most important components of the CPU are

• the arithmetic and logic unit (ALU),

• the control unit (CU), and

• the clock.

The ALU performs calculations, billions per second, and the CU controls or coordinates

which calculations the ALU performs. If the ALU is the heart and muscle of the computer,

pumping data throughout the system and tirelessly executing calculations, then the CU is

the brain that directs or orchestrates the actions of the ALU according to a prepared script,

that is, according to the instructions of a program.

 The CPU clock, by sending electronic pulses throughout the system, determines how

frequently the computer hardware executes instructions. A system’s hardware components

are synchronized with the clock. Every time the clock ticks, another hardware action

occurs. Of course, the clock speed depends on the amount of time required by the slowest

of the CPU’s actions. This is called the critical state of the machine. Moving the clock any

faster than the time needed for the critical state would cause the next action to occur too

soon, before the data from the previous action would be processed. This would make the

computer unpredictable and useless.

 Speeding up the critical state in the hardware allows a system to utilize a faster clock.

This can be accomplished by designing smaller and more effi cient circuitry. During the

past thirty years, clock speeds have increased from thousands of ticks per second to billions

of ticks per second.

sim23356_ch01.indd 3sim23356_ch01.indd 3 12/15/08 6:26:12 PM12/15/08 6:26:12 PM

4 Part 1 The Fundamental Tools

 1.3.2 Primary or Random Access Memory
 How Data Is Stored

Computers store data in binary format; that is, every piece of information, including

characters, numbers, and even program instructions, is stored as a sequence of 0’s

and 1’s or, as these two binary digits are commonly called, bits.

 For example, a lowercase ‘a’ is represented by 1100001 and a ‘b’ is encoded as 1100010 .

This particular encoding is used to identify a character’s ASCII code (American Standard

Code for Information Interchange). Every character that appears on your keyboard has its

own 7-bit ASCII sequence or code. However, each character is typically stored using 8 bits,

a leading 0 followed by the character’s 7-bit ASCII code. Thus, character ‘a’ is stored as
 0

 1100001.

 A sequence of eight bits is called a byte.

A long enough sequence of bytes can be used to store text of any size.

 Like character data, every decimal number also has a binary representation. The deci-

mal numbers 0 through 15 in binary format are:

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Can you determine the binary representation for 16? 17? 18?

 Binary numbers are not really very different than the ordinary base-10 or deci-

mal numbers that you use every day. As you know, a number such as 1234 can be

ex pressed as

 1 thousand �

 2 hundreds �

 3 tens �

 4 ones

That is,

 1234 � 1 � 1000 � 2 � 100 � 3 � 10 � 4 � 1

 � 1 � 103 � 2 � 102 � 3 � 101 � 4 � 100.

sim23356_ch01.indd 4sim23356_ch01.indd 4 12/15/08 6:26:12 PM12/15/08 6:26:12 PM

 Chapter 1 An Introduction to Computers and Java 5

The binary number system works similarly except that the only allowable digits are 0 and

1 (rather than 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) and the base is not 10 but 2. Thus

 1101
base 2

 � 1 � 23 � 1 � 22 � 0 � 21 � 1 � 20

 � 1 � 8 � 1 � 4 � 0 � 2 � 1 � 1

 � 13
base 10

In other words, the binary number 1101 is equivalent to the decimal number 13. If you do

the arithmetic, you’ll see that 10011010010 is the binary representation of the decimal

number 1234.

 Long sequences of numbers are used to represent audio, video, fi nancial transac-

tions, and many other forms of data. With enough bits, there is no limit to the number of

songs, movies, or bank account transactions you can store. Indeed, since every character is

encoded with an ASCII value between 0 and 127, text can also be considered a sequence of

numbers.

 Where Data Is Stored

 When the CPU executes a program, the program instructions, along with relevant data, are

stored in primary memory .

Primary memory is also known as random access memory (RAM) because data may

be retrieved or accessed in random, rather than sequential, order.

 You can conceptualize RAM as a collection of storage cells or boxes, each capable of

holding just a single byte of information. A unique number, or memory address , identifi es

each such storage cell. Figure 1.1 depicts a small portion of memory with addresses 1000,

1001, 1002, 1003, etc. Of course, in practice, these addresses are expressed as binary and

not decimal numbers.

010000111000

Memory
addresses

1001

1002

1003

1004

1005

01000001

01010100

01010011

Binary representation of the word
CATS

C

A

T

S

FIGURE 1.1 Primary memory

 Primary memory is volatile.

 This means that shutting down your computer causes all data in primary memory to be

erased. For example, when you work with a word processor, both the word processing

program and your document are loaded into primary memory. If your computer shuts down

sim23356_ch01.indd 5sim23356_ch01.indd 5 12/15/08 6:26:13 PM12/15/08 6:26:13 PM

6 Part 1 The Fundamental Tools

before you have had a chance to save your work, your document may be lost forever. Long-

term storage is achieved with secondary memory. When you save a document, it is saved

in secondary memory.

 1.3.3 Secondary Memory

 Secondary memory is used for long-term or even permanent storage.

 Secondary memory devices include hard disks, tapes, CDs, DVDs, and fl ash memory

sticks. The programs that you use every day such as word processors, spreadsheets, and

games are permanently stored on secondary storage devices.

Compared to RAM, secondary memory is, in general, cheaper (per bit), slower,

larger, electromechanical rather than electronic, and persistent: secondary memory

devices do not lose their values when you turn off the computer.

 Before executing a program, the CPU fi rst copies the program instructions along

with any necessary data from secondary memory to RAM. To execute the program, the

instructions are fetched and executed one by one from RAM. Each instruction may be

executed many thousands of times. Fetching data and instructions that are stored in elec-

tronic RAM is much faster than retrieving information from a mechanical device such as

a hard disk.

 1.3.4 Input/Output Devices
 A computer communicates with a human user through input and output devices. Standard

input devices are keyboards, mouses, joysticks, stylus pens, cameras, and microphones for

audio input. Typical output devices include monitors, printers, and speakers.

 1.4 THE SOFTWARE

 The programs that run on a computer are collectively known as software . Word processors,

Internet browsers, editors, database management systems, computer games, and spread-

sheets are all part of your computer’s software library.

When you turn on or boot your computer, a program called the operating system

automatically runs. This special program provides an interface between you and

your computer.

 The operating system is the “concierge” of your computer. It manages the computer’s

resources and activities. If you wish to use your word processor or perhaps play

solitaire, you inform the operating system, and the operating system carries out your

request. If you’d like to erase or rename a fi le, you tell the operating system. Indeed,

the operating system affects all the programs that run on a computer. Today, the most

popular operating systems are Windows (various dialects), GNU-Linux, Unix variants,

and MAC OS X.

 You can buy many different types of software, but of course, you can create your own

software, too. And doing so is precisely the topic of this book.

sim23356_ch01.indd 6sim23356_ch01.indd 6 12/15/08 6:26:14 PM12/15/08 6:26:14 PM

 Chapter 1 An Introduction to Computers and Java 7

 1.4.1 In the Beginning There Was Machine Language...

Each computer, or more specifi cally each CPU, executes instructions encoded in its

own unique native machine language.

 Moreover, each machine language instruction consists of a sequence of bits. For example,

a hypothetical instruction for adding one number to another might have the form

10010010 00000001 00000001 10101101

Certainly, programming in machine language is both tedious and time-consuming.

Machine languages tend to have instructions that operate at a level of detail too low to

allow a programmer to keep perspective and maintain productivity. Furthermore, because

each individual CPU understands only its own native machine language, profi ciency

in one machine language does not translate into profi ciency in the language of another

machine. Imagine trying to master a new binary-based language for each new CPU on

the market!

 In the early days of computers, machine language was the only option for program-

mers. However, in the 1960s, the fi rst high-level language , FORTRAN, was invented,

and no longer were programmers forced to devise programs with binary instructions.

FORTRAN instructions use an English-like syntax. Today, hundreds of high-level lan-

guages are available, with dozens in mainstream use, including Fortran 2003, COBOL,

Lisp, Visual BASIC, C, C��, C#, Java, Perl, Python, PHP, and Javascript.

 A typical instruction coded in a high-level language, such as BASIC, might be

if income � 1000000 then
 print “You are rich!”

This is certainly more comprehensible than a sequence of bits, and easier to program.

 Still, if each computer speaks but one language, its native machine language, how does

a computer understand a Fortran 2003, BASIC, or C�� program? Before a program that

is written in a high-level language can be executed on a particular computer, the program

must be translated into the machine language of that computer.

 Translation is the job of a program called a compiler.

 You can think of the compiler as a black box that accepts a program written in a high-

level language such as C��, the source program , and produces a translation into the target
machine language. See Figure 1.2 .

C�� compiler
Machine language program

(target)
C�� program

(source)

FIGURE 1.2 A compiler translates a C�� program into a machine language.

 Once a compiler translates the source program into machine language, the machine’s CPU

can execute the resulting target program. A programmer can conveniently write just one

program and translate it into several different machine languages. You need one compiler

to translate your C�� program into a machine language for an Intel processor Windows

machine, and another to translate it for a Mac that uses a PowerPC processor, but you write

only one C�� program.

sim23356_ch01.indd 7sim23356_ch01.indd 7 12/15/08 6:26:14 PM12/15/08 6:26:14 PM

8 Part 1 The Fundamental Tools

 1.4.2 Then, Along Came Java
 Java is a general-purpose language developed by Sun Microsystems in the early 1990s.

Java was originally designed to program smart consumer electronic devices. Java’s creators

identifi ed three main goals for their new language:

• Platform independence—Java programs should be capable of running on any computer.

• Security—Java programs should not be susceptible to hackers’ code and dangerous

viruses.

• Reliability—Java programs should not “crash.”

Although Java was intended for use with consumer electronic devices, such devices did

not become its destiny. Serendipitously, the Web provided Java with the perfect environ-

ment for the goals of platform independence, security, and reliability. Since its invention,

Java has evolved into arguably the most important programming language for developing

e-commerce and other Web-driven applications. Its application base is growing daily and

includes dynamic Web-content generation with servlet technology, the building of business

components with Enterprise JavaBeans, the creation of cross-platform user interfaces with

Swing, and much more.

 The Java Virtual Machine

In order to make Java a cross-platform programming language, Java’s creative team

designed an abstract computer implemented in software called the Java Virtual
Machine (JVM). You cannot go to a store and buy a JVM computer. Instead you

install software on your computer that simulates a JVM computer. The JVM is not

a piece of hardware, but it pretends to be one. The machine language of the JVM is

called bytecode. Java programs are fi rst compiled into bytecode, and then executed.

 Typically, the Java interpreter , which is part of the JVM, executes each bytecode instruc-

tion, one by one. However, to speed up execution, some versions of the JVM are equipped

with a “just in time compiler” that compiles some bytecode directly to native machine

code at runtime, that is, during execution. But regardless of how the JVM deals with the

bytecode, the important point is that every Java program compiles into bytecode, the native

language of the Java Virtual Machine. See Figure 1.3 .

FIGURE 1.3 The JVM is a simulated computer that executes bytecode.

Java compiler BytecodeJava program JVM

 Bytecode provides an extra layer of abstraction between source code and execution.

Once a Java program is translated into bytecode, the bytecode can run on any computer

that has installed the JVM. A Java program needs to be compiled into bytecode just once.

Proponents of Java often use the slogan “compile once, run anywhere.”

 The JVM allows every computer to act as though it were built to execute native byte-

code. Therefore, once you compile a program into bytecode, it can be run on any machine

with the JVM installed. The program never needs to be recompiled in order to run on a

different machine. Behind the scenes, the JVM and bytecode are run in the native machine

language of the target machine, but that is invisible to the programmer. Essentially, separate

compilation for each machine is replaced by the fl exibility of the JVM. Of course, this all

works provided that the same version of the JVM is installed in each computer on which

one intends to run the program.

sim23356_ch01.indd 8sim23356_ch01.indd 8 12/15/08 6:26:14 PM12/15/08 6:26:14 PM

 Chapter 1 An Introduction to Computers and Java 9

 How to Compile Java Programs

 There are many different “integrated development environments” (IDEs), each complete

with a slick graphical interface that facilitates the development of Java programs. Most of

these IDEs provide:

• a text editor for writing programs,

• fi le browsing,

• a “debugger” that assists in fi nding program errors, and

• push-button compilation and execution.

Many of these systems such as Eclipse, JDEE, BlueJ, JGrasp, and Dr. Java are free. Because

each IDE is very different, we restrict our discussion to Sun’s bare bones compiler.

 You do not need an IDE to write and run Java programs. If you prefer, you can write

a program using any text editor, such as Notepad or Emacs, and compile your program

with the Java Development Kit (JDK), which you can download free from Sun. Installation

instructions are available on Sun’s website.

 The installation process places the Java compiler, javac.exe , in a newly created direc-

tory, unless you specify otherwise. In a Windows environment, the location of javac.exe is

most likely

 C:\Program Files\Java\jdk1.6.0_01\bin

(The version of the development kit (1.6.0_01) will probably be different, however.) If you

do not know the location of the Java compiler, search for javac.exe .

 Figure 1.4 shows the Windows directory C:\Program Files\Java\jdk1.6.0_01\bin , which

includes the Java compiler, as well as a number of other programs that support Java.

FIGURE 1.4 C:\Program Files\Java\jdk1.6.0_01\bin contains the compiler, javac.exe.

 You can invoke the Java compiler from the command prompt with the directive

C:\Program Files\Java\jdk1.6.0_01\bin\ javac

Of course, using a fully qualifi ed name becomes tiresome very quickly. To invoke the Java

compiler from any directory with the one-word command javac , you must add the location

of the Java compiler to the PATH variable of your machine. The PATH variable tells your

system where to fi nd the Java compiler. How you set the PATH variable depends on your

sim23356_ch01.indd 9sim23356_ch01.indd 9 12/15/08 6:26:15 PM12/15/08 6:26:15 PM

10 Part 1 The Fundamental Tools

system, and directions are readily available on the Web. If you do not set the PATH vari-

able, you can still invoke the Java compiler with its fully qualifi ed name. But surely, the

one-word command javac is more appealing.

 Once the Java Development Kit is installed, and the PATH variable set, you are ready to

write and compile programs. At least in the beginning, it is a good idea to keep all of your Java

programs in a folder named JavaPrograms, MyPrograms, JavaStuff , or some variation of that.

 To create a program:

• Open a text editor, such as Notepad or Emacs.

• Type your program.

• Save the program in a fi le with a .java extension such as Hello.java or myProgram.java .

(We discuss restrictions to the program name in Chapter 2.)

• Exit or minimize the text editor.

To compile the program:

• Open a command window. If you are running Windows:

• click Start ;
• click Run ;

• in the text box that appears, type cmd ;

• click OK .

• Navigate to the directory where you have saved your program.

• Type the command

 javac programName.java ,
e.g., javac Hello.java or javac MyProgram.java.

 If your program contains errors, the compiler graciously generates “error messages”

indicating where the errors exist. In this case, you must reopen the program in the editor, fi x

the errors, save the program, and compile the program again. If the program has no errors,

the compiler creates a class fi le using the same name as your program but with a .class

extension, for example, Hello.class . This fi le contains the bytecode that runs on the Java

Virtual Machine.

 To run the program (execute the class fi le), type the command

 java programName ,

where programName is the name of your program, for example, java Hello . Notice that you

do not include the .class extension. The java command executes the bytecode on the Java

Virtual Machine.

 A text editor along with the javac and java commands are all you need to compile and

run Java programs. Nonetheless, most people rely on the convenience of an IDE. And most

IDEs use Sun’s compiler under the hood, so whether you click a button or type a command,

you are most likely using the same compiler and building the same class fi le.

 This book teaches you how to write and design Java programs. You are on your own

to choose one of the myriad variety of systems that make compiling and debugging more

convenient. Some IDEs are simple and some have a steep learning curve. There are many.

The choice is yours.

 1.5 PROGRAMMING AND ALGORITHMS

 Mastery of a programming language such as Java is certainly a noble achievement that is

part of a bigger picture that includes problem solving and the study of algorithms .

sim23356_ch01.indd 10sim23356_ch01.indd 10 12/15/08 6:26:15 PM12/15/08 6:26:15 PM

 Chapter 1 An Introduction to Computers and Java 11

An algorithm is a fi nite, step-by-step procedure for accomplishing some task or

solving a problem.

 Algorithms are everywhere. Every time you query Google, a Web-mining algorithm runs;

every time you use Mapquest for directions, a shortest-path algorithm runs; and every time

you use a spell-checker, a string-searching algorithm runs. Creating correct and effi cient

algorithms is an art and a science, which takes both practice and creativity. Whether you

need to calculate the average of fi ve numbers, sort a list of two million names, or guide a

rocket, an algorithm lurks in the background; the solution to your problem is an algorithm.

The study of algorithms is a cornerstone of computer science.

 A programming language is your tool, a tool that you can use to investigate and imple-

ment algorithms. With a programming language, such as Java, you can turn algorithms into

programs so that a computer fi nds the average, sorts the list, or guides the rocket. Programs

implement algorithms; programming makes algorithms come to life. As you work through

the problems and exercises in this text, you will hone your problem-solving skills, design

and implement your own algorithms, and, along the way, discover that programming with

Java is fun.

 1.6 IN CONCLUSION

 In this chapter, you have seen the basic structure of a computer system: the hardware

and the software. Just as the ENIAC has evolved into the powerful, easy-to-use personal

computer of today, software has progressed from primitive machine language instructions

to sophisticated, high-level programming languages such as Java. Hardware and software

do not exist in isolation. A computer without software can do nothing. The remainder of

this book deals with software development using Java. And, although we begin with the

simplest of programs, by the end of the book you will be able to write applications that

computer pioneers never dreamed of implementing.

 Just the Facts

• A computer is a machine that performs computations, logical operations, and data

manipulation according to some prescribed sequence of instructions called a

 computer program .

• The physical components of a computer are called hardware .

• The programs that run on a computer are called software .

• The central processing unit (CPU) is that part of the computer that performs most

calculations and makes decisions.

• The arithmetic and logic unit (ALU) is the part of the CPU that performs arithmeti-

cal calculations.

• The control unit (CU) coordinates the calculations of the ALU and the movement of

data between the CPU and RAM.

• The clock determines how frequently the computer hardware executes instructions.

• A computer stores data in binary format , i.e., as a sequence of 0’s and 1’s.

• A single 0 or 1 is called a bit ; a sequence of eight bits is called a byte .

sim23356_ch01.indd 11sim23356_ch01.indd 11 12/15/08 6:26:16 PM12/15/08 6:26:16 PM

12 Part 1 The Fundamental Tools

• Primary or random access memory (RAM) is composed of a collection of storage

cells, each capable of holding one byte of information. Each cell has a unique numer-

ical address.

• RAM is volatile ; when the computer is turned off, all data in RAM is erased.

• Secondary memory is used for long-term or permanent storage. Retrieving data from

secondary memory is slower than retrieving data from RAM.

• The operating system is a program that manages all the resources of a computer. All

requests such as running a program, deleting a fi le, and printing a document are made

through the operating system.

• Each CPU understands just a single language, its unique native machine language.

Machine language programs are written in binary format.

• A program written in a high-level language, such as C or BASIC, cannot run on a

computer until the program is translated into that computer’s machine language.

A program that does this translation is called a compiler .

• The Java Virtual Machine (JVM) is a simulated computer that is implemented in

software. The machine language of the JVM is called bytecode . Once the Java com-

piler translates a program into bytecode, the bytecode can run on any computer that

has installed the JVM.

• At minimum, to write, compile, and run a Java program you need a text editor, the

JVM, a terminal window, and a command line. However, there are also many full-

featured IDEs (integrated development environments) that facilitate the writing,

compiling, execution, and debugging of Java programs.

• Downloading the newest version of JDK (Java Development Kit) from Sun is the

way to get the complete functionality of the JVM. A subset of JDK called JRE (Java

Runtime Environment) allows you to execute bytecode but not to compile your own

programs.

• An algorithm is a step-by-step procedure for solving a problem. A computer program

implements an algorithm so that a computer can accomplish the procedure.

sim23356_ch01.indd 12sim23356_ch01.indd 12 12/15/08 6:26:16 PM12/15/08 6:26:16 PM

 Chapter 1 An Introduction to Computers and Java 13

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

 Across
 2 1111 in decimal (word)

 4 101 in decimal (word)

 7 Memory cells are identifi ed by a

unique .

 9 One of the fi rst computers

 11 Invokes the Java compiler

 15 Performs arithmetical

calculations

 16 Abstract computer implemented

in software

 17 Step-by-step procedure for

solving a problem

 20 Primary memory is electronic,

secondary memory is .

 23 Long-term memory

 27 Interface between the user and

the computer

 29 Computer programs

 30 Primary memory is

(two words) memory.

 Down

 1 RAM is : when the computer is

turned off, all memory is erased.

 3 First high-level language

 5 A sophisticated system for writing and

compiling programs

 6 Physical components of a computer

 8 The “brain” of a computer

 10 Translates a program into native code

 12 Output device

 13 A binary digit

 14 Primary memory

 18 Each computer speaks a unique

language.

 19 Computers store data in format.

 21 Determines how fast hardware executes

instructions

 22 Java programs are compiled into .

 24 Eight bits

 25 Secondary memory device

 26 The Java compiler creates a fi le with a

. extension.

 28 Input device

6

1

11

2

26

29 30

7

23

3

17

20

22

24

27

25

28

14

15

1312

8

18 19

109

54

21

16

sim23356_ch01.indd 13sim23356_ch01.indd 13 12/15/08 6:26:16 PM12/15/08 6:26:16 PM

14 Part 1 The Fundamental Tools

 SHORT EXERCISES
 1. True or False

 If false, give an explanation.

a. Retrieving data from RAM usually takes more time than retrieving data from a

hard drive.

b. The ALU performs arithmetical calculations.

c. Primary memory (RAM) is addressable in units of one bit.

d. The clock speed of a computer has nothing to do with how fast programs execute.

e. The CU determines the next instruction that executes.

f. An operating system is a fundamental part of the hardware of a computer.

g. Executing the same C�� program on two machines with different CPUs requires

two compilers.

h. Bytecode is the native language of most Windows machines.

i. Java is compiled directly to a machine’s native language, and then translated line

by line to bytecode.

j. Any computer you purchase can execute Java bytecode without any special

downloading of software.

 2. Binary to Decimal
 Convert each of the following binary numbers to its decimal equivalent.

a. 10101

b. 00101

c. 100100101

 3. Decimal to Binary

 Determine the binary representation of

 a. 128

b. 235

c. 66

 4. Adding and Multiplying in Binary
 When does 1 � 1 � 10? When you are adding binary numbers. Addition of binary

numbers is much the same as with decimal numbers. For example, decimal numbers

23 and 15 in binary format are 10111 and 01111, and their sum is calculated as

 10111

 +01111

 100110

 As you see, sums are simple as long as you remember to carry a 1 whenever you add

1 � 1. Multiplication is just as simple:

 10111

 01111

 10111

 10111

 10111

 10111

 00000

 101011001

 Find the following binary sums and products:

a. 11111 + 00001

b. 101010101 + 010101011

sim23356_ch01.indd 14sim23356_ch01.indd 14 12/15/08 6:26:17 PM12/15/08 6:26:17 PM

 Chapter 1 An Introduction to Computers and Java 15

c. 111100011101 + 01001011111

d. (111) × (101)

e. (1010) × (0101)

f. (11111) × (11111)

 5. Octal and Hexadecimal Numbers

 Octal numbers use 8 as a base and digits 0, 1, 2, 3, 4, 5, 6, and 7. Hexadecimal

numbers use 16 as a base and digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Conversions between binary and octal numbers can be done easily three bits at a

time. Conversions between binary and hexadecimal numbers can be accomplished

quickly four bits at a time. There is no need to make any interim conversions to

decimal numbers. For example, 76 hexadecimal equals the binary number

0111 0110, because 7 is 0111 and 6 is 0110. There is no need to fi rst convert

76 hexadecimal to its decimal equivalent 118 and then back to binary.

 Calculate the following:

 a. the decimal equivalent of the octal number 3427

b. the octal equivalent of the binary number 100100101

c. the hexadecimal equivalent of the binary number 00011010111101011001

d. the binary equivalent of the hexadecimal number A03

 6. ASCII Encoding
 The ASCII code for uppercase ‘A’ is 01000001 (decimal 65); the code for ‘B’ is

 01000010 (decimal 66); for ‘C’ it is 01000011 (decimal 67), etc.

 Decode the following sequence of nine bytes.

 010010100100000101010110010000010100100101010011010001100101010101001110

 7. Encoding Opcodes

 One part of a machine language instruction is the opcode (Operation Code). A

typical opcode might signify the “Add” operation, another “Subtract,” and another

“Exit.” If there are typically 120 different opcodes and each opcode is represented

by a string of bits, how many bits are required to uniquely encode or represent

each opcode?

 8. Java Translation

 Choose your favorite IDE, and investigate how it executes bytecode on your

computer. For example, does it execute the bytecode directly, or does it translate

bytecode into machine code using a JIT compiler?

 9. Compilers

 What distinguishes a high-level programming language from machine language?

 10. Assembly Language

 Assembly language is a low-level language like machine language. Do a little

research and describe the format and purpose of assembly language. How does

assembly language differ from machine language?

 11. Compile Once, Run Anywhere

 Does the Java slogan “compile once, run anywhere” come with any “fi ne print?”

Explain exactly what this phrase means.

 12. Bytecode

 Programs written in a language such as C�� are compiled directly into the

machine language of a particular computer. Java programs are fi rst compiled

into bytecode and then interpreted by the JVM. What are the disadvantages and

advantages of using Java versus C�� with respect to compilation and

execution times?

sim23356_ch01.indd 15sim23356_ch01.indd 15 12/15/08 6:26:17 PM12/15/08 6:26:17 PM

16 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 THE BIGGER PICTURE

1. MACHINE LANGUAGE AND COMPUTER ARCHITECTURE
 The following equation is commonly used for expressing a computer’s performance ability:

 time _______ program � time _____
cycle

 �
cycles

instruction

 � instructions __________ program

 This equation means that the time necessary to run a program equals the time it takes

for the CPU clock to tick once (time/cycle), times the number of different hardware steps

required to perform an instruction (cycles/instruction), times the number of instructions in

the program (instructions/program). Each of these values depends on the machine language

and the computer’s CPU design (or architecture).

 Two major competing paradigms in CPU design are reduced instruction set com-
puter (RISC) and complex instruction set computer (CISC)1. The CISC approach cre-

ates a machine language with complex instructions. For example, a single instruction

might be suffi cient to add the contents of two memory locations and store the result in

a third. The same action in a RISC language might take four separate instructions: two

to move the data from memory (RAM) to the CPU, one to add them in the ALU, and

one to move the answer back to RAM. However, the single CISC instruction might take

21 clock cycles, while each of the four RISC instructions use just fi ve clock cycles, for

a total of only 20 cycles.

 In general, CISC machines tend to minimize the number of instructions per program,

sacrifi cing the number of cycles per instruction, while RISC machines do the opposite,

reducing the cycles per instruction at the cost of the number of instructions per program.

The clock in RISC machines tends to be faster than the clock in CISC machines because

the RISC hardware is simpler.

 Exercises
 1. A program that compiles into 2,000,000 machine language instructions on a

CISC computer requires 7,000,000 instructions on a RISC computer. The clock

on the RISC computer ticks 3,000,000,000 times each second, and the clock on

the CISC machine ticks 2,400,000,000 each second. The average cycles/instruction

on the CISC computer is 12.5, and the average cycles/instruction on the RISC

machine is 4.8. How much time does it take to run the program on each machine?

Which machine runs your program faster?

 2. A CPU architect is able to increase the clock speed on the RISC machine to

3,300,000,000 cycles per second, while keeping the average cycles/instruction

at 4.8, but at the cost of increasing the number of instructions to 7,100,000. How

much time does it take to run the program on each machine? Which machine runs

your program faster?

2. ALGORITHMS
 An algorithm is a step-by-step procedure for solving a problem. The following algorithm

describes a procedure that converts a decimal number to a binary number. The binary num-

ber is computed from right to left. That is, the rightmost bit is written down fi rst.

 Let x be a positive decimal number.

 Repeat the following steps until x has the value zero:

 1. If x is even, then write down 0, otherwise write down 1.

 2. Change the value of x to x /2, dropping the remainder, if necessary.

sim23356_ch01.indd 16sim23356_ch01.indd 16 12/15/08 6:26:17 PM12/15/08 6:26:17 PM

 Chapter 1 An Introduction to Computers and Java 17

THE BIGGER PICTURE

 Let’s look at this algorithm in action when x �17.

 x � 17

 17 is odd, so write 1 .

 Divide 17 by 2 and drop the remainder; x is now 8.

 8 is even, so write 0 .

 Divide 8 by 2; x is now 4.

 4 is even, so write 0 .

 Divide 4 by 2; x is now 2.

 2 is even, so write 0 .

 Divide 2 by 2; x is now 1.

 1 is odd, so write 1.

 Divide 1 by 2, drop the remainder; x is now 0.

 Because x is 0, stop.

 The fi nal binary number is: 10001 .

 Discovering and testing new algorithms is an important part of computer science, but it is

a separate skill from learning how to implement an algorithm in Java. In upcoming chapters,

you will learn how to turn a simple algorithm like this into a Java program. You may not have

been able to discover this algorithm yourself, and even now that you have seen the algorithm,

it may not be obvious why it works. Nonetheless, you can still explore some simpler algo-

rithms such as those described in the following two exercises.

 Exercises
 1. Write an algorithm to convert a binary number into a decimal number.

 2. The ASCII values for the digits 0–9 are 48–57, respectively. Write an algorithm

that, given a positive integer x , constructs a sequence of values in the range

48–57, representing the ASCII values of the digits of x . For example, if x � 104,

the resulting sequence is 49 48 52, since the ASCII values for 1, 0, and 4 are 49,

48, and 52, respectively.

3. STORING INTEGERS
 This section describes how Java represents and stores negative numbers using bits. After

reading this section, you may wonder whether any of this material is really essential to

a Java programmer. A beginner can certainly get by without much behind-the-scenes

knowledge, but as you gain experience as a programmer, you will fi nd that a deeper under-

standing of how Java works is crucial. For example, a program that correctly encodes

credit card numbers requires a thorough understanding of arithmetic overfl ow and number

representations. This section introduces the basics.

 Base 10 Numbers
 In olden days everyone knows ,
 Folks would count on their fi ngers and toes .
 They’d get up to twenty ,
 Then, twenty was plenty .
 “Now, heaven knows, anything goes.”

 Mathematical folklore postulates that the base-10 number system which came about

during the Renaissance found favor because humans possess just ten fi ngers for counting.

Fact or fi ction, we use exactly ten digits (0–9) to signify any decimal or base-10 number.

sim23356_ch01.indd 17sim23356_ch01.indd 17 12/15/08 6:26:18 PM12/15/08 6:26:18 PM

18 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

The fi rst ten non-negative integers require just one digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Next,

we add a tens column , put a 1 in it, and get the integer 10. You are probably so familiar

with decimal numbers that you rarely notice the 10s, 100s, and 1000s columns. You know

implicitly that the number 6123 consists of 6 thousands plus 1 hundred plus 2 tens plus

3 ones:

 6123 � (6 � 1000) � (1 � 100) � (2 � 10) � (3 � 1)

 � (6 � 103) � (1 � 102) � (2 � 101) � (3 � 100)

 Unsigned Numbers
 As you have read in this chapter, a computer stores integers as binary numbers. Unlike a

base-10 system that requires ten symbols (0–9), a binary system needs just two: 0 and 1. In

contrast to the columns of a decimal system, the column values of a binary system (right to

left) have place values that are powers of 2: 1, 2, 4, 8, 16, 32, 64, 128, and so on. Thus the

binary number 1111011, which is 123 in the decimal system, consists of:

1 sixty-four plus 1 thirty-two plus 1 sixteen plus 1 eight plus 0 fours plus 1 two plus 1 one.

 Exercises
 1. Write 37 in binary.

 2. Write 137 in binary.

 3. What is the value of 100110 in decimal?

 4. What is the value of 100111 in decimal?

 5. What happens to the value of a binary number when you append a zero to the

right end?

 6. What happens to the value of a binary number when you append a one to the

right end?

 Using a single bit you can form just two binary numbers, 0 and 1 with two bits, there are

four binary numbers, 00, 01, 10, and 11, and with three bits there are eight, 000, 001, 010,

011, 100, 101, 110, and 111. With every additional column, the number of binary integers

doubles. For example, the four two-bit numbers are:

 00
01

10

11

To construct all three-bit binary numbers, prefi x each two-bit number with a 0 and also

with a 1, in effect doubling the number of possible binary numbers and giving eight bit

patterns:

 000 100

001 101

010 110

011 111

To construct all four-bit numbers, add 0 to the left of every three-bit number, and do like-

wise with 1, yielding 16 binary numbers with four bits:

 0000 0100 1000 1100

0001 0101 1001 1101

0010 0110 1010 1110

0011 0111 1011 1111

sim23356_ch01.indd 18sim23356_ch01.indd 18 12/15/08 6:26:19 PM12/15/08 6:26:19 PM

 Chapter 1 An Introduction to Computers and Java 19

THE BIGGER PICTURE

These last numbers represent the positive values 0 through 15 (2 4 � 1). In general, n bits

can store positive numbers in the range 0 through 2 n � 1 inclusive. Such binary numbers,

because they have positive values, are called unsigned numbers.

 Exercises
 7. The smallest unit of “addressable memory” in a computer is a collection of

8 bits, called a byte. How many different binary numbers are possible using 8 bits?

 8. What is the largest unsigned number you can represent with 8 bits?

 9. What is the range of values for a 7-bit ASCII code?

 10. How many binary numbers can you create using 16 bits (two bytes)?

 11. What is the largest unsigned number (in decimal) that you can make with 16 bits?

 12. The largest unit of addressable memory in a computer is 32 bits (four bytes).

How many binary numbers are possible using four bytes?

 Negative Numbers and Two’s Complement
 You have probably noticed that we have not discussed negative numbers. How then are

negative numbers expressed in a binary number system? Java uses a system of representa-

tion called two’s complement . In a two’s complement scheme, half the bit patterns of an

integer represent positive numbers; the other half signify negative numbers. If a number

begins with zero, the number is positive, and if a number starts with one, then it is nega-

tive. The leftmost bit is called the sign bit . For example, the byte 00010011, as you would

expect, is equivalent to the decimal number 19 (16 � 2 � 1 � 19). The sign bit is 0, so the

number is positive. However, the number 10010011, with a leading 1, is not equivalent to

�19. It actually corresponds to �109. How does this work?

 To simplify the discussion, we consider three-bit numbers. As you know there are

8 such binary numbers. Figure 1.5 shows both the unsigned decimal (no sign bit) value

and the two’s complement decimal value of each bit pattern. That is, a pattern of bits is

interpreted two different ways.

 We focus on the negative numbers. Notice that binary number 101 is both the two’s

complement representation of –3 and also the unsigned binary representation of 5. In

general, the two’s complement version of the 3-bit negative number � x is the same as the

unsigned binary representation of 8 � x . So the bit pattern for �1, in the two’s complement

FIGURE 1.5 Three-bit number representations: unsigned and two’s complement

Bit pattern

Decimal Value
Unsigned representation

No sign bit

Decimal Value
Two’s complement representation

Left bit is sign bit

000 0 0

001 1 1

010 2 2

011 3 3

100 4 �4

101 5 �3

110 6 �2

111 7 �1

sim23356_ch01.indd 19sim23356_ch01.indd 19 12/15/08 6:26:19 PM12/15/08 6:26:19 PM

20 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

world, is the same as the unsigned bit pattern for 8 � 1 � 7, and that’s 111 ; the two’s comple-

ment representation for �2 is the unsigned pattern for 8 � 2 � 6, which is 110 .

 Let’s generalize to bytes. A byte consists of 8 bits, and there is a total of 2 8 � 256 dif-

ferent bit patterns. Therefore, byte-sized two’s complement binary numbers can represent

128 non-negative numbers (0 to 127) and 128 negative numbers (�128 to �1). The nega-

tive number � x has the same bit pattern as the unsigned representation of 256 � x . Thus, a

two’s complement system stores �109 as 10010011 because 256 � 109 � 147, which as

an unsigned binary number is 10010011 .

 We have discussed two’s complement as a method for signifying negative numbers.

That is so. It is also an operation that you can perform on a binary number. Indeed, per-

forming two’s complement on a binary number is the operation of negation.

The two’s complement of any unsigned n-bit number x is 2n � x.

 For example, to compute the two’s complement of 011 (3 decimal): compute 8 � 3 � 5 or

 101 , which we saw is also, the two’s complement representation of –3. Symmetrically, the

two’s complement of 101 is 8 � 5, and that is 011 . Thus, the two’s complement operation

on 011 (3 decimal) gives 101 (�3) and the two’s complement of 101 (�3) yields 011 (3).

Computing a number’s two’s complement is akin to multiplication by �1, i.e., the two’s

complement operation is negation.

 Figure 1.6 shows the results of the two’s complement operation of each three-bit

number.

FIGURE 1.6 Two’s complement operation

Bit pattern
Result of the two’s

complement operation

000 000

001 111

010 110

011 101

100 100

101 011

110 010

111 001

 There is a simpler method for calculating the two’s complement of an n- bit number. Just

toggle all the bits (change 0 ’s to 1 ’s and 1 ’s to 0 ’s) and add 1. For example,

 the two’s complement of 101 is 010 + 1 = 011, and

the two’s complement of 011 is 100 + 1 = 101.

And, the two’s complement of 10101010 is 01010101 + 1 = 01010111 .

 You can understand this trick by once again considering the case of 3-bit numbers. First

notice that toggling the bits of x is the same as subtracting x from 7 (111). For example,

 111 111

 -101 and -011

 010 100

 Subtracting from 7 and then adding 1 is no different than subtracting from 8, which is what

we have been doing all along in the previous examples.

sim23356_ch01.indd 20sim23356_ch01.indd 20 12/15/08 6:26:20 PM12/15/08 6:26:20 PM

 Chapter 1 An Introduction to Computers and Java 21

THE BIGGER PICTURE

Java uses two’s complement representation for all integers.

 Other languages such as C�� allow you to specify whether or not an integer is two’s

complement or unsigned. An unsigned byte value ranges from 0 through 256. The unsigned

byte 10010011 is equivalent to decimal 147, but as you know, 10010011 is the two’s

complement representation of �109. The byte has different values depending on whether

the language considers it unsigned or two’s complement. There are applications such as

cryptography where unsigned integers are necessary, and this lack of fl exibility in Java

forces some awkward code to simulate unsigned integers.

 Exercises
 13. Using two’s complement representation, what is the decimal value of the byte

 11101110 ?

 14. Assume that a system stores all integers as bytes using two’s complement repre-

sentation. What is the value of 1 � 127?

 15. Using two’s complement representation, what is the decimal value of the 16-bit

integer 1111110111111101 ?

 16. Using two’s complement, what range of integers can be represented with 16

bits? 32 bits? 64 bits?

 17. What is the two’s complement of the two’s complement of x ?

 18. What are the decimal values of the following 32-bit, two’s complement

integers: 11111111111111111111111101011100 and

 00000000000000000000000010001111 ?

 Why Two’s Complement?
 There are other ways to represent negative integers besides two’s complement. A much

simpler method uses the leftmost bit to signify the sign of the number and the remaining

bits to indicate the magnitude of the number. This method is called sign-magnitude . For

positive numbers, sign-magnitude representation is the same as two’s complement, but for

negative numbers it’s different. For example, 10010011 � �19 in sign-magnitude and

�109 in two’s complement. Why choose one method over the other?

 Although there are circumstances where sign-magnitude representation is preferable (mul-

tiplication circuitry), it is safe to say that the standard representation of negative integers in a

computer is two’s complement. And two’s complement is the representation that Java uses.

 There is a very important reason why Java uses two’s complement representation for

negative integers. A carry-lookahead adder is a circuit that that performs addition in a

computer. Surprisingly, this same circuit does subtraction! Using two’s complement repre-

sentation allows the adder to do both addition and subtraction. There is no need to design a

separate circuit to perform subtraction.

 Addition of binary numbers is no different than addition of decimal numbers except

that a carry occurs with a sum of 2 or more rather than a sum of 10 or more. Just remember

 1 + 1 = 10 . For example, adding 1101 + 1101 is performed as

 Carry → 1 1

 1101

 +1101

 11010

Here is how to do binary subtraction using addition. We use one byte for each number. You

can verify that the binary form of 108 is 01101100 and that 00000011 signifi es 3. We

calculate 01101100 - 00000011 , i.e., 108 � 3.

sim23356_ch01.indd 21sim23356_ch01.indd 21 12/15/08 6:26:20 PM12/15/08 6:26:20 PM

22 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 The calculation is simple: negate 0000001 and add. As you know, the two’s complement

operation is really negation. So, the two’s complement of 00000011 is 11111100 + 1 =

 11111101 . Thus 01101100 - 00000011 is:

 01101100

 +11111101

 1 01101001

 If you ignore the leftmost bit, the remaining bits give the correct answer 01101001,

which is equivalent to 105.

 Ignoring the leftmost 1 is automatic in a computer because if there is no room to store

the leftmost bit, it just disappears. Similarly, to subtract 00000111 - 00000011 (7 � 3):

 a. Compute the two’s complement of 00000011 : 11111100 + 1 = 11111101.

 b. Add: 00000111 + 11111101 = 1 00000100. (Notice that there are nine bits.)

 c. Drop the leftmost bit, giving 00000100 , which is equivalent to 4.

 In the following exercises, we ask you to investigate this method of subtraction.

 Exercises
 19. Assuming 8-bit two’s complement integers, compute the binary subtraction

 01100011 - 00011000 by adding the two’s complement of 00011000 to

 01100011 . Verify the calculation in base 10. Assuming 16-bit two’s complement

integers, add the two values 1001000000001011 + 0110100010010111 and

write down the binary result. Verify that the result is correct by converting the

values to decimal. What subtraction is being done by this “addition”?

 20. The ten’s complement of an n- bit decimal number x is defi ned to be 10 n � x . For

example, the ten’s complement of 198 is 10 3 � 198 � 802. A fast way to calcu-

late the ten’s complement of 198 is to subtract 198 from 999 and then add 1.

Subtracting from 999 is easy because for every digit i that you subtract, each

resulting digit is simply 9 � i . Calculate the ten’s complement of 1872, 192,

981652, and 19734.

 21. Let’s do decimal subtraction using just addition. To subtract 198 from 217, sim-

ply add the ten’s complement of 198 to 217. Why does this work? Recall that the

ten’s complement of 198 is 1000 � 198. Therefore, adding the ten’s complement

of 198 to 217 gives 1000 � 198 � 217 � 1000 � 217 � 198 � 1019. This

answer is exactly 1000 too high, so by ignoring the extra 1 in the fourth column,

we get the correct answer of 19.

 a. Compute 78612 � 12832 by adding the ten’s complement of 12832 to 78612.

 b. Compute 8012 � 2318 by adding the ten’s complement of 2318 to 8012.

1See David A. Patterson and John L. Hennessy, Computer Organization and Design : The Hardware/ Software
Interface. Morgan Kaufmann Publisher, Third Edition, 2007.

sim23356_ch01.indd 22sim23356_ch01.indd 22 12/15/08 6:26:21 PM12/15/08 6:26:21 PM

 23

CHAPTER CHAPTER 2
 Expressions and Data Types

 “Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?” “I don’t know,”

said Alice. “I lost count.”
 —Lewis Carroll

 Objectives

 The objectives of Chapter 2 include an understanding of

� simple Java programs that utilize print and println ,

� Java style comments,

� string literals,

� primitive data types: char, int, double , and boolean ,

� numerical, relational, and boolean operators,

� operator precedence,

� expressions composed of primitive data types, and

� expressions that mix data types.

 2.1 INTRODUCTION

A computer program or application is a set of instructions, written in a programming

language that enables a computer to perform some specifi ed task.

 An application can play championship chess, control interplanetary probes, manage

the tunes on your iPod, or navigate the Internet. This chapter does not teach you how

to write a chess-playing program or even how to design a simple application that bal-

ances your checkbook. In this chapter, our goals are more modest: you will learn how

to display text on your computer’s screen and also how to instruct a computer to per-

form simple arithmetic calculations. “Everything comes gradually and at its appointed

hour.”—Ovid

 2.2 IN THE BEGINNING . . .

 We begin our discussion with the simplest of examples: an application that displays a

single line of text.

sim23356_ch02.indd 23sim23356_ch02.indd 23 12/15/08 6:27:31 PM12/15/08 6:27:31 PM

24 Part 1 The Fundamental Tools

 Problem Statement Write a program that displays the line of text

 Peter Piper picked apart a pithy program

 Java Solution
 1. // This application prints "Peter Piper picked apart a pithy program." on the screen
2. public class TongueTwister
3. {
4. public static void main(String[] args)
5. {
6. System.out.println ("Peter Piper picked apart a pithy program.");

7. }
8. }

 Output
 Peter Piper picked apart a pithy program.

 Discussion Taking a cue from Peter, let’s pick apart the program and analyze it, line

by line. Line numbers are not part of a Java program and appear only for reference.

 Line 1
 Line 1 is a comment .

Programmers use comments to explain or clarify the meaning of some section of

a program.

 This program is not complicated. Even a novice programmer would understand its

purpose without the comment. With more complex and intricate programs, com-

ments are extremely important for explaining the programmer’s intentions. Since

programs are continually updated or changed, well-written, succinct comments can

save a programmer many hours of frustration. Comments are optional in the sense

that they are not required to make the program work correctly, but stylistically, they

are mandatory. Comments may be placed anywhere within a Java program. As your

programs become increasingly more complex, you will see that well-placed com-

ments can save you programming time and improve the readability and clarity of

your programs.

A single-line comment begins with the compound symbol // (two forward slashes) and

continues until the end of the line.

 The text of the comment is not executable and is ignored by the compiler. Once the

compiler recognizes the beginning of a single-line comment, the compiler skips all sub-

sequent text on that line. A comment may begin anywhere on a line. Line 1 is a single-

line comment.

 Java also provides multi-line comments . A multi-line comment begins with the

compound symbol /* and ends with the compound symbol */ . Between these mark-

ers you may include any text whatsoever—except another multi-line comment symbol.

 EXAMPLE 2.1

sim23356_ch02.indd 24sim23356_ch02.indd 24 12/15/08 6:27:32 PM12/15/08 6:27:32 PM

 Chapter 2 Expressions and Data Types 25

The compiler ignores all text between these two symbols. Consequently, if you forget

to “close” or terminate a multi-line comment, parts of your program might be ignored.

Here is the program of Example 2.1 rewritten with a multi-line comment.

 /* This application prints the sentence

 "Peter Piper picked apart a pithy program."

 on the screen */

public class TongueTwister
{
 public static void main (String[] args)
 {
 System.out.println ("Peter Piper picked apart a pithy program.")
 }
}

 Line 2
 Line 2 begins with two special words— public and class —that you will see over and

over again. In later chapters, these words will have greater meaning for you. For the

present, it is more convenient to just remember that all of your programs must begin

with these two words. In fact, you might think of “public class” as synonymous with

“program.” This is indeed a gross simplifi cation, and soon you will see that a program or

application usually consists of many “classes,” public or otherwise. For now, each of our

applications consists of a single named class. The third word on line 2, TongueTwister ,
is the name of the class. Although the programmer chooses the class name, that name

must be a valid Java identifi er .

A valid Java identifi er is a “word” of arbitrary length composed of letters and/or digits

and/or two special characters $ (dollar sign) and _ (underscore), where the fi rst char-

acter must be a letter.

 For example, R2D2, HarryPotter , and MyProgram are valid Java identifi ers. Hamlet is a

valid identifi er but 2BorNot2B is not.

 Java is case sensitive. The name TongueTwister is considered different than

 tonguetwister and TONGUEtwister . Also, Java assigns special meanings to certain

words and, as such, these words may not be used as Java identifi ers. Such words

are called keywords or reserved words . The words public and class are keywords. A

list of Java keywords is shown in Figure 2.1 . Finally, the words true, false , and null ,
although not keywords, have very specifi c meanings in Java and may not be chosen

as identifi ers.

abstract continue for new switch assert default goto package synchronized

boolean do if private this break double implements protected throw

byte else import public throws case enum instanceof return transient

catch extends int short try char fi nal interface static void

class fi nally long strictfp volatile const fl oat native super while

 FIGURE 2.1 Java keywords

sim23356_ch02.indd 25sim23356_ch02.indd 25 12/15/08 6:27:33 PM12/15/08 6:27:33 PM

26 Part 1 The Fundamental Tools

By convention, a class name begins with an uppercase letter.

 Because spaces may not be part of a name, uppercase letters are commonly used

to separate “words” within a name. Some class names that follow these practices

are TongueTwister, MyProgram , or TweedledumAndTweedledee . This style is called

camelCase , because of the “bumps” in the middle of the word, suggestive of the humps

on a camel.

 Lines 3 and 8
 The curly braces “{” and “}” on lines 3 and 8 mark the beginning and the end of the

TongueTwister class that comprises our application.

A group of statements or instructions enclosed by curly braces is called a block.

 The body or executable section of a class is contained within these matching braces.

Thus, the general structure of a class is:

 public class ProgramName
{
 // class body
 //This class body is a block

}

where ProgramName is a valid Java identifi er. Again, an application usually consists of

one or more classes.

 Lines 4, 5, 7
 The line

 public static void main (String[] args)

is certainly a mouthful of Java-speak. This line is the fi rst line or the heading of the

class’s main method .

Generally speaking, a method is a section of a class that performs a task.

 More specifi cally, a method consists of a named list of statements that a program carries

out or executes . You might think of a statement as an instruction or a directive. A method

might contain a single statement or several dozen. Although the sample program has but

a single method (named main), a more complicated class usually has many methods,

each with its own name. The main method, however, is special among methods.

When a Java program starts, the main method is automatically executed. That is, the

statements of the main method are executed fi rst. The main method is the starting point

of every program.

 Consequently, every application must have a main method. And every main method

begins with the same (albeit, for now, mysterious) fi rst line.

 The curly braces of lines 5 and 7 mark the beginning and the end of the main method.

The actions that the main method performs are included between these curly braces.

sim23356_ch02.indd 26sim23356_ch02.indd 26 12/15/08 6:27:34 PM12/15/08 6:27:34 PM

 Chapter 2 Expressions and Data Types 27

 Thus far, a Java program has the following skeletal format:

 public class ProgramName
 {
 public static void main (String args [])
 {
 // executable statements go here
 }
 }

Notice that we have aligned the matching braces of a block and indented statements

within matched braces. This program format is a matter of style and not syntax. The

application would run even if it were typed on a single line.

 Another common style of program layout is

 public class ProgramName {
 public static void main (String[] args){
 // executable statements go here
 }
}

However, the programs in this text use the fi rst style, which aligns matching pairs of

curly braces.

 Line 6
 Line 6 is the only statement or instruction of the main method. The statement

 System.out.println ("Peter Piper picked apart a pithy program");

instructs the computer to print Peter Piper picked apart a pithy program on the screen.

The quoted text ("Peter Piper picked apart a pithy program") is called a string literal or

more simply a string . A string literal must be contained on a single line. The quotation

marks are not part of the string literal. The quotation marks indicate the beginning and

the end of the string.

 The statement

 System.out.println ("Peter Piper picked apart a pithy program.");

instructs the computer to display the string literal on the screen. The statement also

prints the newline character, that is, it advances the cursor to the next line. Printing the

newline character ensures that the next item that is printed begins on a new line. Printing

the newline character is akin to pressing the Enter key.

The newline character causes the cursor to advance to the start of the next line.

 The words (and periods) System.out.println will become more meaningful in subse-

quent chapters. But, for the present, you should accept System.out.println (or simply

 println) as the instruction that prints text followed by the newline character. The word

 println is actually the name of a method that Java provides for output. We refer to the

string supplied to this println method as an argument . That is, " Peter Piper picked apart
a pithy program ." is an argument supplied to the println method. Previously, we stated

that a method performs a task. Specifi cally, the task of the println method is to print its

argument.

sim23356_ch02.indd 27sim23356_ch02.indd 27 12/15/08 6:27:35 PM12/15/08 6:27:35 PM

28 Part 1 The Fundamental Tools

 The application of Example 2.1 displays a string. At this point some questions about

strings may come to mind. If quotation marks are used to indicate the beginning and the

end of a string literal, can a string contain a quotation mark? How does an application print

the string

 "Oh, so they have Internet on computers now!" exclaimed Homer Simpson

with its two quotation marks?

 The erroneous statement

 System.out.println (" " Oh, so they have Internet on computers now! "exclaimed
Homer Simpson ");

does not do the job. The second quotation mark within the string falsely signals the end of

the string, and results in a syntax error. The Java solution is simple. To include quotation

marks within a string literal, use the escape sequence , \" (backslash, quote) as in the fol-

lowing Java statement:

 System.out.println (" \ " Oh, so they have Internet on computers now! \" exclaimed
Homer Simpson ");

The previous statement produces the following output:

 "Oh, so they have Internet on computers now! " exclaimed Homer Simpson

The print method is a variation of println. The next example illustrates the single difference

between these two methods.

 You will notice a semicolon at the end of the statement in line 6.

Java dictates that all statements are terminated with a semicolon. The semicolon is not

optional. Forgetting semicolons is often the bane of beginning programmers.

 Finally, the program must be saved in a fi le named TongueTwister.java. In general, if a

class name is ClassName , you must save the class in a fi le called ClassName.java .

 Problem Statement Using print rather than println , write a program that displays

the sentence

 Peter Piper picked apart a pithy program.

 Java Solution
 1. // This program prints the sentence "Peter Piper picked apart a pithy program." on the screen

2. public class AnotherTongueTwister
3. {
4. public static void main(String[] args)
5. {

 EXAMPLE 2.2

sim23356_ch02.indd 28sim23356_ch02.indd 28 12/15/08 6:27:35 PM12/15/08 6:27:35 PM

 Chapter 2 Expressions and Data Types 29

6. System.out.print ("Peter Piper picked apart "); // print NOT println

7. System.out.print ("a pithy program.");

8. }
9. }

 Output
 Peter Piper picked apart a pithy program.

 Discussion The application has two statements within the main method. Notice that

these statements are of the form

 System.out. print

rather than

 System.out.print ln

Here, unlike the println method of Example 2.1, the statement

 System.out.print ("Peter Piper picked apart ");

does not print the newline character following the string literal. Consequently, the pro-

gram’s output is

 Peter Piper picked apart a pithy program.

 Both string literals appear on a single line. The two strings are displayed next to each

other. No newline characters are generated.

 EXAMPLE 2.3 Blaise Pascal (1623–1662) is often credited with the design of one of the fi rst “comput-

ers.” Pascal’s computer, actually a calculating machine constructed of cogs, gears, and

wheels, was capable of addition and multiplication. Subtraction and division could be

accomplished only through a rather tedious and indirect method. The following program

displays a little bit of that computer history. Program output is produced on four sepa-

rate lines. Notice the use of both print and println .

 Java Solution
 1. public class ComputerHistory
2. {
3. public static void main(String[] args)
4. {
5. System.out.print ("A guy named Pascal had a scheme");
6. System.out.println(); // prints the newline character
7. System.out.print ("For building an adding machine");
8. System.out.println();
9. System.out.print (" Too bad, his contraption");
10. System.out.println();
11. System.out.print (" Could not do subtraction");
12. System.out.println();
13. System.out.print ("Subtraction remained just a dream ");
14. System.out.println();
15. }
16. }

 Here is one fi nal example that uses both System.out.println and System.out.print .

sim23356_ch02.indd 29sim23356_ch02.indd 29 12/15/08 6:27:36 PM12/15/08 6:27:36 PM

30 Part 1 The Fundamental Tools

 Output
 A guy named Pascal had a scheme
 For building an adding machine
 Too bad, his contraption
 Could not do subtraction
 Subtraction remained just a dream.

 Discussion As you know, output from the statement, System.out.print("…") does not
include a newline character. However, System.out.println() outputs the newline character

and only the newline character. No string argument is supplied to println , so no string is

printed.

 2.3 DATA TYPES AND EXPRESSIONS

 Although displaying tongue twisters and limericks might be momentarily intriguing, the

fascination wears thin rather quickly. So, let’s move ahead to applications that actually

perform some computation. Again, we begin with a rather simple example.

 The song “Seasons of Love” from the musical play Rent repeatedly declares that there are

525,600 minutes in a year. For most years, that’s just fi ne, but what about leap years?

 Problem Statement Write an application that calculates the number of minutes in a

leap year.

 Java Solution
 1. //Calculates the number of minutes in a leap year

2. // Uses the fact that there are 525,600 minutes in a 365 day year
3. public class LeapYearMinutes
4. {
5. public static void main(String[] args)
6. {
7. System.out.print("The number of minutes in a leap year is ");

8. System.out.println(60 * 24 � 525600); // 60 min/hr times 24 hr/day � 525600 min

9. }
10. }

 Output
 The number of minutes in a leap year is 527040

 Discussion Lines 7 and 8 are the only instructions or executable statements of the

application. As you already know, the instruction on line 7 displays the string The
 number of minutes in a leap year is on the screen. Line 8 requires some explanation.

Again, you see the now familiar println method. In this case, however, the argument

supplied to the println method is not a string literal (look, no quotes!) but a numerical

expression: 60 * 24 � 525600.

An expression is a sequence of symbols that denotes, represents, or signifi es a value.

 EXAMPLE 2.4

sim23356_ch02.indd 30sim23356_ch02.indd 30 12/15/08 6:27:37 PM12/15/08 6:27:37 PM

 Chapter 2 Expressions and Data Types 31

 Example 2.4 involves the multiplication and addition of integers. Of course, Java

allows computation and manipulation of other types of data such as fl oating-point

numbers and even alphabetical characters. Each type of data is identifi ed with a spe-

cifi c data type .

A data type is a set of values together with an associated collection of operators for

manipulating those values.

 We begin with four primitive data types: int, double, char, and boolean . There are others,

which we discuss in subsequent chapters.

 2.3.1 Type int
 The values associated with the data type int are integers in the range �2,147,483,648 to

2,147,483,647. This range of numbers will make more sense later. And, as you will see,

Java can handle even larger numbers.

 The associated operators that manipulate integers are:

� addition

� subtraction

 * multiplication

 / division

% modulus

The �, �, and * (times) operators function as they do in ordinary arithmetic. Thus the

expression 4 � 6 evaluates to 10; 3 � 5 has the value �2; and 12 * 10 has the value 120.

The / operator, however, denotes integer division; that is, a / b evaluates to a divided by b ,

discarding any remainder. Java specifi es that the quotient of two integers is always an inte-

ger. Thus, 5 / 2 evaluates to 2; −23 / 6 evaluates to −3; and 4 / 43 has the value 0.

 The modulus operator % may be new to you. The expression a % b evaluates to the

remainder of a divided by b . The value of a % b has the same sign as a . Consequently, 5 % 2

has the value 1; �23 % 3 the value �2; and 47 % (�43) the value 4. The modulus operator

is used more often than you might think. For example, we can use the modulus operator to

determine whether an integer is odd or even. If x % 2 is 0 then x is even, otherwise x is odd.

Also, you can use “%10” to extract the smallest digit of an integer. For example, 23657 % 10

evaluates to 7, the units digit of 23657.

The expressions a/b and a % b evaluate respectively to the quotient and remainder of

a divided by b.

 Example 2.5 illustrates both integer division and the modulus operator.

 The value of the expression 60 * 24 � 525600 is 527040. In this case, 60 and 24 are

multiplied ("*" signifi es multiplication) and the product is added to 525600. The value

of the computation, 527040, is supplied to the println method, and that number is dis-

played on the screen.

 In the expression 60 * 24 � 525600, the symbols * and � are called operators
and the numbers 60, 24, and 525600 are called operands . We say that the expression

60 * 24 � 525600 evaluates to 527040.

sim23356_ch02.indd 31sim23356_ch02.indd 31 12/15/08 6:27:39 PM12/15/08 6:27:39 PM

32 Part 1 The Fundamental Tools

 Of course, integer expressions may contain several operators. The expression 2 * 3 �
4 * 5 has three operators and a value of 26. The order in which operations are performed

is the same as in ordinary arithmetic. That is, for integer expressions, operations are per-

formed according to the precedence (priority) rules of Figure 2.2 .

high

Operator Associativity

* / % Left to right

� � Left to right

low

FIGURE 2.2 Operator precedence

 Figure 2.2 implies that

 1. *, /, and % have the highest precedence and are performed before � or �.

 2. *, /, and % are equal in precedence.

 Each year, Betting Betty sets aside her spare pennies for an annual jaunt to Las Vegas.

Betty bets exclusively at the quarter slot machines. This year, Betty has saved a total of

23,478 pennies.

 Problem Statement Devise an application that displays the number of quarters

that Betty can get from her bankroll and how many pennies remain for next year’s

excursion.

 Java Solution
 1. //Calculates the number of quarters and the remaining pennies obtained from 23478 pennies

2. public class BettysBundle
3. {
4. public static void main(String[] args)
5. {
6. System.out.println("In 23478 pennies there are: ");
7. System.out.print(23478/25); // how many quarters?
8. System.out.println(" quarters.");
9. System.out.print(23478%25); // how many pennies remain?
10. System.out.println(" pennies remain");
11. }
12. }

 Output
 In 23478 pennies there are:
939 quarters.
3 pennies remain

 Discussion The division on line 7 determines how many quarters are in Betty’s

bundle. Remember this is integer division. The remainder gives the number of pennies

left over. The remainder is calculated on line 9 using the modulus operator %.

 EXAMPLE 2.5

sim23356_ch02.indd 32sim23356_ch02.indd 32 12/15/08 6:27:40 PM12/15/08 6:27:40 PM

 Chapter 2 Expressions and Data Types 33

 3. � and � are equal in precedence but lower than *, /, and %.

 4. Operations of equal precedence have left-to-right associativity . Thus 6 � 3 � 1 is

evaluated as (6 � 3) � 1 � 3 � 1 � 2 and not 6 � (3 � 1) � 6 � 2 � 4.

 And, 8 / 3 * 4 is processed as (8 / 3) * 4 � 8, and not 8 / (3 * 4) � 0.

 You may explicitly change the order of operations by inserting parentheses into an

expression. An expression enclosed by parentheses must always be fully evaluated before

it can be used in a larger expression. Thus, you might say that parentheses have the high-

est precedence. For example, the two multiplications of the expression 2 * 3 � 4 * 5 are

performed before the addition:

 2 * 3 � 4 * 5 �

 6 � 4 * 5 �

 6 � 20 �

 26

However, the parentheses of 2 * (3 � 4) * 5 force the addition to be performed fi rst:

 2 * (3 � 4) * 5 �

2 * 7 * 5 �

 14 * 5 �

 70

The program in Example 2.6 uses an integer expression that is a bit more complex than

those we have seen so far.

 EXAMPLE 2.6 Superstitious Sam has recently suffered a streak of bad luck. In light of some recent

unfortunate events and because his birthday is May 13, 1988, Sam speculates that per-

haps he was born on a Friday, yes, the fearsome Friday the 13 th . Certainly, that would

explain Sam’s unhappy circumstances.

 Being mathematically savvy, Sam knows that, using a method developed by the

Rev. Christian Zeller (1822–1899), he can fi nd the day of the week for any date (month/

day/year) with the following formula:

Day of the week � ((day �
 (13 * ((month � 9) % 12 � 1) � 1) / 5
 � year % 100
 � year % 100 / 4
 � year / 400
 � 2 * (year / 100)) % 7 � 7) % 7 � 1

 where

• Day of the week is a number between 1 and 7 representing the day of the week

(Sunday � 1, Monday � 2 . . . , Saturday � 7),

• day is the day of the month (1 through 31),

• month is encoded as January � 1, February � 2 . . . December � 12, and

• year is the four-digit year in question.

Look over the formula and make sure that you understand the operations and the order

of operations. It is rather complicated.

sim23356_ch02.indd 33sim23356_ch02.indd 33 12/15/08 6:27:41 PM12/15/08 6:27:41 PM

34 Part 1 The Fundamental Tools

 2.3.2 Type double
 The values associated with data type double are decimal numbers in the range �1.7 � 10 308

. . . 1.7 � 10 308 with 14 signifi cant digits of accuracy.

 You can express a number of type double in two ways:

 1. Decimal notation

 2. Scientifi c or exponential notation

Numbers like 123.45 or .05 are numbers written in decimal notation. Scientifi c notation may

be a little less familiar to you. The term 2.3E2 (or 2.3e2) is an example of a number expressed

in scientifi c notation. The number 2.3E2 is numerically the same as 2.3 � 10 2 . Thus,

 2.3E2 � 2.3 � 102 � 230.00.

Similarly,

 3.2E3 � 3.2 � 103 � 3200.00

and

 234.567E1 � 234.567 � 10 � 2345.67.

 Problem Statement Write an application that determines whether or not Sam’s birth-

day, May 13, 1988, occurred on a Friday.

 Java Solution
 1. // Displays the number of the day (1-7) on which May 13, 1988 occurred.

2. public class DayFinder
3. {
4. public static void main(String[] args)
5. {
6. System.out.print ("May 13, 1988 fell on day number ");
7. // Uses the Zeller formula
8. System.out.println(((13 � (13*((5�9)%12�1) �1)/5 // day � 13, month � 5
9. � 1988 %100 // year � 1988
10. � 1988 %100/4
11. � 1988 /400
12. � 2*(1988 /100))%7 �7) %7�1);
13. }
14. }

 The output confi rms Sam’s worst suspicions.

 Output
 May 13, 1988 fell on day number 6

 Discussion If you look closely at the program, you might think that parentheses are

unnecessary in the term 2 * (1988 / 100). That is not the case. If Java used “ordinary”

(decimal) division, 2 * (1988 / 100) � 2 * 19.88 � 39.76 and (2 * 1988) / 100 �

3976 / 100 � 39.76, the parentheses would not matter. However, using integer division,

2 * (1988 / 100) � 2 * 19 equals 38, while (2 * 1988) / 100 � 3976 / 100 has the value 39.

The parentheses in 2 * (1988 / 100) make a difference.

sim23356_ch02.indd 34sim23356_ch02.indd 34 12/15/08 6:27:42 PM12/15/08 6:27:42 PM

 Chapter 2 Expressions and Data Types 35

In general, a number of the form x Ey (or x ey), where y is an integer, means x � 10y.

The number x is called the base and y is called the exponent.

 As in ordinary mathematics, an exponent may be negative. Recall that 10 � n � 1/10 n .
Thus

 4.63E-2 � 4.63 � 10�2 � 4.63 � 1/102 � 4.63 � 1/100 � .0463

You may have noticed that when converting from scientifi c notation to decimal notation,

a positive exponent, n , necessitates moving the decimal point to the right n places and a

negative exponent, -n , necessitates moving the decimal n places to the left. Zeroes are

added, if necessary. Thus, to convert 4.56789123E5 to decimal notation, move the decimal

fi ve places right. The equivalent number is 456789.123. Similarly, 55.2E-4 is equivalent

to .00552.

 The operators associated with type double are

� addition

 − subtraction

 * multiplication

 / division

Here the division operator (/) denotes decimal or fl oating-point division rather than integer

division; so 5.0 / 2.0 has the value 2.5 but 5 / 2 has the value 2. The % operator can also

be used with numbers of type double , e.g., 5.5 % 2.5 � .5, but its use is usually restricted

to integers.

 EXAMPLE 2.7 Does intelligent life, capable of interplanetary communication, exist? Astronomer

Frank Drake may have an answer. Drake’s equation provides a method for estimating

the number of intelligent civilizations capable of interplanetary communication that

may exist in our galaxy. Drake’s equation is usually expressed as:

 N � R � f
p
 � n

e
 � f

l
 � f

i
 � f

c
 � L

where

 N is the number of extraterrestrial civilizations capable of interplanetary

communication,

 R is the average rate of star formation in our galaxy (number per year),

 f
p
 is the fraction of stars with planets,

 n
 e
 is the average number of planets in a solar system that can support life,

 f
l
 is the fraction of suitable planets where any type of life develops,

 f
i
 is the fraction of life bearing planets that have intelligent life,

 f
c
 is the fraction of planets with intelligent life on which the interplanetary

communication develops, and

 L is the average lifetime (in years) of a civilization that develops technology.

Each of these values is either a rate or a fraction, so each can be represented by a number

of type double . Of course, no one can determine these numbers with any certainty, and

conjecture abounds.

 Problem Statement Write an application that determines N given some typical default

values: 20.0, .5, .5, .5, .2, .2, and 500.00 for R , f
p
 , n

e
 , f

l
 , f

i
 , f

 e
 , and L .

sim23356_ch02.indd 35sim23356_ch02.indd 35 12/15/08 6:27:43 PM12/15/08 6:27:43 PM

36 Part 1 The Fundamental Tools

 2.3.3 Type char
 Computer applications do much more than numerical calculations. Programs manipulate

large databases of names and addresses, manage inventory fi les, and facilitate word pro-

cessing. Such applications must handle alphabetical or character data.

 Type char is the set of all characters found on the standard keyboard (in addition to

thousands of other characters that are used for displaying text in languages that do not use

the English alphabet). A value of type char is enclosed in single quotes. Thus 'A' denotes a

value of type char as do '%' and '$'. Note that

 '5' is a value of type char ,

 "5" is a string literal, and

 5 is an integer.

They are all different. The integer expression 1 � 5 has the value 6 but, as you will see later,

the expression 1 � '5' has the value 54, and the expression 1 � ''5'' has the value ''15''.

Computers store characters as non-negative numbers. Every character has a code

number called its ASCII value. Even “control characters” such as the backspace and

the tab have assigned codes.

 So, what determines a character’s internal code number? The ASCII (A merican S tan-

dard C ode for I nformation I nterchange) code assigns a non-negative integer between 0 and

127 to each character found on a standard English language keyboard. For example, 'A' is

assigned 65, 'B' is assigned 66, 'Z' is assigned 90, '5' is assigned 53, '6' is assigned 54, and

backspace is assigned 8. Like all data, these values are stored as binary numbers, typically a

leading 0 followed by a 7-bit code number between 0 and 127 inclusive. For example, 'A' is

stored as 01000001 , which is the binary equivalent of 65; and the code for the backspace is

00001000 , the binary representation of 8.

ASCII values can be stored using a single byte of memory; that is, one character

requires just one byte of storage.

 Java Solution
 1. // An application of Drake’s Equation with default values
2. // R �20.0, f p �.5, n e �.5, f l �.5, f i �.2, f c

�.2 and L �500.00

3. public class ET
4. {
5. public static void main(String[] args)
6. {
7. System.out.print("The number of civilizations capable of interplanetary communication is ");
8. System.out.println (20.0*.5*.5*.5*.2*.2* 500.00);
9. }
10. }

 Output
 The number of civilizations capable of interplanetary communication is 50.0.

 Discussion Each of the constants shown on line 8 contains a decimal point, so each is

of type double . Consequently, the product is of type double .

 It appears that we are not alone. ET phone home!

sim23356_ch02.indd 36sim23356_ch02.indd 36 12/15/08 6:27:43 PM12/15/08 6:27:43 PM

 Chapter 2 Expressions and Data Types 37

 The ASCII character set can be found in Appendix B.

 Although an ASCII value requires just one byte of storage, Java uses the Unicode char-

acter set and allocates two bytes of memory for each character. A one-byte scheme allows

up to 255 different code numbers, of which ASCII uses half. Using two bytes expands the

range signifi cantly to 65,536 characters. Consequently, using two bytes instead of ASCII’s

one byte allows the Unicode character set to include not only English characters but

also characters for many other languages such as Greek, Chinese, Arabic, Japanese, and

Hebrew. By design, the ASCII character set is a subset of Unicode. So, for example, the

character 'A' has the code value 65 in both ASCII and Unicode. The ASCII code for 'A' is

stored as 01000001 (one byte), while the Unicode representation is 00000000 01000001

(two bytes). Throughout this text, we will restrict our use of characters to the ASCII subset

of Unicode.

 In addition to standard alphanumeric characters, the value set of type char includes

several special characters that are represented by an escape sequence or escape character.

You have already seen the escape sequence \", which designates a double quotation mark.

Other common escape sequences are:

 \n newline

 \t tab

 \b backspace

 \r carriage return

 \' single quote

 \\ backslash

Like the escape sequence \", any escape character may be used within a string literal as

Example 2.8 illustrates.

 EXAMPLE 2.8 Returning to the history lesson of Example 2.3, we point out that Blaise Pascal’s

mechanical computer, dubbed the Pascaline , was not a colossal success. Pascal’s quasi-

failure is noted in the output of the following program.

 Java Solution
 1. public class ComputerHistoryToo
2. {
3. public static void main(String[] args)
4. {
5. System.out.print ("Undaunted, Blaise built his machine \n "); // note the escape character, \n
6. System.out.print ("Which came to be called \" Pascaline \" \n ");
7. System.out.print (" \t But when he unveiled it \n ");
8. System.out.print (" \t Some critics assailed it \n "); // \t is a tab
9. System.out.print ("Reviews ranged from mean to obscene ");
10. }
11. }

 Output
 Undaunted, Blaise built his machine
Which came to be called "Pascaline"
 But when he unveiled it
 Some critics assailed it
Reviews ranged from mean to obscene

sim23356_ch02.indd 37sim23356_ch02.indd 37 12/15/08 6:27:45 PM12/15/08 6:27:45 PM

38 Part 1 The Fundamental Tools

 2.3.4 Type boolean

Type boolean has but two values, true and false.

 The associated operators are not the standard �, �, *, and / operators but

 &&, ||, and !

signifying and, or , and not , respectively.

 The type name boolean honors the 19 th century English mathematician George Boole,

who revolutionized the study of logic by making logic more like arithmetic. He invented

a method for calculating with truth values (true and false) as well as an algebra system for

reasoning about such calculations. Boole’s methods are used extensively today in the engi-

neering of hardware and software systems.

 Type boolean may seem somewhat peculiar at fi rst since the values, true and false ,

are perhaps less familiar to you than numbers or characters. To acquire some intuition for

boolean values, consider each of the following statements. Like an arithmetic expression,

each statement has a value—either true or false . Read each statement and convince your-

self that you understand the logic of each assigned value.

 Statements 1–4 are simple assertions that we accept as either true or false:

 Statement Value

 1. Snow is white. true

 2. Snow is red. false

 3. The sky is blue. true

 4. The sky is green. false

Statements 5–14 in Figure 2.3 are compound statements with values, true or false , which

can be derived from the values of statements 1–4. Read each statement and try to determine

its value: true or false .

Statement Value Comparable boolean expression

5. Snow is white and The sky is blue true true && true

6. Snow is white and The sky is green false true && false
7. Snow is red and The sky is blue false false && true
8. Snow is red and The sky is green false false && false

9. Snow is white or The sky is blue true true || true
10. Snow is white or The sky is green true true || false
11. Snow is red or The sky is blue true false || true
12. Snow is red or The sky is green false false || false

13. It is not the case that Snow is white false !true
14. It is not the case that the sky is green true !false

FIGURE 2.3 Boolean operations

 Discussion Notice the use of print in conjunction with the newline character (\n) on lines

5 through 8. This combination is equivalent to using the single println instruction. The tab

character (\t) appears twice in the program (lines 7 and 8) to effect indentation.

sim23356_ch02.indd 38sim23356_ch02.indd 38 12/15/08 6:27:46 PM12/15/08 6:27:46 PM

 Chapter 2 Expressions and Data Types 39

x y x && y (and) x || y (or) !x (not)

true true true true false

true false false true false

false true false true true

false false false false true

FIGURE 2.4 Boolean operators

 EXAMPLE 2.9 A switching circuit through which electricity fl ows consists of wires and switches.

Assume that electricity fl ows from terminal A to terminal B . When a switch, X , is open,

the fl ow of electricity is stopped; when X is closed electrical fl ow is uninterrupted. See

 Figure 2.5 .

A
X

Open switch

B A
X

Closed switch

B

FIGURE 2.5 Electricity flows when X is closed

 A light switch is a simple illustration of a switching circuit. If a light switch is

turned on (closed) electricity fl ows to the bulb, but when the switch is off (open) the fl ow

of current is interrupted and electricity cannot reach the bulb.

 Two simple circuits are displayed in Figure 2.6 .

A X

X

Y

Y
Serial circuit

Parallel circuit

B A B

FIGURE 2.6 Two circuits

 Electricity fl ows from A to B through the serial circuit of Figure 2.6 if and only if both

 X and Y are closed. Electricity fl ows from A to B through the parallel circuit if and only

if either X or Y is closed (or both are closed).

 Notice that the expression x && y has the value true only if both operands, x and y , are true .

The expression x || y is false only if both operands are false . Among boolean operators,

! (not) has the highest precedence, followed by && and fi nally ||.
 Example 2.9 uses electrical circuits to illustrate the type boolean .

 Just as an integer expression such as 2 * 4 � 3 has the value 11, the boolean expression

true && true (statement 5) has the value true ; the expression false || true (statement 11) has

the value true ; and !true (statement 13) has the value false . Figure 2.4 summarizes Java’s

 boolean operators.

sim23356_ch02.indd 39sim23356_ch02.indd 39 12/15/08 6:27:46 PM12/15/08 6:27:46 PM

40 Part 1 The Fundamental Tools

 Notice that, for the serial circuit, when X && Y has the value true , electricity fl ows from

A to B; for the parallel circuit when the expression X || Y is true , electricity fl ows.

 Figure 2.9 shows a more complex circuit with terminal points A and B and four

switches X, !X, Y , and !Y . (Note that ! X is a switch that is open when X is closed and closed

when X is open. ! Y is similar.). The switches of Figure 2.9 can be either open or closed.

 A boolean expression that models this circuit is:

 (X && !Y || !X && !Y || !X && Y) && (!Y || X)

X

!Y

A B

!YX

Y

!Y

!X

!X

FIGURE 2.9 A more complicated circuit

Of the four possible switch confi gurations of the circuit:

 1. X closed, Y closed (so consequently, !X open, and !Y open)

 2. X closed, Y open (!X open, !Y closed)

 3. X open, Y closed (!X closed, !Y open)

 4. X open, Y open (!X closed, !Y closed)

two (2 and 4) let the electricity fl ow from A to B. The dark lines in Figure 2.10 show the

fl ow through the circuit when X is closed and Y is open (confi guration 2).

X

!Y

A B

!YX

Y

!Y

!X

!X

FIGURE 2.10 Flow through the circuit when X is closed and Y is open

 If we assign a closed switch the value true and an open switch the value false ,

 Figures 2.7 and 2.8 illustrate the possible scenarios for the serial and parallel circuits. A

value of true in the third column (Flow) indicates that the current is uninterrupted.

X Y Flow � X && Y X Y Flow � X || Y

true true true true true true
(closed) (closed) (fl ows) (closed) (closed) (fl ows)

true false false true false true
(closed) (open) (does not fl ow) (closed) (open) (fl ows)

false true false false true true
(open) (closed) (does not fl ow) (open) (closed) (fl ows)
false false false false false false

(open) (open) (does not fl ow) (open) (open) (does not fl ow)

FIGURE 2.7 Serial FIGURE 2.8 Parallel

sim23356_ch02.indd 40sim23356_ch02.indd 40 12/15/08 6:27:48 PM12/15/08 6:27:48 PM

 Chapter 2 Expressions and Data Types 41

 Problem Statement Write a program that demonstrates that the electricity fl ows from

A and B whenever

• X is closed and Y is open, that is, when X � true and Y � false , or

• X is open and Y is open, that is, when X � false and Y � false .

More simply, electricity fl ows from A to B whenever Y is open.

 Java Solution
 1. // Evaluates the four possible switch configurations:
2. // closed-closed, closed-open, open-closed, and open-open
3. // for the circuit modeled by the boolean expression
4. // (X && !Y || !X && !Y || !X && Y) && (X || !Y)
5. // the application displays true or false for each configuration indicating whether
6. // or not an electrical current can flow through the circuit

7. public class Circuit
8. {
9. public static void main (String[] args)
10. {
11. System.out.print("If X is closed and Y is closed. Flow: "); // X�true; Y�true
12. System.out.println((true && !true || !true && !true || !true && true) &&(true ||!true));

13. System.out.print("If X is closed and Y is open. Flow: "); // X�true; Y�false

14. System.out.println((true && !false || !true && !false || !true && false) && (true ||!false));

15. System.out.print ("If X is open and Y is closed. Flow: "); // X�false; Y�true

16. System.out.println((false && !true || !false && !true || !false && true) &&(false || !true));

17. System.out.print("If X is open and Y is open. Flow: "); // X�false; Y�false
18. System.out.println((false && !false ||!false&& !false || !false && false) &&(false ||!false));
19. }
20. }

 Output
 If X is closed and Y is closed. Flow: false
If X is closed and Y is open. Flow: true
If X is open and Y is closed. Flow: false
If X is open and Y is open. Flow: true

 2.3.5 Relational Operators
 In addition to the operators &&, ||, and !, Java provides a set of relational operators , used in

expressions that evaluate to true or false . Each relational operator requires two operands,

which may be two integers, two decimal numbers, or two characters. The relational opera-

tors are:

� less than

�� less than or equal

� greater than

�� greater than or equal

�� equals (has the same value)

 !� not equal

sim23356_ch02.indd 41sim23356_ch02.indd 41 12/15/08 6:27:49 PM12/15/08 6:27:49 PM

42 Part 1 The Fundamental Tools

 Character data are compared using Unicode (ASCII) integer values. For example,

because 'A' has the code value 65, and 'C' the value 67, the expression 'A' � 'C' evalu-

ates to true since 65 � 67. The ASCII encoding purposely encodes letters so that they

are ordered alphabetically. Similarly, '1' � '2' has the value true , as you would expect, because

49 � 50. You should be careful when comparing characters of different case, however. The

numerical value of 'a' is 97, so the expression 'a' � 'C' (97 � 67) evaluates to false as does

 'a' �� 'A' since 97 does not equal 65.

 The order of operations is performed according to the precedence table of Figure 2.11 .

high

Operator Associativity

! Right to left

* / % Left to right

� � Left to right

� �� � �� Left to right

�� !� Left to right

&& Left to right

|| Left to right

low

FIGURE 2.11 Operator precedence

 Figure 2.11 indicates that the ! (not) operator is right associative. This means that an

expression such as !!!true is evaluated from right to left as !(!(!true)). The ! operator is called

a unary operator because ! operates on only one value. All the other operators that we have

discussed are binary operators because they operate on two values.

 The following expressions illustrate the relational operators as well as some relational

expressions.

 1. 5 � 3 || 6 � 2 false || true has the value true

 2. 1 � 14 % 5 �� 0 false

 3. 'A' � 'B' true

(code for 'A' is 65; for 'B' it is 66: 65 � 66)

 4. 'Z' � 'a' true

(code for 'Z' is 90 and for 'a' it is 97: 90 � 97)

 5. 1 � 1�� 2 || 1 � 1 �� 3 true || false has the value true

 6. 37 / 3 � .3333 true

 7. 2 � 3 && 4 � 5 || 7 �� 5 && 2 �� 3 true || false has the value true

 8. 2 � 3 && (4 � 5 || 7 �� 5) && 2 �� 3 true && true && false has the value

 false

 9. false �� false true

 10. true !� false true

sim23356_ch02.indd 42sim23356_ch02.indd 42 12/15/08 6:27:50 PM12/15/08 6:27:50 PM

 Chapter 2 Expressions and Data Types 43

 Expressions such as 2 � 3 � 4 make no sense in Java. Java attempts to evaluate this

 expression as

(2 � 3) � 4

true � 4.

The expression true � 4 is invalid and generates an error. The Java equivalent of 2 � 3 � 4 is

 (2 � 3) && (3 � 4).

 EXAMPLE 2.10 A leap year is any year divisible by four except those years divisible by 100 unless the

year is also divisible by 400. For example, 2000 was a leap year but 1900 was not.

 In researching her family tree, Jeannie Ology has discovered that her great-great-

great grandmother’s birth certifi cate records the date of birth as February 29 , 1800.

Jeannie is a bit suspicious of the date. Was 1800 a leap year? Jeannie, being a skilled

programmer but an error-prone mathematician, has devised a program to determine

whether or not Granny’s birth certifi cate is in error. Her program displays true or false
depending upon whether or not 1800 was a leap year.

 When you read the program, be certain that you understand the boolean expression

on line 9 and how that expression satisfi es the leap year conditions. The expression

includes boolean operators as well as several relational operators. Parentheses are not

necessary. Can you determine the order of the operations?

 Problem Statement Write a program that determines whether or not 1800 was a

leap year.

 Java Solution
 1. // A leap year is a year that is divisible by 4 but not 100 unless it is divisible by 400
2. // This program determines whether or not 1800 meets all conditions of a leap year

3. public class LeapYear
4. {
5. public static void main(String[] args)
6. {
7. System.out.print("The year 1800 is a leap year? True or false: ");
8. // (divisible by 4 and not by 100) or (divisible by 400)
9. System.out.println(1800%4 ��0 && 1800 %100 !�0 || 1800%400 �� 0);
10. }
11. }

 Output
 The year 1800 is a leap year? True or false: false

 Discussion So, it appears that the birth certifi cate is in error.

 There are no awards for programming with the least number of parentheses, and

obscure code should never be a matter of pride. To make your code easier to read,

regardless of whether it is technically required, include parentheses in your expressions.

Here is a fully parenthesized version of the expression on line 9:

 (((1800%4) ��0) && ((1800 %100) !�0)) || ((1800%400) �� 0)

This version is preferable to the one we used on line 9.

sim23356_ch02.indd 43sim23356_ch02.indd 43 12/15/08 6:27:50 PM12/15/08 6:27:50 PM

44 Part 1 The Fundamental Tools

 2.3.6 Short Circuit Evaluation
 Consider the following partial boolean expressions, where something and something_else

have boolean values

 1. (3 � 5) && (something)

 2. (2 � 9) || (something_else)

Expression 1 always has the value false , regardless of the value of something . If something

is true , expression 1 is false ; if something is false , expression 1 is false . This is because

the fi rst operand (3 � 5) is false . No further evaluation need be performed after the fi rst

operand is evaluated since “ false && something ” always has the value false . The value

of something is irrelevant. Expression 2 has the value true regardless of the value of

 something_else . If one operand has the value true , expression 2 is true .

 The value of each expression can be determined without evaluating the entire expres-

sion. The term on the left is fi rst evaluated, and evaluation stops because the value of the

entire expression is determined from this term. This method of evaluation is called short
circuit evaluation .

Java uses short circuit evaluation to evaluate expressions involving the boolean

operators && and ||.

 This means that Java stops the evaluation of an expression once the value of the expression

is determined. For example, consider the expression

 1 � 2 || 2 � 3 || 3 � 4

The value of this expression is true . Notice that this value can be determined after evaluat-

ing 1 � 2. Consequently, no more of the expression need be considered.

 Similarly,

 (1 � 2) && (1 � 2 || 2 � 3 || 3 � 4)

has the value false because the fi rst item (1 � 2) is false . No other evaluation within the

expression is necessary. Surprisingly, (1 � 2) && (1 � 3 / 0) causes no error, despite divi-

sion by zero in the second operand. Because 1 � 2 has the value false and the short circuit

operator && evaluates its left operand fi rst, the value of the expression is false regardless

of the second term. The division by 0, 3 / 0, is ignored. On the other hand, the value of the

 boolean expression (1 � 2) && (3 � 4) cannot be determined without evaluating the entire

expression.

 In subsequent chapters, you will see that exploiting short circuit evaluation has its

advantages.

 2.3.7 Mixing Data Types in a Numerical Expression
 A Java expression can be constructed from data of several different types. For example,

the expression (22 � 3.0) / 4 contains both integers (int) and decimal numbers (double). Is

the value of this expression 6, 6.0, or 6.25? It’s 6.25. How about an expression like ' A ' � 1,

sim23356_ch02.indd 44sim23356_ch02.indd 44 12/15/08 6:27:52 PM12/15/08 6:27:52 PM

 Chapter 2 Expressions and Data Types 45

which mixes character data with integer data? Is the value of this expression 'B' or, since

the Unicode (ASCII) value for 'A' is 65, is the value 66? Or, does the compiler consider

such an expression an error?

When evaluating a binary expression with operands of different data types, Java fi rst

promotes or casts the operand of the “smaller” data type to the data type of the other

operand.

 “Smaller” data type? The range of values determines the “size” of a data type. Thus char is

smaller than int , which, in turn, is smaller than double .

 EXAMPLE 2.11 The expression (22 � 3.0) / 4 has the value 6.25.

 The expression is evaluated as follows:

 (22 � 3.0) / 4 The expression consists of decimal and integer types.

 (22.0 � 3.0) / 4 The integer 22 is cast to 22.0 (an int is cast to a double).

 25.0 / 4 This is fl oating-point addition—22.0 � 3.0.

 25.0 / 4.0 The integer 4 is cast to 4.0.

 This is fl oating-point division.

 The expression ' A ' � 1 has the value 66.

 The expression is evaluated as follows:

 ' A ' � 1 The expression consists of character and integer data.

 65 � 1 The character ' A ' is cast to the integer 65—its ASCII code

value.

 66 This is integer addition.

 The expression ' A ' � 1.0 has the value 66.0.

 The expression is evaluated as follows:

 ' A ' � 1.0 The expression consists of character and a decimal data.

 65 � 1.0 The integer 65 is the ASCII code for ' A ' , that is, ' A ' is

stored as 65.

 65.0 � 1.0 The integer 65 is cast to 65.0.

 66.0 This is fl oating-point addition.

 The / operator, which denotes both integer and fl oating-point division, can often be the

source of subtle bugs. For example, consider the formula that converts degrees Fahrenheit

to degrees Celsius:

 C � 5 __
9
 (F � 32)

If F � 212.0, the mixed expression

(5 / 9) (212.0 � 32)

evaluates to 0, not 100.0.

sim23356_ch02.indd 45sim23356_ch02.indd 45 12/15/08 6:27:52 PM12/15/08 6:27:52 PM

46 Part 1 The Fundamental Tools

 This miscalculation is caused by the omission of a decimal point. The value of (5/9) is

calculated using integer division, and consequently (5/9) evaluates to 0. The correct con-

version formula should be written as

 (5.0/9.0)(212.0 � 32), (5.0/9)(212.0 � 32), or (5/9.0)(212.0 � 32.)

With each expression, division is correctly performed as fl oating point.

 Numerical operators can also be used with character operands. In this case, both oper-

ands are treated as integers.

 EXAMPLE 2.12 The expression ' A ' � ' Z ' has the value 155 since the ASCII values for ' A ' and ' Z ' are 65

and 90, respectively. Similarly, ' A ' � ' Z ' has the value �25.

 On the other hand, the expression "A" � "B" does not have the value 155. In this

case, "A" and "B" are not character data but strings. The � operator may be used with

strings but, as you will see in the next section, the result is not an integer.

 2.3.8 The � Operator and Strings
 In Example 2.12, we state that the � operator has a special meaning when used with string

data:

If both operands A and B are strings, then the expression A � B evaluates to another

string, which is the concatenation (joining together) of A and B. If only one operand

is a string, then the other operand is fi rst cast to a string and the value of the expres-

sion is the concatenation of two strings.

 Example 2.13 gives several variations on the � operator and string data.

 EXAMPLE 2.13 a. Joining two strings

 The expression "Bibbidi " � "Bobbidi " evaluates to a new string "Bibbidi Bobbidi ",

which is formed by joining, that is, concatenating , "Bibbidi " and "Bobbidi ".

 "Bibbidi " � "Bobbidi " � "Boo" evaluates to the string "Bibbidi Bobbidi Boo",

which is formed by fi rst joining "Bibbidi " and "Bobbidi " and then concatenating

the result with "Boo". The idea is quite simple; there’s no magic.

 b. Joining a string and a number

 The expression

 2147483647 � " is not only the largest value of type int but also a prime

number!"

 evaluates to the string

 "2147483647 is not only the largest value of type int but also a prime

number!"

 Here, the fi rst operand is the integer 2147483647, which is cast to the string

"2147483647" and then the two strings are concatenated.

 c. Joining a string and a numerical expression

 The expression "The sum of the two dice is " � (5 � 2) evaluates to the string

 "The sum of the two dice is 7"

sim23356_ch02.indd 46sim23356_ch02.indd 46 12/15/08 6:27:53 PM12/15/08 6:27:53 PM

 Chapter 2 Expressions and Data Types 47

 Notice that the expression in parentheses is evaluated fi rst. Parentheses can force

a change in the usual precedence because the expressions inside them must be

evaluated fi rst. However, if the parentheses are omitted, then the expression

 "The sum of the two dice is "� 5 � 2

 evaluates to the string

 "The sum of the two dice is 52."

 Evaluation proceeds as in the following sequence. Here parentheses have

been added for emphasis.

 ("The sum of the two dice is " � 5) � 2

 ("The sum of the two dice is " � "5") � 2 The integer 5 is cast to string "5".

 ("The sum of the two dice is 5") � 2 "The sum of the two dice is " and

"5" are joined.

 ("The sum of the two dice is 5") � "2" The integer 2 is cast to "2".

 "The sum of the two dice is 52" "The sum of the two dice is 5" is

concatenated with "2".

 Notice that numerical addition is not performed.

 In contrast, the expression

 "The product of the two dice is " � 5 * 2

 evaluates to the string

 "The product of the two dice is 10".

 The * operation is performed fi rst since * has higher precedence than �.

 Finally, the expression

 "The difference of the two dice is" � 5 � 2

 is ill formed and causes an error. Since � and � are of equal priority and are

associated (grouped) left to right, the expression is evaluated as:

 ("The difference of the two dice is " � 5) � 2

 ("The difference of the two dice is "� "5") � 2

 "The difference of the two dice is 5"� 2

 An error now occurs because the minus (�) operator cannot be applied to strings.

 The Java compiler detects this error.

 2.4 IN THE BEGINNING . . . AGAIN

 We have come full circle, and we return to the print and println methods introduced at the

beginning of the chapter. You may have noticed that in previous examples we used several

 println methods to generate a single line of output. Typically to produce the output

 The cost of 15 wickets is 375 dollars

 an application might include three instructions:

 1. System.out.print("The cost of 15 wickets is ");
2. System.out.print(15 * 25);
3. System.out.println(" dollars");

Java specifi es that the print and println methods accept a single argument of any type.

sim23356_ch02.indd 47sim23356_ch02.indd 47 12/15/08 6:27:54 PM12/15/08 6:27:54 PM

48 Part 1 The Fundamental Tools

 In statements 1 and 3 (above), that argument is a string literal; in statement 2 the argument

is an integer (375).

 Conveniently, the previous three lines of code can be condensed to a single line

 System.out.print("The cost of 15 wickets is " � (15 * 25) � " dollars");

 Notice that the mixed expression

 "The cost of 15 wickets is " � (15 * 257) � " dollars");

 evaluates to the string:

 "The cost of 15 wickets is 375 dollars"

 and it is this string that is the argument to the println method.

 EXAMPLE 2.14 Test your understanding of various data types and operators and determine the value of

each of the following expressions:

 1. 'A' � 'B'

 2. 'A' � "B"

 3. "A" � "B"

 4. "" � 'A' � 'B'

 5. 'A' � 'B'�""

 6. 3 � 4 �""

 7. ""� 3 � 4

 1. Answer: 131 (int)
 The expression 'A' � 'B' is evaluated as (65 � 66).

 2. Answer: AB (string)

 Since the second operand "B" is a string, ' A' is cast to the string "A". The fi nal

value is the concatenation "A" � "B" ("AB").

 3. Answer: AB (string)

 "A" � "B" is the concatenation of two strings.

 4. Answer: AB (string).

 The pair of double quotes positioned one after the other denotes the empty
string , that is, the string with no characters. The evaluation is accomplished as

 ("" � 'A') � 'B'
 ("" � " A ") � 'B' 'A' is cast to string "A".
 "A" � 'B' "" and "A" are concatenated to "A".
 "A" � " B " 'B' is cast to "B".
 "AB" "A" and "B" are concatenated.

 5. Answer: 131 (string)

 Here, the fi rst � signifi es addition and not string concatenation. Thus, the

evaluation proceeds as
 ('A' � 'B') � ""
 (65 � 66) � ""
 131 � "" �
 "131" � ""
 "131"

sim23356_ch02.indd 48sim23356_ch02.indd 48 12/15/08 6:27:55 PM12/15/08 6:27:55 PM

 Chapter 2 Expressions and Data Types 49

 6. Answer: 7 (string)

 Associativity for � is left to right, so fi rst 3 � 4 evaluates to 7. Next,

7 � "" evaluates to the string "7".

 7. Answer: 34 (string)

 The integer 3 is cast to "3" and string concatenation ("" � 3) is effected.

Next, 4 is cast to "4" and "3" � "4" evaluates to "34".

 EXAMPLE 2.15 The International Civil Aviation Organization has devised a formula that calculates the

amount of rest (in days) needed to recover from the mental fatigue of jet lag:

 1. Divide the length of the trip (in hours) by 2.

 2. Subtract 4 from the number of time zones crossed.

 3. Determine your departure and arrival time coeffi cients according to the following

chart:

 Local time Departure time coeffi cient Arrival time coeffi cient

 8:00 a.m.–12:00 p.m. 0 4

 12:00 p.m.–6:00 p.m. 1 2

 6:00 p.m.–10:00 p.m. 3 0

 10:00 p.m.–1:00 a.m. 4 1

 1:00 a.m.–8:00 a.m. 5 3

 Note: if a time is "on the border" then the average of the two coeffi cients is used.

So if a departure time is 6:00 p.m., the departure coeffi cient is (1 � 3) / 2 � 2.

 4. Add the values in steps 1–3 and divide by 10 to get the number of days needed to

recover from jet lag.

 Suppose that Zip fl ies from New York at 4:00 p.m., arriving in Frankfurt at 5:00 a.m.

 The length of the trip is 7 hours.

 The number of time zones crossed is 7, so the number of time zones in excess

of 4 is 3.

 The departure time coeffi cient is 1.

 The arrival time coeffi cient is 3.

 Problem Statement Write a program that calculates the recommended number of

recovery days for Zip’s trip.

 Java Solution Thus the number of recommended days of rest can be computed as:

 (7.0 / 2 � 3 � 1 � 3) / 10

This is a mixed-type expression. The result is a value of type double .

 1. //Calculates the number of days of jetlag recovery for a flight between New York and Frankfurt
2. //restDays� (flightLength/2 �timeZones-4 � departureCoefficient �arrivalCoefficient)/10
3. //where flightLength � 7, timeZones � 7, departureCoefficient � 1, arrivalCoefficient � 3

4. public class JetLag
5. {
6. public static void main(String[] args)

sim23356_ch02.indd 49sim23356_ch02.indd 49 12/15/08 6:27:56 PM12/15/08 6:27:56 PM

50 Part 1 The Fundamental Tools

 2.5 IN CONCLUSION

 This chapter presents the basics of screen output as well as a discussion of data types and

expressions. Using the methods of the chapter, you can write programs that print virtually

any text on the screen as well as compute all types of arithmetic and logical expressions.

On the other hand, the programs of this chapter do lack a certain fl exibility: all data are

“hardwired” into these programs, and no program accepts input from a user. For example,

the program of Example 2.10 that determines whether or not 1800 is a leap year cannot do

the same for 1984 or 2968 without our rewriting and recompiling the program. In Chapter 3

you will learn how to accept data from outside an application as well as how to store that

data in the computer’s memory and retrieve it for later use.

7. {
8. System.out.println("Recommended rest: "�(7.0/2 � 3 � 1 � 3)/10� "days");

9. }
10. }

 Output
 Recommended rest: 1.05 days

 Discussion Notice that all output is accomplished with one statement using the string

concatenation operator. The expression on line 8 is mixed. The division 7.0 / 2 is

computed using fl oating-point division and has the value 3.5. The subsequent sum is

thus evaluated as 3.5 � 3.0 � 1.0 � 3.0 (� 10.5). Finally, the fl oating-point divi-

sion 10.5 / 10 gives the value 1.05. Again, this fi nal division is fl oating-point division

because the numerator is a double .

 Just the Facts

• Single-line comments in Java begin with // and continue to the end of the line.

• Multi-line comments in Java begin with /* and end with */.

• Comments may be placed anywhere within a program.

• For the present, applications have the following format:

 public class ClassName
{
 public static void main(String[] args)
 {
 // Java statements go here
 }
}

 where ClassName is a valid Java identifi er chosen by the programmer. The class

must be saved in a fi le ClassName.java .

• A block is a group of statements enclosed in curly braces.

• System.out.println(…) is used to display data followed by a newline character.

• System.out.print(…) is used to display data without a newline character.

sim23356_ch02.indd 50sim23356_ch02.indd 50 12/15/08 6:27:57 PM12/15/08 6:27:57 PM

 Chapter 2 Expressions and Data Types 51

• A string literal consists of text enclosed by quotation marks. A string literal must be

contained on a single line.

• If both operands A and B are strings, then the expression A � B evaluates to another

string, which is the concatenation (joining together) of A and B . If only one operand

is a string, then the other operand is fi rst cast to a string and the value of the

expression is the concatenation of two strings.

• A data type is a set of values together with an associated collection of operators for

manipulating those values.

• Java data types include int, char, double , and boolean .

• Type int includes integer values and operators �, –, *, /, and %.

• Integer division discards the remainder.

• The modulus operator % gives the remainder of an integer division. The sign of a % b

is the same as the sign of a .

• Type double includes decimal numbers and the operators �, –, *, and /. The modulus

operator is available but rarely used.

• Type char includes all Unicode characters. Java stores character data using 2 bytes,

that is, 16 bits.

• ASCII code numbers and Unicode values coincide. Unicode is a superset of ASCII.

• Type boolean includes just two values, true and false .

• Boolean operators are && (and), || (or), and !(not).

• The relational operators �, ��, �, ��, ��, and !� return boolean values.

• The order of operations is based on operator precedence. (See the precedence chart in

this chapter.) Parentheses override precedence.

• Boolean expressions are evaluated left to right until the value of the expression is

determined. This is called short circuit evaluation .

• Data of different types can be combined in a single expression. Smaller data types

are promoted to larger data types. The hierarchy of data types from smallest to

largest is char, int, double .

 Bug Extermination

 As soon as we started programming, we found to our surprise that it wasn’t as easy to

get programs right as we had thought. Debugging had to be discovered. I can remember

the exact instant when I realized that a large part of my life from then on was going to be

spent fi nding mistakes in my own programs. — Maurice V. Wilkes, British computer
scientist, 1949

 Initial versions of almost every program commonly contain errors or bugs .

 There are three categories of errors:

 1. Compilation errors

 2. Runtime errors

 3. Logical errors

 A compilation error occurs when a program violates one of the rules of Java, such

as the omission of a semicolon, a string’s quotation mark, or a closing curly brace. The

sim23356_ch02.indd 51sim23356_ch02.indd 51 12/15/08 6:27:58 PM12/15/08 6:27:58 PM

52 Part 1 The Fundamental Tools

compiler fl ags the error and tells you where the error occurs. A program must be free of

such errors before it can be translated into bytecode.

 As the name suggests, a runtime error occurs during program execution. A runtime

error can occur when the program attempts some invalid operation such as division by

zero. A runtime error results in program termination.

 Even if the Java compiler detects no errors and a program runs to completion, a

program may not do what it is supposed to do. For example, a program that converts

degrees Fahrenheit to degrees Celsius using the erroneous expression

(1) (5 / 9)(F � 32), where F represents a Fahrenheit temperature;

rather than

(2) (5.0 / 9.0)(F � 32)

may compile. However, because (5 / 9) is evaluated using integer division, the result

of expression (1) is always 0. The compiler may “approve” the program but a bug

obviously exists. Such a program contains a logical error . Uncovering logical errors

can be diffi cult and time consuming. One primitive, yet effective, method for fi nding

bugs is to trace the program with paper and pencil, performing each of the steps that

the computer performs. Other methods include generating additional output or using

a tool called the debugger.

 Because our programs, thus far, are quite simple, most of the bugs that you will

encounter will be syntax errors. Here are some common sources of errors:

• Using an illegal name. Remember the rules for forming a valid Java identifi er.

• Omitting the parentheses with the empty println() method. Use println()
not println ;

• Using the wrong case. Java is case sensitive. Public and public are not

interchangeable.

• Omitting a quotation mark for a string literal.

• Stretching a string literal over two lines.

• Forgetting to close a multi-line comment.

• Using a quotation mark within a string. (Use \")

• Using print when you intend to use println .

• Omitting the semicolon at the end of a statement.

• Using integer division when fl oating-point division is required.

• Using double quotation marks instead of single quotation marks to denote a

character.

• Errors with operator precedence. When in doubt, use parentheses to ensure that the

expression you type does the computation you intend it to do. Even when not in

doubt, it is good style to fully parenthesize expressions.

• Using � when you mean ��. (In Chapter 3, you will see that the equals sign has its

own meaning.)

• Using incompatible types with an operator. For example, the expressions (3 � true),
(3 � true) , and (4 && true) all result in syntax errors. To check whether 3 � 4 � 7 ,

you must use (3 � 4) && (4 � 7) . The expression 3 � 4 � 7 generates a syntax

error because (3 � 4) is a boolean expression and 7 is an integer.

• Using // in the middle of an instruction, effectively hiding the remainder of the

instruction from the compiler.

sim23356_ch02.indd 52sim23356_ch02.indd 52 12/15/08 6:27:59 PM12/15/08 6:27:59 PM

 Chapter 2 Expressions and Data Types 53

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

1

4 5

12

17

22 23

26

18

13

9

1615

876

27

29

31

24

30

32

14

19

2120

28

25

11

10

32

 Across
 2 Adds clarity to a program

 4 4 in 52E4

 6 Used for string concatenation

 11 One-byte character code

 15 Convert from one type to

another

 18 Java programs may consist of

several _____

 19 Character set with thousands

of characters

 21 5 * 4 / 3 (word)

 22 \t
 26 Statement terminator

 28 ! has ____ precedence among

boolean operators

 30 5 * (4 / 3) (word)

 31 A string literal must be

contained on (two words)

 32 The word public is a _____

 Down
 1 22 % 7 (word)

 3 !
 5 Built one of the fi rst computers

 7 Add to print to get a new line

 8 Method of evaluating boolean expressions

 9 Decimal data type

 10 A program begins execution here

 12 The name of a class must be a valid Java ____

 13 Data type of 'X'

 14 A group of statements enclosed by curly braces

 16 &&

 17 Associative rule for �

 20 Separates System from out
 23 To group operations

 24 Computes the remainder

 25 Symbol for multiplication

 27 ||
 29 6 / 10

 31 Boolean operator with lowest precedence

sim23356_ch02.indd 53sim23356_ch02.indd 53 12/15/08 6:27:59 PM12/15/08 6:27:59 PM

54 Part 1 The Fundamental Tools

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. Integer and decimal numbers can be mixed in an expression.

b. Integers can be added to character data.

c. Boolean data can be cast to integer data.

d. The relational operators cannot be used with character data.

e. If only one decimal number is used with the / (division) operator, the result is an

integer.

f. It makes no difference whether one uses 5 or 5.0 in a numerical expression.

g. The decimal form of 23.00E6 is 2300.00.

h. The argument to println must be a string.

i. Two boolean expressions may be compared using �.

j. The plus operator may be used with two strings.

 2. Playing Compiler
 Evaluate each of the following expressions or determine that the expression is ill

formed.

a. 3 � 4.5 * 2 � 27 / 8

b. true || false && 3 � 4 || !(5 �� 7)

c. true || (3 � 5 && 6 �� 2)

d. !true � 'A'
e. 7 % 4 � 3 � 2 / 6 * 'Z'

f. 'D' � 1 � 'M' % 2 / 3

g. 5.0 / 3 � 3 / 3

h. 53 % 21 � 45 / 18

i. (4 � 6) || true && false || false && (2 � 3)

j. 7 � (3 � 8 * 6 � 3) � (2 � 5 * 2)

 3. Playing Compiler
 Determine which of the following Java statements/segments are incorrect. If a

statement is correct, give the output. If incorrect, explain why.

 a. System.out.print ("May 13, 1988 fell on day number ");
b. System.out.println(((13 � (13 * 3 � 1) / 5
 � 1988 % 100
 � 1988 % 100 / 4
 � 1988 / 400
 � 2 * (1988 / 100)) % 7 � 7) % 7);
c. System.out.print ("Check out this line ");
d. System.out.println("//hello there " � '9' � 7);
e. System.out.print('H' � 'I' � " is " � 1 � "more example");
f. System.out.print('H' � 6.5 � 'I' � " is " � 1 � "more example");
g. System.out.print("Print both of us", "Me too");
h. System.out.print("Reverse " � 'I' � 'T');
i. System.out.print("No! Here is" � 1 � "more example");
j. System.out.println ("Here is " � 10*10)) // that’s 100 ;
k. System.out.println("Not x is " � true); // that’s true.
l. System.out.print();
m. System.out.println;
n. System.out.print("How about this one" � '?' � 'Huh? ');

sim23356_ch02.indd 54sim23356_ch02.indd 54 12/15/08 6:27:59 PM12/15/08 6:27:59 PM

 Chapter 2 Expressions and Data Types 55

 4. Playing Compiler
 Find and correct the errors in the following program:

 public class LeapYear;
{
public static void main(String args)
{
 System.out.print("The year 2300 is a leap year? " � "True or false: ");
 // (divisible by 4 and not by 100) or (divisible by 400) //
 System.out.println(2300 % 4 � 0 && 1800 % 100 !� 0 || 1800 % 400 �� 0);
}

 5. Parentheses and Operator Precedence
 Fully parenthesize each of the following expressions to refl ect operator precedence.

a. 2 � 3 � 4� 5

b. 3 * 4 � 5 / 6 � 7

c. 2 � 3 * 4 * 5

d. 9 % 2 / 2 * 3

e. 7 � 6 * 4 % 2 � 3 * 5

f. true || false || true && !true

 6. Boolean Expressions
 Compute the value of each of the following boolean expressions. Recall that Java

uses short circuit evaluation. For each expression determine how much of the

expression Java must evaluate to determine a value.

a. true && false &&true || true
b. true || true && true && false
c. (true && false) || (true && ! false) || (false && !false)
d. (2 � 3) || (5 � 2) && !(4 �� 4) || 9 !� 4

e. 6 �� 9 || 5 � 6 && 8 � 4 || 4 � 3

 7. Boolean Expressions
 Write a Java boolean expression that models each of the following circuit diagrams.

See Example 2.9.

a. X

!Y

A B

Y

!Y

!X

!X

b.

X

!Y

X !Y

!X

A B

Y!X

 8. Playing Compiler
 Determine which of the following expressions are valid. For each valid expression

give the data type of the resulting value.

 a. 27 / 13 � 4

b. 27 / 13 � 4.0
c. 42.7 % 3 � 18
d. (3 � 4) && 5 / 8

sim23356_ch02.indd 55sim23356_ch02.indd 55 12/15/08 6:28:00 PM12/15/08 6:28:00 PM

56 Part 1 The Fundamental Tools

e. 23 / 5 � 23 / 5.0
f. 2.0 � 'a'
g. 2 � 'a'
h. 'a' � 'b'
i. 'a' / 'b'
j. 'a' && ! 'b'
k. (double) 'a' / 'b'

 9. DeMorgan’s Law
 DeMorgan’s Laws for boolean expressions state that

 !(a && b) is equivalent to !a || ! b, and
!(a || b) is equivalent !a && ! b

 Use DeMorgan’s Laws to simplify the following boolean expressions:

 a. !(a || !b)
b. !(!a && !b)
c. !(!a || !b)
d. ! ((a &&b) || (!a && !b))

 10. What’s the Output?
 Determine the output of the following program

 public class Memory
{
 public static void main(String[] args)
 {
 System.out.print ("There once was a girl named Elaine\n");
 System.out.print ("With a microchip lodged in her brain\n");
 System.out.print ("\tHer friends were amazed\n");
 System.out.print ("\tBedazzled and dazed\n");
 System.out.print ("By the facts that Elaine could retain\n");
 }
}

 11. What’s the Output?
 Determine the values of each of the following Java expressions:

a. 7 / 3 * 2

b. 7 / (3 * 2)

 c. 7.0 / 3 * 2

d. 7 / 3 * 2.0

e. 7 / (3 * 2.0)

f. 7.0 / 3.0 * 2.0

g. (7 / 3) * 2

h. (7.0 / 3) * 2

 12. Comments
 Debugging a program can be a long and intricate process. Can you think of how you

might use Java comments as an aid to debugging? What are some other ways that

you might use Java comments?

 PROGRAMMING EXERCISES
 1. Celsius to Fahrenheit
 The temperature F in Fahrenheit equals (9 / 5) C � 32 where C is the Celsius

temperature. Write a program that computes and displays the temperatures in

Fahrenheit for Celsius values �5, 0, 12, 68, 22.7, 100, and 6.

sim23356_ch02.indd 56sim23356_ch02.indd 56 12/15/08 6:28:00 PM12/15/08 6:28:00 PM

 Chapter 2 Expressions and Data Types 57

 2. Uptime
 The uptime command of the UNIX operating system displays the number of days,

hours, and minutes since the operating system was last started. For example, the

UNIX command uptime might return the string

 Up 53 days 12:39

 Write a program that converts the 53 days, 12 hours, and 39 seconds to the number

of seconds that have elapsed since the operating system was last started.

 3. Java Competency
 The average person needs approximately four million three hundred and fi fty

thousand seconds of study and experience to qualify as a competent Java

programmer. Write a program that calculates and prints the number of days, hours,

minutes, and seconds necessary for Java competency.

 4. Logical Calculations
 Silly Sammy studies when both Serious Stuart and Studious Selma study, or when

neither studies. Selma studies every day except Sunday. Stuart studies every day

except Saturday. Write a program that determines, for each day of the week, whether

or not Silly Sammy studies.

 5. Baseball Expenses
 A baseball game has nine innings. Freddie Fanatic likes to buy a beer before every

odd-numbered inning, nachos before every even-numbered inning, and a scorecard

when he fi rst arrives for batting practice before the game begins. Beer costs $6,

nachos $4, and a scorecard is $3. Write a program that prints a summary of the

items that Freddie buys at the ballpark. Your program should display the name

each item, the number of each item, the total cost of each item, and Freddie’s

total expenditures.

 6. Pictures
 Write a program that prints the triangle:

*
* *
* * *
* * * *
* * * * *
* * * * * *

 7. More Pictures
 Write a program that prints a triangle with your initials somewhere in the

middle:

*
* *
* *
* *
* *
* * * * * *

S

R

 8. Your Own Art
 Write a program that prints your own version of a smiley face.

sim23356_ch02.indd 57sim23356_ch02.indd 57 12/15/08 6:28:01 PM12/15/08 6:28:01 PM

58 Part 1 The Fundamental Tools

 9. Your Own Header
 Write a program that displays a box containing a line of text. Here is an example.

Try to make yours look better!

*
*
*
*
*

*
*
*
*
*

Abra Varcolph and Hasim Sonsoni

 10. ASCII Name
 Write a program that prints the letters of your name followed by the ASCII value of

each letter. For example:

 K 75

 r 114

 a 97

 m 109

 e 101

 r 114

TH
E

BI
GG

ER
 P

IC
TU

RE

 THE BIGGER PICTURE

1. BINARY ENCODING I—ASCII ENCODING
 Decimal numbers are constructed from the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 but binary

numbers contain only digits 0 and 1 . The digits making up a binary number are called

 bits (short for bi nary digi ts). For example, 010110 is a binary number. Although there

are ten different single-digit decimal numbers (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), there are just

two single-bit binary numbers: 0 and 1 . Similarly, there are ninety decimal numbers with

two digits (10, 11, 12 . . , and 99) but merely four binary numbers with two bits: 00, 01,

10 , and 11 . With three bits, there are just eight different binary numbers: 000, 001,

010, 011, 100, 101, 110, and 111.

 Exercises
 1. How many different binary numbers are there with 4 bits? 10 bits? n bits?

 2. How many different characters are included in the ASCII coding scheme?

 Although each ASCII code number uses just 7 bits, for practical reasons having to do with

hardware, the number is stored using 8 bits (one byte) with the leftmost bit always set to 0 .

For example, 0 1111111 and 0 1101010 require one byte of memory and have the leftmost

bit set to 0 .

 3. Many electronic devices, such as calculators and digital clocks, display no

symbols other than the digits 0 through 9. With only ten possible symbols, the

7-bit ASCII code is overkill. We can use fewer than 7 bits per digit. How many

bits can be used to encode a digit in a calculator or clock? Using this number of

sim23356_ch02.indd 58sim23356_ch02.indd 58 12/15/08 6:28:01 PM12/15/08 6:28:01 PM

 Chapter 2 Expressions and Data Types 59

THE BIGGER PICTURE

bits per digit, how many digits can be stored in one byte? This type of encoding

is called BCD, or binary coded decimal, and it is twice as compact as ASCII

encoding.

 4. How many different characters can be represented using the 16-bit Unicode

system? Explain your answer.

 5. Considering Hebrew, Arabic, Cyrillic, Greek, Sanskrit, and Kanji symbols,

conjecture whether the number of Unicode values is reasonably large enough to

include all the characters that humans use for written communication. Can you

think of any reasons for converting to a 64-bit character code?

 Like the characters 'A', 'B', 'C', and so on, the digit characters '0' through '9' also have ASCII

codes. The ASCII code for zero is 48 (decimal) or 0110000 (binary). The ASCII codes for

the other digits increase in order, 49 for '1', 50 for '2', and so on.

 6. Determine the ASCII code for the four-digit string "1026". Use one byte for each

digit.

 7. Determine the binary equivalent of the decimal number 1026.

 8. What are the advantages and disadvantages of storing a string of digits using

ASCII rather than its binary number encoding?

 9. How do you think digits in a Java program are stored? For example, are digits that

are part of a class name stored in the same way as the digits that comprise an

integer in an arithmetic expression? Use the following example to explain your

answer.

 What are the differences between the internal representations of 23748 in the following

three lines of Java code?

 public class MyClass23478
{
 System.out.println ("In 23478 pennies there are: ");
 System.out.println(23478 � 12);
}

 2. BINARY ENCODING II—DECIMAL ENCODING
 As you know, the digits of a decimal number X represent the number of ones, tens, hundreds,

thousands, and so on in X . For example, 358 consists of 8 ones, 5 tens and 3 hundreds. Simi-

larly, the bits of a binary number tell us the number of ones, twos, fours, eights, sixteens,

and so on. For example, the binary number 1101 has 1 one, 0 twos, 1 four, and 1 eight. Fur-

thermore, each binary number can be considered a unique decimal number and vice versa.

For example, the binary number 1010001 is equivalent to the decimal number 81: 1 � 1 �

0 � 2 � 0 � 4 � 0 � 8 � 1 � 16 � 0 � 32 � 1 � 64 � 81, which incidentally is also the

ASCII code for the letter 'Q'. The Unicode for the letter 'Q' is 0000000001010001 —16 bits

with the leftmost 8 bits set to 0 .

 Exercises
 1. Give the decimal equivalents of 1011100, 1111111 , and 0000000001011100.

 2. Which characters are encoded by the ASCII and Unicode values in exercise 1?

 3. Determine the 7-bit binary equivalent of 64.

 4. What is the 16-bit binary equivalent of 10,000?

 5. Repeat Programming Exercise 10 and include a third column with the binary

equivalent of each integer in the third column. For now, you’ll have to calculate

sim23356_ch02.indd 59sim23356_ch02.indd 59 12/15/08 6:28:01 PM12/15/08 6:28:01 PM

60 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

the binary numbers by hand and use the println method to display them. Typical

output is:

 R 82 1010010

 a 97 1100001

 l 108 1101100

 p 112 1110000

 h 104 1101000

3. BOOLEAN TYPES
 Boolean values and operators have an unusual algebra that resembles the algebra of inte-

gers with || instead of �, and && instead of � . For example, the distributive law states that

if a, b , and c are integers, then

 a � (b � c) � (a � b) � (a � c)

 Similarly, if a, b , and c are type boolean , then

 a && (b || c) � (a && b) || (a && c)

 Exercises
 For each problem, if true, explain why, and if false, give a counterexample.

 1. Is it true that if a, b , and c are boolean then

 a || (b && c) is equivalent to (a || b) && (a || c)?

 2. Is it true that if a, b , and c are integers then

 a � (b � c) is equivalent to (a � b) � (a � c)?

3. The exclusive-or (XOR) operation on two Boolean operands is defi ned to be true

whenever exactly one of the two operands is true . Write a Java boolean expres-

sion that calculates the exclusive-or of two boolean operands x and y .

sim23356_ch02.indd 60sim23356_ch02.indd 60 12/15/08 6:28:02 PM12/15/08 6:28:02 PM

 61

CHAPTERCHAPTER 3
 Variables and Assignment

 “One man’s constant is another man’s variable”
 —Alan Perlis

 Objectives

 The objectives of Chapter 3 include an understanding of

� the concept of a variable as a named memory location,

� variable declarations and initializations,

� assignment and Java’s assignment operators: �, ��, ��, *�, /�, and %�,

� the use of a Scanner object for interactive input,

� the advantages of using fi nal variables,

� type compatibility and casting, and

� the increment and decrement operators.

 3.1 INTRODUCTION

 The programs of Chapter 2 perform tasks that can just as easily be accomplished with a

no-frills calculator. Indeed, most calculators provide memory and allow you to store and

 retrieve data. In this chapter, we explain how data can be stored by a program and later

retrieved for output or further computation. Specifi cally, we address three questions:

 1. How does a program obtain storage for data?

 2. How does a program store data?

 3. How does a program use stored data?

We begin with the concept of a variable.

 3.2 VARIABLES

A variable is a named memory location capable of storing data of a specifi ed type.

 You might visualize a variable as a labeled box, container, or memory cell capable of hold-

ing a single value of a specifi c data type. Figure 3.1 illustrates three variables. Figure 3.1 a

shows a variable named quantity that holds the integer 7; Figure 3.1 b shows another named

 cost with value 250.75, a double ; and Figure 3.1 c shows a variable, quality , that contains a

single character, ‘A’.

sim23356_ch03.indd 61sim23356_ch03.indd 61 12/15/08 6:31:05 PM12/15/08 6:31:05 PM

62 Part 1 The Fundamental Tools

 You can store a value in a variable, change the contents of a variable, and also retrieve

and use a stored value. The program of the following example utilizes fi ve different vari-

ables. Read through the program and the subsequent explanation. For now, do not concern

yourself with syntax or minute details. We will come back to those issues. Try to under-

stand the role that variables play in the application.

FIGURE 3.1 A visualization of three variables

250.75

Cost

(b)

‘A’

Quality

(c)

25

Quantity

(a)

 We begin with an age-old nursery rhyme/riddle:

 As I was going to St. Ives,

 I met a man with seven wives,

 Each wife had seven sacks,

 Each sack had seven cats,

 Each cat had seven kits:

 Kits, cats, sacks, and wives,

 How many were there going to St. Ives?

Well, technically, the answer to the question is “one.” Only the narrator was going to

St. Ives. The others presumably were traveling in another direction.

 Problem Statement Write a program that calculates the number of people, sacks, cats,

and kits that the narrator of this “polygamous poem” encountered on his/her journey.

 Java Solution
 1. // How many people, sacks, cats and kits were encountered on the road to St. Ives

2. public class StIves
3. {
4. public static void main (String[] args)
5. {
6. int wives � 7; // a variable named wives that holds the value 7
7. int sacks; // holds the number of sacks
8. int cats; // holds the number of cats
9. int kits; // number of kits
10. int total; // sum of man, wives, sacks, cats and kits

11. sacks � 7*wives; // each wife had seven sacks
12. cats � 7*sacks; // each sack had seven cats
13. kits � 7*cats; // each cat had seven kits
14. total � 1�wives�sacks�cats�kits; // "1" counts the man

15. System.out.println("Wives: "� wives);
16. System.out.println("Sacks: "� sacks);
17. System.out.println("Cats: "� cats);
18. System.out.println("Kits: "� kits);
19. System.out.println("Man, wives, sack, cats and kits: "� total);
20. }
21. }

 EXAMPLE 3.1

sim23356_ch03.indd 62sim23356_ch03.indd 62 12/15/08 6:31:06 PM12/15/08 6:31:06 PM

 Chapter 3 Variables and Assignment 63

 Output
 Wives: 7
Sacks: 49
Cats: 343
Kits: 2401
Man, wives, sacks, cats and kits: 2801

 Discussion We begin our dissection of the program at line 6.

 Line 6: int wives � 7;
 The statement on line 6 is a variable declaration . The declaration accomplishes three

tasks.

 1. It instructs the compiler to set aside or allocate enough memory to hold one

integer (int).

 2. It labels the allocated memory location with the name wives . The program can use

the name wives to refer to this memory location.

 3. It stores the number 7 in this memory location.

 Wives is a variable , a named memory location that can store a single number of type int .
Currently, this memory cell holds the integer 7. See Figure 3.2 .

 In Chapter 1, you learned that every memory cell has a unique numerical address.

Conveniently, a program refers to a variable by its name and not by its address. In fact,

Java hides the address of a variable from the programmer. Figure 3.3 steps through the

remainder of the program.

7

Wives (int)

FIGURE 3.2 The
variable wives

FIGURE 3.3 A line-by-line analysis of StIves

wives sacks cats kits total

7

7 49

7 49 343

7 49 343 2401

7 49 343 2401 2801

 Lines 7–10: int sacks; int cats; int kits; int total;

 Here we have four additional variable declarations. Each variable

can hold one integer (int). However, in contrast to wives , no values

are assigned to these variables. The variables are uninitialized . The

uninitialized variables hold no meaningful values at this point, and

we denote an uninitialized variable with an empty box.

 Line 11: sacks � 7 * wives ;

 The value stored in the variable wives (7) is used to compute the

number of sacks. The result (49) is stored in the variable sacks.

 Line 12: cats � 7 * sacks;

 The value of sacks (49) is used to compute the number of cats. This

product (343) is saved in the variable cats.

 Line 13: kits � 7 * cats;

 Similarly, the value 343 stored in cats is used to calculate the number

of kits. The number of kits is 2401 and that is the value placed in

variable kits .

 Line 14: total � 1 � wives � sacks� cats � kits;

 The sum of the values stored in wives, sacks, cats, and kits plus 1 (for

the narrator) is computed and stored in total . Notice that it is unneces-

sary to re-compute the numbers of sacks, cats, and kits because these

values are saved in variables.

 Lines 15–19:
 The numbers stored in wives, sacks, cats, kits , and total are displayed.

sim23356_ch03.indd 63sim23356_ch03.indd 63 12/15/08 6:31:08 PM12/15/08 6:31:08 PM

64 Part 1 The Fundamental Tools

 The simple program of Example 3.1 illustrates much of what you need to know about

variables. We now fi ll in a few details and expand the explanation.

 3.3 VARIABLE DECLARATIONS: HOW A PROGRAM OBTAINS
STORAGE FOR DATA

 Lines 6 through 10 of Example 3.1 illustrate an important rule.

A variable must be declared before it can be used.

 A variable declaration specifi es

• the type of data that the variable can hold, for example int or double , and

• the name of the variable.

The syntax of a variable declaration is:

 Type name1, name2, name3,...;

 where Type is a data type (int, double, char, boolean) and nameX is a valid Java identifi er.

 As the syntax indicates, several variables of the same type may be declared with a

single statement. Some sample variable declarations are:

 int cats; // cats can store a single integer (int)

 double radius, area, circumference; // commas separating the names are mandatory

 // the three variables separated by commas are

all double

 boolean done; // done can hold either true or false

When naming a variable, you should choose a name that is meaningful.

 For example, the names used in Example 3.1 (wives, sacks, cats, kits, and total) are far

more descriptive than a, b, c, d, and e or even the abbreviations w, s, c, k , and t . It is com-

mon practice to begin the name of a variable with a lowercase letter and use an upper

case letter to begin any subsequent “words” of a variable name. For example, the names

 myVariable, numberOfPeople , and hokusPokus all follow this convention. As noted in

Chapter 2, this style is called camelCase, for the uppercase “humps” in the intermediate

words.

 Although a variable can store an integer, a fl oating-point number, a character, or a

 boolean value, there are notable differences among the storage requirements for these dif-

ferent data types.

 3.3.1 Integers
 The declaration

 int total;

instructs the compiler to allocate enough memory to store one number of type int . A value

of type int requires 32 bits or four bytes of memory. With 32 bits of storage, a variable of

type int can hold a value in the range �2,147,483,468 to 2,147,483,467.

sim23356_ch03.indd 64sim23356_ch03.indd 64 12/15/08 6:31:09 PM12/15/08 6:31:09 PM

 Chapter 3 Variables and Assignment 65

 In addition to type int , Java provides three other integer data types: byte, short, and

 long . The storage requirements and the range of values for all integer types are as follows:

 byte 8 bits (1 byte) 2 7 to 2 7 � 1 (�128 to 127)

 shor t 16 bits (2 bytes) 2 15 to 2 15 � 1 (�32,768 to 32,767)

 int 32 bits (4 bytes) 2 31 to 2 31 � 1 (�2,147,483,468 to 2,147,483,467)

 long 64 bits (8 bytes) 2 63 to 2 63 � 1 (�922,337,203,685,475,808 to

922,337,203,685,475,807)

The declaration

 long bigNumber;

allocates 8 bytes of memory for bigNumber and the declaration

 short smallNumber;

sets aside just two bytes for smallNumber . Only numbers between �32,768 and 32,767

inclusive can be stored in smallNumber ; 1,000,000, for example, doesn’t fi t.

 3.3.2 Floating-Point Numbers
 Type double is used for decimal numbers. In addition to type double , Java provides a sec-

ond, smaller type, fl oat , that also denotes fl oating-point or decimal numbers. The storage

requirements and the range of values for variables of these decimal types are:

 fl oat 32 bits (4 bytes) �3.4e 38 to 3.4e 38 (with 6 to 7 signifi cant digits)

 double 64 bits (8 bytes) �1.7e 308 to 1.7e 308 (with 14 to 15 signifi cant digits)

 3.3.3 Characters
 Variables of type char require 16 bits or 2 bytes of memory. A character is stored as a 16-bit

Unicode integer.

 3.3.4 Boolean values
 The boolean type has just two values: true and false . A boolean value requires just a single

bit of storage.

 3.4 HOW A PROGRAM STORES DATA: INITIALIZATION
AND ASSIGNMENT

 A variable can be given a value via an initialization statement or an assignment statement .
We begin with initialization.

 3.4.1 Initialization

A variable may be declared and given an initial value with a single initialization
statement.

 The following statements declare and also initialize several different variables:

 double pi � 3.14159;
int number � 10, sum � 0, total � 125;
boolean done � true;
char firstLetter � ‘A’, lastLetter � ‘Z’;

sim23356_ch03.indd 65sim23356_ch03.indd 65 12/15/08 6:31:09 PM12/15/08 6:31:09 PM

66 Part 1 The Fundamental Tools

This technique of declaration together with initialization appears on line 6 of Example 3.1:

 int wives � 7;

Be careful, however. The following initialization causes a syntax error:

 short smallNumber � 100000;

Recall that a variable of type short can store a 16-bit number, which is a number between

�32,768 and 32,767. The integer 100,000 exceeds the capacity of smallNumber.
 Be cautious when using fl oating-point numbers. The data type of a fl oating-point con-

stant is double . This means that a fl oating-point constant requires eight bytes, or 64 bits of

storage. Consequently, the seemingly innocuous declaration

 fl oat decimal � 3.14; // The data type of 3.14 is double; decimal is type fl oat

generates a syntax error because the data type of 3.14 is double but the variable decimal is

type fl oat . A fl oat variable has just four bytes and is not large enough to hold a value of type

 double, which demands eight bytes.

 To be safe, you might declare all fl oating-point variables as double .

 3.4.2 Assignment
 Values may be stored in a previously declared variable using an assignment statement . An

 assignment statement has the following format:

 variable � expression ;

where variable is a declared variable and expression is a valid Java expression. The symbol �
is the assignment operator .
 Notice that the left-hand side of an assignment statement consists of a single variable.

Assignment is accomplished in two steps:

1. expression is evaluated.

2. The value of expression is stored in variable. That is, the value of variable is changed.

 For example, consider the following declaration and assignment:

 int sum; // a variable declaration: sum is type int.

 sum � 1 � 2 � 3 � 4 � 5; // assignment: sum gets the value 15.

 First, the expression 1 � 2 � 3 � 4 � 5 is evaluated (15); then 15 is assigned to (stored in)

the variable sum .

An assignment statement is also an expression.

 So, like any expression, an assignment expression has a value. The value of the assignment

expression is the value computed on the right-hand side of the � operator. For example,

the assignment expression

 number � 1 � 2 � 3 � 4 � 5;

not only assigns 15 to number but also evaluates to 15. Usually, the value of an assignment

is discarded, but sometimes, the value can be used. For example, in the following output

statement,

 System.out.println(number � 1 � 2 � 3 � 4 � 5);

the value 15 is assigned to variable number and then is passed as an argument to

System.out.println(...), which prints 15.

sim23356_ch03.indd 66sim23356_ch03.indd 66 12/15/08 6:31:10 PM12/15/08 6:31:10 PM

 Chapter 3 Variables and Assignment 67

 Conveniently, using the value of an assignment statement allows assignments to be

chained. For example,

 int number1, number2, number3;
number1 � number2 � number3 � 2 � 4 � 6 � 8;

Here, the sum on the right is evaluated fi rst (it’s 20); next, 20 is assigned to number3 , then

to number2 , and fi nally to number1 . As this segment illustrates, assignments are performed

right to left. That is, the assignment operator (�) is right associative.

 Assignments can be chained, but initializations cannot. This is because an assignment

statement is also an expression but an initialization statement is not. For example, the

statement

 int x � y � z � 3; // ERROR!

causes a compile time error. Correct initialization can be accomplished with

 int z � 3, y � 3, x � 3;

or

 int z � 3, y � z, x � y; // note the left to right execution

The syntax of initialization can be confusing. For example, what do you think the following

statement accomplishes?

 int x, y, z � 0;

You might guess that all three variables x, y , and z are set to zero. In fact, the statement cre-

ates three variables: x and y are uninitialized, and only z is initialized to zero. To initialize

all three variables, use the statement:

 int x � 0, y � 0, z � 0; // initialization

The values of x, y , and z can subsequently be changed to 3 using the chained assignment

statement:

 x � y � z � 3 ; // assignment

 3.5 HOW A PROGRAM USES STORED DATA

Once a variable has been assigned a value, you can use the variable’s name in an

expression, provided that the data type of the variable makes sense in the expression.

 For example, consider the following code snippet:

 int number1 � 10;
int number2 � 20;
int sum;
sum � 5 * number1 � 2 * number2;

The computation on the last line uses the value 10 for number1 and 20 for number2 . Con-

sequently, sum is assigned the value 90.

 However, the following group of statements is not acceptable:

 boolean bool � true;
int number � 10;
int sum;
sum � number � bool ; // ILLEGAL!

sim23356_ch03.indd 67sim23356_ch03.indd 67 12/15/08 6:31:10 PM12/15/08 6:31:10 PM

68 Part 1 The Fundamental Tools

 Here, the expression number � bool is illegal because the data type of bool is boolean , and

addition involving boolean data is not a legal operation.

 The value stored in a variable may be changed as Example 3.2 illustrates.

 Problem Statement Write a program that exchanges the values in two variables.

 Java Solution
 1. // switches the values stored in two variables
2. public class Swap
3. {
4. public static void main (String[] args)
5. {
6. int a � 7;
7. int b � 100;
8. int temp; // uninitialized

9. System.out.print("Before -- ");
10. System.out.print("a: "� a);
11. System.out.println(", b: "� b);

12. temp � a; // store the current value of a in temp
13. a � b; // store the value of b in a

14. b � temp; // store the original value of a in b

15. System.out.print("After -- ");
16. System.out.print("a: "� a);
17. System.out.println(", b: "� b);
18. }
20. }

 Output
 Before -- a: 7, b: 100
After -- a: 100, b: 7

 Discussion Figure 3.4 steps through the program.

 EXAMPLE 3.2

 Lines 6–8: int a � 7; int b � 100; int temp;

 Three variables are declared; two are initialized.

 Lines 9–11: Display the text

 Before -- a: 7, b: 100

 Line 12: temp � a;

 Line 12 is an assignment statement. The variable temp gets the value stored

in the variable a .

 Line 13: a � b;

 This assignment places the value of b in a . Notice that the original value of

 a is saved in temp.

 Line 14: b � temp;

 This assignment stores the value of temp (the original value of a) in variable b .

 Lines 15–17: Display the text

 After -- a: 100, b: 7

FIGURE 3.4 Swapping the values in two variables

a b temp

7 100

7 100 7

7

100
100 7

100
100

7
7

sim23356_ch03.indd 68sim23356_ch03.indd 68 12/15/08 6:31:11 PM12/15/08 6:31:11 PM

 Chapter 3 Variables and Assignment 69

3.6 OBTAINING DATA FROM OUTSIDE A PROGRAM

 In most cases, the data that a program uses come from outside the program, perhaps from a

fi le or from a user who interacts with the program. The following application demonstrates

one very simple mechanism available for interactive input, a Scanner object.

 EXAMPLE 3.3 According to the Farmer’s Almanac , you can estimate air temperature by counting

the number of times per minute that a cricket chirps. To compute the air temperature

(Celsius), divide the number of chirps/minute by 6.6 and add 4.

 Problem Statement Write an application that calculates the air temperature given the

number of cricket chirps per minute. A user supplies the number of chirps per minute.

 Java Solution
 1. // calculates the air temperature (Celsius) from cricket chirps/minute
2. import java.util.*;
3. public class Cricket
4. {
5. public static void main (String[] args)
6. {
7. int chirps; // chirps per minute
8. double temperature; // Celsius
9. Scanner input � new Scanner(System.in);

10. System.out.print("Enter the number of chirps/minute: ");
11. chirps � input.nextInt();
12. temperature � chirps/6.6 � 4;
13. System.out.println("The temperature is "�temperature�"C");
14. }
15. }

 Output
Enter the number of chirps/minute: 99

The temperature is 19.0C

 Discussion We begin our explanation with line 7.

 Line 7: int chirps;

 On line 7, we declare an integer variable, chirps , that is intended to hold the number of

chirps per minute.

 Line 8: double temperature;
 The statement on line 8 is also a variable declaration. The variable temperature holds the

air temperature. Because the computation of the temperature requires division by 6.6,

temperature is declared as double .

 Line 9: Scanner input � new Scanner(System.in) ;

 The statement on line 9 is something that you have not previously seen. The name input
refers to a “ Scanner object.” Objects and object-oriented programming are discussed in

later chapters.

For the present, we say that a Scanner object is a mechanism or “black box” used for

reading data interactively from the keyboard.

sim23356_ch03.indd 69sim23356_ch03.indd 69 12/15/08 6:31:12 PM12/15/08 6:31:12 PM

70 Part 1 The Fundamental Tools

 3.7 A SCANNER OBJECT FOR INTERACTIVE INPUT

 Before using a Scanner object for input you must:

• Include the import statement: import java.util.*;

• Declare a Scanner object as

 Scanner name � new Scanner(System.in)

where name is a valid Java identifi er such as input or keyboardReader.
 Once a Scanner has been declared you can use the following methods to read data:

• name .nextInt()

• name .nextShort()

 This particular Scanner object has the name input . The choice of the name input is arbi-

trary and could just as well be any valid Java identifi er such as keyboard, console , or

even chirpReader . The somewhat mysterious statement on line 9 should be included in

every program that uses a Scanner object for interactive input.

 Line 10: System.out.print("Enter the number of chirps/minute: ");
 Line 10 is an output statement that prompts the user for data. A “user friendly” program

should always supply a prompt when interactive input is required. It is also a good idea

to remind the user of the type of units that are expected, that is, chirps/minute rather

than chirps/second.

 Line 11: chirps � input.nextInt();
 The statement on line 11 demonstrates the Scanner object in action. The Scanner object,

 input , accepts or reads one integer from the keyboard. In fact, the program pauses indefi -

nitely until the user types an integer and presses the Enter key. Once the user supplies

an integer, that number is assigned to the variable chirps. The Scanner object, input ,
expects an integer (input. nextInt()). If the user enters a decimal number or a character

other than whitespace (spaces, tabs, or new lines), a runtime error terminates the execu-

tion of the program and the system issues an error message. Because the Scanner object

skips leading whitespace, a user can legally enter “ 77”—the spaces are ignored.

 Line 12: temperature � chirps/6.6 � 4;
 The value stored in chirps is used to compute the air temperature. The result of the com-

putation is assigned to the variable temperature.

 Line 13: System.out.println("The temperature is "�temperature�"C");

 The program displays the value stored in temperature along with some explanatory

text.

 You’ve probably noticed that we’ve given no explanation of line 2 (import java.util.*).
Interactive input is not simple to effect. In fact, there is an enormous amount of code

lurking beneath the Scanner . This code is contained in a system package called java.util .
A system package is a collection of code available for use in any program.

The statement import java.util.* instructs the compiler to include the java.util package

in the program, and with it, the code that implements a Scanner.

 This statement is necessary whenever a program uses a Scanner object for interactive

input. Notice that this statement, called an import statement , appears outside the class

declaration.

sim23356_ch03.indd 70sim23356_ch03.indd 70 12/15/08 6:31:13 PM12/15/08 6:31:13 PM

 Chapter 3 Variables and Assignment 71

• name.nextLong()

• name.nextDouble()

• name.nextFloat()

• name.nextBoolean ()

where name is the declared name of the Scanner .

A Scanner object cannot read data of type char.

 Other Scanner methods are available, but for now, these six suffi ce. Like the println()
method, which displays text, each of these methods accomplishes a task: each reads one

value from the keyboard and supplies or returns that value for further computation. For

example, if input is the name of a Scanner object, then the statement

 int number � input.nextInt();

reads one integer from the keyboard and stores that value in the variable number .
 You do not need to declare a new Scanner object for each data type.

An unlimited number of input values of different types can be read using a single

Scanner object.

 The program of Example 3.4 uses a Scanner object to read two double values that are sup-

plied by a user.

 EXAMPLE 3.4 Do you get more bite for your buck with a 14-inch pizza or a 10-inch pizza?

 Problem Statement Write a program that calculates the price per square inch of a

round pizza, given the diameter and price.

 Java Solution
 1. // Calculates the price/sq.in. of a round pizza using area � � r 2

2. // Uses the diameter and the price
3. import java.util.*; // to use Scanner

4. public class Pizza
5. {
6. public static void main (String[] args)
7. {

8. Scanner input � new Scanner(System.in); //declare a Scanner

9. double diameter, area, radius;
10. double price;
11. double pricePerSquareInch;

12. System.out.print("Enter the diameter of the pizza in inches: ");
13. diameter � input.nextDouble(); // use Scanner object, read a double

14. radius � diameter/2.0;
15. area � 3.14159*radius*radius; //area � � r 2

16. System.out.print("Enter the price of the pizza: ");
17. price � input.nextDouble(); // use Scanner object, read a double

sim23356_ch03.indd 71sim23356_ch03.indd 71 12/15/08 6:31:14 PM12/15/08 6:31:14 PM

72 Part 1 The Fundamental Tools

 3.8 FINAL VARIABLES

 The program of Example 3.4 includes the calculation

 area � 3.14159*radius*radius. // Line 15, Example 3.4

 The number 3.14159 is an approximation of what is probably the world’s most famous

constant, �. Although most people would recognize 3.14159 as “a piece of �,” a statement

such as

 area � PI *radius*radius,

adds greater clarity to the application.

 The following revised version of Example 3.4 replaces 3.14159 with a fi nal variable, PI .

A fi nal variable is a variable that is assigned a permanent value.

 A fi nal variable may be assigned a value just once in any program, and once assigned, the

value cannot be altered. Its value is, well, “fi nal.” In Example 3.5, the value 3.14159 is

assigned to PI as part of the declaration. It is a good practice to initialize a fi nal variable

when it is declared.

 By convention, names of fi nal variables are comprised of uppercase letters with under-

scores separating the “words” of a name. For example, PI, TAX_RATE , and FIDDLE_DEE_
DEE adhere to this practice.

18. pricePerSquareInch � price/area;
19. System.out.println("The price per square inch of a "� diameter
 � " inch pizza is $" � pricePerSquareInch);
20. }
21. }

 Using some real data obtained from a local pizza shop, we ran the program three times.

 Output
 Enter the diameter of the pizza in inches: 10.00
Enter the price of the pizza: 6.50
The price per square inch of a 10.0 inch pizza is $0.0827606403127079

Enter the diameter of the pizza in inches: 12.00
Enter the price of the pizza: 10.50
The price per square inch of a 12.0 inch pizza is $0.09284046188925567

Enter the diameter of the pizza in inches: 14.00
Enter the price of the pizza: 12.50
The price per square inch of a 14.0 inch pizza is $0.08120157016552973

 Discussion Lines 3, 8, 13, and 17 contain the necessary statements for interactive input

using a Scanner object. The name input (line 8) can be any valid Java identifi er such as

nextData or priceGrabber .
 Program output shows that the 14-inch pizza is the most economical, the 10-inch

pizza comes in second, and the 12-inch pizza is the most costly.

sim23356_ch03.indd 72sim23356_ch03.indd 72 12/15/08 6:31:15 PM12/15/08 6:31:15 PM

 Chapter 3 Variables and Assignment 73

 EXAMPLE 3.5 Problem Statement Write a program that performs the same task as the program of

Example 3.4 using a fi nal variable (PI) with value 3.14159.

 Java Solution
 1. import java.util.*;

2. public class MorePizza
3. {
4. public static void main (String[] args)
5. {

6. Scanner input � new Scanner(System.in); // declare a Scanner object
 7. final double PI � 3.14159; // PI cannot be changed

8. double diameter, area, radius;
9. double price;
10. double pricePerSquareInch;

11. System.out.print("Enter the diameter of the pizza in inches: ");
12. diameter � input.nextDouble(); //use Scanner object
13. radius � diameter/2.0;
14. area � PI * radius * radius;

15. System.out.print("Enter the price of the pizza: ");
16. price �input.nextDouble();

17. pricePerSquareInch � price/area;
18. System.out.println("The price per square inch of a " � diameter
 � " inch pizza is $" � pricePerSquareInch);
19. }
20. }

 Discussion The variable PI is declared and initialized on line 7. Because PI is declared

as fi nal , its value cannot be changed. PI is a constant. PI is used in the computation on

line 14.

 A fi nal variable is often called a named constant or simply a constant . Named con-

stants add to the clarity of your programs. Using named constants eliminates “mystery

numbers.” In Example 3.5, there is no uncertainty about the number 3.14159; this decimal

number represents �. Named constants also make your program easier to change. Suppose

that, to increase accuracy, you decide to change the approximation of PI from fi ve decimal

places to eight. If a program uses the constant PI in several places, you can change all

occurrences by altering just one line. Otherwise, you would have to search for each occur-

rence of 3.14159 and change each, one by one.

 The use of fi nal variables also prevents the accidental changing of a permanent value.

If your code attempts to change the value of a fi nal variable, the compiler complains.

 3.9 TYPE COMPATIBILITY AND CASTING

 In Chapter 2, you saw that before evaluating a binary expression with operands of different

data types, Java promotes or casts the operand of the “smaller” data type to the data type of

the other operand. For example, the value of the expression 2 � 3 is 5 (int) but the expression

2 � 3.0 evaluates to 5.0 (double) because the integer 2 is cast to 2.0 (double) and the subse-

quent addition is performed on two numbers of type double . Assignment is no different.

sim23356_ch03.indd 73sim23356_ch03.indd 73 12/15/08 6:31:16 PM12/15/08 6:31:16 PM

74 Part 1 The Fundamental Tools

The value of a smaller numerical data type may be assigned to a variable of a larger

numerical data type.

 When you assign a value of a smaller data type to a variable of a larger type, the value of

the smaller type is promoted, or cast, to the larger type. The pecking order of the numeric

data types from smallest to largest is:

• byte

• short

• int

• long

• fl oat

• double

Thus, the segment

 double decimalNumber;
decimalNumber � 100; // a value of type int is assigned to a variable of type double
 System.out.println(decimalNumber);

prints 100.0.

 The value stored in decimalNumber is 100.0, a double, not 100. Before copying a value

into decimalNumber, Java casts 100 (int) to 100.0 (double) .
 On the other hand, the following assignment is illegal:

 int wholeNumber;
wholeNumber � 37.2; // cannot assign 37.2 (double) to an integer variable

 Java does not automatically cast 37.2 to the integer 37 because the cast results in a loss of

precision. However, such an assignment can be accomplished with an explicit cast .

 3.9.1 Explicit Casts

If value is a number or variable of a numeric data type, then the expression

(X)value, where X is a numeric data type,

explicitly casts value to type X.

 For example, the expression (int)3.1459.2 casts a fl oating-point number to an integer. The

value of the expression is the integer 3. Similarly, (fl oat)3.14159 casts 3.14159 from double

to fl oat.
 The following segment demonstrates how you can use an explicit cast (line 3) to assign

a value of type double to a variable of type int .

 1. int wholeNumber;
2. double decimalNumber � 37.2;
3. wholeNumber � (int)decimalNumber ; // decimalNumber is explicitly cast to int
4. System.out.println("wholeNumber: "� wholeNumber);
5. System.out.println("decimalNumber: "� decimalNumber);

 When embedded in a complete program, the output of this fragment is:

 wholeNumber: 37
decimalNumber: 37.2

sim23356_ch03.indd 74sim23356_ch03.indd 74 12/15/08 6:31:17 PM12/15/08 6:31:17 PM

 Chapter 3 Variables and Assignment 75

 Before decimalNumber is assigned to wholeNumber (line 3), the value stored in

decimalNumber (37.2) is explicitly cast to 37 (int), and 37 is stored in wholeNumber . The

cast truncates 37.2, that is, the fractional part of 37.2 is removed. No rounding occurs.

The cast does not change the value stored in decimalNumber; that value remains 37.2.

 Likewise, the declaration

 float pi � 3.14159; // cannot assign a double to a float

generates a syntax error because the data type of 3.14159 is double and a value of type

 double cannot be assigned to a variable declared as fl oat , a smaller type. An explicit cast

“down to fl oat” allows the assignment:

 float pi � (float)3.14159;

Coupled with this declaration of pi , the statement

 float twoPi � 2.0 * pi; // double * float results in double

causes an error, but

 float twoPi � 2 * pi; // int * float results in float

does not. Can you see why? In the fi rst statement, the data type of the expression 2.0 * pi
is double and a value of type double cannot be assigned to the variable twoPi, which is

declared as fl oat. In the second statement, the data type of 2 * pi is fl oat because the data

type of the product of 2 (int) and pi (fl oat) is fl oat , the larger type. The statement

 float twoPi � ((float)2.0) * pi;

accomplishes the same result.

 3.9.2 Character and Boolean Data Types
 Character data may be assigned to a variable of type short, int, long, double, or fl oat . When

this is done, the ASCII (or Unicode) value is assigned to the numerical variable. Thus the

code fragment

 double x � 'A';
System.out.print(x);

produces the output

 65.0

because the ASCII value of 'A' (65) is cast to the double 65.0.

 Of course, the segment

 double x � 'A';
System.out.print ((char)x);

which casts x down from double to char, changes the output. This revised segment displays

the character ' A '.

 Boolean values cannot be cast to other types, nor can the values of numeric types be

cast to boolean . Unlike languages such as C or C��, boolean values in Java are not con-

sidered integers.

 3.9.3 Cast with Caution
 An explicit cast to a smaller type can produce unexpected results. It may surprise you that

the segment

 byte x � (byte)512; // explicit cast: int to byte
System.out.print(x);

sim23356_ch03.indd 75sim23356_ch03.indd 75 12/15/08 6:31:17 PM12/15/08 6:31:17 PM

76 Part 1 The Fundamental Tools

prints 0. As explained in Section 3.3.1, the integer 512 is stored as the four-byte or 32-bit

binary number:

00000000 00000000 00000010 00000000.

Because a byte consists of just eight bits, the explicit cast, (byte)512 , discards the three

leftmost bytes of the binary representation of 512. Only the rightmost byte, 00000000, is

stored in x . Consequently, x gets the value 0.

 In practice, you should avoid casts like the one described above. Such casts can lead to

bugs that are often subtle and diffi cult to uncover.

 3.10 A FEW SHORTCUTS

 As you know, the assignment operator (�) does not imply mathematical equality. Although

a statement such as

 count � count � 1;

makes no mathematical sense, it is an acceptable Java statement. Execution of this state-

ment involves the following two actions:

 1. count�1 is evaluated, and

 2. the resulting value is stored in count .

Thus, the statement count � count � 1 adds 1 to the value of count.
 The statement reads “ count is assigned the value count �1 ” rather than “ count equals

count �1 .” In Example 3.6, the variable cost is adjusted in a similar manner.

 At Pepino’s Pizza Parlor, pizzas are $12.00 each. Each additional topping is $1.50. Tax

is 5 percent.

 Problem Statement Write an application that prompts for the number of pizzas and

the number of toppings. The program should calculate the price of the pizza (including

sales tax) and print a receipt.

 Java Solution
 1. import java.util.*;
2. public class OrderPizza
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in); // declare a Scanner object

7. // some constants
8. final double PRICE_OF_PIZZA � 12.00;
9. final double PRICE_OF_TOPPING � 1.50;
10. final double TAX_RATE � .05;

11. int numPizza, numTopping;
12. double cost� 0.0;

 EXAMPLE 3.6

sim23356_ch03.indd 76sim23356_ch03.indd 76 12/15/08 6:31:18 PM12/15/08 6:31:18 PM

 Chapter 3 Variables and Assignment 77

13. // determine the number of pizza and adjust the cost
14. System.out.print("Enter the number of pizzas: ");
15. numPizza � input.nextInt();
16. cost � cost � numPizza * PRICE_OF_PIZZA;

17. // determine the number of toppings and adjust the cost
18. System.out.print("Enter the total number of toppings: ");
19. numTopping � input.nextInt();
20. cost � cost � numTopping * PRICE_OF_TOPPING;

21. // add tax
22. cost � cost � TAX_RATE * cost;

23. System.out.println();
24. System.out.println("Receipt: ");
25. System.out.println("Number of Pizzas: " �numPizza);
26. System.out.println("Number of Toppings: " �numTopping);
27. System.out.println("Cost (incl tax): " �cost);
28. }
29. }

 Output
 Enter the number of pizzas: 4
Enter the total number of toppings: 6

Receipt:
Number of Pizzas: 4
Number of Toppings: 6
Cost (incl tax): 59.85

 Discussion On line 12, cost is initialized to 0.0. Subsequently, the value of cost is

adjusted three times: on lines 16, 20, and 22. The statement on line 16 adds the cost of

the no-topping pizzas to cost . On line 20, the cost of the toppings is added to the cur-

rent value of cost . Finally, the assignment statement on line 22 adds the tax to the value

of cost.
 Would the application run correctly if cost had been initialized to 0 rather than 0.0?

Yes it would, because the declaration on line 12 ensures that the data type of cost is

double . Consequently, 0 is automatically cast to double . What do you think would hap-

pen if cost had not been initialized at all? If you do not know, try compiling and running

the program without initializing cost .

 Statements such as those on lines 16, 20, and 22 occur often. As a convenience, Java

provides the following shortcut assignment operators:

 Operator Shortcut For

�� x �� 10 x � x � 10

�� x �� 10 x � x � 10

*� x *� 10 x � x * 10

/� x /� 10 x � x / 10

%� x %�10 x � x % 10

sim23356_ch03.indd 77sim23356_ch03.indd 77 12/15/08 6:31:19 PM12/15/08 6:31:19 PM

78 Part 1 The Fundamental Tools

With these shortcut assignment operators, the assignment statements on lines 16, 20, and

22 of Example 3.6 can be rewritten respectively as:

 cost �� numPizza* PRICE_OF_PIZZA;
cost �� numTopping* PRICE_OF_TOPPING;
cost �� taxRate*cost;

The following example uses the �� and the %� operators.

 Here’s a simple trick that may start you on a career as a “math-magician.” Ask an unsus-

pecting friend to pick a number from 1 to 1000. Now, instruct your friend to divide the

secret number by 7 and report the remainder. Then tell him/her to do the same with 11

and fi nally 13.

 You can discover your friend’s secret number with the following algorithm:

 1. Multiply the fi rst remainder by the magic multiplier 715.

 2. Multiply the second remainder by the magic multiplier 364.

 3. Multiply the third remainder by the magic multiplier 924.

 4. Add the three products.

 5. The secret number is the remainder when the sum is divided by 1001.

 Problem Statement Write a program that allows the computer to play the role of

math-magician. The program should prompt the user for the appropriate remainders and

display the player’s secret number.

 Java Solution
 1. // Determine a number from 1 to 1000 given
2. // the remainders when the number is divided by 7, 11, and 13
3. import java.util.*;
4. public class MagicalMath
5. {
6. public static void main (String[] args)
7. {

8. Scanner input � new Scanner(System.in);

9. // constants used in the calculation of the mystery number
10. final int MAGIC_MULTIPLIER1 � 715;
11. final int MAGIC_MULTIPLIER2 � 364;
12. final int MAGIC_MULTIPLIER3 � 924;
13. final int FINAL_DIVISOR � 1001;

14. int mysteryNumber � 0; // eventually holds the secret number
15. int remainder;

16. System.out.println("Think of a number from 1 to 1000");

17. System.out.print("Divide by 7 and tell me the remainder:");
18. remainder �input.nextInt() ;
19. mysteryNumber ��remainder * MAGIC_MULTIPLIER1 ;

20. System.out.print("Divide by 11 and tell me the remainder:");
21. remainder �input.nextInt() ;

 EXAMPLE 3.7

sim23356_ch03.indd 78sim23356_ch03.indd 78 12/15/08 6:31:20 PM12/15/08 6:31:20 PM

 Chapter 3 Variables and Assignment 79

22. mysteryNumber �� remainder* MAGIC_MULTIPLIER2;
23. System.out.print("Divide by 13 and tell me the remainder:");
24. remainder � input.nextInt();
25. mysteryNumber ��remainder * MAGIC_MULTIPLIER3;

26. mysteryNumber %� FINAL_DIVISOR ; // the secret number
27. System.out.println("You secret number is " � mysteryNumber);

28. }
29. }

 Output
 Think of a number from 1 to 1000
Divide by 7 and tell me the remainder: 2
Divide by 11 and tell me the remainder: 1
Divide by 13 and tell me the remainder: 10
You secret number is 23

 Discussion Lines 19, 22, 25, and 26 are assignment statements that utilize shortcut

operators. Line 19:

 mysteryNumber ��remainder * MAGIC_MULTIPLIER1;

is equivalent to

 mysteryNumber � mysteryNumber � remainder * MAGIC_MULTIPLIER1;

And, line 26

 mysteryNumber %� FINAL_DIVISOR;

is a compact version of

 mysteryNumber � mysteryNumber % FINAL_DIVISOR;

 Figure 3.5 traces the actions of the program when the secret number is 23 .

FIGURE 3.5 A trace of MagicalMath

 Line 14 : Declare and initialize mysteryNumber to 0.
 Line 15 : Declare remainder (uninitialized)

 Line 18 : 23 % 7 � 2 , so the variable remainder gets the value 2 .

 Line 19 : The variable mysteryNumber gets the value 0 � remainder * 715
which is 1430.

 Line 21 : remainder � 23 % 11 � 1.
 Line 22 : mysteryNumber � 1430 � remainder * 364 � 1794.

 Line 24 : remainder � 23 % 13 � 10.
 Line 25 : mysteryNumber � 1794 � remainder * 924 � 11034.

 Line 26 : mysteryNumber � mysteryNumber % 1001 � 23 .

mysteryNumber remainder

0

0 2

1430 2

1794 1

11034 10

23 10

sim23356_ch03.indd 79sim23356_ch03.indd 79 12/15/08 6:31:21 PM12/15/08 6:31:21 PM

80 Part 1 The Fundamental Tools

 3.11 INCREMENT AND DECREMENT OPERATORS

 In later chapters, you will see a variety of applications that systematically add 1 to the value

of a variable. Typically, this can be done with a statement such as

 number � number � 1;

or

 number �� 1.

Because this operation is so common, Java provides a special increment operator , �� ,

which accomplishes the same effect. In fact, the �� operator has two forms: prefi x and

 postfi x . The following statements illustrate both forms: the fi rst statement uses the prefi x

form of �� and the second statement the postfi x form.

 1. ��number; // prefi x form, adds 1 to number

 2. number��; // postfi x form, adds 1 to number

 Used in standalone statements such as (1) and (2), there is no apparent difference

between the prefi x and postfi x versions of ��. Both accomplish the same task. For exam-

ple, the output of the following two segments is identical.

 int number � 5; int number � 5;
 ��number; //prefix number��; //postfix

System.out.println(number); System.out.println(number);

 In each case, number increases by 1 and the output is 6.

 However, like � or *, the �� operators can be used in a numerical expression. When

used as part of an expression, the postfi x and prefi x versions operate differently. For exam-

ple, consider the following code segments:

 // segment 1 // segment 2

1. int number � 5; 1. int number � 5;
2. int result; 2. int result;
3. result � 3 * (��number); 3. result � 3 * (number��);

4. System.out.println(result); 4. System.out.println(result);

The output of segment 1 is 18 but the output of segment 2 is 15.

 Segment 1 uses the prefi x version of �� (line 3) and the following actions occur in

sequence:

 1. The value of number increases from 5 to 6.

 2. The new value of number (6) is used in the expression 3*(��number).

See Figure 3.6 .

FIGURE 3.6 Prefix operator

number result

5

6

6 18

 int number � 5;

 Increment number ;

 Use the “new” value of number in the expression

 3*(��number) and store the product in result .

sim23356_ch03.indd 80sim23356_ch03.indd 80 12/15/08 6:31:22 PM12/15/08 6:31:22 PM

 Chapter 3 Variables and Assignment 81

 Segment 2 uses the postfi x version of the ��operator (number��). The sequence of

actions is a bit different.

 1. The current value in number (5) is retrieved and stored for use in the expression.

 2. The value of number increases from 5 to 6.

 3. The expression is evaluated using the “old” value (5) and consequently 3 * 5 � 15 is

assigned to result.

 See Figure 3.7 .

FIGURE 3.7 Postfix operator

number result

5

6

6 15

 int number � 5;
 The current value of number (5) will be used in the

evaluation of 3*(number��).

 Increment number ;

 Use the “old” value of number (5) in the expression

 3 * (number��) and store the product in result.

 In general, when using a variable with the prefi x operator in an expression:

 1. The value of the variable is fi rst increased by 1.

 2. The new value is used in the expression.

Alternatively, when using a variable with the postfi x operator in an expression:

 1. The current value of the variable is retrieved for use in the expression.

 2. The value of the variable is increased by 1.

 3. The “original value” of the variable is used in the expression

In addition to the increment operator, Java provides a decrement operator --, which sub-

tracts 1 from its operand. As you would expect, the decrement operator can be used as a

prefi x or postfi x operator.

 The increment and decrement operators, like the operators ��,��,*�, /�, and %�,

are shortcuts, “convenience operators,” and not essential. Moreover, the increment and

decrement operators are usually used in standalone statements and not within expressions.

Thus, it is common to see statements such as

 int x � 20;
...
x��;

However, an expression such as

 5 � 3 * (x��) // AVOID!

is obtuse and confusing, and should be avoided. This type of coding practice is begging

for problems.

 And now, you can probably guess how the language C�� got its name.

sim23356_ch03.indd 81sim23356_ch03.indd 81 12/15/08 6:31:22 PM12/15/08 6:31:22 PM

82 Part 1 The Fundamental Tools

 3.12 AN EXPANDED PRECEDENCE TABLE

 We conclude the chapter with an expanded operator precedence chart that includes the

assignment operators of this chapter. Notice that the increment and decrement operators

have the highest priority. See Figure 3.8 .

high

Operator Associativity

! �� -- Right to left

(type) [cast operator e.g. (int)] Right to left

* / % Left to right

� - Left to right

� �� � �� Left to right

�� !� Left to right

&& Left to right

|| Left to right

� �� -� *� /� %� Right to left

low

 FIGURE 3.8 Operator precedence

 3.13 STYLE

 Although good programming style is partly personal preference, many practices are uni-

versally accepted. Here is a short list of stylistic conventions. As you learn more about Java

and programming, this list will grow.

• Use meaningful variable names.

• If the purpose of a variable is not immediately clear, use a comment to clarify its

purpose.

• Avoid trivial or gratuitous comments such as x � x � 1; // increments x.

• Avoid complex, “clever” expressions in favor of simple, straightforward ones. Short-

cut operators have their place, but use them sparingly.

• Use indentation and line spacing to make your program more readable.

• Initialize variables whenever possible.

• Use explicit casts and parentheses to clarify meaning, even when not technically

necessary.

 3.14 IN CONCLUSION

 In this chapter, you have seen a very powerful programming concept: the variable. Programs

manipulate data; variables store data. The ideas and techniques of this chapter have added

a new level of fl exibility to your programming toolbox. Variables allow your programs

to store values in the computer’s memory as well as retrieve those values from memory.

Moreover, variables facilitate interactive input. In Chapter 4, we show that programs can do

more than evaluate expressions and manipulate variables. Programs can make decisions.

sim23356_ch03.indd 82sim23356_ch03.indd 82 12/15/08 6:31:23 PM12/15/08 6:31:23 PM

 Chapter 3 Variables and Assignment 83

 Just the Facts

• A variable is a named memory location capable of storing data of a specifi ed type.

• You can store a value in a variable, change its contents, and retrieve and use the

variable’s stored value.

• All variables must be declared.

• A variable declaration specifi es (1) the type of data that the variable can hold, and

(2) the name of the variable.

• The Java syntax for a variable declaration is:

 Type name1, name2, name3, . . .;

 where Type is a Java data type (int, double, char, boolean) and nameX is a valid Java

identifi er.

• A variable may be declared and initialized (given an initial value) with a single state-

ment. For example:

 int sum � 0;

• Values may be stored in a variable using an assignment statement.
 An assignment statement has the following format:

 variable � expression

• An assignment statement is also an expression and, as such, evaluates to the value

calculated on the right-hand side of the � operator.

• An assignment is an expression while an initialization statement is not. Therefore,

assignment statements may be chained; initialization statements may not. For

example,

x � y � z � 5;

 is legal, but

int x � y � z � 5;

 is not.

• The assignment statement a � b; does not alter the value of b.

• A variable’s name can be used in an expression, provided that the data type of

the variable makes sense in the expression, and the variable has been assigned

a value.

• A Scanner object can be used for interactive input. One Scanner object can be used

for an unlimited number of input values.

• Before using a Scanner object for input, you must:

 Include the import statement: import java.util.*;

 Declare a Scanner with the statement

 Scanner name � new Scanner (System.in);

 where name is a valid Java identifi er (e.g., input).

• A variable may be declared as fi nal so that its initial value may not be changed. For

example:

 fi nal double PI � 3.14159;

 Final variables are also called constant s. The name of a fi nal variable is traditionally

composed of uppercase letters, digits, and underscores.

sim23356_ch03.indd 83sim23356_ch03.indd 83 12/15/08 6:31:23 PM12/15/08 6:31:23 PM

84 Part 1 The Fundamental Tools

• To assign a value of a larger data type to a variable of a smaller type, a cast must be

used. For example

 int x;
 double y � 3.1987;
 x � (int)y;

• Explicitly casting a variable does not change the contents of that variable. For example:

 double y � 2.5;
int x � (int) y;

 gives x the value 2 but leaves y equal to 2.5.

• Java provides a number of shortcut assignment operators:

 x op � y; is a shortcut for x � x op y;
 where op is �, � , *, /, or %.

• The prefi x increment operator ��x fi rst adds 1 to the value of x and then returns the

altered value of x .

• The postfi x increment operator x�� fi rst returns the value of x and then adds 1 to the

value of x .

• In addition to the increment operator ��, Java provides prefi x and postfi x decrement

operators (– –x and x– –).

• The increment and decrement operators can be applied to a variable of type byte,
short, int, long, fl oat, double, or char but not to a boolean variable.

 Bug Extermination

 When we use variables, some common errors that the compiler can catch are:

• Using a variable before it has been declared.

• Using illegal variable names such as: 3examples, this-is-no-better, or ba_hum_bug!
Stick with the (optional) Java camelCase convention: begin every variable name with

a lowercase letter and each succeeding word in a name with an uppercase letter. For

example, threeExample s , thisIsBetter, and baHumBug all conform to the standard.

• Type mismatch in an assignment statement. Java will not automatically cast a larger

data type to a smaller one. If x is of type short then

 x � 5;

 is a type mismatch because the data type of 5 is int .

• Initialization type error:

 double x � 9;

 is okay, but

 int y � 23.9;

 is not. Java does not automatically cast a double to an int .

• Using a variable before it has been given a value. For example:

 int x;
x � x � 1; // Look! an attempt to use an uninitialized variable.

• Omitting parentheses around a casting operator. For example, fl oat x � fl oat 3.14; // Error

• Using a reserved word as a variable name. For example, int fi nal � 6; // Error

sim23356_ch03.indd 84sim23356_ch03.indd 84 12/15/08 6:31:23 PM12/15/08 6:31:23 PM

 Chapter 3 Variables and Assignment 85

• Chaining initializations. int x � y � 3; // Illegal

 int x � 3, y � 3; or int x � 3, y � x; // Legal

• Using ��, ��, or other such shortcuts in declaration statements.

 int x � 3, y � x; is okay, but

 int x � 3, y �� x; is not.

• Failing to import a necessary Java package, e.g., import java.util.*;

 Although the Java compiler can detect errors of the types just listed, the resulting

error message may be misleading or cryptic. For example, the erroneous initialization

 fl oat x � fl oat 3.14159

results in the compiler message:

 java:38: '.class' expected

fl oat x � fl oat 3.14159;
Be aware of the common errors and pitfalls; don’t rely on the compiler to do all the work

for you.

 Logical errors are certainly more elusive than compile time errors. A few common

errors that the compiler does not detect are:

• Reversing the shortcut operator. For example: using �� as a shortcut instead of ��.

 The statements

 x �� 5;

 and

 x �� 5;

 are both valid but with very different meanings.

• Misusing operator precedence. When in doubt (and sometimes even when not) use

parentheses.

• Confusing prefi x and postfi x operators. For example,

 x � 3;
y � x��;

 gives y the value 3, but

 x � 3;
y � ��x;

 gives y the value 4. It is wise to avoid using �� and �� in expressions.

• Mixing data types can cause surprising results. For most common tasks, stick with

types int and double when using numerical data.

• Confusing � with ��. The former is assignment; the latter is comparison. For

example, the statement

 x � true;

 assigns true to x , and as an expression , always has the value true ; but

 x �� true;

 evaluates to either true or false, depending on the value of x . Depending on its con-

text, this error will sometimes be detected by the compiler, but not always.

sim23356_ch03.indd 85sim23356_ch03.indd 85 12/15/08 6:31:24 PM12/15/08 6:31:24 PM

86 Part 1 The Fundamental Tools

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

1

10

5

8

12

3

14

20

23

18

15

11

9

22

25

13

21

16

24

2726

17

19

76

2

4

 Across
 2 Used for interactive input

 4 A variable name cannot be a ______

 6 Operator || has ___ precedence than &&

 8 Named constants add to the ____ of a

program

 10 A variable that cannot be altered

 11 A variable is accessed via its ______

 12 Statement that places a value in a variable

 14 Java will not automatically ____ a larger

type to a smaller one

 18 Largest integer type

 19 Constant names should be _____

 21 Like main() and println(), nextInt() is a _____

 22 A variable declaration must specify the _____

 23 Smallest integer type

 24 Give a value in a declaration

 26 Assignment is ____ associative

 27 Smaller decimal type

 Down
 1 Choose variable names that

are_______

 3 Scanner method

 5 Every variable must be _____

 7 A Scanner object skips

 9 Named memory location

 13 To use a Scanner you must

____ java.util.*
 15 �� denotes the _____ operator

 16 Type that does not allow casting

 17 �� operator

 20 Number of bits in a short

integer

 25 If x is of type byte then x � 1

is of type___

sim23356_ch03.indd 86sim23356_ch03.indd 86 12/15/08 6:31:24 PM12/15/08 6:31:24 PM

 Chapter 3 Variables and Assignment 87

 SHORT EXERCISES
 1. True or False

 If false, give an explanation.

a. If x has type int and y has type fl oat, then the assignment y � x; is legal.

b. You may declare and initialize a variable in the same statement.

c. The statement x � 2 * y � z ; generates an error.

d. The statement x � y � 2 * z; generates an error.

e. The statement int byte � 350; generates an error.

f. The statement int byt � 350 ; generates an error.

g. The statement byte x � 350 ; generates an error.

h. Variables of type double are stored using 32 bits.

i. The two expressions 3 * 5 / 4 and 3.0 * 5 / 4 evaluate to the same number.

j. The two expressions 3 * 5 / 5 and 3.0 * 5 / 5 evaluate to the same number.

 2. Expressions
 Give the value and data type of each of the following expressions or explain why the

expression results in an error.

 Assume the following declarations:

 int x � 3, w, v;
double y � 2.5;
short z � 's';
boolean m � true;

a. 2 � 7 � x

b. 2 � y � z

c. (2 * z � x) / 100

d. w � y * 2

e. v � (int)5 * y

f. 17 % (int)(10 / y) � 6.2

g. (y �� 2.5) || (m && false)
h. (x � 2.0) && m

i. (z � 'T') || (m �� false)
j. z *� 2 * 2

 3. Playing Compiler
 Determine the syntax errors, if any, in each of the following statements. What error

messages are issued by the Java compiler?

a. int wives � sacks � cats � 7;
b. int total; total �� total � 7;
c. int total � 7; total �� total �� 7;
d. int wives, cats, sacks; wives � sacks � cats � 7;
e. wives � 1 � wives;
f. int x � 7.3;
g. System.out.println("Wives; "� wives);
h. System.out.println("Sacks"; � sacks);
i. System.out.println("Man, � wives, � sack, cats and kits: "� total�7);
j. System.out.println("Man, � wives, � sack, cats and kits: "� total� "7");

 4. What’s the Output?

 Find and correct all the syntax errors in the following program. Determine the

output of the program after you fi x the errors.

sim23356_ch03.indd 87sim23356_ch03.indd 87 12/15/08 6:31:24 PM12/15/08 6:31:24 PM

88 Part 1 The Fundamental Tools

 public static class Huh()
{
 public static int main(String Myname())
 { int public � public2 � 8;
 double x � 4.7;
 public2 � (int) x�� ;
 System.out.Println("I love this stuff " � public2 � "ever");
 public ���x;
 System.out.println("I hate this stuff " � (int) x � "ever");
 System.outprintln("That is the question")
 }

 5. What’s the Output?
 Determine the output of the following code segments or point out the error.

a. int num � 5;
 num � num��;
 System.out.println(num);

b. int num � 5;
 num � ��num;
 System.out.println(num);
c. int num � 5;
 num � num�� � ��num;
 System.out.println(num);
 d. int num � 5;
 num /� 3;
 System.out.println(num);
 e. int num � 5;
 System.out.println(num �� 5);
 f. int num � 5:
 System.out.println(��num � num��);

 6. Parentheses
 Fully parenthesize each of the following expressions so that each expression returns

the specifi ed value. Some of the expressions contain syntax errors that can be fi xed

with parentheses.

 Assume the following declarations:

 int a � 1, b � 2, c � 3, d � 4;
boolean x� true, y � false;

 a. ! a �� b || a !� b || c �� d value: true

 b. ! a �� b || a !� b || c �� d value: false

 c. a � b * c � d / b %3 value: 2

 d. a � b * c � d / b %3 value : 3

 e. a � b * c � d / b %3 value : 9

 f. a � b * c � d / b %3 value: 0

 g. 10 * d / c / 3 * b / 2 * a value: 40

 h. 10 * d / c / 3 * b / 2 * a value: 4

 i. 10 * d / c / 3 * b / 2 * a value: 3

 j. 10 * d / c / 3 * b / 2 * a value: 0

 7. Playing Compiler
 Which of the following assignments are legal?

a. long number � 145;
b. long number � 145.0;

sim23356_ch03.indd 88sim23356_ch03.indd 88 12/15/08 6:31:25 PM12/15/08 6:31:25 PM

 Chapter 3 Variables and Assignment 89

c. fl oat pi � 3.14;
d. fl oat pi � 314e-2;
e. short number � (byte) 120;
f. short number � (byte) 150;
g. byte number � 150;
h. short number � 150;
i. char letter � 123;
j. int a; int b � a � 5;
k. int a; int b � a � 5; boolean c � a � � b;

 8. Expressions
 If variables a, b, and c are type double , are the values a * b / c and a * (b / c) always

the same? If not, give an example where they are different.

 9. Expressions
 If a, b, and c are type int, are the values a * b / c and a * (b / c) the same? If not, give

an example where they are different.

 10. Types and Expressions
 You may be surprised to learn that the statements x�� ; and x � x � 1; are not

necessarily equivalent. Although the following segments appear to be performing

identical tasks, segment (a) produces output and segment (b) does not compile.

 (a) (b)

byte x � 1; byte x � 1;
x��; x � x � 1;
System.out.println(x); System.out.println(x);

 What is the output of (a)? What is the problem with (b)? Hint: Consider data types.

 11. Types and Expressions
 Recall that a variable of type byte can store values in the range �128 to 127. The

statements

 byte x � 127;
x��;

 cause a “byte overfl ow.” Some languages consider this an error, but Java computes

 x��; by “wrapping around” to negative numbers. For example, 127 � 1 is �128.

 Determine the output of the following segment:

 1. byte x � 127;
2. int y � x;
3. x��;
4. y��;
5. System.out.println(x);
6. System.out.println(y);

 Does changing line 3 to x � x � 1; generate a syntax error? If not, what is the

output? Does changing line 4 to y � y � 1; cause an error? If not, what is the

output?

 12. Types and Expressions
 The following statement is supposed to increment the integer variable, x , but it does

not work.

 x � x��; // NOT SO CLEVER

 If x is initialized to 5, what is the value of x after the statement executes?

 Explain what is going on here.

sim23356_ch03.indd 89sim23356_ch03.indd 89 12/15/08 6:31:25 PM12/15/08 6:31:25 PM

90 Part 1 The Fundamental Tools

 Hint : Recall that what really happens with x��; is equivalent to this:

 w � x; // w is a hidden variable you never see.

 x is incremented;

return w;

 PROGRAMMING EXERCISES
 1. Powers of Two
 Write a program that displays the fi rst 6 powers of 2. The output should have the

form:

 2^0 � 1
2^1 � 2
...
2^5 � 32

 2. Average
 Write a program that accepts fi ve values of type double and displays their average.

Do not declare fi ve different variables.

 3. Integer Average
 Write a program that accepts fi ve integers and displays their average as a double .

 4. Area
 Write a program that prompts a user for the dimensions (double) of a room in feet

(length, width, and height) and calculates the total area (walls, fl oor, and ceiling) of

the room.

 5. Shipping Charge
 Write a program that prompts for two double values,

• the weight of a package in pounds, and

• a shipping price per pound,

 and calculates the shipping charge. Your program should print dollars and cents with

two decimal places such as $32.85, and not $32.8467777. (Hint : You can round a

fl oating-point value x to the nearest hundredth by adding .005, multiplying by 100,

casting to an integer, casting back to a double , and dividing by 100.)

 6. Extract Digits
 Write a program that requests a 5-digit integer and displays the digits one at a time.

For example, given 38145, you program should print:

 First digit: 3.

 Second digit: 8.

 Third digit: 1.

 Fourth digit: 4.

 Fifth digit: 5.

 Hint : Use the % and / operations to extract the digits.

 7. Tricky Last Digit
 Write a program that prompts a user for an integer n � 0 and determines the last

digit of 3 n .

 Hint: The last digit depends on the value n % 4. If x � n % 4 , then the last digit of 3 n is:

 �2 x 3 � 8 x 2 � 4 x � 1 . Note that this problem is simpler to do after you have read

Chapter 4.

sim23356_ch03.indd 90sim23356_ch03.indd 90 12/15/08 6:31:25 PM12/15/08 6:31:25 PM

 Chapter 3 Variables and Assignment 91

 8. Sums
 The sum of the fi rst n � 0 positive integers is

n(n�1)

2
 . For example,

1 � 2 � 3 � 4 � 5 �
5(6)

2
 � 15.

 The sum of the squares of the fi rst n � 0 positive numbers is
n(n�1)(2n�1)

6
 . For

example,

 12 � 22 � 32 � 42 � 52 � 5(6)(11) _______
6
 � 55

 The sum of the cubes of the fi rst n � 0 positive integers
[n(n�1)]2

4
 . For example,

13 � 23 � 33 � 43 � 53 �
(5(6))2

4
 � 225

 Write a program that prompts for a positive integer n and displays the three sums:

1 � 2 � . . . � n,

12 � 22 � . . . � n2, and

13 � 23 � . . . � n 3,

 9. Baseball
 Serious baseball fans know that the batting average is a misleading statistic. A better

predictor of a player’s run productivity is the OBAS : on-base average times slugging

percentage. On-base average is defi ned to be (hits � walks � hit by pitch)/ (atBats �
walks � hit by pitch � sacrifi ce fl ies). Slugging percentage is defi ned to be

 totalBases / atBats . Write a program that prompts for six integers: a player’s atBats,
walks, singles, doubles, triples, home runs , and calculates the player’s OBAS . Note

that a single is a one-base hit, a double is a two-base hit, a triple is a three-base hit,

and a home run is a four-base hit. Walks do not count in totalBases . Assume that the

number of hits by pitch and sacrifi ce fl ies are both zero.

 10. Larger or Smaller
 Write a program that accepts fi ve integers, and for each integer following the fi rst,

prints true or false depending on whether or not that integer is greater than the

previous one. This program can be written more simply after reading Chapter 4.

 11. Running Sums
 Write a program that accepts ten integers n1, n2, . . . , n10 and prints a running sum—

that is, your program should display ten sums: n1, n1 � n2, n1 � n2 � n3, and so on.

For example, if the input is 3, 28, 5, 8, 9, 10, 12, 2, 1, -19 then the output is:

 Running sum:

 3

 31

 36

 44

 53

 63

 75

 77

 78

 59

 12. Investment Interest
 Write a program that calculates and displays the amount of money that you have in

the bank three, four, fi ve, and ten years after you have invested initialMoneyInvested

sim23356_ch03.indd 91sim23356_ch03.indd 91 12/15/08 6:31:26 PM12/15/08 6:31:26 PM

92 Part 1 The Fundamental Tools

at an annual rate of interestRate , where initialMoneyInvested and interestRate have

type double .

 Hints : If P is the initial amount invested, then after n years an investment is

worth P (1 � r) n , where r is the interest rate. The method Math.pow(x,n) gives the

value of x n . For example, the following statement calculates 5 3 and stores the result

in variable x :

 int x � Math.pow(5,3);

 13. Compound Interest
 Write a program that calculates and displays the amount of money that you have

in the bank after one, three, and fi ve years if interest is compounded monthly. Your

program should prompt for two numbers (double): the initial investment and the

annual interest rate.

 Hints : If P is the initial amount invested, then after n years an investment is worth

 P (1 � r/ 12) 12 n , where r is the interest rate and interest is compounded monthly. As

in programming exercise 12, use Math.pow(x,n) to obtain the value of x n .

 14. A Magic Trick
 Write a program that plays the following interactive “magician’s” game. Your

program should prompt a player for a four-digit number and permute the digits to

form two numbers. For example, if a player enters 1267 then the two permutations

might be 2176 and 7612. Your program should display these two numbers. Next,

instruct the player to

a. calculate the positive difference between the two numbers,

b. secretly choose any digit in the difference except a zero, and

c. enter the remaining three digits in any order.

 Your program will dazzle the player by supplying the secret digit.

 Here is a sample run:

 Enter a four-digit number: 1267

 I have scrambled your number into two numbers: 2176 and 7612.

 Now subtract the smaller from the larger, and secretly pick a non-zero digit from the

difference.

 Enter the other three digits of the difference: 3 6 4
 The secret digit is 5!

 Hint: The sum of the digits in the difference must be a multiple of 9. Use the

% operator.

 15. Coconuts—A Famous Puzzle
 Here is a variant of a famous old puzzle published originally in The Saturday

Evening Post , 1926, in a short story entitled “Coconuts,” by Ben Ames Williams.

 Five sailors, stranded on an island, spent their fi rst day collecting coconuts. In the

evening, they put all the coconuts into a single pile and went to sleep.

 Sailor One, distrustful of his fellow sailors, woke up during the night, took one

fi fth of the coconuts, and went back to sleep. Then, a hungry monkey shimmied

down a tree and took 1 coconut. A bit later, Sailor Two awoke and took a fi fth of the

remaining coconuts. Again, the monkey came down and took a coconut. Later, the

third, fourth, and fi fth sailors did likewise and the monkey took a coconut each time.

In the morning, when the fi ve sailors tried to divide the remaining coconuts into fi ve

equal piles, they had one coconut left, which they tossed to the ever-hungry monkey.

How many coconuts were in the original pile?

sim23356_ch03.indd 92sim23356_ch03.indd 92 12/15/08 6:31:26 PM12/15/08 6:31:26 PM

 Chapter 3 Variables and Assignment 93

THE BIGGER PICTURE

 There is an infi nite number of solutions to this puzzle. Each solution is of

the form:

number of coconuts � 12495 � 15625*a, where a � 0,1,2,3. . . .

 For example, if a � 0, then the original number of coconuts is 12495 � 15625*0 �

12495; and if a � 1 the number is 12495 � 15625*1 � 28120. Your job is to write

a program that accepts a non-negative integer a, calculates the initial number of

coconuts and displays how many coconuts each man takes, as well as how many

they share in the morning. Here is typical output:

Enter a non-negative integer a : 0
 The initial number of coconuts is 12495.

 Man 1: 2499 coconuts; Monkey: 1 coconut.

 Man 2: 1999 coconuts; Monkey: 1 coconut.

 Man 3: 1599 coconuts; Monkey: 1 coconut.

 Man 4: 1279 coconuts; Monkey: 1 coconut.

 Man 5: 1023 coconuts; Monkey: 1 coconut.

 4091 coconuts remain, each gets 818 and 1 for the monkey.

 16. A Pointy Problem
 The following problem is somewhat diffi cult and has even appeared as a question in

programming competitions. Interestingly, it requires no more programming power

than the assignment statement!

 Given three non-collinear points (x
1
 , y

1
), (x

2
 , y

2
), and (x

3
 , y

3
), calculate the point

equidistant to all three.

 Hints : Consider the triangle formed by the three given points. The point equidistant

to all three points is the intersection of the perpendicular bisectors of the lines of

the triangle. You may assume that all the x and y coordinates are distinct in order to

avoid having to check for the special case of a vertical perpendicular bisector.

 THE BIGGER PICTURE

 BITWISE OPERATORS, BOOLEAN OPERATORS, AND AN
INTERESTING PUZZLE
 Java provides a set of operators that manipulates bits. These so-called bitwise logical oper-
ators are & (and), | (or), ~ (complement or not), and ̂ (exclusive-or) . If you regard the 0 bit

as false , and 1 as true , then the operators &, |, and ~ operate on bits exactly as the standard

logical operators &&, ||, and ! work with boolean values. For example:

 a. 0 & 1 � 0 just as false && true � false;

 b. 0 | 1 � 1 as false || true � true;

 c. ~0 � 1 as !false � true .

In fact, you can use the bitwise operators & and | with boolean operands true and false . So

for example, true & false has the value false , and true | false returns true . The only differ-

ence between the bitwise operators, & and |, and the boolean operators, && and ||, is that

the boolean operators perform short circuit evaluation but the bitwise operators do not.

THE BIGGER PICTURE

sim23356_ch03.indd 93sim23356_ch03.indd 93 12/15/08 6:31:26 PM12/15/08 6:31:26 PM

94 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

Also, the bitwise ~ operator cannot be applied to a boolean operand, that is, ~true or ~false

generates a syntax error.

 The fourth bitwise operator, ^, the exclusive-or operator, has no counterpart among the

standard boolean operators. The exclusive-or operator returns 1 if exactly one operand is 1

and returns 0 otherwise:

 x y x ^ y

 1 1 0

 1 0 1

 0 1 1

 0 0 0

Like & and |, the exclusive-or operator, ^, can be applied to boolean operands. So true ^
false returns true but true ̂ true returns false . The following exercises will help you become

a “bit” more familiar with the exclusive-or operator.

 Exercises
 1. Using a table like the one above, show that x ^ y is equivalent to (x || y) && !(x && y).

 2. Show that x ^ y is equivalent to (x && !y) || (!x && y).

 3. Write a program that verifi es the identities in (1) and (2).

 The program of Example 3.2 uses an additional temporary variable, temp, to exchange the

values of two variables x and y :

 temp � x;

x � y;

y � temp ;

Indeed, this is the standard method used to swap the values in two variables. However, it is

possible to exchange the values stored in two variables without an extra variable!

 Exercise
 4. Show that the sequence of three statements

 x � x ^ y;

 y � x ^ y;

 x � x ^ y;

 exchanges the values of the boolean variables x and y

a. by tracing the execution of these statements by hand on all possible input, and

b. by writing a program that executes these statements.

Because the bitwise operators applied to boolean values behave like the standard boolean

operators, you will probably never need to use the operators & and | in boolean expressions.

However, unlike &&, ||, and !, the bitwise operators can also be applied to integer data.

 Although the expression 123 && 234 does not even compile, the expression 123 &

234 is perfectly legal. Recall from Chapter 1 that Java stores an integer as a sequence of

bits. When applied to integers, &, | , ^, and ~ operate on corresponding pairs of bits . For

example,

• 00001101 | 00010001 � 00011101

• 00001101 & 00010001 � 00000001

• 00011101 ^ 00001101 � 00010000

• ~00001101 � 11110010

sim23356_ch03.indd 94sim23356_ch03.indd 94 12/15/08 6:31:27 PM12/15/08 6:31:27 PM

 Chapter 3 Variables and Assignment 95

THE BIGGER PICTURE

Consequently, the same three statements that exchange the values of boolean variables (see

exercise 4) exchange all the bits of two integer values.

 Exercises
 5. Write a program to verify that the three statements

 x � x ^ y;

 y � x ^ y;

 x � x ^ y;

 exchange the values of the integer variables x and y . Note that no extra “temp”

variable is required for this swap.

 6. Now here is a puzzle to ponder: Using just the integer operators � and �, deter-

mine a set of three assignment statements that exchanges the values stored in two

integer variables without using a third temporary variable.

 Using the exclusive-or operator to exchange the values of two variables without an extra

“temp” variable is a neat trick, but using a temporary variable is the more common and

direct way to accomplish the task.

 Are the bitwise operators useful for anything practical? Indeed they are. The power to

change a single bit in an integer from 0 to 1 or vice versa, does come in handy. For exam-

ple, a word processing program may offer you the following fi ve independent formatting

features:

 a. boldface ,

 b. italics ,

 c. underlining ,

 d.
subscripting

 , and

 e. strikethrough.

With a single mouse click, you can turn each of these features on or off. Of course, a word

processing application must keep track of which features are on and which are off. This

bookkeeping can be done quite simply by manipulating the bits of a single integer.

 Use the fi ve rightmost bits of an integer (or a single byte) to store information

about which options (a through e) are turned on. For example:

 000 11111 indicates all fi ve properties are turned on; the fi ve rightmost

bits are 1.

 000 00101 indicates that boldface (a) and underlining (c) are turned on.

 000 01000 indicates that subscripting is turned on; fourth bit from the

right is 1.

 To implement this scheme, declare fi ve fi nal variables:

 fi nal int BOLDFACE � 1; // 00000001 (shows just the last byte)

 final int ITALICS � 2; // 00000010

 final int UNDERLINE � 4; // 00000100

 final int SUBSCRIPT � 8; // 00001000

 final int STRIKETHROUGH � 16; // 00010000

and another variable to hold the information about which features are on or off.

 int format � 0 ; // stored as 00000000 indicates that initially all features are off

sim23356_ch03.indd 95sim23356_ch03.indd 95 12/15/08 6:31:27 PM12/15/08 6:31:27 PM

96 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 You can use the exclusive-or operator to change any particular bit of the variable format
from 0 to 1 or from 1 to 0 . For example, to store the fact that the boldface and italics fea-

tures are active, use the statements:

 format � format ^ BOLDFACE // 00000000 ^ 00000001 � 00000001

format � format ^ ITALICS // 00000001 ^ 00000010 � 00000011

Notice that format has the value 3, which is stored as 00000011 . To “turn off” the boldface

option, use the exclusive-or again.

 format � format ^ BOLDFACE // 00000011 ^ 00000001 � 00000010

 Exercise
 7. Write a program that prompts for an integer that is stored in variable format . The

program should:

a. “turn on” the boldface , italics and underlining features.

b. determine, for each feature, whether the feature is on or off and print true or

 false , indicating on or off . Use fi ve println statements to do this. Each statement

should print true or false for one particular bit. Hint: Use another bitwise opera-

tor to determine the value of a bit. This trick is called masking.

c. “turn off” underlining and “turn on”
subscripting

 , and strikethrough.

d. print true or false , indicating the values of the underline, subscript, and

 strikethrough bits.

 Output:
 boldface: true

 italics : true

 underline: true

 subscript: false

 strikethrough : false

 underline: false

 subscript: true

 strikethough: true

sim23356_ch03.indd 96sim23356_ch03.indd 96 12/15/08 6:31:28 PM12/15/08 6:31:28 PM

 97

CHAPTER CHAPTER 4
 Selection and Decision:

 if Statements
 “If I had to live my life again, I’d make the same mistakes, only sooner.”

 —Tallulah Bankhead

 “If I could drop dead right now, I’d be the happiest man alive.”
 —Samuel Goldwyn

 Objectives

 The objectives of Chapter 4 include an understanding of

� selection as a mechanism for controlling the fl ow of a program,

� the if statement, the if-else statement, and the switch statement,

� nested selection statements,

� the dangling else problem,

� the else-if construction, and

� the differences between the switch statement and the else-if construction.

 4.1 INTRODUCTION

 Is there anyone who has never used an ATM machine? Typically, a bank offers ATM

customers several options: withdraw cash, make a deposit, check a balance, and so on. A

customer chooses a transaction and the ATM software responds accordingly. Indeed, the

ATM machine (or more precisely, the software controlling the machine) accepts the user’s

decision and implements it.

 Similarly, a poker or blackjack program may ask a player whether she would like

another card dealt. If the player responds “yes,” she receives another card; otherwise she

does not. Once again, the computer selects the next action (to deal or not to deal) based

upon the player’s response.

 When ordering a CD from an online vendor, a buyer supplies his credit card number.

If the number is valid, the vendor’s software processes the order; if the entry is invalid, the

program prompts the customer to re-enter the number. The program selects its response

or subsequent action based on the validity of the credit card number that a customer

submits.

 In each scenario, a computer program selects the next action based upon predeter-

mined criteria or conditions . In this chapter, you will learn how to add selection to your

sim23356_ch04.indd 97sim23356_ch04.indd 97 12/15/08 6:32:24 PM12/15/08 6:32:24 PM

98 Part 1 The Fundamental Tools

programs using Java’s three selection (or conditional) statements:

 1. the if statement,

 2. the if-else statement, and

 3. the switch statement.

 Each option adds the capability of choice and decision-making to a program. In fact,

just about every program that you write from now on will utilize at least one of these

statements.

 4.2 THE if STATEMENT

 We begin with a very simple situation where selection is absolutely necessary to accom-

plish the required task.

 EXAMPLE 4.1 When you buy an item from an online vendor, a $5.00 shipping fee is waived for pur-

chases of $25.00 or more.

 Problem Statement Write a program that calculates the fi nal cost of an item, includ-

ing sales tax and shipping, if applicable. Sales tax is 8% of the purchase price.

 Java Solution A decision statement appears in bold on lines 18–22.

 1. // Given the price of an item, this program calculates the 8% sales tax, adds a $5.00 shipping fee
2. // for items costing less than $25.00 and prints the total cost of the item.

3. import java.util.*;

4. public class BillCalculator
5. {
6. public static void main(String[] args)
7. {
8. Scanner input � new Scanner(System.in);
9. double sale, taxes, total;

10. final double TAX_RATE � 0.08; // notice TAX_RATE is a constant
11. final double SHIPPING_FEE � 5.00; // another constant

12. System.out.print("Enter the item price: ");
13. sale � input.nextDouble();
14. taxes � sale* TAX_RATE;
15. total � sale � taxes;
16. System.out.println("Sale: $" � sale);
17. System.out.println("Tax: $" � taxes);

 18. if (sale � 25.00)

 19. {
 20. total �� SHIPPING_FEE;
 21. System.out.println("Shipping is $5.00");

 22. }
23. System.out.println("Final cost: $" � total);
24. }
25. }

sim23356_ch04.indd 98sim23356_ch04.indd 98 12/15/08 6:32:25 PM12/15/08 6:32:25 PM

 Chapter 4 Selection and Decision: if Statements 99

 Running the program twice produces the following output:

 Output 1
Enter the item price: $ 34.00

Tax: $2.72
Final cost: $36.72

 Output 2
Enter the item price: $ 16.00

Tax: $1.28
Shipping is $5.00
Final cost: $22.28

 Discussion The fi rst display shows the total cost without a shipping fee. The sale is

more than $25.00, so shipping is free. However, when the program runs a second time,

because the sale is just $16.00, a $5.00 shipping fee is added to the order.

 Most of the code in the preceding program is straightforward and requires no

elaboration. The following lines, however, add a new dimension and require a bit of

explanation:

 18. if (sale � 25.00)

 19. {

 20. total �� SHIPPING_FEE;

 21. System.out.println("Shipping is $5.00");

 22. }

 These lines comprise a single if statement. Execution of this statement proceeds as

follows:

 1. The boolean expression sale � 25.00 is evaluated.

 2. If the boolean expression is true , the two statements enclosed by the curly braces

are executed.

 3. If the boolean expression is false , the statements enclosed by the braces are

skipped.

It’s that simple. If the price of an item is $34.00 (see Output 1), then the expression

sale � 25.00 is false and no shipping fee is incurred. On the other hand, if an item costs

$16.00, then sale � 25.00 has the value true . Consequently, a shipping fee is added to

the total and the string “Shipping is $5.00” is displayed.

 The syntax for an if statement is:

 if (boolean-expression)
 {
 statement-1;
 statement-2;
 ...
 statement-n;

 }

sim23356_ch04.indd 99sim23356_ch04.indd 99 12/15/08 6:32:27 PM12/15/08 6:32:27 PM

100 Part 1 The Fundamental Tools

 As Example 4.1 illustrates, boolean-expression is evaluated fi rst. If the value of boolean-
expression is true then all of the statements enclosed by the braces (statement-1, state-
ment-2,…, and statement-n) are executed; if boolean-expression is false then the block of

statements within the curly braces is skipped. See Figure 4.1 .

boolean-expression

statement-1;
statement-2;

........

statement-n;

statement following statement-n

true

false

FIGURE 4.1 The if statement

 Some terminology is in order:

• An if statement is also termed a conditional or selection statement.

• The phrase if (boolean-expression) is called the if clause .

• The boolean expression is also called a boolean condition (or simply a condition).

• The statement-list enclosed by curly braces comprises a block or compound
statement .

 A block is a group of statements enclosed by matching curly braces.

 If the statement-list consists of a single statement the braces may be omitted. A single state-

ment without the braces is not considered a block.

 The following code fragment which determines the largest of three integers (a, b , and c)

is an example of an if statement that does not contain curly braces.

 1. int max � a; //a is biggest so far

 2. if (b � max) // is b bigger than the current maximum?

 3. max � b; // if so, set max to b

 4. if (c � max) // is c bigger than the current maximum?

 5. max � c; // if so set max to c

6. System.out.println ("The maximum value is " �max);

sim23356_ch04.indd 100sim23356_ch04.indd 100 12/15/08 6:32:27 PM12/15/08 6:32:27 PM

 Chapter 4 Selection and Decision: if Statements 101

 Suppose that a, b , and c have the values 3, 5, and 4, respectively. Let’s step through the

fragment:

a b c max

 Line 1 : Variable max is set to 3. So, the “current” maximum value is 3. 3 5 4 3

 Line 2 : The boolean condition b � max is true (since 5 � 3) so the

statement on line 3 executes

3 5 4 3

 Line 3 : Variable max is set to 5. Thus, the current maximum is 5. 3 5 4 5

 Line 4 : The boolean condition c � max is false so the statement on

line 5 is skipped.

3 5 4 5

 Line 6 : The string " the maximum value is 5" is displayed 3 5 4 5

 Alternatively, the same fragment can be written using curly braces:

 int max � a;
 if (b � max)

 {

 max � b;

 }

 if (c � max)

 {

 max � c;

 }

System.out.println("The maximum value is "�max);

 A Few Caveats

• The parentheses surrounding the boolean expression of the if clause are mandatory.

• Do not insert a semicolon after the boolean expression of the if clause.

 Your program may compile, but you will not get the results that you expect. For

example, consider the following erroneous code fragment:

 if (sale � 25.00); // notice the misplaced semicolon
{
 total �� shippingFee;
 System.out.println("Shipping is $5.00");
}

 The semicolon placed after the if clause is a statement terminator that signals the end of

the entire if statement. The semicolon makes this particular if statement equivalent to:

 if (sale � 25.00)
{
 // do nothing
}

 The two statements

 total �� SHIPPING_FEE;
System.out.println("Shipping is $5.00");

 are not a part of the if statement—even though they are enclosed in braces. Together they

comprise a block of two statements that follows an empty if statement. Both statements

 always execute, regardless of the value of the boolean expression sale � 25.00 .

sim23356_ch04.indd 101sim23356_ch04.indd 101 12/15/08 6:32:28 PM12/15/08 6:32:28 PM

102 Part 1 The Fundamental Tools

 • Do not neglect to use curly braces when the statement-list consists of more than one

statement.

Yes, your program may compile and run, but the results may surprise you. For example,

suppose that the curly braces are omitted from the if statement of Example 4.1.

 if (sale � 25.00)
 total �� SHIPPING_FEE;
 System.out.println("ShippingFee is $5.00);

 The output produced by two typical program runs might be:

 Output 1:

Enter the item price: $ 34.00
Tax: $2.72
Shipping is $5.00
Final cost: $36.72

 Output 2:

Enter the item price: $ 16.00
Tax: $1.28
Shipping is $5.00
Final cost: $22.28

 In both cases, the string Shipping is $5.00 appears in the output. In the fi rst case, the

message should not appear because a $34 item incurs no shipping fee. Because the

curly braces are omitted, the complete if statement is really:

 if (sale � 25.00)
 total �� SHIPPING_FEE;

 The subsequent statement:

 System.out.println("Shipping Fee is $5.00)

 is not part of the if statement and is always executed. Many consider it good practice to

always include curly braces even when there is just a single statement attached to an if
clause. This example shows the danger of not doing so.

 4.3 THE if-else STATEMENT

 As you have seen, an if statement allows a program to decide whether to execute or ignore

a particular group of statements.

The if-else statement provides an alternative: if the boolean condition is true, one

group of statements executes, but if the condition evaluates to false, a different group

is selected.

 The following example uses an if-else statement in a program that converts U.S. dollars to

euros, and euros to dollars based upon user input.

sim23356_ch04.indd 102sim23356_ch04.indd 102 12/15/08 6:32:28 PM12/15/08 6:32:28 PM

 Chapter 4 Selection and Decision: if Statements 103

EXAMPLE 4.2 Problem Statement Assume that one euro costs $1.31. Write a program that converts

dollars to euros or euros to dollars based upon user input.

 Java Solution The application prompts the user for an integer: 1 or 2. If the user enters

“1,” a dollar amount is requested and the application displays the equivalent number of

euros. If the user enters “2” or any other integer, euros are converted to dollars.

 1. import java.util.*;
2. public class CurrencyConverter
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. final double DOLLARS_PER_EURO � 1.31; // exchange rate
8. int transactionType;
9. double euros, dollars;

10. System.out.print("Enter 1 to convert from dollars to euros and 2 from euros to dollars: ");
11. transactionType � input.nextInt();

 12. if (transactionType �� 1) // dollars to euros

 13. {

 14. System.out.print("Number of dollars: ");

 15. dollars � input.nextDouble();

 16. euros � dollars/DOLLARS_PER_EURO;

 17. System.out.println("Number of euros: " � euros);

 18. }

 19. else // otherwise euros to dollars

 20. {

 21. System.out.print("Number of euros: ");

 22. euros � input.nextDouble();

 23. dollars � euros* DOLLARS_PER_EURO;

 24. System.out.println("Number of dollars: " � dollars);

 25. }

26. }
27. }

 Two sample executions of the program produce Output1 and Output 2.

 Output 1
 Enter 1 to convert from dollars to euros and 2 from euros to dollars: 1
Number of dollars: 335.36
Number of euros: 256.0

 Output 2
 Enter 1 to convert from dollars to euros and 2 from euros to dollars: 2
 Number of euros: 6908
 Number of dollars: 9049.48

 Discussion Lines 12 through 25 constitute a single if-else statement. Line 12

 (transactionType �� 1) is a boolean condition. If this condition is true , as it is with

sim23356_ch04.indd 103sim23356_ch04.indd 103 12/15/08 6:32:29 PM12/15/08 6:32:29 PM

104 Part 1 The Fundamental Tools

Output 1, then the statements on lines 14 through 17 are selected and those on line 21

through 24 are skipped. If the boolean condition is false , as it is with Output 2, then the

block consisting of lines 14 through 17 is ignored and the block of statements on lines

21 through 24 executes.

 where statement-list-1 and/or statement-list-2 can comprise single statements or a block.

If boolean-expression is true then statement-list-1 is executed and statement-list-2 is

skipped; otherwise, statement-list-1 is skipped and statement-list-2 is executed. Every

time an if-else statement is encountered, one of the two statement-lists always executes.

See Figure 4.2 .

boolean-expression

statements following statement-list 2

statement-list 1 statement-list 2

true false

FIGURE 4.2 The if-else statement

 4.3.1 Nested if-else Statements
An if-else statement can be nested inside another if-else statement, which can be nested

inside another if-else statement, and so on. For example, consider the following fragment:

 1. int grade � input.nextInt(); //user supplies a grade
2. if (grade �� 70)
3. {
 4. if (grade �� 90)

 5. System.out.println("High pass");

 6. else

 7. System.out.println("Pass");

8. }
9. else
10. System.out.println("Fail");

 The syntax of the if else statement is:

 if (boolean-expression)
 statement-list-1
 else
 statement-list-2

sim23356_ch04.indd 104sim23356_ch04.indd 104 12/15/08 6:32:31 PM12/15/08 6:32:31 PM

 Chapter 4 Selection and Decision: if Statements 105

EXAMPLE 4.3

 Here, an if-else statement (lines 4–7) is nested within an if-else statement so that several

paths of execution are possible, depending on the value of grade .

• If, for example, the value of grade is 65, the condition on line 2 is false and the cor-

responding else clause of line 10 executes. The output is “Fail.” Notice that the if-else
statement on lines 4–7 is skipped.

• If grade is 75, the boolean condition on line 2 is true . As a result, the if-else statement

on lines 4–7 executes and the else clause on line 9 is skipped. Because grade is not

greater than or equal to 90, the boolean condition of line 4 is false and the else clause

of line 7 executes. The output is “ Pass.”

• If grade has the value 95, the condition of line 2 is true, so the if-else statement of lines 4–7

executes and the else clause on line 9 is skipped. This time grade is greater than or equal

to 90, so the condition on line 4 is true and the println(…) statement on line 5 executes. The

output is “ High pass .”

 It is good programming practice to test every path through a nested if-else statement.

 The preceding code fragment was a fairly simple example of nested if statements. Exam-

ple 4.3 presents a more complex illustration with several levels of if-else nesting.

 Rock-Scissors-Paper is a game played in schoolyards and even electronically in casinos.

The following version pits human against computer. To play the game, enter a number:

0 (rock), 1 (scissors), or 2 (paper). The computer then randomly selects its play, also 0,

1, or 2. The game results in a win, loss, or tie based on the following rules:

• Rock breaks Scissors (Rock wins).

• Paper covers Rock (Paper wins).

• Scissors cut Paper (Scissors wins).

• If both players choose the same letter, it’s a tie.

For example, if you choose Rock and the computer Paper, the computer wins because

“Paper covers Rock.” On the other hand, if you choose Rock and the computer Scissors,

then you win because “Rock breaks Scissors.”

 Problem Statement Write a program that simulates a game of Rock-Scissors-Paper.

Assume that input supplied by a player is correct.

 Java Solution The application fi rst prompts the player for a number, 0, 1, or 2, signify-

ing the player’s choice: Rock, Scissors, or Paper. Next, the computer chooses a random

number (0, 1, or 2) representing its choice. How is that done? The rather mystifying, if

not magical, expression

 (int)(3*Math.random())

accomplishes the task. You will learn more about random numbers in Chapter 6.

 After the player and computer make their choices, the game is scored. An algorithm

for the scoring of the game is shown in Figure 4.3 .

sim23356_ch04.indd 105sim23356_ch04.indd 105 12/15/08 6:32:31 PM12/15/08 6:32:31 PM

106 Part 1 The Fundamental Tools

if the player and the computer make the same choice
 it’s a tie
else

if the player chooses rock

if the computer chooses scissors, the player wins
else the computer wins // the computer chooses paper

else // player chooses scissors or paper

if the player chooses scissors

if the computer chooses rock, the computer wins
else the player wins // the computer chooses paper

else // the player chooses paper

if the computer chooses rock, the player wins
else the computer wins // the computer chooses scissors

FIGURE 4.3 The logic for scoring Rock-Scissors-Paper

 The following program implements the algorithm of Figure 4.3 .

 1. import java.util.*;
2. public class RockScissorsPaper
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. final int ROCK � 0, SCISSORS � 1, PAPER � 2; // constants representing options

8. int player, computer; // human vs. computer
9. System.out.print("Rock:0; Scissors:1; Paper:2 -- Choose: ");
10. player � input.nextInt();
11. computer � (int)(3*Math.random()) ; // a random number 0, 1, or 2
12. System.out.println("The computer chooses " � computer);
13. System.out.println("***");

14. if (player �� computer) // both choose the same value
15. System.out.println("It’s a tie!");
16. else
17. if (player �� ROCK)
18. if (computer �� SCISSORS)
19. System.out.println("Player: rock\nComputer: scissors\nPlayer wins");
20. else // computer chooses paper

sim23356_ch04.indd 106sim23356_ch04.indd 106 12/15/08 6:32:32 PM12/15/08 6:32:32 PM

 Chapter 4 Selection and Decision: if Statements 107

21. System.out.println("Player: rock\nComputer: paper\nComputer wins.");
22. else // player chooses scissors or paper
23. if (player �� SCISSORS)
24. if (computer �� ROCK)
25. System.out.println("Player: scissors\nComputer: rock\nComputer wins.");
26. else // computer chooses paper
27. System.out.println("Player: scissors\nComputer: paper\nPlayer wins.");
28. else //player chooses paper
29. if (computer �� ROCK)
30. System.out.println("Player: paper\nComputer: rock\nPlayer wins.");
31. else //computer chooses scissors
32. System.out.println("Player: paper\nComputer: scissors\nComputer wins.");
33. }
34. }

 The following display gives three rounds of play:

 Output 1
 Rock:0; Scissors:1; Paper:2 -- Choose: 1
The computer chooses 2

Player: scissors
Computer: paper
Player wins.

 Output 2
 Rock:0; Scissors:1; Paper:2 -- Choose: 2
The computer chooses 1

Player: paper
Computer: scissors
Computer wins.

 Output 3
 Rock:0; Scissors:1; Paper:2 -- Choose: 0
The computer chooses 0

It's a tie!

 Discussion The application contains several if-else statements, some of which are

nested inside others. The layout of the program shows how the various if s and else s pair

up. For example, the if on line 17 pairs with the else on line 22; the if on line 23 matches

the else on line 28; and the if on line 29 pairs with the else on line 31. Figure 4.3 illus-

trates this logic.

 Starting with the prompt on line 9, we trace round 1, line by line:

 Line Action

 9: Prompts player for a number.

 10: Player chooses 1, that is, Scissors.

sim23356_ch04.indd 107sim23356_ch04.indd 107 12/15/08 6:32:33 PM12/15/08 6:32:33 PM

108 Part 1 The Fundamental Tools

 11: The computer randomly chooses a number, 0, 1, or 2.

 12: The computer has chosen 2 (Paper).

 14: The boolean condition player �� computer is false , so ignore

line 15 and continue with the else clause on line 17.

 17: The boolean condition player �� rock is false, so ignore lines 18–21

and continue at line 22.

 23: The boolean condition player �� scissors is true, so continue

to line 24.

 24: The boolean expression computer �� rock is false, so continue

at line 27.

 27: Print Player: scissors

 Computer: paper
 Player wins.

 As an exercise (see Short Exercise 4), trace through the other two rounds of the game.

 4.3.2 An Ambiguity—The “Dangling else ” Problem
 In the application of Examples 4.2 and 4.3, each if was matched with a corresponding else.
The code segment

 if (a � 1)
if (b � 10)
 System.out.println("D'oh!"); // says Homer Simpson
else
 System.out.println(" What's up, Doc?"); // says Bugs Bunny

that possibly displays either the wisdom of Homer Simpson or the curiosity of Bugs Bunny,

illustrates a classic ambiguity.

 If you look closely at this small fragment, you may wonder:

 which if clause, (a � 1) or (b � 10), is associated with the single else clause ?

Two possible interpretations of this if-els e construction are reasonable (as emphasized by

the braces):

 Interpretation 1:

if (a � 1)
{
 if (b � 10)
 System.out.println("D'oh!"); //Homer Simpson
 else
 System.out.println(" What's up, Doc?"); //Bugs Bunny
}

 In this case, the single else clause is paired with the second if clause.

sim23356_ch04.indd 108sim23356_ch04.indd 108 12/15/08 6:32:33 PM12/15/08 6:32:33 PM

 Chapter 4 Selection and Decision: if Statements 109

 Interpretation 2:

if (a � 1)
{
 if (b � 10)
 System.out.println("D'oh!"); //Homer Simpson
}
else
 System.out.println(" What's up, Doc?"); //Bugs Bunny

 Here, the else clause belongs to the fi rst if clause.

 To emphasize the difference between the two if-else pairings, consider the following

four cases:

 1. a � 3; b � 20;
2. a � 3; b � 5;
3. a � 0; b � 20;
4. a � 0; b � 5;

With each of these assignments (1–4), interpretation 1 produces the following output:

 1. D'oh!
2. What's up, Doc?
3. //No output is displayed

4. //No output is displayed

If we use interpretation 2, the results are different:

 1. D'oh!
2. //No output is displayed

3. What's up, Doc?
4. What's up, Doc?

So, which if clause owns the else ? How does Java pair an if with an else ?

 An else is paired with the innermost if.

 Thus, interpretation 1 is correct. Of course, you can force interpretation 2 by including the

appropriate braces, but without braces the else is paired with the innermost if .

 4.3.3 The else-if Construction
 A special, perhaps simpler, case of nested if-else statements is the else-if construction,

which is illustrated by Example 4.4.

EXAMPLE 4.4 Are you competitive? Are you always punctual? Do you always feel rushed? If so, psy-

chologists might say that you have a “Type A” personality. On the other hand, are you a

slow talker? Do you procrastinate? Well, then perhaps your personality is “Type B.” Or

maybe your personality is a combination of both types.

 Problem Statement Write a program that administers a short, if unscientifi c, person-

ality test, scores the test, and determines whether or not the user’s personality is Type A,

Type B, or somewhere in between.

sim23356_ch04.indd 109sim23356_ch04.indd 109 12/15/08 6:32:34 PM12/15/08 6:32:34 PM

110 Part 1 The Fundamental Tools

 Java Solution The following application prompts a user for a response to each of

eight questions. Each answer is an integer in the range 1 to 5, where 1 means never and

5 always . The answers are added and, based on the fi nal sum, a “diagnosis” is offered.

Lines 33–42 illustrate the else-if construction.

 1. import java.util.*;
2. public class PsychologyTest
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int score � 0;

8. //administer the test and keep track of the score
9. System.out.println("Answer each of the following questions with a number from 1 to 5");
10. System.out.println("such that 1 means ‘NEVER’ and 5 means ‘ALWAYS’\n");

11. System.out.print("1. I am competitive: ");
12. score � score � input.nextInt();

13. System.out.print("2. I am annoyed by people who are late for appointments: ");
14. score � score � input.nextInt();

15. System.out.print("3. I perform several tasks simultaneously: ");
16. score � score � input.nextInt();

17. System.out.print("4. I am ambitious: ");
18. score � score � input.nextInt();

19. System.out.print("5. I rush to get tasks completed: ");
20. score � score � input.nextInt();

21. System.out.print("6. I worry about the future: ");
22. score � score � input.nextInt();

23. System.out.print("7. I am in a race with time: ");
24. score � score � input.nextInt();

25. System.out.print("8. I speak very rapidly: ");
26. score � score � input.nextInt();

27. System.out.println();

28. //determine the personality type based on the score:
29. // 35-40 Type A
30. // 21-34 Between A and B, tending towards A
31. // 12-20 Between A and B, tending towards B
32. // 8-11 Type B
 33. if (score �� 35)

 34. System.out.println("Score: " � score � ". Your personality is Type A");

 35. else

 36. if (score �� 21)

 37. System.out.println("Score: " � score � ". You are between A and B tending towards A");

 38. else

 39. if (score �� 12)

 40. System.out.println("Score: " � score � ". You are between A and B tending towards B");

 41. else

 42. System.out.println("Score: " � score � ". Your personality is Type B");

43. }
44. }

sim23356_ch04.indd 110sim23356_ch04.indd 110 12/15/08 6:32:34 PM12/15/08 6:32:34 PM

 Chapter 4 Selection and Decision: if Statements 111

 Output
 Answer each of the following questions with a number from 1 to 5
such that 1 means NEVER and 5 means ALWAYS

1. I am competitive: 3
2. I am annoyed by people who are late for appointments: 4
3. I perform several tasks simultaneously: 3
4. I am ambitious: 4
5. I rush to get tasks completed: 2
6. I worry about the future: 2
7. I am in a race with time: 3
8. I speak very rapidly: 4

Score: 25. You are between A and B tending towards A

 Discussion First, look at lines 11 and 12. These lines

 1. prompt the user with an assertion (line 11) and

 2. add the answer to the contents of variable score (line 12).

These actions are repeated on lines 13–26, once for each “test question.” You should

have no diffi culty understanding the statements on these lines.

 Lines 33–42 contain a nested if-else construction. Figure 4.4 shows the if-else
 parings; each else is paired with the closest if. Let’s trace through the code using various

values for score : 38, 25, 15, and 10.

if (score �� 35)

 System.out.println("Score:" � score � ". Your personality is Type A");

else

if (score �� 21)

 System.out.println("Score:" � score � ". You are between A and B tending towards A");

else

if (score �� 12)

 System.out.println("Score:" � score � ". You are between A and B tending towards B");

else

 System.out.println("Score:" � score � ". Your personality is Type B");

 FIGURE 4.4 Each else is paired with the nearest if.

 • 38 . Since 38 � 35, the boolean expression on line 33 evaluates to true , and

 consequently, line 34 executes. That’s it. There is no more. The remainder of the

code (36–42) belongs to the else clause on line 35 and that code is skipped.

 • 25 . Because score has the value 25, the condition on line 33 is false and line 34 is

skipped. Next, the condition on line 36 evaluates to true . The statement on line 37

executes and the remainder of the code is ignored.

33

34

35

36

37

38

39

40

41

42

sim23356_ch04.indd 111sim23356_ch04.indd 111 12/15/08 6:32:35 PM12/15/08 6:32:35 PM

112 Part 1 The Fundamental Tools

 • 15 . The condition on line 33 has the value false . Next, the condition on line 36 is

also false . Finally, the condition on line 39 evaluates to true and the statement on

line 40 executes.

 • 10 . The condition on line 33 has the value false . Next, the condition on line 36 is

false . And the condition on line 39 also evaluates to false . The statement attached

to the fi nal else (line 42) executes.

 Unlike the programs in Chapters 1 through 3, the execution of a program with if-else
statements can follow different paths. Notice that the sample data that we chose for Exam-

ple 4.4 (38, 25, 15, and 10) test every branch of the if-else statement.

It is a good practice to test your programs with data that will demonstrate the fl ow of

the program through every possible path of execution.

 You may have noticed the following features of the nested if-else statements in Example 4.4:

• The if clauses are examined sequentially, one after the next.

• The fi rst time a boolean condition has the value true , the statement (block) attached

to that if clause executes and all subsequent code of the nested if-else statement is

skipped.

• If none evaluates to true , the statement attached to the fi nal else clause executes.

 To emphasize the semantics of the nested if-else statements, programmers usually

format such statements as

 if (boolean-expression1)
 statement-list-1;
 else if (boolean-expression2)
 statement-list-2;
 else if (boolean-expressionlist-3)
 statement-list-3;
...
 else
 statement-list-n;

 For example, lines 33–42 of Example 4.4 are more commonly (and preferably) formatted as:

 if (score �� 35)
 System.out.println("Score: " � score � ". Your personality is Type A");
 else if (score �� 21)
 System.out.println("Score: " � score � ". You are between A and B tending towards A");
 else if (score �� 12)
 System.out.println("Score: " � score � ". You are between B and B tending towards B");
 else
 System.out.println(“Score: “ � score � ”. Your personality is Type B”);

 The logic of the Rock-Scissors-Paper application (Example 4.3) can also be trans-

formed into a more lucid " else-if layout." The following fragment does just that, and it also

includes an error check for invalid data. Although the fragment is longer than the code

shown in Example 4.3, it is indeed more clear and complete.

sim23356_ch04.indd 112sim23356_ch04.indd 112 12/15/08 6:32:36 PM12/15/08 6:32:36 PM

 Chapter 4 Selection and Decision: if Statements 113

if (player �� computer)
 System.out.println("It's a tie!");
 else if (player �� ROCK && computer �� SCISSORS)
 System.out.println("Player: rock; Computer: scissors; Player wins");
 else if (player �� ROCK && computer �� PAPER)
 System.out.println("Player: rock; Computer: paper; Computer wins");
 else if (player �� SCISSORS && computer �� ROCK)
 System.out.println("Player: scissors; Computer: rock; Computer wins");
 else if (player �� SCISSORS && computer ��PAPER)
 System.out.println("Player: scissors; Computer: paper; Player wins");
else if (player �� PAPER && computer �� ROCK)
 System.out.println("Player: paper; Computer: rock; Player wins");
 else if (player �� PAPER && computer �� SCISSORS)
 System.out.println("Player: paper; Computer: scissors; Computer wins");
 else
 System.out.println("Invalid choice: " � player);

 Example 4.5 illustrates the else-if construction with an application that models a primitive

ATM machine.

 EXAMPLE 4.5 Problem Statement Write a program that simulates a rather simple ATM machine.

The program prompts a customer for a transaction code:

• 1—withdrawal,

• 2—deposit,

• 3—check balance, or

• 4—exit.

 The application subsequently carries out the customer’s request. Use the else-if con-

struction. Assume that the beginning balance is $5423.00.

 Java Solution The application implements the following algorithm:

 prompt the user for a transaction
 if the transaction is 1 // withdrawal
 prompt for an amount

 if the withdrawal amount exceeds the balance
 display a message and do not process the transaction
 else
 adjust the balance and display the new balance

 else if the transaction is 2 // deposit
 Adjust the balance and display the new balance

else if the transaction is 3 // a balance request
 display the balance

else if the transaction is 4 //exit
 display a "Thank you" message

sim23356_ch04.indd 113sim23356_ch04.indd 113 12/15/08 6:32:36 PM12/15/08 6:32:36 PM

114 Part 1 The Fundamental Tools

 else

 display : "invalid transaction code"

 1. import java.util.*;
2. public class ATM
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. double deposit, withdrawal;
8. double balance � 5423.00; //initial balance
9. int transaction;
10. System.out.println("Welcome! Enter the number of your transaction");
11. System.out.println("Withdraw cash: 1");
12. System.out.println("Make a deposit: 2");
13. System.out.println("Check your balance: 3");
14. System.out.println("Exit: 4");
15. System.out.println("--------------------");
16. System.out.print("Transaction number: ");
17. transaction � input.nextInt();

 18. if (transaction �� 1)
19. {
20. System.out.print("Enter amount: ");
21. withdrawal � input.nextDouble();
22. if (withdrawal � balance)
23. System.out.println("Invalid withdrawal amount");
24. else
25. {
26. balance -� withdrawal;
27. System.out.println("Your new balance is $" � balance);
28. }
29. }

 30. else if (transaction �� 2)
31. {
32. System.out .print ("Enter amount of deposit: ");
33. deposit � input.nextDouble();
34. balance �� deposit;
35. System.out.println("Your new balance is $" � balance);
36. }

 37. else if (transaction �� 3)
38. System.out.println("Your balance is $" � balance);

 39. else if (transaction �� 4)
40. System.out.println("Thank you.");

 41. else

42. System.out.println("Invalid transaction");
43. }
44. }

sim23356_ch04.indd 114sim23356_ch04.indd 114 12/15/08 6:32:37 PM12/15/08 6:32:37 PM

 Chapter 4 Selection and Decision: if Statements 115

 Running the program twice produces the following output:

 Output 1
 Welcome! Enter the number of your transaction
Withdraw cash: 1
Make a deposit: 2
Check your balance: 3
Exit: 4

Transaction number: 3

Your balance is $5423.0

 Output 2
 Welcome! Enter the number of your transaction
Withdraw cash: 1
Make a deposit: 2
Check your balance: 3
Exit: 4

Transaction number: 2
Enter amount of deposit: 1000.00
Your new balance is $6423.0

 Discussion Consider Output 1. When prompted, the user enters 3 as the transaction

number. Consequently,

• the boolean condition of line 18 (transaction �� 1) is false and the subsequent

block (lines 19–29) is skipped.

• Next, the boolean condition of line 30 is also false and lines 31–36 are skipped.

• Finally, the boolean condition of line 37 is true and the statement on line 38

executes.

At this point, because one of the boolean conditions is true , the testing proceeds no fur-

ther. Testing skips from one boolean condition to the next until one condition evaluates

to true . If none evaluates to true , the statement of the fi nal else clause executes.

 4.4 THE switch STATEMENT

Java’s switch statement sometimes offers a more compact alternative to the else-if
construction.

 The following else-if segment displays a one-word description for each letter grade A

through F.

if (grade �� 'A')
 System.out.println("Excellent");
 else if (grade �� 'B')
 System.out.println("Good");
 else if (grade �� 'C')
 System.out.println("Average");

sim23356_ch04.indd 115sim23356_ch04.indd 115 12/15/08 6:32:38 PM12/15/08 6:32:38 PM

116 Part 1 The Fundamental Tools

else if (grade �� 'D')
 System.out.println("Passing");
else
 System.out.println("Failure");

 As you know, each boolean condition is evaluated in turn. When a condition evaluates

to true, the corresponding println (…) statement executes and the else-if construction

terminates.

 The following switch statement accomplishes the same task.

 switch(grade)
{
 case 'A': System.out.println("Excellent"); break;
 case 'B': System.out.println("Good"); break;
 case 'C': System.out.println("Average"); break;
 case 'D': System.out.println("Passing"); break;
 default : System.out.println(Failure");
}

 The switch statement works as follows:

• The value of grade is compared to each “ case value” ('A', 'B', 'C', and 'D') until a match

is found.

• If one of the case values matches the value of grade , the corresponding println(…)
statement executes and the break statement terminates the switch statement.

• If no case value matches the value of grade, then the statement of the default case

executes.

The switch statement behaves in a manner similar to the else-if construction. Example 4.6

accomplishes the same task as Example 4.5 using a switch statement rather than the else-if
construction.

 Problem Statement Write a program that simulates an ATM machine. Use a switch
statement rather than an else-if construction.

 Java Solution
 1. import java.util.*;

2. public class ATMMachine
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. double balance � 5423.00, deposit, withdrawal;
8. int transaction;
9. System.out.println("Welcome! Enter your the number for your transaction");
10. System.out.println("Withdraw cash: 1");
11. System.out.println("Make a deposit: 2");
12. System.out.println("Check your balance: 3");
13. System.out.println("Exit: 4");

14. System.out.print("Transaction number: ");
15. transaction � input.nextInt();

 EXAMPLE 4.6

sim23356_ch04.indd 116sim23356_ch04.indd 116 12/15/08 6:32:39 PM12/15/08 6:32:39 PM

 Chapter 4 Selection and Decision: if Statements 117

 16. switch (transaction)

 17. {

 18. case 1: System.out.println("Enter amount");

 19. withdrawal � input.nextDouble();

 20. if (withdrawal � balance)

 21. System.out.println("Invalid amount");

 22. else

 23. {

 24. balance -� withdrawal;

 25. System.out.println("Your new balance is $" � balance);

 26. }

 27. break;

 28. case 2: System.out .println("Enter amount of deposit: ");

 29. deposit � input.nextDouble();

 30. balance �� deposit;

 31. System.out.println("Your new balance is $" � balance);

 32. break;

 33. case 3: System.out.println("Your balance is $" � balance);

 34. break;

 35. case 4: System.out.println("Thank you.");

 36. break;

 37. default: System.out.println("Invalid transaction");

 38. }

39. }
40. }

 Discussion The preceding application produces output identical to the output of

Example 4.5. However, this program accomplishes its task using a switch statement

(lines 16–38) rather than the else-if construction.

 We begin with line 16:

 switch (transaction)

 The variable transaction , enclosed by parentheses and following the keyword switch , is

called the switch expression. Following line 16, and enclosed in curly braces, you will

notice a number of cases . Each case includes a possible value for this switch expression

followed by a colon. In this example, these values are 1, 2, 3, or 4. (See lines 18, 28, 33,

and 35.) When the switch statement executes,

• each case value is examined in turn;

• if the value of transaction matches one of the case values, the code associated with

that case is executed and the break statement terminates the switch statement;

• if the value of transaction does not match any of the case values, then the code

associated with the default case (line 37) executes.

 So, for example, if an ATM customer chooses transaction number 3 (line 15), then

the value of transaction is 3. That’s the value of the switch expression. This value 3 is

compared to the case value on line 18, which is 1. There is no match. Next, the value

is tested against the second case value (line 28); again no match. Finally the third case

is tried. This time the value of the switch expression and the case value are both 3 and

do, in fact, match. Consequently, the code associated with this case value (line 33) is

executed, and the output is:

 Your balance is $5423.0

sim23356_ch04.indd 117sim23356_ch04.indd 117 12/15/08 6:32:40 PM12/15/08 6:32:40 PM

118 Part 1 The Fundamental Tools

No further testing is attempted. The break statement on line 34 terminates the switch

statement.

 Now suppose that a customer inadvertently enters 6. Again each case value is

tested, but none matches 6. This time the code for the default case (line 37) executes and

the output is:

 Invalid transaction.

The break statement that appears after the code belonging to each case (lines 27, 32, 34,

and 36) causes the program to exit (“break out of”) the switch statement. To demonstrate

the necessity of the break statements, suppose that the break statements had been omit-

ted from the preceding switch statement:

 1. switch (transaction)
2. {
3. case 1: System.out.println("Enter amount");
4. withdrawal � input.nextDouble();
5. if (withdrawal � balance)
6. System.out.println("Invalid amount");
7. else
8. balance -� withdrawal;
9. System.out.println("Your new balance is $" � balance);
10. }
11. case 2: System.out .println("Enter amount of deposit: ");
12. deposit � input.nextDouble();
13. balance �� deposit;
14. System.out.println("Your new balance is $" � balance);
15. case 3: System.out.println("Your balance is $" � balance);
16. case 4: System.out.println("Thank you.");
17. default: System.out.println("Invalid transaction");
18. }

Again, assume that a customer chooses transaction 3. As before, the fi rst two case val-

ues (lines 3 and 11) do not match, but the third case value (line 15) does match. The

output may be surprising to you:

 Your balance is $5423.0
Thank You.
Invalid transaction

What happened? Once case 3 is selected, the code belonging to case 3 executes, and so

does all the code attached to any subsequent case (i.e., case 4 and the default case). To avoid

executing this extraneous code, a break statement must be placed after the code attached to

each case value. The break statements cause the switch statement to terminate. However,

you will soon see situations where you might purposely omit some break statements.

 In its simplest form, the syntax of the switch statement is:

 switch (switch-expression)
{
 case casevalue- 1: statement;

 statement;
...
 statement;
 break;

sim23356_ch04.indd 118sim23356_ch04.indd 118 12/15/08 6:32:41 PM12/15/08 6:32:41 PM

 Chapter 4 Selection and Decision: if Statements 119

 case casevalue- 2: statement;
 statement;
...
 statement;
 break;

 ...
 case casevalue- n: statement;

 statement;
...
 statement;
 break;

 default: statement;
 statement;
...
 statement;

}

The switch statement works as follows:

• switch-expression is evaluated.

• The list of case values (casevalue-1, casevalue-2, … , casevalue-n) is searched in

order until one of the case values matches the value of switch-expression.

• If a match is found, the statements associated with that case execute, and the

break statement causes the termination of the switch statement.

• If no match is found, the statements of the default case execute.

 The default case is optional. If you omit the default case and none of the case values match

 switch-expression, then the switch statement performs no action. The break statements are

also optional, as you will soon see.

 A few amplifi cations, variations, and warnings are in order.

• The value of switch-expression must be an integer or character type; switch-expression

cannot evaluate to a fl oating-point or boolean type.

• The case values must be constants.

• Although the switch expression of Example 4.6 is a variable, any integer or character

expression is permissible, as the following segment indicates:

 // test1, test 2, and test3 are each integers with values
// in the range 0-4.
switch ((test1 � test2 � test3)/3) // integer division
 {
 case 4: System.out.println("Grade: A");

break;

 case 3: System.out.println("Grade: B");
break;

 case 2: System.out.println("Grade: C");
break;

sim23356_ch04.indd 119sim23356_ch04.indd 119 12/15/08 6:32:42 PM12/15/08 6:32:42 PM

120 Part 1 The Fundamental Tools

 case 1: System.out.println("Grade: D");
break;

 default: System.out.println("Grade: F);
 }

• The break statement can be used in other contexts, independent of the switch state-

ment. You will see further uses of the break statement in later chapters.

 There are circumstances when you might want to omit some break statements from a

 switch statement. One such situation arises when the same action is appropriate for several

 case values. For example, when playing the game craps, a player rolls two dice. If the

value shown on the dice is 7 or 11, the player wins; if the value is 2, 3, or 12, the player

loses. Any other value is called the player’s “point” and the game is not (yet) resolved. The

following code fragment uses a switch statement to display the outcome of the fi rst toss of

the dice in craps.

 switch (diceValue)
{
 // 7 or 11 is a win
 case 7:
 case 11: System.out.println("You rolled " � value � " you win!);

break;

 //2, 3, or 12 is a loss
 case 2:
 case 3:
 case 12: System.out.println("You rolled "� value � " you lose!");

break;

 // 4, 5, 6, 8, 9, or 10 is the "point"
 default: System.out.println("You rolled " � value � "that's your point!");
}

 If a player tosses a 7, that is, diceValue is 7, there is a match with case 7. Since there is

no break statement attached to case 7, execution continues until either a break statement is

encountered or the switch statement terminates. Thus, if diceValue equals 7, the following

output is displayed:

 You rolled 7. You win!

This same message is also displayed if diceValue is 11. The case values 7 and 11 both

require the same action. Similarly, a value of 2, 3, or 12 causes execution of the statement

belonging to case 12 .

 An equivalent else-if construction is:

 if (diceValue �� 7 || diceValue �� 11)
 System.out.println("You rolled " � value � " you win!);
else if (diceValue �� 2 || diceValue �� 3 || diceValue �� 12)
 System.out.println("You rolled "� value � " you lose!");
else
 System.out.println("You rolled " � value � "that's your point!");

One version is no better than the other; the choice is a stylistic decision. On the other hand,

sometimes there is just good style and bad style. For example, although the else-if construction

sim23356_ch04.indd 120sim23356_ch04.indd 120 12/15/08 6:32:43 PM12/15/08 6:32:43 PM

 Chapter 4 Selection and Decision: if Statements 121

of Example 4.4 can be written as a switch statement, the else-if version is certainly preferable

and less cumbersome. Compare the two:

 The else-if Version
 if (score �� 35)
 System.out.println("Score: " � score � ". Your personality is Type A");
 else if (score �� 21)
 System.out.println("Score: " � score � ". You are between A and B tending towards A");
 else if (score �� 12)
 System.out.println("Score: " � score � ". You are between A and B tending towards B");
 else
 System.out.println("Score: " � score � ". Your personality is Type B");

 The switch Version

 switch (score) // every value must be enumerated!
{
 case 40:
 case 39:
 case 38:
 case 37:
 case 36:
 case 35: System.out.println("Score: " � score � ". Your personality is Type A");

break;
 case 34:
 case 33:
 case 32:
 case 31:

 case 21: System.out.println("Score: " � score � ". You are between A and

B tending towards A"); break;

 //etc.
}

 Although the choice between switch and else-if is often a matter of preference, conve-

nience, or style, there are situations when the else-if construction is the only reasonable

option. Example 4.7 presents such a case.

 EXAMPLE 4.7 The following is a variation of the Prisoner’s Dilemma, a famous logic puzzle. Two

rather inept crooks, Bozo and Bongo, have been arrested. The district attorney presents

their options:

• If one but not the other confesses, the one who confesses will go free but the other

will get 10 years in prison.

• If neither confesses, then they will both get a one-year term for pretty theft.

• If both confess, they will each get a fi ve-year term.

Each crook must separately and independently report his decision to the DA.

sim23356_ch04.indd 121sim23356_ch04.indd 121 12/15/08 6:32:43 PM12/15/08 6:32:43 PM

122 Part 1 The Fundamental Tools

 Problem Statement Write a program that accepts the decisions of prisoners Bozo and

Bongo and reports the result.

 Java Solution
 1. import java.util.*;
2. public class PrisonersDilemma
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. boolean prisoner1Confesses � true;
8. boolean prisoner2Confesses � true;
9. int response;

10. // Enter data for Prisoner 1
11. System.out.println("For each prisoner enter 1 for a confession and 0 otherwise");
12. System.out.print("Prisoner1: ");
13. response � input.nextInt();
14. if (response �� 0) // Prisoner 1 does not confess
15. prisoner1Confesses � false;

16. // Enter data for Prisoner 2
17. System.out.print("Prisoner2: ");
18. response � input.nextInt();
19. if (response �� 0) // Prisoner 2 does not confess
20. prisoner2Confesses � false;

 21. if (prisoner1Confesses && prisoner2Confesses) //both confess

 22. System.out.println("Both confessed. Each gets 5 years!");

 23. else if (prisoner1Confesses && !prisoner2Confesses) // 1 confesses; 2 does not

 24. System.out.println("Prisoner 1 goes free; Prisoner 2 gets 10 years.");

 25. else if (!prisoner1Confesses && prisoner2Confesses) // 2 confesses; 1 does not

 26. System.out.println("Prisoner 2 goes free; Prisoner 1 gets 10 years.");

 27. else // neither confess

 28. System.out.println("Neither confessed. Each gets one year.");

29. }
30. }

 Output
 For each prisoner enter 1 for a confession and 0 otherwise
Prisoner1: 1
Prisoner2: 0
Prisoner 1 goes free; Prisoner 2 gets 10 years.

 Discussion The else-if construction on lines 21–28 enumerates the four possibili-

ties. Recall that the switch expression and the case values must be integer or character

types. Consequently, this particular else-if construction cannot be converted directly to

a switch statement, because the conditions that are tested are boolean expressions and

not integer or character expressions. On the other hand, the else-if construction can

sim23356_ch04.indd 122sim23356_ch04.indd 122 12/15/08 6:32:44 PM12/15/08 6:32:44 PM

 Chapter 4 Selection and Decision: if Statements 123

 4.5 IN CONCLUSION

 Your programs are now capable of making decisions, and Java provides you with several

decision-making options: the if statement, the if-else statement, and the switch state-

ment. By nesting these selection statements, your programs can implement some rather

complex logic, as you have seen in the program of Example 4.3 that plays the game

Rock-Scissors-Paper. Nonetheless, that program runs just once and stops. Wouldn’t it

be more user friendly to ask a player whether he/she would like to play the game again,

and again, and perhaps again? The Rock-Scissors-Paper program does not have that

capability.

 In Chapter 5, we show you how to include repetition in your programs so that your

Rock-Scissors-Paper application can be continually played 10, 100, or even 1000 times.

 Just The Facts

• An if statement has the following form:

 if (boolean-expression)
{
 statement-1;
 statement-2;
 ...
 statement-n;
}

• The boolean-expression in an if statement is also called a condition.

• The group of statements enclosed by curly braces is called a block.

• If the condition of an if statement evaluates to true then the block executes; otherwise

the block is skipped.

• An if-else statement has the following form:

 if (boolean-expression)
 statement-list-1
 else
 statement-list-2

 where statement-list-1 and statement-list-2 can be blocks or single statements.

• The if-else statement works like this:

 If boolean-expression is true then

 statement-list-1 is executed and statement-list-2 is skipped;

 otherwise

 statement-list-1 is skipped and statement-list-2 is executed.

be converted indirectly to a switch statement using integer case values to encode the

prisoners’ responses. However, you may fi nd that the necessary encoding entails an

unwieldy style.

sim23356_ch04.indd 123sim23356_ch04.indd 123 12/15/08 6:32:44 PM12/15/08 6:32:44 PM

124 Part 1 The Fundamental Tools

 Every time an if-else statement is encountered, exactly one of the two statement-lists,

 statement-list-1 or statement-list-2, always executes.

• An else clause is paired with the innermost if .

• The else-if construction has the following form:

 if (boolean-expression-1)
 statement-list-1 ;

 else if (boolean-expression-2)
 statement-list-2;

 else if (boolean-expression-3)
 statement-list-3;
...
 else

 statement-list-n ;

• The else-if construction works like this:

 The boolean expressions are evaluated in turn. When boolean-expression-i evaluates

to true , the corresponding block (statement-list-i) executes and the if-else statement

terminates. If none of the boolean expressions is true , statement-list-n executes. The

 else-if construction is a special case of a nested if statement.

• It is a good practice to test your programs with data that will demonstrate the fl ow of

the program through every possible path of execution.

• The switch statement has the following form:

 switch (switch-expression)
{

 case casevalue-1: statement;
 statement;
...
 statement;
 break; //optional

 case casevalue-2: statement;
 statement;
...
 statement;
 break; //optional

 ...
 case casevalue-n: statement;

 statement;
...
 statement;
 break; //optional

 default: statement; //optional
 statement; //optional
 ...
 statement; //optional
}

• The switch statement works like this:

 switch-expression is evaluated. The value of switch-expression is compared to the

 case values, in turn. If a match exists, the code associated with that case value

 executes. If no match is found, the code of the default case is selected.

sim23356_ch04.indd 124sim23356_ch04.indd 124 12/15/08 6:32:45 PM12/15/08 6:32:45 PM

 Chapter 4 Selection and Decision: if Statements 125

• The switch-expression must evaluate to an integer or a character. It may not evaluate

to a boolean or fl oating-point type.

• The break statement terminates a switch statement. Omitting a break statement

causes execution of the code of subsequent cases.

• The case values in a switch statement are constants.

• The default case of a switch statement is optional. If no default case is included

and the value of switch-expression matches none of the case values, then no action

is taken.

• The break statements are optional. There are times when purposefully omitting a

 break statement is useful.

• An else-if construction can easily do the job of any switch statement, but not

vice versa. The choice of which statement to use is a matter of both style and

technique.

 Bug Extermination

 The Java compiler can detect many of the errors associated with if and if-else statements.

For example, the omission of parentheses surrounding the boolean condition is an easy

mark for the compiler. However, many common errors cannot be fl agged as easily by the

compiler and may produce some rather strange output.

 For example, the segment

 if (x � 5)
 System.out.println("too small");
 x��;

is very different from

 if (x � 5)
{
 System.out.println("too small");
 x��

}

 The fi rst segment always increments x‚ while the second segment does not.

Indentation does not take the place of braces.

 A semicolon immediately following the boolean condition is another common bug

that goes undetected by the compiler. The semicolon following the condition

 (x � 5) ;

looks perfectly fi ne to the compiler, but it is probably not what you intend. The semicolon

signals the end of the if statement. Indeed, the statement

 if (x � 5);

is equivalent to

 if (x � 5)
 { // do nothing}

sim23356_ch04.indd 125sim23356_ch04.indd 125 12/15/08 6:32:45 PM12/15/08 6:32:45 PM

126 Part 1 The Fundamental Tools

 The following list enumerates some common errors that occur when using if and if-else

statements. Some of these errors are easily detected by the compiler, but many are not.

• Omitting parentheses surrounding the boolean condition of an if statement.

• Mistakenly inserting a semicolon after the if clause but before the block of an if
statement.

• Neglecting to enclose a block in matching curly braces.

• Omitting the semicolon after the last line in the block. The closing brace does not

terminate a statement.

• Mismatching curly braces in a deeply nested if-else statement.

• Using � instead of �� in a boolean condition.

• Incorrect operator precedence in a boolean condition. Use parentheses to be sure!

• Unintentionally omitting break statements in a switch statement.

• Intentionally but incorrectly omitting break statements.

• Incorrectly closing or omitting the closing brace of a switch statement.

• Using variable expressions instead of constants for a case value in a switch

statement.

• Using fl oating-point or boolean expressions in a switch condition.

sim23356_ch04.indd 126sim23356_ch04.indd 126 12/15/08 6:32:45 PM12/15/08 6:32:45 PM

 Chapter 4 Selection and Decision: if Statements 127

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

 Across
 4 A case value must be a

 6 Statements in curly braces

 8 Terminates the switch statement

 9 The boolean expression of an if
clause

 12 Optional in a switch statement

 13 An if statement is also called a

 statement

 17 Every switch statement

includes

 18 Keyword with switch statement

 19 Do not place a after the if
clause

 20 Data type of a condition

 Down

 1 Alternative to else-if construction

 2 The condition of an if statement is

enclosed by

 3 Nested if construction

 5 An else is paired with the if
 7 if statements inside if statements

inside if statements

 10 Every else must have an

 11 A case value cannot be a

 14 Follows a case value

 15 if statement with an alternative

 16 A classic ambiguity: the

 else

1 2 3

6

9

14

19

16

17

7

12

11

4

8

5

20

1513

18

10

sim23356_ch04.indd 127sim23356_ch04.indd 127 12/15/08 6:32:45 PM12/15/08 6:32:45 PM

128 Part 1 The Fundamental Tools

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. Every if clause has a matching else clause.

b. By default, an else clause is paired with the closest if clause.

c. switch (x � 5) causes a syntax error.

d. The case values of a switch statement cannot be of type double .

e. Every if clause is followed by a block.

f. A semicolon placed after an if clause causes a syntax error.

g. Omitting the curly braces that enclose the block of an if clause causes a

syntax error.

h. Omitting parentheses that enclose the boolean expression of an if clause causes a

syntax error.

i. Every switch statement can be directly converted to an else-if construction.

j. Every else-if construction can be directly converted to a switch statement.

k. Every case of a switch statement must include a break statement.

l. The default case of a switch statement is optional.

m. if statements may be nested within other if statements.

 2. Playing Compiler
 Determine which of the following boolean expressions generate syntax errors, and

in each case describe the error. For those expressions that are syntactically correct,

determine the value of the expression.

 Assume the following declarations:

 int a � 2, b � 4, c � 7;
double x � 2.0, y � 3.14, z � –7.0;
boolean m � true, n � false;

a. ((a � 7) || (b � 6))
b. ((a � 7) && (b � 6))
c. ((x � 2.5) || (a �� 2) && (c � 7))
d. ((x � 2.0) && (c �� 7))
e. (m � (!n && (m || n)))
f. (m �� ((y �� y/2) && (a �� b)))
g. ((m �� 0) || (z �� 7.0))
h. (m && n && (a �� b))
i. (c �� -z)
j. (m �� a)
k. ((b/2 �� x) && (2 * a �� b))
l. ((int) (b/2) �� (double) x)
m. (x � y � z � 1.86 !� 0)
n. (a �� x��)
o. ((int) m �� 0)
p. ((x � z) || (m � n))

 3. What’s the Output?
 Consider the following two unformatted code segments where variables a and b

have been declared as boolean :

 (i) if (a)
 if (b) System.out.println("Hello");
 else System.out.println("Goodbye")

sim23356_ch04.indd 128sim23356_ch04.indd 128 12/15/08 6:32:46 PM12/15/08 6:32:46 PM

 Chapter 4 Selection and Decision: if Statements 129

(ii) if (a)
 {if (b) System.out.println("Hello");}
 else System.out.println("Goodbye");

 Determine the output of each segment, (i) and (ii), assuming:

a. a � true, b � true
b. a � true, b � false
c. a � false, b � true
d. a � false, b � false

 4. Tracing
 For the program of Example 4.3, trace the execution of Output 2 and the execution

of Output 3.

 5. What’s the Output?
 Determine the output of the following three code segments:

 (a) int a � 3;
 if (a�� �� 3)
 System.out.println("Three");
 else
 System.out.println("Four");

(b) int a � 3;
 if (��a �� 3)
 System.out.println("Three");
 else
 System.out.println("Four");

(c) int a � 3;
 a � a��;
 if (a �� 3)
 System.out.println("Three");
 else
 System.out.println("Four");

 6. What’s the Output?
 Determine the output of the following poetic switch statement or point out the

errors.

 int a � 3;
switch (a)
{

case 1: System.out.println(" Once upon a midnight dreary, while I pondered weak and weary, ");
case 2: System.out.println(" Over many a quaint and curious volume of forgotten lore, ");
case 3: System.out.println(" While I nodded, nearly napping, suddenly there came a tapping, ");
case 4: System.out.println(" As of some one gently rapping, rapping at my chamber door ");
case 5: System.out.println(" Tis some visitor, I muttered, tapping at my chamber door, ");
default: System.out.println(" Only this, and nothing more. ");

}

sim23356_ch04.indd 129sim23356_ch04.indd 129 12/15/08 6:32:46 PM12/15/08 6:32:46 PM

130 Part 1 The Fundamental Tools

 7. What’s the Output?
 Determine the output of the following rather complicated Java fragment for each of

the declarations (a) through (j).

 if (a � b)
{
 b��;
 if (b � c)
 c��;
 if (y �� x)
 y��;
 else z ��;
 if (!m)
 {
 System.out.println("You may find yourself ");
 System.out.println("Living in a shotgun shack ");
 System.out.println(a � b);
 System.out.println(y � a);
 }
 else
 {
 System.out.println("You may ask yourself ");
 System.out.println("Well - How did I get here? ");
 System.out.println(a � b);
 System.out.println(x � y);
 }
}
else
{
 a � b � c;
 if (x !� 0)
 x � y � z;
 if (a !� c)
 c � c � 1;
 else
 c � c � 1;
 if (c �� 5)
 System.out.println("Same as it ever was " � a);
 else if (c �� 6)
 System.out.println("Same as it ever was " � b);
 else if (c �� 7)
 System.out.println("Same as it ever was " � c);
 else
 System.out.println("Same as it ever was " � x);
}

a. int a � 2, b � 4, c � 7; double x � 2.0, y � 3.14, z � �7.0; boolean m � true;
b. int a � 7, b � 1, c � 5; double x � 2.0, y � 2.0, z � 4.5; boolean m � false;
c. int a � 8, b � 2, c � 6; double x � 0.0, y � 0.0, z � 2.5; boolean m � true;
d. int a � 7, b � 3, c � 4; double x � 12.1, y � 1.2, z � 2.8; boolean m � false;
e. int a � 3, b � 9; c � 2; double x � 4.0, y � 4.0, z � 1.5; boolean m � false;
f. int a � 2, b � 7, c � 1; double x � 2.7, y � 2.7, z � 1.1; boolean m � true;

sim23356_ch04.indd 130sim23356_ch04.indd 130 12/15/08 6:32:47 PM12/15/08 6:32:47 PM

 Chapter 4 Selection and Decision: if Statements 131

g. int a � 9, b � 9, c � 9; double x � 9.0, y � 9.0, z � 0.0; boolean m � false;
h. int a � �3, b � �3, c � 0; double x � 1.1, y � 1.2, z � 1.3; boolean m � true;
i. int a � 5, b � 2, c � 8; double x � 0.0, y � 0.0, z � �2.5; boolean m � false;
j. int a � 0, b � 1, c � 1; double x � 1.5, y � 2.5, z � 1.0; boolean m � false;

 8. Style
 Explain why, at least stylistically, you would not use a switch statement to

accomplish the same task as the following else-if construction. Assume the variable

 grade is an integer in the range 0–100.

if (grade �� 90)
 System.out.println('A');
else if (grade �� 80)
 System.out.println('B');
else if (grade �� 70)
 System.out.println('C');
else if (grade �� 60)
 System.out.println('D')
else
 System.out.println('F');

 9. Find the Error
 What, if anything, is incorrect with the following switch statement:

Scanner input � new Scanner(System.in);
int number;

switch (number �� input.nextInt % 2)
{
 case 0: System.out.println("Even"); break;
 default: System.out.println("Odd");
}

 10. Find the Error
 Is the following statement syntactically correct? If not, describe the error, otherwise

give the output when answer �� 'Y' and also when answer �� 'N' . You may

assume that answer is declared elsewhere as char.

if (answer �� 'Y'); else System.out.println(" Hello");

 PROGRAMMING EXERCISES
 1. Sort Three
 Write a program that accepts three integers and displays the numbers in order from

lowest to highest.

 2. Taxes
 Write a program that calculates the Minnesota state income tax according to the

following rules:

 Income Tax Rate

 $0–$19,440 5.35%

 $19,441–$63,860 7.05%

 Over $63,860 7.85%

 All data are type double .

sim23356_ch04.indd 131sim23356_ch04.indd 131 12/15/08 6:32:47 PM12/15/08 6:32:47 PM

132 Part 1 The Fundamental Tools

 3. Positive Sum
 Write a program that prompts for fi ve integers and calculates the sum of those that

are positive.

 4. A Vending Machine
 Write a program that simulates a vending machine. The machine holds six items

numbered 1 through 6, with prices $1.25, $.75, $.90, $.75, $1.50, and $.75,

respectively. The input to your program is an integer and a fl oating-point number

representing an item number and a sum of money. If the money is enough to buy the

item, your program should print:

 "Thank you for buying item X . Your change is Y ."

 If the money inserted is insuffi cient, then your program should say so. The following

display gives typical output:

 Enter an item number and a sum of money: 3 1.00
Thank you for buying item 3. Your change is $.10

Enter an item number and a sum of money: 6 0.25
Please insert another $.50

 5. Medical Diagnosis
 Write a program that helps people self-diagnose the symptoms of an earache according

to the following self-help chart. Your program should ask questions and suggest a

diagnosis based on a user’s replies. Use 1 for a “yes” answer and 0 for a “no.”

 Does the pain get worse when you pull at your earlobe?

 Yes: You probably have an infection of the outer ear canal.

 No: Do you have a blocked-up feeling in your ear that cannot be cleared by swallowing?

 Yes: Did the pain begin after an airplane fl ight?

 Yes: Changes in air pressure may have damaged your inner ear.

 No: Has your hearing become worse over the past few weeks?

 Yes: You may have wax blockage.

 No: You may have an acute middle ear infection.

 No: Is there a sticky yellow-green discharge?

 Yes: You may have an infection of the outer ear canal or middle ear.

 No: Do you have a cold?

 Yes: Earache is a common symptom of colds.

 No: Do you also have pain your teeth or jaw?

 Yes: Tooth or gum trouble is sometimes felt as ear

pain—contact your dentist.

 No: Unable to suggest a diagnosis—Contact your

physician.

 6. Tricky Last Digit Revisited
 Write a program that accepts an integer n � 0 and determines the last digit of 3 n .

 Hint : The last digit depends on n % 4 . The last digit is 3, 9, 7, or 1 depending on

whether n % 4 is 1, 2, 3, or 0, respectively.

 7. Craps
 In the casino version of the game craps, a player rolls two dice. If he bets on the

“don’t pass” line, he

• loses with a 7 or 11

• wins with 2 or 3

• neither wins nor loses with 12 (and must begin the game again)

• continues rolling with 4, 5, 6, 8, 9, or 10.

sim23356_ch04.indd 132sim23356_ch04.indd 132 12/15/08 6:32:47 PM12/15/08 6:32:47 PM

 Chapter 4 Selection and Decision: if Statements 133

 Write an application that generates two random integers between 1 and 6 inclusive,

and determines whether or not the player wins, loses, starts over, or keeps rolling.

Use an else-if construction.

 Hint : To generate a random integer in the range 1–6 use the expression

 (int)(6 * Math.random() � 1)

 8. Toll-Free Numbers
 As of the year 2008, a 10-digit phone number that begins with either 800, 888,

877, or 866 is toll free. Write a program that reads in a 10-digit phone number and

displays a message that states whether or not the number is toll free. For example:

 input: 8005651009

 output: 800-565-1009 is a toll-free number.

 Hint : Read the number as a 10-digit integer of type long and break the number into

pieces using the operators / and %.

 9. Unusual Encoding
 Write a program that reads 10 single-digit integers and displays a string consisting

of 10 characters using the coding scheme:

 Digit Corresponding Character

 0 a

 1 b

 2 c

 … …

 9 j

 For example, if input consists of the 10 digits 1 8 6 1 0 3 1 8 5 5, the application

responds with "bigbadbiff."

 10. Market Price
 The price of produce is marked down by 10% if you buy more than three pounds,

and it is reduced by 20% if you buy over six pounds. Write a program that prompts

a user for the price per pound of fruit (double) and the desired number of pounds

(double). The program should print the total price for the produce rounded to the

nearest penny.

 11. Grade Conversion
 A certain school assigns numerical grades ranging from 0 to 100. Write a program

that queries the user for a numerical score and converts the score to a letter grade

according to the following criteria:

 0–59: F; 60–69: D; 70–72: C�; 73–76: C; 77–79 C�; 80–82: B�; 83–86: B;

87–89: B�; 90–92: A�; 93–96: A; 97–100: A�.

 12. Friendly Numbers
 A fi ve-digit integer is said to be friendly if the leftmost digit is divisible by 1, the

leftmost two digits are divisible by 2, the leftmost three digits are divisible by 3,

the leftmost four digits are divisible by 4, and the leftmost fi ve digits (the fi ve-digit

number itself) is divisible by 5. For example, the number 42325 is friendly because

4 is divisible by 1, 42 is divisible by 2, 423 is divisible by 3, 4232 is divisible by 4,

and 42325 is divisible by 5. Write a program that prompts for a fi ve-digit integer and

determines whether or not the number is “friendly.”

sim23356_ch04.indd 133sim23356_ch04.indd 133 12/15/08 6:32:48 PM12/15/08 6:32:48 PM

134 Part 1 The Fundamental Tools

 13. Stock Commission
 Write a program that accepts a value (double) representing a stock sale and

calculates the commission according to the following table:

 Stock Sale Commission

 � $100 $20

 $100–$999 $20 � 1% of price over $99

 $1000–$9999 $30 � .5% of price over $999

 $10000–$99999 $75 � .25% of price over $9999

 14. Bowling
 A game of tenpin bowling consists of 10 frames. In each frame you are given at

most two chances to knock over all 10 pins with a bowling ball. Each frame is

scored based on the number of pins that you knock over. If, in any frame, all 10 pins

fall on the fi rst roll of the ball, you’ve made a strike, and the score for that frame is

10 plus the number of pins that you knock over on your next two rolls. If you knock

down some pins on the fi rst roll and the remainder on the second roll, that’s a spare

and the score for the frame is 10 plus the number of pins that fall on the fi rst roll of

the next frame. If you don’t knock over all the pins with two rolls of the ball, your

score for the frame is the number of pins you did knock down. If you get a strike in

the tenth frame, then you get a bonus of two extra rolls, and if you get a spare in the

tenth frame, you get one extra roll.

 For example, the following cumulative score assumes that your throws in one

game are:

 Frame Roll1 Roll2 Score (cumulative)

 1 10 strike 20 (10 � 9 � 1)

 2 9 1 spare 37 (10 � 7)

 3 7 2 46 (7 � 2)

 4 4 6 spare 56 (10 � 0)

 5 0 10 spare 74 (10 � 8)

 6 8 1 83 (8 � 1)

 7 10 strike 106 (10 � 10 � 3)

 8 10 strike 123 (10 � 3 � 4)

 9 3 4 130 (3 � 4)

 10 7 3 spare 149 (10 � 9)

 Extra 9 bonus

 Write a program that accepts a sequence of integers (such as 10, 9, 1, 7, 2, 4, 6, 0,

10, 8, 1, 10, 10, 3, 4, 7, 3, 9) representing the number of pins knocked down each

time a players rolls the ball, and determines the fi nal score. Your output should be

similar to the following:

 Frame 1—Ball 1: 10

 Frame 2— Ball 1: 9
 Ball 2: 1

 Frame 3— Ball 1: 7

 Ball 2: 2

 Frame 4— Ball 4: 4

 Ball 2: 6

 Frame 5— Ball 1: 0

 Ball 2: 10
 Frame 6— Ball 1: 8

 Ball 2: 1

sim23356_ch04.indd 134sim23356_ch04.indd 134 12/15/08 6:32:48 PM12/15/08 6:32:48 PM

 Chapter 4 Selection and Decision: if Statements 135

 Frame 7— Ball 1: 10
 Frame 8— Ball 1: 10
 Frame 9— Ball 1: 3

 Ball 2: 4

 Frame 10— Ball 1: 7

 Ball 2: 3
 Extra— Ball 1: 9
Your total score is 149.

 In Chapter 5, you will see that this problem has a more compact solution.

 THE BIGGER PICTURE

 “GO TO” STATEMENT CONSIDERED HARMFUL
 In the earliest days of programming (1950s), before the advent of high-level languages,

programmers wrote code exclusively in machine language. Every instruction in machine

language had an associated number, and the instructions were executed in numerical order.

One of the most commonly used instructions was the branch or “go to” statement. The

instruction goto 100 meant that the computer, rather than continuing execution in sequen-

tial order, should instead jump to the instruction labeled 100 and continue sequentially

from there. Some of the early high-level programming languages borrowed their features

from machine language, and “go to” statements were prevalent in BASIC and Fortran.

 In 1968, Edsger W. Dijkstra published a now famous paper “Go To Statement Con-

sidered Harmful.” The article begins: “For a number of years I have been familiar with the

observation that the quality of programmers is a decreasing function of the density of go to

statements in the programs they produce.”

 Dijkstra went on to explain why:

 “The unbridled use of the go to statement has an immediate consequence that it becomes

terribly hard to fi nd a meaningful set of coordinates in which to describe the process

progress.”

 Here is a program written in an early version of BASIC. It accepts three integers, and its

semantics should be self-explanatory.

 10 print "Input 3 numbers"
20 input x
22 input y
24 input z
30 if x � y goto 60
35 if x � z goto 80
40 if y � z goto 75
50 goto 90
60 if y � z goto 90
65 if x � z goto 75
68 print x
70 goto 95

THE BIGGER PICTURE

sim23356_ch04.indd 135sim23356_ch04.indd 135 12/15/08 6:32:48 PM12/15/08 6:32:48 PM

136 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

75 print z
77 goto 95
80 print x
85 goto 95
90 print y
95 print "is the answer."
100 End

 Exercises
 1. What is this program computing?

2. Write a simple and clear version of this program in Java using nested if-else

statements.

3. Describe in your own words why “go to” statements might be considered harmful.

4. What do you think the phrase “spaghetti code” means?

sim23356_ch04.indd 136sim23356_ch04.indd 136 12/15/08 6:32:48 PM12/15/08 6:32:48 PM

 137

 Repetition
 “There is repetition everywhere, and nothing is found only once in the world.

 —Goethe

 “I don’t mind the moonlight swims, it’s the loop-the-loop that hurts”
 —from Bye Bye Birdie

 Objectives

 The objectives of Chapter 5 include an understanding of

 � repetition and loops: the while, do-while , and for statements,

� the differences and similarities among the while, do-while , and for statements,

� the types of errors that occur with ill-formed loops: infi nite loops and “off by one”

errors,

� nested loops, and

� the break statement used to exit a loop.

 5.1 INTRODUCTION

 Computers, unlike humans, are tireless, experiencing neither boredom nor fatigue. Repeat-

ing an operation millions of times presents no problem to a computer with an internal clock

that ticks billions of times every second. In this chapter, we present three Java constructions

that allow repetition in programs:

 1. the while statement,

 2. the do-while statement, and

 3. the for statement.

We begin our discussion with the while statement.

 5.2 THE while STATEMENT

 As we saw in Chapter 4, conditional statements allow programs to make choices and

decisions. Yet, even with such powerful tools, we cannot write an application that cal-

culates the sum of an arbitrary list of integers. We can write a program that adds exactly

5 integers and a different (albeit tedious) application that sums exactly 50 integers. But,

can we write a program fl exible enough to add 5 integers, 50 integers, 50,000 integers, or

even 50,000,000 integers?

CHAPTER CHAPTER 5

sim23356_ch05.indd 137sim23356_ch05.indd 137 12/15/08 6:34:11 PM12/15/08 6:34:11 PM

138 Part 1 The Fundamental Tools

 With a while loop, the addition of 50 numbers can be achieved as easily and compactly

as the addition of 5 or 50,000 numbers. The following segment adds 50 numbers with just a

few lines of code. There is nothing special about 50, and we can just as easily add 500,000

numbers.

 1. int sum � 0;
2. int count � 0;
3. while(count � 50)
4. {
5. sum � sum � input.nextInt();
6. count��;
7. }
8. System.out.print(“Sum is “ � sum);

 The statements on lines 3–8 execute as follows:

 1. The condition on line 3 (the boolean expression, count � 50) is evaluated.

 2. If the condition, count � 50, is true , continue to line 5:

 a. A number is accepted from the keyboard and added to sum (line 5).

 b. Variable count is increased by 1 (line 6).

 c. Program control returns to the “top of the loop” (line 3), and the process repeats.

 3. However, if the condition on line 3 is false ,

 a. The statements on lines 5 and 6 are skipped.

 b. Program control passes to line 8 and the sum is displayed.

 The assignment statement

 sum � sum � input.nextInt() // line 5

executes 50 times. Repetition is second nature to a computer.

 Figure 5.1 shows the logic of the loop. Example 5.1 incorporates a similar loop into a

full application.

count � 50

int sum � 0;
int count � 0;

sum � sum � input.nextInt()

true

false

count��

System.out.print(“Sum is” � sum)

FIGURE 5.1 A loop that adds 50 integers

sim23356_ch05.indd 138sim23356_ch05.indd 138 12/15/08 6:34:12 PM12/15/08 6:34:12 PM

 Chapter 5 Repetition 139

EXAMPLE 5.1 Problem Statement Write a program that sums a list of integers supplied by a user.

The list can be of any size. The program should prompt the user for the number of

data.

 Java Solution The following application utilizes three variables: size, sum,
and count .

• size is the number of data;

• sum holds a running sum of the numbers supplied by the user so that each time the

user enters a number, that number is added to sum ; and

• count keeps track of the number of data.

Variables sum and count are initialized to 0; the value of size is supplied by the user.

The addition is accomplished using a while loop similar to the loop in the segment that

precedes this example.

 1. import java.util.*;
2. public class AddEmUp
3. {
4. // adds an arbitrarily long list of integers
5. // the user first supplies the size of the list
6. public static void main (String[] args)
7. {
8. Scanner input � new Scanner(System.in);

9. int sum � 0; // Running sum
10. int count � 0; // Keeps track of the number of integers
11. int size ; // Size of the list

12. System.out.print("How many numbers would you like to add? ");
13. size � input.nextInt();
14. System.out.println("Enter the " � size � " numbers");

15. while (count � size) // while the number of data is less than size repeat:

 16. {

 17. sum � sum � input.nextInt(); // read an integer, add it to sum

 18. count��; // keep track of the number of data

 19. }

20. System.out.println("Sum: " � sum);
21. }
22. }

 Below, we display output generated from a list of three numbers followed by output

obtained from a list of 12. Notice that the data of Output 1 are entered on separate lines,

while Output 2 shows data entered on a single line terminated by pressing Enter. In

each case, data values are separated by whitespace, and the specifi c input format is not

important.

sim23356_ch05.indd 139sim23356_ch05.indd 139 12/15/08 6:34:13 PM12/15/08 6:34:13 PM

140 Part 1 The Fundamental Tools

 Output 1
How many numbers would you like to add? 3
Enter the 3 numbers
5
7
9
Sum: 21

 Output 2
How many numbers would you like to add? 12
Enter the 12 numbers
23 45 65 23 43 12 87 56 34 31 84 90
Sum: 593

 Discussion The program through line 14 is fairly simple. Lines 15 through 19 com-

prise a while loop. Following the keyword while and enclosed in parentheses is a boolean
expression or condition (line 15), followed by a block (lines 16–19). If the condition is

true , the block executes, otherwise it is skipped.

 In this regard, the action of a while statement mimics the behavior of the if state-

ment. However, in contrast to the if statement, after the block executes, program control

returns to line 15. Once again, the condition is tested, and if the condition is true , the

block executes again. This repetition continues until the condition, count � size , is

false . With each iteration, count increases by 1, so eventually count exceeds size , the

condition evaluates to false , and the repetition stops.

 Figure 5.2 shows the action of the loop.

while (count � size)
{
 sum � sum � input.nextlnt();
 count��;
}

Repeat these statements as long as the
boolean condition(count � size)is true

FIGURE 5.2 The actions of a while loop

 Figure 5.3 traces through the program using the data of Output 1.

 The condition (count � size) may seem perplexing. Shouldn’t the condition be

count �� size ? Well, that depends on the initial value of count . On line 10, count is

initialized to 0. If, for example, size has the value 5, the loop executes exactly 5 times:

when count has the values 0, 1, 2, 3, and 4. When count fi nally reaches 5, the loop

already has performed the required 5 iterations. The loop terminates, and count retains

the value 5, which is also the number of data.

 On the other hand, we could initialize count to 1 rather than 0. In this case, the cor-

rect condition is, in fact, count �� 5 . If size is 5, the loop executes 5 times: for values

of count equal to 1, 2, 3, 4, and 5. When count reaches 6, the loop stops. Although count-

ing from 1 seems more natural, the fi nal value of count is 6, which is one more than the

number of data.

sim23356_ch05.indd 140sim23356_ch05.indd 140 12/15/08 6:34:14 PM12/15/08 6:34:14 PM

 Chapter 5 Repetition 141

0

sum

0

count size

The statements on lines 9–11 declare three vari-

ables and initialize two of them to 0.

0

sum

0

count size

The print statement on line 12 displays a prompt

for the user.

How many numbers would you like to add?

0

sum

0

count

3

size

Line 13 is an assignment. The value 3 (entered by

the user) is assigned to variable size.

0

sum

0

count

3

size

The statement on line 14 prompts the user to enter

the data:

Enter the 3 numbers

5

sum

1

count

3

size

The program reaches the while loop. The fi rst.

action of the loop is the evaluation of the expres-

sion on line 15. In this case, the expression (count
� size) is true. Consequently, the block on lines 16

through 19 executes:

The user enters the number 5,

5 is added to sum, (sum is 5), and

count increases to 1.

12

sum

2

count

3

size

Following line 19, control returns to line 15, i.e.,

the program loops back to line 15. Since the condi-

tion on line 15 (count � size) again evaluates to

true, the statements of lines 16 through 19 execute

again:

The user enters 7,

7 is added to sum (sum is 12), and

count increases to 2.

21

sum

3

count

3

size

For a third time, control returns to line 15 and again

the expression count � size is true. So one more

time, the block on lines 16 through 19 executes:

The user enters 9,

9 is added to sum (sum is 21), and

count increases to 3.

21

sum

3

count

3

size

Finally, control returns one last time to line 15. This

time, however, because count and size are both

equal to 3, the expression is false, so the block is

skipped. Control passes to line 20, a println state-

ment, which displays the value of sum:
Sum: 21

FIGURE 5.3 A trace of AddEmUp

sim23356_ch05.indd 141sim23356_ch05.indd 141 12/15/08 6:34:15 PM12/15/08 6:34:15 PM

142 Part 1 The Fundamental Tools

 In the program of Example 5.1, the user supplies the number of data, which is stored

in the variable size . The variable count keeps track of the number of data entered. When the

condition

 count � size

evaluates to false, the loop terminates.

 Another mechanism used to terminate a loop is a fl ag or sentinel .

A fl ag or sentinel is a value appended to a data collection that signals the end of the data.

 A sentinel cannot be a number that is a feasible data value. For example, if all data are posi-

tive integers, you might use �1 as a fl ag and a list of data might have the form 234, 564, 567,

128, 123, �1 . Example 5.2 is a revision of the previous program using a sentinel instead of

a counter to terminate the loop.

 Problem Statement Write a program that computes the sum of a list of integers that

is supplied by a user. The end of data is signaled by the value -999. This value is used

only as a flag and is not included in the sum.

 Java Solution
 1. import java.util.*;
2. public class AddEmUpAgain
3. {
4. // adds an arbitrarily long list of integers
5. // �999 signals the end of data
6. public static void main (String[] args)
7. {
8. Scanner input � new Scanner(System.in);

 9. final int FLAG � �999; // signals the end of data

10. int sum � 0; // Running sum
11. int number; // holds the next integer to be added
12. System.out.println("Enter the numbers. End with " � FLAG);

 13. number � input.nextInt();

 14. while (number !� FLAG) // FLAG signals the end of data

 15. {
 16. sum �� number; // add the current integer to sum

 17. number � input.nextInt(); // read the next integer

 18. }

19. System.out.println("Sum: "� sum);
20. }
21. }

 Output 1
 Enter the numbers. End with -999
 5 6 7 �999

Sum: 18

EXAMPLE 5.2

sim23356_ch05.indd 142sim23356_ch05.indd 142 12/15/08 6:34:16 PM12/15/08 6:34:16 PM

 Chapter 5 Repetition 143

 Output 2
 Enter the numbers. End with �999
�999
Sum: 0

 Discussion Notice the differences between the programs of Examples 5.1 and 5.2.

• The constant FLAG (line 9) serves as a sentinel that signals the end of data. This is

in contrast to the counter used in Example 5.1.

• The fi rst datum is read outside the while loop (line 13). Indeed, if the statement on

line 13 is omitted, the compiler generates an error message on line 14:

 variable number might not have been initialized.

 If the fi rst datum happens to be FLAG , the program never enters the loop and cor-

rectly determines that the sum is 0.

• The last action of the loop is an input statement. Consequently, when the user enters

–999, the sentinel value is read but not included in the sum.

• More generally, the program might prompt the user for the sentinel value rather than

forcing the use of –999. This improvement is easily accomplished by replacing

 final int FLAG � �999; // signals the end of data

with

System.out.println(“Enter sentinel value: ”);
final int FLAG � input.nextInt();

The syntax of the while statement is:

while (condition)
{
 statement-1;
 statement-2;
 ...
 statement-n;
}

 As is true with the conditional statement, the curly braces may be omitted if there is only

one executable statement.

 In general, the while statement executes as follows:

 1. condition , a boolean expression, is evaluated.

 2. If condition evaluates to true ,

 a. statement-1, statement-2 , . . . , statement-n execute.

 b. Program control returns to the top of the loop.

 c. The process repeats (go to step 1).

 3. If condition evaluates to false ,

 a. statement-1, statement-2 , . . . , statement-n are skipped .

 b. Program control passes to the fi rst statement after the loop.

sim23356_ch05.indd 143sim23356_ch05.indd 143 12/15/08 6:34:17 PM12/15/08 6:34:17 PM

144 Part 1 The Fundamental Tools

Repetition of the block in a while loop continues until the condition evaluates to false,
so you must be certain that the condition of every loop eventually evaluates to false.

 Figure 5.4 shows the semantics of the while statement.

condition
(a boolean expression)

statement-1

true

false

statement-2

statement-n

statement after loop

FIGURE 5.4 The semantics of the while statement

 5.3 LOOPS: A SOURCE OF POWER, A SOURCE OF BUGS

 Two common bugs that frequently fi nd their way into programs that contain while loops are:

 1. The infi nite loop

 2. The “off by one” error

 5.3.1 The Infinite Loop
 This is the song that never ends,

 It just goes on and on, my friends,

 Some people started singing it, not knowing what it was

 And they’ll continue singing it forever, just because….

(repeat)

 —campfi re song popularized by children’s entertainer, Shari Lewis

 Like the song that never ends, an infi nite loop continues forever. An infi nite while loop

exists if the loop’s terminating condition fails to evaluate to false . For example, consider

again the loop in the application of Example 5.1.

 while (count � size)
{
 sum � sum � input.nextInt();
 count��;
}

sim23356_ch05.indd 144sim23356_ch05.indd 144 12/15/08 6:34:18 PM12/15/08 6:34:18 PM

 Chapter 5 Repetition 145

 This loop ends when count equals size . However, if the statement count�� is inadvertently

omitted, then count remains 0; count never equals size , and the loop never terminates. The

program contains an infi nite loop .

If you suspect that a program contains an infi nite loop, for debugging purposes,

include a temporary output statement that displays the contents of the variables in

the loop condition.

 For example, the following infi nite loop includes a debugging statement that displays

the value of count :

 while (count � size)
{
 sum � sum � input.nextInt();
 System.out.println("count � "� count); // debugging statement

}

When the loop executes the following output is displayed:

 count � 0

 count � 0

 count � 0

 count � 0

 count � 0

 etc.

 From this output, you can see that the problem is a failure to increment count. Of course, once

you discover the fl aw, you should remove the debugging statement from your program.

 At the other end of the spectrum, a loop may never execute. For example, consider the

loop of Example 5.1, but suppose that the condition is erroneously coded as count � size
rather than count � size :

 while (count � size)
{
 number � input.nextInt();
 sum �� number;
 count��;
}

In this case, since count is initialized to 0, and the user presumably enters a positive integer

for size , then the expression count � size evaluates to false , and the statements of the loop

never execute.

 5.3.2 The “Off by One” Error
 At some time, virtually every programmer has coded a loop that is “off by one.” This error

occurs if a loop executes one too many or one too few times. Example 5.3 is a classic

illustration.

 The following erroneous program is intended to calculate the sum of the fi rst n positive

integers: 1 � 2 � 3 � … � n . The user supplies a value for n .

 1. import java.util.*;
2. public class AddUpToN // WITH AN ERROR!

EXAMPLE 5.3

sim23356_ch05.indd 145sim23356_ch05.indd 145 12/15/08 6:34:19 PM12/15/08 6:34:19 PM

146 Part 1 The Fundamental Tools

3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);

6. int sum � 0; // Cumulative sum
7. int number; // find sum 1 � 2 � . . . � number
8. int count � 1; // counts 1 to number

9. System.out.print("Enter a positive integer: ");
10. number � input.nextInt(); // read the next integer
11. while (count � number) // here’s the bug
12. {
13. sum �� count;
14. count��;
15. }

16. System.out.println("The sum of the first " � number � " positive integers is " � sum);
17. }
18. }

 (Erroneous) output
 Enter a positive integer: 5

The sum of the first 5 positive integers is 10

 Discussion It is not too diffi cult to determine that the loop executes four rather than

fi ve times. The obvious error lies in the condition, which should be count �� number
rather than count � number .

 The next example also contains an ill-formed loop with an “off by one” error, although the

exit condition is correctly formulated.

 The following program is supposed to calculate the average of a list of numbers termi-

nated by the sentinel value �999. The program does not work correctly . It mistakenly

includes the sentinel as part of the data.

 1. import java.util.*;
2. public class Average // PRODUCES FAULTY OUTPUT!
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. final int FLAG � �999;
8. double sum � 0; // running sum
9. double number; // holds the next integer to be added
10. int count � 0; // counts the number of data

EXAMPLE 5.4

sim23356_ch05.indd 146sim23356_ch05.indd 146 12/15/08 6:34:20 PM12/15/08 6:34:20 PM

 Chapter 5 Repetition 147

11. double average;
12. System.out.println("Enter the numbers. End with " � FLAG);
13. number � input.nextDouble(); // read the next number

14. while (number !� FLAG)
15. {
16. count��;
17. number � input.nextDouble(); // read the next number
18. sum �� number; // add the current integer to sum
19. }
20. average � sum/count;
21. System.out.println("Average: " � average);
22. }
23. }

 (Erroneous) output
 Enter the numbers. End with �999
 1
 2
 3
 �999
Average: �331.3333333333333

 Discussion In this case, the sentinel value (�999) is included in the sum and the fi rst

number (1) is not, that is, sum is computed with the values 2, 3, and �999.

 Reversing the last two lines of the loop corrects the problem:

 while (number !� FLAG)
{
 count��;
 sum �� number;

 number � input.nextDouble

}

Although the number of loop iterations remains the same, the sentinel �999 is no longer

included in the sum. The value of sum is correctly calculated as 1 � 2 � 3 � 6.

 5.4 THE do-while STATEMENT

 Although the while loop is suffi cient for any task requiring repetition, Java provides two

alternative statements: the do-while loop and the for loop.

 If the condition of a while loop is initially false , the body of a while loop never exe-

cutes. In contrast, a do-while loop always executes the body of the loop at least once before

checking the terminating condition.

 A do-while loop checks the condition at the end of the loop body.

 For example, the following segment, which screens for bad input, is a natural application

of a do-while statement.

sim23356_ch05.indd 147sim23356_ch05.indd 147 12/15/08 6:34:21 PM12/15/08 6:34:21 PM

148 Part 1 The Fundamental Tools

 1. int x; // must be positive
2. do
3. {
4. System.out.println("Enter a number � 0");
5. x � input.nextInt();
6. }while (x �� 0); // if negative, repeat

 The loop executes as follows:

• The statement on line 4 prompts the user for a positive number.

• The statement on line 5 reads a value and assigns that value to variable x .

• The condition (x �� 0) on line 6 is evaluated. If the condition is true, the loop repeats

the actions of lines 4 and 5; if the condition is false, the loop terminates.

Notice that the body of the loop (lines 4 and 5) executes once before the condition is tested.

A do-while loop is guaranteed to execute at least once. This is not the case with a while

loop.

 Example 5.5 is yet another version of Example 5.1. This time we use a do-while loop

to screen for bad input.

 Problem Statement Write a program that calculates the sum of a list of integers that is

interactively supplied by a user. The program should prompt the user for the number of

data. The program should ensure that each number supplied by the user is positive.

 Java Solution
 1. import java.util.*;
2. public class DoWhileAdd
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int size; // the number of integers to add

8. do // repeat until size is positive

9. {
10. System.out.print("How many numbers would you like to add? ");

11. size � input.nextInt();

12. } while (size �� 0);

13. System.out.println("Enter the " � size � " numbers");
14. int sum � 0; // the running sum
15. int count � 0; // keeps track of the number of data
16. while (count � size)
17. {
18. sum � sum � input.nextInt(); // read the next integer, add to sum
19. count��; // increment counter
20. }
21. System.out.println("Sum: "� sum);
22. }
23. }

EXAMPLE 5.5

sim23356_ch05.indd 148sim23356_ch05.indd 148 12/15/08 6:34:22 PM12/15/08 6:34:22 PM

 Chapter 5 Repetition 149

 Output

 How many numbers would you like to add? 0
How many numbers would you like to add? �3
How many numbers would you like to add? 3
Enter the 3 numbers
5
7
9
Sum: 21

 Discussion Lines 8 through 12 comprise a do-while loop. Notice that the condition

(size �� 0) appears on line 12, at the end of the loop. There is no “gatekeeper” at the

top of the loop. When program control reaches line 8, the block of executable state-

ments (lines 10 and 11) executes, regardless of any condition. The condition on line

12 is evaluated after the block executes. If the condition (size �� 0) evaluates to true ,

control passes back to line 10 and the loop executes again; if the condition is false , the

loop terminates.

 The while loop on lines 15–19 of Example 5.1 could have been written as a do-while
loop:

 int count � 0, sum � 0;
do
{
 sum � sum � input.nextInt();
 count��;
}
while (count � size)

Either construction accomplishes the task.

 5.4.1 Which Loop?
 How does the do-while construction differ from that of the while loop?

The while loop is top-tested, that is, the condition is evaluated before any of the loop

statements executes. If the condition of a while loop is initially false, the loop never

executes. The do-while loop, on the other hand, is bottom-tested, that is, the condition is

tested after the fi rst iteration of the loop. A do-while loop always executes at least once.

 Let’s take a second look at Example 5.2, this time using a do-while loop.

EXAMPLE 5.6 Problem Statement Rewrite Example 5.2 using a do-while loop rather than a while loop.

 Java Solution
 1. import java.util.*;
2. public class DoWhileAddEmUpAgain
3. {
4. public static void main (String[] args)
5. {

sim23356_ch05.indd 149sim23356_ch05.indd 149 12/15/08 6:34:23 PM12/15/08 6:34:23 PM

150 Part 1 The Fundamental Tools

6. Scanner input � new Scanner(System.in);
7. final int FLAG � �999;
8. int sum � 0; // Running sum
9. int number; // holds the next integer to be added
10. System.out.println("Enter the numbers end with " � FLAG);
11. number � input.nextInt();

 12. do

 13. {

 14. sum �� number; // add the current integer to sum

 15. number � input.nextInt();

 16. } while (number !� FLAG);

17. System.out.println("Sum: " � sum);
19. }
20. }

 Discussion The program works correctly except when the user enters the sentinel

(�999) as the fi rst value. In that case:

• The sentinel is stored in the variable number (line 11).

• The sentinel is added to sum (line 14).

• The user is prompted for another integer (line 15).

Certainly, this is not acceptable. In contrast, if the program is written using a while loop

and the initial datum is the sentinel, because the while loop is top-tested, the loop does

not execute and the value of sum remains 0.

 We can fi x Example 5.6 without losing the do-while loop, but the change requires

some inelegant code. The following version of the program correctly handles the situa-

tion that occurs when the fi rst value entered is the sentinel.

 1. public class DoWhileAddEmUpAgainTwo
2. {
3. public static void main (String[] args)
4. {
5. Scanner input � new Scanner(System.in);
6. final int FLAG � �999;
7. int sum � 0; // Running sum
8. int number; // holds the next integer to be added
9. System.out.println("Enter the numbers end with " � FLAG);
10. do
11. {
12. number � input.nextInt();
13. if (number !� FLAG) // here’s the fix, not too nice!
14. sum �� number; // add the current integer to sum
15. } while (number !� FLAG);
16. System.out.println("Sum: " � sum);
17. }
18. }

 Notice that each number is checked to see whether or not it is the sentinel:

13. if (number !� FLAG)
14. sum �� number;

This is neither particularly elegant nor effi cient. Indeed, with this “fi x,” every value is

checked against FLAG twice , once on line 13 and again on line 15. You can often “patch”

sim23356_ch05.indd 150sim23356_ch05.indd 150 12/15/08 6:34:24 PM12/15/08 6:34:24 PM

 Chapter 5 Repetition 151

bad code, but the result is usually not very satisfying. Although this program can be

written with either loop construction, the top-tested while loop is clearly preferable to

the do-while .

In general, if it the possibility exists that a loop may never execute, opt for the while loop.

The syntax of the do-while statement is:

do

{
 statement-1;
 statement-2;
 . . . ;
 statement-n;
} while (condition);

 As always, condition is a boolean expression and, if the block consists of single executable

statement, the curly braces may be omitted.

 Execution of the do-while statement proceeds as follows:

 1. statement-1, statement-2, . . . , statement-n execute.

 2. condition is evaluated.

 3. If the condition is true , the process repeats (go back to statement-1).

 4. If condition is false , the loop terminates and program control passes to the fi rst state-

ment following the loop.

See Figure 5.5 .

condition
(a boolean expression)

statement-1

true

false

statement-2

statement-n

statement after loop

FIGURE 5.5 The semantics of the do-while statement

 5.5 THE for STATEMENT
 Java provides a third alternative for repetition: the for statement.

Use a for statement when you can count the number of times that a loop executes.

sim23356_ch05.indd 151sim23356_ch05.indd 151 12/15/08 6:34:25 PM12/15/08 6:34:25 PM

152 Part 1 The Fundamental Tools

 The following program segment uses a for loop to print the verse of a familiar, if boring,

song exactly three times:

 1. for (int i � 1; i �� 3; i��)
2. {
3. System.out.println(“Row, row, row your boat, gently down the stream,”);
4. System.out.println(“Merrily, merrily, merrily, merrily; life is but a dream”);
5. System.out.println();
6. }

The loop executes as follows:

 1. The variable i is declared and initialized to 1 (int i � 1); i keeps track of the number of

iterations; i counts.

 2. The condition i �� 3 on line 1 is evaluated.

 3. If the condition i �� 3 is true :

 Lines 3, 4, and 5 execute. // Sing along if you wish!

 The statement i�� on line 1 executes.

 Go to step 2 (check whether or not i �� 3).

 4. If the condition i �� 3 is false, the loop terminates.

The variable i keeps track of the number of iterations. Before the body of the loop executes,

the terminating condition (i �� 3) is checked. Once the body of the loop completes execu-

tion, the value of i is increased by 1.

 Conveniently,

 • the initial value of i , (i � 1),

 • the loop condition, (i �� 3), and

 • the update statement for i, (i��)

all appear together on line 1.

 Figure 5.6 shows the program fl ow of this segment.

i � 1

true

false
i �� 3

System.out.println(“Row, row, row your boat gently down the stream.”);

System.out.println(“Merrily, merrily, merrily, merrily; life is but a dream.”);

System.out.printIn();

i�� Exit loop

FIGURE 5.6 A for loop that displays the verse of a song three times

sim23356_ch05.indd 152sim23356_ch05.indd 152 12/15/08 6:34:26 PM12/15/08 6:34:26 PM

 Chapter 5 Repetition 153

 Example 5.7 rewrites the while loop of Example 5.1 as a for loop and gives a bit more

detail about the inner workings of the for statement.

 Problem Statement Using a for statement, write a program that sums a list of integers.

The program should prompt the user for the size of the list.

 Java Solution
 1. import java.util.*;
2. public class ForAddEmUp
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);

7. int sum � 0; // Cumulative sum
8. int size; // Number of integers to add
9. int number; // holds the next integer to be added

10. System.out.print("How many numbers would you like to add? ");
11. size � input.nextInt();
12. System.out.println("Enter the " � size � " numbers");

 13. for (int count � 1; count �� size; count��) // for i � 1 to count

 14. {

 15. number � input.nextInt(); // read the next integer

 16. sum �� number; // add the current integer to sum

 17. }

18. System.out.println("Sum: " � sum);

19. }
20. }

 Output
 How many numbers would you like to add? 4
Enter the 4 numbers
 3

 5

 7

 9
Sum: 24

 Discussion The “header” of the for statement, displayed on line 13, may appear a bit

daunting at fi rst glance. Notice that the header consists of three parts:

 1. the initialization statement, int count � 1 ,

 2. the loop condition (a boolean expression), count �� size , and

 3. the update statement , count��.

 The for statement proceeds as follows:

 1. The initialization statement executes.

EXAMPLE 5.7

sim23356_ch05.indd 153sim23356_ch05.indd 153 12/15/08 6:34:26 PM12/15/08 6:34:26 PM

154 Part 1 The Fundamental Tools

 In this case, the variable count is both declared and initialized to 1. The variable

count is called the control variable . Because count is declared within the for
 statement, count is accessible only within the loop. Consequently, if line 18 were

written as

System.out.println("The sum of the "� count �" numbers is "� sum),

 the compiler would issue an error message to the effect that the variable count is

unknown.

 2. The loop condition, count �� size, is tested.

 3. If the loop condition is true , then:

 a. The block (lines 14–17) executes.

 b. The update statement executes (count�� , line 13).

 c. The process repeats from step 2 (Is the loop condition still true ?).

 If the loop condition is false , then:

 a. The loop terminates.

 b. Program control passes to the fi rst statement after the loop (line 18).

 The for statement is a compact version of the while statement. Indeed, the for state-

ment on lines 13 through 17 can be rewritten as:

 int count � 1; // the initialization statement
while (count �� size) // loop condition
{
 number � input.nextInt();
 sum �� number;
 count��; // update statement
}

However, in contrast to the for statement of lines 13–17, the variable count, declared

outside the while loop of the previous segment, exists after the loop terminates.

The syntax of the for statement is:

for (initialization; loop condition; update statement(s))
{
 statement-1:
 statement-2;
 . . .
 statement-n:
}

 As usual, the braces may be omitted if the statement block consists of a single statement.

 The semantics of the for statement are:

 1. The initialization statement executes.

 2. The loop condition (a boolean expression) is evaluated.

 3. If the loop condition is true, then:

 a. statement-1, statement-2, . . . , statement-n execute,

 b. The update-statement(s) executes,

 c. Go to step 2.

sim23356_ch05.indd 154sim23356_ch05.indd 154 12/15/08 6:34:28 PM12/15/08 6:34:28 PM

 Chapter 5 Repetition 155

 4. If the loop condition is false , then program control passes to the fi rst statement follow-

ing the block consisting of statement-1, statement-2, . . . , statement-n .

 You should note that:

• The initialization is performed exactly once.

• The loop condition is always tested before the statement block executes.

• The update statement always executes after the actions of the statement block.

• The declared, initialized variables disappear after the for loop completes execution.

 Figure 5.7 shows the semantics of a for loop.

statement-1

loop condition

initialization

true

false

statement-2

statement-n

update statement

statement after loop

FIGURE 5.7 The semantics of the for statement

Without examining the body of a for loop, you can understand its termination structure.

A for loop gathers this information in one place:

 for (initialization; loop condition; update statement)

The while loop and do-while loop scatter this information throughout the body of

the loop.

 Example 5.8 includes an application that utilizes a for statement to check the validity

of a credit card number.

sim23356_ch05.indd 155sim23356_ch05.indd 155 12/15/08 6:34:29 PM12/15/08 6:34:29 PM

156 Part 1 The Fundamental Tools

EXAMPLE 5.8 When you supply your credit card number to an online vendor, data input errors are

checked before your credit card is validated. For example, credit cards issued by Visa all

have numbers beginning with the digit 4, and those issued by American Express begin

with 34 or 37.

 Another method of validation is the Luhn algorithm . The Luhn algorithm detects

some, but not all, invalid numbers. Thus, this algorithm can alert a vendor to some bad

numbers but it cannot guarantee that a credit card number is valid.

 The method works as follows:

 1. Beginning with the second-rightmost digit and moving right to left, double every

other digit. If the doubling process produces a value greater than 9, subtract 9

from that value.

 2. Form a sum of all the products (“new” digits) and the unchanged digits.

 3. If the sum of step 2 does not end in 0, the card is invalid.

 For example, to check the validity of credit card number 5113 4765 1234 8002 proceed

as follows:

 1. Double alternate digits. Subtract 9 from products exceeding 9. See Figure 5.8 .

5

10 � 9 � 1

1 1

2

3 4

8

7 6

12 � 9 � 3

5 1

2

2 3

6

4 8

16 � 9 � 7

0 0

0

2

Doubled digits

FIGURE 5.8 Double alternate digits; subtract 9 if the result is greater than 9

 2. Form the sum

1 � 1 � 2 � 3 � 8 � 7 � 3 � 5 � 2 � 2 � 6 � 4 � 7 � 0 � 0 � 2 � 53

 3:. The sum 53 does not end in zero, so the card number is invalid.

 Problem Statement Write a program that determines whether a credit card number

with 16 (or fewer) digits passes the Luhn test.

 Java Solution Since most credit card numbers consist of 16 or fewer digits, our solu-

tion assumes that the maximum number of digits is 16.

 An implementation of the Luhn algorithm requires that we extract the digits of

a card number, digit by digit, right to left. To extract the digits and move right to left

through a number, the following solution utilizes the mod operator (%) and integer divi-

sion. Using the mod operator, we can easily extract the rightmost digit from a number:

12345 % 10 � 5.

 And, with integer division, we can remove the rightmost digit from a number to obtain

a “new” number without the rightmost digit:

12345/10 � 1234.

 These techniques are used in the following application that implements the Luhn

algorithm.

 1. import java.util.*;
2. public class CheckCreditCard
3. {
4. public static void main (String[] args)

sim23356_ch05.indd 156sim23356_ch05.indd 156 12/15/08 6:34:30 PM12/15/08 6:34:30 PM

 Chapter 5 Repetition 157

5. {
6. Scanner input � new Scanner(System.in);
7. final int MAX_DIGITS � 16; // maximum number of digits for a credit card
8. long number; // credit card number
9. long sum � 0; // the final value of sum must end in zero
10. long digit;

11. System.out.print("Enter Credit Card Number:");
12. number � input.nextLong();

13. for (int i � 1; i �� MAX_DIGITS; i��) // for each digit, i counts digits
14. {
15. digit � number % 10; // extract the rightmost digit
16. if (i % 2 �� 0) // double every other digit
17. {
18. digit � digit*2;
19. if (digit � 9) // subtract 9 if the product is larger than 9
20. digit �� 9;
21. }
22. sum �� digit; // add the digit to the running sum
23. number � number/10; // remove the rightmost digit
24. }
25. if (sum % 10 !� 0) // check the rightmost digit of sum
26. System.out.println("Invalid number");
27. else
28. System.out.println("Credit card number passes test");
29. }
30. }

 Running the program twice produces the following output:

 Output 1
 Enter Credit Card Number: 5113476512348002
Invalid number

 Output 2
 Enter Credit Card Number: 123456789876543
Credit card number passes test

 Discussion The program works for all numbers of 16 digits or less. The fi rst credit

card number contains 16 digits, but the second contains just 15 digits. For credit card

numbers with fewer than 16 digits, after the last digit is extracted, the variable number
gets the value 0, which contributes nothing to the sum.

 The if statement on line 16 determines whether or not i is even, so that we “process”

alternate digits. As an exercise, you might consider an alternative, perhaps simpler and

more effi cient, method for doing this (see Programming Exercise 1).

 5.5.1 A Few More Notes on the for Statement
 Programmers sometimes twist and contort the for statement to fi t just about any situation

that requires a loop. Remember, a for statement is really a compact while statement.

 The following illustrations demonstrate the fl exibility of the for statement. Be fore-

warned, however, that too much “cleverness” can sometimes be diffi cult to comprehend

and can lead to bugs.

sim23356_ch05.indd 157sim23356_ch05.indd 157 12/15/08 6:34:31 PM12/15/08 6:34:31 PM

158 Part 1 The Fundamental Tools

• Each of the three parts in the header of a for statement (initialization, loop condition,

update statement) is optional. Indeed, the following for loop, equivalent to while (true),

is legal, albeit infi nite!

 for (; ;) // Look! No statements!
{
 System.out.println(“This is the song that never ends,”);
 System.out.println(“It just goes on and on, my friends.”);
 System.out.println(“Some people started singing it, not knowing what it was”);
 System.out.println(“And they’ll continue singing it forever, just because . . . ”);
}

 This next segment, which prints the lyrics to a familiar song, uses no explicit incre-

ment statement. The loop terminates after 100 iterations.

 for (int i � 100; i � 0;) // no increment statement
{
 System.out.println(i � “bottles of beer on the wall ” � i � “bottles of beer”);
 System.out.println(“Take one down, pass it around”);
 System.out.println (��i � “ bottles of beer on the wall.\n”); // i is decremented here
}

 Notice that the last statement updates the control variable.

• More than one statement may be used in the initialization or update section of a for
statement. For example, the following loop initializes and increments two variables, i
and j:

 for (int i � 1, j � 2 ; i � 10; i��, j �� 2)
 System.out.println (i * j);

Multiple initializations in the header of a for statement are separated by commas. The

same is true for multiple update statements.

• The update statement may be any executable statement. The for loop of Figure 5.9 ,

consisting of a single line, is equivalent to the preceding loop, which prints the values

2, 8, 18, 32, 50, 72, 98, 128, and 162.

for (int i � 1, j � 2; i � 10; System.out.println (i * j), i ��, j �� 2);

 Initialization Update

FIGURE 5.9 Update statements are flexible

• The control variable of a for loop is usually declared within the loop:

for (int i � 1;...;...)

When declared as such, the control variable is unknown outside the loop. On the other

hand, the control variable may be declared outside the loop:

 int i;
for (i � 1;...;...)

sim23356_ch05.indd 158sim23356_ch05.indd 158 12/15/08 6:34:32 PM12/15/08 6:34:32 PM

 Chapter 5 Repetition 159

In this case, the variable i is known and is accessible after the loop terminates. Indeed, the

following code does not compile:

 for(int i � 1 ; i �� 100; i��) // i is declared within the loop
 System.out.println(i * i);
System.out.println(“Final value of i is “ � i); // i is unknown here

This next segment, however, does compile and run:

int i; // i is declared outside the loop
for(int i � 1; i �� 100; i��)
 System.out.println(i * i);
System.out.println(“Final value of i is “ � i); // i is accessible here

The last line of output from this segment is:

 Final value of i is 101

Example 5.9 uses a for statement to calculate the integer square root of a non-negative

whole number. The loop uses multiple initializations.

 The integer square root of a non-negative whole number is the integer part of the “real”

square root. For example, the square root of 56 is approximately 7.4833; so the integer

square root of 56 is 7.

 To fi nd the integer square root of a non-negative integer n , add the odd positive

integers, one at a time, 1 � 3 � 5 � 7 � 9 � . . . , continuing the addition as long as the

next sum is less than or equal to n . Now, count the odd numbers used to form the sum.

That’s the integer square root. For example, 3 is the integer square root of 12:

1 � 3 � 5 � 9 // 3 odd numbers in the sum.

 But one more addition makes the sum too large:

1 � 3 � 5 � 7 � 16 // 16 exceeds 12.

The integer square root of 56 is 7:

1 � 3 � 5 � 7 � 9 � 11 � 13 � 49 // 7 odd numbers in the sum.

But,

1 � 3 � 5 � 7 � 9 � 11 � 13 � 15 � 64 // 64 exceeds 56.

 Problem Statement Write a program that uses a for loop to determine the integer

square root of any positive whole number.

 Java Solution
 1. import java.util.*;
2. public class IntegerSquareRoot
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. System.out.print("Enter a non-negative integer: ");
8. int num � input.nextInt();
9. int count � 0; // counts the number of odds in the sum

EXAMPLE 5.9

sim23356_ch05.indd 159sim23356_ch05.indd 159 12/15/08 6:34:33 PM12/15/08 6:34:33 PM

160 Part 1 The Fundamental Tools

10. for (int sum � 0, odd � 1; (sum � odd) �� num; sum �� odd, odd �� 2)

 11. count��;

12. System.out.println("The integer square root of " � num � " is " � count);
13. }
14. }

 Output
 Enter a non-negative integer: 150

 The integer square root of 150 is 12

 Discussion
• The for statement on lines 10 and 11 perform the bulk of the work.

� The loop initialization declares and initializes two variables. The variable sum is

set to 0, and odd is assigned the fi rst odd number 1. Notice the comma separating

the initializations.

� The loop condition checks whether the current sum plus the next odd number

exceeds num. If this is not the case, then odd is added to sum in the update section

of line 10, and odd is set to the next odd number.

� Finally, the number of odds, count , is increased in the body of the loop (line 11).

• The output statement of line 12 displays the value count , which is the number of

odds that comprise the sum. This value is the integer square root.

 The for statement of the program is a compact version of the following while loop:

 int count � 0;
int sum � 0;
int odd � 1;
while ((sum � odd) �� num)
{
 sum �� odd;
 count��;
 odd �� 2;
}

There is one difference between the for loop on lines 10–11 and the while loop of the

previous segment. Variables sum and odd, declared in the heading of the for statement,

are not accessible outside the for statement. Their counterparts, declared outside the

while loop, exist after the while loop terminates.

 5.6 NESTED LOOPS

 It should come as no surprise that loops may be nested within loops. The snippet of code in

 Figure 5.10 , although not very interesting, clearly illustrates the workings of nested loops.

FIGURE 5.10 Nested loops

1. for(int i � 1; i �� 4; i��)

2. {

3. for(int j � 21; j �� 23; j��)

4. { //the inner curly braces are unnecessary

5. System.out.println(i � " " � j);

6. }

7. System.out.println();

8. }

Outer loop

"i-loop"

Inner loop

"j-loop"

sim23356_ch05.indd 160sim23356_ch05.indd 160 12/15/08 6:34:34 PM12/15/08 6:34:34 PM

 Chapter 5 Repetition 161

 Notice that the inner “ j -loop” (lines 3 through 6) is nested within the outer “ i- loop”

(lines 1 through 8). For each value of i (1, 2, 3, and 4), the j-loop executes once. Con-

sequently, the println statement on line 5 executes 4 � 3 � 12 times. The empty println

statement (line 7) is not part of the inner loop, so this statement, which prints a blank line,

executes just four times, once for each value of i . Annotated output appears in Figure 5.11 .

FIGURE 5.11 Tracing through a nested loop

 output

 1 21

i � 1 1 22 j � 21, 22, 23

 1 23

 2 21

i � 2 2 22 j � 21, 22, 23

 2 23

 3 21

i � 3 3 22 j � 21, 22, 23

 3 23

 4 21

i � 4 4 22 j � 21, 22, 23

 4 23

 Written as nested while loops, the code of Figure 5.10 has the following form (Figure 5.12):

FIGURE 5.12 The code of Figure 5.10 rewritten using nested while loops

int i � 1;

while (i �� 4)

{

 int j � 21;

 while (j �� 23)

 {

 System.out.println(i�" "�j);

 j��;

 }

 System.out.println();

 i��;

}

Outer loop Inner loop

 In Example 5.10, we use a nested for loop to calculate a series of averages.

EXAMPLE 5.10 Problem Statement Write a program that prompts an instructor for

 1. the number of students in his/her class, and

 2. the number of grades assigned to each student,

and determines the average grade for each student. Grades are whole numbers, but an

average may be a decimal number.

 Java Solution
 1. import java.util.*;
2. public class GradeAverage

sim23356_ch05.indd 161sim23356_ch05.indd 161 12/15/08 6:34:36 PM12/15/08 6:34:36 PM

162 Part 1 The Fundamental Tools

3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int numStudents, numGrades;
8. int grade; // an individual grade
9. int sum � 0; // sum of one student’s grades
10. double average;
11. // prompt for number of students and grades per student
12. System.out.print("Number of Students: ");
13. numStudents � input.nextInt();
14. System.out.print("Number of Grades: ");
15. numGrades � input.nextInt();
16. System.out.println();

17. for (int i � 1; i �� numStudents; i��) // for each student
18. {
19. sum � 0;
20. System.out.println("Grades for student " � i);
21. for (int j � 1; j �� numGrades; j��)
22. {
23. System.out.print(" " � j � ":");
24. grade � input.nextInt();
25. sum �� grade;
26. }
27. average � (double)sum/ numGrades; // for one student
28. System.out.print("Average: " � average);
29. System.out.println();
30. }
31. }
32. }

 Output
 Number of Students: 3
Number of grades/student: 4

Grades for student 1
 1: 90
 2: 80
 3: 70
 4: 60
Average: 75.0

Grades for student 2
 1: 75
 2: 85
 3: 95
 4: 100
Average: 88.75

Grades for student 3
 1: 88
 2: 77
 3: 99
 4: 66
Average: 82.5

Outer loop Inner loop

sim23356_ch05.indd 162sim23356_ch05.indd 162 12/15/08 6:34:37 PM12/15/08 6:34:37 PM

 Chapter 5 Repetition 163

 Example 5.11 utilizes nested while loops. The calculation in this example is similar to

the previous example, except that fl ags are used to indicate the end of data.

 Discussion Take a look at the output. There are three students and each has four

grades. The outer loop (lines 17–30) executes three times, once for each student. For

each iteration of the outer loop, the inner loop (lines 21–26) executes four times. The

inner loop accepts the grades for each student and calculates a running sum of the stu-

dent’s grades. Notice that the variable sum must be set back or reinitialized to 0 before

grades are processed for the next student. This is done in the outer loop (line 19). The

average is also calculated in the outer loop (line 27) because there is just one average

per student.

EXAMPLE 5.11 Problem Statement Write a program that computes grade averages. Unlike the pro-

gram of Example 5.10, the user need not supply the number of students. Moreover, the

number of grades per student may vary. Use two numerical sentinels: the integer 1000

to indicate the end of all data, and the number 999 to indicate the end of a grade list for

a single student. For example, data for three students might be entered as:

 90 80 70 60 999
76 87 78 97 88 66 84 999
79 87 999
1000

 Java Solution

 1. import java.util.*;
2. public class GradeAverage1
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. final int END_OF_DATA � 1000; //to indicate end of all data
8. final int END_OF_GRADES � 999; // to indicate end of a grade list
9. int student � 1, numGrades � 0, grade;
10. int sum � 0;

11. System.out.println("\nEnter Grades for student " � student � " or 1000 to end. ");
12. System.out.print("Grade list must end with 999. \n: ");
13. grade � input.nextInt();

14. while (grade !� END_OF_DATA) // while more data remain
15. {
16. while (grade !� END_OF_GRADES) // process grades for one student

 17. {
 18. sum �� grade;

 19. numGrades��; // each student has a different number of grades

 20. System.out.print(": ");

 21. grade � input.nextInt();

 22. }

23. // If no grades were entered, do not divide by 0

sim23356_ch05.indd 163sim23356_ch05.indd 163 12/15/08 6:34:37 PM12/15/08 6:34:37 PM

164 Part 1 The Fundamental Tools

24. if (numGrades !� 0)
25. System.out.println("Average: " � sum/numGrades);
26. else
27. System.out.println("No grades entered for student " � student);
28. student��;

29. // reset sum and numGrades for the next student
30. sum � 0;
31. numGrades � 0;
32. // get first grade for next student (or 1000 to end the program)
33. System.out.println("\nEnter grades for student " � student � " or 1000 to end. ");
34. System.out.print("Grade list must end with 999.\n: ");
35. grade � input.nextInt();
36. }
37. }
38. }

 Output
 Enter grades for student 1 or 1000 to end.
Grade list must end with 999.
: 80
: 90
: 70
: 999
Average: 80.0

Enter grades for student 2 or 1000 to end.
Grade list must end with 999.
: 75
: 85
: 95
: 65
: 100
: 999
Average: 84.0

Enter grades for student 3 or 1000 to end.
Grade list must end with 999.
: 1000

 Discussion As in the previous example, the inner loop (lines 16 through 22) processes

a grade list for each student. Because the number of grades varies for each student, a

variable numGrades keeps track of the grade count. Conceivably, you could enter an

empty grade list (one consisting of the sentinel 999) so that numGrades is 0, resulting in

a division by 0 when computing the average. The conditional statement:

 24. if (numGrades !� 0)
25. System.out.println("Average: " � sum/numGrades);
26. else
27. System.out.println("No grades entered for student "� student);

handles this case. The following display shows output that includes one empty grade list.

sim23356_ch05.indd 164sim23356_ch05.indd 164 12/15/08 6:34:38 PM12/15/08 6:34:38 PM

 Chapter 5 Repetition 165

 Output

 Enter grades for student 1 or 1000 to end.
Grade list must end with 999.
: 90
: 84
: 86
: 77
: 999
Average: 84.25

Enter grades for student 2 or 1000 to end.
Grade list must end with 999.
: 999
No grades entered for student 2

Enter grades for student 5 or 1000 to end.
Grade list must end with 999.
: 1000

 Finally, if a user accidentally enters 1000 before the sentinel 999, then 1000 is counted

among the grades and the average is erroneous and infl ated. A better action would ter-

minate the program with an appropriate error message or ask the user to re-enter the last

grade. We leave these improvements as an exercise (see Programming Exercise 13).

 From the previous examples, you probably surmised that nested loops are handy for com-

putations where each datum is associated with one or more other attributes. For example, in

the application of Example 5.11, each grade is associated with a student. The outer loop counts

students, and the inner loop counts grades of a particular student. The loops are related.

 Example 5.12 also utilizes a nested loop construction. However, the relationship between

the loops is not as intricate. The outer loop allows the user to repeat a computation and has no

bearing on the inner loop. That is, the outer loop has no attribute that appears in the inner loop.

 “I am thinking of a number between 1 and 100. What is it?”

 “Is it 35?”

 “Higher”

 Is it 60?”

 “Lower”

 “50?”

 “Lower”….

 And so goes a typical guessing game.

 Did you know that the number can be discovered with at most seven such questions? And, if

the “secret number” is between 1 and 1,000,000, no more than 20 guesses are necessary.

 Problem Statement Write a program that asks a player to discover a secret number

between 1 and n , where n is any positive number that the player chooses. Each time the

player guesses a number, the application responds “correct,” “too high,” or “too low.”

The program should report the number, of guesses used to unearth the secret number.

Finally, the player should be given the option to play the game again.

 Java Solution To begin play, the application must generate a “secret” random integer

between 1 and n . In Chapter 4, you learned that

 (int)(3 * Math.random())

EXAMPLE 5.12

sim23356_ch05.indd 165sim23356_ch05.indd 165 12/15/08 6:34:39 PM12/15/08 6:34:39 PM

166 Part 1 The Fundamental Tools

gives a random number in the range 0 through 2, that is, 0, 1, or 2. Similarly,

 (int)(n * Math.random())

generates a random integer between 0 and n – 1 inclusive, and

 (int)(n * Math.random()) � 1

gives a random number between 1 and n , inclusive.

 For example,

 (int)(100 * Math.random()) � 1

evaluates to a random number between 1 and 100 and

 (int)(1000000 * Math.random()) � 1

provides a number between 1 and 1000000.

 The following class, which implements the guessing game, gives one more example

of nested loops.

 1. import java.util.*;
2. public class Guess
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int answer; // 1 for play again; 0 for quit

8. do // repeat the game if answer �� 1
9. {
10. System.out.println("You will guess a secret number between 1 and n");
11. System.out.print("Give me a value for n: ");
12. int n � input.nextInt(); // number is in the range 1..n
13. System.out.println ("OK, I am thinking of a number between 1 and " � n);
14. int number � (int)(n * Math.random()) � 1; // a random int between 1 and n
15. int guess; // player’s guess
16. int numGuesses � 0;

17. do // play the game
18. {
19. System.out.print("Your guess: ");
20. guess � input.nextInt();
21. numGuesses��;
22. if (guess � number)
23. System.out.println("Too high");
24. else if (guess � number)
25. System.out.println("Too low");
26. else
27. System.out.println("That’s it!");
28. } while (number !� guess);
29. System.out.println("Score: " � numGuesses � " guesses");

30. do // repeat until answer is 0 or 1
31. {
32. System.out.print("Play again? 1 for YES; 0 for NO: ");
33. answer � input.nextInt();
34. System.out.println();
35. } while (answer !� 0 && answer !� 1);

36. } while (answer �� 1);

sim23356_ch05.indd 166sim23356_ch05.indd 166 12/15/08 6:34:40 PM12/15/08 6:34:40 PM

 Chapter 5 Repetition 167

37. System.out.println("Thanks for playing :) ");
38. }
39. }

 Output You will guess a secret number between 1 and n

 Give me a value for n: 100
OK, I am thinking of a number between 1 and 100
Your guess: 50
Too high
Your guess: 25
Too low
Your guess: 35
Too high
Your guess: 30
That’s it!
Score: 4 guesses
Play again? 1 for YES; 0 for NO : 1

You will guess a secret number between 1 and n
Give me a value for n: 100
OK, I am thinking of a number between 1 and 100
Your guess: 50
Too low
Your guess: 75
Too low
Your guess: 87
Too low
Your guess: 94
Too low
Your guess: 97
Too high
Your guess: 96
That’s it!
Score: 6 guesses
Play again? 1 for YES; 0 for NO: 0
Thanks for playing :)

 Discussion Like the program of Example 5.11, this application utilizes nested loops.

The outer do-while loop (lines 8–36) gives the player the option of playing the game

as many times as he/she chooses. Nested inside this do-while loop are two additional

 do-while loops that are not nested inside one another, that is, one follows the other

sequentially.

• The loop on lines 17–28 plays the guessing game, executing its code until the player

guesses the secret number.

• The do-while loop on lines 30–35 checks whether or not the player gives a valid

response when asked if he/she would like to play again. No doubt, you have occa-

sionally supplied incorrect data to a program, either producing erroneous results or

crashing the program. Although this loop screens invalid numerical input, character

data causes the program to crash. We are not yet at a position where we can make

our programs completely immune to every possible input error, but with a simple

loop, we can do some basic input checking.

sim23356_ch05.indd 167sim23356_ch05.indd 167 12/15/08 6:34:41 PM12/15/08 6:34:41 PM

168 Part 1 The Fundamental Tools

 5.7 THE break STATEMENT REVISITED

 You have seen the break statement used within the context of the switch statement. When

a break statement executes within a switch statement, the switch statement terminates and

program control passes to the fi rst statement following the switch statement. Similarly, a

break statement can be used to terminate, or “break out of” a loop.

When a break statement executes within a loop, the loop terminates and program

control passes to the fi rst statement following the loop.

 Example 5.13 uses a break statement to terminate a while loop.

EXAMPLE 5.13 If 366 people gather in a room, the probability that two of them have the same birthday

(month and day) is 1, that is, 100%. It’s a certainty. (We’ll pretend that there is no leap

year!) Surprisingly, with a group as small as 50 people, the probability that at least two

people have the same birthday is .97—close to certain! In general, the probability that at

least two people in a group of r people share the same birthday can be computed as:

1 �
365 � 364 � 363 � . . . � (365 � r � 1)

365r .

For example, the probability that, of fi ve people, at least two have the same birthday is:

1 � 365 � 364 � 363 � 362 � 361 __________________________
3655 � 1 � 365 � 364 � 363 � 362 � 361 __________________________

365 � 365 � 365 � 365 � 365

� 1� .973 � .027

Notice that the numerator and denominator of the fractional term each have fi ve factors.

In general for r people, both the numerator and denominator have r factors.

 We now pose the following question:

 Given a probability, p , such as .97, how many people are necessary so that the

probability that two or more of them have the same birthday is at least p ? For

example, how may people are required so that the chances are at least 50-50

(p � .5) that two or more people have the same birthday? Or, how many people

are necessary so that there is at least a 99% chance that two or more have the

same birthday? What about a 75% chance?

 Problem Statement Write a program that accepts a probability p between 0 and 1 and

determines the minimum number of people required so that the probability that two or

more of them share the same birthday exceeds p .

 Java Solution Suppose that .95 is the probability supplied interactively by the user.

How many people do we need so that the probability that at least two have the same

birthday exceeds .95?

 The application computes the following probabilities, one by one:

• the probability that, in a room with two people, both have the same birthday;

• the probability that, in a room with three people, at least two have the same birthday;

sim23356_ch05.indd 168sim23356_ch05.indd 168 12/15/08 6:34:42 PM12/15/08 6:34:42 PM

 Chapter 5 Repetition 169

• the probability that, in a room with four people, at least two have the same birthday;

• the probability that, in a room with fi ve people, at least two have the same birthday;

• etc.

When the computed probability exceeds .95, it is known how many people are required

and the computations stop. The following application computes these probabilities in

the while loop on lines 25–34. A break statement terminates the loop.

 1. import java.util.*;
2. public class Birthday
3. {
4. public static void main (String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int answer; // 1 to run the computation again
8. int numPersons;
9. int days; // counts down from 365
10. double probability; // 1 � probability is the probability that at least two share the same b-day
11. // where probability � [365 � 364 � 363 � . . .� (365 � r � 1)]/ 365 r
12. double inputProbability; // input probability from the user

13. do
14. {
15. do // ask user for a probability and check validity of the response
16. {
17. System.out.print("\nEnter a probability - at least two people share the same B-day: ");
18. inputProbability � input.nextDouble();
19. } while (inputProbability �� 0 || inputProbability �� 1.0); // repeat on incorrect data

20. // Each iteration of the following loop increases the number of people by 1
21. // and determines the probability that two share a birthday
22. numPersons � 0;
23. days � 366;
24. probability � 1;
25. while (days � 0) // days has been initialized to 366 but is decremented before its use
26. {
27. numPersons��;
28. days��;
29. probability *� days/365.0; // [365 � 364 � 363 � ... � (365 � r � 1)] / 365 r

30. // stop when the probability that two people
31. // share the same b-day exceeds the input probability
 32. if (1 � probability � inputProbability)

 33. break;

34. }
35. System.out.println(numPersons � " people are required");
36. System.out.println("The probability that two or more have the same birthday is " � (1 � probability));
37. System.out.print("\nRun again? 1 for yes, any other number for no: ");
38. answer � input.nextInt();
39. } while (answer ��1);
40. }
41. }

sim23356_ch05.indd 169sim23356_ch05.indd 169 12/15/08 6:34:43 PM12/15/08 6:34:43 PM

170 Part 1 The Fundamental Tools

 Output

 Enter a probability – at least two people share the same B-day: . 5
23 people are required
The probability that two or more have the same birthday is 0.5072972343239857

Run again? 1 for yes, any other number for no: 1

Enter a probability – at least two people share the same B-day: .75
32 people are required
The probability that two or more have the same birthday is 0.7533475278503208

Run again? 1 for yes, any other number for no: 1

Enter a probability – at least two people share the same B-day: .95
47 people are required
The probability that two or more have the same birthday is 0.9547744028332994

Run again? 1 for yes, any other number for no: 1

Enter a probability – at least two people share the same B-day: .99
57 people are required
The probability that two or more have the same birthday is 0.9901224593411699

Run again? 1 for yes, any other number for no: 2

 Discussion We examine the loop that does the work:

 while (days � 0) // days is initialized to 366
{
 numPersons��; // numPersons is initially 0
 days��;
 probability *� days/365.0; // [365 � 364 � 363 � ... �(365� r �1)]/ 365 r
 if(1 � probability � inputProbability)
 break;
}

 Suppose that you enter a probability of .025. How many persons are necessary so that

there is a 2.5% chance that at least two of them have the same birthday?

 The loop operates as follows:

 days numPersons probability 1 � probability

 365 1 365/365 � 1 1 � 1 � 0

 364 2 (1)(364/365) � .997 1 � .997 � .003

 363 3 (.997)(363/365) � .992 1 � .992 � .008

 362 4 (.992)(362/365) � .984 1 � .984 � .016

 361 5 (.984)(361/365) � .973 1 � .973 � .027

At this point, the loop terminates (i.e., the break statement executes) because when

numPersons equals fi ve, the probability that at least two of those fi ve people share a

birthday is .027 (�.025). The control variable days never reaches 0 (the value in the

test condition). After the break statement executes, program control passes to the fi rst

statement following the loop:

System.out.println(numPersons � " people are required");

sim23356_ch05.indd 170sim23356_ch05.indd 170 12/15/08 6:34:44 PM12/15/08 6:34:44 PM

 Chapter 5 Repetition 171

 5.8 IN CONCLUSION

 Java provides three statements that effect repetition: the while statement, the do-while state-

ment, and the for statement. All three statements are equally powerful, but each is best

suited for specifi c kinds of applications. A loop that always executes at least once is usually

implemented with a do-while statement, and one that may never execute with a while state-

ment. A loop that counts iterations is usually constructed with a for statement. The choice

is a matter of style, technique, and convenience.

 Repetition, however, is not a convenience but a programming necessity. Repetition

allows programs to perform any task multiple times. With repetition and selection, your

programs can implement most any complex algorithm. No other control structures are

necessary. But as your programming tasks become more complex, so do your programs. In

Chapter 6, we introduce a programming mechanism that allows you to divide complicated

problems into smaller, more manageable, and less complicated subtasks.

 Just The Facts

• Java provides three statements that effect iteration or repetition: while , do-while ,

and for .

• An iterative statement includes a block of statements that repeats. These statements

are enclosed in curly braces. If there is only one statement in the block, then the

braces may be omitted.

• An iterative statement checks a condition before the next iteration.

• Any of the three iterative statements is powerful enough to simulate the others. Each

is available for the programmer’s convenience.

• An iterative statement can be nested inside the block of another iterative statement.

There is no limit on the number of nesting levels.

• Nested loops are handy for computations where each datum has several attributes.

• A while statement fi rst tests its condition and if true , then executes its block.

• A do-while statement tests its condition at the end of the block, so the corresponding

block always executes at least once.

• The most important feature and advantage of a for loop is that without examining the

body of the loop, we can understand its termination structure.

• A for statement is convenient when you know in advance the number of times the

loop should execute.

• A for statement executes its initialization statement just once, prior to the fi rst

 iteration, tests the condition at the start of each iteration, and executes its update

statement at the end of each iteration.

• A for statement can count forwards or backwards, and can increment the control

 variable each time by an arbitrary amount.

• A for statement is extremely fl exible and need not be used exclusively for “ counting”

loops. A for statement can use any condition, and any update statement. A for
statement can declare more than one variable and can have more than one update

statement.

• A break statement can be used to escape from a loop.

sim23356_ch05.indd 171sim23356_ch05.indd 171 12/15/08 6:34:46 PM12/15/08 6:34:46 PM

172 Part 1 The Fundamental Tools

 Bug Extermination

 Every programmer has struggled with infi nite loops. A simple and effective way to test

the correctness of an infi nite loop is to add println statements to your program. For exam-

ple, a println statement that, each time through the loop, displays the values of each vari-

able appearing in the condition might be all you need. Printing intermediate calculations

can help you to see that your loop is not doing what it is supposed to do or that the termi-

nation condition will never evaluate to false . Debugging statements should be removed

from a program once they are no longer needed. Also, be sure that the loop does, in fact,

contain a statement that alters the variables of the termination condition.

 The “off by one” error is a common bug that is simple to fi x. This error usually arises

from an incorrect initialization. Should the initial value be 0 or 1? This bug also rears its

head when �� is used instead of �, or vice versa. Remember, the loop

 for (int i � 1; i � n; i��)
 do something

executes n − 1 times, not n times. Using temporary println statements can help uncover

these “off by one” bugs. Often, pencil-and-paper simulation is enough to spot the error.

 Printing intermediate results can help uncover elusive bugs, but don’t print too much .

A screen full of too much data can be as bewildering as an infi nite loop. First, add a few

 println statements and then if the results do not help, remove these println statements

before adding others. Avoid screen clutter.

 Following is a list of a few common bugs that occur with the use of loops. The Java

compiler will catch many of these but not all.

• Placing a semicolon after the condition of a while statement:

while (condition);
 do something;

 This results in an infi nite loop. The compiler will not catch this since it is perfectly

legal syntax.

• Placing a semicolon at the end of the heading of a for statement:

for (int i � 0; i �� n; i��);
 do something;

 In this case, the “loop” consists of incrementing i until i reaches n . Then, do
 something executes just once. This, too, is not a syntax error.

• Building complicated conditions with several &&’s and/or ||’s. What you think

 evaluates to false may not.

• Using a do-while statement when there are cases for which the loop should not

 execute. Use a while statement instead.

• Omitting a statement in the loop body that changes the condition from true to false .

• Initializing a loop counter to 1 when it should be initialized to 0, or vice versa. This

is often the cause of an “off by one” error.

• Omitting parentheses around the expression following while .

• Mistakenly using the keyword do in a while loop, such as,

 while (x � 1) do {…}
 // This generates a syntax error.
Java provides a do-while statement and a while statement but not a while-do statement.

sim23356_ch05.indd 172sim23356_ch05.indd 172 12/15/08 6:34:46 PM12/15/08 6:34:46 PM

 Chapter 5 Repetition 173

• Omitting the semicolon after the last statement in the loop block before the closing

curly brace.

• Using commas instead of semicolons to separate the three sections of the for loop

header.

• Using semicolons instead of commas to separate initialized variables within the fi rst

section of the for loop header.

• Missing or mismatching braces in multi-nested loops.

• Forming (incorrect) expressions by misusing operator precedence or confusing � and

��. Remember, the assignment operator � does not mean “equals.”

sim23356_ch05.indd 173sim23356_ch05.indd 173 12/15/08 6:34:46 PM12/15/08 6:34:46 PM

174 Part 1 The Fundamental Tools

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

4

11

13

18

15

3

9

2

14

19

21

20

16

17

12

6

8

5

10

7

1

 Across
 2 Third part of a for statement header

 4 A for loop the number of iterations

 8 A good way to debug a program is to

include temporary statements

 9 Loop that may never execute

 10 Loop that always executes once

 13 Second part of a for loop header

 15 An infi nite loop can occur if the loop’s

terminating condition never evaluates

to

 17 Signals the end of data

 18 Group of statements enclosed by braces

 19 Variable in a for loop that keeps count

 20 Statement that exits a loop

 21 The for loop condition is tested the

block executes

 Down
 1 Variables declared in the header

of a for statement are

beyond the loop

 3 Nested loops are convenient

when each datum has

several

 5 A do-while loop is often used to

fi lter or input

 6 Every do-while loop must

execute

 7 You can extract the last

digit of an integer with

the operator

 11 Non-terminating loop

 12 The type of the test condition

 14 Common loop error

(three words)

 16 Loops inside loops inside loops

sim23356_ch05.indd 174sim23356_ch05.indd 174 12/15/08 6:34:46 PM12/15/08 6:34:46 PM

 Chapter 5 Repetition 175

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. To implement a loop that always repeats 100 times, it is easier to use a for
 statement than a while statement.

b. Any operation that you can perform with a for statement you can also implement

with a while statement.

c. Any operation that you can perform with a while statement you can also

 accomplish with a for statement.

d. A while statement always executes the loop body at least once.

e. You cannot nest a for loop within a while loop.

f. The data type of condition in while (condition) must be boolean .

g. Using the number 0 as a sentinel value is one way to signal the end of a list of

integers.

h. The nesting depth of for loops is limited to at most three.

i. The statement

 for (int i � 1; i �� 10; i��)
 {i � i � 1;}

 results in an infi nite loop.

j. The statement

 for (int i � 1; i �� 0; i��)
 {i � i � 1;}

 results in an infi nite loop.

 2. Playing Compiler
 Find the errors in the following statements. If a statement has no errors, then say

so. If a statement contains errors, correct them. In each case describe the action

of the loop.

a. for (int i � 1; i �� 10; i��)
 {
 i � i � 1
 }
b. int j � 7;
 while (j � 1)
 {
 system.out.println (“again”);
 j � j % 2
 }
c. int j � 1;
 while (j � 1)
 {
 System.out.print(“try again”);
 }
d. for (int k �1, k �� 20; k��) {}
e. for (fl oat h � 0.0; h � 5.0; h � h � .01)
 System.out.println(h);

sim23356_ch05.indd 175sim23356_ch05.indd 175 12/15/08 6:34:47 PM12/15/08 6:34:47 PM

176 Part 1 The Fundamental Tools

f. for (double h � 0.0; h � 5.0; h � h � .01)
 {
 System.out.println(h);
 }
g. do
 {
 int k � 3;
 System.out.print(k);
 } while (k !� 3);
h. int k � 3; do
 {
 System.out.print(k);
 } while (k !� 3);
i. do
 {
 System.out.println("This looks correct")
 } while {true};
j. while (true)
 {
 int x � x � 1;
 }
k. int m � 2;
 while (m � 0) do
 {
 m � m �1;
 };
l. int m � 2;
 while (m � 0) do
 {
 m � m �1;
 System.out.println(m);
 };
m. int m � 2;
 while (m � 0)
 {
 m � m �1;
 System.out.println(m);
 } while (false);
n. int k;
 for (k � 0; k � 1; k��)
 {
 System.out.print(k � 1);
 }
o. int x � 7;
 do
 (System.out.println(x); x--)
 while {x � 2};
p. for (int k � 0; k � 100; k � ��k)
 System.out.println(k)
q. for (int k � 0; k � 100; k � ��k)
 System.out.println(k);

sim23356_ch05.indd 176sim23356_ch05.indd 176 12/15/08 6:34:47 PM12/15/08 6:34:47 PM

 Chapter 5 Repetition 177

r. for (int k � 0; k � 100; k � k��)
 System.out.println(k);
s. for (int k � 0; k � 100; k � ��k)
 System.out.println(k��);
t. for (int k � 0; k � 100; k � ��k)
 System.out.println(--k);

 3. What’s the Output?
 Determine the output of each of the following segments.

a. short x � 15000;
 short y � 15000;
 int z;
 for (int i � 0; i � 30000; i��)
 x��;
 System.out.println(x);
 System.out.println(y � 30000);
 z � y � 30000;
 System.out.println(z);
b. int x � 3, y � 7;
 while (x � y)
 {
 System.out.println(10 * x);
 for (int i � 0; i � y ; i��)
 System.out.println(10 * i);
 x *� 2;
 }
c. for (int j � 0; j � 5; j��)
 {
 for (int k � j; k � 0 ; k--)
 System.out.println(k);
 System.out.println(j);
 }
d. boolean fl ag � true;
 int k � 1;
 int j � 1024;
 while (fl ag)
 {
 System.out.println(k);
 do
 {
 System.out.println(k);
 k � 2*k;
 } while (k � j);
 k � 1;
 j � j / 2;
 fl ag � (k �� j);
 }
e. int m � 0, k � 0, j � 100;
 while (m � j)
 {
 m��;

sim23356_ch05.indd 177sim23356_ch05.indd 177 12/15/08 6:34:48 PM12/15/08 6:34:48 PM

178 Part 1 The Fundamental Tools

 System.out.println(j);
 System.out.println(k);
 for (k � 0, j � 10; k !� j; k��, j--)
 System.out.println(k � " and " � j);
 j��;
 }

 4. Variations for the header of a for loop
 There are eight variations for the header of a for loop obtained by omitting one or

more of the three parts in the header:

 Initialization Condition Update Statement
 no no no

 no no yes

 no yes no

 no yes yes

 yes no no

 yes no yes

 yes yes no

 yes yes yes

 Under what circumstances would each case be appropriate? Give examples.

 5. Which Loop?
 Write code segments to solve each of the following problems. Choose the loop that

you feel is most natural: for, while, or do-while.

a. On April 1, Sally Saver deposits one cent in her piggy bank. As an April Fools

Day resolution, Sally decides to double the previous day’s amount each day for

one month. So, on April 2, Sally saves two cents; on April 3, four cents, and so

on. How much will Sally have saved by April 30?

b. On April 1, Sally Saver deposits one cent in her piggy bank. Each day she

 doubles the amount from the previous day. When will Sally have saved

$1,000,000?

 6. Loop Rewriting
 Rewrite the following while statements as for statements. Assume that

input (a Scanner) has been previously declared.

a. int count � 0;
 int sum � 0;
 while (count � 10)
 {
 sum �� input.nextInt();
 count � count � 1;
 }
b. int count � 1;
 while (count �� 15)
 {
 int num � 1;
 int sum � 0;
 while (num �� 5)
 {

sim23356_ch05.indd 178sim23356_ch05.indd 178 12/15/08 6:34:48 PM12/15/08 6:34:48 PM

 Chapter 5 Repetition 179

 sum �� input.nextInt();
 num �� 1;
 }
 System.out.println("Sum number " � count � " is " � sum);
 count��;
 }

 7. Loop Rewriting
 Rewrite the following for statements as while statements.

a. for (int i � 0, sum � 0; i � 10; i��)
 sum � sum � i * i;
b. int sum;
 for (int i � 0; i � 10; i��)
 {
 sum � 0;
 for (int j � 0; j �� i; j��)
 sum � sum � j;
 System.out.println(sum);
 }
c. int i, sum;
 for (i � 0, sum � 0; i � 10; sum �� i��);
 System.out.println(sum);

 8. Find the Error
 Fix all syntactical and logical errors in the following segments. Assume that

 input (a Scanner) has been previously declared.

a. int count � 0;
 int number;
 int sum � 0; // sum of the positive numbers among the fi rst 15 numbers entered interactively
 while count � 15
 {
 number � input.nextInt();
 if (number � 0)
 sum � sum � number;
 }
b. for (int i � 10, sum � 0; i � 5; i��) // sum of the squares of 5 numbers entered interactively
 {
 int number � input.nextInt();
 sum � number * number;
 }
c. for (int i � 1, sum � 0; i �� 10; i��)
 sum �� i * i;
 System.out.println ('The sum of the fi rst 10 squares is " � sum);
d. // adds numbers entered interactively using �999 as a fl ag.
 while (input.nextInt() !� �999)
 sum � sum � input.nextInt();

 9. Tracing
 How many times does the third line execute in each of the following loops? Assume

 m , n , and product are declared as int. Your answers may be expressed in terms of m and n .

sim23356_ch05.indd 179sim23356_ch05.indd 179 12/15/08 6:34:48 PM12/15/08 6:34:48 PM

180 Part 1 The Fundamental Tools

a. for (int i � 1; i �� n; i��)
 for (int j � 1 ; j �� m; j��)
 product � i * j;
b. for (int i � 1; i �� 8; i��)
 for (int j � 1 ; j �� i; j��)
 product � i * j;
c. for (int i � 1; i �� m; i��)
 for (int j � 1 ; j �� i; j��)
 product � i * j;
d. int max � 1;
 for (int i � 1; i �� n; max *� 2, i��);
 for (int i � max; i ��1; i � i / 2)
 System.out.println(i);

 PROGRAMMING EXERCISES
 1. Credit Card Revisisted
 Rewrite Example 5.8, using a for loop index that increases the loop counter by two

with each iteration, that is, use a loop such as the following

 for (int i � 1; i � MAX_DIGITS; i �� 2) {...}.

 Why might this improve the performance of the program?

 2. Pictures
 Write a program that accepts an integer n and prints the following right triangle with

base and height n .

 1 X

 2 XX

 3 XXX

 …

 n XXX…X (n times)

 3. More Pictures
 Write a program that accepts an integer n and prints the following picture of a

diamond with 2 n − 1 rows.

 1 X

 2 XXX

 3 XXXXX

 …

 n XXX … X (2 n � 1 times)

 …

 XXXXX

 XXX

 2 n � 1 X

 4. A Bank Account Record
 Write a program that reads a list of numbers representing deposits to and

withdrawals from a savings account. Positive entries represent deposits and the

negative entries withdrawals. Your program should calculate the sum of all deposits

and the sum of all withdrawals. Use the sentinel zero to signal the end of the data.

 5. Prime Numbers
 Write a program that accepts an integer n and displays all the prime numbers

between 2 and n . A prime number is a positive integer divisible only by itself and 1.

sim23356_ch05.indd 180sim23356_ch05.indd 180 12/19/08 3:47:27 AM12/19/08 3:47:27 AM

 Chapter 5 Repetition 181

 6. Coin Flipping
 Write a program that simulates fl ipping a coin 100,000 times and reports the longest

consecutive sequence of heads. Use (int) (Math.random() � .5) to generate a random

integer, 0 for heads and 1 for tails.

 7. Greatest Common Divisor
 The greatest common divisor of two numbers a and b is the largest number that

evenly divides both a and b . For example, the greatest common divisor of 36 and 30

is 6. Write two programs to compute the greatest common divisor of two integers a

and b according to the following two algorithms:

• Brute Force: Assume that a � b . Start with b and try every integer less than or equal to

 b until you fi nd a common divisor:

 divisor � b ;
while (divisor does not divide both a and b)
 divisor--;
print divisor;

• Euclid’s Algorithm: Euclid proved in 300 BCE that, if a � b , then the greatest com-

mon divisor of a and b equals the greatest common divisor of b and a % b . Hence,

the greatest common divisor of 138 and 36 equals the greatest common divisor

of 36 and 30 (138 % 36), which equals the greatest common divisor of 30 and 6

(36 % 30), which equals the greatest common divisor of 6 and 0 (30 % 6), which is 6.

 8. Perfect Numbers
 A perfect number, p , is a positive integer that equals the sum of its divisors,

excluding p itself. For example, 6 is a perfect number because the divisors of 6

(1, 2, and 3) sum to 6. Write a program that prints all perfect numbers less than

1000. There are not many!

 9. General Average
 Write a program that calculates the average of n test scores, such that each score

is an integer in the range 0 through 100. Your program should fi rst prompt for an

integer n and then request n scores. Your program should also check for invalid data.

If a user enters a number outside the correct range, the program should prompt for

another value. Round the average to the closest integer.

 10. Modifi ed Average
 Write a program that accepts a list of n test scores in the range 0 through 100 and

fi nds the average of the n − 1 highest scores on the list—that is, the lowest score

is not included in the average. For example, if the test scores are 90, 80, 70, and

60, the average is computed as (90 � 80 � 70)/3 � 80.0. The low score of 60 is

excluded.

 Your program should fi rst prompt for an integer n , and then request n scores.

Your program should also check for invalid data. If a user enters a number outside

the correct range, the program should prompt for another value.

 11. Infi nite Series
 The infi nite series 1 � 1/2 � 1/3 � 1/4 � 1/5 � 1/6 … diverges . This means that

the fi nite sums

 1 � 1/2 � 3/2 � 1.5

 1 � 1/2 � 1/3 � 11/ 6 � 1.833

 1 � 1/2 � 1/3 � 1/4 � 25/12 � 2.0833

 1 � 1/2 � 1/3 � 1/4 � 1/5 � 137/60 � 2.2833

 …

 1 � 1/2 � 1/3 � 1/4 � 1/5 � … � 1/ n

sim23356_ch05.indd 181sim23356_ch05.indd 181 12/15/08 6:34:48 PM12/15/08 6:34:48 PM

182 Part 1 The Fundamental Tools

 can be made arbitrarily large by including more and more fractions. For example,

if n is large enough, the sum 1 � 1/2 � 1/3 � 1/4 � 1/5 � … � 1/ n grows greater

than 100,000,000,000.

 However, because a computer’s accuracy with fl oating-point numbers is limited,

very small fractions will eventually be indistinguishable from zero. Consequently,

you will discover that the sum

 1 � 1/2 � 1/3 � 1/4 � 1/5 � … � 1/ n

 when calculated by a computer may not grow as large as you would expect!

 Write a program that accepts an integer n and computes the sum of the series

through 1/ n . Experiment with large values of n to see how large you can actually

make a sum. Can you make the sum grow larger than 20? 30?

 12. Credit Cards
 The Capital One credit card limits a single charge to $900 and the total monthly

charges to $3000. Write a program that accepts an integer n representing the number

of transactions for one month, followed by the dollar/cent values of each of the n

transactions (double). Your program should compute and print the minimum, maximum,

and sum of all transactions for the month. If you exceed either limit (a single transaction

over $900, or total over $3000) then the program displays the appropriate message(s).

 13. Grade Processing Revisited
 Rewrite the grade processing program of Example 5.11 using just a single loop with an

embedded if statement. If the user enters 1000 before entering the sentinel for any set of

grades, the program terminates and does not report the information for that last student.

 14. World Series Odds
 Once a year, the two top American baseball teams play a best-four-out-of-seven-

games World Series. If the teams are evenly matched, then the probability that the

series lasts for all seven games is 1/2 � 3/4 � 5/6 � 15/48 � 5/16. In general, the

probability that a competition of 2 n � 1 games, n � 0, between evenly matched

teams will “go all the way” and last for all 2 n � 1 games is 1/2 � 3/4 � 5/6 � 7/8

� … � (2 n � 1)/(2 n). Write a program that accepts an integer n and calculates the

probability that a competition of 2 n � 1 games will go all the way.

 15. Checkbook Balancing
 Write a program that balances a checkbook. Input to the program should be a sequence

of numbers representing checks and deposits. A negative number indicates a check

and a positive number a deposit. A zero signals the end of data. After each entry, “echo

print” the entry, and print the current balance. Make the fi rst entry the starting balance.

For example, if the entries are 100.00, �50.00, �30.00, 200.00, 0 the output should be:

 Transactions Current Balance

 Enter entry: 100.00

 100.00 Starting Balance: $100.00

 Enter entry: �50.00

 �50.00 $50.00

 Enter entry: �30.00

 �30.00 $20.00

 Enter entry: 200.00

 200.00 $220.00

 Enter entry: 0

 0 Final Balance: $220.00

sim23356_ch05.indd 182sim23356_ch05.indd 182 12/15/08 6:34:49 PM12/15/08 6:34:49 PM

 Chapter 5 Repetition 183

 16. A Multiplication Table
 Write a program to generate a multiplication table such as the following “9 times table”:

 0 1 2 3 4 5 6 7 8 9

 0 0 0 0 0 0 0 0 0 0 0

 1 0 1 2 3 4 5 6 7 8 9

 2 0 2 4 6 8 10 12 14 16 18

 …

 9 0 9 18 27 36 45 54 63 72 81

 17. Craps Simulation
 To play craps, a player rolls two dice repeatedly until he wins or loses. If he makes a

7 or an 11 on the fi rst roll, he wins immediately. An initial roll of 2, 3, or 12 results

in a loss. If he tosses a 4, 5, 6, 8, 9, or 10 on his fi rst roll, then that number becomes

his “point.” After a player makes a point, he continues rolling the dice and wins or

loses according to the following rules: if he makes his point before rolling a seven,

he wins; but if he rolls a seven fi rst, he loses. No other values, including 2, 3, 11, or

12, affect the game’s outcome once the player has established his point.

 Write a program that plays craps. Your program should allow a user to play more

than one game. Typical output appears below:

 Enter 0 to roll the dice: 0
You rolled a 7

You win

Play again? Enter 1 for yes: 1

Enter 0 to roll the dice: 0
You rolled a 4.

Your point is 4. Continue rolling.

Enter 0 to roll the dice: 0
You rolled a 3

Enter 0 to roll the dice: 0
You rolled a 5

Enter 0 to roll the dice: 0
You rolled a 7

You lose

Play again? Enter 1 for yes: 0

Bye

 Hint: To roll a single die, generate a random number between 1 and 6 inclusive. You

can do this with (int)(6 * Math.random()) � 1 .

 18. A Digital Puzzle
 There is only one 10-digit number that contains every digit 0 through 9 exactly once

and has the property that each number formed from the leftmost j digits is divisible

by j . For example, the number 9876543210 is close but does not qualify. The

number contains each digit once, the fi rst digit 9 is divisible by 1, the number 98 is

divisible by 2, 987 is divisible by 3, 9876 is divisible by 4, 98765 is divisible by 5,

and 987654 is divisible by 6. However, the number 9876543 is not divisible by 7.

Note that 98765432 is divisible by 8, 987654321 is divisible by 9, and 9876543210

 is divisible by 10, so this number fails only because 9876543 is not divisible by 7.

 Write a program that accepts a 10-digit integer, n , containing each of the digits

0 through 9, and determines how many such divisions can be performed. For example,

on input 9876543210 your program should report 9 divisions (only 9876543 fails);

sim23356_ch05.indd 183sim23356_ch05.indd 183 12/15/08 6:34:49 PM12/15/08 6:34:49 PM

184 Part 1 The Fundamental Tools

for 2159730648 the number of divisions is just 1; and for the number 3816547290

(and only this number) the result is 10. (Warning : The largest value of data type int
is 2 31 – 1 � 2,147,483,647, too small for many 10-digit numbers. An integer of type

 long can be as large as 2 63 – 1.)

 19. Rectangles in a Grid
 The number of rectangles that can be formed in an n by n grid can be calculated in

three equivalent ways:

 1. (1 � 2 � … � n) 2

 2. (n (n � 1)/2) 2

 3. 1 3 � 2 3 � … � n 3

 For example, there are (1 � 2) 2 � (2 � 3)/2) 2 � (1 3 � 2 3) � 9 rectangles of various

sizes that can be formed in a 2-by-2 grid. The shaded areas of Figure 5.13 show the

nine rectangles. Similarly, there are (1 � 2 � 3) 2 � (3 � 4)/2) 2 � 1 � 8 � 27 � 36

rectangles of various sizes in a 3-by-3 grid.

FIGURE 5.13 Nine different rectangles can be formed in a 2-by-2 grid .

 Verify the identities (1 � 2 � … � n) 2 � (n (n � 1)/2) 2 � 1 3 � 2 3 � … � n 3 ,

for n � 1 to 20 by writing a program to compute and display the following table.

 n (1 � 2 � … � n) 2 (n (n � 1)/2) 2 1 3 � 2 3 � … � n 3

 1 1 1 1

 2 9 9 9

 … … … …

 20 44100 44100 44100

 20. Investments
 At some time, everyone eventually borrows money, perhaps for a new car, a house,

or to fi nance a start-up business. The amount of interest that you pay over the life

of a loan may surprise you. For a 30-year, $200,000 loan at 6% annual interest, the

total interest is more than $230,000.

 Write a program that calculates the monthly payment as well the portion of each

monthly payment that is interest. The program should prompt the user for

1. the amount borrowed in dollars,

2. the annual interest rate as a percentage, and

3. the term of the loan in years.

 The program should be able to run any number of times with different data.

 The monthly payment is calculated with the following formula:

payment �
(amount) � (rate)

1� (1 ________

1 � rate
)

m

 where amount is the amount borrowed in dollars, m is the total number of monthly

payments, and rate is the monthly interest rate. For example, if the annual interest

sim23356_ch05.indd 184sim23356_ch05.indd 184 12/15/08 6:34:49 PM12/15/08 6:34:49 PM

 Chapter 5 Repetition 185

rate is 6%, and the term of the loan is 30 years, then m � 12 � 30 � 360, and

 rate � .06/12 � .005 or 0.5%.

 The amount of the loan cannot exceed $1,000,000; the interest is given as a

percentage between 2.0 and 15.0 inclusive, for example, 6.5 or 5.75; and the term of

the loan is no more than 30 years. Your program should check input to ensure that

these restrictions are met.

 Your program should display the monthly payment followed by a month-by-

month table showing the interest and principal paid each month. The interest paid

each month equals the rate times the remaining balance of the loan. The remainder

of the monthly payment goes to principal.

 The loan balance begins with the amount borrowed. The remaining balance of

the loan should be updated each month by subtracting the principal paid that month

from the previous remaining loan balance. For convenience, round interest to the

nearest dollar. This can be accomplished with

 Math.Round(interest).

 Finally, display the total amount of interest, rounded to the nearest dollar, paid over

the life of the loan.

 THE BIGGER PICTURE

 1. FLOATING-POINT ARITHMETIC
 The nefarious infi nite loop is one of the hazards of ill-formed iterative statements. It might

surprise you that careless use of fl oating-point numbers can be a source of infi nite loops as

well. Indeed, incorrect usage of fl oating-point numbers can result in some very subtle and

unsightly bugs.

 For example, on the surface, the segment

 double x � 0.0;
 while (x !� 1.0)
 {
 x � x � 0.1;
 System.out.println(x);
 }

seems perfectly innocuous. Ten additions should stop the loop. Well, execute these state-

ments and you may be surprised by the outcome. Yes, it is an infi nite loop! The problem is

that fl oating-point arithmetic is not exact.

 Here’s another “simple” code segment that utilizes fl oating-point arithmetic:

 double x � 2.0, y � 3.14, z � �7.0;

 System.out.println(z � y � x � 1.86);

Surprisingly, the sum z � y � x � 1.86 does not evaluate to 0.0. If you embed these

statements into a program, you will see that the expression z � y � x � 1.86 evaluates to

2.220446049250313E-16, an extremely small number but certainly not the correct value

of 0.0. Interestingly, the expression x � y � z � 1.86 returns 6.661338147750939E-16,

THE BIGGER PICTURE

sim23356_ch05.indd 185sim23356_ch05.indd 185 12/15/08 6:34:50 PM12/15/08 6:34:50 PM

186 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

a different small number but also not 0.0. Perhaps even more surprising is that the expres-

sion x � 1.86 � y � z does indeed evaluate to 0.0. Yes, z � y � x � 1.86 , x � y � z �
1.86, and x � 1.86 � y � z all have different values! Is Java ignorant of the laws of simple

arithmetic? Try a bit of experimentation with the following exercises.

 Exercises
 1. Write a program to test the anomalies described above.

 2. Find fl oating-point examples of your own that exhibit a violation of the associa-

tive or commutative laws of addition.

 Similar situations abound. The output from the following code segment may surprise you.

 double number � 0.0;

 for (int i � 1; i �� 10; i��)

 number �� 0.1;

 System.out.println(number);

 The segment displays not 1.0 but 0.9999999999999999. Close, yes; exact, not really. The

same thing happens if you add 0.01 to the variable number 100 times; the value of number
still falls short of 1.0.

 The explanation for these irregularities has to do with the way that Java evaluates expres-

sions, and also how Java stores fl oating-point values. Java uses an encoding called the IEEE

754 standard to represent fl oating-point numbers in binary. Although the details of this encod-

ing scheme are not relevant here, the consequences of using the IEEE 754 standard are:

• Floating-point arithmetic executed by a computer is not exact. You can expect

accurate answers to within a very small margin of error, but you cannot always

expect an exact answer.

• Floating-point arithmetic is not necessarily associative or commutative.

As a simple precaution, do not compare double (or fl oat) values for equality. Instead, sub-

tract one from the other and compare their difference to a small number: For example,

 if (Math.abs(x � y) �.000001). // Math.abs(z) computes the absolute value of z

is safer than

 if (x �� y)

where x and y are both type fl oat or double.

 Exercises
 3. Alter the condition of the while statement of the fi rst code segment of this section

so that the program does not fall into an infi nite loop. The program should stop

when x is within 0.00001 of 1.0.

 4. Consider the Birthday Paradox of Example 5.13. Recall that the formula that cal-

culates the probability that at least two people in a group of fi ve share the same

birthday is:

1 � 365 � 364 � 363 � 362 � 361 __________________________
365 � 365 � 365 � 365 � 365

 � 1 � 365 ____
365

 � 364 ____
365

 � 363 ____
365

 � 362 ____
365

 � 361 ____
365

 The general formula for r people has r fractions instead of fi ve. Write two pro-

grams that calculate the probability that at least two people in a group of r share the

same birthday. Your program should implement the formula two ways.

sim23356_ch05.indd 186sim23356_ch05.indd 186 12/15/08 6:34:51 PM12/15/08 6:34:51 PM

 Chapter 5 Repetition 187

THE BIGGER PICTURE

a. The fi rst program calculates the product of r fractions, fraction by fraction,

that is, (365/365) � (365/364) � (363/365) … � ((365 � r �1)/365), as is

illustrated on the right side of the preceding equation, for r �5. Declare all

variables, except loop counters, of type double .

b. The second program computes the numerator (365 � 364 � 363 � … �

(365 � r �1)), using one loop, the denominator 365 r using a separate loop,

and divides the two products at the end, as illustrated on the left side of

the preceding equation. Declare all variables, except loop counters, of type

 double.

 Run your programs for all values of r in the range 1 to 15. Print and compare the

results of the two programs. Do the two methods give the same result?

 Change your programs so that r ranges from 1 to 25. Did you encounter any

errors with the second program? If so, what do you think caused these errors?

 What do you think would happen if, in the second program, you declared the

numerator and denominator to have type int and cast them to type double before

performing the division?

 As a fi nal illustration of some of the pitfalls of fl oating-point arithmetic, we present a

simple algorithm for estimating the square root of a number. To calculate the square root of

150.0 the algorithm works as follows:

• Begin with an estimate or guess for the square root of 150.0. We use 10.0, but any

other number would also work.

• Divide 150.0 by 10. The quotient is 15.0, and because 10.0 � 15.0 � 150.0, the

estimate 10.0 is too low and the square root of 150.0 lies between 10.0 and 15.0.

• As a second estimate of the square root of 150.0, take the average of 10.0 and 15.0.

That’s (10.0 �15.0)/2 � 12.5

• Divide 150.0/12.5. The quotient is 12.0, so the square root of 150 lies between 12.0

and 12.5.

• Use the average of 12.0 and 12.5 (12.25) as the next estimate.

• Divide 150 by 12.25. The quotient is approximately 12.2474489795918.

• Continue the process until two consecutive estimates are “equal,” that is, the two esti-

mates agree up to a number of decimal places—limited by the computer’s accuracy.

Here is the algorithm in Java-like pseudocode for fi nding the square root of any positive

number x :

 oldGuess � x;
newGuess � 10.0; // There is nothing special about 10.
 // Any number is fine for the first guess.

while (oldGuess !� newGuess)
{
 oldGuess � newGuess;
 newGuess � (oldGuess � x/oldGuess)/2.0; // calculates the average
}

The problem with this pseudocode is the expression (oldGuess !� newGuess). The inac-

curacies of fl oating-point arithmetic could bring the algorithm to a stage where the values

of oldGuess and newGuess oscillate, causing this loop to run forever. Using the expression

 Math.abs(oldGuess – newGuess) � 0.000001 instead of oldGuess !� newGuess is safer.

This continues the loop until the difference between the last two guesses is small enough.

sim23356_ch05.indd 187sim23356_ch05.indd 187 12/15/08 6:34:51 PM12/15/08 6:34:51 PM

188 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 Exercises
 5. Write a Java program that calculates the square root of a non-negative number.

The program should prompt for the number and an initial guess. Display all inter-

mediate estimates. Use Math.abs(oldGuess – newGuess) � 0.000001 in place of

the condition oldGuess !� newGuess .

 6. Run the program in of Exercise 5 a few times. Examine the sequence of interme-

diate estimates, and describe whether or not they oscillate.

 7. Replace Math.abs(oldGuess – newGuess) � 0.000001 with oldGuess !� newGuess .

Run your program again and try to fi nd input that forces the program to loop forever.

 Finally, be aware that fl oating-point arithmetic is not only a cause of infi nite loops but also

the root of other bugs. An if statement that compares two doubles can be just as bug-prone

as a while statement.

2. LOOPS AND COMPUTABILITY
 The Java compiler can scan a program and determine any number of errors: a missing semi-

colon, an uninitialized variable, a mismatched type, an unbalanced set of parentheses, and

dozens of other syntax errors. One pesky programming error that a compiler does not fl ag

is the infi nite loop. Can a compiler determine whether or not a program will ever fall into

an infi nite loop? As it turns out, it is impossible to write a computer program, compiler or

 otherwise, that correctly determines whether other programs loop forever. This phenome-

non is known as the halting problem , a well-known topic in theoretical computer science.

 The Halting Problem: Given a program P together with some initial input, can it

be determined whether P will stop or fall into an infi nite loop?

 In 1936, Alan Turing (1912–1954), one of the great pioneers of computer science, proved

that an algorithm that determines whether or not a program halts on arbitrary input cannot

exist. Turing demonstrated that the existence of a “halting program” leads to an impossible

conclusion. In the following discussion, we briefl y summarize Turing’s argument.

 We begin with the (possibly fallacious) assumption that there does, in fact, exist a

 program that can determine whether or not another program stops on arbitrary input. For

lack of a better name, we call this program Loopy. See Figure 5.14 .

Loopy

Halts?

Halts?

yes
Program P

Input 1

Program P

Input 2
no

Loopy

FIGURE 5.14 The Loopy program

 Is there such a program as Loopy ? Does Loopy exist or is Loopy just wishful thinking, the

dream of some mad computer scientist? We now prove that if Loopy can, in fact, be written,

then pigs fl y, fi sh walk, and white rabbits carry pocket watches. That is, the existence of Loopy

implies the impossible, proving there is no Loopy.
 Here is the proof : Assume that Loopy does, indeed, exist—that is, there is a program

that determines whether or not another program halts or continues forever. We show that

sim23356_ch05.indd 188sim23356_ch05.indd 188 12/15/08 6:34:52 PM12/15/08 6:34:52 PM

 Chapter 5 Repetition 189

THE BIGGER PICTURE

this assumption leads to an absurd conclusion, the creation of an impossible program called

 Paradox . What is Paradox ? The input to Paradox is any program P . Paradox uses Loopy to

do its job. Here is how Paradox operates on program P .

 a. Paradox runs Loopy using P as both input parameters, that is, Loopy will check

whether or not P halts on itself.

 b. If Loopy reports no (P does not stop with itself as input), then Paradox halts.

 c. If Loopy reports yes (P halts on itself) then Paradox loops forever.

 That is, Paradox runs according to the following algorithm:

 if (Loopy says that P loops forever on itself)
 break; // Paradox stops
else if (Loopy says that P stops on itself)
 while(true) ; // Paradox goes into an infinite loop

 Figure 5.15 illustrates the operation of the program Paradox .

Loopy

Halts? yes Paradox loops
forever

Paradox

Program P

Program P
Program P

Loopy

Halts? no
Paradox stops

Paradox

Program P

Program P
Program P

FIGURE 5.15 The Paradox program runs with program P as input

 Now, what happens if the input to Paradox is Paradox itself? That is, what if P is the

 program Paradox ? Figure 5.16 shows the two possible outcomes.

Loopy

Halts? yes Paradox loops
forever

Paradox

Paradox

Paradox
Paradox

Loopy

Halts? no
Paradox stops

Paradox

Paradox

Paradox
Paradox

FIGURE 5.16 The Paradox program runs with itself as input

sim23356_ch05.indd 189sim23356_ch05.indd 189 12/15/08 6:34:52 PM12/15/08 6:34:52 PM

190 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 The two possible scenarios are:

 • If Loopy says that Paradox halts (on itself), then Paradox runs forever.

 • If Loopy says that Paradox runs forever (on itself), then Paradox halts.

These conclusions may make sense in a world created by Lewis Carroll, Neverland, or

perhaps The Twilight Zone, but in our world both possibilities are clearly impossible. Thus,

we conclude that program Loopy , which is the foundation of Paradox , cannot exist.

 Exercises
 1. In the 18 th century, Christian Goldbach (1690–1764) conjectured that every even

number greater than 2 is the sum of two prime numbers. For example:

 4 � 2 � 2,

 6 � 3 � 3,

 8 � 5 � 3,

 10 � 7 � 3,

 12 � 5 � 7,

 ...

 120 � 41 � 79, etc.

 As simple as it is to state, a proof of this conjecture has eluded mathematicians

to this day. Explain how a program such as Loopy might resolve Goldbach’s

conjecture.

 2. How might Loopy prove Fermat’s Last Theorem: there are no positive integers a,

b, c, and n such that an � bn � cn, where n � 2. Explain how Loopy might help

mathematicians prove other theorems.

 3. Explain how Loopy might help software manufacturers’ quality control.

 Besides the halting problem, are there other problems that cannot be solved with a com-

puter? The answer is yes, and they all involve loops. For example, it is not possible to write

a program called Equal that takes two programs as input and determines whether or not the

programs compute the identical answers to all inputs.

 Exercises
 4. Write a program that takes a positive integer as input and repeats the following

steps in a loop until the integer becomes 1: If the integer is even, divide it by 2;

and if it is odd, multiply it by 3 and add 1. If the program eventually hits 1, the

program prints success .

 For example: given 10, we get the numbers 5, 16, 8, 4, 2, 1, and the program

prints success . With 7, we get the sequence of numbers 22, 11, 34, 17, 52, 26, 13,

40, 20, 10, 5, 16, 8, 4, 2, 1, and the program prints success .

 It is unknown whether or not the program will always say success or whether

there is some number that will make it run forever. Explain how you could use

 Loopy to determine whether or not the program always says success . Explain how

you would determine whether or not the program always reports success if you

could use Equal .

 5. Describe a commercial use for the hypothetical program Equal .

 6. (Challenging) Prove that Equal does not exist. Hint: Use Equal to build Loopy.

sim23356_ch05.indd 190sim23356_ch05.indd 190 12/15/08 6:34:53 PM12/15/08 6:34:53 PM

 191

CHAPTER CHAPTER 6
 Methods

 “Though this be madness, yet there is method in ’t.”
 —From Hamlet (II, ii, 206)

 “There is more madness to my method than method to my madness.”
 — Salvador Dali

 Objectives

 The objectives of Chapter 6 include an understanding of

� the concept of a method as a “black box,”

� the methods of Java’s Math class,

� how to construct methods that carry out simple tasks,

� the differences between void methods and methods that return a value,

� the scope of a name, and

� method overloading: advantages and potential pitfalls.

 6.1 INTRODUCTION

 Not too long ago, in the pioneer days of programming (that’s circa 1966), mathematicians

Corrado Bohm and Guiseppe Jacopini proved that a n y computer program can be written

using just three basic structures:

 1. sequence (statements in a program are executed sequentially),

 2. selection (if-else statements), and

 3. repetition (loops).

These three fundamental ideas are the principal concepts of Chapters 2 through 5. So, at

least theoretically , you can put aside this text and implement any program that you dare to

dream up! You have the tools.

 Needless to say, complex computer programs are built with tools more sophisticated

than three simple, albeit powerful, structures. Indeed, a carpenter could theoretically build

a house using nothing more than nails, a saw, a hammer, and some lumber; but the task

wouldn’t be easy, and the fi nished product may be unsightly. As a carpenter needs more

powerful equipment, the programmer requires tools beyond sequence, selection, and rep-

etition. One such programming construct is the method.

A method is a named sequence of instructions that are grouped together to perform a task.

sim23356_ch06.indd 191sim23356_ch06.indd 191 12/15/08 6:35:48 PM12/15/08 6:35:48 PM

192 Part 1 The Fundamental Tools

 Complicated programs perform many different tasks. Methods enable the programmer

to organize various tasks into neat, manageable, independent bundles of code. Every Java

application that we have written contains one method; its name is main and its instructions

appear between the opening and closing braces of main .

Every Java application must have a main method, and the execution of every Java

application begins with the main method.

 Other methods that we have used are print(…), println(…), and Math.random().
 In this chapter you will learn about a few more prepackaged methods provided by Java as

well as how to construct your own methods. We begin with a “black box” view of a method.

 6.2 JAVA’S PREDEFINED METHODS

 Imagine a mathematical, if not magical, “black box” that works in such a way that when-

ever you supply a number to the box, the box gives or returns the positive square root of

that number. See Figure 6.1a .

FIGURE 6.1b An area box

area
2

3
6

FIGURE 6.1a A square root box

16 4sqrt

 Figure 6.1b illustrates a similar mechanism that accepts two numbers, perhaps the length

and width of a rectangle, and returns the area of the rectangle.

 Or can you fathom a gizmo that receives a character and returns the integer (ASCII) value

of that character? See Figure 6.1c .

 Such a “box” is a metaphor for a method . A method is very much like a mathematical

 function—a black box that computes an output given some inputs.

The values that you supply or pass to the method are called arguments. The value

computed by the method is the returned value.

 Later, you will see that a method may perform a task without accepting arguments or

returning a value.

 Java comes bundled with an extraordinary number of methods. Each of these built-in

methods is comprised of Java code that performs some specifi c task. Fortunately, the

FIGURE 6.1c An ASCII converter box

‘A’ 65ascii

sim23356_ch06.indd 192sim23356_ch06.indd 192 12/15/08 6:35:49 PM12/15/08 6:35:49 PM

 Chapter 6 Methods 193

 programmer need not know how these Java-supplied methods work “inside the box” or

“under the hood,” but simply how to use them.

 How do you use these methods? Where do you get them? Let’s start with a simple

example.

 6.2.1 The Square Root Method

Imagine that you are standing on a beach gazing out at the sea. What is the distance to

the horizon? How far ahead can you see? How far can you see if you are standing on a

cliff above the beach?

 In general, the distance to the horizon (in miles) can be estimated as follows:

 • Determine the distance (in feet) from sea level to your eyes.

 • Compute the square root of that distance.

 • Multiply the result by 1.23.

Problem Statement Write a program that prompts a user for the distance measured

from the ground to his/her eyes and calculates the distance to the horizon.

Notice that the following program must calculate a square root. This calculation is per-

formed compliments of the method Math.sqrt(x)—a black box.

Java Solution
1. import java.util.*;
2. public class DistanceToHorizon
3. {
4. public static void main(String[] args)
5. {
6. Scanner input;
7. double distanceToEyes; // measured from the ground
8. double distanceToHorizon;
9. int answer � 1; // used to repeat the calculation
10. input � new Scanner(System.in);
11. do
12. {
13. System.out.print("Distance from the ground to your eyes in feet: ");
14. distanceToEyes � input.nextDouble();
15. distanceToHorizon � 1.23 * Math.sqrt(distanceToEyes);

16. System.out.println("The distance to the horizon is " � distanceToHorizon � "mi.");
17. System.out.print("Again? Enter 1 for YES; any other number to Exit: ");
18. answer � input.nextInt();
19. }while (answer �� 1);
20. }
21. }

Output
Distance from the ground to your eyes in feet: 16.0

The distance to the horizon is 4.92 mi.
Again? Enter 1 for YES; any other number to Exit: 1

Distance from the ground to your eyes in feet: 5.25

The distance to the horizon is 2.8182840523978414 mi
Again? Enter 1 for YES; any other number to Exit: 0

Discussion On line 15, the program utilizes the method

double Math.sqrt(double x)

to calculate the square root of distanceToEyes. The method Math.sqrt(…) hides the

details of its implementation. How the square root of a number is calculated is hidden

EXAMPLE 6.1

sim23356_ch06.indd 193sim23356_ch06.indd 193 12/15/08 6:35:50 PM12/15/08 6:35:50 PM

194 Part 1 The Fundamental Tools

 The program of Example 6.1 utilizes the Math.Sqrt(…) method. To understand how a

Java method works, let’s take a closer look at the mechanics of this particular method.

 Consider the statement

double root � Math.sqrt(25.0);

The effect of this statement is that variable root is assigned the value 5.0, the square root

of 25.0.

 This method, which calculates square root, is a member of Java’s Math class. The Math
class is a Java-supplied collection (or library) of methods that performs mathematical tasks

or functions. Math.sqrt(…) is one of several methods in the Math class. The name of the

method is sqrt , and the argument that is supplied to the method is the number 25.0. Notice

the period that separates the class name Math from the method name, sqrt . See Figure 6.2 .

 In the statement

double root � Math.sqrt(25.0)

the Math.sqrt(…) method is called (or invoked) with the argument 25.0 and returns the

value 5.0 (the square root of 25.0), which is subsequently assigned to the variable root . This

action is similar to that of the statement:

double sum � 5.0 � 8.0;

Here, the expression 5.0 � 8.0 evaluates to (or returns) 13.0, which is assigned to sum .

 The argument that is passed to a method may be a constant, an expression, or a variable.

And a method call may be used within an expression. The following are valid method calls:

System.out.println(Math.sqrt(456)); // prints the square root of 245 (double)

double w � Math.sqrt(input.nextInt()); // here input is a Scanner object

double x � input.nextDouble();

double y � input.nextDouble();

double z � 3.14 * Math.sqrt(x � y); // method is used within an expression

A method is described by its header, which has the following form:

 return-type name(parameter-list)

• The return-type specifi es the data type of the value returned by the method.

• The parameter-list enumerates the number (implicitly) and type (explicitly) of the

arguments that must be passed or given to the method.

• The names in the parameter-list are called formal parameters, or simply parameters .

 For example, the header of Figure 6.3 tells us that the method named Math.sqrt accepts one

argument of type double and returns a double . Parameter x is a (formal) parameter.

from the programmer. The method functions as a black box, and the programmer simply

uses this method in the program.

The argument passed to the method is distanceToEyes (a double),
and the returned value (a double) is the square root of distanceToEyes.

For example, if distanceToEyes has the value 16.0, then Math.sqrt(distanceToEyes)
returns the value 4.0 and that value is used in the expression

distanceToHorizon � 1.23 * Math.sqrt(distanceToEyes);

That’s all there is to it.

FIGURE 6.2 The sqrt
method of the Math
class

Math class

Math.sqrt(25.0)

Name

Argument

sim23356_ch06.indd 194sim23356_ch06.indd 194 12/15/08 6:35:51 PM12/15/08 6:35:51 PM

 Chapter 6 Methods 195

 Although the header specifi es that the argument passed to the Math.sqrt(…) be of type

 double , an argument of any data type may be used, provided that the argument can be auto-

matically cast to type double . Thus, the argument of

Math.sqrt(25)

is fi rst cast to the double 25.0. The returned value is 5.0 (not 5). The returned value is

always type double regardless of the argument. To obtain an integer, you can perform an

explicit cast on the method’s return value:

(int)Math.sqrt(25);

 Figure 6.4 lists some useful methods found in the Math class. In each case, the fi rst two

columns comprise the header for each method.

FIGURE 6.3 The header for Math.sqrt(…)

Return-type

double Math.sqrt(double x)

Parameter-list

Return Type Method Description Example

double abs(double x) absolute value Math.abs(�3.1) returns 3.1

int abs(int a) absolute value Math.abs(�25) returns 25

double ceil(double x) returns the smallest whole number (as a

double) greater than or equal to x
Math.ceil(3.14159) returns 4.0

double cos(double x) cosine function, x is in radians Math.cos(3.141592653589793)
returns �1.0 (cos(π) � �1)

double exp(double x) the exponential function, ex Math.exp(0.0) returns 1.0 (e0 � 1)

double fl oor(double x) returns the largest whole number

(as a double) less than or equal to x
Math.fl oor(3.14159) returns 3.0

double log(double x) natural logarithm, ln(x) Math.log(1.0) returns 0.0 (ln(1) � 0)

double max(double x,
double y)

returns the greater of x and y Math.max(3.0,4.0) returns 4.0

int max(int a, int b) returns the greater of x and y Math.max(3,4) returns 4 (int)

double min(double x,
double y)

returns the lesser of x and y Math.min(3.0,4.0) returns 3.0

int min(int a, int b) returns the lesser of a and b Math.min(3,4) returns 3 (int)

double pow(double x,
double y)

xy Math.pow(2.0,5.0) returns 32.0

double random() returns a random number x such that

0.0 <� x < 1
Math.random() may return

0.2345676889 or perhaps 0.654678756

long round(x double) rounds to the nearest whole number

(long)
Math.round(3.14) returns 3 (long)

Math.round (5.67) returns 6 (long)

double sin(double x) sine function, x is in radians Math.sin(3.141592653589793)
returns 0.0 (sin(π) � 0)

double sqrt(double x) square root Math.sqrt(144.0) returns 12.0

double tan(double x) tangent function, x is in radians Math.tan(3.141592653589793)
returns 0.0 (tan(π) � 0)

FIGURE 6.4 Methods of the Math class

sim23356_ch06.indd 195sim23356_ch06.indd 195 12/15/08 6:35:52 PM12/15/08 6:35:52 PM

196 Part 1 The Fundamental Tools

Legend tells us that approximately 380 years ago Peter Minuit purchased the island of

Manhattan for the grand sum of 60 Dutch guilders (approximately $24). If Mr. Minuit

had instead deposited his $24 in the local bank at 5% interest, compounded daily, what

would his money be worth today? Was his real estate investment a wise one?

 To calculate the present value of Peter Minuit’s original $24, we use the interest

formula:

 value � amount(1 � rate/360)360*years

where value represents the present value, amount is the initial investment, rate is the yearly

interest rate, and years is the time (in years) of the investment. Thus, for the problem at

hand, value is calculated as

value � 24(1 � .05/360)360*380

Here, we use 360 days (a 30-day month) for a “bank year,” rather than 365.

Problem Statement Write a program that prompts the user for:

 • the initial investment,

 • the interest rate, and

 • the term in years,

and calculates the present value. To perform the calculation, we use Java’s “power

method,” Math.pow(x,y), which calculates xy.

Java Solution
1. import java.util.*;
2. public class Interest
3. {
4. public static void main(String[] args)
5. {
6. Scanner input;
7. double value;
8. double amount;
9. double rate;
10. double years;
11. final int DAYS � 360; // one year
12. // prompt for initial investment
13. input � new Scanner(System.in);

 EXAMPLE 6.2

 6.2.2 A Method that Computes Powers
 The next example uses the method

double Math.pow(double x, double y)

to calculate x y .
 Notice that the parameter list of the header specifi es that the method requires two

arguments of type double . For example, Math.pow(5.0,2.0) returns 5.0 2.0 , that is, 25.0. See

 Figure 6.5 .

FIGURE 6.5 The power method, Math.pow(…)

5.0 (x)

2.0 (y)
25.0Math.pow

sim23356_ch06.indd 196sim23356_ch06.indd 196 12/15/08 6:35:53 PM12/15/08 6:35:53 PM

 Chapter 6 Methods 197

14. System.out.print("Initial amount: ");
15. amount � input.nextDouble();
16. // prompt for yearly interest rate
17. System.out.print("Interest rate: ");
18. rate � input.nextDouble();
19. // prompt for number of years
20. System.out.print("Time in years: ");
21. years � input.nextDouble();
22. // value � amount * (1 � rate / DAYS)(DAYS*years) – standard interest formula
23. value � amount * Math.pow (1 � rate / DAYS, DAYS * years); // (1 � rate / DAYS)DAYS*years

24. System.out.println("Present value $" � value);
25. }
26. }

Output (Using the Minuit Data)
Initial amount: 24.00

Interest rate: .05

Time in years: 380

Present value $4.2779275332526875E9

Discussion The method Math.pow(…) is invoked on line 23 with two arguments, both

expressions. Notice that the present value is displayed in scientifi c notation. In decimal

notation, that’s about $4,277,927,533. Considering the value of real estate in Manhattan,

it appears that Peter made a very wise investment.

 6.2.3 Random Numbers
 The

 double Math.random()

method returns a random number that is greater than or equal to 0.0 and strictly less than 1.0.

Notice that Math.random() requires no parameter or argument.

 For example, the fi rst time that a program invokes Math.random() , the returned value

might be 0.8787954399107227, and the next time it might be 0.31799656386438013. Each

subsequent number returned by Math.random() is supposedly unpredictable. The follow-

ing small program calls Math.random() ten times. There is no discernible pattern to the

output . . . it’s random.

1. public class TenRandomNumbers
2. {
3. public static void main(String[] args)
4. {
5. for (int i � 1; i <� 10; i��)
6. System.out.println(Math.random());
7. }
8. }

 Output
0.6516831128923004
0.3159760705754926
0.945877632966408
0.04538322890407964
0.8815999823052094

sim23356_ch06.indd 197sim23356_ch06.indd 197 12/15/08 6:35:54 PM12/15/08 6:35:54 PM

198 Part 1 The Fundamental Tools

0.07672479266883347
0.04423548066038108
0.4441137107417066
0.15348060768674676
0.1833850393131755

 Random numbers are indispensable for performing simulations. Such simulations are

useful in all kinds of applications, including earthquake modeling, epidemic predictions,

rocket testing, and games. For example, a card game that uses a deck of 52 cards might

associate each card with a number from 1 to 52. Dealing a card amounts to nothing more

than choosing a random number in that range. Or, a program might use a random integer,

either 0 or 1, to simulate the toss of a coin: 0 for heads and 1 for tails.

 Using Math.random() to Generate Integers

 With a little hocus pocus we can use Math.random() in all sorts of situations. For example,

to simulate the roll of a single die, a program requires a random integer between 1 and 6

inclusive. We can use Math.random() to generate integers in the range 1 through 6 by “mag-

nifying” its 0 through 1 range.

 If

 r � Math.random();

then r is of type double and

0.0 � r < 1.0.

 Therefore,

 0.0 � 6 * r < 6.0 (multiplying the inequality by 6), and

1.0 � 6 * r � 1 < 7.0. (adding 1 to each value in the inequality)

 Thus 6* Math.random() � 1 is a number greater than or equal to 1 but strictly less than 7.

 For example, if

 r � 0.8929343993861253, then

 6 * r � 5.3576063963167518, and

 6 * r � 1 � 6.3576063963167518.

 To obtain an integer value, cast 6 * r � 1 to an integer, effectively dropping the fractional

part. Thus,

(int)(6 * Math.random() � 1)

returns a random integer between 1 and 6, inclusive. Similarly, (int)(52 * Math.random()
�1) returns a random integer between 1 and 52, inclusive. You can use this trick to gener-

ate random integers in any range. For example, (int)(10 * Math.random() � 15) returns an

integer between 15 and 24, inclusive.

 Example 6.3 uses Math.random() to simulate a simple casino dice game.

Probably the simplest of all casino bets is the “over-under” bet. Two dice are rolled, and

a player has the option of betting whether the sum of the spots displayed on the dice

will be:

 1. over 7,

 2. under 7, or

 3. exactly 7.

EXAMPLE 6.3

sim23356_ch06.indd 198sim23356_ch06.indd 198 12/15/08 6:35:55 PM12/15/08 6:35:55 PM

 Chapter 6 Methods 199

Bets (1) and (2) pay even money. So if a player bets $1, a win pays his money back plus $1.

Bet (3) pays 4 to 1. Thus if a player bets $2 on 7, a win pays him back his $2 plus $8.

Problem Statement Write a program that simulates the over-under game. If the player

wins, the winning amount (not including the returned original bet) is reported, and if the

player loses, a message is printed.

Java Solution
1. import java.util.*;
2. public class Dice
3. {
4. public static void main(String [] args)
5. {
6. Scanner input;
7. int bet;
8. int wager;
9. int die1,die2;
10. int sum;
11. input � new Scanner(System.in);

12. // Place your bet
13. System.out.print("Enter your bet\n (1) Over 7 \n (2) Under 7 \n (3) Exactly 7\n: ");
14. bet � input.nextInt();
15. System.out.print("Enter your wager (whole number): ");
16. wager � input.nextInt();

17. // Roll the dice
18. die1 � (int)(6 * Math.random() � 1) ; // random integer 1..6

19. die2 � (int)(6 * Math.random() � 1);

20. sum � die1 � die2;
21. System.out.println("The sum of the dice is " � sum);

22. // Check for a win
23. if ((sum > 7) && (bet �� 1) || (sum < 7) && (bet �� 2))
24. System.out.println("You win $" � wager);
25. else if ((sum �� 7) && (bet �� 3))
26. System.out.println("You win $" � (4 * wager));
27. else
28. System.out.println("You lose!");
29. }
30. }

Output (Two Games)
Enter your bet
 (1) Over 7
 (2) Under 7
 (3) Exactly 7:
2

Enter your wager (whole number): 3
The sum of the dice is 8
You lose!

Enter your bet
 (1) Over 7
 (2) Under 7
 (3) Exactly 7:

sim23356_ch06.indd 199sim23356_ch06.indd 199 12/15/08 6:35:56 PM12/15/08 6:35:56 PM

200 Part 1 The Fundamental Tools

 6.3 WRITING YOUR OWN METHODS

 Although there are thousands of methods in Java’s extensive libraries, Java certainly cannot

provide a method for every imaginable task. Fortunately, you can create your own methods

that do whatever task you fancy—be it a method to calculate your taxes or one to determine

your weight on the moon. Like Java’s methods, a method that you create:

• has a name,

• may accept arguments,

• may return a value, and

• may be used as part of an expression.

 The difference between a Java method and one of your own creation is that with your

own method you must program the “black box.” You are the designer, the architect and

the builder. (Well, you can’t expect Java to do everything .) In the following examples, we

illustrate two types of Java methods: those that return a value and those that do not.

 6.3.1 Methods that Return a Value
 Many of the prepackaged methods that we have encountered perform a computation and

return the result of the computation to the caller. For example, Math.sqrt(double x) returns

the square root of x , and Math.random() returns a random number. The following applica-

tion includes a method that returns a value but, unlike Math.sqrt(…) or Math.random(), this

method is not part of Java’s library.

1

Enter your wager (whole number): 6
The sum of the dice is 9
You win $6

Discussion The expressions on lines 18 and 19 simulate the roll of a single die. As

explained above, even though Math.random() returns a fl oating-point number that is

greater than or equal to 0 and strictly less than 1, this Java method can be used to generate

random integers.

Rapid Rick runs races regularly. Although Rick is determined to keep in shape, he does

enjoy an occasional slice of cheesecake. If Rick knows approximately how many calo-

ries he burns while running, well, he just might treat himself to a little more dessert with

a little less guilt.

 The number of calories used while running depends on the runner’s weight as well

as the distance that he/she has run. A common rule of thumb used to estimate the num-

ber of calories burned is:

calories � .653 � weight � distance

where weight is the runner’s weight in pounds and distance is in miles.

EXAMPLE 6.4

sim23356_ch06.indd 200sim23356_ch06.indd 200 12/15/08 6:35:56 PM12/15/08 6:35:56 PM

 Chapter 6 Methods 201

Problem Statement Write a program that calculates the number of calories burned as

a function of weight and distance. Include a method

double caloriesBurned(double weight, double distance)

that accepts two arguments of type double and returns a value of type double. See

Figure 6.6.

caloriesBurned
165.0(lbs)

4.5(mi)
484.8525(cal)

FIGURE 6.6 The method double caloriesBurned(double weight, double distance)

Java Solution
1. import java.util.*;
2. public class RunnersCalculator
3. {

4. public static double caloriesBurned(double weight, double distance)

5. {

6. // returns the number of calories burned using the formula

7. // calories � .653 � weight � distance

8. double calories � .653 * weight * distance;

9. return calories;

10. }

11. public static void main(String[] args)
12. {
13. Scanner input;
14. double myWeight, myDistance, totalCalories;

15. input � new Scanner(System.in);
16. System.out.print("Enter weight in pounds: ");
17. myWeight � input.nextDouble();
18. System.out.print("Enter distance in miles: ");
19. myDistance � input.nextDouble();

20. totalCalories � caloriesBurned(myWeight, myDistance);

21. System.out.println("Calories burned: " � totalCalories);
22. }
23. }

Output
Enter weight in pounds: 165.0

Enter distance in miles: 6.0

Calories burned: 646.47

Discussion Like all Java applications, RunnersCalculator begins execution with

main(…) (lines 11–22). The main(…) method is similar to the main(…) method of any

other program that we’ve written. You should notice, however, that within main(…) there

is a call to the method caloriesBurned(…) on line 20:

totalCalories � caloriesBurned(myWeight, myDistance);

sim23356_ch06.indd 201sim23356_ch06.indd 201 12/15/08 6:35:57 PM12/15/08 6:35:57 PM

202 Part 1 The Fundamental Tools

A call to caloriesBurned(…) is really no different than the call to Math.sqrt(…) in

Example 6.1 or the call to Math.random() in Example 6.3. The method call to calories-
Burned(…) has two arguments: myWeight and myDistance; the returned value is assigned

to the variable totalCalories.

 The instructions of the method caloriesBurned(…) are specifi ed on lines 8 and 9.

Unlike Math.sqrt(…) or Math.random(), we can now look “inside the box,” so to speak.

So let’s do just that.

 Line 4 is the header of the method:

public static double caloriesBurned(double weight, double distance)

For now, you can ignore the keywords public and static. They are necessary and soon

they will make more sense to you. The remainder of the header specifi es:

• the data type of the return value: double,

• the name of the method: caloriesBurned, and

• the parameters: weight and distance.

 The parameters specify the type and number of the arguments that must be passed

to the method. When this method is invoked with two arguments, the value of the fi rst

argument is assigned or passed to weight and the value of the second argument is passed

to parameter distance. For example, if the method call is

caloriesBurned(155.5, 3.5)

the parameter weight gets the value 155.5, and distance the value 3.5. See Figure 6.7.

Return-type

double caloriesBurned(double weight, double distance)

Method name

Parameters

FIGURE 6.7 Parts of a method header

 The block consisting of lines 5 through 10 contains the instructions of the method

caloriesBurned(…).

• Line 8 is an expression that calculates the number of calories burned.

• Line 9 is a return statement. The return statement has the form:

return expression

The return statement has two purposes:

 1. It specifi es the value that the method returns to the caller.

 2. It terminates the method and returns program control to the caller.

That’s all there is to it.

 Figure 6.8 steps through the execution of the program. As you can see, the program

executes main(…) sequentially, with a side trip to caloriesBurned(…) on line 20.

sim23356_ch06.indd 202sim23356_ch06.indd 202 12/15/08 6:35:58 PM12/15/08 6:35:58 PM

 Chapter 6 Methods 203

Line 14: Declare three variables, myWeight,
myDistance, and totalCalories.

myWeight myDistance totalCalories

Line 17: Obtain a value for myWeight.
165.0

myWeight myDistance totalCalories

Line 19: Obtain a value for myDistance.
165.0 6.0

myWeight myDistance totalCalories

Line 20: Call caloriesBurned(…). Pass values of the

arguments myWeight and myDistance to parameters

weight and distance, respectively.

165.0 6.0

myWeight myDistance totalCalories

 Program control passes to caloriesBurned(…).

Line 4: The parameters weight and distance are

initialized with the values of arguments myWeight
and myDistance.

165.0 6.0

weight distance

Line 8: Declare the variable calories. Calculate the

number of calories burned, and initialize calories to

that value.

165.0 6.0 646.47

weight distance calories

Line 9: Return the value of calories to the caller

and exit.

165.0 6.0 646.47

weight distance calories

 Program control returns to the assignment on line 20.

Line 20 (resumed): Assign the returned value to

totalCalories.

165.0 6.0 646.47

myWeight myDistance totalCalories

Line 21: Print the results.
165.0 6.0 646.47

myWeight myDistance totalCalories

FIGURE 6.8 A trace of RunnersCalculator

sim23356_ch06.indd 203sim23356_ch06.indd 203 12/15/08 6:35:58 PM12/15/08 6:35:58 PM

204 Part 1 The Fundamental Tools

 For the correct values to be passed to the appropriate parameters, the order of the

arguments is crucial. When caloriesBurned(…) is invoked, the values stored in the two

arguments, myWeight and myDistance, are assigned, or passed, to the parameters specifi ed

in the header of caloriesBurned(…): weight and distance, respectively. See Figure 6.9.

calories � caloriesBurned(myWeight, myDistance)

double caloriesBurned(double weight, double distance)
{
 double calories;
 calories � .653 * weight * distance
 return calories
}

myWeight passed to weight myDistance passed to distance

FIGURE 6.9 Arguments are passed to parameters: weight gets the value of myWeight,
and distance the value of myDistance

 The values of myWeight and myDistance that are passed to caloriesBurned(…) are

the values used in the expression

.635 * weight * distance

on line 8.

 The arguments myWeight and myDistance supply values to the parameters weight
and distance. The arguments initialize the parameters. The parameters weight and

distance are considered variables of the method. Once the arguments, myWeight and

myDistance, pass their values to weight and distance, the role of the arguments is com-

plete. Variables myWeight and myDistance have no further jobs in caloriesBurned(…).
Indeed, if caloriesBurned(…) were to alter weight or distance, the change would not

affect myWeight or myDistance. Except for the initial copying of argument values to

parameters, there is no link between the parameters and the arguments.

When the value of an argument is copied to a parameter, the argument is said to be

passed by value.

 6.3.2 void Methods
 A method can perform a task without returning a value. Such a method is called a void
method. You have already seen two void methods: print(…) and println(…). Each method

displays text but neither returns a value.

To specify a void method, use the reserved word void in place of the return type in the

method header.

 For example,

void drawSquare(int size)

might be the header of a method that draws a square on the screen and does not return a

value. Because a void method does not return a value, it makes no sense to incorporate a

 void method into an expression. The expression

5 * Math.sqrt(25)

sim23356_ch06.indd 204sim23356_ch06.indd 204 12/15/08 6:35:59 PM12/15/08 6:35:59 PM

 Chapter 6 Methods 205

is certainly meaningful and has the value 25.0, but

5 * drawSquare(25)

makes no sense because drawSquare(25) does not return a value.

 A call to a void method is a “standalone” statement consisting of the method name

along with any arguments that must be passed to the method, such as

System.out.println("Print me!");

or

drawSquare(10);

 In Example 6.5, coinChanger(…) is a void method: coinChanger(…) performs a task

but does not return a value.

 Problem Statement Write a program that includes a void method

void coinChanger(int amount)

that accepts a single integer argument between 1 and 100 that represents an amount of

money between $.01 and $1.00. The method makes change for that amount using the

minimum number of coins. Coins are in denominations of half dollars, quarters, dimes,

nickels, and pennies.

 To ensure that the smallest number of coins is used, fi rst compute the maximum

number of half dollars, followed by the maximum number of quarters, and so on. For

example, if the initial amount is 83 cents, we fi rst calculate, in order, the number of half

dollars, quarters, dimes, nickels, and pennies:

• from 83 cents: 1 half dollar, 33 cents remain;

• from 33 cents: 1 quarter, 8 cents remain;

• from 8 cents: 0 dimes, 8 cents remain;

• from 8 cents: 1 nickel, 3 cents remain;

• fi nally, 3 pennies remain.

 These calculations are accomplished using the / (integer divide) and % (remainder)

operators.

 Java Solution
1. import java.util.*;
2. public class MoneyChanger
3. {

4. public static void coinChanger (int amount)
5. {
6. // calculates the minimum number of half dollars, quarters, dimes, nickels
7. // and pennies in amount

8. int halfDollars, quarters, dimes, nickels, pennies;

9. System.out.println();
10. System.out.println(amount � " cents can be converted to:");

11. halfDollars � amount / 50; // determine number of half dollars
12. amount � amount % 50; // how much remains?
13. quarters � amount / 25; // determine number of quarters

EXAMPLE 6.5

sim23356_ch06.indd 205sim23356_ch06.indd 205 12/15/08 6:36:02 PM12/15/08 6:36:02 PM

206 Part 1 The Fundamental Tools

14. amount � amount % 25; // how much remains?
15. dimes � amount / 10; // determine the number of dimes
16. amount � amount % 10; // how much remains?
17. nickels � amount / 5; // determine the number of nickels
18. pennies � amount % 5; // remainder is the number of pennies
19. System.out.println("Half Dollars: " � halfDollars);
20. System.out.println("Quarters : " � quarters);
21. System.out.println("Dimes : " � dimes);
22. System.out.println("Nickels : " � nickels);
23. System.out.println("Pennies : " � pennies);
24. return; // return statement is optional here
25. }

26. public static void main(String[] args)
27. {
28. Scanner input;
29. input � new Scanner(System.in);
30. System.out.print("Enter a value between 1 and 100: ");
31. int money � input.nextInt();
32. coinChanger(money); // call to method coinChanger
33. }
34. }

 Output
Enter a value between 1 and 100: 83

83 cents can be converted to:
Half Dollars: 1
Quarters : 1
Dimes : 0
Nickels : 1
Pennies : 3

 Discussion The program prompts the user for an initial amount of money and invokes

the method coinChanger(…) with that value as an argument. Because coinChanger(…)
does not return a value, the call to coinChanger(…) is not called within an expression.

The method call is the Java statement (line 32):

coinChanger (money);

 The parameter amount of coinChanger(…) accepts the value of the argument money,
which is supplied interactively. Next, the number of half dollars is calculated, as well as

how much remains after the half dollars have been removed from amount (lines 11 and

12). Likewise, the numbers of quarters, dimes, and nickels are determined. After calculat-

ing the number of nickels, the fi nal remainder represents the number of pennies (line 18).

 Take note of the return statement on line 24. Unlike the method of Example 6.4, this

return statement does not include a return value or an expression. In this situation, the return

statement merely causes the method to exit; no value is returned to the calling method.

Execution of a return statement in a void method causes the method to exit without

returning a value to the caller.

 Indeed, the return statement on line 24 is unnecessary. After a void method executes its

last statement, the method automatically returns; no fi nal return statement is necessary.

In contrast to a method that returns a value, a void method is not required to have any
return statements.

sim23356_ch06.indd 206sim23356_ch06.indd 206 12/15/08 6:36:04 PM12/15/08 6:36:04 PM

 Chapter 6 Methods 207

 6.3.3 Putting It All Together
 Let’s take a more general look at the components of a method and fi ll in a few details.

A Java method consists of a

• header followed by a

• method block.

The parameters in the header specify the number and type of the arguments that

must be passed to the method. When a method is invoked, the values stored in the

arguments are copied to the parameters.

 In Example 6.4, weight and distance are parameters, and myWeight and myDistance are

arguments. In Example 6.5, the parameter is amount and the argument is money . The param-

eters are sometimes called formal parameters and the arguments actual parameters .

 The form of the header is:

 modifiers return-type name (parameter-list)

where:

• modifi ers (for now) are the keywords public and static ;

• return-type is the data type of the value that the method returns, or void if the method

does not return a value;

• parameter-list is a (possibly empty) list of parameters that receive values from argu-

ments passed to the method when the method is invoked.

The method block is a sequence of statements enclosed by curly braces:

{
 statement-1;
 statement-2;
 statement-3;
 . . .
 statement-n;
}

 For example, Figure 6.10 shows a method that calculates the volume of a box.

Parameter-listName

public static double volume OfBox(double length, double width, double height)

{
 double volume;
 volume � length * width * height;
 return volume;
}

Return-type

Method block

Modifiers

FIGURE 6.10 A method that calculates the volume of a box

 That’s the big picture, but a few details are in order:

 1. Method Name. The name of a method must be a valid Java identifi er. Moreover, a

method name should convey the method’s purpose, function, or task. For example,

the name volumeOfBox is more suitable than the name myMethod or box . Standard

Java convention specifi es that the name of a method begins with a lowercase letter and

sim23356_ch06.indd 207sim23356_ch06.indd 207 12/15/08 6:36:05 PM12/15/08 6:36:05 PM

208 Part 1 The Fundamental Tools

starts each succeeding word in the method name with an uppercase letter. For example,

the names volumeOfBox and caloriesBurned both follow this convention; the names

 VolumeOfBox and volumeofbox do not.

 2. Parameter-List. A method’s parameter-list consists of pairs of the form:

 type parameter-name

separated by commas. Figure 6.11 shows the parameter-list of the method volumeOfBox .

FIGURE 6.11 A parameter-list

Parameter-name

Type

double length, double width, double height

 For example:

• The parameter-list of method caloriesBurned in Example 6.4 is:

double weight, double distance

• The method Math.random() has no parameter-list. Math.random() neither requires

nor accepts any arguments. The parameter-list is empty.

 3. Argument Passing. When calling a method, the caller passes arguments to the param-

eters. The calling statement must provide a type-suitable value for each parameter. If

a method has fi ve parameters, fi ve arguments are required. Supplying more or fewer

arguments than parameters is an error that the compiler can detect.

• For example, the method

double volumeOfBox(double length, double width, double height)

 has three parameters each of type double . The following are valid calls to

 volumeOfBox(…) :

volumeOfBox(2.34, 5.765, 4.678) // three doubles are passed
volume of box(l, w, h) // l, w, and h are type double
volumeOfBox(3, 4, 5) // an integer can be expanded to a double
volumeOfBox(3.0*l, 1.5*w, 2.7*h); // expressions are OK

 In contrast, if

 int volumeOfBox(int length, int width, int height)

 is a method with integer parameters, then the call

 volumeOfBox(3.0, 4.0, 5.0)

 is unacceptable because a value of type double cannot be automatically cast to an

integer.

• Finally, note that the invocation

 volumeOfBox(2.3, 4.5) // INVALID.
 // Wrong number of arguments

 is illegal: only two values are passed and volumeOfBox(…) requires three.

sim23356_ch06.indd 208sim23356_ch06.indd 208 12/15/08 6:36:06 PM12/15/08 6:36:06 PM

 Chapter 6 Methods 209

 4. Pass by Value. All arguments are passed “by value.” This means that the arguments

are evaluated and values of the arguments are copied to the parameters of a method.

Subsequently, modifying the parameters in the method has no effect on the value of

any variables passed as arguments.

 5. Method Block. The statements of the method block accomplish the task of the method.

 6. The return Statement. A method that returns a value must include a return statement .
The form of the return statement is

return expression

 If the data type of the returned value (as specifi ed in the method header) is T , then the

data type of expression should also be type T (or a type that is automatically cast to

 T). For example, the following method header specifi es that the return type of method

 gimmeFive is double.

 double gimmeFive()

 The methods

 double gimmeFive() and double gimmeFive()
 { {
 return 5.0; return 5; // an integer is cast to double
 } }

 both contain valid return statements. However, the following method,

 int gimmeFive()
 {
 return 5.0; // cannot cast a double to an int
 }

 does not have a valid return statement because the double 5.0 does not match the int
return type of the method, and 5.0 is not automatically cast to an integer.

 When a method executes the return statement,

 • the method terminates,

 • program control passes back to the caller, and

 • any statements following the return statement are ignored.

 7. Local Variables. Variables that are declared within a method are called the local vari-
ables of that method. Local variables exist and are known only within the method in

which they are declared. When a method exits, the local variables are destroyed. Local

variables do not exist beyond the life of a method call. We now look at local variables

in a bit more detail.

 6.3.4 Local Variables
 In Example 6.4, the parameters weight and distance , as well as the variable calories that is

declared on line 8, are known only within the method caloriesBurned(…), that is, between the

curly braces surrounding the statements of the method. The main(…) method can neither see

nor access these variables. Similarly, myWeight , myDistance , totalCalories , and even input
are known only in main(…). The memory cells, myWeight , myDistance , and totalCalories of

 Figure 6.8 , are not visible when program control passes to caloriesBurned(…).

When a method is invoked, memory for local variables is allocated, and when a

method exits, that memory is de-allocated.

sim23356_ch06.indd 209sim23356_ch06.indd 209 12/15/08 6:36:06 PM12/15/08 6:36:06 PM

210 Part 1 The Fundamental Tools

 Consequently, a method’s local variables do not retain values from call to call. When a

method exits, its local variables no longer exist.

 Example 6.6 includes three methods. Each method has its own collection of local

variables. Notice that the same name is used for more than one variable, yet the computer

is not at all confused.

 Rapid Rick of Example 6.4 runs in all weather, rain or shine, and in all seasons, hot or

cold. The actual heat or cold he experiences depends on more than the outdoor tempera-

ture. The Summer Sizzle Index , SSI , measures what the temperature actually feels like

on a hot day by taking into account the relative humidity. The Wind Chill Temperature ,
WCT , does the same for a cold day by taking wind speed into consideration. On a hot,

sticky summer evening when the temperature is a not-so-balmy 80°F and the relative

humidity is 77%, the SSI is 94.5°F. On a blustery winter day, when the temperature is a

crisp 23°F and the wind speed is 20 mph, the WCT is 8.2°F.

 The Summer Sizzle Index (SSI) and Wind Chill Temperature (WCT) are calculated

as follows:

 SSI � 1.98 * (T � (0.55 � 0.0055 * H)*(T � 58)) � 56.83

WCT � 35.74 � 0.6215 * T � 35.75 * V 0.16 � 0.4275 * T * V 0.16

 where T is the temperature (in Fahrenheit), H is the relative humidity (as a percent),

and V is the wind velocity (miles per hour).

 Problem Statement Write a program that, given the temperature and relative humid-

ity, calculates both the Summer Sizzle Index or, given the temperature and wind speed,

computes the Wind Chill Temperature.

 Java Solution
1. import java.util.*;
2. public class HotAndCold
3. {
4. public static double summerSizzleIndex(double temperature, double relativeHumidity)
5. {
6. // calculates and returns Summer Sizzle Index
7. // temperature is in degrees Fahrenheit; relative humidity is a percent
 8. double SSI � 1.98 *

 (temperature � (0.55 � 0.0055 * relativeHumidity) * (temperature � 58)) � 56.83;

 9. return SSI;

10. }

11. public static double windChillTemperature(double temperature, double windSpeed)
12. {
13. // calculates and returns Wind Chill Temperature
14. // temperature is in degrees Fahrenheit; wind speed is mph
 15. double windChill � 35.74 � .6215 * temperature � 35.75 *

 Math.pow(windSpeed, 0.16) � 0.4275 * temperature * Math.pow(windSpeed, 0.16);

 16. return windChill;

17. }

18. public static void main(String[] args)
19. {
20. Scanner input � new Scanner(System.in);
21. double temperature, SSI, windChill, relativeHumidity, windSpeed;

22. System.out.print("To calculate SSI enter 1; to calculate Wind Chill enter 2: ");
23. int reply � input.nextInt();

 EXAMPLE 6.6

sim23356_ch06.indd 210sim23356_ch06.indd 210 12/15/08 6:36:07 PM12/15/08 6:36:07 PM

 Chapter 6 Methods 211

24. System.out.print("Temperature: ");
25. temperature � input.nextDouble();
26. if (reply �� 1)
27. {
28. System.out.print("Relative Humidity: ");
29. relativeHumidity � input.nextDouble();
30. SSI � summerSizzleIndex(temperature, relativeHumidity);
31. System.out.println("Summer Sizzle index: " � SSI);
32. }
33. else
34. {
35. System.out.print("Wind Speed: ");
36. windSpeed � input.nextDouble();
37. windChill � windChillTemperature(temperature, windSpeed);
38. System.out.println("Wind chill temperature: " � windChill);
39. }
40. }
41. }

 Output
 To calculate SSI enter 1; to calculate Wind Chill enter 2: 1
Temperature: 80
Relative Humidity: 75
Summer Sizzle index: 95.58049999999999

To calculate SSI enter 1; to calculate Wind Chill enter 2: 2
Temperature: 25
Wind Speed: 15
Wind chill temperature: 12.623095109603938

 Discussion The HotAndCold class has three methods, each with a number of local

variables, as shown in Figure 6.12 .

summerSizzleIndex windChillTemperature main

temperature (parameter) temperature (parameter) temperature (line 21)

relativeHumidity (parameter) windSpeed (parameter) SSI (line 21)

SSI (line 8) windChill (line 15) windChill (line 21)

relativeHumidity (line 21)

windSpeed (line 21)

input (line 20)

reply (line 23)

FIGURE 6.12 Local variables in three methods

 Although several local variables have the same name, the variables are, in fact, distinct.

For example, each method has a variable named temperature . The three temperature
variables may have the same name but each has its own storage location. They are

independent and distinct. Of course, too many variables with the same name can lead to

confusion and bugs. In general, try to give variables unique names.

 The concept of local variables is tied to the broader topic of scope , which we discuss

in the next section.

sim23356_ch06.indd 211sim23356_ch06.indd 211 12/15/08 6:36:08 PM12/15/08 6:36:08 PM

212 Part 1 The Fundamental Tools

 6.3.5 Scope

The scope of a variable is that section of the program in which a variable can be

accessed or referenced.

 For example, consider the following void method that computes the sum and product of the

fi rst n positive integers:

 1. void sumAndProduct(int n)
2. {
3. int sum � 0;
4. int product � 1;
5. for (int i � 1; i �� n; i��)
6. {
7. sum �� i;
8. product *� i;
9. }
10. System.out.println("Sum of the first " � n � " positive integers is " � sum);
11. System.out.println("Product of the first " � n � " positive integers is " � product);
12. }

The method sumAndProduct has several local variables: n, sum, product , and i . The scope

of each of these variables is as follows:

• The scope of parameter n is the entire method.

• The scope of sum begins with its declaration on line 3 and extends to the end of the

method.

• Similarly, the scope of product extends from its declaration on line 4 to the method’s end.

• As you already know, the variable i does not exist beyond the block of the for-loop.

Thus, the scope of variable i is lines 5 through 9. Outside of the for-loop, i is inacces-

sible and unknown.

In general, the scope of a variable begins with its declaration and extends to the end

of the block in which it is declared.

 Recall that a block is a group of statements enclosed by curly braces { and }; so if you

declare a variable in the outermost block of a method, its scope extends from the declaration to

the end of the method. On the other hand, the scope of a variable declared within an inner or

nested block begins at the declaration and terminates at the end of that block. In the segment

if (purchase � 200)
{
 double discount � .20 * purchase;
 double discountPrice � purchase � discount;
 tax � .05 * discountPrice;
 total � discountPrice � tax;
}
else
{
 tax � .05 * purchase;
 total � purchase � tax;
}

sim23356_ch06.indd 212sim23356_ch06.indd 212 12/15/08 6:36:10 PM12/15/08 6:36:10 PM

 Chapter 6 Methods 213

the scope of the variables discount and discountPrice extends from their defi nitions to the

end of the “ if block.” Thus, neither variable is known within the “ else block.”

 The scope of a variable declared in the header of a for loop is the entire for loop. In the

segment

for (int i � 0; i �� 50; i��)
{
 // statements
}

 The control variable i is unknown once the loop terminates.

 Example 6.7 illustrates a few of these general scope rules.

 Player Polly is quite a fan of the board game Monopoly. When it is Polly’s turn to roll

the dice, if she rolls “doubles,” (i.e., both dice show the same number of spots), Polly

gets another toss of the dice. However, if she unfortunately tosses doubles three times

in a row, then Polly must “go to jail.” Polly frequently plays Monopoly and has landed

in jail more than a few times. So, Polly was wondering how likely it is that she tosses

doubles three consecutive times and lands in Monopoly prison.

Problem Statement Write an application that prompts the user for an integer, numTurns

representing some number of Monopoly turns. Using random numbers, the program

simulates rolling the dice for that many turns. Each turn consists of one, two, or three

rolls of the dice, depending on whether or not doubles appear. The program keeps track

of the number of simulated turns that results in three tosses of doubles and reports the

number of jail terms as well as the percentage of jail terms incurred.

 Java Solution
1. import java.util.*;
2. public class GoDirectlyToJail
3. {
4. public static int jailTerms(int turns)
5. {
6. // returns the number of turns that result in three rolls of doubles

7. int threeDoubles � 0; // number of turns that result in three Doubles
8. for (int i � 1; i �� turns; i��) // for each turn
9. {
10. int numDoubles � 0; // counts the number of doubles on any one turn
11. for (int toss � 1; toss �� 3; toss��) // up to three tosses/turn
12. {
13. // die1 and die2 are local to the inner block
14. int die1 � (int)(6 * Math.random() � 1);
15. int die2 � (int)(6 * Math.random() � 1);
16. if (die1 �� die2) // do the dice show the same number?
17. numDoubles��;
18. else
19. break; // not doubles, so end the turn
20. }
21. if (numDoubles �� 3) // oops, go to jail
22. threeDoubles��;
23. }
24. return threeDoubles; // the number turns giving three doubles
25. }

EXAMPLE 6.7

sim23356_ch06.indd 213sim23356_ch06.indd 213 12/15/08 6:36:10 PM12/15/08 6:36:10 PM

214 Part 1 The Fundamental Tools

26. public static void main(String[] args)
27. {
28. Scanner input;
29. input � new Scanner(System.in);
30. int numTurns;
31. int numJailTerms; // three doubles on any turn
32. System.out.print("How many Monopoly turns would you like to simulate? ");
33. numTurns � input.nextInt();
34. numJailTerms � jailTerms(numTurns);
35. System.out.println("Number of times you got three doubles: " � numJailTerms);
36. System.out.println("Percent of times you went to jail: " �

 100 * (((double)numJailTerms/numTurns)) � " percent");
37. }
38. }

 Output
 How many Monopoly turns would you like to simulate? 100000
Number of times you got three doubles: 454
Percent of times you went to jail: 0.45399999999999996 percent

 Discussion The simulation indicates that the probability of landing in jail is less than

one-half of a percent. (In fact, the actual probability is 1/216, or about 0.46296 percent).

 We now look at the local variables and the scope of each. The scope of each vari-

able declared in main(…) extends from its point of declaration to the end of the method.

However, the variables of the method jailTerms(…) are a bit more interesting. Figure 6.13

lists those variables along with the scope of each.

Local Variable Scope

turns (parameter) the entire method jailTerms(…)

threeDoubles the entire method jailTerms(…)

i (line 8) the entire for loop (lines 8–23)

numDoubles (line 10) from the declaration on line 10 to the end of the block

(lines 10–23)

toss (line 11) the entire for loop (lines 11–20)

die1 (line 14) from the declaration on line 14 to the end of the block

(lines 14–20)

die2 (line 15) from the declaration on line 15 to the end of the block

(lines 15–20)

FIGURE 6.13 Scope of variables

 6.3.6 Multiple return Statements

A method may have more than one return statement, but only one executes before the

method terminates.

 The fi rst return statement that executes terminates the method. In Example 6.8, the method

isPrime(…) contains several return statements. The return statement that executes, and

thereby terminates the method, depends on the input data.

sim23356_ch06.indd 214sim23356_ch06.indd 214 12/15/08 6:36:11 PM12/15/08 6:36:11 PM

 Chapter 6 Methods 215

 A prime number p is a positive integer greater than 1 that has no positive integer divisors

other than 1 and p . For example, 101 is a prime number since no positive integers other

than 1 and 101 divide 101 evenly. The integers 2, 3, 5, 7, and 37 are all prime numbers.

On the other hand, 100 is not a prime number because 5 is a divisor of 100. With the

exception of 2, all prime numbers are odd.

 Prime numbers have fascinated mathematicians for centuries. In approximately

300 BCE, Euclid proved that there is an infi nite number of primes. Even today, prime

numbers are the foundation of modern cryptography. Indeed, factoring large numbers into

primes is a task necessary for cracking modern cryptographic codes. “New” prime num-

bers are discovered every year. Currently, the largest known prime number is 2 43,112,609 − 1,

which has 12,978,189 digits. Of course, a larger prime may be unearthed tomorrow, if

that hasn’t happened already!

 Deciding whether or not an integer with 12,978,189 digits is prime is not an easy

task. That said, a rather naïve, yet intuitive, scheme for determining whether or not a

positive integer, n, is prime might check all possible divisors of n that are greater than 1

and less than n . If n has no divisor, then n is prime. This simple algorithm executes

quickly for small values of n , but it is hopelessly slow for large values like 2 43,112,609 − 1

and the large numbers used in cryptography.

 Problem Statement Write a program that prompts a user for a positive integer and

determines whether or not the number is prime. Include a method

boolean isPrime(int p)

that accepts an integer p as a parameter and returns true if p is prime; otherwise false .

See Figure 6.14 .

isPrime true101

FIGURE 6.14 The isPrime (...) method

 Java Solution
1. import java.util.*;
2. public class PrimeChecker
3. {
4. public static boolean isPrime(int p) // returns true if p is a prime number
5. {
6. if (p �� 1) // 0, 1, and all negatives are not prime
7. return false;

8. else if (p �� 2) // if p is 2; return true (exit) because 2 is prime
 9. return true;

10. else if (p % 2 �� 0) // if p is even and not 2, return false (exit);
11. return false;

12. // so p is odd; check for odd divisors
13. // if a divisor is found, return false and exit

14. for (int i � 3; i � p; i �� 2) // i � 3, 5, 7, 9...
15. if (p % i �� 0) // if p % i �� 0 then i divides p so p is not prime
 16. return false;

17. // if the method reaches this point, p is prime,
 18. return true;

19. }

EXAMPLE 6.8

sim23356_ch06.indd 215sim23356_ch06.indd 215 12/15/08 6:36:13 PM12/15/08 6:36:13 PM

216 Part 1 The Fundamental Tools

20. public static void main(String[] args)
21. {
22. int number;
23. Scanner input;
24. input � new Scanner(System.in);

25. System.out.print("What number would you like to test? ");
26. number � input.nextInt();
27. if (isPrime(number))
28. System.out.println(number � " is a prime number");
29. else
30. System.out.println(number � " is not prime");
31. }
32. }

 Output
What number would you like to test? 6317
6317 is a prime number

What number would you like to test? 7163
7163 is not prime

 Discussion The logic behind the method isPrime(…) is described in the comments on

lines 6, 8, 10, 12–15, and 17.

 The method isPrime(…) contains no less than fi ve return statements. When any one

 return statement executes, the method exits and program control passes back to the

caller. For example:

• If parameter p has the value 22, the condition on line 10 is true, and the return state-

ment on line 11 executes, returning false and terminating the method.

• If p has the value 35, the loop of line 14 executes, and when i attains the value of

5, the return on line 16 executes, returning false (because 35 % 5 �� 0, i.e., 35 is

divisible by 5).

• If p is 23, then none of the conditions of the else-if statement is true nor does the

condition on line 15 evaluate to true. Consequently, the return statement on line 18

returns true, that is, 23 is prime.

 6.4 METHOD OVERLOADING

Java allows two or more methods of the same class to share the same name. This

practice is called method overloading.

 For example, Java’s Math class has several overloaded methods, including Math.max(…),
which has two forms:

1. int Math.max(int x, int y)
2. double Math.max(double x, double y)

Notice that the parameter lists of the two methods differ. The fi rst version of Math.max(…)
accepts two integer parameters and the second version accepts two double parameters.

So that the Java compiler can distinguish between methods of the same name,

 overloaded methods must differ in the types and/or number of parameters.

sim23356_ch06.indd 216sim23356_ch06.indd 216 12/15/08 6:36:14 PM12/15/08 6:36:14 PM

 Chapter 6 Methods 217

 Because of this rule, Java (usually) has no diffi culty deciding which version of a method to

execute. For example, consider the four calls to Math.max(…) shown in Figure 6.15 .

Method Call Returns Argument Types Version

Math.max(10,5) 10 two int 1

Math.max(10.0, 5.0) 10.0 two double 2

Math.max(10.0, 5) 10.0 two double (5 is automatically cast to 5.0) 2

Math.max(10, 5.0) 10.0 two double (10 is automatically cast to 10.0) 2

FIGURE 6.15 Four calls to the overloaded Math.max(…) method

 Overloading can make your programs more readable and less cluttered, but there are

also hazards and pitfalls. Example 6.9 illustrates the benefi ts as well as some of the pitfalls

of method overloading.

 Problem Statement Carrie Cash shops only at stores that offer deep discounts. Write

a method,

double cost(double price, double discount)

that provides Carrie with help in calculating the sale price of an item. The cost(…)
method accepts two arguments: the price of an item and the discount (both double), and

it returns the marked-down price. Include the method in an application called Sales .

 Java Solution
1. public class Sales
2. {
3. public static double cost(double price, double discount) // 0.0 � discount � 1.0
4. {
 // returns the marked down price, i.e. price after discount
5. return price - discount * price; // marked down price
6. }
7.
8. public static void main(String[] args)
9. {
10. System.out.println("Cost is " � cost(25.50, 0.10));
11. }
12. }

 Output
Cost is 22.95

 Discussion The method cost(…) accepts two double parameters signifying the retail

price of an item and the discount rate (a decimal number less than 1). The method

returns the reduced or marked-down price. The method is simple to understand and

simple to use.

 Now consider another rather common scenario in which a 10% discount is passed

to cost(…) not as the decimal 0.10 but as the integer 10, that is, change line 10 to:

System.out.println("Cost is " � cost(25.50, 10)).

The program compiles, runs, and produces the following erroneous output:

Cost is �229.5

EXAMPLE 6.9

sim23356_ch06.indd 217sim23356_ch06.indd 217 12/15/08 6:36:15 PM12/15/08 6:36:15 PM

218 Part 1 The Fundamental Tools

What happened? The argument 10 is automatically converted to a double 10.0 when it

is passed to the (d ouble) parameter discount . Consequently, the method calculates the

marked-down price as

22.50 � 10.0 * 22.50 � �229.5

 To provide the fl exibility of passing both integer and double arguments to cost(…),
you can provide several versions of cost(…). The following program has four differ-

ent versions of cost(…) that accommodate any combination of decimal and/or integer

arguments

1. public class SalesTwo
2. {
3. public static double cost(double price, double discount) // version 1 � double, double

4. {
5. return price � discount * price;
6. }

7. public static double cost (int price, int discount) // version 2 � int, int

8. {
9. double dollarsPrice � price / 100.0; // convert to dollars and cents
10. double decimalDiscount � discount / 100.0; // convert to decimal
11. return dollarsPrice � dollarsPrice * decimalDiscount;
12. }

13. public static double cost(double price, int discount) // version 3 � double, int

14. {
15. return price � price * (discount / 100.0);
16. }

17. public static double cost(int price, double discount) // version 4 � int , double

18. {
19. return (price / 100.00) � (price / 100.0) * discount;
20. }

21. public static void main(String [] args)
22. {
23. System.out.println("Cost is " � cost(25.50, 0.10)); // double, double
24. System.out.println("Cost is " � cost(2550, 10)); // int, int
25. System.out.println("Cost is " � cost(25.50, 10)); // double, int
26. System.out.println("Cost is " � cost(2550, 0.10)); // int double
27. }
28. }

The program produces the following output:

Cost is 22.95
Cost is 22.95
Cost is 22.95
Cost is 22.95

 The four calls to cost(…) on lines 23–26 invoke versions 1–4, respectively. Any

variation of argument types is acceptable. Thus, a single method name accommodates

four situations. Certainly, this is simpler and clearer than using four different method

names such as cost1, cost2, cost3 , and cost4 .

 The previous program illustrates the niceties of overloading; nonetheless, method

overloading does not come free of problems. For example, the following program with

just two versions of cost(…) does not compile.

1. public class SalesToo
2. {
3. public static double cost(double price , int discount) // double and int

sim23356_ch06.indd 218sim23356_ch06.indd 218 12/15/08 6:36:16 PM12/15/08 6:36:16 PM

 Chapter 6 Methods 219

4. {
5. return price - price * (discount / 100.0);
6. }

7. public static double cost (int price , double discount) // int and double
8. {
9. return (price / 100.00) � (price / 100.0) * discount;;
10. }

11. public static void main(String[] args)
12. {
13. System.out.println("Cost is " � cost(25.50, 10)); // double, int
14. System.out.println("Cost is " � cost(2550, 0.10)); // int, double
15. System.out.println("Cost is " � cost(25.50, 0.10)); // double, double
16. System.out.println("Cost is " � cost(2550, 10)); // int, int
17. }
18. }

 Two of the calls to cost(…) in main(…) create problems. The fi rst two calls, on lines 13 and

14, are perfectly legal. The argument types—(double, int) and (int, double)—match the types

in the parameter-lists declared on lines 3 and 7, respectively. However, the call on line 15

with two double arguments generates a compiler error. Each cost(…) method requires one

integer argument. Java does not automatically cast a double to an int . The compiler generates

the following message indicating that there is no version of cost(…) that satisfi es the call:

 cannot fi nd symbol

 symbol : method cost(double,double)

Finally, the call to cost(…) on line 16 is also problematic but for a different and more

subtle reason. Because both arguments are integers, the compiler issues the following

error message:

 reference to cost is ambiguous, both method cost(int,double) in SalesToo and

method cost(double,int) in SalesToo match cost(2550, 10))

 The ambiguity occurs because Java can, in fact, choose either method. On one hand,

the Java compiler could cast argument 2550 to 2550.0 and choose the fi rst method (line

3). On the other hand, the second argument 10 might be cast to 10.0 to accommodate

the second method (line 7). Java has a choice of two methods; each method appears

suitable. Wisely, Java refuses to make an arbitrary choice and generates an error mes-

sage. In general, if an ambiguous choice exists, a program does not compile.

 The overloaded methods of Example 6.9 are distinguishable because the data types of their

parameter lists differ. Overloaded methods can also differ in the number of arguments that

they accept. For example, you might have two versions of a method max(…):

 1. int max(int x, int y)

 2. int max(int x, int y, int z)

Version 1 returns the greater of x and y , and version 2 the greatest of x, y , and z. The method

call

max(a,b)

with only two arguments invokes method 1 and the call

max(a,b,c)

with three arguments, invokes method 2. The number of arguments determines the version.

sim23356_ch06.indd 219sim23356_ch06.indd 219 12/15/08 6:36:17 PM12/15/08 6:36:17 PM

220 Part 1 The Fundamental Tools

 EXAMPLE 6.10 Baseball uses many different statistics to measure the performance of a hitter. The On
Base Percentage is the percentage of times that a batter reaches fi rst base. Historically,

two formulas have been used to calculate this statistic: one that was developed during

the 1950s and a more modern version created in 1984.

 The method developed in the 1950s computes the On Base Percentage as:

 (hits � walks � hbp) /(atBat � walks � hbp)

 The 1984 version performs the calculation:

 (hits � walks � hbp) /(atBat � walks � hbp � sacrifi ces)

where

atBat is number of times a player gets a hit or makes an out,

hits is the number of times a player gets a hit,

walks is the number of times a player walks,

hbp is the number of times a player was hit by a pitch, and

sacrifi ces is the number of times a player makes a sacrifi ce fl y.

 Problem Statement Write a program with two methods, each named OnBasePercentage,
that calculate this statistic. The first method uses the older formula and the second uses

its more modern counterpart.

 In the following program, the main(…) method of the class Baseball displays the 1920

season statistics for Babe Ruth, including both calculations of “The Babe’s” On Base

Percentage.

 Java Solution

1. public class Baseball
2. {

3. public static double OnBasePercentage(int atBat,int hits,int walks,int hbp)
4. // old method from the 1950’s
5. {
6. return (double)(hits � walks � hbp) / (double)(atBat � walks � hbp);
7. }

8. public static double OnBasePercentage(int atBat,int hits,int walks, int hbp,int sacrifices)
9. // new method from 1984
10. {
11. return (double)(hits � walks � hbp) / (double)(atBat � walks � hbp � sacrifices);
12. }

13. public static void main(String [] args)
14. {
15.
16. System.out.println("1920 statistics for Babe Ruth:");
17. System.out.println("At bat: 458");
18. System.out.println("Hits: 172");
19. System.out.println("Walks: 150");

 Example 6.10 includes two methods, both named OnBasePercentage , that calculate

the percentage of times during a season that a baseball player gets to fi rst base. The fi rst

method accepts four integer arguments and the second method expects fi ve.

sim23356_ch06.indd 220sim23356_ch06.indd 220 12/15/08 6:36:18 PM12/15/08 6:36:18 PM

 Chapter 6 Methods 221

20. System.out.println("Hit by pitch: 3");
21. System.out.println("Sacrifice flies: 5");
22. System.out.print("Babe’s On Base Percentage (old method): ");
23. System.out.println(OnBasePercentage(458,172,150,3)); // Babe Ruth’s statistics
24. System.out.print("Babe’s On Base Percentage (new method): ");
25. System.out.println(OnBasePercentage(458,172,150,3,5)); //Babe Ruth’s statistics
26. }
27. }

 Output
1920 statistics for Babe Ruth:
At bat: 458
Hits: 172
Walks: 150
Hit by pitch: 3
Sacrifice flies: 5
Babe's On Base Percentage (old method): 0.5319148936170213
Babe's On Base Percentage (new method): 0.5275974025974026

 Discussion The class Baseball contains two methods named OnBasePercentage ,

declared on lines 3 and 8. The fi rst method requires four integer arguments and the second

method fi ve. Because the two parameter lists differ in the number of parameters, the Java

compiler can easily choose a method based on the number of arguments the caller passes.

The call on line 23 passes four arguments, and the call on line 25 passes fi ve.

 Examples 6.9 and 6.10 present two very simple variations of method overloading.

As Example 6.9 illustrates, method overloading based on different data types can lead to

problems when automatic type conversion occurs. On the other hand, overloading via a

different number of parameters is much safer.

 Finally, it is not legal to overload a method based on the type of the return value. The

Java compiler does not consider

int MyMethod(int x) and
double MyMethod(int x)

two distinct methods. If two such declarations appear in the same class, a compilation error,

complaining that MyMethod(…) is already defi ned, occurs.

Attempting to overload a method based on the return type is a common error.

 As in the two previous examples, overloaded methods must differ in the types and/or

 number of parameters. The return value is not a player.

 Many of Java’s library methods are overloaded. Figure 6.4 gives several examples

such as:

Math.max(int a, int b) and Math.max(double a, double b)

or

Math.abs(int a) and Math.abs(double a).

 Indeed, the methods appearing most often in this book, Java’s print(…) and println(…) meth-

ods, are also overloaded. Each can take an argument of any data type.

sim23356_ch06.indd 221sim23356_ch06.indd 221 12/15/08 6:36:19 PM12/15/08 6:36:19 PM

222 Part 1 The Fundamental Tools

 6.5 IN CONCLUSION

 In this chapter we describe a method as a black box that performs some singular task. Some

methods accept arguments and some do not; some methods return a value, some do not;

some methods are prepackaged with Java and others are written by the programmer. In all

cases, however, methods simplify your programming tasks by separating a large problem

into simpler components.

 In Chapter 7, we present another programming structure, the array , which provides

another method of program simplifi cation, but in a very different way.

 Just the Facts

• A method is a named sequence of instructions that are grouped together to perform a

task.

• The name of a method must be a valid Java identifi er. By convention, the name of

a method begins with a lowercase letter and each succeeding “word” in the name

begins with an uppercase letter.

• Every Java application must have a main(…) method, and every Java application

begins execution with main(…).

• A Java method consists of a header followed by a method block :

 modifiers return-type name (parameter-list) // the header
 {
 // the method block
 }

• The modifi ers of a method header (for now) are the words public and static .

• A method’s parameter-list consists of pairs of the form type parameter separated

by commas. For example, int x, double y . Parameters are sometimes called formal
parameters .

• The values passed to a method are called arguments or actual parameters.

• Arguments may be expressions.

• All arguments in Java are passed “by-value.” This means that the values of the argu-

ments are initially copied to the parameters of a method. Subsequently modifying

the parameters in the method has no effect on the value of any variables passed as

arguments.

• The method block performs the task of the method.

• The method block must include a return statement unless the method is a void

method. A void method includes an implicit return, the last statement.

• When a return statement executes, the method exits and program control returns to

the caller.

• The scope of a variable is the section of the program in which a variable can be

accessed or referenced. The scope of a variable begins with its declaration and extends

to the end of the block in which it is declared. For example, a variable declared in the

header of a for statement is known only in the block of the for statement.

• Variables declared in the method block are the method’s local variables and are inac-

cessible outside the block.

sim23356_ch06.indd 222sim23356_ch06.indd 222 12/15/08 6:36:20 PM12/15/08 6:36:20 PM

 Chapter 6 Methods 223

• Java allows two or more methods of the same class to share the same name. This

practice is called method overloading . Overloaded methods must differ in the types

and/or number of parameters.

• Method overloading based on different data types can lead to problems when automatic

type conversion occurs. Overloading based on different numbers of parameters is safer.

• Java does not distinguish two methods based on the type of the value returned. Thus,

method overloading based on the type of the return value is not allowed.

 Bug Extermination

 A method usually performs a single well-defi ned task. A method that performs several

jobs is probably too complicated. Complex methods can lead to bugs that are hard to

uncover. Keep things simple.

 If an application includes several methods, you should implement and test them, one

method at a time. When method A is working correctly, then implement and test method B .

Write a method; compile it; test it. Then start the process again with the next method. Simulate

data to test each method. When you are satisfi ed with one method then begin work on another.

Bugs are easier to fi nd when they are confi ned to ten lines rather than one hundred and ten.

 The following list enumerates some of the more common bugs associated with methods:

• Omitting the keyword void from the header of a method that does not return a value.

• Omitting a return statement from a method that returns a value. Your method may

have indeed computed the required value, but the return statement is necessary to

send the value back to the caller.

• Misplacing a return statement. Once a return statement executes, the method exits.

Make sure that return statements are correctly placed in a method block. If they are

not, code that you intended to execute may not execute.

• Specifying your arguments incorrectly. Multiple declarations are not allowed in a

parameter list:

public void example(int a, int b, double c) is correct.

 public void example(int a, b, double c) is not.

• Overloading a method based on the return type. The return type does not distinguish

one method from another. The parameter-lists of overloaded methods must differ.

• Attempting a method call with the incorrect number of arguments.

• Passing arguments of the wrong type to a method. The arguments must match the

parameter-list not only in number but also in type.

• Passing arguments to a method in the wrong order. For example, when calling

double area(double length, double width) // area of a rectangle

 the fi rst argument of the call should signify the length of a rectangle and the second,

the width. If you reverse the arguments, your program will compile and run, but your

results will not necessarily be correct.

• Omitting the empty parentheses () when invoking a method with no arguments.

• Overloading a method based on data type that results in an ambiguous choice for the

compiler. When, due to automatic casting, there is a choice of more than one method

to match a method call, the compiler issues a syntax error. When overloading meth-

ods, be sure that no ambiguity exists about which method is appropriate.

sim23356_ch06.indd 223sim23356_ch06.indd 223 12/15/08 6:36:20 PM12/15/08 6:36:20 PM

224 Part 1 The Fundamental Tools

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 4 A non-void method must specify a _____(two words)

 6 The words public and static are

 8 If the data type of the return type is T, then the type

of the returned value must be T or a type that can be

automatically to T

 10 Java library containing random()

 12 Overloaded methods differ by the or number of

parameters

 14 A method’s ______ gives its name and parameter list

 15 Used to pass a value to a method

 16 The parameter-list specifi es the type and of

arguments that must be given to a method

 20 The _____ of a variable is the section of the program in

which a variable can be accessed

 21 If the choice of an overloaded method is the

compiler issues an error message

 22 By convention, the name of a method begins with a(n)

-case letter

 25 Metaphor for a method

 26 When a method is invoked, the of an argument is

passed to the method

 28 Java-supplied void method

 29 methods share the same name

Down
 1 Method that does not return a value

 2 A variable declared in a block is unknown

 that block

 3 Local variables declared in different

methods of the same application may have

the same

 5 Named set of instructions that performs a

task

 7 An argument may be a(n)

 9 When a method exits, control returns to the

 11 Java method for square root

 13 Method that is always executed fi rst

 17 The statements of a method comprise the

method

 18 Another name for an argument is a(n)

parameter

 19 Receives a value passed to a method

 23 A return statement causes a method to

 24 Not necessary in a void method

 27 Variable declared in a method

3

6

1

7

12 13

14

11

15

23

27

18

26

20

24

29

21

16 17

8

4

2

5

10

9

25

28

19

22

sim23356_ch06.indd 224sim23356_ch06.indd 224 12/15/08 6:36:20 PM12/15/08 6:36:20 PM

 Chapter 6 Methods 225

 SHORT EXERCISES
 1. True or False

 If false, give an explanation.

a. myMethod(…) may be overloaded as:

 int myMethod(int x, int y) and fl oat myMethod(int x, double y).
b. yourMethod(…) may be overloaded as:

 int yourMethod(int x, int y) and int yourMethod(int x, double y).
c. hisMethod(…) may be overloaded as:

 int hisMethod(int x, int y) and fl oat hisMethod(int x, int y).
d. herMethod(…) may be overloaded as:

 int herMethod(int x, int y) and int herMethod(int x, int y, int z).
e. Every Java application begins execution with main(…).
f. main(…) can invoke at most three other methods.

g. A method can call a method that in turn calls another method.

h. Overloaded methods must have a different number of parameters.

i. Overloaded methods must return the same type of data.

j. The parameters in the header of a method are called the actua l parameters.

k. Arguments can be expressions or constants.

l. The type of each parameter must match the type of its corresponding argument.

m. The scope of a parameter in a method extends to the end of the method.

n. The scope of a local variable extends to the end of the method in which it is

defi ned.

o. Every method returns a value.

p. The name of a method cannot begin with an uppercase letter.

q. Methods provide a programmer with a mechanism to segment a complicated

application into simpler and easier-to-debug components.

r. A method can use the same name for a local variable and a formal parameter.

 2. Playing Compiler
 Determine the errors in each of the following segments. Fix the errors and then

determine the output. Unusual formatting is not an error.

a. public class WhatTheHey
 {
 public static int method1(int x,y)
 {
 return x � y;
 }

 public int method2(double x, double y)
 {
 return int(x � y);
 }

 public static void main(String[] args)
 {
 System.out.println(“The output is: ”, method1(method2(7.1, 6.2), method1(2, 3))
 “years of bad luck”);
 }
 }

sim23356_ch06.indd 225sim23356_ch06.indd 225 12/15/08 6:36:20 PM12/15/08 6:36:20 PM

226 Part 1 The Fundamental Tools

b. public class TheBookOnLove
 {
 public static void method1()
 {
 System.out.println(“I wonder who wrote the book on love”);
 }
 public static void method1(int x)
 {
 for (i � 0; i � x; i��)
 System.out.println(“I wonder who wrote the book on love”) � i;
 }
 public static void main(String[] args)
 {
 int i; for (i � 0; i � 6; i��)
 {
 System.out.println(int i);
 method1();
 method(i);
 }
 }
 }

c. public class ThisComputesSomeWeirdStuff
 {
 public static int method1(int a, int b)
 {
 if (a%2 �� 0) return (a) else return (b)
 }
 public static int method2(int a, int b)
 {
 while (a !� 1) {b��; a � a / 2;} return (b);
 }
 public static void main{String[] args}
 {
 System.out.println(method2(method1(3, 10), method1(16, 57)));
 System.out.println(method2(method1(190, 10), method1(16, 57)));
 System.out.println(method2(method2(3, 10), method1(16, 57)));
 System.out.println(method1(method2(3, 10), method2(16, 57)));
 }
 }

d. public class ThisOneIsPrettyCool
 {
 public static int method1(int w)
 {
 int count � 0;
 while (w !� 1) if (w % 2 �� 0)
 {
 w � w / 2;
 count��;
 }

sim23356_ch06.indd 226sim23356_ch06.indd 226 12/15/08 6:36:21 PM12/15/08 6:36:21 PM

 Chapter 6 Methods 227

 else
 w � 3 * w � 1;
 return count;
 }
 public static void main(String[] args)
 {
 System.out.println(method1(10));
 System.out.println(method1(7));
 }
 }

e. public class OkIveHadEnough
 {
 public static double method1(int a) { return a / 2;}
 public static double method1() {return 1.0;}
 public static int method2(double x) {return 3 * (int)x;}
 public static int method2() {return 0;}
 public static void main(String[] args)
 {
 System.out.println(method2(method1()));
 System.out.println(method1(method2()));
 for (int j � 0; j � 10; j��)
 {
 System.out.println(method2(method1(j));
 System.out.println(method1(method2(j)));
 }
 }
 }

 3. Method Acting
 Methods can be used to accomplish each of the following tasks. Write only the

method headers for each example. Overload a method name, if appropriate.

a. Calculate the largest of 2, 3, or 4 integer values.

b. Calculate your federal income tax percentage based on the following chart:

Adjusted Gross Income Range Percentage

$0 � $7,300.00 10%

$7,300.01 � $29,700.00 15%

$29,700.01 � $71,950.00 25%

$71,950.01 � $150,150.00 28%

$150,150.01 � $326,450.00 33%

$326,450.01 � and up 35%

 Allow the income to be expressed in dollars and cents, or simply rounded to the

nearest thousand dollars. That is, an adjusted gross income of 52,736.98 may

alternatively be expressed as 53.

c. Calculate the percentage score on an exam. You are given the number of ques-

tions on the exam, and the number that are correct.

sim23356_ch06.indd 227sim23356_ch06.indd 227 12/15/08 6:36:21 PM12/15/08 6:36:21 PM

228 Part 1 The Fundamental Tools

d. Calculate your risk factor (RF) for auto insurance in MA, NY, and NJ. Your risk

factor is either a, b, c, d, or e. In MA, RF depends on your age, the number of

charged accidents on your record, and the number of traffi c violations. In NY, RF

depends on your age, your driving points (an integer between 6 and 35, inclu-

sive), and the total dollars paid out to you in charged accident claims. In NJ, RF

depends on your age, the distance from your home to the NY border (rounded to

the nearest mile), the number of traffi c violations on your record, and the number

of people under 30 years of age in your family.

e. Decide whether or not you are eligible to become president. Eligibility is deter-

mined by your year of birth, the fi rst letter of the country in which you were born,

and the number of years that you have been a U.S. resident.

 4. Overloaded Methods
a. Method add (…) is overloaded as follows:

 static double add(int a, double b) static double add(double a, int b)
 { {
 return a � b; return a � b;
 } }

 Which, if any, of the following invocations fail to compile? Give reasons.

 i. add(1,2)
 ii. add(1.0,2.0)
 iii. add(1.0, 2)
 iv. add(2.0,2)

b. Method sub(…) is overloaded as follows:

 int sub(int a, int b) double add(double a, double b)
 { {
 return a � b; return a � b;
 } }

 Which, if any, of the following invocations fail to compile? Give reasons.

 i. sub(1,2)
 ii. sub(1.0,2.0)
 iii. sub(1.0, 2)
 iv. sub(2.0,2)

c. What is the problem with the following overloaded method that returns a product

as either an int or a long ?

 int mul(int a, int b) long mul(int a, int b)
 { {
 return a * b; return a * b;
 } }

 5. Pass By Value
 Harry Hacker has written the following method that is supposed to swap the

contents of two variables:

sim23356_ch06.indd 228sim23356_ch06.indd 228 12/15/08 6:36:21 PM12/15/08 6:36:21 PM

 Chapter 6 Methods 229

 static void swap(int a, int b)
 {

 int temp � a;

 a � b;

 b � temp;
 }

 However, the statements

 int a � 5;

 int b � 6;
 swap(a,b);

 System.out.println("a � " � a � " and b � " � b);

 produce the output

 a � 5 and b � 6.

 Explain why Harry’s method does not work as intended.

 PROGRAMMING EXERCISES
 1. Min and Max
 Write two methods

 int myMax(int x, int y) and
 int myMin(int x, int y),

 each of which accepts two integers x and y , and outputs the larger/smaller of

the two, respectively. The main method of your program should prompt for two

numbers, pass these numbers to myMax(…) and myMin(…), and then print the results

with appropriate explanatory text.

 2. Celsius to Fahrenheit
 Write a method

 int cToF(int x)

 that converts a Celsius temperature to a Fahrenheit temperature. The conversion

formula is:

F � (9.0/5.0)C � 32.

 The returned value should be rounded to the nearest degree. Test your method by

displaying a table of Celsius temperatures from �40 to 100, in increments of fi ve

degrees, with the Fahrenheit equivalents.

 3. Random Numbers
 Write a method

 int randomInt(int x, int y)

 that returns a random integer between x and y, inclusive. Note that x and y can be

positive or negative.

 4. Average
 Write a method

 double average(int n)

sim23356_ch06.indd 229sim23356_ch06.indd 229 12/15/08 6:36:21 PM12/15/08 6:36:21 PM

230 Part 1 The Fundamental Tools

 that reads n numbers of type double and returns the average of those numbers.

Include this method in a program that requests a value for n and displays the average

of n numbers supplied by a user.

 5. Consumer Price Index
 The Consumer Price Index (CPI) represents the change in the prices paid by urban

consumers for a representative basket of goods and services. It is a percentage value

rounded to the nearest tenth, for example, 9.2 or �0.7. Write a method

 double getCPI()

 that asks a user to enter a number between �20 and 20 with one digit after the

decimal point. If the user supplies an unacceptable number, the method should

display an appropriate error message (“number too high,” “number too low,” or

“number has wrong precision”) and prompt the user for another value. When the

user succeeds, the method should return that number.

 Test your method by continually prompting a user for a value and displaying the

value. When you are confi dent that the method is correct, write a second method

 double infl ation(double cpi, double expenses)

 that accepts the CPI and last year’s annual expenses. Method infl ation (…) returns

what you might expect to pay for the same goods in the coming year. Write a

 main(…) method that calls both getCPI() and infl ation(…).

 6. Price Adjustment
 Write a method

 int bumpMe(int price, int increase, boolean updown)

 that accepts a price in dollars and returns a new price rounded to the nearest dollar,

after increasing/decreasing price by increase percent. If updown is true then you

should increase the price; otherwise, decrease the price. Write an appropriate

 main(…) method to test bumpMe(…).

 7. Simulations
 Simulation is one way that casinos analyze games; simulation is less expensive than

hiring a mathematician. The “over-under” bet is described in Example 6.3. Write

three methods, each of which simulates 10,000 plays of a $1/bet game and returns

the amount of money that is won or lost over 10,000 games. A negative number

denotes a loss. The three methods operate as follows:

• Method 1 chooses the bet (“over 7,” “under 7,” or “exact”) at random.

• Method 2 always chooses the “over 7” bet.

• Method 3 chooses the “over 7” bet 4000 times, the “under 7” bet 4000 times, and the

“exact” bet 2000 times.

 Test these methods in a program. Write, test, and debug the methods one at a

time, that is, get Method 1 working perfectly before including Method 2 in your

program.

 8. Hello World Revisited
 Write a program that prompts a user for a positive integer n and prints “Hello There”

 n times. Of course, a value of n that is less than or equal to 0 is illegal. To ensure

valid input, include a method

 int getPos()

 that prompts for a positive integer. If the value of that integer is less than or equal to 0,

the method should print an appropriate message and request a positive number.

When the user supplies a valid number, the method returns that number.

sim23356_ch06.indd 230sim23356_ch06.indd 230 12/15/08 6:36:21 PM12/15/08 6:36:21 PM

 Chapter 6 Methods 231

 9. Carnival Game Simulation
 The rules of a certain carnival game stipulate that a player throws one standard

6-sided die, one 20-sided die, one 8-sided die, one 4-sided die, and one 12-sided die.

The player wins if the total on the fi ve dice is greater than 35 or less than 20. Write a

program that simulates the carnival game 100 times and reports the number of times

a player wins. Your program should include a method

 int dieRoll(int x)

 that returns a random number between 1 and x .

 10. Present Value of an Investment
 The present value on an investment of A dollars for Y years at an annual rate of

 R percent compounded C times yearly is

 Present Value � A(1 � R/C)YC (1)

 Of course, if interest is compounded yearly, then C � 1 and (1) simplifi es to:

 Present Value � A(1 � R)Y. (2)

 Overload a method presentValue(…) so that presentValue(…) implements formulas (1)

and (2). Write a main (…) method that tests both versions of presentValue(…) .

 11. Craps Simulation
 When playing craps, a player rolls two dice repeatedly until she wins or loses. The

fi rst roll of the dice is called the come-out roll. If the player rolls a 7 or an 11 on the

come-out roll, then she wins immediately; a 2, 3, or 12 on the come-out roll results

in an immediate loss. If she rolls a 4, 5, 6, 8, 9, or 10 on the come-out roll, then that

number becomes her point and she continues rolling until she rolls either her point

or a 7. If she rolls her point, she wins, but if she rolls a 7 before rolling her point,

she loses. Once a player has established her point, no other numbers (including 2, 3,

11, or 12) affect her winning or losing.

 Write a method

 boolean craps()

 that simulates one game of craps and returns true if and only if the player wins. Test

your method by printing the values of each roll of the dice. When you are convinced

that your simulation is correct, include this method in a program that executes

 craps() 1000 times and reports the percentage of wins.

 12. Mean Versus Median
 Implement two methods:

 1. int median(int x, int y, int z) that calculates the median of three integers.

 2. int mean(int x, int y, int z) that calculates the average of three integers, rounding

the result to the nearest integer.

 Devise a main(…) method that accepts three integers and states whether the median

of the three is larger than the mean, smaller than the mean, or equal to the mean.

 13. Zeno’s Paradox
 A famous paradox devised by Zeno, an Eleatic philosopher (b. 488 BCE), asserts

that to run from point A to point B , a runner must fi rst traverse half the distance

between A and B . Before he can do that, he must traverse a “half of the half,” and so

on ad infi nitum. He must, therefore, pass through an infi nite number of points, and

that is impossible in a fi nite time. Design and implement a method

 double zeno(int n)

sim23356_ch06.indd 231sim23356_ch06.indd 231 12/15/08 6:36:22 PM12/15/08 6:36:22 PM

232 Part 1 The Fundamental Tools

 that calculates the sum 1/2 � 1/4 � 1/8 � … � 1/2 n . The method should call an

auxiliary method

 int powerTwo(int n)

 that returns 2 n . Test both methods in a complete program. Hint: Implement and test

the two methods one at a time. First write, compile, and test powerTwo(…). Once

that method is working correctly, add zeno(…) to your program.

 14. Date Calculations
 Implement an application that prompts for two dates each comprised of three

integers: a month, a day, and a year between 1900 and 2100, inclusive. If both dates

are valid, your program should display the number of days between the two dates;

otherwise, your program should issue an error message. Include a method

 boolean validDate(int month, int day, int year)

 that returns true if and only if a date is valid. For example (12, 29, 1980) is valid

but (29, 12, 1980), (13, 11, 2007), and (1, 1, 1899) are not. You should also design a

method

 int dateDifference(int day1, int month1, int year1, int day2, int month2, int year2)

 that returns the number of days between the dates (month1, day1, year1) and

(month2, day2, year2), provided these dates are valid. Don’t forget to take leap years

into account, and recall that 1900 and 2100 are not leap years.

 15. Geometric Mean
 A home purchased for 300,000 dollars increases in value by 10% after one year

and by another 20% after a second year. Thus, a year after purchasing the house, its

value is 1.10 � 300,000 dollars and after two years 1.20 � 1.10 � 300,000 dollars.

A third year decrease of 6% drops the value to 94% of the previous value. 0.94 �

1.20 � 1.10 � 300000 � 372240 dollars. Notice that the multiplier is 1 � 0.06 �

0.94. The average annual increase over the three-year period is the geometric mean

of 1.10, 1.20 and 0.94.

 In general, the geometric mean of n numbers is the n th root of their product.

Thus, the geometric mean of 1.10, 1.20, and .94 is (1.10 � 1.20 � .94) 1/3 �

1.074568 and the product 1.074568 � 1.074568 � 1.074568 � 300000 equals

372240, as does the original product, .94 � 1.20 � 1.10 � 300000. In other words,

the home’s value after three annual changes of 10%, 20%, and �6% is the same as

if, each year, the home’s value increased by 7.4568%.

 Write a program that calculates the average increase or decrease on an

investment held from one to six years. Your program should fi rst prompt for the

length of time of the investment (an integer between 1 and 6, inclusive) and then the

percent increase or decrease for each year. A negative number indicates a decrease.

The program should display the average annual increase or decrease. For example,

if a home, over a six-year period, has changed in value by 10%, 20%, 6%, �8%,

�12%, and 3%, then to compute the average annual increase (or decrease), you

would calculate the geometric mean of 1.1, 1.2, 1.06, 0.92, 0.88, and 1.03.

 Hints : Overload a method, geometricMean(…). Make fi ve versions that have

two, three, four, fi ve, and six parameters of type double . Use Math.pow(x,y).

 16. Harmonic Mean
 If it takes one hose 12 hours to fi ll a pool, and another hose 4 hours, then together

they fi ll the pool in (2 � 4 � 12) / (4 � 12) � 6 hours. The harmonic mean of two

positive numbers a and b is 2 ab/ (a � b). Write a method

 double harmonicMean(int x, int y)

sim23356_ch06.indd 232sim23356_ch06.indd 232 12/15/08 6:36:22 PM12/15/08 6:36:22 PM

 Chapter 6 Methods 233

 that returns the harmonic mean of a � 0 and b � 0 . Write another method that

returns the arithmetic mean of a and b , that is, the average of a and b . Finally,

include a third method that returns the geometric mean of a and b , that is, the square

root of a � b (see Exercise 15).

 Test your methods in a program that reads two positive integers and displays

their harmonic mean, arithmetic mean, and geometric mean. For example, if a and b

have values 12 and 4, the harmonic mean is 6.0, the arithmetic mean is 8.0, and

the geometric mean is √

 48 � 6.928. Did you notice that the harmonic mean times

the arithmetic mean equals the square of the geometric mean? This identity might

be helpful to you when you design your methods.

 17. Median of Five
 A teacher wishes to use the median (middle value) of fi ve grades as the fi nal grade

for each of n students. Write a method that returns the median of fi ve integers. For

example, the median of 10, 50, 48, 35, and 22 is 35. Test your method in a program

that accepts the number of students, followed by fi ve grades per student, and prints

the fi nal grade for each student. Do not assume that the grades are ordered.

 18. Lottery Games
 Most states sell lottery tickets of one of the following two types:

 a. A player picks k distinct numbers between 1 and n , inclusive. For example, to

play Massachusetts’ Megabucks game, a player picks six numbers between 1

and 42. In this case, the number of possible lottery tickets is:

 42 � 41 � 40 � 39 � 38 � 37 __________________________
6 � 5 � 4 � 3 � 2 � 1

 � 5,245,786

 (Notice that six numbers must be selected and there are six factors in the

numerator, counting down from 42.) Thus, a player who buys a single ticket has

one chance in 5,245,786 of attaining an instant fortune. In general, if a player

must choose k numbers between 1 and n, the number of possible tickets is:

n � (n � 1) � (n � 2) � . . . �(n � k � 1)

k � (k � 1) � (k � 2) � . . . � 3 � 2 � 1

 b. The second type of game requires that a player pick k numbers between 1 and

 n as well as one additional number between 1 and m . For example, to play

California’s Super Lotto game, a player picks fi ve numbers between 1 and 47,

inclusive, and one additional number between 1 and 27, inclusive. In this case

the number of possible tickets is:

 47 � 46 � 45 � 44 � 43 _____________________
5 � 4 � 3 � 2 � 1

 � 27 � 41,416,353

 In general, the number of possibilities is:

n � (n � 1) � (n � 2) � . . . �(n � k � 1)

k � (k � 1) � (k � 2) � . . . � 3 � 2 � 1

 � m

 Write an application that calculates the number of possible lottery tickets for each

type of game, (a) and (b). Overload numberOfTickets(…) as

 int numberOfTickets(int n, int k) // choose k numbers from 1 to n

 and

 int numberOfTickets(int n, int m, int k) // choose k numbers from 1 to n
 // and an additional number from 1 to m.

 These methods return the number of possibilities described in (a) and (b) above,

respectively.

sim23356_ch06.indd 233sim23356_ch06.indd 233 12/15/08 6:36:22 PM12/15/08 6:36:22 PM

234 Part 1 The Fundamental Tools

 To play New York’s Lotto game, a player picks six numbers between 1 and 59;

and to play the state’s Mega Millions game, a player picks fi ve numbers between 1

and 56 and an additional number between 1 and 46. Write a main(…) method that

determines which of the two games gives the better chance of an instant fortune.

 THE BIGGER PICTURE

1. TIME COMPLEXITY
 The amount of time it takes to run a program is the most important measure of pro-

gram performance. A clock can be used to measure the real running time of a pro-

gram, but results can be misleading if programs are run on different computers. Some

computers are faster than others, and a fast computer might conceivably run a poorly

designed program in less time than a slow computer runs a well-designed one.

 A better measure of performance treats the program as an abstract algorithm —

that is, a step-by-step method for solving a problem—and calculates the number of

steps that the algorithm requires as a function of input size. This focus on the algo-

rithm cuts out the disparity in hardware and allows an even-handed comparison.

 For example, consider the following algorithm that computes the average of n

integers:

sum � first integer;
for each of the remaining n � 1 integers
{
 sum � sum � next integer;
}
average � sum/n;

 This algorithm takes approximately n steps to accomplish its task, where each step is

a single addition or division. The time complexity of the algorithm is n . A Java imple-

mentation would accomplish the task using a loop.

 Following are two algorithms, written in Java-like pseudocode, that calculate the

 greatest common divisor (gcd) of two numbers a and b , where a � b . The greatest

common divisor of a and b is the largest positive integer that evenly divides both a

and b . For example, the greatest common divisor of 36 and 27 is 9, and the greatest

common divisor of 101 and 68 is 1.

 Algorithm I:
// This is a brute force algorithm that starts with the smaller number (b) and finds
// the first number less than or equal to b that divides evenly into both a and b .
// Assume a � b.

 for k � b downto 1 // for each possible divisor, k
 if ((b % k �� 0) && (a % k �� 0)) // if k evenly divides both b and a
 return k;

TH
E

BI
GG

ER
 P

IC
TU

RE

sim23356_ch06.indd 234sim23356_ch06.indd 234 12/15/08 6:36:23 PM12/15/08 6:36:23 PM

THE BIGGER PICTURE

 Algorithm II:
// This is a clever, sophisticated algorithm called Euclid’s algorithm.

 while (b !� 0)
 {
 int temp � a % b;
 a � b;
 b � temp;
 }
 return a;

 It should be clear why Algorithm I works, but perhaps it is not so obvious why

Algorithm II accomplishes the same task. Algorithm II is based on a theorem of

Euclid (300 BCE) that states that given two positive integers a and b , where a � b ,

 the greatest common divisor of a and b is the same as the greatest common

divisor of b and a % b, that is, gcd (a,b) � gcd (b, a % b).

 For Algorithm I, the worst-case scenario is that the loop iterates from b down to 1.

So, at worst, Algorithm I takes b steps. For example, to calculate the greatest com-

mon divisor of 101 and 37, Algorithm II requires 37 steps.

 For Algorithm II, the number of steps, that is, the time complexity, is not obvi-

ous. However, 19 th century mathematician Gabriel Lamé proved that Euclid’s algo-

rithm requires at most 5 k steps, where k is the number of digits in b .1 For example,

Euclid’s algorithm takes at most 5 � 2 � 10 steps to fi nd the greatest common divi-

sor of a � 472 and b � 36, since 36 has two digits.

 Compare 5 k with the time complexity of Algorithm I, which requires at most b

steps. The difference is astronomical. For example, if b � 10 10 � 10,000,000,000,

then Algorithm I may take 10 10 steps, but Euclid’s algorithm takes at most 2 � 11 �

22 steps! Because a number with n digits is roughly 10 n , the difference between the

two algorithms is akin to the difference between 10 n and n .

 Exercises
1. Estimate the number of steps used by Algorithm I and Algorithm II when a �

298765 and b � 89765.

2. Implement methods for Algorithm I and Algorithm II. Include your implementa-

tions in a program.

3. Write a program that compares the running times of Algorithm I and Algorithm II.

Use the data: a � 12000111, b � 9899111. To calculate the running time of each

method, invoke System.currentTimeMillis(), which returns the current time (long) to

the nearest millisecond:

 long startTime � System.currentTimeMillis();

 myMethod(); // call your method here

1Lamé used the Fibonacci sequence to prove his result. The Fibonacci sequence is a sequence of positive

integers such that the fi rst two terms of the sequence are both 1 and each succeeding term is the sum of the

previous two numbers. The fi rst 10 terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. Lamé

proved that if a � b 	 0 and b is less than the (n � 1)st term of the Fibonacci sequence, then the number of

steps required by Euclid’s algorithm is at most n. For example, if b is 100, then the number of steps required by

Euclid’s algorithm is at most 11 because 100 is less than the 12th term of the Fibonacci sequence: (1 1 2 3 5 8 13

21 34 55 89 144). Lamé’s theorem implies that the number of steps required by Euclid’s algorithm is no more

than 5 times the number of digits in b.

 Chapter 6 Methods 235

sim23356_ch06.indd 235sim23356_ch06.indd 235 12/15/08 6:36:23 PM12/15/08 6:36:23 PM

236 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 long endTime � System.currentTimeMillis();

 long totalTime � endTime � startTime;

 How do the two algorithms (I and II) compare?

4. To each method of Exercise 2, add a counter that keeps track of the number of

loop iterations, that is, the number of steps performed by each algorithm. Com-

pare the number of steps required by Algorithm I and Algorithm II when a �

12000111 and b � 989111. Are your results consistent with the theory? Run the

program with numbers of your own choice.

2. RECURSION, A PREVIEW
 You have seen that a method can invoke another method. Well, you may be surprised

to learn that a method can call itself . A method that includes a call to itself is called a

 recursive method. You might surmise that a method that calls itself would create an

infi nite loop. And, indeed, that may happen. Trace through the following method that

forever begs you to end its misery!

Public static void runMeForever()
{
 System.out.println(“Stop me. This hurts!”);
 runMeForever();
}

The method runMeForever() produces the following, rather redundant, cry for help:

Stop me. This hurts!
Stop me. This hurts!
Stop me. This hurts!
Stop me. This hurts!
Stop me. This hurts!
Stop me. This hurts!
Stop me. This hurts!
...

 Yes, the runMeForever() invokes runMeForever() which invokes runMeForever()
which invokes runMeForever() , well, forever. However, you can rewrite this method

so that it prints the message just n times and then stops. As a boolean condition

terminates a while loop, we can use a boolean condition to put a stop to the infi nite

chain of recursive method calls.

public static void runMeAwhile(int n)
{
 if (n !� 0) // stops the chain of method calls to itself when n �0

 {
 System.out.println(“Stop me. This hurts!”);
 runMeAwhile(n � 1);
 }
}

 The following class invokes the method runMeAwhile(…) with the argument n � 3 .

public class Test
{
 public static void runMeAwhile(int n)
 {

sim23356_ch06.indd 236sim23356_ch06.indd 236 12/15/08 6:36:23 PM12/15/08 6:36:23 PM

THE BIGGER PICTURE

 if (n !� 0)

 {
 System.out.println(“Stop me. This hurts!”);
 runMeAwhile(n � 1);
 }
 }
 public static void main(String[] Args)
 {
 runMeAwhile(3); // invokes method for the first time
 }
}

 The main(…) method of Test calls runMeAwhile(3) which displays "Stop me. This

hurts!" and calls runMeAwhile(2), which prints "Stop me. This hurts!" and calls run-

MeAwhile(1), which prints “Stop me. This hurts!”, and calls runMeAwhile(0), which

does nothing because n �� 0. The following diagram depicts the actions of Test :

main

runMeAwhile(3)

runMeAwhile(2)

runMeAwhile(1)

runMeAwhile(0)

return

1

2

4

6

8

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

3

5

7

9

 In theory, recursion and iteration are equivalent; anything that you can accom-

plish with one you can do with the other. Java provides both recursion and iteration

for the same reason that it provides three different loops (do-while , while , and for):
different problems are solved more naturally with different tools.

 Recursion, however, is a powerful way of thinking and problem solving that

extends well beyond the notion of loops. Recursion is one of the major techniques

employed in the development of powerful computer algorithms. A more thorough

discussion of recursion follows in Chapter 8.

 Exercises
1. Write a recursive method int getPos() that requests a positive integer supplied by

a user. On input less than or equal to 0, the method displays an appropriate error

message and asks again for a positive integer via a recursive call to itself. If the

number is legal, the method returns the number.

 Chapter 6 Methods 237

sim23356_ch06.indd 237sim23356_ch06.indd 237 12/15/08 6:36:24 PM12/15/08 6:36:24 PM

238 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

2. Write a recursive method int addUp(int n) that returns the sum of the numbers

from 1 through n . Hint: addUp(n – 1) will return the sum of the numbers from 1

through n – 1. All you need to do is add n to this sum and return.

3. Test the methods of Exercises 1 and 2 in a program that includes the following

 main(…) method:

public static void main(String[] args)
{
 System.out.println("Enter a positive integer: ");
 int n � getPos();
 System.out.println("The sum 1 through n is "� addUp(n));
}

4. Determine the output of the following program. If you trace through the method

calls carefully, you will discern a pattern.

public class Recursion
{
 public static int mystery(int a, int b, int c, int d)
 {
 if (a �� b)
 return c;
 else
 return mystery(a, b � 1, d, c � d);
 }
 public static void main (String[] args)
 {
 for(int i � 1; i � 10; i��)
 System.out.println(mystery(i,1,1,1));
 }
}

sim23356_ch06.indd 238sim23356_ch06.indd 238 12/15/08 6:36:24 PM12/15/08 6:36:24 PM

 239

 CHAPTER CHAPTER 7
 Arrays and Lists: One Name

for Many Data
 “Hi, I’m Larry, this is my brother Darryl, and this is my other brother Darryl”

 —from the TV comedy Newhart

 Objectives

 The objectives of Chapter 7 include an understanding of

� array declaration, instantiation, initialization, and use,

� reference variables,

� how arrays are passed to methods and used in methods,

� basic sorting,

� linear and binary search, and

� multi-dimensional arrays.

 7.1 INTRODUCTION

 Lists are certainly part of our culture. There’s David Letterman’s daily top 10 list, the

American Film Institute’s list of the best 100 fi lms of all time, the best-dressed list, the

worst-dressed list, Forbes list of the richest people in America, Billboard’s Top 40 list, your

grocery list, and even Santa’s list of who is naughty and who is nice—to list a few. Every-

one makes lists. Everyone reads lists. Everyone uses lists.

 In this chapter we explain how an application can create, maintain, update, sort, and

search a list of data using an array .

An array is a named sequence of contiguous memory locations capable of holding a

collection of data of the same type.

 Unlike the variables of previous programs, an array can store more than one value. An array

can store a list of thousands or even millions of data. Figure 7.1 contrasts a simple variable

with an array.

 In this chapter, you will learn the basics of programming with arrays. Do you need to

search a list of 1000 ID numbers? One million numbers? It’s not a problem.

sim23356_ch07.indd 239sim23356_ch07.indd 239 12/15/08 6:38:09 PM12/15/08 6:38:09 PM

240 Part 1 The Fundamental Tools

A variable: storage for one value

An array: contiguous memory storage
for many values.

FIGURE 7.1 A variable in contrast to an array

 7.2 ARRAY FUNDAMENTALS: DECLARATION
AND INSTANTIATION

 Using an array requires two preliminary steps:

• declaration

• instantiation

 7.2.1 Array Declaration
 Java’s syntax allows two forms of array declaration:

• type[] name

• type name[],

where type is a data type such as int , char , double, or boolean and name is a valid Java

identifi er that provides a name for an array.

 The following declarations illustrate both styles of declaration, and although either

type of declaration is permissible, most Java programmers opt for the fi rst version.

• int[] myArray

• double yourArray[]

 The variables myArray and yourArray are different than the variables of previous programs.

These variables are reference variables. A reference variable does not hold an integer, a

fl oating-point number, a character, or a boolean value.

A reference variable holds a memory address.

 Indeed, Java provides just two types of variables, primitive and reference .

• A primitive variable stores a single value of type byte, short, int, long, fl oat, double,
boolean , or char .

• A reference variable holds a memory address or reference.

 There is no other kind of variable. Soon, you will see that references are major players in

almost every Java program.

sim23356_ch07.indd 240sim23356_ch07.indd 240 12/15/08 6:38:09 PM12/15/08 6:38:09 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 241

 Each of the two variables myArray and yourArray, when assigned a value , holds a

memory address, the address of the fi rst cell of a block of storage locations. See Figure 7.1 .

Although references can be compared and also used in assignment statements, unlike integer

or fl oating-point numbers, references cannot be part of an arithmetical expression. Array

references are used by the system to access the fi rst storage cell of an array.

 7.2.2 Array Instantiation
 The references myArray and yourArray are uninitialized; a declaration does not create an

array. Once an array reference is declared, memory for the array must be allocated. An

array is created or instantiated via the new operator:

 • type [] name; // declaration

 name � new type[size]; // array instantiation

or

 • type[] name � new type[size] // declaration and instantiation

where type is a data type and size is a positive number and of type int or an expression

that evaluates, or is automatically converted, to a positive number of type int. The integer

 size indicates the length of the array, that is, the number of cells in the array. The array in

 Figure 7.1 has 10 cells and can thus store 10 items such as 10 integers or 10 characters.

The values held in an array must all be the same data type.

 For example, you cannot store both double and boolean values in the same array. It’s one

or the other.

 When an array is created, each cell is automatically given a unique name. For example,

the segments

int myArray � new int[5];

and

double yourArray � new double[10];

declare and instantiate two arrays. The names of the cells of the array are myArray[0],
myArray[1], myArray[2], myArray[3], and myArray[4]. In this case, the array is indexed from

0 to 4. The cells of yourArray are named yourArray [0], yourArray[1], yourArray[2]...yourArray[9].
Here the array is indexed from 0 to 9.

The fi rst index of every array is 0.

 Figure 7.2 shows these two arrays. The reference variables myArray and yourArray hold the

addresses of myArray[0] and yourArray[0], respectively.

 Finally, when an array is instantiated, each memory cell is initialized with the “zero

value” of its data type. Thus every cell of an array of int or char data is initialized to 0, and

all cells of an array of doubles are set to 0.0. Each cell of a boolean array is initialized to

 false . The code snippets of Figure 7.3 are examples of array instantiation.

 Once an array is created, its length is fi xed. The length of an array cannot be altered.

Conveniently, if variable x refers to an array, then x.length gives the number of memory

cells allocated to the array. For example, referring to Figure 7.3 , numberList.length has the

value 5 and letters.length has the value 6.

sim23356_ch07.indd 241sim23356_ch07.indd 241 12/15/08 6:38:10 PM12/15/08 6:38:10 PM

242 Part 1 The Fundamental Tools

 7.3 USING AN ARRAY

 Using a cell of an array is no different than using a simple variable.

You can use array variables in assignment statements or any expression.

 For example, the statement

int[] numbers � new int[5]

int [] numberList;
numberList � new double[5];

numberList refers to an array of five integers

Each array cell is initialized to 0

numberList

numberList[0]

numberList[1]

numberList[2]

numberList[3]

numberList[4]

0

0

0

0

0

System.out.println("Enter array size: ");
int size � input.nextInt();
double [] decimals;
decimals � new double[size];

The length of the array (size) is supplied at runtime.

The name decimals refers to an array of doubles.
Each memory cell is initialized to 0.0.

decimals

decimals[0]

decimals[1]

decimals[2]

decimals[size – 1]

0.0

0.0

0.0

0.0

int x � 3;
char [] letters � new char[2*x];

letters refers to an array of char data.

Each memory cell is initialized to 0.

letters

letters[0]

letters[1]

letters[2]

letters[3]

letters[4]

letters[5]

0

0

0

0

0

0

FIGURE 7.3 Examples of array instantiation

yourArray

yourArray[0]

Can hold 10 doubles

myArray

myArray[0]

yourArray[1]myArray[1]

yourArray[2]myArray[2]

yourArray[3]myArray[3]

yourArray[4]myArray[4]

yourArray[5]

yourArray[6]

yourArray[7]

yourArray[8]

yourArray[9]

Can hold 5 integers

FIGURE 7.2 Two arrays myArray and yourArray

sim23356_ch07.indd 242sim23356_ch07.indd 242 12/15/08 6:38:10 PM12/15/08 6:38:10 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 243

declares and instantiates an array named numbers such that:

• numbers is indexed from 0 to 4,

• numbers is capable of storing 5 integers in locations numbers[0], numbers[1],
numbers[2], numbers[3], and numbers[4],

• numbers.length has the value 5, and

• the initial value stored in each cell of numbers is 0.

See Figure 7.4 .

numbers

numbers[0]

numbers[1]

numbers[2]

numbers[3]

numbers[4]

0

0

0

0

0

FIGURE 7.4 The array numbers

 Once the array numbers has been instantiated, you can use individual memory cells of

the array in any place that you might use a variable of type int . Indeed, each memory cell is

a variable. For example, the statements

 numbers[0] � input.nextInt(); // reads a value into numbers[0]
 numbers[1] � 2 � numbers[0]; // assign 2 � numbers[0] to numbers[1]
System.out.println(5 * numbers[1] � 3 * numbers[0]);

are all valid and meaningful.

 If an array has length n , an application can access locations indexed 0, 1, 2, 3, …, n – 1.

Any other index value causes an “array out of bounds” error. For example, the statement

int[] x � new int[4]; // x is indexed 0 to 3

declares and instantiates an array of length 4, so the assignment

x[4] � 23; // ERROR! Index out of range.

causes an “array out of bounds” error. Similarly, the loop

for (int i � 0; i �� 4; i��)
 x[i] � i;

also causes an error. In both cases, an attempt to access x[4] creates the problem. The array

location x[4] does not exist because the range of the index values is 0 through 3, that is, the

cells of the array are designated x[0], x[1], x[2], and x[3].
 Example 7.1 illustrates a few fundamental concepts of array processing. The example

demonstrates how to create an array and how to iterate through an array.

EXAMPLE 7.1Program Statement Write a program that prompts for 10 integers and displays those

same numbers in reverse order. For example, if you enter the numbers:

 0 11 2 33 4 55 6 77 8 99

the program’s output is:

 99 8 77 6 55 4 33 2 11 0

sim23356_ch07.indd 243sim23356_ch07.indd 243 12/15/08 6:38:11 PM12/15/08 6:38:11 PM

244 Part 1 The Fundamental Tools

Java Solution The following application stores 10 integers in an array named list.
The array consists of 10 memory cells that are named list[0], list[1]...list[9]. The user

supplies 10 numbers. The numbers are stored in these 10 cells and fi nally, the numbers

are displayed in reverse order.

1. import java.util.*;
2. public class ReverseList
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. int [] list; // declare list an array variable

8. list � new int[10]; // instantiate or create an array named list

9. System.out.print("Enter 10 integers: ");

10. // read values into list[0], list[1],..,list[9]

11. for (int i � 0; i � 10; i��)
12. list[i] � input.nextInt();

13. System.out.print("List in reverse : ");
14. // print values stored in list[9], list[8], ... , list[0]

15. for (int i � 9; i �� 0; i��)
16. System.out.print(list[i] � " ");

17. System.out.println();
18. }
19. }

Output
Enter 10 integers: 0 11 2 33 4 55 6 77 8 99

List in reverse: 99 8 77 6 55 4 33 2 11 0

Discussion The program prompts for 10 integers. After the data is entered (lines 11–12),

you might visualize the array as in Figure 7.5.

FIGURE 7.5 The array list holds 10 integers. The individual memory cells are designated
 list[0], list[1], list[2], . . . , list[8], and list[9].

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

list[6]

list[7]

list[8]

list[9]

0

11

2

33

4

55

6

77

8

99

We begin our discussion with line 7.

Line 7: int [] list;

sim23356_ch07.indd 244sim23356_ch07.indd 244 12/15/08 6:38:12 PM12/15/08 6:38:12 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 245

Line 7 is an array declaration as indicated by the square brackets []. Like any variable,

list must be declared before its use. And also, like the variables of previous programs,

list can hold but a single value. However, as previously noted, the similarity stops there.

A value stored in list is neither an int, nor a fl oat, nor a double, boolean, or char; it’s a

reference, a memory address, useful to the system but not to the programmer.

 The statement on line 7 declares that list is a reference variable. That’s all. The

declaration does not assign a value to list. No memory has been allocated yet; no array

exists yet; list has not been initialized with any reference/address. That’s the next step.

Line 8: list � new int[10];

The segment new int[10]

 • allocates a block of memory large enough to store 10 integers, and

 • returns the starting address of this memory chunk.

The new operator creates or instantiates a new array. The operator reserves a

consecutive block of storage locations in memory and returns the starting address

of the block.

The memory address (reference) returned by the new operator is subsequently assigned

to the reference variable list (list � new int [10]). Unlike a primitive variable, a program

cannot use list in an arithmetic expression.

 Now, storage is available for 10 integers. The reference variable list holds the

address of the fi rst storage cell. Moreover, each memory cell is initialized to 0. The

arrow in Figure 7.6 indicates that list holds an address or reference.

FIGURE 7.6 Array instantiation; list is a reference; list holds an address. Initially each cell
has a value of 0.

list

0

0

0

0

0

0

0

0

0

0

Lines 11 and 12: for (int i � 0; i � 10; i��) list[i] � input.nextInt();

Lines 11 and 12 comprise a for loop that accepts interactive input and stores the values

in the array, list. The array consists of 10 cells or variables with the similar, if rather

unimaginative, names list[0], list[1], list[2], list[3], list[4], list[5], list[6], list[7], list[8], and

list[9]. Alternatively, we say that the array is indexed from 0 to 9.

 The numbers stored in this array (0, 11, 2, 33, 4, 55, 6, 77, 8, 99) represent arbitrary

input. See Figure 7.7.

sim23356_ch07.indd 245sim23356_ch07.indd 245 12/15/08 6:38:12 PM12/15/08 6:38:12 PM

246 Part 1 The Fundamental Tools

In casino roulette, the croupier spins a wheel that stops on one of 38 numbers—a number

in the range 1 to 36 as well as two special numbers, 0 and 00. Figure 7.8 shows a typical

roulette board.

0

1

1st 12

1–18
E

V
E

N
O

D
D

19–36

2nd 12
3rd 12

4

7

10

13

16

19

22

25

28

31

34

2 to 1

00

2

5

8

11

14

17

20

23

26

29

32

35

2 to 1

3

6

9

12

15

18

21

24

27

30

33

36

2 to 1

FIGURE 7.8 A roulette board has numbers 1 through 36 as well as 0 and 00

 EXAMPLE 7.2

 Example 7.2 declares, creates, and uses an array of size 38 to test the randomness of a

random number generator.

list

list[0]

list[1]

list[2]

list[3]

list[4]

list[5]

list[6]

list[7]

list[8]

list[9]

0

11

2

33

4

55

6

77

8

99

FIGURE 7.7 The array list holds 10 numbers

Lines 15 and 16: for (int i � 9; i �� 0; i��) System.out.print(list[i] � " ");

The for loop prints the array items in reverse. The loop counter begins with 9 and ends

with 0. Thus, the program displays the values stored in list[9], list[8], . . ., and list[0].
Again, notice that an array of 10 values is indexed from 0 to 9. Similarly, an array of

1000 values is indexed 0 … 999.

sim23356_ch07.indd 246sim23356_ch07.indd 246 12/15/08 6:38:13 PM12/15/08 6:38:13 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 247

 Slippery Sam, programmer by day and gambler by night, has written a program

that plays “video roulette.” Sam’s program uses Java’s random number generator

Math.random(). However, Sam is not quite convinced that Math.random() is really

random. So he decides to run a few tests on Math.random().

Problem Statement To test the randomness of Math.random(), write a program that

generates 1,000,000 random integers ranging from 0 to 37 (37 represents 00). If Math.
random() works correctly, then each number, 0 through 37, should appear approximately

1/38th or about 2.632% of the time.

Java Solution Using the expression

(int)(38*Math.random()), // a random integer in the range 0..37

the following application generates a sequence of 1,000,000 random integers between

0 and 37, inclusive. These numbers model 1,000,000 spins of the roulette wheel.

 An array, numbers, indexed 0 to 37, keeps count of the number of times that

each value, 0 through 37, appears. For example, if 23 is generated 20,234 times, then

numbers[23] eventually has the value 20,234. Each cell of numbers is used as a counter.

If number[i] is the number of times that i appears, then

100* (number[i] / 1000000.0) // notice that the denominator is type double

gives the percentage of times that i appears.

 To emphasize that numbers is used for counting, the program initializes each cell

number[i] to 0, but the initialization is redundant because array instantiation performs

this task automatically.

1. public class Roulette
2.
3. {
4. // generates 1,000,000 random integers (range: 0..37)
5. // number[i] is the number of times i is generated
6. // program displays the percentage of times each value is generated

7. public static void main(String[] args)
8. {
9. int spin; // holds a random integer in the range 0..37; 37 denotes 00
10. int [] numbers; // array declaration
11. numbers � new int[38]; // array instantiation, 38 numbers on the board

12. //initialize each storage location numbers [i] to 0 (actually done when array is created)

13. for (int i � 0; i � 38; i��)
14. numbers[i] � 0;

15. for (int i � 0; i �� 1000000; i��)
16. {
17. spin � (int)(38 * Math.random()); // a random int 0..37
18. numbers[spin]��; // e.g., if spin is 23 then increment numbers[23]
19. }

20. // 37 represents the roulette value "double zero"
21. System.out.println("Number Percent");
22. System.out.println("00 "� 100 * (numbers[37] / 1000000.0)); // convert to percent

23. for (int i � 0; i � 37; i��) // 0 to 36
24. System.out.println(i � " "� 100 * (numbers[i] / 1000000.0)); // convert to percent
25. System.out.println();
26. }
27. }

sim23356_ch07.indd 247sim23356_ch07.indd 247 12/15/08 6:38:14 PM12/15/08 6:38:14 PM

248 Part 1 The Fundamental Tools

Even a cursory glance at the following output should convince doubting Sam that Java’s

Math.random() function works pretty well.

Output
Number Percent
00 2.6341
0 2.6586
1 2.6281
2 2.6418
3 2.6275
4 2.6333
5 2.622
6 2.646
7 2.6187
8 2.6177
9 2.646
10 2.6352
11 2.6234
12 2.6433
13 2.6044
14 2.6303
15 2.6116
16 2.6385
17 2.665
18 2.6389
19 2.6328
20 2.6136
21 2.6323
22 2.6704
23 2.6318
24 2.6247
25 2.6108
26 2.6288
27 2.6227
28 2.6165
29 2.6231
30 2.6313
31 2.6492
32 2.6249
33 2.6556
34 2.6308
35 2.6065
36 2.6299

Discussion The program uses the indexed array locations numbers[0], numbers[1], and

so on, no differently than a program might use ordinary variables. For instance, on line 14,

numbers[i] appears in an assignment statement; on line 18 the increment operator is applied

to numbers[spin]; and on lines 22 and 24 numbers[i] is part of a simple arithmetic expres-

sion. The array numbers provides 38 easily accessible and very convenient variables.

 Of course, you could write a rather cumbersome program to accomplish the same

task without using an array. But such a program would not be very pretty. Indeed, you

might fi rst declare 38 different variables (!) to serve as counters:

numZero � 0; numOne � 0; numTwo � 0; numThree � 0; numFour � 0; . . .;
numThirtyEight � 0;

sim23356_ch07.indd 248sim23356_ch07.indd 248 12/15/08 6:38:15 PM12/15/08 6:38:15 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 249

 7.4 ARRAY INITIALIZATION

 As previously stated, when an array is instantiated, all the storage locations are auto-

matically initialized to the “zero value” of the declared data type. For example, the code

segment

double x[] � new double[3];
for int(i � 0; i � 3; i��)
 System.out.println(x[i]);

displays

0.0
0.0
0.0

as output. Of course, these initial values are usually just “placeholders” for values that an

application ultimately stores in an array.

 Java provides a second convenient form of array initialization. The following code

segment declares and explicitly initializes an array of characters.

char letters[] � {'a', 'b', 'c'};

Instantiation is implicit here; the new operator is not explicitly used. The preceding decla-

ration and initialization of letters is equivalent to:

char letters[] ;
letters � new char[3];
letters[0] � 'a';
letters[1] � 'b';
letters[2] � 'c';

Similarly, the following declaration/instantiation/initialization

int squares � {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};

is shorthand for

int squares � new int[10];
for (int i � 0; i � 11; i��)
 squares[i] � i*i;

Then, perhaps, you would include a rather extensive and tedious if-else or a switch
statement:

if (spin �� 0)
 numZero��
else if (spin �� 1)
 numOne��;
else if (spin �� 2)
 numTwo��;
else if (spin �� 3)
 numThree��;
etc.

These code segments should be enough to convince you that an array is really a “neces-

sary convenience.”

sim23356_ch07.indd 249sim23356_ch07.indd 249 12/15/08 6:38:15 PM12/15/08 6:38:15 PM

250 Part 1 The Fundamental Tools

 Clearly, this explicit method of array initialization is convenient only when the size of the array

is not particularly large. In most circumstances, initialization is performed using a loop.

 7.5 A CAVEAT: USING THE � AND THE �� OPERATORS

 7.5.1 The � Operator
 The assignment operator (�) can be used with array references, but such use can lead to

some unexpected results and subtle bugs.

 The code segment

int a � 5;
int b � 0;
b � a;
a � 100;
System.out.println(" a is " � a � " and b is " � b);

produces the output

a is 100 and b is 5.

 There is no surprise here. Now, look at a similar segment that makes assignments to array

variables.

1. int [] a � {5, 4, 3, 2, 1};
2. int [] b � new int[5]; // initialized to 0’s
3. b � a;
4. a[0] � 100;
5. System.out.println(" a[0] is " � a[0] � " and b[0] is " � b[0]);

 Can you determine the output? In this case, the segment displays

a[0] is 100 and b[0] is 100

 That’s right; both a[0] and b[0] are 100. Let’s see why this happens.

 Recall that a and b are both references , that is, a and b each holds a single address.

 Figure 7.9 shows the effect of lines 1 and 2.

a

5

4

3

2

1

b

0

0

0

0

0

 FIGURE 7.9 The arrays a and b are instantiated and initialized

 The assignment on line 3 (b � a) assigns the reference a to b . So, after line 3 executes, a

and b refer to the same block of memory and, moreover, the memory originally referenced

by b is no longer accessible. See Figure 7.10 .

a

5

4

3

2

1

b

0

0

0

0

0

 FIGURE 7.10 After the assignment b � a

sim23356_ch07.indd 250sim23356_ch07.indd 250 12/18/08 10:59:30 PM12/18/08 10:59:30 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 251

 Consequently, as seen in Figure 7.11 , the assignment on line 5 (a[0] � 100) affects not only

 a[0] but also b[0], since a and b both reference the same memory.

a

100

4

3

2

1

b

 FIGURE 7.11 After executing a[0] � 100

 After the segment executes the assignment b � a , the references a and b both refer to the

same memory, and any changes to a[i] affect b[i]. There are two references to the data but

just one copy of the data. Two names refer to the same block.

 How do we copy the values in one array to another? To copy one array to another, use

a loop:

 int[] a �{5, 4, 3, 2, 1};
int[] b � new int[a.length] // be sure to instantiate b

 for (int i � 0; i � a.length; i��) // copy each a[i] to b[i]

 b[i] � a[i];

a[0] � 100;
System.out.println(" a[0] is "� a[0]� " and b[0] is "� b[0]);

 The output of this segment is

 a[0] is 100 and b[0] is 5.

 Figure 7.12 shows the effect of this code segment.

a

100

4

3

2

1

b

5

4

3

2

1

a[0] b[0]

 FIGURE 7.12 Copying an array using a loop

 7.5.2 The �� Operator
 Like the assignment operator, the �� operator can also be applied to arrays. As you might

suspect, a �� b returns true if and only if the references stored in a and b are identical.

The �� operator does not compare the contents of the arrays; the �� operator

compares references.

 For example, consider the following statements:

 int[] a � {5, 4 ,3, 2, 1};
int[] b � {5, 4, 3, 2, 1};
int[] c � a;

sim23356_ch07.indd 251sim23356_ch07.indd 251 12/15/08 6:38:16 PM12/15/08 6:38:16 PM

252 Part 1 The Fundamental Tools

Although the values of a[i], b[i] , and c[i] are the same for each index i , the expression a �� b

is false because a and b hold different references ; on the other hand, a �� c evaluates to

 true . See Figure 7.13 .

a

5

4

3

2

1c

b

5

4

3

2

1

a[0] b[0]

a[1]

a[2]

a[3]

a[4]

c[0]

c[1]

c[2]

c[3]

c[4]

b[1]

b[2]

b[3]

b[4]

 FIGURE 7.13 Comparing array references

 To compare two equal-length arrays, a and b, for equality of contents, use a loop:

 boolean sameData � true; // sameData is set to false if a[i] !� b[i] for any index i
for (int i � 0; i � a.length); i��)
 if (b[i] !� a[i])
 {
 sameData � false ; // arrays differ at index i
 break;
 }

 7.6 ARRAYS AND METHODS

 Not surprisingly, an array can be passed as a parameter to a method. Or, more precisely, it

is the array reference that is passed, not the values.

An array reference can be passed as a parameter to a method.

 When an array is passed to a method, only the reference or address of the array is copied

to the parameter of the method. The values stored in the array are not passed or copied. For

example, if an array reference x is passed as an argument to a parameter data, then both x

and data refer to the same memory block. See Figure 7.14 .

x

2

4

6

8

data

FIGURE 7.14 Both argument x and parameter data refer to the same array

 Because the array of Figure 7.14 is referenced by both x and data , an assignment such

as data[0] � 200 has the same effect as x[0] � 200 . For example, consider the following

segment:

 public static void changeMe(int[] data)
{
 data[0] � 200;
 data[1] � 400;
}
public static void main(String [] arga)

sim23356_ch07.indd 252sim23356_ch07.indd 252 12/15/08 6:38:17 PM12/15/08 6:38:17 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 253

{
 int x[] � {2, 4, 6, 8};
 changeMe(x);
 System.out.print("x now has values "� x[0] � " " � x[1] � " "� x[2]� " " � x[3]);
}

Initially, x refers to an array as shown in Figure 7.14 . When x is passed as an argument to

changeMe(int[] data)

• the address that is stored in x is passed to data;

• data and x refer to the same block of memory;

• the method changeMe(...) assigns new values (200 and 400) to data[0] and data[1] and

consequently to x[0] and x[1];

• when the changeMe(...) returns, the fi nal print(..) statement displays:

 x now has values 200 400 6 8

 This technique of passing an array reference allows a method to alter the contents of an array.

Example 7.3 demonstrates a method that swaps or interchanges two values in an array.

EXAMPLE 7.3Problem Statement Write a method

void swap(int [] x, int i, int j)

that accepts three parameters:

 • an array reference x, and

 • two array indices i and j

and interchanges the contents of x[i] and x[j]. Embed the method in a program.

Java Solution
1. public class Swap
2. {
3. public static void swap(int[] x, int i, int j)

4. {
5. // swaps x[i] and x[j]
6. int temp � x[i];
7. x[i] � x[j];
8. x[j] � temp;
9. }
10. public static void main(String[] args)
11. {
12. int []list � {1, 3, 5, 7, 9}; // array declaration and initialization
13. System.out.print("Before: ");
14. for (int i � 0; i � list.length; i��)
15. System.out.print(list[i] � " ");

16. swap(list, 2, 4); // swap list[2] and list[4]

17. System.out.println();
18. System.out.print("After: ");
19. for (int i � 0; i � list.length; i��)
20. System.out.print(list[i] � " ");
21. }
22. }

sim23356_ch07.indd 253sim23356_ch07.indd 253 12/15/08 6:38:18 PM12/15/08 6:38:18 PM

254 Part 1 The Fundamental Tools

Output
Before: 1 3 5 7 9
After: 1 3 9 7 5

Discussion The method call on line 16

swap(list, 2, 4)

passes the reference list to the parameter x. Thus list and x refer to the same array.

 Let’s take a closer look at the program to understand how the method handles an

array. We begin with line 12.

Line 12: int[] list � {1, 3, 5, 7, 9}

Array variable list is declared, instantiated, and initialized. See Figure 7.15.

list

list[0]

list[1]

list[2]

list[3]

list[4]

1

3

5

7

9

FIGURE 7.15 The array referenced by list

Line 16: swap(list, 2, 4)

Method swap(...) is invoked with three arguments. The argument list, a reference, is

passed to parameter x so that list and x hold the same address. Also, the values 2 and 4

are passed to parameters i and j. Figure 7.16 shows that just one copy of the array exists,

but two different variables (list and x) refer to the array. In main(...), the array is refer-

enced by list and in swap(...), it is referenced by x.

list x

temp

swap

1

3
2 4
i j

5

7

9

FIGURE 7.16 One array is referenced by list and x

Program control now passes to swap(...).

Line 6: temp � x[i]

The assignment temp � x[i] stores the value of x[2] (it is 5) in variable temp. See

Fig ure 7.17.

list
x

temp

x[2] swap

1

3
2 4
i j

5

5

7

9

FIGURE 7.17 temp � x[i]

Line 7: x.[i] � x[j]

Since i has the value 2, and j has the value 4, line 7 can be read as x[2] � x[4]. See Figure 7.18.

sim23356_ch07.indd 254sim23356_ch07.indd 254 12/15/08 6:38:19 PM12/15/08 6:38:19 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 255

list x

temp

x[2]

x[4]

swap

1

3

2 4
i j

5

9

7

9

FIGURE 7.18 x[i] � x[j]
Line 7: x[j] � temp

Because j equals 4, this assignment statement places the value of temp into x[4]. See

Figure 7.19.

list
x

temp
x[4]

swap

1

3
2 4
i j

5

9

7

5

FIGURE 7.19 x[j] � temp

The method exits, and program control passes back to the caller at line 17.

list

1

3

9

7

5

FIGURE 7.20 After the call to swap

Figure 7.20 shows the array rearranged as [1 3 9 7 5]. The swap(...) method changed the

contents of the array but not the reference to the array.

 7.7 SORTING AN ARRAY WITH INSERTION SORT

 Sorting a list is a problem that is fundamental to computer science—indeed, sorting

algorithms abound. From dozens of sorting algorithms, we choose insertion sort as a fi rst

example because it is simple, easy to program, and easy to understand. Insertion sort works

the way most people arrange a hand of playing cards. The cards are examined from left to

right. A sorted group of all the cards already examined is kept on the left, and a new card is

inserted into the sorted group at its correct position within the group.

 7.7.1 The Insertion Method
 The heart of this sort is the insertion process, which we now describe. Rather than a hand

of cards, consider an array of integers:

 [2 3 5 9 4]

Assume that this particular arrangement occurs after the fi rst four elements have already

been examined. Notice that the fi rst four values in the array are ordered lowest to highest.

sim23356_ch07.indd 255sim23356_ch07.indd 255 12/15/08 6:38:19 PM12/15/08 6:38:19 PM

256 Part 1 The Fundamental Tools

Now, the last element must be inserted into the sorted group at its correct position. To place

this number (4) into its proper position:

• Copy the value in the last position (4) to a temporary variable, temp , so that the value

is “safe.” That is, the value is put aside for safekeeping.

• Compare 4 to 9, the element in the last position of the sorted sub-array. Since 9 is

larger, 4 precedes 9 in the sorted array, so shift (copy) 9 one position to the right:

 [2 3 5 9 4] [2 3 5 9 9]. We did not “lose” the 4; it is stored in temp .

• Compare 4 to 5. Since 5 is the larger number, shift 5 one position to the right:

 [2 3 5 9 9] [2 3 5 5 9]

• Compare 4 to 3. Since 3 is less than 4, the correct position of 4 has been found. Now,

place 4, which has been saved in temp , in the position immediately following 3 and

stop. The value 4 now sits in its correct place following 3 and preceding 5:

 [2 3 5 5 9] [2 3 4 5 9]

 This process is illustrated in Figure 7.21 .

temp

4

Copy 4 into a temporary variable.

2 3 5 9 4 9 � 4?
x[3] � temp?

Yes.
Yes.

Shift 9 to the right.
x[4] � x [3]

2 3 5 9 9 5 � 4?
x[2] � temp?

Yes.
Yes.

Shift 5 to the right.
x[3] � x [2]

2 3 5 5 9 3 � 4?
x[1] � temp?
Stop.

No.
No.

Place 4 in the position following 3.
x[2] � temp

2 3 4 5 9

 FIGURE 7.21 Insert a number into its correct position within a sorted list

 This insertion process can be implemented as a void method

 void insert(int[] x, int i)

that places the i th value of x into its proper position among the sorted values x[0], x[1], . . .
x[i�1], shifting numbers to the right if necessary. The method operates as follows:

 copy x[i] into a temporary variable, temp.
initialize a counter j to i � 1 , the largest index of the sorted sub-array.

 while (j �� 0 and temp � x[j])
 copy x[j] to x[j � 1] and decrement j // shift.
copy temp to x[j � 1].

 7.7.2 Putting the Insertion Method to Work
 To sort an array of n elements, insertion sort invokes the insert (...) method n � 1 times,

incrementally building sorted sub-arrays (x[0] x[1]) , then (x[0] x[1] x[2]), then (x[0] x[1]
x[2] x[3])… and fi nally (x[0] x[1] x[2] x[3] … x[n � 1]). Figure 7.22 shows an array of fi ve

 elements after four successive calls to insert (...).

sim23356_ch07.indd 256sim23356_ch07.indd 256 12/15/08 6:38:20 PM12/15/08 6:38:20 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 257

EXAMPLE 7.4Problem Statement Implement insertion sort. Include a main(...) method that queries

a user for the number of data followed by the data elements.

Java Solution The following implementation of insertion sort includes two methods:

void insert(int x[], int i),

which places element x[i] in its correct position among the sorted elements x[0]…x[i�1], and

void insertionsort(int []x, int n),

which invokes insert(...) n �1 times, where n is the number of elements stored in array x.

Notice that x can hold up to 1000 integers. That is, the array may be partially fi lled.

1. import java.util.*;
2. public class Insertionsort
3. {
4. public static void insert(int[] x, int i)

5. {

6. // place x[i] in its proper place among sorted values x[0], x[1]...x[i�1]

7. int temp � x[i]; // save the value

8. int j � i � 1;

9. while (j �� 0 && temp �x[j]) // determine where to place temp

10. {

11. x[j � 1] � x[j]; // shift right

12. j��;

13. }

14. x[j � 1]� temp; // place temp (x[i]) in its correct position

15. }

16. public static void insertionsort(int[] x, int n)

17. { // n is the number of data stored in array x

18. for (int i � 1; i � n; i��)

19. insert(x, i);

20. }

21. public static void main(String[] args)
22. {
23. Scanner input � new Scanner(System.in);
24. int []numbers � new int[1000]; // array can hold up to 1000 integers
25. int size; // number of integers that are actually stored
26. System.out.print("Enter the number of data: ");
27. size � input.nextInt();
28. System.out.print("Enter " � size � " integers: ");

5 3 1 9 7

insert(x, 1)
sorted

3 5 1 9 7

insert(x, 2)
sorted

1 3 5 9 7

insert(x, 3)
sorted

1 3 5 9 7

insert(x, 4)
sorted

1 3 5 7 9
sorted

 FIGURE 7.22 Insertion sort calls insert n � 1 times

sim23356_ch07.indd 257sim23356_ch07.indd 257 12/15/08 6:38:21 PM12/15/08 6:38:21 PM

258 Part 1 The Fundamental Tools

29. // Read the data
30. for (int i � 0; i � size; i��)
31. numbers[i] � input.nextInt();
32. System.out.println();

33. insertionsort(numbers,size);

34. System.out.print("Sorted: ");
35. for (int i � 0; i � size; i��)
36. System.out.print(numbers[i] � " ");
37. System.out.println();
38. }
39. }

Output (from Two Executions)
Enter the number of data: 9
Enter 9 integers: 1 4 3 7 2 8 6 9 5

Sorted: 1 2 3 4 5 6 7 8 9

Enter the number of data: 5
Enter 9 integers: 1 4 3 2 5

Sorted: 1 2 3 4 5

Discussion Although the array was dimensioned to hold 1000 integers, just nine

locations are used in the fi rst execution and fi ve in the second. In each case the

array is partially fi lled. The number of elements that must be sorted is size, and not

x.length.

 Dozens of sorting algorithms exist, but not every sort is created equal. An assessment

of a sorting routine is often based on the number of comparisons that the procedure per-

forms. The number of comparisons, of course, depends on the number of data. For a data

set of size n , insertion sort performs at most ½ (n 2 � n) comparisons. On the other hand,

if the data are already sorted, insertion sort makes just n � 1 comparisons. That’s a nice

feature but not nice enough to make up for some very slow sorting in other cases. Let’s look

at some worst-case fi gures for insertion sort:

n Number of comparisons

100 4,950

200 19,900

400 79,800

800 319,600

1600 1,279,200

Notice that as the size of the data doubles, the number of comparisons approximately qua-

druples. Although insertion sort is easy to code and performs satisfactorily for small data

sets, other methods are much more effi cient for large amounts of data. Quicksort , heapsort ,

and merge sort are just a few of the sorting algorithms that, while a bit more complicated,

perform much more effi ciently.

sim23356_ch07.indd 258sim23356_ch07.indd 258 12/15/08 6:38:22 PM12/15/08 6:38:22 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 259

 7.8 SEARCHING AN ARRAY

 Along with sorting data, searching data for a particular item is another fundamental operation.

The item of interest, be it a social security number, a name, or a fi lm title, is called the key .

 7.8.1 Linear Search
 The obvious method of searching an array, x , is the linear search . Beginning with x[0], a

linear search successively compares key to each item in the array:

 Does key �� x[0]?

Does key �� x[1]?

Does key �� x[2]? etc.

If key matches x[i] for some index i, the search terminates and returns array index i , the

index of the cell of the array where key resides. If key is not found in the array, the search

returns �1 or some other value indicating a failure to locate key . Example 7.5 implements

and uses a linear search.

EXAMPLE 7.5Problem Statement Write a program that exercises and improves your memory. Your

program should display an unsorted list of as many as 25 numbers in the range 1 through

1000. After carefully studying the numbers and when you believe that you have them

memorized, type 1. This action should make the list scroll off the screen and out of

view. Next, enter all the numbers that you can recall, not necessarily in any order. The

program scores your response and tells you exactly how many numbers you correctly

remembered. The program should prompt for the size of the list.

Java Solution
1. import java.util.*;
2. public class MemoryExerciser
3. {
4. // Linear Search
5. public static int search(int[] x, int n, int key)
6. {
7. // returns the position of key in x
8. // if key is not found returns �1
9. // the array x may be partially filled; n is the number of data in x

10. for (int i � 0; i � n; i��)
11. if (key �� x[i]) // key is found
12. return i; // return the index
13. return �1; // key is not found
14. }

15. public static void makeList(int [] list, int size)
16. {
17. // inserts size unique random numbers into the array, list
18. int count � 0;
19. while (count � size)
20. {
21. int number � (int)(1000*Math.random() � 1);
22. if (search(list, count, number) �� �1) // if number is not already on the list
23. {
24. list[count] � number; // add number to the list
25. count��;
26. }

sim23356_ch07.indd 259sim23356_ch07.indd 259 12/15/08 6:38:23 PM12/15/08 6:38:23 PM

260 Part 1 The Fundamental Tools

27. }
28. }
29. public static int checkAnswers(int[] numbers, int size)
30. {
31. // returns the number of correct answers

32. Scanner input � new Scanner(System.in);
33. int numCorrect � 0;
34. System.out.println("Enter "� size � " numbers in the range 1�1000");

35. for (int i � 1; i �� size; i��) // read and check answers
36. {
37. int answer � input.nextInt();
38. if (search(numbers,size,answer) !� �1) // if answer is on the list
39. numCorrect��;
40. }
41. return numCorrect;
42. }

43. public static void main(String[] args)
44. {
45. Scanner input � new Scanner(System.in);
46. int []numbers � new int[25]; // array holds up to 25 integers
47. int size; // number of integers on the list

48. System.out.print("How many numbers (up to 25) would you like to see? ");
49. size � input.nextInt();
50. if (size � 25)
51. size � 25; // 25 is the maximum number

52. makeList(numbers, size); // construct list of random numbers

53. for (int i � 0; i � size; i��) // display the contents of numbers
54. System.out.println(numbers[i]);

55. System.out.print(“Now, type 1 to hide the numbers ”);
56. int resume � input.nextInt(); // pause until user types 1
57. for (int i � 1; i � 100; i��)
58. System.out.println(); // scroll the numbers off the screen
59. System.out.print("Score: " � checkAnswers(numbers, size) � " correct answers");
60. }
61. }

Output
How many numbers (up to 25) would you like to see? 10

915
359
774
166
448
427
663
81
99
998
Now, type 1 to hide the numbers 1

 (The preceding numbers have scrolled out of view.)

Enter 10 numbers in the range 1�1000
345

774

sim23356_ch07.indd 260sim23356_ch07.indd 260 12/15/08 6:38:24 PM12/15/08 6:38:24 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 261

 7.8.2 Binary Search
 A search routine that performs much better than linear search is binary search . However,

there is one very important prerequisite.

Binary search requires that the array be sorted.

 To search an array x for key, binary search fi rst compares key to the item situated in the

middle of the array, say x[mid] .

 • If key equals x[mid], the search ends successfully.

 • If key � x[mid], then x[mid] and all elements greater than x[mid] are eliminated from the

search.

 • If key � x[mid], then x[mid] and all items less than x[mid] can be eliminated.

 Thus after examining a single location, half of the data in the array can be eliminated from

the search.

 Binary search repeats this process on the part of the array that has not yet been elimi-

nated until the key is located or there are no more items to examine.

 Let’s consider a numerical example. Consider a search for the key 27 in the sorted array

[3 5 6 9 11 23 25 26 27 29 33 35 36 37 39 42 45 46 48 58 62 67 70].

Binary search fi rst compares 27 to the middle item of the array, which is 35. Because 27 is

less than 35 and the array is sorted , the “sub-array” [35 36 37 39 42 45 46 48 58 62 67 70]

can be eliminated from any further searching. If 27 is indeed on the list, then 27 must be

situated in the sub-array [3 5 6 9 11 23 25 26 27 29 33]. See Figure 7.23 .

81

678

448

99

127

359

568

366

You correctly identified 5 numbers on the list

Discussion The program uses a linear search in two places:

 • When creating the list of random numbers, each time that a random number

is generated, a search is performed on the list to ensure that the number is not

already present in the list (lines 22–26). If that is the case, the number is added to

the list.

 • The list is searched for each number entered by the user (lines 35–40).

The linear search method (lines 5 through 14) is very simple. If key is found in the array,

the method exits and returns the index of key. If the for loop runs to completion, then key
is not on the list and the method returns –1.

 A linear search is easy to implement and easy to understand. However, a linear

search is not particularly effi cient. To determine that a key is not in an array, a linear

search examines every location. Well, if the size of an array is 1,000,000, or worse

10,000,000, that’s quite a lot of work. Indeed, on average, a successful linear search

checks n/2 locations, where n is the size of the array.

sim23356_ch07.indd 261sim23356_ch07.indd 261 12/15/08 6:38:24 PM12/15/08 6:38:24 PM

262 Part 1 The Fundamental Tools

 3

� Search this half

 5

 6

 9

11

23

25

26

27

29

33

35 27 is less than 35

36

� Eliminate this half

37

39

42

45

46

48

58

62

67

70

 FIGURE 7.23 After one comparison, half the array is eliminated

 Next, as Figure 7.24 indicates, binary search compares the key (27) to the middle ele-

ment of this sub-array:

3

�Eliminate this half

5

6

9

11

23 27 is greater than 23

25

�Search this half

26

27

29

33

 FIGURE 7.24 Binary search after two comparisons

 Since 27 is greater than the middle element (23), binary search now searches those values

greater than 23. See Figure 7.25 .

25

26

27 27 is found

29

33

 FIGURE 7.25 The key is found

 The key value 27 is located after examining just three locations. A linear search examines

eight locations, almost three times as many.

 The following Java method implements binary search. The local variables lo and hi
hold the lowest and highest indices of the sub-array currently under consideration; mid is

sim23356_ch07.indd 262sim23356_ch07.indd 262 12/15/08 6:38:25 PM12/15/08 6:38:25 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 263

the index of the item halfway between x[lo] and x[hi]. Initially, for an array of size n , lo � 0

and hi � n � 1.

1. public static int search(int[] x , int n, int key)

2. // x is a sorted array of n integers; key has an integer value
3. // x is sorted in ascending order;

4. {
5. int lo � 0; // lowest index of the array
6. int hi � n�1; // highest index
7. int mid; // middle index

8. while (hi �� lo)
9. {
10. mid � (hi � lo) / 2; // get the middle index
11. if (key �� x[mid])
12. return mid; // key found --exit
13. if (key � x[mid])
14. hi � mid � 1; // eliminate x[mid] thru x[hi]
15. else
16. lo � mid � 1; // eliminate x[lo] thru x[mid]
17. }
18. return �1; // key not found
19. }

 Using the previous array of 23 integers and the key 27, the loop of the binary search

(lines 8–17) executes three times before the key is located. On each iteration, if the key is

not found, either hi or lo is adjusted. Figure 7.26 shows each iteration.

Iteration 1 Iteration 2 Iteration 3

lo = 0; hi = 22; mid = 11 lo = 0; hi = 10; mid = 5 lo = 6; hi = 10; mid = 8

Adjust hi : hi = mid – 1 Adjust lo : lo = mid + 1 Return 8, the index of the key

lo 3
5
6
9
11
23
25
26
27
29
33
35
36
37
39
42
45
46
48
58
62
67
70

mid 27 � x[mid]

hi

lo 3
5
6
9
11
23
25
26
27
29
33
35
36
37
39
42
45
46
48
58
62
67
70

mid 27 � x[mid]

hi

lo

3
5
6
9
11
23
25
26
27
29
33
35
36
37
39
42
45
46
48
58
62
67
70

mid
done

27 �� x[mid]

hi

FIGURE 7.26 Binary search in action. Highlighted block are eliminated from the search

sim23356_ch07.indd 263sim23356_ch07.indd 263 12/15/08 6:38:25 PM12/15/08 6:38:25 PM

264 Part 1 The Fundamental Tools

 In the event of an unsuccessful search, the condition of the while loop (line 8) eventu-

ally evaluates to false and the method returns �1 (line 18). As an exercise, you should trace

through a few unsuccessful searches to convince yourself that the boolean condition on line

8 does, in fact, eventually return false and that no infi nite loop can occur.

 We’ve already mentioned that for a list of n items, linear search, on average, examines

 n/ 2 locations. In contrast, binary search checks only about log
2
 n – 1 locations. That’s quite

a difference as the following data demonstrate:

n n/2 (linear search) log2n − 1 (binary search)

210 � 1024 512 9

215 � 32768 16384 14

220 � 1048576 524288 19

225 � 33554432 16777216 24

The statistics are quite impressive. From a directory of more than 1,000,000 names, binary

search can fi nd a specifi c name, on average, by examining just 19 entries. Compare this to

the 500,000 entries that linear search is expected to examine.

 7.9 TWO-DIMENSIONAL ARRAYS

 To this point, we have used arrays to store one-dimensional lists. A two-dimensional array

holds tabular data. For example, the following table, which shows the growth of a single

dollar investment after several years and at various interest rates, can be stored in a two-

dimensional array.

1% 2% 3% 4% 5% 6%

10 years 1.10 1.22 1.34 1.48 1.63 1.79

15 years 1.16 1.35 1.56 1.80 2.08 2.40

20 years 1.22 1.49 1.81 2.19 2.65 3.21

25 years 1.28 1.64 2.09 2.67 3.39 4.29

30 years 1.35 1.81 2.43 3.24 4.32 5.74

 Similarly, you might use a two-dimensional array to store a tic-tac-toe board, a chess con-

fi guration, or a Sudoku puzzle.

The values stored in a two-dimensional array, like its one-dimensional cousin, must

all be of the same data type.

 You can conceptualize a two-dimensional array as a table or grid. Each storage cell in

the table is uniquely identifi ed by its row and by its column. The rows and columns of a

two-dimensional array are indexed starting at 0. The 4 × 3 (read 4 by 3) array in Figure 7.27

has 4 rows and 3 columns. The rows are numbered 0, 1, 2, 3 and the columns 0, 1, 2. The

cell marked “ X ” resides in row 3, column 1:

columns
0 1 2

rows

0

1

2

3 X

A 4 rows

3 columns

 FIGURE 7.27 A two-dimensional array

sim23356_ch07.indd 264sim23356_ch07.indd 264 12/15/08 6:38:26 PM12/15/08 6:38:26 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 265

 Similarly, Figure 7.28 shows a 2 � 2 array B with rows and columns indexed 0 and 1 and

a 3 × 2 array C.

0 1

0

1

B
2 rows

2 columns

0 1

0

1

2

C
3 rows

2 columns

 FIGURE 7.28 A 2 � 2 array and a 3 � 2 array

 Each cell in a two-dimensional array can be accessed using its row and column num-

ber. If A is a two-dimensional array, then cell A[i][j] is the cell of row i and column j . For

example, A[1][2] is the cell of row 1 and column 2 and A [0][0] is the cell in the upper left

corner of the array. Figure 7.29 names each cell of array A.

columns

0 1 2

rows

0 A[0][0] A[0][1] A[0][2]

1 A[1][0] A[1][1] A[1][2]

2 A[2][0] A[2][1] A[2][2]

3 A[3][0] A[3][1] A[3][2]

A

 FIGURE 7.29 Each cell can be accessed with two indices

 7.9.1 Declaring and Instantiating Two-Dimensional Arrays
 A two-dimensional array declaration is similar to its one-dimensional counterpart. In both

cases, the array name denotes a reference variable. The statement

int[][] table; // or equivalently int table[][];

declares table as a reference to a two-dimensional array of integers.

 Instantiation is also similar to one-dimensional instantiation. Two-dimensional instan-

tiation includes the number of rows as well as the number of columns, in that order:

table � new int[2][3]; // table has 2 rows and 3 columns

 As you might expect, declaration and instantiation can be done with a single statement:

int table � new int[2][3];

 The new operator creates a 2 � 3 two-dimensional array with all cell values initialized to

0. See Figure 7.30 .

0 1 2

0 0 0 0

1 0 0 0

table

 FIGURE 7.30 int[] table � new int[2][3];

 Although it is intuitive to view a two-dimensional array as a simple table, the underly-

ing structure is more complex.

A two-dimensional array is actually an “array of arrays.”

sim23356_ch07.indd 265sim23356_ch07.indd 265 12/15/08 6:38:26 PM12/15/08 6:38:26 PM

266 Part 1 The Fundamental Tools

 For example, the array table is implemented as shown in Figure 7.31 .

table

table[0]

table[1]

table[0][0]

table[1][0]

table[0][1]

table[1][1]

table[0][2]

table[1[][2]

 FIGURE 7.31 An array of arrays

 As Figure 7.31 indicates, table, table[0] , and table[1] are references. In fact, the declaration

 int[][] table � new int[2][3];

is just a shortcut for

 int[][] table � new int[2][];
table[0] � new int[3];
table[1] � new int[3];

 Furthermore, because table , table[0], and table[1] refer to arrays,

 • table.length has the value 2 (the number of rows), and

 • both table[0].length and table[1].length are 3 (the number of columns).

 Although a two-dimensional array is, in fact, an array of arrays, it is nonetheless helpful

to conceptualize a two-dimensional array as a simple table or grid as pictured in Figure 7.32 .

table

table[0][0]

table[1][0]

0

1

table[0][1]

table[1][1]

table[0][2]

0 1 2

table[1[][2]

 FIGURE 7.32 A two-dimensional array pictured as a table or grid

 7.9.2 Processing a Two-Dimensional Array
 With two indices, a two-dimensional array is usually initialized and/or processed with a

nested loop. The following code snippet initializes each cell of an array with the product of

its row and column numbers:

 int A[][] � new int[3][4]; // declares and instantiates a 3 � 4 array

for (int row � 0; row � 3; row��) // for each row
 for (int col � 0; col � 4; col��) // for each column
 A[row] [col] � row*col;

The loops work as follows:

row � 0 col � 0
col � 1
col � 2
col � 3

A[0][0] � 0
A[0][1] � 0
A[0][2] � 0
A[0][3] � 0

row � 1 col � 0
col � 1
col � 2
col � 3

A[1][0] � 0
A[1][1] � 1
A[1][2] � 2
A[1][3] � 3

sim23356_ch07.indd 266sim23356_ch07.indd 266 12/15/08 6:38:27 PM12/15/08 6:38:27 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 267

row � 2 col � 0
col � 1
col � 2
col � 3

A[2][0] � 0
A[2][1] � 2
A[2][2] � 4
A[2][3] � 6

The initialized array is shown in Figure 7.33 .

0 0 0 0

0 1 2 3

0 2 4 6

 FIGURE 7.33 Array initialized with nested loops

 Not surprisingly, a two-dimensional array can be explicitly initialized in a declaration

by listing the values of each row enclosed by curly braces and separated by commas:

 int[][] table � { {2, 4, 6} {8, 10, 12} };

 The declaration of table creates and initializes the 2 � 3 array of Figure 7.34 . The number

of rows and the number columns are implicit in the declaration/initialization statement.

0 1 2

0 2 4 6

1 8 10 12

table

 FIGURE 7.34 An array explicitly initialized in its declaration

 Finally, we mention that Java allows arrays of dimension higher than two. For example,

the following segment declares and instantiates a three-dimensional array:

 int[][][] threeD;
threeD new int[3][4][5];
for (int i � 0; i � 3; i��)
 for (int j � 0; j � 4; j��)
 for (int k � 0; k � 5; k��)
 threeD[i][j][k] � i * j * k;

 Can you visualize this array?

 As you might expect, a three-dimensional array is an array of two-dimensional arrays,

and an n -dimensional array is an array of (n � 1)-dimensional arrays.

EXAMPLE 7.6A contingency table is a two-dimensional grid often used as an aid for analyzing the

relationship between two variables. For example, a researcher interested in whether or

not a relationship exists between gender and music preference surveyed 1000 people

with the following results:
 Preferred Style of Music

Rock
Heavy
Metal Folk Jazz R&B Pop Country Other Total

Males 123 145 33 34 16 71 18 42 482

Females 138 112 50 27 93 75 10 13 518

Total 261 257 83 61 109 146 28 55 1000

sim23356_ch07.indd 267sim23356_ch07.indd 267 12/15/08 6:38:27 PM12/15/08 6:38:27 PM

268 Part 1 The Fundamental Tools

 The numbers in the last column and last row are not part of the collected data. These are

the row totals and the column totals. The number in the bottom right corner is the grand

total, the sum of all data.

 Problem Statement Write an application that

 • queries a user for the number of rows and columns of a contingency table,

 • reads the data, row by row, and

 • displays the data in tabular form along with the row totals, column totals, and

grand total.

 For example, if the six data of a 2 × 3 table are

 1, 3, 6, 7, 9, and 8,

the program displays these six numbers together with the appropriate totals as:

 1 3 6 | 10

 7 9 8 | 24

 8 12 14 | 34

 Here, 10 and 24 are row totals, 8, 12, and 14 the column totals, and 34 the grand total.

The “|” character is used to separate the data from the row totals.

 Java Solution Besides a main(...) method that queries the user for the number of rows

and columns in the table, the solution utilizes three methods:

 • readData(...) fi lls a two-dimensional array with data supplied by the user. The data

is entered row by row.

 • display(...) prints the table along with the row, column, and grand totals.

 • getTotals(...) calculates the row totals and the column totals.

 1. import java.util.*;

2. public class ContingencyTable
3. {
4. public static void readData(int[][] table, int numRows, int numCols)
5. {

6. // reads the data for a table row by row
7. // the table has rows rows and cols columns

8. System.out.println("Enter data, row by row: ");
9. Scanner input � new Scanner(System.in);

10. // read data , row by row
11. for (int row � 0; row � numRows; row��)
12. for (int col � 0; col � numCols; col��)
13. table[row][col] � input.nextInt();

14. }

15. public static void display(int table[][], int numRows, int numCols,
 int[] rowSums, int[] colSums)
16. {
17. // displays the contingency table
18. // displays row and column totals and grand total

19. System.out.println();

sim23356_ch07.indd 268sim23356_ch07.indd 268 12/15/08 6:38:28 PM12/15/08 6:38:28 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 269

20. System.out.println();
21. System.out.println("Data including row and column totals: ");
22. System.out.println();

23. // print the table row by row
24. // after printing a row, print the row total
25. for(int row � 0; row � numRows; row��) // for each row
26. {
27. for (int col � 0; col � numCols; col��) // for each column
28. System.out.print(" " � table[row][col] � "\t");

29. System.out.println("| " � rowSums[row]); // print the row total
30. }

31. System.out.println();

32. int grandTotal � 0;

33. // calculate the grand total from the column sums
34. // print the column sums then the grand total
35. for (int col � 0; col � numCols; col��) // for each column
36. {
37. grandTotal �� colSums[col]; // add column sum to grandTotal
38. System.out.print(" " � colSums[col] � "\t"); // print column sum
39. }
40. System.out.println("| " � grandTotal);
41. }

42. public static void getTotals(int[][] table, int numRows, int numCols,
 int[] rowSums, int [] colSums)
43. {
44. // calculates the row sums and column sums
45. // get row sums
46. for (int row � 0; row � numRows; row��) // for each row
47. for (int col � 0; col � numCols; col��) // for each column
48. rowSums[row] �� table[row][col]; // add the table entry to the row sum
49. // get column sums
50. for (int col � 0; col � numCols; col��) // for each column
51. for (int row � 0; row � numRows; row��) // for each row
52. colSums[col] �� table[row][col]; // add the table entry to the column sum
53. }

54. public static void main(String[] args)
55. {
56. Scanner input � new Scanner(System.in);
57. int rows, cols; // dimensions of the table
58. int[][] table; // contingency table
59. int[] rowSums; // holds the row totals
60. int colSums[]; // holds the column totals
61. System.out.print("Number of rows: ");
62. rows � input.nextInt();
63. System.out.print("Number of columns: ");
64. cols� input.nextInt();
65. table � new int[rows][cols];
66. rowSums � new int[rows];
67. colSums � new int[cols];
68. readData(table, rows, cols);
69. getTotals(table, rows, cols, rowSums, colSums); // calculate the sums
70. display(table, rows, cols, rowSums, colSums);
71. }
72. }

sim23356_ch07.indd 269sim23356_ch07.indd 269 12/15/08 6:38:29 PM12/15/08 6:38:29 PM

270 Part 1 The Fundamental Tools

 Output
 Number of rows: 2
Number of columns: 8
Enter data, row by row:
 123 145 33 34 16 71 18 42 138 112 50 27 93 75 10 13

Data including row and column totals:

 123 145 33 34 16 71 18 42 | 482
138 112 50 27 93 75 10 13 | 518

261 257 83 61 109 146 28 55 | 1000

 Discussion The work of the application is done via three method calls:

 • line 68: readData(table, rows, cols);

 • line 69: getTotals(table, rows, cols, rowSums, colSums);

 • line 70: display(table, rows, cols, rowSums, colSums);

 Lines 4–14: void readData(int[][] table, int numRows, int numCols)

 The nested loop on lines 11�13 iterates through the table row by row. For example, if

the table has 2 rows and 3 columns, the nested loop runs through the indices of the array

in the following order:

 [0,0] [0,1] [0,2] // row � 0, col � 0,1,2
[1,0] [1,1] [1,2] // row � 1, col � 0,1,2

 Lines 15–41: display (int table[][], int numRows, int numCols, int[] rowSums,

int[] colSums)

 • The nested loop on lines 25�30 iterates through the table row by row. Before

incrementing the loop counter row, the method prints a separator character (‘|’)

followed by the row total. The effect is that the data of each row is printed,

followed by the separator, followed by the row total. If the table consists of two

rows and three columns, printing proceeds:

 [0,0] [0,1] [0,2] rowSum[0] // row � 0, col � 0,1,2
 [1,0] [1,1] [1,2] rowSum[1] // row � 1, col � 0,1,2

 • The single loop on lines 35–39, which iterates through the columns,

 ° adds each column sum to the grand total (line 37), and

 ° prints each column sum (line 38).

 • The statement on line 40 prints the separator and the grand total.

 Lines 42–53: void getTotals(int[][] table, int numRows, int numCols,

int[] rowSums, int[] colSums)
 This method calculates values stored in the two one-dimensional arrays, rowSums and

 colSums.
 • The nested loop on lines 46�48 iterates through the table, row by row. For each

row, the corresponding column value is added to the row total. If table is a 2 � 3

array the calculation proceeds as follows:

 Initially rowSum[0] and rowSum[1] have value 0

sim23356_ch07.indd 270sim23356_ch07.indd 270 12/15/08 6:38:29 PM12/15/08 6:38:29 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 271

 row � 0 col � 0 rowSum[0] �� table[0][0]
 col � 1 rowSum[0] �� table[0][1]
 col � 2 rowSum[0] �� table[0][2]

 row � 1 col � 0 rowSum[1] �� table[1][0]
 col � 1 rowSum[1] �� table[1][1]
 col � 2 rowSum[1] �� table[1][2]

 • The nested loop on lines 50–52 iterates through the table, column by column. For

each column, the corresponding row value is added to the column sum. This is

similar to the nested loop of lines 46–48 with row and column switching roles.

 7.10 A CASE STUDY—PUTTING IT ALL TOGETHER

 Our fi nal program not only utilizes most of the concepts from Part I but also provides the

legend and lore of a famous and, indeed, infamous game.

 The Fifteen Puzzle, credited to master puzzle maker Sam Loyd1, has been confounding

and intriguing puzzle enthusiasts for more than one hundred years. Even today, a plastic

version of the puzzle is available in most novelty shops. Figure 7.35 shows a commercial

version of the game.

 FIGURE 7.35 A commercial version of the 15 puzzle for ages 8 to adult

 The Fifteen Puzzle consists of tiles numbered 1 to 15 that are placed randomly in a

frame or box as shown in Figure 7.36 .

 There is one empty place or blank space in the frame. Using the empty position, a

player slides tiles around the frame. The object of the game is to rearrange the tiles so that

the numbers are ordered as in Figure 7.37 .

 In 1878, Sam Loyd offered $1000 to the fi rst person who could solve the “14–15”

puzzle. In this version of the puzzle, all numbers are already in order except 14 and 15.

 Figure 7.38 shows Loyd’s puzzle.

 Sound easy? Try it.

1Recently, Jerry Slocum and Dic Sonneveld in their book The 15 Puzzle (published by Slocum Puzzle Foundation,

2006), uncovered that Sam Loyd was not the inventor of the 15 puzzle. Loyd, it turns out, stole the puzzle from Noyes

Chapman, the Postmaster of Canastota, New York. Loyd was a master PR-man as well as a master puzzle maker.

13 6 11 4
5 2 7 8
12 10 3 9
1 15 14

 FIGURE 7.36
The Fifteen Puzzle

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

 FIGURE 7.37
A solved puzzle

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

 FIGURE 7.38
Loyd’s puzzle. Only

15 and 14 are initially
interchanged.

sim23356_ch07.indd 271sim23356_ch07.indd 271 12/15/08 6:38:30 PM12/15/08 6:38:30 PM

272 Part 1 The Fundamental Tools

 Hordes of people, hungry for the prize money, became fascinated with the game. The

game was as popular at the end of the 19 th century as Rubik’s Cube was at the end of the

20 th . However, Loyd’s money was safe: although some starting confi gurations of the Fif-

teen Puzzle are solvable, the “14–15” puzzle is impossible to solve—and Loyd knew it.

 In spite of Loyd’s little prank, there are many confi gurations that are solvable. How can

you determine whether or not a solution exists for a particular confi guration of the Fifteen Puz-

zle? Here is a method. We assume that the blank always appears in the lower right corner.

• Make a list of the numbers starting at the top left corner of the frame moving left to

right and row by row.

• For each number on the list, count the number of inversions . This means, for each

number n , count how many numbers preceding n are larger than n .

• Add up the total number of inversions.

• If the total number of inversions is even, the puzzle is solvable; otherwise it is not.

 For example, the list formed from Loyd’s “14–15” puzzle is:

 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14

 There is only one inversion (15 14). Since the total number of inversions is odd, the puzzle

is unsolvable.

 Now consider the puzzle with an initial confi guration as in Figure 7.39 .

 Writing the numbers, top to bottom, left to right produces the following list:

 4 6 1 15 5 7 9 2 13 12 14 3 10 11 8

 From this list, we count the number of inversions.

Tile Number Number of Inversions

4 0

6 0

1 2 6 � 1, 4 � 1

15 0

5 2 15 � 5, 6 � 5

7 1 15 � 7

9 1 15 � 9

2 6 9 � 2, 7 � 2, 5 � 2, 15 � 2, 6 � 2, 4 � 2

13 1 15 � 13

12 2 13 � 12, 15 � 12

14 1 15 � 14

3 9 14 � 3, 12 � 3, 13 � 3, 9 � 3, 7 � 3, 5 � 3, 15 � 3, 6 � 3, 4 � 3

10 4 14 � 10, 12 � 10, 13 � 10, 15 � 10

11 4 14 � 11, 12 � 11, 13 � 11, 15 � 11

8 7 11 � 8, 10 � 8, 14 � 8, 12 � 8, 13 � 8, 9 � 8, 15 � 8

Total 40

 Since 40 is even, the puzzle is solvable.

 Problem Statement Write an application that

• generates a random solvable puzzle, and

• allows a user to interactively solve the puzzle.

4 6 1 15

5 7 9 2

13 12 14 3

10 11 8

 FIGURE 7.39
A solvable puzzle

sim23356_ch07.indd 272sim23356_ch07.indd 272 12/15/08 6:38:31 PM12/15/08 6:38:31 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 273

 Java Solution A general algorithm for a “fi fteen puzzle program” can be expressed as:

1. Generate a random solvable puzzle.

2. Play the game.

3. Determine whether or not the puzzle has been solved.

Of course, this algorithm is very broad and needs a bit of refi nement.

1. Generate a random solvable puzzle .
 Do

 Place 0 in the lower right corner of a 4 � 4 array and randomly place the

numbers 1 through 15 in the other locations. The number 0 designates the

empty space.

 While the number of inversions is odd, that is, until a solvable puzzle is generated.

 Print the board.

2. Play the game .

 Do

 Accept a move from the player.

 if the move is valid

 Update the board and print the board.

 else

 Issue a message indicating that the move is invalid.

 While player wishes to continue play.

3. Determine whether or not the puzzle has been solved .

 Traverse the board row by row and determine whether or not the tiles are in order.

 The following program implements the preceding algorithm via several methods, each

of which executes a single task. For example, one method displays the board and another

generates a solvable game. Other methods count the number of inversions, play the game,

and check whether or not a player’s move is valid. To move a tile, a player supplies the

coordinates (row and column) of the square that he/she would like to slide into the empty

position. The empty position contains the digit 0.

 This application is larger and more complicated than any of the previous programs that

we have discussed. A quick pass over the code may leave you confused. To understand the

logic of the program, we recommend that you read the discussion in parallel with the code.

 1. import java.util.*;
2. public class SamLoydPuzzle
3. {
4. public static void printPuzzle(int[][] puzzle) // prints a two-dimensional array
5. {
6. for (int i � 0; i � 4; i��) // for each row
7. {
8. for (int j � 0; j � 4; j��) // for each column
9. System.out.print(puzzle[i][j] � "\t");
10. System.out.println(); // print a new line after each row
11. }
12. }

13. public static void swap(int[][] p, int i, int j, int r, int s)
14. {
15. // swap [i][j] with p[r][s]
16. int temp � p[r][s];
17. p[r][s] � p[i][j];

sim23356_ch07.indd 273sim23356_ch07.indd 273 12/15/08 6:38:32 PM12/15/08 6:38:32 PM

274 Part 1 The Fundamental Tools

18. p[i][j] � temp;
19. }

20. public static int[] makeList(int[][] p)
21. {
22. // writes the puzzle numbers into a one-dimensional array
23. // left to right, top to bottom

24. int index � 0;
25. int[] list � new int[16];
26. for (int row � 0; row � 4; row��) // for each row
27. for (int col � 0; col � 4; col��) // for each column
28. if (p[row][col] !� 0) // 0 is the empty space
29. {
30. list[index] � p[row][col]; // add p[i][j] to the list
31. index��;
32. }
33. return list;
34. }

35. public static int countInversions(int [][] p) // returns the number of inversions
36. {
37. int count � 0; // total number of inversions
38. int [] s � makeList(p); // make a list of the numbers row by row
39. for (int i � 0; i � 16; i��) // for each number on the list
40. {
41. int num � 0; // counts values that precede i that are greater
42. for (int j � 0; j � i; j��) // for each j that precedes i
43. if (s[j] � s[i]) // is there an inversion?
44. num��;
45. count � count � num;
46. }
47. return count;
48. }

49. public static void createSolvablePuzzle(int[][] p) // makes a new puzzle
50. {
51. int totalInversions;
52. do // repeat until a solvable board is generated
53. {
54. // for each position on the board generate a random
55. // position and make a swap but leave 0 in the lower right corner
56. for (int row � 0; row � 4; row��) // for each row
57. for (int col � 0; col � 4; col��) // for each column
58. {
59. int a � (int)(4 * Math.random()); // a random row : 0 to 3
60. int b � (int)(4 * Math.random()); // a random column: 0 to 3
61. if (p[row][col] ! � 0 && p[a][b] ! � 0)
62. swap(p, row, col, a, b);
63. }
64. totalInversions � countInversions(p); // how many inversions?
65. } while (totalInversions % 2 !� 0); // while the configuration is unsolvable
66. }

67. public static boolean checkWin(int[][] p)
68. {
69. // traverses the board row by row and
70. // determines whether or not the tiles
71. // are in numerical order
72. int num � 1;
73. for (int row � 0; row � 4; row��) // for each row

sim23356_ch07.indd 274sim23356_ch07.indd 274 12/15/08 6:38:32 PM12/15/08 6:38:32 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 275

74. for (int col � 0; col � 4; col��) // for each column
75. {
76. if (p[row][row] !�0) // if the space is not empty
77. {
78. if (p[row][col] !� num) // is a number out of place?
79. return false;
80. num��;
81. }
82. }
83. return true;
84. }

85. public static boolean validMove(int row, int col, int blankRow, int blankCol)
86. {
87. // checks to see whether the player’s move is either next to the empty space or
88. // above/below the empty space
89. return
90. (row �� 0) && (row �� 3) && (col �� 0) && (col �� 3) && // must be on the puzzle
 (row �� blankRow && (col � 1 �� blankCol || col � 1 �� blankCol)) // same row, or
 || (col �� blankCol && (row � 1 �� blankRow || row � 1�� blankRow)); // same column
91. }

92. public static void play(int[][] p)
93. {
94. Scanner input � new Scanner(System.in);
95. int row, col; // for the player’s move
96. int blankRow � 0, blankCol � 0; // position of the empty space
97. int more; // to continue the game
98. // find the blank space on the board
99. for (int r � 0; r � 4; r��) // for each row
100. for (int c � 0; c � 4; c��) // for each column
101. if (p[r][c] �� 0) // if the position is empty
102. {
103. blankRow � r; // row of the blank
104. blankCol � c; // column of the blank
105. break; // because the blank has been found
106. }
107. do // as long as player wishes to play
108. {
109. // get a tile position from the player
110. System.out.print("Enter row ");
111. row � input.nextInt();
112. System.out.print("Enter column ");
113. col � input.nextInt();
114. // if the move is valid, slide tile into the empty space
115. // and adjust the row and column of the empty space
116. if (validMove(row, col, blankRow, blankCol))
117. {
118. swap(p, row, col, blankRow, blankCol); // swap the blank and player’s choice
119. blankRow � row; // blank’s new row
120. blankCol � col; // blank’s new column
121. printPuzzle(p); // puzzle after the move
122. }
123. else
124. System.out.println("Invalid move");
125. // Continue to play?
126. System.out.print("Continue? 1 for yes: "); // and any digit for "no"
127. more � input.nextInt();
128. System.out.println();
129. } while (more �� 1);
130. }

sim23356_ch07.indd 275sim23356_ch07.indd 275 12/18/08 4:11:34 PM12/18/08 4:11:34 PM

276 Part 1 The Fundamental Tools

131. public static void main(String[] args) throws Exception
132. {
133. // initialize puzzle
134. int[][]puzzle � {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 0}};
135. // get a random, solvable puzzle
136. createSolvablePuzzle(puzzle);

137. printPuzzle(puzzle);
138. System.out.println();
139. play(puzzle);

140. if (checkWin(puzzle))

141. System.out.println("You have solved the puzzle");
142. else
143. System.out.println("You have failed to solve the puzzle");
144. }
145. }

 Output Here is output produced by the program after two moves. Remember that rows

and columns are indexed from 0. On the fi rst move, the player slides the 15-tile, and on

the next move he/she moves the 1-tile. The player then chooses to stop and, as the message

indicates, the puzzle is not solved.

 2 15 1 13
6 12 4 9
11 3 14 8
7 5 10 0

Enter row 3
Enter column 2

2 15 1 13
6 12 4 9
11 3 14 8
7 5 0 10
Continue? 1 for yes: 1

Enter row 3
Enter column 1

2 15 1 13
6 12 4 9
11 3 14 8
7 0 5 10
Continue? 1 for yes: 0

You have failed to solve the puzzle.

 Discussion Initially, the program instantiates a two-dimensional array (Figure 7.40) with

the tiles in numerical order, and a zero representing the blank tile (line 134).

 This array represents the game board. Next, main (...) invokes those methods that

accomplish the steps outlined in the general algorithm:

 1. Generate a random solvable puzzle (line 136).

 2. Play the game (line 139).

 3. Determine whether or not the puzzle has been solved (line 140).

We now look at each of these procedures and how each achieves its purpose.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 0

 FIGURE 7.40
 The board with tiles

in order

sim23356_ch07.indd 276sim23356_ch07.indd 276 12/18/08 4:11:35 PM12/18/08 4:11:35 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 277

 1. Generate a random solvable puzzle
 On line 136, main (...) passes the array puzzle to the method createSolvablePuzzle(...).
This method repeats the following actions until a solvable puzzle is generated:

 • createSolvablePuzzle(...) swaps each number in the original ordered puzzle with

the number that resides at some randomly generated position (lines 56–63). This

action scrambles the numbers/tiles. Why not use Math.random() to simply generate

15 random integers in the range 1 through 15? Why all the swapping? Answer: To

avoid duplicate numbers.

• Having randomized the board, createSolvablePuzzle(...) passes the two-dimen-

sional array p (the puzzle) to countInversions(...) (line 64), which returns the num-

ber of inversions (lines 35–48) in the current puzzle confi guration. The method

 countInversions(...) invokes makeList(...) (line 38), which places the puzzle num-

bers into a one-dimensional array to facilitate processing.

• If the number of inversions is even, createSolvablePuzzle(...) exits; otherwise the

process repeats (line 64).

 2. Play the game
 Once the program generates a solvable puzzle, main(...) invokes play(...) with the argu-

ment puzzle (line 139). The play(...) method executes as follows:

• play(...) scans the puzzle confi guration to fi nd the empty space, storing the row and

column of the empty space in blankRow and blankCol (lines 99–106).

• play(...) accepts the row and column of the tile that the player wishes to slide into

the empty space (lines 109–113).

• If the player’s move is valid, that is, the selected tile is adjacent to the empty space

(line 116), then the selected tile and the empty space are swapped; otherwise an

error message is issued.

• If the player chooses to continue the game, he/she enters “1” and the process repeats,

otherwise play(...) exits (lines 126–129).

 3. Determine whether or not the puzzle has been solved

 When play(...) returns, the altered puzzle is passed to the boolean method

 checkWin(...) (line 140), which determines whether or not the tiles are in order
(lines 67–84).

 The game terminates with a message indicating whether or not the puzzle has been

solved.

 You probably noticed that the method printPuzzle(...) (lines 4–11) is invoked sev-

eral times in the program. Displaying a two-dimensional array requires a nested loop.

However, so that each row appears on a separate line, a println() executes each time the

inner loop terminates. And, using a tab (\t) on line 9 ensures that the columns of the table

are aligned.

 Finally, notice that when a two-dimensional array is a formal parameter, two sets of

square brackets are required in the array heading (lines 4, 13, 20, 49, 67, and 92).

 Figure 7.41 shows the structure and relationships of the methods used in the

program.

sim23356_ch07.indd 277sim23356_ch07.indd 277 12/18/08 4:11:35 PM12/18/08 4:11:35 PM

278 Part 1 The Fundamental Tools

printPuzzle play checkWincreateSolvablePuzzle

swap countinversions

makeList

SamLoydsPuzzle

validMove

FIGURE 7.41 Method structure in the Java solution of the Sam Loyd Puzzle

 7.11 IN CONCLUSION

 Computers can easily handle large sets of data that number in the millions. One-dimensional

and two-dimensional arrays are fundamental tools that facilitate the maintenance of such

data sets. Normally, a data set with thousands of entries is not interactively entered into

an array but read into an array from a fi le. In Part II, we demonstrate how large amounts

of data can be stored in an array, not by prompting the proverbial weariless user, but via a

“fi le object.”

 Just the Facts

 • An array is a structure that gives a single name to an ordered collection of variables

all of the same type.

• You can create an array of any type, including an array of arrays (called a two-

dimensional array).

• You declare an array by specifying its name and data type, e.g., double[] x .

• An array variable is a reference variable that holds the address of a memory location.

The declaration

 int[] x;

 declares x as a reference but does not initialize x .

• No memory is allocated to an array until the array has been instantiated.

• You create (or instantiate) an array with the new operator. The syntax is

 x � new dataType [n]

 where x is an array reference, dataType is the data type of the array elements, and n
is the size of the array. For example,

 double[] x;
x � new int [50];

sim23356_ch07.indd 278sim23356_ch07.indd 278 12/18/08 4:11:35 PM12/18/08 4:11:35 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 279

 declares that x refers to an array of type double and allocates 50 memory cells to the

array.

• Declaration and instantiation can be done in a single statement:

 double[] x � new int [50];

• The length or maximum capacity of an array x is available as x.length.

• All arrays are indexed from 0. The fi rst cell of an array is designated x[0] and the last

cell x[x.length – 1].

• Array instantiation initializes all cells to the zero-element of the array’s data type.

• You can explicitly initialize an array in a declaration. The statement

 int[] x � {1, 3, 5, 7, 9}

 declares, instantiates, and initializes x . The number of items in the initialization list

implicitly determines the length of the array (5 in this case).

• An array reference can be passed to a method as a parameter.

• A method can change the contents of an array but not the variable that references an

array.

• The assignment operator (�) copies array references . The assignment operator does

not copy the contents of one array to another.

• A two-dimensional array is declared and instantiated as:

 dataType [] [] x;

x � new dataType [rows][columns];

 where x is the name of the array, dataType is the data type of the array elements,

 rows is the number of rows of the array, and columns is the number of columns of the

array. For example, the statements:

 int[][] numbers;

numbers � new int[4][5];

 declare and instantiate a two-dimensional array of integers. The array numbers has 4

rows and 5 columns.

• A two-dimensional array is an array of one-dimensional arrays—an array of arrays.

• The element stored in row i and column j of a two-dimensional array x is x[i][j].

• Processing a two-dimensional array usually requires a nested loop.

 Bug Extermination

 No programmer has eluded the infamous “array index out of bounds” error. Remember that

an array x of length n is indexed from 0 to n � 1. Consequently, an attempt to access x[n]
or x[x.length] results in a runtime error, that is, one that occurs during the run of the pro-

gram and terminates the program. When using a for loop to process x , the correct form is

 for (int i � 0; i � x.length ; i��)

and not

 for (int i � 0; i �� x.length ; i��)

sim23356_ch07.indd 279sim23356_ch07.indd 279 12/18/08 4:11:36 PM12/18/08 4:11:36 PM

280 Part 1 The Fundamental Tools

The “off by one” looping error often results in an “array index out of bounds” error.

 Other common array-based errors are:

• Failing to create or instantiate an array. A declaration creates an array reference but

allocates no memory for an array. Unless you initialize an array explicitly with a list,

you must use the new operator to instantiate an array.

• Accessing cell x[x.length � 1] when array x is partially fi lled. It is common practice

to allocate enough memory for an array to accommodate lists of various sizes; in

other words, “over-dimension” an array. In such cases, it is important to keep track

of how many valid data elements are, in fact, stored in the array. If a partially fi lled

array x contains a list of n ID numbers, the last element is x[n � 1] not x[x.length � 1].
Because every array is initialized with 0 values, a program may run to completion. But

if those initial 0’s are not part of your data, your results may be surprising.

• Using an index of a data type other than int (or a data type that can be automatically

cast to int). You cannot index an array with a value of type long, boolean, or double,
or fl oat.

• Misusing the assignment operator with arrays. Array assignment such as a � b

is perfectly legal in Java. However, the consequences may not be what you had

intended. Remember a and b are references , and the result of the assignment a � b

is that both a and b refer to the same memory location, that is, the same array. The

assignment operator does not copy the contents of one array to another. To do that,

use a method with an appropriate loop.

sim23356_ch07.indd 280sim23356_ch07.indd 280 12/18/08 4:11:36 PM12/18/08 4:11:36 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 281

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

6

7

11

2 3

10

1

8

12

20

13

24

25

26

21

19

15

18

9

2322

27

16 17

14

54

 Across
 4 An array is a convenient structure used for

 storage.

 7 int[] x � {1, 2, 3} declares and an array.

 8 All arrays are indexed from .

 10 A reference is a(n) .

 11 The i of a[i][j]
 12 Processing a two-dimensional array usually

requires a loop.

 19 Operator that creates an array

 20 An array reference is before the array

is created.

 21 A two-dimensional array is an array of

.

 23 Searched item is called the .

 24 Search that examines each array cell in order

 25 All array data must be of the same .

 26 When an array reference is passed to a

para meter, both references refer to the

 array.

 27 Doubling the array size the number of

comparisons performed by insertion sort.

 Down
 1 The �� operator compares

.

 2 x[x.length] results in an

(three words) error.

 3 A method can the

contents of an array.

 5 Array creation

 6 Search from the middle of an

array

 9 An array is stored as a

 block of memory.

 13 An array of length 10 is similar

to having 10 different .

 14 Data type of a in the

declaration int[] a

 15 Size of an array

 16 Data type of every array index

 17 j in a[i][j]
 18 temp � a, a � b; b � temp

 22 Fifteen puzzle exploiter

sim23356_ch07.indd 281sim23356_ch07.indd 281 12/15/08 6:38:34 PM12/15/08 6:38:34 PM

282 Part 1 The Fundamental Tools

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. The values stored in an array must all be of the same type.

b. All Java arrays are indexed from 1.

c. Java arrays can hold at most 65,535 items.

d. A two-dimensional array is an array of arrays.

e. When an array is passed to a method, the values in the argument array are copied

to the parameter array.

f. Once declared, you cannot change the value of an array reference.

g. Once declared, you cannot change the value of an array entry.

h. Once declared, you cannot change the dimensions of an array.

i. Java prohibits three-dimensional arrays.

j. The index value of a Java array must be an integer.

 2. Explain the Error
 Explain why the statement swap(a[0], a[1]) does not swap the values stored in a[0]

and a[1].

 public static swap(int x, int y)
 {
 int temp � x;
 x � y;
 y � temp;
 }

 3. Tracing
 What are the values stored in the array a after the following code executes?

 int[] a � new int[10];
 for (int i � 0; i � a.length; i��)
 a[i] � 2 * i � 1;

 4. Tracing
 What are the values stored in the array a after the following code executes?

 int[] a � new int[10];
 a[0] � 1;
 for (int i � 1; i � a.length; i��)
 a[i] � 2 * a[i � 1] � 1;

 5. Tracing
 What are the values stored in the array a after the following code executes?

 int[] a � new int[10];
 a[0] � 0;
 a[1] � 1;
 for (int i � 2; i � a.length; i��)
 a[i] � 2 * a[i � 1] � a[i � 2];

 6. Tracing
 Determine the values stored in the arrays a and b after each of lines iii, iv, v, vi, and

vii executes.

 i. int[] a � new int[10];
 ii. int[] b � new int[10];
 iii. for (int i � 0; i � a.length; i��)
 a[i] � 2 * i � 1;

sim23356_ch07.indd 282sim23356_ch07.indd 282 12/15/08 6:38:35 PM12/15/08 6:38:35 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 283

 iv. for (int i � 0; i � b.length; i��)
 b[i] � 2 * i � 1;
 v. for (int i � 0; i � a.length; i��)
 a[i] � b[i] � 1;
 vi. a � b;
 vii. b � a;

 7. Playing Compiler
 Find the error(s) in each of the following code segments.

 a. char[] a � new char[10];
 a[10] � ‘s’;
 a[9] � 76;

 b. char[] a � new char[10];
 char[9] � ‘s’;

 c. char[] a � new int[10];
 a[0] � ‘s’;
 a[1] � 80;

 d. int[] a;
 a � new int[255];
 a[0] � ‘s’;
 a[a[0]] � 35;
 a[35] � 12345654321;

 e. int[] a;
 a � new int[255];
 a[0] � a.length;
 a[0]��; a.length��;
 a[a[0]] � 2;

 f. int[] b � new int[9];
 int[][] a;
 a � new int[255][];
 a[0] � b;
 a[0][3] � 9;
 a[3][0] � 9;

 8. Algorithm Analysis
 In the worst case, how many comparisons must linear search perform to locate a

value in an array of size 50,000? Answer the same question for binary search.

 9. Algorithm Analysis
 Why does insertion sort make no more than ½ (n 2 � n) comparisons? Hint: 1 � 2 �

3 � . . . � k � (1/2)(k)(k � 1)

 10. Algorithm Analysis
 Give an example of an array that contains fi ve elements such that insertion sort

makes 10 comparisons. Explain your answer.

 11. The Fifteen Puzzle
 Does the board confi guration of the Fifteen Puzzle shown in Figure 7.36 have a

solution? (Hint : count the number of inversions.)

 12. What’s the Output?
 The following program presents a more sophisticated method for calculating the

solvability of a starting confi guration for the Fifteen Puzzle of Section 7.10. Trace

through the program by hand, and count how many times the statements length��

and numSwaps �� length execute. What is the output?

sim23356_ch07.indd 283sim23356_ch07.indd 283 12/15/08 6:38:35 PM12/15/08 6:38:35 PM

284 Part 1 The Fundamental Tools

 public class SolvableGame
 { // counts number of swaps necessary to restore the values in a[1]..a[15] to 1,2,...,15
 public static void main(String[] args)
 {
 int numSwaps � 0;
 // the board is stored in a[1]..a[15]; a[0] is not considered, �1 is a dummy value
 int[] a � {�1, 5, 6, 3, 12, 2, 1, 7, 4, 9, 8, 15, 13, 10, 11, 14};
 for (int i � 1; i � a.length; i��)
 if (a[i] !� 0)
 {
 int j � a[i];
 a[i] � 0;
 int length � 0;
 while (j !� i)
 {
 int temp � j;
 j � a[j];
 a[temp] � 0;
 length��;
 }
 numSwaps �� length;
 }
 System.out.println(numSwaps);
 if (numSwaps % 2 �� 0) System.out.print("Solvable");
 else System.out.print("Unsolvable");
 }
 }
 Repeat the problem again after changing the line:
 int[] a � {�1, 5, 6, 3, 12, 2, 1, 7, 4, 9, 8, 15, 13, 10, 11, 14} to:

 i. int[] a � {�1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
 ii. int[] a � {�1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 14}

 Using the data of (i) and (ii), compare the number of steps taken by this method with

the more intuitive countInversions(...) method used in the case study of Section 7.10.

The number of steps required by countInversions(...) is the number of times the if
statement on lines 43–44 executes plus the number of times line 45 executes.

 PROGRAMMING EXERCISES
 1. Array Data
 Write two methods that read data from the console and store the data in an array:

 a. The method
 int readData(int [] x)
 reads a list of at most 100 integers into the array x. A sentinel �999

terminates the list. The method returns the size of the list.

 b. The method

 int[] readData()
 reads and returns a list of integers. The list is preceded by the number of

items in the list. For example, the data 6 9 7 5 3 1 2 indicates that there are

six items in the list. The leading 6 is not included in the list.

 Test both of these methods within a single program that includes a method
 void printList([] x, int n)
 that displays x[0] through x[n � 1].

sim23356_ch07.indd 284sim23356_ch07.indd 284 12/15/08 6:38:35 PM12/15/08 6:38:35 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 285

 2. Vote Tally
 Ten candidates, designated 0 to 9, are competing in a preliminary election for

mayor. Write a program that counts the votes for each candidate. The input to your

program is a list of numbers in the range 0–9 such that a value of i signifi es a vote

for candidate i. Terminate the data with a fl ag. Use an array to keep a tally of the

votes. Do not use 10 different variables. Discard all invalid votes. Output from your

program should be 10 pairs (one pair per line) of the form:

 (candidate number, number of votes)

 Typical input might be:

 1 1 3 3 3 4 1 2 6 7 9 0 2 3 1 4 5 4 4 7 8 9 0 3 4 5 3 1 2 3 4 1 2 3 1 1 1 2 3 �999

 3. Dice Roll Simulation
 Write a program that simulates rolling two dice 100,000 times and displays the

number of occurrences of each sum from 2 to 12.

 4. Zero Sum
 Write a program that accepts two lists of integers, each terminated by the sentinel

�999, and reports whether or not there are two values, one from each list, with

sum equal to zero. Your program should utilize two methods: one that reads a list of

integers into an array (see Exercise 1a) and another that returns true if and only if

there are two values, one from each array, with sum equal to zero. For example, the

two arrays [2, �3, 1, 7, 9] and [6, 7, �5, �3, 4, �2] satisfy the “zero sum” criterion

because the fi rst array contains 2 and the second �2.

 5. Intersection
 Write a program that includes two methods: one that reads a list of integers into an

array and another that accepts two integer arrays, x and y , and displays the intersection

of the two lists, that is, all the values that x and y have in common. The data for each

list are preceded by the number of items in the list (see Programming Exercise 1b).

 6. Duplicate Detection
 Write a method that returns true if and only if an integer array contains duplicate

items. Test this method in a program. Include a method that reads a list of numbers,

terminated by �999, into an array (see Programming Exercise 1a).

 7. Second Largest
 Design and implement a method that returns the second -largest value stored in an

array of type int . Include this method in a program that displays the second-largest

value as well as a method that reads a list of numbers, terminated by �999, into an

array (see Programming Exercise 1a).

 8. Longest Increasing Contiguous Subsequence
 Write a program that displays the longest increasing contiguous subsequence in an

integer array. For example, the longest increasing contiguous subsequence of

 4, 5, 7, 3, 12, 2, 5, 6, 19, 21, 14 is

 2, 5, 6, 19, 21.

 9. Largest and Smallest
 Design a method that determines the largest and smallest values stored in an integer

array, x. Your method should return these values in an array of length two. Use the

following algorithm:

 Initialize variables currentBig and currentSmall to the larger and smaller values

of x[0] and x[1]. Process the rest of the list, two elements at a time. Compare the

larger of the two elements to currentBig , and replace currentBig if necessary.

sim23356_ch07.indd 285sim23356_ch07.indd 285 12/20/08 12:41:07 AM12/20/08 12:41:07 AM

286 Part 1 The Fundamental Tools

Compare the smaller of the two elements to currentSmall , and replace

 currentSmall if necessary.

 Test your method in a program and include a method that reads a list, terminated by

�999, into an array (see Programming Exercise 1a).

 10. Coin Flip Simulation
 Write a program that simulates fl ipping a coin 100,000 times and reports the

number “runs of heads” of length i , where i ranges from one to the length of the

longest consecutive sequence of heads. For example, the longest run of heads in the

sequence HHTHTHTHHT HHHH TH is of length 4. Consequently, the program

would display the following output:

Length Number of runs of heads

1 3

2 2

3 0

4 1

 11. Merging
 Write a method that accepts two sorted integer arrays, a and b, and returns a sorted

array containing the values stored in both a and b. In other words, your method

should merge arrays a and b into a third array. You can merge two sorted arrays as

follows:

 Declare a new array c that is large enough to hold the contents of both a and b ;

also declare two integer variables, i and j . Initialize i and j to 0.

 Compare a[i] and b[j] and copy the smaller value into c.
 Increment i if a contains the smaller value, otherwise increment j .
 Repeat this procedure until either i or j exceeds, the highest index of a or b,

respectively.

 Copy the remainder of either a or b to c .

 Return c .

 Include this method in a program that:

 a. Interactively reads two lists of integers into two arrays. Each list ends

with the sentinel �999. (See Exercise 1a.)

 b. Sorts the arrays;

 c. Merges the arrays; and

 d. Displays the merged array.

 The two lists might not be the same size. Make sure that your program keeps

track of how many data are in each list.

 Use a method for each task. Design, implement, and test one method before

including the next.

 12. A Checking Account
 Write a program that processes checking account transactions. A positive entry

signifi es a deposit, a negative number denotes a withdrawal, and zero signals the end

of data. Your program should display a checkbook ledger. Assume an initial balance

of zero. For example, if input to the program is 10.52, 1900.78, �234.78, 0, then the

sim23356_ch07.indd 286sim23356_ch07.indd 286 12/15/08 6:38:36 PM12/15/08 6:38:36 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 287

program displays:

Transaction Balance

Deposit 10.52 10.52

Deposit 1900.78 1911.30

Withdrawal 234.78 1676.52

 13. Simplifi ed Counting Sort
 Write a program that sorts a collection of 30 test scores each in the range 0 to 100.

Use the following algorithm:
 Initialize each member of an integer array, score (length 101), to zero.

 For each test score x, increment score[x].
 For each i from 0 to 100, print i as many times as the array entry score[i]

indicates.

 This sorting routine is useful when the range of the data is limited. The procedure is

a simplifi ed version of what is appropriately called counting sort .

 14. Max Sort
 Implement a method

 void maxSort(int[] x, int size) // (size �� x.length)

 that sorts the partially fi lled array x . The method maxSort(...) fi rst determines the

largest value in x and swaps that value with x[size � 1] ; then maxSort(...) fi nds

the next largest value and swaps that value with x[size � 2] , and so on. Include an

auxiliary method

 int max(int[] x, int i)

 that returns the index of the largest element between x[0] and x[i], inclusive. Test

your methods in a program.

 15. Selection Sort
 Implement a method

 void selectionSort(int[] x, int size) // (size �� x.length)

 that sorts the partially fi lled array x. The method selectionSort (...) fi rst determines

the smallest value in x and swaps that value with x[0] ; then selectionSort (...) fi nds

the next smallest value and swaps that value with x[1] , and so on. Include an

auxiliary method

 int min(int[] x, int i)

 that returns the index of the smallest element between x[i] and x[size � 1], inclusive.

Test your methods in a program.

 16. Partitioning an Array
 Suppose that x is an integer array of size n and that a � x[0] is the fi rst element of x .

Write a method that reorders the values stored in x so that in the rearranged array:

 i. a is in position k ,

 ii. the numbers stored in cells x[0] though x[k�1] are all less than or equal to a ,

and

 iii. the numbers stored in cells x[k�1] through x[n�1] are all greater than or equal

to a.
 For example, if x is initially

 9, 6, 3, 22, 16, 2, 19, (x[0] is 9)

sim23356_ch07.indd 287sim23356_ch07.indd 287 12/15/08 6:38:36 PM12/15/08 6:38:36 PM

288 Part 1 The Fundamental Tools

 you might reorder x as

 6, 3, 2, 9, 22, 16, 18. or

 6, 2, 3, 9, 16, 22, 19 or possibly

 3, 2, 6, 9, 19, 22, 16.

 This operation is called partitioning the array. Your method should accomplish this

task without using any additional arrays.

 Test your method in a program. Data for your program is a list of integers such

that the fi rst datum specifi es the size of the list and is not a member of the list.

 17. Sieve of Eratosthenes
 A prime number is an integer greater than 1 and divisible only by itself and 1. For

example, 2, 3, 5, 7, 11, and 101 are prime numbers but 4, 6, 9, 12, and 100,000 are not.

 There are many algorithms that identify prime numbers, and the Sieve of
Eratosthenes is among the simplest. Using this method, we show how to fi nd all

prime numbers less than or equal to 50.

 First, list all numbers between 2 and 50:

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

 Begin with 2 and “cross out,” mark, or eliminate all numbers greater than 2 that are

multiples of 2 that is, any number divisible by 2:

2 3 X 5 X 7 X 9 X

11 X 13 X 15 X 17 X 19 X

21 X 23 X 25 X 27 X 29 X

31 X 33 X 35 X 37 X 39 X

41 X 43 X 45 X 47 X 49 X

 Then, fi nd the next unmarked number (it’s 3) and cross out all unmarked numbers

greater than 3 that are multiples of 3:

2 3 X 5 X 7 X X X

11 X 13 X X X 17 X 19 X

X X 23 X 25 X X X 29 X

31 X X X 35 X 37 X X X

41 X 43 X X X 47 X 49 X

 Now, fi nd the next unmarked number (it’s 5) and likewise cross out all multiples

(of 5) that have not already been marked:

2 3 X 5 X 7 X X X

11 X 13 X X X 17 X 19 X

X X 23 X X X X X 29 X

31 X X X X X 37 X X X

41 X 43 X X X 47 X 49 X

sim23356_ch07.indd 288sim23356_ch07.indd 288 12/15/08 6:38:37 PM12/15/08 6:38:37 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 289

 Continue the process. When you are fi nished, the unmarked numbers are the primes.

 These are : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47.

 Write a program that accepts a positive integer, n , (2 � n � 500) and uses the Sieve

of Eratosthenes to determine all prime numbers less than or equal to n.

 18. Matrix Arithmetic
 An m × n matrix is a two-dimensional array of numbers with n rows and m columns. If

X is an m × n matrix, then x
ij
 signifi es the number in row i and column j. For example,

 X � � 2

 5

1

3

 8

9
 �

 is a 3 × 2 matrix such that x
11

 � 2, x
12

 � 3, x
21

 � 5, etc.

 Let A and B be m × n matrices. The sum of A and B is an m × n matrix C such

that c
ij
 � a

ij
 � b

ij
 . For example,

 � 2

 5

1

3

 8

9
 � � � 6

 2

3

2

 1

2
 � � � 8

 7

4

5

 9
11

 �
 A B C

 In contrast, the product AB of two matrices is defi ned if and only if the number of

columns of A is equal to the number of rows of B. If A and B are m × n and n × p

matrices, the product of A and B is the m × p matrix C such that c
ij
 � (a

i1
 b

1 k
 �

 a
i2
 b

2 k
 � … � a

in
 b

nk
). For example,

 � 3
5
 4

1
 2

6
 � � 2

 5

4

3

 8

9
 � � � 3 � 2 � 4 � 5 � 2 � 4

5 � 2 � 1 � 5 � 6 � 4
 3 � 3 � 4 � 8 � 2 � 9

5 � 3 � 1 � 8 � 6 � 9
 � � � 34

39
 59

77
 �

 A B C

 Matrix addition and multiplication provide convenient devices for processing

data. For example, suppose that A is a 5 × 2 matrix that holds the number of hot

dogs and the number of hamburgers eaten by the starting fi ve players after a Sunday

night Quidditch game.

Hot Dogs Hamburgers

Ron 1 3

Hermione 1 1

Harry 0 4

Fred 2 2

Shaquille 6 4

 Likewise, suppose that B is a 5 × 2 matrix that holds the number of hot dogs and

the number of hamburgers eaten by the starting fi ve players after a Monday night

Quidditch game.

Hot Dogs Hamburgers

Ron 1 2

Hermione 2 0

Harry 1 4

Fred 5 1

Shaquille 6 2

sim23356_ch07.indd 289sim23356_ch07.indd 289 12/15/08 6:38:37 PM12/15/08 6:38:37 PM

290 Part 1 The Fundamental Tools

 Then the sum A � B represents the total hot dogs and hamburgers eaten by the

players over two days.

Hot Dogs Hamburgers

Ron 2 5

Hermione 3 1

Harry 1 8

Fred 7 3

Shaquille 12 6

 Furthermore, suppose that C is a 2 × 3 matrix that holds the number of calories,

grams of fat, and grams of protein contained in a hot dog and a hamburger.

Calories Grams Fat Grams Protein

Hot dog 275 15 9

Hamburger 310 13 17

 Then the product BC represents the total calories, grams of fat, and grams of protein

consumed by the fi ve players on Monday night.

Calories Grams Fat Grams Protein

Ron 895 41 43

Hermione 550 30 18

Harry 1515 67 77

Fred 1685 88 62

Shaquille 2270 116 88

 Design methods using the following headings:

 int[][] add(int[][] x, int[][] y)
 int[][] multiply(int[][] x, int[][] y)

 that add and multiply two matrices and return references to the sum and product

matrices.

 If the dimensions of x and y are not compatible with addition (multiplication),

then the method should issue an appropriate error message and exit. Test your

methods in a program. Include two additional methods that

 • print the contents of a two-dimensional array, and

 • read data, row by row, into a two-dimensional array.

 Assume that the data are preceded by two positive integers indicating the

dimensions of the array. For example, the data

 3 2 2 3 8 5 8 1 9

 specify the 3 x 2 array:

 � 2

 5

1

3

 8

9
 �

 19. Markov Matrices
 An n × n matrix (as defi ned in programming problem 18) is called a positive

 Markov matrix , if and only if each entry is positive and the sum of the entries of

each column is 1. For example, the following matrix is a positive Markov matrix:

sim23356_ch07.indd 290sim23356_ch07.indd 290 12/15/08 6:38:38 PM12/15/08 6:38:38 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 291

NewYork Philadelphia Newark

New York .9 .35 .3

Philadelphia .08 .6 .2

Newark .02 .05 .5

 The preceding matrix contains data collected by a rental car company. The fi rst

column indicates that a car rented in New York is returned to

 • New York 90% of time,

 • Philadelphia 8% of the time, and

 • Newark 2% of the time.

 The second column shows that a car rented in Philadelphia is returned to

 • New York 35% of time,

 • Philadelphia 60% of the time, and

 • Newark 5% of the time.

 And fi nally, from the third column you can see that a car rented in Newark is

returned to

 • New York 30% of time,

 • Philadelphia 20% of the time, and

 • Newark 50% of the time.

 If M is a positive Markov matrix, the powers M, M 2 � M x M, M 3 � M 2 x M,

M 4 � M 3 x M… approach a matrix P with the properties that P is also a positive

Markov matrix and the columns of P are identical. For example, multiplying the

car rental matrix by itself 50 times produces the matrix P:

NewYork Philadelphia Newark

New York .772 .772 .772

Philadelphia .179 .179 .179

Newark .049 .049 .049

 The columns of P represent the steady-state vector , (.772, .179, .049). The steady-

state vector gives the eventual distribution of cars that results from the behavior

implied in the original matrix. In other words, if the rental car company has 1000

cars, then the company knows to keep 772 parking spaces in New York, 179 in

Philadelphia, and 49 in Newark.

 Write a program that reads a positive Markov matrix, M, and displays the steady-

state vector for M. You can safely approximate the steady-state vector with the

columns of M 50 . With regard to your input, assume that the number of rows and the

number of columns of M precede the data for M.

 20. Ragged Arrays
 The following code defi nes a ragged two-dimensional array. The term ragged

indicates that the rows are not all the same length.

 int[][] triangle � new int[5][]; // allocate array of rows

 for (int i � 0; i � triangle.length; i��)
 triangle[i] � new int[r � 1];

 a. Draw a picture of the ragged array created by this code fragment.

 b. Write a method

 int [][] buildRagged(int n)

sim23356_ch07.indd 291sim23356_ch07.indd 291 12/15/08 6:38:38 PM12/15/08 6:38:38 PM

292 Part 1 The Fundamental Tools

 that returns a (possibly) ragged array with n rows. The method reads n � 1 lines of

data from the console. The fi rst line contains the number of rows of a ragged array.

Each succeeding line specifi es one row of a ragged array. The fi rst entry of each line

gives the number of items in that row. For example, the input

 3

3 1 5 7

6 5 6 8 9 3 2

2 5 8

 indicates that there are 3 rows and that the fi rst row of the ragged array has 3 entries

(1, 5, and 7), the second row 6 entries (5, 6, 8, 9, 3, and 2), and the third row 2

entries (5 and 8).

 c. Write a method

 void printArray(int [][] x)

 that displays a (possibly) ragged array.

 d. Test your methods in a program using the main(...) method:

 public static void main(String[] args)
 {
 Scanner input � new Scanner(System.in);
 System.out.print("Enter the data for the array, begin with the number of rows: ");
 int rows � nextInt();
 int[][] array � build(rows);
 printArray(array);
 }

 21. Column Sorting
 Write a method

 void columnSort(int[][] x)

 that sorts each column of a 5 x n array of integers. For example, if x is the 5 by 9 array:

12 6 7 17 18 19 8 29 2

0 14 8 15 5 3 2 1 18

8 2 1 6 9 18 21 2 8

1 5 9 3 7 11 2 7 10

89 12 6 1 0 19 27 21 5

 The method columnSort(...) rearranges x as:

0 2 1 1 0 3 2 1 2

1 2 6 3 5 3 2 2 5

7 6 7 6 7 18 8 7 8

12 12 8 15 9 19 21 21 10

89 14 9 17 18 19 27 29 18

 Test columnSort(...) in a program and include another method

 int[][]readArray(int n)

 that interactively reads and returns a 5 x n array. Your program should prompt for the

value of n .

sim23356_ch07.indd 292sim23356_ch07.indd 292 12/15/08 6:38:38 PM12/15/08 6:38:38 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 293

 22. Sudoku
 A Sudoku puzzle is a 9 × 9 grid partially fi lled with the digits from 1 to 9, inclusive.

 Figure 7.42 shows a typical puzzle.

9 8 7

5 1 6 2 8

7 5 1

4 8 9

5 8 1

8 1 7

1 6 2

9 5 7 1 6

2 1 3

FIGURE 7.42 A Sudoku puzzle

 To solve the puzzle, a player must fi ll the empty squares of the grid so that each row,

each column, and each of the nine 3 × 3 boxes (as shown in Figure 7.42) contains

every digit from 1 to 9. That is, no row, column, or box contains a duplicate digit.

 Figure 7.43 gives a solution for the puzzle of Figure 7.42 .

4 2 9 8 1 3 5 6 7

5 1 6 4 7 2 9 3 8

7 8 3 6 5 9 2 4 1

6 7 2 1 3 4 8 5 9

3 9 5 2 8 6 1 7 4

8 4 1 7 9 5 6 2 3

1 5 8 3 6 7 4 9 2

9 3 4 5 2 8 7 1 6

2 6 7 9 4 1 3 8 5

FIGURE 7.43 A solution to the puzzle of Figure 7.42

 Write a program that reads a 9 � 9 grid of digits and determines whether or not

the grid is a solution to a Sudoku puzzle.

 23. Connect Four
 Connect Four© is a game in which two players, Black and Green, alternate placing

chips in one of seven columns. Each column can contain up to six chips. The chips,

inserted at the top of a column, slide down the column and come to rest above the

last chip placed in that column. A player wins the game when there are four chips in

a row vertically, horizontally, or diagonally, of his color.

sim23356_ch07.indd 293sim23356_ch07.indd 293 12/15/08 6:38:39 PM12/15/08 6:38:39 PM

294 Part 1 The Fundamental Tools

FIGURE 7.44 Connect Four

 a. A confi guration of the game is a 6 � 7 integer array, board, such that

 i. board[i][j] �� 1 indicates that a green chip occupies position (i,j);
 ii. board[i][j] �� 2 indicate that a black chip occupies position (i,j); and

 iii. board[i][j] �� 0 indicates that position(i,j) is empty.

 The confi guration that models the picture of Figure 7.44 is

 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 2 2 1 0 2 0
0 1 2 1 1 1 0

 Write a method that accepts a game confi guration and determines whether or

not a player has won, returning ‘G’ for green, ‘B’ for black, or ‘N’ for neither.

 Test your method in a program that reads a board confi guration and reports the

winner, if there is one.

 b. Write a method

 int makeMove(int[][] confi guration, int column, char color)

 such that confi guration is a board confi guration, column is an integer in the

range 0 to 6, and color is either ‘G’ or ‘B’. The method makeMove(...) updates

the board confi guration by placing a chip of the specifi ed color in the appropriate

column. If a column is full, then the method simply returns 0, otherwise the

method performs the update and returns 1, indicating a successful move.

 c. Write a method that plays the game interactively against the computer. Your

method must check for illegal moves and report when the game is over. The

computer can play by choosing a random column and retrying if the move

is illegal. However, to make the game more interesting, you might devise a

“strategy” for the computer’s move. You need to check if the game ends in a tie.

Include your methods in a program that plays the game.

sim23356_ch07.indd 294sim23356_ch07.indd 294 12/15/08 6:38:39 PM12/15/08 6:38:39 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 295

THE BIGGER PICTURE

 THE BIGGER PICTURE

1. ARRAY IMPLEMENTATION
 An array holds values of the same data type. Why is that? The answer relates to array

storage and array access. Let’s look at an example.

 The statement

 int [] myArray � new int[50];

 • creates an array of 50 consecutive memory cells each capable of storing one integer,

and

• assigns the address of the fi rst element of the array (myArray[0]) to the reference

 variable myArray .

 Because an integer requires four bytes of storage, an array of 50 integers uses 200 con-

secutive bytes. The reference variable myArray holds the address myArray[0], the fi rst of

these bytes.

 For any valid array index i , the computer locates the value of myArray[i] by calculat-

ing the address 4 � i � myArray . This computation only works when every element in the

array is four bytes long. See Figure 7.45 .

myArray

Address of the first byte of myArray

Location of myArray[2] is 4 * [2] � myArray � 4 * [2] � 1000 � 1008
MyArray[2] occupies bytes 1008, 1009, 1010, and 1011

myArray[0]

10001000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

myArray[1]

myArray[2]

FIGURE 7.45 The address of myArray[2] is 1008

 Exercises
 1. Given the declaration

 short[] a � new short[20],

 if the reference a has the value 1300, what is the address of a[10] ?

sim23356_ch07.indd 295sim23356_ch07.indd 295 12/15/08 6:38:39 PM12/15/08 6:38:39 PM

296 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 2. Recall that a two-dimensional array is an array of arrays. How does Java calcu-

late the address of a[3][7] , given the declaration

 int[][] a � new int[10][10]?

 3. How many bytes are allocated for an array declared and instantiated as

 double[][] a � new double[10][10]?

2. SORTING
 Sorting is so common an operation that it is rightly emphasized in any introductory pro-

gramming book. In this chapter, you can fi nd four different sorting algorithms—insertion

sort, selection sort, max sort, and counting sort. And these are just a few of the possibili-

ties. There is also bucket sort, radix sort, Shell’s sort, heapsort, merge sort, quicksort, and

dozens more. Why not just study the best procedure and be done with it? Because there is

no best sorting algorithm—what is best depends on a number of considerations. Indeed,

there are many ways to measure the effectiveness of a sorting algorithm:

 • How fast can an algorithm sort?

 When analyzing the effi ciency of an algorithm, we usually count the number of times

the algorithm performs some fundamental operation. For a sorting algorithm, that

operation is usually comparing one item to another. And, of course the number of

comparisons depends on the number of data. On average, insertion sort requires about

500,000 comparisons to sort a list of 1000 integers, but a more effi cient sort, such as

quicksort, can do the job with about 14,000 comparisons. To sort n data, the maximum

number of comparisons performed by insertion sort and selection sort (see Program-

ming Problem 15) is proportional to n 2 . In contrast, the number of comparisons done

by heapsort and merge sort is proportional to n � log
2
 n . As n gets large, n 2 increases at

a much faster rate than n � log
2
 n :

n n2 nlog2n

32 1,024 160

1024 1048576 10,240

4096 16,777,216 5,952

32768 1,073,741,824 491,520

1048576 1,099,511,627,776 20,971,520

 The numbers are impressive. In practice, however, the theoretically fastest algorithm

doesn’t always correlate to the fastest algorithm. For one thing, theoretical calculations

often assume the worst-case scenario for every algorithm, but sometimes an algorithm

gets lucky. For example, insertion sort performs only n – 1 comparisons if, by chance,

the data is already sorted. This is the best case for insertion sort. Every algorithm has a

best case, average case, and a worst case. Practically speaking, the worst case may not

happen very often.

 Computer science is distinguished as a fi eld that combines the best of math-

ematical analysis with clever engineering. And the question of which is the fastest

algorithm is always met with a dual attack of theoretical results and experimental

analysis.

sim23356_ch07.indd 296sim23356_ch07.indd 296 12/15/08 6:38:40 PM12/15/08 6:38:40 PM

 Chapter 7 Arrays and Lists: One Name for Many Data 297

THE BIGGER PICTURE

 • Does a sorting algorithm require extra memory?

 A sorting algorithm frequently requires extra memory. For example, to sort an

array of size n , merge sort requires a second array of the same size to accomplish

its task. Insertion sort, on the other hand, requires just one extra variable (temp)

regardless of the number of data, 10 or 10,000. To sort an array of size n , many

algorithms, such as insertion sort, use a fi xed amount of extra space, but other

algorithms, such as merge sort, require an amount of extra space that is propor-

tional to n ; so as the length of the list grows, so does the additional space.

 Algorithms that use a fi xed amount of extra space are called in-place . When

sorting very large lists, space considerations are sometimes more important than

time considerations.

 • Does the algorithm change the order of equal elements?

 Sometimes a list has duplicate copies of the same value. A sorting algorithm that

preserves the order of equal elements is called stable .

 • Does the algorithm perform well on any particular type of data?

 Sometimes a sorting algorithm exhibits its best behavior on certain kinds of data.

For example, some sorting algorithms perform better than others on

 • lists that start out almost sorted,

 • very small lists,

 • very large lists, or

 • lists with a restricted range of values.

 In general, empirical testing of actual data is recommended before choosing a sorting

algorithm.

 Exercises
 1. For insertion sort (Example 7.4), selection sort (Programming Exercise 15), and

counting sort (Programming Exercise 13), determine:

a. How many comparisons, in terms of the input size n , does each sort make in

the worst case?

b. How many comparisons, in terms of the input size n , does each sort make in

the best case?

c. How much extra space does the sort use? Is it an in-place sort?

d. Is the sort stable? Does this question make sense for counting sort? Explain.

 2. Of the sorting methods: insertion sort, selection sort, and counting sort, which

works best with

• small lists,

• large lists,

• lists that are almost sorted, and

• lists with a restricted range of values? Justify your answers.

 3. Add a counter to each of the four sorting methods that keeps track of the number

of comparisons performed by the algorithm. Initialize an array with 5000 random

integers in the range 1 to 1000. Run all four sorts on the same array. How do the

sorts compare?

sim23356_ch07.indd 297sim23356_ch07.indd 297 12/15/08 6:38:40 PM12/15/08 6:38:40 PM

298

CHAPTER CHAPTER 8
 Recursion

 And then Little Cat A took the hat off HIS head.
 “It is good that I have some one

 To help ME,” he said.
 “This is Little Cat B.
 And I keep him about ,
 And when I need help

 Then I let him come out.”
 —from Dr. Seuss’s The Cat in the Hat Comes Back

 Objectives

 The objectives of Chapter 8 include an understanding of

� recursion as a method of program control,

� problem solving via recursive thinking,

� Java’s implementation of recursive algorithms,

� tracing and debugging a recursive method,

� the connection between tail recursion and iteration, and

� the factors that affect the effi ciency of recursive programs.

 Recursion is a fundamental problem-solving tool that is part of the control structure of most programming
languages, object-oriented or not. There is nothing particularly object-oriented about recursion. Whether you
study recursion here, or delay until after Part II, wrapping up recursion with object-oriented methodology is a
distraction for students new to both ideas.

 8.1 INTRODUCTION

 You know that methods can call other methods. You may be surprised to learn that a

method can call itself. Such a method is called recursive , and using recursive methods

to solve a problem is called recursion . In the Dr. Seuss classic The Cat in the Hat Comes
Back , the Cat in the Hat fi nds that cleaning up his mess is too tough a job to do alone. So

he pulls Little Cat A out of his hat to help, but Little Cat A also needs help, so Little Cat A

pulls out Little Cat B, and so on. After a while there are enough cats to get the job done,

and the cats start to jump back into the hats. When the cats have fi nished climbing back, the

Cat in the Hat packs up and says that his job is done. Recursion is a lot like that. The Cat

in the Hat is the method, and when a cat pulls out another cat to help him, that’s a method

calling itself. That’s recursion.

sim23356_ch08.indd 298sim23356_ch08.indd 298 12/15/08 6:39:47 PM12/15/08 6:39:47 PM

 Chapter 8 Recursion 299

 8.2 A SIMPLE RECURSIVE METHOD

 We begin by repeating ourselves. See if you can trace through the execution of this never-

ending electronic Hallmark card:

 1. public static void forgetMeNot()
2. {
3. System.out.println("I Miss You");
4. forgetMeNot(); // a recursive call
5. }

The method prints “I Miss You” and then calls itself, which prints “I Miss You” and then

calls itself, which prints “I Miss You” and then calls itself, and so on.

 I Miss You

 I Miss You

 I Miss You

 …

 Unless your intention is to annoy, amuse, or disturb the recipient, this electronic greet-

ing card should be rewritten with a little more restraint. This infi nite e-card can be fi xed

so that it prints “I Miss You” only three times and then prints a closing “Love, Me”. This

revised method requires a parameter that counts how many times the message is printed.

The program of Example 8.1 does precisely that.

EXAMPLE 8.1 Problem Statement Write a recursive method that prints “I Miss You” n times and

signs off “Love, Me”.

 Java Solution
 1. public class GreetingCard
2. {
3. public static void forgetMeNot(int n) // n is the number of times the message is printed.
4. {
5. if (n !� 0)

6. {
7. System.out.println("I Miss You");
8. forgetMeNot(n � 1); // the recursive call
9. }
10. }

11. public static void main(String[] args)
12. {
13. forgetMeNot(3); // invokes method for the first time
14. System.out.println();
15. System.out.println("Love, Me");
16. }
17. }

 Output
 I Miss You
 I Miss You
 I Miss You
 Love, Me

 Discussion The recursive method forgetMeNot(...) is called by main(...) and passed the

argument 3. In order to discern what this method does, it is helpful to trace through it.

sim23356_ch08.indd 299sim23356_ch08.indd 299 12/15/08 6:39:48 PM12/15/08 6:39:48 PM

300 Part 1 The Fundamental Tools

 Tracing a recursive method is harder than tracing an iterative method, because,

as you will see, there might be many different instances of the method running

simultaneously—one active and the rest suspended and waiting to become active.

In the GreetingCard class, the main(...) method begins with the call forgetMeNot(3) ,
which prints “I Miss you” and then calls forgetMeNot(2) , which prints “I Miss You” and

then calls forgetMeNot(1) , which prints “I Miss You” and fi nally calls forgetMeNot(0) ,
which does nothing because n !�0 evaluates to false . forgetMeNot(0) returns (i.e., exits)

and the previous call, forgetMeNot(1) , picks up where it left off, but forgetMeNot(1)
has nothing more to do, so it just exits and program control returns to the suspended

 forgetMeNot(2) , which exits and control returns to forgetMeNot(3) , which also exits,

passing control back to main(...) , which fi nally prints “Love, Me”. Figure 8.1 shows a

 trace of the calling sequence.

 1. main

 2. forgetMeNot(3)

 3. "I Miss You"

 4. forgetMeNot(2)

 5. "I Miss You"

 6. forgetMeNot(1)

 7. "I Miss You"

 8. forgetMeNot(0)

 9. return

 10. return

 11. return

 12. return

 13. "Love, Me"

FIGURE 8.1 A trace of forgetMeNot(3)

 Traces such as the one in Figure 8.1 occur throughout this chapter, and learning to read

them is important. The trace is read from top to bottom as the program executes.

• Indentations are made every time a recursive call is made.

• When a method returns, the indentation goes back to the previous level.

• Execution continues at the statement following the recursive call.

 This is a convenient way to represent the execution of a recursive program because you can

tell at any time:

 1. which instance of a method is currently active,

 2. which are suspended and waiting, and

 3. which are fi nished running.

For example, look at line 11 of Figure 8.1 . The method calls forgetMeNot(0) and forgetMeNot(1)
are fi nished, forgetMeNot(2) is running and near completion, and forgetMeNot(3) is suspended

and waiting for forgetMeNot(2) to return.

 This electronic greeting card is a very simple example, but it illustrates a very impor-

tant principle of recursion.

Every recursive method must have a way out, that is, a terminating case. In other

words, every recursive method must have a nonrecursive option.

sim23356_ch08.indd 300sim23356_ch08.indd 300 12/15/08 6:39:49 PM12/15/08 6:39:49 PM

 Chapter 8 Recursion 301

 This terminating case is sometimes called the base case. Without a base case, a recursive

method runs forever. Just having a base case is not enough. The sequence of recursive

calls must eventually reach the base case or the method will fall into an infi nite recursion.

In the program of Example 8.1, the base case is the condition on line 5, if n! � 0 . This

base case eventually evaluates to false , preventing the method from falling into an infi nite

recursion.

 8.2.1 Tail (Loop) Recursion
 The forgetMeNot(...) method is easy to trace because the recursion occurs at the very end of

the method, and nothing remains for the method to execute when the recursive call returns.

You can see this behavior in Figure 8.1 : all the returns are stacked diagonally, and no state-

ments are left to execute after each recursive call returns. This kind of recursion is called

 tail recursion or loop recursion , and the recursive method executes very much like a loop.

A tail recursive method makes just one recursive call and exits immediately after the

recursive call returns.

 Indeed, tracing tail recursion may remind you of a simple loop.

 What if forgetMeNot(...) included a few additional statements following the recursive

call? You can imagine a much more complicated trace. The tracing of a recursive method

can quickly become a maze of calls and returns, all intertwined at different levels. How

does a programmer keep track? Or more importantly, how does a programmer design a

recursive program?

 The good news is that the computer keeps track of this potential maze of method calls.

The programmer does not need to think about this at all. Indeed, the programmer should
not think about this at all. Solving problems recursively requires a new way of think-

ing that, unlike iterative programs, does not involve tracing through the execution of the

program. Beginners sometimes fi nd this both unnatural and challenging. The next section

introduces you to the process of recursive thinking.

 8.3 RECURSIVE THINKING

 Recursion is a powerful mechanism that can control the fl ow of a program. Any loop can

be reprogrammed using tail recursion, but recursion is not just an alternative way of imple-

menting loops. Recursion provides an elegant method for describing complicated program

fl ow and solving very diffi cult problems. To program with recursion, one must learn to

 solve problems recursively. The fi rst and most important step in writing recursive programs

is to think recursively —like The Cat in the Hat.

To think recursively, assume that you have a best friend who is willing and able to

solve the same kind of problem that you are trying to solve. Recursive thinking is the
process of using your friend to help you solve your problem.

 This two-line algorithm is an example of recursive thinking. To sort a list of n numbers:

 1. Ask your friend to sort the fi rst n � 1 numbers.

 2. Insert the last number into the appropriate spot in the sorted list of n � 1 numbers.

sim23356_ch08.indd 301sim23356_ch08.indd 301 12/15/08 6:39:49 PM12/15/08 6:39:49 PM

302 Part 1 The Fundamental Tools

 The logic of this little algorithm is elegant. Once the fi rst n � 1 numbers are sorted,

the only thing left to do is insert the last value into the list where it belongs. The correct-

ness of the algorithm is based on the assumption that your friend did her job correctly

in step 1. Step 1 may seem like magic, and in a way it is. When fi rst solving a problem

recursively, it is natural to think hard about what your friend should do and how your

friend calls another friend, and so on, but, in fact, you do not need to know or care about

how your friend does her job. Rest assured that she always comes through. For now, don’t

worry about how it all works, you will see soon enough. To think recursively, trust that

your friend will do her job correctly, and concentrate on using your friend’s effort in the

right way.

 Here is a simple example of recursive thinking. Suppose that you are at an ATM

and that you must enter a dollar value between 20 and 200. The machine continues

requesting an amount until you supply a valid value. A computer program typically

would use a loop to do this type of input checking, but it is quite natural to use tail

recursion.

 Recursive Solution:
 To “Accept a deposit between 20 and 200”

a. Accept a value.

b. If the value is between 20 and 200 then accept it and stop, otherwise go on to

step c.

c. Have your friend “Accept a deposit between 20 and 200” .

 Note that step c is a request to your friend to solve the same kind of problem you are

trying to solve. At this point, you might wonder:

• How does step c work? How does my friend know what to do?

 Answer: Your friend follows the same instructions that you follow.

• Isn’t this logic circular? Won’t my friend just have to ask another friend for help?

 Answer: Yes, your friend will call his friend, and his friend will call another friend,

and so on. But this is not circular, because at some point a friend is no longer

needed. This happens at the base case (step b), when the input value is between 20

and 200.

 Of course this task can also be accomplished with a loop. Contrast the following itera-

tive algorithm with the recursive algorithm. The loop version explicitly checks values until

a valid amount is entered.

 Loop Solution:
 To “Accept a deposit between 20 and 200”

a. Accept a value;

b. While the value is not between 20 and 200

c. Accept a value;

 8.3.1 From Recursive Thinking to a Java Method
 Once you have a recursive algorithm, translating your algorithm into a Java method is a

mechanical process. Every request of your friend becomes a recursive call. In Example 8.2,

we transform the previous algorithm into a recursive method.

sim23356_ch08.indd 302sim23356_ch08.indd 302 12/15/08 6:39:50 PM12/15/08 6:39:50 PM

 Chapter 8 Recursion 303

EXAMPLE 8.2 Problem Statement Write a program using a recursive method that accepts an ATM

deposit between 20 and 200 dollars.

 Recursive Solution In the following program, main(...) requests and prints the value

returned by getDeposit(). You should have no problem understanding this. The recur-

sive method getDeposit() on lines 4–14 of the Java solution mimics the following

algorithm:

 To “Accept a deposit between 20 and 200”

a. Accept any value. (Lines 8–9)

b. If the value is between 20 and 200, then return it, otherwise go on to step c.

(Lines 10–13)

c. Have your friend “Accept a deposit between 20 and 200”. (Line 13)

 Java Solution
 1. import java.util.*;
2. public class Deposit
3. {

4. public static int getDeposit()
5. {
6. int value;
7. System.out.println("Please input a value between 20 and 200");
8. Scanner input � new Scanner(System.in);
9. value � input.nextInt();
10. if ((value � 20) && (value � 200))
11. return value;
12. else
13. return getDeposit(); // a recursive call

14. }

15. public static void main(String[] args)
16. {
17. int x � getDeposit();
18. System.out.println("Your deposit was " � x � " dollars");
19. }

20. }

 Output The output of this program is shown below with the input 130.

 Please input a value between 20 and 200 130
Your deposit was 130 dollars

 The output is shown again for the input: 298, 12, 109.

 Please input a value between 20 and 200 298
Please input a value between 20 and 200 12
Please input a value between 20 and 200 109
Your deposit was 109 dollars

sim23356_ch08.indd 303sim23356_ch08.indd 303 12/15/08 6:39:50 PM12/15/08 6:39:50 PM

304 Part 1 The Fundamental Tools

 Discussion Like the greeting card method, getDeposit() , is tail recursive because no

actions occur in getDeposit() after the recursive call. The last statement executed in the

method is the recursive call. Figure 8.2 shows a trace.

 main

 getDeposit()

 "Please input a value between 20 and 200"

 298
 getDeposit()

 "Please input a value between 20 and 200"

 12
 getDeposit()

 109
 return 109

 return 109

 return 109

 "Your deposit was 109 dollars"

FIGURE 8.2 Trace of getDeposit()

 One difference between the recursive methods of Example 8.2 and Example 8.1 is

that getDeposit() returns a value. That is, getDeposit() is not a void method. In the previ-

ous example, getDeposit() is called three times. Observe how 109 is returned by the third

call of getDeposit() to the second call of getDeposit() , which returns it to the fi rst call of

getDeposit(), and fi nally to main(...) , which prints “Your deposit was 109 dollars.”

A recursive method can and often does return a value.

 If a recursive method returns a value, do not ignore that value. Ignoring a returned

value usually indicates a logical error. In Example 8.2, getDeposit() includes two return
statements, one on line 11 and the other on line 13. Each statement returns an integer . The

number returned via the statement on line 13 is used; it is itself returned. If we change the

statement on line 13 from

 return getDeposit();

to

 getDeposit();

then, when the recursive call on line 13 terminates, the returned value “hangs.” In this case,

the compiler catches the error and reports

 missing return value

but not every such error is caught by the compiler.

 8.3.2 Designing Recursive Methods with Parameters

Like nonrecursive methods, recursive methods can have parameters.

 The next example, like Example 8.1, illustrates a recursive method that accepts a parameter.

sim23356_ch08.indd 304sim23356_ch08.indd 304 12/15/08 6:39:51 PM12/15/08 6:39:51 PM

 Chapter 8 Recursion 305

EXAMPLE 8.3 Suppose that you keep a record of your checkbook transactions such that positive num-

bers indicate deposits and negative numbers withdrawals. One day, you discover that

your account is overdrawn, a check has bounced, and to add insult to injury you are

being assessed a penalty of $25. You are certain that you had deposited enough money

to cover your checks, so you reexamine your last 30 to 40 transactions, recalculate your

transactions, and hope that the bank has made an error. It could happen!

 Problem Statement Write a program that calculates the sum of all deposits among the

fi rst n transactions of a checkbook register.

 Recursive Solution To sum the deposits among the fi rst n transactions of your
checkbook :

 a. If n equals 1, then handle the task yourself and don’t bother your friend. Return the

single value if it is positive, otherwise return 0 (lines 8–12 in the solution that follows).

 If n is greater than 1, go to steps b and c (lines 13–17).

 b. Ask your friend to sum the deposits among the fi rst n � 1 transactions in your
checkbook , and tell you the answer (line 13).

 c. If the n th transaction is positive then add that number to what your friend tells you

and return the sum, otherwise just return what he tells you (lines 14–17).

A Caveat : Your friend is tireless and trustworthy, but you must not overwork him. When

you ask your friend for help, make sure that you give him a job slightly smaller than

the original task. If your original job requires n transactions, give your friend n – 1

transactions. If you start with only one transaction, do it yourself. This ensures that your

method does not fall into an infi nite succession of recursive calls!

 Java Solution Here is the Java version of the recursive method that adds the deposits

in a list of transactions. The transactions, positive values for deposits and negative val-

ues for withdrawals, are stored in an integer array of size n .

 1. import java.util.*;
2. public class AddDeposits
3. {

4. public static int addDeposit(int[] checkbook, int numEntries)
5. {
6. if (numEntries �� 0) // Just in case the user enters 0 or fewer transactions
7. return 0; // Normally, this should not occur.
8. if (numEntries �� 1) // The actual base case in a normal execution
9. if (checkbook[0] � 0)
10. return checkbook[0];
11. else
12. return 0;

13. int sum � addDeposit (checkbook, numEntries � 1); // Here is the recursion (step b)
14. if (checkbook[numEntries � 1] � 0)
15. return (sum � checkbook[numEntries � 1]);
16. else
17. return (sum); // (step c)
18. }

19. public static void main(String[] args) // The main method asks how many transactions
20. // to expect, and accepts that many into an array.
21. { // Transactions are negative integers for withdrawals

sim23356_ch08.indd 305sim23356_ch08.indd 305 12/15/08 6:39:52 PM12/15/08 6:39:52 PM

306 Part 1 The Fundamental Tools

22. Scanner input � new Scanner(System.in); // and positive integers for deposits.
23. System.out.println("How many transactions?");
24. int size � input.nextInt();
25. int checkbook[] � new int[size] ;
26. for (int i � 0; i � size ; i��)
27. {
28. System.out.println("Input next transaction:");
29. checkbook[i] � input.nextInt();
30. }
31. System.out.println("Your deposits add up to " � addDeposit(checkbook, size) � " dollars.");
32. }

33. }

 Output
 How many transactions? 5
Input next transaction: 10
Input next transaction: 20
Input next transaction: � 15

Input next transaction: 30
Input next transaction: � 10

Your deposits add up to 60 dollars.

 Discussion Notice the direct correspondence between the Java method and the recur-

sive algorithm. The main method on lines 19–33 fi lls an array with a list of integers

that represent banking transactions. The recursive method addDeposit(...) on lines 4–18

implements the recursive computation that adds the deposits.

 Unlike the previous recursive algorithms, this algorithm is not tail recursive. We

trace the algorithm in Figure 8.3 . The difference between this algorithm and the previ-

ous ones is that here, additional statements execute when a recursive call returns. The

next number in the array, if it is positive, is added to the sum returned by the previous

recursive call.

 addDeposit(arr, 5)

 addDeposit(arr, 4)

 addDeposit(arr, 3)

 addDeposit(arr, 2)

 addDeposit(arr, 1)

 return 10

 sum � 10

 return (10 � arr[2]) // return 30

 sum � 30

 return 30

 sum � 30

 return (30 � arr[4]) // return 60

 sum � 60

 return 60

FIGURE 8.3 Trace of addDeposit(arr, 5)

 Following is an iterative solution that accomplishes the same task as the recursive

method addDeposit(...) . This version uses a for loop to sum n transactions that are stored

in an integer array transaction indexed from 0 through n – 1 inclusive.

sim23356_ch08.indd 306sim23356_ch08.indd 306 12/15/08 6:39:53 PM12/15/08 6:39:53 PM

 Chapter 8 Recursion 307

EXAMPLE 8.4 Problem Statement Your school runs a housing lottery for dormitory rooms. Each stu-

dent is assigned a random number, and the student given the lowest number chooses a

room fi rst, followed by the student with the next lowest number, and so on. These numbers

are all stored in an array, and they are announced one by one in order from lowest to high-

est. When a student’s number is announced, he/she steps up to choose a room. Design and

implement a method that returns the lowest integer stored in an array.

 Recursive Solution To fi nd the lowest value in an array:
 a. If the array has just one value, return that value.

 b. Otherwise, ask your friend to consider an array identical to yours but with the last

value excluded, and fi nd the lowest value in this smaller array (line 9 in the

solution that follows).

 c. Return either the last value in the array or the value your friend returned to you,

whichever is smaller (lines 10–12).

 Java Solution Let’s turn these steps into a Java method that is embedded in a complete

application.

 The recursive method occurs on lines 4–13.

 1. import java.util.*;
2. public class Lottery
3. {

4. public static int findLowest (int arr[], int size)
5. // Finds the lowest integer in arr[]from index start to end
6. {
7. if (size �� 1)
8. return arr[0]; // Step (a) above
9. int temp � findLowest(arr, size � 1); // Step (b) above
10. if (temp � arr[size � 1])
11. return (temp);
12. else return arr[size � 1]; // Step (c) above
13. }

14. public static void main(String[] args) // The main method asks for the number of students
15. {
16. Scanner input � new Scanner(System.in); // and requests the lottery number for each.
17. System.out.println("How many students?");
18. int size � input.nextInt();
19. int a[] � new int[size] ;
20. for (int i � 0; i � size ; i��)
21. {
22. System.out.println("Input lottery number:");

 Here is another example of a method that is non–tail recursive.

 Loop Solution
sum � 0
for i � 0 to n � 1
 if (transaction[i] � 0) then sum � sum � transaction[i]
return (sum)

You should have no trouble translating this algorithm into a Java method.

sim23356_ch08.indd 307sim23356_ch08.indd 307 12/15/08 6:39:54 PM12/15/08 6:39:54 PM

308 Part 1 The Fundamental Tools

23. a[i] � input.nextInt();
24. }
25. System.out.println("The lowest lottery number is: " � findLowest(a, size));
26. }

27. }

 Output
 How many students?
3

Input lottery number:
 28

Input lottery number:
32

Input lottery number:
 20

The lowest lottery number is: 20

 Discussion
Lines 15–24: The statements that occur on these lines request the number of

students and fi ll the array with student housing numbers. You should

have no trouble understanding these lines.

Line 25: The call fi ndLowest(a, size) returns the lowest value in the array.

Lines 4–13: This is the recursive method, fi ndLowest(int [] arr, int size) . Let’s trace

the method using an array that has three integers, 28, 32, and 20. The

trace is shown in Figure 8.4 .

findLowest(a, 3)

 findLowest(a, 2)

 findLowest(a, 1)

 return 28

 temp � 28;

 if (28 � arr[2 � 1]) return 28 else return arr[1]

 Since arr[1] � 32, 28 is returned

 return 28

temp � 28;

if(28 � arr[3 � 1]) return 28 else return arr[2]

Since arr[2] � 20, 20 is returned

return 20

 FIGURE 8.4 Trace of findLowest(a, 3)

 Notice that the variable size has a different value depending on which instance of

fi ndLowest(...) is executing. Indeed, Java keeps track of the values of all parameters and

local variables in a recursive method in this way. For example, fi ndLowest(a, 3) is fi rst

called with size � 3. This is seen in the fi rst line of the trace. The call fi ndLowest(a, 2)
has its own variable size with value 2. The value of size (3) from the fi rst call is stored

until the call fi ndLowest(a, 2) returns. Then, fi ndLowest(a, 3) resumes execution from

where it had paused. Indeed, the value of size (3) is used when the line:

 if (temp � arr[size � 1])
 return (temp);
else
 return arr[size];

 executes. You can see this on the third line from the bottom of the trace.

sim23356_ch08.indd 308sim23356_ch08.indd 308 12/15/08 6:39:55 PM12/15/08 6:39:55 PM

 Chapter 8 Recursion 309

 8.3.3 Methods with More than One Recursive Call
 The previous examples demonstrate how to think recursively and how to incorporate recur-

sive thinking into a Java program. We emphasize that you do not need to know how to trace

a recursive method in order to write a recursive method. If you have faith in your “friend,”

your recursive methods will work.

 Nevertheless, tracing a method can be useful if you make an error and need to debug

a program. Moreover, understanding how to trace a recursive program might also improve

your ability to think recursively. In the next example, we consider a problem that requires

one of two possible recursive method calls.

 The application of Example 5.12 is a simple guessing game. To play, the computer

chooses a random number between 1 and 100 and the player attempts to discover the num-

ber with as few guesses as possible. With each guess, the program responds “too high” or

“too low.” Consequently, with each subsequent guess, the player narrows the range of pos-

sibilities until the secret number is discovered. For example, if 26 is the mystery number,

the game might proceed as follows:

 Player’s Guess Computer’s Response

 30 too high

 10 too low

 20 too low

 23 too low

 24 too low

 29 too high

 28 too high

 27 too high

 26 that’s it!

 This player was not so clever. A clever player can guess any number between 1 and

100 in at most seven guesses. Can you see the recursive idea? With each guess the player

can cut the range of possibilities in half, by guessing the middle number in the range. After

receiving a response from the computer, the player can call on his or her “friend” to guess

the number in the reduced range. That’s right, recursion! Using this method, the correct

sequence of guesses is:

 50 too high (The new range is 1–49.)

 25 too low (The new range is 26–49.)

 37 too high (The new range is 26–36.)

 31 too high (The new range is 26–30.)

 28 too high (The new range is 26–27.)

 26 that’s it!

 This simple game is at the heart of the binary search algorithm presented in Chapter 7.

Binary search is used by all computer programs that accomplish fast searches—programs

such as the ones used on eBay, Amazon, or Expedia—the workhorses of e-commerce.

Example 8.5 presents another slant on binary search, a recursive version.

 The recursive method fi ndLowest(...) has two parameters. The next example also

uses multiple parameters and illustrates that a recursive method may include more than

one recursive call.

sim23356_ch08.indd 309sim23356_ch08.indd 309 12/15/08 6:39:55 PM12/15/08 6:39:55 PM

310 Part 1 The Fundamental Tools

Problem Statement Write a program that searches for a key in an array of characters

using a recursive binary search algorithm.

Java Solution
1. import java.util.*;
2. public class BinarySearch
3. {
4. public static int binSearch(char[] x, int start, int finish, char key)

5. // x is an ascending sorted array of characters
6. // key is the character for which we are searching
7. // start and finish are the indices that mark the subarray of the array being searched
8. // returns the index of the cell that contains key, or (�1) if the key is not found.

9. {
10. if (start � finish) return �1; // key is not found, the range has collapsed
11. int mid � (start � finish)/2; // mid is halfway between the two endpoints
12. if (x[mid] �� key) // key is found
13. return mid;
14. else
15. if (x[mid] � key) // search the upper half
16. return binSearch(x, mid � 1, finish, key);
17. else
18. return binSearch(x, start, mid � 1, key); // search lower half
19. }
20. public static void main(String[] args) //This tests the binSearch method by filling an array
21. { // with the characters ‘A’ through ‘Z’
22. char[] a � new char[26] ;
23. for (int i � 0; i � 26 ; i��) // fill the array 'A' � 'Z'
24. a[i] � (char)(i � 65) ; // 65 represents 'A'
25. System.out.println("F is in location " � binSearch(a, 0, 25, 'F') � " of the array”);
26. System.out.println("S is in location " � binSearch(a, 0, 25, 'S') � " of the array");
27. System.out.println("Z is in location " � binSearch(a, 0, 25, 'Z') � " of the array");
28. if (binSearch(a, 0, 25, '! ') �� �1)
29. System.out.println("! is not located in the array”);
30. }

31. }

Output
F is in location 5 of the array
S is in location 18 of the array
Z is in location 25 of the array
! is not located in the array

Discussion The main(...) method (lines 20–30) creates a sorted character array with the

characters 'A' through 'Z' and tests the binSearch(…) method with a number of different

data. We trace through the execution of the recursive call on line 26,

binSearch(a, 0, 25, 'S').

 EXAMPLE 8.5

 To search for a value, x , in a sorted array, fi rst examine the value in the middle position,

and depending on whether that middle value is greater than x or less than x , ask your friend

to search another array, half the size. The base case occurs when the middle value is equal

to x; then you have succeeded in fi nding it, and you do not make a recursive call.

sim23356_ch08.indd 310sim23356_ch08.indd 310 12/15/08 6:39:56 PM12/15/08 6:39:56 PM

 Chapter 8 Recursion 311

The trace in Figure 8.5 goes fi ve levels deep.

binSearch(a, 0, 25, 'S')

 mid � (0 � 25)/2 � 12;

 a[12] �� 'S' is false; a[12] � 'S')

 return binSearch(a, 13, 25, 'S')

 mid � (13 � 25)/2 � 19;

 a[19] �� 'S' is false; a[19] � 'S'

 return binSearch(a, 13, 18, 'S');

 mid � (13 � 18)/2 � 15;

 a[15] ��'S' is false; a[15] � 'S'

 return binSearch(a, 16, 18, 'S');

 mid � (16 � 18)/2 � 17;

 a[17] �� 'S' is false; a[17] � 'S'

 return binSearch(a, 18, 18, 'S');

 mid � (18 � 18)/2 � 18; a[18] ��'S' is true

 return 18

 return 18

 return 18

 return 18

 return 18

return 18

FIGURE 8.5 Trace of binSearch(a, 0, 25, 'S')

 Unlike the methods of previous examples, binary search includes two recursive calls.

The recursion increases to fi ve levels choosing one of the two possible recursive calls each

time. Is binary search tail recursive? You bet it is.

A recursive method is tail recursive when the method exits after the return of the

recursive call.

 Although there are two possible recursive calls in binSearch(...) , each one is the last

statement executed in the method, and only one of them is called with each invocation of

binSearch(...) .

More than one recursive call can appear in a recursive method. The number of different

method calls and the number of parameters in each call are independent of whether or

not the method is tail recursive.

 8.4 THE RUNTIME STACK: TAIL RECURSION VERSUS
CLASSIC RECURSION

 Any method, recursive or not, may have parameters and local variables.

When a method is called, the JVM allocates or reserves memory for the parameters

and local variables of the method.

 This section of the computer’s memory allocated to parameters and local variables is called

the runtime stack or simply the stack . Other data are stored on the stack, but that does not

sim23356_ch08.indd 311sim23356_ch08.indd 311 12/15/08 6:39:57 PM12/15/08 6:39:57 PM

312 Part 1 The Fundamental Tools

concern us now. When a method exits, the memory allocated to its parameters and variables

is freed or deallocated for other use. For example, consider the following class with a (non-

recursive) method that returns the sum of two integers.

 1. public class AddEmUp
2. {
3. public static int add(int first, int second)
4. {
5. int sum;
6. sum � first � second;
7. return sum;
8. }

9. public static void main(String [] args)
10. {
11. int num1 � 5;
12. int num2 � 6;
13. int sum � add(num1, num2);
14. System.out.println("The sum is " � sum);
15. }
16. }

 Figure 8.6 shows the stack

• before line 13 executes,

• when add(…) begins execution on line 5,

• before line 7 executes,

• and again at line 14.

num1 5

num2main()

add()

6

sum

num1 5

num2 6

sum

num1 5

num2 6

sum

first 5

second 6

sum

first 5

second 6

sum 11

num1 5

num2 6

sum

At line 13 At line 5 At line 7
Memory for add() has been allocated

At line 14

11

 FIGURE 8.6 Memory is allocated for a method.

 A recursive method may call itself many times, and each time a method calls itself,

new memory is allocated for that particular invocation. Consider the following class,

 Recur , with one recursive method:

 1. public class Recur
2. {

sim23356_ch08.indd 312sim23356_ch08.indd 312 12/15/08 6:39:58 PM12/15/08 6:39:58 PM

 Chapter 8 Recursion 313

3. public static void recur(int n)
4. {
5. if (n �� 1) // the base case, stops recursion. �� is safer style but �� is okay.
6. System.out.println(n � n);
7. else
8. {
9. int sum � n � n;
10. recur(n � 1); // a recursive call
11. System.out.println(sum); //executes this upon return
12. }
13. }

14. public static void main(String[] args)
15. {
16. int number � 3;
17. recur(number);
18. System.out.println("All Done!");
19. }

20. }

 The program begins in main(...) and proceeds as follows:

• main(...) invokes recur(3) at line 17; main(...) has not fi nished executing at this point.

• recur(3) begins execution and at line 10 calls recur(2) ; recur(3) has not fi nished its

work.

• recur(2) begins execution and at line 10 calls recur (1) ; recur(2) has not fi nished.

• recur(1) starts execution, prints 2, and exits (lines 5 and 6); recur(1) is complete, and

returns.

• recur(2) resumes execution at line 11, prints 4 and exits.

• recur(3) is awakened, prints 6 and exits.

• Control passes back to main() (line 18), which prints "All Done!" and exits.

 Each time recur(…) is called, memory for its single parameter and local variable is

allocated. So, in theory, the stack can grow rather large and require quite a bit of memory.

Each time a recursive call returns to the calling method, which then resumes execution, the

values of the calling method’s variables and parameters are ready, waiting, and saved on

the stack. Figure 8.7 shows how the stack grows and shrinks during the execution of the

application Recur .
 Unlike the recur(int n) method, which prints the value of sum upon return, a tail recur-

sive method performs no actions after the recursive call returns. Thus, upon return of a tail

recursive method, no values that have been saved on the stack are accessed.

 At compile time, the compiler can tell whether or not a method is tail recursive. If the

last statement executed by a method is a recursive call, then the method is tail recursive. On

the other hand, if any instruction occurs after the recursive call, whether it be arithmetic, an

 if statement, or output, then the method is not tail recursive.

 Why should we care whether or not a method is tail recursive? Because if a method

is tail recursive, then there is no need to stack the local variables and parameters for each

recursive call. These values are not needed upon return. And consequently, the method can

be executed like a loop, running faster and using less memory.

sim23356_ch08.indd 313sim23356_ch08.indd 313 12/15/08 6:39:58 PM12/15/08 6:39:58 PM

314 Part 1 The Fundamental Tools

 8.4.1 Java and Tail Recursion
 Some language compilers automatically translate tail recursion into a loop structure.

Unfortunately, the Java compiler does not transform tail recursion into stack-effi cient

execution.

 The Java compiler handles every recursive method identically, tail recursive or not. There-

fore, recursive Java methods that execute too many recursive calls may run out of space,

and trigger a stack-overfl ow error. This catastrophe would be commonplace if recursion

were used, for example, in a method that waits for a user to click a mouse. The method

might check the mouse millions of times a second before the user actually clicks, with the

stack growing with each successive recursive call until the stack uses all available memory

and overfl ows .

 As of 2008, the JVM does not handle tail recursion effi ciently. Partly because of this,

Java has a well-deserved reputation for being slow and using lots of memory. Therefore,

number

main()

return to main() at line 18
main() prints “All Done”

main() exits

number 3 number 3

main()

n 3

sum 6

recur(3)
call 1 to recur()

number 3

n 3

sum 6

recur(2)
call 2 to recur()

number 3

n 3

sum 6

n 2

sum 4

return to call 2;
call 2 resumes

at line 11
return to call 1;
call 1 resumes

at line 11number 3

n 3

sum 6

n 2

sum 4

number 3

3

n 3

sum 6

n 2

sum 4

n 1

sum 2

recur(1)
call 3 to recur()

call 3 prints “2”
call 3 exits

memory allocated for
call 3 is de-allocated

call 2 prints “4”
call 2 exits

memory allocated for
call 2 is de-allocated

call 1 prints “6”
call 1 exits

memory allocated for
call 1 is de-allocated

FIGURE 8.7 A trace of recur(3). The stack grows and shrinks.

sim23356_ch08.indd 314sim23356_ch08.indd 314 12/15/08 6:39:58 PM12/15/08 6:39:58 PM

 Chapter 8 Recursion 315

the careful Java programmer should stick to iteration whenever possible, using recursion

only when it is really necessary.

 Java’s well-deserved bad reputation is unfortunate, but note well that it is due to Java’s

limitations and not to recursion. Any tail recursive method could be automatically trans-

lated by the compiler into a loop structure, and thereby perform as quickly and with the

same memory usage as its iterative counterpart. Compilers for programming languages that

rely heavily on recursion do exactly this.

 8.4.2 Classic Recursive Algorithms
 The careful Java programmer should favor iteration over tail recursion. However, it would

be foolish to avoid recursion altogether. A simple and straightforward implementation of

an algorithm is not always possible without recursion.

 Some algorithms intrinsically need to maintain the stack of values. These are so-called

 classic recursive algorithms. Recursion shows its full power in these algorithms. The fol-

lowing quicksort routine is one such classic recursive algorithm.

 8.5 QUICKSORT—A CLASSIC RECURSIVE ALGORITHM

 The algorithms of Examples 8.1, 8.2, and 8.5 use tail recursion, while those of Exam-

ples 8.3 and 8.4 do not. Yet none of these algorithms are classic recursive algorithms.

Indeed, these algorithms could easily be implemented using either tail recursion or loops.

There are algorithms, however, that cannot be implemented using loops or tail recursion.

Such algorithms require the full power of the runtime stack.

It is not always possible to implement an algorithm with tail recursion.

 We next look at a classic recursive sorting algorithm. It is very diffi cult comprehend

this algorithm in terms of iteration. Understanding this algorithm requires that you think

recursively. Look ma, no loops!

 Sorting routines are perhaps the most common of all algorithms. If searching is the

workhorse of e-commerce, then sorting is its twin brother. Consider the following recursive

algorithms: one is a famous classic recursive algorithm and the other is a recursive version

of a well-known algorithm usually implemented iteratively.

 Algorithm A
 To sort a list of n numbers:

 a. Ask your friend to sort the fi rst n � 1 numbers recursively.

 b. Insert the last number into the appropriate spot in the sorted list of n � 1

numbers.

 For example:

 To sort the list of numbers: 7, 5, 13, 1, 16, 9 .

 After step 1 the list looks like this: 1, 5, 7, 13, 16, 9 .

 After step 2 the list is sorted: 1, 5, 7, 9 , 13, 16.

 Algorithm B
 To sort a list of n numbers:

 a. Look at the last number in the list and remember it. Call it pivot .
 b. Partition the list around pivot . That is, reorder the list so that all the numbers

smaller than pivot come fi rst, followed by pivot , followed by all the numbers

greater than pivot . Note that partitioning the list does not in itself sort the list.

sim23356_ch08.indd 315sim23356_ch08.indd 315 12/15/08 6:39:59 PM12/15/08 6:39:59 PM

316 Part 1 The Fundamental Tools

 c. Ask your friend to sort the list of numbers smaller than pivot , and then sort the

list of numbers greater than pivot .

 For example:

 To sort the list of numbers: 7, 5, 13, 1, 16, 9 .

 The pivot is 9 .

 After Step 2: 7, 5, 1, 9 , 16, 13.

 Note that the list is not sorted yet. It is just partitioned around 9 .

 After step 3 the list is sorted: 1, 5, 7, 9 , 13, 16.

 Notice how elegant and simple these algorithms are compared to iterative sorting algo-

rithms. The details are left to the compiler, and we are free to think at a higher level. Recur-

sive thinking is a beautiful thing.

 Do you recognize one of these algorithms? Indeed, Algorithm A is the recursive version

of insertion sort, which was presented in Chapter 7. Algorithm B is a classic recursive algo-

rithm called quicksort. Quicksort is no misnomer! Quicksort got its name because, in prac-

tice, with careful pivot selection, it is the fastest of all key-comparison sorting algorithms. Its

use is so common that it may be the world’s most frequently executed algorithm. Yes, that’s

right—a recursive algorithm underlies almost every single e-commerce application!

 We leave the recursive Java implementation of insertion sort (Algorithm A) as an exer-

cise and discuss the implementation of quicksort (Algorithm B) in Example 8.6.

Problem Statement Write a program that sorts an array of integers using the quicksort

algorithm.

 In the following implementation of quicksort, the method

int partition(int [] a, int low, int high)

rearranges the array elements around pivot � a[high]. That is, it reorders the array so that

all the values in the array less than pivot appear to the left of pivot, and all the values

greater than pivot appear to its right. The partition algorithm is not recursive but it is a

bit complex. A detailed discussion would be a distraction, so we leave a more detailed

analysis as an exercise (see Programming Exercise 17).

 Be aware that partition(...) does not itself sort the array. For example, if

x � [9, 5, 7, 2, 0, 3, 8, 4, 1, 6]

a call to partition(x, 0, 9) rearranges the numbers in x as

[5, 2, 0, 3, 4, 1, 6, 7, 9, 8].

Here pivot is 6. All values to the left of 6 are less than 6, and all values to the right of 6

are greater than 6. In other words, 6 is in its fi nal position within the soon-to-be sorted

array, but the other elements have yet to be sorted. Once 6 has been placed, two smaller

sorting problems remain:

sort [5, 2, 0, 3, 4, 1] and sort [7, 9, 8].

Java Solution In the following implementation of quicksort, assume that partition(...)
behaves as previously described. That is,

partition(int [] a, int low, int high)

is a black box that places pivot � a[high] into its fi nal position so that all values to the

“left” of pivot are less than or equal to "pivot" and all values to the “right” of "pivot" are

greater than "pivot".

1. public class QuickSort
2. {

 EXAMPLE 8.6

sim23356_ch08.indd 316sim23356_ch08.indd 316 12/15/08 6:39:59 PM12/15/08 6:39:59 PM

 Chapter 8 Recursion 317

3. public static int partition (int[] a, int low, int high) // places pivot � a[high] in its final position
4. { // returns final position of pivot
5. int left � low � 1; int temp;
6. int pivot � a[high];

7. for (int right � low; right � high; right��)
8. {
9. if (a[right] �� pivot)
10. {
11. left��;
12. temp � a[left]; // swap a[left] and a[right]
13. a[left] � a[right];
14. a[right] � temp;
15. }
16. }
17. temp � a[left � 1] ; // swap pivot � a[high] with a[left�1]
18. a[left � 1] � a[high];
19. a[high] � temp;
20. return left � 1; // pivot's new position in the array
21. }

22. public static void quickSort (int[] a, int low, int high)
23. {
24. if (low � high) // if the array has more than one item
25. {
26. int pivotPlace � partition(a, low, high); // place pivot into its final position
27. quickSort(a, low, pivotPlace � 1); // sort the values left of the pivot
28. quickSort(a, pivotPlace � 1, high); // sort the values right of the pivot
29. }
30. }
31. }

32. public class QuickSortDemo
33. {
34. public static void main(String[] args)
35. {
36. int a[] � {9, 5, 7, 2, 0, 3, 8, 4, 1, 6} ; // some sample data
37. QuickSort.quickSort(a, 0, 9);
38. System.out.print("The sorted data : ");
39. for (int i � 0; i � 10; i��)
40. System.out.print(a[i] � " ");
41. }

42. }

Output
The sorted data : 0 1 2 3 4 5 6 7 8 9

Discussion The main(...) method of QuickSortDemo (lines 34–41) initializes an array

with 10 integers and passes the array to the quickSort(...) method (line 37). When

 quickSort() returns, the sorted data are displayed.

 The QuickSort class (lines 1–31) consists of two static methods. As you know,

partition(...), lines 3–21, rearranges the array so that the pivot element (the last item

of the array) is placed in its proper position. All data to the left of pivot are less than

or equal to pivot, and those to the right are greater than pivot. The partition(...) method

returns the index of the pivot element after the array has been rearranged.

 The second method of QuickSort is quickSort(...) itself. Compared to partition(...),
quickSort(...) is rather simple. The arguments supplied to quickSort(...) are an array a[]
and two integers, low and high, delineating a section of the array.

sim23356_ch08.indd 317sim23356_ch08.indd 317 12/15/08 6:40:00 PM12/15/08 6:40:00 PM

318 Part 1 The Fundamental Tools

 For example, if

a[] � {5, 2, 0, 3, 4, 1, 6, 7, 9, 8}, low � 0, and high � 5,

then the call quickSort(a, low, high) sorts the subarray a[0 .. 5] � [5, 2, 0, 3, 4, 1].

Similarly, quickSort(a, 7, 9) performs its magic on a[7 .. 9] � [7, 9, 8].

 Line 24 (if low � high) guarantees that the array has more than one element. If

this is not the case, no sorting is necessary. This condition, the base case, stops the

recursion.

 Figure 8.8 traces quickSort(a, 0, 5) using the array a[] � {7, 5, 16, 1, 13, 9}. This

trace is harder to follow than a tail recursive trace. To help understand the trace, use the

indentations to keep track of which invocation of quickSort(...) is active. We show the

array after each call to partition(...) with the pivot value shown in bold in its fi nal position

and the active subsection of the array underlined.

quickSort(a, 0, 5)

partition(...) rearranges the array around pivot element 9: [7, 5, 1, 9, 16, 13]
Then, the first of two recursive calls is made, this one on the subarray [7, 5, 1].

 quickSort(a, 0, 2)

 partition(...) rearranges the subarray [7, 5, 1] around pivot element 1: [1, 5, 7, 9, 16, 13]

 quickSort(a, 0, �1)

 0 is not less than �1 so the method returns
 return

 quickSort(a, 1, 2)

 partition(...) rearranges the subarray [5, 7] around pivot element 7: [1, 5, 7, 9, 16, 13]
 Two recursive calls are made both of which return immediately.

 quickSort(a, 1, 1)

 1 is not less than 1 so this returns
 return

 quickSort(a, 3, 2)

 3 is not less than 2 so this returns
 return
 return
 return

Finally, the second recursive call generated by quickSort(a, 0, 5) is made. This one,
quickSort(a, 4, 5), sorts the subarray [16, 13].

 quickSort(a, 4, 5)

 partition(...) rearranges the subarray [16, 13] around 13: [1, 5, 7, 9, 13, 16]
 As before, two recursive calls are made both of which return immediately.

 quickSort(a, 4, 3)

 4 is not less than 3 so this returns
 return
 quickSort(a, 5, 5)

 5 is not less than 5 so this returns
 return
 return
return

FIGURE 8.8 A trace of quickSort(…) on the array [7, 5, 16, 1, 13, 9]

sim23356_ch08.indd 318sim23356_ch08.indd 318 12/15/08 6:40:01 PM12/15/08 6:40:01 PM

 Chapter 8 Recursion 319

 Tracing a classic recursive algorithm can be a daunting task. But remember, if you can

think recursively, then a trace is not necessary, or even useful, when designing a recursive

algorithm. Why bother tracing a recursive algorithm at all? A trace can help you understand

what goes on behind the scenes.

Recursive thinking does not require tracing through the details; it requires only that

you make correct use of the recursive call. However, a trace can help you debug a

poorly designed algorithm.

 In the next section we design a real-life classic recursive algorithm. We purposely

make a mistake in the design and use a trace to uncover the mistake. Then, we redesign the

algorithm correctly and conclude with a Java implementation.

 8.6 A CASE STUDY—DESIGNING AN ANAGRAM GENERATOR

 Millions of Scrabble© sets have been sold since Alfred Mosher Butts invented the word game

during the Great Depression. Each Scrabble player has a rack of seven tiles each displaying a

letter, from which he/she tries to make words and subsequently accumulate points. A player

gets a 50 point “bingo” bonus for using all seven of his/her tiles in one turn. Scrabble requires

a great deal of skill, and a “serious” Scrabble game is much more complex than a casual game

among friends. A world-class tournament Scrabble player must be skilled at anagramming.
Anagramming is the ability to look at a set of letters and visualize possible bingos.

 Computers play world-class Scrabble by brute force. To fi nd a seven-letter bingo, a

computer simply enumerates all the arrangements or permutations of those letters, check-

ing the validity of each permutation in a dictionary. There are 5040 possible permutations

of seven letters, too many for a human to check one by one. But a computer can examine

the 5040 possibilities in what seems like no time at all.

 In this case study, we design a classic recursive algorithm that generates all the

p ermutations of a given word. In previous examples, we immediately presented a correct

 Figure 8.9 gives another view of the actions of quickSort(…).

1

72

3

7 5 16 1

9

1 8 913 16

65

5 7

16 13

4

5 7

157

13 9

FIGURE 8.9 The method quickSort(…) acting on [7 5 16 1 13 9]

sim23356_ch08.indd 319sim23356_ch08.indd 319 12/15/08 6:40:01 PM12/15/08 6:40:01 PM

320 Part 1 The Fundamental Tools

recursive solution for the problem, but here, we move more slowly: trying an idea that

doesn’t quite work, debugging the solution, and refi ning the idea until it works. This is

more akin to the process that you actually engage in as a programmer, especially when

designing a diffi cult recursive algorithm.

 8.6.1 A First Attempt
 How might we generate and print all permutations of a given word? Is there a way for our

 friend to help? In other words, can we print permutations of a word by printing permuta-

tions of smaller words? Does recursive thinking help? Absolutely.

 A permutation of a word can begin with any letter of the word, and continues with any

other letter, and so on. Indeed,

 a permutation of a word begins with any letter of the word followed by any

permutation of the remaining letters.

Hence, to print all the permutations of a particular word, we can rely on our friend to print

the permutations of the remaining letters.

 Here’s a fi rst attempt in pseudocode:

 permute(word) // prints all the permutations of a word

 if (word has no characters) // an empty word has no permutations
 return
 else
 // print each letter followed by all the permutations
 // of the remaining letters.
 for each letter L in word
 {
 print L ;
 permute(word � L); // (word � L means word with L deleted)
 printnewline;
 }

The algorithm looks good, but unfortunately this is wishful thinking. Can you see why

this algorithm does not work? Recursion can be subtle, and this recursive algorithm has a

fl aw. It may be diffi cult to fi nd the fl aw or even notice that there is one, so implement the

algorithm, run it, and see what happens.

 1. public class PermuteAlt
2. {

3. public static void permute(char[] array)
4. {
5. if(array.length !� 0)
6. for (int j � 0; j � array.length; j��)
7. {
8. // build a new array from array but without the jth character
9. char newWord[] � new char[array.length � 1];
10. for (int k � 0; k � j ; k��) // copy array[0 .. j � 1] to newWord
11. newWord[k] � array[k];

12. for (int k � j; k � array.length � 1; k��) // copy array[j � 1 .. length � 1] to newWord
13. newWord[k] � array[k � 1];

14. // print the jth character of array
15. System.out.print(array[j]);
16. // recursively call permute on newWord, i.e., array without the jth character
17. permute(newWord);

sim23356_ch08.indd 320sim23356_ch08.indd 320 12/15/08 6:40:02 PM12/15/08 6:40:02 PM

 Chapter 8 Recursion 321

18. System.out.println();
19. }
20. }

21. public static void main(String[] args)
22. {
23. char letters[] � {'a', 'b', 'c'};
24. permute(letters);
25. }

26. }

 Using the word abc , the application displays the following words interspersed with

various blank lines:

 abc

cb

bac

ca

cab

ba

 That’s not quite what we expected. We were hoping for:

 abc
acb
bac
bca
cab
cba

 A bad recursive idea often gives surprising results. Figure 8.10 displays a trace. Try to

fi nd the fl aw.

 You can check the output from Figure 8.10 and see that it is indeed:

 abc
newline
cb
newline
newline
bac
newline
ca
newline
newline
cab
newline
ba
newline
newline

sim23356_ch08.indd 321sim23356_ch08.indd 321 12/15/08 6:40:02 PM12/15/08 6:40:02 PM

permute({'a', 'b', 'c'})

 print 'a'

 permute({'b', 'c'})

 print 'b'

 permute({'c'})

 print 'c'

 permute({})

 return

 printnewline

 return

 printnewline

 print 'c'

 permute({'b'})

 print 'b'

 permute ({})

 return

 printnewline

 return

 printnewline

 return

 printnewline

 print 'b'

 permute({'a', 'c'})

 print 'a'

 permute({'c'})

 print 'c'

 permute({})

 return

 printnewline

 return

 printnewline

 print 'c'

 permute({'a'})

 print 'a'

 permute ({})

 return

 printnewline

 return

 printnewline

 return

 printnewline

 print 'c'

 permute({'a', 'b'})

 print 'a'

 permute({'b'})

 print 'b'

 permute({})

 return

 printnewline

 return

 printnewline

 print 'b'

 permute({'a'})

 print 'a'

 permute ({})

 return

 printnewline

 return

 printnewline

 return

 printnewline

return

FIGURE 8.10 A flawed recursive method

322

sim23356_ch08.indd 322sim23356_ch08.indd 322 12/15/08 6:40:03 PM12/15/08 6:40:03 PM

 Chapter 8 Recursion 323

 The trace in Figure 8.10 makes a pretty design, but the output is a mess. The letter a is

 missing from what should be acb on the third line; the letter b is similarly missing from the

front of ca on the eighth line; the letter c should appear before ba on the third to last line;

and, then there are all the blank lines! What went wrong? How do we fi x it? One thing is

certain: we don’t start by randomly patching up the program.

Do not attempt to fi x a program by changing some detail that causes an effect you

cannot predict!

 This warning is particularly important for a recursive algorithm in which the effects of

small changes in code are hard to predict. So don’t rush. First determine what is wrong with

your algorithm. Then redesign it to fi x the problem.

 8.6.2 A Better Plan
 The missing letters in the output lead us to the problem. The problem with the algorithm of

the previous section is the loop:

 for each letter L in word

 {

 print L ;

 permute(word � L);

 printnewline;

 }

 This idea is not correct. In this loop, each letter of word is printed just once (print L) before the

recursive call that is supposed to print all the subsequent permutations, (permute(word � L)).
In fact, the letter L should appear in front of each one of the permutations of word � L , and

not just once in front of the entire list of permutations. Read that last sentence again, and

make sure you see why our original idea was fl awed. We might have found this fl aw just by

thinking about it, but a careful trace points us in the right direction.

 To fi x this problem send each letter to permute(...) as an argument, so that permute(...)
prints the letter in front of each permutation that it recursively generates. This suggests a

new version of the method permute():

 permute(word, precede) ,

with two parameters:

 1. word —the original word, and

 2. precede —a letter (or letters) to be printed before each permutation.

 We reformulate a recursive idea in terms of this new method:

 To print precede before each one of the permutations of word , do the following:

 for each letter L in word, (reading left to right)
 delete L from word ,
 concatenate L to the right end of precede, and
 print precede before each of the permutations of the new word . // Recursion!

 For example, the method call

 permute (abc, d)

generates three recursive calls, in order:

 permute(bc, da),
permute(ac, db), and
permute(ab, dc).

sim23356_ch08.indd 323sim23356_ch08.indd 323 12/15/08 6:40:03 PM12/15/08 6:40:03 PM

324 Part 1 The Fundamental Tools

 Here is the pseudocode that describes the algorithm:

 permute (word, precede)

 if (word is empty) then // there are no permutations of word , so just print precede
 print precede followed by newline;

 else
 for each letter L in word
 permute(word � L , precede � L)

 // to print precede in front of all the permutations of word
 // print precede � L in front of all the permutations of word � L
 // word � L is word with L deleted
 // precede � L is precede with L appended to the right end of precede

 To print the permutations of word , we call permute(word , { }). That is, we print nothing ({})

in front each of the permutations of word .

 Figures 8.11 and 8.12 trace the pseudocode algorithm for the word abc .

permute(abc, {})

 permute(bc,a)

 permute(c, ab)

 permute({}, abc)

 print "abc" newline

 return

 permute(b, ac)

 permute({}, acb)

 print "acb" newline

 return

 return

 permute(ac, b)

 permute(c, ba)

 permute({}, bac)

 print "bac" newline

 return

 permute(a, bc)

 permute({}, bca)

 print "bca" newline

 return

 return

 permute(ab, c)

 permute(b, ca)

 permute({}, cab)

 print "cab" newline

 return

 permute(a, cb)

 permute({}, cba)

 print "cba" newline

 return

 return

return

FIGURE 8.11 A trace of the pseudocode,
permute(abc, {})

sim23356_ch08.indd 324sim23356_ch08.indd 324 12/15/08 6:40:03 PM12/15/08 6:40:03 PM

 Chapter 8 Recursion 325

permute('''', abc)
print: abc

permute('''', acb)
print: acb

permute(c, ab) permute(b, ac)

permute('''', bac)
print: bac

permute('''', bca)
print: bca

permute(c, ba) permute(a, bc)

permute('''', cab)
print: cab

permute('''', cba)
print: cba

permute(b, ca) permute(a, cb)

permute(bc, a) permute(ac, b)

permute(abc, '''')
1

2
permute(ab, c)

3

4

5

6

7

8

9

10

11

12

13

14

15

16

FIGURE 8.12 A graphical trace of the pseudocode, permute(abc, {})

 EXAMPLE 8.7Problem Statement Write a recursive method to generate all permutations of n
characters.

Java Solution The following class includes the new two-parameter version of

permute(...) as well as a main(...) method that demonstrates the action of permute({'e',
'a', ' t '}, {}). That is, the permutations of the word eat are displayed. We use two char
arrays for word and precede.

1. public class Permute
2. {

3. public static void permute(char[] word, char[] precede)
4. {
5. if (word.length �� 0) // word is empty so just print precede
6. {
7. for (int k � 0; k � precede.length; k��)
8. System.out.print(precede[k]);
9. System.out.println();
10. }
11. else
12. for (int j � 0; j � word.length; j��)
13. {
14. // create newWord from word but with with the j th character deleted
15. char newWord[] � new char[word.length � 1];

 The algorithm produces the following output:

 abc
acb
bac
bca
cab
cba

sim23356_ch08.indd 325sim23356_ch08.indd 325 12/15/08 6:40:04 PM12/15/08 6:40:04 PM

326 Part 1 The Fundamental Tools

16. for (int k � 0; k � j ; k��)
17. newWord[k] � word[k];
18. for (int k � j; k � word.length � 1; k��)
19. newWord[k] � word[k � 1];

20. // creates newPre from precede with jth character added at end
21. char newPre[] � new char[precede.length � 1];
22. for (int k � 0; k � precede.length; k��)
23. newPre[k] � precede[k];
24. newPre[newPre.length � 1] � word[j];

25. permute(newWord, newPre);
26. }
27. }

28. public static void main(String[] args)
29. {
30. char word[] � { 'e', 'a', ' t '};
31. char precede[] � {};
32. permute(word, precede);
33. }

34. }

Output A call to permute({ 'e', 'a', ' t '}, {}) produces the following set of permutations:

eat
eta
aet
ate
tea
tae

The permutations of eat produce four valid words: eat, eta, ate, and tea… well, fi ve if

you include TAE (Telekommunikations-Anschluss-Einheit), the German standard for

telephone plugs.

Discussion This fi nal algorithm is not the algorithm that we had initially conceived,

but the idea is closely related to our original fl awed plan. To begin with an idea, right or

wrong, and to refi ne it and test it until it eventually evolves into a correct solution is a

natural and productive process.

 8.7 IN CONCLUSION

 Recursion is an important tool for problem solving and algorithm design. It is a fundamen-

tal method of program control included in virtually every modern programming language.

Recursive thinking means having faith that your friend (or cat) will do the job that you ask

of him or her. Recursive thinking does not require you to imagine a lengthy sequence of

recursive calls with corresponding details of the stack.

sim23356_ch08.indd 326sim23356_ch08.indd 326 12/15/08 6:40:05 PM12/15/08 6:40:05 PM

 Chapter 8 Recursion 327

 Recursion provides a simple and elegant tool for problem solving. Programs written

recursively are usually easier to understand than other programs. Recursion carries with it

a small price, and that is the necessity of maintaining a potentially large stack of values for

local variables and parameters. The maintenance of the stack may slow down a program,

but often the extra time is negligible.

 Tracing a recursive program can be tricky, but it is a good way to observe the amount

of work that is done for you behind the scenes. Tracing through the execution of a program

step by step is unnecessary when designing a recursive algorithm, but a trace can help when

you make a mistake in your design and you need to debug and/or redesign.

 Just the Facts

• A recursive method is a method that calls itself.

• Recursion is a powerful method for problem solving .

• When designing a recursive algorithm, assume that you have a friend who is willing

and able to solve the same kind of problem that you are trying to solve.

• Recursive thinking does not require you to imagine a lengthy sequence of recursive

calls with corresponding details of the stack, but instead insists on “faith in your

friend.”

• Every recursive method needs a base case that stops the recursion. Recursive calls

must eventually reach the base case.

• Tracing a recursive method is useful for debugging, and it forces you to step through

the details of the recursive calls and stack values.

• A recursive method can contain several recursive calls.

• A recursive algorithm is often easier to describe and understand than an iterative

algorithm.

• Recursion allows you to think at a higher level of abstraction and leave the driving to

the compiler.

• Like any method, a recursive method can have any number of parameters.

• Tracing a recursive method is harder than tracing an iterative method because several

different instances of the method may be active, one executing and the others

suspended and waiting to resume.

• Local variables and parameters for all recursive calls are saved on the stack.

• Recursion, due to the overhead necessary in maintaining the stack, can slow down

the execution of a program.

• A tail recursive method is a special kind of recursive method in which the last

statement executed is always a recursive call. In other words, the method executes no

statements after a recursive call resumes.

• Any loop can be implemented with tail recursion.

• A tail recursive method can always be rewritten as a loop.

• Java does not rewrite tail recursive methods as loops. As a result, the runtime stack

can grow very large when executing a tail recursive method.

• Some recursive methods cannot be implemented iteratively as loops. These classic

recursive algorithms require the full power a stack.

sim23356_ch08.indd 327sim23356_ch08.indd 327 12/15/08 6:40:06 PM12/15/08 6:40:06 PM

328 Part 1 The Fundamental Tools

 Bug Extermination

• Make sure to include a condition that stops the recursion, and check that the

sequence of recursive calls eventually activates this condition. Otherwise, a program

falls into infi nite recursion.

• When a recursive method returns a value, use the returned value. Letting a returned

value “hang” is either a logical error or a sure sign that you shouldn’t be returning a

value in the fi rst place.

• When you are using recursion, use tail recursion whenever possible.

• A loop is preferable to recursion when the time/space needs of the runtime stack

noticeably affect the speed of the program as can sometimes be the case with Java.

• Recursion is preferable to a loop whenever a recursive solution makes the program

easier to understand. This is often the case with classic recursive algorithms.

• Recursive methods sometimes exhibit great differences in performance on different

size data. Be vigilant about testing your recursive methods on realistic data.

sim23356_ch08.indd 328sim23356_ch08.indd 328 12/15/08 6:40:06 PM12/15/08 6:40:06 PM

 Chapter 8 Recursion 329

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 3 A recursive method calls

 6 Recursive search algorithm

 8 The JVM allocates memory for

parameters and variables on the

 10 Tail recursion can be implemented as

a

 11 Helper, nonrecursive method of

quicksort

 13 The partition method of quicksort

rearranges the elements of an array

around the

 14 Debugging method

 15 A sequence of recursive calls must

eventually reach the

 16 Binary search fi rst examines this value

 17 A rearrangement

Down
 1 When a tail recursive call resumes, it

immediately

 2 Infi nite recursion will cause a

program to run out of

 4 Last call of a method is a recursive

call

 5 A sort routine with two recursive calls

 7 If method(n) calls method(n � 1),

method(n � 1) begins and method(n)

is

 9 Ensures that the recursion stops

 12 int guess(int n)
 {
 if (n ��1) return 1;
 else return n � guess(n � 1);
 }.
 guess(5) returns (word)

3 4

8

16

14

10

7

12

15

17

9

11

13

2

5

6

1

sim23356_ch08.indd 329sim23356_ch08.indd 329 12/15/08 6:40:06 PM12/15/08 6:40:06 PM

330 Part 1 The Fundamental Tools

 SHORT EXERCISES
 1. True or False

 If false, give an explanation.

a. Every recursive method must return an integer.

b. Every recursive method must have at least one parameter.

c. Any loop can be rewritten as a recursive method.

d. A recursive method can make recursive calls.

e. Tail recursion is recursion with a story.

f. An object or an array cannot be passed as a parameter to a recursive method.

g. Java always keeps track of each local variable and each parameter of a recursive

method on the runtime stack.

h. Recursion in Java is usually slower than iteration.

i. Any tail recursive method can be accomplished using loops.

j. Mutual recursion means that two methods are in love.

 2. Recursive Design
 Design a recursive algorithm to solve the following problem. Do not write any code.

 You are given a diagram showing a family tree. List the descendents of any given

person.

 Hint: If a person has no children then list no descendants. Otherwise…?

 3. Recursive Design
 Design a recursive algorithm to solve the following problem. Do not write any code.

 Find the largest and smallest numbers in an array of integers.

 Hint: If the list has two numbers then the smallest is the smaller and the largest is

the larger. Otherwise, ask your friend to consider all the numbers in the list except

the fi rst two, and determine the smallest and largest in the shortened list. You take it

from there using three if statements.

 4. Testing Java’s Tail Recursion Implementation
 Recall that recognizing tail recursion and transforming the code into a loop is

something that the standard Java compiler does not do. Indeed, there are a few

(nonstandard) Java compilers that do convert tail recursion. The following code

can be used to test whether or not your Java compiler recognizes and converts tail

recursion:

 public class TailRecursionTest
{

 private static int loop(int i)
 {
 return loop(i);
 }

 public static void main(String[] args)
 {
 loop(0);
 }

}

 When the JVM executes this code, what do you expect to happen if the compiler

recognizes tail recursion and converts the program into a loop, and what do you

sim23356_ch08.indd 330sim23356_ch08.indd 330 12/15/08 6:40:07 PM12/15/08 6:40:07 PM

 Chapter 8 Recursion 331

expect to happen if the compiler does not? Feel free to experiment, but make sure

to explain your answer.

 5. Recursive Thinking—Secret Santa
 You live in a village that has an annual Holiday of Gifts when each person in the

village gives another person a gift. The tradition is that children do not give gifts,

and seniors do not receive gifts. Everyone else gives one gift and receives one gift.

It is public knowledge who is responsible for whose gift. Starting with every senior

there is a chain of giftgivers terminating with a child. Assume that you are neither a

senior nor a child. Design a recursive algorithm to determine the length of the chain

from a senior to you, and another recursive algorithm to calculate the length of the

chain from you to a child.

 6. Recursive Thinking — K th Smallest
 Design a recursive algorithm to solve the following problem. Do not write any code.

 Find the k th smallest value in an array t of numbers.

 Hint: If k equals the size of t , then return the largest value in t . Otherwise, create two

new arrays, one containing the values less than t [0] and one with the values larger than

or equal to t [0]. (If all the values are larger than or equal to t [0], then move t [0] to the

empty fi rst array.) Keep track of how many elements are in each new array. Now what?

 7. Recursive Thinking—Trees
 You live in B-land where the King is named B. The King has two advisers. Each

of these advisers has two other advisers and so on. Everyone in the village has two

advisers except the peasants. Everyone in the village advises exactly one person,

except the King who advises nobody. The peasants have no advisers (but each

advises one other person). The name of a person’s two advisers is public knowledge.

 Design recursive algorithms to:

• count the number of peasants in B-land.

• count the total number of people in B-land.

• list the names of everyone in B-land.

 Hint : Start with the King.

 8. Tracing
 Trace the following program. Show the trace and the fi nal output. What do you think

the method does?

 public class Testmys
{
 public static void main(String[] args)
 {
 int a[] � {1, 0, 0, 1, 0};
 System.out.println(mystery(a, 5));
 }

 public static int mystery(int a[], int size)
 {
 if (size �� 0)
 return 0;
 else if (a[size � 1] �� 0)
 return 2 * mystery(a, size � 1);
 else return 2 * mystery(a, size � 1) � 1;
 }
}

sim23356_ch08.indd 331sim23356_ch08.indd 331 12/15/08 6:40:07 PM12/15/08 6:40:07 PM

332 Part 1 The Fundamental Tools

 9. Tracing
 Trace the following program. Show the trace and the fi nal output. What do you think

the method does?

 public class Testmys
{
 public static void main(String[] args)
 {
 int a[] � {24, 35, 67, 89, 102, 134, 167, 189, 209, 289, 354, 396, 425};
 System.out.println(mystery(a, 13));
 int b[] � {35, 67, 89, 105, 135, 179};
 System.out.println(mystery(b, 6));
 }

 public static int mystery(int a[], int size)
 {
 if (size �� 1)
 return a[0];
 if (size �� 2)
 return (a[0] � a[1]) / 2;
 int helper[] � new int[a.length � 2];
 int k � 0;
 for (int j � 1; j � size � 1; j��)
 {
 helper[k] � a[j];
 k��;
 }
 return mystery(helper, size � 2);
 }
}

 10. Find and Fix the Errors
 The following recursive method addeven (...) is supposed to add the even indexed

values of an array, i.e., a [0] � a [2] � a [4] � … There are bugs in the method.

Trace the method using test data, fi nd the bugs, and correct them. Be thorough. The

method may work on some data sets.

 public static int addeven(int a[], int size)
{
 if (size �� 2)
 return a[1];
 return a[size � 1] � addeven(a, size � 2) ;
}

 11. Analyzing Partition
 Examine the partition(...) method of Example 8.6, and give a brief description of the

algorithm underlying the code. Explain why it works. Use an example or diagrams

to help you if necessary.

a. If x [] is the array [13, 4, 62, 26, 83, 6, 12, 55, 23, 81, 35], what value is returned

by partition(x, 0, 10) ? What are the contents of x [] after the call partition(x, 0, 10) ?

b. If y [] is the array [3, 6, 8, 7, 9, 10, 13, 18, 36, 11], what value is returned by

 partition(y, 5, 9) ? What are the contents of y [] after the call partition(y, 5, 9) ?

sim23356_ch08.indd 332sim23356_ch08.indd 332 12/15/08 6:40:07 PM12/15/08 6:40:07 PM

 Chapter 8 Recursion 333

 12. Find and Fix the Errors

 To fi nd the greatest common divisor of a pair of two non-negative integers:

• Continually form a “new pair” of integers by replacing the larger number with the

positive difference of the two, until the smaller number is zero.

• The larger number of the fi nal pair is the greatest common divisor of the original

numbers. Return that number.

 The following chart shows the calculation of the greatest common divisor of 100

and 38. On the last line of the chart, the smaller number is 0, therefore the greatest

common divisor of 100 and 38 is 2.

Pair Difference New Pair

100, 38 100 � 38 � 62 62, 38

62, 38 62 � 38 � 24 38, 24

38, 24 38 � 24 � 14 24, 14

24, 14 24 � 14 � 10 14, 10

14, 10 14 � 10 � 4 10, 4

10, 4 10 � 4 � 6 6, 4

6, 4 6 � 4 � 2 4, 2

4, 2 4 � 2 � 2 2, 2

2, 2 2 � 2 � 0 2, 0

 The following recursive method is a buggy attempt to implement this algorithm.

Find the bug and fi x it. Make sure to thoroughly test the method. The method may

work correctly under some circumstances.

 public static int gcd(int small, int large)
{
 if (small �� 0)
 return large;
 return gcd (small, large � small);
}

 PROGRAMMING EXERCISES
 1. Factorial
 Write and test a recursive method to compute n !, the product of the fi rst n positive

integers. Given an integer parameter n , your method should return n!. For example

3! � 1 × 2 × 3 � 6. Optional: Write a tail recursive version.

 2. Triangle Numbers
 Write and test a recursive method to compute 1 � 2 � … � n , the n th triangle

number. Given an integer parameter n , your method should return the n th triangle

number. Optional: Write a tail recursive version.

 3. Multiples of Ten
 Write and test a recursive method to check whether or not all the numbers in an array

are multiples of 10.

 4. Input Loop
 Write and test a recursive method that accepts and returns an integer in the range 20

through 80, inclusive. If the user enters an invalid number, the method should issue

an error message and prompt again.

sim23356_ch08.indd 333sim23356_ch08.indd 333 12/15/08 6:40:07 PM12/15/08 6:40:07 PM

334 Part 1 The Fundamental Tools

 5. Guessing Game
 Write and test a recursive method that plays a high/low guessing game. In the

game, the method randomly chooses an integer between 0 and 100. A player tries

to discover the number with a series of guesses. After each guess, the player is told

whether his/her guess is too high or too low.

 6. Numerical Palindromes
 Write and test a recursive method that determines whether or not an integer is a

numerical palindrome. A number is a palindrome if it reads the same forward and

backwards. For example, 23432 and 1010101 are palindromes. Your method should

return true or false .

 7. Simultaneous Largest and Smallest
 Write and test a recursive method that simultaneously fi nds the largest and second-

largest values in an integer array b[] .

 Hint : Your friend fi nds the largest and second-largest of the fi rst b.length � 2 values.

Then use just three if statements to determine the overall largest and second largest.

Note that this method must return two integers. Because a method can return just one

value, you will need to “wrap up” the two integers in an array of size two.

 8. Exponentiation
 Write and test two recursive methods to calculate a b for positive integers a and b .

 Method 1: If b � 0 then return 1 else return a × (a b�1) .

 Method 2: If b � 0 then return 1 else if b is even return (a b /2) 2 else return a × (a b �1).

 Time both methods. Which is faster?

 9. Positive Numbers
 Write and test a recursive method to determine whether or not all the values stored in

an integer array are greater than zero.

 10. Print an Array
 Write and test a recursive method that prints all the values in an array.

 11. Reverse an Array
 Write and test a recursive method that reverses the elements in an array. Hint : Swap

the fi rst element with the last and “recurse” on the inner portion of the array.

 12. Recursive Max Sort
 To recursively sort an array, fi nd the largest element in the array and swap it with the

last element. Then recursively sort the array from the start to the next-to-the-last ele-

ment. Write and test a method that recursively sorts an array in this manner.

 13. Intersection
 Write and test a recursive method that computes the intersection of two sets—that is, the

elements that the two sets have in common. You may assume that a set is implemented as

an array of integers and contains no duplicate elements. For example, the intersection of

{6, 3, 8, 1} and {1, 9, 2, 16, 8, 19, 32, 11} is {8, 1}. Your method should return an array.

 14. Union
 Write and test a recursive method that computes the union of two sets. The union of

two sets consists of the elements that are in one set or both of the sets. For example, the

union of {6, 3, 8, 1} and {1, 9, 2, 18, 8, 19, 32, 11} is {6, 3, 8, 1, 9, 2, 18, 19, 32, 11}.

You may assume that the sets are implemented as integer arrays with no duplicates.

sim23356_ch08.indd 334sim23356_ch08.indd 334 12/15/08 6:40:08 PM12/15/08 6:40:08 PM

 Chapter 8 Recursion 335

 15. Insertion Sort
 Write and test a recursive version of the insertion sort described in Algorithm A,

Section 8.5.

 To recursively perform insertion sort on a list of n numbers:

 a. Sort the fi rst n � 1 numbers recursively.

 b. Insert the last number into the appropriate spot in the sorted list of n � 1 numbers.

 The method of part (b) should also be written recursively. Your solution, therefore,

will have a recursive method that calls another recursive method.

 Hints : To insert element into a sorted (ascending) list of n � 1 numbers:

 a. Compare element with the last number in the list.

 b. If element is greater than the last number, then return a sorted array consisting of

the sorted list of n � 1 numbers followed by element .
 c. Otherwise, remove and store the last number in the list. Call this last . Recursively

insert element into the sorted list of the remaining n � 2 numbers; call the result

 x[] . The result x[] is a sorted list of n � 1 numbers. Return a sorted array of n

numbers consisting of x[] followed by last.

 16. Towers of Hanoi
 The Towers of Hanoi is a famous puzzle, invented in 1883 by mathematician

Edouard Lucas, used today primarily for teaching recursion. The most natural solu-

tion exhibits a classic recursive algorithm. An iterative solution is not at all obvious.

The puzzle consists of three pegs with n disks, of decreasing size, stacked upon one

of them. To solve the puzzle, move all of the disks to one of the other pegs one at a

time without ever placing any disk on top of a smaller one. See Figure 8.13 .

FIGURE 8.13 Towers of Hanoi with star-shaped disks

 Write and test a recursive method that solves the Towers of Hanoi puzzle. Your

method hanoi(...) should have four parameters: int n , char start , char fi nish , char
 using . Your test call should be

 hanoi(5, ‘A’, ‘B’, ‘C’);

 where the pegs are called ‘A ’ , ‘B ’, and ‘C ’, and you are trying to move fi ve disks from

 ‘A ’ to ‘B ’, using ‘C ’.

sim23356_ch08.indd 335sim23356_ch08.indd 335 12/15/08 6:40:08 PM12/15/08 6:40:08 PM

336 Part 1 The Fundamental Tools

 For example, hanoi (2, ‘A ’ , ‘B ’ , ‘C ’) will output:

 Move a disk from A to C
Move a disk from A to B
Move a disk from C to B

 Hint : hanoi(5, ‘A ’ , ‘B ’ , ‘C ’) can be done in three steps:

 hanoi(4, ‘A ’ , ‘C ’ , ‘B ’);
 Move a disk from A to B ;
 hanoi(4, ‘C ’ , ‘B ’ , ‘A ’);

 17. Partition Revisited
 A certain partition algorithm (not recursive) reorders an array, a , around the fi rst

element, pivot � a [0] , so that all the values in a that are less than or equal to pivot
precede pivot , and all the values greater than pivot appear after pivot . The algorithm

uses an extra “helper” array and works like this:

• Compare all the elements in the array one at a time to pivot .
• The values less than pivot are inserted into the new array on the left side, that is,

beginning with position 0, and the larger values are inserted on the right side.

• Finally, pivot is placed in the one remaining slot of the new array between the

smaller group and the larger group.

 Using this algorithm, rewrite partition(…) of Example 8.6. Sort a large array of 10,000

random integers using quickSort(…) with this new version of partition(…) , and then

again with the version of Example 8.6. Time the two programs, and compare the results.

 18. Merge Sort
 Write a recursive method mergeSort(int[] a, int start, int fi nish) that sorts an array of

integers a from index start through index fi nish . Test your method with an array test
of 100 random numbers.

 The algorithm works as follows:

• Sort the fi rst half of the array recursively.

• Sort the last half recursively.

• Merge the two sorted halves together.

 Merging is accomplished via a method

 int[] merge(a, start, finish),

 which returns an array with the two sorted halves of a merged into a single sorted array.

 This new array must be copied back to a.

 Hint : To merge the two halves:

 Create a new temporary array b
 leftpointer � start; // leftpointer traverses the left half of the array.

 halfway � (start�finish)/2 ;

 rightpointer � halfway, // rightpointer traverses the right half, and

 bpointer � 0; // bpointer traverses the new array b[].

while (leftpointer �� halfway)and (rightpointer �� finish)

 if (a[leftpointer] � a[rightpointer])

 {

 b[bpointer] � a[leftpointer] ;

 leftpointer��;
 }

sim23356_ch08.indd 336sim23356_ch08.indd 336 12/15/08 6:40:09 PM12/15/08 6:40:09 PM

 Chapter 8 Recursion 337

THE BIGGER PICTURE

 else

 {

 b[bpointer] � a[rightpointer];

 rightpointer��;
 }

bpointer��;

if (leftpointer � halfway)

 copy the remainder of the right half of a to b
if (rightpointer � finish)

 copy the remainder of the left half of a to b
return(b)

 19. (Challenging) The Josephus Puzzle
 Josephus Flavius was a famous Jewish historian of the fi rst century. During the

Jewish-Roman war he was trapped in a cave with a group of 40 Jewish rebels,

surrounded by Romans. As legend has it, preferring suicide to capture, the Jews

decided to form a circle and moving clockwise, one at a time, every other person

would commit suicide until no one was left. Thus, the fi rst person to die was seated in

position 2, the next in 4, the third in 6, and so on. Josephus, not keen to die, quickly

found the place in the circle where he would be the last one to commit suicide, the

17 th position. But at the end, instead of killing himself, he joined the Romans. The

soldiers committed suicide in the following order: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,

22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 5, 13, 21,

29, 37, 9, 25, 1, 33, 17.

 Write and test a recursive method that determines the last soldier to die when

there are n soldiers in a circle.

 Hint : Ask a friend to solve the problem with half the number of soldiers and try

to use that information. It makes a difference if there is an odd or an even number of

soldiers.

 THE BIGGER PICTURE

THE COMPLEXITY OF RECURSIVE ALGORITHMS
 The complexity of an algorithm is synonymous with the speed of an algorithm. Does the

algorithm run effi ciently, that is, quickly, or not? The faster a program runs, the better;

and behind every fast program there is an effi cient algorithm. When designing a recur-

sive algorithm, it is not only correctness that is important, but effi ciency. Let’s look at

an example.

 The Fibonacci numbers comprise the infi nite sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

89, and so on, in which each number (except the fi rst two) is the sum of the previous two

numbers. In computer science, Fibonacci numbers have many applications ranging from

data structures (Fibonacci heaps) to pseudo-random number generators (lagged Fibonacci

generators). Fibonacci numbers also manifest themselves in leaf arrangements, seashells,

pine cones, and sunfl ower seeds. The sunfl ower in Figure 8.14 , for example, has 21 and

34 spirals of seeds, one set curving right and one set curving left. Note that 21 and 34 are

the 10th and 11th Fibonacci numbers.

sim23356_ch08.indd 337sim23356_ch08.indd 337 12/15/08 6:40:10 PM12/15/08 6:40:10 PM

338 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

©
 D

r.
P

ar
ve

nd
er

 S
et

hi
/R

F

FIGURE 8.14 A sunflower with hidden
Fibonacci numbers.

 Three Methods that Calculate the n th Fibonacci number, Fibonacci(n)
 There are several algorithms that compute the n th Fibonacci number. In the following sec-

tion we present three such methods.

 Method 1
 The simplest algorithm is an iterative one. Keep track of the last two Fibonacci numbers,

the highest and next highest, and compute the next Fibonacci number by adding these last

two together. The following method returns the n th Fibonacci number:

 public static long fib1(int n)
{
 // Computes the n th Fibonacci number by keeping track
 // of the current two highest Fibonacci numbers
 if (n �� 2)
 return 1;
 long temp;
 long nexthighest � 1;
 long highest � 1;
 for (int count � 3; count �� n ; count��)
 {
 temp � nexthighest � highest;
 nexthighest � highest;
 highest � temp;
 // computes the next Fibonacci number which becomes the highest
 // and the next highest becomes the previous highest
 }
 return highest;
}

sim23356_ch08.indd 338sim23356_ch08.indd 338 12/15/08 6:40:10 PM12/15/08 6:40:10 PM

 Chapter 8 Recursion 339

THE BIGGER PICTURE

 Method 2
 Here is a simple but ineffi cient recursive version. The code is self-explanatory. The next

Fibonacci number is simply the sum of the previous two, exactly as the defi nition says.

 public static long fib2(int n)
{
 if (n �� 2)
 return 1;
 return (fib2(n � 1) � fib2(n � 2));
}

 To understand just how poorly fi b2(...) performs when compared to fi b1(...) , we ran both

methods for several values of n . Both methods fi b1(10) and fi b2(10) returned the correct

answer of 55, without any noticeable delay. However, fi b1(50) ran instantaneously, return-

ing the correct value of 12,586,269,025, while fi b2(50), after 20 minutes, did not fi nish.

(We stopped the program to prevent the computer from overheating.)

 Why does fi b2(...) run so slowly? Why is it so ineffi cient? It is not because one algo-

rithm is recursive and the other is iterative! Indeed the algorithm underlying fi b1(...) can be

implemented recursively, and the algorithm underlying fi b2(...) can be implemented without

explicit recursion. It is not an issue of iteration versus recursion but an issue of effi cient algo-

rithm design versus ineffi cient algorithm design. Sure, there is overhead due to the runtime

stack, but that is not why this recursive algorithm is a disaster.

 Before we show you why the algorithm underlying fi b2(...) is so bad, let’s fi rst con-

struct a recursive algorithm fi b3(...) that is just as good as fi b1(...) . The method fi b3(...) is an

effi cient tail recursion version based directly on the iterative version of fi b1(...) . Indeed, if

you study the relationship between the two methods, you will learn how to take any itera-

tive algorithm and implement it effi ciently using tail recursion.

 Turning Loops into Tail Recursion
 The trick to rewriting a loop using tail recursion is to wrap all the local variables into

the parameter list. In particular, we wrap the local variables of fi b1(...) into the parameter

list of fi b3(...) so that fi b3(...) itself has no local variables. Then, design fi b3(...) to be tail

recursive.

 Method 3
 public static long fib3(int n, int count, long nexthighest, long highest)
{
 if (n �� 2)
 return 1;
 if (count � n)
 return highest;
 return fib3(n, count � 1, highest, highest � nexthighest);
}

 To use fi b3(...) , set count to 3, and nexthighest and highest to 1, just as they are initialized

in fi b1(...) . To calculate the sixth Fibonacci number, call fi b3(6, 3, 1, 1) , and the n th is cal-

culated with fi b3(n, 3, 1, 1) .
 Figure 8.15 traces the calls fi b3(6, 3, 1, 1) and fi b1(6). Notice the similarity between the

two . The values of the local variables count , nexthighest , and highest in fi b1(6) are exactly

the same as the values of the parameters with the same names in fi b3(6, 3, 1, 1) . In fact,

 fi b1(75) and fi b3(75, 3, 1, 1) both calculate the correct value 2,111,485,077,978,050 in the

same seemingly instantaneous time.

sim23356_ch08.indd 339sim23356_ch08.indd 339 12/15/08 6:40:11 PM12/15/08 6:40:11 PM

340 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

 Both fi b1(6) and fi b3(6, 3, 1, 1) each took eight additions to calculate the sixth Fibo-

nacci number, half of these were performed incrementing count . In general, it takes each

method 2(n � 2) steps to calculate the n th Fibonacci number, n � 2 increments of count
and n � 2 actual Fibonacci additions. That’s why fi b1(75) and fi b3(75, 3, 1, 1) calculate

2,111,485,077,978,050 so quickly. Each is doing only 2(75 � 2) � 146 additions—peanuts

and microseconds for a computer. The methods fi b1(...) and fi b3(...) , one iterative and one

recursive, are both equally fast Fibonacci calculators.

 If the ineffi ciency of fi b2(...) is not a recursion versus iteration issue, then what is it?

It is an algorithm design issue. The algorithm behind fi b2(...) is ineffi cient, whether imple-

mented recursively or iteratively. When n � 6, the algorithm performs as in Figure 8.16 .

FIGURE 8.15 Comparing the traces of fib3(6, 3, 1, 1) and fib1(6)

fib3(6, 3, 1, 1)
 fib3(6, 4, 1, 2)
 fib3(6, 5, 2, 3)
 fib3(6, 6, 3, 5)
 fib3(6, 7, 5, 8)
 return 8
 return 8
 return 8
 return 8
return 8

Compare this to fi b1(6).

 count nexthighest highest
 3 1 1
 4 1 2
 5 2 3
 6 3 5
 7 5 8

 return 8

fib2(3) + fib2(2)

+ +

+

fib2(2) + fib2(1)

fib2(2) + fib2(1)

fib2(4) fib2(3)

fib2(2) + fib2(1)

fib2(3) fib2(2)

1

1 1

1 1 1 1

1

fib2(5) fib2(4)

fib2(6)

FIGURE 8.16 A trace of fib2(6), which returns 8

sim23356_ch08.indd 340sim23356_ch08.indd 340 12/15/08 6:40:11 PM12/15/08 6:40:11 PM

 Chapter 8 Recursion 341

THE BIGGER PICTURE

 A glaring ineffi ciency that you should notice is the great many times that fi b2(...) is

called with the same parameters! That can’t be good. Why should we ever call the same

method with the same parameters more than once?

 How bad is this wasted effort? If you look carefully and count the plus signs in

 Figure 8.16 , you will see that fi b2(6) makes seven additions to calculate the sixth Fibo-

nacci number, 8. This is actually less than fi b1(6) and fi b3(6, 3, 1, 1) , each of which

requires eight additions. That doesn’t seem so bad. Because fi b2(6) does not update the

variable such as count , the method uses fewer additions than fi b1(6) and fi b3(6, 3, 1, 1) ,
despite the duplicate method calls. But look what happens for larger values of n. The

wasted method calls vastly overwhelm any savings gained by not explicitly increment-

ing count .
 To calculate the n th Fibonacci number, fi b2(n) requires fi b2(n) – 1 additions, while fi b1(n)
and fi b3(n, 3, 1, 1) can complete the same task with just 2(n – 2) additions. Figure 8.17

contrasts the number of additions performed by fi b1(n), fi b2(n), and fi b3(n, 3, 1, 1) for

several values of n . The difference is astounding and explains why it took more than

20 minutes to calculate fi b2(50) . The algorithm was busy performing 12,586,269,024

additions instead of just 96. And even for the fastest computers, 12,586,269,024 addi-

tions isn’t easy. In fact, there is currently no computer in the world that could calculate

 fi b2(75) in under a month of computing time. And, computing fi b2(100) would take more

than a lifetime!

FIGURE 8.17 The number of additions performed by fib1(n),
fib2(n), and fib3(n, 3, 1, 1)

n nth Fibonacci Number
Number of Additions

fi b1(n) and fi b3(n, 3, 1, 1)

Number of Additions
fi b2(n)

10 55 16 54

20 6,765 36 6,764

30 832,040 56 832,039

40 102,334,155 76 102,334,152

50 12,586,269,025 96 12,586,269,024

75 2,111,485,077,978,050 146 2,111,485,077,978,049

100 354,224,848,179,263,100,000 196 354,224,848,179,263,099,999

 Use the following class to experiment for yourself by changing the value of the

parameter n. The method System.currentTimeMillis() returns the system time in milli-

seconds, giving a crude but reasonable way to distinguish the running time for each

method. Note that for small values of n, the time for all three methods will likely be

indistinguishable.

 1. public class FibTester
2. {
3. public static long fib1(int n)
4. {
5. // Computes the nth Fibonacci number by keeping track
6. // of the current two highest Fibonacci numbers
7. if (n �� 2)
8. return 1;
9. long temp;
10. long nexthighest � 1;
11. long highest � 1;

sim23356_ch08.indd 341sim23356_ch08.indd 341 12/15/08 6:40:12 PM12/15/08 6:40:12 PM

342 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

12. for (int count � 3; count �� n ; count��)
13. {
14. temp � nexthighest � highest;
15. nexthighest � highest;
16. highest � temp;
17. // the next Fibonacci number is assigned to highest
18. // the previous value of highest is assigned to nexthighest
19. }
20. return highest;
21. }

22. public static long fib2(int n)
23. {
24. if (n �� 2)
25. return 1;
26. return (fib2(n � 1) � fib2(n � 2));
27. }

28. public static long fib3(int n, int count, long nexthighest, long highest)
29. {
30. if (n �� 2)
31. return 1;
32. if (count � n)
33. return highest;
34. return fib3(n, count � 1, highest, highest � nexthighest);
35. }

36. public static void main(String [] args)
37. {
38. int n � 50;
39. System.out.println(System.currentTimeMillis()); // for looking at time
40. System.out.println(fib1(n));
41. System.out.println(System.currentTimeMillis());
42. System.out.println(fib3(n, 3, 1, 1));
43. System.out.println(System.currentTimeMillis());
44. System.out.println(fib2(n));
45. System.out.println(System.currentTimeMillis());
46. }
47. }

 Conclusion
 The design of effi cient algorithms is in many ways the central theme in all of computer sci-

ence. Recursion is one of the major techniques used to design algorithms. Recursive algo-

rithms are sometimes effi cient and sometimes ineffi cient. The crux is not whether to use

recursion or iteration but how to design the algorithm in the fi rst place. Some algorithms

are effi cient and some are not.

 Exercises
1. Write a tail recursive method that computes n ! Model your method on an

iterative method as we did for the Fibonacci numbers. You will need two

sim23356_ch08.indd 342sim23356_ch08.indd 342 12/15/08 6:40:12 PM12/15/08 6:40:12 PM

 Chapter 8 Recursion 343

THE BIGGER PICTURE

parameters for a tail recursive factorial. Note that the standard recursive

method with one parameter:

 int factorial (int n)
{ if (n �� 0) return 1;
 return n * factorial(n � 1);
}

is not tail recursive, because the multiplication by n takes place after the

recursive call.

2. Pascal’s triangle is a tower of numbers the top part of which is shown in

 Figure 8.18 . The triangle continues downward forever. Pascal’s triangle is useful in

hundreds of applications, one of which is calculating poker hand probabilities.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

. . .

FIGURE 8.18 Pascal’s triangle

 The rows of Pascal’s triangle are numbered 0, 1, 2, 3…, and the entries in row n

are numbered 0, 1, 2, 3,…, n . The notation Pascal (i, j) designates the j th entry in

row i . Thus Pascal (5, 3) is 10, Pascal (4, 4) is 1, and Pascal (2, 1) is 2.

 The numbers of the triangle can be calculated as:

 Pascal(n, 0) � Pascal(n, n) � 1, for n � 0, 1, 2 . . .

Pascal(n, k) � Pascal(n � 1, k � 1) � Pascal(n � 1, k), for k � 1 to n � 1.

For example,

 Pascal(6, 2) � Pascal(5, 1) � Pascal(5, 2) � 5 � 10 � 15, and

 Pascal(6, 4) � Pascal(5, 3) � Pascal(5, 4) � 10 � 5 � 15.

a. Write and test an iterative method

 int pascalIter(int i, int j)

 that returns the j th number in the i th row of Pascal’s triangle.

b. Write and test a recursive method

 int pascalRecur(int i, int j)

 that performs the same function as pascalIter() .

c. Run and time both methods when:

 • i � 8 and j � 4,

 • i � 20 and j � 10, and

 • i � 40 and j � 20.

 Discuss your fi ndings.

sim23356_ch08.indd 343sim23356_ch08.indd 343 12/15/08 6:40:13 PM12/15/08 6:40:13 PM

344 Part 1 The Fundamental Tools

TH
E

BI
GG

ER
 P

IC
TU

RE

d. Trace the recursive program by hand for the value Pascal (6, 3) and explain

your results.

3. Consider a two-dimensional array of integers rolled into a cylinder, so that the top

and bottom rows are glued together. See Figure 8.19 .

FIGURE 8.19 A two-dimensional array rolled
into a cylinder

 A path is to be threaded from the left side of the cylinder to the right side, subject

to the restriction that from a given square you can move directly to the right, up

and to the right, or down and to the right. See the arrows in Figure 8.19. A path

may begin at any position on the left side of the cylinder and end at any posi-

tion on the right side. The cost of a path is the sum of the integers in the squares

through which it passes.

 For example, consider the 5 by 8 array shown in Figure 8.20 . The numbers in

bold represent a path through the cylinder with cost equal to �10 � 8 � 3 � 7 �

5 � 7 � 7 � 9 � � 12. This is a good path with low cost, but it is not the path of

least cost.

FIGURE 8.20 Bold numbers show a path through the cylinder

 12 9 15 �7 �5 28 �24 17

 27 �19 16 �2 3 7 19 1

 �1 12 23 14 10 45 7 �5

 �10 8 12 71 �23 34 12 �9

 26 17 �3 24 42 56 18 2

 a. Design two algorithms, one recursive and one iterative, to fi nd the minimum

cost path through this cylinder.

b. Run and time both algorithms using the 5 by 8 array (Figure 8.20).

c. What are your observations?

d. Explain your observations by showing what happens when you trace the recur-

sive version.

4. In the United States, every presidential election is decided by the Electoral Col-

lege. Every state has a certain number of electoral votes, and that state decides

how to distribute its votes among the candidates. Traditionally, each state gives all

or none of its votes to a single candidate.

 There are 50 states and the District of Columbia, each with some number

of electoral votes. The total number of electoral votes is 538 (as of 2008). A tie

sim23356_ch08.indd 344sim23356_ch08.indd 344 12/15/08 6:40:13 PM12/15/08 6:40:13 PM

 Chapter 8 Recursion 345

THE BIGGER PICTURE

occurs if some subset of the 51 electoral numbers equals 269 (538/2). Can a

presidential election result in a tie?

 To answer this question, we formulate a more general problem called

 Subset Sum and solve it recursively. Given an array of integers a and a value k ,

let subsetSum(n, k) � true whenever a subset of the fi rst n integers in the array

sums to k . Then

 subsetSum(n,k) � subsetSum(n − 1, k − a[n − 1]) || subsetSum(n − 1, k).

 This relationship holds because either the n th number, a[n − 1], contributes to

the sum or it doesn’t. If it does, then the remaining sum, k – a[n – 1], must be

constructed from a subset of the fi rst n – 1 numbers. If a[n − 1] doesn’t contrib-

ute to the sum, then the all of k must be obtained from a subset of the fi rst n – 1

numbers.

a. Using the preceding formula, derive a recursive algorithm to determine whether

or not a subset of the fi rst n numbers in a sums to k . Create the appropriate base

cases: if (k �� 0) return true ; if (k � 0) return false ; and, if (n �� 0) return
false ;

b. Implement your algorithm iteratively and recursively.

c. Test and time both methods by determining whether or not the presidential elec-

tion in the USA can end in a tie. You will need to calculate subsetSum(51, 269).
Here is the list of numbers for the 538 electoral college votes:

 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10,

10, 10, 11, 11, 11, 11, 12, 13, 15, 15, 15, 17, 20, 21, 21, 27, 31, 34, 55.

d. Report the results of your test. Which implementation runs faster?

sim23356_ch08.indd 345sim23356_ch08.indd 345 12/20/08 1:42:28 AM12/20/08 1:42:28 AM

sim23356_ch08.indd 346sim23356_ch08.indd 346 12/15/08 6:40:14 PM12/15/08 6:40:14 PM

PA
R

T

 2

PART 2
 Principles of Object-Oriented
Programming

9. Objects and Classes I: Encapsulation, Strings, and Things

10. Objects and Classes II: Writing Your Own Classes

11. Designing with Classes and Objects

12. Inheritance

13. Polymorphism

sim23356_ch09.indd 347sim23356_ch09.indd 347 12/15/08 6:41:29 PM12/15/08 6:41:29 PM

348

CHAPTER CHAPTER 9
 Objects and Classes I:
Encapsulation, Strings,

and Things
 “Intelligence is the faculty of making artifi cial objects, especially tools to make tools.”

 — Henri Bergson (1859–1941)

 Objectives

 The objectives of this chapter include an understanding of

� objects and classes

� encapsulation, and

� some Java classes:

 � The Random class

 � The String class

 � The StringBuilder class

 � The File class

 � The DecimalFormat class

 9.1 INTRODUCTION

 This chapter begins our study of object-oriented programming (OOP). What is OOP?

One popular defi nition describes OOP as a methodology that organizes a program into

a collection of interacting objects. A more technical defi nition asserts that OOP is a pro-

gramming paradigm that incorporates the principles of encapsulation , inheritance , and

 polymorphism . If these characterizations mean little or nothing to you, don’t be dismayed.

OOP is not a concept that can be easily described or explained in a single sentence or even

a single paragraph. In fact, the foundations of OOP—encapsulation, inheritance, and

 polymorphism—comprise the topics of the next four chapters. With a bit of time and

 practice, OOP will become quite natural to you. For the present, however, let’s just say that

OOP is all about objects .

 In this chapter you will learn about objects—what they are and how to use them.

Once you understand objects, then encapsulation, inheritance, polymorphism, and all the

nuances and advantages of OOP easily follow.

sim23356_ch09.indd 348sim23356_ch09.indd 348 12/15/08 6:41:30 PM12/15/08 6:41:30 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 349

 9.2 OBJECTS

 In the context of a computer program, an object is a representation or an abstraction of

some entity such as a car, a soda machine, an ATM machine, a slot machine, a dog, a fl ea,

an elephant, a person, a house, a string of twine, a string of characters, a bank account, a

pair of dice, a deck of cards, a point in the plane, a TV, a DVD player, an iPod, a rocket, an

elevator, a square, a rectangle, a circle, a camera, a movie star, a shooting star, a computer

mouse, a live mouse, a phone, an airplane, a song, a city, a state, a country, a planet, a glass

window, or a computer window. Just about anything is an object. An object may be physi-

cal, like a radio, or intangible, like a song. Just as a noun is a person, place, or thing, so is

an object. And, just as people, places, and things are defi ned through their attributes and

behaviors, so are objects.

An object has characteristics or attributes; an object has actions or behaviors.

 Specifi cally, an object is an entity that consists of:

• data (the attributes), and

• methods that use or manipulate the data (the behaviors).

 The remote control unit of Figure 9.1 provides a good example. With this rather bare-

bones remote, an armchair viewer can turn a TV on or off, raise or lower the volume, or

change the channel.

 Accordingly, a remote control object has three attributes :

 1. the current channel, an integer,

 2. the volume level, an integer, and

 3. the current state of the TV, on or off, true or false ,

along with fi ve behaviors or methods:

 1. raise the volume by one unit,

 2. lower the volume by one unit,

 3. increase the channel number by one,

 4. decrease the channel number by one, and

 5. switch the TV on or off.

 Figure 9.2 shows three different remote objects, each with unique attribute values

(data) but all sharing the same methods or behaviors.

currentChannel � 2
currentVolumeLevel � 0
powerOn � false

void volumeUp()
void volumeDown()
void channelUp()
void channelDown()
void onOff()

currentChannel � 4
currentVolumeLevel � 7
powerOn � true

void volumeUp()
void volumeDown()
void channelUp()
void channelDown()
void onOff()

currentChannel � 12
currentVolumeLevel � 1
powerOn � true

void volumeUp()
void volumeDown()
void channelUp()
void channelDown()
void onOff()

Data/attributes

Methods/behaviors

}

}
FIGURE 9.2 Three remote control objects

vol ˆ

on/off

vol ˇ
ch ˆ
ch ˇ

FIGURE 9.1 A bare-
bones remote control
unit

sim23356_ch09.indd 349sim23356_ch09.indd 349 12/15/08 6:41:31 PM12/15/08 6:41:31 PM

350 Part 2 Principles of Object-Oriented Programming

 The remote control unit exemplifi es encapsulation , one of the three major tenets of OOP.

(The other two are inheritance and polymorphism.)

Encapsulation is defi ned as the language feature that packages attributes and

 behaviors into a single unit. That is, data and methods comprise a single entity.

 Accordingly, each remote control object encapsulates data and methods, attributes and

behaviors. An individual remote unit, an object, stores its own attributes—channel number,

volume level, power state—and has the functionality to change those attributes. It’s all in

a single package.

 A rectangle is also an object. The attributes of a rectangle might be length and width,

two fl oating-point numbers; the methods compute and return area and perimeter. Figure 9.3

shows three different rectangle objects. Again notice that data and methods come bundled

together; data and methods are encapsulated in one object. Each rectangle has its own set

of attributes; all share the same behaviors.

length � 2.4
width � 3.48

double area()
double perimeter()

Data/attributes

Methods/behaviors

length � 3.52
width � 8.66

double area()
double perimeter()

length � 1.56
width � 5.7

double area()
double perimeter()

}

}

FIGURE 9.3 Three different Rectangle objects

 A character string is also an object that encapsulates data and methods. The string

data consists of an ordered sequence of characters and two (of many) methods, including

a method that returns the number of characters in the string and one that returns the i th
character. See Figure 9.4 .

FIGURE 9.4 Three String objects, each with its own data, all with the same methods

"Marty"

 int length();
// returns the number of characters

 char charAt(int i);
// returns the character at position i

"Monty"

 int length();
// returns the number of characters

 char charAt(int i);
// returns the character at position i

"Mary"

 int length();
// returns the number of characters

 char charAt(int i);
// returns the character at position i

Data/
attributes

Methods/
behaviors}

 Figures 9.2 , 9.3 , and 9.4 underscore the concept that objects are data and methods boxed as

a single package or module. In other words, objects encapsulate.

 9.3 FROM CLASSES COME OBJECTS

 As you know, every primitive variable is tied to a data type such as int, char, double, or

 boolean. Likewise, every object is a member of a class. The three rectangle objects of

 Figure 9.3 belong to a "Rectangle" class just as the three objects depicted in Figure 9.4 are

members of a "String" class.

A class is a template, or blueprint, from which objects are created.

}

sim23356_ch09.indd 350sim23356_ch09.indd 350 12/15/08 6:41:31 PM12/15/08 6:41:31 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 351

 As a builder creates houses from the specifi cations of a blueprint, a program creates objects

from the specifi cations of a class. From one blueprint, a builder can build many individual

houses; and from one class, a program can create many objects. Every object is manufac-

tured or instantiated according to its class specifi cations. More precisely, a class defi nes

the variables and methods that comprise each of its objects. A class describes how data and

methods are encapsulated as a single object. Every object is an instance of some class.

 For example, a Rectangle class might specify that every Rectangle object consists of

two variables of type double ,

• double length, and

• double width ,

and also every Rectangle object comes equipped with two methods,

• double area(), and // returns the area, length x width,

• double perimeter() , // returns the perimeter, 2(length � width).

Individual Rectangle objects may differ in dimension, but all Rectangle objects share the

same methods; that is, all Rectangle objects have the same behaviors. Accordingly, each of

the three Rectangle objects of Figure 9.3 has its own length and width, but all three share

the same two methods, area() and perimeter(). Figure 9.5 illustrates four Rectangle objects

constructed according to the specifi cations of the Rectangle class.

length � 2.4
width � 3.48

double area()
double perimeter()

Four
objects

length � 1.56
width � 5.7

double length;
double width;

double area()
{
 return length * width;
}
double perimeter()
{
 return 2*(length�width);
}

double area()
double perimeter()

length � 3.52
width � 8.66

double area()
double perimeter()

A Rectangle class specifies the
variables and methods of every
Rectangle object

Rectangle class is
used to create
Rectangle objects

A class

length � 3.52
width � 8.66

double area()
double perimeter()

FIGURE 9.5 A Rectangle class and four Rectangle objects. Each object has unique
attributes. The class is a blueprint for all objects.

 One class that we have already utilized is Scanner . The Scanner class, which is a

member of the java.util package, comprises a host of methods, including nextInt() and

 nextDouble() . The now familiar statement

 Scanner input � new Scanner(System.in);

instantiates or creates a new Scanner object from a blueprint in java.util . The variable input
is a reference that holds the address of the newly created Scanner object. All methods are

accessed via input : for example, input.nextInt(), input.nextDouble().

sim23356_ch09.indd 351sim23356_ch09.indd 351 12/15/08 6:41:32 PM12/15/08 6:41:32 PM

352 Part 2 Principles of Object-Oriented Programming

 Every Scanner object shares the same methods, but you will soon see that some

 Scanner objects use these methods to read data from the keyboard and others use these

same methods to read data from a fi le. Every Scanner object has its own attributes, but all

share the same behaviors.

 At this point, you probably have a very general, albeit sketchy, understanding of objects

and classes. Deeper understanding comes with practice. In this chapter, we show you how

to create objects using a few classes that Java supplies. Scanner is one such class. In Chap-

ter 10, you will learn how to design your own classes as well as create and use objects built

from your classes. Gradually, the concept of classes and objects will become perfectly

natural to you, as will the notions of encapsulation, inheritance, and polymorphism.

 9.4 JAVA LIBRARIES AND PACKAGES

 Java provides a rather large library containing hundreds of predefi ned classes that can be

used as blueprints to create objects. Related classes are organized or grouped into pack-
ages . For example, the Abstract Window Toolkit package (java.awt) contains dozens of

classes that are useful for graphics programming. The java.text package provides classes

that simplify text formatting, and the java.util package contains, among other classes, the

familiar Scanner class.

To include a Java class in an application, use an import statement in either of two

forms:

 import java.packagename.classname; or

 import java.packagename.*;

 All import statements must appear in a fi le before any class defi nitions. For example,

to use the Scanner class in an application, include either of the following import statements

at the start of the fi le:

 import java.util.Scanner; or

import java.util.*;

The fi rst statement imports just the Scanner class, while the second imports all of the

classes of the java.util package, including the Scanner class. 1 Importing the entire package

does not increase the size of the class (executable) fi le that is created by the Java compiler.

Only the classes used in the application are incorporated into the executable code.

 Once you have imported a class, it can be used to create objects.

To instantiate or create an object, use the new operator.

 For example, to create an object belonging to the Scanner class we use the statement

 Scanner myScanner � new Scanner(System.in);

1As a folder in a fi le system can contain subfolders and those folders can contain subfolders, a Java package

can contain sub-packages. For example, java.util contains a sub-package named java.util.zip, which contains a

number of predefi ned classes that facilitate reading and writing compressed (zip) fi les. The statement

import java.util.*;

imports the classes of java.util, including java.util.Scanner, but not the classes of java.util.zip, which includes

java.util.zip.ZipFile, java.util.zip.ZipEntry, and many others. To import the classes of java.util.zip, you must

explicitly import the sub-package, using:

import java.util.zip.*;

sim23356_ch09.indd 352sim23356_ch09.indd 352 12/15/08 6:41:32 PM12/15/08 6:41:32 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 353

or equivalently, the two-statement combination

 Scanner myScanner;
myScanner � new Scanner(System.in);

 In addition to Scanner , java.util contains another class that is particularly useful for appli-

cations that generate random integers.

The Random class provides methods that are more convenient and fl exible than

Math.random().

 9.4.1 Random—Another Class of java.util
 The methods available to a Random object can generate random numbers, both integer

and fl oating point. The following statement instantiates a Random object and assigns its

address to the reference variable random

 Random random � new Random();

 The Random class comes equipped with a number of methods that generate random

numbers, but two are particularly useful:

• int nextInt(int n)

 returns an integer greater than or equal to 0 and less than n .

• double nextDouble()

 returns a double value greater than or equal to 0.0 and less than 1.0.

For example, the following code segment instantiates a Random object and generates two

random numbers between 1 and 6 inclusive that might simulate rolling a pair of dice:

 Random die � new Random();
int dice � (die.nextInt(6) � 1) � (die.nextInt(6) � 1);

Because die.nextInt(6) returns an integer between 0 and 5 inclusive, die.nextInt(6) � 1

returns an integer between 1 and 6.

 The next segment utilizes a random integer, 0 for heads and 1 for tails, to simulate fl ip-

ping a coin 100 times:

 Random coin � new Random(); // instantiate a Random object
int heads � 0, tails � 0; // counters
for (int i � 1; i <� 100; i��)
{
 if (coin.nextInt(2) �� 0) // a random number 0 or 1
 heads��; // 0 signifies heads
 else
 tails��;
}
System.out.println("Heads:" � heads � " Tails: " � tails);

Programs must be tested, debugged, retested, debugged again, and eventually fi xed.

Debugging applications that involve random numbers can be especially tricky if each time

that a program executes, a different sequence of random numbers is used. Conveniently,

you can instantiate a Random object so that it always produces the same sequence of

“ random” numbers. This is done by passing Random(...) a “seed,” that is, an integer of type

sim23356_ch09.indd 353sim23356_ch09.indd 353 12/15/08 6:41:33 PM12/15/08 6:41:33 PM

354 Part 2 Principles of Object-Oriented Programming

 long . For example, the following Random object always produces the same sequence of

random numbers:

 Random rand � new Random(12345678); // 123456768 is the seed
 // the seed can be any long integer

When embedded in a program, the segment

 for (int i � 1; i <� 10; i��)
 System.out.print (rand.nextInt(100) � " ");

produces the sequence

 63 2 85 71 45 11 16 85 35 40

each time that the program runs.

 The seed that is passed to Random(...) can be any integer. Different seeds produce

 different sequences.

 9.4.2 The java.lang Package
 One special package,

 java.lang

is automatically imported into every application, so an import statement is both redundant

and unnecessary. The java.lang package contains many useful classes, including the Math

class and one of Java’s most fundamental and widely used classes, the String class.

 9.5 STRINGS ARE OBJECTS

 Except for labeled output, none of our previous programs has the capability of manipulat-

ing strings. We can write applications that sort a list of house numbers but not a list of home

addresses. We can implement a program that searches for an ID number , but not a name.

Except in the simplest cases, strings have not been part of our programming toolbox. From

spell checking to Internet searching to bioinformatics, string processing is an important and

common application.

 Java’s String class includes dozens of methods that facilitate string processing.

The String class is contained in the java.lang package, which is imported

 automatically into every application.

As with all objects, the instantiation of a String object is accomplished with the new opera-

tor. For example,

 String myDog � new String("Fido");

The variable myDog is not a String object but a reference to a String object. That is, myDog

holds the address of a String object. See Figure 9.6 .

myDog

“Fido”

 FIGURE 9.6 The variable myDog is a reference

 Because String objects are so common, Java provides a shorter form of String instan-

tiation. The more compact statement

 String myDog � "Fido"

assigns the address of the String literal "Fido" to the reference myDog .

sim23356_ch09.indd 354sim23356_ch09.indd 354 12/15/08 6:41:33 PM12/15/08 6:41:33 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 355

 Java’s String class provides the blueprint for all String objects. Each String object

encapsulates a character sequence together with a host of methods, such as

 int length(),

which returns the number of characters in a String, and

 char charAt(int i),

which returns the character at position i .

The dot operator is used to invoke the methods of a String object.

For example,

myDog.length() returns 4 since "Fido" consists of four characters;

myDog.charAt(0) returns the character 'F' because, like arrays, strings are indexed from 0; and

myDog.charAt(2) returns 'd'.

 Example 9.1 illustrates String instantiation and utilizes the length() and charAt(...)
methods. The program also includes a new Scanner method,

 String next() // returns a reference to the next input string

which facilitates string input.

EXAMPLE 9.1 Problem Statement Anyone who has seen the fi lm Mary Poppins has, no doubt, heard

Julie Andrews pronounce “supercalifragilisticexpialidocious” backwards. Well, Julie is

no match for Java. The following program interactively accepts an arbitrary character

string and displays the string in reverse.

 Java Solution
1. // Reads a character string and prints it in reverse
2. import java.util.*;
3. public class Reverse
4. {
5. public static void main(String[] args)
6. {

7. Scanner input � new Scanner(System.in);

8. System.out.print("Enter a word: ");
9. String word � input.next(); // returns a String (reference)

10. System.out.print(word � " in reverse is ");
11. for(int i � word.length() � 1; i >� 0; i--)
12. System.out.print(word.charAt(i));
13. System.out.println();
14. }
15. }

sim23356_ch09.indd 355sim23356_ch09.indd 355 12/15/08 6:41:33 PM12/15/08 6:41:33 PM

356 Part 2 Principles of Object-Oriented Programming

 Output 1
 Enter a word: supercalifragilisticexpialidocious
supercalifragilisticexpialidocious in reverse is suoicodilaipxecitsiligarfilacrepus

 Output 2
 Enter a word: racecar
racecar in reverse is racecar

 Discussion We begin with line 9.

Line 9: String word � input.next();

 Initially, word is declared as a reference variable. The variable word is not a String object ;
word is a reference that can hold the address of a String object.

 The next action is the call input.next(). The method input.next() is similar to other

 Scanner methods such as input.nextInt() or input.nextDouble() . Just as input.nextInt() skips

all whitespace and returns the “next integer” that is entered at the console, input.next()
skips whitespace and returns the next string entered at the keyboard. More precisely, the

method returns a reference to a String object. The next() method consumes characters

until a whitespace character is encountered. Thus, a string returned by next() contains no

spaces, tabs, or newline characters.

 Finally, the address of this String object is assigned to the reference variable, word .

 Figure 9.7 shows a String reference and a String object that holds a character sequence

that is a bit simpler than “supercalifragilisticexpialidocious”.

word

“ABC”

 FIGURE 9.7 word is a String reference, not a String object

 Lines 11–12 : for(int i � word.length() � 1; i >� 0; i--)

 System.out.print(word.charAt(i));

 Because "ABC" contains three characters, the method word.length() returns 3. Conse-

quently, the loop iterates from 2 down to 0. On each iteration, word.charAt(i) returns the

character at position i :

 i � 2; charAt(2) returns 'C'
 i � 1; charAt(1) returns 'B'
 i � 0; charAt(0) returns 'A'.

These three characters are displayed as output. Thus the output is the string "CBA".

 9.5.1 String Concatenation
Routinely, our programs have used string concatenation within the print() and println() state-

ments. For example, the statement

 System.out.println("Frankenstein" � " meets " � "Dracula");

effects the concatenation of three strings: "Frankenstein"," meets ", and "Dracula".

Concatenation is the process of joining, connecting, or linking Strings together.

 Strings can be joined or concatenated using the � operator or the more compact �� opera-

tor. The segments of Figure 9.8 illustrate both operators.

sim23356_ch09.indd 356sim23356_ch09.indd 356 12/15/08 6:41:34 PM12/15/08 6:41:34 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 357

Code Segment Explanation Explanation

1. String s � "James";
2. String t � "Bond"
3. String w � s � " " � t;

s

“James”

t

“Bond”

After statements (1) and (2)
execute

s

“James”

t

“Bond”

w

After (3) executes

“James Bond”

1. String s � "Super"
2. s �� "man"; s

“Super” “Super”

s

“Superman”

FIGURE 9.8 String concatenation using � and ��

 Figure 9.8 also illustrates an important feature of concatenation.

Concatenation results in the creation of a new String object.

 The next example utilizes the � operator to accomplish concatenation and introduces

two new methods of the String and Scanner classes. The String method

 String toUpperCase()

creates a new string by converting all characters in the invoking object to uppercase. That

is, if s is a String reference, then

 s.toUpper()

returns a reference to a new string such that all the lowercase characters of s have been

converted to uppercase. For example, the segment

 String lower � "skyscraper";
String upper � lower.toUpperCase();
System.out.print(lower � " " � upper);

displays

 skyscraper SKYSCRAPER

Notice that the characters of lower are not capitalized. A new String object with uppercase

letters is created.

 The Scanner method

 String nextLine(),

is used to read an entire line of text, including whitespace. The Scanner method next() is

inconvenient when reading strings that contain spaces or other whitespace. Example 9.2

uses nextLine() to read an entire line of text, including whitespace.

sim23356_ch09.indd 357sim23356_ch09.indd 357 12/15/08 6:41:37 PM12/15/08 6:41:37 PM

358 Part 2 Principles of Object-Oriented Programming

 Message encryption predates the Internet, online banking, and electronic commerce by

a few thousand years. History reports that Julius Caesar regularly encrypted his military

correspondence. The Caesar cipher is an encryption method that replaces each letter of

some text by another letter that is a fi xed number of positions farther down in the alpha-

bet. For example, a 2-shift (also called a C-shift) replaces

A with C ,

B with D ,

C with E ,

D with F

 …

Y with A, and fi nally,

Z with B .

Thus a 2-shift replaces each letter with the letter two positions farther down the alpha-

bet, cycling back to the beginning of the alphabet for Y and Z . Accordingly, the message

“DIZZY” encrypts as “FKBBA”. Similarly, a 17-shift or R- shift replaces

A with R ,

B with S ,

C with T ,

 ….

J with A , (cycling back), and

K with B .

In this case, each letter is “shifted” 17 positions so that an R -shift encodes “DIZZY” as

“UZQQP”.

 The Caesar cipher is a very simple scheme, and a codebreaker would need to try at

most 25 possible shifts in order to break the code.

 Problem Statement Write an application that encrypts a message using a Caesar

cipher. The program should accept one line of text as well as an integer representing a

character shift. The original message may consist of alphabetical characters, whitespace,

and punctuation. The encrypted message is comprised of uppercase letters with no punc-

tuation or whitespace.

 Java Solution The following application exploits character arithmetic when encod-

ing each character of a message. Because Java stores a character using its ASCII value,

which is an integer, arithmetical operations such as addition and subtraction of char-

acters amount to addition and subtraction of integers. For example, Java computes the

difference 'B' � 'A' as

'B' � 'A' �
 ASCII('B') � ASCII('A') �
 66 � 65 � 1

The program also utilizes an empty string . An empty string is a string with no charac-

ters; it is a string of length 0.

1. // encrypts a message using a Caesar cipher
2. import java.util.*;

3. public class CaesarCipher
4. {
5. public static String encrypt(String msg, int shift)

EXAMPLE 9.2

sim23356_ch09.indd 358sim23356_ch09.indd 358 12/15/08 6:41:38 PM12/15/08 6:41:38 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 359

6. {
7. // returns message after performing a shift encryption

8. String encryptedMessage � new String(); // creates an empty string (length 0)
9. msg � msg.toUpperCase(); // change all letters to uppercase
10. for (int i � 0; I < msg.length(); i��) // for each letter of the message
11. {
12. char ch � msg.charAt(i);
13. if (ch >� 'A' && ch <� 'Z') // do not include punctuation or whitespace
14. {
15. int oldPositionInAlphabet � ch � 'A'; // if ch is 'B' then ch – 'A' � 66 � 65 � 1
16. int newPositionInAlphabet � (oldPositionInAlphabet � shift) % 26;
17. encryptedMessage � encryptedMessage � (char)(newPositionInAlphabet � 'A');
18. }
19. }
20. return encryptedMessage;
21. }

22. public static void main (String[] args)
23. {
24. Scanner input � new Scanner(System.in);
25. System.out.print("Enter a message on one line: ");
26. String message � input.nextLine();
27. System.out.print("Enter an integer in the range 0–25: ");
28. int shift � input.nextInt() ;
29. System.out.println("The encrypted message is " � encrypt(message, shift));
30. }
31. }

 Output 1
 Enter a message on one line: Veni, Vidi, Vici
Enter an integer in the range 0–25: 5
The encrypted message is AJSNANINANHN

 Output 2
 Enter a message on one line: All Gaul is divided into three parts
Enter an integer in the range 0–25: 18
The encrypted message is SDDYSMDAKVANAVWVAFLGLZJWWHSJLK

 Output 3
 Enter a message on one line: Tonight is karaoke night at the Coliseum
Enter an integer in the range 0–25: 13
The encrypted message is GBAVTUGVFXNENBXRAVTUGNGGURPBYVFRHZ

 Discussion
 Line 26 : String message � input.nextLine();

 The reference variable, message , can store the address of a String object. The next

action is the Scanner call

 input.nextLine().

The nextLine() method advances the Scanner to the beginning of the next line of input

and returns a reference to a String object comprised of all the characters that were

skipped in the process, including whitespace but excluding the newline character.

Thus, if input consists of a single line of text, nextLine() returns a reference to a String

comprised of the entire line, including spaces and tabs .

 For input, we use the name of one of Caesar’s many adversaries, "Cato". See Figure 9.9 .

sim23356_ch09.indd 359sim23356_ch09.indd 359 12/15/08 6:41:40 PM12/15/08 6:41:40 PM

360 Part 2 Principles of Object-Oriented Programming

Enter a message on one line: Cato

message

“Cato” A String object

 FIGURE 9.9 message is a reference to a String object

Lines 27–28 : System.out.print("Enter an integer in the range 0–25: ");

 int shift � input.nextInt();

 The variable shift determines the shift value of the encryption process. See Figure 9.10 .

Enter an integer in the range 0–25: 8

shift

8

A String object“Cato”

message

 FIGURE 9.10 The integer variable shift determines the character shift

Line 29 : System.out.println("The encrypted message is " � encrypt (message,

shift));

 Line 29 exhibits a call to encrypt(…) , passing the reference variable message and the

integer s hift as arguments to the formal parameters msg and shift . Notice that message and

 msg both refer to the same String object. Only one String object exists. See Figure 9.11 .

shift

8

msg

encrypt(...)main(...)

“Cato”

shift

8

message

 FIGURE 9.11 One String object but two references

 Control passes to encrypt(...).

 Line 8 : String encryptedMessage � new String();

Here, a new reference variable encryptedMessage is declared. This reference stores the

address of the empty string , that is, a String object with no characters. The empty String,
created on line 8 using the new operator, can also be instantiated as

 String encryptedMessage � ""; // no spaces between the quotes

See Figure 9.12 .

8

msg

shift

encryptedMessage

....

“Cato”

shift

8

message

 FIGURE 9.12 encryptedMessage refers to the empty string.

Line 9 : msg � msg.toUpperCase()

 The method toUpperCase() creates a new String object and returns a reference to that

object. This newly created String object contains the uppercase equivalents of all the

letters of msg . The call

 msg.toUpperCase()

sim23356_ch09.indd 360sim23356_ch09.indd 360 12/15/08 6:41:41 PM12/15/08 6:41:41 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 361

does not alter the characters of the original String object. However, the reference msg is

assigned the address of the newly created String object, "CATO", and no longer refers to

"Cato". See Figure 9.13 .

“CATO”

encryptedMessage

....

“Cato”

msg

shift

8

shift

8

message

 FIGURE 9.13 msg now refers to “CATO” and not “Cato”; message still refers to “Cato”

Lines 10–19 : for (int i � 0; i < msg.length(); i��) // for each character of the message

 {

 char ch � msg.charAt(i);

 if (ch >� 'A' && ch <� 'Z') // do not include punctuation or whitespace

 {

 Int oldPositionInAlphabet � ch � 'A';

 int newPositionInAlphabet � (oldPositionInAlphabet � shift) % 26;

 encryptedMessage � encryptedMessage � (char)(newPositionInAlphabet � 'A');

 }

 }

 The call on line 10, msg.length(), returns the length of the String referenced by msg . That

string is "CATO", so msg.length() returns 4. Thus, the loop executes four times, once for each

letter of the message "CATO".
 For each letter, ch, of "CATO",

 • The alphabetical position of ch (oldPositionInAlphabet) is computed as ch � 'A'. For

example, 'C' � 'A' �

 67 � 65 � 2, the alphabetical position of 'C', and

 'T' � 'A' �

 84 � 65 � 19, the place of 'T' in the alphabet.

 • Each character must be replaced by the letter eight places forward in the alphabet. The

replacement letter is the one at position

 (oldPositionInAlphabet � shift) % 26.

 Addition mod 26 ensures that letters wrap around to the beginning of the alphabet. For

example, with shift equal to 8, 'T' is replaced by the letter that is eight places forward in

the alphabet, that is, 'T' is replaced by the letter in position

(19 � 8) % 26 � 1.

 Thus, 'T' is encrypted as 'B'. Similarly, 'C' is replaced by the letter at position

(2 � 8) % 26 � 10. That letter is 'K'.

 • The ASCII value of the encrypted letter is computed as:

 newPositionInAlphabet � 'A' .

 For example, because 'T' is encrypted as 'B'

 newPositionInAlphabet � 'A' �
1 � 65 � 66, the ASCII value of 'B'.

C
ou

rt
es

y
C

ha
rl

es
 S

im
on

so
n

sim23356_ch09.indd 361sim23356_ch09.indd 361 12/15/08 6:41:42 PM12/15/08 6:41:42 PM

362 Part 2 Principles of Object-Oriented Programming

 On each iteration, a new String object is created by appending the encrypted let-

ter (a character) to the String referenced by encryptedMessage . This is achieved using

the � operator. The address of the new String object is assigned to encryptedMessage .

 Figure 9.14 traces the execution of the loop.

“Cato”

“CATO”

“K”

....

“Cato”

“CATO”

“K”

....

“KI”

“KIB”

“Cato”

“CATO”

“K”

....

“KI”

encryptedMessage

“Cato”

msg

“CATO”

“K”

....

“KI”

“KIB”

“KIBW”

encryptedMessage

encryptedMessage

encryptedMessage

msg msg

message

shift

i = 0 i = 1

i = 2 i = 3

8

shift

8

shift

8

message

shift

8

shift

8

shift

8

message

shift

8

message

shift

8

msg

FIGURE 9.14 Each concatenation operation creates a new String object

Line 20 : return encryptedMessage

 The reference encryptedMessage is returned to the caller (Line 28).

Line 29 : System.out.println("The encrypted message is " � encrypt(message, shift));

The output

 The encrypted message is KIBW

is displayed. Notice that even though encrypt(message, shift) returns a reference, the

characters of the corresponding String object, not the reference, are displayed.

sim23356_ch09.indd 362sim23356_ch09.indd 362 12/15/08 6:41:43 PM12/15/08 6:41:43 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 363

 9.5.2 Passing References to Methods
 The method

 String encrypt(String msg, int shift)

of Example 9.2 accepts two parameters; a String reference and an integer. This method is

invoked on line 29 as

 encrypt(message, shift).

 As you know, when passing arguments to a method the values of the arguments are

copied to the parameters. Consequently, the value of the integer argument shift is copied to

the parameter shift, and the reference message is copied to the parameter msg . The String

object referenced by message is not passed to encrypt(...) , only its address is passed. The

 String object is not copied.

References, not objects, are passed as arguments to methods.

 9.5.3 The nextLine () Method
 The Scanner method

 String nextLine(),

introduced in Example 9.2 has some subtle features that can cause errors if the method is used

carelessly. The Java documentation states that the nextLine() method advances the Scanner
past the current line and returns the input that was skipped. The method returns the rest of the

current line, excluding any line separator at the end. The Scanner position is set to the begin-

ning of the next line. Careless application of this method can cause surprising results.

 On one hand, consider the following segment from Example 9.2:

 System.out.print("Enter a message on one line: ");
String message � input.nextLine();

System.out.print("Enter an integer in the range 0-25: ");
int shift � input.nextInt() ;

If the input is

 Cato
8

then message refers to "Cato" and shift gets the value 8.

 On the other hand, suppose that the code in the segment is reversed and begins with a

request for shift :

 System.out.print("Enter an integer in the range 0-25 : ");
int shift � input.nextInt() ;

System.out.print("Enter a message on one line: ");
String message � input.nextLine();

With valid input

 8
Cato

the results may surprise you. As expected, shift gets the value 8. After reading the 8, the

 Scanner is positioned before the (invisible) newline character following 8. The call to

sim23356_ch09.indd 363sim23356_ch09.indd 363 12/15/08 6:41:47 PM12/15/08 6:41:47 PM

364 Part 2 Principles of Object-Oriented Programming

 nextLine() advances the Scanner to the beginning of the next line and returns the input that

was skipped, that is, the empty string! Thus message refers to the empty string and not

"Cato".

Using nextLine() for reading strings line by line causes no problems. However, care

must be taken when mixing calls to nextLine() with other Scanner calls such as

next(), nextInt(), or nextDouble().

 9.5.4 Strings Are Immutable
 Examples 9.1 and 9.2 demonstrate some of the basics of the Java String class. Implicit in

these examples is a very important property of String objects:

Java String objects are immutable. Strings are read-only.

Although a String reference may be reassigned, once a String object is created, that object

cannot be altered. For example, consider the following code segment:

 1. String s � "E.T.";
2. s � s.toLowerCase();

The assignment statement on line 1 instantiates a new String object referenced by s (see

 Figure 9.15).

s

“E.T.”

FIGURE 9.15 The variable s references the String “E.T.”

 The method call on line 2 creates a new object (with lowercase letters). The address of this

new object is assigned to s as Figure 9.16 illustrates.

s

“e.t.”

“E.T.”

FIGURE 9.16 The variable s references a new String ;
“E.T.” is no longer accessible

 The original String object ("E.T.") has not been changed. Instead, a new String is

 created. Moreover, the original String object ("E.T.") is now inaccessible because no

 reference holds its address; see Figure 9.16 . In Chapter 10, we discuss the fate of this

“abandoned” memory.

 9.5.5 More String Methods
 Examples 9.1 and 9.2 illustrate just a few methods of Java’s String class. There are many

more. Figure 9.17 lists, some additional methods. A String object is much more than a

sequence of characters. Every String object encapsulates data and a host of methods into a

single unit. Methods that return String , of course, return not a String object but a reference

to a String object.

sim23356_ch09.indd 364sim23356_ch09.indd 364 12/15/08 6:41:48 PM12/15/08 6:41:48 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 365

Method Explanation Example

char charAt(int index) s.charAt(i) returns the character at index i.
All Strings are indexed from 0.

String s � "Titanic";
s.charAt(3) returns 'a'

int compareTo(String t) compares two Strings, character by

character, using the ASCII values of

the characters.s.compareTo(t) returns a

negative integer/ 0/positive integer if the

string s lexicographically precedes/equals/

follows the string t.

String s � “Shrek”;
String t � “Star Wars”;
String u � “Shrek”;
s.compareTo(t) returns a negative number.

s.compareTo(u) returns 0.

t.compareTo(s) returns a positive number.

int compareTolgnoreCase(String t) similar to compareTo(...) but ignores

differences in case.

String s � “E.T.”;
String t � “e.t.”;
s.compareToIgnorecase(t) returns 0.

String concat(String t) s.concat(t) returns s with t appended. String s � “Spider”;
s.concat(“-Man”) returns “Spider-Man”.

boolean endsWith(String suffi x) s.endsWith(t) returns true if t is a suffi x

of s.

String s � “Forrest Gump”;
s.endsWith(“ump”) returns true

boolean startsWith(String prefi x) s.startsWith(t) returns true if t is a prefi x

of s.

String s � “Jurassic Park”;
s.startsWith(“Jur”) returns true
s.startsWith(“jur”) returns false

boolean equals(Object t)
(The strange parameter will make

sense later. For now, think of the

parameter as String.)

s.equals(t) returns true if s and t are

identical.

String s � “FINDING NEMO”;
String t � “Finding Nemo”;
s.equals(t) returns false
s.equals(“FINDING NEMO”) returns true

boolean equalslgnoreCase(String t) s.equalsIgnoreCase(t) returns true if s and

t are identical, ignoring case.

String s � “FINDING NEMO”;
String t � “Finding Nemo”;
s.equalsIgnorecase(t) returns true

int indexOf(String t) s.indexOf(t) returns the index in s of the

fi rst occurrence of t and returns −1 if t is

not a substring of s.

String s � “The Lord Of The Rings”;
s.indexOf(“The”) returns 0;

s.indexOf(“Bilbo”) returns −1.

int indexOf(String t, int from) s.indexOf(t, from) returns the index in

s of the fi rst occurrence of t beginning

at index from; an unsuccessful search

returns �1.

String s � “The Lord Of The Rings”;
s.indexOf(“The”, 6) returns 12;

int length() s.length() returns the number of characters

in s.

String s � “Jaws”;
s.length() returns 4

String replace(char oldChar,
char newChar)

s.replace(oldCh, newCh) returns a String

obtained by replacing every occurrance of

oldCh with newCh.

String s � “Harry Potter”;
s.replace (‘r’,‘m’) returns "Hammy Pottem"

String substring(int index) s.substring(index) returns the substring of

s consisting of all characters with index

greater than or equal to index.

String s � “The Sixth Sense”;
s.substring(7) returns "th Sense"

String substring(int start, int end) s.substring(start, end) returns the substring

of s consisting of all characters with index

greater than or equal to start and strictly less

than end.

String s � “The Sixth Sense”;
s.substring(7, 12) returns "th Se"

String toLowerCase() s.toLowerCase() returns a String formed

from s by replacing all uppercase

characters with lowercase characters.

String s � “The Lion King”;
s.toLowerCase() returns "the lion king"

(continued)

sim23356_ch09.indd 365sim23356_ch09.indd 365 12/15/08 6:41:48 PM12/15/08 6:41:48 PM

366 Part 2 Principles of Object-Oriented Programming

 9.5.6 equals (...) and ��
 When utilizing the String class , be wary of comparisons using the �� operator. The ��

operator compares references, not characters.

To determine whether or not the character sequences of two String objects are identi-

cal, use the equals(...) method.

For example, the expression s �� t , shown in the segment of Figure 9.18 a, returns false

because the two references , s and t , are different, while s.equals(t) returns true because

the two String objects hold identical character sequences. The expressions s �� t and

 s.equals(t) of Figure 9.18 b both return true because the references as well as the character

sequences are equal.

String toUpperCase() s.toUpperCase() returns a String formed

from s by replacing all lowercase

characters with uppercase characters.

String s � “The Lion King”;
s. toUpperCase() returns "THE LION
KING"

String trim() s.trim()
returns the String with all leading and

trailing white space removed.

String s � “Attack of the Killer Tomatoes ”;
s.trim() returns "Attack of the Killer
Tomatoes"

FIGURE 9.17 Some String methods

Code Segment Explanation Output

String s � new String(“ABC”)
String t � new String(“ABC”);

System.out.println(“s is “� s);
System.out.println(“t is “� t);
System.out.println(“s �� t: “� (s �� t);
System.out.println(“s.equals(t): “� s.equals(t));

s

t

“ABC”

“ABC”

Using the new operator, Java

creates two String objects and

assigns corresponding addresses

to s and t, respectively. So ref-

erences s and t hold different

addresses.

s is ABC
t is ABC
s �� t: false
s.equals(t): true

Since the �� operator

compares references, s �� t
returns false.

s.equals(t) returns true

because equals(...) compares

characters, not references.

(a)

String s � “ABC”;
String t � s;

System.out.println(“s is “� s);
System.out.println(“t is “� t);
System.out.println(“s �� t: “� (s �� t);
System.out.println(“s.euals(t): “� s.equals(t));

s

t

“ABC”

The references s and t both hold

the address of this object.

s is ABC
t is ABC
s �� t: true
s.equals(t): true

The �� operator compares

the references s and t. Since s

and t both reference the same

object, s �� t returns true.

(b)

FIGURE 9.18 equals() and �� are not the same

sim23356_ch09.indd 366sim23356_ch09.indd 366 12/15/08 6:41:49 PM12/15/08 6:41:49 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 367

 EXAMPLE 9.3 It has been hypothesized that an infi nite number of monkeys, typing for an infi nite

amount of time, would eventually produce the complete works of William Shakespeare.

Since monkeys are expensive and time is precious, we scale down the experiment to a

single monkey and King Lear —well, not the whole play.

 Problem Statement Write a program that iteratively produces random letters until

either the word “LEAR” appears or two million characters have been generated.

 Java Solution We fi rst describe the solution as an algorithm:

Create a String, letters, consisting of four randomly generated uppercase letters.

Initialize count to 4 // count enumerates the number of random letters generated

while letters is not equal to "LEAR" and count �� 2,000,00
{
 remove the fi rst character from letters;
 append a new random letter to letters so the length of letters remains four;

 increment count;
}

if "LEAR" was generated,

 output success along with the character count
else

 output failure

 The following program implements the previous algorithm. The program uses

Java’s Random class to produce random integers between 0 and 25 inclusive. Each

 random integer represents a random letter: 0 for 'A', 1 for 'B', and so on.

 The program follows:

 In the fi nal example of this section, we use the Random class together with the String
class to tackle a bit of Shakespeare.

 1. import java.util.*; // for the Random class

2. public class MonkeyBusiness
3. {
4. // Generates random letters until the program produces the name "LEAR"
5. public static void main(String[] args)
6. {
7. final int MAXIMUM � 2000000; // stop at 2,000, 000 characters
8. final String GOAL � "LEAR"; // the match "LEAR"
9. String letters � ""; // The empty String—the String with no characters
10. Random num � new Random(); // instantiate a Random object
11. // build an initial String of 4 random characters
12. for (int i � 1; i �� GOAL.length(); i��) // for i � 1 to 4
13. {
14. int x � num.nextInt(26); // x denotes a random alphabet position (0 to 25)
15. letters � letters � (char)(x � 'A'); // the ASCII code for 'A' is 65
16. }

17. int count � GOAL.length(); // count is initially set to 4

18. while (!letters.equals(GOAL) && count �� MAXIMUM)

sim23356_ch09.indd 367sim23356_ch09.indd 367 12/15/08 6:41:50 PM12/15/08 6:41:50 PM

368 Part 2 Principles of Object-Oriented Programming

19. {
20. letters � letters.substring(1); // form a new String by eliminating the first character
21. int x � num.nextInt(26); // x denotes a random alphabet position(0 to 25)
22. letters � letters � (char)(x � 'A'); // add a new random character to the end of letters
23. count��;
24. }

25. if (letters.equals(GOAL))
26. System.out.println("It took " � count � " letters to generate LEAR");
27. else
28. System.out.println("Whew! I gave up!");
29. }
30. }

 Running the program three times produced the following output.

 Output 1

 It took 794188 letters to generate LEAR

 Output 2

 It took 594913 letters to generate LEAR

 Output 3

 It took 872108 letters to generate LEAR

 Discussion
 Line 9 : Here, letters is initialized to the empty string. Had letters not been

initialized, concatenation would have resulted in a syntax error. For example,

the code

 String s; // no initialization here, s is not the empty string
s � s � 'a';

generates the compiler error:

 variable s might not have been initialized
s � s � 'a';

Be sure to initialize String references.

Line 10 : A Random object is instantiated and referenced by num .

Lines 12–16 : A new String object comprised of four random characters is created

within the for loop. The loop includes a method call

 num.nextInt(26) ,

which returns a random integer in the range 0 to 25, inclusive. This value, assigned to x,
designates an alphabetical character, 0 for 'A', 1 for 'B', and so on.

 The expression

 (x � 'A')

computes the ASCII value of the character at position x ; and fi nally, the cast

 (char)(x � 'A')

produces the uppercase letter at alphabetical position x .

 For example, if x has the value 2, then

sim23356_ch09.indd 368sim23356_ch09.indd 368 12/15/08 6:41:51 PM12/15/08 6:41:51 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 369

(x � 'A') � // 2 is the position of 'C'
2 � 65 � 67 // 67 is the ASCII code for 'C'

and (char)(67) is 'C'—the uppercase letter at alphabetical position 2. (Recall that the fi rst

position is numbered 0.)

 Line 17 : Initialize count to 4; count keeps track of the total number of random letters

that are generated.

 Line 18–24 : While letters is not equal to "LEAR" and count does not exceed

 MAXIMUM

 Line 20 : letters.substring(1) returns a new String consisting of the last three

characters of letters . This new String object is referenced by letters .

 Line 21 : Variable x is assigned a random number in the range 0 to 25.

This number represents the alphabetical position of a random letter.

 Line 22 : The uppercase character at position x is appended to letters forming

a new String of 4 characters.

 Line 23 : Increment count .

 Lines 25–28 : If "LEAR" appears, then report the number of random characters

otherwise report failure.

 9.6 THE StringBuilder CLASS

 You may have noticed that the String class includes the method

 boolean endsWith(String s)

For example, the segment

 String s � "ASDFGHJHGFDS LEAR "
s.endsWith("LEAR")

returns true.
 You might guess that, by using endsWith(...) , the code of Example 9.3 could be stream-

lined as shown in Figure 9.19 .

 String letters � "";
int count � 0;
while (!letters. endsWith("LEAR") && count <� MAXIMUM)
{
 int x � num.nextInt(26);
 letters � letters � (char)(x � 'A');
 count��;
}
if (letters.endsWith("LEAR")) …..

FIGURE 9.19 Is this better?

 The code of Figure 9.19 may appear simpler and more compact than the version of Exam-

ple 9.3. However, if you embed this segment into a program and execute it, you may have

a long wait before you see any results.

sim23356_ch09.indd 369sim23356_ch09.indd 369 12/15/08 6:41:52 PM12/15/08 6:41:52 PM

370 Part 2 Principles of Object-Oriented Programming

 Remember, String objects are constant, immutable, and read-only. Consequently,

 String concatenation always produces a brand new String object. For each of the three

sample runs of Example 9.3, on average, about 750,000 new String objects of length

4 are created—one new object of length 4 for each random letter generated. The loop

of Figure 9.19 also creates a new String object with each iteration. If the loop executes

750,000 times, then the fi rst String has just one character, the second has two characters,

the third three characters, . . . the 749,997 th new String has 749,997 characters, and the

749,998 th has 749,998 characters, and so on. Each time a new String is created, all the

characters of the “old” String are copied to new memory locations. Copying 749,998

characters is certainly a bit more work than copying just four! Figure 9.20 compares the

two implementations.

letters

Previously created strings

All of length 4

ASDF

SDFG

DFGH

FGHJ

GHJK

HJKL

Previously created strings

Length increases with
each string

A

AS

ASD

ASDF

ASDFG

ASDFGH

(a)

LEAR

letters (b)

ASDF LEAR

FIGURE 9.20 (a) Strings created with the program of Example 9.3
(b) Strings created using the endsWith() method

 A String object is immutable; once created, a String object cannot change. On the

other hand, a StringBuilder object can be changed. You can add or delete characters to

or from a StringBuilder object, without creating a new StringBuilder object . To accom-

plish this, the capacity of a StringBuilder object automatically expands as needed. You

can also change individual characters of a StringBuilder object without creating a new

object.

For programs that are heavy with string concatenation, or any operation that alters

the characters of a string, Java provides the StringBuilder class with methods that do

not create a new object each time a String is altered.

 Let’s look behind the scenes for a minute. Suppose that word references the String

"computer". To append the " s " to word , each letter of "computer" is copied and " s " is

appended to this new copy of "computer". See Figure 9.21 a. However, if wordBuilder
references a StringBuilder object, in contrast to a String object, no copying occurs. See

 Figure 9.21 b.

sim23356_ch09.indd 370sim23356_ch09.indd 370 12/15/08 6:41:53 PM12/15/08 6:41:53 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 371

computer

computers

wordBuilder

wordBuilder

Append “s”

word computer

computer

word computers

Append “s”

word references a String
A copy of “computer” is created

(a)

wordBuilder references a StringBuilder
A copy of “computer” is not created

(b)

FIGURE 9.21 Appending to a String versus appending to a StringBuilder

 For programs with excessive String modifi cation or concatenation, the StringBuilder
class may improve performance. For read-only strings, the String class is preferable, more

effi cient, and provides more functionality.

 To instantiate a StringBuilder object, use the new operator:

 StringBuilder s � new StringBuilder(); // initial capacity 16 characters
StringBuilder s � new StringBuilder(50); // initial capacity 50
StringBuilder s � new StringBuilder ("Hello"); // initializes s to "Hello"

The capacity of a StringBuilder object automatically expands as needed.

 Figure 9.22 gives a few of the more common methods of the StringBuilder class.

Method
Explanation (sb refers to a
StringBuilder) Example

StringBuilder append(String s)
StringBuilder append(char c)
StringBuilder append(StringBuilder s)

sb.append(x)
appends x to the end of sb and

returns a reference to the altered

StringBuilder object.

StringBuilder s � new StringBuilder("New");
s.append("York");
returns

StringBuilder("New York") and alters s

char charAt(int i) sb.charAt(i) returns the character

at position i. StringBuilder
character sequences are indexed

from 0.

StringBuilder s � new StringBuilder("Iowa");
char ch � sb.charAt(3);
ch has the value 'a'

StringBuilder delete(int start, int end) sb.delete(start, end) removes

the characters from position

start to position end �1 and

returns a reference to the altered

StringBuilder object.

StringBuilder s � new
StringBuilder("Delaware");
s.delete(2,6);
returns StringBuilder(“Dere”) and alters s

StringBuilder deleteCharAt(int i) sb.deleteCharAt(i) removes

the character at index i and

returns a reference to the altered

StringBuilder object.

StringBuilder s � new StringBuilder("Maine");
s.deleteCharAt(1);
returns StringBuilder("Mine") and alters s

(continued)

sim23356_ch09.indd 371sim23356_ch09.indd 371 12/15/08 6:41:53 PM12/15/08 6:41:53 PM

372 Part 2 Principles of Object-Oriented Programming

Method
Explanation (sb refers to a
StringBuilder) Example

int indexOf(String s) sb.indexOf(s) returns the index of

the fi rst occurrence of s in sb. If s

is not a substring of sb, returns �1.

StringBuilder s � new StringBuilder("Florida");
int x � s.indexOf("or");
x has the value 2

int indexOf(String s, int from) sb.indexOf(s, from) returns the

index of the fi rst occurrence of s

in sb starting at index from. If s is

not a substring of sb, returns �1.

StringBuilder s � new
StringBuilder("Mississippi");
int x � s.indexOf("is",2);
x has the value 4

StringBuilder insert(int index, String s)
StringBuilder insert(int index, char ch)

sb.insert(index, s) inserts s into

sb at position index.

StringBuilder s � new StringBuilder("Oo");
s.insert(1, "hi);
returns StringBuilder("Ohio") and alters s

int length() sb.length() returns the number of

characters in sb.
StringBuilder s � new
StringBuilder("Vermont");
s.length() returns 7

StringBuilder replace(int start, int end,
String s)

sb.replace(start, end, s) replaces

all characters from start to end
� 1 with s and returns a reference

to the altered StringBuilder object.

StringBuilder s � new
StringBuilder("Texas");
s.replace(1,4,"axe")
returns "Taxes" and alters s

StringBuilder reverse() sb.reverse() reverses the order

of the characters of sb and

returns a reference to the altered

StringBuilder object.

StringBuilder s � new StringBuilder("Utah");
s.reverse()
returns StringBuilder("hatU") and alters s

String substring(int index) s.substring(index) returns the

substring of s consisting of all

characters with index greater than

or equal to index.

Notice that the method returns a

String reference.

StringBuilder sb �
new StringBuilder("New Jersey");

sb.substring(4) returns "Jersey"

String substring(int start, int end) s.substring(start, end) returns the

substring of s consisting of all

characters with index greater than

or equal to start and strictly less

than end.

Notice that the method returns a

String reference.

StringBuilder sb �
new StringBuilder("New Jersey");

sb.substring(0,3) returns "New"

String toString() sb.toString() returns a String

representation of the characters

of sb.

StringBuilder s � new StringBuilder("Illinois");
String str � s.toString();
str refers to the String object "Illinois"

FIGURE 9.22 Some StringBuilder methods

sim23356_ch09.indd 372sim23356_ch09.indd 372 12/15/08 6:41:54 PM12/15/08 6:41:54 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 373

In contrast to the String class, the equals(...) method of StringBuilder compares

 references and not the contents of a StringBuilder object.

 For example,

 String s � new String(" Monkey Business");
 String t � new String ("Monkey Business"); (1)
System.out.println(s.equals(t));

displays true, but the segment

 StringBuilder s � new StringBuilder(" Monkey Business");
 StringBuilder t � new StringBuilder ("Monkey Business"); (2)
System.out.println(s.equals(t));

displays false.
 Segment (1) compares characters, but segment (2) compares references. To compare

the contents of two StringBuilder objects a and b , use

 a.toString().equals(b.toString()).

Using the StringBuilder class, we rewrite the segment of Figure 9.19 in Example 9.4.

 EXAMPLE 9.4 Problem Statement Using the StringBuilder class, write a program that iteratively

produces random letters until either the word "LEAR" appears or two million characters

have been generated.

 Java Solution The fragment of Figure 9.19 uses the String method endsWith(...) to deter-

mine whether or not the word "LEAR" has been randomly generated. The StringBuilder
class does not come packaged with an endsWith(...) method. However, the method

 int indexOf(String s, int from)

serves the same purpose. For example, consider the declaration and instantiation

 StringBuilder s � new StringBuilder('SHFJDK LEAR ') // "SHFJDK LEAR" has 10 characters

The call s.indexOf("LEAR", 6) examines the last four characters of s, fi nds a match, and

returns 6, the index of 'L'.
 Similarly, if s references a StringBuilder object initialized with "ASWTHAMLET",
then indexOf("LEAR", 6) returns �1 because "LEAR" does not appear as the last four

characters of "ASWTHAMLET".
 In general,

 int indexOf("LEAR" , s.length()�4)

returns a non-negative number if s ends with "LEAR" and �1 otherwise. The following

program uses the logic of Figure 9.19 but with a StringBuilder object.

 1. // Generates random letters until the word "LEAR" appears
2. // Generates a maximum of 2 million letters
3. import java.util.*;

4. public class MoreMonkeyBusiness
5. {
6. public static void main(String[] args)

sim23356_ch09.indd 373sim23356_ch09.indd 373 12/15/08 6:41:54 PM12/15/08 6:41:54 PM

374 Part 2 Principles of Object-Oriented Programming

7. {
8. final int MAXIMUM � 2000000;
9. final String GOAL � "LEAR";
10. StringBuilder letters � new StringBuilder();
11. Random random � new Random();

12. while (letters.indexOf(GOAL, letters.length()�4) � 0 && letters.length() � � MAXIMUM)
13. {
14. int position � random.nextInt(26); // a random alphabet position
15. char nextLetter � (char)(position � 'A'); // position�'A' is the ASCII code of the next letter
16. letters.append(nextLetter); // append the new letter
17. }

18. if(letters.indexOf(GOAL, letters.length()�4) � � 0) // if letters ends with "LEAR"
19. System.out.println("It took " � letters.length() � " characters to generate LEAR");
20. else
21. System.out.println("Whew! I gave up");
22. }
23. }

 Output 1
 It took 93444 characters to generate LEAR

 Output 2
 It took 139345 characters to generate LEAR

 Output 3
 It took 783586 characters to generate LEAR

 Discussion Lines 12−17 do all the work. The loop condition determines whether the

current StringBuilder object ends with "LEAR" or whether the maximum number of

random letters has been generated. If the StringBuilder object ends with "LEAR", then

 letters.indexOf(GOAL, letters.length()-4) returns the position of "LEAR" , a positive num-

ber. Within the loop:

• a new random integer in the range 0 to 25 is generated corresponding to an

alphabetical character between 'A' and 'Z' inclusive,

• the random number is converted to the corresponding alphabetical character, and

• the character is appended to the StringBuilder object, letters .

The function call letters.length() gives the total number of characters that have been

generated.

 9.7 THE MYSTERIOUS String[] args

 Every application that you have implemented includes the heading

 public static void main(String[] args);

What does all this Java-speak mean? Is it all necessary? In Chapter 10, we explain the

meaning of the words public and static. Now, however, you probably recognize

 String[] args

as an array of String . The following short program uses this mysterious array args :

 public class Tester
{

sim23356_ch09.indd 374sim23356_ch09.indd 374 12/15/08 6:41:55 PM12/15/08 6:41:55 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 375

 public static void main(String[] args)
 {
 System.out.println("Hello " � args[0]);
 System.out.println("Hello " � args[1]);
 }
}

Array elements args[0] and args[1] are String references that are passed to main(...) via the

command line.

 If you execute this program with the command

 � java Tester Newman Jerry

or

 � java Tester "Newman" "Jerry"

the two Strings ("Newman" and "Jerry") entered at the command line are passed to the

program, and references to these strings are stored in the array args . Consequently, args[0]
holds a reference to the String "Newman" and args[1] holds a reference to the String "Jerry".
The output of the program is:

 Hello Newman
Hello Jerry

 You can pass any number of arguments to a program via the command line. More-

over, the number of arguments passed is available as args.length . The following fragment

accepts and prints an arbitrary number of command line arguments.

 Public static void main(String[] args)
{

for (int i � 0; i � args.length; i��)
System.out.println("Hello " � args[i]);

}

 9.8 CLASSES FOR HANDLING FILES

 To this point, all of our programs have been interactive. However, applications that require a

large amount of data often take input from (or place output to) disk fi les that do not disappear

when you turn off your computer. A word processing program saves your document as a fi le,

as do spreadsheets and database programs. Permanent data reside in fi les. Most programs

use and/or create data in fi les that exist before and persist after the program executes.

 A fi le is a collection of data saved under a single name. There are many different

types of fi les, but for the present, we concentrate on text fi les, a type of fi le that consists of

ordinary ASCII characters. A text fi le is a fi le that you can create or read with an ordinary

text editor such as Notepad (Windows), TextEdit (Mac OS X), or Emacs (Linux/Unix).

To use a fi le, you must fi rst instantiate a File object.

 A File object is a proxy that represents a physical disk fi le within a program. Once

instantiated, a File object is passed to another object that is capable of reading data from the

fi le or writing data to the fi le. Reading is accomplished with a Scanner object and writing

with a PrintWriter object. The program of Example 9.5 uses the File class along with some

new methods of the Scanner class to read data from a text fi le.

sim23356_ch09.indd 375sim23356_ch09.indd 375 12/15/08 6:41:56 PM12/15/08 6:41:56 PM

376 Part 2 Principles of Object-Oriented Programming

 Problem Statement Read the contents of a text fi le and display the fi le’s contents on

the screen.

 Java Solution To accomplish this task, the following program uses two Java classes:

the File class and the Scanner class. Because the File class resides in the java.io pack-

age, the program must include the statement: import java.io.*. Also, notice the clause

 throws IOException

in the heading of main(...). For now, whenever a method, myMethod(...), uses the File class

for Scanner I/O, include throws IOException in myMethod(...) ’s heading as well as in the

heading of any other method that calls myMethod(...). We discuss the “ throws clause” in

detail in a subsequent chapter.

 The name of the disk fi le is quotations.txt and it contains several quotations attrib-

uted to comedian and satirist Groucho Marx (1890−1977). The program reads from

 quotations.txt and displays the contents of quotations.txt on the screen.

 The fi les that we use in this section are all sequential fi les. Data in a sequential fi le

must be accessed sequentially, that is, in order from the beginning of the fi le to the end.

To read the tenth line of the fi le, a program must read the previous nine lines fi rst.

 The program and a line-by-line discussion follow.

 1. // displays the contents of the file quotations.txt on the screen
2. import java.util.*;
3. import java.io.*;

4. public class File1
5. {
6. public static void main (String[] args) throws IOException
7. {
8. File inputFile � new File("quotations.txt");

9. if(! inputFile.exists())

10. {
11. System.out.println("File quotations.txt not found ");
12. System.exit(0);
13. }
14. Scanner input � new Scanner(inputFile);

15. String line; // to hold one full line from the file

16. while (input.hasNext()) // while there is more data
17. {
18. line � input.nextLine(); // advance to next line, returns all "skipped" data
19. System.out.println(line);
20. }
21. input.close();

22. }
23. }

 Output
 Quotations of Groucho Marx (1890–1977)

A child of five would understand this.
Send someone to fetch a child of five.

 EXAMPLE 9.5

sim23356_ch09.indd 376sim23356_ch09.indd 376 12/15/08 6:41:57 PM12/15/08 6:41:57 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 377

Age is not a particularly interesting subject.
Anyone can get old. All you have to do is live long enough.

Either this man is dead or my watch has stopped.

I could dance with you until the cows come home.
On second thought I’d rather dance with the cows until you come home.

I find television very educating.
Every time somebody turns on the set, I go into the other room and read a book.

I sent the club a wire stating,
PLEASE ACCEPT MY RESIGNATION.
I DON’T WANT TO BELONG TO ANY CLUB THAT WILL ACCEPT ME AS A MEMBER.

I’ve had a perfectly wonderful evening. But this wasn’t it.

Those are my principles,
and if you don’t like them... well, I have others.

I don’t have a photograph, but you can have my footprints.
They’re upstairs in my socks.

 Discussion The program displays the contents of the fi le quotations.txt . The fi le

might have been created with a text editor such as Notepad or Emacs, or even with

Word (if saved as a text fi le). Let’s look at the program, line by line.

 Lines 2–3 : These import statements are necessary when using the File class and

the Scanner class.

 Line 8 : The variable inputFile is declared as a reference to a File object. Like other

objects, a File object is created via the new operator. The object is initialized with

the string "quotations.txt" . If the disk fi le does not reside in the same directory as the

class fi le that is created by the compiler, use a qualifi ed fi lename such as "c:\\myfi les\\
quotations.txt". (Because a slash \ is used within a string to signify an escape character

such as \n or \t, a double slash is necessary to denote an actual quoted slash.) The File

object is the program’s representation of the physical disk fi le quotations.txt .

Lines 9−12 : In the event that the fi le quotations.txt cannot be found, the program

takes action. The exists() method of the File class returns true if the fi le exists

and false otherwise. If the named fi le cannot be found, the program displays a

message to that effect, and the call

 System.exit(0)

aborts the program.

Line 14 : A new Scanner object is instantiated with parameter inputFile (rather

than the usual System.in), indicating that the Scanner reads data from the fi le

 quotations.txt rather than the keyboard.

 Line 15 : The hasNext() method of the Scanner class returns true if input remains

and false otherwise. Thus, if all data has been read from the fi le, the loop terminates

because input.hasNext() returns false.

 Line 18 : Each call

 input.nextLine()

returns one line of the file quotations.txt .

sim23356_ch09.indd 377sim23356_ch09.indd 377 12/15/08 6:41:58 PM12/15/08 6:41:58 PM

378 Part 2 Principles of Object-Oriented Programming

Line 19 : Each line of the fi le is displayed on the screen.

Line 21 : The close() method of the Scanner class closes the Scanner object, that

is, disassociates the fi le object from the Scanner . In this small program, there was

no gain in closing the Scanner . However, in larger programs that read from many

fi les, closing the Scanner can free up system resources and make a difference in

program performance.

 From Example 9.5 we can extrapolate a methodology for reading data from a text fi le.

 1. Instantiate a File object using the fi lename:

 File inputFile � new File(filename); // the name inputFile is arbitrary

 2. Instantiate a Scanner object passing the File object to the Scanner :

 Scanner input � new Scanner(inputFile); // the name input is arbitrary

 3. Use the methods of the Scanner class to read data from the fi le.

 All of the familiar methods such as nextInt(), nextDouble, and next() can be

used in addition to nextLine().
 The method hasNext() returns false when all data has been read.

 4. Close the Scanner .
 input.close()

Do not forget to include the clause

 throws IOException

as part of the heading of a method that uses the File class. In fact, if the heading of method A()
includes a throws clause and method B() invokes A(), then the heading of B() should also

include a throws clause. In Chapter 14, you will see that there are exceptions to this rule.

 The fi lename of Example 9.5 was hard-wired into the program. More conveniently, the

name of the fi le can be supplied at runtime. In this case, a program instantiates two Scanner
objects, one that reads from the keyboard and the other that reads from a fi le.

 Scanner keyboard � new Scanner(System.in); // read from keyboard
System.out.print("Enter the file name: "); // prompt user for filename
String filename � keyboard.next(); // read filename from keyboard

File inputFile � new File(filename); // instantiate a File object
Scanner input � new Scanner(inputFile); // read from the file

The next example not only reads from a fi le but sends output to another fi le.

 To write data to a fi le, use the PrintWriter class and the following procedure:

 1. Instantiate a File object with the name of the output fi le.

 2. Instantiate a PrintWriter object, passing the newly created File object as an argument. If the

specifi ed output fi le already exists, its contents are erased; otherwise a new fi le is created.

The PrintWriter class implements the familiar methods print() and println().

 During World War II, the British waged a war behind the war trying to intercept and

decode German transmissions. The Germans, however, used methods a bit more clever

than the Caesar cipher of Example 9.2. Rather than a single letter shift, the Germans

used a codeword shift such that each letter of some secret codeword represents a different

 EXAMPLE 9.6

sim23356_ch09.indd 378sim23356_ch09.indd 378 12/15/08 6:41:58 PM12/15/08 6:41:58 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 379

shift. For example, assume that the codeword is "CAT" and the message is "LEOPARD".
If we agree that A occupies position 0 in the alphabet, B holds position 1, C is in position

2, and so on, then the letters of the codeword "CAT" occupy alphabet positions 2(C),
0(A), and 19(T) and consequently represent successive alphabet shifts of 2, 0, and 19

places when encrypting the message. Thus, to encode "LEOPARD" replace:

L with N: a 2-place shift (C)
E with E: a 0-place shift (A)
O with H: a 19-place shift (T)

P with R: a 2-place shift (C)
A with A: a 0-place shift (A)
R with K: a 19-place shift (T)

D with F: a 2-place shift (C)

By repeatedly cycling the codeword "CAT", this method transforms "LEOPARD"
into "NEHRAKF". If the codeword is "MOUSE" then "LEOPARD" encrypts as

"XSIHEDR". For a code word with 13 letters, such as "DETERMINATION", a code breaker

would be faced with 26 13 or 2,481,152,873,203,736,576 possible encodings.

 Problem Statement Write a program that, given a fi le of English text, encrypts the

passage using a codeword shift. The codeword and the names of the input and output

fi les are supplied interactively. For simplicity, encode the fi le, line by line. That is, con-

sider each line of the fi le to be a “new message.” Assume that the input fi le contains only

alphabetical characters and no whitespace.

 Java Solution The program requires two Scanner objects: one object that accepts the

fi lenames and codeword interactively and the other that reads text from the input fi le.

In addition, the program instantiates a PrintWriter object that writes encrypted text to an

output fi le. The method

 String Encrypt(String msg, String cw)

is almost identical to the method of Example 9.2. However, instead of using the same

shift for each letter, the program of Example 9.6 uses a codeword shift. The method

accepts one line of text and returns an encrypted version of that text. The program

encrypts the text, line by line.

 1. import java.util.*;
2. import java.io.*;

3. public class EncryptFile
4. {
5. // returns one line of encrypted text
6. public static String encrypt(String msg, String cw)
7. {
8. String encryptedMessage � new String();
9. msg � msg.toUpperCase();
10. cw � cw.toUpperCase();
11. for (int i � 0; i � msg.length(); i��)
12. {
13. char ch � msg.charAt(i);
14. int shift � (cw.charAt(i % cw.length()) � 'A');
15. int oldPositionInAlphabet � ch � 'A';
16. int newPositionInAlphabet � (oldPositionInAlphabet � shift) % 26;
17. encryptedMessage � encryptedMessage � (char)(newPositionInAlphabet � 'A');
18. }

sim23356_ch09.indd 379sim23356_ch09.indd 379 12/15/08 6:41:59 PM12/15/08 6:41:59 PM

380 Part 2 Principles of Object-Oriented Programming

19. return encryptedMessage;
20. }

21. public static void main (String[] args) throws IOException
22. {
23. // Instantiate a Scanner object for keyboard input
24. Scanner keyboard � new Scanner(System.in);
25. System.out.print("Unencrypted file: ");
26. String unencryptedFile � keyboard.next();

27. File inputFile � new File(unencryptedFile);
28. Scanner input � new Scanner(inputFile);
29. if (!inputFile.exists())
30. {
31. System.out.println("Error:" � unencryptedFile � " not found");
32. System.exit(0);
33. }

34. // Open a new file for output
35. System.out.print("Encrypted file: ");
36. String encryptedFile � keyboard.next();
37. File outputFile � new File(encryptedFile);

38. PrintWriter output � new PrintWriter(outputFile);

39. if (!outputFile.exists())

40. {

41. System.out.println("Error: cannot open " � encryptedFile);

42. System.exit(0);

43. }

44. System.out.print("Codeword: ");
45. String codeword � keyboard.next();
46. while(input.hasNext()) // encrypt the file line by line
47. {
48. String line � input.nextLine();
49. String encryptedLine � encrypt(line, codeword);
50. output.println(encryptedLine);
51. }

52. input.close();
53. output.close();
54. }
55. }

 Output
 Unencrypted file: Caesar.txt

Encrypted file: CaesarCoded.txt

Codeword: MarcAntony

 The two fi les used in the program are:

Caesar.txt CaesarCoded.txt

FriendsRomansCountrymenLendMeYourEars
IComeToBuryCaesarNotToPraiseHim
TheEvilThatMenDoLivesAfterThem
TheGoodIsOftInterredWithTheirBones

RRZGNQLFBKMNJEOHGHEWYEENEAWARWAUIGAEL
UCFOEGHPHPKCRGSNKBBRFOGTAVLSUGY
FHVGVVEHUYFMVPDBEWICEAWVEEMVRK
FHVIOBWWFMRTZPTRKFRBIIKJTUXWEZANVU

 Discussion
 Lines 23–33 : A Scanner object for interactive input is instantiated and a user

supplies the name of the unencrypted fi le ("Caesar.txt"). Next, a File object is

sim23356_ch09.indd 380sim23356_ch09.indd 380 12/15/08 6:42:00 PM12/15/08 6:42:00 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 381

created along with a second Scanner object that reads from an unencrypted fi le.

Thus the program uses two Scanner objects. The fi rst Scanner , keyboard , takes

input from the console; the second, input, takes input from a File object. Both

 Scanner s share the same methods. See Figure 9.23 .

inputFileSystem.in

nextInt()
nextDouble()
nextBoolean()
nextLine()
next()
hasnext()

Methods/behaviors

Data/attributes

keyboard input

nextInt()
nextDouble()
nextBoolean()
nextLine()
next()
hasnext()

FIGURE 9.23 Two different Scanner objects instantiated from
the Scanner class

 Lines 34–38 : The user supplies the name of the output fi le ("CaesarCoded.txt").
A File object (outputFile) is created along with a PrintWriter object (output) that

writes to the specifi ed output fi le. If the output fi le already exists, all data is

erased; otherwise, a new fi le is created.

 Lines 39–43: If, for example, the disk is full, it may be impossible to create

the output fi le. In this case, an error message is displayed on the screen and the

program aborts.

 Lines 44–45: The user supplies a codeword ("MarcAntony ") for the encryption.

 Lines 46–51: The while loop operates as follows:

 For each line of the original fi le:

 Read one line of text.

 Invoke encrypt(…) , which encrypts the line of text.

 Write the encrypted line to the output fi le using Printwriter’ s

 println() method.

 Lines 52–53: The input Scanner and the PrintWriter are closed.

 As we noted, the method

 String encryptMessage(String msg, String cw)

is almost identical to the method of Example 9.2. This version, however, accepts

a codeword as a parameter rather than an integer that denotes a shift. Each

letter is encrypted with a different shift as determined by the codeword. This is

accomplished by the statement on line 14:

 int shift � (cw.charAt(i % cw.length()) � 'A').

 9.9 THE DecimalFormat CLASS

 We conclude this chapter with one more Java class that provides some control over the

output of fl oating-point numbers.

sim23356_ch09.indd 381sim23356_ch09.indd 381 12/15/08 6:42:00 PM12/15/08 6:42:00 PM

382 Part 2 Principles of Object-Oriented Programming

The DecimalFormat class allows you to format a fl oating-point number using a “pat-

tern string” that specifi es exactly how a number should be displayed.

One form of a pattern string includes a decimal point and any number of ' # ' and ' 0 ' char-

acters. A ' 0 ' in position i indicates that a digit is required in position i , even if the digit is

a leading or trailing 0. A ' # ' in position i indicates that the character in position i may be a

digit or a blank. The character should be a digit as long as it is not a leading or trailing zero,

in which case the character in position i will be a blank.

 Figure 9.24 gives a few examples showing a fl oating-point number, a pattern string,

and the same number formatted according to the specifi cations of the pattern.

Number Pattern String Formatted Number

123.123456 0.###
0.

123.123

123.

8.125 00.##
##.0000

08.13 (rounds)

8.1250

.123 ###.#
0000.#########

0.1 (Yes one zero will appear before the decimal)

0000.123

FIGURE 9.24 Using a pattern string

 A DecimalFormat object is instantiated using the new operator as follows:

 DecimalFormat formatter � new DecimaFormat(String pattern)

Two particularly useful methods are

 String format(double x)

which returns a String version of x , formatted according to the specifi cations of the pattern

string, and

 void applyPattern(String pattern) ,

which supplies a new pattern string to a DecimalFormat object

 The following code snippet illustrates the use of the methods of the DecimalFormat class

 DecimalFormat formatter � new DecimalFormat("0.##");
double x � 123.123456789;
double y � .987654321;
System.out.println(formatter.format(x)); // 123.12
System.out.println(formatter.format(y)); // 0.99 – rounding occurs
formatter.applyPattern("##.###"); // change the pattern
System.out.println(formatter.format(x)); // 123.123
System.out.println(formatter.format(y)); // 0.988 – rounding again

To use the DecimalFormat class, import the java.text package.

 The chapter’s fi nal example uses the String class, the DecimalFormat class, and the File
class to process a list of averages.

 Sara Starstruck is president of The Curious Cult Film Club. Whenever a member views a

new fi lm, he/she assigns it a rating from 0 to 5 stars and passes that information to Sara.

Sara maintains a fi le of fi lms together with members’ ratings. Each line of the fi le consists

 EXAMPLE 9.7

sim23356_ch09.indd 382sim23356_ch09.indd 382 12/15/08 6:42:01 PM12/15/08 6:42:01 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 383

of the title of a fi lm followed by an arbitrary number of ratings. The title and the ratings are

separated by the # symbol. The following line is a typical entry in Sara’s fi le:

 Frankenstein Meets the Space Monster # 2 3 1 1 4 0 2

Here, whitespace separates the title and ratings from the # symbol.

 Problem Statement Write a program that reads Sara’s fi le (fi lms.txt) and produces a

second fi le (ratings.txt) that lists the title of each fi lm followed by the fi lm’s average rat-

ing. Ratings should be rounded to one decimal place.

 Java Solution The following program uses a DecimalFormat object with pattern string

"#.0" to ensure that the average ratings are printed with one decimal place.

 1. // find the average rating of a film
2. // input file: films.txt
3. // output file: ratings.txt

4. import java.util.*;
5. import java.io.*;
6. import java.text.*;

7. public class RateFilms
8. {
9. public static void main (String[] args) throws IOException
10. {
11. // Open input file and attach it to a Scanner
12. File filmFile � new File("films.txt");
13. Scanner input � new Scanner(filmFile);
14. if (!filmFile.exists())
15. {
16. System.out.println("Error: films.txt is not found");
17. System.exit(0);
18. }
19. // Open a new file for output and attach to a Printwriter
20. File ratingFile � new File("ratings.txt");
21. PrintWriter output � new PrintWriter(ratingFile);

22. if (!ratingFile.exists())
23. {
24. System.out.println("Error: cannot open ratings.txt");
25. System.exit(0);
26. }

27. // Floating point numbers have one decimal place
28. DecimalFormat formatter � new DecimalFormat("#.0");

29. final String SEPARATOR � "#"; // # symbol separates title from ratings

30. while(input.hasNext()) // while input remains
31. {
 // read and print the title
32. String title � input.next(); // read and print first word of the title

sim23356_ch09.indd 383sim23356_ch09.indd 383 12/15/08 6:42:02 PM12/15/08 6:42:02 PM

384 Part 2 Principles of Object-Oriented Programming

33. while (!title.equals(SEPARATOR)) // read and print the remainder of the title
34. {
35. output.print(title � " ");
36. title � input.next();
37. }

38. int sum � 0; // for each film
39. int count � 0; // the number of ratings

40. while (input.hasNextInt()) // read each rating and add to sum
41. {
42. sum �� input.nextInt();
43. count��;
44. }

45. // Calculate the average of the ratings with one decimal place
46. output.println("--" � formatter.format (((double)sum)/ count));
47. }

48. input.close();
49. output.close();
50. }
51. }

 Output

films.txt (input file) ratings.txt (output file)

Frankenstein Meets the Space Monster # 2 3 1 1 4 0 2
Hercules in New York # 1 3 5 5 5 2 1 1 3 2 4 1 3 2 1 1
Theater of Blood # 3 2 4 5 3 4 5 1 3 2 4 5 2 3 4 5 3
The Tingler # 2 3 2 1 3 4 5 4 3 2 3 4 2
The Body Snatchers # 5 4 5 4 5 5 5 3 4 4 2 2 3 4 4

Frankenstein Meets the Space Monster -- 1.9
Hercules in New York -- 2.5
Theater of Blood -- 3.4
The Tingler -- 2.9
The Body Snatchers -- 3.9

 Discussion
Lines 11–26 : These statements should be familiar by now. They open fi les for input

and output as well as instantiate Scanner and PrintWriter objects.

 Line 28 : DecimalFormat formatter � new DecimalFormat("#.0")

 A DecimalFormat object is instantiated with pattern string " #.0 ", ensuring that fl oating-

point numbers are printed with a single digit to the right of the decimal.

 Lines 30–47 : The nested loops of these lines operate as follows:

 while input remains (for each fi lm)

{

 Read and print the title, i.e., read and print strings until '#' appears in the input.

 Set sum and count to 0.

 For each rating: add the rating to the current sum, and increment count.
 Calculate and print the average of the ratings using the formatter object.

}

sim23356_ch09.indd 384sim23356_ch09.indd 384 12/15/08 6:42:02 PM12/15/08 6:42:02 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 385

 9.10 IN CONCLUSION

 Object-oriented programming is a programming paradigm that incorporates the principles

of encapsulation, inheritance, and polymorphism. In this chapter, you have been introduced

to objects and classes—the features of Java that enable encapsulation. You have seen how

to create objects from classes such as String, StringBuilder , and DecimalFormatter —classes

that come packaged with Java.

 In the next chapters, you will learn how to design and construct your own classes,

understand more about the underlying principles of object-oriented programming, and

implement programs that are truly object-oriented. The Scanner class, the String class, the

 StringBuilder class, the File class, the PrintWriter class, the Random class, and the Decimal-
Format class are just the beginning. Objects come in all shapes and sizes.

 Just the Facts

• OOP is a programming paradigm that incorporates the principles of encapsulation ,

 inheritance , and polymorphism .

• Understanding the principles of OOP requires time and experience. A single sentence

or even a single page is not enough to convey the idea accurately.

• An object is an entity consisting of attributes and behaviors, that is, data and

methods.

• A class is a blueprint used to create objects.

• Each object has its own data but shares methods with other objects of the same

class.

• The bundling of data and methods into objects is known as encapsulation .

• Java provides huge libraries with many built-in classes that can be accessed using

 import statements.

• Java’s String class encapsulates a character sequence with methods that manipulate

those characters.

• String objects are immutable ; they cannot be changed. String objects are read-only.

• StringBuilder objects can be changed and are not immutable.

• For “read-only” strings, the String class is more effi cient than the StringBuilder
class.

• For programs heavy with concatenation or any string construction, use the

 StringBuilder class.

• The DecimalFormat class allows a programmer to print formatted fl oating-point

numbers.

• The Random class gives a programmer the capability to defi ne and use random num-

bers, both integer and fl oating point.

• The Scanner class provides a mechanism that accepts input from a fi le, a keyboard,

or other source.

• The PrintWriter class allows a programmer to output information to the screen, a fi le,

or other destination.

• A fi le is a collection of data that can exist before and persist after the program manip-

ulates its data.

sim23356_ch09.indd 385sim23356_ch09.indd 385 12/15/08 6:42:04 PM12/15/08 6:42:04 PM

386 Part 2 Principles of Object-Oriented Programming

• A sequential fi le is a fi le in which data is read and written in order. For example, to

read the third line of a sequential fi le, a program must fi rst read the fi rst and second

lines, and to write the third line, a program must fi rst write the fi rst and second

lines.

• Use the File class for creating, modifying, or deleting sequential data fi les.

 Bug Extermination

• When using a Java class, don’t forget to use the correct import statement.

• All import statements must appear before any class defi nitions.

• When comparing String objects, the equals(...) method rather than the ��

operator is usually the correct choice. The �� operator compares references;

the equals(...) method compares characters. When using StringBuilder objects,

the �� operator and the equals(...) method are equivalent; both compare references.

If you want to compare the contents of two StringBuilder objects a and b , use

 a.toString().equals(b.toString();

• Do not confuse class methods with data fi elds. A method call requires parentheses.

For example, String x � "hello"; x.length () returns 5, but x.length generates an error.

For arrays, length is a data fi eld rather than a method, so that if a[] � {1, 2, 3} then

 a.length has the value 3, and a.length() generates an error.

• Be sure to initialize all String references before you use them. String x; x �� "a";
generates an error. Instead, fi rst initialize a String reference to the empty String :

 String x � ""; x �� "a";

• Be careful when mixing the Scanner method nextLine() with other Scanner calls

such as next(), nextInt(), or nextDouble(). After a call to nextInt() or nextDouble(), if
no other data remain on the same line, a call to nextLine() returns the empty String

and not the data on the “next line.”

• Strings are immutable. Be aware that excessive reassignment of String references

may create quite a bit of garbage and may slow down program execution. Use

 StringBuilder objects for these kinds of applications.

• The methods nextInt(int n) and nextDouble() of the Random class return values

between 0 and n − 1, and 0.0 up to 1.0, respectively. That is, the ranges include 0 at

the low end, but do not include n and 1.0, respectively, at the high end. So, to gener-

ate a random integer between 1 and n inclusive, use ne xtInt(n) � 1 .

• Before a Scanner object reads from a fi le, check to see whether or not the fi le exists.

This allows your program to handle errors gracefully.

• Do not forget to include the clause throws IOException in the heading of a method A()
that uses the File class for Scanner I/O. Also, include the throws IOException clause in

the heading of any method, B(), that invokes A().

sim23356_ch09.indd 386sim23356_ch09.indd 386 12/15/08 6:42:04 PM12/15/08 6:42:04 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 387

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

4

8 9

17

2019

13

21

14

25

26

29

22

2827

30

11

6

15

18

10

16

23 24

5

3

12

7

1 2

Across
 4 Returns the number of characters of String
 5 A collection of data stored on a disk

 8 Class used to format output

 11 "hello".compareTo("hello") returns .

 12 Package containing Random
 15 The �� operator compares .

 18 Package containing DecimalFormat
 19 Every object belongs to a .

 21 Returns part of a string

 23 Returns a string without leading or trailing

whitespace

 25 StringBuilder method compares references

 26 Package containing File
 27 Create a new object.

 29 Scanner method returns a String.

 30 Alternative to the String class

Down
 1 To produce the same sequence of random numbers,

pass a to Random().
 2 String with no characters

 3 Methods of a class are the class .

 6 Package containing String
 7 Class that is used to write data to a fi le

 9 The equals method of String compares .

 10 Returns true if input remains

 13 Methods and data bundled together

 14 Data of a class are the .

 16 Returns one character of a String
 17 Joining two strings

 20 Type of fi le read in order from beginning to end

 22 DecimalFormatter object requires a string.

 24 String objects are read-only or .

 28 Operator that instantiates an object

sim23356_ch09.indd 387sim23356_ch09.indd 387 12/15/08 6:42:04 PM12/15/08 6:42:04 PM

388 Part 2 Principles of Object-Oriented Programming

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. A class describes how data and methods are encapsulated into a single object.

b. From one object you can build many classes.

c. Every object belongs to some class.

d. Different objects of the same class share the same methods.

e. Different objects of the same class always share the same data.

f. An object always belongs to more than one class.

g. Java provides many “built-in” ready-to-go classes.

h. A method cannot return a reference to an object.

i. The name of an object specifi es a reference.

j. Unfortunately, Java provides no way to read and write data to fi les.

k. When an object is passed to a method, the object’s data is copied into a method

parameter.

l. Java provides a class that facilitates the formatting of fl oating-point numbers.

 2. Designing Classes
 A class specifi es the data and methods that constitute each object. For each of

the following classes, describe what the attributes or data might be and also what

methods or behaviors you think are appropriate.

a. A FAX class. Objects of this class enable you to send or receive faxes.

b. An audio speaker class.

c. A computer mouse class.

d. A TV remote control class.

 3. What’s the Error?
 Find and explain the errors in each of the following Java statements, or state that there

is no error. If you are not sure whether a statement contains an error, experiment.

a. String howAboutThat � new String('a');
b. String String � "String";
c. Random randomNum � 3;
d. Random x � Random();
e. Random y � new Random(3);
f. import Java.util;
g. File myFile.txt � new File();
h. File MyFile � new File();
i. File f � new File(myfi le.txt);
j. String text � "myfi le.txt"; File myFile � new File(text);
k. String y � "testme"; y �� char(33);
l. String w � " Why Me? "; int temp � w.trim.length();
m. StringBuilder z � "How Come This Does Not Work?";
n. StringBuilder t � new String ("How Come This Does Not Work?");
o. String Builder u; u � new StringBuilder("I wonder if this will work?");
p. StringBuilder v � new StringBuilder("Try This"); v �� (char) v.length();

 4. What’s the Output?
 Determine the output of each of the following statement groups:

a. String x � "testme"; x �� 33; System.out.println(x);
b. String y � "testme"; y �� (char) 33; System.out.println(y);
c. String s � "This is too hard!"; System.out.println(s.substring(0,8) � "not");

sim23356_ch09.indd 388sim23356_ch09.indd 388 12/15/08 6:42:05 PM12/15/08 6:42:05 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 389

d. String r � "Check this out"; System.out.println(r.replace(' ', (char) 0).length());
e. String t � "XYZ"; String u � "xyz"; System.out.println(t �� u);

System.out.print(t.equals(u));
f. String m � new String ("XYZ"); String n � "XYZ"; System.out.println(m �� n);

System.out.println(m.equals(n));
g. StringBuilder p � new StringBuilder("Why Me?");

System.out.println(p.reverse().reverse());
h. String v � new String("Why Not Me?"); v �� (char) ('0' � v.length());

System.out.println(v);
i. StringBuilder w � new StringBuilder("One Pond");

System.out.println(w.replace(2,3, " Golden"));
j. String a � "test me"; String b � "me";

System.out.println(a.length() � a.indexOf(b));

 5. Compiler versus Interpreter, and the JVM
 Using the Java compiler, determine the output of the following program:

 class Str
{
 public static void main(String[] args)
 {
 String p � "XYZ"; String q � "XYZ";
 System.out.println(p �� q);
 System.out.println(p.equals(q));
 q � new String("XYZ");
 System.out.println(p �� q);
 q � "XYZ";
 System.out.println(p �� q);
 }
}

 The following segment is identical to the Str class (above), but without the class

wrapper Str . If you have access to an interactive Java interpreter such as Dr. Java

(http://drjava.org/), enter:

 String p � "XYZ"; String q � "XYZ";
System.out.println(p �� q); System.out.println(p.equals(q));
q � new String("XYZ");
System.out.println(p �� q);
q � "XYZ";
System.out.println(p �� q);

 directly to the interactive interpreter and check the output.

 The interpreter probably did not give you the same results as the compiler. An

interpreter translates and executes each statement before it sees the next one, and a

compiler translates every statement before it executes any. How does this difference

affect the output of these two segments?

 6. Fix the Errors
 Find the errors in the following program and correct them so that the program does

what it should do. There are both syntax errors and semantic (logical) errors.

 class WeTryHarder
{ // This program is supposed to read a text file
 // and display a String composed of the first letter

sim23356_ch09.indd 389sim23356_ch09.indd 389 12/15/08 6:42:05 PM12/15/08 6:42:05 PM

http://drjava.org/

390 Part 2 Principles of Object-Oriented Programming

 // from each line of the file. For example, if the file was
 // composed of the first three lines from the Reel Big Fish
 // song Go Away :

 // She was never what I wanted,
 // I just wanted someone else.
 // Now I’m sittin’ here alone,

 // The output would be "SIN".

 void public main(String[] args)
 {
 File inputFile � new ("reelbigfish.txt");
 if (!inputFile.exists())
 {
 System.out.println("File reelbigfish.txt not found");
 System.exit(0);
 }
 Scanner input � Scanner(inputFile);
 String firstLetters � new String(); // to hold the first letters of each line
 String line; // to hold a line of input from the file
 while (input.hasNext())
 {
 line � new String(input.nextLine()); // get next line
 firstLetters � firstLetters � line.charAt(0); // concatenates the first
 // character of line to firstLetters
 }
 System.out.println(firstLetters);
 inputFile.close;
 }
}

 PROGRAMMING EXERCISES
 1. Weird Al’s Palindrome
 Weird Al Yankovic’s song “Bob” is a satiric homage to Bob Dylan. Here are the fi rst

few lines:

 I, man, am regal - a German am I
 Never odd or even
 If I had a hi-fi
 Madam, I’m Adam
 Too hot to hoot
 No lemons, no melon
 Too bad I hid a boot
 Lisa Bonet ate no basil
 Warsaw was raw
 Was it a car or a cat I saw?

 If you ignore case and punctuation, you will notice that every line of the song

(and the title too) reads the same backwards and forwards. Such lines are called

sim23356_ch09.indd 390sim23356_ch09.indd 390 12/15/08 6:42:05 PM12/15/08 6:42:05 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 391

 palindromes . Write a program that accepts a string and determines whether or not the

string is a palindrome. Ignore all whitespace and punctuation, and assume that there

is no distinction between upper- and lowercase letters. For example, “a man, a plan, a

canal, Panama”, and “a Toyota’s a Toyota” are palindromes, but “Babel” is not.

 2. Uppercase Conversion
 Write a program that accepts a string and displays another string composed of the

characters of the fi rst string but with all lowercase letters capitalized. Any non-

alphabetical characters, such as punctuation, should be left unchanged. For example,

the string “When Homer blew up the nuclear plant, he yelled “#!#!#!& DOH

&&####!!!!” ” should become “WHEN HOMER BLEW UP THE NUCLEAR

PLANT, HE YELLED “#!#!#!& DOH &&####!!!!” ”.

 3. Random Strings
 Write a program that prints 25 random strings of length 4 such that each String is

composed of uppercase alphabetical characters.

 4. Substitution Encryption
 Write a program that prints the following chart that might help children encode secret

messages using a single letter shift. Start with the string "abcdefghijklmnopqrtuvwxz"
and use a loop; do not code 26 different strings directly into your program!

 abcdefghijklmnopqrstuvwxyz
 bcdefghijklmnopqrstuvwxyza
 cdefghijklmnopqrstuvwxyzab
 defghijklmnopqrstuvwxyzabc
 efghijklmnopqrstuvwxyzabcd
 fghijklmnopqrstuvwxyzabcde
 ghijklmnopqrstuvwxyzabcdef
 hijklmnopqrstuvwxyzabcdefg
 ijklmnopqrstuvwxyzabcdefgh
 jklmnopqrstuvwxyzabcdefghi
 klmnopqrstuvwxyzabcdefghij
 lmnopqrstuvwxyzabcdefghijk
 mnopqrstuvwxyzabcdefghijkl
 nopqrstuvwxyzabcdefghijklm
 opqrstuvwxyzabcdefghijklmn
 pqrstuvwxyzabcdefghijklmno
 rstuvwxyzabcdefghijklmnopq
 stuvwxyzabcdefghijklmnopqr
 tuvwxyzabcdefghijklmnopqrs
 uvwxyzabcdefghijklmnopqrst
 vwxyzabcdefghijklmnopqrstu
 wxyzabcdefghijklmnopqrstuv
 xyzabcdefghijklmnopqrstuvw
 yzabcdefghijklmnopqrstuvwx
 zabcdefghijklmnopqrstuvwxy

 5. More Encyption
 Write a program that accepts a codeword and displays the substitution lists for that

codeword. For example, given the codeword "sauerkraut", the program should

display:

 abcdefghijklmnopqrstuvwxyz

sim23356_ch09.indd 391sim23356_ch09.indd 391 12/15/08 6:42:06 PM12/15/08 6:42:06 PM

392 Part 2 Principles of Object-Oriented Programming

 s tuvwxyzabcdefghijklmnopqr
 a bcdefghijklmnopqrstuvwxyz
 u vwxyzabcdefghijklmnopqrst
 e fghijklmnopqrstuvwxyzabcd
 r stuvwxyzabcdefghijklmnopq
 k lmnopqrstuvwxyzabcdefghij
 r stuvwxyzabcdefghijklmnopq
 a bcdefghijklmnopqrstuvwxyz
 u vwxyzabcdefghijklmnopqrst
 t uvwxyzabcdefghijklmnopqrs

 Notice the fi rst substitution list is an s -shift, the second an a -shift, the third a u -shift,

and so on. See Example 9.6.

 6. String Rotation
 Write a program that rotates a given string n characters to the right. For example, if

the input to your program is

 rotatemeplease 4,

 then the output is

 easerotatemepl

 7. Index of Coincidence
 If two strings of equal length are superimposed on one another, then some letters

may match. For example consider the strings

 w onderwhowrot e thebookonlov e and
 w eallliveinay e llowsubmarin e

 Notice that there are three positions that contain the same letter: the 1 st (w) , 14 th (e),

and 27 th (e). Of 27 possible positions, matches occur in three positions (11.1%). This

percentage is called the index of coincidence for two strings, and it is used to decrypt

ciphers like those used by the Germans in World War II.

 Write a program that accepts two strings of the same length and determines their

index of coincidence. For normal written English, the index of coincidence averages

about 6.6%, while for random strings it is 1/26, or around 3.8%.

 8. Counting Words
 Write a method that accepts a string and returns the number of words in the string.

For example, the string " This sentence has too many words in it " has 8 words.

 9. Word Rotation
 Write an application that accepts a string and an integer n as input, prints the string,

rotates it n words to the right, and prints it again. For example, the input

 here is a good example for this 3,

 results in the output:

 here is a good example for this
example for this here is a good

 10. Soccer League Standings
 You manage a kids’ soccer league and maintain a fi le with the results of each

game. Each line of your fi le holds the outcome of a single game: the names of

sim23356_ch09.indd 392sim23356_ch09.indd 392 12/15/08 6:42:06 PM12/15/08 6:42:06 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 393

the two teams together with the scores. For example, the fi rst fi ve lines of the

fi le might be:

 Panthers 4 Tigers 3

 Sky 2 Panthers 0

 Tigers 1 Sky 6

 Sky 2 Panthers 1

 Tigers 1 Sky 4

 Write a program that reads this fi le and prints a list of the teams and team records.

For example, using the fi le displayed above, the output would be:

 Team Wins Losses

 Panthers 1 2

 Tigers 0 3

 Sky 4 0

 11. The JUMBLE
 The JUMBLE is a puzzle that rearranges the letters of a word. Your task is to

unscramble the letters and discover the original word.

 Write a program that accepts a word and produces a “jumbled” version. For

example, the letters of the word “TAKEN” might be scrambled as “AKNET”. You

can scramble the letters of a word by repeatedly exchanging a randomly chosen

letter with the fi rst letter. Ten exchanges are more than enough to jumble a fi ve- or

six-letter word.

 12. College Transcript
 A text fi le stores the courses you have taken along with the corresponding grade

(A, B, C, D, or F) that you received in each course. The fi le might look like this:

 Introduction to Sociology A

 Physics B

 Experimental Psychology C

 …

 Write a program that uses such a fi le to calculate your grade point average (GPA).

A GPA is based on a scale from 0 to 4, where A is 4, B is 3, C is 2, D is 1, and F is

0. You should print the GPA with two decimal places such as 3.62.

 13. Credit Card Transactions
 A text fi le contains one month’s credit card purchases. The fi le might look like this:

 Bicycle 562.90

 Groceries 138.43

 Hotel 612.00

 …

 Write a program that reads this fi le and determines the most expensive purchase.

Your program should prompt the user for the fi lename.

 14. Alphabetized File
 Write a program that reads a list of last names from a fi le and creates a new fi le with

the names alphabetized.

sim23356_ch09.indd 393sim23356_ch09.indd 393 12/15/08 6:42:06 PM12/15/08 6:42:06 PM

394 Part 2 Principles of Object-Oriented Programming

 15. More File Processing—A Bowling League
 A bowling league maintains a fi le consisting of the names and bowling averages of

its members, one name per line. For example, the fi le might look this:

 Thelma 179

 Louise 109

 Frankie 132

 Zoey 112

 Butch 141

 Sundance 206

 …

 Write a program that reads such a fi le and creates two new fi les: one sorted

alphabetically by name, and the other sorted by average.

TH
E

BI
GG

ER
 P

IC
TU

RE

 THE BIGGER PICTURE

 BIOINFORMATICS
 The Human Genome Project (HGP), completed in 2003, was a 13-year project coordinated

by the U.S. Department of Energy and the National Institutes of Health to identify all of

the approximately 20,000 to 30,000 genes in human DNA and to store the information in

databases accessible to researchers throughout the world. Each gene is made up of thou-

sands of DNA bases , so the Human Genome Project identifi ed approximately three billion

bases (or base-pairs). The analysis of this massive collection of information gave birth to a

relatively new discipline called bioinformatics .

 Bioinformatics is the application of computer technology to the management of bio-

logical information. The National Center for Biotechnology Information (NCBI 2001)

defi nes bioinformatics as:

 “the fi eld of science in which biology, computer science, and information technology merge

into a single discipline. There are three important sub-disciplines within bioinformatics:

• the development of new algorithms and statistics with which to assess relationships

among members of large data sets,

• the analysis and interpretation of various types of data including nucleotide and

amino acid sequences, protein domains, and protein structures, and

• the development and implementation of tools that enable effi cient access and man-

agement of different types of information.”

 Bioinformatics helps answer fundamental scientifi c questions about evolution and the

nature of life. Bioinformatics provides scientists with a means to explain normal biological

processes and malfunctions in these processes that lead to diseases. A major practical goal

of bioinformatics is the discovery of effective drug therapies for these diseases.

 The fi eld of bioinformatics has its origins in the mid-20 th century, but due in great part

to the Human Genome Project, the fi eld has exploded since the 1990s with activity in both

computer science and biology labs all over the world.

 String algorithms account for many of the computer science techniques used in bioin-

formatics, especially the techniques used in DNA research. In order to appreciate the con-

nections between string algorithms and DNA, a little biological background is necessary.

sim23356_ch09.indd 394sim23356_ch09.indd 394 12/15/08 6:42:06 PM12/15/08 6:42:06 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 395

THE BIGGER PICTURE

 PROTEINS
 Proteins are the essential building blocks of life. They are responsible for the structure,

function, and regulation of the body’s tissues and organs. Antibodies, collagen, hormones,

and enzymes are all kinds of proteins. Proteins manage reproduction, digestion, the immune

system, and cell communication.

 Every protein is made up of a sequence of amino acids. There are only 20 different
amino acids that might appear in sequence for a particular protein. However, the number

of amino acids in a sequence for a particular protein ranges from tens to thousands, so of

course it is common for many duplicates to occur in a given sequence for a particular pro-

tein. For example, a small protein like insulin has 51 amino acids, while a big protein like

 titin has more than 28,000.

 Each protein is like a large, fl exible, fl oating Tinkertoy that turns, folds, and even-

tually settles stably into a unique three-dimensional structure that very much deter-

mines its function. This structure is called the native state of the protein, and it is

directly determined by the sequence of amino acids that make up the protein. The

sequence of a protein is called its primary structure, and the resulting folding gives

rise to secondary and tertiary levels of structure. The three-dimensional structure of a

protein is crucial to its function. One of the great challenges in biology is determining

the secondary (and tertiary) structures of a protein (and thereby its function), given its

primary structure.

 To get some perspective on the size of a protein, note that a living cell is about 10,000

times as large as a protein measured linearly from end to end. A cell can be seen with the

help of a standard microscope, but a protein cannot. Even though standard microscopes

are no help in seeing protein structure, there are other techniques that are used to derive a

protein’s three-dimensional form. Figure 9.25 shows the structure of the protein myoglo-

bin. It looks like a sausage folded up into a globular shape.

O–

+H3N

C

O

FIGURE 9.25 The three-dimensional structure of a protein molecule

sim23356_ch09.indd 395sim23356_ch09.indd 395 12/15/08 6:42:07 PM12/15/08 6:42:07 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
396 Part 2 Principles of Object-Oriented Programming

 In biological research, the search for sequence similarity in proteins is extremely

important, because similarity in sequence correlates to similarity in 3-D structure, and
similarity in structure correlates to similarity in function . For instance, a researcher who

has discovered a potentially important protein might want to know if a similar sequence

has already been identifi ed and characterized by another researcher. This information can

provide vital clues as to the role of the sequence in the organism.

 CHROMOSOMES, GENES, DNA, AND MUTATIONS
 How does the body build proteins? Each of the approximately trillion cells in the human

body contains 23 pairs of chromosomes . Each chromosome is comprised of between

20,000 and 30,000 genes . Every gene determines one protein (there are exceptions to this,

but for the most part this is true). Each gene is a sequence of DNA bases —the blueprints

for building a single protein. The DNA bases are small molecules (much smaller than pro-

teins) called adenine, guanine, cytosine, and thymine represented by the four letters A, G,

C, and T. A particular gene might look like this: ATAATCCGGGCAT… continuing on for

thousands of letters.

 How do the DNA bases in a gene determine a protein? Every three DNA bases encode

a particular amino acid from among the 20 possibilities. Hence the sequence of DNA

bases in a gene determines a unique sequence of amino acids that defi ne the particular pro-

tein created by that gene. The correspondence between three-letter DNA base sequences

and amino acids is completely understood by biologists. For example, the triple GGG

encodes the amino acid glycine, and the triple GCG encodes the amino acid alanine.

 Mutations occur in DNA for various reasons, whereby one base gets exchanged

with another. For example, a mutation in GGG in which the middle G is changed to a

C would change the amino acid in the protein from glycine to alanine. A change of a

single amino acid in a protein, even a protein with a sequence of hundreds of amino

acids, may render that protein inactive, so that a single mutation like this can have

devastating effects.

 On the other hand, many mutations have no effect. There are 4 × 4 × 4 � 64 different

triples of the four DNA bases but only 20 amino acids, so some triples encode the same

amino acid, muting the effect of certain mutations. For example, GGC also codes for gly-

cine, and a mutation that changes GGG to GGC would have no effect on the protein. This

redundancy is one way our bodies protect against mutations.

 To sum up, a gene is a long sequence of DNA bases, in which every three bases encodes

a particular amino acid. The gene thereby codes a sequence of amino acids that determines

a protein unique to that gene.

 SEQUENCE RESEARCH
 Biologists do a great deal of research on DNA and amino acid sequences. Many of the

problems that interest biologists turn out to be related to string algorithms. Here are two

examples.

 a. Sequence Alignment

 Given two sequences of DNA bases, which parts of one sequence correspond to

which parts of the other? The answer to this question interests biologists for a num-

ber of reasons:

 • Similar sequences in DNA, and thereby similar sequences of amino acids,

create proteins with similar characteristics, functions, or secondary structures.

sim23356_ch09.indd 396sim23356_ch09.indd 396 12/15/08 6:42:07 PM12/15/08 6:42:07 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 397

THE BIGGER PICTURE

For instance, a researcher who has discovered a potentially important DNA

or protein sequence might want to know how it folds in order to determine its

function. If a protein with a similar sequence of amino acids (primary structure)

has already been identifi ed and characterized, then the secondary structure

of that characterized protein may shed light on the secondary structure of the

discovered protein.

 • No two DNA sequences from different individuals are the same; thus sequence

alignment helps to determine the common base sequences in all humans. Presum-

ably the base sequences that we all have in common are what make us “human.”

Determining the common base sequences is exactly what was done in the Human

Genome Project.

 • A subsequence of a string, s , is a subset of characters from s that appear in the

same order they do in s . For example, CGGT is a subsequence of A C A G A GT . A

 motif is a short subsequence that occurs frequently in different sequences. Such

a phenomenon might mean that the genes containing that motif perform similar

functions or evolved one from the other. A motif common to fi sh and mammals

might indicate evolutionary paths. A motif common to diabetes patients who

reject a particular drug treatment but not common to patients who respond to the

treatment might uncover the responsible gene.

 b. Sequence Assembly

 Biologists can copy, or sequence, DNA in the lab, but the technique is limited to

a few hundred bases. In order to sequence a whole gene with thousands of bases,

millions of copies of the DNA are cut up randomly into manageable pieces, each

piece is sequenced, and then the pieces are put back together by looking for over-

lapping matches. A maximum overlap is considered a good place to reconnect

the pieces.

 STRING MATCHING ALGORITHMS
 What’s all this got to do with strings? Everything! Both DNA and proteins can be repre-

sented as strings, the former using an alphabet of 4 letters {A, C, T, G} and the latter using

a 20-letter alphabet, one for each amino acid.

 Sequence alignment and sequence assembly give rise to fi ve different types of string

problems:

 1. String Matching
 Given two strings, search for exact occurrences of one in the other. The classic

example of string matching is the “fi nd” utility of any word processor. For DNA

sequences, string matching entails looking for one sequence inside another to infer

similar functionality of the encoded proteins.

 2. Approximate String Matching
 Mutational events often delete, copy, or insert long sections of DNA so that mis-

matches or gaps or blanks are particularly common. Two protein sequences are con-

sidered similar, that is, they show similar functionality, if their sequences are about

30% similar. Therefore, an exact match is not as important as an approximate match.

For example, consider the two DNA sequences

 AACTGGAAGGGATAG
 ACTGGAAGGGC

sim23356_ch09.indd 397sim23356_ch09.indd 397 12/15/08 6:42:08 PM12/15/08 6:42:08 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
398 Part 2 Principles of Object-Oriented Programming

 Although the second string is not part of the fi rst, if you modify the second sequence by

inserting a blank into the second position and considering it a string of length 12, like this:

 AACTGGAAGGGATAG
 A CTGGAAGGGC

 then a very close “approximate match” of the two strings occurs. In this case, 10 out

of 12 characters in the second string match up with the fi rst string, a signifi cant match.

 3. Weighted Approximate String Matching
 Some mutations are more common than others, so that certain mismatches are less

serious than others. Therefore, instead of counting each mismatch equally, assign

various weights to the different kinds of mismatches. The best match is the one with

the lowest total weight. A perfect match has a weight of zero. For example, assuming

that a direct mismatch, like A versus C, has a weight of fi ve, while a mismatch with a

blank has a weight of only one, then the two strings :

 A A C C GATAT
 A C C G GATAT

 lined up as they are, have two direct mismatches for a total weight of 10. However,

by inserting blanks in the right places, no direct mismatches occur and only two

mismatches occur on blanks.

 AACCG ATAT
 A CCGGATAT

 This alignment has a total weight of only two and is considered the better match.

 4. Longest Common Subsequence
 If two DNA sequences have a large subsequence in common they often show similar

function regardless of whether there is any exact match. This is the simplest form of

sequence similarity—fi nding the pieces common to both. For example, given the two

strings:

 ACGGTGTCAAGGCTA
 CGTTCGATATCGTAT

 the longest subsequence that appears in both is 10 characters long:

 CGTTCAACTA (length 10)

 A CG G T G TCAA GG CTA
 CGTTC G A T A T C G TA T

 The longest common subsequence problem is equivalent to the special case of

weighted approximate string matching in which every match has a positive weight

and every mismatch costs 0.

 5. Maximum Overlap
 Given two strings, fi nd the largest overlapping segments. For example, the largest

overlapping segment of:

 ACCGGTCAATGGCTA, and
 CTAGGACCAAACCGG

 is ACCGG.

 ACCGG TCAATGGCTA
 CTAGGACCAA ACCGG

sim23356_ch09.indd 398sim23356_ch09.indd 398 12/15/08 6:42:08 PM12/15/08 6:42:08 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 399

THE BIGGER PICTURE

 Note that CTA, which ends the fi rst string and begins the second, is a shorter overlap-

ping segment.

 A more general version of this problem corresponds to a practical sequence assembly

problem. The generalization considers many strings, and the problem is to fi nd the best

way to “glue” all the strings back together by maximizing the overlaps between all the

strings.

 THE LONGEST COMMON SUBSEQUENCE—AN EXAMPLE
 There are algorithms that tackle each of the fi ve problems in the preceding list. In fact, such

algorithms are described in hundreds of research papers. Sometimes, the fastest algorithm

is the very same one that a beginner might conceive, but more often the best solution eludes

anyone but an expert.

 As a start, let’s look at the longest common subsequence problem. The following

algorithm is not one that a novice is likely to discover, but it is certainly accessible to any

motivated student.

 An Algorithm for Finding the Length of the Longest Common Subsequence of
Two Strings

 A surprisingly common technique for creating an algorithm is to generalize the problem

to make it easier! Instead of fi nding the longest common subsequence of two strings, let’s

consider the more general problem of fi nding the longest common subsequence of any two

 prefi xes of the given strings. In particular,

 Let S (j , k) be the length of the longest common subsequence of the fi rst j characters of

X and the fi rst k characters of Y , where X and Y are DNA strings. Of course, S (X .length(),

 Y .length()) is what really interests us. However, by generalizing the problem we will have

an easier time computing the value that we really want.

 In order to ultimately compute S (X .length(), Y .length()), create a two-dimensional

array consisting of the values of S (j , k) for j � 0 to X .length() and k � 0 to Y .length(). First

of all, note that S (0, k) � S (j , 0) � 0, for any values of j and k .

 This means that the longest common sequence of a portion of one string and no

portion of the other string is zero.

 Now assume that j and k are both positive.

 If the j th character of X matches the k th character of Y , then

S(j, k) � S(j � 1, k � 1) � 1

 When these characters match, add 1 to the length of the sequence and look at the

two smaller substrings formed when these characters are removed.

 However, if the j th character of X and the k th character of Y do not match, then

S(j, k) � the larger of S(j, k � 1) and S(j � 1, k)

 When the characters do not match, consider either deleting the k th character of Y

or the j th character of X .

 With these rules, you can write a program to fi ll the array S . First set S (j , 0) and S (0, k)

to zero for j � 0 to X .length() and k � 0 to Y .length(). The other values S (j , k) are computed

by examining S (j �1, k �1), S (j , k �1), and S (j �1, k). In other words, each subsequent value

in the array is computed by looking at three values: one up and to the left (diagonal), one to

the left, and one up. One of these three values determines the value that you are computing.

sim23356_ch09.indd 399sim23356_ch09.indd 399 12/15/08 6:42:09 PM12/15/08 6:42:09 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
400 Part 2 Principles of Object-Oriented Programming

 Here is an example:

X � GTTCG Y � AGCTACCG

X\Y - A G C T A C C G

- 0 0 0 0 0 0 0 0 0

G 0 0 1 1 1 1 1 1 1

T 0 0 1 1 2 2 2 2 2

T 0 0 1 1 2 2 2 2 2

C 0 0 1 2 2 2 3 3 3

G 0 0 1 2 2 2 3 3 4

FIGURE 9.26 An example of the longest common subsequence
algorithm—the array S

 The number in the bottom right corner indicates the length of the longest common

subsequence.

 If you want to fi nd an actual subsequence of this length, you need to trace backwards

from the bottom right corner. This is done by checking which of the three cells (left, up,

left and up) was used to compute the corner cell’s value. Call this cell c. Continue tracing

backwards in this fashion from c until you reach the upper left corner. Let’s follow this

trace in the example.

 The bold numbers indicate the sequence of values used to compute S (5, 8). Note that

 S (5, 8) � S (4, 7) � 1 � 3 � 1 � 4, because the fi fth character of X matches the eighth

character of Y . Similarly, because the fourth character of X matches the seventh character

of Y , S (4, 7) � S (3, 6) � 1 � 2 � 1 � 3. However, the third character of X is different

from the sixth character of Y , so S (3, 6) equals the larger of S (2, 6) and S (3, 5), which both

happen to equal 2. We arbitrarily used S (3, 5) rather than S (2, 6). Choosing S (2, 6) would

be equally acceptable and would result in the same length longest common subsequence.

In this fashion, the calculation can be traced all the way back to S (0, 1).

 This trace corresponds to the longest common subsequence G-T-C-G shown in

bold in each string X and Y , on the left and top sides of the table, respectively. When

 S (j, k) � S (j – 1, k – 1) � 1, that is, a match was counted, then the j th character of X

and k th character of Y are marked in bold. Had we chosen S (2, 6) instead of S (3, 5) in

the trace, and continued the trace back from there, then in the end the second ‘T’ in X

(rather than the third ‘T’) would be bold. In either case, the sequence itself G-T-C-G

remains the same.

 REAL-LIFE PALINDROMES AND A PRACTICAL APPLICATION
 We end this section with an interesting connection between DNA strings and cancer.

 The following item recently appeared on the web page of Genome Biology , a bioinfor-

matics journal:

 “DNA palindromes appear frequently and are widespread in human cancers, and identifying

them could help advance the understanding of genomic instability, according to researchers

writing in an advanced online publication of Nature Genetics for February 13, 2005.”

 You may have heard of palindromes, strings that read the same backwards and for-

wards. But what are DNA palindromes?

 You already know that a DNA sequence (or strand) can be encoded as a string of

letters from the set {A,C,G,T}, but what you may not know is that a DNA molecule

is composed of two such strands. Every DNA molecule is twisted into a helical shape

 resembling a spiral staircase with the two strands twisted in opposite directions, one

sim23356_ch09.indd 400sim23356_ch09.indd 400 12/15/08 6:42:09 PM12/15/08 6:42:09 PM

 Chapter 9 Objects and Classes I: Encapsulation, Strings, and Things 401

THE BIGGER PICTURE

 rotating clockwise, and one counterclockwise; see Figure 9.27 . The two strands are joined

letter to letter in a double-helix embrace with A opposite T, and C opposite G. These let-

ters are called complements. This double helix is the familiar shape on posters in science

museums and high school biology labs all over the world.

S

S

S

T A

P

PS
P

P

P

P

P

S

S

S
A T

A

G

G

G

G

C

C

C

C

T

AT

A

G C
S

P

P

S

S

P

P

P

P

S

S

S

S

S

P

P

P

S

S

S

S

P

FIGURE 9.27 A DNA molecule showing complementary base pairs in a double helix

 Two DNA sequences are called reverse complements if you can transform one into the

other by reversing one of the sequences and replacing each letter with its complement. For

example, CGATTTACCGGATTTAG and CTAAATCCGGTAAATCG are reverse comple-

ments. Indeed, in every DNA molecule, the two DNA strands that pair up are reverse

complements. To see this, imagine that you pull the two strands apart and realign them with

the same twist orientation. The reoriented strands line up in reverse order in contrast to how

they were originally paired.

 A DNA palindrome is a sequence that is identical to its reverse complement. For example,

ACCTTAAGGT is a DNA palindrome, because its reverse complement is ACCTTAAGGT.

Notice that DNA palindromes are not exactly the same as standard palindromes because

of the letter substitution, but they are quite similar. If you take a DNA palindrome, pull

the two connected strands of DNA apart, and reorient the two strands so that they have the

same twist orientation, then the sequences on the two strands are identical. It is fascinating

that something as simple as detecting a DNA palindrome might help determine what kinds

of cells are cancerous or have potential to become cancerous.

 Exercises
 1. The bread and butter of bioinformatics is the search for strands of DNA inside

other strands. Write a program that accepts two strings and determines whether

or not the fi rst string is contained in the second string.

sim23356_ch09.indd 401sim23356_ch09.indd 401 12/15/08 6:42:10 PM12/15/08 6:42:10 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
402 Part 2 Principles of Object-Oriented Programming

 2. Once you fi nd one strand of DNA inside another, you need to know where the

match is located. If you were recombining strands, this location would be crucial.

Write a program that accepts two strings and displays a list of all the positions in

the second string where the fi rst string appears. If the fi rst string does not appear

in the second string, then print 0. For example, if one string is AGAA and the

other is AGAAGAAGTAGAAACC, then the program should print: 1, 4, 10.

 3. When performing sequence assembly with a collection of DNA strands,

fi nding the maximum overlap between every pair of strands helps decide the

best way to glue them together. Write a program that determines the maximum

overlap of two strings. Make sure to check both the right and left sides for

overlap. For example, if one string is AAGACCTAGGA and the other is

 TAGGACTTAGGAAGA, the program should print TAGGA.

 4. Exact matches in DNA are not always important. When two DNA strands both

contain the same large subsequence, they often exhibit similar functionality.

Using the algorithm discussed previously, write a program that calculates the

length of the longest common subsequence in two strings X and Y.

 5. Knowing the length of the longest common subsequence is interesting because

the longer the common subsequence, the more similar the two DNA samples.

However, knowing the actual subsequence itself might help us understand how

the two samples are similar.

 Challenging: The algorithm discussed previously computes only the length of the

longest common subsequence but not the sequence itself. Modify the algorithm

so that it also determines the longest common subsequence instead of its length.

 Hint: Use another array to keep track of whether you used

S(j � 1, k � 1) � 1 or

the maximum of S(j, k � 1) and S(j � 1, k)

 6. Help detect cancerous cells by writing a method to determine whether or not a

DNA molecule is a DNA palindrome.

sim23356_ch09.indd 402sim23356_ch09.indd 402 12/15/08 6:42:10 PM12/15/08 6:42:10 PM

 403

CHAPTER CHAPTER 10
 Objects and Classes II:

Writing Your Own Classes
 “Whatever happened to class?”

 —from “Chicago” by John Kander and Fred Ebb

 Objectives

 The objectives of Chapter 10 include an understanding of

� programmer-defi ned classes,

� the components of a class: constructors, instance variables, and methods,

� access modifi ers,

� encapsulation and information hiding,

� static variables and static methods, and

� garbage collection.

 10.1 INTRODUCTION

 In Chapter 9 , we introduce several of Java’s ready-made classes. In fact, Java comes

empowered with hundreds of such classes, including classes for graphics, printing, error

handling, fi le processing, set manipulation, and many more applications. You might say

that Java is loaded with class. Nonetheless, Java’s designers could never anticipate every

possible class that a programmer might need. Remember, classes defi ne objects, and an

object is practically anything that you can imagine. So, we are now ready to design and

implement our own home-grown classes. You never know when a movie class, a popcorn

class, or a soda machine class will come in handy.

 We begin rather simply with a class that models a collection of six-sided dice.

 10.2 A Dice CLASS

 As you now know, an object consists of data and methods or, in the parlance of OOP, attri-

butes and behaviors. Moreover, an object is instantiated or created according to the speci-

fi cations of a class. As a fi rst example of a programmer-designed class, we consider a Dice

class that specifi es the attributes and behaviors of a collection of n six-sided dice. Each

 Dice object has a single attribute: an integer indicating the number of dice in the collection.

sim23356_ch10.indd 403sim23356_ch10.indd 403 12/15/08 6:48:33 PM12/15/08 6:48:33 PM

404 Part 2 Principles of Object-Oriented Programming

The behaviors consist of methods that:

• “roll the dice” and return the total number of spots displayed on the faces of all the dice,

• return the number of dice in the collection, and

• change the number of dice in the collection.

 Figure 10.1 shows three Dice objects, each with its unique data, all sharing the same methods.

numDice � 1

int rollDice()

int getNumDice

void setNumDice(int n)

numDice � 2

int rollDice()

int getNumDice

void setNumDice(int n)

numDice � 5

int rollDice()

int getNumDice

void setNumDice(int n)

FIGURE 10.1 Three different Dice objects. A Dice object is an abstraction of a set of n dice.

 You can use Dice in the same way that you utilize String, Scanner , or Random . Dice

is a class with methods that are available to other classes. Just as you can include the

statements

 String s � new String("Hello ");
char ch � s.charAt(3);

 in your applications, you can also use statements such as

 Dice d � new Dice();
int value � d.rollDice();

 in any application or class.

 Understanding the methods of the Dice class should present no problem. Read the

code in Example10.1, along with the subsequent explanation. There are a few new concepts

illustrated in the example, but much should be familiar to you.

 Problem Statement Design a Dice class that models a collection of n six-sided dice.

The class should provide three methods:

 1. int rollDice(), which simulates tossing the dice and returns the total number of

spots displayed on the dice,

 2. int getNumDice(), which returns the number of dice in the set, and

 3. void setNumDice(int n), which sets or changes the number of dice.

 Java Solution The following class, Dice , contains no main(...) method. Like the String

class, Dice is a class that cannot run independently. As you declare a String reference

 String s � new String();

 you can also declare a Dice reference

 Dice d � new Dice();

 The Dice class contains just a few new features that are explained in the line-by-line

discussion. To simulate rolling dice, we use a Random object and the Random method

nextInt(int n) , which returns an integer in the range 0 to n – 1 .

 EXAMPLE 10.1

sim23356_ch10.indd 404sim23356_ch10.indd 404 12/15/08 6:48:33 PM12/15/08 6:48:33 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 405

 1. import java.util.*; // for the Random class

2. public class Dice
3. {
4. private int numDice;
5. private Random random;

6. public Dice() // default constructor —one die in the set
7. {
8. numDice � 1;
9. random � new Random();
10. }

11. public Dice(int n) // one argument constructor —n dice in the set
12. {
13. numDice � n;
14. random � new Random();
15. }

16. public int rollDice()
17. // Returns the number of spots shown when tossing numDice dice
18. {
19. int sum � 0;
20.
21. for (int i � 1; i �� numDice; i��) // for each die in the set
22. sum �� random.nextInt(6) � 1; // add an integer between 1 and 6 to sum
23. return sum;
24. }

25. public int getNumDice()
26. {
27. return numDice;
28. }

29. public void setNumDice(int n)
30. {
31. numDice � n;
32. }

33. }

 Discussion Like every public class, Dice must be saved in a fi le named Dice.java .

Line 2: public class Dice

 The name of the class is Dice .

Java convention dictates that the name of a class begins with an uppercase letter. All

other letters are lowercase, except those that begin new words.

 For example, MyDice, MyLuckyDice , and MyVeryLuckyDice all conform to the standard

Java naming scheme; myDice and my_dice, although syntactically correct, do not.

 The word public is an access modifi er . If a class is specifi ed as public then the class

can be used by any other class. Only one public class can be saved in any fi le. Classes

without an access modifi er may be saved in the same fi le with a public class.

 Soon, you will see that there are other, more restrictive access modifi ers. If no

access modifi er is specifi ed then the class has package access . This means that only

classes in the same package have access to the class. For example, you know that the

Scanner and Random classes are in the java.util package . Any other class in the java.util

sim23356_ch10.indd 405sim23356_ch10.indd 405 12/15/08 6:48:34 PM12/15/08 6:48:34 PM

406 Part 2 Principles of Object-Oriented Programming

 package without an access modifi er is accessible only to the classes in that package and

not to classes that are defi ned in another package such as java.io .

 For the present, the classes that we write are all contained in Java’s default package .

Every class is in some package, and by not specifying a particular package, we allow

our classes to be automatically placed in the default package. Consequently, whether we

specify the class as public or omit the access modifi er, all of the classes that we write are

accessible to other classes. Scanner and Random are not members of the default pack-

age; they belong to java.util . Consequently, these two classes are not directly accessible

to classes of the default package. An import statement is required.

 Line 4: private int numDice
 The integer variable numDice is an instance variable or fi eld that specifi es the single

attribute of the Dice class. Unlike the variables of previous programs, numDice is not

local to any one method; numDice is visible to all methods of the class. Consequently,

any method defi ned in Dice has access to this variable. In fact, because numDice is

specifi ed as private , only the methods of Dice can access or modify numDice . The fi eld

 numDice is not visible outside the Dice class. All access to the variable numDice is via

the methods of Dice and only through those methods. No other class can access the

variable numDice except via the methods of Dice. The methods of Dice specify exactly

how the variable can be used and/or modifi ed. For example, the methods defi ned on

lines 25–28 and 29–32 are two such methods that provide access to numDice .

 Instance variables are usually assigned private access.

Public access specifi es that the variable is accessible to all code outside the class.

Private access dictates that the variable is not visible outside the class. A variable

with no access modifi er is accessible to classes within its package.

 Lines 6–10: public Dice() // the default constructor — one die

 {

 numDice � 1;

 }

 The code on lines 6–10 constitutes the class’s default constructor . The default construc-

tor is a method, of sorts. Notice, however, that there is no return value, not even void.

The name of the default constructor is the same as the class name.

 The default constructor creates or instantiates a new object of the Dice class, that

is, the default constructor transparently allocates memory for each object of a class. The

access modifi er for the default constructor is usually public. Additionally, the default

constructor executes the statements enclosed by the curly braces. In this case, the default

constructor assigns the value 1 to the instance variable numDice . The default constructor

is called automatically when a dice object is instantiated with a statement such as

 Dice dice � new Dice();
 or,

 Dice dice;
dice � new Dice();

 In other words, the default constructor

 • instantiates a Dice object, and

 • initializes a Dice object.

 Another name for the default constructor is the no-argument constructor.

sim23356_ch10.indd 406sim23356_ch10.indd 406 12/15/08 6:48:35 PM12/15/08 6:48:35 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 407

A program cannot call the default constructor directly; it is invoked via the new

operator.

 Lines 11–15: public Dice(int n) // the one-argument constructor

 {

 numDice � n;

 }
 This code comprises a one-argument constructor . Like the default constructor,

the one-argument constructor creates a Dice object and initializes the instance variable

numDice . In this case, the statement on line 13 sets numDice to the value of parameter n .

The one-argument constructor is invoked as

 Dice dice � new Dice(2); // sets numDice to 2

 or

 Dice dice;
dice � new Dice(13); // sets numDice to 13

 There is no limit to the number of constructors that you can include in a class defi nition.

A two-argument constructor might have the form

 public Dice(int numBlueDice, int numRedDice)
{
 numDice � numBlueDice � numRedDice;
}

 If a class defi nes no constructors at all, Java graciously provides a default con-

structor that creates and instantiates objects. However, don’t assume that Java’s

version initializes the instance variables the same way that you would. For example,

Java’s default constructor sets numDice to 0; our default constructor sets numDice

to 1. Moreover, if a class provides any constructors, Java does not provide a default

constructor.

It is good practice to always provide a default constructor as part of any class that

you design.

 Lines 16 – 24: int rollDice()
 The method rollDice() simulates rolling the set of dice according to the following

algorithm:

 1. Declare a local variable sum.

 2. Instantiate a Random object, random.

 3. For each die in the set, i.e., for i � 1 to numDice ,

 a. generate a random number between 1 and 6, inclusive, and

 b. add the random number to sum.

 4. return sum.

 Like the Dice class and the instance variable numDice, the method rollDice() has an

access modifi er. The public access modifi er specifi es that the method is visible and

accessible outside the Dice class.

sim23356_ch10.indd 407sim23356_ch10.indd 407 12/15/08 6:48:35 PM12/15/08 6:48:35 PM

408 Part 2 Principles of Object-Oriented Programming

 Lines 25–28: int getNumDice()

 The public method getNumDice() returns the value of numDice . Since numDice is pri-
vate, its value is not visible outside of the class. The method getNumDice() provides

access to numDice .

A method such as getNumDice() that returns the value of some private variable is

called a getter method.

 Lines 29–32: void setNumDice(int n)

 Like getNumDice(), the public method setNumDice(int n) provides access to the instance

variable numDice via a method. This method sets numDice to the value of parameter n .

A method that assigns or alters the value of an instance variable is called a setter

method.

 10.2.1 A Test Class for Dice
 Rarely is a newly designed class free from bugs. Every class must be tested, debugged,

then debugged again and, of course, debugged once more. The following class, TestDice,
instantiates two Dice objects and invokes each method of the class. Because Dice has no

main(...) method, you cannot execute the Dice class. However, TestDice does, in fact, con-

tain a main(...) method and does execute.

 1. public class TestDice
2. {
3. public static void main(String[] args) // for testing the Dice class
4. {
5. Dice d1 � new Dice();
6. Dice d2 � new Dice(2);

7. System.out.println("d1: numDice � " � d1.getNumDice());
8. System.out.println("d2: numDice � " � d2.getNumDice())

9. for (int i � 1; i �� 10; i��)
10. System.out.println(d1.rollDice() � " " � d2.rollDice());

11. d1.setNumDice(5);
12. System.out.println("d1: numDice � " � d1.getNumDice());

13. for (int i � 1; i �� 10; i��)
14. System.out.println(d1.rollDice());
15. }
16. }

 10.3 A MORE GENERAL LOOK AT CLASSES

 Now that you have seen the implementation of a specifi c class, we consider the fundamen-

tal structure of a class.

sim23356_ch10.indd 408sim23356_ch10.indd 408 12/15/08 6:48:36 PM12/15/08 6:48:36 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 409

 For the present, each class that we write has the following structure:

 [access modifier] class name
{
 instance variables or fields
 constructors
 methods
}

 See Figure 10.2 .

public class Dice
{
 private int numDice;

 Dice()
 { }

 Dice(int n)
 { }

 public int rollDice()
 { }

 public int getNumDice()
 { }

 public void setNumDice(int n)
 { }
}

Constructors

Instance variable

Methods

Class nameAccess modifier

FIGURE 10.2 The Dice class

• A class’s access modifi er is optional. However, for the present, we designate each of

our classes as public .

Java specifi es that only one public class can be saved in any fi le, so each class must

be saved in a separate fi le. The name of the fi le must be classname.java.

 For example, the Dice class of Example 10.1 is a public class and must be saved as Dice.java .

 If no access modifi er is specifi ed, then the class has package access and is accessible

to all other classes in the same package. Since we do not specify a package for our classes,

every class that we write is a member of Java’s default package . Any number of such

classes can be saved in one fi le.

• The name of a class must be a valid Java identifi er. Moreover, Java convention dictates

that each class name begins with an uppercase letter. All other letters of a class name

are lowercase except those that begin new “words.” Some other permissible and reason-

able names for the Dice class are: MyDice , MyLoadedDice, or SkyMastersonsDice .

• A class can have any number of instance variables or fi elds . The instance variables

make up the attributes of a class. These variables are accessible to all methods of the

class. Each fi eld has an optional access modifi er:

 public – The fi eld is visible outside the class.

 private – The fi eld is visible only to the methods of the class.

 An instance variable without an access modifi er is accessible within its package.

sim23356_ch10.indd 409sim23356_ch10.indd 409 12/15/08 6:48:37 PM12/15/08 6:48:37 PM

410 Part 2 Principles of Object-Oriented Programming

 Normally, we specify instance variables as private . That is, private instance variables

are accessible only to the methods of the class. Thus, the methods are the guards and gate-

keepers for all the fi elds of a class. The class’s methods regulate all access to the instance

variables. The Dice class has just one instance variable, numDice, which is private .

• Each class has at least one constructor.

A constructor is automatically executed each time an object of the class is instantiated.

 A constructor initializes instance variables, but it can also perform other computations. The

name of a constructor is the same as the class name. A constructor does not have a return

value, not even void.

 The default constructor (no-argument constructor) is a constructor with no param-

eters. The Dice class has two constructors, the default constructor

 public Dice(),

 and a one-argument constructor

 public Dice(int n).

• If a class does not implement a constructor, Java provides a default, no-argument con-

structor. An application can create an object with Java’s default constructor using a

statement such as

 MyClass myClass � new MyClass() // default constructor provided by Java

 If a class provides any constructors, Java does not provide a default constructor. Thus,

if a class has a one-argument or two-argument constructor but no default constructor, a

no-argument constructor cannot be used to instantiate an object. Though not required,

you should always provide a default constructor for your classes.

• The methods of the class specify the behaviors of the class. Each method may be quali-

fi ed with an optional access modifi er public or private . For the classes that we write,

most methods are public . However, occasionally, we write a private method intended

for use only within its class. The three methods of the Dice class are all designated

public methods.

The public methods of a class constitute the interface of the class.

 10.4 USING THE Dice CLASS

 Now that we have developed a class that models a collection of n dice, we use this class in

an application. We reiterate: once a class is implemented and debugged, using the class is no

different than using one of Java’s own classes such as String, Random, File , or Scanner.

 The ancient Japanese game Cho-Han is played with a pair of standard dice that are

shaken and tossed. A player places a wager on whether the sum of the dice is odd

(“cho”) or even (“han”). A player wins or loses an amount equal to his/her bet.

 Problem Statement Write a class that simulates the game of Cho-Han. The class

should:

• ask a player for a bet, an integer,

• play a round of Cho-Han,

 EXAMPLE 10.2

sim23356_ch10.indd 410sim23356_ch10.indd 410 12/15/08 6:48:37 PM12/15/08 6:48:37 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 411

• report the result along with the cumulative winnings or losses (a positive or nega-

tive integer), and

• inquire whether or not the player wishes to play again and, if so, repeat the game.

 When a player decides that he/she would like to quit, the program should report the total

winnings or losses for the session.

 Java Solution A ChoHan class consists of one instance variable or fi eld, winnings , a

default constructor that initializes winning s to 0, and three methods:

 1. A void method play() that

 • asks for the wager and whether he/she chooses odd or even,

 • rolls the dice,

 • adjusts the winnings based on the outcome of the bet,

 • inquires whether or not the player wishes to continue playing.

 The play() method uses the Dice class.

 2. A boolean method won() that determines whether or not a player has won the game.

This method is specifi ed as private because it is intended for use only within the

class. No other class has access to this method.

 3. A void method reportWinnings() that displays the amount of money won or lost at

the conclusion of all play. Like won(), this method is used only in the class.

 The following class implements the game.

 1. import java.util.*; // for the Scanner and Random classes
2. public class ChoHan
3. {
4. private int winnings; // total won or lost (negative)

5. public ChoHan() // default constructor
6. {
7. winnings � 0;
8. }

9. // an auxiliary method, used only in the class
10. private boolean win (String choice, int sum) // win or lose
11. {
12. if (sum%2 �� 0 && (choice.equals("e ") || choice.equals("E "))) // even and even bet
13. return true;
14. if (sum%2 !� 0 && (!(choice.equals("e ") || choice.equals("E ")))) // odd and odd bet
15. return true;
16. return false;
17. }

18. public void play()
19. {
20. Scanner input � new Scanner(System.in);
21. Dice dice � new Dice(2); // Dice object instantiated; constructor called
22. String choice; // even or odd
23. String answer; // play again or not
24. int wager; // how much
25. do
26. {
27. System.out.print("Enter wager: ");
28. wager � input.nextInt();
29. System.out.print("Enter 'e ' for even anything else for odd: ");
30. choice � input.next();
31. int sum � dice.rollDice(); // invoke method of Dice class

sim23356_ch10.indd 411sim23356_ch10.indd 411 12/15/08 6:48:38 PM12/15/08 6:48:38 PM

412 Part 2 Principles of Object-Oriented Programming

32. System.out.println("You rolled a " � sum);
33. if (win(choice, sum))
34. {
35. winnings �� wager;
36. System.out.println("You won! Winnings so far: " � winnings);
37. }
38. else
39. {
40. winnings �� wager;
41. System.out.println("You lost! Winnings so far: " � winnings);
42. }

43. System.out.print("Play again? 'y ' or 'Y ' for 'Yes ': "); // anything else for "no "
44. answer � input.next();
45. System.out.println();

46. }while(answer.equals("Y ") || answer.equals("y "));
47. reportWinnings();
48. }

49. private void reportWinnings()
50. {
51. if (winnings � 0)
52. System.out.println("You won $ " � winnings);
53. else if (winnings � 0)
54. System.out.println("You lost $ " � Math.abs(winnings));
55. else
56. System.out.println("You broke even ");
57. System.out.println("Thanks for playing ");
58. }

 The following small class instantiates one ChoHan object and invokes the play() method

of that object. The class is saved in a fi le named PlayChoHan.java . Once compiled,

PlayChoHan can be executed and the game played. Notice that PlayChoHan contains

a main(...) method. A class without a main(...) method cannot run. The sole purpose of

PlayChoHan is to instantiate and play the game.

 1. public class PlayChoHan
2. {
3. public static void main(String[] args)
4. {
5. ChoHan game � new ChoHan(); // create a game
6. game.play(); // start the game
7. }
8. }

 Output
 Enter wager: 2
Enter 'e ' for even anything else for odd: e
You rolled a 5
You lost! Winnings so far: �2
Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 4
Enter 'e ' for even anything else for odd: a
You rolled a 5

sim23356_ch10.indd 412sim23356_ch10.indd 412 12/15/08 6:48:38 PM12/15/08 6:48:38 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 413

 10.5 A TriviaTest CLASS

 Trivia games have become a national pastime. On the Internet, you can fi nd dozens of

games and quizzes that challenge your knowledge of baseball trivia, World War II trivia,

Star Trek trivia, or Seinfeld trivia. In the next example, we develop a class with methods

that generate a trivia quiz, administer the quiz, and score the quiz.

You won! Winnings so far: 2
Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 2
Enter 'e ' for even anything else for odd: e
You rolled a 5
You lost! Winnings so far: 0
Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 3
Enter 'e ' for even anything else for odd: e

You rolled a 9
You lost! Winnings so far: �3
Play again? 'y ' or 'Y ' for 'Yes ': n

You lost $3
Thanks for playing

 Discussion Together the classes Dice, ChoHan, and PlayChoHan constitute a single

application. PlayChoHan contains a main(...) method, so PlayChoHan is the class that

executes.

 When PlayChoHan starts execution, the statement

 ChoHan game � new ChoHan();

 invokes the default constructor of the ChoHan class. The constructor instantiates a

ChoHan object, game , and initializes the instance variable, winnings , to 0. Once a Cho-
Han object is created, the object’s play() method is invoked, and the game is off and

running (line 6 of PlayChoHan).

 The play() method begins with the instantiation of two objects: a Scanner object,

input , and a Dice object, dice. Accordingly, play() invokes two constructors on lines 20

and 21:

 20. Scanner input � new Scanner(System.in);
21. Dice dice � new Dice(2); // creates a Dice object with two dice.

 The remainder of the play() method should be easy to follow.

 Finally, notice that ChoHan contains two private methods: win() and reportWinnings(),
on lines 10 and 49, respectively. These methods are not accessible outside the class.

Indeed, if we include the method call

 game.reportWinnings()

 in the PlayChoHan class, the Java compiler issues the following error message:

 :\JavaPrograms\PlayChoHan.java:10: reportWinnings() has private access in ChoHan
 game.reportWinnings();

 The methods win() and reportWinnings() are auxiliary or helper methods. They are used

to accomplish a task within the class but are not visible outside the class.

sim23356_ch10.indd 413sim23356_ch10.indd 413 12/15/08 6:48:39 PM12/15/08 6:48:39 PM

414 Part 2 Principles of Object-Oriented Programming

 Problem Statement Design a class, TriviaTest , with methods that

 • read a list of true-false questions and answers from a fi le,

 • interactively administer the test,

 • score the test and return the score as a percentage, and

 • display the correct answers along with the test-taker’s answers.

 The fi rst line of the input fi le contains the number of questions in the fi le. The sec-

ond line holds the correct answers (T or F). Answers are separated by whitespace. The

remainder of the fi le consists of the questions, one question per line. Here is a typical

input fi le with some Oz trivia:

 3

 T F T

 Tinman wanted a heart.

 Lion wanted a mane.

 Scarecrow wanted a brain.

 Java Solution
 Figure 10.3 shows the skeletal structure of the TriviaTest class.

private String[] correct Answers

private String[] responses[]

private int numQuestions

Scanner input; // for interactive input

Scanner fi leInput // for fi le input

public TriviaTest() // default construtor

public TriviaTest(String fi lename) // one argument Constructor

public void giveTest()

public int scoreTest()

public void showCorrectAnswers()

 FIGURE 10.3 The TriviaTest class

 The two arrays correctAnswers and responses hold the correct answers for the test and

the test-taker’s answers, respectively.

 The class contains two constructors. The one-one argument constructor accepts the

name of the input fi le and

• reads the number of questions into numQuestions,

• instantiates the array correctAnswers and reads the correct answers into this array, and

• instantiates the array responses.

 The default constructor informs the user that no fi lename has been supplied and exits.

 The methods of the class

• administer the test by displaying each question and soliciting an answer,

• score the test by comparing the answers stored in responses and correctAnswers ,

and

• display the correct answers along with the test-taker’s answers.

 The scoreTest() method returns the percentage of correct answers, rounded to the near-

est integer.

 EXAMPLE 10.3

sim23356_ch10.indd 414sim23356_ch10.indd 414 12/15/08 6:48:40 PM12/15/08 6:48:40 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 415

 Following TriviaTest is a small class TriviaTestGiver that uses TriviaTest.

 1. import java.util.*;
2. import java.io.*; // for file IO
3. public class TriviaTest
4. {

5. private String[] correctAnswers; // Each entry is "T " or "F "
6. private String[] responses; // Test-taker 's answers
7. private int numQuestions;
8. private Scanner input; // for interactive input
9. private Scanner fileInput; // for file input

10. public TriviaTest() // for file usage
11. {
12. System.out.println("No filename supplied ");
13. System.exit(0);
14. }

15. public TriviaTest(String filename) throws IOException

16. {
17. input � new Scanner (System.in);

18. // Open the file with the questions and answers
19. File questionFile � new File(filename);
20. if (!questionFile.exists())
21. {
22. System.out.println("Error: " � filename � " not found ");
23. System.exit(0);
24. }
25. fileInput � new Scanner(questionFile); // reads from file

26. // first read the number of questions in the file
27. numQuestions � fileInput.nextInt();

28. // Read correct answers from the input file
29. correctAnswers � new String[numQuestions];
30. for (int i � 0; i � numQuestions; i��)
31. correctAnswers[i] � fileInput.next();

32. responses � new String[numQuestions];
33. fileInput.nextLine(); // move file pointer to the beginning of the next line
34. }

35. public void giveTest()
36. {
37. // Displays each question and records an answer
38. System.out.println("Answer each of the following: T or t for True and F or f for False\n ");
39. for (int i � 0; i � numQuestions; i��)
40. {
41. System.out.println((i � 1)� ". " � fileInput.nextLine());
42. System.out.print("Answer: ");
43. responses[i] � (input.next()).toUpperCase(); // Get user 's response, convert to upper case
44. System.out.println();
45. }

46. System.out.println("You scored " � scoreTest() � "% on the test ");
47. showCorrectAnswers();

48. fileInput.close();
49. }

sim23356_ch10.indd 415sim23356_ch10.indd 415 12/15/08 6:48:41 PM12/15/08 6:48:41 PM

416 Part 2 Principles of Object-Oriented Programming

50. private int scoreTest()
51. {
52. // scores the test and returns the per cent of correct answers
53. int correct � 0;
54. for (int i � 0; i � numQuestions ; i��)
55. if (responses[i].equals(correctAnswers[i]))
56. correct��;
57. return Math.round ((100 * correct) / numQuestions);
58. }

59. private void showCorrectAnswers()
60. {
61. // Displays the correct answers
62. System.out.println("\tCorrect answers:\tYour Answers: ");
63. for(int i � 0; i � numQuestions; i��)
64. System.out.println((i � 1)� ".\t " � correctAnswers[i] � " \t\t " � responses[i]);
65. }
66. }

-------------- TriviaTestGiver.java --------------

67. import java.util.*;
68. import java.io.*;

69. public class TriviaTestGiver
70. {
71. public static void main(String[] args) throws IOException
72. {
73. Scanner input � new Scanner(System.in);
74. System.out.print("Enter filename: ");
75. String filename � input.nextLine();
76. TriviaTest test � new TriviaTest(filename);
77. test.giveTest();
78. }
79. }

 Output The following output shows a Harry Potter trivia test. The test has 10 ques-

tions stored in a fi le HarryPotter.txt.

 Enter filename: HarryPotter.txt

Answer each of the following: T or t for True and F or f for False

1. Harry 's owl is named Hapgood
Answer: f

2. Voldemort 's name was Tom Marvolo Riddle
Answer: t

3. Mr. Weasley 's fi rst name is Arthur.
Answer: t

4. Ron is frightened by snakes.
Answer: t

5. Harry was born on July 29
Answer: f

6. There are 9 players on a Quiddich team
Answer: t

sim23356_ch10.indd 416sim23356_ch10.indd 416 12/15/08 6:48:42 PM12/15/08 6:48:42 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 417

7. There are 7 children in Ron Wesaley 's family.
Answer: t

8. The "JK " in JK Rowling 's name stands for "Joanne Kathleen "
Answer: t

You scored 75% on the test

 Correct answers: Your Answers:
1. F F
2. T T
3. T T
4. F T
5. F F
6. F T
7. T T
8. T T

 Discussion
 Lines 10–14: Default constructor
 The code on lines 10–14 comprise the default constructor. If a class instantiates a

TriviaTest object with a the default constructor, the message

 No filename supplied

 is displayed and the application terminates.

 Without a default constructor, the statement

 TriviaTest test � new TriviaTest(); // no filename supplied

 would have resulted in a syntax error:

 C:\ TriviaTestGiver.java:13: cannot find symbol

 symbol : constructor TriviaTest()

location: class TriviaTest
 TriviaTest test � new TriviaTest();

 Because TriviaTest provides a one-argument constructor, Java does not automatically

provide a default constructor.

 Alternatively, rather than issue a message and exit, a default constructor might prompt

for a fi lename and then proceed as the one-argument constructor given on lines 15–34.

 Lines 15–34: One-argument constructor
 The throws clause on line 15 is essential because the class uses fi le IO.

 The constructor

 • instantiates a File object questionFile using the fi le specifi ed by fi lename ,

 • instantiates a Scanner object fi leInput that reads from questionFile (lines 19–25),

 • reads the number of questions from the fi le (line 27),

 • reads the correct answers into the array correctAnswers (lines 29–31), and

 • instantiates the array responses , which stores the user’s answers (line 32).

 After reading the fi nal answer, T or F , from the fi le, the fi le pointer is positioned at the

end of the line containing the correct answers:
8

F T T F F F T T

Harry 's Owl is

sim23356_ch10.indd 417sim23356_ch10.indd 417 12/15/08 6:48:42 PM12/15/08 6:48:42 PM

418 Part 2 Principles of Object-Oriented Programming

 The next statement (line 33: fi leInput.nextLine()) moves the fi le pointer to the beginning

of the next line before the fi rst question. Thus, a subsequent call to fi leInput.nextLine()
returns the string

 "Harry's Owl is … ?"

 Lines 35–49: giveTest()

 This method

 • reads and displays each question in the fi le (line 41),

 • accepts an answer from the user (line 43), and

 • stores the answer in array responses (line 43).

 A user may respond with uppercase or lowercase letters. The call toUpperCase() on

line 43 ensures that all answers are stored as uppercase letters.

 Lines 50–58: scoreTest()

 The scoreTest() private helper method compares the user’s answers, stored in the array

 responses , with the correct answers, stored in correctAnswers , keeping track of the

number of correct answers. The method returns the percentage of correct answers,

rounded to the nearest integer.

 Lines 59–66: showCorrectAnswers()

 This method displays, side by side, the correct answers as well as the user’s answers.

Like scoreTest(), this is a private , helper method.

 Lines 69–79: TriviaTestGiver

 TriviaTestGiver is a class that uses TriviaTest , that is, TriviaTestGiver is a client of

 TriviaTest .
 TriviaTestGiver implements a single main(...) method that

 • instantiates a test with a user-supplied fi lename, and

 • calls giveTest() to administer and score the test.

 The throws clause on line 71 is required because main(...) invokes the one-argument

constructor of TriviaTest , which also includes a throws clause. In Chapter 14 , we explain

the signifi cance of the throws clause and when it is absolutely required.

 10.6 ENCAPSULATION AND INFORMATION HIDING

 The TrivaTest and Dice classes, like the String class, provide two more examples of encap-

sulation; data and methods, attributes and behaviors, are bundled together into a single

entity. Another term that is often associated with encapsulation is information hiding .

Many programmers regard encapsulation and information hiding as synonyms. However,

object-oriented purists would defi ne encapsulation as the technique that bundles data and

methods into one unit and information hiding as the principle that hides the implementation

of a class. If that seems a bit murky, perhaps a small illustration will clear up the concept of

information hiding and demonstrate how information hiding differs from encapsulation.

 The ChoHan class of Example 10.2 utilizes the Dice class. As such, ChoHan is a cli-
ent of Dice . As a client of Dice , ChoHan needs to know how to call the methods of Dice ,

that is, how to send messages to a Dice object. To utilize the Dice class, a client need not

know the implementation details of Dice . For instance, a client does not need to know that,

under the hood, Dice uses the Random method nextInt(...). Nor does a client need to know

sim23356_ch10.indd 418sim23356_ch10.indd 418 12/15/08 6:48:42 PM12/15/08 6:48:42 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 419

that Dice stores the current number of dice in numDice. Indeed, the variable numDice

has private access and is not even visible to the client ChoHan . The client can access

this attribute only through the public methods, that is the interface of the Dice class. Sup-

pose, for example, that dice is a Dice object. If a client must retrieve the number of dice

stored in dice , the Dice class provides a getter method, and the client sends the message

 dice. getNumDice() for that very purpose. To change the number of dice, the client sends

a message dice.setNumDice(int n). The client never sees nor accesses numDice directly.

The methods of Dice do that. Similarly for clients of the String class, Java provides a set

of methods that handle strings. It is with these methods and only these methods that you

can manipulate a character string.

 Giving an instance variable private access has its advantages. Suppose, for instance,

that numDice has public rather than private access. Public access implies that the fi eld

 numDice is visible to ChoHan and furthermore, that ChoHan can change the value of

 numDice with a simple assignment statement. How convenient! Thus, line 21 of ChoHan

(Example 10.2)

 21. Dice dice � new Dice(2);

 can be legitimately rewritten as:

 21(a). Dice dice � new Dice();
21(b). dice.numDice � 2; // here, numDice is public and hence accessible

 with absolutely no complaints from the compiler. After all, numDice is public and ChoHan

can use numDice in any legitimate manner.

 So what’s the problem? Why not declare numDice public ? It is a fact of life that soft-

ware is often rewritten and revised. If, by chance, the implementation of Dice changes so

that the instance variable numDice is renamed numberOfDice, then line 21(b) of the client

code no longer works. There is no longer a variable named numDice . The client’s code

must be rewritten to accommodate the newly named numberOfDice attribute. However,

by keeping this attribute private and accessible only through methods getNumDice() and

 setNumDice(int n), whether or not the fi eld is named numDice , numberOfDice , or mickey-
Mouse , the client code executes correctly.

 Information hiding reaches beyond access to instance variables. Suppose, for example,

that the Dice method rollDice() is revised using Math.random() rather than a Random object.

As long as Dice supplies a rollDice() method, this change in implementation does not affect

the ChoHan class. The newly written Dice class is still operable. All implementation details

are hidden from the client. It does not matter to the client how rollDice() is implemented,

just what rollDice() does . Similarly, a client of String knows what service charAt() or sub-
string() provides but not how these methods provide the service. Perhaps the implementors

at Sun have rewritten substring() 10 times, or even 100 times. As a client, revisions make no

difference to you. The method substring() has its purpose, and how Java chooses to imple-

ment that purpose does not affect your classes.

Information hiding allows classes to be revised without affecting the code of its clients.

 In general, information hiding is the principle that hides implementation details from a cli-

ent class. When implementation details are hidden, all access to the attributes of a class is

through its public methods.

 As you already know, encapsulation is the mechanism that bundles data and methods

into a single entity. Java classes provide encapsulation.

Classes encapsulate but classes do not necessarily enforce information hiding.

Restricting access within a class affords information hiding.

sim23356_ch10.indd 419sim23356_ch10.indd 419 12/15/08 6:48:44 PM12/15/08 6:48:44 PM

420 Part 2 Principles of Object-Oriented Programming

 Java provides information hiding via access modifi ers. The following class is an example

of encapsulation without information hiding. Notice that both fi elds are public and hence

visible to other classes.

 class public TwoNumbers
{
 public int one;
 public int two;
 public MyClass() // default constructor
 {
 one � 1;
 two � 2;
 }
 public int sum()
 {
 return one � two;
 }
}

 Finally, we point out that although we have made a distinction between encapsulation

and information hiding, some authors combine both ideas under the single rubric of encap-

sulation. In any case, encapsulation, with information hiding, is the very fi rst principle of

object-oriented programming.

 10.7 THE KEYWORD static

 The keyword static has been part of our programming vocabulary from the very beginning.

Well, it’s about time we reveal the mystery that lurks within.

 10.7.1 static Data or Class Variables
 Objects consist of attributes and behaviors, data and methods. Each object has storage for

its own instance variables. For example, each of the three Dice objects of Figure 10.1 main-

tains storage for the instance variable numDice . Each object has its own unique data.

 In addition to instance variables, a Java class may also defi ne class variables or static
 variables. We use the keyword static to denote a class variable.

A static variable belongs to the class and not to any particular object; a class or

static variable is shared by all objects of the class.

 Once defi ned in a class, a static variable exists whether or not any objects have been cre-

ated; and no matter how many objects exist, only one copy of any static variable can exist.

A static variable serves all objects of a class. Static data is not stored in an individual object

but in a separate location, and all objects of a class have access to this one location.

 Suppose, for example, that each object of an Employee class models an individual

employee and that each employee has a unique weekly income. A static variable totalPay-
roll might hold the grand total of all salaries for the week. Only one copy of totalPayroll is

necessary. All objects share totalPayroll . See Figure 10.4 .
 A static variable is handy if you need to know how many objects of a class exist. The

following class is a version of the Dice class with an additional static variable, numDiceOb-
jects, that keeps track of the number of Dice objects that are instantiated.

sim23356_ch10.indd 420sim23356_ch10.indd 420 12/15/08 6:48:44 PM12/15/08 6:48:44 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 421

 1. import java.util.*;

2. public class Dice
3. {
4. private int numDice;
5. private Random random;
6. static private int numDiceObjects 5 0; // the keyword static denotes a class variable.

7. public Dice() // default constructor—one die
8. {
9. numDice � 1;
10. random � new Random();
11. numDiceObjects��;
12. }

13. public Dice(int n) // one argument constructor—n dice
14. {
15. numDice � n;
16. random � new Random();
17. numDiceObjects��;
18. }

19. public int rollDice()
20. // Returns the number of spots shown when tossing numDice dice
21. {
22. int sum � 0;
23. for (int i � 1; i �� numDice; i��) // for each die in the set

double salary

totalPayroll

// methods of Employee

employee1

1200.00

double salary

totalPayrollOne totalPayroll

(static)
Three Employee objects

// methods of Employee

employee2

1500.00

3450.00

double salary

totalPayroll

// methods of Employee

employee3

1750.00

FIGURE 10.4 All Employee objects share the same static variable, totalPayroll

sim23356_ch10.indd 421sim23356_ch10.indd 421 12/15/08 6:48:44 PM12/15/08 6:48:44 PM

422 Part 2 Principles of Object-Oriented Programming

24. sum �� random.nextInt(6) � 1; // sum � an integer between 1 and 6, inclusive
25. return sum;
26. }

27. public int getNumDice()
28. {
29. return numDice;
30. }

31. public void setNumDice(int n)
32. {
33. numDice � n;
34. }

35. public int getNumDiceObjects()
36. {
37. return numDiceObjects;
38. }

39. }

 Notice that the declaration on line 6 includes the static modifi er as well as an initiali-

zation. The constructors do not initialize numDiceObjects but instead increment this static

variable, thus keeping track of the number of Dice objects that have been created. Every

time a new Dice object is created, the constructor increases numDiceObjects by one. If

the initialization of numDiceObjects had been placed in the constructor, numDiceObjects

would be reset to 0 each time a new object was created. The initialization on line 6 is per-

formed just once and not every time a new object is created.

 After the following code segment executes, three Dice objects have been created, and

the static variable numDiceObjects has the value 3.

 1. Dice d1 � new Dice(3);
2. Dice d2 � new Dice(7);
3. Dice d3 � new Dice(5);

 Each time a Dice constructor is invoked, numDiceObjects increases. Figure 10.5 shows that

all objects share the static variable numDiceObjects.
 Static variables are also convenient if a class declares a constant, that is, a fi nal vari-

able. Because the value of a constant is fi nal and cannot be changed, it makes sense to store

a constant just once instead of in each object of the class. The following partial class

that models a simple circle contains two static variables: the constant PI and the variable

 totalArea , which is the sum of the areas of all instantiated Circle objects.

 1. public class Circle
2. {
3. public static double totalArea � 0.0; // class variable
4. public final static double PI � 3.14159; // class variable
5. private double radius;

6. public Circle() // default constructor
7. {
8. radius � 1;
9. totalArea � totalArea � PI * radius * radius; // adds to the class variable
10. }

sim23356_ch10.indd 422sim23356_ch10.indd 422 12/15/08 6:48:45 PM12/15/08 6:48:45 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 423

11. public Circle(double r) // one argument constructor
12. {
13. radius � r;
14. totalArea � totalArea � PI * radius * radius; // adds to the class variable
15. }

numDiceObjects

in rollDice()

int getNumDice

void setNumDice(int n)

3

1

d1

numDice

 (a) Dice d1 � new Dice(3);
static variable numDiceObjects has the value 1.

numDiceObjects

in rollDice()

int getNumDice

void setNumDice(int n)

3

2

d1

numDiceObjects

in rollDice()

int getNumDice

void setNumDice(int n)

7

d2

numDice numDice

 (b) Dice d2 � new Dice(7);
static variable numDiceObjects has the value 2.

numDiceObjects

numDice

in rollDice()

int getNumDice

void setNumDice(int n)

5

in rollDice()

int getNumDice

void setNumDice(int n)

3

3

d1

d3

numDice

in rollDice()

int getNumDice

void setNumDice(int n)

7

d2

numDiceObjects

numDice

numDiceObjects

 (c) Dice d3 � new Dice(5);
static variable numDiceObjects has the value 3.

FIGURE 10.5 One static variable numDiceObjects serves all Dice objects

sim23356_ch10.indd 423sim23356_ch10.indd 423 12/15/08 6:48:45 PM12/15/08 6:48:45 PM

424 Part 2 Principles of Object-Oriented Programming

16. // The Circle class presumably has other methods besides constructors,
17. // perhaps area() and circumference().

18. }

 Figure 10.6 shows the values in all variables after the creation of two Circle objects,

 circle1 and circle2, with radii 4.0 and 10.0, respectively.

PI
totalArea
radius

Circle()

Circle(double r)

// other methods

4.0

3.14159

364.42444

circle1
10.0

circle2

PI
totalArea
radius

Circle()

Circle(double r)

// other methods
FIGURE 10.6 PI and totalArea are static variables. All objects, share these variables.

 Unlike totalArea, PI has public access and is thus visible to other classes. Since PI exists

whether or not any Circle object exists, access to PI (or any other accessible static variable)

can be achieved by using the class name instead of an object identifi er:

 Circle.PI

 Nevertheless, access to PI via any Circle object is also permissible, so both of the following

segments perform equivalently.

 Circle c � new Circle(3.5); Circle c � new Circle(3.5);
double x � c.PI * 15; double x � Circle.PI * 15;

 In general, if a class contains a static variable,

• all objects/instances of the class share that variable;

• there is only one variable or storage location allocated to the whole class;

• the variable belongs to the class and not to any particular object;

• the variable exists regardless of whether or not any objects have been created; and

• the variable may be accessed using either the class name or an object name, if an object

has been created.

 10.7.2 static Methods
 Like a static variable, a static method is a class method and exists whether or not any

objects exist. A static method, indicated by the keyword static placed before the method’s

return type, belongs to the defi ning class. Unlike a non- static or instance method that must

be invoked via an object, a static method may be called whether or not an object of the class

exists. A static method exists apart from any objects.

 The methods Math.random(), Math.sqrt(), and Math.abs() are all static methods. In fact,

every method of Java’s Math class is static . A static method may be invoked by sending a

message to an object, if one exists, or by using the class name, as our use of the methods

of the Math class illustrates.

sim23356_ch10.indd 424sim23356_ch10.indd 424 12/15/08 6:48:46 PM12/15/08 6:48:46 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 425

 As you know, the main(...) method of an application is static . Why so? Well, suppose

that main(...) is not static . Then, some object would have to be created to invoke main(...),
that is, an object must be instantiated before main(...) can execute. Now how would that

object be created? Every application starts by executing main(...). What method would

instantiate such an object? The main(...) method must be static to execute under its own

power, so to speak; no object is necessary.

A static method may be called whether or not an object of the class exists, but a

static method cannot invoke an instance method except via an object.

 In the following class StaticMethods , the main(...) method, which is static , attempts to

call notAStaticMethod(), which is not.

 public class StaticMethods
{
 public void notAStaticMethod() // an instance method; there is no static modifier
 {
 System.out.println("Hi, I 'm not static ");
 }

 public static void main(String[] args)
 {
 notAStaticMethod(); // a call to an instance method—not legal
 }
}

 An attempt to compile this class results in the following error message:

 C:\JavaPrograms\StaticMethods.java:9: non-static method notAStaticMethod()
cannot be referenced from a static context

 In order to invoke notAStaticMethod(), a StaticMethods object must be created.

 public class StaticMethods
{
 public void NotAStaticMethod()
 {
 System.out.println("Hi, I 'm not static ");
 }

 public static void main(String[] args)
 {
 StaticMethods myObject � new StaticMethods();
 myObject.NotAStaticMethod();
 }
}

 If a static method A() invokes another method B() without the instantiation of an object,

then B() must be static as well.

 The previously defi ned Circle class has two static fi elds. The following expanded ver-

sion includes a static method,

 double getTotalArea(),

sim23356_ch10.indd 425sim23356_ch10.indd 425 12/15/08 6:48:46 PM12/15/08 6:48:46 PM

426 Part 2 Principles of Object-Oriented Programming

 that returns the value stored in the static variable totalArea. Notice that this method does not

access the instance variable radius; that would be illegal.

 1. public class Circle
2. {
3. static private double totalArea � 0.0; // class variable

4. public final static double PI � 3.14159; // class variable

5. private double radius; // instance variable

6. public Circle() //default constructor
7. {
8. radius � 1;
9. totalArea �� PI * radius * radius; // adds to the class variable

10. }

11. public Circle(double r) // one argument constructor
12. {
13. radius� r;
14. totalArea �� PI * radius * radius; // adds to the class variable

15. }

16. public static double getTotalArea()

17. {
18. return totalArea;

19. }
20. // Other methods of the Circle class are implemented here
21. }

 To invoke the method getTotalArea(), no objects need exist. Of course, if no objects

exist, the method call

 Circle.getTotalArea()

 returns 0.0, the valued initially assigned to totalArea.
 Example 10.4, which is an extension of Example 10.2, uses both static data and static

methods.

 Gamblin’ Gus, Atlantic City’s premiere citizen, has decided to design a “casino game” for

his son, Gus Jr. What Gus has in mind is a video machine not unlike the video poker or slot

machines found in casinos around the world. Gus’s machine, however, must be simpler and

a bit fairer than a real casino machine. Gus Jr. does not like losing. After a bit of thought,

Gus decides to create a “Cho-Han machine.” With 50-50 odds and a simple odd-even betting

scheme, Gus fi gures that Cho-Han would be just about perfect for Gus Jr. and his pals.

 Gus’s Cho-Han machine prompts a player for his/her name and then allows him/her

to play Cho-Han (odd-even) until exhaustion, boredom, or bankruptcy. Like a standard

slot machine, just one player can operate the Cho-Han machine at any time.

 Problem Statement Write a Java application that simulates a Cho-Han machine. For

any number of players, the machine should

 • prompt for the player’s name,

 • repeat the game until the player decides to quit,

 EXAMPLE 10.4

sim23356_ch10.indd 426sim23356_ch10.indd 426 12/15/08 6:48:47 PM12/15/08 6:48:47 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 427

 • report the player’s winnings/losses, and

 • shut down when a player enters the word “DONE”.

 Before shutting down, the machine reports how many gamblers played the game as well

as the “casino’s” gross profi ts or losses.

 Java Solution The problem statement suggests two objects: a ChoHanGame object

and a ChoHanMachine object. A ChoHanGame object models a single Cho-Han session

for one player and a ChoHanMachine object represents the machine that handles each

session. Accordingly, the two objects must communicate with each other.

 The following ChoHanGame class is very much like the ChoHan class of Exam-

ple 10.2. The difference between the classes is the addition of the two static variables,

numPlayers and total , which keep track of the number of players and the gross winnings

or losses for all players, respectively. Of course, the ChoHanGame class also uses the

Dice class of Example 10.1.

 The ChoHanMachineClass is very simple. The single method of the class,

runMachine(), repeats the following actions until a user enters “DONE”:

 • prompts for a player’s name,

 • instantiates a new ChoHanGame object (starts up a new game session for one

player), and

 • invokes the play() method for the new game.

 When all players are fi nished, the ChoHanMachine object displays the number of play-

ers as well as the casino’s gross winnings or losses, that is, the contents of the static
variables numPlayers and total .
 Finally, the following class, with a solitary main(...) method, instantiates a

ChoHanMachine object (turns on the machine) and initiates play.

 public class PlayChoHanMachine
{
 public static void main(String[] args)
 {
 ChoHanMachine machine � new ChoHanMachine();
 machine.runMachine();
 }
}

The ChoHanGame and ChoHanMachine classes follow.

---------------------ChoHanGame.java---------------------

1. import java.util.*; // for the Scanner class

2. public class ChoHanGame
3. {
4. static public int numPlayers � 0;
5. static public int total � 0;

6. private int winnings; // total won or lost (negative)

7. public ChoHanGame() // default constructor
8. {
9. winnings � 0;
10. numPlayers��; // a new object is a new player; count the players

11. }

12. // an auxiliary method, used only in the class

sim23356_ch10.indd 427sim23356_ch10.indd 427 12/15/08 6:48:47 PM12/15/08 6:48:47 PM

428 Part 2 Principles of Object-Oriented Programming

13. private boolean win (String choice, int sum)// win or lose
14. {
15. if (sum%2 �� 0 && (choice.equals("e ") || choice.equals("E "))) // even and even bet
16. return true;
17. if (sum%2 !� 0 && (!(choice.equals("e ") || choice.equals("E ")))) // odd and odd bet
18. return true;
19. return false;
20. }
21. private void reportWinnings()
22. {
23. if (winnings > 0)
24. System.out.println("You won $ " � winnings);
25. else if (winnings � 0)
26. System.out.println("You lost $ " � Math.abs(winnings));
27. else
28. System.out.println("You broke even ");
29. System.out.println("Thanks for playing\n ");
30. }
31. public void play()
32. {
33. Scanner input � new Scanner(System.in);
34. Dice dice � new Dice(2);
35. String choice; // even or odd
36. String answer; // play again or not
37. int wager; // how much
38. do
39. {
40. System.out.print("Enter wager: ");
41. wager � input.nextInt();
42. System.out.print("Enter 'e ' for even; anything else for odd: ");
43. choice � input.next();
44. int sum � dice.rollDice();
45. System.out.println("You rolled a " � sum);
46. if (win(choice, sum))
47. {
48. winnings �� wager;
49. total �� wager; // a win for the player is a loss for the casino
50. System.out.println("You won! Winnings so far: " � winnings);
51. }
52. else
53. {
54. winnings �� wager;
55. total �� wager; // a loss for the player is a gain for the casino

56. System.out.println("You lost! Winnings so far: " � winnings);
57. }
58. System.out.print("\nPlay again? 'y ' or 'Y ' for 'Yes ': ");// anything else for no
59. answer � input.next();
60. System.out.println();
61. } while(answer.equals("Y ") || answer.equals("y "));
62. reportWinnings();
63. }
64. public static int getNumPlayers()

65. {
66. return numPlayers;

67. }

68. public static int getTotal()

69. {
70. return total;
71. }

72. }

---------------------ChoHanMachine.java---------------------

sim23356_ch10.indd 428sim23356_ch10.indd 428 12/15/08 6:48:48 PM12/15/08 6:48:48 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 429

1. import java.util.*;

2. public class ChoHanMachine
3. {

4. private ChoHanGame game;

5. public void runMachine()
6. {
7. Scanner input � new Scanner(System.in);
8. System.out.print("What is your name ? ");
9. String name � input.next();
10. while (!name.equals("DONE "))
11. {
12. System.out.println("Hello " � name � " Goodluck!\n ");
13. game � new ChoHanGame();
14. game.play();
15. System.out.print("What is your name? ");
16. name � input.next();
17. }
18. System.out.println("Number of players : " � game.getNumPlayers());
19. System.out.println("Casino 's winnings/losses : " � game.getTotal());
20. }
21. }

 Output
 What is your name ? Gus
Hello Gus Goodluck!

Enter wager: 5
Enter 'e ' for even; anything else for odd: e
You rolled a 8
You won! Winnings so far: 5

Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 10
Enter 'e ' for even; anything else for odd: o
You rolled a 4
You lost! Winnings so far: �5

Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 10
Enter 'e ' for even; anything else for odd: e
You rolled a 4

You won! Winnings so far: 5

Play again? 'y ' or 'Y ' for 'Yes ': n

You won $5
Thanks for playing

What is your name? Glynda
Hello Glynda Goodluck!

Enter wager: 1
Enter 'e ' for even; anything else for odd: e

sim23356_ch10.indd 429sim23356_ch10.indd 429 12/15/08 6:48:48 PM12/15/08 6:48:48 PM

430 Part 2 Principles of Object-Oriented Programming

You rolled a 5
You lost! Winnings so far: �1

Play again? 'y ' or 'Y ' for 'Yes ': y

Enter wager: 10
Enter 'e ' for even; anything else for odd: e
You rolled a 5
You lost! Winnings so far: �11

Play again? 'y ' or 'Y ' for 'Yes ': n

You lost $11
Thanks for playing

What is your name? DONE
Number of players : 2
Casino 's winnings/losses : 6

 Discussion The main(...) method of the PlayChoHanMachine class fi rst instantiates a

ChoHanMachine object and then invokes the runMachine() method of that object. That

is, the PlayChoHanMachine object sends a message to the ChoHanMachine object. The

 runMachine() method consists of a loop that

 • prompts for a name,

 • instantiates a ChoHanGame object (game), and

 • invokes the play() method of the ChoHanGame object.

 Figure 10.7a depicts the object after the fi rst iteration of the loop in runMachine().
Notice that the static variable numPlayers has the value 1, and that because the player

won $5 and “the casino” lost, the static variable total currently holds –5. Figure 10.7b

shows that the second player has lost $11. Notice that the static variable numPlayers is

now 2 and total 6 because the casino (machine) is now ahead $6.

 Finally, notice that main(...) instantiates a single ChoHanMachine object. Of course

main(...) can instantiate several such objects. Consider the following main(...) method:

 public static void main(String[] args)
{
 ChoHanMachine machine1 � new ChoHanMachine();
 machine1.runMachine();
 ChoHanMachine machine2 � new ChoHanMachine();
 machine2.runMachine();
}

ChoHanGame game

ChoHanMachine object ChoHanGame object

Storage for
static variables

void runMachine()

machine
static int numPlayers

static int total

int winnings

ChoHanGame()
boolean win()
void reportWinnings()
void play()
int getNumPlayers()
int getTotal()

1

�5

5

FIGURE 10.7 (a) Objects after one session of ChoHan

sim23356_ch10.indd 430sim23356_ch10.indd 430 12/15/08 6:48:49 PM12/15/08 6:48:49 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 431

 In this case, two ChoHanGame objects are instantiated, each with static class variables

numPlayers and total, which give the total number of players and winnings/losses for

each machine.

ChoHanGame game

ChoHanMachine object ChoHanGame object

Storage for
static variables

void runMachine()

static int numPlayers

static int total

int winnings

ChoHanGame()
boolean win()
void reportWinnings()
void play()
int getNumPlayers()
int getTotal()

�11

static int numPlayers

static int total

int winnings

ChoHanGame()
boolean win()
void reportWinnings()
void play()
int getNumPlayers()
int getTotal()

5

2

6
machine

FIGURE 10.7 (b) Objects after two players try their luck

 10.8 THE OMNIPRESENT main (String [] args) METHOD

 Every application begins execution with main(...). In the applications of Part I of this

text, most, if not all, functionality resides in main(...) . However, the presence of objects

changes the programming landscape, and the applications of this chapter look quite a

bit different than previous applications. Consider, for example, the main(...) method of

 PlayChoHanMachine :

 public static void main(String[] args)
{
 ChoHanMachine machine � new ChoHanMachine();
 machine.runMachine();
}

 Here, main(...) is simple and uncomplicated. Indeed, the instructions of main(...) merely

 • create an instance of the ChoHanMachine class (machine), and

 • start the action by calling the runMachine() method, sending a message to machine .

 There is no other functionality in main(...). The application consists of three other

classes (Dice , ChoHanGame , and ChoHanMachine) and these objects do the work; the

 objects send messages to one another. Good, clean design assigns functionality to objects

that model real entities and make your applications modular. Although it is not always

sim23356_ch10.indd 431sim23356_ch10.indd 431 12/15/08 6:48:49 PM12/15/08 6:48:49 PM

432 Part 2 Principles of Object-Oriented Programming

advantageous to keep main(...) so simple, good object-oriented design always makes your

programs easier to maintain, and easier to debug.

 Finally, we mention that you can certainly include a main(...) method in any class. For

example, rather than writing a separate class PlayChoHanMachine , we might include the

following main(...) method in the ChoHanMachine class:

 public static void main(String[] args)
{
 ChoHanMachine machine � new ChoHanMachine();
 machine.runMachine();
}

 Here, the main method

 • instantiates an object of its own class, and

 • sends a message to that object.

 Usually, only one class in an application includes a main(...) method, and that class

“drives” the application. Temporarily including a main(...) method in other classes might

be helpful during the development of the class, when the main(...) method serves as a con-

venient and practical tool for testing and debugging.

When testing and debugging a class, adding a temporary, functional main(...)
method to the class is easy and essential.

 10.9 THE KEYWORD this

 Take another look at the one argument constructor of the Dice class:

 public Dice(int n)
{
 numDice � n;
 random � new Random();
}

 and the statement

 numDice � n;

 which assigns n to the instance variable numDice .

 The name of the parameter n is somewhat nondescript. Can we conjure up a parameter

name a bit more revealing than n ? Surprisingly, the parameter name can also be numDice ,

the same name as the instance variable. Doing this, however, requires some way of distin-

guishing the instance variable numDice from the parameter numDice . If the parameter is

also named numDice , the constructor has the form

 public Dice(int numDice)
{
 numDice � numDice ;

 random � new Random();
}

 and the compiler always assumes that numDice in the statement

 numDice � numDice;

sim23356_ch10.indd 432sim23356_ch10.indd 432 12/15/08 6:48:52 PM12/15/08 6:48:52 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 433

 refers to the local variable, that is, the parameter. Thus, the statement reassigns the parameter

 numDice its own value, and the instance variable numDice is not assigned any value.

 To distinguish between the instance variable and the parameter, Java provides the ref-

erence this .

The reference this refers to the current instance of a class, the object currently

being used.

 By using this , an object can refer to itself. The following version of the dice constructor uses

the reference this to distinguish between the instance variable numDice and the parameter

 numDice .

 public Dice(int numDice)
{
 this.numDice � numDice;
 // this.numDice is the instance variable numDice

 random � new Random();
}

 In the assignment statement, the variable this.numDice refers to the instance variable

 numDice , that is, the numDice that belongs to this class: the object currently being created,

and not the parameter numDice .

 10.9.1 Using this with a Method Call
 Distinguishing between instance variables and parameter names is not the only way to

make use of this . For example, the following Rectangle class uses this in both the two-

argument constructor and the method biggerRectangle().

 1. public class Rectangle
2. {
3. private int length, width;
4. public Rectangle ()
5. {
6. int length � width � 0;
7. }

8. public Rectangle (int length, int width)
9. {
10. this.length � length; // this.length – is the instance variable length
11. this.width � width; // this.width – is the instance variable width
12. }

13. public int area()
14. {
15. return length * width;
16. }

17. public Rectangle biggerRectangle (Rectangle r) // returns the rectangle with larger area
18. {
19. if (this.area() > r.area()) // this.area() returns the area of the current (calling) object
20. // r.area() returns the area of the parameter object
21. return this ; // return a reference to "this object " �� the calling object
22. else
23. return r;
24. }

25. public static void main(String[] args)

sim23356_ch10.indd 433sim23356_ch10.indd 433 12/15/08 6:48:52 PM12/15/08 6:48:52 PM

434 Part 2 Principles of Object-Oriented Programming

26. {
27. Rectangle r1 � new Rectangle (3, 5);
28. Rectangle r2 � new Rectangle (1, 4);
29. Rectangle r3 � r1.biggerRectangle(r2); // r1 is the caller; r1 is "this " Rectangle
30. System.out.println("The larger area is " � r3.area());
31. }
32. }

 In the two-argument constructor, this is used to distinguish between instance variables

and parameters with the same names, in the same way as the previous Dice example. In

contrast, the method

 Rectangle biggerRectangle(Rectangle r)

 utilizes this to refer to the calling or current object, and thus to compare the area of the call-

ing object to the area of the parameter object. Without this, there would be no way to refer

to the calling object, and no way to make the appropriate comparison.

 Notice that the main(...) method includes a call to biggerRectangle() :

 r1.biggerRectangle(r2);

 The method biggerRectangle(...) returns a reference to the Rectangle with greater area, r1
or r2. When the area of the calling object (r1) is bigger, the statement

 return this // a reference to the caller or current object

 executes, otherwise

 return r

 executes. In this illustration, r.1biggerRectangle(r2) returns a reference to r1 , the caller.

 Because this refers to an object, the keyword this cannot be used in a static method because

 static methods can execute even if no objects have been created; however, this can be used

in any non- static method.

 10.9.2 A Constructor Can Call Another Constructor Using this

Using the keyword this, one constructor can call another constructor.

 For example, the following class encapsulates a room.

 public class Room
{
 private int length;
 private int width;
 private int height;
 private int floorArea;
 private int wallArea;
 private int perimeter;
 private double gallonsOfPaint; // 1 gallon covers ~ 350 sq. ft. of wall space
 public Room() // default constructor
 {
 length � 9;
 width � 12;
 height � 8;

sim23356_ch10.indd 434sim23356_ch10.indd 434 12/15/08 6:48:53 PM12/15/08 6:48:53 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 435

 floorArea � length * width;
 wallArea � 2 * length * height � 2 * width * height;
 perimeter � 2 * length � 2 * width;
 gallonsOfPaint � wallArea/350.00;
 }
 public Room(int length,int width,int height) // three-argument constructor
 {
 this.length � length;
 this.width � width;
 this.height � height;
 floorArea � length * width;
 wallArea � 2 * length * height � 2 * width * height;
 perimeter � 2 * length � 2 * width;
 gallonsOfPaint � wallArea / 350.00;
 }
 // other methods of Room
}

 There is much the same about the two constructors. The only difference is the assignment

of values to length, width , and height . Conveniently, the default constructor can be rewritten

simply as:

 public Room()
{
 this(9, 12, 8);
}

 The statement

 this(9, 12, 8);

 is a call to the three-argument constructor of the same class. This action accomplishes the

same task as the much longer original version of the one-argument constructor Room() .
Note that the message to the constructor is sent using this, and not by explicitly invoking

the constructor name, that is, Room(9, 12, 8), as you might expect. Indeed,

 public Room()
{
 Room(9, 12, 8); // Error
}

 results in a compile time error – cannot fi nd symbol.
 You should be aware of one additional restriction.

If one constructor calls another constructor, no other statements can precede that call.

 For example, the following version of Room() does not compile:

 public Room()
{
 length � 9; // ILLEGAL FIRST STATEMENT
 this (9,12,8); // this must be the first statement
}

sim23356_ch10.indd 435sim23356_ch10.indd 435 12/15/08 6:48:53 PM12/15/08 6:48:53 PM

436 Part 2 Principles of Object-Oriented Programming

 10.10 GARBAGE COLLECTION

 Consider the following segment that incrementally builds the string “Happy”:

 1. String s � new String("H "); // s → "H "
2. s �� "a "; // s → "Ha "
3. s �� "p "; // s → "Hap "
4. s �� "p "; // s → "Happ "
5. s �� "y '; // s → "Happy "

 As you know, String objects are immutable, and each concatenation operation causes the

instantiation of a new String object. Thus, the preceding segment creates fi ve different

 String objects. Each time a new object is created, its address is assigned to the reference

variable s . As a consequence, after line 5 executes, there are four unreferenced String

objects in existence. Memory has been allocated, but these objects are inaccessible. No

reference variables hold their addresses. See Figure 10.8 .

Unref-
erenced
allocated
memory

“Happy”

“Happ”

s

s

s

s

s

“Hap”

“Ha”

“H”

5. s �� “y”;4. s �� “p”;3. s �� “p”;2. s �� “a”;1. String s � new String(“H”);

Unref-
erenced
allocated
memory

“Happ”

“Hap”

“Ha”

“H”Unref-
erenced
allocated
memory

“Hap”

“Ha”

“H”

Unref-
erenced
allocated
memory

“Ha”

“H”“H”

FIGURE 10.8 With the creation of each new String object, previously created objects are no longer accessible.

 If unreferenced objects accumulate, a gargantuan program with thousands of objects

could run out of memory. Even if a program does not run out of memory, if too much

memory is allocated, program performance can deteriorate. Fortunately, Java manages

memory automatically, and this helps alleviate any potential disaster.

The Java Virtual Machine automatically reclaims all memory allocated to unrefer-

enced objects for future use. In other words, if an object is no longer referenced and

accessible, the memory allocated to that object is freed and made available for the

creation of other objects. This clean-up process is called garbage collection.

 Java’s garbage collection is more like recycling. Java’s garbage collector periodically deter-

mines which objects are unreferenced and reclaims the space allocated to those objects. As

a program runs, garbage collection occurs transparently in the background. The Java Virtual

Machine reclaims unneeded memory quietly without any notice or fanfare. For example, each

unreferenced string of Figure 10.8 is certainly garbage, as is the fi rst object of Figure 10.7b . The

memory used for these objects is eventually reclaimed and available for use by other objects.

 The garbage collector recycles memory allocated to unreferenced objects, but there are

limitations. If an object remains referenced but is no longer used in a program, the garbage

collector does not recycle the memory. For example, consider the following segment that

instantiates Square , Triangle , and Circle objects:

 Square mySquare � new Square (5.0); // a 5.0 x 5.0 square
double areaSquare � mySquare.area();

sim23356_ch10.indd 436sim23356_ch10.indd 436 12/15/08 6:48:53 PM12/15/08 6:48:53 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 437

Triangle myTriangle � new Triangle(6.0, 8.0); // right triangle base � 6.0, height � 8.0
double areaTriangle � myTriangle.area();

Circle myCircle � new Circle(4.0); // a circle of radius 4.0
double areaCircle � myCirclearea();
. . .
// code that uses these objects
 . . .
// more code that does not use the objects created above
. . .

 Although the Square , Triangle, and Circle objects are no longer used by the program, if the

objects remain referenced, that is, if references mySquare, myTriangle , and myCircle con-

tinue to hold the addresses of these obsolete objects, the garbage collector will not reclaim

the memory for these three objects. Such a scenario causes a memory leak .

A memory leak occurs when an application maintains references to obsolete

objects.

 The memory leak caused by the Square-Triangle-Circle fragment can be easily recti-

fi ed by adding a few lines of code (lines 9–11).

 1. Square mySquare � new Square(5.0); // a 5.0 x 5.0 square
2. double areaSquare � mySquare.area();

3. Triangle myTriangle � new Triangle(6.0, 8.0); // right triangle base � 6.0, height � 8.0
4. double areaTriangle � myTriangle.area();

5. Circle myCircle � new Circle(4.0); // a circle of radius 4.0
6. double areaCircle � myCircle.area()

7. // code that uses these objects
8. ...
9. mySquare � null;
10. myTriangle � null;
11. myCircle � null;
12. // more code that does not use the objects created above
 . . .

 Figure 10.9 a shows the references after line 5 executes. Figure 10.9b shows the same refer-

ences after line 11 executes. The references mySquare, myTriangle, and myCircle no longer

refer to objects; each has the value null .

The Java constant null can be assigned to a reference. A reference with value null
refers to no object and holds no address; it is called a void reference.

 The previous segment no longer causes a memory leak. Variables mySquare,
myTriangle, and myCircle are void references: they have the value null and refer to no object.

The Square, Triangle, and Circle objects are unreferenced after mySquare, myTriangle , and

 myCircle are assigned null. Consequently, the garbage collector will reclaim memory for

these three unreferenced objects.

sim23356_ch10.indd 437sim23356_ch10.indd 437 12/15/08 6:48:54 PM12/15/08 6:48:54 PM

438 Part 2 Principles of Object-Oriented Programming

Managing memory use is an important part of a programmer’s job. The programmer

must work in tandem with Java’s automatic garbage collection to ensure that there

are no memory leaks.

 10.11 A CASE STUDY: CLASSY SOUNDS

 Our fi nal example combines many of the object-oriented concepts of Chapters 9 and 10 ,

including classes, objects, strings, fi les, and static methods. In addition, the following

application also includes two more classes that come packaged with Java: AudioClip
and URL .

 Sammy Sound collects audio clips from classic and not-so-classic Hollywood fi lms.

Sammy downloads his audio clips from the Internet and stores each clip in a separate

fi le on his computer. For example, Sammy’s Wizard.wav fi le holds the famous line from

 The Wizard of Oz , “Toto, I have a feeling we’re not in Kansas anymore,” and

his NapoleanDynamite.wav fi le contains an insightful quotation from Napoleon

Dynamite.

 For easy listening, Sammy imagines a simplifi ed version of an iPod, which he dubs

a myPod . Sammy’s myPod can play audio fi les such as wav or midi fi les, but not MP3

fi les. A myPod is perfect for playing Sam’s fi lm clips or, for that matter, any wav or midi

fi le that Sammy downloads from the Web.

 The controls of a myPod are both simple and self-explanatory:

 • down, advances the selection to the next audio clip.

 • up , selects the previous audio clip (backs up)

 • play, play the selected clip.

 • stop , stop playing the selected clip.

 • loop , play the selected clip continuously.

 • on / off , power switch.

 EXAMPLE 10.5

Each reference holds the address of an object Three void references; three unreferenced objects

(a) (b)

mySquare

side 5.0

myTriangle

base

height

6.0

8.0

myCircle

radius 4.0

null

mySquare

side 5.0

null

myTriangle

base

height

6.0

8.0

null

myCircle

radius 4.0

FIGURE 10.9 Referenced and unreferenced objects

sim23356_ch10.indd 438sim23356_ch10.indd 438 12/15/08 6:48:54 PM12/15/08 6:48:54 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 439

 A myPod always displays the name of the current

selection. See Figure 10.10 .

 Problem Statement Write an application that

implements a MyPod class. The default constructor

should prompt for the name of a text fi le that lists

audio clips. Each clip requires two lines of the fi le:

the display name of the clip and the name of the fi le

that holds the audio clip. Each name appears on a

separate line. For example, Sam’s fi le FilmClips.txt
contains the lines:

 Wizard of Oz

 Wizard.wav

 Ferris Bueller’s Day Off

 FerrisBueller.wav

 The Godfather

 Godfather.wav

 Gone With the Wind

 GWTW.wav

 Napoleon Dynamite

 NapoleonDynamite.wav

 Psycho

 Psycho.wav

 After reading the input fi le, the application displays the name of the current selection

(the fi rst clip on the list) and a menu that simulates the buttons on the machine shown

in Figure 10.10 .

Selected Clip: The Wizard of Oz

 Your options:

 u. up
 d. down
 p. play
 s. stop
 l. loop
 e. end

 Choice:

 The myPod always displays the name of one “selected” clip.

 You may assume that the input fi le is correctly formatted. That is, the fi le contains

entries for no more than 200 clips, and every entry consists of two parts: the name of a

sound clip and a fi le name, each on a separate line.

 Java Solution The application consists of two objects that communicate with each

other:

• a User Interface (UI) object, and

• a MyPod object.

FIGURE 10.10 A MyPod

down

The Wizard of Oz

MyPod

play
>>

stop loop

up

on/off

sim23356_ch10.indd 439sim23356_ch10.indd 439 12/15/08 6:48:55 PM12/15/08 6:48:55 PM

440 Part 2 Principles of Object-Oriented Programming

 A more sophisticated program would present you with a graphical user interface (GUI)

complete with pictures and clickable buttons, perhaps a jazzier version of Figure 10.10 .

However, we do not yet have a graphics toolset, so we settle for a text-based user inter-

face. Instead of buttons, we give you a menu; and instead of a mouse-click, you indicate

your menu choice with a “keyboard-click.”

 Once you choose a menu item (play , loop , next , etc.) the UI object sends a

message to the MyPod object and the MyPod object executes the task. The UI class

contains the main(...) method of the application. The only instance variable of the UI
class is a reference to a MyPod object. And, in addition to main(...) , the methods of

the UI class are:

• a default constructor that instantiates a MyPod object using the new operator, and

• a method that displays a menu, accepts a user-supplied choice, and sends a corre-

sponding message to the MyPod object.

 The MyPod class is a bit more complex. The instance variables consist of:

• two parallel arrays:

 String[] names, and
 String[] clipFiles,

 that respectively hold the names of the audio clips and the corresponding names of

the local audio fi les where the clips reside,

• two integers:

 numClips that holds the number of audio clips available, and

 selectedClip that holds the array index of the currently selected clip, and

• a reference variable audioClip that references an AudioClip object. AudioClip is a

Java class that makes playing audio simple.

 The methods of the MyPod class are:

• a default constructor that

 ■ ■ reads the input fi le and uses the data of that fi le to fi ll the two arrays names and

 clipFiles , and
 ■ ■ initializes numClips and selectedClip to 0

• and the methods that implement the functions of a MyPod object:

 playClip(),
 stopClip(),
 loopClip(),
 scrollUp(),
 scrollDown(),
 selectedClip(), and
 off()

 Figure 10.11 shows a UI object and a MyPod object.
 Notice that the instance variable audioClip holds a reference to an AudioClip

object. AudioClip is one of the many classes that are part of Java’s extensive library.

The AudioClip class resides in the java.applet package, so in order to use this class, the

statement

 import java.applet.*;

 is required.

sim23356_ch10.indd 440sim23356_ch10.indd 440 12/15/08 6:48:55 PM12/15/08 6:48:55 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 441

 AudioClip supplies three handy methods for playing sound:

 void play(),
void stop(), and
void loop().

 We initialize an AudioClip object with the location of the fi le containing the clip. This is

explained in greater detail in the discussion that follows.

 The two classes that make up the application are:

 UI class

1. import java.util.*;
2. import java.io.*;
3. public class UI
4. {
5. private MyPod myPod;
6. public UI() throws IOException // since MyPod throws and IOException
7. {
8. myPod � new MyPod();
9. }

10. public void displayMenu() throws IOException
11. {
12. Scanner input � new Scanner(System.in);
13. System.out.println();
14. String choice � " ";
15. while(!choice.equals("e "))
16. {
17. System.out.println();
18. System.out.println(" Menu:\n ");

myPod()
void selectedClip()
void scrollUp()
void scrollDown()
void playClip()
void loopClip()
void stopClip()
void turnOff()

The Wizard of Oz

The Godfather

Napoleon Dynamite

Psycho

Wizard.wav

AudioClip
object

names

4numClips 2selectedClip audioClip

clipFiles

Godfather.wav

NapoleonD.wav

Psycho.wav

UI()

void displayMenu()

static void main(String[] args)

A UI object A MyPod object

myPod

FIGURE 10.11 UI and MyPod objects

sim23356_ch10.indd 441sim23356_ch10.indd 441 12/15/08 6:48:56 PM12/15/08 6:48:56 PM

442 Part 2 Principles of Object-Oriented Programming

19. System.out.println(" d. Scroll Down ");
20. Syst em.out.println(" u. Scroll Up ");;
21. System.out.println(" p. play ");
22. System.out.println(" s. stop ");
23. System.out.println(" l. loop ");
24. System.out.println(" e. end\n ");

25. System.out.print(" Choice: ");
26. choice � input.next();

27. if (choice.equals("d "))
28. myPod.scrollDown();
29. else if (choice.equals("u "))
30. myPod.scrollUp();
31. else if (choice.equals("p "))
32. myPod.playClip();
33. else if (choice.equals("s "))
34. myPod.stopClip();
35. else if (choice.equals("l "))
36. myPod.loopClip();
37. else if (choice.equals("e "))
38. myPod.turnOff();
39. else
40. System.out.println("Illegal choice: " � choice);
41. }
42. }

43. public static void main(String[] args) throws IOException
44. {
45. UI ui � new UI();
46. ui.displayMenu();
47. }
48. }

 MyPod class
1. import java.util.*;
2. import java.io.*;
3. import java.applet.*;
4. public class MyPod
5. {
6. private String[] names;
7. private String[] clipFiles;
8. private int selectedClip, numClips;
9. private AudioClip audioClip;

10. private final int MAXIMUM_CLIPS � 200; // MyPod holds at most 200 clips

11. public MyPod() throws IOException
12. {
13. Scanner console � new Scanner(System.in);
14. System.out.print("\n File that lists audio clips: ");
15. String filename � console.next(); // file that contains name and location of each clip
16. File clipFile � new File(filename);

sim23356_ch10.indd 442sim23356_ch10.indd 442 12/15/08 6:48:56 PM12/15/08 6:48:56 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 443

17. names � new String[MAXIMUM_CLIPS]; // names of each clip
18. clipFiles � new String[MAXIMUM_CLIPS]; // location (filename) of each clip

19. selectedClip � 0;
20. numClips � 0;

21. // read the clip name as well as the filename for the clip
22. // store the clipname in names

23. // store the corresponding filename in clipFiles

24. Scanner input � new Scanner(clipFile);

25. while (input.hasNext())
26. {
27. names[numClips] � input.nextLine();
28. clipFiles[numClips] � input.nextLine();
29. numClips��;
30. }
31. input.close();
32. selectedClip();
33. }

34. private void selectedClip()
35. {
36. // Displays name of the selected clip
37. System.out.println("Selected Clip: " � names[selectedClip] � " \n ");
38. }

39. public void scrollDown()
40. {
41. // selects next clip
42. if (selectedClip � numClips � 1)
43. selectedClip��;
44. selectedClip();
45. }

46. public void scrollUp()
47. {
48. // selects previous clip
49. if (selectedClip > 0) // cannot scroll past first clip
50. selectedClip��;
51. selectedClip();
52. }

53. public void playClip()throws IOException
54. {
55. selectedClip(); // display name
56. if (audioClip !� null) // stops playing current clip
57. audioClip.stop(); // prevents two clips from playing simultaneously

58. // instantiate a File object for the file where the clip is stored

59. File file � new File(clipFiles[selectedClip]);
60. // instantiate an AudioClip using the URL of the File object
61. audioClip � Applet.newAudioClip(file.toURL());
62. audioClip.play(); // method of AudioClip
63. }

64. public void loopClip()throws IOException

sim23356_ch10.indd 443sim23356_ch10.indd 443 12/15/08 6:48:57 PM12/15/08 6:48:57 PM

444 Part 2 Principles of Object-Oriented Programming

65. {
66. selectedClip();
67. if (audioClip !� null)
68. audioClip.stop();
69. File file � new File(clipFiles[selectedClip]);
70. audioClip � Applet.newAudioClip(file.toURL());
71. audioClip.loop(); // method of AudioClip
72. }

73. public void stopClip()
74. {
75. selectedClip();
76. if (audioClip !� null)
77. audioClip.stop(); // method of AudioClip
78. }

79. public void turnOff()
80. {
81. System.out.println("\n\n*****Turning off myPod....Bye*****\n\n ");
82. }

83. }

 The input file, FilmClips.txt, contains the following lines of text:

 The Wizard of Oz
 Wizard.wav
 Casablanca
 Casablanca.wav
 Citizen Kane
 CitizenKane.wav
 Ferris Bueller 's Day Off
 FerrisBueller.wav
 The Godfather
 Godfather.wav
 Gone With the Wind
 GWTW.wav
 Napoleon Dynamite
 NapoleonDynamite.wav
 Psycho
 Psycho.wav
 A Streetcar Named Desire
 Streetcar.wav
 Sunset Blvd.
 SunsetBlvd.wav
 Tarzan
 tarzan.wav

 Output The output from the program includes sound clips. Due to the rather severe

limitations of the printed page, we substitute a textual representation of each selected

audio clip.

File that lists audio clips: FilmClips.txt

sim23356_ch10.indd 444sim23356_ch10.indd 444 12/15/08 6:48:57 PM12/15/08 6:48:57 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 445

Selected Clip:
The Wizard of Oz
Menu:

d. Scroll Down
u. Scroll Up
p. play
s. stop
l. loop
e. end

Choice: p

Toto, I've a
feeling we're
not in Kansas
anymore

Selected Clip:
The Wizard of Oz
Menu:

d. Scroll Down
u. Scroll Up
p. play
s. stop
l. loop
e. end

Choice: d

Selected Clip:
Casablanca
Menu:

d. Scroll Down
u. Scroll Up
p. play s. stop
l. loop
e. end

Choice: d

Selected Clip:
Citizen Kane
Menu:

d. Scroll Down
u. Scroll Up
p. play
s. stop
l. loop
e. end

Choice: d

Selected Clip:
Ferris Bueller 's
Day Off
Menu:

d. Scroll Down
u. Scroll Up
p. play
s. stop
l. loop
e. end

Choice: p

I asked for a car,
I got a computer.
How is that for
being born under
a bad sign?

Selected Clip:
Ferris Bueller 's
Day Off
Menu:

d. Scroll Down
u. Scroll Up
p. play
s. stop
l. loop
e. end

Choice: e

*****Turning
off myPod
Bye*****

 Discussion The UI class, which contains the main(...) method of the application, is the

interface to the myPod player. The displayMenu() method continually presents a user with

options. Each time a user makes a choice, the UI object sends an appropriate message to

the MyPod object. For example, if the choice is “p”, then UI sends the message myPod.play-
Clip() to the MyPod object. The application terminates when the user enters “e”.

 The MyPod class is a bit more complex than the UI class.

 Lines 1–3 :
 The package java.util is required for the Scanner class; java.io for the File class; and

 java.applet for the AudioClip class.

 Lines 6–9 :
 The array names stores the name of each audio clip and the array clipFiles the name of

the corresponding audio fi le. For example, if names[0] holds the string “The Wizard of

Oz” then, correspondingly, clipFile[0] gets the fi lename Wizard.wav . In this sense, the

arrays are parallel .
 The integer variable numClips is the number of clips currently available, and

selectedClip is the array index of the “current” clip.

 Finally, audioClip is a reference to an AudioClip object. AudioClip is a Java class that

is part of the java.applet package.

 Because each fi eld is private , only the methods of MyPod can access these variables.

 Lines 11–33 : The default constructor, MyPod()

Lines 13: A Scanner object is created for interactive input.

Lines 14–15: The user is prompted for the name of a fi le that contains the name

of each fi lm and the fi lename of each corresponding audio clip. In the sample run,

this fi le is FilmClips.txt .

Line 16: A File object is instantiated using the supplied fi lename. The local vari-

able clipFile references this File object.

Lines 17–20: The two arrays (names and clipFiles) are instantiated and the two

fi elds numClips and selectedClip are initialized to 0.

 Line 24: A Scanner object capable of reading from the input fi le (clipFile) is

instantiated.

sim23356_ch10.indd 445sim23356_ch10.indd 445 12/15/08 6:48:58 PM12/15/08 6:48:58 PM

446 Part 2 Principles of Object-Oriented Programming

Line 25: The loop executes as long as there is still more data to be read from clipFile .

Line 27: Read the name of an audio clip from clipFile , and store the name in names .

Line 28: Read the fi lename of an audioclip from clipFile, and store the fi lename in

clipFiles .

Line 29: Increment numClips .

Line 31: Close the input fi le.

Line 32: Display the selected clip (index 0) by invoking the private method

selectedClip() .

 Notice that the heading of the default constructor, MyPod() , contains the phrase throws
IOException. This clause is necessary when using a File object. You will learn more

about these mysterious “exceptions,” where they’re “thrown,” and what “catches” them

in Chapter 14 . For now, however, it is necessary to include this clause not only in the

heading of MyPod() but also in the heading of any method or constructor in the chain of

calls that eventually calls MyPod(). What is this chain of calls? Well, on line 45 of UI ,
main(...) invokes UI() and then, on line 8, UI() invokes MyPod(). Thus, the chain of calls

that eventually invokes MyPod() is main(...) → UI() → MyPod() . Consequently, each of

these methods or constructors includes the throws IOException clause in its heading.

 If you forget to include a throws clause, the compiler issues an error message to that

effect and you can easily remedy the situation.

Lines 34–38: These lines comprise a method that prints the name of the selected audio

clip. The name of each clip is stored in the array names . The method has private access

and is used only in the class.

Lines 39–52: The scrollDown() and scrollUp() methods increment and decrement the

selectedClip fi eld. Calling these methods is akin to pushing the “down” and “up” but-

tons on a myPod. See Figure 10.10 . Both methods ensure that the variable selectedClip
is in the range 0 to numClips – 1 . Each of these methods invokes the helper method

selectedClip() that displays the name of the selected clip.

Lines 53–63: The playClip() method plays the audio clip.

Line 53: Because the method uses a File object (line 61), the clause throws
IOException is necessary.

Line 55: The call selectedClip() displays the name of the current clip.

Lines 56–57: If a previous clip is still playing when the user invokes the playClip()
method, the message audioClip.stop() terminates that clip. Without this message,

the two clips would play simultaneously.

Line 59: A File object is instantiated with the name of the audio fi le that is stored

in clipFiles[selectedClip]. For example, the audio fi le might be Wizard.wav, Casa-
blanca.wav , or FerrisBueller.wav .

Line 61: The statement on this line is the heart of playClip(). The instance variable

audioClip is a reference to an AudioClip object. However, in this case, the AudioClip

object is not created using the familiar new operator. Instead, the static method

 static public AudioClip Applet.newAudioClip(URL url)

 returns a reference to an audio clip. This method is a member of the Applet class,

which is part of the java.applet package. Because the method is static , it can be

invoked via the class name, Applet .
 The parameter supplied to this method is a URL reference.

sim23356_ch10.indd 446sim23356_ch10.indd 446 12/15/08 6:48:58 PM12/15/08 6:48:58 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 447

 10.12 IN CONCLUSION

 This chapter discusses encapsulation via programmer-defi ned classes. Although Java pro-

vides hundreds of ready-made classes, the need for specialized classes is always present.

Classes and objects bundle data and methods together into a single entity. This bundling of

attributes and behaviors, that is, encapsulation, is the very foundation of OOP.

 The chapter also uncovers a few other Java mysteries: the keywords public and static
that we have been using from the very beginning now have meaning. Still, the phrase

throws IOException requires a bit of an explanation, and in Chapter 14 we explain exactly

what is “thrown” by this statement. In the following chapters, we continue the study of

program design using classes and objects, and we examine two more key OOP concepts:

inheritance and polymorphism.

 As you probably know, a Uniform Resource Locator or URL is the address of an Inter-

net resource such as a fi le or a database. For example, http://www.google.com is a valid

URL. Another form of a URL is a fi le URL that specifi es the address of a fi le stored on

your computer. For example,

 file:///C:/MyAudioFiles/Wizard.wav

 is a fi le URL.

 The parameter passed to Applet.newAudioClip() is a URL object . Java has a URL class that

encapsulates a URL. Fortunately, instantiating a URL object with a File reference is easy:

 If fi le is a File reference, then the method call

 file. toURL()

 converts the pathname of the fi le to a URL object, no questions asked. Thus, the statement

 audioClip � Applet.newAudioClip(file.toURL());

• calls toURL() which returns a URL object instantiated with fi le ,

• passes the newly created URL object to the static method,

 Applet.newAudioClip(URL url),
• returns a reference to an AudioClip object, and fi nally

• assigns the reference to audioClip.

 Line 62: The play() method of the AudioClip class is invoked via the a udioClip object.

The clip (hopefully) plays.

 Lines 64–72: The loopClip() method works like playClip() . However, the call

 audioClip.loop() plays the clip continuously.

 Lines 73–78: The stopClip() method invokes the stop() method of AudioClip . The condition

on line 76 (if (audioClip !� null)) is necessary because if a call to stop() occurs before an

 audioClip object is created, the JVM issues a runtime error and terminates the program.

 Lines 79–82: The turnOff() method display a “good-bye message” on the screen.

 Design Tip Encapsulating the user interface and the myPod player into two distinct

classes makes the application modular. Later, when you learn how to implement a

graphical user interface, you can replace this text-based interface with the graphical

interface; and you can accomplish this with absolutely no change to the MyPod class.

Sure, we could have designed one big class to do all the work, but alterations and

upgrades would be bug-prone and would require more overhead, that is, more code

rewrites. Modularity provides code reuse, “and that’s a good thing.”

sim23356_ch10.indd 447sim23356_ch10.indd 447 12/15/08 6:48:59 PM12/15/08 6:48:59 PM

http://www.google.com
file:///C:/MyAudioFiles/Wizard.wav

448 Part 2 Principles of Object-Oriented Programming

 Just the Facts

• A constructor is a special kind of method that instantiates and initializes objects.

• Unlike conventional methods, a constructor cannot be called directly. A constructor

is invoked automatically whenever a new object is instantiated.

• Unlike ordinary methods, the name of a constructor is the same as the name of the class.

• A constructor may have an access modifi er— public , private, or none at all. All con-

structors that we use are public .

• Unlike a conventional method, a constructor has no return type, not even void .

• A class may have any number of constructors that differ in the number of parameters.

A constructor with no parameters is the no-argument or default constructor.

• It is a good programming practice to provide a default constructor as part of any class

that you design.

• If you include no constructors for a class, Java provides a default constructor.

• If a class provides constructors but no default constructor, Java does not provide a

default constructor.

• A method that returns the value of some private variables is called a getter method.

• A method that assigns or alters the value of one of the instance variables is called a

 setter method.

• A class can have any number of instance variables or fi elds . Instance variables are

directly accessible to all methods of a class and are not passed as arguments.

• The words public and private are called access modifi ers. They are used in front of

variables, methods, and classes. If no access modifi er is specifi ed for a class, then the

class has package access .

• Instance variables are usually declared as private . private instance variables are not visible

outside of a class. public instance variables are accessible to all code outside the class, and

a variable with no access modifi er is accessible only to classes within its package .

• The public methods of a class constitute the interface of the class. The public methods

of a class can provide access to instance variables.

• Most methods are declared public , but it is often useful to write private methods

intended for exclusive use by other methods within the class.

• Encapsulation is the mechanism that bundles data and methods into a single entity.

• Information hiding is the principle that hides implementation details from a client class.

• The keyword this used in a method is a reference to the current object, that is, the

object currently invoking the method.

• A static variable, as opposed to an instance variable, belongs to the class and not to

any particular object. A static variable is shared by all objects of the class.

• A static variable can be accessed with the class name, or via an object of the class, if

one exists.

• A static method belongs collectively to the class, rather than individually to the

objects of the class. A static method can be invoked using the class name, such as

 Math.sqrt(), or by an object of the class, if one exists.

• A static method may invoke static methods and use static data. A static method may

not invoke a non- static method or manipulate instance variables, except via an object.

Thus, if a static method creates an object, then non- static methods and data can be

accessed through that object.

sim23356_ch10.indd 448sim23356_ch10.indd 448 12/15/08 6:48:59 PM12/15/08 6:48:59 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 449

• A static method may not use the reference this , which by defi nition refers to an

object.

• The Java Virtual Machine automatically reclaims the memory space of all unrefer-

enced objects. This process is called garbage collection .

• A memory leak occurs when an application maintains references to obsolete objects.

Even though Java provides automatic garbage collection, careless programming can

cause memory leaks.

 Bug Extermination

• Do not combine too much functionality in a single method. Assign a single task to

each method of a class.

• When designing and implementing a class, work incrementally. Add a method; test

the method; add another method; test that method. By working with small pieces,

bugs are localized and easier to fi nd.

• Add output statements to your methods, including constructors, to be sure that they

are working correctly. When you are convinced of the correctness of a method,

remove the output statements.

• Provide getter and setter methods for variables that a client may need to access.

Instance variables are usually private, and access is provided via getter and setter

methods.

• To avoid a memory leak, set all object references to null when an object is no longer

needed.

• It is natural for a constructor to call another constructor. You should use this to

accomplish the call, otherwise the compiler generates a “method unknown” error. For

example:

 ClassConstructor(int x)
{

privateData � x;
}
ClassConstructor()
{

ClassConstructor(0)
}

 generates an error, but

 ClassConstructor(int x)
{

privateData � x;
}
ClassConstructor()
{

this(0)
}

 works fi ne.

• A static method cannot call an instance method, except via an object. In particular,

 main(...) cannot call an instance method except via an object.

• If you provide any constructors, it is good practice to provide a default constructor.

sim23356_ch10.indd 449sim23356_ch10.indd 449 12/15/08 6:49:00 PM12/15/08 6:49:00 PM

450 Part 2 Principles of Object-Oriented Programming

 EXERCISES
 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

3 4

7

10

6

16

8 9

14

18

12

5

2

20

22

1311

19

17

21

23 24

15

1

18

 Across
 3 How Java automatically reclaims the memory space of all

unreferenced objects

 5 A public class is saved with this extension.

 6 No-argument constructor

 8 An instance variable

 14 Type of character that usually begins class name

 15 An application that maintains references to objects no

longer needed causes a .

 16 Access modifi er

 18 Method that changes the value of an instance variable

 19 Public methods of a class constitute the of the

class.

 20 To avoid a memory leak, set all references to once

an object is no longer needed.

 21 Methods

 22 Only the methods of a class have access to

instance variables.

 23 To create a new object

 Down
 1 Data of an object

 2 The name of the constructor is the

.

 4 Method that returns the value of an

instance variable

 7 Data and methods in a single bundle

 9 Principle that hides class information

 10 Class method

 11 If a class has a static variable, all

objects of the class that

variable.

 12 Normally, instance variables have

 access.

 13 A constructor has no .

 17 AudioClip class belongs to the package

java. .

 24 Operator that creates an object

sim23356_ch10.indd 450sim23356_ch10.indd 450 12/15/08 6:49:00 PM12/15/08 6:49:00 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 451

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. Java does not allow a programmer to write her own classes.

b. A private method of a class is accessible to every method of the class.

c. A public method of a class is accessible to every method of the class.

d. A public method of a class is accessible to any method external to the class.

e. A private instance variable is accessible to every method in the class.

f. A private instance variable is accessible to any method external to the class.

g. A static variable is the same as an instance variable.

h. A static variable is shared by all objects of a class.

i. A static variable x can be accessed by an object p , the same way any instance

variable is accessed, namely p.x.
j. A constructor is a special kind of method with no return type, not even void .

k. Constructors initialize and instantiate objects.

l. Only one constructor per class is permitted.

m. Constructors cannot be overloaded.

n. If you fail to defi ne a constructor, Java provides a default constructor.

o. Java can read your mind.

p. Java’s garbage collection is more like recycling.

q. An object is garbage when it is no longer referenced.

r. The keyword this is a reference to the calling object.

s. The keyword that allows a method to refer directly to the reference of the called

object.

t. An instance variable must be a built-in Java type, and not a programmer-defi ned class.

 2. Designing Classes
 Describe the public methods, instance variables, private methods, static methods,

 static variables, and/or constructors that you would use to implement the following

classes.

a. A Cell Phone

 • The phone is either on or off, and in-use or not in-use.

 • The phone has its own phone number as well as a list of n frequently called

numbers.

 • The phone can display its own number as well as the list of frequently called

numbers.

 • You can “speed-dial” a frequently called number by providing an integer in the

range 1 through n that indexes a stored phone number.

 • You can determine whether or not the phone is ringing, and if so, answer the

phone.

 • If you make a call or answer a call, the phone is in-use .

 • You can make a call only if the phone is not in-use .

 • You can hang up the phone, and then it is not in-use .

 • You can turn the phone on or off. If you turn it off you also hang up.

 • Your phone remembers all numbers that you dial and stores them.

 • You can view the list of numbers you have dialed.

 • You can redial the most recently called number.

b. A Computer Speaker

 • A speaker has a green LED that is either on or off.

 • A speaker has a power switch that toggles the power.

sim23356_ch10.indd 451sim23356_ch10.indd 451 12/15/08 6:49:00 PM12/15/08 6:49:00 PM

452 Part 2 Principles of Object-Oriented Programming

 • A speaker has a volume switch with 10 settings, 0–9 inclusive.

 • A speaker has a color (black, gray, white).

 • A speaker has a power rating (high, medium, and low).

 • You can bump the volume up or down. Bumping up from 9 or down from 0 has

no effect.

 3. Fix the Errors
 Determine and correct the errors in the following Java class.

 Class TestMe
{
 private int x, y; char y; char z;
 static private useme � 0;
 Testme()
 {
 x � y � 0;
 y � z � ";
 useme��
 }

 void TestMe(int num, char ch)
 {
 x � y � num;
 y � z � ch;
 useme��
 }

 private void method1()
 {
 return (x � y);
 }

 void method2()
 {
 System.out.println(return (method1(x, y)/2);
 }

 public static main(String[] args)
 {
 object1 � new TestMe();
 TestMe object2 � TestMe(3, 'X ');
 System.out.println(object1.method1());
 System.out.println(object2.method2);
 System.out.println(Object1.method1());
 System.out.println(TestMe.useme;)
 System.out.println(TestMe.method2();)
 }
}

 4. Class Basics
 Answer the following questions regarding the following class.

a. What are the instance variables?

b. Which methods are public and which are private ?

c. What is the name of the class?

d. What is the name of an object of this class?

sim23356_ch10.indd 452sim23356_ch10.indd 452 12/15/08 6:49:01 PM12/15/08 6:49:01 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 453

e. Is MyClass.tryMe(); a legal statement?

f. Is MyClass.tryMeToo(); a legal statement?

g. Determine the output.

 class MyClass
{
private int var1, var2;
private String var3, var4;
static private int count;

 public MyClass()
 {
 count��;
 }

 private void myMethod()
 {
 System.out.println("MyMethod ");
 }

 String tryMe(String x)
 {
 System.out.println(�� var1);
 System.out.println (�� var2 � var1);
 System.out.println (var3 � "link " � var4) ; return("tryMe " � x);
 }

 static void tryMeToo()
 {
 for (int j � 0; j � count; j��)
 System.out.println("tryMeToo ");
 System.out.println();
 }

 public static void main(String[] args)
 {
 MyClass x � new MyClass();
 System.out.println(x.tryMe(" fi rst try "));
 x.tryMeToo(); MyClass y � new MyClass();
 x.tryMeToo(); y.tryMeToo();
 }

}

 5. What’s the Output?
 Be very careful. These are diffi cult and a bit tricky.

a. public class Quine
 {
 public static void main(String[] args)
 {
 char c � 34;
 System.out.print(s � c � s � c � ' ; ' � '} ');
 }
 static String s1 � "public class Quine{public static void main(String[] args) ";
 static String s2 � "{char c � 34;System.out.print(s � c � s � c � '; ' � '} ');} static String s � ";
 static String s � s1 � s2;

 }

sim23356_ch10.indd 453sim23356_ch10.indd 453 12/15/08 6:49:01 PM12/15/08 6:49:01 PM

454 Part 2 Principles of Object-Oriented Programming

b. public class LinkMeUp
 {
 private int data;
 private LinkMeUp next;

 LinkMeUp(int num)
 {
 data � num * num; next � null;
 }

 LinkMeUp()
 {
 this(0);
 }

 LinkMeUp add(int num)
 {
 LinkMeUp temp � new LinkMeUp(num);
 temp.next � this;
 return(temp);
 }

 void print()
 {
 LinkMeUp temp � this;
 while (temp !� null)
 {
 System.out.println(temp.data);
 temp � temp.next;
 }
 }

 public static void main(String[] args)
 {
 LinkMeUp link � new LinkMeUp();
 for (int k � 1; k � 10; k��)
 link � link.add(k);
 link.print();
 }
 }

 6. Fix the Errors
 Find all the errors in the following program and correct them so that the program

does what it is supposed to do. There are syntax errors and semantic (logical) errors.

The easiest way to do this is with your compiler’s assistance.

 The following program is supposed to create a class ArrayHandler with three

methods:

a. A constructor ArrayHandler(int n) that creates an array, arr, of length n containing

random elements in the range 0 to n – 1.

b. partitionArray() , which partitions the array around the fi rst element a � arr[0] of arr .
This means the array is reordered so that:

 • a is repositioned in the array,

 • all elements “to the left” of a are less than or equal to a, and

 • all elements “to the right” of a are greater than or equal to a.
 For example if arr is: [7 , 2, 15, 9, 13, 26, 36, 1], then one possible partitioning

 rearranges arr as [2, 1, 7 , 15, 9, 13, 26, 36].

sim23356_ch10.indd 454sim23356_ch10.indd 454 12/20/08 12:47:24 AM12/20/08 12:47:24 AM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 455

c. PrintArray(), which displays the contents of the array arr .

 Class ArrayHandler
{
 private int[] arr;

 ArrayHandler(int n)
 {
 for (int j � 0; j � n; j��)
 arr[j] � math.rand(n);
 length � n;
 }

 ArrayHandler() // Default constructor sets up an empty array
 {
 ArrayHandler(0);
 }

 public void partitionArray()
 {
 int temp[] � new int (arr.length);

 // This iterates through the array element by element, from the second element until the end.
 // If an element is smaller than the fi rst element then that element is copied to a new array.
 // After going through the whole array, the fi rst element is then copied to the new array.
 // The original array is once again examined element by element from the second element.
 // If an element is larger than the fi rst element (or equal to it) then that element is copied
 // to the new array.

 int index � 0;
 for (int k � 1; k � arr.length; k��) if arr[k] � arr[0] temp[index] � arr[k]; index��;
 temp[index] � a[0]; index��;
 for (int k � 1; k � arr.length; k��) if arr[k] �� arr[0] temp[index] � arr[k]; index��
 }
}

public void printArray()
{
 for int m � 0; m � length ; m��) System.out.println(arr[m]); System.print(' ');
 // Print a space after each number
 // Skip a line after all the numbers are printed
 System.out.println();
}

public static main(String args)
{
 ArrayHandler t � new ArrayHandler(25);
 t.printArray(); t.partitionArray; t.printArray();}
}

 PROGRAMMING EXERCISES
 1. A TV Class
 The attributes of a TV object are the channel, the volume, and a fl ag (or switch)

indicating whether the TV is on or off. The methods perform the following actions:

 • Turn the TV on or off.

 • Set the channel to an integer from 0 to 99 inclusive.

sim23356_ch10.indd 455sim23356_ch10.indd 455 12/15/08 6:49:01 PM12/15/08 6:49:01 PM

456 Part 2 Principles of Object-Oriented Programming

 • Raise or lower the volume by one unit. The volume can range from 0 to 20.

 • View the value of the volume.

 • View the channel.

 • Determine whether the TV is on or off.

 Write a TV class that implements all relevant functions. A newly created TV object

is set to off with the channel set to 2 and the volume initially 10. Include a main(...)
method that tests the methods of the TV class.

 2. A SuperDie Class
 Write a class SuperDie that models a single die with an arbitrary number of sides,

not just six. A die instantiated with the default constructor has six sides. The

methods of this class should be:

 • roll a die and return its value,

 • return the number of sides on a die, and

 • change the number of sides on a die.

 Include a main(...) method that tests all the methods of your class.

 3. The SuperDice Class
 Write a class called SuperDice that defi nes a collection of SuperDie objects. (See

Exercise 2.)

 The instance variables include a fi eld that holds the number of dice in the collection

as well as an array that holds SuperDie objects. The SuperDice class should have

methods that

 • change the number of sides on any particular die,

 • return the number of sides on any die,

 • roll all the dice and return the sum of the dice, and

 • return the number of dice in the collection.

 The default constructor creates a single die with six sides. A one-argument

constructor accepts an array of n values giving the number of sides on each of n

dice. A two-argument constructor with two integer parameters p and q defi nes p dice

each with q sides.

 Test your class by writing a main method that:

 • randomly rolls a collection of fi ve dice (one 6-sided, one 20-sided, one 4-sided,

one 8-sided, and one 12-sided) 100 times, and reports the average of the sum of

the fi ve dice,

 • randomly rolls a single 6-sided die 100 times, and reports the average,

 • randomly rolls three 6-sided dice 100 times, and reports the average, and

 • randomly rolls three 20-sided dice 100 times, and reports the average.

 4. A Counter Class
 The single instance variable (counter) of a Counter object holds a non-negative

integer. The methods of the Counter class allow a client to add 1 to counter , set

the value of counter to zero, and retrieve the current value of counter . The default

constructor sets counter to zero, and the one-argument constructor initializes counter
to a non-negative integer.

 Implement a Counter class and test your class by writing a main(...) method that

 • instantiates a Counter object,

 • interactively reads a sequence of integers until a zero is entered,

 • and uses the Counter object to determine how many non-zero integers comprise

the sequence.

 5. A FancyCounter Class
 a. A FancyCounter class is similar to the Counter class of Programming Exercise 4,

but with an additional method that decrements counter . Consequently, counter
can hold a negative number. Implement and test the FancyCounter class.

sim23356_ch10.indd 456sim23356_ch10.indd 456 12/15/08 6:49:02 PM12/15/08 6:49:02 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 457

 b. A BalancedString class has two instance variables:

 String str, and

 FancyCounter counter .
 The default constructor of BalancedString initializes str to the empty string and

resets counter to zero. The class’s one-argument constructor passes a String s to str
and resets counter to zero. The BalancedString class also provides a boolean method

 boolean balanced()

 that returns true if a string contains a balanced set of parentheses.

 For example: the string “((hello)(goodbye))” has balanced parentheses, but

“((a)(b)(())” does not. A string with no parentheses is balanced.

 To check whether or not a string contains a balanced set of parentheses:

 Scan the string, left to right:

 if a character is a left parenthesis, increment the counter, and

 if a character is a right parenthesis, decrement the counter.

 A string is balanced if

 the fi nal counter value equals 0, and

 while scanning the string, the value of the counter is never negative.

 Implement and test the BalancedString class.

 6. A Door Class
 A computer game usually has many different objects that can be seen and manipulated.

One typical object is a door. Whether a player runs through a castle, attacks the forces

of an evil empire, or places furniture in a room, a door often comes into play.

 Implement a Door class as described below as well as a TestDoor class that

instantiates three Door objects labeled “Enter,” “Exit,” and “Treasure.” The “Enter”

door should be left unlocked and opened. The “Exit” door should be left closed and

locked. The “Treasure” door should be left open but locked.

 A Door class

 A Door object can

 • display an inscription,

 • be either open or closed, and

 • be either locked or unlocked.

 Here are some rules about how Door s work.

 • Once the writing on a Door is set, it cannot be changed.

 • You may open a Door if and only if it is unlocked and closed.

 • You may close a Door if and only if it is open.

 • You may lock a Door if and only if it is unlocked, and unlock a Door if and only

if it is locked. You should be able to check whether or not a Door is closed, check

whether or not it is locked, and look at the writing on the Door if there is any.

 The instance variables of a Door class are:

 • String inscription ,

 • boolean locked, and

 • boolean closed .

 The methods (all public) should be:

 • Door(String c); // Constructor - initializes a Door with inscription c, closed and locked.

 • isClosed(); // Returns true if the Door is closed

 • isLocked(); // Returns true if a Door is locked.

 • open(); // Opens a Door if it is closed and unlocked.

 • close(); // Closes a Door if it is open.

 • lock(); // Locks a Door if it is unlocked.

 • unlock(); // Unlocks a Door if it is locked.

sim23356_ch10.indd 457sim23356_ch10.indd 457 12/15/08 6:49:02 PM12/15/08 6:49:02 PM

458 Part 2 Principles of Object-Oriented Programming

 Appropriate error messages should be displayed, if any conditions of the methods

are violated.

 7. A Reader Class
 Applications frequently query a user for a string that must be one of a few specifi c

words, such as yes, no, quit, or start.
 A Reader class implements a method that queries a user for one of the

acceptable words and returns the user’s response. The one-argument constructor

 Reader(String[] words)

 accepts an array that holds the valid or expected words. The default constructor

creates a Reader object with a single valid word, okay. The single method of Reader
repeatedly requests a response from a user until he/she supplies a valid response.

The method returns that string with the user’s response.

 Assume that the Reader class is used in a game where the valid responses from a

player are

 • play,
 • quit, or

 • instructions.
 If play is chosen, then the player is asked whether he/she would like to go fi rst or

second. That is, the valid choices are fi rst and second. Once a player chooses fi rst or

second, the game would commence with the player going fi rst or second as entered.

If instructions is chosen, then the only valid follow-up is to type okay when done

reading the game rules and return to the main option of play, quit, instructions. If
 quit is chosen, then the program halts.

 Write a main(...) method to test your class by setting up a framework for a game

program. In your program, there is no actual game, so after the user chooses fi rst or

 second , your application should return to the main play, quit, instructions option.

 8. A Couple of Interacting Classes and a Game
 Most applications are comprised of several classes that interact by sending messages

one to another. Write an application that allows two players to play the game of

Nim. The “gameboard” for Nim consists of any number of piles of sticks. Each pile

contains an arbitrary number of sticks. Players take turns removing sticks from a

single pile. A player can remove any number of sticks at his/her turn, but only from

one pile. The player to remove the last stick wins the game.

 The application should

 • ask each player to enter his/her name,

 • choose randomly the player who goes fi rst, and

 • play the game.

 When a game is over, the application should

 • display a message stating which player won, and

 • ask the players if they would like to play again.

 When all games are complete, the application should

 • display the number of games won by each player.

 To implement this application, consider using two interacting classes, Game and

 Player . The design of the classes is up to you. Example 10.3 might provide you with

a few ideas.

 9. A MyString Class and a JUMBLE Program
 When you play a JUMBLE , you are given a scrambled word that you must

unscramble. For instance, you may be given iedmx and you would be expected to

unscramble it to mixed .

sim23356_ch10.indd 458sim23356_ch10.indd 458 12/15/08 6:49:02 PM12/15/08 6:49:02 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 459

 Write an application that prompts for a list of words and displays four jumbled

versions of each word so that you might choose one for creating your own JUMBLE .

For example:

 How many words?

 3

 Enter the words:

 mixed

 calendar

 then

 Output:

 Here is a list of possible JUMBLE s:

 mixed calendar then

 iedmx lendarca hent

 dixem alecdarn neth

 medix randlace enth

 eximd recandla tenh

 Hint: Create a class called MyString that stores and manipulates strings. The one-

argument constructor should accept a String argument. The methods should

include:

 void printme(); // prints the String.

 and

 String MyString permute();
 // returns a permuted version of the String.
 // This can be done by exchanging random pairs of letters in the String.
 // If the length of your string is n , then perform 2 n swaps.

 10. A StopWatch Class
 A good stopwatch displays elapsed time in hours, minutes, and seconds (to the

hundredth).

0.00

Secs

0

Mins

0

Hrs

ResetStopStart

Split-1

Display-1

Split-2

Display-2

Split-3

Display-3

FIGURE 10.12 A stopwatch

 Design a StopWatch class that models the stopwatch in Figure 10.12 .

sim23356_ch10.indd 459sim23356_ch10.indd 459 12/15/08 6:49:02 PM12/15/08 6:49:02 PM

460 Part 2 Principles of Object-Oriented Programming

 You can start the StopWatch , stop the StopWatch , and reset the time to zero. When

you stop the StopWatch , the elapsed time remains visible until it is reset to zero.

When you start the StopWatch , it continues counting from the current display.

 The StopWatch can also remember up to three split-time s by pressing any one

of three split-time buttons. A split-time is the elapsed time from the last time you

pressed the same split-time button or from the time that you started the clock if it is

the fi rst time you hit that split-time button. Pressing a split-time button does not stop

the clock. When you reset the stopwatch, all the split-times return to zero.

 Any split-time can be displayed by pressing (and holding down) one of the three

Display buttons. If no split-time has been calculated for a particular Display button,

then holding the button shows zero. The clock keeps running during the time a

Display button is held down, even though the running clock is not displayed. When

a Display button is released, the stopwatch time (which continues to run) is once

again displayed.

 Implement a Stopwatch class as well as a class UseStopwatch that demonstrates

the features of a Stopwatch object. Since you have no graphics toolkit yet, for

simplicity you should display the time on the clock by printing it only at certain

events. The time should be printed when the clock is started, reset, stopped, or

any Display button is pressed or released. You will need methods for each of these

events.

 For simulating the clock, use the System method

 longSystem.currentTimeMillis(),

 which returns the current time in milliseconds, that is, the number of milliseconds

since January 1, 1970.

THE BIGGER PICTURE

 SOFTWARE ENGINEERING

 The Software Productivity Problem—Brooks’ Mythical Man Month
 Writing programs is hard. Writing correct programs is harder. Writing programs that are

easy to debug, maintain, and extend is even harder. Getting it all done on schedule is almost

impossible. In his book, The Mythical Man Month , Frederick Brooks discusses large pro-

gramming projects and the diffi culties encountered when undertaking them. His short but

important work is still relevant today, despite the fact that it was published in 1975 and

was based on experiences from the 1960s—a time when object-oriented programming was

primarily a research topic at universities rather than the widespread programming method-

ology that it is today.

 The study of how to design, debug, maintain, and extend large software systems is

called software engineering . Brooks’s thesis in The Mythical Man Month is that large soft-

ware projects have very different challenges from small ones. In particular, the diffi cult

division of labor in designing large programs makes it extremely diffi cult to maintain the

necessary organization and unity of concept that is critical to the success of the project.

 His experience on IBM 360 machines in the 1960s, one of the fi rst massive software

efforts, formed the basis of his opinions. Most likely, you have not yet experienced such a

TH
E

BI
GG

ER
 P

IC
TU

RE

sim23356_ch10.indd 460sim23356_ch10.indd 460 12/15/08 6:49:03 PM12/15/08 6:49:03 PM

 Chapter 10 Objects and Classes II: Writing Your Own Classes 461

THE BIGGER PICTURE

large software project. You probably write your programs by yourself, or perhaps in a small

team. However, very large software projects can employ hundreds of programmers.

 How do we measure the size of a programming project? Although it is somewhat

controversial and imperfect, the standard metric for measuring the size of a programming

project is “lines of code,” or LOC. To gain some perspective, note that a Java course pro-

gramming assignment might consist of, perhaps, 100 lines of code; a team project might

have 1000 to 5000 LOC; a large industry project has well over a million LOC; and a really

large project, like the Windows XP operating system, has about 40 million LOC.

 Indeed, a programmer’s productivity is usually measured by LOC, on the theory that

a better programmer, presumably, produces more lines of code per month. The average

programmer in the United States creates about 6000 lines of shipped code per year—which

means fi nished, debugged, and sold. This number may surprise you, because if you com-

plete about 40 exercises in this text and perhaps one small project, you might well write

over 6000 lines of code in a year! How could a beginner exceed the productivity of a pro-

fessional? Brooks explains that it is much easier to be a productive programmer on small

projects.

 Brooks asserts that the programmer time needed to develop larger and larger systems

is not linear. That is, doubling a program’s size requires more than twice the program-

ming time. Indeed, the industry average for developing a 6000-line program is about

one programmer-year, but the average for a program 10 times as large (60,000 lines) is

15 programmer-years, and not 10 years as you might expect. This explains why you might

write 6000 lines of code in a semester, while a professional takes a year. Your projects are

very small compared to the industry standard. It is much easier to develop thirty 200-line

programs than one 6000-line program. You might be able to produce as much, or more, per

year than a professional who produces more polished, less-buggy code and works on very

large projects.

Brooks’s thesis: The productivity rate of programmers in LOC per year goes down

with the size of the project.

 Solutions to the Software Productivity Problem—Reusable Code
 Brooks’s thesis gives rise to what is called the software productivity problem . The history

of software engineering is fi lled with attempts to solve this problem, and the notion of reus-
able code has been the focus of much effort.

Reusable code is what it sounds like—building applications and systems using code

that has already been developed and tested, rather than writing everything from

scratch.

 The whole style of Java with its massive libraries of built-in classes is a good example

of reusable code. Creating larger usable code blocks turns programming into a more effi -

cient practice. The analogies with physical engineering are clear—there are many parts of a

design that are not specifi c to the problem at hand and can be lifted “pre-fab” from a previ-

ous design.

 There have been many proposals aimed at making code more reusable, and thus

increasing productivity, minimizing failure, maximizing effi ciency, localizing and mini-

mizing bugs, and solving the software problem discussed by Brooks. The concept of a

function (in C or Lisp) or subroutine (in Fortran) was one of the fi rst and simplest forms of

code reusability. Functions and subroutines formed the basis of two different programming

paradigms, one called procedural programming and the other functional programming,
each with its own adherents.

sim23356_ch10.indd 461sim23356_ch10.indd 461 12/15/08 6:49:03 PM12/15/08 6:49:03 PM

462 Part 2 Principles of Object-Oriented Programming

TH
E

BI
GG

ER
 P

IC
TU

RE

 The current standard paradigm that purports to provide code reusability is object-
 oriented programming (OOP). As you have seen in this chapter, the OOP concepts of

encapsulation and information hiding allow the building of classes that can be cleanly

lifted and reused. For example, the Dice class is “reused” in the ChoHan class.

 There are a number of new ideas “beyond OOP” that promote code reuse. One of these

is called software componentry . Software componentry pushes the analogy between soft-

ware components and hardware components. It proposes that software should be developed

by “gluing” prefabricated components together just as is done in electrical engineering or

mechanical engineering.

 A component sounds like an object, but unlike objects components do not necessarily

model real-world entities. A component is defi ned by a useful chunk of engineering and

not by a conceptual representation of the objects we imagine in our programs. Component-
 oriented programming (COP) may be the new kid on the block in the years to come.

Nonetheless, some people consider OOP and COP to be the same paradigm with just two

different points of view. In the exercises, we ask you to further investigate COP.

 The software problem as discussed by Brooks is a fundamental practical problem in the

effi cient design of large computer systems. Software engineers struggle to fi nd paradigms

implemented or supported by new computer languages that will help solve this problem

and ultimately bring software engineering onto the same solid ground as more traditional

engineering disciplines.

Exercises
 1. Explain why lines of code is a good metric for measuring the size of a program-

ming project.

 2. What aspects of large programs do you think LOC does not measure well?

 3. How do you suggest counting LOC? Can you think of variations or controversy

about how to count?

 4. Is LOC a reasonable way to measure the effectiveness and skill of a program-

mer? Argue for both sides.

 5. “The obsession with reusable code has produced software that, due to the lack

of effi ciency, was not even usable, not to mention reusable.” Dov Bulka, David
Mayhew, Effi cient C��: Performance Programming Techniques, p. 223. What

do you think this quote means? Explain why reusability and performance are not

necessarily compatible goals.

 6. Some claim that the benefi ts of OOP are lost on a novice who has no experience

with the large systems for which the paradigm is intended. What is your experience?

Do you feel that classes are providing you with fl exibility or are they just getting in

your way?

 7. The previous paragraphs briefl y mentioned component-oriented programming.

 Investigate component-oriented programming and compare it to object-oriented

 programming. Do you think they are qualitatively different or just two different

views of the same idea?

 8. (Research Paper): Investigate the history of programming languages, and list the

breakthroughs that were supposed to help solve the software productivity problem .

In what ways was each breakthrough successful and in what ways did each fail?

sim23356_ch10.indd 462sim23356_ch10.indd 462 12/15/08 6:49:03 PM12/15/08 6:49:03 PM

 463

CHAPTER CHAPTER 11
 Designing with Classes

and Objects
 “The greatest challenge to any thinker is stating the problem in a way that will

allow a solution.”
 — Bertrand Russell

 “Design is a plan for arranging elements in such a way as best to accomplish a
particular purpose.”

 — Charles Eames

 “Design is not just what it looks like and feels like. Design is how it works.”
 — Steve Jobs

 “Design is everything. Everything!”
 — Paul Rand

 Objectives

 The main objectives of Chapter 11 include an understanding of

� The basic principles of program design with objects and classes,

� a methodology for determining the classes of a large application,

� a system for determining how those classes should interact with each other, and

� incremental implementation and testing.

 11.1 INTRODUCTION

 In this chapter our focus shifts away from language features to program design. Here, our

concern is not the syntax, semantics, or mechanics of Java but an informal procedure for

determining the appropriate classes and objects of an application. The heart of the chapter

is problem solving and object-oriented design.

 Stylistically, the chapter is a departure from previous chapters: rather than presenting a

number of short examples, we develop one large case study. We begin with a problem state-

ment and conclude with a fully implemented video poker game comprised of a collection

of interacting objects. On the way, we formulate a design methodology. The classes of our

application are not lengthy, and indeed many contain just a few lines. However, each class

is a small piece of the solution to a much larger problem.

sim23356_ch11.indd 463sim23356_ch11.indd 463 12/15/08 6:50:15 PM12/15/08 6:50:15 PM

464 Part 2 Principles of Object-Oriented Programming

 Sections 11.2 through 11.8 provide an introduction to object-oriented design, and consti-

tute the chapter’s most important sections. In these sections, we demonstrate how to choose the

classes of a relatively large video poker application and determine how the objects of these classes

interact. Section 11.9, which discusses the implementation of the game, is more technical and

laden with code. On fi rst reading, you might study Section 11.9 paying attention to the design

issues but ignoring or skimming the poker algorithms and their implementations. Indeed, 11.9

can be skipped entirely without loss of continuity. Alternatively, you might read Sections 11.2

through 11.8 and attempt your own implementation of the requisite classes.

 Designing with objects is both an art and a science. Mastery comes with practice. So,

let’s get some practice.

 11.2 THE PROBLEM: A VIDEO POKER GAME

 Casinos are not lacking in video games and, along with slot machines, video poker games,

such as the one shown in Figure 11.1 , are among the most popular.

Video Poker

P A Y O U T
Bet

Royal Flush
Straight Flush
Four of a Kind
Full House
Flush
Three of a Kind
Two Pair
Jacks or Better

250
50
25
9
6
3
2
1

500
100
50
18
12
6
4
2

750
150
75
27
18
9
6
3

1000
200
100
36
24
12
8
4

1250
250
125
45
30
15
10
5

1 Coin

2 Coins

3 Coins

4 Coins

5 Coins

Cash Out

DealHold

Discard

Hold

Discard

Hold

Discard

Hold

Discard

Hold

Discard

Three of a Kind Bet: 3 Payout: 9

Insert Coins

Coins Remaining: 22

54321

Hold Hold Hold

FIGURE 11.1 A video poker machine

 11.2.1 Playing the Game
 The machine of Figure 11.1 simulates a single hand of fi ve-card stud poker.

 To play the video poker game:

• A player deposits an arbitrary number of coins or tokens into the machine. We call this

amount the player’s bankroll .

• The player makes a bet (one to fi ve coins but not more than the bankroll).

sim23356_ch11.indd 464sim23356_ch11.indd 464 12/15/08 6:50:16 PM12/15/08 6:50:16 PM

 Chapter 11 Designing with Classes and Objects 465

• A hand of fi ve cards is dealt from a deck of 52 cards. The deck is reshuffl ed before

each game.

• After viewing his/her hand, the player decides which cards he/she wishes to keep and

which he/she would like to replace.

• New cards are dealt for those cards that the player chooses to discard.

• The hand is evaluated and scored.

• If the hand is a winner, a payout amount is added to the bankroll; otherwise, the bet is

deducted from the bankroll.

• The player can quit and cash out at any time.

• The player can continue to play as long as the bankroll is not depleted.

• The player can add coins to the bankroll before each game.

 Figure 11.1 shows the winning hands and the corresponding payouts for some bets of one

to fi ve coins.

 11.2.2 Scoring the Game
 A standard deck of cards consists of 52 different cards. Each card has a rank or value as

well as a suit . The ordered ranks are

 Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, (Ace).

 Note that, in rank, an Ace precedes 2 and also follows King. The suits are hearts, diamonds,

spades, and clubs.

 The winning hands listed highest to lowest are:

 • Royal Flush : Ten, Jack, Queen, King, Ace of the same suit. For example,

 10, Jack, Queen, King, and Ace, all clubs .

 Pays 250 to 1. That is, if a player bets one coin and is dealt a royal fl ush, then

he/she wins 250 coins.

• Straight Flush : Five cards in rank sequence having the same suit but not a royal fl ush.

 For example,

 Ace of Hearts, 2 of Hearts, 3 of Hearts, 4 of Hearts, 5 of Hearts.
 Pays 50 to 1.

• Four of a Kind : Four cards of the same rank. For example,

 3 of Hearts, 3 of Diamonds, 3 of Clubs, 3 of Spades , 6 of Hearts.

 Pays 25 to 1.

• Full House : Three cards of one rank and two of another. For example,

 4 of Hearts, 4 of Spades, 4 of Clubs , 7 of Clubs, 7 of Spades.
 Pays 9 to 1.

• Flush : All fi ve cards of the same suit but not a straight fl ush. For example,

 3 of Hearts , 6 of Hearts , 7 of Hearts , 10 of Hearts , Jack of Hearts.
 Pays 6 to 1.

• Straight : Five cards in rank sequence but not a fl ush. For example,

 Ace of Hearts, 2 of Spades, 3 of Hearts, 4 of Clubs, 5 of Diamonds.

 Pays 4 to 1.

• Three of a Kind : Three cards of the same rank and two cards of two other ranks, that

is, not a full house or four of a kind. For example,

 5 of Hearts, 5 of Clubs, 5 of Spades , 7 of Clubs, 9 of Diamonds.

 Pays 3 to 1.

sim23356_ch11.indd 465sim23356_ch11.indd 465 12/15/08 6:50:16 PM12/15/08 6:50:16 PM

466 Part 2 Principles of Object-Oriented Programming

• Two Pair : Two cards of one rank, two of another, and one card of a third. For

example,

 6 of Hearts, 6 of Clubs , 9 of Clubs, 9 of Spades , Ace of Hearts.

 Pays 2 to 1.

• Jacks or Better : Exactly one pair of Jacks, Queens, Kings, or Aces and nothing else

of interest. For example,
 Jack of Hearts, Jack of Clubs , 2 of Spades, 3 of Clubs, 3 of Hearts.

 Pays 1 to 1.

 Figure 11.2 shows several winning hands .

A Full House

A Straight Flush

A Straight

FIGURE 11.2 A few winning poker hands

 11.3 PROBLEM STATEMENT

 The problem of our case study is the design and implementation of an object-based model

for the poker game described in Section 11.2 and pictured in Figure 11.1 . This application

is, by far, our most elaborate program.

 Before attempting an implementation, we make some important design decisions and

provide a blueprint for the solution. Specifi cally, we answer the question:

 What are the classes and objects necessary to build the application?

 This is the same question you should answer before tackling any complex object-oriented

design. Usually, there is no single best set of classes for a particular application, and hence you

should not look for the “right answer”; however, some designs are better than others. Moreover,

you will probably change and/or refi ne your classes several times during the design process.

Program design is not linear; it is iterative.

 Object-oriented design is a topic that fi lls volumes and is far too complicated for an

 in-depth discussion here. Nonetheless, we can develop a somewhat simple design process

that incorporates the following three steps:

sim23356_ch11.indd 466sim23356_ch11.indd 466 12/15/08 6:50:16 PM12/15/08 6:50:16 PM

 Chapter 11 Designing with Classes and Objects 467

 1. Determine the classes.

 2. Determine the responsibilities of each class.

 3. Determine the interactions and collaborations among the classes.

 11.4 DETERMINE THE CLASSES

 Classes describe objects and objects are things. In Chapter 9 we state:

Just as a noun is a person, place, or thing, so is an object.

 Accordingly, a common methodology for determining the classes and objects appropri-

ate for an application entails noting and marking the nouns of the problem specifi cation.

Although not every noun necessarily gives rise to a class, examining the nouns is a good

starting point. Of course, implicit here is the assumption that the problem is clearly
specifi ed . If the problem is unclear, vaguely stated, or poorly formulated, then you are

on soft terrain.

Before beginning the design process, be sure that you understand the problem.

 Here we reiterate the problem specifi cation of Section 11.2 but with the nouns high-

lighted in boldface.

 To play the video poker game :

 • A player deposits an arbitrary number of coins into the machine . This amount is the

 bankroll.
• To play the game

• The player makes a bet (one to fi ve coins but not more than the bankroll).

• A hand of fi ve card s is dealt from a deck of 52 cards to the player.

• The deck is reshuffl ed for each game.

• The player decides which cards he/she wishes to hold.

• New cards are dealt for those cards that the player wishes to discard.

• The hand is scored.

• If the hand is a winner, the winning amount is added to the bankroll. Otherwise, the

bet is deducted from the bankroll.

• The player can quit and cash out at any time.

• The player can continue to play as long as the bankroll is not depleted.

• The player can add to the bankroll before any individual game.

 The following nouns serve as “class candidates.”

• video poker game

• player

• coins

• machine

• amount

• bankroll

• game

sim23356_ch11.indd 467sim23356_ch11.indd 467 12/15/08 6:50:17 PM12/15/08 6:50:17 PM

468 Part 2 Principles of Object-Oriented Programming

• bet

• hand

• card

• deck

 Obviously, some words from this list are redundant. For example, amount and bankroll
refer to the same thing. Also, a coin probably does not warrant a class of its own. And of

course, video poker game and game are identical.

Not all nouns will necessarily correspond to classes, and not all classes will always

have a corresponding noun.

 So, for now, let’s settle on seven classes:

 • Player

• Bankroll

• Bet

• Hand

• Card

• Deck

• PokerGame

 11.5 DETERMINE RESPONSIBILITIES OF EACH CLASS

 What service does a class provide?

 What is each class’s responsibility?

 What are the actions and behaviors of each class?

As the nouns indicate classes, the verbs of the problem statement help determine

class responsibilities.

 Just as not every noun corresponds to a class, not every verb necessarily designates a class

action or responsibility. As we may create classes for which there are no corresponding

nouns, we may require actions that do not manifest themselves as verbs. A dose of good

common sense is helpful. The process is not mechanical. As with the nouns, we highlight

(in boldface) the verbs or actions in the problem statement and use these to determine the

actions and responsibilities of each class.

 To play the video poker game:

 • A player deposits an arbitrary number of coins into the machine. This amount is the

bankroll.

• The player makes a bet (one to fi ve coins but not more than the bankroll).

• A hand of fi ve cards is dealt from a deck of 52 cards to the player. The deck is

 reshuffl ed for each game.

• The player decides which cards he/she wishes to hold.

• New cards are dealt for those cards that the player wishes to discard.

sim23356_ch11.indd 468sim23356_ch11.indd 468 12/15/08 6:50:17 PM12/15/08 6:50:17 PM

 Chapter 11 Designing with Classes and Objects 469

• The hand is scored.
• If the hand is a winner, the winning amount is added to the bankroll, otherwise the bet

is deducted from the bankroll.

 The player can quit and cash out at any time. The player can continue to play as long

as the bankroll is not depleted . The player can add to the bankroll before any individual

game.

 We begin with the Player class. What can a poker player do? We compile a list based

on the actions noted previously. A player can:

 • Deposit coins (add to the bankroll).

• Play the game.

• Make a bet.

• Decide which cards to hold/discard.

• Cash out.

• Quit.

• Play another game.

 In fact, the actions of a player correspond to the buttons on the machine of Figure 11.1 . Player
provides the user interface. The buttons on the machine of Figure 11.1 and the actions of

 Player are a good match. Each machine action lends itself to a method of the Player class.

 Because Player serves as the user interface, we confi ne all input and output to the

 Player class. This means that Player is responsible for displaying the cards as well as any

other appropriate output.

 Bet, Deck, Card, Hand, and Bankroll are less complex than Player, and the actions of

these classes follow.

 Bet :

 • Give (return) its value (a getter method).

 • Set a value (a setter method).

 Deck :

 • Shuffl e the cards.

 • Deal a card, that is, return one card.

 Card :

 • Return its suit (a getter method).

 • Return its value (a getter method).

 Hand :

 • Deal and store a new hand.

 • Update a hand after the player discards cards.

 • Score a hand.

 • Return the hand, that is, return the list of cards in the hand.

 Bankroll :

 • Update the current number of coins in the machine, that is, increase or

decrease the number of coins.

 • Return the number of coins in the machine (a getter method).

 • Change the number of coins in the machine its (a setter method).

 One class remains: PokerGame . Every poker game has a dealer who distributes the

cards and, for the most part, coordinates play. Similarly, a PokerGame object coordinates

sim23356_ch11.indd 469sim23356_ch11.indd 469 12/15/08 6:50:17 PM12/15/08 6:50:17 PM

470 Part 2 Principles of Object-Oriented Programming

the action of our game. Just as the casino dealer provides a hand to a player, the PokerGame

object requests a new hand from the Hand object and “deals” that hand to the Player object.

 PokerGame is the “middleman” between Player and the other classes. Playing the role of

game coordinator, the actions of PokerGame might tentatively be listed as:

 • Get a new hand from Hand.

• Tell Player to display the hand (all IO is via Player).

• Get the list of discard/hold cards from Player .

• Update the hand, that is, tell Hand which cards to hold and which to displace.

• Score the hand, that is, get the score from Hand .

• Tell Player to display the fi nal results.

• Update Bankroll when the game is fi nished.

 Is PokerGame necessary? Can the Player object work without a coordinator? Can the

 Player object get the hand, score the hand, and update the bankroll without the assistance

of PokerGame ? Of course. However, PokerGame, as coordinator, makes each class more

independent and less intertwined with other classes. PokerGame provides a cleaner design.

 We now have a tentative list of classes and actions. Of course, as we proceed, we may

discover new classes and actions. Our design is not necessarily complete, nor is it fi nal.

 11.5.1 Design Issues—The Data Model and the View
 The list of actions is not exhaustive. There are many alternatives and choices. For example,

consider the Hand class. A potential Hand method might display a fi ve-card poker hand.

The choice to exclude such an action is intentional: we wish to separate the user interface

from the underlying data.

Good OOP design demands the separation of the user interface, or the view, from the

underlying representation of the data, or the data model.

 According to our current design, all output is via the Player object. A Hand does not, and

indeed, should not know how to print itself. It is the Player class that handles the user inter-

face, or view. The view in this application is text-based, but in Part IV you will learn how to

build a visual GUI, a graphical user interface, for this same application. Separating the data

model from the view allows us to “plug in” any kind of viewing module without having to

redesign the methods of the data model, which is exactly what we do in Part IV.

The separation of the view from the data model is a fl exible design methodology.

 11.6 ITERATIVE REFINEMENT

 Perhaps some refi nement is in order. Can we simplify our design? Can a few Player actions

be collapsed into one action? For example, placing a bet initiates play. These two actions,

betting and starting the game, are, in fact, the same (assuming the bet cannot be retracted).

Once a bet is placed the game begins. Also, “cashing out” implies that a player has decided

not to continue play. With a few modifi cations and guided by Figure 11.1 , the responsibili-

ties of Player reduce to the following four actions:

• Deposit coins.

• Make a bet (start the game).

sim23356_ch11.indd 470sim23356_ch11.indd 470 12/15/08 6:50:18 PM12/15/08 6:50:18 PM

 Chapter 11 Designing with Classes and Objects 471

• Decide which cards to hold/discard.

• Quit (cash out).

The responsibility of displaying the cards as well as the number of remaining coins also

falls to Player . And, because our application is text based, Player should provide some type

of a menu that corresponds to the buttons in Figure 11.1 .

 The behaviors of the PokerGame fi t comfortably into three groups of actions that

mimic the progression of a single game:

 • Get the initial hand:

 get a new hand,

 tell Player to display the hand

• Discard and hold cards:

 get the discard/hold cards from Player ,

 update the hand, (replace some cards)

 score a hand,

 tell Player to display the results

• Update the bankroll

 The actions of PokerGame are, in fact, messages or requests sent to other objects. For

example, to obtain a new hand, a PokerGame object sends a request to a Hand object,

which returns a hand of fi ve cards. Remember, PokerGame is the coordinator, the casino

dealer.

 The other classes, being somewhat simpler, need no refi nement. The classes and

actions are given in Figure 11.3 .

Player PokerGame Bet Deck

Deposit or accept coins. Get the initial hand. Get the bet. Shuffl e the deck.

Make a bet (starts game). Discard and hold cards. Set the bet. Deal a card.

Decide which cards to

hold/discard.

Update the bankroll.

Display a hand.

Cash out.

Display a menu.

Card Hand Bankroll

Get the suit. Score a hand. Get the bankroll.

Get the rank. Deal a new hand. Set the bankroll.

Get the name of a card. Update a hand. Change the bankroll.

Give the hand.

FIGURE 11.3 Classes and actions for video poker

 11.6.1 Determine the Interactions Among the Classes

Objects interact with other objects by sending messages to each other. A message sent

by object A to object B is a request for B to provide some service or information to A.

sim23356_ch11.indd 471sim23356_ch11.indd 471 12/15/08 6:50:18 PM12/15/08 6:50:18 PM

472 Part 2 Principles of Object-Oriented Programming

 We have mentioned that a PokerGame object sends messages to other objects. PokerGame

coordinates. Here we list some possible messages that one object might send to another

during a video poker session. These messages tell us how the objects interact.

 • PokerGame

 • sends a message to Hand requesting a new hand of fi ve cards,

 • sends a message to Player requesting that Player display the hand to the user,

 • sends a message to Player requesting the list of discarded cards,

 • sends a message to Hand requesting an updated hand,

 • sends a message to Player requesting that the new hand be displayed,

 • sends a message to Hand requesting a score for the hand,

 • sends a message to Player requesting that Player display the results, and

 • sends a message to Bankroll updating the current number of coins.

 • A Player

 • instantiates an initial Bankroll object,

 • sends a message to the Bankroll object when coins are added,

 • instantiates and initializes a Bet ,
 • instantiates a PokerGame ,

 • sends a message to the PokerGame requesting the initial hand,

 • sends a message to PokerGame indicating which cards to discard and which

to hold, and

 • sends a message to Bankroll requesting the fi nal coin count.

• Hand asks Deck to deal a new hand.

• Deck requests fi ve Card objects.

 Figure 11.4 shows how the objects of the application interact. A line between two

classes indicates communication between those classes. As we build the application, you

may discover that there are other dependencies not refl ected in this initial diagram.

Poker
Game

Hand

BankrollBet

Deck

Card

Player

FIGURE 11.4 Interacting objects

 Notice that this diagram is very simple. There is, for example, no indication as

to which object sends a message to which, that is, the lines have no arrows. Indeed,

there are more sophisticated diagrams of this sort that illustrate more features and

sim23356_ch11.indd 472sim23356_ch11.indd 472 12/15/08 6:50:18 PM12/15/08 6:50:18 PM

 Chapter 11 Designing with Classes and Objects 473

details of the abstract object model. Such diagrams are part of UML—unifi ed modeling

language.

UML is a general-purpose graphical language used to represent the object structure

of an object-oriented program.

 UML is a more advanced topic not covered in this text. You will encounter UML again

when you study software engineering.

 11.7 SOME ATTRIBUTES

 Every class consists of both attributes and behaviors. We have (at least tentatively) chosen

the behaviors for our classes, but what about the attributes? For example, Bet must store the

number of coins inserted into the machine. So, a Bet object should have an instance variable

 int bet;

 Bet is uncomplicated and no additional data are necessary. However, Hand cannot function

without Deck , so Hand must include a Deck object to get its job done. Similarly a standard

deck of cards consists of 52 cards; consequently, Deck requires an array of 52 Card refer-

ences. And, every Card object should include two integer fi elds, rank and suit .
 PokerGame is a bit more involved. Figure 11.4 shows that PokerGame collaborates

with Player , Bankroll , and Hand. Furthermore, to update the bankroll, PokerGame also

needs to know the amount of the current bet. (Did we miss this detail in our design?) Thus,

the PokerGame class includes the following instance variables:

 Player player
Bet bet
Bankroll bankroll
Hand hand

 Figure 11.4 shows that Player collaborates with Bankroll , Bet , and PokerGame . Accord-

ingly, the Player class includes the following instance variables:

 Bankroll bankroll
Bet bet
PokerGame pg

 11.8 VIDEO POKER AFTER SOME REFINEMENT

 Figure 11.5 displays a summary of the classes, attributes, and behaviors providing one

 possible design for a video poker application. This plan is not necessarily in fi nal form.

The design process is iterative. Even as you implement the application, changes

inevitably occur.

 Furthermore, the lower-level details of the methods still need to be fl eshed out. For

example, no algorithm for scoring a hand has been discussed. Determining whether or

not the hand is a winner presents yet another hurdle, but one at a lower level. What we

sim23356_ch11.indd 473sim23356_ch11.indd 473 12/15/08 6:50:19 PM12/15/08 6:50:19 PM

474 Part 2 Principles of Object-Oriented Programming

do have, however, is a fi rst sketch of the application, a model that is fl uid and not cast

in cement.

Class Player PokerGame Bet Deck

Attributes Bankroll bankroll
PokerGame pg
Bet bet

Player player
Bet bet
Bankroll bankroll
Hand hand

int bet Card deck[]

Actions Initialize the

bankroll.

Add coins.

Bet and play.

Discard.

Display a hand.

Quit.

Display fi nal results.

Present a menu.

View initial hand.

Discard or hold cards.

Update bankroll.

Get the bet.

Set the bet.

Shuffl e the deck.

Deal a card.

Class Card Hand Bankroll

Attributes int suit
int value

Card [] hand
Deck deck

int bankroll

Actions Get the suit.

Get the value, i.e., rank.

Get the name of a card.

Evaluate the hand.

Deal a new hand.

Update a hand.

Give the hand.

Get the bankroll.

Set the bankroll.

Change the bankroll.

FIGURE 11.5 Attributes and behaviors for video poker

 As you study the following implementation, look for details that did not appear in this

fi rst model. For example, the method that evaluates a hand (in Hand) uses a fair number of

private helper functions that are not shown in the model of Figure 11.5 . The design process

usually involves many iterations with many changes.

 11.9 IMPLEMENTING THE VIDEO POKER APPLICATION

 With a list of classes as well as the collaborations among classes, we can begin writing the

code that implements the application. It is never a good idea to write an entire application,

push a button, hold your breath, cross your fi ngers, and hope for the best. Instead, we have

a tentative blueprint, and we implement and test each class one at a time.

Any large application should be built and tested incrementally.

 For simplicity throughout, we usually assume that user input is correct. Of course, this is

unrealistic, and, in the exercises, you are asked to implement methods that check input.

 The Bet , Card , and Bankroll classes are certainly the simplest in our design. Moreover,

these classes do not interact with other classes. So we choose to implement these classes fi rst.

 11.9.1 The Bet Class
 The Bet class consists of just one integer fi eld, a set of constructors and two methods: a

getter method and a setter method. Implementing Bet presents no problems.

sim23356_ch11.indd 474sim23356_ch11.indd 474 12/15/08 6:50:19 PM12/15/08 6:50:19 PM

 Chapter 11 Designing with Classes and Objects 475

 1. public class Bet
2. {
3. private int bet;
4. public Bet() // default constructor sets bet to 0
5. {
6. bet � 0;
7. }

8. public Bet(int n) // one-argument constructor, sets bet to n
9. {
10. bet � n;
11. }

12. public void setBet(int n) // setter
13. {
14. bet � n;
15. }

16. public int getBet() // getter
17. {
18. return bet;
19. }
20. }

It is good practice to test each class before moving on to the next.

 This class is not complex; so testing is very simple. To test and subsequently debug the

class, we include a main(…) method that tests the methods of Bet . Running and re-running

the following main(...) method with various data is one way you might test Bet .

 1. public static void main(String[] args)
2. {
3. Scanner input � new Scanner(System.in);
4. System.out.print("Enter an integer: ");
5. int n � input.nextInt();
6. Bet bet1 � new Bet(); // default constructor
7. System.out.println(" Getter " � bet1.getBet());
8. bet1.setBet(n); // test setter
9. System.out.println("After Setter " � bet1.getBet());
10. Bet bet2 � new Bet(n); // one argument constructor
11. System.out.println("Getter; " � bet2.getBet());
12. bet2.setBet(n � 10); // setter uses an expression
13. System.out.println("Getter; " � bet1.getBet());
14. }

 There are other scenarios that you might try when testing a class. However, when you

are confi dent that the class is correct, remove the main(...) method and move on to the next

class. Of course, you may have to revisit this class at a later stage.

 11.9.2 The Card Class
 The Card class is almost as simple as Bet . The attributes of a Card object are suit and value

(rank of a card). These are both integer fi elds. The methods are the standard getter and

sim23356_ch11.indd 475sim23356_ch11.indd 475 12/15/08 6:50:19 PM12/15/08 6:50:19 PM

476 Part 2 Principles of Object-Oriented Programming

setter methods that return and alter suit and value . Because a Card object should return

its name, a third method getName() returns the name of a card as a string such as “2 of

Spades” or “Queen of Hearts.”

 The two-argument constructor,

 public Card (int suit, int value)

is normally used to create a new card. However, we also include a default constructor that

creates a Card object initialized as the “Ace of Hearts.”

 1. public class Card
2. {

3. private int suit; // 1 � Hearts, 2 � Diamonds, 3 � Clubs, 4 � Spades
4. private int value; // 1 � Ace…11 � Jack, 12 � Queen, 13 � King

5. public Card() // Ace of Hearts, by default
6. {
7. suit � 1;
8. value � 1;
9. }

10. public Card(int s, int v)
11. {
12. suit � s;
13. value � v;
14. }

15. public int getSuit()
16. {
17. return suit;
18. }

19. public int getValue()
20. {
21. return value;
22. }

23. public void setSuit(int s)
24. {
25. suit � s;
26. }

27. public void setValue(int v)
28. {
29. value � v;
30. }

31. public String getName() // returns string, e.g., "Ace of Hearts"
32. {
33. String name � "";
34. if (value �� 1)
35. name � "Ace of ";

sim23356_ch11.indd 476sim23356_ch11.indd 476 12/15/08 6:50:20 PM12/15/08 6:50:20 PM

 Chapter 11 Designing with Classes and Objects 477

36. else if (value �� 11)
37. name � "Jack of ";
38. else if (value �� 12)
39. name � "Queen of ";
40. else if (value �� 13)
41. name � "King of ";
42. else // use the numerical value
43. name � value � " of ";

44. // Add on the suit

45. if (suit �� 1)
46. name �� "Hearts";
47. else if (suit �� 2)
48. name �� "Diamonds";
49. else if (suit �� 3)
50. name �� "Clubs";
51. else
52. name �� "Spades";
53. return name;
54. }
55. }

 Again, testing is in order. Testing the getter and setter methods is straightforward. To

test the getName() method, include a loop that tests each card :

 for (int s � 1; s �� 4; s��) // 4 suits
 for (int val � 1; val �� 13; val��) // 13 cards per suit
 {
 Card cd � new Card(s, val);
 System.out.println(s � "," � val � ": " � cd.getName());
 };

or, alternatively, a segment that prompts for a suit and rank and displays the name of the

corresponding card:

 System.out.print ("Suit: ");
int s � input.nextInt();
System.out.print("Value: ");
int val � input.nextInt();
Card cd � new Card(s, val);
System.out.println(s � "," � val � ": " � cd.getName());

 11.9.3 The Bankroll Class
 Like Bet and Card , the logic of Bankroll is direct and simple. The class is as follows:

 1. public class Bankroll
2. {
3. private int bankroll;

4. public Bankroll() // default constructor
5. {

sim23356_ch11.indd 477sim23356_ch11.indd 477 12/15/08 6:50:20 PM12/15/08 6:50:20 PM

478 Part 2 Principles of Object-Oriented Programming

6. bankroll � 0;
7. }
8. public Bankroll (int n) // one-argument constructor
9. {
10. bankroll � n;
11. }
12. public int getBankroll()
13. {
14. return bankroll;
15. }
16. public void setBankroll(int n)
17 . {
18. bankroll � n;
19. }

20. public void alterBankroll(int n) // n can be negative
21. {
22. bankroll �� n;
23. }
24. }

 Testing this class is straightforward and much like the other classes.

 11.9.4 The Deck Class
 The only instance variable of the Deck class is an array of 52 Card references. The methods

of the class are:

 • deal a card, and

• shuffl e the deck.

 A skeletal version of Deck is:

 public class Deck
{
 Card[] deck; // array of 52 Card references
 public Deck()
 {
 // instantiate and populate a deck
 }
 public void shuffle()
 {
 // rearrange deck
 }
 public Card deal()
 {
 // return the "next" card in deck
 }
}

 We begin with the constructor. Intuitively, the cards of a deck are numbered from 1 to

52, so let’s stick with conventional intuition and use an array of size 53, ignoring position 0.

sim23356_ch11.indd 478sim23356_ch11.indd 478 12/15/08 6:50:20 PM12/15/08 6:50:20 PM

 Chapter 11 Designing with Classes and Objects 479

In other words, we utilize deck[1] through deck[52] so that the array index matches the card

number. To initialize deck , use a loop:

 for (int rank � 1; i �� 13; i��) // for each rank Ace...King
{ // place cards in order in deck
 deck[rank] � new Card(1,rank); // first suit;
 deck[rank�13] � new Card(2,rank); // second suit;
 deck[rank�26] � new Card(3,rank); // third suit;
 deck[rank�39] � new Card(4,rank); // fourth suit
}

 Notice that the loop iterates over the 13 ranks and on each iteration instantiates the four

cards of the current rank. For example, on the tenth iteration the loop instantiates: 10 of

Hearts, 10 of Diamonds, 10 of Clubs, and 10 of Spades.

 The shuffl e() method may not be as obvious as the other methods. A newly instanti-

ated deck is an ordered deck. No doubt, dealing from an ordered deck would remove

the elements of surprise and luck from the game. So, we must rearrange deck in some

random way. There are a number of shuffl e algorithms, and the following simple method

works well:

 for card � 1 to 52
 generate a random integer, rand , in the range 1 through 52.
 swap deck[card] with deck[rand].

 Written in Java, the algorithm translates to:

 public void shuffle()
{
 Random randomNumber � new Random();
 for (int card � 1; card �� 52; card��)
 { // find a random place in the deck
 int rand � randomNumber.nextInt(52) � 1; // integer between 1 and 52, inclusive

 //swap deck[card] with deck[rand]
 Card temp � deck[card];
 deck[card] � deck[rand];
 deck[rand] � temp;
 }
}

 Finally, we implement deal(). Here, we run into a problem. When dealing one card,

 deal() should return the “top” card in the shuffl ed deck. However, deal() doesn’t know

which card is the top card. The fi rst card that is dealt should be deck[1] , the next card

should be deck[2] , then deck[3] , and so on. Obviously, a Deck object needs to keep

track of the number of the top card, that is, the index of the next card to be dealt. How-

ever, our design does not take this detail into account. There is no variable that keeps

track of the next card to be dealt. To remedy the situation, we include another instance

variable

 int next;

that holds the index of the next card. This attribute should be initialized to 1. (Remem-

ber, the cards are stored in deck[1] through deck[52] .) The variable next must also be

reset to 1 whenever the deck is shuffl ed. So both the constructor and shuffl e() must be

adjusted.

sim23356_ch11.indd 479sim23356_ch11.indd 479 12/15/08 6:50:20 PM12/15/08 6:50:20 PM

480 Part 2 Principles of Object-Oriented Programming

 The entire class follows:

 1. public class Deck
2. {
3. private Card deck[];
4. private int next ; // holds position of next card to be dealt
5. public Deck()
6. {
7. deck � new Card[53]; // does not use position 0, uses 1…52

8. for (int rank � 1; rank �� 13; rank��)
9. { // place cards in order in deck
10. deck[rank] � new Card(1,rank); // rank of first suit e.g., 3 of hearts
11. deck[rank�13] � new Card(2,rank); // rank of second suit e.g., 3 of diamonds
12. deck[rank�26] � new Card(3,rank); // rank of third suit e.g., 3 of clubs
13. deck[rank�39] � new Card(4,rank); // rank of fourth suit e.g., 3 of spades
14. }
15. next � 1; // first card dealt is deck[next]

16. }

17. public void shuffle()
18. {
19. Random randomNumber � new Random();
20. for (int card � 1; card �� 52; card��)
21. {
22. // find a random place in the deck
23. int rand � randomNumber.nextInt(52) � 1;
24. //swap deck[card] with deck[rand]
25. Card temp � deck[card];
26. deck[card] � deck[rand];
27. deck[rand] � temp;
28. }
29. next � 1; // top card of the deck

30. }

31. public Card deal()
32. {
33. if (next > 52) // if deck is depleted
34. shuffle();
35. Card c � deck[next];
36. next��;
37. return c;
38. }
39. }

 As with the other classes, this class should be tested extensively.

 Of the remaining classes (Hand , Player , and PokerGame), only Hand appears to be

independent of the other two classes. Thus, we implement Hand next.

 11.9.5 The Hand Class
 Because a poker hand consists of fi ve cards, we choose to model a poker hand with an array

of fi ve Card references. Each time that Hand requires a new Card , Hand sends a request to

 Deck . Therefore, the instance variables of Hand are

 Card[] hand; // holds 5 Card references
Deck deck;

sim23356_ch11.indd 480sim23356_ch11.indd 480 12/15/08 6:50:21 PM12/15/08 6:50:21 PM

 Chapter 11 Designing with Classes and Objects 481

 The default constructor is simple and does no more than instantiate the instance variables:

 public Hand()
{
 hand � new Card[5]; // 5 cards per hand
 deck � new Deck();
}

 The newHand() method creates and deals a fi ve-card hand. As agreed, the deck is fi rst

shuffl ed.

 public void newHand()
{
 deck.shuffle(); // a message to deck
 for (int i � 0; i � 5; i��)
 hand[i] � deck.deal(); // request one card from deck
}

 Hand should also have a getter method that returns some representation of a hand. Because

a hand must be displayed, the following method returns an array of strings, where each string

is the name of one card in the hand, for example: “Queen of Hearts”, or “6 of Clubs”.

 public String[] getHand()
 {
 String[] cardsInHand � new String[5];

 for (int i � 0; i � 5; i��)
 cardsInHand[i] � cards[i].getName();

 return cardsInHand;
 }

 Notice that Hand does more than store an array of Card references. Hand sends a message

(getName()) to Card . Figure 11.4 does not show this new detail.

 To test getHand(), we add temporary code that creates a hand interactively and dis-

plays the name of the hand:

 public String[] getHand()
{
 ///// TEMPORARY /////
 Scanner input � new Scanner(System.in);
 for (int i � 0; i � 5; i��)
 {
 System.out.println("Rank: ");
 int rank � input.nextInt();
 System.out.println("Suit: ");
 int suit � input.nextInt();
 cards[i] � new Card(suit,rank);
}
 ///// END TEMPORARY /////

String[] cardsInHand � new String[5];
 for (int i � 0; i � 5; i��)
 cardsInHand[i] � cards[i].getName();
 return cardsInHand;
}

sim23356_ch11.indd 481sim23356_ch11.indd 481 12/15/08 6:50:21 PM12/15/08 6:50:21 PM

482 Part 2 Principles of Object-Oriented Programming

 We include the following main() method in Hand :

 public static void main(String[] args)
{
 Hand hand � new Hand();
 String[] s � hand.getHand();
 for(int i � 0; i � 5; i��)
 System.out.println(s[i]);
}

 Compiling and running the class produces the following output:

 Rank: 1
Suit: 1

Rank: 2
Suit: 2

Rank: 11
Suit: 3

Rank: 13

Suit: 4

Rank: 6
Suit: 1

Ace of Hearts
2 of Diamonds
Jack of Clubs
King of Spades
6 of Hearts

 This is only one set of input, and of course, you must test your code with more than

one case. However, don’t attempt a loop that generates every possible hand—there are

2,598,960 possibilities! A few more sample cases are probably enough to convince you that

the code is correct. When you are certain that the class has been implemented correctly, you

can remove the temporary statements.

Thorough testing is important, but it is often not practical to test every conceivable case.

 The next method that we consider is updateHand(...) . To update or revise a poker hand,

a Hand object must know those cards that the player wishes to discard and replace. As our

original design dictates, PokerGame , in the role of game coordinator, queries Player for

the discards and communicates this information to Hand . We choose to send this data from

 PokerGame to Hand as a boolean array parameter

 boolean[] keep

such that if keep[i] �� false , the i th card of the hand must be replaced. See Figure 11.6 .

FIGURE 11.6 A player chooses to replace two cards and hold three. This information is
passed to UpdateHand() in the boolean array keep[]

Discard Hold Hold Hold Discard

false true true

boolean [] keep

true false

sim23356_ch11.indd 482sim23356_ch11.indd 482 12/15/08 6:50:21 PM12/15/08 6:50:21 PM

 Chapter 11 Designing with Classes and Objects 483

 The code for updateHand() follows:

 public void updateHand(boolean keep[])
{
 for(int i � 0; i � 5; i��)
 if (!keep[i])
 hand[i] � deck.deal();
}

 The code is simple, but how do we test this method without having implemented the

 Player and PokerGame classes? One way to accomplish this is to include a temporary

 main(...) method that includes a boolean array and to fi ll the array interactively. The follow-

ing method does just that.

 1. public static void main(String[] args)
2. {
3. Scanner input � new Scanner(System.in);
4. Hand hand � new Hand();
5. hand.newHand();

6. // for testing only
7. boolean[] holdCards � { false, false, false, false, false};

8. String[] h � hand.getHand();
9. for (int i � 0; i � 5; i��)
10. {
11. System.out.print(h[i]); // print a card
12. System.out.print(": Discard:0 or keep:1 -->");

13. int ans � input.nextInt();

14. if (ans � 1) // keep card

15. holdCards[i] 5 true;

16. }
17. hand.updateHand(discards);
18. h � hand.getHand();
19. System.out.println("*****New Hand ********"); // print new hand
20. for (int i � 0; i � 5; i��)
21. System.out.println(h[i]);
22. }

 Executing main(...) produces the following output. Notice that the decision whether to

keep or discard a particular card is entered as 0 or 1.

 Queen of Diamonds: Discard:0 or keep:1 --> 1
9 of Clubs: Discard:0 or keep:1 --> 0

10 of Hearts: Discard:0 or keep:1 --> 0
3 of Clubs: Discard:0 or keep:1 --> 1

3 of Hearts: Discard:0 or keep:1 --> 0

*****New Hand ********
Queen of Diamonds
4 of Diamonds
4 of Spades
3 of Clubs
9 of Diamonds

 Certainly, there are other ways to test the updateHand(...) method. For example, you

might write a skeletal PokerGame class that sends a message to the Hand class. However,

sim23356_ch11.indd 483sim23356_ch11.indd 483 12/15/08 6:50:22 PM12/15/08 6:50:22 PM

484 Part 2 Principles of Object-Oriented Programming

 regardless of how you test a method, you should test incrementally, that is, test each method

before moving to the next.

A bug restricted to 40 lines of code is easier to detect than a bug hiding somewhere

in 400 or 4000 lines.

 The fi nal method of the Hand class is evaluateHand() , which determines whether or not a

particular hand is a winner. This method takes a bit of thought and careful planning.

 When a player is dealt a hand of cards, he/she usually arranges or sorts the cards. See-

ing the cards arranged in order makes it easier to recognize a winning hand. We subscribe

to that line of reasoning, so we include a sort() method that orders a hand based on rank.

 One type of winning hand is a fl ush. A fl ush is a hand in which all fi ve cards have the

same suit. We number the suits 1 to 4 and arbitrarily assign 1 to hearts, 2 to diamonds, 3 to

clubs, and 4 to spades. Accordingly, we can keep track of the number of hearts, diamonds,

clubs, and spades with an array suits [] such that

 suits[1] holds the number of hearts,

 suits[2] holds the number of diamonds,

 suits[3] holds the number of clubs, and

 suits[4] holds the number of spades.

Since we have numbered the suits 1 to 4, we do not use suits[0] .
 If for any i , suits[i] has the value 5, the hand is a fl ush. Figure 11.7 illustrates the suits array.

FIGURE 11.7 (a) The suits[] array: 1 heart, 2 diamonds, 1 club, and 1 spade.
(b) A flush: suits[1] �� 5

(a)

X 1 2

suits

1 1

0 1 2 3 4

H D C S

(b)

X 5 0 0 0

suits

0 1 2 3 4

H D C S

 Several winning hands are comprised of two, three, or four cards of the same value or rank.

Consequently, we use an integer array values [] such that values [i] holds the number of

cards dealt with rank i . For example,

 values[1] holds the number of Aces,

 values[2] holds the number of 2’s,

 values[3] holds the number of 3’s,

 …

 values[11] holds the number of Jacks,

 values[12] holds the number of Queens, and

 values[13] holds the number of Kings.

We do not use values[0] since no card has value 0. See Figure 11.8 .

sim23356_ch11.indd 484sim23356_ch11.indd 484 12/15/08 6:50:22 PM12/15/08 6:50:22 PM

 Chapter 11 Designing with Classes and Objects 485

X 0 1

A J Q K

0 0

0 1 2 3

0

4

0

5

0

6

2

7

0

8

0

9

1

10

0

11

1

12 13

FIGURE 11.8 The array values[] shows 1 two, 2 sevens, 1 ten, and 1 queen

 Using values[] , it is easy to discern whether or not a hand holds two pair, four of a kind, or

a full house. For example, if values[2] � 3 and values[7] � 2, then the hand is a full house

consisting of 3 twos and 2 sevens.

 In summary, to implement evaluateHand() we need:

• A helper function

 void sort()

 that sorts a hand based on the ranks of the cards, and

• two instance variables

 int[] suits and int[] values

 that store information about a hand.

 The following revised implementation of Hand includes these arrays and also a sort()
method. Of course, the methods of Hand must also be adjusted to update values[] and

 suits[]. Additions to Hand appear in boldface.

 1. class Hand
2. {
3. private Card[] cards;
4. private Deck deck;
 5. private int suits[]; // holds the number of each suit in a hand

 6. private int values[]; // holds the number of each type card (A,2,3,4,...,K)

7. public Hand()
8. {
9. cards � new Card[5];
 10. suits � new int[5]; // uses indices 1..4

 11. values � new int[14]; // uses indices 1..13

12. deck � new Deck();
13. }

14. public void newHand()
15. {
16. deck.shuffle();
17. for (int i � 0; i � 5; i��)
18. {
19. cards[i] � deck.deal();
 20. suits[cards[i].getSuit()]�� ;

sim23356_ch11.indd 485sim23356_ch11.indd 485 12/15/08 6:50:23 PM12/15/08 6:50:23 PM

486 Part 2 Principles of Object-Oriented Programming

 21. values[cards[i].getValue()]��;

22. }
23. sort();
24. }

25. public void updateHand(boolean[] x)
26. {
27. for (int i � 0; i � 5; i��)
28. if (!x[i])
29. {
30. // remove card data for card i
 31. suits[cards[i].getSuit()]��;

 32. values[cards[i].getValue()]��;

33. // get a new card
34. cards[i] � deck.deal();

35. // update data for card i
 36. suits[cards[i].getSuit()]�� ;

 37. values[cards[i].getValue()]��;

38. }
 39. sort();

40. }

41. public String[] getHand()
42. {
43. String[] cardsInHand � new String[5];
44. for (int i � 0; i � 5; i��)
45. cardsInHand[i] � cards[i].getName();
46. return cardsInHand;
47. }

 48. private void sort() // orders cards by value field; a helper function

 49. {

 50. int max; // holds the position of the highest valued card

 51. for (int place � 4; place � 0; place��)

 52. {

 53. max � 0;

 54. // find the position of the highest valued card between 0 and place

 55. // the position of the high card is stored in max

 56. for (int i � 1; i �� place; i��)

 57. if (cards[i].getValue() � cards[max].getValue())

 58. max � i;

 59. // swap the highest valued card with the card in position place

 60. Card temp � cards[place];

 61. cards[place] � cards[max];

 62. cards[max] � temp;

 63. }

 64. }

65. }

sim23356_ch11.indd 486sim23356_ch11.indd 486 12/15/08 6:50:23 PM12/15/08 6:50:23 PM

 Chapter 11 Designing with Classes and Objects 487

 The additions to the previous Hand class are:

 • Lines 5 and 6 contain declarations for the instance variable suits[] and values[].

• Lines 10 and 11 (in the constructor) instantiate suits[] and values[].

• Lines 20 and 21 update the arrays for each card dealt to a new hand.

• Lines 31 and 32 update the arrays when a card is discarded.

• Lines 36 and 37 update the arrays when a discarded card is replaced.

• Lines 48 through 64 implement a standard sort method called selection sort. The

method arranges the array hand [] according to rank (retrieved by the getValue() method

on line 57). The sort() method is a helper method that has private access. Thus, sort() is

not visible outside the Hand class; only the methods of Hand can invoke sort() .

 With these alterations in place, we are now ready to tackle evaluateHand() , which is the

most complex method of the application.

 Rather than create one gigantic method that checks each winning hand, we implement

nine smaller boolean methods:

 • boolean royalFlush() ; // returns true if a hand is a royal fl ush

• boolean straightFlush() ; // returns true if a hand is a straight fl ush

• boolean fourOfAKind() ; // returns true if a hand is four of a kind

• etc.

 Each method checks for one particular type of hand, so evaluateHand() has the following

structure:

 TypeOfHand evaluateHand()
{
 if (royalFlush()) // if the hand is a royal flush
 return Royal Flush;
 else if (straightFlush()) // else if the hand is a straight flush
 return Straight Flush;
 else if (fourOfAKind()) // else if the hand is four of a kind
 return Four of A Kind;
 else if (fullHouse()) // else if the hand is a full house
 return Full House;
 else if (flush()) // else if the hand is a flush
 return Flush;
 else if (straight()) // else if the hand is a straight
 return Straight;
 else if (threeOfAKind()) // else if the hand is three of a kind
 return Three of a Kind
 else if (twoPair()) // else if the hand is two pair
 return Two Pair;
 else if (pair()) // else if the hand is a pair of Jacks or better
 return Pair of Jacks or Better;
 return Losing Hand; // otherwise, a losing hand
}

 The return type of the previous algorithm is TypeOfHand , which is not a defi ned type . An

implementation might defi ne TypeOfHand to be a String such as “fl ush” or “straight,” or an

integer in the range 0 through 9, where 9 indicates a royal fl ush and 0 indicates a losing hand.

Although these are viable alternatives, we choose to return the payout associated with each

sim23356_ch11.indd 487sim23356_ch11.indd 487 12/15/08 6:50:24 PM12/15/08 6:50:24 PM

488 Part 2 Principles of Object-Oriented Programming

hand. For example, if a hand is a royal fl ush, evaluateHand() returns 250, since a royal fl ush

pays 250 to 1; if a hand is a straight fl ush, evaluateHand() returns 50, and so on. A losing hand

returns �1. We choose this option because the payout uniquely identifi es the hand and can also

be used to calculate a player’s winnings. Consequently, evaluateHand() is implemented as:

 1. public int evaluateHand() // returns the payout for each hand
2. {
3. if (royalFlush()) // royal flush pays 250 to1
4. return 250;
5. else if (straightFlush()) // straight flush pays 50 to1
6. return 50;
7. else if (fourOfAKind()) // four of a kind plays 25 to 1
8. return 25;
9. else if (fullHouse()) // full house pays 9 to 1
10. return 9;
11. else if (flush()) // flush pays 6 to 1
12. return 6;
13. else if (straight()) // straight pays 4 to 1
14. return 4;
15. else if (threeOfAKind()) // three of a kind pays 3 to 1
16. return 3;
17. else if (twoPair()) // two pair pays 2 to 1
18. return 2;
19. else if (pair()) // pair of Jacks or better pays 1 to 1
20. return 1;
21. return �1; // losing hand
22. }

 Because winning hands are evaluated highest to lowest, the else-if construction ensures that

 evaluateHand() returns the highest possible payout. For example, if a hand holds four of

a kind, the method returns 25 and does not check for three of a kind or a pair. The method

returns the payout of the best hand that a player holds and no lesser hand.

 As we have done with the other methods of this class, we implement and test one

method before attempting the next. We begin with royalFlush() . So that the else-if statement

might be complete and functional, we provide dummy methods for fl ush() , straightFlush() ,
and so on. Each of these methods checks nothing and returns false .
 These dummy methods are called stubs . Stubs are used for testing a method that is

dependent on other methods that have not yet been fully implemented or tested. A stub is a

temporary stand-in for the unimplemented or untested methods.

A stub is a skeletal method that will eventually be replaced by a fully implemented,

functional method. Stubs are used for incremental testing.

 The following segment implements royalFlush().

 1. private boolean royalFlush()
2. {
3. // 10,J,Q,K,A of the same suit
4. boolean sameSuit � false; // true if all same suit
5. boolean isRoyalty � false; // true if cards are 10,J,K,Q,A

6. for(int i � 1; i �� 4; i��)
7. if (suits[i] �� 5) // all five cards of one suit?
8. sameSuit � true;

sim23356_ch11.indd 488sim23356_ch11.indd 488 12/15/08 6:50:24 PM12/15/08 6:50:24 PM

 Chapter 11 Designing with Classes and Objects 489

9. isRoyalty � (values[1] �� 1 && // one Ace &&
10. values[10] ��1 && // one Ten &&
11. values[11] ��1 && // one Jack &&
12. values[12] �� 1 && // one Queen &&
13. values[13] �� 1); // one King
14. return (sameSuit && isRoyalty); // true, if both conditions are true
15. }

//
// the stubs—not yet implemented and all return false
//
 private boolean straightFlush()
 { return false; }

 private boolean fourOfAKind()
 { return false; }

 private boolean fullHouse()
 { return false; }

 private boolean flush()
 { return false; }

 private boolean straight()
 { return false; }

 private boolean threeOfAKind()
 { return false; }

 private boolean twoPair()
 { return false; }

 private boolean pair()
 { return false; }

 The logic of royalFlush() is direct. The method returns true if there are fi ve cards of a single suit,

that is, if suits[i] � 5 for some i , and the cards happen to be A, 10, J, Q, and K. See Figure 11.9 .

FIGURE 11.9 A royal flush

X 1 0

A values J Q K

0 1

0 1 2 3

0

4

0

5

0

6

0

7

0

8

0

9

1

10

1

11

1

12 13

X 0 0

suits

0 5

0 1 2 3 4

 Before continuing with the next method, straightFlush() , we test royalFlush() .

sim23356_ch11.indd 489sim23356_ch11.indd 489 12/15/08 6:50:24 PM12/15/08 6:50:24 PM

490 Part 2 Principles of Object-Oriented Programming

 Of the 2,598,960 possible poker hands, just four qualify as a royal fl ush. So testing

 royalFlush() with randomly dealt hands may be somewhat tedious, if not time consuming.

Rather than rely on chance to deal a royal fl ush, we create a “test hand” interactively. We

implement a method

 void makeHand()

that creates a poker hand interactively rather than by dealing a random hand. However,

 makeHand() does more than just build a hand; makeHand() adjusts the arrays suits[]
and values[] and also invokes sort() so that the type of hand can be determined. In fact,

 makeHand() operates like newHand() but without the element of randomness. The cards

are supplied interactively.

 1. public void makeHand()
2. {
3. Scanner input � new Scanner(System.in);
4. for (int i � 0; i � 5; i��)
5. {
6. // get the hand interactively and not randomly
7. System.out.println("Rank: ");
8. int rank � input.nextInt();
9. System.out.println("Suit: ");
10. int suit � input.nextInt();
11. cards[i] � new Card(suit,rank);
12. suits[cards[i].getSuit()]�� ;
13. values[cards[i].getValue()]��;
14. }
15. sort();
16. }

 The following main method tests royalFlush() .

 1. public static void main(String[] args)
2. {
3. Hand hand � new Hand();
 4. hand.makeHand(); // make a hand with the five cards
5. // print the code number for the hand
6. System.out.println("Payout for this hand is " � hand.evaluateHand());

7. }

 Running some test data provides the following output. The test hand is 10H, JH, QH, KH,

and AH.

 Rank: 10

Suit: 1

Rank: 12

Suit: 1

Rank: 1

Suit: 1

Rank: 11
Suit: 1
Rank: 13
Suit: 1

Payout for this hand is 250

sim23356_ch11.indd 490sim23356_ch11.indd 490 12/15/08 6:50:25 PM12/15/08 6:50:25 PM

 Chapter 11 Designing with Classes and Objects 491

 A second test with the hand AH, 3D, 5S, JD, and QC produces the following output:

 Rank: 1
Suit: 1

Rank: 3
Suit: 2

Rank: 5
Suit: 4

Rank: 11
Suit: 2

Rank: 12
Suit: 3

Payout for this hand is �1

 When you are convinced that royalFlush() works correctly, continue on to straightFlush()
and subsequently to each of the other helper methods. When you are satisfi ed with all nine

methods, remove main(...) and makeHand() .
 The code for the other helper methods follows:

 1. private boolean straightFlush()
2. {
3. boolean sameSuit � false;
4. boolean ranksInOrder � false;
5. for (int i � 1; i �� 4; i��) // same suit
6. if (suits[i] �� 5)
7. sameSuit � true;
8. // cards in sequence? Ace is assumed to be low here since a Royal Flush was checked first
9. ranksInOrder �
10. cards[1].getValue() �� (cards[0].getValue() � 1) &&
11. cards[2].getValue() �� (cards[0].getValue() � 2) &&
12. cards[3].getValue() �� (cards[0].getValue() � 3) &&
13. cards[4].getValue() �� (cards[0].getValue() � 4);
14. return (sameSuit && ranksInOrder);
15. }

1. private boolean flush()
2. {
3. for(int i � 1; i �� 4; i��)
4. if (suits[i] �� 5) // all the same suit?
5. return true;
6. return false;
7. }

1. private boolean fourOfAKind()
2. {
3. for (int i � 1 ; i �� 13; i��)
4. if (values[i] �� 4)
5. return true;
6. return false;
7. }

1. private boolean fullHouse()
2. {
3. boolean three � false;
4. boolean two � false;
5. for (int i � 1 ; i �� 13; i��)
6. if (values[i] �� 3) // three of one kind
7. three � true;
8. else if (values[i] �� 2) // two of another kind

sim23356_ch11.indd 491sim23356_ch11.indd 491 12/15/08 6:50:25 PM12/15/08 6:50:25 PM

492 Part 2 Principles of Object-Oriented Programming

9. two � true;
10. return two && three; // both conditions
11. }

1. private boolean straight()
2. {
3. // cards in sequence?
4. return
5. // Ace precedes 2
6. (cards[1].getValue() �� (cards[0].getValue() � 1) &&
7. cards[2].getValue() �� (cards[0].getValue() � 2) &&
8. cards[3].getValue() �� (cards[0].getValue() � 3) &&
9. cards[4].getValue() �� (cards[0].getValue() � 4)) ||
10. // Ace follows King
11. (values[1] �� 1 && // Ace
12. values[10] �� 1 && // Ten
13. values[11] �� 1 && // Jack
14. values[12] �� 1 && // Queen
15. values[13] �� 1); // King
16. }

1. private boolean threeOfAKind()
2. {
3. for (int i � 1 ; i �� 13; i��)
4. if (values[i] �� 3)
5. return true;
6. return false;
7. }

1. private boolean twoPair()
2. {
3. int count � 0;
4. for (int i � 1; i �� 13; i��)
5. if (values[i] �� 2) // count the number of pairs
6. count��;
7. return (count �� 2);
8. }

1. private boolean pair() // Jacks or higher
2. {
3. if (values[1] �� 2) // pair of aces
4. return true;
5. for (int i � 11; i �� 13; i��) // pair of Jacks or higher
6. if (values[i] �� 2)
7. return true;
8. return false;
9. }

 Figure 11.10 shows the contents of values[] and suits[] for a few winning hands.

 Two classes remain: Player and PokerGame . A Player object sends messages to a

 PokerGame object and reciprocally a PokerGame object sends messages to a Player object.

Thus, a PokerGame reference is an attribute of Player , and a Player reference is an attribute

of PokerGame . Must we implement both classes to test either class? We could certainly

proceed along that path, but instead we choose to concentrate fi rst on PokerGame . To test

the PokerGame class, we implement just enough of Player to run test scenarios. And, once

again, we use stubs.

Stubs are useful when testing one class that is dependent on another class that has not

yet been fully implemented or tested.

sim23356_ch11.indd 492sim23356_ch11.indd 492 12/15/08 6:50:25 PM12/15/08 6:50:25 PM

 Chapter 11 Designing with Classes and Objects 493

 11.9.6 The PokerGame Class
 As shown in Figure 11.5 , the attributes of PokerGame are references to Bankroll, Bet, Hand,
and Player . Because PokerGame passes the list of discarded cards to Hand , PokerGame also

maintains a boolean array indicating those cards that are to be discarded and those retained.

Following is a fi rst iteration of PokerGame that includes declarations and a constructor.

X 0 0

values

0 0

0 1 2 3

3

4

0

5

2

6

0

7

0

8

0

9

0

10

0

11

0

12 13

X 1 2

suits

A Full House

1 1

0 1 2 3 4

X 1 1

values

1 0

0 1 2 3

1

4

1

5

0

6

0

7

0

8

0

9

0

10

0

11

0

12 13

X 0 0

suits

A Straight Flush

0 5

0 1 2 3 4

X 1 0

values

0 0

0 1 2 3

0

4

0

5

0

6

0

7

3

8

1

9

0

10

0

11

0

12 13

X 2 1

suits

Three of a Kind

2 0

0 1 2 3 4

FIGURE 11.10 Three winning hands along with the corresponding values[] and suits[] arrays

sim23356_ch11.indd 493sim23356_ch11.indd 493 12/15/08 6:50:26 PM12/15/08 6:50:26 PM

494 Part 2 Principles of Object-Oriented Programming

 1. public class PokerGame
2. {
3. private Bankroll bankroll;
4. private Bet bet;
5. private Hand hand;
6. private Player player;
7. private boolean[] holdCards;

8. public PokerGame(Bet coinsBet, Bankroll br, Player pl)
9. {
10. bankroll � br;
11. bet � coinsBet;
12. player � pl;
13. hand � new Hand();
14. holdCards � new boolean[5];
15. }

16. public int updateBankroll(int payout)
17. {
18. // alters the bankroll and returns the total winnings
19. }

20. public void viewInitialHand()
21. {
22. // deals the first hand
23. }

24. public void discardOrHoldCards()
25. {
26. // gets discards and a new hand
27. }

 The updateBankroll(...) method is short and simple, so we implement it fi rst. The

method adds or subtracts some number of coins to or from the player’s current bankroll.

That number depends on the game’s payout, which must be passed to updateBankroll(...) .
For example, if a player bets three coins and wins with a full house, the payout is 25 to 1,

so the bankroll increases by 75 coins. If a player bets four coins and loses, the payout is −1

and the bankroll is decreased by four. The code follows:

 1. int updateBankroll(int payout)
2. {
3. int winnings � payout * (bet.getBet()); // negative for a loss
4. bankroll.alterBankroll(winnings);
5. return winnings;
6. }

 Next, we implement viewInitialHand() and discardOrHoldCards(). As already noted,

these methods are comprised of messages sent to other objects.

 1. public void viewInitialHand()
2. {
3. hand.newHand(); // send a message to hand, instantiate a hand
4. player.displayHand(hand.getHand()); // tell player to display the new hand
5. }

sim23356_ch11.indd 494sim23356_ch11.indd 494 12/15/08 6:50:26 PM12/15/08 6:50:26 PM

 Chapter 11 Designing with Classes and Objects 495

 Because a PokerGame object sends messages to a Player object, before we can test (or

even compile) the methods of PokerGame, we write a skeletal implementation of Player .

 1. public class Player
2. {
3. private Hand hand;
4. public void displayHand(String[] handString) // print one hand
5. {
6. // the five card hand is passed as a String[5] array
7. for (int i � 0; i � 5; i��)
8. System.out.println((I � 1) � ". " � handString[i]);
9. System.out.println();
10. }

11. public void getDiscard(boolean[] x) // ask for discards
12. {
13. String ans;
14. Scanner input � new Scanner(System.in);
15. System.out.println("Hold or discard? ");
16. for (int i � 0; i � 5; i��)
17. {
18. System.out.print("Hold (h) or Discard (d) card number " � (I � 1) � ":");
19. ans � input.next();
20. if (ans.equals("h"))
21. x[i] � true; // hold
22. else if (ans.equals("h"))
23. x[i] � false; // discard
24. }
25. }

26. public void displayResults(int payout, int winnings) // print payoff and total winnings
27. { // a dummy method for testing
28. System.out.println("Payout: " � payout � " Winnings: " � winnings);
29. }
30. }

 We leave the testing of the PokerGame class methods as an exercise. As with the other

classes, you will need to include a temporary main(...) method.

 11.9.7 The Player Class
 With all the other classes fully implemented and tested, we now implement the Player
class. The Player class is our user interface, our view. All input and output is done via

 Player . The attributes and methods of the Player class are specifi ed in Figure 11.5 . Each

method consists of just a few statements, and you should have no trouble following the

logic. The implementation follows:

6. public void discardOrHoldCards()
7. {
8. player.getDiscard(holdCards); // ask player for the discard list
9. hand.updateHand(holdCards); // passes discards to hand and hand updates itself
10. player.displayHand(hand.getHand()); // tell player to show the (revised) hand
11. int payout � hand.evaluateHand(); // tell hand to evaluate itself and return the payout
12. int winnings � updateBankroll(payout); // update the bankroll, a PokerGame method
13. player.displayResults(payout, winnings); // tell player to display outcome of the game
14. }

sim23356_ch11.indd 495sim23356_ch11.indd 495 12/15/08 6:50:26 PM12/15/08 6:50:26 PM

496 Part 2 Principles of Object-Oriented Programming

 1. public class Player
2. {
3. private Scanner input;
4. Bankroll bankroll;
5. PokerGame pokerGame;
6. Bet bet;
7. Hand hand;

8. Player()
9. {
10. input � new Scanner(System.in);
11. bankroll � new Bankroll();
12. bet � new Bet();
13. }

14. void getInitialBankroll() // queries the user for the initial bankroll
15. {
16. int numCoins;
17. do
18. {
19. System.out.print("How many coins do you wish to insert into the machine: ");
20. numCoins � input.nextInt();
21. }while (numCoins �� 0);

22. System.out.println();
23. bankroll,setBankroll(numCoins);
24. }

25. void addCoins() // adds more coins to the machine
26. {
27. int numCoins;
28. do
29. {
30. System.out.print("How many coins do you wish to insert into the machine: ");
31. numCoins � input.nextInt();
32. } while (numCoins �� 0);

33. bankroll.alterBankroll(numCoins);
34. System.out.println("Currently you have " � bankroll.getBankroll() � " coins");
35. System.out.println();
36. }

37. public void betAndPlay() // get the bet and play the game
38. {
39. int coins;
40. do
41. {
42. System.out.print("Enter a bet: 1 to 5 coins: ");
43. coins � input.nextInt();
44. } while (coins ��0 || coins � 5 || coins � bankroll.getBankroll());

45. bet.setBet(coins);
46. pokerGame � new PokerGame(bet, bankroll, this);
47. pokerGame.viewInitialHand();
48. pokerGame.discardOrHoldCards();

sim23356_ch11.indd 496sim23356_ch11.indd 496 12/15/08 6:50:27 PM12/15/08 6:50:27 PM

 Chapter 11 Designing with Classes and Objects 497

49. }
50. public void displayHand(String[] handString)
51. {
52. // five card hand is passed as a String[5] array
53. System.out.println("********** Your Hand`1 **********");
54. for(int i � 0; i � 5; i��)
55. System.out.println((I � 1) � ". " � handString[i]);
56. System.out.println("*******************************");
57. System.out.println();
58. }

59. public void getDiscard(boolean[] x)
60. {
61. String ans;
62. System.out.println("Hold or discard? ");
63. for (int i � 0; i � 5; i��)
64. {
65. do
66. {
67. System.out.print("Hold (h) or Discard (d) card number " � (I � 1) � ": ");
68. ans � input.next();
69. if (ans.equals("h"))
70. x[i] � true; // hold
71. else if (ans.equals("h"))
72. x[i] � false; // discard
73. } while (!(ans.equals("h") || ans.equals("d")));
74. }
75. System.out.println();
76. }

77. public void displayResults(int payout, int winnings)
78. {
79. String nameOfHand � "Lose";
80. if (payout �� 250)
81. nameOfHand � "Royal Flush";
82. else if (payout �� 50)
83. nameOfHand � "Straight Flush";
84. else if (payout �� 25)
85. nameOfHand � "Four of a Kind";
86. else if (payout �� 9)
87. nameOfHand � "Full House";
88. else if (payout �� 6)
89. nameOfHand � " Flush";
90. else if (payout �� 4)
91. nameOfHand � "Straight ";
92. else if (payout �� 3)
93. nameOfHand � "Three of a Kind";
94. else if (payout �� 2)
95. nameOfHand � "Two Pair";
96. else if (payout �� 1)
97. nameOfHand � " Pair of Jacks or Better";
98. if (winnings � 0)
99. {
100. System.out.println("Winner: " � nameOfHand);
101. System.out.println("Payout is " � winnings � " coins.");
102. }

sim23356_ch11.indd 497sim23356_ch11.indd 497 12/15/08 6:50:27 PM12/15/08 6:50:27 PM

498 Part 2 Principles of Object-Oriented Programming

103. else
104. System.out.println("You lost your bet of " � bet.getBet());
105. System.out.println("Current Bankroll is " � bankroll.getBankroll());
106. System.out.println();
107. }

108. public void quit()
109. {
110. int br � bankroll.getBankroll();
111. System.out.println("\n******Game Over****** \n");
112. if (br � 0)
113. System.out.println("Returned: " � br � " coin(s)");
114. else
115. System.out.println("No coins remain");
116. System.out.println("\n*********************");
117. }

118. public void menu()
119. {
120. String choice;
121. do
122. {
123. System.out.println("Choose");
124. System.out.println("1: Make a bet and play poker");
125. System.out.println("2: Add coins to the machine ");
126. System.out.println("3: Cash out and quit");
127. System.out.print("Your choice: ");
128. choice � input.next();
129. if (choice.equals("1"))
130. betAndPlay();
131. else if (choice.equals("2"))
132. addCoins();
133. }while ((!(choice.equals("3")) && bankroll.getBankroll() � 0));
134. }

135. public static void main(String[] args)
136. {
137. Player player � new Player();
138. player.getInitialBankroll();
139. player.menu();
140. player.quit();
141. }
142. }

 Because the application has been broken up, dissected, and discussed over many para-

graphs and pages, the complete implementation of the video poker application appears in

Section 11.11.

 11.9.8 Output: Playing Poker
 Following is typical output displayed by the application.

 How many coins do you wish to insert into the machine: 10

 Choose
1: Make a bet and play poker
2: Add coins to the machine

sim23356_ch11.indd 498sim23356_ch11.indd 498 12/15/08 6:50:27 PM12/15/08 6:50:27 PM

 Chapter 11 Designing with Classes and Objects 499

3: Cash out and quit
Your choice: 1
Enter a bet: 1 to 5 coins: 2
********** Your Hand **********
1. Ace of Clubs
2. 4 of Diamonds
3. 8 of Clubs
4. Jack of Diamonds
5. Jack of Spades

Hold or discard?
Hold (h) or Discard (d) card number 1: h
Hold (h) or Discard (d) card number 2: d
Hold (h) or Discard (d) card number 3: d
Hold (h) or Discard (d) card number 4: h
Hold (h) or Discard (d) card number 5: h

********** Your Hand **********
1. Ace of Spades
2. Ace of Clubs
3. 3 of Clubs
4. Jack of Spades
5. Jack of Diamonds

Winner: Two Pair
Payout is 4 coins.
Current Bankroll is 14

Choose
1: Make a bet and play poker
2: Add coins to the machine
3: Cash out and quit
Your choice: 1
Enter a bet: 1 to 5 coins: 5
********** Your Hand **********
1. 4 of Diamonds
2. 5 of Hearts
3. 6 of Clubs
4. 9 of Hearts
5. Jack of Hearts

Hold or discard?
Hold (h) or Discard (d) card number 1: h
Hold (h) or Discard (d) card number 2: h
Hold (h) or Discard (d) card number 3: h
Hold (h) or Discard (d) card number 4: d
Hold (h) or Discard (d) card number 5: d

sim23356_ch11.indd 499sim23356_ch11.indd 499 12/15/08 6:50:28 PM12/15/08 6:50:28 PM

500 Part 2 Principles of Object-Oriented Programming

********** Your Hand **********
1. 2 of Hearts
2. 3 of Hearts
3. 4 of Diamonds
4. 5 of Hearts
5. 6 of Clubs

Winner: Straight
Payout is 20 coins.
Current Bankroll is 34

Choose
1: Make a bet and play poker
2: Add coins to the machine
3: Cash out and quit
Your choice: 2
How many coins do you wish to insert into the machine: 5
Currently you have 39 coins

Choose
1: Make a bet and play poker
2: Add coins to the machine
3: Cash out and quit
Your choice: 1
Enter a bet: 1 to 5 coins: 5
********** Your Hand **********
1. 2 of Spades
2. 8 of Clubs
3. 9 of Spades
4. Jack of Diamonds
5. Queen of Spades

Hold or discard?
Hold (h) or Discard (d) card number 1: d
Hold (h) or Discard (d) card number 2: d
Hold (h) or Discard (d) card number 3: d
Hold (h) or Discard (d) card number 4: h
Hold (h) or Discard (d) card number 5: h

********** Your Hand **********
1. 2 of Diamonds
2. 3 of Hearts
3. 10 of Clubs
4. Jack of Diamonds
5. Queen of Spades

You lost your bet of 5
Current Bankroll is 34

sim23356_ch11.indd 500sim23356_ch11.indd 500 12/15/08 6:50:28 PM12/15/08 6:50:28 PM

 Chapter 11 Designing with Classes and Objects 501

Choose
1: Make a bet and play poker
2: Add coins to the machine
3: Cash out and quit
Your choice: 3

******Game Over******

Returned: 34 coin(s)

 11.10 IN CONCLUSION

 Choosing the classes that comprise an application takes practice, and no single design is the

“best” design. This chapter provides a simple rubric for choosing and designing the classes

of an application. No matter how meticulous you are with your initial design, revision is

inevitable. As presented in a textbook, building an application seems like a smooth process:

choose the classes, identify the methods, implement the classes, and test the classes. It all

works. It all fi ts together nicely. However, in reality, the design process involves trial, error,

and even frustration. Design is iterative.

 With the poker application, we implement one class at a time, method by method. We

test and test again before moving to the next class or method. Incremental testing can save

hours of bug detection later on. Choose your classes, determine the actions and interac-

tions, revise, implement and test, test, test … and revise again. No large application is

perfect on the fi rst iteration.

 The entire application appears in the following appendix. Run it and try your luck and

skill at a few hands of poker.

 In Chapter 20, we return to the poker application and replace the text-based interface

with a graphical interface complete with pictures and buttons. You may be surprised at the

ease with which this can be accomplished. Because we confi ne all IO to one class, Player ,
only Player needs to be designed.

 11.11 APPENDIX: THE COMPLETE APPLICATION

 /////////////////// Bet.java ///////////////////

1. import java.util.*;
2. public class Bet
3. {
4. private int bet;
5. public Bet() // default constructor sets bet to 0
6. {
7. bet � 0;
8. }

9. public Bet(int n) // one-argument constructor, sets bet to n
10. {
11. bet � n;
12. }

sim23356_ch11.indd 501sim23356_ch11.indd 501 12/15/08 6:50:28 PM12/15/08 6:50:28 PM

502 Part 2 Principles of Object-Oriented Programming

13. public void setBet(int n) // setter
14. {
15. bet � n;
16. }

17. public int getBet() // getter
18. {
19. return bet;
20. }
21. }

 /////////////////// Bankroll.java ///////////////////

22. public class Bankroll
23. {
24. private int bankroll;

25. public Bankroll() // default constructor
26. {
27. bankroll � 0;
28. }

29. public Bankroll (int n) // one-argument constructor
30. {
31. bankroll � n;
32. }

33. public int getBankroll()
34. {
35. return bankroll;
36. }
37. public void alterBankroll(int n) // n can be negative
38. {
39. bankroll �� n;
40. }
41. }

 /////////////////// Card.java ///////////////////

42. public class Card
43. {
44. private int suit; // 1 � Hearts, 2 � Diamonds, 3 � Clubs, 4 � Spades
45. private int value; // 1 � Ace…11 � Jack, 12 � Queen, 13 � King

46. public Card() // Ace of Hearts, by default
47. {
48. suit � 1;
49. value � 1;
50. }

51. public Card(int s, int v)
52. {
53. suit � s;
54. value � v;
55. }

sim23356_ch11.indd 502sim23356_ch11.indd 502 12/15/08 6:50:28 PM12/15/08 6:50:28 PM

 Chapter 11 Designing with Classes and Objects 503

56. public int getSuit()
57. {
58. return suit;
59. }

60. public int getValue()
61. {
62. return value;
63. }

64. public void setSuit(int s)
65. {
66. suit � s;
67. }

68. public void setValue(int v)
69. {
70. value � v;
71. }

72. public String getName() // returns string, e.g., "Ace of Hearts"
73. {
74. String name � "";
75. if (value �� 1)
76. name � "Ace of ";
77. else if (value �� 11)
78. name � "Jack of ";
79. else if (value �� 12)
80. name � "Queen of ";
81. else if (value �� 13)
82. name � "King of ";
83. else // use the numerical value
84. name � value � " of ";

85. // Add the suit onto the name

86. if (suit �� 1)
87. name �� "Hearts";
88. else if (suit �� 2)
89. name �� "Diamonds";
90. else if (suit �� 3)
91. name �� "Clubs";
92. else
93. name �� "Spades";
94. return name;
95. }
96. }

 /////////////////// Deck.java ///////////////////

97. import java.util.*; // for Random
98. public class Deck
99. {
100. private Card deck[];
101. private int next; // holds position of next card to be dealt
102. public Deck()

sim23356_ch11.indd 503sim23356_ch11.indd 503 12/15/08 6:50:29 PM12/15/08 6:50:29 PM

504 Part 2 Principles of Object-Oriented Programming

103. {
104. deck � new Card[53]; // does not use position 0, uses 1..52

105. for (int rank � 1; rank �� 13; rank��)
106. {
107. // place cards in order in deck
108. deck[rank] � new Card(1, rank); // rank of first suit e.g., 3 of hearts
109. deck[rank�13] � new Card(2, rank); // rank of second suit e.g., 3 of diamonds
110. deck[rank�26] � new Card(3, rank); // rank of third suit e.g., 3 of clubs
111. deck[rank�39] � new Card(4, rank); // rank of fourth suit e.g., 3 of spades
112. }
113. next � 1;
114. }

115. public void shuffle()
116. {
117. Random randomNumber � new Random();
118. for (int card � 1; card �� 52; card��)
119. {
120. // find a random place in the deck
121. int rand � randomNumber.nextInt(52) � 1;
122. // swap deck[i] with deck[m]
123. Card temp � deck[card];
124. deck[card] � deck[rand];
125. deck[rand] � temp;
126. }
127. next � 1; // top card of the deck
128. }

129. public Card deal()
130. {
131. if (next � 52) // if deck is depleted
132. shuffle();
133. Card c � deck[next];
134. next��;
135. return c;
136. }
137. }

 /////////////////// Hand.java ///////////////////

138. public class Hand
139. {
140. private Card[] cards;
141. private Deck deck;
142. private int suits[]; // holds the number of each suit in a hand
143. private int values[]; // holds the number of each type card (A,2,3,4,...K)

144. public Hand()
145. {
146. cards � new Card[5];
147. suits � new int[5]; // uses indices 1..4
148. values � new int[14]; // uses indices 1..13
149. deck � new Deck();
150. }

sim23356_ch11.indd 504sim23356_ch11.indd 504 12/15/08 6:50:29 PM12/15/08 6:50:29 PM

 Chapter 11 Designing with Classes and Objects 505

151. public void newHand()
152. {
153. deck.shuffle();
154. for (int i � 0; i � 5; i��)
155. {
156. cards[i] � deck.deal();
157. suits[cards[i].getSuit()]�� ;
158. values[cards[i].getValue()]��;
159. }
160. sort();
161. }

162. public void updateHand(boolean[] x)
163. {
164. for (int i � 0; i � 5; i��)
165. if (!x[i])
166. {
167. // remove card data for card i
168. suits[cards[i].getSuit()]��;
169. values[cards[i].getValue()]��;
170. // get a new card
171. cards[i] � deck.deal();
172. // update data for card i
173. suits[cards[i].getSuit()]�� ;
174. values[cards[i].getValue()]��;
175. }
176. sort();
177. }

178. public String[] getHand()
179. {

180. String[] cardsInHand � new String[5];
181. for (int i � 0; i � 5; i��)
182. cardsInHand[i] � cards[i].getName();
183. return cardsInHand;
184. }

185. private void sort() // orders cards by value field; a helper function
186. {
187. int max; // holds the position of the highest valued card
188. for (int place � 4; place � 0; place��)
189. {
190. max � 0;
191. // find the position of the highest valued card between 0 and place
192. // the position of the high card is stored in max
193. for (int i � 1; i �� place; i��)
194. if (cards[i].getValue() � cards[max].getValue())
195. max � i;
196. // swap the highest valued card with the card in position place
197. Card temp � cards[place];
198. cards[place] � cards[max];
199. cards[max] � temp;
200. }
201. }

sim23356_ch11.indd 505sim23356_ch11.indd 505 12/15/08 6:50:29 PM12/15/08 6:50:29 PM

506 Part 2 Principles of Object-Oriented Programming

202. public int evaluateHand()
203. {
204. if (royalFlush()) // royal flush pays 250:1
205. return 250;
206. else if (straightFlush()) // straight flush pays 50:1
207. return 50;
208. else if (fourOfAKind()) // four of a kind
209. return 25; // four of a kind pays 25:1
210. else if (fullHouse()) // full house
211. return 9;
212. else if (flush())
213. return 6;
214. else if (straight())
215. return 4;
216. else if (threeOfAKind()) // three of a kind
217. return 3;
218. else if (twoPair())
219. return 2;
220. else if (pair()) // Jacks or better
221. return 1;
222. return �1; // losing hand
223. }

224. private boolean royalFlush()
225. {
226. //10, J,Q,K,A of the same suit
227. boolean sameSuit � false; // true if all same suit
228. boolean isRoyalty � false; // true if cards are 10,J,K,Q,A
229. for (int i � 1; i �� 4; i��)
230. if (suits[i] �� 5) // all five cards of one suit?
231. sameSuit � true;
232. isRoyalty � (values[1] �� 1 &&
233. values[10] ��1 &&
234. values[11] ��1 &&
235. values[12] �� 1 &&
236. values[13] �� 1); // one Ace && one 10 && one J &&one Q&&one K
237. return (sameSuit && isRoyalty); // true if both conditions are true
238. }

239. private boolean straightFlush()
240. {
241. boolean sameSuit � false;
242. boolean ranksInOrder � false;
243. for (int i � 1; i �� 4; i��) // same suit
244. if (suits[i] �� 5)
245. sameSuit � true;
246. // cards in sequence?
247. ranksInOrder �
248. cards[1].getValue() �� (cards[0].getValue() � 1) &&
249. cards[2].getValue() �� (cards[0].getValue() � 2) &&
250. cards[3].getValue() �� (cards[0].getValue() � 3) &&
251. cards[4].getValue() �� (cards[0].getValue() � 4);
252. return (sameSuit && ranksInOrder);
253. }

254. private boolean flush()

sim23356_ch11.indd 506sim23356_ch11.indd 506 12/15/08 6:50:30 PM12/15/08 6:50:30 PM

 Chapter 11 Designing with Classes and Objects 507

255. {
256. for (int i � 1; i �� 4; i��)
257. if (suits[i] �� 5) // all the same suit?
258. return true;
259. return false;
260. }

261. private boolean fourOfAKind()
262. {
263. for (int i � 1 ; i �� 13; i��)
264. if (values[i] �� 4)
265. return true;
266. return false;
267. }

268. private boolean fullHouse()
269. {
270. boolean three � false;
271. boolean two � false;
272. for (int i � 1 ; i �� 13; i��)
273. if (values[i] �� 3) // three of one kind
274. three � true;
275. else if (values[i] �� 2) // two of another kind
276. two � true;
277. return two && three; // both conditions
278. }

279. private boolean straight()
280. {
281. // cards in sequence?
282. return
283. // Ace precedes 2
284. (cards[1].getValue() �� (cards[0].getValue() � 1) &&
285. cards[2].getValue() �� (cards[0].getValue() � 2) &&
286. cards[3].getValue() �� (cards[0].getValue() � 3) &&
287. cards[4].getValue() �� (cards[0].getValue() � 4)) ||
288. //Ace follows King
289. (values[1] �� 1 && // Ace
290. values[10] ��1 && // Ten
291. values[11]��1 && // Jack
292. values[12] �� 1 && // Queen
293. values[13] �� 1); // King
294. }

295. private boolean threeOfAKind()
296. {
297. for (int i � 1 ; i �� 13; i��)
298. if (values[i] �� 3)
299. return true;
300. return false;
301. }

302. private boolean twoPair()
303. {
304. int count � 0;
305. for (int i � 1; i �� 13; i��)

sim23356_ch11.indd 507sim23356_ch11.indd 507 12/15/08 6:50:30 PM12/15/08 6:50:30 PM

508 Part 2 Principles of Object-Oriented Programming

306. if (values[i] �� 2) // count the number of pairs
307. count��;
308. return (count �� 2);
309. }

310. private boolean pair() // Jacks or Higher
311. {
312. if (values[1] �� 2) // pair of aces
313. return true;
314. for (int i � 11; i �� 13; i��) // pair of Jacks or higher
315. if (values[i] �� 2)
316. return true;
317. return false;
318. }
319. }

////////////////// PokerGame.java ///////////////////

320. public class PokerGame
321. {
322. private Bankroll bankroll;
323. private Bet bet;
324. private Hand hand;
325. private Player player;
326. private boolean[] holdCards;

327. public PokerGame(Bet coinsBet, Bankroll br, Player pl)
328. {
329. bankroll � br;
330. bet � coinsBet;
331. player � pl;
332. hand � new Hand();
333. holdCards � new boolean[5];
334. }

335. int updateBankroll(int payoff)
336. {
337. int winnings � payoff * (bet.getBet()); // negative for a loss
338. bankroll.alterBankroll(winnings);
339. return winnings;
340. }

341. public void viewInitialHand()
342. {
343. hand.newHand();
344. player.displayHand(hand.getHand());
345. }

346. public void discardOrHoldCards()
347. {
348. player.getDiscard(holdCards);
349. hand.updateHand(holdCards);
350. player.displayHand(hand.getHand());
351. int payoff � hand.evaluateHand();
352. int winnings � updateBankroll(payoff);

sim23356_ch11.indd 508sim23356_ch11.indd 508 12/15/08 6:50:30 PM12/15/08 6:50:30 PM

 Chapter 11 Designing with Classes and Objects 509

353. player.displayResults(payoff, winnings); // the hand & the number of coins won(lost)
354. }
355. }

 /////////////////// Player.java ///////////////////

356. import java.util.*;
357. public class Player
358. {
359. private Scanner input;
360. Bankroll bankroll;
361. PokerGame pokerGame;
362. Bet bet;
363. Hand hand;

364. Player()
365. {
366. input � new Scanner(System.in);
367. }

368. void getInitialBankroll()
369. {
370. int numCoins;
371. do
372. {
373. System.out.print("How many coins do you wish to insert into the machine: ");
374. numCoins � input.nextInt();
375. }while (numCoins �� 0);
376. System.out.println();
377. bankroll � new Bankroll(numCoins);
378. }

379. void addCoins()
380. {
381. int numCoins;
382. do
383. {
384. System.out.print("How many coins do you wish to insert into the machine: ");
385. numCoins � input.nextInt();
386. } while (numCoins �� 0);

387. bankroll.alterBankroll(numCoins);
388. System.out.println("Currently you have " � bankroll.getBankroll() � " coins");
389. System.out.println();
390. }

391. public void betAndPlay()
392. {
393. int coins;
394. do
395. {
396. System.out.print("Enter a bet: 1 to 5 coins: ");
397. coins � input.nextInt();
398. } while (coins ��0 || coins � 5 || coins � bankroll.getBankroll());

sim23356_ch11.indd 509sim23356_ch11.indd 509 12/15/08 6:50:31 PM12/15/08 6:50:31 PM

510 Part 2 Principles of Object-Oriented Programming

399. bet � new Bet(coins);
400. pokerGame � new PokerGame(bet, bankroll, this);
401. pokerGame.viewInitialHand();
402. pokerGame.discardOrHoldCards();
403. }
404. public void displayHand(String[] handString)
405. {
406. System.out.println("********** Your Hand **********");
407. for (int i � 0; i � 5; i��)
408. System.out.println((I � 1) � " . " � handString[i]);
409. System.out.println("*******************************");
410. System.out.println();
411. }

412. public void getDiscard(boolean[] x)
413. {
414. String ans;
415. System.out.println("Hold or discard? ");
416. for (int i � 0; i � 5; i��)
417. {
418. do
419. {
420. System.out.print("Hold (h) or Discard (d) card number " � (I � 1) � ": ");
421. ans � input.next();
422. if (ans.equals("h"))
423. x[i] � true; // hold
424. else if (ans.equals("h"))
425. x[i] � false; // discard
426. }while (!(ans.equals("h") || ans.equals("d")));
427. }
428. System.out.println();
429. }

430. public void displayResults(int payoff, int winnings)
431. {
432. String nameOfHand � "Lose";
433. if (payoff �� 250)
434. nameOfHand � "Royal Flush";
435. else if (payoff �� 50)
436. nameOfHand � "Straight Flush";
437. else if (payoff �� 25)
438. nameOfHand � "Four of a Kind";
439. else if (payoff �� 9)
440. nameOfHand � "Full House";
441. else if (payoff �� 6)
442. nameOfHand � " Flush";
443. else if (payoff �� 4)
444. nameOfHand � "Straight ";
445. else if (payoff �� 3)
446. nameOfHand � "Three of a Kind";
447. else if (payoff �� 2)
448. nameOfHand � "Two Pair";
449. else if (payoff �� 1)
450. nameOfHand � " Pair of Jacks or Better";

sim23356_ch11.indd 510sim23356_ch11.indd 510 12/15/08 6:50:31 PM12/15/08 6:50:31 PM

 Chapter 11 Designing with Classes and Objects 511

451. if (winnings �0)
452. {
453. System.out.println("Winner: " � nameOfHand);
454. System.out.println("Payoff is " � winnings � " coins.");
455. }
456. else
457. System.out.println("You lost your bet of " � bet.getBet());
458. System.out.println("Current Bankroll is " � bankroll.getBankroll());
459. System.out.println();
460. }

461. public void quit()
462. {
463. int br � bankroll.getBankroll();
464. System.out.println("\n******Game Over****** \n");
465. if (br � 0)
466. System.out.println("Returned: " � br �" coin(s)");
467. else
468. System.out.println("No coins remain");
469. System.out.println("\n*********************");
470. }

471. public void menu()
472. {
473. String choice;
474. do
475. {
476. System.out.println("Choose");
477. System.out.println("1: Make a bet and play poker");
478. System.out.println("2: Add coins to the machine ");
479. System.out.println("3: Cash out and quit");
480. System.out.print("Your choice: ");
481. choice � input.next();
482. if (choice.equals("1"))
483. betAndPlay();
484. else if (choice.equals("2"))
485. addCoins();
486. }while ((!(choice.equals("3")) && bankroll.getBankroll() >0));
487. }

488. public static void main(String[] args)
489. {
490. Player player � new Player();
491. player.getInitialBankroll();
492. player.menu();
493. player.quit();
494. }
495. }

sim23356_ch11.indd 511sim23356_ch11.indd 511 12/15/08 6:50:31 PM12/15/08 6:50:31 PM

512 Part 2 Principles of Object-Oriented Programming

 Just the Facts

• Any large application should be built incrementally.

• The design process involves many iterations with many changes.

• OOP design starts with a problem description.

• The classes in the design correspond roughly to the nouns of the problem description.

• The responsibilities of each class correspond roughly to the methods of the class and

to the verbs of the problem description.

• The data model is the abstract representation of the information processed by that

program.

• The view of a program is the code that implements the user interface.

• Separating the data model from the view is a fl exible OOP design methodology.

• Every method should be tested before moving to the next one.

• A stub is a skeletal method that will eventually be replaced by a fully implemented,

functional method. Stubs are used for testing a method that is dependent on other

methods that have not yet been fully implemented or tested.

• Find bugs early. A bug restricted to 40 lines of code is easier to detect than a bug hid-

ing somewhere in 400 or 4000 lines!

 Bug Extermination

• Bugs are always present. Even the most meticulous programmer cannot avoid bugs.

• Incremental testing is a painless methodology for detecting programming bugs.

• It is not always possible to test every possible input pattern. Most of the time you

must be satisfi ed with testing a few representative samples.

• Do not write a large application, cross your fi ngers, and hope for the best. Write

small segments and test those segments before continuing.

• When necessary, use stubs for testing.

• When you debug, use both typical and atypical data. Be thorough.

• Test early and frequently in the development process. The minutes of early testing

will save hours of tedious debugging.

sim23356_ch11.indd 512sim23356_ch11.indd 512 12/15/08 6:50:31 PM12/15/08 6:50:31 PM

 Chapter 11 Designing with Classes and Objects 513

 EXERCISES

 SHORT EXERCISES
 1. OOP Modeling
 Make a labeled rectangle for each class of the Poker case study, and draw an arrow from

box A to B if an object belonging to A sends a message to an object belonging to B.

 2. OOP Implementation
 Review the order in which we build and test the classes in the case study. Why is

this order used? Can you suggest a different sequence?

 3. Stubs

 What is a stub and what is its purpose?

 4. Nouns

 Why are the nouns of a problem description a good place to look for the class

names?

 5. Verbs

 What do the verbs in a problem description help us determine? Why?

 6. Iterative Refi nement
 What is meant by iterative refi nement?

 7. Testing

 Why is testing each class and each method, one at a time, a good idea?

 8. Data Model and View
 What is the difference between the data model and the view components of a

program?

 9. Separation of Data Model and View
 Why is it good design to separate the classes that maintain the data model from

those that implement the view?

 10. OOP Design—Your Opinion
 Do you feel that object-oriented program design is a natural way to design

programs? Why or why not?

sim23356_ch11.indd 513sim23356_ch11.indd 513 12/15/08 6:50:32 PM12/15/08 6:50:32 PM

514 Part 2 Principles of Object-Oriented Programming

 PROGRAMMING AND DESIGN EXERCISES
 1. A Better Poker Machine
 A fancier version of the poker machine described in the case study displays the

“current best hand” that a player has achieved in a session as well as its evaluation

and payout. For example, if a player’s best hand has been 6C 6H 6D 6S 3C, and the

bet was fi ve coins, the machine displays the following information:

 Best Hand: Four of a Kind: 6C 6H 6D 6S 3C, Bet � 5, Payout: 125.

 Modify the case study to include this feature.

 2. Modifi cations for Debugging
 It is questionable style to have a displayHand() method inside the Hand class. To

separate the data model from the view, we place the displayHand() method in the

 Player class. Nevertheless, for early debugging purposes, before the Player class

is even built, it may be handy to have a displayHand() method in Hand . Add a

temporary displayHand() method to the Hand class, and use it to “retest” the

 Hand class.

 3. Testing and Debugging
 Design and implement a technique that tests the PokerGame class. Create a

temporary main(...) method to help you.

 4. Testing and Debugging
 In the design of the poker application, the last class that we implement is the Player

class. Suppose that we implement the Player class fi rst—how would we test the

class? What stubs are necessary? Do you think leaving the implementation of the

 Player class for last is a good idea?

 5. A Two-Player Poker Machine
 Consider a poker machine exactly like the one in the case study except that

two people are allowed to play simultaneously. The game treats both players

no differently than single players, that is, bets are taken and payouts are made.

However, this machine offers each player an additional option to play against the

other player. Both players must agree to an amount, which is an additional bet of

one to fi ve coins. The winning player receives all the money. The losing player loses

his/her bet. If there is a tie, no money changes hands. Note: Hands are compared on

the poker machine’s scale. For example, if both players get a full house, it is a tie,

regardless of the cards they hold. There is no distinction between hands at the same

level. Implement the two-player machine.

 6. Strictly for Poker Players
 This problem is similar to problem 5, except that hands are evaluated according to

the complete rules of poker. For example, a full house of Queens over Kings beats

a full house of Tens over Aces. A fl ush to the Ace beats a fl ush to the King. Ties can

still occur (e.g., two straights of the same denomination), but there will be fewer ties

with this machine than with the one of problem 5.

 7. User Interface Redesign
 Modify the code of the case study so that the hold or discard menu, instead of

expecting ‘h’or ‘d’ for each card, allows a player to enter the cards that he/she wants

to hold. Card input consists of a two-character string; the fi rst character represents

the value (A, 2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K) and the second character represents the

suit (C, D, H, S). For example, “JC” is the Jack of Clubs, “AH” is the Ace of Hearts,

and “TD” is the Ten of Diamonds. Do you think this method is better or worse than

the one used in the case study?

sim23356_ch11.indd 514sim23356_ch11.indd 514 12/15/08 6:50:32 PM12/15/08 6:50:32 PM

 Chapter 11 Designing with Classes and Objects 515

 8. Realistic User Input Checking
 Generally, it is not wise to assume that user input is correct—indeed, input errors

are very common. Revise the case study and add a method that accepts the player’s

reply if and only if it is a valid response.

 9. A Simulated Chat Room
 A chat room serves many simultaneous visitors. Any visitor can post a message

simultaneously on every visitor’s screen, or direct his/her message to a particular

person.

 In lieu of screens, cell phones, terminals, or other devices, let’s assume that

everyone in a chat room types his/her messages one at a time into one program and

that the messages are displayed with a header indicating to whom they are directed.

Each chat room visitor has a name and a status: logged in or logged out. Each logged-

in visitor can send a message to the whole room or to an individual in the room. Each

visitor can see a list of people currently in the room. Each visitor may log in and log

out. When a person logs in or out, a message is sent to all others in the chat room.

 Write an application that simulates a chat room. Make sure to clearly separate

the data model from the view.

a. Write a detailed problem description and identify the nouns and verbs of the

problem.

b. Determine the classes that your program will use.

c. Determine the methods for each class.

d. Determine the attributes of each class by observing which classes need to send

messages to which.

e. Refi ne your design. Write headers for all methods, but do not implement the

methods.

f. Complete the implementation using a text-based user interface.

 10. Extending the Chat Room Simulation
 A more realistic scenario for Programming Exercise 9 implements many chat

rooms simultaneously. Each room has its own set of members—the people visiting

that room. Each person, on the other hand, can join (log in) or leave (log out) any

number of rooms as often as he or she pleases. A person should be able to see a list

of the chat rooms which he or she is currently visiting. Furthermore, any user should

be able to see a list of currently open rooms and its members. If a user joins more

than one room, then he or she receives the messages from all those rooms. Any user

may open a new chat room, which must be given a name different from the other

currently open chat rooms. Only that user is allowed to close the chat room, and

when that occurs, all the current members are immediately removed.

a. Extend the design of Programming Exercise 9 to handle this generalization.

b. Complete the implementation using a text-based user interface.

 As in Programming Exercise 9, assume that all the users take turns typing

commands and messages into one program on a single keyboard.

 11 Tic-Tac-Toe Versus Computer
 Create a high-level design for a program that allows a person to play Tic-tac-toe

against the computer. After each game, give the player the option to quit or play

again. The computer can play its moves randomly. The computer keeps track of who

has won and how many games have been played. When requested by the player, the

application displays a summary of wins, losses, and ties. Make the user interface

independent of the game logic.

a. Write a detailed problem description and identify the nouns and verbs of the problem.

b. Determine the classes that your program will use.

sim23356_ch11.indd 515sim23356_ch11.indd 515 12/15/08 6:50:32 PM12/15/08 6:50:32 PM

516 Part 2 Principles of Object-Oriented Programming

c. Determine the methods for each class.

d. Determine the attributes of each class by observing which classes need to send

messages to which.

e. Refi ne your design. Write headers for all methods, but do not yet implement the

methods.

f. Complete the implementation using a text-based user interface.

 12. Two Player Tic-Tac-Toe
 Redesign the program in problem 11 to allow play against another human player

rather than against the computer.

 13. Tic-Tac-Toe with Perfect Computer Play
 Redesign the program in problem 11 so that the computer plays perfectly (i.e., never

loses).

 14. A Calendar-Making Program
 Write an application that accepts a year and displays a 12-month planning calendar.

Each month should be printed separately, one below the next. For example, for 2007,

January 2007

Sun Mon Tues Wed Thurs Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

February 2007

Sun Mon Tues Wed Thurs Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28

etc.

 …

 Allow a user to specify any number of dates to be noted underneath the month

(birthdays, anniversaries, and so on). For example, a user should be able to request

that January 8 be printed with the note: “Elvis’s Birthday,” or February 18, “Take

Dog to Groomer,” or December 25, “Christmas.” A list of annotated dates should

appear following that month’s calendar. For example, the fi rst month of the

annotated calendar might look like this:

January 2007

Sun Mon Tues Wed Thurs Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

sim23356_ch11.indd 516sim23356_ch11.indd 516 12/15/08 6:50:32 PM12/15/08 6:50:32 PM

 Chapter 11 Designing with Classes and Objects 517

 January 1: New Year’s Day

 January 8: Elvis’ Birthday; visit Graceland

 January 23: Get Fifi a trim at the Pet Central

 January 31: Phantom of the Opera

 Hint: In Chapter 3, we give a method for determining the day of the week of

January 1, given a particular year.

a. Write a detailed problem description and identify the nouns and verbs of the

problem.

b. Determine the classes that your program will use.

c. Determine the methods for each class.

d. Determine the attributes of each class by observing which classes need to send

messages to which.

e. Refi ne your design. Write headers for all methods, but do not implement the

methods.

f. Complete the implementation using a text-based user interface.

 15. Go Fish
 Every kid plays Go Fish . But just in case you missed this one, two players, say Bette

and Bob, are each dealt seven cards from a standard deck. Each player in turn may

ask the other player if he or she has any cards of a particular rank, for example, “got

any kings?” A player cannot request a certain type of card unless he or she holds at

least one of that type.

 For example, Bette cannot ask for kings unless she holds at least one king. If Bob

has any kings then he must relinquish all of them to Bette. Bette continues requesting

cards from Bob as long as Bob can fulfi ll her requests. When Bob can no longer hand

over cards to Bette, he tells her to “go fi sh” and Bette is dealt one more card from the

deck. If it happens to be the card she had just unsuccessfully requested, she continues

querying Bob for cards; otherwise Bob gets to query Bette. When either player

collects all four cards of a particular denomination, he or she immediately removes

them from his or her hand and places the “set” off to the side. The game is over when

all the cards are made into sets. The player with the most sets wins.

 Write an application that implements Go Fish so that a human can play against

the computer. After each game a player may quit or play again. When a player quits,

the program should print summary win/loss statistics.

a. Write a detailed problem description and identify the nouns and verbs of the

problem.

b. Determine the classes that your program will use.

c. Determine the methods for each class.

d. Determine the attributes of each class by observing which classes need to send

messages to which.

e. Refi ne your design. Write headers for all methods, but do not yet implement the

methods.

f. Complete the implementation using a text-based user interface.

 16. Go Fish with Multiple Players
 Redesign the program of Programming Exercise 15 so that multiple players (3 to 6)

may play. In this version, each player is originally dealt fi ve cards, rather than seven.

Each player’s hand is displayed only during his/her turn. When a player requests

cards, he/she must specify not the just the kind of card, but the player to whom the

request applies. The computer automatically hands over the appropriate cards from

the player queried, if possible.

 Obviously, playing the game on a single computer requires that each player not

look at the screen during another player’s turn. That is, no player should ever see

another player’s hand.

sim23356_ch11.indd 517sim23356_ch11.indd 517 12/15/08 6:50:33 PM12/15/08 6:50:33 PM

518 Part 2 Principles of Object-Oriented Programming

 17. A Music Collection
 You have a large music collection that is continually expanding. You keep track of each

song with an index number, song name, artist, style (pop, rock, classical, jazz, etc.),

length (in minutes and seconds), and year recorded. The collection is stored in a text fi le.

Design a program that allows you to add a song to your collection, delete a song from

your collection, modify information about a song in your collection, print the data for all

the songs of a particular artist, and print the data for all songs of a particular style. Your

program should read from the fi le, and upon termination, write to another fi le.

 Finally, your program should allow you to choose a collection of songs that you

can take with you on a vacation. These songs are chosen by index number one at

a time. To remove a song from your vacation list, just select the song again. After

any modifi cation to the vacation list, the program should print the combined total

playing time of all songs currently selected.

a. Write a detailed problem description and identify the nouns and verbs of the

problem.

b. Determine the classes that your program will use.

c. Determine the methods for each class.

d. Determine the attributes of each class by observing which classes need to send

messages to which.

e. Refi ne your design. Write headers for all methods, but do not yet implement the

methods.

f. Complete the implementation using a text-based user interface.

 18. A Daily Planner
 To manage your schedule, you need to keep track of day-to-day events. An event

might be an appointment, an errand, a reminder, or whatever you need to remember.

 Write a planner application to manage your daily events. Your application should

accept an event entered on two lines:

 Line 1: Date/time—month (1–12), day, year, hour (0–23, military style), and

 Line 2: Event description (text).

 The time is optional if the event has no specifi c time on that day.

 For example, an event might look like this:

 11 16 1959

 Sister’s Birthday

 or this:

 12 25 2008 15

 Christmas Dinner at Grandma’s

 When you enter an event, the application should check that the time of the event

does not confl ict with another event. The planner, if queried, should be able to list all

events for a particular date or range of dates. The planner should read events from a

fi le when the program starts and write the new list of events to a new fi le when the

program ends.

a. Write a detailed problem description and identify the nouns and verbs of the

problem.

b. Determine the classes that your program will use.

c. Determine the methods for each class.

e. Determine the attributes of each class by observing which classes need to send

messages to which.

sim23356_ch11.indd 518sim23356_ch11.indd 518 12/15/08 6:50:33 PM12/15/08 6:50:33 PM

 Chapter 11 Designing with Classes and Objects 519

d. Refi ne your design. Write headers for all methods, but do not yet implement the

methods.

f. Complete the implementation using a text-based user interface.

 19. Testing Variations of Craps —with Suggested Design
 Craps is a casino game played with two dice. In the basic version, a player bets a certain

amount of money, and the house pays back the amount of the bet if the player wins.

 Here are the rules of the game. You roll a pair of six-sided dice.

 If the dice show 7 or 11, that’s a natural ! You win.

 If the dice show 2, 3, or 12, that’s craps . You lose.

 If the dice show any other number (4, 5, 6, 8, 9, or 10), that number is your point
and the game is not over yet. In this case, continue rolling the dice until you roll

your point or a 7. If you roll your point before a 7, you win. If you roll a 7 before

your point , you lose. In this case, seven is called the pointbreaker . No other rolls

matter except for the point and pointbreaker.

 Casinos offer games with odds that favor the house. They are, after all, in the

business of making money. To be convinced that a game favors the house, a casino

may hire a mathematician to analyze the game or a programmer to simulate it.

Depending on the game, one of these options may be more successful than the other.

Neither way is always the best way. Here we take the programmer’s route.

 Write an application that simulates 1000 games of craps and reports the number

of games won by the player and the number won by the house. Then change the

rules slightly and repeat the simulation. For example, move 3 from the craps

row to the point row. That is, when a 3 is rolled on the fi rst roll, you do not lose

immediately. Instead, the 3 becomes your point just as if the roll had been 4, 5, 6, 8,

9, or 10. Many other variations of the game could be tested in this way. For example,

in Las Vegas, a value of 12 on the fi rst roll ends the game in a tie.

 Rather than ask you to design this one, here is a reasonable list of classes that

your application might use.

1. Dice —This class lets you roll the dice. Methods include roll(), which returns the sum

of two random integers in the range 1–6. A Player sends a message to a Dice object.

2. Rules —This class stores the rules of your particular version of the game and

allows changes to those rules. Instance variables include an array to keep track of

which rolls from 2 through 12 are natural , craps , and points , and also an integer

between 2 and 12 inclusive that represents the pointbreaker . For example the array

{‘c’, ‘c’, ‘p’, ‘p’, ‘p’, ‘n’, ‘p’, ‘p’, ‘p’, ‘n’, ‘c’} along with the integer 7 represent

standard craps rules.

 Methods include:

 Constructor methods:
 The default constructor should use standard craps rules.

 Getter methods:
 getStatus(int x) // returns ‘n’, ‘p’, or ‘c’, given a roll x .

 getPointbreaker() // returns value of the pointbreaker .

 Mutator methods:
 boolean moveCrapsToPoint(int x) // moves x from the craps list to the point list.
 boolean moveNaturalToPoint(int x) // moves x from the natural list to the point list.
 boolean movePointToCraps(int x) // moves x from the point list to the craps list.
 boolean moveNaturalToCraps(int x) // moves x from the natural list to the craps list.
 boolean moveCrapsToNatural(int x) // moves x from the craps list to the natural list.
 boolean movePointToNatural(int x) // moves x from the point list to the natural list.
 setPointbreaker(int x) // sets x to be the pointbreaker .

sim23356_ch11.indd 519sim23356_ch11.indd 519 12/15/08 6:50:33 PM12/15/08 6:50:33 PM

520 Part 2 Principles of Object-Oriented Programming

 The parameter x of moveCrapsToPoint(int x) and moveNaturalToPoint(int x) cannot

be the pointbreaker . Likewise, parameter x of setPointbreaker(int x) , cannot be a

point.

 All mutator methods return true if successful or false if an incorrect change is

attempted. For example, having the pointbreaker become one of the points , or an

illegal attempt to move a number from one list to another, returns false.

3. Player —A Player has a name and a number of chips. The methods include

 boolean play (int bet, Rules rules)

 and returns true or false, depending on whether the player wins according to Rules .

 A test class should do the following:

• Create an instance of Rules using the default craps rules.

• Create a player with your fi rst name and 1000 chips.

• Simulate 1000 games and keep track of the results, which are printed when the appli-

cation ends. (Each game costs one chip to play and pays out even odds.)

• Modify the rules, using the moveCrapstoPoint(3) , so that the roll 3 is a point rather

than craps .
• Run another simulation (1000 games) and report the results.

THE BIGGER PICTURE

 SOFTWARE DESIGN AND THE MODEL-VIEW-CONTROLLER
PARADIGM
 A practical, albeit simplistic, way to measure the size of a software project is lines of code.

It should come as no surprise that, generally speaking, larger programs are harder to write

than smaller ones. Of course there are some very small complex methods and some very

large simple ones, but we are speaking of overall complexity that comes from having mul-

tiple classes and lots of communication among them.

 A single programmer’s productivity can be measured in lines of code written per week.

A programmer’s productivity on a large project is likely to be less than his/her productivity

on a small project. For example, it would probably take the average programmer less than

a month to write 5000 lines of code comprised of 50 short, independent 100-line programs,

like the programming examples in this text. On the other hand, it might take almost a year

to write a 5000-line section of code to be shipped as part of a huge 500,000-line project

(e.g., Microsoft Word, or Internet Explorer). Such programs are built by dozens of pro-

grammers whose code must all merge together in a symphony of planning and testing.

 This phenomenon of scale is not specifi c to programming; it is inherent in any creative

work. A good writer can pump out a few clear sentences in seconds, but a full-fl edged story

with a few hundred sentences takes far more time than a few hundred seconds! And a novel

with a few thousand sentences can take years.

 One way to manage programmer productivity is to invent software design methodolo-

gies or “software architectures” that act as guidelines for programmers who work with

specifi c types of large systems. One such architecture, built for the large number of mod-

ern software systems with graphical user interfaces or GUIs, is the model-view-controller

architecture, or MVC.

TH
E

BI
GG

ER
 P

IC
TU

RE

sim23356_ch11.indd 520sim23356_ch11.indd 520 12/15/08 6:50:33 PM12/15/08 6:50:33 PM

 Chapter 11 Designing with Classes and Objects 521

THE BIGGER PICTURE

 The Model-View-Controller Software Architecture (MVC)
 The MVC software architecture is based on three major modules: the (data) model, the

view, and the controller. The (data) model is an abstract representation of the information

processed by the program. The view deals with the user interface. The controller handles

input (often called input events or simply events) and directs results to where they need to

go. A simplistic but good fi rst understanding of MVC is that the controller handles input,

the model handles processing, and the view handles output.

 For example, in our Poker program, the arrays representing hands and cards, and the deci-

sions about how much a hand should pay off, are part of the (data) model. The way the program

looks to the user, and the way information is entered and displayed, is part of the view. Finally,

the processing of input as it may effect both view and model is handled by the controller.

 With this in mind, notice that the controller must send messages to both the view and

the model. In this way, the controller can ask the view and model to update themselves

depending on the input event that occurred. The controller may also ask the view or model

to perform a relevant calculation.

 The view also sends general messages to the model in order to request information

and order calculations. The view may ask the model for information so that the view can

display the appropriate features. Any message is fair game. Finally, the view is in charge of

sending user input events (mouse clicks, typed text, etc.) to the controller for processing.

The model, on the other hand, sends updates to the view whenever the data in the model

(the state of the model) changes.

 Figure 11.11 represents the relationships between the model, view, and controller in the

MVC model. Solid lines are method invocations and dotted lines are event notifi cations. The

solid lines are accomplished via message passing from one object to another like those that you

have seen in the case study. The dashed lines represent a more passive relationship. In particular,

the model has no direct knowledge of the view. Rather, the model indirectly notifi es the view

of changes in the model’s state, and the view reacts appropriately. This indirect notifi cation can

also be accomplished via direct message passing, but some systems have different mechanisms

for accomplishing this passive information passing without allowing the full control of message

passing. The same indirect relationship exists between the view and the controller.

View Model

Controller

FIGURE 11.11 The Model-View-Controller paradigm

 The poker application in this chapter is too simple and short to benefi t greatly from a soft-

ware paradigm as far-reaching and general as MVC. Nevertheless, the program does follow

the general guidelines of MVC. It carefully separates the model from the view, and to a

lesser extent, the view from the controller.

Exercises
 1. Argue for or against the thesis that the Poker program in this chapter follows the

MVC architecture.

 2. What classes in the Poker program are clearly part of the model module? Explain.

sim23356_ch11.indd 521sim23356_ch11.indd 521 12/15/08 6:50:34 PM12/15/08 6:50:34 PM

TH
E

BI
GG

ER
 P

IC
TU

RE

 3. What classes in the Poker program are clearly part of the view? Explain.

 4. What classes in the Poker program are clearly part of the controller? Explain.

 5. Using the Poker program of this chapter, fi nd examples of methods and events

represented by each solid and dotted line in Figure 11.11 . For example: what

methods in the Poker program are part of the view that send messages to the

model? What “events” detected by the view are forwarded to the controller for

processing?

 6. How might you redesign the case study to make it more in tune with the MVC

architecture?

522 Part 2 Principles of Object-Oriented Programming

sim23356_ch11.indd 522sim23356_ch11.indd 522 12/15/08 6:50:34 PM12/15/08 6:50:34 PM

 523

CHAPTER CHAPTER 12
 Inheritance

 “I inherited a painting and a violin which turned out to be a Rembrandt and a
Stradivarius. Unfortunately, Rembrandt made lousy violins and Stradivarius was a

terrible painter.”
 — Tommy Cooper, comedian

 Objectives

 The objectives of Chapter 12 include an understanding of

� inheritance and its benefi ts and pitfalls,

� the is-a relationship between a derived class and a base class,

� abstract classes designed for inheritance,

� upcasting and downcasting,

� the instanceof operator,

� inheriting from Object ,

� overriding toString() and equals(Object o) ,

� interfaces, and

� the Comparable interface and a generic sort routine.

 12.1 INTRODUCTION

 Object-oriented programming is built upon the principles of encapsulation, inheritance,

and polymorphism. The previous three chapters deal with classes and objects, the corner-

stone of encapsulation. This chapter provides an introduction to inheritance.

Inheritance makes it possible to build new classes from existing classes, thus facilitating

the reuse of methods and data from one class in another. Moreover, inheritance allows

data of one type to be treated as data of a more general type.

 Example 12.1 provides one more illustration of encapsulation. Using this application as a

starting point, we move on to inheritance.

 12.2 A BASIC REMOTE CONTROL UNIT

 Figure 12.1 shows a rather basic remote control unit that can be used to turn a TV on or

off, raise and lower the volume, or change the channel. Volume levels range from 0 to

20 and channel numbers from 1 to 199. Pressing a volume (channel) button increases

 EXAMPLE 12.1

sim23356_ch12.indd 523sim23356_ch12.indd 523 12/15/08 6:51:40 PM12/15/08 6:51:40 PM

524 Part 2 Principles of Object-Oriented Programming

or decreases the volume (channel) by one unit. For example, if the current channel is 5,

pressing the “channel up” button twice sets the channel to 7.

No-frills Remote

vol

on/off

ch

ch vol

FIGURE 12.1 A no-frills remote control unit

 Problem Statement Implement a Remote class that models the remote control unit

of Figure 12.1 . When the TV is initially switched on, the default channel is 2 and the

default volume is 5.

 Java Solution The Remote class has two attributes:

 • volume , an integer in the range 0 through 20, and

 • channel , an integer in the range 1 through 199.

 The methods simulate the functions of the buttons in Figure 12.1 . These methods are

 • channelUp() and channelDown() , which respectively increase and decrease

channel by one, and

 • volumeUp() and volumeDown() , which increase or decrease volume .

 The Remote class has no fancy code or complicated methods. In addition to the

methods channelUp() , channelDown() , volumeUp() , and volumeDown() , the Remote

class implements two additional methods:

 • display() , which displays the current volume and channel, and

 • menu() , which presents a list of options to a user.

 Each time a user “presses any button,” display() shows the current channel and the

volume.

 You may notice that the instance variables of the following class are declared

as protected . For the present, ignore this access modifi er. We explain its meaning in

Example 12.2.

 1. import java.util.*;
2. public class Remote
3.
4. {
5. protected int volume; // notice the protected access modifier
6. protected int channel;

7. protected final int MAXIMUM_VOLUME � 20; // highest volume setting
8. protected final int MAXIMUM_CHANNEL � 199; // highest channel number

sim23356_ch12.indd 524sim23356_ch12.indd 524 12/15/08 6:51:41 PM12/15/08 6:51:41 PM

 Chapter 12 Inheritance 525

9. protected final int DEFAULT_CHANNEL � 2; // default channel number
10. protected final int DEFAULT_VOLUME � 5; // default volume setting
11. protected final int MINIMUM_VOLUME � 0; // minimum volume, no sound
12. protected final int MINIMUM_CHANNEL � 1; // lowest channel number

13. public Remote() // default constructor
14. {
15. channel � DEFAULT_CHANNEL;
16. volume � DEFAULT_VOLUME;
17. }

18. public Remote(int ch, int vol) // two argument constructor
19. { // assumes valid data
20. channel � ch;
21. volume � vol;
22. }

23. public void volumeUp() // increase volume by one unit
24. {
25. if (volume < MAXIMUM_VOLUME) // cannot exceed MAXIMUM_VOLUME
26. volume��;
27. }

28. public void volumeDown() // decrease volume by one unit
29. {
30. if (volume > MINIMUM_VOLUME) // cannot go lower than MINIMUM_VOLUME
31. volume��;
32. }

33. public void channelUp() // increase channel number by 1
34. {
35. if (channel < MAXIMUM_CHANNEL) // cannot exceed MAXIMUM_CHANNEL
36. channel��;
37. }

38. public void channelDown() // decrease channel number by 1
39. {
40. if (channel > MINIMUM_CHANNEL) // cannot go lower than MINIMUM_CHANNEL
41. channel��;
42. }

43. public void display() // show the volume and the channel
44. {
45. System.out.println("\n----------------------");
46. System.out.println("Channel: " � channel);
47. System.out.println("Volume: " � volume);
48. System.out.println("----------------------\n");
49. }

50. public void menu() // presents user with the choices of Figure 12.2
51. {
52. Scanner input � new Scanner(System.in);
53. String choice;
54. System.out.println("POWER ON");
55. display();
56. do
57. {
58. System.out.println("Channel up: �");
59. System.out.println("Channel down: �");
60. System.out.println("Volume up: ��");

sim23356_ch12.indd 525sim23356_ch12.indd 525 12/15/08 6:51:41 PM12/15/08 6:51:41 PM

526 Part 2 Principles of Object-Oriented Programming

61. System.out.println("Volume down: --");
62. System.out.println("Power off: o");
63. System.out.print("Choose: ");
64. choice � input.next();
65. if (choice.equals("�"))
66. channelUp();
67. else if (choice.equals("�"))
68. channelDown();
69. else if (choice.equals("��"))
70. volumeUp();
71. else if (choice.equals("--"))
72. volumeDown();
73. display();
74. } while (! choice.equals("o"));
75. System.out.println("POWER OFF");
76. }

77. public static void main(String[] args)
78. {
79. Remote remote � new Remote();
80. remote.menu();
81. }
82. }

 Output
 POWER ON

Channel: 2
Volume: 5

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Power off: o
Choose: �

Channel: 3
Volume: 5

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Power off: o
Choose: ��

Channel: 3
Volume: 6

sim23356_ch12.indd 526sim23356_ch12.indd 526 12/15/08 6:51:42 PM12/15/08 6:51:42 PM

 Chapter 12 Inheritance 527

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Power off: o
Choose: o

Channel: 3
Volume: 6

POWER OFF

 Discussion Except for the keyword protected , the Remote class is not much different

from any of the other classes that you have seen, and understanding it should present

no diffi culty. The Remote class supplies the functions illustrated in Figure 12.1 . Each

menu option corresponds to a button on the remote unit, and each button is simulated

by a method. Remote is yet another example of encapsulation—methods and data tied

together in a single entity.

 Example 12.2 illustrates the second principle of object-oriented programming:

inheritance .

Inheritance is the mechanism that allows us to reuse the attributes and methods of

one class in the implementation of another class.

 In Example 12.2, you will see how to “extend” the Remote class so that the attributes and

methods of Remote can be used (or re used) to build a new class with all of the features of

Remote and then some. This is where inheritance takes center stage.

 EXAMPLE 12.2 The “up and down” buttons of the no-frills remote of Example 12.1 may satisfy the needs

of a sedentary channel surfer, but a better design would allow a viewer to access channels

directly by punching in a channel number. Figure 12.2 shows an upgraded version of the no-

frills remote. The last button on the new remote switches the channel back to the previously

viewed channel. The direct access remote is a no-frills remote with additional functionality.

 Problem Statement Implement a class, DirectRemote , that simulates the remote

control unit of Figure 12.2 .

 Java Solution DirectRemote is not much different than Remote . In fact, the attributes

and methods of Remote , such as volumeUp() and volumeDown() , can be used (or reused)

in the implementation of DirectRemote . DirectRemote need not be built from scratch.

 Remote can give its attributes and methods to DirectRemote , or stated differently,

DirectRemote can inherit the attributes and methods of Remote.

 How is this magic performed? The clause extends Remote in the class heading

 public class DirectRemote extends Remote (line 2)

declares that DirectRemote inherits from Remote . That is, DirectRemote has the features

and functionality of Remote . . . and possibly more.

sim23356_ch12.indd 527sim23356_ch12.indd 527 12/15/08 6:51:42 PM12/15/08 6:51:42 PM

528 Part 2 Principles of Object-Oriented Programming

 The following implementation of DirectRemote does not explicitly declare the instance

variables channel and volume ; they are inherited from Remote . Likewise, DirectRemote

does not implement volumeUp() or display(); they come to DirectRemote via inheritance.

On the other hand, DirectRemote has the option of declaring its own additional variables

and providing its own implementation of any method, new or inherited. In particular,

DirectRemote implements new methods that handle direct channel access and last channel

access, and it provides its own modifi ed versions of channelUp() and channelDown().
 The implementation of DirectRemote is easy to comprehend if you keep in mind

that DirectRemote inherits the variables, constants, and methods of Remote . Although

none is explicitly declared, each variable, constant, and method is present and available

because DirectRemote inherits it from Remote . Remote is called a base class, a super-
class, or a parent class and DirectRemote a derived class , a subclass, or a child class.
 Besides the new keyword, extends , the following implementation of DirectRemote

includes two additional new keywords: protected and super , which are explained in the

subsequent discussion section.

 DirectRemote, a subclass of Remote

Direct Remote
on/off

1 2 3

4 5 6

7 8 9

0 last

ch vol

ch vol

FIGURE 12.2 A direct access remote

 1. import java.util.*;
2. public class DirectRemote extends Remote // Remote is the base class; DirectRemote a subclass
3. {
4. protected int lastChannel; // to reset to the previous channel

5. public DirectRemote() // default constructor
6. {
7. super(); // call the default constructor of remote
8. lastChannel � DEFAULT_CHANNEL; // DEFAULT_CHANNEL inherited from Remote
9. }

10. public DirectRemote(int ch, int vol, int last) // three-argument constructor
11. {
12. super(ch, vol); // a call to the two-argument constructor of Remote
13. lastChannel � last;
14. }

15. public void channelUp() // overrides the channelUp() method of Remote
16. {
17. lastChannel � channel;

sim23356_ch12.indd 528sim23356_ch12.indd 528 12/15/08 6:51:43 PM12/15/08 6:51:43 PM

 Chapter 12 Inheritance 529

18. super.channelUp(); // a call to the channelUp() method of Remote
19. }

20. public void channelDown () // overrides the channelDown() method of Remote
21. {
22. lastChannel � channel;
23. super.channelDown(); // a call to the channelDown() method of Remote
24. }

25. public void setChannel(int ch)
26. {
27. lastChannel � channel;
28. channel � ch;
29. }

30. public void last() // sets channel to previously viewed channel
31. {
32. int temp � channel;
33. channel � lastChannel;
34. lastChannel � temp;
35. }

36. public void menu() // the user interface
37. {
38. Scanner input � new Scanner(System.in);
39. String choice;
40. System.out.println("POWER ON");
41. display(); // method inherited from Remote
42. do
43. {
44. System.out.println("Channel up: �");
45. System.out.println("Channel down: �");
46. System.out.println("Volume up: ��");
47. System.out.println("Volume down: ��");
48. System.out.println("Last channel: � � ");
49. System.out.println("Enter channel number: ");
50. System.out.println("Power off o");
51. System.out.print("Choose: ");
52. choice � input.next();
53. if (choice.equals("�"))
54. channelUp(); // overrides the Remote methode
55. else if (choice.equals("�"))
56. channelDown(); // overrides the Remote method
57. else if (choice.equals("��"))
58. volumeUp(); // inherited from Remote
59. else if (choice.equals("��"))
60. volumeDown(); // inherited from Remote
61. else if (choice.equals("� � "))
62. last(); // resets channel to previously viewed channel
63. else if (!choice.equals("o")) // choice is a number or invalid
64. {
65. int ch � getChannel(choice);
66. if (ch �� 1 && ch � � 200) // if valid channel
67. setChannel(ch);
68. }
69. display();
70. } while (! choice.equals("o"));
71. System.out.println("POWER OFF");
72. }

73. private int getChannel(String ch) // a helper method

sim23356_ch12.indd 529sim23356_ch12.indd 529 12/15/08 6:51:44 PM12/15/08 6:51:44 PM

530 Part 2 Principles of Object-Oriented Programming

74. // converts a string of digits to an integer
75. // if a character of ch is not a digit returns 0
76. {
77. int number � 0;
78. for (int i � 0; i � ch.length(); i��)
79. {
80. char digit � ch.charAt(i);
81. if (digit � '9' || digit � '0')
82. return 0;
83. number � 10 * number � (digit � '0');
84. }
85. return number;
86. }

87. public static void main(String[] args)
88. {
89. DirectRemote remote � new DirectRemote();
90. remote.menu();
91. }
92. }

 Output
 Instantiation of a DirectRemote object produces the following output:

 POWER ON

Channel: 2
Volume: 5

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Last channel: � �
Enter channel number:
Power off o
Choose: 16

Channel: 16
Volume: 5

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Last channel: � �
Enter channel number:
Power off o
Choose: 12

Channel: 12
Volume: 5

sim23356_ch12.indd 530sim23356_ch12.indd 530 12/15/08 6:51:44 PM12/15/08 6:51:44 PM

 Chapter 12 Inheritance 531

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Last channel: � �
Enter channel number:
Power off o
Choose: � �

Channel: 16
Volume: 5

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Last channel: � �
Enter channel number:
Power off o
Choose: ��

Channel: 16
Volume: 6

Channel up: �
Channel down: �
Volume up: ��
Volume down: ��
Last channel: � �
Enter channel number:
Power off o
Choose: o

Channel: 16
Volume: 6

POWER OFF

 Discussion At last, we explain the keyword protected .

The access modifi er protected falls between public and private.

• A private variable or method is visible only to its defi ning class.

• A public variable or method is visible to any class.

• A protected variable or method is visible to its defi ning class and all its subclasses,

as well as any other classes in the same package.

 Because the instance variables, channel and volume , of the base class Remote are

 protected , they are visible to the derived class DirectRemote . DirectRemote inherits these

attributes from parent Remote and has access to channel and volume . If volume and channel

sim23356_ch12.indd 531sim23356_ch12.indd 531 12/15/08 6:51:45 PM12/15/08 6:51:45 PM

532 Part 2 Principles of Object-Oriented Programming

were declared private in Remote , they would not be visible to DirectRemote , and DirectRemote

would not be able to alter these variables except via getter and setter methods.

 The public methods of Remote are also inherited by DirectRemote —well, mostly.

Notice that both Remote and DirectRemote implement channelUp(), channelDown() ,
and menu(). DirectRemote overrides Remote ’s version of these methods. That is,

 DirectRemote has its own versions of these methods that are different from Remote ’s

version.

A subclass inherits all public and protected methods of a base class unless the subclass

overrides a method, thus providing its own implementation.

 There is one notable exception to the inheritance rule for methods.

A subclass does not inherit the constructors of the base class.

 The constructors of a base class are not considered constructors of a subclass. This is

explained in more detail in the following line-by-line discussion.

 Line 2: The phrase DirectRemote extends Remote indicates that Remote is the

base class and DirectRemote a subclass. DirectRemote inherits from Remote.

 Line 4: DirectRemote declares an additional instance variable, lastChannel with

 protected access. Thus, any class that extends DirectRemote inherits lastChannel .
The variable lastChannel is declared in DirectRemote and is not an attribute of

 Remote , the parent class. A Remote object knows nothing of lastChannel.

 Lines 5–14: The statements contained on lines 5–14 defi ne a default constructor

and a two-argument constructor for DirectRemote . As mentioned previously, a

child class does not inherit the constructors of the parent. However, a child class

may invoke a parent constructor using the keyword super as shown on lines 7

and 12:

 super() calls the default constructor of Remote (line 7), and

 super(ch, vol) calls the two-argument constructor of Remote (line 12).

If super is used, then it must be the fi rst statement of a constructor.

 Finally, we note that if a base class constructor is not explicitly called using

 super , the default constructor of the base class is automatically invoked. In this

case, if the default constructor of the base class does not exist, a compilation

error results.

 Lines 15–19: Because lastChannel (defi ned in DirectRemote) must be reset each

time the channel is changed, the channelUp() method inherited from Remote is

not suitable. A new channelUp() method overrides the channelUp() method of

 Remote . This version of channelUp() fi rst stores the value of the current channel

 (channel) in the instance variable lastChannel and then invokes the channelUp()
method of the base class with the keyword super

 super.channelUp(),

which increments channel , provided channel is currently less than MAX_CHANNEL.
 You may wonder why not increment channel directly. Why bother calling

the channelUp() method of Remote ? A call to channelUp() of Remote is safer and

more robust than directly accessing the data of Remote . If the implementation of

 Remote changes, as long as Remote supplies a channelUp() method, no change

sim23356_ch12.indd 532sim23356_ch12.indd 532 12/15/08 6:51:45 PM12/15/08 6:51:45 PM

 Chapter 12 Inheritance 533

to channelUp() of DirectRemote is necessary. This is discussed in more detail in

Section 12.3.

 Lines 20–24: As with channelUp() , this method overrides the corresponding

channelDown() method of Remote . Notice the call to channelDown() of the parent

class: super.channelDown().

 Lines 25–29: These lines defi ne a setter method that sets channel.

 Lines 30–35: The last() method swaps channel with lastChannel , making the

current channel the previously viewed channel.

 Lines 36–72: The menu() method presents the user with a menu of options that

correspond to the buttons on the remote unit of Figure 12.2 . When the user makes

a choice, the corresponding button is “pressed.” Notice that after every choice,

display() shows the current values of the instance variables channel and volume .

DirectRemote inherits display() from Remote .

 Lines 73–86: The method

 int getChannel(String ch)

is a helper method with private access. Thus, the method is not accessible outside

of the class. This method accepts a string version of the channel number and

returns the channel number as an integer. If the string ch contains characters that

do not represent digits, the method returns the invalid channel, 0.

 Figure 12.3 shows the attributes and methods of both classes.

int channel
int volume

Remote()
Remote(int c, int v)
void volumeUp()
void volumeDown()
void channelUp()
void channelDown()
void display()
void menu()

DirectRemote

Remote

int lastChannel

DirectRemote()
DirectRemote(int c, int v, int i)
void channelUp()
void channelDown()
void setChannel(int ch)
void last()
void menu()
int getChannel(String ch)

FIGURE 12.3 DirectRemote extends Remote

sim23356_ch12.indd 533sim23356_ch12.indd 533 12/15/08 6:51:46 PM12/15/08 6:51:46 PM

534 Part 2 Principles of Object-Oriented Programming

 Examples 12.1 and 12.2 illustrate many of the concepts of inheritance. We summarize the

key points:

• The keyword extends signifi es an inheritance relationship.

 For example, DirectRemote extends Remote means that DirectRemote inherits from

 Remote and that Remote is a parent class of DirectRemote . The Remote class is called

the base class , superclass , or parent class , and DirectRemote is the derived class , sub-
class , or child class .

• The access modifi er protected is used in a base class. A protected variable or method is

visible to any subclass or any class in the same package. A private variable or method

of a base class is not visible to a subclass. However, if the base class provides getter

and setter methods for private variables, a subclass can access private variables defi ned

in the base class via these methods.

 For example, if Remote assigns private access to channel, DirectRemote can, nonethe-

less, access channel , provided Remote includes methods such as

 public int getChannel() and public void setChannel(int ch)
{ {
 return channel; channel � ch;
} }

• A derived class inherits the data and methods of the base class that are not pri-

vate. Additionally, a derived class can override or redefi ne an inherited base class

method.

 For example, DirectRemote can override a Remote method and provide its own

implementation. In particular, DirectRemote overrides menu(), channelUp() , and

 channelDown() , which are defi ned in Remote . Note, however, that a subclass may not

override a public method with a private access modifi er. In general, you may not assign

more restrictive access privileges to an overridden method.

• A derived class can include new methods and variables that are not part of the base

class.

 For example, DirectRemote defi nes the instance variable lastChannel and the method

 setChannel() , which are not inherited from Remote . Notice that lastChannel has pro-

tected access. Thus, any class that extends DirectRemote inherits lastChannel.

• Constructors are not inherited. However, the constructors of a derived class

can invoke the constructors of the parent class with the keyword super , that is,

 super() or super(…) . If a derived class calls a base class constructor with the key-

word super , the call must occur before any other code is executed in the base class

constructor.

• If a derived class does not make an explicit super(…) call to a base class constructor,

the default constructor of the base class is automatically invoked. If the base class

defi nes constructors but not a default constructor and the derived class does not make

an explicit super(…) call, a compilation error occurs. The derived class cannot rely on

the automatic invocation of the default constructor bescause the default constructor of

the parent does not exist. It is, therefore, a good practice to defi ne a default constructor

whenever you defi ne any constructor.

• If a derived class overrides a method x() , the base class version of x() is still available

to the derived class and can be invoked using the keyword super :

 super.x().

sim23356_ch12.indd 534sim23356_ch12.indd 534 12/15/08 6:51:47 PM12/15/08 6:51:47 PM

 Chapter 12 Inheritance 535

 For example, both Remote and DirectRemote implement channelUp(). The call

 super.channelUp()

 in DirectRemote invokes the channelUp() method of Remote.

 12.3 INHERITANCE AND ENCAPSULATION

 Inheritance brings certain risks. In a very real way, inheritance violates encapsulation and

information hiding: the DirectRemote class depends on the implementation of Remote . If

 Remote ’s instance variable channel is renamed, altered, or eliminated, the DirectRemote

method setChannel() fails because setChannel() accesses channel directly. On the other

hand, channelDown() of DirectRemote functions correctly as long as the interface of

 Remote remains unchanged. The channelDown() (or channelUp()) method of DirectRemote

does not directly manipulate the variable channel but instead uses a method call:

 super.channelDown().

Indeed, had Remote provided a setter method for channel , the DirectRemote method

 setChannel() would be more secure.

If a base class changes some implementation, a subclass that works today may break

tomorrow.

 Careful design minimizes these potential dangers, but the possibility for disaster always

exists. This does not mean that you should avoid inheritance. Inheritance is a powerful and

useful concept. However, you should be aware that inheritance has its dangers and pitfalls.

 12.4 THE IS-A RELATIONSHIP: A DirectRemote IS-A R emote

 Inheritance allows the creation of a more specialized class from a base class. A derived

class extends the attributes and/or functionality of the base class. A derived class has

everything that the base class has, and more. Well, not everything—constructors are not

inherited. Inheritance enables code reuse.

The relationship between the base class and a derived class is termed an is-a relation-

ship because every derived class is-a (kind of) superclass.

 For example, a DirectRemote is-a Remote in the sense that a DirectRemote object can do

everything that a Remote object can do. A DirectRemote object has all the attributes and

functionality of a Remote object, and more.

When deciding whether or not to extend a class, you should determine whether or

not an is-a relationship exists. If not, inheritance is probably inappropriate.

 12.5 INHERITANCE VIA FACTORING: MOVIES AND PLAYS

 We now move from TV to fi lm and theater. Consider a Film class with attributes:

• title,

• director,

• screenwriter, and

• total box offi ce gross, in millions of dollars adjusted for infl ation.

sim23356_ch12.indd 535sim23356_ch12.indd 535 12/15/08 6:51:47 PM12/15/08 6:51:47 PM

536 Part 2 Principles of Object-Oriented Programming

The methods of a Film class might include

• constructors,

• getters and setters, and

• a method that displays the values of each attribute.

 Like a Film object, a Play object has

• a title,

• a director, and

• a writer or playwright.

Additionally, a Play object also holds the number of performances of a play. The Play

methods are

• getter and setter methods, and

• a method that displays the values of each attribute.

 Figure 12.4 shows the attributes and methods of both classes.

 Play Film

 String title
 String director
 String writer
 int performances

Play()
Play(String t, String d, String w, int p)
String getTitle()
String getDirector()
String getWriter()
int getPerformances()
void setTitle(String title)
void setDirector(String director)
void setWriter(String writer)

void setPerformances(int p)
void display()

 String title
 String director
 String writer
 int boxOffi ceGross

Film()
Film (String t, String d, String w, int g)
String getTitle()
String getDirector()
String getWriter()
int getBoxOffi ceGross()
void setTitle(String title)
void setDirector(String director)
void setWriter(String writer)
void setboxOffi ceGross(int g)

void display()

FIGURE 12.4 A Play class and a Film class

 The Play class and the Film class are very similar and share many of the same attributes

and methods. In fact, they are more the same than different. Should one class extend the

other? On one hand, a Play is-not-a Film and a Film is-not-a Play . On the other hand, Play

and Film share many of the same attributes. Couldn’t these attributes and methods be

passed from one class to the other?

 To exploit code reuse, we factor out what is common to Film and Play and design a new

class, Production , so that Production has all the attributes and methods common to both Film

and Play . Moreover, a Film is-a Production and similarly a Play is-a Production . Production

is a base class designed for inheritance and not instantiation. Film extends Production , and

 Play extends Production. The raison d’etre for Production is inheritance, not instantiation.

 Figure 12.5 shows the Production hierarchy and Example 12.3 gives an implementation.

sim23356_ch12.indd 536sim23356_ch12.indd 536 12/15/08 6:51:48 PM12/15/08 6:51:48 PM

 Chapter 12 Inheritance 537

Production

Play Film

String title
String director
String writer

Production()
Production(String t, String d, String w)
String getTitle()
String getDirector()
String getWriter()
void setTitle(String title)
void setDirector(String director)
void setWriter(String writer)
void display()

int performances

Play()
Play(String t, String d, String w, int p)
String getPerformances()
void setPerformances(int p)
void display()

int boxOfficeGross

Film()
Film(String t, String d, String w, int g)
String getYearOfRelease()
String getBoxOfficeGross()
void setBoxOfficeGross(int g)
void display()

FIGURE 12.5 Play extends Production; Film extends Production

 EXAMPLE 12.3 Problem Statement Implement Production as well as subclasses Play and Film as

shown in Figure 12.5

 Java Solution The following Production class serves as a parent or base class.

 Production defi nes the attributes and methods common to Film and Play . Following the

implementation of Productio n are the two subclasses Film and Play. The methods are

simple and should require no explanation.

 1. public class Production
2. {
3. protected String title;
4. protected String director;
5. protected String writer;
6. public Production() // default constructor
7. {
8. title � "";
9. director � "";
10. writer � "";
11. }

12. public Production(String t, String d, String w) // three argument constructor
13. {
14. title � t;
15. director � d;
16. writer � w;
17. }

sim23356_ch12.indd 537sim23356_ch12.indd 537 12/15/08 6:51:48 PM12/15/08 6:51:48 PM

538 Part 2 Principles of Object-Oriented Programming

18. public String getTitle()
19. {
20. return title;
21. }

22. public String getDirector()
23. {
24. return director;
25. }

26. public String getWriter()
27. {
28. return writer;
29. }

30. public void setTitle(String t)
31. {
32. title � t;
33. }

34. public void setDirector(String d)
35. {
36. director � d;
37. }

38. public void setWriter(String w)
39. {
40. writer � w;
41. }

42. public void display()
43. {
44. System.out.println("Production class");
45. }
46. }

47. public class Play extends Production

48. {
49. protected int performances;

50. public Play()
51. {
52. super(); // call Production default constructor

53. performances � 0;
54. }

55. public Play(String t, String d, String w, int p)
56. {
57. super(t, d, w); // call Production constructor

58. performances � p;
59. }

60. public int getPerformances()
61. {
62. return performances;
63. }

64. public void setPerformances(int p)

sim23356_ch12.indd 538sim23356_ch12.indd 538 12/15/08 6:51:49 PM12/15/08 6:51:49 PM

 Chapter 12 Inheritance 539

65. {
66. performances � p;
67. }

68. public void display()
69. {
70. System.out.println("Title: " � title);
71. System.out.println("Director: " � director);
72. System.out.println("Playwright: " � writer);
73. System.out.println("Performances: " � performances);
74. }
75. }

76. public class Film extends Production

77. {
78. protected int boxOfficeGross;

79. public Film()
80. {
81. super(); // call Production default constructor

82. boxOfficeGross � 0;
83. }

84. public Film(String t, String d, String w, int g)
85. {
86. super(t, d, w); // call Production constructor

87. boxOfficeGross � g;
88. }

89. public int getBoxOfficeGross()
90. {
91. return boxOfficeGross;
92. }

93. public void setBoxOfficeGross(int g)
94. {
95. boxOfficeGross � g;
96. }

97. public void display ()
98. {
99. System.out.println("Title: " � title);
100. System.out.println("Director: " � director);
101. System.out.println("Screenwriter: " � writer);
102. System.out.println("Total gross: $" � boxOfficeGross � " million");
103. }
104. }

 Output The demonstration class

 1. public class ThatsEntertainment
2. {
3. public static void main(String[] args)
4. {
5. Film film � new Film("Titanic", "James Cameron",
 "James Cameron", 2245);

sim23356_ch12.indd 539sim23356_ch12.indd 539 12/15/08 6:51:50 PM12/15/08 6:51:50 PM

540 Part 2 Principles of Object-Oriented Programming

6. Play play � new Play("Bus Stop", "Harold Clurman", "William Inge", 478);
7. film.display();
8. System.out.println();
9. play.display();
10. }
11. }

produces the following output.

 Title: Titanic
Director: James Cameron
Screenwriter: James Cameron
Total gross: $2245 million

Title: Bus Stop
Director: Harold Clurman
Playwright: William Inge
Performances: 478

Discussion Subclasses Film and Play inherit the data and methods of the base

class Production . Indeed, Film is-a Production and Play is-a Production . Both Play
and Film extend Production . Each overrides display() , and each has an additional

instance variable. Because Production is designed for inheritance and not for imple-

mentation, the display() method of Production does no more than print the name of

the class, “Production class”. The method is not strictly necessary; it is there to be

overridden.

 12.6 INHERITANCE VIA Abstract CLASSES

 The Production class is a base class designed for inheritance and not instantiation. A Film
is-a Production and a Play is-a Production . We might instantiate Play and Film and thus cre-

ate Film and Play objects, but we do not create Production objects. A Production is abstract,

a Play or Film is concrete.

 Java’s notion of an abstract class is very precise:

An abstract class is a class that cannot be instantiated. However, an abstract class can

be inherited.

 In general, an abstract class has the following properties:

• The keyword abstract denotes an abstract class. For example,

 public abstract class Production

 specifi es that Production is an abstract class.

• An abstract class cannot be instantiated. You cannot create an object of an abstract class.

• An abstract class can be inherited by other classes. Indeed, an abstract class is designed

for inheritance, not instantiation.

• An abstract class may contain abstract methods. An abstract method is a method with

no implementation. For example, the method

 public abstract void display() ; // method has no body

 is an abstract method. Notice the keyword abstract and the terminal semicolon.

sim23356_ch12.indd 540sim23356_ch12.indd 540 12/15/08 6:51:50 PM12/15/08 6:51:50 PM

 Chapter 12 Inheritance 541

• If an abstract class contains abstract methods, those methods must be overridden in

any non-abstract subclass; otherwise the subclass is also abstract.

• All abstract classes and methods are public.

• To be of any use, an abstract class must be extended.

 The Production class of Example 12.3 is an excellent candidate for an abstract class.

Production is designed for inheritance and not instantiation. As an abstract class, Production
has the following form:

 public abstract class Production
{
 // all attributes and methods, except display(), as in Example 12.3

 public abstract void display(); // Look! No implementation
}

 The keyword abstract in the heading indicates that Production cannot be instantiated;

Production is designed solely as a base class. Also, display() is tagged an abstract method:

display() has no implementation. Contrast this with the display() method used in the non-

abstract version of the Production class.

 public void display()
{
 System.out.println("Production class");
}

 This “dummy” method is no longer necessary.

 Every non-abstract or concrete subclass that extends Production must implement the

abstract method display(). Thus, any non-abstract subclass of Production is guaranteed to

have a display() method. That’s the contract. A subclass that does not implement every

abstract method of its parent class is also abstract and cannot be instantiated. Adhering

to this rule, both Play and Film , being non-abstract subclasses of Production , implement

display().

 12.7 EXTENDING THE HIERARCHY

 A Musical is-a Play with songs. A Musical object has all the attributes of a Play object as

well as a composer and a lyricist. Example 12.4 demonstrates how easily a Musical class

can be implemented by extending Play and reusing the methods of Play .

 EXAMPLE 12.4 Problem Statement Implement Musical as a subclass of Play . Include new attributes

 String composer , and
 String lyricist

along with getter and setter methods. Override display() to include all attributes of a

 Musical object.

 Java Solution Most of the work has been done. Musical inherits the attributes and

methods of Play and adds just a few of its own.

 1. class Musical extends Play
2. {

sim23356_ch12.indd 541sim23356_ch12.indd 541 12/15/08 6:51:51 PM12/15/08 6:51:51 PM

542 Part 2 Principles of Object-Oriented Programming

3. protected String composer;
4. protected String lyricist;

5. public Musical() // default constructor
6. {
7. super(); // invokes the default constructor of Play

8. composer � "";
9. lyricist � "";
10. }

11. public Musical(String t, String d, String w, String c, String l, int p)
12. // t(itle), d(irector), w(riter), c(omposer), l(yricist), p(erformances)
13. {
14. super(t, d, w, p); // invokes the 4-argument constructor of Play

15. composer � c;
16. lyricist � l;
17. }

18. public String getComposer()
19. {
20. return composer;
21. }

22. public void setComposer(String c)
23. {
24. composer � c;
25. }

26. public String getLyricist()
27. {
28. return lyricist;
29. }

30. public void setLyricist(String l)
31. {
32. lyricist � l;
33. }

34. public void display() // overrides the display() method of Play

35. {
36. System.out.println("Title: " � title);
37. System.out.println("Director: " � director);
38. System.out.println("Playwright: " � writer);
39. System.out.println("Composer: " � composer);
40. System.out.println("Lyricist: " � lyricist);
41. System.out.println("Performances: " � performances);
42. }
43. }

Discussion With no trouble at all, Musical has joined the Production hierarchy. Remem-

ber, Musical does not inherit Play ’s constructors or any other constructors. Access to

 Play ’s constructors is accomplished via the super keyword. The calls to super() on lines

7 and 14 invoke the constructors of Play .

 The Production hierarchy is pictured in Figure 12.6 .

sim23356_ch12.indd 542sim23356_ch12.indd 542 12/15/08 6:51:52 PM12/15/08 6:51:52 PM

 Chapter 12 Inheritance 543

 12.8 UPCASTING AND DOWNCASTING

 A Musical is-a Play and, as such, Java considers a Musical object a Play object. Accord-

ingly, the following assignments are valid:

Play play � new Musical ("Sweeny Todd", "Harold Prince", "Hugh Wheeler",
 "Stephen Sondheim", " Stephen Sondheim", 557);

or

Play play;
Musical musical � new Musical ("South Pacific", "Joshua Logan", "Oscar Hammerstein",
 "Richard Rodgers", " Oscar Hammerstein", 1925);
play � musical;

 In both cases, a Play reference refers to a Musical object. This type of assignment is called

 upcasting.

Upcasting is a language feature that allows a base-type reference to refer to an object

of a derived type.

 Thus any object of a class derived from Play (e.g., Musical) is also considered a Play
object.

Objects of a derived type may be considered objects of the base type.

 And, even though Production is an abstract class that cannot be instantiated, any type

derived from Production may be upcast to Production . For example,

 Production p � new Film(),
Production q � new Play(), and

Production r � new Musical()

are all valid assignments, but Production s � new Production() is not. A Film is-a Production ;

a Play is-a Production; and a Musical is-a Production , but Production is an abstract class and

cannot directly be instantiated.

 In contrast to upcasting, the following segment generates a compiler error.

 Play play � new Play();
Musical musical � play;

Film Play

Musical

Production
(abstract)

FIGURE 12.6 The Production hierarchy

sim23356_ch12.indd 543sim23356_ch12.indd 543 12/15/08 6:51:52 PM12/15/08 6:51:52 PM

544 Part 2 Principles of Object-Oriented Programming

 The reference musical refers to a Musical object and a Play object does not qualify as a

 Musical object. Every Play is not a Musical . However, under certain conditions, an explicit

 downcast is permissible.

 Downcasting means casting an object to a derived or more specialized type.

 Consider the following code fragment:

 1. Play play � new Musical();
2. Musical musical � (Musical)play;
3. musical.getComposer();

 We examine the code line by line:

 Line 1 : The variable play is a Play reference. A Musical is-a Play . There is no

problem here; the assignment is legal. This is an example of upcasting. Note that

a Musical object has been instantiated.

 Line 2: The variable musical is a Musical reference. The reference play is a Play

reference which, in this case, refers to a Musical object. The assignment is legal
with an explicit downcast . As a Play reference, play is unaware of its status as a

 Musical unless explicitly downcast to Musical . The statement

 Musical musical � play;

 without the explicit downcast generates an error. The downcast informs the com-

piler that play actually refers to a Musical object.

 Line 3: The variable musical is a Musical reference and getComposer() is a

 Musical method. There is no problem here.

 What do you think happens when the following segment is compiled?

 1. Play play � new Musical(…);
2. String name � play.getComposer() ;

 Again, line 1 is a valid upcast. However, the compiler complains about the method call on

line 2. To the compiler, play is a Play reference and Play has no getComposer() method. So

the compiler generates an error:

 cannot find symbol
symbol : method getComposer()
location: class Play
 String name � play.getComposer();

 Yet, because a Musical object is instantiated (line 1), an explicit downcast informs the com-

piler that play refers to a Musical object and fi xes the problem:

 Play play � new Musical(…);
String name � ((Musical) play).getComposer() ;

 Here is another illustration using an array of Production references.

 Production productions[] � new Production[3]; // holds 3 Production references
productions[0] � new Film (…);
productions[1] � new Play(…);
productions[2] � new Musical(…);

sim23356_ch12.indd 544sim23356_ch12.indd 544 12/15/08 6:51:53 PM12/15/08 6:51:53 PM

 Chapter 12 Inheritance 545

 Each of these assignments is legal: Film is-a Production , Play is-a Production , and Musical
 is-a Production .

 On the other hand, the method calls

 productions[0].getBoxOfficeGross() and
productions[2].getComposer()

generate errors . The references productions[0] and productions[2] know nothing of the

methods getBoxOffi ceGross() and getComposer(). Nonetheless, a downcast fi xes these

errors and produces the desired results:

 ((Film)productions[0]).getBoxOfficeGross()
((Musical)productions[2]).getComposer()

 To invoke a derived class method using a base class reference, a downcast is necessary.

 Finally, note that Java does not allow the downcast

 ((Film)productions[2]).getBoxOfficeGross()

since productions[2] refers to a Musical object, which is not a descendent of Film .

 12.8.1 A Feature of Upcasting and Downcasting
 The relationship between the base class and its derived classes is a very powerful feature of

inheritance. Yes, it is dandy that you can add new attributes and methods to the Play class,

but it is even dandier that an object of type Musical can be considered an object of type

 Play . If you can’t yet appreciate this programming muscle, with a few more tools, you will

see the real power behind this concept. Indeed, because objects of a derived type can be

considered objects of a base type, a single sorting or searching method can work with many

different types. That is, a single method can handle many different types of objects. We will

discuss this feature in detail shortly.

 12.8.2 The instanceof operator
 Like && and ||, instanceof is a boolean operator that requires two operands. The form of

the instanceof operator is

 object instanceof class

where object is any object and class is any class name.

 If object belongs to or is derived from class , then instanceof returns true , otherwise

 instanceof returns false. For example, consider the following declarations:

 Play play � new Play();
Musical musical � new Musical();
Film film � new Film();

Then

 film instanceof Film returns true,
film instanceof Production returns true,
musical instanceof Play returns true,

sim23356_ch12.indd 545sim23356_ch12.indd 545 12/15/08 6:51:54 PM12/15/08 6:51:54 PM

546 Part 2 Principles of Object-Oriented Programming

musical instanceof Film returns false, and

 musical instanceof Production returns true.

The instanceof operator can help a programmer to avoid casting errors.

 The following code fragment uses the instanceof operator to check whether or not an object

belongs to the Musical class before invoking the getComposer() method:

 if (productions[2] instanceof Musical)
 string name � ((Musical)productions[2]).getComposer();
else...

The following example illustrates the instanceof operator within the context of a class.

 Problem Statement Some fi lms gross hundreds of millions of dollars and some plays

seem to run forever. Write a single method,

 int getData(Production p)

that returns the box offi ce gross for a Film , or the number of performances for a Play . If

an object p is neither a Film nor a Play , then getData(p) returns −1.

 Java Solution The reference, p , passed to getData(...) refers to a Production object,

which can be either a Film object or a Play object. Consequently, getData(...) accepts a

Film reference, a Play reference, or even a Musical reference, because each of these is-a
Production . The getData(...) method determines whether its parameter refers to a Film or

a Play by utilizing the instanceof operator.

 The following class includes getData(...) along with a main(...) method that invokes

getData(...) .

 1. public class InstanceOfDemo
2. {
3. public static int getData(Production p) // Parameter is Production reference
4. {
5. if (p instanceof Film)
6. return ((Film)p).getBoxOfficeGross(); // note the downcast

7. else if (p instanceof Play)
8. return ((Play)p).getPerformances(); // note the downcast

9. else
10. return –1;
11. }

12. public static void main(String[] args)
13. {
14. Production productions[] � new Production[3];
15. productions[0] � new Film("Titanic", "James Cameron", "James Cameron", 2245);
16. productions[1] � new Play("Rumors", "Gene Saks", "Neil Simon", 535);
17. productions[2] � new Musical("Pippin", "Bob Fosse", "Roger O. Hirson",
 "Stephen Schwartz", "Stephen Schwartz", 1944);
18. for (int i � 0; i � 3; i��)
19. {
20. System.out.print(productions[i].getTitle() � ": " � getData(productions[i]));
21. if (productions[i] instanceof Play)
22. System.out.println(" performances");
23. else

 EXAMPLE 12.5

sim23356_ch12.indd 546sim23356_ch12.indd 546 12/15/08 6:51:54 PM12/15/08 6:51:54 PM

 Chapter 12 Inheritance 547

24. System.out.println(" million dollars");
25. }
26. }
27. }

 A main(...) method is included for illustrative purposes. The class produces the fol lowing

output:

 Output
 Titanic: 2245 million dollars
Rumors: 535 performances
Pippin: 1944 performances

 Discussion We examine the code, line by line.

Line 3: The argument passed to getData(...) is a Production reference. A Film

reference, a Play reference, and a Musical reference are all Production references.

Upcasting is always permissible.

Lines 5–6: If the instanceof operator returns true , then the object belongs to the

Film class and consequently can invoke getBoxOffi ceGross() . However, the object

must be specifi cally downcast to Film because Production knows nothing of

money.

Lines 7–8: These lines are similar to lines 5 and 6, but they use Play rather than

Film .

 12.9 EVERYTHING INHERITS: THE Object CLASS

 The package java.lang , which is automatically imported into every application, contains

Java’s Object class. That’s Object with an uppercase O .

Every class is a subclass of Object. Every class is derived from Object.

 Every class extends Object . Math, String , and Scanner all extend Object . Play , Film , Musical ,
 Remote , and DirectRemote also extend Object . Film is-an Object ; Play is-an Object . There

is no escape; everything is-an Object . Object is the mother of all classes.

 Being a descendent of Object brings several familial privileges.

 • Every class inherits methods

 public boolean equals(Object object) , and

 public String toString()

 from Object .

 • Because every class extends Object , every class can be upcast to Object .

 For example,

 Object remote � new Remote();
Object film � new Film();

are both legal assignments: Remote is-an Object and Film is-an Object .
 Example 12.6 shows that a single method can handle objects whose only common

ancestor is Object .

sim23356_ch12.indd 547sim23356_ch12.indd 547 12/15/08 6:51:55 PM12/15/08 6:51:55 PM

548 Part 2 Principles of Object-Oriented Programming

 Problem Statement Design a method, size(Object z) , that accepts a single reference

argument, z . If z refers to a Rectangle then size(z) returns its area, and if z is a reference

to a Cube then size(z) returns its volume. If z refers to an object of any other class, then

 size(z) returns −1.

 Java Solution Because both Rectangle and Cube extend Object , the method

 int size(Object z)

can accept a Rectangle reference or a Cube reference. In fact, size(...) can accept any ref-

erence: Rectangle, Cube, Dodecahedron , or FlyingMonkey . Every class extends Object ;
every reference can be upcast to Object .
 The following class includes a static method size(...) that accepts a reference to any

object.

 1. public class Size
2. {

3. public static int size (Object z) // notice that z refers to Object

4. {

5. if (z instanceof Rectangle)

6. return ((Rectangle)z).area(); // downcast is necessary

7. else if (z instance of Cube)

8. return ((Cube)z).volume(); // downcast is necessary

9. else
10. return �1 ;
11. }

 The following Rectangle and Cube classes encapsulate the properties of a rectangle and

a cube. They share no ancestor other than Object .
 EXAMPLE 12.6

 1. public class Rectangle
2. {
3. protected int length;
4. protected int width;
5. public Rectangle()
6. {
7. length � 0;
8. width � 0;
9. }

10. public Rectangle (int x, int y)
11. {
12. length � x;
13. width � y;
14. }

15. public int area()
16. {
17. return length * width;
18. }
19. }

 1. public class Cube
2. {
3. protected int length;
4. protected int width;
5. private int height;
6. public Cube()
7. {
8. length � 0;
9. width � 0;
10. height � 0;
11. }

12. public Cube(int x, int y, int z)
13. {
14. length � x;
15. width � y;
16. height � z;
17. }

18. public int volume()
19. {
20. return length * width * height;
21. }
22. }

sim23356_ch12.indd 548sim23356_ch12.indd 548 12/15/08 6:51:56 PM12/15/08 6:51:56 PM

 Chapter 12 Inheritance 549

12. public static void main(String[] args)
13. {
14. Cube cube � new Cube(3, 4, 5);
15. Rectangle rectangle � new Rectangle(3, 4);
16. System.out.println("Rectangle has size " � size(rectangle));
17. System.out.println("Cube has size " � size(cube));
18. }
19. }

 Output
 Rectangle has size 12
Cube has size 60

 Discussion The argument z of size(z) refers to an Object . Because every object (low-

ercase “o”) is-an Object (uppercase “O”), any reference can be passed to size(...). That

is, any object reference can be upcast to Object .

 The size(...) method uses the instanceof operator to determine whether or not z refers to

a Rectangle object or a Cube object (lines 5 and 7). In each case, to call the appropriate

method, a downcast is necessary (lines 6 and 8).

 12.9.1 Inheriting from Object : The equals (Object p) Method
 Every class inherits

 boolean equals(Object p)

from Object . The equals(...) method accepts an Object reference p and returns true or

false.
 Like the �� operator, the equals (...) method tests whether or not two references are

the same. The following code segment utilizes the Rectangle class of Example 12.6 in

conjunction with the equals (...) method inherited from Object :

 Rectangle x � new Rectangle(3, 4);
Rectangle y � new Rectangle(3, 4);
Rectangle z � x; // z and x refer to the same Rectangle object
System.out.println("x equals y: " � x.equals(y));
System.out.println("x equals z: " � x.equals(z));

 Figure 12.7 shows each reference.

 The segment produces the following output:

 x equals y: false
x equals z: true

 Although references x and y refer to objects with identical attributes, the addresses stored

in x and y are different. Consequently, x.equals(y) returns false . In contrast, x and z refer

to the same object.

 Every class inherits equals(...) from Object , but each class also has the option of over-

riding the inherited equals(...) . For instance, String inherits equals (...) from Object and

conveniently overrides the inherited method.

String overrides the equals(...) method with a version that compares characters,

not references.

length 3
width 4

x
z

y

Rectangle
methods

length 3
width 4

Rectangle
methods

FIGURE 12.7
Rectangle objects:
identical attributes,
different references

length 3
width 4

x
z

y

Rectangle
methods

length 3
width 4

Rectangle
methods

FIGURE 12.7
Rectangle objects:
identical attributes,
different references

sim23356_ch12.indd 549sim23356_ch12.indd 549 12/15/08 6:51:58 PM12/15/08 6:51:58 PM

550 Part 2 Principles of Object-Oriented Programming

 That is, two String s are equal if and only if both String s are composed of the same character

sequence. The following fragment contrasts the equals(...) method with the �� operator

when applied to members of String .

 1. String s � new String("Bingo!");
2. String t � new String("Bingo!");
3. System.out.println(s.equals(t)); // returns true
4. System.out.println(s �� t); // returns false

 The output that is displayed by this fragment is:

 true
false

 On line 3, the equals(...) method returns true because both strings hold identical data,

“Bingo!”. The output from line 4 is false because the �� operator checks references, and

 s and t refer to different objects. See Figure 12.8 .

Bingo!s

Bingo!t

FIGURE 12.8 Strings: s.equals(t) returns true; s �� t returns false

As a general rule, to determine whether or not two objects of a class are equal based

on some criteria other than references, a class should override

 boolean equals(Object o), which is inherited from Object.

 In Example 12.7, the Rectangle class overrides the equals(...) method with a version

that declares two Rectangle objects equal if and only if they have the same length and

width.

 Problem Statement Implement a class AnotherRectangle that extends the Rectangle

class of Example 12.6 and overrides the equals(...) method that is inherited from Object .
Implement equals(...) so that two objects belonging to AnotherRectangle are equal if

they agree in both length and width.

 Java Solution AnotherRectangle inherits attributes length and width from Rectangle

as well as the area() method.

 1. public class AnotherRectangle extends Rectangle

2. {
3. public AnotherRectangle ()
4. {
5. super(); // call default constructor of Rectangle
6. }

7. public AnotherRectangle (int x, int y)
8. {
9. super(x, y); // call the two argument constructor of Rectangle
10. }

11. public boolean equals(Object p) // override equals(..) inherited from Object

12. {

 EXAMPLE 12.7

sim23356_ch12.indd 550sim23356_ch12.indd 550 12/15/08 6:51:59 PM12/15/08 6:51:59 PM

 Chapter 12 Inheritance 551

13. if (! (p instanceof AnotherRectangle)) // p must belong to AnotherRectangle

14. {

15. System.out.println("Error: Object p must belong to AnotherRectangle");

16. System.exit(0); // terminate the application

17. }

18. return // if p is an AnotherRectangle object

19. length �� ((AnotherRectangle)p).length &&

20. width �� ((AnotherRectangle)p).width;

21. }

22. public static void main(String[] args)
23. {
24. AnotherRectangle r1 � new AnotherRectangle (3, 4);
25. AnotherRectangle r2 � new AnotherRectangle (3, 4);
26. AnotherRectangle r3 � new AnotherRectangle (5, 6);
27. System.out.println("r1.equals(r2): " � r1.equals(r2));
28. System.out.println("r1.equals(r3): " � r1.equals(r3));
29. System.out.println("r1 �� r2: " � (r1 �� r2));
30. }
31. }

 Output
 r1.equals(r2): true
r1.equals(r3): false
r1 �� r2: false

 Discussion
 Lines 11–17: The equals(...) method inherited from Object has an Object parameter.

However, in this case, Object p must also belong to the AnotherRectangle class.

Otherwise, an error message is displayed and the application exits.

 Lines 19–20: The compiler knows that o belongs to the Object class. As such, p

does not have length and width attributes. Thus, a downcast to AnotherRectangle is

required.

 Line 27: Using the overridden equals(...) method, r1 and r2 are compared. The

comparison is based on the attributes length and width . Both Rectangle objects

have length 3 and width 4, so the two objects are considered equal.

 Line 28: Using equals(...) , r1 and r3 are compared. Once again, the comparison

uses the attributes length and width . In this case, the Rectangle referenced by r1

has length 3 and width 4 and the Rectangle referenced by r3 has length 5 and width 6,

so the two objects are not considered equal.

Line 29: Finally, references r1 and r2 are compared using the �� operator.

Although r1 and r2 reference Rectangle objects that have the same length

and width , r1 and r2 refer to distinct objects and hold different addresses.

Consequently, �� returns false .

 You may be wondering, why not write an equals(...) method for AnotherRectangle as

boolean equals(AnotherRectangle x) ?

 Isn’t this simpler? Why bother overriding the inherited equals(...) method:

boolean equals(Object 0) ?

 Unlike the method of Example 12.7, a method such as

boolean equals(AnotherRectangle x)

requires no downcast. It is simpler and even more lucid.

sim23356_ch12.indd 551sim23356_ch12.indd 551 12/15/08 6:52:00 PM12/15/08 6:52:00 PM

552 Part 2 Principles of Object-Oriented Programming

 Yes, such a version of equals(...) does the job. And yes, this implementation appears

simpler. However, you will shortly see the real benefi t in overriding the equals(...) method

inherited from Object . Just wait a bit more.

 12.9.2 Inheriting from Object: The toString () Method
 Like equals(...) , every object inherits the method

 String toString()

from mother Object . Unfortunately, the inherited version of toString() is not particularly

useful. As passed down from Object , toString() returns the class name of the calling object

along with a “system number.” The following main(...) method includes a call to toString()
that is inherited by Film :

 public static void main(String[] args)
{
 Film film � new Film("Star Wars", "George Lucas", "George Lucas", 1172);
 System.out.println(film.toString());
}

 The output produced by this segment is:

 Film@82ba41

 Obviously, only the best of hackers fi nd such output enlightening, informative, or amusing.

Overriding toString() makes good sense. The following example overrides toString() so that the

string representation of a Film object gives information more useful than “ Film@82ba41 ”.

 Problem Statement Override the toString() method inherited by Production so that the

method returns the title attribute of an object in the Production hierarchy.

 Java Solution To override the toString() method that Production inherits from Object ,
include the following method in the Production class:

 1. public String toString()
2. {
3. return title ;
4. }

That’s all there is to it.

 Output The following main(...) method invokes the new version of toString() :

public static void main(String[] args)
{
 Production film � new Film("Star Wars", "George Lucas", "George Lucas", 1172);
 System.out.println(film.toString());
}

and displays the following line of text:

 Star Wars

 Discussion The new toString() method returns a String containing the title attribute of a

 Production object. Naturally, all subclasses of Production inherit this method.

 EXAMPLE 12.8

sim23356_ch12.indd 552sim23356_ch12.indd 552 12/15/08 6:52:02 PM12/15/08 6:52:02 PM

 Chapter 12 Inheritance 553

The toString() method is automatically called when a reference is passed to println().

 This means the statements

 System.out.println(film.toString());

and

 System.out.println(film);

produce the same output. That’s just one more nice convenience provided compliments of

Java.

 Finally, if you override toString() so that the method returns the current values of a

few critical instance variables, then some well-placed print() statements can simplify and

expedite debugging.

 12.10 INTERFACES

 The English word interface can mean anything from the buttons on a TV to the public meth-

ods of a class. However, in Java, the term interface has a very specifi c meaning.

An interface is a named collection of static constants and abstract methods. An inter-

face specifi es certain actions or behaviors of a class but not their implementations.

 For example, the following interface, Geometry , consists of one static constant and two

abstract methods.

 public interface Geometry
{
 public static final double PI � 3.14159;
 public abstract double area();
 public abstract double perimeter();
}

 Unlike a class,

 • all methods of an interface are public ,

 • all methods of an interface are abstract , that is, there are no implementations at all,

and

 • an interface has no instance variables.

Like an abstract class, an interface cannot be instantiated. In contrast to an abstract
class, a class does not extend an interface. Instead, a class implements an interface.

 Example 12.9 includes three simple classes that implement the Geometry interface.

 EXAMPLE 12.9 Problem Statement Defi ne Circle, Square , and Triangle classes each of which imple-

ments the Geometry interface.

 Java Solution Because the following classes implement Geometry , each class is

required to implement the area() and perimeter() methods. For simplicity, the usual

 getter and setter methods are not included.

sim23356_ch12.indd 553sim23356_ch12.indd 553 12/15/08 6:52:03 PM12/15/08 6:52:03 PM

554 Part 2 Principles of Object-Oriented Programming

 Discussion The three classes do not extend Geometry ; each implements Geometry .

 Geometry is not a class; Geometry is an interface and a class implements an inter-

face. Because each class implements Geometry , each class must implement both of

 Geometry ’s methods, area() and perimeter(). The constant PI used in Circle is defi ned

in the Geometry interface.

1. public class Circle implements

Geometry

2. {
3. private double radius;

4. public Circle()
5. {
6. radius � 0.0;
7. }

8. public Circle (double r)
9. {
10. radius � r;
11. }

12. public double perimeter()

13. {
14. return 2 * PI * radius;

15. }

16. public double area()

17. {
18. return PI * radius * radius;

19. }
20. }

21. public class Square implements

Geometry

22. {
23. private double side;

24. public Square()
25. {
26. side � 0.0;
27. }

28. public Square (double s)
29. {
30. side � s;
31. }

32. public double perimeter()

33. {
34. return 4 * side;

35. }

36. public double area()

37. {
38. return side * side;

39. }
40. }

41. public cla ss Triangle implements

Geometry

42. {
43. // three sides a, b, c
44. private double a, b, c;

45. public Triangle()
46. {
47. a � b � c � 0.0;
48. }

49. public Triangle (double a1,
50. double b1, double c1)
51. {
52. a � a1;
53. b � b1;
54. c � c1;
55. }

56. public double perimeter()

57. {
58. return a � b � c;

59. }

60. public double area()

61. {
62. double s � (a � b � c)/2.0;

63. return

Math.sqrt(s * (s - a) * (s - b) * (s - c));

64. }
65. }

 12.10.1 An Interface Is a Contract
 An interface is a contract. An interface specifi es a set of responsibilities, actions, or behav-

iors for any class that implements it.

A class that implements an interface must implement all the methods of the interface,

or be tagged as abstract.

 Because Circle of Example 12.9 implements Geometry , Circle must implement the

 perimeter() and area() methods that are declared in the interface. Moreover, because Circle

implements G eometry , any client of Circle is guaranteed area() and perimeter() methods.

It’s in the contract. That’s the deal.

 12.10.2 The Difference Between an Interface and an abstract Class
 But isn’t this idea of a contract true of an abstract class? Doesn’t every (non- abstract) class

that extends an abstract class have an obligation to implement the abstract methods? Why

sim23356_ch12.indd 554sim23356_ch12.indd 554 12/15/08 6:52:04 PM12/15/08 6:52:04 PM

 Chapter 12 Inheritance 555

confuse the issue with interfaces? Why not simply defi ne an abstract class in which every

method is abstract ? Wouldn’t such a class accomplish the same thing as an interface?

 As we have stated, an is-a relationship should hold between an abstract class and any

subclass. However, the is-a relationship between a parent and child class need not hold

between an interface and an implementing class. For example, a class, SwimmingPool , that

implements the Geometry interface has a contract to implement area() and perimeter() , yet

there is no implication that a SwimmingPool is-a Geometry.

There is not necessarily any commonality among classes that implement a particular

interface other than a shared collection of methods that each class must implement.

On the other hand, classes that extend a particular abstract class usually share some

instance variables and method implementations.

 In the next two sections, we discuss some very real but not-so-apparent benefi ts of

interfaces.

 12.10.3 Multiple Inheritance and Interfaces
 Some object-oriented languages such as C�� allow multiple inheritance. Multiple inheri-

tance means that a subclass can inherit from more than one base class. The unrestricted

use of multiple inheritance is a controversial feature with many complexities and pitfalls.

For example, suppose that class A implements a display() method and class B implements a

different display() method. If class C extends both A and B but does not override display() ,
which display() method does C inherit? There is no clear answer.

 Nonetheless, there are many advantages and conveniences that multiple inheritance

provides. By providing interfaces, Java avoids the complexities of multiple inheritance but

retains some of its conveniences. On one hand, Java does not allow multiple inheritance.

A subclass cannot inherit from two different base classes.

 On the other hand, a class may implement any number of interfaces.

A class may extend one class as well as implement any number of interfaces.

 Suppose, for example, interface A and interface B both declare a display() method. If

class C implements both A and B , by contract, C must implement display() . Consequently,

 C knows just one version of display(). No ambiguity exists.

 In The Bigger Picture section at the end of the chapter, we delve into the problems of

multiple inheritance in more detail. Needless to say, the issues are more subtle and complex

than this brief discussion implies.

 12.10.4 Upcasting to an Interface
 Multiple inheritance aside, you may still be asking: what is so special about an interface?

Why bother? Can’t you just include the specifi ed methods in a class without the extra bur-

den of an interface?

 That is certainly possible. But the real power of an interface lies in upcasting.

A derived class can be upcast to any one of its interfaces.

 In particular, the Circle, Square , and Triangle objects of Example 12.9 can be upcast to

 Geometry . So, for example, a single array can store any object that implements Geometry ,

sim23356_ch12.indd 555sim23356_ch12.indd 555 12/15/08 6:52:06 PM12/15/08 6:52:06 PM

556 Part 2 Principles of Object-Oriented Programming

as the following segment demonstrates:

 Geometry[] shapes � new Geometry[3]; // Geometry is an interface
shapes[0] � new Circle(2.0);
shapes [1] � new Square(5.0);
shapes [2] � new Triangle(8.0, 5.0, 5.0);

 12.10.5 The Comparable Interface
 As Java provides a plethora of ready-made classes, Java also provides a large num-

ber of ready-made interfaces. Among one of the most useful Java-supplied inter-

faces is the Comparable interface. Comparable is an interface with just one method,

compareTo(...) :

 public interface Comparable
{
 int compareTo(Object o);
}

 Notice that compareTo(...) returns an integer and accepts any Object reference as an

argument. A class that implements the Comparable interface implements compareTo(...)
so that

 a.CompareTo(b) returns a negative integer, if a is “less than” b ,
 a.CompareTo(b) returns 0, if a “equals” b , and
 a.CompareTo(b) returns a positive integer, if a is “greater than” b .

 In practice, compareTo(...) is usually implemented so that

 a.CompareTo(b) � −1 if a is less than b ,
 a.CompareTo(b) � 0 if a equals b , and
 a.CompareTo(b) � 1 if a is greater than b .

 A class that implements Comparable is advertising to its clients that its objects can be

“compared.”

 In Example 12.10, Film implements Comparable , as does Play . In Hollywood, money

talks. Consequently, Film objects are compared based upon fi nancial gross, and plays are

compared using the number of performances.

 Problem Statement Redefi ne the Production hierarchy so that Film and Play imple-

ment the Comparable interface. Compare two Film objects based on the value of

boxOffi ceGross and two Play objects according to the number of performances.

 Java Solution Because Play implements Comparable , Play must implement

compareTo(…). This is done on lines 4–11.

 1. public class Play extends Production implements Comparable

2. {
3. // exactly as before (Play) with the addition of compareTo()

4. public int compareTo(Object p) // from the Comparable interface

5. {

6. if (!(p instanceof Play)) // p must belong to Play

7. {

8. System.out.println("Error: Object does not belong to Play");

9. System.exit(0);

 EXAMPLE 12.10

sim23356_ch12.indd 556sim23356_ch12.indd 556 12/15/08 6:52:06 PM12/15/08 6:52:06 PM

 Chapter 12 Inheritance 557

10. }

11. if (performances � ((Play)p).performances) // p must be downcast to Play

12. return -1;

13. if (performances � ((Play)p).performances)

14. return 1;

15. return 0;

16. }

17. }

 The Film class also implements Comparable and is outfi tted with its own compareTo()
method.

 1. public class Film extends Production implements Comparable

2. {
3. // exactly as before with the addition of compareTo()

4. public int compareTo(Object p) // from the Comparable interface

5. {
6. if (!(p instanceof Film)) // p must belong to Film

7. {

8. System.out.println("Error: object must belong to Film");

9. System.exit(0);

10. }

11. if (boxOfficeGross � ((Film)p).boxOfficeGross) // note downcast

12. return �1;

13. if (boxOfficeGross � ((Film)p).boxOfficeGross) // note downcast

14. return 1;

15. return 0;

16. }

17. }

 Discussion The compareTo(...) method accepts a single argument belonging to the

Object class. Because Object does not declare instance variables, performances , or

boxOfficeGross , a downcast is required on lines 11 and 13.

 Also, because Play and Film implement Comparable , a Play or Film reference can

be upcast to Comparable . For example, the statement

 Comparable play � new Play();

is legal.

 Finally, the implementation of the Comparable interface highlights the distinction

between interfaces and abstract classes:

Classes that extend the same abstract class share instance variables and perhaps

also some code, but classes that implement the same interface do not necessar-

ily have anything in common except a collection of methods that each class must

implement.

 A Play class can implement Comparable —so can a Car class, a Person class, a Llama class,

or a Vampire class. Indeed, those classes that implement Comparable are not necessarily

related in any way except that each one promises that objects can be compared. However,

because an abstract class may contain some implementations, all derived classes share

these implementations and are thereby logically linked through them.

sim23356_ch12.indd 557sim23356_ch12.indd 557 12/15/08 6:52:07 PM12/15/08 6:52:07 PM

558 Part 2 Principles of Object-Oriented Programming

 12.11 A GENERIC SORT

 Classes that implement the Comparable interface can utilize a general sort routine that

orders objects based on the implementation of compareTo(...) . That is, if a class A agrees

to abide by the contract of the Comparable interface, then the sort(…) method of Exam-

ple 12.11 can sort objects belonging to A.

 Problem Statement Devise a generic sort method that can be used to sort objects of

any class that implements the Comparable interface.

 Java Solution In this example, we implement selection sort, also called max sort .
First, sort(…) determines the largest value (max) that is stored in array x and swaps

 max with x[size�1] ; then sort(...) fi nds the next-largest value and swaps that value with

 x[size�2] , and so on. In other words, selection sort places the largest value in its proper

place, then the second-largest value in its place, then the third-largest value, continuing

until the array is sorted.

 The following version of selection sort accepts and sorts an array of objects belong-

ing to any class that implements the Comparable interface.

 1. public class SelectionSort

2. {

3. public static void sort(Comparable [] x, int size) // accepts an array of Comparable objects

4. {

5. Comparable max; // max belongs to a class that implements Comparable

6. int maxIndex;

7. for (int i � size � 1; i � � 1; i��)

8. {

9. // Find the maximum in the x[0..i]

10. max � x[i]; // the "current" maximum is x[i]

11. maxIndex � i; // the index of the "current" maximum

12. for (int j � i � 1; j � � 0; j��) // compare other values to "current" maximum

13. {

14. if (max.compareTo(x[j]) � 0) // if max is "less than" x[i]

15. {

16. max � x[j]; // a "new" maximum

17. maxIndex � j;

18. }

19. }

20. if (maxIndex !� i) // place the maximum in its proper position

21. {

22. x[maxIndex] � x[i];

23. x[i] � max;

24. }

25. }

26. }

27. }

 Discussion Notice that the reference passed to sort(...) has type Comparable . Object

references of any class that implements the Comparable interface can be upcast to

 Comparable . And Comparable objects can be sorted with this method.

 EXAMPLE 12.11

sim23356_ch12.indd 558sim23356_ch12.indd 558 12/15/08 6:52:08 PM12/15/08 6:52:08 PM

 Chapter 12 Inheritance 559

 The following class demonstrates the use of SelectionSort in conjunction with an array

of Film references.

 Let’s look at a few details.

Line 3: The SelectionSort class contains a single static method,

 public static void sort(Comparable[] x, int size).

As with Java’s Math class, a call to the sort(...) method of SelectionSort uses the

class name:

 SelectionSort.sort(x, size).

No object need be instantiated. No object is required.

 Because references of any class that implements Comparable can be upcast to

 Comparable ,

 sort(Comparable[] x, int size)

can accept an array of references to objects of any class that implements the

 Comparable interface.

 Line 5: The local variable max holds the a reference to the “current” maximum

object. Notice that the data type is Comparable . One size fi ts all.

 Line 14: Two objects are compared using the compareTo(...) method.

 Problem Statement A text fi le movies.txt contains the data of at most 200 Film objects.

The data for each fi lm consist of four lines:

 String title
 String director
 String writer
 int adjusted-box-office-gross-in-millions

 Devise a class with a main(...) method that reads the data from movies.txt into an array

and displays the fi ve highest-grossing fi lms. We assume that movies.txt is correctly for-

matted, that is, the fi le contains data for no more than 200 fi lms and that each fi lm con-

sists of exactly four entries on separate lines.

 Java Solution Because the data comes via a text fi le, it is necessary to import the

 java.io package. The following class

 • declares and opens the fi le , movies.txt , for input,

 • reads the data into an array,

 • passes the array to SelectionSort.sort(...) , and

 • displays the fi ve highest-grossing fi lms.

 Recall that Film implements compareTo(…) using a fi lm’s gross as the criterion of

comparison.

 1. import java.util.*;
2. import java.io.*;
3. public class SortFilms
4. {

 EXAMPLE 12.12

sim23356_ch12.indd 559sim23356_ch12.indd 559 12/15/08 6:52:09 PM12/15/08 6:52:09 PM

560 Part 2 Principles of Object-Oriented Programming

5. public static void main(String[] args) throws IOException
6. {

7. Film [] films � new Film [200];
8. File inputFile � new File("movies.txt");
9. if (!inputFile.exists())
10. {
11. System.out.println("File movies.txt not found ");
12. System.exit(0);
13. }

14. Scanner input � new Scanner(inputFile);
15. int filmNumber � 0;
16. while (input.hasNext()) // while there is more data
17. {
18. String title � input.nextLine();
19. String director � input.nextLine();
20. String writer � input.nextLine();
21. int gross � input.nextInt();

22. films[filmNumber] � new Film (title, director, writer, gross);
23. filmNumber��;

24. if (input.hasNext()) // move to next line, if there is one
25. input.nextLine();
26. }

27. input.close();
28. SelectionSort.sort(films, filmNumber);

29. System.out.println("The five top-grossing films, adjusted for inflation, are ");
30. for (int i � 1; i � � 5; i��) // the last 5 are the top grossing films
31. {
32. System.out.print((i) � ". " � films[filmNumber � i] � ": ");
33. System.out.println("$" � films[filmNumber � i].getBoxOfficeGross() � " million");
34. }
35. }
36. }

 Output Input from the fi le movies.txt produces the following output:

 The fi ve top-grossing fi lms, adjusted for infl ation, are

1. Gone With The Wind: $2699 million
2. Snow White and the Seven Dwarfs: $2425 million
3. Titanic: $2245 million
4. Star Wars: Episode IV: A New Hope: $1436 million
5. Jurassic Park: $1236 million

 Discussion
 Line 5: Because the application uses the File class for I/O, the throws IOException
clause is required.

 Line 7: The array fi lms is capable of holding up to 200 Film references.

 Lines 8–13: Instantiate a File object , inputFile , with the text fi le movies.txt.

Line 14: Instantiate a Scanner object with argument inputFile . Consequently ,
input reads data from inputFile and not from System.in .

 Lines 15–25: Read data and build an array of Film references. The variable

fi lmNumber keeps track of the number of Film references stored in the array fi lms .

sim23356_ch12.indd 560sim23356_ch12.indd 560 12/15/08 6:52:10 PM12/15/08 6:52:10 PM

 Chapter 12 Inheritance 561

Line 28: Pass the array fi lms as well as the number of objects instantiated to

SelectionSort.sort(...).

 Lines 30–34: The array is sorted lowest to highest. Therefore, the fi ve highest-

grossing fi lms hold the last fi ve places in the array. Print the name of each fi lm

and its box offi ce gross.

 The Comparable interface provides the capability to upcast to Comparable. Because Play
and Film both implement Comparable , we can use the generic sort for both Play object and

Film objects. There is no need to downcast, and no need for distinct sort methods. We can

use a single sort method for any Comparable collection.

An interface provides a contract as well as a large dose of fl exibility.

 12.12 COMPOSITION AND THE has-a RELATIONSHIP

 Inheritance, as you know, is characterized by an is-a relationship:

a Square is-a Shape ,
a RightTriangle is-a Shape ,
a Film is-a Production ,
a Dog is-an Animal , and
a Bloodhound is-a Dog .

Oftentimes, classes are related, but not via an is-a relationship. In these cases, upcasting

is not of any apparent value. Consider for example the two (partial) classes Person and

BankAccount :

public class Person
{
 private String name:
 private String address;
 // etc.
}

public class BankAccount
{
 private String accountNumber;
 private double balance;
 . . .
 public double balance()
 // etc.
}

 It may be possible to derive BankAccount from Person or Person from BankAccount , but

the relationship is not natural. A person is not a BankAccount and a BankAccount is not a

Person . There is no apparent or logical reason to consider a Person a type of BankAccount
or vice versa. Inheritance is not a good fi t.

 Suppose, however, that every Person possesses a BankAccount . You have already

seen that one object may contain objects of another class. Indeed, String objects have

been included in many of our previous classes, as have File and Scanner objects. Thus, a

BankAccount reference can be declared an instance variable of the Person class. In such a

case, the relationship between the Person and the BankAccount classes is a has-a relation-

ship. A Person has-a BankAccount . And a Person class can be defi ned with a BankAccount
attribute.

sim23356_ch12.indd 561sim23356_ch12.indd 561 12/15/08 6:52:11 PM12/15/08 6:52:11 PM

562 Part 2 Principles of Object-Oriented Programming

 public class Person
{
 private String name:
 private String address;
 private BankAccount account;
 // etc.
}

 The relationship between Person and BankAccount is an example of composition —a

relationship in which one object is composed of other objects.

As an is-a relationship indicates inheritance, a has-a relationship signals

composition.

 Inheritance implies an extension of functionality and the ability to upcast; composition

indicates ownership. Inheritance and composition are very different concepts; the two

should not be confused.

 12.13 IN CONCLUSION

 If inheritance merely provided new functionality for existing classes, it would still be

a useful technique. However, the real muscle in inheritance lies in upcasting: a refer-

ence of a derived type can be considered a reference of a base type. Upcasting works

with interfaces, too. A reference to an object of a class that implements an interface, X ,

can be upcast to X . Upcasting ensures, for example, that the sort(…) method of Exam-

ple 12.10 can be used to sort any array of objects belonging to any class that implements

 Comparable .

 Inheritance, however, breaks encapsulation. Changes in a base class can affect a

derived class and infest a derived class with bugs. Inheritance is powerful, but inheritance

has its downside.

 Finally, if two classes are related via an is-a relationship, inheritance is usually the

right choice. A has-a relationship generally implies composition. And sometimes, neither

inheritance nor composition is a good match.

 Just the Facts

• Inheritance is an is-a relationship. If X inherits from Y then X is-a kind of Y .

• The access modifi er protected falls between private and public . Protected variables

and methods are visible and accessible to a class’s subclasses and to other classes in

the same package, but not to classes outside the class’s package.

• A subclass inherits each public and protected method of a superclass unless the sub-

class provides its own implementation.

• A subclass does not inherit the constructors of the base class. To invoke the construc-

tors of the base class, a subclass uses the keyword super .

• If a constructor of a derived class calls a superclass constructor, the call must be

made before any other code is executed in the constructor of the derived class.

sim23356_ch12.indd 562sim23356_ch12.indd 562 12/15/08 6:52:12 PM12/15/08 6:52:12 PM

 Chapter 12 Inheritance 563

• If an explicit call to super() is not made in a constructor of a derived class, then an

implicit call is made to the default constructor of the parent class. Hence, it is always

good practice to defi ne a default constructor in any base class.

• X extends Y means that X inherits from Y, Y is the parent or base class of X , and X is

the derived class.

• Objects of a derived class are also objects of the base class.

• Upcasting means casting an object to a parent or more general type.

• Downcasting means casting an object to a derived or more specialized type.

• Every class is derived from Object . The Object class is the mother of all classes.

• instanceof is a boolean operator such that x instanceof ObjectType returns true if x

belongs to ObjectType .

• An abstract class is a class that cannot be instantiated. A class is declared abstract
using the keyword; abstract ; for example, public abstract class X .

• An abstract class may contain abstract methods. An abstract method is declared as

 public abstract return-type methodName();

 and has no implementation.

• An abstract class may be inherited, and any class that inherits from an abstract class

is required to override and implement all the a bstract class’s methods, otherwise the

inherited class is also abstract .

• To test the equality of objects based on a criterion other than references, the

 equals(Object o) method inherited from the Object class should be overridden.

• It is good style to override the toString() method inherited from Object. The default

implementation returns the class name followed by a system number, and that is not

usually useful.

• The toString() method is automatically called when a reference is passed to println().
Thus, System.out.println(x.toString()) produces the same output as System.out.println(x).

• Overriding toString() to return the values of instance variables can simplify and expe-

dite debugging.

• An interface is a named collection of static constants and abstract methods. An inter-

face specifi es certain actions or behaviors of a class but not their implementations.

• An interface is similar to an abstract class in that an interface cannot be instantiated.

• An interface is different from an abstract class in that no interface methods have

implementations, and an interface has no instance variables.

• A class does not extend an interface; instead, a class implements an interface.

• If a class implements an interface, the class is required to implement all of the meth-

ods of the interface or be tagged abstract.

• A class can implement many interfaces but extend only one class.

• Classes that extend the same abstract class share instance variables and perhaps

also some code, but classes that implement the same interface do not necessarily

have anything in common except a collection of methods that each class must

implement.

• If aClass implements anInterface , then a reference to an object belonging to aClass

can be upcast to anInterface , and the statement

 anInterface x � new aClass();

 is legal.

sim23356_ch12.indd 563sim23356_ch12.indd 563 12/15/08 6:52:12 PM12/15/08 6:52:12 PM

564 Part 2 Principles of Object-Oriented Programming

• A class that contains an object of another class exploits composition .

• A has-a relationship signifi es composition.

 Bug Extermination

• Every public class in an inheritance hierarchy must be stored in a separate fi le.

• Do not attempt to call a parent constructor directly from a derived class. Instead,

use super() . If a constructor invokes super(), the call must precede all other

statements.

• Do not neglect to defi ne default constructors at all levels of an inheritance hierarchy.

If a subclass does not explicitly invoke a base class constructor using super , the

default constructor of the base class is automatically invoked, provided the base class

has a default constructor.

• Distinguish carefully between has-a (composition) and is-a (inheritance) relation-

ships. Use inheritance only when it is appropriate.

• A class can extend only one other class but can implement many interfaces. Use

interfaces to add different kinds of functionality to a class without having to pigeon-

hole the class into an artifi cial hierarchy.

• Use protected variables when you intend to extend a class; private variables are inac-

cessible to subclasses except via getter and setter methods.

• When inheriting from an abstract class, do not neglect to implement all abstract
methods of the abstract class; otherwise, your class will be abstract as well. You do

 not need to override any of the non-abstract methods.

• Do not confuse overriding with overloading . If a derived class overrides a method, it

must use the same signature as the parent class—that is, the same name, number of

arguments, and argument types. Method overloading requires different signatures for

methods within a class.

• You may not override a public method with a private method. In general you may

not assign more restrictive access privileges to an overridden method or instance

variable.

• The instanceof operator is not a method. The syntax is

 object instanceof Production , and not
 object.instanceof(Production).

• When overriding the equals(...) method inherited from Object , be sure that the

parameter belongs to Object . That is, equals(Object o) is usually preferable to

 equals(MyClass o) .

• In general, changes in the base class of an inheritance relationship can infest the

derived class with bugs. Design your subclass methods with care.

sim23356_ch12.indd 564sim23356_ch12.indd 564 12/15/08 6:52:12 PM12/15/08 6:52:12 PM

 Chapter 12 Inheritance 565

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 3 A class ______ an interface.

 5 Every class extends ______.

 6 Access modifi er that specifi es that an instance

variable can be inherited

 10 equals(Object o) tests whether or not two ______

are the same.

 13 Inheritance relationship

 15 A class may extend ______ base class.

 16 boolean operator that tests whether or not an

object belongs to a particular class

 18 If a specifi c call to a parent constructor is not

made, then the ______ constructor is called.

 20 Used to call a base class constructor

 21 Casting an object to a base or more general type

 23 Casting an object to a derived or more specialized

type

 24 Inheritance facilitates code ______.

Down
 1 A subclass does not inherit ______ from the

base class.

 2 Another term for subclass

 4 In a sense, inheritance breaks ______.

 7 A subclass can redefi ne or ______ a method of the

base class.

 8 Inheritance allows data of one type to be treated

as data of a more ______type.

 9 Inherited from Object. Returns the class name and

a system number.

 11 Interface with compareTo()
 12 has-a indicates ______.

 14 Named collection of static constants and abstract

methods

 17 An ______ class cannot be instantiated.

 19 Keyword that signifi es an inheritance relationship

 22 Parent class

1

5

15

8

20

21

23

17

16

13

18 19

22

24

7

11 12

14

9

43

6

10

2

sim23356_ch12.indd 565sim23356_ch12.indd 565 12/15/08 6:52:13 PM12/15/08 6:52:13 PM

566 Part 2 Principles of Object-Oriented Programming

 SHORT EXERCISES
 1. True or False
 If the answer is false, give an explanation.

a. A private instance variable is no different than a protected instance variable.

b. A subclass inherits all the methods from the base class except for the constructors.

c. X extends Y means that Y inherits from X .

d. Every class extends Object .
e. The main advantage of inheritance is to save the programmer the trouble of retyp-

ing sections of class defi nitions.

f. X inherits from Y implies X is-a Y.
g. Y inherits from X implies X has-a Y .

h. X is in love with Y implies X wants-a Y .

i. It is illegal for a class to extend two classes.

j. It is legal for more than one class to extend the same class.

k. It is illegal for a class to implement more than one interface.

l. There is no difference between an abstract class and an interface.

m. An interface can have only private instance variables.

n. An interface never implements its methods.

o. An interface can be instantiated if it has no static constants.

p. An interface has no instance variables .
q. If X extends Y then X has-a Y .

r. If X extends Y then X is-a Y .

s. It is illegal for a class to have two attributes with the same name.

t. It is illegal for a subclass to have an attribute with the same name as an attribute

in its superclass.

 2. Composition, Inheritance, or Neither?
 For each of the following pairs of classes, state whether one class might inherit from

the other, contain the other, or neither. Explain your answers.

a. RetailStore and Manager
b. CashRegister and RetailStore

c. BookStore and RetailStore

d. Book and Bookstore

e. Employee and Manager
f. Manager and Bookstore

g. Shelf and Book

h. Shelf and BookStore

i. Customer and Bookstore

j. Manager and Cashier
k. Cashier and RetailStore

l. Salary and Employee

m. Cashier and Salary

n. Abbott and Costello

o. Singer and MichaelJackson

p. Square and Cube (tricky!)

q. Game and Dice

r. Game and Monopoly

s. Opera and Musical (tricky!)
t. Musical and MusicalComedy

u. Beer and Drinks

sim23356_ch12.indd 566sim23356_ch12.indd 566 12/15/08 6:52:13 PM12/15/08 6:52:13 PM

 Chapter 12 Inheritance 567

v. Telephone and Buttons

w. Wardrobe and Pants

x. ProgrammingExercises and ProgrammingBook

y. Editor and Author
z. Circle and Cylinder (controversial!)

 3. Playing Compiler—Constructors
 Explain why the following classes do not compile.

 public class Papa
{
 protected int x;
 public Papa(int y)
 {
 x � y;
 }
}

public class Son extends Papa
{
 public Son()
 { }

 public static void main(String[] args)
 { }

}

 4. Playing Compiler—Constructors
 Explain why the following classes do not compile.

 public class Mama
{
 protected int x;
 public Mama()
 {
 x � 0;
 }
 public Mama(int y)
 {
 x � y;
 }
}

public class Son extends Mama
{
 public Son()
 { }
 public static void main(String[] args)
 {
 Son s � new Son(2);
 }
}

sim23356_ch12.indd 567sim23356_ch12.indd 567 12/15/08 6:52:13 PM12/15/08 6:52:13 PM

568 Part 2 Principles of Object-Oriented Programming

 5. Playing Compiler—Upcasting and Downcasting
 Explain why the following classes do not compile.

 public class Papa
{
 protected int x;
 public Papa()
 {
 x � 0;
 }
 public Papa(int y)
 {
 x � y;
 }
}

public class Daughter extends Papa
{
 public Daughter()
 { }
 public static void main(String[] args)
 {
 Daughter d � new Papa(2);
 }
}

 6. What’s the Output?
 What is the output of the following code? Give an explanation.

 public class Mama
{
 protected int x;
 public Mama()
 {
 x � 0;
 }
 public Mama(int y)
 {
 x � y;
 }
}

public class Daughter extends Mama
{
 public Daughter()
 { }

 public Daughter(int x)
 {
 super(x);
 }

public static void main(String[] args)
{

sim23356_ch12.indd 568sim23356_ch12.indd 568 12/15/08 6:52:14 PM12/15/08 6:52:14 PM

 Chapter 12 Inheritance 569

 Daughter d � new Daughter();
 System.out.println(d.x);
 Mama t � new Daughter(2);
 System.out.println(t.x);
 }
}

 7. What’s the Output?
 What is the output of the following code? Give an explanation.

 public class Papa
{
 protected int x;

 public Papa()
 {
 x � 0;
 }

 public Papa(int y)
 {
 x � y;
 }
}

public class Son extends Papa
{
 public Son()
 {}
 public Son(int x)
 {}
 public static void main(String[] args)
 {
 Son s � new Son();
 System.out.println(s.x);
 Papa t � new Son(2);
 System.out.println(t.x);
 }
}

 8. What’s the Output?
 What is the output of the following code? Give an explanation.

 public class Mama
{
 protected int x;
 public Mama()
 {
 x � 0;
 }
 public Mama(int y)
 {
 x � y;
 }
}

sim23356_ch12.indd 569sim23356_ch12.indd 569 12/15/08 6:52:14 PM12/15/08 6:52:14 PM

570 Part 2 Principles of Object-Oriented Programming

public class Son extends Mama
{
 public Son()
 { }
 public Son(int x)
 {
 super(x);
 }
 public static void main(String[] args)
 {
 Son s � new Son();
 System.out.println(s.x);
 Son t � new Son(2);
 System.out.println(t.x);
 }
}

 9. Playing Compiler—Access Issues
 Explain why the following code does not compile.

 public class Papa
{
 private int x;
 public Papa()
 {
 x � 0;
 }
 public Papa(int y)
 {
 x � y;
 }
}

public class Son extends Papa
{
 public Son()
 { }

 public Son(int x)
 {
 super(x);
 }

 public static void main(String[] args)
 {
 Son s � new Son();
 System.out.println(s.x);
 Papa t � new Son(2);
 System.out.println(t.x);
 }
}

sim23356_ch12.indd 570sim23356_ch12.indd 570 12/15/08 6:52:14 PM12/15/08 6:52:14 PM

 Chapter 12 Inheritance 571

 10. Fix the Errors
 Examine the classes and answer the following questions.

a. Find the two System.out.println() statements that generate compilation errors.

What is (are) the error(s)?

b. If these two lines are deleted, the code compiles. What do the other

 System.out.println() statements display?

 public class X
{
 private int x;
 protected int y;
 public X()
 {
 x � 0;
 y � 0;
 }
 private int helper(int x)
 {
 return x * x;
 }
 public int access()
 {
 return (helper(x));
 }
}

public class Y extends X
{
 int x;
 public Y()
 {
 super(); x � 2;
 }

 public static void main(String[] args)
 {
 X temp � new X();
 Y tempo � new Y();
 System.out.println(temp.access());
 System.out.println(tempo.access());
 System.out.println(tempo.x);
 System.out.println(temp.x);
 temp � tempo;
 System.out.println(temp.access());
 System.out.println(tempo.access());
 System.out.println(tempo.x);
 System.out.println(temp.x);
 }
}

sim23356_ch12.indd 571sim23356_ch12.indd 571 12/15/08 6:52:14 PM12/15/08 6:52:14 PM

572 Part 2 Principles of Object-Oriented Programming

 11. Playing Compiler
 Identify the errors in the following classes.

 public class Huh
{
 private int x;
 int y;
 protected int z;
 public Huh()
 {
 x � y � z � 0;
 }

 public Huh(int x)
 {
 x � y � z � x;
 }

 public void iLikeIt(int x)
 {
 System.out.println(x * x * x);
 }

 public void iHateit()
 {
 System.out.println(y * y);
 }
}

public class Hoo extends Huh
{
 int w;
 public Hoo()
 {
 w � 0; super();
 }

 public Hoo(int x)
 {
 super(x); w � x;
 }

 public int myOwn()
 {
 System.out.println(w);
 }

 public void iLikeIt(int x)
 {
 System.out.println(x * x);
 }

sim23356_ch12.indd 572sim23356_ch12.indd 572 12/15/08 6:52:14 PM12/15/08 6:52:14 PM

 Chapter 12 Inheritance 573

 private void iHateit(()
 {
 System.out.println(w * w);
 }
}

 12. What’s the Output?
 Examine the following code and determine the output.

 public abstract class Test
{
 protected int value1;
 int value2;
 Test()
 {
 value1 � 0;
 value2 � 0;
 }

 Test(int value1)
 {
 this.value1 � value1;
 value2 � value1;
 }

 public void implementEd()
 {
 for (int j � 0; j � value1 ; j��)
 System.out.println("All done");
 }
 public abstract void notImplemented(int x);
}

public class TestTest extends Test
{
 int myvariable;

 TestTest()
 {
 super();
 myvariable � 3;
 }

 TestTest(int x)
 {
 super(x);
 myvariable � x � 3;
 }

 public void notImplemented(int x)
 {
 value2 � value2 � x;

sim23356_ch12.indd 573sim23356_ch12.indd 573 12/15/08 6:52:15 PM12/15/08 6:52:15 PM

574 Part 2 Principles of Object-Oriented Programming

 value1 � value1 * x;
 System.out.println("This was called with the value " � x);
 System.out.println("My variable is " � myvariable);
 }
 public static void main(String[] args)
 {
 TestTest h � new TestTest();
 TestTest j � new TestTest(4);
 h.implementEd(); h.notImplemented(5); h.implementEd();
 System.out.println(h.value2);System.out.println(h.value1);
 j.implementEd(); j.notImplemented(5); j.implementEd();
 System.out.println(j.value1); System.out.println(j.value2);
 }
}

 13. A Video Arcade Car Racing Game
 You are writing software that controls a car racing game. At the start of the game,

the drivers choose their cars, and each car races down a simulated course through

either a city or country landscape. Each car has a brake, accelerator, gears, and a

steering wheel. Methods for all cars include:

 void accelerate(int x)
 void brake(int x)

where x is a number from 1 to 10 indicating how far down the

accelerator/brake pedal is pressed

 void turn(int x)
where x is an angle ranging from �180 to 180.

 void gear(int x)
where x is a gear from 0 to 4, 0 meaning reverse.

 Different cars respond differently to these methods. For example, a large,

heavy car does not accelerate or brake as quickly as a light car. A really fast car

has a higher maximum speed than a slower car. Cars become damaged in the

race, and damaged cars respond differently when accelerating, braking,

and turning.

 A driver can choose from hundreds of different cars. Every car has a color, a

length, a maximum speed, a damage value, and a weight. Some cars have extra

features such as guns, oil sprayers, or tire cutters—and methods are required to

manipulate these features.

 You would like to add cars to the game with minimum change in software.

Design a hierarchy that enables the easy addition of new types of cars. The

hierarchy should use Car at the top level, with SUV (big, strong, relatively

slow), Formula1Racer (light and fast, fragile), StockCar (all around performer),

and FunnyCar (very fast, not easily controlled, very fragile) extending Car .
Indicate all classes, methods, attributes, and method signatures of each class.

Be sure to indicate which classes are abstract and which methods in these classes

are abstract.

 14. Extending the Production Hierarchy
 Extend the Production class to include a class TVShows . Then extend TVShows

to TVSitcoms and TVRealityShows . Determine what new methods or instance

variables, if any, are necessary, and whether any abstract methods of Production

should be overridden.

sim23356_ch12.indd 574sim23356_ch12.indd 574 12/15/08 6:52:15 PM12/15/08 6:52:15 PM

 Chapter 12 Inheritance 575

 15. Abstract Classes, Upcasting, Downcasting—The Production Hierarchy
 Determine which of the following lines generates an error. Use the Production

hierarchy of this chapter. In each case, explain the cause of the error.

a. Production p � new Musical("Sweeny Todd", "Harold Prince", "Hugh
Wheeler", "Stephen Sondheim", " Stephen Sondheim", 557);

b. Production p � new Production();
c. Musical m � new Film();
d. Musical m � new Musical();
e. Play p � new Musical(); p.getDirector(); (Musical) p.getComposer();
f. Film play � new Musical();
g. Production p � new Musical(); p.getDirector(); (Play) p.getDirector(); (Play)

p.getComposer();
h. Comparable c � new Musical(); Film f � new Musical(); c.compareTo(f);

 16. Inheritance vs Interface
 The following text is from Roedy Green’s Java Glossary on the Web.

 On the surface, interfaces and abstract classes seem to provide almost the same

capability. How do you decide which to use?

 When to Use Interfaces
 An interface allows somebody to start from scratch to implement your

interface or implement your interface in some other code whose original

or primary purpose was quite different from your interface. To them, your

interface is only incidental, something that they have to add on to their code to

be able to use your package.

 When to Use Abstract Classes
 An abstract class, in contrast, provides more structure. It usually defi nes

some default implementations and provides some tools useful for a full

implementation. The catch is, code using it must use your class as the base.

That may be highly inconvenient if the other programmers wanting to use

your package have already developed their own class hierarchy independently.

 Explain these ideas in your own words. Give an example of an application where an

interface is more natural and one where inheritance of an abstract class is more natural.

 17. Is-a, Has-a, and Notions of Inheritance
 Sometimes is-a doesn’t help to determine when inheritance is the right idea. In

English, is-a can mean specifi city in the sense of more detail (inheritance) or it can

mean specifi city in terms of less detail (a special case).

 For example, when we say a manager is a kind of employee, we mean that a

manager has everything an employee has and more. In this sense, a manager

extends or generalizes the notion of an employee, even though it is a special case of

an employee. But when we say that every integer is a fraction, we do not mean that

an integer extends or generalizes the concept of a fraction. We mean that an integer

is a special case of a fraction and, if anything, a fraction has everything an integer

has and more. Manager naturally extends employee, but integer does not naturally

extend fraction.

a. In general, if A is-a B , then which class is more specifi c and which is more general?

b. When a class is more specifi c, does it have more instance variables and methods,

or fewer? Explain.

c. Is a square a kind of cube, vice versa, or neither? Is a square a kind of rectangle,

vice versa, or neither? Among the classes Cube, Square , and Rectangle , which

might inherit from which and why? Explain your reasoning in light of (a) and (b).

sim23356_ch12.indd 575sim23356_ch12.indd 575 12/15/08 6:52:15 PM12/15/08 6:52:15 PM

576 Part 2 Principles of Object-Oriented Programming

That is, what extra instance variables or methods would apply to your more

 specifi c classes in any inheritance hierarchy you propose?

d. Is a point a kind of circle, vice versa, or neither? Is a circle a kind of cylinder,

vice versa, or neither? Among the classes Point, Circle , and Cylinder , which might

inherit from which and why? Explain your reasoning in light of (a) and (b). That

is, what extra instance variables or methods would apply to your more specifi c

classes in any inheritance hierarchy you propose?

e. “Favor composition over inheritance” is a maxim of object-oriented design. Go

back to problems (c) and (d) and discuss whether any of those classes might be built

naturally out of the others via composition rather than inheritance. Give details.

 18. Subsets vs Inheritance
 A set is a collection of things. A set can be a collection of numbers, colors, socks, or

anything. B is a subset of C if all the elements of B are contained in C . For example,

the set of prime numbers is a subset of the set of integers. The set of all sweatpants

is a subset of the set of all gym clothes.

 You are already familiar with classes and inheritance. B extends C , or B inherits
from C , when every object of B is-a kind of C. For example, the class Manager
extends Employee , and Film extends Production .

a. In what ways are the notions of sets and classes the same?

b. In what ways are the notions of sets and classes different?

c. Give an example of two classes A and B , where B naturally extends A , and B is a

subset of A .

d. Give an example of two classes A and B , where B is a subset of A , but B does not
naturally extend A .

 PROGRAMMING EXERCISES
 1. Publishing—Using Inheritance and Composition
 A Publication has a publisher, number of pages, a price, an owner, and a title. When

a Publication object is created using a constructor, the number of pages, price, and

the title must be supplied. A default constructor uses blank and zero values. When

a Publication is created, it has no owner. An owner can be set, and the publication

explicitly sold, using the

 double sell(String owner, double amount)

 method. The method call

 p.sell(String owner, double amount)

 sells publication p to owner and returns the change, from amount if there is any. For

example, if the price of publication p is $5.89, then p.sell(“Shai”, 6.0); sets “Shai”
as the owner of publication p and returns 0.11. The sell(…) method can be called

numerous times, as the publication is sold and resold.

 A Magazine is a publication that has a publication unit (monthly, weekly,

biweekly), and number of issues left on the subscription. You should be able to

decrement the number of issues left on the subscription. If you own a magazine,

you own a subscription to it. You should be able to print the title of a magazine

and subscribe for an additional year. When you purchase a subscription you must

provide a dollar amount for the purchase. If the dollar amount is not enough then the

ownership should not change.

 A Book is a Publication that has an author. The author automatically owns the

book at no cost.

sim23356_ch12.indd 576sim23356_ch12.indd 576 12/15/08 6:52:15 PM12/15/08 6:52:15 PM

 Chapter 12 Inheritance 577

 A KidsMagazine is a Magazine that has a recommended age range. When you

subscribe to a kid’s magazine, you must provide the age of the subscriber. The

subscription is accepted only if the age is in the proper range.

 Defi ne a Publication hierarchy.

 Write a test class that creates a $14.00 book about Java by Java Javison, a

magazine called Bicycling that is published monthly for $4 an issue, and a kid’s

magazine called Ranger Rick for ages 6–11 that is published weekly and costs $2.00

an issue. Simulate the following transactions with the appropriate method calls.

• Shai subscribes to Bicycling magazine and pays $45.

• Java Javison owns his own book and then sells it to Ralph for $35.

• Another copy of Java Javison’s book is created and owned by the author.

• Emily, an 11-year-old girl, subscribes to Ranger Rick and receives four issues.

• Emily adds an extra two years to her subscription and then sells it to Charlie, who is

10 years old, who pays $250.

• Charlie receives 10 issues and tries to sell it for $200 to Java Javison, who is

27 years old.

 2. A Simple Inheritance Hierarchy
 Implement a class Employee such that a member of Employee has a name, an ID

number, an age, a salary, a title, and a department name. An Employee can:

a. Print a confi dential employee record with all the above information.

b. Change a salary (takes an int or a double argument). If the argument is int , then

the salary is increased by that amount (a bonus addition, not a percent increase).

If the parameter is double , then the salary is multiplied by the value of the argu-

ment and may increase or decrease depending on whether the double value is

greater than or less than 1.0.

c. getSalary().

 Implement a subclass of Employee , called Manager . A manager is an employee

who supervises other employees. A manager has a group of employees that he/

she supervises. The confi dential record of a manager includes all the information

included in a regular employee’s confi dential record plus a list of ID numbers of the

employees that he/she supervises.

 Executive extends Manager . An executive is a manager who gets a bonus at the

end of each year equal to a percentage of company profi ts. Implement Executive .

You should redefi ne getSalary() to include the bonus. You should also add a method

to change the percentage of the executive’s bonus .

 3. Investments—Practice with Inheritance
 There are many different kinds of investments, including stocks, mutual funds, real

estate, and bank accounts. There are two kinds of bank accounts: checking and

savings.

 Design an abstract Investment class that includes a name attribute, a value

attribute (double), and a getter method, getValue(). The Investment class, being

 abstract , cannot be instantiated.

 Design subclasses: Stocks, MutualFunds, RealEstate , and BankAccount .

• The attributes of Stocks are name , pricePerShare , numberOfSharesOwned , and

 dividend (a percent of the investment paid annually).

• The attributes of MutualFunds are: name , pricePerShare , and numberOfSharesOwned .

• The attributes of RealEstate are: name, addressOf Property , purchasePrice , and

 currentAssessedValue.
• BankAccount is an abstract class that extends Investment . The name fi eld holds the bank’s

name. An additional attribute accountNumber (String) represents an account number.

sim23356_ch12.indd 577sim23356_ch12.indd 577 12/15/08 6:52:16 PM12/15/08 6:52:16 PM

578 Part 2 Principles of Object-Oriented Programming

• BankAccount has two subclasses: SavingsAccount and CheckingAccount .
• A SavingsAccount object has an annual interest rate paid quarterly. SavingsAccount

has a method addInterest() that adjusts the balance of the account.

• A CheckingAccount is-a BankAccount with a minimum balance, a penalty if

the balance goes below the minimum in any month, and an annual interest rate

(paid monthly) on the money in excess of the minimum balance. Include method

 addInterest() , which adds one month’s interest to the balance, and a method checkBal-
ance() , which adjusts the balance if the balance falls below the minimum.

 The classes are simple. Each class has a default constructor that sets each instance

variable to the empty string or zero, whichever is appropriate, and a second

constructor that sets the class attributes, including value . Each class that is not

 abstract should also include a method displayData() that prints all the information

of a particular investment, properly labeled. The Investment hierarchy is shown in

 Figure 12.9

Investment

MutualFundStock RealEstate

Checking Saving

BankAccount

FIGURE 12.9 The Investment hierarchy

 A portfolio is an array of Investment references. Implement a Portfolio class that

also includes a getNetValue() method. This method returns the sum of the values of

all investments referenced by portfolio . Interactively, create a portfolio with at least

six investments, including stocks, mutual funds, real estate, and a bank account.

Display the data for each investment along with the net value of all investments.

 4. A Grocery Store
 A grocery store sells many different items. Construct an abstract class Item with

attributes

• String name ("apples" "soup" "candy bar")

• double unitPrice .

 The methods of Item are getters and setters along with the requisite constructors.

 UnitItem and WeightItem are concrete classes that extend Item. An object

belonging to UnitItem encapsulates a grocery item that is sold by the unit, such as a

can of soup or a gallon of milk. The instance variable unitPrice (inherited from Item)

stores the price of one item. UnitItem has an additional instance variable, amount ,
that holds the number of units of a particular item. UnitItem implements a method

 double cost()

 that returns the cost of amount units of an item.

 WeightItem represents an item sold by weight, such as nuts, fruits, or vegetables.

In this case, unitPrice represents the price per pound of an item. WeightItem has an

additional instance variable, weight , that holds the number of pounds of some item.

 WeightItem also implements a method

 double cost()

sim23356_ch12.indd 578sim23356_ch12.indd 578 12/15/08 6:52:16 PM12/15/08 6:52:16 PM

 Chapter 12 Inheritance 579

 WeightItem’s implementation of cost() returns the total cost of weight pounds of

the item. The weight of an item is set by placing the item on a scale. To simulate a

scale, include a private helper method

 private double scale()

 that “weighs” the item and sets the weight fi eld. This is done by generating a random

number, with two decimal places, between 0.01 and 4.00. The constructor uses this

virtual “scale” to set the weight fi eld.

 Both classes should include the appropriate constructors as well as getter and

setter methods.

 a. Design and implement Item, WeightItem , and UnitItem . Test your methods.

b. A ShoppingCart class has an array of Item such that each array entry is a

 UnitItem or a WeightItem reference. Additionally, ShoppingCart implements a

method

 void checkout()

that determines the total cost all items in the “cart,” that is the array. A typical call to

 checkout() might produce the following interactive output:

 Enter U or W or Return to end: U
Enter name: Soup
Number of Units: 2
Enter price per unit: 2.39
Cost is 4.78

Enter U or W: W
Enter name: Apples
Enter price per pound: 1.29
Weight is 2.8
Cost is 3.61

Enter U or W: W
Enter name: Green Beans
Enter price per pound: 1.19

Weight is 3.53
Cost is 4.2

Enter U or W: U
Enter name: Muffins
Number of Units: 6
Enter price per unit: .79

Cost is 4.74

Enter U or W:
Total cost: 17.33

 Implement the ShoppingCart class. Include a main(…) method that instantiates a

 ShoppingCart object and calls checkout().

 5. Sorting Boxes Using the Comparable Interface
 A Box has three integer dimensions: length, width , and depth , and two methods:

 surfaceArea() and volume(). Box implements the Comparable interface and defi nes

 compareTo() based on surface area. Implement and test the Box class.

sim23356_ch12.indd 579sim23356_ch12.indd 579 12/15/08 6:52:16 PM12/15/08 6:52:16 PM

580 Part 2 Principles of Object-Oriented Programming

 Write a second class TestSort with a method that sorts n boxes in ascending order

by surface area. Redefi ne the compareTo(…) method, and run the sort of TestSort
again, this time sorting the boxes in ascending order by volume.

 6. An abstract Box Class with a Comparable Interface

 Write an abstract Box class that has three integer dimensions : length, width, and
depth , and two methods: surfaceArea() and volume(). Box should implement the

 Comparable interface, but leave compareTo(...) undefi ned. That is, compareTo(…)
is an abstract method.

 Create two subclasses of Box: BoxArea and BoxVolume . Each of these subclasses

extends Box and does nothing extra except implements the abstract method

 compareTo(...) . Note that since Box implements Comparable , the derived classes

 BoxArea and BoxVolume do not also need to explicitly implement Comparable , but

they do need to implement compareTo(…).

• BoxArea defi nes compareTo(...) by comparing surface areas.

• BoxVolume defi nes compareTo(...) by comparing volumes.

 Write a class with a single static method

 public static boolean orderedUp(Comparable [] x, int size)

 that determines whether or not the elements of Comparable array x are in strict

ascending order.

 Write a test class with a main() method that asks the user to enter three

dimensions for each of fi ve different boxes. Create two arrays of BoxArea and

 BoxVolume , each containing the data for these fi ve boxes. Your test class should

print a message indicating whether or not the boxes in each array are in strict

ascending order according to the appropriate compareTo(…) methods.

 7. A Dump Interface
 Even if a class overrides toString() , it may be convenient, for debugging, to

implement another method that displays or “dumps” many or all of the values stored

in an object.

 Defi ne a Dump interface with one method dumpMe(). The method dumpMe()
should dump the values of an object belonging to a class that implements Dump .

For example, suppose that Rectangle is a class with attributes length and width. If
 rectangle belongs to Rectangle , then rectangle.dumpMe() might display the values

of length and width , appropriately labeled.

 Modify the Play and Film classes of this chapter so that they both implement the

 Dump interface.

 8. A Mergeable Interface
 Some objects can be combined with other objects of the same type to create larger

objects of the same type. This is not the case with Remote or Film objects, but it is

the case with String s, MusicCollection s, or ClassList s.

a. Defi ne a Mergeable interface with one method

 Object merge(Object x).

b. Design a class IntegerSet that implements Mergeable . IntegerSet stores a set of

integers. Methods of IntegerSet should include:

 void printElements();
 int size();
 boolean elementOf(int x);

sim23356_ch12.indd 580sim23356_ch12.indd 580 12/15/08 6:52:17 PM12/15/08 6:52:17 PM

 Chapter 12 Inheritance 581

c. Defi ne merge(Object x) so that if x and y belong to IntegerSet then x.merge(y)
returns a reference to an IntegerSet, z , containing the integers in x and/or y. Set z

contains no duplicates . For example, if x � {1, 2, 3, 4, 5} and y � {3, 4, 5, 6, 7, 8}

then z � {1, 2, 3, 4, 5, 6, 7, 8}.

d. A particular lottery allows people to play any set of numbers from 1 through

1,000,000. Each number played costs $1. There is one winning number chosen

each week. A group of friends play the lottery, and each one has some set of

favorite numbers. Possibly, some of the friends have chosen the same numbers.

They decide to pool their numbers and split the winnings if any one of their

 numbers wins.

 Write a test class that creates three IntegerSet objects containing the lottery

numbers played by three different friends. Your test class should create a merged

set from the three sets and print out all the numbers in it and how much it will

cost to play these numbers (i.e., how many numbers).

 9. Lattice Points and Complex Numbers
 A lattice point on a graph is a pair of coordinates, (x, y) such that x and y are two

integers. For example, (2, 3), (�1, �2), and (4, 0) are lattice points. The point (0, 0)

is called the origin. These points are illustrated as follows:

(2, 3)

(4, 0)

(0, 0)
the origin

(�1, �2)

a. Create a LatticePoint class such that each point consists of a pair of integers (x, y).

Include constructors, getter and setter methods, and an addition method,

 LatticePoint add(LatticePoint p);

defi ned by the rule (a, b) � (c, d) � (a � c, b � d).

 Implement a method that returns the distance between two points:

 double distance(LatticePoint p);

such that the distance between (a, b) and (c, d) is defi ned as √

 (a � c) 2 � (b � d) 2 .

 Overload the distance method, so that the call

 p.double distance()

returns the distance from (0, 0) to p.

sim23356_ch12.indd 581sim23356_ch12.indd 581 12/15/08 6:52:17 PM12/15/08 6:52:17 PM

582 Part 2 Principles of Object-Oriented Programming

 Complex Numbers
 In the real number system, the square root of a negative number is

undefi ned. However, there is a number system, the complex numbers ,

where √

 � 1 makes perfect sense. Indeed, in the complex number system,

the symbol i signifi es √

 � 1 , and consequently i � i � (√

 � 1) 2 � � 1 .

 Complex numbers are written in the form x � yi where x and y are real

numbers and i � √

 � 1 . The number x is called the real part of x � yi, and

 y is called the imaginary part of x � yi . For example, 3 � 4 i , 9 � 2 i , and

7 � 0 i are complex numbers.

 Addition and multiplication of complex numbers is defi ned as:

 (a � b i) � (c � d i) � (a � c) � (b � d) i
(a � b i) � (c � d i) � (a c � b d) � (b c � a d) i

 The distance between complex numbers a � bi and c � di is defi ned as

 √

 (a � c) 2 � (b � d) 2 .

 A complex number x � yi is often expressed as a pair of two coordinates,

(x, y). For example, (2, 4), (−1, −2), and (4, 0) denote complex numbers

2 � 4 i, �1 � 2 i, and 4 � 0 i, respectively. Thus, every complex number

can be plotted as a point in an x-y coordinate system.

2 � 3i

4 � 0i

� 1 � 2i

 b. Design a class IntegerComplex that extends LatticePoint . Each IntergerComplex

object represents a complex number with two integer coordinates. IntegerComplex

inherits the addition and distance methods from LatticePoint . However, you must

add a multiplication method.

 c. Write a test class with a main(…) method that prompts for the real and imaginary

parts of an integer complex number. Your method should multiply the number by

itself, and then multiply the result by itself again, and so on, up to fi ve times or

until the result is more than a distance of 10 units from the origin, (0, 0). Report

either the number of multiplications performed or that the result did not exceed a

distance of 10 units from the origin.

sim23356_ch12.indd 582sim23356_ch12.indd 582 12/15/08 6:52:18 PM12/15/08 6:52:18 PM

 Chapter 12 Inheritance 583

THE BIGGER PICTURE

 THE BIGGER PICTURE

 MULTIPLE INHERITANCE
 Java specifi es that a class can extend just one class but can implement any number of

interfaces. This restriction is one of the many purposeful decisions made by the archi-

tects of Java. There are some very popular languages such as C�� that support multiple
inheritance , the language feature that allows a class to extend two or more classes. The

Java’s designers, whose goals were to build a simple, object-oriented, and familiar lan-

guage, believe that multiple inheritance causes confusion and creates problems. Let’s look

at some implications of multiple inheritance and you can judge for yourself whether or not

the possible advantages outweigh the potential for error and confusion.

 The Diamond Problem
 Imagine a university at which every student has a work-study job to help defray tuition

expenses. That is, every student is-an employee of the university. Furthermore, any faculty

member may take courses for free, so some employees (we’ll call them StuFac ’s) are both

students and faculty members. As shown in the code that follows, Student and Faculty both

inherit from Employee , and a StuFac inherits from both Student and Faculty . Of course,

 Java does not allow such an inheritance hierarchy .

 abstract class Employee
{
 public int idNumber;
 abstract void talk();
 ...
}

class Student extends Employee
{
 void talk()
 {
 System.out.println("I am a student on work-study");
 }
 ...
}

class Faculty extends Employee
{
 void talk()
 {
 System.out.println("I am a professor");}
 }
 ...
}
// THIS NEXT CLASS DOES NOT COMPILE
// YOU CANNOT EXTEND MULTIPLE CLASSES

class StuFac extends Student, Faculty
{
 ...
}

sim23356_ch12.indd 583sim23356_ch12.indd 583 12/15/08 6:52:18 PM12/15/08 6:52:18 PM

584 Part 2 Principles of Object-Oriented Programming

TH
E

BI
GG

ER
 P

IC
TU

RE

 This inheritance scheme, shown in Figure 12.10 , resembles a diamond, hence the name

“the diamond problem.”

Employee

StuFac

Student Faculty

FIGURE 12.10 The diamond problem

 There are two kinds of problems with diamond multiple inheritance. One problem

occurs when a StuFac object, upcast to Employee , invokes the talk() method as illustrated

by the following code segment:

 Employee employee � new StuFac();
employee.talk();

At runtime, the system does not know which talk() method to choose, the one for Student
or the one for Faculty . The attribute idNumber , defi ned in Employee , gives rise to a second

problem. Which idNumber does StuFac inherit? Is it the one inherited by Student , or the

one inherited by Faculty , or is there just one “unifi ed ” idNumber in StuFac ?

 There are no right answers to these questions. Indeed, it is possible that no answers

are satisfactory. Multiple inheritance implies ambiguities, and these are issues that must be

addressed when designing a programming language.

 Some programmers claim that multiple inheritance is convenient and useful, and prob-

lems stemming from the diamond problem are rare and avoidable. Other programmers

claim that the use of multiple inheritance is inherently bad design, and that the features

achieved by multiple inheritance can be implemented in other ways.

 Multiple Inheritance and Java
 How does Java handle multiple inheritance? The short answer is that Java forbids multiple

inheritance. Java stipulates that variables and method implementations can be inherited

from a single class. As a result, there is no confusion about which inherited instance vari-

able or method implementation is applicable. However, Java provides interfaces that can be

used to achieve the features of multiple inheritance without the potential ambiguities and

problems. That’s the bigger picture.

 Java specifi es that a class may implement many interfaces and consequently “inherit”

all the method names from those interfaces. This is a different kind of “inheritance” in that

no implementations of these methods are inherited but only the method signatures (that is,

the name of the method as well as the number and types of parameters in a specifi ed order).

This kind of inheritance is sometimes called inheritance of interface . Java uses inheritance

of interface to avoid the ambiguities of the diamond problem.

 As you know, a concrete (non-abstract) class that implements an interface is required

to defi ne each method of the interface. The StuFac class, rather than inheriting from both

the Student and Faculty classes, can implement a Student interface and a Faculty interface.

sim23356_ch12.indd 584sim23356_ch12.indd 584 12/15/08 6:52:19 PM12/15/08 6:52:19 PM

 Chapter 12 Inheritance 585

THE BIGGER PICTURE

The StuFac class would then be obligated to implement all the methods from each inter-

face, without actually inheriting any actual method implementations.

 For example,

 public interface Student
{
 void talk();
 ...
}
public interface Faculty
{
 void talk();
 ...
}
class StuFac implements Student, Faculty
{
 public void talk()
 {
 System.out.println("I am a professor taking courses");
 }
}

 StuFac implements two interfaces, Student and Faculty , each of which declares a talk()
method. There is no ambiguity here: neither Faculty nor Student implements talk() . StuFac

must supply its own implementation of talk(). The talk() methods of Student and Faculty

have identical signatures (number and/or type of parameters), so StuFac implements only

one version of talk(). On the other hand, if the interfaces have different signatures such as:

 public interface Student
{
 public void talk(int x); // notice the parameter
}

and

 public interface Faculty
{
 public void talk();
}

then StuFac is obligated to implement two distinct talk(…) methods, one for each interface,

or be tagged abstract .

Exercise
1. Following are two interfaces, Student and Faculty , such that each declares talk().

The signatures are identical, but the return types differ.

 public interface Student
{
 public void talk();
}

public interface Faculty
{
 public int talk();
}

sim23356_ch12.indd 585sim23356_ch12.indd 585 12/15/08 6:52:19 PM12/15/08 6:52:19 PM

586 Part 2 Principles of Object-Oriented Programming

TH
E

BI
GG

ER
 P

IC
TU

RE

 Suppose that StuFac implements both Student and Faculty . With the help of the

Java compiler, determine the problems that arise in this situation. How might

you fi x the problem?

 Two Interfaces and a Name Clash—A Complex Example
 Java’s response to multiple inheritance is good but not perfect. The problem in Exercise 1 is

a no-win situation. Although the return types differ, you cannot implement two versions of

 talk() because the signatures are identical. On the other hand, an implementation of StuFac

with just one version of talk() generates a compilation error. But this kind of problem is not

the only one you may encounter.

 This section describes a more subtle problem that Java interfaces cannot easily han-

dle. The problem arises when two interfaces use the same signature and return type for

a method, but a single implementation of that method does not fi t the needs of the class

implementing the two interfaces.

 Interface designers do not huddle together when choosing method names. Suppose

that two interfaces declare identical method signatures and a concrete class imple-

ments both interfaces. If one implementation of the method works for both interfaces,

there is no problem, but what happens if a single implementation does not suffi ce for

both?

 In this example, a Box class implements two interfaces, Comparable and PartialOrder .
Each interface has a method int compareTo(...) with the same signature and return type, but

 Box is logically unable to use a single implementation for both. A Box class has integer

attributes signifying the dimensions of the box— length, width , and depth —and overrides

 boolean equals(object O) such that two Box objects are equal if they have the same dimen-

sions. Box also includes methods that

 • compare boxes by comparing their volumes, and

• compare boxes by checking whether one box fi ts inside the other.

 The Box class implement the Comparable interface and overrides compareTo(...) using

volume as a basis for comparison.

 The Comparable interface is appropriate when you wish to impose a total ordering

on a class. That is, if a and b are two objects, then either a is less than b , a is greater than

 b , or a equals b . Objects of a totally ordered class can be sorted in ascending order. If Box

implements compareTo(…) based on volume, then the objects of Box are totally ordered

and, consequently, boxes can be sorted in ascending order.

 However, not every method of comparison imposes a total ordering on the objects of

a class. For example, if you compare boxes according to the criterion “box a is less than

box b if a fi ts inside b ,” then it is not always the case that boxes can be sorted in order. It is

possible that, for two distinct boxes a and b , neither fi ts inside the other. This means that

one box is neither greater than, less than, nor equal to the other! The two boxes cannot be

compared based on the nesting criterion, and the Comparable interface is not appropriate.

The following exercise investigates this further.

Exercise
 2. Assume you inappropriately implement the compareTo(…) method of

 Comparable using box nesting rather than volume. That is,

 a.compareTo(b) � � 1 if a fits inside of b ,
 a.compareTo(b) � 1 if b fits inside of a , and
 a.compareTo(b) � 0 otherwise. In this case, the two boxes are incomparable.

sim23356_ch12.indd 586sim23356_ch12.indd 586 12/15/08 6:52:20 PM12/15/08 6:52:20 PM

 Chapter 12 Inheritance 587

THE BIGGER PICTURE

 a. Give an example of two boxes a and b such that a.compare(b) � 0, but a and

 b do not have the same dimensions.

 b. You execute the generic sort method of Section 12.11 on an array holding

three boxes with dimensions (2, 3, 4), (1, 5, 6), and (7, 8, 9). Describe what

happens.

 c. An array holding three boxes with dimensions (7, 8, 9), (1, 2, 3), and (4, 5, 6) is

sorted using the generic sort of Example 12.11. How are these boxes ordered?

 d. The box-nesting implementation of compareTo(…) is inappropriate for

 Comparable objects because it does not impose a total ordering on the boxes.

Using (b) and (c), describe when the generic sort fails and how this failure

relates to the inappropriate implementation of compareTo(…) .

 Box-nesting imposes a partial order on the boxes but not a total order. A partial order

specifi es that if a is greater than b , then b is not greater than a , and vice versa. To handle

box nesting, we can implement a PartialOrder interface, rather than a Comparable inter-

face. PartialOrder declares a single method compareTo(...) with the same signature and

return type as the compareTo(...) method of Comparable .

 int compareTo(Object p)
 // returns positive if this object is greater than p (usually returns 1)
 // returns 0, otherwise

 For example, if Box implements PartialOrder , then the method call a.compareTo(b) returns

1 if box b fi ts inside box a , and 0 otherwise. Note that if box b fi ts inside a , then a does not

fi t inside b , and vice versa.

 Although the two methods have the same signature and return type, semantically,

 compareTo(...) of PartialOrder differs from compareTo(...) of Comparable . For PartialOrder ,
it is feasible that both c.compareTo(b) and b . compareTo(c) return 0 even when b and c

are not equal. That is, neither box fi ts inside the other, and the boxes are not equal. For

 Comparable , if b and c are not equal, then one of the two method calls, c.compareTo(b)
and b.compareTo(c) , must return 1. Thus, a single implementation of compareTo(…) cannot

suffi ce for both interfaces.

 Suppose that Box implements both Comparable and PartialOrder . Box must implement

two different methods: compareTo(...) of Comparable and compareTo(...) of PartialOrder .
Unfortunately, both compareTo(...) methods have the same signature, so Box can imple-

ment just one version of compareTo(…). And, since the methods clash semantically, one

implementation cannot work correctly for both interfaces.

 In the following exercises, we ask you to resolve this problem by changing the name

of the compareTo(...) method in one of the interfaces. Of course, this solution assumes that

you have access to the interface source code. Unfortunately, in the real world you may not

have write-access to these interfaces. Perhaps the interfaces have been written by two pro-

grammers who maintain their own code, and who no doubt did not consult with each other

on method names. In this case, the name clash has killed your program.

Exercises
 3. Defi ne a Box class with integer instance variables length, width , and depth . Write

constructors. The default constructor should instantiate a box with all three

dimensions equal to zero. The dimensions should be specifi ed in inches.

 4. Defi ne a PartialOrder interface with one method greaterThan(...) .

 5. Box should implement the standard Java interface Comparable so that

 compareTo(...) compares boxes based on volume. The shipping cost of a box is

sim23356_ch12.indd 587sim23356_ch12.indd 587 12/15/08 6:52:20 PM12/15/08 6:52:20 PM

588 Part 2 Principles of Object-Oriented Programming

TH
E

BI
GG

ER
 P

IC
TU

RE

proportional to its volume. Write a main(…) method that interactively accepts

two boxes and determines which box costs more to ship.

 6. Box should also implement the PartialOrder interface. Defi ne the greaterThan(..)
method so that b.greaterThan(c) returns 1 whenever Box c fi ts inside Box b. Note

that c fi ts inside b if there is a way to arrange the dimensions of each box so

that the corresponding dimensions of b are each larger than those of c . Write a

 main (…) method that determines whether or not three boxes can be stacked one

inside the other.

 Conclusion
 An interface allows you to simulate the features of multiple inheritance without the associ-

ated ambiguities and problems. Despite Java’s attempt to avoid the diffi culties of multiple

inheritance, problems with interfaces still exist. You will see more of the power of inter-

faces when you study polymorphism in Chapter 13. Simulating multiple inheritance is not

the only function of interfaces, but just one of several.

sim23356_ch12.indd 588sim23356_ch12.indd 588 12/15/08 6:52:20 PM12/15/08 6:52:20 PM

 589

CHAPTER CHAPTER 13
 Polymorphism

 “Must a name mean something?” Alice asked doubtfully.
 “Of course it must,” Humpty Dumpty said: “my name means the shape I am—and a good

handsome shape it is, too. With a name like yours, you might be any shape, almost.”
 — Lewis Carroll, Through the Looking Glass

 Objectives

 The objectives of Chapter 13 include an understanding of

� the types of polymorphism,

� polymorphism and dynamic binding,

� polymorphism and class extensibility,

� polymorphism and interfaces, and

� polymorphism behind the scenes.

 13.1 INTRODUCTION

 The previous chapters describe encapsulation and inheritance, two foundational ideas

underlying object-oriented programming. Polymorphism is the third fundamental concept

of OOP. In Chapter 12, you saw that, by exploiting similarity among classes, inheritance

makes it possible to build new classes from existing classes.

In contrast to inheritance, polymorphism underscores the differences of class

behavior in an inheritance hierarchy.

 The word polymorphism , derived from the Greek words polus and morphe , means

“many shapes” or “many forms.” Method overloading, which allows several methods to

share the same name, is a simple type of polymorphism that we have already encountered.

However, the real muscle of polymorphism derives from method overriding and the con-

cept of late binding, which is the major topic of this chapter.

 13.2 TWO SIMPLE FORMS OF POLYMORPHISM

 13.2.1 Ad-hoc Polymorphism—Method Overloading
 The following short examples illustrate two simple types of polymorphism. The fi rst code

segment overloads the constructor of a Song class. The constructor is polymorphic; the

constructor has three forms.

sim23356_ch13.indd 589sim23356_ch13.indd 589 12/15/08 7:00:11 PM12/15/08 7:00:11 PM

590 Part 2 Principles of Object-Oriented Programming

 public class Song
{
 private String composer;
 private String lyricist;

 public Song () // default constructor
 {
 composer � "" ;
 lyricist � "";
 }
 public Song(String name) // same person wrote words and music
 {
 composer � name ;
 lyricist � name;
 }
 public Song (String name1, String name2) // two songwriters
 {
 composer � name1;
 lyricist � name2;
 }
 // other Song methods go here.......
}

Method overloading, a form of polymorphism, is also known as ad-hoc
polymorphism.

 13.2.2 Upcasting
 A second form of polymorphism comes in the guise of upcasting. Recall that upcasting in

an inheritance hierarchy allows an object of a derived type to be considered an object of a

base type. For example, consider the following hierarchy and code fragment.

Dog

HoundDog

Beagle Bassett

 1. Dog elvis;
2. elvis � new HoundDog();
3. elvis � new Beagle();
4. elvis � new Bassett();

 Because a HoundDog is-a Dog , a HoundDog reference can be upcast to Dog (line 2). Sim-

ilarly, a Beagle reference and a Bassett reference can also be considered Dog references

(lines 3 and 4). The reference elvis is polymorphic , that is, elvis has “many forms” and

 elvis can refer to a Dog object, a HoundDog object, a Beagle object, or a Bassett object.

sim23356_ch13.indd 590sim23356_ch13.indd 590 12/15/08 7:00:12 PM12/15/08 7:00:12 PM

 Chapter 13 Polymorphism 591

 13.3 DYNAMIC (OR LATE) BINDING

 Method overloading and upcasting are two simple forms of polymorphism.

A third form of polymorphism, dynamic or late binding, accentuates the behavioral
differences among objects of different classes in a hierarchy.

 This is in contrast to inheritance, which exploits the similarities of classes. And, although

method overloading and upcasting both exhibit polymorphic behavior, object-oriented

purists would insist that true polymorphism should be defi ned strictly in terms of late

binding.

 To illustrate and explain dynamic binding we devise a new hierarchy of classes, the

Shape hierarchy, which provides a poor man’s version of a graphics program. Indeed,

modern graphics programs usually provide tools for drawing different shapes such as rect-

angles, circles, or triangles. A would-be artist selects a drawing pen, a color, and a possible

shape, and uses the mouse as a paintbrush and the screen as an easel.

 We are not quite ready to implement such an application. That’s coming later. So, we

downsize our expectations. Example 13.1 provides classes with methods that draw rectan-

gles and triangles using standard keyboard characters. Each class encapsulates a different

geometric shape. Some typical shapes are shown in Figure 13.1 .

Square

%
%%
%%%
%%%%
%%%%%

RightTriangle

#
#

#
#

#
Triangle

FIGURE 13.1 Three shapes—each uses a different drawing character

 EXAMPLE 13.1 Problem Statement Design classes Square, RightTriangle , and Triangle that encapsu-

late three geometric shapes. Each class should implement a method

 void draw (int x, int y)

that “draws” a square, a right triangle, or an equilateral triangle (a triangle with three

equal sides), respectively. See Figure 13.1 . The parameters x and y specify the relative

position of the fi gure: y lines down and x spaces across from the current position of

the screen cursor.

 The instance variables of each class are:

int rows , the number of rows that comprise the fi gure,

and

char character , the keyboard character used for drawing the fi gure.

 Each shape of Figure 13.1 consists of fi ve rows. The drawing characters are ‘ ’ for the

square, ‘%’ for the right triangle, and ‘#’ for the equilateral triangle.

sim23356_ch13.indd 591sim23356_ch13.indd 591 12/15/08 7:00:13 PM12/15/08 7:00:13 PM

592 Part 2 Principles of Object-Oriented Programming

 Java Solution There is much the same about the three classes: the attributes are the

same, and except for the draw(...) method, the getter and setter methods are the same. In

fact, the classes are more similar than different. Consequently, we factor out the common-

ality of the classes into one (abstract) superclass, Shape , which serves as a base class in an

inheritance hierarchy that includes Square, RightTriangle , and Triangle . See Figure 13.2 .

Shape (abstract)

Square

int rows
char character

Shape()
Shape(int x, char c)
int get rows()
char getCharacter()
void setRows(int x)
void setCharacter(int x)
void draw(int x, int y) (abstract)

Square()
Square(int x, char ch)
void draw(int x, int y)

RightTriangle

RightTriangle()
RightTriangle(int x, char ch)
void draw(int x, int y)

Triangle

Triangle()
Triangle(int x, char ch)
void draw(int x, int y)

FIGURE 13.2 The Shape hierarchy

 The abstract class Shape has the following form:

 1. public abstract class Shape
2. {
3. protected int rows; // figure drawn on rows rows
4. protected char character; // the drawing character

5. public Shape()
6. {
7. rows � 0;
8. char character � ' ';
9. }

10. public Shape(int x, char ch)
11. {
12. rows � x;
13. character � ch;
14. }

15. public int getRows()
16. {
17. return rows;
18. }

19. public char getCharacter()
20. {
21. return character;
22. }

23. public void setRows(int y)
24. {
25. rows � y;

sim23356_ch13.indd 592sim23356_ch13.indd 592 12/15/08 7:00:13 PM12/15/08 7:00:13 PM

 Chapter 13 Polymorphism 593

 The three classes derived from Shape follow. Each implements constructors and a

unique draw(...) method.

public class Square extends Shape

{
public Square()
{
 // call Shape default constructor
 super();
}

public Square(int x, char ch)
{
 // call Shape 2 argument constr.
 super(x, ch);
}

public void draw(int x, int y)
{
 // move down y lines
 for (int i � 1; i �� y; i��)
 System.out.println();

 // for each row
 for (int len � 1; len �� rows; len��)
 {
 // indent x spaces
 for (int i � 1; i �� x; i��)
 System.out.print(' ');
 for(int j � 1; j �� rows; j��)
 System.out.print(character);
 System.out.println();
 }
}
}

public class RightTriangle extends Shape

{
public RightTriangle()
{
 // call Shape default constructor
 super();
}

public RightTriangle(int x, char ch)
{
 // call Shape 2 argument constr.
 super(x, ch);
}

public void draw(int x, int y)
{
 // move down y lines
 for (int i � 1; i �� y; i��)
 System.out.println();

 // for each row
 for (int len � 1; len �� rows; len��)
 {
 // indent x spaces
 for (int i � 1; i �� x; i��)
 System.out.print(' ');
 for (int j � 1; j �� len; j��)
 System.out.print(character);
 System.out.println();
 }
}
}

public class Triangle extends Shape

{
public Triangle ()
{
 // call Shape default constructor
 super();
}

public Triangle (int x, char ch)
{
 // call Shape 2 argument constr.
 super(x, ch);
}

public void draw(int x, int y)
{
 // move down y lines
 for (int i � 1; i �� y; i��)
 System.out.println();

 // for each row
 for(int len � 1; len �� rows; len��)
 {
 // indent; the vertex is centered
 for(int i � 0; i �� rows � len � x; i��)
 System.out.print(" ");
 for(int i �1; i �� len; i��)
 System.out.print(character � " ");
 System.out.println();
 }
}
}

 Output An arrow or a tree? Which do you see?

* *
*

* * *
* * * *

* * * * *
* * * * * *

* * * * * * *

26. }

27. public void setCharacter(char ch)
28. {
29. character � ch;
30. }

31. public abstract void draw(int x, int y); // must be implemented in concrete subclasses

32. }

sim23356_ch13.indd 593sim23356_ch13.indd 593 12/15/08 7:00:14 PM12/15/08 7:00:14 PM

594 Part 2 Principles of Object-Oriented Programming

 Discussion Except for constructors and draw(...) , Square, RightTriangle , and Triangle
inherit all other methods from Shape . Of course, because Shape is abstract, no Shape
objects can exist. The following small class uses two of these draw(...) methods to dis-

play an arrow, of sorts, or perhaps a rather primitive tree. Which do you see?

 1. public class Arrow
2. {
3. public static void main(String[] args)
4. {
5. Triangle head � new Triangle(7, ' ');
6. Square tail � new Square(5, ' ');
7. head.draw(0, 0);
8. tail.draw(5, 0);
9. }
10. }

The following example shows a test class that utilizes the Shape hierarchy and gives a fi rst

look at polymorphism via dynamic binding.

 Problem Statement Devise a test class that interactively queries a user for one of three

shapes and subsequently draws the requested shape.

 Java Solution The main(...) method of the following test class requests input 1, 2, or 3

representing a square, a right triangle, or an equilateral triangle, respectively. Because a

Square is-a Shape , a RightTriangle is-a Shape , and a Triangle is-a Shape , all references

are upcast to Shape .

 EXAMPLE 13.2

 1. import java.util.*;
2. public class TestDraw
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. Shape shape � null; // all references can be upcast to Shape
8. int shapeNumber; // code number for each type of figure
9. System.out.print("Enter 1: Square, 2: RightTriangle, 3: Equilateral Triangle: ");
10. shapeNumber � input.nextInt();

11. switch (shapeNumber)
12. {
13. case 1 : shape � new Square(4, '*'); // size 4, draw with *
14. break;
15. case 2 : shape � new RightTriangle(5, '#'); // size 5, draw with #
16. break;
17. case 3 : shape � new Triangle(6, '�'); // size 6, draw with �
18. break;
19. default : System.out.println("Invalid entry"); // shapeNumber is not 1, 2, or 3
20. System.exit(0); // bad data, terminate the application
21. }
22. shape.draw(1, 1);
23. }
24. }

sim23356_ch13.indd 594sim23356_ch13.indd 594 12/15/08 7:00:14 PM12/15/08 7:00:14 PM

 Chapter 13 Polymorphism 595

 Output Running the program twice produces the following output:
Enter 1: Square, 2: RightTriangle, 3: Equilateral Triangle: 2

#
##
###
####
#####

Enter 1: Square, 2: RightTriangle, 3: Equilateral Triangle: 1

 Discussion The application runs as you might expect, but only because Java implements

polymorphism through late binding .

 Behind the scenes, there is more going on than you might imagine. Let’s take a

closer look at line 22:

 shape.draw(1, 1)

On line 22, it appears that a Shape object (shape) invokes its draw(…) method. How-

ever, Shape is an abstract class, so no Shape object can exist. Furthermore, Shape does

not implement draw(...) as part of the Shape class, draw(...) is declared abstract . Well,

then, which draw(...) method is invoked?

 As you already know, via inheritance and upcasting, the reference variable shape
could refer to

 • a Square object (line 13),

 • a RightTriangle object (line 15), or

 • a Triangle object (line 17).

When TestDraw is compiled and translated into bytecode, the Java compiler cannot
determine which draw (…) method is applicable. The compiler knows that shape refers

to a kind of Shape , but it does not know which kind. The appropriate draw(...) method is

not discernible until the program runs and the user chooses one of three shapes.

 Consequently, the compiled version of the program, that is, the bytecode that exe-

cutes on the Java Virtual Machine, does not specify which draw(...) method is appropri-

ate. The choice of the correct draw(...) method is postponed until the program executes;

that is, the choice is postponed until runtime .

Polymorphism via dynamic or late binding refers to choosing the appropriate method

not at compile time, but at runtime.

 When the TestDraw application runs , Java determines which form of draw(...) to execute.

 The draw(...) method of Example 13.2 has “many forms” (well, at least three), and Java

chooses the appropriate version dynamically, that is, during the run of the program. The

notion of late binding is the essence of polymorphism. In fact, late (or dynamic) binding is

often given as the defi nition of polymorphism.

sim23356_ch13.indd 595sim23356_ch13.indd 595 12/15/08 7:00:16 PM12/15/08 7:00:16 PM

596 Part 2 Principles of Object-Oriented Programming

 Dynamic binding is a convenience. If Java did not automatically support late binding,

we could achieve the same effect explicitly, if less elegantly, using a sequence of if-else

statements , instanceof ’s, and downcasts:

 if (shape instanceof Square)
 ((Square)shape).draw(1,1); // notice the downcasts
else if (shape instanceof RightTriangle)
 ((RightTriangle)shape).draw(1,1);
else if (shape instanceof Triangle)
 ((Triangle)shape).draw(1,1);

 13.3.1 How Dynamic Binding Works
 At the risk of oversimplifi cation, we discuss how the mechanism of dynamic binding

works—in particular how the draw(...) method of Example 13.2 is, in fact, chosen.

 Notice that the reference variable shape is declared to be of type Shape :

 Shape shape (line 7 of Example 13.2).

 Shape is the apparent type or declared type of shape . Of course, a Shape object cannot

be instantiated because Shape is an abstract class. On the other hand, variable shape can

refer to a Square object or a Triangle object, or an object of any concrete class that extends

 Shape .

The real type or actual type of a reference variable is the type of the object that is

created by the new operation.

 So, the real type of shape is Square , RightTriangle , or Triangle , depending on user input.

See lines 13, 15, and 17 of Example 13.2.

 Let’s arbitrarily assume that the user, TestDraw , chooses to draw a right triangle. In this

case, the real type of shape is RightTriangle (line 15). When the draw(...) method is invoked

by shape (see line 22), Java begins searching for a fully implemented draw(...) method. The

search begins in the RightTriangle class (the real type of shape). If the RightTriangle class has

implemented a draw(...) method then the search ends, and that method is called. If not, then

Java searches the parent of RightTriangle . Searching continues all the way up the hierarchy

until an implemented draw(...) method is found (or until the Object class is reached).

 As another illustration, recall that in the Shape hierarchy, there is a getter method

 int getRows()
{
 return rows;
}

 Because the Shape class implements getRows() , the classes Square, RightTriangle , and

 Triangle inherit getRows().
 Now, in Example 13.2, replace line 22 (shape.draw(1,1)) with

 shape.getRows()

If a user again chooses a right triangle, Java begins searching the RightTriangle class (the

real type) for a getRows() method. Since RightTriangle does not implement a getRows()
method, Java continues the search in the parent class (Shape) where such a method does

exist. Thus, the getRows() that is implemented in Shape is executed.

 How does the compiler handle shape.draw(1,1) , which at compile time is ambiguous?

It checks the apparent type of shape and works with that. Since Shape declares a draw(...)
method, anything below Shape in the hierarchy also has a draw(...) method. Even though

sim23356_ch13.indd 596sim23356_ch13.indd 596 12/15/08 7:00:19 PM12/15/08 7:00:19 PM

 Chapter 13 Polymorphism 597

the Shape class does not implement a draw(...) method, Shape does declare a draw method.

Consequently the statement

 shape.draw(1,1)

causes no confusion to the compiler. The compiler happily accepts the statement and, dur-

ing runtime, the appropriate version of draw(...) is selected. Were draw(...) not declared in

 Shape , a compile time error would be issued:

 C:\JavaPrograms\TestDraw.java:19: cannot find symbol
symbol : method draw(int,int)
location: class Shape
shape.draw(1,1);
 ^

 Here is another illustration that utilizes two very simple classes, Parent and (a rather

precocious) Child . See Figure 13.3 .

public class Child extends Parent
{
 public void hello()
 {
 System.out.println("Bonjour");
 }
 public void goodbye()
 {
 System.out.println("Au revoir");
 }
}

public class Parent
{
 public void hello()
 {
 System.out.println("Hi");
 }
}

FIGURE 13.3 A Parent-Child hierarchy

 The following code segment does not compile.

 Parent x;
x � new Child();
x.goodbye();

 Here, the apparent type of x is Parent . Notice that Parent has no goodbye() method. Conse-

quently, the method invocation x.goodbye() is syntactically incorrect.

 A cast fi xes the problem:

 ((Child)x).goodbye();

The compiler now knows that x is to be treated as a Child object and Child does implement

a goodbye() method.

 On the other hand, in the following fragment, again, the apparent type of x is Parent .

 Parent x;
x � new Child();
x.hello();

sim23356_ch13.indd 597sim23356_ch13.indd 597 12/15/08 7:00:19 PM12/15/08 7:00:19 PM

598 Part 2 Principles of Object-Oriented Programming

 In this case, the Parent class contains an implementation of the hello() method, so no syntax

error occurs. When the program runs, late binding ensures that the hello() method of Child ,

rather than Parent , executes. The output is:

 Bonjour

 13.3.2 Exceptions to Late Binding
 Late binding is the rule, but there are exceptions. Late binding allows the programmer to

avoid a tedious sequence of if statements. However, there are situations where late binding

does not make sense.

 Unlike the draw(…) method of Example 13.2, a fi nal , private , or static method cannot be

overridden in a derived class and has only one form. Consequently, a call to a fi nal, private ,

or static method presents no ambiguity to the compiler. Because such a method has but

one version, a method call can be associated with the correct method implementation at

compile time, that is, before the program executes. There is no need to wait until runtime

to connect the call to the appropriate version of the method.

Java uses late binding for all method invocations except fi nal, private, and static

methods.

 13.4 POLYMORPHISM MAKES PROGRAMS EXTENSIBLE

 You have seen how polymorphism with late binding can make your code cleaner and more

manageable. But wait! Polymorphism gets even better.

Polymorphism allows you to extend your classes with ease.

 In the next example, we add a new Shape to the Square-RightTriangle-Triangle trio.

 With most drawing applications, you can create fi gures that are either fi lled or unfi lled.

See Figure 13.4 .

FIGURE 13.4 A filled square and an unfilled square

 The “drawings” produced by the methods of the Shape hierarchy are all fi lled.

 Problem Statement Expand the Shape class with a subclass, EmptySquare , that

implements a draw method that produces a square that is not fi lled.

* *
* *
* *

 EXAMPLE 13.3

sim23356_ch13.indd 598sim23356_ch13.indd 598 12/15/08 7:00:19 PM12/15/08 7:00:19 PM

 Chapter 13 Polymorphism 599

 Java Solution EmptySquare extends Shape and implements draw(x, y) according to

the following algorithm:

 Move the cursor down y lines
For each row
 print x spaces
 for each position within a row
 if the position is on the edge of the square
 print the drawing character
 else
 print a space
 move down a row

 The code for EmptySquare follows:

 1. class EmptySquare extends Shape
2. {
3. public EmptySquare()
4. {
5. super(); // calls default Shape constructor
6. }

7. public EmptySquare(int x, char ch)
8. {
9. super(x, ch); // call 2-argument Shape constructor
10. }

11. public void draw(int x, int y)
12. {
13. // move down y lines
14. for (int i � 1; i �� y; i��)
15. System.out.println();

16. // for each row
17. for (int len � 1; len �� rows; len��)
18. {
19. // indent x spaces
20. for (int i � 1; i �� x; i��)
21. System.out.print(' ');

22. // print a character on an edge
23. // print spaces in the interior

24. for (int j � 1; j �� rows; j��)
25. if (j �� 1 || j �� rows || len �� rows || len �� 1) // on edge
26. System.out.print(character);
27. else
28. System.out.print(" ");
29. System.out.println();
30. }
31. }
32. }

sim23356_ch13.indd 599sim23356_ch13.indd 599 12/15/08 7:00:21 PM12/15/08 7:00:21 PM

600 Part 2 Principles of Object-Oriented Programming

 13.5 INTERFACES AND POLYMORPHISM

 In Chapter 12, you learned that a Java interface allows a programmer some of the fl exibility

of multiple inheritance without the inherent pitfalls. But interfaces have other advantages.

Example 13.4 demonstrates that using an interface can tie classes together into a nice pack-

age with the power of polymorphism added to the bundle.

An interface can be used to achieve polymorphism.

 Output Enter 1: Square, 2: RightTriangle, 3: Equilateral Triangle, 4: Unfi lled Square: 4

* *
* *
* *
* *

 Discussion That’s all there is to it. The hierarchy has been easily expanded, and conven iently, the only

necessary change occurs in the test program (below in bold). Just two lines!

1. import java.util.Scanner;
2. public class TestDraw
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. Shape shape � null;
8. int shapeNumber; // code number for each type of figure
9. char ch;

10. System.out.print("Enter 1: Square, 2: RightTriangle, 3: Equilateral Triangle, 4: Unfilled square : ");
11. shapeNumber � input.nextInt();

12. switch (shapeNumber)
13. {
14. case 1 : shape � new Square(4, '*');
15. break;
16. case 2 : shape � new RightTriangle(5, '#');
17. break;
18. case 3 : shape � new Triangle(6, '�');
19. break;
20. case 4 : shape � new EmptySquare(7, '*');

21. break;

22. }
23. shape.draw(1, 1);
24. }
25. }

 Nothing in the Shape hierarchy needs alteration. In fact, the previously defi ned classes

(Square , RightTriangle , and Triangle) do not have to be recompiled. A new Shape has

been easily added to the hierarchy with its unique version of draw(...) . Plug and play. The

 draw(…) method now has four forms, but no signifi cant code was altered. Polymorphism

through late binding ensures that the correct form of draw(...) will be chosen at runtime.

sim23356_ch13.indd 600sim23356_ch13.indd 600 12/15/08 7:00:21 PM12/15/08 7:00:21 PM

 Chapter 13 Polymorphism 601

 EXAMPLE 13.4 Nostalgic Ned collects fi lms and music of yesteryear. Vintage black and white Mickey

Mouse cartoons, John Wayne shoot-em-up westerns, or ballads crooned by Frank Sina-

tra are Ned’s pleasure. And, although Ned enjoys the entertainment of the past, he is a

bit more modern with his technology. Ned owns a disc changer that holds up to 200 CDs

or DVDs. He also has a large MP3 music collection stored on his computer.

 Ned has written a program that interacts with his disc changer. His application

implements an interface, Playable :

 public interface Playable
{
 public void play();
}

and consists of three classes, DVD, CD , and MP3 , each of which implements Playable .

The classes shown in Figure 13.5 are written with a single println() statement replacing

the code that actually initiates play.

public cla ss DVD
Implements Playable

{
 protected String title;
 public DVD(String t)
 {
 title � t;
 }
 public void play ()
 {
 System.out.printIn(
 "DVD:playing" � title);
 }
}

public cla ss CD
implements Playable

{
 protected String title:
 public CD(String t)
 {
 title � t;
 }
 public void play()
 {
 System.out.printIn(
 "CD: playing" � title);
 }
}

public cla ss MP3
implements Playable

{
 protected String title;
 public MP3(String t)
 {
 title � t;
 }
 public void play()
 {
 System.out.printIn(
 "MP3: playing " � title);
 }
}

FIGURE 13.5 Each of the three classes implements Playable

 So for example, the segment

 DVD dvd � new DVD("The Wizard of Oz");
dvd.play();

sends Ned down the yellow brick road.

 All that is fi ne, but Ned would like to automate his system a bit so that he can load

and play any number of titles, DVD , CD , or MP3 . Once Ned selects a collection of music

and/or fi lm titles, they play in sequence.

 Problem Statement Using the classes of Figure 13.5 , implement a more functional

class to assist Ned. The application should request the number of items, and for each

one the media player (DVD , CD , or MP3) and the music or fi lm title.

 Java Solution The constructor of the MediaPlayer class builds an array of at most

30 Playable objects based on user input. Once the array is fi lled, the play() method is

invoked, in turn, by each object. To keep the example simple, we assume that all user

input is correct.

 1. import java.util.*;
2. public class MediaPlayer
3. {

sim23356_ch13.indd 601sim23356_ch13.indd 601 12/15/08 7:00:23 PM12/15/08 7:00:23 PM

602 Part 2 Principles of Object-Oriented Programming

4. Playable[] items;
5. final private int MAX_ITEMS � 30; // maximum length of the array, items
6. int numItems;
7. public MediaPlayer()
8. {
9. Scanner input � new Scanner(System.in);
10. items � new Playable[MAX_ITEMS];
11. System.out.print("Number of items : ");
12. numItems � input.nextInt();
13. for (int i � 0; i � numItems; i��)
14. {
15. System.out.print("1:DVD, 2:CD, 3:MP3 ---� ");
16. int choice � input.nextInt();
17. input.nextLine();
18. System.out.print("Title: ");
19. String title � input.nextLine();
20. switch (choice)
21. {
22. case 1 : items[i] � new DVD(title); break;
23. case 2 : items[i] � new CD(title); break;
24. case 3 : items[i] � new MP3(title); break;
25. }
26. }
27. System.out.println("All items loaded\n");
28. }

29. public void playAll()
30. {
31. for (int i � 0; i � numItems; i��)
32. items[i].play();
33. }

34. public static void main(String [] args)
35. {
36. MediaPlayer player � new MediaPlayer();
37. player.playAll();
38. }
39. }

 Output
 Number of items: 5
1:DVD, 2:CD, 3:MP3 ---� 1
Title : Steamboat Willie

1:DVD, 2:CD, 3:MP3 ---� 1
Title: The Wizard of Oz

1:DVD, 2:CD, 3:MP3 ---� 2
Title: Classic Sinatra
1:DVD, 2:CD, 3:MP3 ---� 3
Title: Marcelle Marceau's Greatest Hits
1:DVD, 2:CD, 3:MP3 ---� 1
Title: The Best of Popeye and Olive Oyl

All items loaded

DVD playing Steamboat Willie
DVD playing The Wizard of Oz

sim23356_ch13.indd 602sim23356_ch13.indd 602 12/15/08 7:00:24 PM12/15/08 7:00:24 PM

 Chapter 13 Polymorphism 603

CD playing Classic Sinatra
MP3 playing Marcelle Marceau's Greatest Hits
DVD playing The Best of Popeye and Olive Oyl

 Discussion Notice that items , declared on line 4, is an array of Playable . Playable is an

interface; Playable is not a class.

 Each of the three classes DVD , CD , and MP3 implements Playable , and hence the

 play() method. In that sense, they are similar. Because DVD , CD , and MP3 each imple-

ments Playable , a Playable reference can refer to objects of type DVD , CD , or MP3 . That

is, DVD , CD , and MP3 can each be upcast to Playable . Consequently, the array items can

refer to objects that are instantiated from any of these three classes, (lines 22–24), and

indeed from any other class that implements Playable .

 On one hand, all three classes are similar in that each one implements play() and can

be upcast to Playable . On the other hand, polymorphism unwinds the differences among

these classes by choosing the appropriate play() method at runtime (line 32). That’s

right—late binding. We reiterate:

Inheritance emphasizes similarity among classes—commonality is factored out into

the base class.

Polymorphism accentuates differences among classes in an inheritance hierarchy—

at runtime the appropriate and particular method is invoked.

 13.5.1 Life Without Polymorphism
 Suppose that none of the classes (DVD , CD , or MP3) implements the Playable interface.

With such a scenario, we’d certainly have three perfectly good, independent classes, but

without the power of polymorphism behind them.

 Let’s see what happens if we try to accomplish this polymorphic behavior without the

Playable interface, through the inheritance structure of mother Object . Instead of the array

 Playable[] items

we might declare an array

 Object[] items

to refer to objects of the various classes DVD , CD , and MP3 . Upcasting to Object is no

problem. So far, so good.

 Now consider the method playAll() :

 1. public void playAll()
2. {
3. for (int i � 0; i � numitems; i��)
4. {
5. items[i].play()
6. }
7. }

 The apparent type of items[i] (line 5) is Object ; but the Object class knows nothing

about the various play() methods. Consequently, the compiler issues an error message

at line 5.

sim23356_ch13.indd 603sim23356_ch13.indd 603 12/15/08 7:00:25 PM12/15/08 7:00:25 PM

604 Part 2 Principles of Object-Oriented Programming

 To ensure that the program compiles and runs correctly, we replace line 5 with an

else-if construction coupled with several casts:

 if (items[i] instanceof DVD)
 ((DVD)items[i]).play();
else if (items[i] instanceof CD)
 ((CD)items[i]).play();
else if (items[i] instanceof MP3)
 ((MP3)items[i]).play();

Now we have fi nally succeeded at simulating the polymorphism we achieved naturally

with the Playable interface. This rather inelegant solution should be enough to convince

you not only of the ease and power of polymorphism and dynamic binding, but also that

design with interfaces ultimately simplifi es your code and makes life as a programmer just

a bit easier.

 13.6 POLYMORPHISM AND THE Object CLASS

 Even without a programmer-defi ned hierarchy, polymorphism plays a key role in many

applications. As you know, every class extends Object; and in this regard every class,

if implemented properly, can take advantage of inheritance and polymorphism. In fact,

you’ve probably been exploiting polymorphism without realizing it. Example 13.5 illus-

trates polymorphism via the Object class.

 Horror movies have been popular since the era of silent fi lm. And although some hor-

ror fl icks trigger goosebumps, their tag lines—catchphrases such as “Frankenstein: A

Monster Science Created - But Could Not Destroy!”—more often provoke laughter. As

a collector of tag lines from famous and not-so-famous horror fl icks, Ms. Holly Wood

needs some help organizing her massive collection of slogans.

 Problem Statement To help Holly to manage her data, design an application that

 • stores Movie objects (a fi lm title and a tag line) in an array, and

 • allows Holly to search the array and retrieve a fi lm’s tag line, given the title of

the fi lm.

 Java Solution In addition to the two attributes, title and tagLine , the following Movie

class

 • implements the standard getter and setter methods,

 • overrides the toString() method inherited from Object so that the toString() version

of the Movie class returns the title and the tag line as a String ,

 • overrides the equals(...) method inherited from Object , implementing an equality

that is based on the title of a fi lm, so that two Movie objects with the same title are

equal, and

 • implements the Comparable interface by alphabetically comparing titles so that

the array of Movie objects can be sorted by title.

 The Movie class is pictured (as a descendent of Object) in Figure 13.6 and is defi ned

below.

 EXAMPLE 13.5

sim23356_ch13.indd 604sim23356_ch13.indd 604 12/15/08 7:00:26 PM12/15/08 7:00:26 PM

 Chapter 13 Polymorphism 605

String title
String tagLine

Movie()
Movie(String name, String tag)
int compareTo(Object o)
boolean equals(Object o)
String toString()
void setTitle(String title)
String getTitle()
void setTagLine(String tagLine)
String getTagLine()

boolean equals(Object o)
String toString()

int compare To(Object O)

Comparable (interface) Object

Movie

FIGURE 13.6 Movie overrides equals(Object o) and toString() ;
 Movie implements Comparable

 1. public class Movie implements Comparable

2. {
3. private String title;
4. private String tagLine;

5. public Movie()
6. // default constructor, makes an empty Movie object
7. {
8. title � "";
9. tagLine � "";
10. }

11. public Movie(String name, String tag)
12. {
13. // two-argument constructor, creates a Movie object with a title and tag line
14. title � name;
15. tagLine � tag;
16. }

17. public boolean equals(Object o)
18. // override the equals object inherited from Object
19. // two Movie objects are equal if they have the same title
20. {
21. return title.equals(((Movie)o).title); // notice that o must be cast to Movie
22. }

23. public int compareTo(Object o)
24. // implement compareTo from the Comparable interface
25. // compareTo compares two titles. The compareTo from String is invoked

sim23356_ch13.indd 605sim23356_ch13.indd 605 12/15/08 7:00:27 PM12/15/08 7:00:27 PM

606 Part 2 Principles of Object-Oriented Programming

26. {
27. return title.compareTo(((Movie)o).title); // compares two Strings
28. }

29. public String toString()
30. // overwrites toString() from Object
31. {
32. return "Title: " � title � " Tag line: " � tagLine;
33. }

34. public void setTitle(String title)
35. {
36. this.title � title;
37. }

38. public String getTitle()
39. {
40. return title;
41. }

42. public void setTagLine(String tagLine)
43. {
44. this. tagLine � tagLine;
45. }

46. public String getTagLine ()
47. {
48. return tagLine;
49. }
50. }

 To locate a particular movie, the application utilizes the binary search algorithm,

introduced in Chapter 7. As you may recall, binary search utilizes a sorted array.

Because Movie implements the Comparable interface, an array of Movie references can

be ordered.

 The following implementation of binary search is more general than the version

given in Chapter 7 because here, the array parameter x and the key parameter are both

declared of type Object . Thus, the method call,

 search(Object[] x, Object key) ,

can pass arguments of any class .

 Because Search is a simple utility class that does not depend on the creation of any

instance variable, search(...) is declared static. To invoke search(...) , use the class name:

 Search.search(...) ;

 1. public class Search
2. {
3. public static int search(Object [] x, Object key, int size)
4. {
5. // binary search from Chapter 7
6. int lo � 0;
7. int hi � size � 1;
8. int mid � (lo � hi) / 2;
9. while (lo �� hi)

sim23356_ch13.indd 606sim23356_ch13.indd 606 12/15/08 7:00:27 PM12/15/08 7:00:27 PM

 Chapter 13 Polymorphism 607

10. {
11. if (key.equals(x[mid])) // key found
12. return mid;
13. else if (((Comparable)key).compareTo(x[mid]) � 0)
14. hi � mid � 1;
15. else
16. lo � mid � 1;
17. mid � (lo � hi) / 2;
18. }
19. return � 1; // key not found
20. }
21. }

 The cast on line 13

 else if (((Comparable)key).compareTo(x[mid]) � 0)

is necessary because the parameter key refers to an Object , and Object does not imple-

ment Comparable . Without the downcast, the compiler issues a message to the effect

that the name compareTo is unknown.

 With the Movie and Search classes defi ned, we implement a class that builds and

searches an array of Movie references. Notice that this class invokes the generic sort method

(SelectionSort.sort) of Chapter 12. The constructor of the class reads a list of movie titles

and corresponding tag lines from a text fi le, movielines.txt , and creates a Movie object for

each title-tagline pair. References to these Movie objects are stored in the array s .

 1. import java.util.Scanner;
2. import java.io.*;

3. public class MovieSearch
4. {
5. Scanner input � new Scanner(System.in);
6. private String title, tagLine;
7. private Movie[] movies ;
8. private final int MAX_MOVIES � 500;
9. private int num; // the total number of films in the file

10. public MovieSearch() throws IOException
11. {
12. num � 0;
13. movies � new Movie[MAX_MOVIES];
14. File inputFile � new File("movielines.txt");
15. if(!inputFile.exists())
16. {
17. System.out.println("File movielines.txt not found ");
18. System.exit(0);
19. }
20. Scanner input � new Scanner(inputFile);
21. String line; // to hold one full line from the file
22. while (input.hasNext()) // while there is more data
23. {
24. String name � input.nextLine(); // advance to next line, returns all "skipped" data
25. String tag � input.nextLine();
26. movies[num] � new Movie (name, tag);
27. num��;
28. }

sim23356_ch13.indd 607sim23356_ch13.indd 607 12/15/08 7:00:28 PM12/15/08 7:00:28 PM

608 Part 2 Principles of Object-Oriented Programming

29. input.close();
30. SelectionSort.sort(movies, num); // the array must be kept sorted to utilize binary search
31. System.out.println("\n" � num �" titles entered");
32. System.out.println("-------------------\n");
33. searchFilm();
34. }

35. public void searchFilm()
36. {
37. // Prompt user for a movie title
38. // Search the array for the film with that title
39. // If the film is in the array, print the title and tagline
40. // If the film is not in the array, issue a message

41. System.out.println();
42. Movie key � new Movie(); // an empty Movie object
43. int place; // a position in the array
44. System.out.println("Input a title. Hit Enter to end");
45. do
46. { // get title from user
47. System.out.print("\nTitle: ");
48. title � input.nextLine();
49. if (title.equals(""))
50. break; // end if user hits 'Enter'
51. key.setTitle(title); // wrap title in a Movie object
52. key.setTagLine(""); // the tagline is empty at this point

53. // invoke binary search to find a movie object with the title as key
54. // if successful, place contains the position in the array; otherwise
55. // place contains � 1
56. place � Search.search(movies, key, num); // key is a Movie object

57. if (place �� 0 && place � num) // successful search
58. System.out.println(movies[place]); // print the object at place
59. else
60. System.out.println(title � " not found");
61. } while(true);
62. }

63. public static void main(String[] args) throws IOException
64. {
65. MovieSearch movieSearch � new MovieSearch();
66. }
67. }

 Output Running the program with the fi le movielines.txt produces the following output:

 234 titles entered

Input a title. Hit Enter to exit

Title: Alien

Title: Alien Tagline: In space no one can hear you scream

sim23356_ch13.indd 608sim23356_ch13.indd 608 12/15/08 7:00:28 PM12/15/08 7:00:28 PM

 Chapter 13 Polymorphism 609

Title: The Thing

Title: The Thing Tagline: Look closely at your neighbors. Don't trust anybody!

Title: Dracula

Dracula not found

Title: Bride of Frankenstein

Title: Bride of Frankenstein Tagline: Beware! The monster demands a mate!

 Discussion

The Movie Class:
 Line 21 of the Movie class

 return title.equals(((Movie)x).title);

may seem a bit puzzling. Which equals(...) method is being invoked? The equals(...)
method invoked on line 21 is called by title , which is a String . Conveniently, the String

class overrides equals(Object) . So the call

 title .equals(((Movie)x). title);

compares two String objects via String 's version of equals(...) , that is, by comparing the

characters in each String . The cast of x to Movie is necessary because the apparent type

of x is Object and Object s do not have title attributes.

 Similarly, on line 27, the statement

 return title.compareTo(((Movie)x).title);

invokes the compareTo(...) method of the String class.

 The remainder of the Movie class is straightforward and should present no diffi culty.

 The Search Class
 Binary search is introduced in Chapter 7. This version is more generic in that the argu-

ments are of type Object . That certainly makes the search(...) method more fl exible, but

care must be exercised with this added fl exibility.

 On line 11 of the Search class,

 if (key.equals(x[mid]))

the key object is compared to x[mid] via equals(...) . This is the equals(...) method inher-

ited from Object . If this equals(...) method is not overridden in Movie , then references

are compared, and the result is incorrect.

 Similarly, on line 13,

 else if (((Comparable)key).compareTo(x[mid]) � 0)

the compareTo(...) method is invoked by key . Accordingly, Movie implements the

 Comparable interface.

 The MovieSearch Class:
 The statements on lines 22–28 continually perform the following actions:

 • read a title and tagline from the text fi le, movielines.txt ,

 • instantiate a Movie object with the two-argument constructor, and

 • store a reference to the Movie object in the array movies ,

until all data has been read from movielines.txt .

sim23356_ch13.indd 609sim23356_ch13.indd 609 12/15/08 7:00:29 PM12/15/08 7:00:29 PM

610 Part 2 Principles of Object-Oriented Programming

 Notice that the constructor contains the clause throws IOException . This clause is

necessary for File IO .

 The searchFilm() method

 • creates an empty Movie object, key (line 42),

 • queries a user for the title of a movie,

 • sets the title attribute of key appropriately and sets the tagline fi eld to the empty

string (lines 51 and 52),

 • passes key to search(...) , which returns the index of key in the array movies , and

 • processes the returned information from search(...) , (lines 56–60) : if key is not

found, search(...) returns −1 and a “title not found” message is issued, otherwise

the key and tagline are displayed;

until a user presses Enter without supplying a movie title.

 Finally, notice that main(...) includes the clause throws IO Exception . This mysteri-

ous throwing of exceptions is fully explained in Chapter 14.

 13.6.1 A Summary, a Subtlety, and a Warning
 Because every class extends Object , all classes share a number of common features. Inheri-

tance emphasizes similarity among classes—commonality is factored out into the base

class. Alternatively, polymorphism accentuates differences among classes in an inheritance

hierarchy—at runtime the appropriate version of a method is chosen.

 The classes of Example 13.5 demonstrate both inheritance and polymorphism. They also

shed light on a subtle point about equals(Object o). The statement on line 56 of FilmSearch(…)
is a call to the static method Search. search(…) , which subsequently invokes

 boolean equals(Object o).

See Figure 13.7 .

56. place = Search. search(movies, key, num); //key is-a Movie

int search(Object x[], Object key, int size)
{
 ...
 if (key.equals(x[mid))
 return mid
 ...
}

FIGURE 13.7 A call to search (…) and then to equals (…)

 Which equals(…) method is appropriate? There are two: one defi ned in Object and the

other in Movie . At runtime it is known that

• the apparent type of key is Object ,

• the real type of key is Movie , and

because the call, key.equals(x[mid]) , is made by key , the Java Virtual Machine begins

a search for the appropriate equals(Object o) method Movie , the real type of key , and

sim23356_ch13.indd 610sim23356_ch13.indd 610 12/15/08 7:00:29 PM12/15/08 7:00:29 PM

 Chapter 13 Polymorphism 611

 successfully fi nds such a method—polymorphism and dynamic binding in action. See

 Figure 13.6 .

 Now, suppose that Movie implements equals(...) not as

 boolean equals(Object o) // parameter type is Object
{
 return title.equals(((Movie)o).title); // downcast is necessary
}

but as

 boolean equals(Movie o) // parameter type is Movie
{
 return title.equals(o.title); // no downcast is necessary
}

The second version of equals(…) may perform correctly under some circumstances but not

in the application of Example 13.5. As before, the Java Virtual Machine begins a search for

 boolean equals(Object o) .

in the Movie class. Does Movie have an equals(Object o) method? The answer is negative.

 Movie implements equals(Movie o) but not equals (Object o). So, moving up the inheri-

tance chain, the Java Virtual Machine continues its search for equals(Object o) in Object ,
where such a method exists. See Figure 13.8 .

String title
String tagLine

Movie()
Movie(String name, String tag)
int compareTo(Object o)
boolean equals(Movie, o)
String toString()
void setTitle(String title)
String getTitle()
void setTagLine(String tagLine)
String getTagLine()

boolean equals(Object o)
String toString()

Object

Movie

FIGURE 13.8 Begin searching for equals (Object o) in Movie

 Unfortunately, this method does not work! The equals(Object o) method of Object
 compares references , not titles. Consequently, no search ever returns true. The program

runs, but not correctly. Polymorphism is broken.

 In Chapter 12, we assert that, when implementing equals(…) , it is preferable to

override

 boolean equals(Object o)

sim23356_ch13.indd 611sim23356_ch13.indd 611 12/15/08 7:00:30 PM12/15/08 7:00:30 PM

612 Part 2 Principles of Object-Oriented Programming

inherited from Object rather than to defi ne a new method such as

 boolean equals(Movie o) .

 Now you can understand why.

When providing an equals(…) method for a class, it is usually preferable to

override the equals() method of Object, rather than defi ning a new equals(…)
method. Overriding the equals(...) method from Object allows polymorphism

to perform its magic.

 13.7 IN CONCLUSION

 Encapsulation. Inheritance. Polymorphism. These are the fundamentals of object-oriented

programming.

• Encapsulation organizes an application into classes and objects. Objects combine data

and actions into one bundle. Indeed, objects model real-world entities.

• Inheritance facilitates code reuse. New classes can be created directly from old ones.

Upcasting in an inheritance hierarchy makes it possible for data of one type to be con-

sidered data of a more general type.

• A method may have many forms. Polymorphism, through late binding, ensures that

the correct form of a method is chosen at runtime.

 Chapter 14 introduces two more Java hierarchies: wrapper classes and exception classes.

And, yes, we fi nally explain what gets “thrown” and what “catches” it!

 Just the Facts

• Polymorphism means that an entity, such as a method, may have multiple meanings.

As inheritance exploits similarity among classes, polymorphism underscores differ-

ences among classes of a hierarchy.

• Method overloading is a type of polymorphism (ad-hoc polymorphism).

• Upcasting is a type of polymorphism. Upcasting allows an object of a derived type to

be considered an object of a base type.

• Late (or dynamic) binding means that the appropriate method invocation is chosen at

runtime. Late binding is the strongest type of polymorphism.

• Late binding is the default for all method calls except calls to fi nal , private , and static

methods, which cannot be overridden and have but one form. Early (static or compile

time) binding is used for fi nal , private , and static methods.

• The apparent type of an object is the declared type of the object; the real type of an

object is the type of the object as created by the new operator.

• Late binding is implemented as follows: When choosing an appropriate method

for a call such as x.myMethod(…) , Java fi rst searches the class of the real type of x

and then continues up through the ancestors of x until a method with a matching

 signature is found.

sim23356_ch13.indd 612sim23356_ch13.indd 612 12/15/08 7:00:31 PM12/15/08 7:00:31 PM

 Chapter 13 Polymorphism 613

• Polymorphism makes programs extensible. New classes may be added to a hierarchy

without recompiling previously existing classes or rewriting code.

• Using an interface is a common and convenient way to effect polymorphism.

• Overriding methods inherited from the Object class makes it possible for classes to

exploit polymorphism correctly and safely.

 Bug Extermination

• When defi ning equals(...) for class A , it is preferable to override the equals(Object o)
method inherited from Object rather than defi ning a new equals(A a) . Under some

circumstances, a program may run, but not correctly. See Section 13.6.1.

• A downcast may be necessary when a parent reference refers to a child object. The

segment

 Parent x;
x � new Child();
x.myMethod();

 does not compile if Parent does not declare myMethod() , even if Child does. In such a

case, a downcast is appropriate:

 Parent x;
x � new Child();
((Child)x).myMethod();

 However, if Parent has a declaration of myMethod() , no downcast is necessary.

sim23356_ch13.indd 613sim23356_ch13.indd 613 12/15/08 7:00:31 PM12/15/08 7:00:31 PM

614 Part 2 Principles of Object-Oriented Programming

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

1

16 17

20

19

21

15

12

23

13 14

10

7

4

32

9

18

8

6

11

5

22

Across
 2 A may be necessary when a parent

reference refers to a child object .

 7 Method of the Comparable interface

 8 Encapsulation, inheritance, and polymorphism

form the foundation of .

 9 Overloading is polymorphism .

 11 Parent x � new Child(); real type of x

 14 Real type is type created by .

 15 Without polymorphism, a program might use

many, many statements.

 16 When choosing an appropriate method call for x,

Java fi rst searches the class of the type of x .

 18 Late binding occurs at .

 21 Declared type

 22 Parent x � new Child(); apparent type of x

 23 Polymorphism is derived from the .

Down
 1 Polymorphism makes programs .

 3 Early binding applies to this type of method .

 4 Having many shapes

 5 When implementing the equals(...) method for a

new class, it is advisable to override the method

inherited from .

 6 Handles early binding

 10 Another term for late binding

 12 Polymorphism exploits within a

hierarchy.

 13 Collection of static constants and abstract
methods

 17 Method without an implementation

 19 Object of derived type considered object of the

base type

 20 Polymorphism means many .

sim23356_ch13.indd 614sim23356_ch13.indd 614 12/15/08 7:00:31 PM12/15/08 7:00:31 PM

 Chapter 13 Polymorphism 615

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. The effect of late binding can be accomplished using if-else statements, even if

Java had not provided polymorphism.

b. When the Java compiler scans the statement

 x.doSomething();

 the compiler never knows what code will execute at runtime.

c. When the Java compiler scans the statement

 x.doSomething() ;

 the compiler always knows what code will execute at runtime.

d. When the Java compiler scans the statement

 x.doSomething();

 the compiler sometimes knows what code will execute at runtime.

e. Method overloading is a form of polymorphism.

f. The declared type of an object determines which method is chosen at runtime.

g. Late binding is not applicable to static methods.

h. Polymorphism helps make code updates smoother and simpler.

 2. Playing Compiler
a. Suppose that, in Example 13.4, Playable is implemented as a class rather than an

interface:

public class Playable

{

 public void play();

}

 and CD , DVD , and MP3 each extends Playable . Will the compiler complain?

b. Suppose that, in Example 13.4, a new method, source(), is added to each

 subclass.

public class Playable

{

 public void play();

}

public class CD implements Playable
{
 // other methods of CD
 public void source()

 {

 System.out.println("CD");

 }

}

public class DVD implements Playable
{
 // other methods DVD
 public void source()

 {

 System.out.println("DVD");

 }

}

public class MP3 implements Playable
{
 // other methods of MP3
 public void source()

 {

 System.out.println("MP3");

 }

}

sim23356_ch13.indd 615sim23356_ch13.indd 615 12/15/08 7:00:31 PM12/15/08 7:00:31 PM

616 Part 2 Principles of Object-Oriented Programming

 The following code, adapted from Example 13.4, causes an error. Is this error a

compile time error or a runtime error? Explain your answer.
 public static printList(Playable[] x)
{
 // accepts an array x of Playable and invokes two methods for each object in x
 for (int i � 0; i � x.length; i��)
 {
 x[i].play();
 x[i].source();

 }
}

 3. Playing Compiler
a. Suppose that each of the classes, CD, DVD, and MP3 implements two interfaces,

Playable and Source:

 public interface Playable public interface Source
 { {
 public void play(); public void source();
 } }

 Is there any problem with the code for the method printList(...) of Short Exer-

cise 2? Explain why or why not.

 b. What errors, if any, occur if we substitute the following code for the

shape.draw(1, 1) method call on line 22 of Example 13.2? Explain your answer.

 if (shape instanceof Square)
 ((Square)shape).draw(1, 1);
else if (shape instanceof RightTriangle)
 ((RightTriangle)shape).draw(1, 1);
else if (shape instanceof Triangle)
 ((Triangle)shape).draw(1, 1);

 How about this replacement code? Explain your answer.

 if (shape instanceof Square)
 shape.draw(1, 1);
else if (shape instanceof RightTriangle)
 shape.draw(1, 1);
else if (shape instanceof Triangle)
 shape.draw(1, 1);

 4. What’s the Output?
a. Determine the output of the following code:

 public class Point
{
 int x, y;
 public Point ()
 {
 x � y � 0;
 }
 public Point(int a, int b)
 {

sim23356_ch13.indd 616sim23356_ch13.indd 616 12/15/08 7:00:32 PM12/15/08 7:00:32 PM

 Chapter 13 Polymorphism 617

 x � a;
 y � b;
 }
 public boolean equals(Point p) // tests whether or not two Points are equal
 {
 return (p.x �� x && p.y �� y);
 }
}

public class Example
{
 public static void main(String[] args)
 {
 Object a;
 Object b;
 a � new Point(3, 4);
 b � new Point (3, 4);
 System.out.println(a.equals(b));
 }
}

b. Determine the output of the following code:

 public class Point
{
 int x, y;
 public Point ()
 {
 x � y � 0;
 }
 public Point(int a, int b)
 {
 x � a;
 y � b;
 }
 public boolean equals(Point p) // tests whether or not two Points are equal
 {
 return (p.x �� x && p.y �� y);
 }
}

public class Example
{
 public static void main(String[] args)
 {
 Object a;
 Object b;
 a � new Point(3, 4);
 b � a;
 System.out.println(a.equals(b));
 }
}

sim23356_ch13.indd 617sim23356_ch13.indd 617 12/15/08 7:00:32 PM12/15/08 7:00:32 PM

618 Part 2 Principles of Object-Oriented Programming

 5. What’s the Output?
a. Determine the output of the following code:

 public class Point
{
 int x, y;
 public Point ()
 {
 x � y � 0;
 }
 public Point(int a, int b)
 {
 x � a;
 y � b;
 }
 public boolean equals(Point p) // tests whether or not two Points are equal
 {
 return (p.x �� x && p.y �� y);
 }
}

public class Example
{
 public static void main(String[] args)
 {
 Point a;
 Point b;
 a � new Point(3, 4);
 b � new Point (3, 4);
 System.out.println(a.equals(b));
 }
}

b. Determine the output of the following code:

 public class A
{
 public void X()
 {
 System.out.println("Class A; method X");
 }
 public static void Y()
 {
 System.out.println("class A; method Y");
 }
}

public class B extends A
{
 public void X()
 {
 System.out.println("class B; method X");

sim23356_ch13.indd 618sim23356_ch13.indd 618 12/15/08 7:00:32 PM12/15/08 7:00:32 PM

 Chapter 13 Polymorphism 619

 }
 public static void Y()
 {
 System.out.println("class B; method Y");
 }
}

public class MethodCalls
{
 public static void main(String[] args)
 {
 A a � new B();
 a.X();
 a.Y();
 B b � new B();
 b.X();
 b.Y();
 }
}

 6. Polymorphism Too Limiting?
 The following is an excerpt from Sets and Polymorphism on Wikipedia.

 “ One of my complaints against polymorphism is that it tends to require that
a taxonomy be created such that a given object belong to one and only one
sub-type. (I know there are other kinds of polymorphism, but the most common
kind requires an explicit or implicit taxonomy.) I fi nd trees too limiting a
classifi cation system. ”

 Explain the author’s point. What does he mean by a tree ? (If you don’t know, you

should research the term.) Give an example of something that is not easily modeled

with a tree.

 7. Abstract Class vs Interface
 The following classes are modifi cations of those in Example 13.4. Here, Playable is

an abstract class rather than an interface,

 public abstract class Playable
{
 public abstract void play();
}

 and CD, DVD, and MP3 each extends, rather than implements, Playable.

 public class CD extends Playable
{
 // methods for CD
}
public class DVD extends Playable
{
 // methods for DVD
}
public class MP3 extends Playable
{
 // methods for MP3
}

sim23356_ch13.indd 619sim23356_ch13.indd 619 12/15/08 7:00:32 PM12/15/08 7:00:32 PM

620 Part 2 Principles of Object-Oriented Programming

a. Explain the advantages of designing Playable as an interface rather than as an

abstract class.

b. Describe a different example where an interface is clearly preferable to an

abstract class.

 8. Polymorphism and OOP Claims
 If you have had experience with another programming paradigm (e.g., procedural

programming) you might fi nd the following excerpt, from “OOP Oversold—A

Critique of the OO Paradigm” by B. Jacobs, interesting—whether or not you agree

with the author.

 “ One of the reasons for the popularity and management acceptance of
Object Oriented Programming is clever little examples that demonstrate
the alleged power of OOP. Most experts realize that these examples are
not very representative of ‘good’ real world OO programming. The actual
implementation often involves fairly complex arrangements that make real OO
messy and more confusing than its competitors. OO fans defend the simple ones
as ‘just training examples,’ but there is rarely a disclaimer of such near the
examples. If you are new to OOP, please don’t be fooled by simplistic examples.
These bait-and-switch examples often take the form of geometric shapes, animal
categories, vehicle taxonomies, vehicle parts, employee types, Y2K dates, stacks,
device drivers, clothing, or bank account examples.

 “ These examples often assume the world can usually be divided into clean,
never-changing (or hierarchically-changing) categories or ‘chunks,’ in which
groups of features always stay together or change in a lockstep dance within
generally non-divisible chunks. The truth is messier, and OO is no better
optimized to deal with dynamic feature relationships and changes than
competitor paradigms, and in many cases seems to be messier in the end. ”

a. Support the author’s claim by fi nding an example in this chapter that he might

consider a “training example,” and explain why.

b. Debate the author’s claim by researching and describing an example that demon-

strates legitimate practical benefi ts for polymorphism.

 PROGRAMMING EXERCISES
 1. More Shapes
 Add two new classes, LeftTriangle and Diamond , to the Shape hierarchy of

Example 13.1. Recall that the subclasses of Shape are Square , RightTriangle , and

 Triangle . Incorporate the new shapes into the test class TestDraw of Example 13.2.

 The new shapes should look like this:

• LeftTriangle : A right triangle “facing left.”

 Below is a LeftTriangle of size 6.

**
*

• Diamond : A Square rotated 45 degrees.

 Below is Diamond of size 7, that is, there are seven rows.

sim23356_ch13.indd 620sim23356_ch13.indd 620 12/15/08 7:00:33 PM12/15/08 7:00:33 PM

 Chapter 13 Polymorphism 621

 Here is a Diamond of size 8, that is, eight rows. Notice there are two rows of four “*”s.

 2. A Second Level of Inheritance—More CDs
 Add a new class, CDRW , that extends the CD class. A CDRW is a kind of CD . It has

the same properties as a CD , but it can also record, erase, and re-record music.

 Create a Recordable interface that CDRW implements.

 Write a Test class that creates an array of Playable objects, plays all of those that

are not Recordable , and erases all of those that are Recordable.

 3. A Basic Inheritance Hierarchy with Polymorphism
 Defi ne an Employee class. An Employee has a name, an ID number, an age, a salary,

a title, and a department name. The methods of Employee should:

a. print an employee record that includes all the above information,

b. change a salary, changeSalary(...) , and

c. return the salary, getSalary().

 The method changeSalary(...) accepts a parameter, increase , of type int or double . If

 increase is an int , then the salary should be increased by that amount. If increase is

 double , then the new salary should be (increase � 1) times the salary. For example,

if the increase is 0.10, the salary is multiplied by 1.10, yielding an increase of 10%.

The value of the (double) increase should be between 0.0 and 1.0.

 Defi ne a class Manager that extend s Employee . A manager is an employee

who supervises other employees. A Manager object should include all data of the

 Employee object plus the list of the employee ID numbers of those employees that

he/she supervises. The print method of a Manager should print a list of all those

employees under his/her supervision as well as all the other relevant data.

 Defi ne a class Executive that extends Manager . An Executive is a Manager who

receives a bonus at the end of each year equal to a percentage of his/her regular

salary. Each Executive has his/her own bonus rate. You will need to redefi ne

 getSalary() to include the bonus. You will also need to add a setter method,

 setBonus(…) , to set the percentage of the executive’s bonus. The default bonus rate

should be 10%.

 Implement a test class that demonstrates the facilities of the Employee, Manager,
and Executive classes. Your test class should accept employee information for

an arbitrary number of employees. Your program should ask whether or not the

employee is a manager or an executive, and prompt for all relevant information.

sim23356_ch13.indd 621sim23356_ch13.indd 621 12/15/08 7:00:33 PM12/15/08 7:00:33 PM

622 Part 2 Principles of Object-Oriented Programming

After all data are entered, print an error message if there are any inconsistencies. In

particular, a manager cannot manage a nonexistent employee. Also, every employee

who is not an executive is supervised by some manager or executive.

 Your program should provide the user with the following options:

• Change the salary of an employee.

• Adjust the bonus of an executive.

• Add or delete an employee from a manager’s list of employees.

• Print an employee’s data.

 If any change causes an inconsistency in the data, your program should print an

error and not allow the change.

 Your program should access an employee via the employee ID number. Use

binary search to fi nd an employee’s record.

 4. Composition—A Company and the Employee Hierarchy
 This problem builds on programming Programming Exercise 3, exhibiting a classic

example of polymorphism for the Employee hierarchy.

 A Company has a name, a product, and a list of employees. That is, a Company is

 composed of two String references (name and product), and an array of type Employee .

 Design a Company class. Methods should include constructors, getters, and

setters, as well as methods that:

• return a reference to an array of all the executives,

• return a reference to an array of all the managers who are not executives,

• return a reference to an array of all the employees who are neither managers nor

executives, and

• return the sum of the salaries of all employees.

 Include a main(...) method that tests the class. Your application should query the user

for the name, product, and employee information. The user should indicate whether

each employee is a manager or an executive, and it should include salary and other

relevant information. The test class should display:

• the company name,

• company product,

• three lists of names and salaries:

 • executives,

 • managers (who are not executives), and

 • employees (who are neither managers nor executives),

• the sum of the salaries for each list,

• and the sum of all the salaries of all employees.

 5. Inheritance and Polymorphism—Publishing
 Design a class hierarchy consisting of Publication , Magazine , Book , and

 KidsMagazine classes as follows:

 A Publication has a publisher, number of pages, a price, and a title. The class

should implement a print method that displays all of this information.

 A Magazine is a kind of publication that has a publication unit (monthly, weekly,

biweekly). Magazine should override the print method of Publication and display

all the new information.

 A Book is a kind of publication that has an author. Book should also override the

print method of Publication .

 A KidsMagazine is a kind of magazine that has a recommended age range.

Again, KidsMagazine should override the print method of Publication.

sim23356_ch13.indd 622sim23356_ch13.indd 622 12/15/08 7:00:34 PM12/15/08 7:00:34 PM

 Chapter 13 Polymorphism 623

 Implement a test class that stores 10 different types of publications: general,

magazine, book, or kid’s magazine in an array of Publication . Exploit polymorphism

and print the information, sorted by title, about each object stored in the array.

 6. A Move Interface for Generating Moves in a Game
 Different games utilize various methods to determine the moves of the players. When

playing Candyland, a player picks a card that displays the color of the square to

which he/she should move. A Monopoly player rolls two dice; and to play Chutes and

Ladders, a player uses a spinner that points to numbers between 1 and 6 inclusive.

 To write applications that play these games, you might

• display the move generator (graphics typically)—a picture of rolling dice, or a spinning

spinner, or a card being uncovered, and

• indicate the value of the move, for example, the number displayed on the dice or

pointed to by the spinner, or the color shown on the uncovered card.

 For this project, you should

 c. Create a Move interface with two methods:

 • void display() —makes some rough picture (using ASCII characters) of the

device used to choose the move, and

 • int getValue() —returns a value representing the move to be made.

 d. Implement Die and Spinner classes, which simulate respectively a die and a spin-

ner with n sides/slots, each slot occurring with equal probability.

 e. Implement a CandyCard class such that the getValue() method returns a random

integer between 1 and 5 inclusive, representing one of the colors: blue, green, yel-

low, brown, or pink. The getValue() method should display the name of the color

as well as return its code number.

 In a certain game, a player is allowed to make his/her next move by

• rolling any one of four different dice, 6-sided, 12-sided, 20-sided, or 8-sided, or

• spinning any one of three spinners with 4, 7, or 9 slots, or

• picking a card displaying one of fi ve colors.

 Design and implement an application that repeatedly asks the player which method

he/she wishes to use and then displays the method (its “picture”) as well as the value

of the move.

 7. Sorting Containers
 We Pack N Ship 4 U packs and ships items using two kinds of containers: boxes and

mailing tubes (cylinders). Rates are determined by the size of the container. The size

of a box is the sum of its three dimensions: length, width, and depth, in inches. For

a mailing tube, with radius r inches and length l , size is calculated as 2π r � l . The

cost of packing and shipping a box is $0.35 times the size of the cube. For a tube,

the cost is $0.25 times the size of the container.

 Defi ne an abstract class Container with a single instance variable,

 double length ,

 two abstract methods,

 double getsize() and
double getCost() ,

 and one getter method

 double getLength().

 Container should also implement Comparable based on cost.

sim23356_ch13.indd 623sim23356_ch13.indd 623 12/15/08 7:00:34 PM12/15/08 7:00:34 PM

624 Part 2 Principles of Object-Oriented Programming

 Next, create two subclasses of Container , Box and Tube , that implement

 getCost() and getSize() , where getCost() returns the cost of packing and shipping

and getSize() returns the size of a container, as previously described. Box needs

additional instance variables width and depth , and Tube requires radius . Include

getter methods for Box and Tube .

 Finally, implement a TestContainer class that accepts 10 Container objects and

stores them in an array. For each container, TestContainer should ask whether the

container is a box or a tube and prompt for the appropriate dimensions.

 Sort the 10 containers in ascending order by cost. Print the type of container, the

dimensions of the container, and the cost, rounded to two decimal places.

 Hint: If x is an object, then x.getClass().getName() returns the name of the class

(a String reference) to which x belongs.

 8. Distance in Polymorphictown
 In the bustling metropolis of Polymorphictown, where streets are laid out in a grid-

like fashion and each city block is a 0.1 mile square, “distance” is a relative matter.

See Figure 13.9 .

50th St
11th Ave

10th Ave

9th Ave

8th Ave

7th Ave

6th Ave

0.1

0.1

49th St 48th St 47th St 46th St 45th St 44th St 43rd St 42nd St

FIGURE 13.9 Polymorphictown street map

 For example, straight-line distance (“as the crow fl ies”) from the corner of 42 nd St.

and 11 th Ave. to the corner of 46 th St. and 8 th Ave. is just fi ve blocks, or half a mile,

which is the length of the line segment joining the two corner points. You can easily

calculate this distance using the Pythagorean theorem. Such a measure of distance is

called the Euclidean distance; see Figure 13.10 .

 On the other hand, a Polymorphictown taxi driver calculates the “distance”

between those same corner points as seven blocks or 0.7 miles. We’ll call this

measure the taxi distance; see Figure 13.11 . (Note that more than one route with

distance seven blocks is possible.)
 Moreover, for Polymorphictown cyclists, “distance” has yet another

interpretation. In ecological Polymorphictown, two bicycle paths crisscross every

city block along the diagonals. Using Pythagoras’s theorem, you can calculate that

the length of each bike path is √
__

 2 blocks or √

 .02 miles; see Figure 13.12 .

 Cyclists (or skaters or pedestrians) usually travel along adjacent bike paths as far

as possible and then continue on city streets. So to a cyclist, the distance between

sim23356_ch13.indd 624sim23356_ch13.indd 624 12/15/08 7:00:34 PM12/15/08 7:00:34 PM

 Chapter 13 Polymorphism 625

those intersections is 1 � 3 √
__

 2 blocks or 1 � 3 √

 .02 miles. We’ll call such a metric

the bicycle distance; see Figure 13.13 .

46
11

10

9

8
1

45 44 43 42

22

22

22

FIGURE 13.13 Bicycle distance: 1 � 3 √
__

 2 blocks

 Write a program that calculates the distance between any two corner locations

in Polymorphictown. This distance differs for taxi drivers, cyclists, and soaring

pigeons. Your program should also display directions from the starting location

to the destination. Following is sample output from the program. Notice how the

directions are given. Of course, the directions are not necessarily unique, and any set

of directions with minimum distance is fi ne. Assume streets are numbered from 1 to

100 and avenues from 1 to 12.

46
11

10

9

8

45 44 43 42

232 � 42 � 5

FIGURE 13.10 Euclidean distance: five blocks “as the crow flies”

46
11

10

9

8

45 44 43 42

.1

.1 Length of a bike path

Bike paths

212 � 12 � 22 blocks

2.12 � .12 � 2.02 miles

FIGURE 13.11 Taxi distance: seven blocks FIGURE 13.12 Diagonal bike paths

sim23356_ch13.indd 625sim23356_ch13.indd 625 12/15/08 7:00:35 PM12/15/08 7:00:35 PM

626 Part 2 Principles of Object-Oriented Programming

 Sample Output
 Enter T or t for taxi; C or c for cyclists; E or e for Euclidean: T
Directions? Y or y for Yes: Y

Start location: 42 11

End location: 46 8

Distance is 7 blocks or .7 miles
Directions:
42 11
42 10
42 9
42 8
43 8
44 8
45 8
46 8

Again? Y or y for yes: Y

Enter T or t for Taxi; C or c for cyclists; E or e for Euclidean: C
Directions? Y or y for Yes: Y
Start location: 42 11

End location: 46 8

Distance is 5.243 blocks or .5243 miles
Directions:
42 11
43 10
44 9
45 8
46 8

Again? Y or y for yes: Y

Enter T or t for Taxi; C or c for cyclists; E or e for Euclidean: e
Directions? Y or y for Yes: Y
Start location: 42 11

End location: 46 8

Distance is 5 blocks or .5 miles
Directions:
42 11
46 8

Again? Y or y for yes: N

 9. A Polymorphic Video Store
 Your friend Electronic Eddie has decided to open a business that rents movies and

games. Unfortunately, Eddie has very little startup money and cannot afford to buy the

latest software package to manage his inventory. As a programmer without peer, you

have come to Eddie’s rescue and have volunteered to write a system for his business.

 Your fi rst step is to design a class hierarchy that includes the following classes:

sim23356_ch13.indd 626sim23356_ch13.indd 626 12/15/08 7:00:36 PM12/15/08 7:00:36 PM

 Chapter 13 Polymorphism 627

 • Item (abstract) with the following attributes:

 a fi ve-digit ID number (String)

 a title (String)

 rental price (double)

 status: true if in stock, false if currently rented (boolean)

 the current renter’s name (String).

The methods of Item might be the standard getter and setter methods as well as

an abstract method

 void display()

 • Game (extends Item) with the following additional attributes:

 manufacturer: e.g., Nintendo, Gameboy, etc. (String)

 age level: an integer from 3 to 16, 16 signifi es 16� (int)

 • Movie (extends Item) with the following additional attributes:

 playing time in minutes (int)
 rating : G, PG, PG13, or R (String)

 format: ‘V’ for VHS cassette, ‘D’ for DVD (char)

 Each class implements a display method that prints all the data of the invoking

object.

 Once you have implemented the preceding classes, you should design and

implement a class that utilizes the Item hierarchy. Your system should be menu-

driven and include the following options:

a. Check out an item.

 Your system should query the user for the ID number of the item and the renter’s

name. If the item is already checked out, your system should say so.

b. Check in an item.

 Your system should ask for the ID number of the item. If it is already checked in,

indicate that.

c. Search for an item by ID number to determine whether it is in stock.

 You should use binary search for this option. Consequently, all rental items are

kept sorted by ID number.

d. Search for an item by title.

 Since the rentals are not sorted by title, you might use sequential search here.

e. Display the entire inventory, sorted by ID.

f. Add a new item to the inventory.

g. Delete an item from the inventory (equivalent to selling a used video or game).

 Ask for the ID number of the item to be deleted. If the ID doesn’t match one of

the items in inventory, a message should be printed.

h. Display the menu.

i. Exit.

 When the program begins, the program should obtain data for each item from a

fi le, and store the data in an array sorted by ID number. When the program exits,

the current data should be written back to a fi le.

sim23356_ch13.indd 627sim23356_ch13.indd 627 12/15/08 7:00:36 PM12/15/08 7:00:36 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
628 Part 2 Principles of Object-Oriented Programming

 THE BIGGER PICTURE

 PROGRAMMING PARADIGMS AND STYLES
 Having studied the three basic tenets of object-oriented programming—

• encapsulation,

• inheritance, and

• polymorphism,

it is time to examine different ways of using these features.

 The following discussion is based on “ Understanding Object Oriented Programming ”

by J. Bergin and R. Winder. 1 The paper by Bergin and Winder examines a very simple

problem and provides four different solutions:

 a. The Hacker Solution

 b. The Procedural Solution

 c. The Naïve Object-Oriented Solution

 d. The Sophisticated Object-Oriented Solution

These solutions serve as a hierarchy of poor/fair/better/best uses of encapsulation, inheritance,

and polymorphism. Moreover, polymorphism plays a key role in the best design. And, although

all the solutions are implemented in Java, only two of the solutions are object oriented.

 Using an object-oriented language doesn’t automatically make your code object-

oriented. It is worth studying each solution to see the differences among the four styles.

 The Problem and Four Solutions
 The problem posed by Bergin and Winder is simple: Determine the operating system on

some computer, display its name, and print an evaluation of it. To help accomplish this, we

use a method of Java’s System class.

 The method

 String System.getProperty(String property)

returns the system property indicated by the parameter property . Specifi cally,

 System.getProperty("os.name")

returns the name of the operating system running on the computer.

 In their article, Bergin and Winder provide four solutions. The PrintOS class in the

fi rst three solutions (hacker, procedural, naïve object-oriented) handles four operating sys-

tems, two Unix versions (SunOs and Linux), and two Windows versions (Windows 95 and

Windows NT). The fourth solution (sophisticated object-oriented) adds a MacBox to the

list of operating systems.

 The exercises ask you to discuss how each solution would need to be changed to

accommodate various modifi cations. Answering these questions will help you understand

how object-oriented programming, and in particular, polymorphism, simplifi es program

modifi cation.

 The fi rst three solutions are fairly self-explanatory.

1J. Bergin and R. Winder, “Understanding Object Oriented Programming,” ACM SIGPLAN Notices 37 (2002):

18–25.

sim23356_ch13.indd 628sim23356_ch13.indd 628 12/15/08 7:00:37 PM12/15/08 7:00:37 PM

 Chapter 13 Polymorphism 629

THE BIGGER PICTURE

 a. The Hacker Solution

 public class PrintOS
{
 public static void main(final String[] args)
 {
 String osName � System.getProperty("os.name") ;
 if (osName.equals("SunOS") || osName.equals("Linux"))
 {
 System.out.println("This is a UNIX box and therefore good.");
 }
 else if (osName.equals("Windows NT") || osName.equals("Windows 95"))
 {
 System.out.println("This is a Windows box and therefore bad.");
 }
 else {System.out.println("This is not a box.") ;}
 }
}

 Exercises
1. To add another operating system, such as a Mac, to the list (SunOS, Linux,

 Windows NT, Windows 95) what modifi cations are necessary? How about

 Windows XP?

2. To distinguish between the two UNIX operating systems or the two Windows

operating systems (i.e., print different judgments for each), what modifi cations

are necessary?

 b. The Procedural Solution

 public class PrintOS
{
 private static String unixBox()
 {
 return "This is a UNIX box and therefore good." ;
 }

 private static String windowsBox()
 {
 return "This is a Windows box and therefore bad." ;
 }

 private static String defaultBox()
 {
 return "This is not a box." ;
 }

 private static String getTheString(final String osName)
 {
 if (osName.equals("SunOS") || osName.equals("Linux"))
 {

sim23356_ch13.indd 629sim23356_ch13.indd 629 12/15/08 7:00:37 PM12/15/08 7:00:37 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
630 Part 2 Principles of Object-Oriented Programming

 return unixBox() ;
 }
 else if (osName.equals("Windows NT") ||osName.equals("Windows 95"))
 {
 return windowsBox() ;
 }
 else
 {
 return defaultBox() ;
 }
 }

 public static void main(final String[] args)
 {
 System.out.println(getTheString(System.getProperty("os.name")))
 }
}

 Exercises
 3. To add another operating system, such as a Mac, to the list (SunOS, Linux,

 Windows NT, Windows 95) what modifi cations are necessary? What

 modifi cations are necessary to add Windows XP?

 4. How are these modifi cations easier than those needed in the hacker solution?

 5. Using this solution, is it easier to distinguish between two Windows or two

UNIX systems than with the hacker solution? Explain.

 c. The Naïve Object-Oriented Solution

 This solution comprises a number of fi les and classes but is otherwise

straightforward.

 PrintOS.java

public class PrintOS
{
 public static void main(final String[] args)
 {
 System.out.println(OSDiscriminator.getBoxSpecifier().getStatement());
 }
}

OSDiscriminator.java

public class OSDiscriminator
{
 private static BoxSpecifier theBoxSpecifier � null ;
 public static BoxSpecifier getBoxSpecifier()
 {

sim23356_ch13.indd 630sim23356_ch13.indd 630 12/15/08 7:00:37 PM12/15/08 7:00:37 PM

 Chapter 13 Polymorphism 631

THE BIGGER PICTURE

 if (theBoxSpecifier �� null)
 {
 String osName � System.getProperty("os.name") ;
 if (osName.equals("SunOS") || osName.equals("Linux"))
 {
 theBoxSpecifier � new UNIXBox() ;
 }
 else if(osName.equals("Windows NT") || osName.equals("Windows 95"))
 {
 theBoxSpecifier � new WindowsBox() ;
 }
 else
 {
 theBoxSpecifier � new DefaultBox () ;
 }
 }
 return theBoxSpecifier ;
 }
}

 BoxSpecifi er.java

public interface BoxSpecifier
{
 String getStatement() ;
}

 DefaultBox.java

public class DefaultBox implements BoxSpecifier
{
 public String getStatement()
 {
 return "This is not a box." ;
 }
}

 UNIXBox.java

public class UNIXBox implements BoxSpecifi er

{

 public String getStatement()

 {

 return "This is a UNIX box and therefore good." ;

 }

}

sim23356_ch13.indd 631sim23356_ch13.indd 631 12/15/08 7:00:38 PM12/15/08 7:00:38 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
632 Part 2 Principles of Object-Oriented Programming

 WindowsBox.java

public class WindowsBox implements BoxSpecifier
{
 public String getStatement()
 {
 return "This is a Windows box and therefore bad." ;
 }
}

 Exercises
 6. To add another operating system, such as a Mac, to the list (SunOS, Linux, Win-

dows NT, Windows 95), what modifi cations are necessary?

 7. How are these modifi cations easier than in the procedural solution?

 8. How is ad-hoc polymorphism used in this solution?

 9. Suppose that we want to distinguish between two Windows or two UNIX sys-

tems. Is this code easier to modify than the procedural solution? Explain.

 d. The Sophisticated Object-Oriented Solution

 This program adds a MacBox to the list of operating systems, displaying fl ex-

ibility to easily accommodate modifi cations. Unlike the fi rst three solutions, the

details of this program require a bit of explanation. This program, like the previ-

ous one, uses a number of different fi les and classes. Indeed, PrintOS.java and

 BoxSpecifi er.java are the same as in the naïve object-oriented solution. The details

may seem at fi rst mysterious, but with a little diligence, the program’s structure

should become clear.

 The OSDiscriminator class uses a HashMap object to store and retrieve

 BoxSpecifi er objects that handle different operating system names. You don’t need to

know anything about a HashMap to understand this program except that the operat-

ing system names are stored and retrieved by HashMap methods called get(key) and

 put(key, value) respectively, where key is a String representing the name of the operat-

ing system and value is a BoxSpecifi er object.

 The get(key) method accepts an operating system name (a String) and returns

a BoxSpecifi er object that handles that name. The put(key, value) stores value , the

 BoxSpecifi er object that handles the operating system named key , into the HashMap ,

so that value can be retrieved later by a get(key) method call.

 PrintOS.java

public class PrintOS
{
 public static void main(final String[] args)
 {
 System.out.println(OSDiscriminator.getBoxSpecifier().getStatement());
 }
}

sim23356_ch13.indd 632sim23356_ch13.indd 632 12/15/08 7:00:38 PM12/15/08 7:00:38 PM

 Chapter 13 Polymorphism 633

THE BIGGER PICTURE

 OSDiscriminator.java

public class OSDiscriminator
{
 private static java.util.HashMap storage � new java.util.HashMap() ;

 public static BoxSpecifier getBoxSpecifier()
 {
 BoxSpecifier value
 �(BoxSpecifier)storage.get(System.getProperty("os.name"));
 if (value �� null)
 return DefaultBox.value ;
 return value ;
 }
 public static void r egister(final String key,

final BoxSpecifier value)
 {
 storage.put(key, value) ; // Should guard against null keys
 }
 static
 {
 WindowsBox.register() ;
 UNIXBox.register() ;
 MacBox.register() ;
 }
}

 BoxSpecifi er.java

public interface BoxSpecifier
{
 String getStatement() ;
}

 DefaultBox.java

public class DefaultBox implements BoxSpecifier
{
 public static final DefaultBox value � new DefaultBox () ;
 private DefaultBox()
 { }
 public String getStatement()
 {
 return "This is not a box." ;
 }
}

 UNIXBox.java

public class UNIXBox implements BoxSpecifier

sim23356_ch13.indd 633sim23356_ch13.indd 633 12/15/08 7:00:38 PM12/15/08 7:00:38 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
634 Part 2 Principles of Object-Oriented Programming

{
 public static final UNIXBox value � new UNIXBox() ;
 private UNIXBox() { }
 public String getStatement()
 {
 return "This is a UNIX box and therefore good." ;
 }
 public static final void register()
 {
 OSDiscriminator.register("SunOS", value) ;
 OSDiscriminator.register("Linux", value) ;
 }
}

 WindowsBox.java

public class WindowsBox implements BoxSpecifier
{
 public static final WindowsBox value � new WindowsBox() ;
 private WindowsBox()
 { }
 public String getStatement()
 {
 return "This is a Windows box and therefore bad." ;
 }
 public static final void register()
 {
 OSDiscriminator.register("Windows NT", value) ;
 OSDiscriminator.register("Windows 95", value) ;
 }
}

 MacBox.java

public class MacBox implements BoxSpecifier
{
 public static final MacBox value � new MacBox() ;
 private MacBox()
 { }
 public String getStatement()
 {
 return "This is a Macintosh box and therefore far superior." ;
 }
 public static final void register()
 {
 OSDiscriminator.register("Mac OS", value) ;
 }
}

sim23356_ch13.indd 634sim23356_ch13.indd 634 12/15/08 7:00:39 PM12/15/08 7:00:39 PM

 Chapter 13 Polymorphism 635

THE BIGGER PICTURE

 Exercises
 10. A MacBox is added to the choices of operating systems. In what way is this

modifi cation better than your solutions to exercises 1, 3, and 6?

 11. How would you modify the code to distinguish between two different MacBox

systems? Explain in what way your modifi cation is easier than in the naïve

object-oriented solution.

 12. Explain how polymorphism is used in the sophisticated object-oriented solution.

 13. How does polymorphism help with maintainability and extensibility of the

program?

sim23356_ch13.indd 635sim23356_ch13.indd 635 12/15/08 7:00:39 PM12/15/08 7:00:39 PM

sim23356_ch13.indd 636sim23356_ch13.indd 636 12/15/08 7:00:39 PM12/15/08 7:00:39 PM

PA
R

T

 3

PART 3
More Java Classes

14. More Java Classes: Wrappers and Exceptions

15. Stream I/O and Random Access Files

16. Data Structures and Generics

17. The Java Collections Framework

sim23356_ch14.indd 637sim23356_ch14.indd 637 12/15/08 7:01:36 PM12/15/08 7:01:36 PM

638

CHAPTER CHAPTER 14
 More Java Classes:

Wrappers and Exceptions
 “It would be a sad situation if the wrapper was better than the meat wrapped inside it”

 — Albert Einstein

 “There is no exception to the rule that every rule has an exception”
 — James Thurber

 Objectives

 The objectives of Chapter 14 include an understanding of
� Java’s wrapper classes

� The purpose of the wrapper classes

� The properties of the wrapper classes

� The methods of the wrapper classes

� Autoboxing and unboxing

� Effi ciency with wrapper classes

� Java’s exception classes

� The Exception hierarchy

� The throw-catch mechanism

� The fi nally block

� Checked and unchecked exceptions

� The throws clause

� How to create an exception

 14.1 INTRODUCTION

 The generic sort method

 public static void sort(Comparable [] x, int size)

 of SelectionSort (Example 12.11) can order an array of objects belonging to any class that

implements the Comparable interface. You can use this method to sort an array of String or

an array of Elephant , provided that the Elephant class implements Comparable . Yet, for all

its apparent fl exibility, this multi-purpose method is not as generic as you might think—

 SelectionSort.sort (…) cannot handle an array of a primitive type such as int or double .

Indeed, the statements

 int[] x � {3,5,1,7,9,2,4};
 SelectionSort.sort(x, x.length);

sim23356_ch14.indd 638sim23356_ch14.indd 638 12/15/08 7:01:36 PM12/15/08 7:01:36 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 639

 do not compile because int is not a class that implements Comparable . In fact, int is not a

class at all.

 Similarly, consider the search(...) method of the following LinearSearch class:

 public class LinearSearch
{
 public static int search(Object [] x, Object key, int size) // finds the location of key in x
 {
 for (int i � 0; i � size; i��)
 if (x[i].equals(key))
 return i; // i is the location of key
 return (�1); // return �1 if key not found
 }
}

 This method willingly accepts any array of references but fl atly rejects an array of int, char ,
or d ouble . The statements

 String[] names � {"Jerry", Elaine", "George", "Kramer"};
int place � LinearSearch.search(names,"Elaine", names.length};

cause no problem, but the lines

 int[] numbers � {22, 33, 44, 55};
int place � LinearSearch.search (numbers, 44, numbers.length);

generate a compiler error because the array numbers is not an array of Object references.

The integer array numbers is incompatible with the parameter Object[] x.
 There is an easy fi x to this type incompatibility:

Java’s wrapper classes provide genuine classes for each primitive data type.

 14.2 THE WRAPPER CLASSES

 As you know, a variable can be either

• a reference or

• a primitive (double, fl oat, int, char, boolean , etc.).

 Reference variables refer to objects, and being an object has both advantages and disadvan-

tages. On the positive side, all objects inherit the methods equals(Object o) and toString()
from the parent class, Object ; and every object can be upcast to Object . The downside is

that processing objects comes with a bit of overhead. To expedite processing speed, the

designers of Java decided that primitives would not be objects.

 Nonetheless, many methods, such as LinearSearch.search(…) and SelectionSort.
sort(…) , require object references as arguments. Combining the best of both worlds, Java

provides so-called wrapper classes that “wrap” an object around a primitive value. In other

words, Java supplies both the primitive type int and also the class Integer , a primitive type

 double and also the class Double , and so on. In fact, Java provides a wrapper class for each

one of the primitive data types.

 The eight wrapper classes along with their primitive counterparts are listed in Fig-

ure 14.1 . Notice that the name of each wrapper class begins with an uppercase letter.

sim23356_ch14.indd 639sim23356_ch14.indd 639 12/15/08 7:01:37 PM12/15/08 7:01:37 PM

640 Part 3 More Java Classes

 Like any object, an object belonging to one of the wrapper classes consists of data (in this

case, a single fi eld of the corresponding primitive type) along with constructors and other

methods that manipulate the data. Figure 14.2 shows a variable x that is a reference to an

 Integer object with a single data fi eld of type int and value 34. The variable y in Figure 14.2

is a primitive variable with value 34.

(int)

34

(int)

34
x

y

FIGURE 14.2 Reference variable x refers to an Integer object; y is the name
of a primitive variable. Both hold the value 34.

 14.2.1 Properties of the Wrapper Classes
 As you would expect, a wrapper class comes packaged with constructors. Except for the

 Character class, each wrapper class has two constructors.

• Each numeric class (Integer, Long, Short, Byte, Double, and Float) has a one-argument

constructor that accepts an argument of the corresponding primitive type. For example,

the one-argument constructor for the Integer class has the form

 Integer(int value)

 And, consequently, the statement

 Integer y � new Integer(5)

 instantiates an Integer object with value 5. See Figure 14.3 .

 The Boolean class has a similar constructor:

 Boolean(boolean value)

• Each wrapper class, except Character , has a second constructor that accepts a String

argument. The following statements instantiate a Double object with value 234.56, an

 Integer object with value 12345, and a Boolean object with value true .

 Double x � new Double ("234.56");
 Integer y � new Integer("12345");
 Boolean z � new Boolean("true");

 The Character class has a single constructor:

 Character(char ch);

(int)

5
y

FIGURE 14.3
An Integer object

with value 5

(int)

5
y

FIGURE 14.3
An Integer object

with value 5

Wrapper Class Primitive Type

Boolean
Byte
Character
Double
Float
Integer
Long
Short

boolean
byte
char
double
float
int
long
short

FIGURE 14.1 The wrapper classes

sim23356_ch14.indd 640sim23356_ch14.indd 640 12/15/08 7:01:37 PM12/15/08 7:01:37 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 641

 Surprisingly, the wrapper classes have no default or 0-argument constructors. So, the

statement

 Integer x � new Integer(); // ILLEGAL � Integer has no default constructor

generates a compilation error.

 14.2.2 Autoboxing and Unboxing
 Since the release of Java 1.5, converting from a primitive type to a reference (wrapper) type

or vice versa is automatic, almost invisible. For example, the statement

 Integer prime � 5;

instantiates an Integer object with value 5. That is, this assignment statement is equivalent to

 Integer prime � new Integer(5);

 The statements

 Double pi;
pi � 3.14159 ;

creates a Double object referenced by pi . See Figure 14.4 .

(int)

5
prime

(double)

3.14159
pi

FIGURE 14.4 An Integer object and a Double object; prime and pi are references

 Similarly, wrapper objects can be automatically converted to primitives. In the follow-

ing segment an Integer reference, x , is converted to a primitive:

 Integer x � 5; // or Integer x � new Integer(5). Note that x is a reference.
int y � x; // Notice that x is an object reference and y is a primitive.

The automatic conversion of a primitive type to its corresponding wrapper

(reference) type is called automatic boxing or simply autoboxing. Similarly,

the conversion of a wrapper object to its corresponding primitive type is called

automatic unboxing or unboxing.

 Thus, converting from int to Integer is autoboxing and from Integer to int , unboxing .

 14.2.3 Wrappers Inherit and Wrappers Implement
 Like every Java class, the wrapper classes inherit the methods of Object . These include:

• boolean equals(Object o) and

• String toString()

The wrapper classes override equals(...) and toString() so that equals(...) compares

the values inside two wrapper objects, and toString() returns the value of a wrapper

object as a String reference.

sim23356_ch14.indd 641sim23356_ch14.indd 641 12/15/08 7:01:38 PM12/15/08 7:01:38 PM

642 Part 3 More Java Classes

 For example, the code fragment:

 Integer x � new Integer(5);
Integer y � new Integer(5);
System.out.println(x.equals(y)); // compares values not references
System.out.println(x.toString());

displays

 true
5

All wrapper classes, except Boolean, implement the Comparable interface.

 Consequently,

 x.compareTo(y) returns a negative integer if the value of x is less than the value of y ,

 x.compareTo(y) returns positive integer if the value of x is greater than the value of y , and

 x.compareTo(y) returns 0 if the value of x is the same as the value of y.

 When embedded in an application, the code snippet

 Integer x � 5;
Integer y � 6;
System.out.println(x.compareTo(y));
System.out.println(y.compareTo(x));
System.out.println(x.compareTo(x));

displays

 �1
 1
 0

 Example 14.1 uses the wrapper class Integer along with SelectionSort.sort(…) of

Example 12.11.

 Problem Statement Construct a test class with a main(...) method that interactively

accepts a list of integers and invokes

 void SelectionSort.sort(Comparable [] x. int size) // Example 12.11

to sort the list.

 Java Solution As we noted in the introduction to this chapter, the Java compiler com-

plains if the static method

 void sort(Comparable [] x, int size)

is passed an array of primitives. However, because the Integer class implements

Comparable , this generic method can easily handle an array of Integer .

 1. import java.util.*; // for Scanner
2. public class SortDemo
3. {
4. public static void main(String[] args)

 EXAMPLE 14.1

sim23356_ch14.indd 642sim23356_ch14.indd 642 12/15/08 7:01:39 PM12/15/08 7:01:39 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 643

5. {
6. Scanner input � new Scanner(System.in);
7. int number, size;

8. System.out.print("Enter the number of data items: ");
9. size � input.nextInt();

10. Integer [] list � new Integer[size]; // array of Integer references
11. System.out.println("Enter data: ");
12. for (int i � 0; i � size; i��)
13. {
14. System.out.print(": ");
15. number � input.nextInt(); // number is type int
16. list[i] � number; // autoboxing, list[i] is a reference to an Integer
17. }
18. SelectionSort.sort(list , size); // list is an array of Integer not an array of int

19. System.out.println("The sorted data is : ");
20. for (int i � 0; i � size; i��)
21. System.out.println(list[i]); // unboxing
22. }
23. }

 Output
 Enter the number of data items: 10
Enter data:
: 3

: 5

: 7

: 9

: 0

: 8

: 6

: 4

: 2

: 1

The sorted data is :
0
1
2
3
4
5
6
7
8
9

 Discussion The method is simple and direct. However, you should notice the use of

wrapper classes on the following lines.

Line 10: The array declared on line 10 (Integer [] list) is an array of Integer references.

Because the Integer class implements the Comparable interface, this array can be

passed as an argument to sort(Comparable[] x, int size).

sim23356_ch14.indd 643sim23356_ch14.indd 643 12/15/08 7:01:39 PM12/15/08 7:01:39 PM

644 Part 3 More Java Classes

 14.2.4 Wrappers and Expressions

Conveniently, references to wrapper objects can be used in arithmetic expressions.

 For example, the following segment that mixes primitives and wrappers is perfectly legal

and produces the “correct” result:

 Integer x � 10; // x, y, and z are references not primitives;
Integer y � 20;
Integer z � x * y; // Is this multiplication of references?

 Although x and y are indeed references, the expression x * y is evaluated as follows:

• Variable x is unboxed and its primitive value (10) retrieved.

• Variable y is unboxed and its primitive value (20) retrieved.

• The value 10 * 20 � 200 is calculated.

• A new Integer object with value 200 is instantiated, boxed, and referenced by z .

 As you can see from this seemingly innocuous code segment, using wrapper references

in an arithmetic expression incurs a bit of processing overhead. The next short example

underscores the difference in processing speed when the increment operator (��) is

repeatedly applied to a primitive variable and to an Integer reference.

Line 15: The method call input.nextInt() returns a primitive (int), not a reference

to an Integer object.

Line 16: Here is an example of automatic boxing. The variable list[i] is a

reference to an Integer object. The variable number is a primitive. The assignment

on line 16 is equivalent to

 list[i] � new Integer(number);

Line 21: The method call println(list[i]) is equivalent to println(list[i].toString()).
Because the Integer class overrides toString() , the primitive value stored in list[i] is

displayed.

 Problem Statement Apply the increment operator (��) 10 million times, fi rst to an

 Integer reference and then to a variable of type int . Compare the running times.

 Java Program To compare running times we use the method

 long System.currentTimeMillis()

that returns the current time in milliseconds. For both the Integer reference x and the

primitive y , the following method

 • records the starting time in milliseconds,

 • increments (��) a variable 10,000,000 times,

 • records the ending time in milliseconds, and

 • displays the elapsed time, ending time � starting time.

 1. public class CompareTimes
2. {

 EXAMPLE 14.2

sim23356_ch14.indd 644sim23356_ch14.indd 644 12/15/08 7:01:40 PM12/15/08 7:01:40 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 645

3. public static void main(String[] args)
4. {
5. final int NUM_INCREMENT � 10000000;
6. // increment a reference
7. long start � System.currentTimeMillis(); // starting time
8. Integer x � 1; // x is a reference

9. for (int i � 1; i �� NUM_INCREMENT; i��)
10. x��;
11. long end � System.currentTimeMillis(); // ending time
12. System.out.println("Wrapper time: " � (end-start) � " milliseconds");

13. // increment a primitive
14. start � System.currentTimeMillis(); // starting time
15. int y � 1; // y is primitive
16. for (int i � 1; i �� NUM_INCREMENT; i��)
17. y��;
18. end � System.currentTimeMillis(); // ending time
19. System.out.println("Primitive time: " � (end-start) � " milliseconds");
20. }
21. }

 Output
 Wrapper time: 172 milliseconds
Primitive time: 16 milliseconds

 Discussion It is not even close: the “primitive version” wins the race with a processing

speed more than 10 times faster than the “wrapper version.”

 To increment the reference variable x requires several steps:

 • The value referenced by x is retrieved, that is, x is unboxed. The unboxing is invis-

ible and automatic.

 • The retrieved value is increased by 1.

 • The new value is boxed, that is, a new Integer object (referenced by x) is

instantiated.

 And that is quite a bit of unnecessary work.

Classes are very convenient when a method requires an object, however, when per-

forming basic arithmetic, opt for primitives.

 14.2.5 Wrapper Objects Are Immutable

Like String objects, an object belonging to a wrapper class is immutable.

 Once a wrapper object has been instantiated, its value cannot be changed. Of course, this

does not mean that a reference to a wrapper object cannot be reassigned. For example, the

loop

 Integer x � 5;
for (int i � 1; i �� 3; i��)

x � x � 1;

sim23356_ch14.indd 645sim23356_ch14.indd 645 12/15/08 7:01:41 PM12/15/08 7:01:41 PM

646 Part 3 More Java Classes

instantiates three new Integer objects. Figure 14.5 shows the objects created by this code

segment before the garbage collector reclaims any unreferenced memory. Indeed, the loop

of Example 14.2 instantiates ten million Integer objects.

Integer x = 5

5x 5 5 5

i = 1

6x 6 6

i = 2

7x 7

i = 3

8x

 FIGURE 14.5 Wrapper objects are immutable

 In Section 14.2.3, we mention that the wrapper classes override the equals(Object o)
method inherited from Object so that a.equals(b) compares values and not references. In

contrast, the �� operator compares references. No unboxing takes place. So, for example,

the fragment

 Integer x � new Integer(5);
Integer y � new Integer(5); // a second object is instantiated
System.out.println(x �� y);

prints

 false.

 However, it may surprise you that the segment

 Integer x � 5;
Integer y � 5;
System.out.println(x �� y);

prints

 true;

 In the second case, because Integer objects are immutable, Java deems it unnecessary to cre-

ate two distinct objects with the value 5. So, in fact, the references x and y both refer to the

same object. By not creating two separate objects, the compiler saves memory. Java does

this for integer values between �128 and 127, inclusive. If we change the value in the two

preceding assignment statements to 555 , then x �� y evaluates to false. Although autobox-

ing blurs the line between primitives and wrappers, an Integer is not an int , and an int is not

an Integer . Use autoboxing cautiously.

sim23356_ch14.indd 646sim23356_ch14.indd 646 12/15/08 7:01:42 PM12/15/08 7:01:42 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 647

 14.2.6 Some Useful Methods

The wrapper classes also implement a number of handy static methods.

 Figure 14.6 lists some methods belonging to the Integer and Double classes and Figure 14.7

shows those supplied by Character .

Method return type Description Example

Integer.valueOf(String s) Integer Returns reference to an Integer
object initialized to the numeric

value of s

Integer x �
Integer.valueOf("345");

Double.valueOf(String s) Double Returns a reference to a Double

object initialized to the numeric

value of s

Double x �
Double.valueOf("3.14159");

Integer.parseInt(String s) int Returns the numeric value of

s as a primitive
int x �
Integer.parseInt("345");

double Returns the numeric value of

s as a primitive
double x �
Double.parseDouble("3.14159");

Integer.toString(int x) String Returns the integer x as a String String s �
Integer.toString(123);

Double.toString(double x) String Returns the double x as a String String s �
Double.toString(3.14159);

 FIGURE 14.6 Some static methods of the Double and Integer classes. Similar methods are defined
for Byte , Long , and Float .

Method return type Description Example

Character.isDigit(char ch) boolean Returns true if ch is a digit Character.isDigit('w') returns false

Character.isLetter(char ch) boolean Returns true if ch is a letter Character.isLetter('w') returns true

Character.isLettorOrDigit(char ch) boolean Returns true if ch is a letter

or a digit

Character.isDigit('$') returns false

Character.isLowerCase(char ch) boolean Returns true if ch is a lower

case letter

Character.isLowerCase('w')
returns true

Character.isUpperCase(char ch) boolean Returns true if ch is an

uppercase letter

Character.isUpperCase('w')
returns false

Character.isWhitespace(char ch) boolean Returns true if ch is a

blank, a tab, a form feed,

or a line separator

Character.isWhitespace('x')
returns false

Character.toLowerCase(char ch) char Returns the lowercase

version of ch if ch is an

alphabetical character,

otherwise returns ch

Character.toLowerCase('a')
returns 'A'
Character.toLowerCase('#')
returns '#'

Character.toUpperCase(char ch) char Returns the uppercase

version of ch if ch is an

alphabetical character,

otherwise returns ch

Character.toUpperCase('r')
returns 'R'
Character.toUpperCase('#')
returns '#'

FIGURE 14.7 A few static methods of the Character class

sim23356_ch14.indd 647sim23356_ch14.indd 647 12/15/08 7:01:42 PM12/15/08 7:01:42 PM

648 Part 3 More Java Classes

In addition to the static methods of the wrapper classes, each wrapper class (except

Boolean) defi nes two static constants, MIN_VALUE and MAX_VALUE, that represent

the largest and smallest value of the corresponding primitive type.

 For example, Integer.MAX_VALUE is 2147483647, Integer.MIN_VALUE is �2147483648,

and Byte.MAX_VALUE is 127.

 Example 14.3 uses the static methods of the wrapper classes to validate interactive

input and provide error checking.

 Murphy’s Law (“if anything can go wrong, it will go wrong”) certainly applies to pro-

grams that require interactive input. When supplying a list of integers to an application,

have you ever typed “2w” instead of “23”? Without the proper precautions, such faulty

data can cause a program to crash.

 Problem Statement Design a class with two static utility methods

 int readInt() and
 double readDouble()

that can be used for interactive numerical input.

 • readInt() returns the next valid integer that is supplied interactively, and

 • readDouble() returns the next valid double .

 On illegal input, readInt() or readDouble() issues an error message and prompts for

correct input, thus providing error checking and preventing a program crash. These

methods perform like the Scanner methods nextInt() and nextDouble() but with error

checking.

 Java Solution To verify integer input we implement the following algorithm.

 • Read the input as a string,

 • Use the Character.isDigit(char) to validate that each character of the string, except

possibly the fi rst character, which may be a minus sign, is a digit.

 • If any character is not a digit, prompt the user to reenter the data and return to step 1.

 • Use Integer.parseInt(String) to return the integer value of the input string.

 We implement a similar algorithm for fl oating-point numbers.

 • Read the input as a string.

 • Determine the location of the decimal, if there is a decimal.

 • Except for a single decimal point or an initial minus sign, if any character is not a

digit, prompt the user to reenter the data and return to step 1.

 • Use Double.parseDouble(String) to return the value of the input string.

 1. import java.util.*;
2. public class ReadData
3. {
4. public static int readInt()
5. {
6. // returns a valid integer that is supplied interactively
7. Scanner input � new Scanner(System.in);
8. boolean correct; // is the input correct?

 EXAMPLE 14.3

sim23356_ch14.indd 648sim23356_ch14.indd 648 12/15/08 7:01:43 PM12/15/08 7:01:43 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 649

9. boolean negative � false; // is the number negative?
10. String number; // input string
11. do
12. {
13. correct � true;
14. number � input.next(); // read a string
15. if (number.charAt(0) �� '�') // negative number?
16. {
17. negative � true;
18. number � number.substring(1, number.length());
19. }

20. for (int i � 0; i � number.length(); i��)
21. if (!Character.isDigit(number.charAt(i))) // input error
22. {
23. correct � false;
24. System.out.print("Input error, reenter: ");
25. break; // out of the if-block
26. }
27. } while(!correct);
28. if (negative)
29. return � Integer.parseInt(number);
30. return Integer.parseInt(number);
31. }

32. public static double readDouble()
33. {
34. // returns a valid double that is supplied interactively
35. Scanner input � new Scanner(System.in);
36. boolean correct;
37. boolean negative � false; // negative number?
38. String number;
39. int decimalPlace; // index of the decimal point
40. do
41. {
42. correct � true;
43. number � input.next();
44. if (number.charAt(0) �� '�')
45. {
46. negative � true;
47. number � number.substring(1, number.length());
48. }
49. decimalPlace � number.indexOf("."); // �1 if no decimal point

50. // validate that the characters up to the decimal are digits
51. // this loop is skipped if there is
52. // no decimal point or the decimal occurs as the first character

53. for (int i � 0; i � decimalPlace; i��) // skipped if decimalPlace �� �1
54. if (!Character.isDigit(number.charAt(i))) // input error
55. {
56. correct � false;
57. System.out.print("Input error, reenter: ");
58. break; // out of the if-block
59. }

sim23356_ch14.indd 649sim23356_ch14.indd 649 12/15/08 7:01:44 PM12/15/08 7:01:44 PM

650 Part 3 More Java Classes

60. // validate that the characters after the decimal are digits
61. for (int i � decimalPlace � 1; i � number.length(); i��)
62. if (!Character.isDigit(number.charAt(i))) // input error
63. {
64. correct � false;
65. System.out.print("Input error, reenter: ");
66. break; // out of the if-block
67. }
68. } while (!correct);
69. if (negative)
70. return � Double.parseDouble(number);
71. return Double.parseDouble(number);
72. }
73. }

 Output The following test class uses the methods of ReadData:

 1. public class TestReadData
2. {
3. public static void main(String[] args)
4. {
5. System.out.println("Enter 4 integers");
6. for (int i � 0; i � 4; i��)
7. {
8. int x � ReadData.readInt();

9. System.out.println(" --- " � x);
10. }

11. System.out.println("\nEnter 4 floating-point numbers");
12. for(int i � 0; i � 4; i��)
13. {
14. double x � ReadData.readDouble();
15. System.out.println(" --- " � x);
16. }
17. }
18. }

 Enter 4 integers
2468
 --- 2468
246y
 Input error, reenter: � 2468
 --- �2468
 q357

 Input error, reenter: 1357
 --- 1357
 asdf

 Input error, reenter: 456y
 Input error, reenter: badData
 Input error, reenter: 1234
 --- 1234

 Enter 4 floating-point numbers
 3.14159

 --- 3.14159
23
 --- 23.0

sim23356_ch14.indd 650sim23356_ch14.indd 650 12/15/08 7:01:44 PM12/15/08 7:01:44 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 651

w23
 Input error, reenter: � .23
 --- �0.23
 645b

 Input error, reenter: 645.
 --- 645.0

 Discussion If the fi rst character of the string number is a minus sign, the negative

fl ag is set to true and the reference number is reassigned to the substring beginning

at position 1. For example, if number is “ � 12345” then negative gets the value true
and number is “12345”.

 The loop on lines 20–26 of the readInt() method checks each character of the input

string number by invoking the static method Character.isDigit(). Only digit characters are

valid. If a character fails the test, a fl ag is set (line 23), a message is displayed (line 24),

and input begins again. If all characters are digits, Integer.parseInt(number) returns the

integer equivalent of the string number .
 The readDouble() method is similar to readInt(). However, readDouble() initially

sets the variable decimalPlace equal to the index of the decimal point in the input string

 number (line 49). If number does not contain a decimal point, then place has the value

−1. Subsequently, the loop on lines 53–59 checks the validity of the characters up to the

decimal point. If place has the value −1 or 0, this loop does not execute. Next, the loop

of lines 61–67 checks the characters that follow the decimal point. As with readInt() , if
any character is not a digit, a fl ag is set, a message is displayed, and the process begins

again. If all characters are valid, then the call Double.parseDouble(number) (lines 70

and 71) returns the double equivalent of the string number .

 14.3 EXCEPTIONS AND EXCEPTION HANDLING

An abnormal condition that occurs at runtime is called an exception.

 A fi le placed in the wrong directory, an array index out of bounds, an illegal argument, or

division by zero are a few common exceptions that no programmer has escaped.

Java’s Exception class and its subclasses provide an automatic and clean mechanism

for handling exceptions.

 The subclasses of Exception include

• ClassNotFoundException ,

• IOException ,

• FileNotFoundException ,

• EOFException (End of File Exception) ,

• ArithmeticException ,

• NullPointerException ,

• IndexOutOfBoundsException , and

• IllegalArgumentException.

 Figure 14.8 gives a partial view of the Exception hierarchy. Figure 14.8 also shows that

 Exception , along with Error , extends Throwable . The Error class encapsulates internal

sim23356_ch14.indd 651sim23356_ch14.indd 651 12/15/08 7:01:45 PM12/15/08 7:01:45 PM

D
at

aF
or

m
at

E
xc

ep
tio

n
N

oS
uc

hF
ie

ld
E

xc
ep

tio
n

F
ile

N
ot

F
ou

nd
E

xc
ep

tio
n

IO
E

xc
ep

tio
n

R
un

tim
e

E
xc

ep
tio

n

E
xc

ep
tio

n
E

rr
or

C
la

ss
N

ot
F

ou
nd

E
xc

ep
tio

n
In

st
an

tia
tio

n
E

xc
ep

tio
n

A
rit

hm
et

ic
E

xc
ep

tio
n

C
la

ss
C

as
t

E
xc

ep
tio

n
Ill

eg
al

A
rg

um
en

t
E

xc
ep

tio
n

In
de

xO
ut

O
f

B
ou

nd
sE

xc
ep

tio
n

N
oS

uc
hE

le
m

en
t

E
xc

ep
tio

n
N

ul
lP

oi
nt

er
E

xc
ep

tio
n

T
hr

ow
ab

le

O
bj

ec
t

FI
GU

RE
 1

4.
8

 A
 p

ar
tia

l v
ie

w
 o

f t
he

 E
xc

ep
tio

n
hi

er
ar

ch
y

652

sim23356_ch14.indd 652sim23356_ch14.indd 652 12/15/08 7:01:46 PM12/15/08 7:01:46 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 653

system errors such as the Java Virtual Machine running out of memory. There is not

much you can do about system errors so we do not discuss such errors.

 In the following sections, we show how to use Java’s exception classes to provide a

robust handling of abnormal conditions that can trigger runtime errors.

 14.3.1 Creating, Throwing, and Catching Exceptions
 The following program fragment handles a “division by zero exception” using an if state-

ment and a message sent to standard output.

 1. int length, area;
2. System.out.println("Enter Length");
3. length � input.nextInt(); // input is a scanner reference
4. System.out.println("Enter the area");
5. area � input.nextInt();
6. if (length �� 0)

7. System.out.println("Error: Division by 0");
8. else
9. System.out.println("Width is " � (area / length));

 This code contains a simple fi x for a simple exception. When embedded in a program, the if
statement on lines 6 and 7 handles a possible runtime error, division by zero. Without handling

this exception, division by zero causes a program crash. Handling the exception allows the pro-

gram to deal with the error more gracefully. Checking for exceptional conditions with if state-

ments is certainly one method for handling exceptions, but Java’s built-in mechanism is better.

To handle exceptions uniformly and effi ciently, Java provides the try-throw-catch

construction.

 Generally speaking, when an exception occurs,

• an Exception object that holds information about the exception is instantiated, and

• the Exception object is passed, or thrown , to a section of code called a catch block that

handles the exception.

 This scenario implies that, when an exception occurs, program control, along with an

Exception object containing information about the exception, is passed, like a parameter, to

the catch block, and the catch block takes control or handles the exception. If this descrip-

tion seems a bit abstract, the following simple example, which uses Java’s try-throw-catch
mechanism to recover from a possible division by zero exception, should make the concept

a bit more concrete and show you

• how to create an Exception object,

• how to “throw” an Exception object, and

• how to “catch” an Exception object.

 EXAMPLE 14.4 A baseball player is credited with a plate appearance (PA) each time he is at bat, unless

while at bat, the inning ends for some other reason. A player’s Plate Appearance to
Home Run Ratio (PA:HR) is defi ned as

 (number of plate appearances)/(number of home runs).

 For example, if a player has 272 plate appearances and 16 home runs, his PA:HR ratio is

 272/16 � 17 (or 17:1)

sim23356_ch14.indd 653sim23356_ch14.indd 653 12/15/08 7:01:46 PM12/15/08 7:01:46 PM

654 Part 3 More Java Classes

 Problem Statement Design an application that calculates and displays a player’s PA:

HR ratio.

 Java Solution The application uses Java’s try-throw-catch construction to recover from

division by zero in the case that a player has no home runs. A detailed explanation

follows.

 1. import java.util.*; // for Scanner
2. public class PAHR
3. {
4. public static void main(String[] args)
5. {
6. Scanner input � new Scanner(System.in);
7. System.out.print("Home Runs: ");
8. int hr � input.nextInt(); // get number of home runs
9. System.out.print("Plate Appearances: ");
10. int pa � input.nextInt(); // get number of plate appearances

11. try
12. {
13. if (hr �� 0) // create and throw an Exception

14. {

15. Exception e � new Exception("Division by zero (hr �� 0)");

16. throw e;

17. }

18. System.out.println("PA:HR � " � (pa / hr));
19. }
20. catch (Exception e)

21. {

22. System.out.println(e.getMessage());

23. }

24. System.out.println("Done");
25. }
26. }

 Output Running the program twice produces the following output:

 Home Runs: 16
Plate Appearances: 272
PA:HR � 17
Done

 Home Runs: 0
Plate Appearances: 158
Division by zero (hr �� 0)
Done

 Discussion The application includes a try block (lines 11−19) and a catch block

(lines 20−23).

 Here is how the code works:

 If hr , the number of home runs, equals 0 (line 13) then:

 1. An object e belonging to Java’s Exception class is instantiated and initialized with

the string “Division by zero (hr �� 0).” The object encapsulates information

about the exception (line 15).

sim23356_ch14.indd 654sim23356_ch14.indd 654 12/15/08 7:01:47 PM12/15/08 7:01:47 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 655

 2. The object e is thrown (passed in the manner of a parameter) to the catch block

(line 16).

 3. Control passes to the catch block that begins on line 20, and the remainder of the

code in the try block (line 18) is skipped.

 4. The getMessage() method of Exception returns the string with which e was

instantiated. In this case, getMessage() returns “Division by 0 (hr �� 0)”, which

is displayed via the println() method on line 22.

 5. The program resumes with the code following the catch block. This is a single

statement that prints “Done” (line 24).

 If hr is not equal to 0:

 1. No Exception object is created.

 2. The code in the catch block is skipped.

 The idea is simple: if an exception occurs, an object encapsulating information

about the exception is created and passed (thrown) to a block of code (the catch block)

that handles the exception. The information contained in the Exception object of this

example is the string “Division by zero (hr �� 0).”

 Of course, division by zero is not the only possible exception that can occur. If,

for example, a user enters “A1” for the number of home runs, an exception occurs

and the program crashes. In this example, the try-throw-catch construction handles

just one type of exception. In the next sections, you will see several variations on this

theme.

 The application of Example 14.4 is a simple illustration of the try-throw-catch con-

struction. In general, the try-throw-catch construction contains the following components:

• The try block:
 try
{

code
 instantiate an Exception object, e

 throw e // pass e to the catch block

code
}

When an Exception object is thrown, the program branches to the corresponding

catch block.

• The catch block:
 catch (Exception e)
{

code that handles the exception
}

 The object e , belonging to Java’s Exception class, is called the catch block parameter.

Although the term parameter is used in this context, a catch block parameter is not really

a parameter, nor is a catch block a method. A catch block is a section of code that executes

when an Exception is passed to it.

sim23356_ch14.indd 655sim23356_ch14.indd 655 12/15/08 7:01:48 PM12/15/08 7:01:48 PM

656 Part 3 More Java Classes

Every catch block must have an associated try block.

 After the code of the catch block executes, the program continues with any statements that

follow the catch block.

• getMessage() :

 The Exception class has two constructors:

° Exception(String s) , which instantiates an Exception object with a message;

° Exception() , the default constructor, which instantiates an Exception object with a

“ null message.”

 The method

 String getMessage()

 returns the string stored in an Exception object or else null.

 14.3.2 System-Generated Exceptions
 Example 14.4 demonstrates many of the features of exception handling: instantiating an

 Exception , throwing an Exception , and catching an Exception . The application of Exam-

ple 14.4 explicitly instantiates an Exception object with the new operator and throws the

 Exception object via the throw statement. More often, it is the case that, when a “standard”

exception occurs, the Java Virtual Machine automatically creates and throws the Exception

object. No explicit instantiation or throw statement is required. The JVM takes the ini-

tiative. For example, when division by zero occurs, the JVM instantiates and throws an

 ArithmeticException object that holds information about the error; if a program accesses

a null reference, a NullPointerException object is automatically instantiated and thrown; or

if an application passes an illegal argument to a method, the JVM creates and throws an

 IllegalArgumentException object.

All exceptions are thrown, but not every exception necessitates an explicit throw

statement. If a standard system exception occurs (fi le not found, array out of bounds,

IO exception, arithmetic exception, etc.) the Java system automatically instantiates

and throws the exception.

 Indeed, the explicit throw statement of Example 14.4 is unnecessary because, even with-

out it, the JVM automatically throws the exception. However, if the Java Virtual Machine

throws an exception, no customized message can be attached to the Exception object,

although an error message can be printed in the catch block.

 For example, consider the following code segment that is part of the main(…) method

of a class called FileClass . FileClass also defi nes a static method void readData(File f) that

displays the contents of a fi le. This code segment causes a FileNotFoundException to be

instantiated and thrown automatically by the Java Virtual Machine if an invalid fi lename is

supplied by the user:

 Scanner input � new Scanner(System.in);
System.out.println("Input file: ");
String fileName � input.next();
 File inputFile � new File(fileName); // a bad file name causes a runtime error

 // no explicit throw statement necessary

readData(inputFile);

sim23356_ch14.indd 656sim23356_ch14.indd 656 12/15/08 7:01:49 PM12/15/08 7:01:49 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 657

 If this fragment executes within the main(…) method of a class, the Java Virtual Machine

 automatically creates and throws a FileNotFoundException object if an invalid fi lename is

supplied. Notice that there is no catch block. An Exception object is thrown, but how is it

caught?

 Although there is no catch block, the exception is nonetheless caught by the Java

Virtual Machine, which handles the exception by terminating the program and issuing the

following message:

 Input file: BadFile.txt

Exception in thread "main" java.io.FileNotFoundException: BadFile.txt
(The system cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.�init�(Unknown Source)
 at java.util.Scanner.�init�(Unknown Source)
 at FileClass.readData(FileClass.java:7)
 at FileClass.main(FileClass.java:22)

 Another scenario would have the program explicitly catch and handle this system-

 generated exception. The following segment has no explicit throw statement, and the Java

system automatically creates and throws the exception. This segment, however, catches the

exception and handles it.

 Scanner input � new Scanner(System.in);
System.out.print("Input file: ");
String fileName � input.next();
try // no throw statement necessary
{
 File inputFile � new File(fileName);
 readData(inputFile);
}
 catch (FileNotFoundException e) // exception is explicitly caught

 {

 System.out.println("File not found : " � filename);

 System.out.println("Program terminated");

 System.exit(0); // ends program

 }

 The catch block handles a FileNotFoundException . The try block contains no throw state-

ment. The Exception object is thrown automatically. Embedded in an application, the seg-

ment produces the following output:

 Input file: BadFile.txt

File not found: BadFile.txt
Program terminated.

 The exception object e in the catch block belongs to the FileNotFoundException class.

Because FileNotFoundException is-an Exception (see Figure 14.8),

 catch (Exception e)

or

 catch (IOException e)

can be used in place of

 catch (FileNotFoundException e).

sim23356_ch14.indd 657sim23356_ch14.indd 657 12/15/08 7:01:49 PM12/15/08 7:01:49 PM

658 Part 3 More Java Classes

 However, throwing a FileNotFoundException object is more informative than throwing an

IOException object or simply an Exception object. This implies a general rule of thumb

when throwing exceptions:

You should be as specifi c as possible when throwing an exception.

 Example 14.5 illustrates the try-throw-catch construction with a simpler version of

 ReadData (Example 14.3). Recall that ReadData is a utility class, with methods readInt()
and readDouble() that check the validity of interactive input.

 Problem Statement Rewrite the ReadData class of Example 14.3 using Java’s excep-

tion handling facilities. That is, rewrite the methods readInt() and readDouble() so that

they exploit exception handling.

 Java Solution The methods of ReadDataImproved use exception handling to check the

validity of interactive input. As in Example 14.3, input arrives in the form of a string,

 number , which is passed to parseInt(...) or parseDouble(...). If number does not represent

an integer or double (for example, “1234T”), the JVM throws a NumberFormatException

exception, which occurs when an application attempts to convert a non-numeric string

to a number.

 1. import java.util.*;
2. public class ReadDataImproved
3. {
4. public static int readInt()
5. {
6. // returns a valid integer that is supplied interactively
7. Scanner input � new Scanner(System.in);
8. boolean correct � false; // is data correct?
9. String number; // input string
10. int value � 0;
11. while (! correct) // until a correct value is entered
12. {
13. try
14. {
15. number � input.next();
16. value � Integer.parseInt(number); // NumberFormatException is possible

17. correct � true; // parseInt(number) had no problem

18. }
19. catch (NumberFormatException e)

20. {

21. System.out.println("Input error; Reenter: ");

22. }

23. }
24. return value;
25. }

26. public static double readDouble()
27. {
28. // returns a valid double that is supplied interactively
29. Scanner input � new Scanner(System.in);
30. boolean correct � false; // is data correct?
31. String number; // input string
32. double value � 0.0;
33. while (! correct) // until a correct value is entered

 EXAMPLE 14.5

sim23356_ch14.indd 658sim23356_ch14.indd 658 12/15/08 7:01:49 PM12/15/08 7:01:49 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 659

34. {
35. try
36. {
37. number � input.next();
38. value � Double.parseDouble(number); // a possible exception

39. correct � true;

40. }
41. catch (NumberFormatException e)

42. {

43. System.out.println("Input error; Reenter: ");

44. }

45. }
46. return value;
47. }
48. }

 Output The output is identical to that of Example 14.3.

 Discussion The method readInt() executes as follows:

 The string number is passed to Integer.parseInt(...) (line 16) with two possible

outcomes:

 1. If number consists entirely of digits with a possible leading minus sign, then

parseInt(...) returns the integer value of number , which is assigned to value (line 16).

The catch block (lines 19–22) is skipped, and the method returns value (line 24).

 2. If number does not represent a valid integer, then the call to parseInt(…) causes

the JVM to throw a NumberFormatException object and program control passes to

the catch block, which issues an error message (line 21). The process begins again

at line 23.

 The method readDouble() is similar.

 In contrast to the readInt() and readDouble() methods of Example 14.3, these rewrit-

ten methods do not explicitly check the validity of input, character by character. If the

string passed to parseInt(...) or parseDouble(...) is invalid, an exception is thrown and

caught. There is no need for the program to check each character of number .
 Again, notice that in this example, the Exception objects are created and thrown by

the JVM; no explicit instantiations or throw statements are necessary.

 14.3.3 Multiple Catch Blocks
 Several catch blocks can be associated with a single try block. For example,

 try
{
 statements
}
catch (ArithmeticException e)
{
 statements
}
catch (NullPointerException e)
{
 statements

sim23356_ch14.indd 659sim23356_ch14.indd 659 12/15/08 7:01:51 PM12/15/08 7:01:51 PM

660 Part 3 More Java Classes

}
catch (Exception e)
{
 statements
}

 In this case, the fi rst catch block with parameter matching the type of thrown exception

catches the exception. The following fragment prints the square root of a (non-negative) number.

Exceptions occur when the user enters a negative number or, possibly, a non-numeric string.

 try
{
 System.out.print("Enter an integer: ");
 String number � input.next();
 int value � Integer.parseInt(number); // possible NumberFormatException

 if (y � 0)
 throw new Exception(" Input Error: Negative Number");

 else
 System.out.println("Square root: " � (Math.sqrt(y)));
}

 catch (NumberFormatException e)
{
 System.out.println("Illegal number format ");
}
 catch (Exception e)
{
 System.out.println(e.getMessage());
}

 If a user enters abcd as input, the Java Virtual Machine throws a NumberFormatException

when parseInt(...) is called. The fi rst catch block catches and handles this exception.

 On the other hand, if the user input is −54, the statement

 if (y � 0)

 throw new Exception("Negative Number. Reenter");

throws an Exception object. The fi rst catch block does not catch this exception since the

parameter of the fi rst catch block is of type NumberFormatException . However, the second

 catch block with parameter type Exception does, in fact, catch the exception. Indeed, the fi nal

 catch block catches any exception that is not caught by preceding catch blocks. The fi nal catch

block is a “catch all.” Notice that the catch blocks are purposely written in order from most

specifi c to least specifi c. If the “ catch(Exception e) block” had come fi rst, then all exceptions

would be caught by that block, and the code would not distinguish a NumberFormatException

from another type of Exception . The compiler, in fact, forbids this ordering.

Multiple catch blocks should be written in order from most specifi c to least specifi c

exception.

 14.3.4 Checked and Unchecked Exceptions

Java’s Exception hierarchy divides exceptions into two categories, unchecked excep-

tions and checked exceptions.

sim23356_ch14.indd 660sim23356_ch14.indd 660 12/15/08 7:01:51 PM12/15/08 7:01:51 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 661

 RuntimeException exceptions (see Figure 14.8) fall into the category of unchecked excep-

tions. Unchecked exceptions can occur almost anywhere in any method and are the most

common types of exceptions. An unchecked exception usually occurs due to some program

fl aw such as an invalid argument, division by zero, an arithmetic error, or an array out of

bounds. Figure 14.9 enumerates some of the more common unchecked exceptions. There

are many more that are described on Sun’s website.

ArithmeticException Some arithmetic error, e.g., division by zero.
ArrayIndexOutOfBoundsException Invalid index value for an array.
ArrayStoreException Invalid type for an array element.
ClassCastException Invalid cast.
IllegalArgumentException Invalid argument when calling a method.
NullPointerException Attempt to dereference (access) a null pointer.
NumberFormatException Invalid string in a conversion to a number.
StringIndexOutOfBounds Invalid index value for a string.

FIGURE 14.9 Some common unchecked RuntimeException exceptions

An unchecked exception, such as an out of bounds array index, is one that usually

cannot be handled during runtime.

 If an unchecked exception occurs, the JVM automatically creates an Exception

object and throws the object, but a program need not catch and handle the exception. In

fact, a method that generates an unchecked error can usually do nothing productive to

recover from the error. Therefore, Java does not insist that a program handle unchecked

exceptions.

Catching an unchecked exception is the programmer’s choice.

 Although a programmer can choose whether or not to handle an unchecked exception,

it is not good style to handle too many. Handling every possible unchecked exception could

obscure the clarity of the code. Can you imagine using the try-catch construction for all

array processing or every time there is the possibility of accessing a null reference? Also,

since many unchecked exceptions result from program bugs, neatly handling an excep-

tion could possibly disguise and even hide a serious program fl aw. Nonetheless, every

unchecked exception is eventually caught and handled. If the program does not explicitly

handle the exception, then it is caught and handled by the Java Virtual Machine. Indeed,

this is the more common scenario. For example, when embedded in a program, the follow-

ing segment generates an unchecked ArrayIndexOutOfBoundsException exception:

 int[] a � new int[3];
for (int i � 0; i < 30 ; i��)

a[i] � 2 * i;

 When the segment executes, the JVM throws and catches the exception. The JVM handles

the exception by terminating the program and issuing the message:

 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3
at ArrayException.main(ArrayException.java:7).

 All of our previous applications ignore unchecked exceptions and leave exception handling

to the system.

sim23356_ch14.indd 661sim23356_ch14.indd 661 12/15/08 7:01:52 PM12/15/08 7:01:52 PM

662 Part 3 More Java Classes

 Of course, there are times when your code might reasonably handle an unchecked

exception. Both the readInt() and readDouble() methods of Example 14.5 catch a

 NumberFormatException , which happens to be an unchecked exception. However, in

these cases, the exceptions result from bad user input and recovery is certainly possible.

An exception that is not unchecked is called a checked exception. A checked excep-

tion is one from which a method can reasonably be expected to recover.

 All exceptions derived from Exception , except for RuntimeException , are checked

exceptions. For example, bad input data such as an invalid fi le name might generate a

 FileNotFoundException exception. This is a checked exception.

 In contrast to an unchecked exception, a checked exception cannot be ignored. If a

checked exception is thrown in a method, the method must either handle the exception or

pass it back to the caller to handle. In particular, the method must either

• catch the exception with a catch block, or

• pass the exception back to the caller for handling by explicitly listing the exception in

a throws clause appended to the method signature.

 The latter option is precisely what we have done in previous applications that involved fi le

processing (“ throws IOException ”).

 14.3.5 The throws Clause

If a method does not explicitly catch and handle a checked exception, the method, by

including a throws clause in its heading, passes the exception back to the caller, and

it becomes the caller’s responsibility to handle or throw the exception.

 A throws clause enumerates the type of exceptions that a method might potentially

throw. You may recall that a throws clause is required when working with text fi les:

 public static void main(String[] args) throws IOException

 An IOException is a checked exception, and if an IOException object is not caught, a throws

clause must be added to the heading of the method that throws the exception. Not catching

a checked exception and leaving out the throws clause generates a compilation error.

 In general, any method that generates a checked exception (or has a checked excep-

tion thrown to it) must either catch and handle the exception, or else list the exception in a

 throws clause.

If a method does not catch a checked exception, the Exception object is passed to the

caller, via the throws clause. Checked exceptions can be passed along the chain of

method calls right up to the main(...) method and fi nally to the system, until they are

eventually caught and handled.

 Example 14.6 illustrates a checked exception handled in three different ways:

 1. Using a try-catch construction, the exception is handled directly by the method that

generates the exception.

 2. The exception is thrown back to the calling method and handled by the caller.

 3. The exception is passed (thrown) all the way back through the caller to the Java system

and handled by the system.

sim23356_ch14.indd 662sim23356_ch14.indd 662 12/15/08 7:01:52 PM12/15/08 7:01:52 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 663

 EXAMPLE 14.6 Problem Statement Construct three versions of a static utility method that dis-

plays the contents of a text fi le on the screen. The fi rst version explicitly handles a

FileNotFoundException ; in the second the caller handles the exception; and the third

uses a throws clause and passes the exception to the system.

 Java Solution Version 1: IOException is explicitly handled with a catch block.

 1. import java.util.*;
2. import java.io.*;
3. public class File1
4. {
5. public static void readData(String fileName)
6. {
7. try
8. {
9. File inputFile � new File(fileName);
10. Scanner input � new Scanner(inputFile); // can throw FileNotFoundException
11. String line; // to hold one full line from the file
12. while (input.hasNext()) // while there is more data
13. {
14. line � input.nextLine(); // advance to next line, returns all data
15. System.out.println(line);
16. }
17. input.close();
18. }
19. catch (FileNotFoundException e)

20. {
21. System.out.println("Error: File not found: " � fileName);
22. }
23. }

24. public static void main(String[] args)
25. {
26. Scanner input � new Scanner(System.in);
27. System.out.print("Input file: ");
28. String fileName � input.next();
29. readData(fileName);
30. }
31. }

 1. import java.util.*;
2. import java.io.*;
3. public class File2
4. {
5. public static void readData(String fileName) throws FileNotFoundException
6. {
7. File inputFile � new File(fileName);
8. Scanner input � new Scanner(inputFile); // can throw FileNotFoundException
9. String line; // to hold one full line from the file
10. while (input.hasNext()) // while there is more data
11. {
12. line � input.nextLine(); // advance to next line, returns all data

 Version 2: The FileNotFoundException is thrown to the caller; the caller handles the

exception.

sim23356_ch14.indd 663sim23356_ch14.indd 663 12/15/08 7:01:52 PM12/15/08 7:01:52 PM

664 Part 3 More Java Classes

13. System.out.println(line);
14. }
15. input.close();
16. }

17. public static void main(String[] args)
18. {
19. Scanner input � new Scanner(System.in);
20. System.out.print("Input file: ");
21. String fileName � input.next();
22. try

23. {

24. readData(fileName);

25. }

26. catch (FileNotFoundException e)

27. {

28. System.out.println("File not found : " � fileName);

29. System.out.println("Program terminated");

30. }

31. }
32. }

 1. import java.util.*;
2. import java.io.*;
3. public class File3
4. {
5. public static void readData(String fileName) throws FileNotFoundException // to caller

6. {
7. File inputFile � new File(fileName);
8. Scanner input � new Scanner(inputFile); // can throw FileNotFoundException
9. String line; // to hold one full line from the file
10. while (input.hasNext()) // while there is more data
11. {
12. line � input.nextLine(); // advance to next line, returns all data
13. System.out.println(line);
14. }
15. input.close();
16. }

17. public static void main(String[] args) throws FileNotFoundException // to system

18. {
19. Scanner input � new Scanner(System.in);
20. System.out.print("Input file: ");
21. String fileName � input.next();
22. readData(fileName);
23. }
24. }

 Version 3: Uses two throws clauses

 Output
Version 1 : A “fi le not found” error is handled via a catch block.
 Input file: badFile.txt

Error: File not found: badFile.txt

Version 2 : The FileNotFoundException object is thrown to the caller.
 Input file: badFile.txt

File not found : badFile.txt
Program terminated

sim23356_ch14.indd 664sim23356_ch14.indd 664 12/15/08 7:01:54 PM12/15/08 7:01:54 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 665

 Most of the standard exceptions encountered are unchecked. IOException s are the

exception, so to speak. If an exception is checked and you fail to catch it or include a throws
clause, the Java compiler will persistently remind you.

Notice the difference between throw and throws. The former passes or throws an

exception, and the latter indicates that the method does not handle a particular

exception, but instead, passes the exception back to the caller. One letter changes the

meaning. Be careful.

 14.3.6 Catch Can Throw
 A system-generated exception includes a system-generated message, which may be a bit

cryptic or uninformative. It is possible, however, for a method to catch an exception , cre-

ate a new exception with a message, and then throw (or rethrow) the new exception to the

caller. The following method illustrates the technique.

 Notice the throws clause on line 5 of Version 2. The caller, main(...) , catches the excep-

tion (lines 26–30).

Version 3 : Exceptions are passed to the Java System.
 Input file: badFile.txt

Exception in thread "main" java.io.FileNotFoundException: badFile.txt (The system
cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.�init�(FileInputStream.java:106)
 at java.util.Scanner.�init�(Scanner.java:621)
 at File2.readData(File2.java:8)
 at File2.main(File2.java:25)

 Discussion Notice that there are two throws clauses in Version 3. This is neces-

sary because neither readData() nor main() catches the FileNotFoundException . A

FileNotFoundException can occur in the readData() method. Since there is no catch
block to handle the exception, a throws clause is appended to the method header. Con-

sequently, the exception is thrown to the caller (main(...) in this case). Since main(...)
does not handle the exception, a throws clause is included in the header of main(...) and

the exception is thrown to the Java Virtual Machine. The JVM handles the exception

by aborting the program and displaying the rather technical error message shown.

1. public void myMethod(String filename) throws FileNotFoundException

2. {
3. try
4. {
5. File file � new File(filename);
6. // other code
7. }
8. catch (FileNotFoundException e)
9. {
10. String message � "File not found error in MyMethod : " � filename);
11. FileNotFoundException e1 � new FileNotFoundException(message); // add a message

12. throw e1;

13. }
14. }

 Notice that a new FileNotFoundException , instantiated with a customized message, is cre-

ated and thrown in the catch block. Consequently, a throws clause appears in the heading

of the method.

sim23356_ch14.indd 665sim23356_ch14.indd 665 12/15/08 7:01:54 PM12/15/08 7:01:54 PM

666 Part 3 More Java Classes

 14.3.7 Creating Your Own Exception Classes
 You can create your own exception class by extending Exception or any subclass of

Exception . For example, many applications require that input data consist of positive inte-

gers. The following example creates a class NotPositiveException that extends Exception

and thus inherits the getMessage() method from Exception. Such an exception must be

explicitly instantiated before it is thrown.

Any class derived from Exception is checked, unless it is derived from

RuntimeException, in which case it is unchecked, (see Figure 14.8).

 Problem Statement Devise a class NotPositiveException that extends Exception . Pro-

vide a class that demonstrates this new member of the Exception hierarchy.

 Java Solution Because NotPositiveException extends Exception , the constructors of

 Exception are explicitly invoked using the super keyword.

 1. public class NotPositiveException extends Exception

2. {
3. // constructors
4. public NotPositiveException()
5. {
6. super("Error: Not a positive number"); // call to one argument constructor of Exception
7. }

8. public NotPositiveException (String s)
9. {
10. super(s); // call to one argument constructor of Exception
11. }
12. }

 The following class utilizes the NotPositiveException class. Note that NotPositiveException

is not a system-generated exception, so the NotPositiveExceptionobject must be explic-

itly created before it is thrown.

 1. import java.util.*;
2. public class NotPositiveTest
3. {

4. public static void main(String[] args)
5. {
6. int number;
7. Scanner input � new Scanner(System.in);
8. try
9. {
10. System.out.print("Enter an integer: ");
11. number � input.nextInt();
12. if(number �� 0)
13. throw new NotPositiveException ("Not positive: " � number);

14. else
15. System.out.println("Correct data: " � number);
16. }
17. catch(NotPositiveException e)

18. {
19. System.out.println(e.getMessage());

 EXAMPLE 14.7

sim23356_ch14.indd 666sim23356_ch14.indd 666 12/15/08 7:01:55 PM12/15/08 7:01:55 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 667

20. }
21. }
22. }

 We demonstrate NotPositiveException with both positive and negative data:

 Output
 Enter an integer: 45
Correct data: 45
Enter an integer: �23

Not positive: �23

 Discussion Notice the throw statement in main(...) (line 13) . A corresponding catch
block handles the exception. Without the catch block, it is necessary to append a throws
clause to main(...):

 public static void main(String[] args) throws NotPositive
{
 int number;
 Scanner input � new Scanner(System.in);
 System.out.print("Enter an integer: ");
 number � input.nextInt();
 if(number �� 0)
 throw new NotPositiveException("Not positive: " � number);

 else
 System.out.println("Correct data: " � number);
}

 Here, the NotPositiveException object is thrown to the Java Virtual Machine, which dis-

plays the following output:

 Enter an integer: �9
Exception in thread "main" NotPositive : Not positive: �9

 at NotPositiveTest.main(NotPositiveTest.java:13)

 14.3.8 And Finally, finally

A fi nally block is a block of code that always executes, regardless of whether or not an

exception is thrown. A fi nally block is paired with either a try-catch pair or a try block.

 The syntax of a fi nally block is:

try try

{ {
 code code
} }
 catch (…..) or finally
{ {
 code code—always executes
} }
 finally
{
 code—always executes
}

sim23356_ch14.indd 667sim23356_ch14.indd 667 12/15/08 7:01:56 PM12/15/08 7:01:56 PM

668 Part 3 More Java Classes

 The following example demonstrates a fi nally block that is used to close fi les whether or

not an exception is thrown.

 Problem Statement Merge two sorted text fi les into a single sorted fi le. Each text fi le

consists of a list of names, one name per line. For example, if greekWriters.txt contains

 Aesop

 Euripides

 Homer

 Plato

 Socrates

and romanWriters.txt contains

 Cicero

 Livy

 Ovid

 Virgil

the merged fi le (ancientWriters.txt) contains

 Aesop

 Cicero

 Euripides

 Homer

 Livy

 Ovid

 Plato

 Socrates

 Virgil

 Java Solution To merge two sorted fi les , fi le1 and fi le2 :

 Read the first two names (s1 and s2) from file1 and file2, respectively.
Repeat the following until all data has been read from one file
 if (s1 �� s2)
 {
 Write s1 to the output file
 Read the next name from file into s1
 }
 else // s2 � s1
 {
 Write s2 to the output file
 Read the next name from file2 into s2
 }

if any data in file1 has not been processed
 Write that data to the output file
if any data in file2 has not been processed
 Write that data to the output file

 The following program, which implements the preceding algorithm, opens three fi les

within a try block. If an exception occurs, a corresponding catch block handles the

exception. Whether or not an exception occurs, the fi nally block closes any open fi les.

 EXAMPLE 14.8

sim23356_ch14.indd 668sim23356_ch14.indd 668 12/15/08 7:01:58 PM12/15/08 7:01:58 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 669

 1. import java.util.*;
2. import java.io.*;

3. public class Merger
4. {
5. public static void merge(String name1, String name2, String name3)
6. {
7. File file1 � null, file2 � null, file3 � null;
8. Scanner input1 � null, input2 � null;
9. PrintWriter output � null;
10. try
11. {
12. file1 � new File(name1); // input file
13. file2 � new File(name2); // input file
14. file3 � new File(name3); // output file

15. input1 � new Scanner(file1);
16. input2 � new Scanner(file2);
17. output � new PrintWriter(file3);

18. String s1 � input1.nextLine();
19. String s2 � input2.nextLine();

20. while (input1.hasNext() && input2.hasNext())
21. {
22. if (s1.compareToIgnoreCase(s2) �� 0) // s1 �� s2
23. {
24. output.println(s1);
25. s1 � input1.nextLine();
26. }
27. else // s2 � s1
28. {
29. output.println(s2);
30. s2 � input2.nextLine();
31. }
32. }
33. // compare the last two names that were read
34. // these were not processed in the loop
35. if (s1.compareToIgnoreCase(s2) �� 0)
36. output.println(s1 � ' \n' � s2); // s1 �� s2
37. else
38. output.println(s2 � ' \n' � s1); // s2 � s1

39. // only one of the next two loops can execute
40. // if data remains in file1, this loop executes
41. while (input1.hasNext())
42. output.println(input1.nextLine());

43. // if data remains in file2 then this loop executes
44. while (input2.hasNext()) // file2 has more data
45. output.println(input2.nextLine());
46. }
47. catch (IOException e)
48. {
49. System.out.println("Error in merge()\n" � e.getMessage());

sim23356_ch14.indd 669sim23356_ch14.indd 669 12/15/08 7:01:59 PM12/15/08 7:01:59 PM

670 Part 3 More Java Classes

50. }

51. finally

52. {

53. if (input1 !� null)

54. input1.close();

55. if (input2 !� null)

56. input2.close();

57. if (output !� null)

58. output.close();

59. System.out.println("Finally block completed ");

60. }

61. }

62. public static void main (String[] args)
63. {
64. Scanner input � new Scanner(System.in);
65. String name1, name2, name3;
66. System.out.print("File 1: ");
67. name1 � input.next();
68. System.out.print("File 2: ");
69. name2 � input.next();
70. System.out.print("Output File: ");
71. name3 � input.next();
72. merge(name1, name2, name3);
73. }
74. }

 Output Output with no exceptions:

File 1: greekWriters.txt

File 2: romanWriters.txt

Output File: ancientWriters.txt

Finally block completed.

 Output with an invalid fi le name:

File 1: geekWriters.txt

File 2: romanWriters.txt

Output File: ancientWriters.txt

Error in merge()
geekWriters.txt (The system cannot fi nd the fi le specifi ed)
Finally block completed.

 Notice the error message specifying that the system cannot fi nd the fi le geekWriters.txt .

 Discussion
Lines 7−9: You may wonder why the references on these lines are declared outside

the try block. Declarations within the try block are local to that block and not visible

in the fi nally block.

Lines 20−46: These statements implement the merge algorithm described in the

problem statement. Notice that, within the while loop, when the fi nal name is read

from either fi le1 or fi le2 , either input1.hasNext() or input2.hasNext() returns false

sim23356_ch14.indd 670sim23356_ch14.indd 670 12/15/08 7:01:59 PM12/15/08 7:01:59 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 671

 The fi nally block is used as a cleanup device. Without the fi nally block in Example 14.8,

cleanup would be replicated in both the try and the catch blocks. Moreover, a single try

block may have multiple catch blocks, so the replication could even be more cumbersome.

A fi nally block is a cleaner solution.

Variables declared within a try block are known only within that block and are not

visible to the fi nally block. If the variables of a try block must be accessed in a fi nally

block, declare such variables outside the try block.

 Note that references input1, input2 , and output of Example 14.8 are declared outside the try

block, and they are therefore accessible to the fi nally block on lines 51–60.

 The following class, UsingFinally , presents another example of a fi nally block. How-

ever, unlike the fi nally block of Example 14.8, this block returns a value. What do you think

is the output?

 1. import java.io.*;

2. public class UsingFinally
3. {
4. public int add(int a, int b)
5. {
6. try
7. {
8. return (a � b);
9. }
10. finally
11. {
12. return 0;
13. }
14. }

15. public static void main(String[] args)
16. {

and the loop terminates. Thus, the last two names that are read are not compared

inside the loop and consequently, one more comparison is done outside the loop

(lines 38–42).

 Additionally, when the loop terminates, one of the two fi les may have

unprocessed data. If that fi le is fi le1 , then the code on lines 46 and 47 executes. If

more data remains in fi le2 , then the loop on lines 50 and 51 executes. These loops

write the remaining data to the merged fi le.

Lines 47−50: The catch block displays the message attached to the thrown

exception. In this case, the message

geekWriters.txt (The system cannot fi nd the fi le specifi ed)

implies that the ancient Greeks were not geeks.

 Lines 51−60: The fi nally block closes all open fi les. In other words, the fi nally
block takes care of cleanup. The code in this block always executes, whether or not

an exception is thrown.

sim23356_ch14.indd 671sim23356_ch14.indd 671 12/15/08 7:02:00 PM12/15/08 7:02:00 PM

672 Part 3 More Java Classes

17. UsingFinally x � new UsingFinally();
18. System.out.println(x.add(3,4));
19. }
20. }

 The value that is printed is 0, the value returned by the fi nally block. When the return in the

 try block statement is encountered, control immediately passes to the fi nally block, and the

value 0 is returned by the method.

 This occurs because the code in the fi nally block must execute. If the statement

 return(a � b) ,

in method add() executed before the fi nally block, then the add() method would immedi-

ately terminate and the fi nally block would never execute. Remember, a method returns a

single value and then terminates. When control jumps to the fi nally block, 0 is returned,

and the method terminates. Thus, the try block never gets a chance to return 7, the

expected value. A return statement in a fi nally block effectively precludes a return state-

ment in a try block.

In general, a fi nally block should not be used to return a value.

 14.4 IN CONCLUSION

 In this chapter we describe a few more Java concepts: the wrapper classes and the Exception

hierarchy. The wrappers provide a convenient mechanism for viewing primitive variables

as objects, but at the cost of speed. In general, you should not use a wrapper object if a

primitive suffi ces. The designers of Java provide both wrappers and primitives. Use both

effi ciently and wisely.

 Exceptions are Java’s mechanism for error handling. Using and extending the Exception

class helps avoid program crashes, assists in debugging, and traps errors with more grace

than an undecipherable message from the JVM. On the other hand, handling every possible

unchecked error can lead to confusing and perplexing code. With practice, you will fi nd the

right balance.

 Just the Facts

• A Java variable can store either a primitive or a reference.

• The eight primitives are: boolean, byte, char, double, fl oat, int, long , and short .

• Java provides wrapper classes for each primitive: Boolean, Byte, Character, Double,
Float, Integer, Long, and Short .

• Like strings, wrapper objects are immutable. That is, once a wrapper object has been

instantiated, its value cannot be changed. Of course, a reference to a wrapper object

may be reassigned.

• Wrapper classes come with built-in constructors, many useful static methods, and

constants.

• Wrapper classes override the inherited equals(Object o) so that the values stored in

the wrappers are compared.

sim23356_ch14.indd 672sim23356_ch14.indd 672 12/15/08 7:02:00 PM12/15/08 7:02:00 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 673

• Wrapper classes override toString() so that the value stored in a wrapper can be con-

verted to a string.

• All wrapper classes, except Boolean , implement the Comparable interface in the

natural way, by comparing values stored in the wrappers.

• Converting an object reference from and to a primitive is easy and automatic. The

conversions are called autoboxing and unboxing, respectively. For example,

 Integer x � 2; is identical to Integer x � new Integer(2);

 In the other direction, int y � x; assigns the value 2 to the primitive variable y.

• Wrappers in expressions are conveniently and automatically boxed and unboxed as

needed. For example,

 Integer x � 10; // primitive 10 is boxed and referenced by x
Integer y � 20; // primitive 20 is boxed and referenced by y
Integer z � x � y; // x and y are unboxed, added, and the sum (30) is boxed ,
 // and referenced by z

• Automatic boxing and unboxing can make computation with wrapper objects slow.

Use wrappers only when necessary, such as, when a method expects a reference for a

parameter.

• An abnormal condition that occurs at runtime is called an exception .

• Java’s Exception class encapsulates an abnormal event that occurs during the execu-

tion of a program that disrupts the normal fl ow of the program’s instructions. The

event may trigger a runtime error, cause unexpected output or behavior, or even crash

a program.

• Many exceptions are automatically created and thrown by the Java Virtual Machine.

• A programmer may explicitly create and throw an exception using a throw statement.

• A programmer may extend Exception .

• When an exception is thrown, it is eventually caught and handled.

• Java provides the try-throw-catch mechanism to deal with exceptions.

• The try block contains code that may throw an exception. The catch block contains

code that handles an exception. The catch block may use whatever information the

exception object provides.

• A single try block may have multiple catch blocks, each handling a different

exception.

• An unchecked exception is an exception that does not need to be explicitly handled.

All instances and descendants of RuntimeException are unchecked. Otherwise,

classes derived from Exception are checked.

• If a method throws a checked exception, then that method must include a catch block

to handle the exception, or it must list the exception in a throws clause appended

to the method signature. That is, the method must handle the exception or pass the

exception to the caller.

• The throw keyword throws an exception. The throws keyword declares that a method

may throw a particular exception—meaning the method does not catch the exception

but throws it back to the calling method.

• A fi nally block is attached to either a try block alone or to a try-catch pair. The fi nally

block always executes regardless of whether or not an exception is thrown. The fi nally

block is commonly used as a “clean-up” device.

sim23356_ch14.indd 673sim23356_ch14.indd 673 12/15/08 7:02:00 PM12/15/08 7:02:00 PM

674 Part 3 More Java Classes

• Handling exceptions can be done in many different ways. Here is a list of the most

common.

 ° Acknowledge and Ignore. Catch the exception and do nothing. This is appropriate

when the exception can safely be ignored.

 ° Close the Program. Catch the exception, print an explanation, and gracefully shut

down the program. This is the approach used when the program is unable to continue

normally due to the error.

 ° Print Message and Continue. Catch the exception, print a warning, and let the user

choose to end or continue the program at his/her discretion. This is a fl exible approach

that gives the user control of the situation.

 ° Fix and Continue. Catch the exception, fi x the error, and continue the program. This

is the preferred method when it is clear how to fi x the problem. For example, automatic

conversion of input from mixed upper/lowercase to lowercase.

 ° Pass the Buck. Do not catch the exception at all, just throw it back to the caller. This is

appropriate when the calling method (or one higher up in the sequence of callers) can

better handle the exception.

 ° Repackage. Catch the exception and throw a new exception with different checked/

unchecked status, or with more specifi c detail. This is appropriate when a method

had something to say about the exception, but the error requires more attention at the

caller’s level.

 Bug Extermination

• The wrapper classes have no default constructors; the statement Integer x � new

Integer() generates a compilation error.

• Be careful when using wrapper types in loops containing arithmetic expressions or

calculations. The automatic boxing and unboxing from object to primitive and back

again can slow down processing.

• You must catch every checked exception (using a catch block), or pass it back to the

calling method (by appending a throws clause to the method signature), but don’t

do both, unless you catch the exception and throw a new checked exception of the

same type.

• There is a big difference between throw and throws . The former generates or throws

an exception, and the latter indicates that the method does not handle a particular

exception, but instead passes the exception back to the calling method. One letter

makes a big difference, so be careful.

• It is not necessarily advantageous to catch certain unchecked exceptions such as

 NullPointerException . Such an exception almost always indicates a serious bug that

needs fi xing.

• Be as specifi c as you can. Do not throw or catch a general Exception or

 RuntimeException . Instead, use subclasses that specify exactly the kind of exception

that you are catching.

• A try block may have more than one associated catch block. List the catch blocks in

order, from more specifi c to less specifi c. Otherwise, the less specifi c exceptions will

not be distinguished.

sim23356_ch14.indd 674sim23356_ch14.indd 674 12/15/08 7:02:01 PM12/15/08 7:02:01 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 675

• It is safer and more convenient to close all fi les in fi nally blocks rather than in try

blocks.

• Variables declared inside a try block are inaccessible to the fi nally block. Declare all

variables used in a fi nally block outside the try block.

• Do not return values in a fi nally block. This may prevent other normal returns from

occurring in the try block.

sim23356_ch14.indd 675sim23356_ch14.indd 675 12/15/08 7:02:01 PM12/15/08 7:02:01 PM

676 Part 3 More Java Classes

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 1 Block that always executes

 3 Numeric wrappers have one constructor that accepts a

primitive and another that accepts a .

 6 Every catch block is paired with a block.

 8 All wrapper classes except implement the

Comparable interface.

 9 An exception from which a program can reasonably be

expected to recover

 11 If an exception is not specifi cally handled in the program,

the handles it.

 12 Wrappers override equals (. . .) and .

 14 Block of code that handles an exception

 17 Class that wraps an int
 20 Pass an exception

 21 Convert from object to primitive

 23 Omitting a required throws clause will be fl agged

by the .

 24 Method that returns the integer value of a string

 25 An exception that need not be handled

 26 Classes that provide object functionality for primitives

Down
 2 Common checked exception

 4 A checked exception must be handled

explicitly or declared in

a clause.

 5 A Java variable is a reference or

a .

 7 Wrapper classes do not have

 constructors.

 10 Runtime error

 13 All exception classes extend .

 15 Unchecked exceptions include

exceptions.

 16 Values of wrapper objects cannot be

changed.

 18 With wrappers, �� compares .

 19 Wrapper with a single constructor

 22 Convert from primitive to object

2

9 10

20

23

25

12

4

8

3

22

19

21

16

13

6

14

11

5

18

26

24

17

15

7

1

sim23356_ch14.indd 676sim23356_ch14.indd 676 12/15/08 7:02:01 PM12/15/08 7:02:01 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 677

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

 a. Primitive variables must be objects.

 b. Integer x ; generates a compile time error.

 c. Integer y � new Integer(); generates a compile time error.

 d. Integer z � new Integer(3); generates a compile time error.

 e. Integer u � new Integer(3.14); generates a compile time error.

 f. Integer v � new Integer("3.2"); generates a compile time error.

 g. Integer w � new Integer("345"); generates a compile time error.

 h. An exception is like a runtime error.

 i. Division by zero causes an ArithmeticException to be thrown.

 j. An array index out of bounds causes an exception.

 k. Too many nested loops is an example of an exception.

 l. An exception is an object.

 m. You must include a fi nally block with every try block.

 n. You may not defi ne your own exception class.

 o. Exactly one catch block is allowed per try block.

 2. Playing Compiler
 Determine whether or not each of the following classes compiles, and if not, fi x the

errors. Each class should compute the square root of 122.0.

a. public class Test
 {
 public static void main(String[] args)
 {
 fl oat x � (fl oat) 122.0;
 fl oat newGuess � (fl oat) 1.0;
 fl oat oldGuess � x;
 // This code computes the square root of x;
 try
 {
 while (oldGuess !� newGuess) {
 oldGuess � newGuess;
 newGuess � (fl oat) (x/oldGuess � oldGuess)/ (fl oat) 2.0;
 System.out.println(oldGuess);
 System.out.println(newGuess);
 }
 // Keep improving the guess until two consecutive guesses are equal
 catch
 {
 System.out.println("Did not work");
 }
 }
 }

b. public class Test
 {
 public static void main(String[] args) throws ArithmeticException
 {
 fl oat x � (fl oat) 122.0;
 fl oat newGuess � (fl oat) 1.;

sim23356_ch14.indd 677sim23356_ch14.indd 677 12/15/08 7:02:02 PM12/15/08 7:02:02 PM

678 Part 3 More Java Classes

 fl oat oldGuess � x;
 // This code computes the square root of x;
 try
 {
 while (oldGuess !� newGuess) {
 oldGuess � newGuess;
 newGuess � (fl oat) (x/oldGuess � oldGuess)/ (fl oat) 2.0;
 System.out.println(oldGuess);
 System.out.println(newGuess);
 }
 // Keep improving the guess until two consecutive guesses are equal
 fi nally {}
 }
 }

c. public class Test
 {
 public static void main(String[] args) throws ArithmeticException
 {
 fl oat x � (fl oat) 122.0;
 fl oat newGuess � (fl oat) 1;
 fl oat oldGuess � x;
 // This code computes the square root of x;
 try
 {
 while (oldGuess !� newGuess)
 {
 oldGuess � newGuess;
 newGuess � (fl oat) (x/oldGuess � oldGuess)/ (fl oat) 2.0;
 System.out.println(oldGuess);
 System.out.println(newGuess);
 }
 // Keep improving the guess until two consecutive guesses are equal
 }
 catch (Arithmetic Exception e)
 {
 System.out.println("Bad division in algorithm");
 }
 }
 }

 3. Playing Compiler
 Consider the following class:

 public class LinearSearch
 {
 public static int search(Object [] x, Object key, int size) // fi nds the location of key in x
 {
 for (int i � 0; i � size; i��)
 if (x[i].equals(key))
 return i; // i is the location of key
 return �1; // return �1 if key not found
 }
 }

sim23356_ch14.indd 678sim23356_ch14.indd 678 12/15/08 7:02:02 PM12/15/08 7:02:02 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 679

Which of the following pairs of instructions compile? Explain.

a. Int[] numbers � {22, 55, 33, 66};
 int place � LinearSearch.search (numbers, 55, numbers.length);

 b. int[] numbers � {22, 55, 33, 66};
 int place � LinearSearch.search (numbers, 55, numbers.length);

c. Integer[] numbers � {22, 55, 33, 66};
 int place � LinearSearch.search (numbers, 55, numbers.length);

 4. What’s the Output?
 In the following class, one line causes a compilation error. Which line is it? If you

delete the offensive line, what’s the output?

 public class Mystery
{
 public static void main(String[] args)
 {

 int number;
 int [] otherlist � new int[10]; // array of primitives
 Integer [] list � new Integer[10]; // array of references
 for (int i � 0; i � 10; i��)
 {
 list[i] � i * i;
 otherlist[i] � i � i;
 }
 for (int i � 0; i � 10; i��)
 {
 System.out.println(list[i] � " " � otherlist[i] � " " � list[i].compareTo(otherlist[i]));
 System.out.println(list[i] � " " � otherlist[i] � " " � otherlist[i].compareTo(list[i]));
 }
 }
}

 5. What’s the Output?
 The product of two 32-bit integers is a 64-bit number. If the 32 most signifi cant

bits are zero, then the result is simply the 32 least signifi cant bits. However, if the

most signifi cant 32 bits are not zero, then overfl ow has occurred, but Java does not

throw an ArithmeticException . Instead, Java returns the 32 least signifi cant bits of

the product. Indeed, the evaluation of the multiplication operator * on integers never

throws a runtime exception.

a. What is the output of the following program?

 public class Testint
 {
 public static void main(String[] args)
 {
 Integer x � 2;
 for (int i � 0 ; i � 10 ; i��)
 {
 x � x * x;
 System.out.println(x.equals(0));
 }
 }
 }

sim23356_ch14.indd 679sim23356_ch14.indd 679 12/15/08 7:02:02 PM12/15/08 7:02:02 PM

680 Part 3 More Java Classes

b. What happens if

 int x � 2;
 replaces

 Integer x � 2; ?

 6. What’s the Output?
 a. What is the output of the following program?

 class Test
 {
 public static void main(String[] args)
 {
 try
 {
 System.out.println("Started the try block");
 int k�0;
 int j � 2/k;
 System.out.println("Finishing the try block");
 }
 // Insert Catch Code Here
 fi nally
 {
 System.out.println("Executing the fi nally block");
 }
 System.out.println("Program all done");
 }
 }

b. What is the output if the comment // Insert Catch Code Here is replaced with the

following code?

 catch (RuntimeException e)
 {
 System.out.println(" Am I printed?");
 }

 7. What’s the Output?
 Determine the output of the following program. (Code is from a 1997 JavaWorld

article by Bill Venners.)

 public class Ball extends Exception {}

 public class Pitcher
 {
 private static Ball ball � new Ball();
 static void playBall()
 {
 int i � 0;
 while (true)
 {
 try
 {
 if (i % 4 �� 3)

sim23356_ch14.indd 680sim23356_ch14.indd 680 12/15/08 7:02:02 PM12/15/08 7:02:02 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 681

 {
 throw ball;
 }
 ��i;
 }
 catch (Ball b)
 {
 i � 0;
 System.out.println("Reset");
 }
 }
 }
 public static void main(String[] args)
 {
 Pitcher.playBall();
 }
 }

 8. Basic Syntax and Semantics of try-catch-fi nally
 Consider the code structure below and answer the questions that follow.

 try
 { … code0 …}

 catch (Exception1 e1)
 { … code1 …}

 catch (Exception2 e2)
 { … code2 …}

 fi nally
 {… code3 …}

 code4 …

a. Which lines (code0, code1, code2, code3, code4) execute if no exception is

thrown?

b. Which lines (code0, code1, code2, code3, code4) execute if an exception of type

 Exception1 is thrown in code0?

c. Which lines (code0, code1, code2, code3, code4) execute if an exception of type

 Exception2 is thrown in code0?

d. Which lines (code0, code1, code2, code3, code4) execute if an exception is

thrown in code0 that belongs to neither Exception1 nor Exception2 ?

 9. Exception Handling Style
a. What might be the purpose of the following code structure? Notice that there is a

 fi nally block but there are no catch blocks. Give a realistic example in which you

might use such a structure.

 try
 {.. code …}
 fi nally
 {… code …}

sim23356_ch14.indd 681sim23356_ch14.indd 681 12/15/08 7:02:02 PM12/15/08 7:02:02 PM

682 Part 3 More Java Classes

 b. Why is the following code structure poorly written?

 try
 {… code …}

 catch (Exception e)
 {… handler code …}

 catch (IOException)
 {… handler code …}

 10. Guidelines for Exception Handling
 Sourceforge.net publishes guidelines for throwing and catching exceptions.

Following are seven examples and seven explanations from Sourceforge.net.

Associate each example with its proper explanation.

 Examples:
a. public void methodThrowingException() throws Exception {}
 b. public class Foo
 {
 public void bar()
 {
 try
 {
 // do something
 }
 catch (Throwable th)
 {

 }
 }
 }

c. public class Foo
 {
 void bar()
 {
 try
 {
 try
 {
 }
 catch (Exception e)
 {
 throw new WrapperException(e);
 }
 }
 catch (WrapperException e)
 {
 // do some more stuff
 }
 }
 }

sim23356_ch14.indd 682sim23356_ch14.indd 682 12/15/08 7:02:03 PM12/15/08 7:02:03 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 683

d. public class Foo
 {
 void bar()
 {
 try
 {
 // do something
 }
 catch (NullPointerException npe)
 {
 }
 }
 }

 e. public class Foo
 {
 public void bar() throws Exception
 {
 throw new Exception();
 }
 }

f. public class Foo
 {
 void bar()
 {
 throw new NullPointerException();
 }
 }

g. public class Foo
 {
 void bar()
 {
 try
 {
 // do something

 }
 catch (SomeException se)
 {
 throw se;
 }
 }
 }

 Explanations:
1. Do not catch a NullPointerException. A NullPointerException is a sign of serious

bugs in your code. A catch block may obscure the original error, causing other

more subtle errors in its wake.

2. Avoid using a method signature that throws Exception . It might be diffi cult to

document and understand the vague interfaces. Use either a class derived from

 RuntimeException or a checked exception.

sim23356_ch14.indd 683sim23356_ch14.indd 683 12/15/08 7:02:03 PM12/15/08 7:02:03 PM

684 Part 3 More Java Classes

3. Avoid catching Throwable exceptions. It casts too wide a net—catching things

like OutOfMemoryError .
4. Do not use exception catching as fl ow control. Using exceptions as fl ow control

leads to GOTOish code and obscures true exceptions when debugging.

5. Avoid rethrowing a caught exception. Catch blocks that merely rethrow a caught

exception only add to code size and runtime complexity. There are times when

catching an exception and rethrowing a new exception is appropriate.

6. Try not to throw “raw” exception types. Rather than throw a raw

 RuntimeException , Throwable , Exception , or Error , use a subclassed exception or

error instead.

7. Avoid throwing a NullPointerException . People will assume that the JVM threw

the exception. Consider using an IllegalArgumentException instead; this will be

clearly seen as a programmer-initiated exception.

 PROGRAMMING EXERCISES
 1. Integer vs int
 Write a program that creates two arrays, int[] x and Integer[] y , each of size 1,000,000.

Initialize each array separately so that x[k] � k and y[k] references an Integer
object containing k . Time each segment separately and report your results. Do the

experiment again but initialize x[k] and y[k] to 1, for all k . Explain your results.

 2. Integer vs int
 Write a program that creates two arrays, int[] x and Integer[] y , each of size

1,000,000. Initialize each array separately so that x[k] � k and y[k] references an

 Integer object containing k . Do not time the initializations. For each value k , set

 x[k] � x[k] � x[k] and y[k] � y[k] � y[k]. Time each segment separately. Report and

explain your results. Do the experiment again but initialize x[k] and y[k] to 1, for all

 k . Report and explain your results.

 3. Integer vs int
 Write a program that creates two arrays, int[] x and Integer[] y , each of size

1,000,000. Initialize each array separately so that that x[k] � k and y[k] references an

 Integer object containing k . Do not time the initialization. For each element x[k] and

 y[k] , set x[k] � x[k] * 2 , and y[k] � y[k] * 2. Time each segment separately. Report and

explain your results. Do the experiment again but initialize x[k] and y[k] to 1, for all

 k . Report and explain your results.

 4. Strings and Characters
 Write a program that accepts a String and capitalizes the fi rst letter of each word that

begins with a letter. A word is a sequence of characters surrounded by whitespace.

Use the static methods of the Character class.

 5. Character Experiments
 Write a program that creates an array of char with 1,000,000 elements. Initialize

the elements of the array to random characters from the set { 'a'..'z', '0'..'9', 'A'..'Z' }.

Finally, count the number of digits in the array, checking explicitly whether or not

a character lies between ‘0’ and ‘9’. Repeat the operation using the built-in method

 Character.isDigit(). Time the loops that do the counting, compare results, and explain.

 6. Integer Extraction
 A radio station is paying the dollar value of the numerical part of your address,

if you can answer a question correctly. For example, if Herman Munster of 1313

Mockingbird Lane, answers a question correctly, he wins $1313. Write a program

that accepts a string representing a person’s street address, and assigns the numerical

sim23356_ch14.indd 684sim23356_ch14.indd 684 12/15/08 7:02:03 PM12/15/08 7:02:03 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 685

portion of the address to an Integer . Hint: First extract the numerical digits , and

then use the built-in parseInt(...) method of Integer . You may assume that the street

address has just one number and that number occurs at the start of the address.

 7. Format Exceptions
 Write a program that accepts a test score, that is, a positive integer in the range 0

through 100 inclusive, and displays an equivalent letter grade: A (90�), B (80–89),

C (70–79), D (60–69), F (under 60). Throw an exception if the input is in the wrong

format or if it is out of range, print an error message, and halt gracefully.

 8. Format Exceptions
 Write a class with a static method that accepts characters one at a time, counts

the number of characters, and throws an exception if a character is not in the set

{ 'a'..'z', '0'..'9', 'A'..'Z' }. The exception should be thrown but not caught (i.e., no

explicit catch block). Write a client program that calls this method and prints “Error

in Input” if the method throws an exception.

 9. File Exceptions
 Write a program that reads an array of String from a fi le. The class should have a

method

 void getStrings()

 which reads from the fi le, and catches in order: FileNotFoundException (handled by

printing “Error—fi le not found”), EOFException (handled by printing “Done reading

fi le”), and IOException (handled by printing “Problem reading fi le” � e.getmessage).

 10. File Exceptions
 Write a program that reads characters from a fi le and echo prints each one.

Handle an IOException by printing “Error” along with an explanation, and a

 FileNotFoundException by printing “File fi lename not Found”. Catch these exceptions

in the correct order (IOException last). Use a fi nally block to close the fi le.

 11. Arithmetic Exceptions
 For this problem you will design a “safe” class that performs arithmetic on positive

integers. The class supports addition and division operations and throws appropriate

checked exceptions.

 Recall that the range of type int is

 �2,147,483,648 to �2,147,483,647 inclusive.

 You might assume that the addition 2,147,483,647 � 1 causes a runtime (integer

overfl ow) error. This is not so because Java uses a technique called “two’s

complement” to represent integers; so numbers larger than 2,147,483,647 “wrap

around” to negative values, while numbers smaller than �2,147,483,648 “wrap

around” the other way to positive values. That is,

 2,147,483,647 � 1 � � 2,147,483,648, and

 � 2,147,483,648 � 1 � 2,147,483,647.

 The Bigger Picture section of Chapter 2 explains this in more detail. See Figure 14.10 .

 Consequently, integer addition never throws a runtime exception. In some

situations, however, it might be preferable if integer addition did throw overfl ow

and underfl ow exceptions. Otherwise, a logical bug might go undetected.

 Furthermore, a division by zero throws an unchecked ArithmeticException , but we

might prefer that it throw a checked exception. This would force a more elegant

recovery. After all, division by zero could be caused by something as simple as

accidental reversal of dividend and divisor arguments: that is, 0 / 7 is legal while

sim23356_ch14.indd 685sim23356_ch14.indd 685 12/15/08 7:02:03 PM12/15/08 7:02:03 PM

686 Part 3 More Java Classes

7 / 0 is not. A reasonable recovery plan for catching this exception might be to

close the program, report the division by zero, and suggest checking the order of

arguments.

 Write an Arithmetic class that implements two static methods

 int divide(int a, int b), // a � 0, b � 0; returns a / b (integer division)
int add int a, int b), // a � 0, b � 0; returns a � b

 These methods should throw checked exceptions.

 The divide() method should catch the unchecked ArithmeticException and throw

its own checked DivideByZero exception. The add() methods should throw Overfl ow

and Underfl ow exceptions. Here are the signatures.

 public static int divide(int a, int b) throws DivideByZero
public static int add(int x, int y) throws Underflow, Overflow

 An Overfl ow or Underfl ow exception occurs if the sign of the result does not make

sense. That is, an Overfl ow exception is thrown when the sum of two positive

integers is negative, and Underfl ow exception is thrown when the sum of two

negative integers is positive. Note that the sum of a positive integer and a negative

integer is always legitimate and never results in overfl ow or underfl ow.

 Defi ne three new exception classes: DivideByZero , Overfl ow , and Underfl ow ,

each derived from Exception . Write a separate class that tests the methods of

 Arithmetic . Your test class should catch the exceptions that are thrown by the

methods of Arithmetic .

 THE BIGGER PICTURE

 APIS AND EXCEPTIONS
 API stands for Application Programming Interface.

An API is a set of routines, tools, and protocols for building software applications.

 That is, an API provides building blocks for the programmer. For example, Google Maps

is a convenient tool for fi nding directions, planning a trip, or even conducting market

research. Indeed, a programmer might want to borrow some of the features that Google

Maps provides.

 Suppose, for example, that you are designing a program that generates eye-catching

invitations for birthday parties and such. Moreover, you want to give the user the option

2,147,483,647
�5 �4 �3 �2 �1 0 1 2 3 4 5

�2,147,483,648
negative positive

FIGURE 14.10 The integer following 2,147,483,647 is �2,147,483,648

TH
E

BI
GG

ER
 P

IC
TU

RE

sim23356_ch14.indd 686sim23356_ch14.indd 686 12/15/08 7:02:04 PM12/15/08 7:02:04 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 687

THE BIGGER PICTURE

of including maps and directions with the invitation. Rather than design and program

that functionality yourself, you might use the system already built by Google Maps.

Unfortunately, you don’t have access to the code underneath Google Maps, nor do you

have any idea of how the programmers of Google Maps built their system. And even if

you did, you would not have the time to rebuild such a powerful tool.

 Enter APIs. Google Maps is kind enough to provide an interface (an API) to their sys-

tem. The interface allows you to use the features of Google Maps through various method

calls, following certain standards and protocols. The API is the bridge between your pro-

gram and their program. You are the client of their system, and the API is the rulebook you

must follow to access their system and use their tools.

 Still too abstract? To understand the concept of an API, you would not be too far off

base using a class as an analogy. A class is like the Google Maps system, and the methods

of the class are like the API. Clients can use the public methods of the class without knowl-

edge of the implementation. The interface of a class (its public methods) and an API are in

effect the same thing.

 It is unlikely that a beginner has seen or used an API. But a professional programmer

deals with APIs all the time. APIs come into play when a programmer is ready to hook his

or her programs to more powerful tools like graphical user interfaces, operating systems,

or Google Maps.

 Why discuss APIs when you are likely not to encounter any for a while? Because

a very basic understanding of an API helps you appreciate Java’s exception handling

architecture.

 Java’s Exception Handling Architecture
 As you know, Java allows a programmer to try a block of code, and catch excep-

tions that might be thrown during the code’s execution. An exception is an object

belonging to Exception , and a programmer may create his/her own classes that extend

 Exception .

 Furthermore, some of Java’s exceptions are checked , meaning that the compiler insists

that the programmer handle these exceptions by including a catch block or appending a

 throws clause to the end of the method signature. Making an exception checked forces

the programmer to consider the possibility of an exception being thrown. An example of

a checked exception is IOException, which, as the name suggests, is thrown whenever an

input/output operation is abnormally terminated. This kind of exception does not necessar-

ily signify a program bug, but simply an abnormality in the normal expected execution of

the program. If a checked exception occurs, the presumption is that the program can take

effective action and recover, or at least gracefully print a helpful message and quit. That is

the nature of a checked exception.

 Unchecked exceptions, such as the subclasses of RuntimeException , are usually the

result of programming bugs. Unchecked exceptions need not be caught and handled by

the programmer. Indeed, it would be diffi cult to know exactly how to handle these kinds

of exceptions because they encapsulate unexpected behavior that is usually the result of

programming errors. Although it is permissible to catch these exceptions, they are best

left for the JVM to handle. The JVM provides enough detail to the programmer so that

he/she can fi x the underlying bug. Contrast this with checked exceptions, which do not

represent bugs in the program, but merely unusual circumstances that can be handled

effectively.

 A programmer can create his/her own exceptions either checked or unchecked.

• If a client of your code can reasonably be expected to recover from an exception,

then create a checked exception.

sim23356_ch14.indd 687sim23356_ch14.indd 687 12/15/08 7:02:04 PM12/15/08 7:02:04 PM

688 Part 3 More Java Classes

TH
E

BI
GG

ER
 P

IC
TU

RE

• If a client cannot do anything to recover from the exception, make it an unchecked

exception.

 Exceptions and APIs
 The Java compiler forces a method to specify (using the throws keyword) all uncaught

checked exceptions that can be thrown within its scope.

Declaring which exceptions a method might throw is part of the method’s API, as much

as the number and type of the method’s parameters, or the method’s return value.

 When you write code using a system’s API, you are told exactly which exceptions might

occur each time you call a particular method. If the method throws a checked exception,

then you, the client of the API, must handle it. The API forces the client programmer to

write clean, robust code that will not crash. Large programming systems linked through

multiple levels of API’s would be vulnerable to unforeseen crashes without this enforced

handling of checked exceptions.

 Exercise
1. APIs only make sense when programmers are offered an interface to a fairly

large system of tools. Nevertheless, this exercise is meant to simulate building a

tool and an API.

 Write a class Invest that provides a static method value(…) that calculates the

growth of an investment. The method requires four parameters: initial investment

(double) I , interest rate (double) R , number of years (int) Y , and how often the

interest is compounded per year (int) C . After Y years the value of the investment is:

1 (1 � R __ C)
CY

 The method should throw a checked exception if any of the following conditions

are violated:

 a. The initial investment must be a positive number.

 b. The interest rate and number of years must be provided.

 c. If C is not provided, then the default value of 1 is used.

 Exceptions resulting from violations to rules (a) and (b) should be thrown back

to the client with an appropriate message. An exception that results from a

violation of (c) should be caught and handled. Each of these exceptions should

extend Exception .

 Write a short description of an API for your “system.” Include the number and

types of parameters required by the method, the exceptions thrown, and the kind

of output the method provides.

 Write a client main(...) that interacts with your class, try some method calls,

and handle any exceptions that are thrown by value(…) .

 Compiler—Friend or Master? The Controversy
of Checked Exceptions
 Java’s exception-handling mechanism provides the following benefi ts:

• Normal code is separated from error-handling code via try-catch blocks.

• A clean path is created for error propagation. If a method encounters an unman-

ageable exception, it throws the exception and lets the calling method deal with it.

sim23356_ch14.indd 688sim23356_ch14.indd 688 12/15/08 7:02:05 PM12/15/08 7:02:05 PM

 Chapter 14 More Java Classes: Wrappers and Exceptions 689

THE BIGGER PICTURE

 Without Java’s exception-handling mechanism, error codes would have to be explic-

itly passed back from method to method.

• The compiler ensures that important potential errors (checked exceptions) are antici-

pated and handled.

 Most programmers appreciate the fi rst two benefi ts. The third benefi t is controversial.

 Bruce Eckel, in Thinking in Java, 3 rd edition, advocates the use of RuntimeException

as a wrapper class to “turn off” checked exceptions. In this way, he bypasses the strict

interpretation of what the compiler says should be checked exceptions. Here is a snippet of

a weblog by Tim Bray explaining Eckel’s trick:

 “Suppose you’re writing code to, as a completely random example, process

UTF-8 effi ciently in Java. Eventually you’ll write something like this:

 b � o.toString().getBytes("UTF8");
 Then when you compile it, Java will whine at you that getBytes can throw a

 java.io.unsupportedEncodingException . At this point the Java programmer’s heart

starts to sink, envisioning every other module in the system that calls this sucker

having to declare that exception, especially since there’s very little likelihood that

you can do anything about it except die. I mean what can you do if the system

can’t read UTF8?

 Here’s the trick:

 try
{
 b � o.toString().getBytes("UTF8");
}
catch (java.io.UnsupportedEncodingException e)
{
 throw new RuntimeException("UTF8 not supported!?!?");
}

 The trick, you see, is that RuntimeException s don’t need to be declared in a throws

clause.”

 Bray is describing a program that reads Unicode (UTF-8). He would rather not declare

or handle the checked exception that reading Unicode might throw, because he feels that

neither he (nor anyone else) can do anything useful to handle the exception, except quit

the program. Rather than declare the exception in a throws clause in this method and in all

the other methods that call this method, he hides the exception by catching it at the source,

and “rethrowing” his own unchecked exception. This kind of trick is a loophole in Java’s

enforcement of checked and unchecked exceptions.

 Let’s read what Gaurav Pal and Sonal Bansal have to say about this practice

(JavaWorld , 08/18/00) :

 “Because the Java programming language does not require methods to catch or

to specify unchecked exceptions (RuntimeException , Error , and their subclasses),

programmers may be tempted to write code that throws only unchecked excep-

tions or to make all their exception subclasses inherit from RuntimeException .

Both of these shortcuts allow programmers to write code without bothering with

compiler errors and without bothering to specify or to catch any exceptions.

Although this may seem convenient to the programmer, it sidesteps the intent of

the catch or specify requirement and can cause problems for others using your

classes. . . . Generally speaking, do not throw a RuntimeException or create a

sim23356_ch14.indd 689sim23356_ch14.indd 689 12/15/08 7:02:05 PM12/15/08 7:02:05 PM

690 Part 3 More Java Classes

TH
E

BI
GG

ER
 P

IC
TU

RE

subclass of RuntimeException simply because you don’t want to be bothered with

specifying the exceptions your methods can throw.”

 Eckel acknowledges this criticism and writes that whenever he uses this trick…

 “it seems right, but I still get the occasional email that warns me that I am violat-

ing all that is right and true and probably the USA Patriot Act, as well.”

 The confl ict here is not a simple matter of right and wrong. It is a debate about how

much a compiler should control programming style. More experienced programmers feel,

perhaps justifi ably, that they know when it is okay to break the rules. Beginners rely on the

compiler to protect them from themselves. Some believe that all programmers would write

better code if they did not decide when and when not to fi nd loopholes in the structure the

compiler intends to impose.

 Exercise
2. What is your instinct as a programmer? Do you view the compiler as a helper,

or as a benevolent dictator? Do you follow the compiler’s restrictions, trusting

it to know best, or look for ways to bypass the rules when you think they are

misguided? Include examples from your own experience.

sim23356_ch14.indd 690sim23356_ch14.indd 690 12/15/08 7:02:05 PM12/15/08 7:02:05 PM

 691

 CHAPTER CHAPTER 15
 Stream I/O and Random

Access Files
 “Once you get into this great stream of history, you can’t get out.”

 — Richard M. Nixon

 “Never forget that only dead fi sh swim with the stream.”
 — Malcolm Muggeridge

 Objectives

 The objectives of Chapter 15 include an understanding of

� the Byte Stream and Character Stream classes,

� console I/O using the Byte Stream and Character Stream classes,

� text fi le I/O using the Byte Stream and Character Stream classes,

� the connections between the Byte Stream hierarchy and the Character Stream hierarchy,

� the difference between a text fi le and a binary fi le,

� binary fi le I/O,

� object serialization, and

� random access fi les.

 15.1 INTRODUCTION

 This chapter is an introduction to Java’s stream classes , the backbone of Java’s input/output

system. Java provides classes for every imaginable type of input and output ranging from

primitive byte I/O to input and output of complex objects that contain objects.

 In the following sections, we study I/O with various types of fi les, take a closer look at

some familiar objects such as System.in and System.out , and even learn how to save and retrieve

objects. Much of the material in this chapter is of a technical nature, and it may seem in-depth

and heavy at times. Still, we barely scratch the surface. We concentrate on just a few of Java’s

stream classes, and from those classes we select but a handful of methods. A more detailed

description of the many facets of Java’s stream classes can be found online at Sun’s website.

 15.2 THE STREAM CLASSES

 The Java I/O system is built upon streams .

A stream is an abstraction of the fl ow of data. An input stream constitutes the fl ow of data

to an application, and an output stream represents the fl ow of data from an application.

sim23356_ch15.indd 691sim23356_ch15.indd 691 12/15/08 7:11:10 PM12/15/08 7:11:10 PM

692 Part 3 More Java Classes

 The data to an application can come from the console, a fi le, or some other source.

Similarly, the data that fl ow from an application can go to the screen, a fi le, or some other

destination. These fl ows are all streams. Figure 15.1 shows streams linking a fi le and an

application.

input stream application

fileoutput stream

file

application

FIGURE 15.1 A stream is a flow of data.

 15.3 THE BYTE STREAM AND THE CHARACTER STREAM CLASSES

 Java’s stream classes encapsulate all input and output. Java stores all data, even the most

complex object, as a sequence of bytes. All objects are built from bytes. Bytes fl ow to and

from an application via streams. Accordingly, Java provides the Byte Stream classes for

byte I/O. The Byte Stream classes are the foundation of all Java I/O.

 Indeed, the Byte Stream classes can be used independently or as helpers for another

hierarchy of I/O classes called the Character Stream classes. Character I/O is usually

accomplished with the Character Stream classes.

 Why does Java provide two separate hierarchies of stream classes? If all character data

are composed of bytes, and I/O can be accomplished using the Byte Stream classes, why

complicate matters with the Character Stream classes? Recall that Java stores character data

using the Unicode encoding scheme, which requires two bytes for each character, rather

than the one byte used by the ASCII code. Unicode allows Java to handle normal ASCII

characters (1 byte each) as well as international character sets such as Chinese, Hebrew,

or Arabic. The fi rst release of Java included the Byte Stream classes but not the Character

Stream classes. However, it was not long before the developers at Sun realized that the Byte

Stream classes did not handle character data as easily and effi ciently as they had expected.

The Character Stream classes, which appeared with Java 1.1, were introduced to alleviate

this problem.

 Using the Character Stream classes you can process data independent of a particular

character code. These classes are smart enough to automatically and invisibly handle

ASCII, Unicode, or any other character code. However, the Character Stream classes are

not merely an alternative to the Byte Stream classes. Later, you will see that, in some situ-

ations, the Character Stream classes are clients of the Byte Stream classes, and are thereby

dependent on them.

 The Byte Stream classes and the Character Stream classes have a similar structure.

Each collection of stream classes is split into a pair of hierarchies, one for input

and one for output. For the Byte Stream collection, the root classes of these two

hierarchies are InputStream and OutputStream, respectively. The Reader and Writer
classes fi ll this role for the Character Stream classes.

 Figures 15.2 and 15.3 emphasize the similarities between the two pairs of hierarchies.

These classes reside in the java.io package.

sim23356_ch15.indd 692sim23356_ch15.indd 692 12/15/08 7:11:11 PM12/15/08 7:11:11 PM

O
bj

ec
t

O
ut

pu
tS

tr
ea

m

O
ut

pu
tS

tr
ea

m

D
ef

la
te

r
O

ut
pu

tS
tr

ea
m

F
ilt

er
O

ut
pu

tS
tr

ea
m

D
at

a
O

ut
pu

tS
tr

ea
m

F
ile

O
ut

pu
tS

tr
ea

m

C
ip

he
r

O
ut

pu
tS

tr
ea

m

B
yt

eA
rr

ay
O

ut
pu

tS
tr

ea
m

C
he

ck
ed

O
ut

pu
tS

tr
ea

m
B

uf
fe

re
d

O
ut

pu
tS

tr
ea

m

P
ip

ed
O

ut
pu

tS
tr

ea
m

D
ig

es
t

O
ut

pu
tS

tr
ea

m
P

rin
tS

tr
ea

m

P
ip

ed
In

pu
tS

tr
ea

m

In
pu

tS
tr

ea
m

O
bj

ec
t

In
pu

tS
tr

ea
m

F
ilt

er
In

pu
tS

tr
ea

m
F

ile
In

pu
tS

tr
ea

m
B

yt
eA

rr
ay

In
pu

tS
tr

ea
m

A
ud

io
In

pu
tS

tr
ea

m
S

eq
ue

nc
e

In
pu

tS
tr

ea
m

S
tr

in
gB

uf
fe

r
In

pu
tS

tr
ea

m

In
fla

te
r

In
pu

tS
tr

ea
m

D
ig

es
t

In
pu

tS
tr

ea
m

D
at

a
In

pu
tS

tr
ea

m
C

ip
he

r
In

pu
tS

tr
ea

m
In

pu
tS

tr
ea

m
B

uf
fe

re
d

In
pu

tS
tr

ea
m

Li
ne

N
um

be
r

In
pu

tS
tr

ea
m

P
ro

gr
es

s
M

on
ito

r
In

pu
tS

tr
ea

m
P

us
hB

ac
k

In
pu

tS
tr

ea
m

FI
GU

RE
 1

5.
2

T
he

 In
p

ut
S

tr
ea

m
 a

nd
 O

ut
p

ut
S

tr
ea

m
 h

ie
ra

rc
hi

es
 fo

r
b

yt
e

I/
O

693

sim23356_ch15.indd 693sim23356_ch15.indd 693 12/15/08 7:11:11 PM12/15/08 7:11:11 PM

P
ip

ed
R

ea
de

r
S

tr
in

g
R

ea
de

r

R
ea

de
r

In
pu

tS
tr

ea
m

R
ea

de
r

F
ile

R
ea

de
r

F
ilt

er
R

ea
de

r

P
us

hB
ac

k
R

ea
de

r

C
ha

rA
rr

ay
R

ea
de

r
B

uf
fe

re
d

R
ea

de
r

Li
ne

N
um

be
r

R
ea

de
r

P
rin

t
W

rit
er

W
rit

er

P
ip

ed
W

rit
er

F
ilt

er
W

rit
er

C
ha

rA
rr

ay
W

rit
er

B
uf

fe
re

d
W

rit
er

S
tr

in
g

W
rit

er
O

ut
pu

tS
tr

ea
m

W
rit

er

F
ile

W
rit

er

FI
GU

RE
 1

5.
3

T
he

 R
ea

d
er

 a
nd

 W
ri

te
r

cl
as

se
s

fo
r

ch
ar

ac
te

r
I/

O

694

sim23356_ch15.indd 694sim23356_ch15.indd 694 12/15/08 7:11:12 PM12/15/08 7:11:12 PM

 Chapter 15 Stream I/O and Random Access Files 695

 In the next sections we discuss the Byte Stream and Character Stream classes as they

apply to

• console I/O,

• text fi les,

• binary fi les, and

• random access fi les.

 15.4 CONSOLE INPUT

 In this section we describe console input, fi rst via the Byte Stream classes and then via the

Character Stream classes. Here, you will see how the Byte Stream and Character Stream

hierarchies are interconnected.

 15.4.1 Console Input via the Byte Stream Classes

All console input is accomplished using System.in.

 For example, a Scanner object that effects console I/O is connected to System.in via the

constructor:

 Scanner input � new Scanner(System.in);

 System.in is always lingering in the background, doing the work.

 So what exactly is System.in ? As you know, System is a Java class; and like any class,

 System has attributes or fi elds. One such fi eld of the System class is declared as

 public static final InputStream in;

 This declaration states that the reference, in , refers to an InputStream object. But InputStream ,

a member of the Byte Stream classes, is abstract and cannot be instantiated. In fact, in is

an instance of the concrete class BufferedInputStream , which extends InputStream . The

declaration

 public static final InputStream in;

is one more example of upcasting. Figure 15.2 shows that BufferedInputStream extends

 InputStream .

 Furthermore, because in is static, in can be accessed as System.in , that is, via the class

name. Figure 15.4 shows other static fi elds of the System class.

public static fi nal InputStream in;
public static fi nal PrintStream out;
public static fi nal PrintStream err;

// static methods of System

 FIGURE 15.4 The fields of System . All are static.

 And what is BufferedInputStream ? The BufferedInputStream class offers the capability to

handle I/O effi ciently.

sim23356_ch15.indd 695sim23356_ch15.indd 695 12/15/08 7:11:12 PM12/15/08 7:11:12 PM

696 Part 3 More Java Classes

A buffer is primary memory used to temporarily store data. Using a buffer increases

the effi ciency and speed of I/O.

 With a buffer, data is moved in large blocks (many bytes in each block) between slower

devices (like disks) and the faster buffer. A program can retrieve individual bytes more

quickly from a buffer. Both the Byte Stream and Character Stream classes provide sub-

classes with the capability for buffered I/O. The relevant classes are BufferedInputStream
and BufferedOutputStream for the Byte Stream classes, and BufferedReader and

BufferedWriter for the Character Stream classes. We discuss buffers in more detail later in

the context of the Character Stream classes and fi le I/O, where buffers are most useful. For

now, all you need to know is that in is an instance of BufferedInputStream , which extends

InputStream.
 Some of the methods declared in InputStream , inherited by BufferedInputStream , and

thus available to the object System.in , include:

• int read() throws IOException
 returns the next byte in the stream (an int in the range 0..127)

 returns –1 at the end of the stream

• int read(byte[] b) throws IOException
 reads up to b.length bytes

 returns the number of bytes read, or –1 at the end of the stream

• void close() throws IOException
 closes the stream

• int available() throws IOException
 returns the number of bytes that can be read (or skipped over) from this input stream

without waiting. If another method tries to read from the input stream, then other

methods are blocked temporarily and must wait.

• long skip(long n) throws IOException
 skips n bytes in the stream before the next read

To use InputStream and its descendents, import the java.io package.

 Example 15.1 demonstrates console I/O via the System.in object.

 EXAMPLE 15.1 Problem Statement Devise a short application that reads bytes from the console and

displays them on the screen. Use a cast to interpret the bytes as characters.

 Java Solution Because System.in belongs to InputStream , the application imports

java.io.* . Moreover, the read() method can throw an IOException , which, as you know, is

checked, and must therefore be caught or declared in a throws clause. System.in.read()
returns an integer in the range 0..127, or �1 if the end of the stream is reached.

 1. import java.io.*;
2. public class Console
3. {
4. public static void main(String[] args) throws IOException
5. {
6. int b;
7. int count � 0;

sim23356_ch15.indd 696sim23356_ch15.indd 696 12/15/08 7:11:13 PM12/15/08 7:11:13 PM

 Chapter 15 Stream I/O and Random Access Files 697

8. while ((b � System.in.read()) ! � �1)
9. {
10. count��;
11. System.out .println(b � " " � (char) b); // print byte and char value
12. }
13. System.out.println("Number of Characters: " � count);
14. }
15. }

 Output User input appears in bold. The console is unaware of any typing until the user

presses the Enter key or Control-Z. Pressing Enter results in a newline character sent to

the input stream. On Windows systems, 1 newline is represented by a sequence of two

ASCII codes, a carriage return followed by a line feed . The integer 13 is the ASCII code

for carriage return , and 10 represents line feed . The Control-Z character signals the end

of input.

abc
97 a
98 b
99 c
13
10

b
98 b
13
10

hello
104 h
101 e
108 l
108 l
111 o
13
10

^z
Number of Characters: 15

 Discussion The first three values given to the program are the characters a , b , and c ,

with character codes 97, 98, and 99, respectively, followed by newline represented by

character codes 13 and 10. The next input value is the single character b followed again

by newline . Finally, the characters h , e, l, l, o , newline , and Control-z are entered. The

program displays the ASCII codes for each letter as well as 13 and 10, the codes for

carriage return and line feed that together represent the newline character.

 Because read() returns the numerical value of a character (a single byte), the cast

(char) b on line 11 casts the numerical value of b to a character. This causes the actual char-

acters to be printed except in cases when the characters are unprintable. Characters with

code numbers 0 through 31 and 127 are control characters such as the line feed and car-
riage return . These are used to control the output device and are considered unprintable.

1 On Linux/Unix systems, Control-D signifi es the end of input, and newline is represented by the ASCII

value 10 alone. Indeed, the modern style refers to ASCII code 10 as newline rather than line feed . Output on

these systems shows 10 after each sequence of letters and codes, but not 13.

sim23356_ch15.indd 697sim23356_ch15.indd 697 12/15/08 7:11:14 PM12/15/08 7:11:14 PM

698 Part 3 More Java Classes

 A call to System.in.read() can handle more than a single byte. The following fragment

reads an array of four bytes with a single call. Of course, you can read more than four bytes

by using a larger array. If the array is larger than the available number of characters in the

stream, then the extra bytes in the array remain unused.

 1. byte b[] � new byte[4];
2. int count � 0;
3. System.out.println("Enter data:");
4. count � System.in.read(b); // returns the number of bytes read
5. System.out.println("The following data was read:");
6. for (int i � 0; i � count; i��)
7. System.out.print((char)b[i]);
8. System.out.println();
9. System.out.println("Number of characters: " � count);
10. System.out.println("Number of characters left " � System.in.available());

 Embedded in a method, this code fragment produces the following output:

 Enter data:
 abcdefghijklmnopqrstuvwxyz
The following data was read:
abcd
Number of characters: 4
Number of characters left 24

 Notice that the number of characters remaining is 24 (not 22). This count includes the

invisible carriage return and line feed characters generated by pressing the Enter key.

 We now crossover to the Character Stream classes for a look at a more fl exible and

effi cient version of console input.

 15.4.2 Console Input via the Character Stream Classes

In contrast to the Byte Stream classes, the Character Stream methods are character

oriented.

 A call to read() via a Character Stream object returns a Unicode character code (two bytes).

Consequently, the Character Stream classes can read and write many international charac-

ter sets such as Chinese, Arabic, or Hebrew. Not all programs, however, process characters

using two bytes. When you type characters at the terminal, your operating system encodes

the characters using just eight bits, a 0 followed by a 7-bit ASCII code, giving 128 possi-

bilities. Moreover, a simple text editor such as Notepad stores and interprets each character

using just eight bits. Fortunately and conveniently, the Character Stream classes are smart

enough to invisibly adapt to an 8-bit scheme. It’s all done under the hood and invisible to

you. Indeed, the Character classes are robust enough to handle thousands of different char-

acters from Latin, to Hebrew, to Chinese, but still smart enough to know when the local

system uses eight bits with just 128 (or 256) possible characters. 2

2 Extended ASCII assigns all 256 possible 8-bit codes to characters rather than assuming that the fi rst bit is

always 0 as in standard ASCII. The extension, however, is not standardized. There are many variations of

extended ASCII, the most popular being ISO-8859-1. Unicode is a standardized 16-bit extension to ASCII,

consistent with ISO-8859-1.

sim23356_ch15.indd 698sim23356_ch15.indd 698 12/15/08 7:11:15 PM12/15/08 7:11:15 PM

 Chapter 15 Stream I/O and Random Access Files 699

 The BufferedReader class (in the Character Stream classes), similar in purpose to the

 BufferedInputStream class (in the Byte Stream classes), is used to accomplish effi cient

character input via the methods:

• int read() throws IOException
 reads a single character and returns its code number, and

• String readLine() throws IOException
 reads a line of text and returns the line as a String .

The convenient readLine() method of the BufferedReader class has no counterpart in

 BufferedInputStream .

 The class constructor is

 BufferedReader(Reader in).

As we have mentioned, Character Stream classes do not work independently of the Byte

Stream classes.

A BufferedReader object uses System.in, an object from the Byte Stream hierarchy,

to accomplish console input.

 In fact, System.in is the workhorse of all console input. Being an InputStream object,

 System.in is byte —not character—oriented.

 Because a BufferedReader uses System.in , you might attempt to pass System.in to the

constructor of the BufferedReader class as you do with the Scanner class:

 new Scanner (System.in) // No problem here
new BufferedReader(System.in) // BUT THIS DOES NOT WORK

Unfortunately, this does not work. A problem occurs because the BufferedReader construc-

tor is of the form

Character Stream Class

BufferedReader (Reader in)

 and System.in is not a Reader object belonging to a Character Stream class but an

 InputStream object. BufferedReader needs System.in , but System.in cannot be passed

directly to BufferedReader . Indeed, System.in belongs to the wrong hierarchy.

 To overcome this little diffi culty, Java provides a link or bridge between the Character

Stream classes and the Byte Stream classes. This bridge is InputStreamReader . As the

name suggests, an object belonging to InputStreamReader (a Character Stream class) reads

bytes and converts those bytes to characters.

 One of the constructors for an InputStreamReader has the form:

Character Stream Class

 InputStream Reader (InputStream is)

 Byte Stream Class

The Character Stream and Byte Stream classes are linked via InputStreamReader.

sim23356_ch15.indd 699sim23356_ch15.indd 699 12/15/08 7:11:15 PM12/15/08 7:11:15 PM

700 Part 3 More Java Classes

 Consequently, character input is accomplished with a BufferedReader object as:

 InputStreamReader link � new InputStreamReader(System.in); // link is a Reader object
BufferedReader br � new BufferedReader(link); // wrap a Reader with BufferedReader

or

 BufferedReader br � new BufferedReader (new InputStreamReader (System.in));

 We say that the InputStreamReader , link , wraps System.in , and the BufferedReader ,
 br , wraps link . Wrappers are a common technique in stream I/O and in object-oriented pro-

gramming in general.

Wrapping an object means that the functionality of the wrapped object is accessed

via the wrapper.

 The BufferedReader class supplies a read() method that reads one character, as well as a

 readLine() method that reads an entire line of text and returns the line (excluding any new

line characters) as a String . See Figure 15.5 .

BufferedReader

InputStreamReader

System.in

InputStreamReader link � new
 InputStreamReader(System.in);

 // link connects the two Stream hierarchies

BufferedReader br � new BufferedReader (link);

int c � br.read(); // character is returned as an int
String str � br.readLine();

Console input using the BufferedReader class

 FIGURE 15.5 System.in is wrapped in an InputStreamReader , which is then wrapped
with a BufferedReader

 The following method reads characters via a BufferedReader, br .

 1. public void readCharacterData() throws IOException
2. {
3. int c;
4. int count � 0;
5. InputStreamReader link � new InputStreamReader(System.in);
6. BufferedReader br � new BufferedReader(link);
7. while ((c � br.read()) !� �1)
8. {
9. count��;
10. System.out.println(c � " " � (char)c);
11. }
12. System.out.println("Number of Characters: " � count);
13. }

 The next method reads lines of text until the user enters Control-Z, signaling the end of input.

sim23356_ch15.indd 700sim23356_ch15.indd 700 12/15/08 7:11:15 PM12/15/08 7:11:15 PM

 Chapter 15 Stream I/O and Random Access Files 701

 1. public void readLineData() throws IOException
2. {
3. String str;
4. InputStreamReader link � new InputStreamReader(System.in);
5. BufferedReader br � new BufferedReader(link);
6. System.out.println("Enter lines of text. End with CTRL-Z");

7. while ((str � br.readLine()) !� null) // str � br,readLine() returns the value assigned to str
8. System.out.println(str);
9. }

 The condition on line 7 may seem a bit strange at fi rst glance. Every assignment state-

ment returns a value. The assignment

 int x � 25;

returns the value 25; and the assignment

 int y � x � 1; // x � 25

returns 26. Likewise, the assignment

 str � br.readLine(),

which is part of the boolean condition on line 7, does more than assign a value to str; it

also returns the value assigned to str. When the user signals the end of input, br.readLine()
returns a null reference, and consequently the assignment (str � br.readLine())) evaluates to

 null. Such conditions are often used to terminate a loop.

 15.5 CONSOLE OUTPUT

 Like console input, console output can be accomplished using methods of the Byte Stream

classes as well as those of the Character Stream classes. As before, we begin with the Byte

Stream version.

 15.5.1 Console Output via Byte Stream Classes
 Console output is usually effected with the familiar System.out.print() and System.out.
println() methods. Figure 15.4 shows that in addition to in , the System class declares a

fi eld out :

 public static final PrintStream out

Thus, System.out refers to an object belonging to the PrintStream class as seen in Fig-

ures 15.2 and 15.4 .

 The methods print() and println() are defi ned in the PrintStream class. Since we have

used these methods for all console output, no further discussion is necessary, but now you

fi nally know what it all means.

 Other methods of PrintStream include:

• void write(int b) throws IOException
 writes a byte (an integer in the range 0..127) to the output stream

• void write(byte[] b) throws IOException
 write up to b.length bytes

• void close() throws IOException
 closes the stream

sim23356_ch15.indd 701sim23356_ch15.indd 701 12/15/08 7:11:16 PM12/15/08 7:11:16 PM

702 Part 3 More Java Classes

• void fl ush() throws IOException
 fl ushes the stream; write out any data remaining in a buffer

The following code fragment uses the write(...) method for output. Notice the cast on

line 6.

 1. int b;
2. int count � 0;
3. while ((b � System.in.read()) !� �1) // System.in.read() returns �1 at the end of the stream
4. {
5. count��;
6. System.out.write((char)b); // write a byte
7. }
8. System.out.println("Number of Characters: " � count);

 The write() method is rarely used for console output; print() and println() are more fl exible.

 We now take a look at console output as effected by the Character Stream classes.

 15.5.2 Console Output via Character Stream Classes
 Console output is usually accomplished with a call to the Byte Stream methods

 System.out.print() or System.out.println() . However, the Character Stream classes can

also be used for character-based output, which is important for internationalization. The

 PrintWriter class provides an easy mechanism for console output. Like the byte-oriented

 PrintStream class, PrintWriter methods include print() and println() methods. Two of

the PrintWriter constructors have the following form:

 PrintWriter(OutputStream os);
PrintWriter(OutputStream os, boolean flush);

 Notice that these constructors accept a parameter belonging to OutputStream , a member of

the Byte Stream hierarchy. This is in contrast to BufferedReader , which requires a param-

eter belonging to Reader , that is, a Character Stream reference. Consequently, PrintWriter
 can accept System.out as an argument. That’s one less wrapper!

 The second PrintWriter constructor accepts a boolean argument fl ush . When fl ush is

set to true , automatic line fl ushing is enabled. This means that the stream is fl ushed, that is,

all characters are sent to the corresponding output device whenever println() is invoked. By

default, automatic line fl ushing is not enabled—a call to println(…) does not automatically

print a line of text, but sends it to the stream. PrintWriter methods do not throw exceptions.

See Figure 15.6 .

PrintWriter

System.out

PrintWriter pw � new PrintWriter(System.out);
or

PrintWriter pw � new PrintWriter(System.out,true)

pw.print(s); // s is a String

Console output using the PrinterWriter class

Wrap System.out with a Printwriter

 FIGURE 15.6 A PrintWriter object

sim23356_ch15.indd 702sim23356_ch15.indd 702 12/15/08 7:11:16 PM12/15/08 7:11:16 PM

 Chapter 15 Stream I/O and Random Access Files 703

 The following code fragment instantiates a PrintWriter object with automatic line

fl ushing and prints a poetic reminder.

 1. PrintWriter pw � new PrintWriter(System.out, true);

2. pw.println("Roses are red, violets are blue");
3. pw.println("To flush out the buffer");
4. pw.println("Pass PrintWriter true ");

 Without automatic fl ushing, the following fragment needs an explicit call to fl ush() or

 close() (line 5). Otherwise, no output is produced at all.

 1. PrintWriter pw � new PrintWriter(System.out); // no automatic flushing

2. pw.println("Blue is a violet; red is a rose");
3. pw.println("If it’s not automatic");
4. pw.println("Call flush () or call close ()");

5. pw.close(); // flushes and closes stream

 A call to fl ush() fl ushes the stream, and a call to close() fl ushes and then closes the stream.

In general, if you want println(…) to automatically print a line of text, use automatic

fl ushing.

 15.6 FILES

 For our purposes, we defi ne a fi le as a sequence of bytes and classify a fi le as either

• a text fi le or

• a binary fi le.

A text fi le is a sequence of readable characters, that is, a fi le that you can create and

read with a text editor.

 Indeed, an ASCII text fi le stores each character using eight bits, a 0 followed by a 7-bit ASCII

code. The ASCII character set consists of 128 characters of which 33 are non-printable.

When you open an ASCII text fi le with a text editor such as Notepad, the program reads the

numeric code for each character and displays the corresponding character on the screen.

 A Unicode text fi le encodes each character with two bytes, thus allowing many more

possible character codes. In fact, the Unicode standard character set consists of more than

100,000 characters.

A binary fi le is any sequence of binary digits.

 In contrast to a text fi le, each byte in a binary fi le does not necessarily correspond to a

character. An attempt to read a binary fi le using a text editor produces some very odd-

looking symbols. If you have ever tried to read a class fi le, an exe fi le, or an audio fi le with a

text editor, you know exactly what we mean. Specialized programs such as media players,

graphics programs, databases, and even word processors process binary fi les. You might

say that text fi les are readable by humans and binary fi les are not.

 Although binary fi les cannot be read with a text editor, binary fi les do have their

advantages. Binary fi les can save space, and they facilitate specialized formatting specifi c

to the needs of a program. For example, binary fi les are more effi cient for both storing and

manipulating numeric data.

sim23356_ch15.indd 703sim23356_ch15.indd 703 12/15/08 7:11:17 PM12/15/08 7:11:17 PM

704 Part 3 More Java Classes

 In a text fi le, the symbols 1234 might be encoded as

 00110001 00110010 00110011 00110100

where

• 00110001, the binary equivalent of 49, is the ASCII code for ‘1’;

• 00110010, the binary equivalent of 50, is the ASCII code for ‘2’;

• 00110011, the binary equivalent of 51, is the ASCII code for ‘3’; and

• 00110100, the binary equivalent of 52, is the ASCII code for ‘2’;

 In a binary fi le, 1234 might be stored as an integer using its 32-bit binary representation

of 1234:

 00000000 00000000 00000100 11010010

Both representations require four bytes of memory. However, a longer string of symbols

such as “1234567890” requires 10 bytes of storage in an ASCII text fi le but still only four

bytes as an integer in binary format. Storing large integers in a binary fi le rather than a text

fi le saves space.

 Saving space is not the only advantage gained by storing numeric data in a binary

fi le; processing time can be reduced. The CPU expects that a number has a 32-bit binary

representation. If an integer such as 123456789 is stored as a sequence of nine characters

(’1’,’2’,’3’,’4,’…,’9’), the character sequence must ultimately be converted to a “real”

integer before any arithmetic operations can be performed, and that takes time. Further-

more, if the digits of a number are stored as characters, some type of separator, such as a

space, between character sequences is required to distinguish one number from another,

and these separators must also be processed.

 Text fi les are effi cient when printing and displaying characters, and under certain

circumstances, text fi les are more suitable than binary fi les for storing numbers. If an

application does not do arithmetic, it is more practical to store numbers in a text fi le

rather than a binary fi le. Arithmetic calculations are rarely performed on phone numbers,

social security numbers, zip codes, or ID numbers. These “numbers” are, in effect, text.

 We have already used text fi les in a number of previous applications, and in Chapter 9

we introduce Java’s File class, which encapsulates the properties of a fi le. Like any class,

 File provides constructors and methods. A File object is instantiated as:

 File name � new File(String filename);

where fi lename is the name of some physical fi le. If the fi le does not reside in the same

folder as the application, a File object can be created using the complete pathname of the

fi le. The constructor throws a NullPointerException (unchecked) if fi lename is null .
 A few methods supplied by the File class are:

• public boolean exists()

 returns true if the physical fi le exists; otherwise returns false

• public boolean canRead()
 returns true if the application can, in fact, read from a fi le; otherwise returns false

• public boolean canWrite()
 returns true if an application has permission to write to a fi le, otherwise returns false

• public boolean delete()
 attempts to delete a fi le from the disk and returns true if operation was successful

• public long length()
 returns the size of the fi le in bytes

sim23356_ch15.indd 704sim23356_ch15.indd 704 12/15/08 7:11:17 PM12/15/08 7:11:17 PM

 Chapter 15 Stream I/O and Random Access Files 705

If fi le access is denied for any reason, each of these methods throws a SecurityException ,

which is-a RunTimeException and consequently unchecked.

 15.7 TEXT FILE INPUT

 We now consider fi le I/O. As we did for console I/O, we start with the Byte Stream classes

and work our way to the Character Stream classes.

 15.7.1 Text File Input via the Byte Stream Classes
 The FileInputStream class is a member of the Byte Stream hierarchy that facilitates reading

bytes from a text fi le. Two important FileInputStream methods are:

• int read() throws IOException

 returns a single byte

• close() throws IOException

 closes the stream

To read from a fi le, an application must connect a FileInputStream object to a File

object, that is, wrap a File with a FileInputStream.

 To wrap a File with a FileInputStream , use one of the two constructors:

 FileInputStream(File file);

or

 FileInputStream(String filename);

 Each constructor throws a FileNotFoundException if the fi le does not exist. If fi le access is

denied, the constructor throws a SecurityException which is-a RuntimeException and hence

unchecked.

 Figure 15.7 shows a File object wrapped with a FileInputStream .

FileInputStream

File

File fi le � new File("myFile.txt");
FileInputStream in � new FileInputStream(fi le);

or

FileInputStream in � new FileInputStream("myFile.txt");

int ch � in.read();.
in.close();

FileInputStream for reading bytes from a text fi le

Wrap a File with FileInputStream

 FIGURE 15.7 A FileInputStream to read bytes

 The following example provides a template that reads from a text fi le and displays its con-

tents on the console.

sim23356_ch15.indd 705sim23356_ch15.indd 705 12/15/08 7:11:17 PM12/15/08 7:11:17 PM

706 Part 3 More Java Classes

 Problem Statement Implement a class ShowFile with a single static utility method

that reads characters from a text file, byte by byte, and displays the contents of the file

on the screen. Construct a second class that demonstrates the capability of ShowFile .

 Java Solution The method showFile(…) throws an IOException and a FileNotFoundEx-
ception . These exceptions are thrown to the caller and, in this case, handled by the caller,

 TestReadOneFile . A standard text file usually stores characters using a single byte for

each character.

 The ShowFile class

 1. import java.io.*;

2. public class ShowFile
3. {
4. public static void showFile(String filename) throws IOException,
 FileNotFoundException

5. {
6. int c;
7. // Create a File object
8. File input � new File(filename);

9. // Connect to a stream
10. FileInputStream in � new FileInputStream(input);

11. // do the reading
12. while ((c � in.read()) !� �1)
13. System.out.print((char)c); // cast the int to a char, the int is the ASCII code
14. System.out.println();

15. in.close(); // close the stream
16. }
17. }

 The TestReadOneFile class

 18. import java.util.*;
19. import java.io.*;

20. public class TestReadOneFile
21. {
22. public static void main(String [] args)
23. {
24. Scanner input � new Scanner(System.in);
25. System.out.print("File name: ");
26. try
27. {
28. String filename � input.next();
29. System.out.println(filename);
30. System.out.println();
31. ShowFile.showFile(filename);
32. }
33. catch (FileNotFoundException e)
34. {
35. System.out.println(e);
36. }

 EXAMPLE 15.2

sim23356_ch15.indd 706sim23356_ch15.indd 706 12/15/08 7:11:18 PM12/15/08 7:11:18 PM

 Chapter 15 Stream I/O and Random Access Files 707

 We now consider the Character Stream classes, which not only provide the ability to

read international characters but also the convenient readLine() method.

 15.7.2 Text File Input via the Character Stream Classes
 FileReader , a Character Stream class, includes methods that read characters from a fi le, one

by one—in other words, very slowly. This class needs help. As you know, a buffer is an area

of primary memory used to temporarily store data. Effi ciency improves if an application

reads characters from a buffer rather than directly from a disk fi le.

BufferedReader provides methods that read and store a group or block of characters

in a buffer. An application subsequently reads those characters from the buffer.

 For example, the read() method of BufferedReader reads a single character from a buf-

fer and not directly from a fi le. When read() is fi rst invoked, a block of characters is copied

from a fi le to a buffer. Subsequent calls to read() take characters from the buffer. When the

characters stored in the buffer are consumed, the next call to read() brings another block

of characters into the buffer. By reading a block of characters into a buffer, disk access is

minimized and program effi ciency improves. For example, using a block size of 100 bytes,

an application can read 1000 bytes from a fi le with just 10 disk accesses. This is much

faster than accessing the disk 1000 times and reading data one byte each time.

 To use BufferedReader , fi rst connect a FileReader to a File object and then wrap the

FileReader with the more effi cient BufferedReader . Two constructors of the FileReader
class are:

• FileReader (File f) throws FileNotFoundException;

• FileReader(String fi lename) throws FileNotFoundException;

37. catch (IOException e) // problem with
38. {
39. System.out.println(e);
40. }
41. }
42. }

 Output File name: myfile.txt

There once was a girl named Elaine
With a microchip lodged in her brain
Her friends were amazed
Bedazzled and dazed,
By the facts that Elaine could retain.

 Discussion Notice that showFile(…) throws two types of exceptions. In fact, because

a FileNotFoundException is-an IOException , declaring an IOException is sufficient but

less explanatory. On the other hand, if only a FileNotFoundException is declared, com-

pilation errors occur on lines 12 and 15 because in.read() and in.close() do not throw

 FileNotFound exceptions. The exceptions are thrown to the caller, TestReadOneFile ,

which catches them.

 Finally, notice that the read() method on line 12 returns a byte, an integer in the

range 0 to 127. To display the corresponding character, the cast on line 13 is necessary.

sim23356_ch15.indd 707sim23356_ch15.indd 707 12/15/08 7:11:19 PM12/15/08 7:11:19 PM

708 Part 3 More Java Classes

The methods include:

• int read() throws IOException;
 returns the character code of a single character, and

• void close() throws IOException;

 closes a stream

 A BufferedReader can be instantiated as

 BufferedReader(Reader r);

and implements the Reader methods close() and read() along with the additional method

 String readLine() that reads an entire line of text.

 Figure 15.8 shows a BufferedReader wrapped around a FileReader .

BufferedReader

FileReader

File

File fi le � new File ("myfi le.txt");
FileReader fr � new FileReader(fi le);
BufferedReader br � new BufferedReader(fr);

int ch � br.read();
String s � br.readLine();
br.close();

Reading characters from a File with a BufferedReader

A File wrapped with a FileReader
wrapped with a BufferedReader

FIGURE 15.8 A BufferedReader wrapped around a FileReader

 Problem Statement Write a class, NumberLines , that reads lines from a text file, num-

bers the lines sequentially, and writes the numbered lines to a second file. The class

should have two constructors:

 • NumberLines() ,
 prompts for the names of the input and output fi les, and

 • NumberLines(String inputFile, String outputFile)
 accepts the names of the input and output fi les.

 Include a second class that demonstrates the NumberLines class.

 Java Solution The following class uses a BufferedReader object to effect reading and

a PrintWriter object for output. FileNotFoundException s and IOException s are thrown to

the caller. It is the caller’s responsibility to handle these exceptions with a catch block

or a throws clause. The test program uses the try-catch construction.

 EXAMPLE 15.3

sim23356_ch15.indd 708sim23356_ch15.indd 708 12/15/08 7:11:20 PM12/15/08 7:11:20 PM

 Chapter 15 Stream I/O and Random Access Files 709

 The NumberLines class

 1. import java.util.*;
2. import java.io.*;

3. public class NumberLines
4. {
5. private FileReader in;
6. private FileWriter out;
7. private BufferedReader br;
8. private BufferedWriter bw;
9. private PrintWriter pw;
10. private Scanner scanner � new Scanner(System.in);

11. public NumberLines() throws FileNotFoundException, IOException
12. {
13. String inputFile, outputFile;
14. System.out.print("Input File: ");
15. inputFile � scanner.next();
16. System.out.print("Output File: ");
17. outputFile � scanner.next();

18. in � new FileReader(inputFile); // throws FileNotFoundException
19. br � new BufferedReader(in); // wrap a BufferedReader around a FileReader

20. out � new FileWriter(outputFile); // throws an IO Exception
21. bw � new BufferedWriter(out);
22. pw � new PrintWriter(bw); // wrap a PrintWriter around a BufferedWriter
23. }

24. public NumberLines(String inputFile, Stri ng outputFile)
throws FileNotFoundException, IOException

25. {
26. in � new FileReader(inputFile); // throws FileNotFoundException
27. br � new BufferedReader(in); // wrap a BufferedReader around the FileReader

28. out � new FileWriter(outputFile); // throws IOException
29. bw � new BufferedWriter(out);
30. pw � new PrintWriter(bw); // wrap a PrintWriter around a BufferedWriter
31. }

32. public void copy() throws IOException
33. {
34. String s;
35. int linecount � 0;
36. while ((s � br.readLine()) !� null) // readLine() throws IOException
37. {
38. linecount��;
39. pw.println(linecount � ". " � s);
40. }
41. pw.close();
42. }
43. }

sim23356_ch15.indd 709sim23356_ch15.indd 709 12/15/08 7:11:20 PM12/15/08 7:11:20 PM

710 Part 3 More Java Classes

 A test application TestNumberLines catches the exceptions that are thrown in

NumberLines .

 44. import java.io.*;
45. public class TestNumberLines
46. {
47. public static void main(String [] args)
48. {
49. try
50. {
51. NumberLines numberLines � new NumberLines();
52. numberLines.copy();
53. }
54. catch (FileNotFoundException e)
55. {
56. System.out.println(e.getMessage());
57. }
58. catch (IOException e)
59. {
60. System.out.println(e.getMessage());
61. }
62. }
63. }

 Output 1
 Input File: poems.txt

 Output File: newpoems.txt

 The input fi le poems.txt contains the following text:

 Two Poems by Gellett Burgess (1866 – 1951)

 I never saw a Purple Cow,
 I never hope to see one;
 But I can tell you, anyhow,
 I'd rather see than be one.

 Ah, Yes! I Wrote the "Purple Cow" --
 I'm Sorry, now, I Wrote it!
 But I can Tell you Anyhow,
 I'll Kill you if you Quote it!

 The output fi le newpoems.txt contains the numbered lines:

1. Two Poems by Gellett Burgess (1866 – 1951)
 2.
 3. I never saw a Purple Cow,
 4. I never hope to see one;
 5. But I can tell you, anyhow,
 6. I'd rather see than be one.
 7.
 8. *********************************

sim23356_ch15.indd 710sim23356_ch15.indd 710 12/15/08 7:11:21 PM12/15/08 7:11:21 PM

 Chapter 15 Stream I/O and Random Access Files 711

 15.8 TEXT FILE OUTPUT

 In the following sections we discuss output to text fi les, fi rst using the Byte Stream classes

and then as it is effected using the Character Stream classes.

 15.8.1 Text File Output via the Byte Stream Classes
 Writing to a text fi le using one of the Byte Stream classes is no more diffi cult than reading

from a text fi le. To send output to a fi le:

• wrap a File with a FileOutputStream , a Byte Stream class,

• use the write() method of FileOutputStream , and

• close the stream.

The constructor FileOutputStream(File fi le) throws a FileNotFoundException .

 The most useful methods of FileOutputStream are:

• void write(int b) throws IOException

 writes a single byte

• void close() throws IOException

 fl ushes and closes the stream, and

• void fl ush() throws IOException

 Forces the data in the stream to be written to the appropriate fi le.

 This method is inherited from the class OutputStream .

 See Figure 15.9 .

 9.
 10. Ah, Yes! I Wrote the "Purple Cow" --
 11. I'm Sorry, now, I Wrote it!
 12. But I can Tell you Anyhow,
 13. I'll Kill you if you Quote it!

 Output 2 Here a FileNotFoundException is thrown and caught:

 Input File: oldpoem.txt
Output File: newpoem.txt
oldpoem.txt (The system cannot find the file specified)

 Discussion
Lines 18–19, 26–27: A FileReader is connected to a BufferedReader . The

FileReader constructor can throw a FileNotFoundException .

 Lines 20–22, 28–30: A FileWriter is wrapped in a BufferedWriter , which in turn is

wrapped in a PrintWriter . The FileWriter constructor can throw an IOException .

 Line 36: The readLine() method can throw an IOException .

 The test application invokes the constructor NumberLines() and calls copy() . Exceptions

thrown in NumberLines are passed back to the caller. Because the caller catches these

exceptions, no additional throws clause is necessary.

sim23356_ch15.indd 711sim23356_ch15.indd 711 12/15/08 7:11:21 PM12/15/08 7:11:21 PM

712 Part 3 More Java Classes

FileOutputStream

File

File fi le � new File("myFile.txt");
FileOutputStream out � new FileOutputStream(fi le);

or

FileOutputStream o ut � new
FileOutputStream("myFile.txt");

out.write(int b);
out.close();

FileOutputStream for writing bytes to a File

Wrap a File with FileOutputStream

 FIGURE 15.9 A FileOutputStream object

 The following fragment reads data from a text fi le, myinput.txt , and writes that data to

another text fi le, myoutput.txt .

 1. int c;

2. // get a File object

3. File input � new File("myinput.txt");

4. File output � new File("myoutput.txt");

5. // connect to a stream

6. FileInputStream in � new FileInputStream(input); // throws FileNotFoundException

7. FileOutputStream out � new FileOutputStream(output); // throws FileNotFoundException

8. while ((c � in.read ()) !� �1) // throws IOException

9. out.write ((char)c); // notice the cast to char;

 // throws IOException

10. in.close(); // throws IOException

11. out.close(); // throws IOException

 Text fi le output with the Byte Stream classes can be made more effi cient by wrapping

a BufferedOutputStream around a FileOutputStream :

 File output � new File ("myOutput.txt");
FileOutputStream out � new FileOutputStream(output);
 BufferedOutputStream brOutput � new BufferedOutputStream(out);

 In the next section we show that the same trick can be accomplished with the Character

Stream classes by wrapping a BufferedFileWriter around a FileWriter .

 15.8.2 Text File Output via the Character Stream Classes
 The FileWriter Class

The FileWriter class provides several low-level methods for writing character data to

a fi le.

 However, because these methods do no buffering, they are rather ineffi cient. Indeed, these

methods write just one character at a time. Therefore, FileWriter methods usually work

sim23356_ch15.indd 712sim23356_ch15.indd 712 12/15/08 7:11:22 PM12/15/08 7:11:22 PM

 Chapter 15 Stream I/O and Random Access Files 713

in conjunction with other classes. So, we begin at the bottom of the food chain with the

 FileWriter class and work upward.

 FileWriter objects are instantiated using the constructors:

• FileWriter(File fi le); throws IOException;

• FileWriter(String fi lename); throws IOException;

The FileWriter methods include:

 • void write(int ch) throws IOException;

• void write(String s) throws IOException;

• void close() throws IOException;

• void fl ush() throws IOException;

 See Figure 15.10 .

FileWriter

File

File fi le � new File("myfi le.txt");
FileWriter fw � new FileWriter(fi le)

or

FileWriter fw � new FileWriter("myfi le.txt");

char ch � 'a';
fw.write(ch):
fw.fl ush();
fw.close();

Filewriter does File output, but very slowly

Wrap a File with a FileWriter

 FIGURE 15.10 A FileWriter does low-level file output.

 The following segment instantiates and uses a FileWriter to print the alphabet to a fi le

 alphabet.txt .

 1. FileWriter fw � new FileWriter ("alphabet.txt");
2. for (int i � 0 ; i � 26; i��)
3. fw.write(i � 'a'); // i � ASCII('a')
4. fw.close();

 The segment writes one character at a time. This is a very ineffi cient way to write informa-

tion to a fi le.

 The BufferedWriter Class

 As you know from Section 15.7.2, it is faster to write characters to a buffer and then write

the contents of the buffer to a fi le, than it is to write each character one at a time to the fi le.

Unlike a FileWriter, which writes characters one by one, a BufferedWriter saves characters

in a buffer and writes them to a fi le when the buffer is full.

sim23356_ch15.indd 713sim23356_ch15.indd 713 12/15/08 7:11:22 PM12/15/08 7:11:22 PM

714 Part 3 More Java Classes

 A BufferedWriter can be instantiated as

 BufferedWriter(Writer wr);

The constructor’s argument belongs to Writer . And here specifi cally, a BufferedWriter wraps

a FileWriter .
 The methods of the BufferedWriter class include:

• void write (int ch) throws IOException;

• void write (String s) throws IOException;

• void close() throws IOException;

• void fl ush() throws IOException;

 See Figure 15.11 .

BufferedWriter

FileWriter

File

File file � new File("myfile.txt");
FileWriter � new FileWriter(file);
BufferedWriter bw � new BufferedWriter(fw);

bw.write(ch);
bw.flush();
bw.close()

BufferedWriter wrapping a FileWriter

A File wrapped with a FileWriter
wrapped with a Bufferedwriter

FIGURE 15.11 A BufferedWriter is more efficient than a FileWriter .

 The following fragment uses a BufferedWriter to write the alphabet to a fi le, alphabet.txt .

 1. FileWriter fw � new FileWriter ("alphabet.txt");
2. BufferedWriter bw � new BufferedWriter(fw); // BufferedWriter wraps a FileWriter
3. for (int i � 0 ; i � 26; i��)
4. bw.write(i � 'a'); // i � ASCII('a')
5. bw.close();

 Wrapping a FileWriter with a BufferedWriter makes output more effi cient. Example 15.4

underscores the benefi ts of using BufferedWriter .

 EXAMPLE 15.4 Problem Statement Write an application that compares the relative speeds in

 milliseconds of FileWriter and BufferedWriter.

 Java Solution To calculate time in milliseconds, we use Java’s static method

 public static long System.currentTimeMillis();

 The following application writes one million characters to a fi le, fi le1.txt , using FileWriter
and one million characters to fi le2.txt , using BufferedWriter . Finally, the program dis-

plays the number of milliseconds consumed by each operation.

sim23356_ch15.indd 714sim23356_ch15.indd 714 12/15/08 7:11:23 PM12/15/08 7:11:23 PM

 Chapter 15 Stream I/O and Random Access Files 715

 1. import java.io.*;

2. public class FileWriterVsBufferedWriter
3. {
4. public static void main(String[] args) throws Exception
5. {
6. FileWriter fw � new FileWriter("file1.txt");
7. BufferedWriter br � new BufferedWriter(new FileWriter("file2.txt"));
8. long start � System.currentTimeMillis(); // start time
9. for (int i � 1; i �� 1000000; i��)
10. fw.write('a');
11. fw.close();
12. long end � System.currentTimeMillis();
13. System.out.println("FileWriter time: " � (end � start) � " milliseconds");

14. start � System.currentTimeMillis(); // start time
15. for (int i � 1; i �� 1000000; i��)
16. br.write('a');
17. br.close();
18. end � System.currentTimeMillis();
19. System.out.println("BufferedWriter time: " � (end � start) � " milliseconds");
20. }
21. }

 Output
 FileWriter time: 313 milliseconds
BufferedWriter time: 78 milliseconds

 Discussion In this case, output to a fi le using a BufferedWriter wrapped around a

 FileWriter is about four times faster than output using an “unwrapped” FileWriter.
Effi ciency depends on the buffer size, among other factors.

The PrintWriter Class

 The BufferedWriter provides effi ciency and the PrintWriter class adds the familiar print()
and println() methods, which facilitate formatted output. Two PrintWriter constructors

are:

• PrintWriter(Writer out);

• PrintWriter(Writer out, boolean fl ush);

Since a BufferedWriter is-a Writer , a BufferedWriter can be passed to PrintWriter . That is, we

can wrap a BufferedWriter with a PrintWriter . See Figure 15.12 .

 Again, the next segment writes the alphabet to a fi le, this time one letter per line.

 1. FileWriter fw � new FileWriter ("alphabet.txt");
2. BufferedWriter bw � new BufferedWriter(fw);
3. PrintWriter pw � new PrintWriter(bw)
4. for (int i � 0 ; i � 26; i��)
5. pw.println ((char)(i � 'a')); // notice the cast
6. pw.close();

sim23356_ch15.indd 715sim23356_ch15.indd 715 12/15/08 7:11:23 PM12/15/08 7:11:23 PM

716 Part 3 More Java Classes

 15.8.3 Byte Stream or Character Stream?
 Unless internationalization is required, I/O can be accomplished with either the Byte

Stream or the Character Stream classes. The Character Stream classes are smart enough

to adapt to any encoding: ASCII, Unicode, or whatever the local scheme may be.

Because of this fl exibility and because the Character Stream classes are no more dif-

fi cult than the Byte Stream classes, you might consider choosing the Character Stream

option as the default for typical I/O applications that read from and write to the console

or a text fi le.

 We now turn our attention from text fi les to binary fi les. Character data is not a rel-

evant issue with binary fi les. Binary fi le I/O is achieved using the Byte Stream classes,

exclusively.

 15.9 BINARY FILES AND DATA STREAMS

The Byte Stream hierarchy provides two classes for reading and writing binary fi les:

DataInputStream and DataOutputStream.

 See Figure 15.2 . The Data Stream classes are always wrapped around an OutputStream

object. We begin our discussion with output.

 15.9.1 Binary File Output via DataOutputStream

A DataOutputStream object is able to write primitive data type values, in binary

format, to a fi le.

 Use the DataOutputStream class to create a binary fi le. The constructor for a DataOutput-
Stream is

 DataOutputStream(OutputStream out);

A PrintWriter wrapped around a BufferedWriter

File file � new File("myfile.txt");
FileWriter fw � new FileWriter(file);
BufferedWriter bw � new BufferedWriter(fw);
PrintWriter pw � new PrintWriter(bw);

pw.print(. . .);
pw.println(. . .);
pw.flush();
pw.close();

A File wrapped with a FileWriter
wrapped with a BufferedWriter

wrapped with a PrintWriter

BufferedWriter

FileWriter

File

PrintWriter

FIGURE 15.12 The PrintWriter class has print() and println() methods.

sim23356_ch15.indd 716sim23356_ch15.indd 716 12/15/08 7:11:24 PM12/15/08 7:11:24 PM

 Chapter 15 Stream I/O and Random Access Files 717

 The parameter OutputStream is an abstract class, so we instantiate a DataOutput-
Stream with a FileOutputStream , which is-an OutputStream (upcasting):

 FileOutputStream fout � new FileOutputStream(new File (String filename));
DataOutputStream out � new DataOutputStream(fout);

or

 FileOutputStream fout � new FileOutputStream(String filename);
DataOutputStream out � new DataOutputStream(fout);

 If the specifi ed output fi le does not exist, then one is created; otherwise the output fi le is

cleared of all data. To append data to an existing fi le, use:

 FileOutputStream fout � new FileOutputStream(new File (String filename), true)
DataOutputStream out � new DataOutputStream(fout);

or

 FileOutputStream fout � new FileOutputStream(String filename, true)
DataOutputStream out � new DataOutputStream(fout);

 See Figure 15.13 .

DataOutputStream

FileOutputStream

File

File file � new File("myfile.dat");
FileOutputStream fout � new FileOutputStream(file);
DataOutputStream out � new
DataOutputStream(fout);

or

FileOutputStrea m fout �
new FileOutputStream("myfile.dat");

DataOutputStream out � new DataOutputStream(fout);

DataOutputStream for writing to a file

A File wrapped with a
FileOutputStream is wrapped

with a DataOutputStream

FIGURE 15.13 A DataOutputStream object

 A few commonly used methods of the DataOutputStream class include:

• void writeByte(byte b) throws IOException;

• void writeShort(short s) throws IOException;

• void writeInt(int i) throws IOException;

• void writeLong(long l) throws IOException;

• void writeFloat(fl oat f) throws IOException;

• void writeDouble(double d) throws IOException;

• void writeChar(char c) throws IOException;

• void writeBoolean(boolean b) throws IOException;

• void writeBytes(String s) throws IOException,
writes a String as a sequence of bytes

sim23356_ch15.indd 717sim23356_ch15.indd 717 12/15/08 7:11:25 PM12/15/08 7:11:25 PM

718 Part 3 More Java Classes

• void writeChars(String s) throws IOException,
writes a String as a sequence characters (2 bytes)

• int size() throws IOException;
returns the number of bytes written to the DataOutputStream

• void fl ush() throws IOException;

 Example 15.5 uses the DataOutputStream class to create a binary fi le.

 A prime number is an integer greater than 1 that has no proper divisors. For example, 2,

3, 5, and 7 are prime numbers; 10 is not. Two primes that differ by two are called twin

primes. For example, (3, 5), (5, 7), and (11, 13) are each twin primes; (2, 3) is not a pair of

twin primes, nor is (19, 23). It has been conjectured, but never proven, that there is an infi -

nite number of twin primes. The last twin prime that was discovered has 58,711 digits.

 Problem Statement As a mathematical hobbyist hoping to uncover patterns among

twin primes and someday resolve the twin prime conjecture, you maintain a text fi le,

twins.txt , that contains an arbitrary number of eight-digit twin primes. In this fi le, each

twin pair (p , p � 2) is represented by p . For example, the twin pair (10001207,10001209)

is stored as 10001207. The fi rst 10 numbers in the fi le are:

10001207
10001399
10001441
10001531
10001567
10001777
10001819
10002017
10002059
10002197
10002257
10002437

Stored in an ASCII text fi le, each number requires eight bytes (64 bits), one byte for

each digit, but in a binary fi le each number can be stored using just four bytes (32 bits).

To save disk space for your massive music collection and increase effi ciency when per-

foming arithmetic, you decide to store this list of twin primes as a binary fi le.

 Write a class with a static utility method,

 public static void makeBinaryFile(String textFileName, String binaryFileName)

that reads the text fi le twins.txt and creates a space-saving binary fi le containing the same

numbers.

 Java Solution The TextToBinary class with static method makeBinary(…)

 1. import java.io.*;
2. import java.util.*;

3. public class TextToBinary
4. {
5. public static void makeBinaryFile(String textFile, String binaryFile)

throws IOException
6. {

 EXAMPLE 15.5

sim23356_ch15.indd 718sim23356_ch15.indd 718 12/15/08 7:11:25 PM12/15/08 7:11:25 PM

 Chapter 15 Stream I/O and Random Access Files 719

7. Scanner input � new Scanner(new File(textFile));
8. int number;
9. FileOutputStream fout � new FileOutputStream(binaryFile);

10. DataOutputStream out � new DataOutputStream(fout);

11. while (input.hasNext())
12. {
13. number � input.nextInt();
14. out.writeInt(number);
15. }
16. out.close();
17. }
18. }

 The TestTextToBinary class that tests makeBinaryFile(...)

 19. import java.util.*;
20. import java.io.*;

21. public class TestTextToBinary
22. {
23. public static void main(String[] args) throws IOException
24. {
25. Scanner input � new Scanner(System.in);
26. System.out.print("Text file name: ");
27. String textFile � input.next();
28. System.out.print("Binary file name: ");
29. String binaryFile � input.next();
30. TextToBinary.makeBinaryFile(textFile, binaryFile);
31. System.out.println("File " � binaryFile � " created");
32. }
33. }

 Output Using the fi le twins.txt as input:

 Text file name: twins.txt
Binary file name: twins.dat

File twins.dat created

The output of the application is a binary fi le, twins.dat . The fi le is not readable or print-

able using an ordinary text editor. Figure 15.14 shows a picture of the fi le as displayed

in Notepad:

FIGURE 15.14 An attempt to display twins.dat with a text editor

 Discussion
 Line 7: A Scanner object reads integers from the text fi le, which in this case

is twins.txt . The method nextInt() extracts characters from the text fi le and

automatically converts those characters to an integer.

 Line 9: A File object is wrapped with a FileOutputStream .

sim23356_ch15.indd 719sim23356_ch15.indd 719 12/15/08 7:11:26 PM12/15/08 7:11:26 PM

720 Part 3 More Java Classes

 Line 10: The FileOutputStream is wrapped with a DataOutputStream .

 Line 13: The next number is read from the text fi le, twins.txt .

 Line 14: The writeInt() method writes integer data to the DataOutputStream .

 Line 16: Close the DataOutputStream .

 15.9.2 Binary File Input via DataInputStream

The DataInputStream class provides methods for reading data from a binary fi le.

 The class constructor is

 DataInputStream(InputStream in);

Because a FileInputStream is-an InputStream , you can instantiate a DataInputStream as:

 File file � new File(String filename);
FileInputStream fin � new FileInputStream(file);
DataInputStream in � new DataInputstream(fin);

or

 FileInputStream fin � new FileInputStream(String filename);
DataInputStream in � new DataInputStream(fin);

 See Figure 15.15 .

DataInputStream

FileInputStream

File

File file � new File("myfile.dat");
FileInputStream fin � new FileInputStream(file);
DataInputStream in � new DataInputStream(fin);

or

FileInputStrea m fin �
new FileInputStream("myfile.dat");

DataInputStream in � new DataInputStream(fin);

DataInputStream for reading a binary file

A File wrapped with a
FileInputStream is wrapped with

a DataInputStream

FIGURE 15.15 A DataInputStream object

 The DataInputStream class provides the following methods:

• int readByte(byte[] b) ;
 reads bytes from the input stream into the array referenced by b and

 returns the number of bytes read or �1 to signify the end of fi le.

sim23356_ch15.indd 720sim23356_ch15.indd 720 12/15/08 7:11:27 PM12/15/08 7:11:27 PM

 Chapter 15 Stream I/O and Random Access Files 721

• int readByte();

• short readShort();

• int readInt();

• int readLong();

• fl oat readFloat();

• double readDouble();

• char readChar();

• boolean readBoolean();

 Each method throws an IOException if any I/O error occurs, and except for

readByte(byte[] b) , each method also throws an EOFException if a read is attempted

beyond the end of the fi le.

 Example 15.6 reads from a binary fi le and displays the contents on the console.

 EXAMPLE 15.6 Problem Statement The binary fi le twins.dat (see Example 15.5) contains a list of

eight-digit twin primes. Display the fi rst 10 twin pairs in the form (a, a � 2).

 Java Solution

 1. import java.io.*;
2. public class ReadTwinPrimes
3. {
4. public static void main(String[] args)throws IOException
5. {
6. int prime;
7. FileInputStream input � new FileInputStream("twins.dat");

8. DataInputStream in � new DataInputStream(input);

9. System.out.println("The first 10 twin prime pairs in twins.dat are:\n");
10. for (int i � 1; i �� 10; i��)
11. {
12. prime � in.readInt();
13. System.out.println(" (" � prime � "," � (prime � 2) � ")");
14. }
15. }
16. }

 Output The input to the application is stored in the fi le twins.dat . This is the binary fi le

“pictured” in Figure 15.14 . The output is:

 The first 10 twin prime pairs in twins.dat are:

(10001207,10001209)
(10001399,10001401)
(10001441,10001443)
(10001531,10001533)
(10001567,10001569)
(10001777,10001779)
(10001819,10001821)
(10002017,10002019)
(10002059,10002061)
(10002197,10002199)

sim23356_ch15.indd 721sim23356_ch15.indd 721 12/15/08 7:11:27 PM12/15/08 7:11:27 PM

722 Part 3 More Java Classes

 You may have noticed that the methods readInt(), readShort(), readDouble() , and so on of

DataInputStream do not return a value of −1 when a read operation is attempted beyond

the end of a fi le. Indeed, −1 might well be a valid value and, consequently, cannot signal

an illegal read operation. Instead, each of these methods throws an EOFException when a

read operation is attempted beyond the end of a fi le. The following example capitalizes on

this exception.

 Problem Statement Write a static utility method that reads a binary fi le of integers,

such as twins.dat , and creates a text fi le that contains the same numbers.

 Java Solution The number of integers in the binary fi le is arbitrary. The following

application uses an EOFException to signal the end of fi le.

 The BinaryToText class

 1. import java.io.*;
2. public class BinaryToText
3. {
4. public static void makeTextFile(String textFile, String binaryFile)

throws IOException
5. {
6. FileInputStream infile � null;
7. DataInputStream in � null;
8. FileOutputStream outfile � null;
9. PrintWriter out � null;
10. int count � 0;
11. try
12. {
13. infile � new FileInputStream(binaryFile);
14. in � new DataInputStream(infile);
15. outfile � new FileOutputStream(textFile);
16. out � new PrintWriter(outfile);

 EXAMPLE 15.7

 Discussion
 Lines 7–8: Instantiate a DataInputStream object.

 Lines 10–14: The code in this loop invokes the readInt() method via the

DataInputStream object. Each call to readInt() returns an integer from the fi le

twins.dat.

 Notice that the statement on line 13 performs addition. Had we used a text
fi le, a number such as 10002197 would be stored as a sequence of ASCII codes,

one byte for each digit:

00110001
49
‘1’

00110000
48
‘0’

00110000
48
‘0’

00110000
48
‘0’

00110010
50
‘2’

00110001
49
‘1’

00111001
57
‘9’

00110111
55
‘7’

Before effecting addition or any arithmetic operation with 10002197, the sequence

of ASCII codes would need to be converted to the 32-bit number

00000000100110001001111100010101,

the binary equivalent of 10002197.

 But in this application, 10002197 is stored in a binary fi le, no conversion is

necessary and, consequently, addition is performed more effi ciently.

sim23356_ch15.indd 722sim23356_ch15.indd 722 12/15/08 7:11:28 PM12/15/08 7:11:28 PM

 Chapter 15 Stream I/O and Random Access Files 723

 The DataInputStream and DataOutputStream classes facilitate input and output of primi-

tive types. And certainly, the data of any object can be saved as a collection of primitives.

Nonetheless, Java also provides effective and easy procedures for storing and retrieving an

object. This process is called object serialization.

17. while(true) // do until EOFException
18. {
19. int number � in.readInt();
20. count��;
21. out.println(number);
22. }
23. }
24. catch (FileNotFoundException e)
25. {
26. System.out.println(e.getMessage());
27. }
28. catch (EOFException e) // when end of file has been reached
29. {
30. System.out.println(count � " values read");
31. }
32. finally
33. {
34. if ((out !� null))
35. out.close();
36. }
37. }
38. }

 The TestBinaryToText class, a class that tests makeTextFile(…)

 39. import java.util.*;
40. import java.io.*;
41. public class TestBinaryToText
42. {
43. public static void main(String[] args) throws IOException
44. {
45. Scanner input � new Scanner(System.in);
46. System.out.print("Text file name: ");
47. String textFile � input.next();
48. System.out.print("Binary file name: ");
49. String binaryFile � input.next();
50. BinaryToText.makeTextFile(textFile, binaryFile);
51. System.out.println("File " � binaryFile � " created");
52. }
53. }

 Output
 Text fi le name: twins.txt

 Binary fi le name: twins.dat

 24 values read
 File twins.txt created

 Discussion Once all data has been read, one more call to readInt() (line 19) throws

an EOFException . Program control moves to the catch block (lines 28–31). The finally

block executes, and the file is closed before the application terminates.

sim23356_ch15.indd 723sim23356_ch15.indd 723 12/15/08 7:11:30 PM12/15/08 7:11:30 PM

724 Part 3 More Java Classes

 15.10 OBJECT SERIALIZATION

 Consider the following skeletal class that models a customer account for a video store:

 public class Customer
{
 private String lastName;
 private String firstName;
 private String[] checkedOutFilms; // up to five films may be checked out
 private String creditCard;
 // methods go here
}

Customer data can be stored in a fi le, fi eld by fi eld. However, saving the state of a large,

complex object with dozens of fi elds can be tedious, tricky, and error prone.

Object serialization converts an object to a stream of bytes so that the state of an

object can be saved in a fi le with a single statement, and later retrieved.

 In short, serialization encodes an object as a byte stream. Serialized objects can be stored

in a fi le and reconstructed later. Serialized objects can also be passed over a network. Note

that static fi elds are not serialized.

 Every object is not serializable.

An object is serializable only if it belongs to a class that implements the Serializable

interface.

 That’s not much of a requirement because the Serializable interface has no methods. There-

fore, a class is serializable if the class heading includes the phrase implements Serializable .

No other action is necessary. This simple declaration marks the class as serializable.

 The Byte Stream hierarchy provides the ObjectInputStream and ObjectOutputStream

classes for reading and writing serializable objects. See Figure 15.2 . Constructors for these

classes include:

 • ObjectInputStream(InputStream in) , and

• ObjectOutputStream(OutputStream out)

Because a FileInputStream is-an InputStream and a FileOutputStream is-an OutputStream ,

the constructors can be invoked as:

 FileInputStream fin � new FileInputStream(String filename);
ObjectInputStream in � new ObjectInputStream(fin);

and

 FileOutputStream fout � new FileOutputStream(String filename);
ObjectOutputStream out � new ObjectOutputStream(fout);

 ObjectInputStream and ObjectOutputStream provide numerous methods, but for our pur-

poses the two most useful methods are:

• void readObject(Object o) throws ClassNotFoundException , IOException , and

• void writeObject(Object o) throws IOException .

 For readObject(Object o) , a ClassNotFoundException is thrown if the class of the serialized

object cannot be determined. See Figures 15.16 and 15.17 .

sim23356_ch15.indd 724sim23356_ch15.indd 724 12/15/08 7:11:31 PM12/15/08 7:11:31 PM

 Chapter 15 Stream I/O and Random Access Files 725

ObjectInputStream

FileInputStream

File

A File wrapped with FileInputStream
wrapped with an ObjectInputStream

Constructor:
 ObjectInputStream(InputStream in)

FileInputStre am fin �
new FileInputSteam(String filename);

ObjectInputStream in � new ObjectInputStream(fin);

in.readObject(Object o);

ObjectInputStream for reading serialized objects

FIGURE 15.16 An ObjectInputStream object

ObjectOutputStream

FileOutputStream

File

A file wrapped with in a
 FileOutputStream wrapped

with an ObjectOutputStream

Constructor:
 ObjectOutputStream(OutputStream in)

FileOutputStr eam fout �
new FileOutputSteam(String filename);

ObjectOutputStream out � new ObjectOutputStream(fout);

out.writeObject(Object o);

ObjectOutputStream for writing serialized objects

FIGURE 15.17 An ObjectOutputStream object

 EXAMPLE 15.8 The following serializable class VideoCustomer models a customer of a video rental

store. The class has several data fi elds, such as a customer’s name and credit card number

along with methods to check out a fi lm and return a fi lm. There is nothing unusual about

this class except the phrase implements Serializable in the class heading. This phrase

indicates that objects of this class can be serialized.

 1. import java.io.*;

2. public class VideoCustomer implements Serializable
3. {
4. private String lastName;
5. private String firstName;
6. private String[] checkedOutFilms;
7. private int numFilms;
8. private String creditCard;

sim23356_ch15.indd 725sim23356_ch15.indd 725 12/15/08 7:11:31 PM12/15/08 7:11:31 PM

726 Part 3 More Java Classes

9. VideoCustomer() // default constructor
10. {
11. lastName � "";
12. firstName � "";
13. numFilms � 0;
14. checkedOutFilms � new String[5];
15. creditCard � "";
16. }

17. VideoCustomer(String last, String first, String credit) // three argument constructor
18. {
19. lastName � last;
20. firstName � first;
21. numFilms � 0;
22. checkedOutFilms � new String[5];
23. creditCard � credit;
24. }

25. public void checkOut(String film) // supply the title of a film
26. {
27. if (numFilms �� 5) // only 5 films may be checked out
28. {
29. System.out.println("Already have five films");
30. return;
31. }
32. for (int i � 0; i < 5; i��) // add film to the array of checked out films
33. {
34. if (checkedOutFilms[i] �� null)
35. {
36. checkedOutFilms[i] � film;
37. numFilms��;
38. return;
39. }
40. }
41. }

42. public void returnFilm(String film)
43. {
44. for (int i � 0; i < 5; i��) // find film and take it off the list
45. if (checkedOutFilms[i].equals(film))
46. {
47. checkedOutFilms[i] � null;
48. numFilms��;
49. return;
50. }
51. return; // do nothing if someone tries to return a film that he/she did not check out.
52. }

53. public String toString()
54. // returns the customer's name and the titles of all checked out films
55. {
56. String allFilms � "";
57. for (int i � 0; i < 5; i��)
58. if (checkedOutFilms[i] !� null)
59. allFilms �� checkedOutFilms[i] � " \n";
60. return (lastName � ", " � firstName � " \n\n" � allFilms);
61. }
62. }

 Problem Statement Write an application that demonstrates the object serialization pro-

cedure by storing two VideoCustomer objects in a file and subsequently retrieving the

objects.

sim23356_ch15.indd 726sim23356_ch15.indd 726 12/15/08 7:11:32 PM12/15/08 7:11:32 PM

 Chapter 15 Stream I/O and Random Access Files 727

 Java Solution The following test program

 • instantiates two VideoCustomer objects using the three-argument constructor,

 • allows each customer to check out and/or return a fi lm or two,

 • uses the writeObject() method to save the VideoCustomer objects in a fi le, moviestore.dat ,

 • retrieves the two saved VideoCustomer objects using the readObject() method, and

 • invokes the toString() method for each VideoCustomer object.

 1. import java.io.*;
2. public class TestVideoCustomer
3. {
4. public static void main(String[] args) throws IOException, ClassNotFoundException
5. {
6. FileOutputStream fout � new FileOutputStream("moviestore.dat");
7. ObjectOutputStream out � new ObjectOutputStream(fout);

8. VideoCustomer customer1 �
9. new VideoCustomer("Filmbuff", "Frannie", "356789012343225");

10. VideoCustomer customer2 �
11. new VideoCustomer("Celuloid", "Charlie", "545678909843555");

12. customer1.checkOut("Psycho");
13. customer2.checkOut("The Matrix");
14. customer1.checkOut("The Birds");
15. customer2.checkOut("The Sixth Sense");
16. customer1.returnFilm("Psycho");

17. out.writeObject(customer1);
18. out.writeObject(customer2);
19. out.close();

20. FileInputStream fin � new FileInputStream("moviestore.dat");
21. ObjectInputStream in � new ObjectInputStream(fin);

22. VideoCustomer cust;
23. int numObjects � 0;
24. try
25. {
26. while(true)
27. {
28. cust � (VideoCustomer)(in.readObject());
29. System.out.println(cust);
30. System.out.println("--------------------------");
31. numObjects��;
32. }
33. }
34. catch (EOFException e)
35. {
36. System.out.println(numObjects � " objects retrieved");
37. }
38. }
39. }

 Output When executed, the application produces the following output:

 Filmbuff, Frannie

The Birds

Celuloid, Charlie

sim23356_ch15.indd 727sim23356_ch15.indd 727 12/15/08 7:11:32 PM12/15/08 7:11:32 PM

728 Part 3 More Java Classes

The Matrix
The Sixth Sense

2 objects retrieved

 Discussion
Line 4: The method readObject() (line 28) can throw a ClassNotFoundException .

This exception is checked and must be caught or declared in a throws clause. The

same is true with the IOException .

Lines 6–7: Instantiate an ObjectOutputStream , out , by wrapping a fi le fi rst with a

FileOutputStream and then with an ObjectOutputStream .

Lines 8–16: Instantiate two VideoCustomer objects. Each VideoCustomer object

checks out and/or returns some fi lms.

 Lines 17−18: Write each VideoCustomer object to the output stream. Thus, the

objects are stored in the fi le.

Line 19: Close the output stream.

 Lines 20–21: Connect the fi le, movies.dat , to an ObjectInputStream , in .

 Lines 24–36: The while loop executes until a readObject() operation is

attempted past the end of the fi le (line 28). When this occurs, an EOFException

is thrown and caught by the corresponding catch block. The readObject()
method returns an object of the class Object . Thus the cast on line 28 is

necessary.

If you do not want a particular fi eld of a class included in a serialized object, use the

keyword transient.

 For example, if, for security reasons, you do not want to serialize the creditCard fi eld of a

VideoCustomer object, then declare the fi eld as:

transient String creditCard;

In this case, creditCard is set to null by serialization and is not stored in the fi le. Also, if there is no

reason to save a particular fi eld, that fi eld can be marked transient and will not be serialized.

 To this point, all fi le I/O has been sequential . To access a particular item in a fi le, an

application starts at the beginning of the fi le and reads through the fi le in order, item by

item, top to bottom, until the required item is located. However, there are also fi les that

provide direct access to any byte. Such fi les are called random access fi les.

 15.11 RANDOM ACCESS FILES

A random access fi le is one that provides direct access to any byte in the fi le.

 You might think of a random access fi le as a sequence of bytes indexed from 0. Access

to any byte of a random access fi le is similar to that of an array: if x is an array, an

sim23356_ch15.indd 728sim23356_ch15.indd 728 12/15/08 7:11:33 PM12/15/08 7:11:33 PM

 Chapter 15 Stream I/O and Random Access Files 729

 application can access x[100] without fi rst reading x[0] through x[99] . Access is immediate

and direct.

 Each byte of a random access fi le has a relative address . The relative address of the

fi rst byte of a fi le is 0, the relative address of the second byte is 1, and so on.

 The fi le pointer holds the relative address of the next accessible byte in a random

access fi le.

 An application accesses a particular byte in a random access fi le via the fi le pointer. See

 Figure 15.18 .

00000000

00000000

0file pointer

1

2

3

4

00000100

11010010

FIGURE 15.18 A random access file. The file pointer references the first byte of the file.

 We use Java’s RandomAccessFile class to perform I/O on random access fi les. If the fi le

pointer is positioned at byte 40, then to read byte 100, you simply set the fi le pointer to 100.

There is no need to move through the 60 intermediate locations, one by one.

RandomAccessFile extends Object and implements the interfaces DataInput and

DataOutput. RandomAccessFile is not a stream class.

 The constructors of RandomAccessFile include:

 • RandomAccessFile(File fi le, String accessCode) , and

 • RandomAccessFile(String fi lename, String accessCode).

where accessCode is "r" for read only, or "rw" for read/write.

 Each constructor throws a FileNotFoundException, as well as an IllegalArgument-
Exception, if accessCode is in error, and a SecurityException. The latter two exceptions are

unchecked.

 A random access fi le may be opened for both reading and writing. See Figure 15.19 .

 Because RandomAccessFile implements DataInput and DataOutput, RandomAccess-
File implements the methods declared in these interfaces:

 • int readInt();

• long readLong();

• double readDouble();

• char readChar();

sim23356_ch15.indd 729sim23356_ch15.indd 729 12/15/08 7:11:34 PM12/15/08 7:11:34 PM

730 Part 3 More Java Classes

• void writeInt(int x);

• void writeLong(long x);

• void writeDouble(double x);

• void writeChar(char x);

• void write(int x);
 writes byte x to fi le.

• void writeBytes(String s);
 writes one byte per character.

• void writeChars(String s);
 writes two bytes per character.

 Each method throws an IOException if an I/O error occurs. Additionally, each readX()
method throws an EOFException if a read is attempted past the end of the fi le.

 Other methods include:

 • int read();
 reads a single byte from a fi le.

• long length();
 returns the length (in bytes) of a random access fi le.

• void setLength(long n);
 sets the length of a fi le to n bytes.

• long getFilePointer();
 returns the offset of the fi le pointer, in bytes, from the beginning of the fi le. That is,

 getFilePointer() returns the current position of the fi le pointer.

• void seek(long n);
 sets the fi le pointer to the byte that is n bytes from the beginning of the fi le. If n

exceeds the length of the fi le, seek() sets the fi le pointer to the last byte.

• void close();
 closes the fi le.

 Each of the preceding methods throws an IOException if an I/O error occurs.

 15.11.1 Fixed-Length Records
 Although a fi le is a sequence of bytes, in practice, data are usually stored in logical units

or chunks much larger than a single byte. Such a unit is called a record . For example, a

RandomAccessFile

File

A File wrapped with a
RandomAccessFile

File file � new File (String filename);
Ra ndomAccessFile raf �

new RandomAccessFile(file, "rw");

or

Ra ndomAccessFile raf �
new RandomAccessFile(String filename, "rw");

Constructors for a RandomAccessFile

FIGURE 15.19 A random access file opened for reading and writing

sim23356_ch15.indd 730sim23356_ch15.indd 730 12/15/08 7:11:34 PM12/15/08 7:11:34 PM

 Chapter 15 Stream I/O and Random Access Files 731

“customer record” might consist of three fi elds:

 a name (30 bytes)

 an address (50 bytes)

 an ID (20 bytes).

 Figure 15.20 shows a random access fi le that holds customer records.

0

Relative Address

30

80

100

130

180

200

230

280

300

330

380

name (bytes 0–29)

address (bytes 30–79)
Record 0
(100 bytes)

Record 1
(100 bytes)

Record 2
(100 bytes)

Record 3
(100 bytes)

ID (bytes 80–99)

name

address

ID

name

address

ID

name

address

ID

FIGURE 15.20 Each record consists of 100 bytes. Fields are a fixed length .

 The records of Figure 15.20 are fi xed length , that is, the length of each fi eld does not

vary from record to record: a customer name is always 30 bytes, an address 50 bytes, and

an ID 20 bytes. Every record occupies 100 bytes. Fixed-length records provide easy access

to any record. For example, the second record of the fi le of Figure 15.20 begins at byte

200, the third at byte 300, the 12 th record can be found as byte 1200 and the address fi eld

in the 34 th record is at byte (3400 � 30). Fixed-length records are not mandatory, but they

certainly simplify fi le processing.

 In Example 15.9 we create a random access fi le that contains a number of fi xed-length

records.

 EXAMPLE 15.9 Each year, the Offi ce of Admissions at WeTeach U. creates a random access fi le contain-

ing applicant information. The data for each applicant consists of:

 • name (35 characters),

 • math SAT score (int),

 • verbal SAT score (int),

 • writing SAT score (int),

 • high school grade point average (double), and

 • decision (char: 'A' � accepted; 'R' � rejected; 'W' � waiting list; 'N' � no decision yet).

 Problem Statement Write a static utility method that creates a random access file

from applicant data. Data are entered interactively.

sim23356_ch15.indd 731sim23356_ch15.indd 731 12/15/08 7:11:35 PM12/15/08 7:11:35 PM

732 Part 3 More Java Classes

 Java Solution The name fi eld of each record consists of exactly 35 characters. If a

student’s name contains less than 35 characters, we pad the name with spaces. To keep

the example simple, the application does not check for invalid data. Data is entered

interactively.

 1. import java.io.*;
2. import java.util.*;

3. public class CreateRandomAccessFile
4. {
5. public static void makeRandomAccessFile(String filename) throws IOException
6. {
7. String lName � "", fName � "", name � "", temp � "";
8. final int NAME_SIZE � 35;
9. int score;
10. double gpa;
11. int decision; // ASCII code number

12. // instantiate a random access file object; open the file for reading and writing

13. RandomAccessFile out � new RandomAccessFile(filename,"rw");
14. out.setLength(0); // make file empty

15. Scanner input � new Scanner(System.in);
16. System.out.print("Last Name: ");
17. lName � input.nextLine();

18. while (!lName.equals(""))
19. {
20. System.out.print("First Name: ");
21. fName � input.nextLine();
22. name � lName � " " � fName;

23. int size � NAME_SIZE � name.length(); // how many blanks do we need?
24. for (int j � 1; j �� size; j��) // pad the name with blanks
25. name � name � " ";
26. out.writeChars(name);

27. System.out.print("Math: "); // Math SAT
28. score � input.nextInt();
29. out.writeInt(score);

30. System.out.print("Verbal: "); // Verbal SAT
31. score � input.nextInt();
32. out.writeInt(score);

33. System.out.print("Writing: "); // Writing SAT
34. score � input.nextInt();
35. out.writeInt(score);

36. System.out.print("Grade Point Average: "); // GPA
37. gpa � input.nextDouble();
38. out.writeDouble(gpa);
39. temp � input.nextLine();

40. System.out.print("Decision : "); // Decision
41. decision � System.in.read();
42. out.write(decision);
43. // move to the next line of input so that the next readLine() is not the null string

44. temp � input.nextLine();

sim23356_ch15.indd 732sim23356_ch15.indd 732 12/15/08 7:11:36 PM12/15/08 7:11:36 PM

 Chapter 15 Stream I/O and Random Access Files 733

45. System.out.print("Last Name: ");
46. lName � input.nextLine();
47. }
48. out.close();
49. }
50. }

 A small test class follows.

 51. import java.util.*;
52. import java.io.*;
53. public class TestCreateRandomAccessFile
54. {
55. public static void main(String[] args) throws IOException
56. {
57. Scanner input � new Scanner(System.in);
58. System.out.print("File name: ");
59. String filename � input.next();
60. CreateRandomAccessFile.makeRandomAccessFile(filename);
61. }
62. }

 Output The following interactive session creates a random access fi le, applicants.dat ,
with just three records:

 File name: applicants.dat

Last Name: Kent
First Name: Clark
Math: 600
Verbal: 540
Writing: 590

Grade Point Average: 3.3
Decision : A
Last Name: Parker
First Name: Peter
Math: 500
Verbal: 450
Writing: 480
Grade Point Average: 2.4

Decision : R
Last Name: Wayne
First Name: Bruce
Math: 500
Verbal: 510
Writing: 570
Grade Point Average: 3.0

Decision : W
Last Name:

 Discussion The application prompts the user for each piece of applicant information

until the user indicates the end of data by pressing the Enter key when prompted for

a last name. The code is easy to follow and uses a number of methods of the Random-
AccessFile class.

 Each student record contains 91 bytes:

 • name—70 bytes, two bytes per character

 • math score—4 bytes per integer

sim23356_ch15.indd 733sim23356_ch15.indd 733 12/15/08 7:11:36 PM12/15/08 7:11:36 PM

734 Part 3 More Java Classes

 • verbal score—4 bytes per integer

 • writing score—4 bytes per integer

 • gpa—8 bytes per double

 • decision—1 byte for 'A', 'R', 'W', or 'N'

 The decision is stored as a single byte (ASCII code) because

 write(decision) (line 42)

writes one byte to the fi le. Alternatively, if line 42 were

 writeChar(decision),

a two-byte character would have been written to the fi le and each record would have

length 92 bytes.

 Note that the CreateRandomAccessFile class does not validate user-supplied

data, despite the fact that interactive input is very error prone and data validation is

an important part of a “real world” interactive application. Our purpose here is a suc-

cinct demonstration of some of the capabilities of RandomAccessFile , so we opt for

simplicity.

 The next application displays and alters data in the random access fi le created in Exam-

ple 15.9.

 Problem Statement Write an application that accepts the name of an applicant and

displays the applicant’s admission data. The application should also allow a user to

modify the decision status of the applicant. For example, the status of an applicant can

change from 'W' (waiting list) to 'A' (accepted).

 Java Solution The Applicants class has two methods that manipulate applicant data:

 • private long findApplicant(String lastName, String firstName, RandomAccessFile
file); and

 • public void display(String lastName, String fi rstName, RandomAccessFile fi le);

 The fi ndApplicants(...) method is a helper method and consequently private . Given

an applicant’s name, the method locates that applicant’s record. If found, the method

returns the record number as a long , otherwise the method returns −1. To keep the exam-

ple simple, we use a linear search.

 The display(...) method invokes fi ndApplicants(...) to obtain the record number of a

particular applicant, and then displays the applicant’s data. The user has the opportunity

to change the decision status of the applicant.

 The details of these methods follow in the discussion section.

 1. import java.io.*;
2. import java.util.*;

3. public class Applicants
4. {
5. final int RECORD_LENGTH � 91; // bytes
6. final int NAME_SIZE � 35; // including trailing blanks

 EXAMPLE 15.10

sim23356_ch15.indd 734sim23356_ch15.indd 734 12/15/08 7:11:36 PM12/15/08 7:11:36 PM

 Chapter 15 Stream I/O and Random Access Files 735

7. private long findApplicant(String lastName, String firstName, RandomAccessFile file)
 throws IOException

8. { // given a name, returns the record number or �1
9. String name � "";
10. String student � lastName � " " � firstName;
11. int size � NAME_SIZE � student.length(); // how many blanks do we need?
12. for (int j � 1; j �� size; j��) // pad the name with spaces
13. student � student � " ";
14. long numRecords � file.length()/RECORD_LENGTH; // how many records in the file?
15. for (long record � 0; record � numRecords; record��)
16. {
17. file. seek (RECORD_LENGTH * record); // find the next record
18. name � "";
19. for (int i � 1; i �� NAME_SIZE; i��)
20. {
21. char ch � file.readChar();
22. name � name � ch;
23. }
24. if (student.equals(name))
25. return record; // success, name found
26. }
27. return �1; // failure, name not found
28. }

29. public void display(String lastName, String firstName, Ran domAccessFile file)
throws IOException

30. {
31. long r � findApplicant(lastName, firstName, file); // r is the record number
32. if (r �� �1)
33. {
34. System.out.println("record for " � lastName � "," � firstName � "not found");
35. return;
36. }

37. file.seek(r * RECORD_LENGTH); // place file pointer at top of a record
38. String name � "";
39. char ch;
40. for (int i � 1; i �� NAME_SIZE; i��) // get the name
41. {
42. ch � file.readChar();
43. name � name � ch;
44. }
45. int math � file.readInt();
46. int verbal � file.readInt();
47. int writing � file.readInt();
48. double gpa � file.readDouble();
49. int decision � file.read();
50. System.out.println("\n" � name);
51. System.out.println(" Math: " � math);
52. System.out.println(" Verbal: " � verbal);
53. System.out.println(" Writing: " � writing);
54. System.out.println(" GPA: " � gpa);
55. System.out.println(" Decision : " � ((char)decision));
56. System.out.println("To change the decision status enter new decision (A,R,W,N)");
57. System.out.println("otherwise press Enter");
58. decision � System.in.read();
59. if ((char)decision �� 'A' || (char)decision �� 'R' ||
60. (char)decision �� 'W' || (char)decision �� 'N')
61. {

sim23356_ch15.indd 735sim23356_ch15.indd 735 12/15/08 7:11:38 PM12/15/08 7:11:38 PM

736 Part 3 More Java Classes

62. file.seek(r * RECORD_LENGTH � (RECORD_LENGTH � 1)); // the last byte of record r
63. file.write(decision);
64. System.out.println ("Decision changed");
65. }
66. else
67. System.out.println("No change in status");
68. }
69. public static void main(String[] args) throws IOException
70. {
71. Scanner input � new Scanner(System.in);
72. RandomAccessFile file � new RandomAccessFile("Applicants.dat", "rw");
73. System.out.print("Last Name: ");
74. String lName � input.next();
75. System.out.print("First Name: ");
76. String fName � input.next();
77. Applicants aps � new Applicants();
78. aps.display(lName, fName, file);
79. file.close();
80. }
81. }

 Output
 Last Name: Wayne
First Name: Bruce

Wayne Bruce
 Math: 500
 Verbal: 510
 Writing: 570
 GPA: 3.0
 Decision : W
To change the decision status enter new decision (A, R, W, N)
otherwise press Enter
 A
Decision changed

 Discussion
 Line 5: Each applicant record consists of 91 bytes:

name (35 Unicode) 70 bytes

math (1 integer) 4 bytes

verbal (1 integer) 4 bytes

writing (1 integer) 4 bytes

gpa (1 double) 8 bytes

decision (1 ASCII) 1 byte

 Line 6: An applicant’s name has exactly 35 characters, including trailing blanks.

 Lines 7–28: fi ndApplicant(String lastName, String fi rstName, RandomAccessFile fi le)

Lines 12–13: Append spaces to name so that name contains 35 characters.

 Line 14: Calculate the number of records in the fi le. This is straightforward

because every record contains the same number of bytes (91).

 Lines 13–26: Search the fi le for the required name.

 For each applicant record:

 • position the fi le pointer at the fi rst byte of the record (line 17). Notice that for each

record, the statement

sim23356_ch15.indd 736sim23356_ch15.indd 736 12/15/08 7:11:38 PM12/15/08 7:11:38 PM

 Chapter 15 Stream I/O and Random Access Files 737

 file.seek(RECORD_LENGTH * record)

 moves the fi le pointer to the beginning of that record.

 • read the next NAME_SIZE (35) bytes into name .

 • if name matches the requested name then return the record number.

 Line 27: Return �1 if the search is unsuccessful.

 Lines 29–68: display(String lastName, String fi rstName, RandomAccessFile fi le)

 Line 31: Invoke the helper method , fi ndApplicant(…) that returns the

record number, r , of the requested applicant, or �1 if the record is not

found.

 Lines 32–35: If an applicant’s record is not found, print a message and

return.

 Line 37: Position the fi le pointer at the fi rst byte of record r .

 Lines 38–55: Use the methods of RandomAccessFile to read the data for

record r . Display the data on the screen.

 Line 58: Accept a new decision value from the user. This is an ASCII code.

 Lines 59–65: The last byte of each record in the fi le stores the character

representing the decision about a student. If variable decision is a valid

decision ('A', 'R', 'W', or 'N'), reposition the fi le pointer to the last byte of

record r and overwrite this byte with the new decision value.

 Lines 69–80: main(...)

 Line 72: Instantiate a new RandomAccessFile for both reading and writing.

 Lines 73–78: Query the user for the name of an applicant.

 Instantiate an Applicants object, aps , which invokes the display(...) method.

 Line 79: Close the stream.

 15.12 IN CONCLUSION

 The Byte Stream, Character Stream, and Random Access classes are not simple, and our

coverage provides but an introduction. Even a cursory glance at Sun’s documentation

should convince you that much more lurks beneath the surface of this chapter. The good

news, however, is that the material in this chapter is suffi cient for most applications. And,

with a bit of practice, using the Stream and Random Access classes will become as natural

as programming with loops.

 Just the Facts

• A stream is an abstraction of the one-way fl ow of data. Java I/O is built around

streams.

• Java provides two categories of stream classes, the Byte Stream classes and the

Character Stream classes, each of which is composed of a pair of hierarchies, one for

input and one for output.

sim23356_ch15.indd 737sim23356_ch15.indd 737 12/15/08 7:11:39 PM12/15/08 7:11:39 PM

738 Part 3 More Java Classes

• The structure of the hierarchies of the Byte Stream and Character Stream classes is

similar.

• The root classes of the two hierarchies of the Byte Stream classes are InputStream

and OutputStream , and for the Character Stream classes, Reader and Writer . These

root classes are abstract, and they declare a variety of methods including read() and

 print() methods.

• The Character Stream classes, although parallel in structure to the Byte Stream

classes, are designed to read and write 2-byte Unicode characters rather than 1-byte

ASCII characters.

• The Byte Stream classes can be used independently for byte I/O, but they are more

typically used to support the Character Stream classes both for console I/O and fi le

I/O. Indeed, for console I/O, the Character Stream classes use the Byte Stream

objects System.in and System.out to perform the physical I/O.

• System.in is an instance of BufferedInputStream , which extends InputStream , and

 System.out is an instance of PrintStream , which extends OutputStream . These

classes belong to the Byte Stream hierarchies. All console I/O is accomplished using

 System.in and System.out .

• When used with Character Stream classes, System.in , a member of the Byte Stream

hierarchy, needs to be double-wrapped: fi rst by an InputStreamReader object and

then by a BufferedReader object. InputStreamReader , which extends Reader , serves

as a bridge between the BufferedReader object and System.in .

• Wrapping an object means that the functionality of the wrapped object is accessed

via the wrapper.

• A buffer is memory used to temporarily store output or input. Using a buffer increases

the effi ciency and speed of I/O. With a buffer, I/O is done mostly to memory and the

whole buffer is periodically written to its destination fi le or read from its source fi le.

• A fi le is a sequence of bytes. File access time is slow in comparison to data transfer

time. Hence, it is best to use buffers to read/write a block of data from/to a fi le rather

than reading and writing one byte at a time.

• Both the Byte Stream and Character Stream classes provide subclasses with the capa-

bility of buffered I/O. The relevant classes are BufferedReader and BufferedWriter for

the Character Stream classes, and BufferedInputStream and BufferedOutputStream

for the Byte Stream classes.

• Two kinds of fi les are text fi les and binary fi les. A text fi le is a special kind of binary

fi le that can be decoded a byte (or two bytes) at a time and displayed as a sequence of

characters.

• Each byte of an ASCII text fi le represents one of 128 characters. Each byte consists

of a leading zero followed by a 7-bit ASCII code. A UTF-16 (Unicode) text fi le

encodes each character with two bytes, allowing for many more kinds of characters.

Each byte (8 bits) in a binary fi le can be any one of 256 (2 8) binary patterns and does

not necessarily correspond to a displayable character.

• Effi cient and convenient output to text fi les using the Character Stream classes can

be complicated. FileWriter objects are simple but slow. Wrapping a File object with

a FileWriter object, and then with a BufferedWriter object, ensures effi ciency. A fi nal

wrapping with a PrintWriter object ensures the convenience of being able to use

standard print() and println() methods.

• I/O with binary fi les is accomplished primarily with the Byte Stream classes, because

binary fi les are not built from characters.

sim23356_ch15.indd 738sim23356_ch15.indd 738 12/15/08 7:11:40 PM12/15/08 7:11:40 PM

 Chapter 15 Stream I/O and Random Access Files 739

• The DataInputStream and DataOutputStream classes provide many methods for

writing and reading primitive data (e.g., integers, fl oat, char, etc.) to and from binary

fi les. Objects of these classes must be wrapped around another Byte Stream object

such as a FileInputStream or FileOutputStream object.

• The DataInputStream and DataOutputStream classes are fi ne for primitive data, but to

read and write objects , you should use the ObjectInputStream and ObjectOutputStream

classes, which provide readObject() and writeObject() methods. These methods can

read and write an object only if that object is serializable .

• Serialization converts an object to a stream of bytes. An object is serializable if its

class implements the Serializable interface. If you do not want a particular fi eld to be

included in the serialization of an object, then declare the fi eld as transient.

• Object I/O with binary fi les is done by wrapping a File with a FileInputStream or FileOut-
putStream object and then with an ObjectInputStream or ObjectOutputStream object.

Only those objects that implement Serializable can be read or written to binary fi les.

• A random access fi le provides direct access to any particular byte in the fi le. Access

to a byte is via a fi le pointer . This is in contrast to sequential fi les, which must be

read, in order, from beginning to end.

• The RandomAccessFile class implements the DataInput and DataOutput interfaces

and by contract, provides methods to perform I/O with random access fi les.

 RandomAccessFile is not a stream class.

• The following seven templates can be used to perform most standard I/O tasks. Other

options are available, but these should suffi ce for most common purposes.

1. Read from the console:
 InputStreamReader link � new InputStreamReader(System.in);
BufferedReader br � new BufferedReader(link);

 or

 BufferedReader br � new BufferedReader(new InputStreamReader(System.in));

int ch � br.read();
String s � br.readLine();

2. Write to the console:
 System.out.println(String s);

3. Read from a text fi le:
 File file � new File ("myfile.txt");
FileReader fr � new FileReader(file);
BufferedReader br � new BufferedReader(fr);

 or

 BufferedReader br � new BufferedReader(new FileReader("myfile.txt"));

int ch � br.read();
String s � br.readLine();

4. Write to a text fi le:
 File file � new File ("myfile.txt");
FileWriter fw � new FileWriter(file);
BufferedWriter bw � new BufferedWriter(fw);
PrintWriter pw � new PrintWriter (bw);

sim23356_ch15.indd 739sim23356_ch15.indd 739 12/15/08 7:11:40 PM12/15/08 7:11:40 PM

740 Part 3 More Java Classes

 or

 PrintWriter pw � new PrintWriter (new BufferedWriter(new FileWriter("myfile.txt")));

pw.print(String s);
pw.println(String s);

5. Read from a binary fi le:
 File file � new File ("myfile.dat");
FileInputStream fin � new FileInputStream(file);
DataInputStream in � new DataInputStream(fin);

 or

 DataInputStream in � new DataInputStream(new FileInputStream("myfile.dat"));

int readInt();
char read Char();
double readDouble();

6. Write to a binary fi le:
 File file � new File ("myfile.dat");
FileOutputStream fout � new FileOutputStream(fout);
DataOutputStream out � new DataOutputStream(fout);

 or

 DataOutputStream out � new DataOutputStream(new
FileOutputStream("myfile.dat"));
out.writeInt(int i);
out.WriteDouble(double d);
out.WriteChar(char ch);
out.writeBytes(String s);

7. Create a random access fi le:
 File file � new File (String filename);
RandomAccessFile raf � new RandomAccessFile(file, “rw”);

 Bug Extermination

• It is important to check the documentation for any stream class method that you

use, especially a constructor, so that you are aware of the checked exceptions that a

constructor can throw. Failing to handle a checked exception or to declare a checked

exception in a throws clause generates a compiler error.

• When using the stream classes, don’t forget the statement import java.io.* ;

• Reading from a fi le one byte at a time means accessing the fi le 1000 times to read

1000 bytes. This is much slower than accessing the fi le 10 times, reading 100 bytes

each time. A buffer allows your program to access a fi le fewer times. Use the various

Buffered Stream classes to accomplish effi cient fi le I/O.

• To read or write binary data from/to sound fi les or video fi les, use the FileInputStream

and FileOutputStream classes. However, to read/write text fi les, use the FileReader
and FileWriter classes, typically wrapped with buffered classes.

• FileOutputStream and FileWriter classes normally erase existing fi les when creating

new fi les, unless you add a boolean append parameter to the constructor with append

set to true .

sim23356_ch15.indd 740sim23356_ch15.indd 740 12/15/08 7:11:40 PM12/15/08 7:11:40 PM

 Chapter 15 Stream I/O and Random Access Files 741

• Before you close a fi le with f.close() , check that f is not a null reference: if (f !� null)
{f.close};

• Data Stream, Object Stream, and Buffered Stream objects must always be wrapped

around other Byte Stream objects, and not directly wrapped around a fi le.

• Don’t forget to implement Serializable if you expect to write the objects to a binary fi le.

• When using BufferedWriter (Character Stream) or BufferedOutputStream (Byte

Stream), make sure that you close the fi le, otherwise you might lose data remaining

in the buffer. The close() method automatically fl ushes any buffer.

• The DataInputStream class methods do not return −1 when attempting to read

past the end of a fi le. To terminate an input loop, the programmer should check

whether an EOFException is thrown. The same technique should be used with the

 ObjectInputStream class.

• When using the ObjectInputStream class, make sure to downcast the input object to

the appropriate class type.

sim23356_ch15.indd 741sim23356_ch15.indd 741 12/15/08 7:11:41 PM12/15/08 7:11:41 PM

742 Part 3 More Java Classes

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

3

6

9

1

12

11

15

16

18 19

17

14

7

5

22

13

21

10

2

8

24

25

23

20

4

Across
 4 To use a BufferedReader object, wrap a File with

a and then with BufferedReader.
 6 10 is the character code for a (2 words).

 7 Console input is done by System .

 9 Code that uses eight bits for each character

 10 Root class of Character Stream hierarchy

 12 Files that must be read in order

 13 A close operation will also perform a .

 15 Files that cannot be read with an editor

 16 Access to data in a random access fi le is similar to

access to data in a(n) .

 17 Root class of Byte Stream hierarchy

 18 An application accesses a particular byte in a

random access fi le via the fi le .

 22 Flow of data

 23 Method that sets fi le pointer

 24 A call to read() via a Character Stream object

returns a character code.

 25 Not serializable

Down
 1 Method of BufferedReader that does not have a

counterpart in BufferedInputStream
 2 Memory used to temporarily store input or output

data.

 3 Character Stream class for output

 5 An object of the class reads bytes and

converts those bytes to characters.

 8 Class for reading binary fi les

 11 Converts an object to a stream of bytes

 14 The Stream classes allow you to write

programs that do not depend on any particular

character code.

 15 It is possible to directly access any particular

 of a random access fi le.

 19 String that denotes a random access fi le is open

for both reading and writing

 20 Files that can be read with an editor

 21 Stream classes are in the java. package.

sim23356_ch15.indd 742sim23356_ch15.indd 742 12/15/08 7:11:41 PM12/15/08 7:11:41 PM

 Chapter 15 Stream I/O and Random Access Files 743

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. All fi les are random access fi les.

b. A text fi le is composed of binary digits.

c. A text fi le is easily displayable and easily read.

d. A binary fi le is easily displayable and easily read.

e. Streams are objects with no methods.

f. I/O stands for Iodine.

g. System.in is a member of the InputStream class.

h. System.out is a descendant of the OutputStream class.

i. The Byte Stream classes were designed before the Character Stream classes.

j. Reader and Writer are classes in the Byte Stream hierarchies.

k. The Byte Stream classes and Character Stream classes are always used independ-

ently of each other.

l. A buffer is used to increase the speed and effi ciency of I/O.

m. A random access fi le holds records each of which necessarily contains the same

number of bytes.

 2. Playing Compiler
 Explain the error(s) in the segments that follow. If a segment has no errors then say

so. Assume all fi les exist.

a. import java.io.*;
File f � new File (“hello.txt”);
BufferedInputStream test � new BufferedInputStream(f);

b. import java.io.*;
File g � new File (“hello.dat”);
FileInputStream test � new FileInputStream(g);

c. import java.io.*;
File h � new File (“goodbye.dat”);
FileInputStream test � new FileInputStream(f);
FileOutputStream test � new FileOutputStream(f);

d. import java.io.*;
File f � new File (“goodbye.txt”);
DataOutputStream test � new DataOutputStream(f);

e. import java.io.*;
File f � new File (“lastone.dat”);
FileOutputStream test � new FileOutputStream(f);
DataOutputStream test � new DataOutputStream(f);

 3. Understanding Stream Hierarchies
 For each of the following, state whether or not the wrapping is legal. If illegal,

explain why.

a. Wrapping System.in with an InputStreamReader .
b. Wrapping System.out with an OutputStreamWriter .
c. Wrapping an InputStreamReader with a BufferedReader .
d. Wrapping System.in with a FileInputStream .

e. Wrapping a File with a FileInputStream .

f. Wrapping a File with a FileReader .
g. Wrapping a FileReader with a BufferedReader .
h. Wrapping System.out with a FileWriter .

sim23356_ch15.indd 743sim23356_ch15.indd 743 12/15/08 7:11:41 PM12/15/08 7:11:41 PM

744 Part 3 More Java Classes

i. Wrapping a FileWriter with a BufferedWriter .
j. Wrapping a FileOutputStream with a BufferedWriter .
k. Wrapping a File with a FileOutputStream .

l. Wrapping System.out with a PrintWriter .
m. Wrapping System.in with a PrintWriter .
n. Wrapping a File with a BufferedInputStream.
o. Wrapping a BufferedWriter with a PrintWriter .

 4. Playing Compiler
 Determine the problem(s) with each version of the following readCharacterData()

methods?

 Version I
 public void readCharacterData()
{
 int c;
 int count � 0;
 InputStreamReader link � new InputStreamReader(System.in);

 BufferedReader br � new BufferedReader(link);

 while ((c � br.read()) !� �1)
 {
 count��;
 System.out.println(c � " " � (char)c);
 }
 System.out.println("Number of Characters: " � count);
}

 Version II
 public void readCharacterData() throws IOException
{
 int c;
 int count � 0;
 BufferedReader br � new BufferedReader(System.in);

 while ((c � br.read()) !� �1)
 {
 count��;
 System.out.println(c � " " � (char)c);
 }
 System.out.println("Number of Characters: " � count);
}

 5. Stream Concepts
 Associate each type of stream class with its purpose.

Type of Stream Class Purpose

a. Byte Stream

b. Character Stream

c. Buffered Stream

d. Data Stream

e. Object Stream

f. System.in and System.out

1. handles binary I/O of primitive data types

2. handles I/O from/to the console

3. optimizes I/O

4. handles binary I/O of objects

5. handles I/O of raw bytes

6. handles I/O of 2-byte characters

sim23356_ch15.indd 744sim23356_ch15.indd 744 12/15/08 7:11:42 PM12/15/08 7:11:42 PM

 Chapter 15 Stream I/O and Random Access Files 745

 6. What’s Going On?
 a. What is the name of the fi le created by the following program?

b. Describe the information stored at the beginning of the fi le (data type, purpose of

the data, value of the data).

c. Describe the information stored in the remainder of the fi le.

 import java.io.*;
public class FileWriter
{
 public static void main(String[] args)
 {
 try
 {
 long fillerPos � 0;
 int filler � 1000;
 RandomAccessFile f � new RandomAccessFile("mystery", "rw");
 f.writeLong(0);
 f.writeChars("RalphlikesJava");
 fillerPos � f.getFilePointer();
 f.writeInt(filler);
 f.writeChars("ShailikesCoffee");
 f.seek(0);
 f.writeDouble(fillerPos);
 f.close();
 }

 catch (FileNotFoundException e)
 {
 System.err.println("File not Found " � e);
 }
 catch (IOException e)
 {
 System.err.println("Write Error: " � e);
 }
 }
}

 7. Thinking About Streams
 Figure 15.12 shows a BufferedWriter object wrapped (Character Stream) with a

PrintWriter object (Byte Stream).

 a. What was the purpose of wrapping the BufferedWriter object?

 Figure 15.6 shows System.out, an OutputStream object (Byte Stream) wrapped with

a PrintWriter object (Byte Stream).

 b. Check Sun’s documentation for PrintWriter and explain why it is legal to wrap

 PrintWriter around objects of two different hierarchies (Byte Stream and

Character Stream).

 c. Is it legal to wrap a PrintWriter with a BufferedWriter object?

 If no, explain why not. If yes, explain a possible rationale for doing so.

 8. Pick the Stream Class(es)
 For each of the following situations, state which stream class(es) you would use,

describe any wrappers involved, and explain your choice.

sim23356_ch15.indd 745sim23356_ch15.indd 745 12/15/08 7:11:42 PM12/15/08 7:11:42 PM

746 Part 3 More Java Classes

a. Reading integers from a binary fi le.

b. Writing characters to a text fi le.

c. Reading objects from a binary fi le.

d. Reading characters from a text fi le.

e. Reading bytes from the console.

f. Reading characters from the console.

g. Writing doubles to the console.

h. Writing doubles to a binary fi le.

i. Reading strings from a text fi le.

j. Writing customer records to a fi le.

 PROGRAMMING EXERCISES
 1. Hello World Revisited
 Write an application utilizing System.in and System.out that asks a person to enter

his/her fi rst name, and then prints a personalized message saying “hello.” For

example, your program might print: “Hello Lois”, if the user enters the name Lois .

 Do not use a Scanner object.

 2. Text File Output
 Design a program that writes the lowercase letters of the alphabet (a–z) on one

line and the uppercase letters (A–Z) on a second (and last) line of a text fi le called

 alphabet.txt.

 3. Appending to a Text File
 You can use a FileWriter object to append data to the end of a fi le:

 FileWriter writer � new FileWriter (String filename, boolean append);

 Write a program that opens an existing text fi le, interactively accepts strings, and

writes the strings to the end of the fi le, one line at a time.

 4. Random Access Files
 The fi rst entry of a random access fi le is a long value specifying the offset of an

integer value somewhere in the middle of the fi le. Write a program that uses the

 RandomAccessFile class to display the value of the integer. You will need to create

this fi le to test your program.

 5. Processing Text Files
 Write a program that counts the number of times a particular character occurs in a

text fi le. Your program should prompt for the character.

 6. Text File I/O
 Write a program that reads strings from a text fi le, data.txt , one string per line, sorts

the strings, and writes the sorted strings one per line to a fi le called sorted.txt.

 7. Character Stream vs Byte Stream
 Write a program that reads 30-byte names from a text fi le, and a single 30-byte

string, name, from the console. The program should print all the names in the fi le

that start with the same fi rst four characters as name . Do this problem fi rst using the

Character Stream classes, and then again using only the Byte Stream classes.

 8. Processing Text Files
 Search the Internet for a large text fi le (say “The Constitution of the USA,” but any

text fi le will do, the larger the better). Count and display the number of times each

alphabetic character ‘a’ through ‘z’ appears in the fi le. Do not distinguish between

uppercase and lowercase characters, and ignore all other characters.

sim23356_ch15.indd 746sim23356_ch15.indd 746 12/15/08 7:11:42 PM12/15/08 7:11:42 PM

 Chapter 15 Stream I/O and Random Access Files 747

 9. Binary File Output
 Implement an application that interactively accepts double values and writes them

to a binary fi le called data.dat. Write a second application that reads data.dat and

reports the number of data as well as the average value of the data.

 10. Binary File I/O
 Write a program that reads double values from a binary fi le, data.dat , and displays

the largest and smallest numbers. If you have not done Programming Exercise 9,

you will fi rst need to create a binary fi le to test your program (see the fi rst half of

Programming Exercise 9).

 11. Buffered Versus Non-Buffered Output
 Compare the speed of buffered versus non-buffered output in the Byte Stream classes

(as we did in the text for the Character Stream classes). Devise a program that writes

50,000 characters to two different fi les, once using PrintStream alone and once using

 PrintStream wrapped with BufferedOutputStream . Compare execution times.

 12. A Serializable Class and a Binary File
 Design and write a class Student with fi elds that store a name, social security

number, number of courses completed, grades for each course, and credits for each

course. Include constructors, getter and setter methods, and a method that returns

the student’s grade point average. Student should implement Serializable . Write a

program that accepts data for three students. Store the three Student objects in a

binary fi le called students.dat .
 Write a second application that displays the name and gpa fi eld of each Student

object stored in the fi le students.dat .

 13. Binary Search in Random Access Files
 Write a program that creates a random access fi le that holds a list of sorted names.

The names are supplied interactively. Pad the names with spaces, if necessary, so

that each name consists of the same number of bytes. After the fi le is created, your

program should allow a user to enter a name, and using binary search, determine

whether or not the name is in the fi le. A message confi rming or denying the presence

of the name should appear on the console.

 14. Storing Objects in Files
 A Tic-Tac-Toe playing program gives a player the option of saving a game so that

he/she can continue playing later. A game object stores a 3 by 3 two-dimensional

array that holds the x’s and the o’s currently on the board, and a character “X”

or “O” indicating whose turn it is. Write a Game class with methods to save and

restore a game object. The default constructor should create an empty board. Include

methods that make a move and display the board on the console. Test your class by

creating a “game,” making a few moves, and saving the “game” in a fi le using object

serialization. Quit the program, restart it, and restore the game. Display the board on

the console, along with a message stating whose turn it is.

 15. Putting It All Together—A Short Project Using I/O
 Using an editor or word processor, create a text fi le movies.txt that contains

information about fi lms. Each line of movies.txt holds data for one fi lm:

 Title (35 characters)

 Year (4 characters)

 Director (25 characters)

 Star (25 characters)

 For example, one line of movies.txt could be

 The Departed 2006Scorsese, Martin DiCaprio, Leonardo

sim23356_ch15.indd 747sim23356_ch15.indd 747 12/15/08 7:11:43 PM12/15/08 7:11:43 PM

748 Part 3 More Java Classes

 Movie data is readily available on the Web. The Internet Movie Database at www.
imdb.com is an excellent source. Make the fi le as large as you like, but have at least

25 entries. The fi le should not be sorted.

 This fi le serves as input for the following multipart exercise.

a. From movies.txt build a random access fi le such that each record of the random

access fi le is the same size and of the form:

 Title (35 characters)

 Year (4 characters)

 Director (25 characters)

 Star (25 characters)

 Call the random access fi le movies.dat.

b. The movies.dat fi le is unordered, and searches are ineffi cient. To increase search

effi ciency, design a serializable class, Index . The data consists of:

 • a sorted array (titles) of movie titles,

 • a second parallel array (recordNumber) that holds the record numbers (in

 movies.dat) of the fi lms, and

 • a fi eld (numFilms) that stores the number of fi lms in movies.dat.

The following skeleton can be used for Index :

 public class Index implements Serializable
{
 private String[] titles;
 private long [] recordNumber; // use long for record number
 private int numFilms;

 // constructors and other methods
 private void sort(): // a private helper
 public long search(String title); // binary search
}

 Instantiate this class . Build the titles and recordNumber arrays from the data of

the random access fi le: for each record in the random access fi le, insert the fi lm’s

title into titles and record number into recordNumber . For example, if movies.dat
contains four fi lms, King Kong , Alien, Rodan , and Enchanted, the two arrays are

shown in Figure 15.21 .

 Sort titles . Each time a title is swapped or moved, a corresponding swap or move

should be performed in recordNumber . Figure 15.22 shows the two arrays after

 titles is sorted.

 Implement a binary search method in your Index class that searches the titles array

for a particular title

 public long search(String title)

 Finally, save the Index object to a fi le called indexfi le.dat . This can be done with a

single statement because the object is serializable.

c. Write a program that reads the serialized Index object from the fi le indexfi le.dat .
You will use this index to perform searches.

 After reading the indexfi le.dat and storing the Index object, your program

should prompt for the title of a fi lm. Use the binary search of Index to fi nd the

title and corresponding record number of that fi lm. If the fi lm is found, access

the fi lm’s record in the random access fi le and print the fi lm’s data on the screen.

sim23356_ch15.indd 748sim23356_ch15.indd 748 12/15/08 7:11:43 PM12/15/08 7:11:43 PM

http://www.imdb.com
http://www.imdb.com

 Chapter 15 Stream I/O and Random Access Files 749

If the fi lm is not found, print a message. Your program should allow the user to do

as many searches as he/she wants.

 The user may enter a fi lm title in any form (uppercase, lowercase, or a combi-

nation). You must translate the user’s title to uppercase characters before search-

ing. Figure 15.23 demonstrates the process.

To find information for "King Kong"

1. Search for "King Kong" in titles
2. Find the corresponding record number in recordNumber
3. Retrieve the data from the random access file

ALIEN
Data for KING KONG

Data for ALIEN

Data for RODAN

Data for ENCHANTED

Random Access File

ENCHANTED

KING KONG

RODAN

1

3

0

2

titles recordNumber

numFilms

0

1

2

3
4

FIGURE 15.23 A random access file to store film data

d. Write a separate application that can alter the information in any record. The

 program should prompt for the name of the fi lm and use the binary search to fi nd

the record number of the fi lm. The program should display the data for the fi lm

and ask the user which fi eld he/she would like to change. Finally, the program

should prompt for new data and change the appropriate fi eld.

KING KONG 0

ALIEN 1

RODAN 2

ENCHANTED 3

titles recordNumber

numFilms 4

FIGURE 15.21 Parallel arrays

ALIEN 1

ENCHANTED 3

KING KONG 0

RODAN 2

titles recordNumber

numFilms 4

FIGURE 15.22 Two arrays after titles is sorted

sim23356_ch15.indd 749sim23356_ch15.indd 749 12/15/08 7:11:43 PM12/15/08 7:11:43 PM

TH
E

BI
GG

ER
 P

IC
TU

RE

 THE BIGGER PICTURE

 STREAMS AND NETWORKS

 The Client/Server Model
 When you run your browser, you are running a client program that requests and displays infor-

mation provided by other programs called web servers. In effect, two programs are talking to

each other—a client and a server. The same model works for online poker programs, tax-fi ling

programs, and chat rooms. Each user runs a client program, and every client program commu-

nicates with a server. The relationship between a client and a server is not symmetric—there

are usually many clients for one server, but the reverse is generally not the case.

 Sockets

A socket connects a client and a server.

 A socket is to a program what a telephone is to a customer service agent—a way to connect.

Sockets connect client and server programs via streams over the Internet, while telephones

connect people to customer service agents via wires. Just as a telephone number plus an

extension connect you to a particular agent at a particular company, so does an IP address

and a port number specify a socket that connects to a specifi c program (or server) running

on a particular computer. Just as one company may have many different kinds of customer

service agents, so a computer may provide many kinds of services. For example, the same

computer can run a web server, a fi le server, an email server, and a chess-playing server.

 The IP address gets you to the right computer, and the port number connects you to

the correct server. Every computer has one IP address (or name). Each server program that

the computer runs listens for requests on a different port number, hence the need for the

client to specify both the machine and the port number. Email (SMTP) servers tradition-

ally use port 25, while web servers use port 80. The ports 0 through 1023 are reserved for

commonly used servers like these, so if you are writing your own specialized online game

server, you would need to choose a port number greater than 1023.

 TCP—Communicating Between Sockets Via Streams
 Sockets facilitate communication. Both client and server use a socket to effect

comm unication.

Client/server communication is established by creating a stream between the sockets.

 Data fl ows through the stream between the client and server sockets. The server listens for

requests from a client. When a client makes a request, the server establishes a connection between

the two sockets and answers the request of the client. A stream is created between the two sockets

and remains in place until the communication has ended, at which time the stream is closed.

Once again, the telephone analogy is apt. You ring someone’s phone, she answers, a connection

is established, you start to communicate, and each of you hangs up when the call is over.

 The stream created between the two sockets is like any other stream that we discuss in

this chapter. That is, everything you read in this chapter about fi le and console I/O works

the same way for socket I/O.

Once a stream between sockets is established, it works exactly like a stream between a

program and a fi le.

750 Part 3 More Java Classes

sim23356_ch15.indd 750sim23356_ch15.indd 750 12/15/08 7:11:44 PM12/15/08 7:11:44 PM

THE BIGGER PICTURE
 Chapter 15 Stream I/O and Random Access Files 751

 A stream between sockets of a client and a server program uses a protocol known as TCP—

Transfer Control Protocol. It is the fi rst half of the well-known network buzzword TCP/IP.

Let’s fi rst look at TCP from the client’s point of view.

 The Java Client Using TCP
 If a Java client program wants to create a connection to a server using TCP, the client fi rst

creates a Socket object:

 Socket connectToServer � new Socket("IP address", PortNumber);

An IP address consists of four decimal numbers, each between 0 and 255, separated by

dots. For example,

 Socket connectToServer � new Socket(“138.212.135.12”, 8080);

means: create a socket called connectToServer and attempt to connect to the machine with

IP address 138.212.135.12 on port 8080.

 You can also use the machine’s name:

 Socket connectToServer;
ConnectToServer � new Socket(“client.tester.com”, 8080);

 The name client.tester.com is automatically translated to its IP address behind the scenes

by another program called a domain name server (DNS), which happens also to be a

client/server program.

 Because creating a new socket can throw an IOException , a more “exception” friendly

way to open the socket is:

 Socket connectToServer;
try
 {
 connectToServer � new Socket("Machine name", PortNumber);
 }
 catch (IOException e)
 {
 System.out.println(e);
 }

Although this is indeed a better way to establish a connection, because the code gets cum-

bersome and is distracting, we leave out all try-catch blocks in further examples.

 The Java Server Using TCP
 We have seen how a client connects to a server. Now let’s look at the situation from the

server’s vantage point. To answer the connection requests of clients and establish a stream,

the server does two things.

 1. Create a ServerSocket object and specify the port on which it listens.

 2. Use the ServerSocket object to accept a connection and create a Socket object to

connect to clients.

 The following segment performs both of these tasks:

 1. ServerSocket serverSocket � newServerSocket(8080);
 // any port number greater than 1023 is acceptable.
2. Socket connectToClient; // declare a Socket to communicate with a client
 connectToClient � serverSocket.accept(); // listen for a request and make the connection

sim23356_ch15.indd 751sim23356_ch15.indd 751 12/15/08 7:11:44 PM12/15/08 7:11:44 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
752 Part 3 More Java Classes

 The server waits for a request from a client. This request is processed behind the scenes

by the ServerSocket method accept() , which returns a Socket object that the server uses to

communicate with the client.

 Connecting Two Sockets in Java with a Stream for TCP
 When the two Socke t s connectToClient and connectToServer are created, a stream between

them can be established using the Socket methods getInputStream() and getOutputStream() .
See Figure 15.24 .

Server Client

ServerSocket serverSocket � new
ServerSocket(port number);

Socket connectToServer � new
Socket (IP address, port number);

Socket connectToClient � serverSocket.accept(); DataInputStream inFromServer;
DataOutputStream outToServer;

DataInputStream inFromClient;
DataOutputStream outToClient;

inFromServer � new
DataInputStream(connectToServer.getInputStream());

inFromClient � new
DataInputStream(connectToClient.getInputStream());

outToServer � new
DataOutputStream(connectToServer.getOutputStream());

outToClient � new
DataOutputStream(connectToClient.getOutputStream());

// When these streams are established, all input from
// inFromClient comes from the client, and all output to
// outToClient goes to the client.

// When these streams are established, all input from
// inFromServer comes from the server, and all output
// to outToServer goes to the server.

FIGURE 15.24 Client and server sockets and streams

 All the methods of the DataInputStream and DataOutputStream classes are available. For

example, the server segment

 int x � inFromClient.readInt();
outToClient..write(x * x);

reads an integer x from the client and sends x 2 back to the client.

 Of course, you are not limited to using DataInputStream and DataOutputStream . If

another subclass of InputStream or OutputStream is more convenient, then by all means use

it. For example, the following segment utilizes the BufferedReader and PrintWriter classes:

 Socket connectToServer � new Socket(host , portnum);

BufferedReader inFromServer � new BufferedReader (
 new InputStreamReader(connectToServer.getInputStream()));
PrintWriter outToServer �
 new PrintWriter(connectToServer.getOutputStream());

When the client is fi nished communicating, it “hangs up the phone,” closing the connection

with the server, by closing the streams and then closing the socket:

 inFromServer.close();
outToServer.close();
connectToServer.close();

The server hangs up similarly:

 inFromClient.close();
outToClient.close();
connectToClient.close();

sim23356_ch15.indd 752sim23356_ch15.indd 752 12/15/08 7:11:44 PM12/15/08 7:11:44 PM

THE BIGGER PICTURE
 Chapter 15 Stream I/O and Random Access Files 753

 A server can communicate simultaneously with multiple clients. Indeed, the server

may continue listening to other clients’ requests even after it closes a communication with

a previous client. In order to completely shut down the server, the listening ServerSocket
object must be closed, using:

 serverSocket.close();

This ensures that no new client connection requests are processed.

 Multiple Clients
 Although our earlier examples illustrate one-client communication, it is commonplace for

a server to handle many clients at the same time. How does a server manage this simultane-

ous processing? Multiple clients are processed by opening a separate socket for each client

that requests one. A separate process in the server, called a thread , is created for each new

socket. Each thread runs independently and simultaneously, allowing each client the full

attention of the server. Threads have many different uses, but further discussion is beyond

the scope of this text.

 Summary: How to Establish a Stream Between
Sockets for TCP in Java
 When programming a client, you must:

 1. Open a Socket requesting a connection to a particular server at a particular port.

 2. Open a stream to the Socket .

 3. Read from and write to the stream to communicate with the server.

 4. Clean up.

When programming a server, you must:

 1. Open a ServerSocket to listen for client requests on a specific port.

 2. Open a Socket to a particular client in response to the client’s request.

 3. Open a stream to the Socket.

 4. Read from and write to the stream to communicate with the client.

 5. Clean up.

 Exercise
 1. Client and Server Classes

 How is your monthly payment calculated when you borrow money for the purchase

of a new car? How much interest are you paying over the life of your loan? What is

the monthly payment on a $200,000, 30-year mortgage at 6% interest?

 The formula

Payment �
(loan)(r)(1 � r)n

(1 � r)n � 1

 gives your monthly payment on a loan such that:

• loan is the amount of money borrowed (in dollars),

• r is the annual interest rate divided by 12,

• n is the total number of payments.

 (n � years *12 where years is the term of the loan, in years).

sim23356_ch15.indd 753sim23356_ch15.indd 753 12/15/08 7:11:45 PM12/15/08 7:11:45 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
754 Part 3 More Java Classes

 For example, if you borrow $50,000 at 6% for 5 years,

loan � 50,000

r � .06/12 � .005, and

n � 5 * 12 � 60

 so

 Payment �
(50000)(.005)(1.005)60

(1.005)60 � 1

 � 966.64

 Implement two classes, a server and a client. The client supplies the server with a

loan amount, interest rate, and term in years. The server calculates the monthly pay-

ment as well as the total interest over the term of the loan and sends that information

back to the client.

 If you have access to a network, you might implement these two classes on dif-

ferent computers. The name of the computer that hosts the server can be obtained by

executing the following main() method:

 public static void main(String[] args)
 {
 InetAddress host;

 try
 {
 host � InetAddress.getLocalHost();
 System.out.println("Local host is " � host.getHostName());
 }
 catch (UnknownHostException e)
 {
 System.out.println("Unable to get local host name");
 }
 }

For example, if the name of the host machine is Bingo, then the client might use a

constructor

 Socket connectToServer � new Socket("Bingo", 1776);

If you do not have access to a network, you can run both client and server on a single

computer. In that case, you can use the string “localhost” in the constructor:

 Socket connectToServer � Socket("localhost", 1776);

The communication protocol between the client and server is short, simple, and sweet.

The server should accept the loan amount, the interest rate, and the term from the cli-

ent, perform the appropriate calculations, and return the monthly payment and total

interest to the client.

 The server must be running before the client begins. Use Figure 15.24 as a guide

when writing these classes. The server should continually serve the client until the cli-

ent enters 0 for a loan amount. Once the client enters 0 for a loan amount, the client

exits and the server subsequently exits.

 Protocols
 Client-server communication of the previous example is simple, straightforward, and

predictable. In more complex client-server architectures, a more complicated scheme is

required to synchronize communication, as you will see in the next exercise.

sim23356_ch15.indd 754sim23356_ch15.indd 754 12/15/08 7:11:45 PM12/15/08 7:11:45 PM

THE BIGGER PICTURE
 Chapter 15 Stream I/O and Random Access Files 755

 People speak on a telephone using a combination of intuition and good manners,

ensuring that communication is clear and that one person does not interrupt the other.

Humans are robust and adaptive, and most people handle this challenge effortlessly. None-

theless, there are protocols that help us succeed. For example, when we answer a phone

call we say “hello.” Before ending a call, we say “okay, I gotta go,” and then we exchange

“goodbyes.”

 Without these protocols, a simple phone call would become a great challenge. Imagine

the confusion you might experience if you called a friend and she did not say “hello” when

she picked up the phone, but instead remained silent, waiting for you to speak fi rst, as a

very young child might do. Would you be annoyed if a person ended a call with no warn-

ing after you fi nished a sentence? Whether we are conscious of it or not, a set of protocols

guides us through every conversation. And, if humans need protocols for smooth commu-

nication, then all the more so do machines.

 How do a client and server communicate smoothly? How can we make sure that one

doesn’t “hang up” while the other is still communicating? Programs are not as fl exible as

people, so the protocols for programs need to be more rigid.

Every client-server pair follows a protocol.

 A rigid protocol for communication is specifi ed for the client/server pair. The program-

mers of the client and server must know the protocol and abide by it, guaranteeing smooth

communication up to the “goodbye” and the cleanup. The more complicated the com-

munication, the more detailed the protocol needs to be. The protocol is as much a part of

client/server programs as the method signatures. In the following exercise, you will see an

example of a client-server protocol for an SMTP mail server.

 Exercise
 2. A Simplifi ed SMTP Client

 The SMTP protocol establishes how clients send email to email servers. Every time

an email message is sent, a client connects to an SMTP server and initiates a conver-

sation. The standard port for SMTP conversations is port 25.

 There are hundreds of thousands of SMTP servers running, ready to accept mail

and send it onward. Your job is to write a client program to communicate with an

SMTP server.

 The SMTP protocol is simple, but for the purposes of this exercise you do not

need to look up the formal specifi cation. A study of the following transcript between

a server and a client on port 25 provides all that you need.

 1. Server: 220 mail.example.edu Microsoft ESMTP MAIL Service,

Version 6.0 Ready at Sun, 1 Mar 2007 10:10:00 -0400

2. Client: HELO location.com

3. Server: 250 mail.example.edu Hello [76.13.135.245]

4. Client: MAIL FROM:user@location.com

5. Server: 250 user@location.com....Sender Ok

6. Client: RCPT TO:person@example.edu

7. Server: 250 person@example.edu

8. Client: DATA

9. Server: 354 Start mail input; end with <CRLF>.<CRLF>

10. Client: Subject: test message

11. Client: From: user@location.com

12. Client: To: person@example.edu

sim23356_ch15.indd 755sim23356_ch15.indd 755 12/15/08 7:11:46 PM12/15/08 7:11:46 PM

mailto:user@location.com
mailto:user@location.com....Sender
mailto:person@example.edu
mailto:person@example.edu
mailto:user@location.com
mailto:person@example.edu

TH
E

BI
GG

ER
 P

IC
TU

RE
756 Part 3 More Java Classes

13. Client:

14. Client: Hello,

15. Client: This is me sending you an email.

16. Client: Goodbye.

17. Client:

18. Server: 250 Ok: Queued mail for delivery

19. Client: QUIT

20. Server: 221 mail.example.edu Service closing transmission

channel

 Comments
 Line 1: The server starts the conversation by identifying itself. Notice that the line

starts with a 3-digit code, 220. This code means everything is fi ne—talk to me.

The rest of the line is information about the server, and the extent of detail varies

from server to server. Your client needs only look for the 220 and then continue,

otherwise close the connection.

 Line 2: The client sends HELO and identifi es itself as location.com . The protocol is

case sensitive. HELO is mandatory. The identifi cation is optional.

 Line 3: The server sends a 250 code meaning “okay go ahead.” The rest is the

server’s name followed by Hello followed by the IP address of location.com looked

up by a domain name server (DNS) and translated to an IP address. The client is

looking for the 250 code.

 Line 4: MAIL FROM: is mandatory, and then any text can follow. In this case, the

client is identifying the sender as user@location.com.

 Line 5: The server gives an okay code 250, repeats the name of the sender, and says

Sender Ok.

 Line 6: The client specifi es to whom the mail is being sent using RCPT TO:

followed by the email address of the intended recipient, in this case

person@example.edu.

 Line 7: Server replies with 250—the “okay code”, followed by the intended

recipient of the email.

 Line 8: DATA—The client tells the server to get ready for the message.

 Line 9: The server replies with a 354 code followed by a reminder to the client

to type

 CRLF.CRLF
after transmitting the email message (i.e., enter key, a period alone on a single line,

enter key).

 Lines 10–16: The client sends a message using the standard mail headers.

 Line 17: The client fi nishes with CRLF.CRLF.

 Line 18: The server is happy. A 250 “okay” code is sent—message received and

queued for delivery.

 Line 19: QUIT—bye bye.

 Line 20: Code 221—goodbye.

sim23356_ch15.indd 756sim23356_ch15.indd 756 12/15/08 7:11:46 PM12/15/08 7:11:46 PM

mailto:user@location.com
mailto:person@example.edu

THE BIGGER PICTURE
 Chapter 15 Stream I/O and Random Access Files 757

 Write a client program to send yourself an email message from yourself through

an SMTP server. Due to fi rewalls, and/or various restrictions of different SMTP serv-

ers, you will have more success if you try to connect to the SMTP server that serves

your email address. For example, to send email to/from person@myprovider.net, you

would open a connection on port 25 to the SMTP server for myprovider.net, which is

typically mail.myprovider.net.

 As a client, you read server codes and send appropriate commands to the server.

There are more server codes than the ones you see in this example (error codes and

such), however, you can assume for the purposes of this exercise that the 220, 221,

250, and 354 server codes are the only ones that you will ever see. If you do read

another code, assume something went wrong and just close the channel. A more

sophisticated client program might also read and store the non-code information sent

by the server in an attempt to recover if anything goes wrong. Your program doesn’t

need to do that.

 There are additional client commands in the complete SMTP protocol, but you

should make do with the subset given here: (HELO, MAIL FROM:, RCPT TO:,

DATA, QUIT).

sim23356_ch15.indd 757sim23356_ch15.indd 757 12/15/08 7:11:47 PM12/15/08 7:11:47 PM

mailto:person@myprovider.net

758

 CHAPTER CHAPTER 16
 Data Structures

and Generics
 “The Queue Principle: The longer you wait in line, the greater the likelihood that you are

standing in the wrong line.”
 — Anonymous

 Objectives

 The objectives of Chapter 16 include an understanding of

� generic classes,

� elementary data structures:

 � ArrayList ,
 � stack,

 � queue,

 � linked list, and
� the effi cient use of a data structure.

 16.1 INTRODUCTION

A data structure is a collection of data together with a well-defi ned set of operations

for storing, retrieving, managing, and manipulating the data.

 An array is a data structure containing a collection of elements of the same type and with

operations for storing and retrieving individual elements. A fi le is also a data structure.

 There are dozens of data structures, and a comprehensive survey of even the most

commonly used data structures is well beyond the scope of this book. In this chapter, we

study four fundamental data structures including ArrayList , stack, queue, and linked list.

Every data structure entails an implementation. An implementation of a data struc-

ture consists of an underlying storage structure along with appropriate methods that

manipulate the data.

 The choice of implementation plays an important role in program effi ciency. For example,

an array is usually implemented with a contiguous sequence of equal-size memory ele-

ments. In line with the principles of encapsulation and information hiding, the implemen-

tation details are important for the designer of the data structure, but should be invisible

to the client. In the following sections, we examine the implementation of the four data

sim23356_ch16.indd 758sim23356_ch16.indd 758 12/15/08 7:13:25 PM12/15/08 7:13:25 PM

 Chapter 16 Data Structures and Generics 759

structures: ArrayList , stack, queue, and linked list, and we discuss the advantages and dis-

advantages of each.

 We begin with ArrayList , a data structure that is part of the java.util package.

 16.2 THE “OLD” ArrayList CLASS

An array holds an indexed, contiguous collection of data of a single type.

 Arrays are an essential part of our programming toolbox. Arrays facilitate the implementa-

tion of many fundamental algorithms, including sorting and searching algorithms; however,

arrays have limitations. For instance, once an array is instantiated and its size declared, the

size cannot be altered. In situations when the number of data is known in advance, this

restriction presents no diffi culty. However, for many applications, it is impossible to predict

the number of data. Certainly “dynamic arrays,” which grow as needed, would offer a con-

venience not provided by ordinary arrays. Java’s ArrayList class, implemented in java.util ,
provides that very convenience.

An ArrayList object is an indexed list of references that can grow as the number of

data increases.

 That is, an ArrayList can resize itself, if necessary. An ArrayList is indeed a dynamic

array. There are other differences between ArrayLists and standard arrays. Unlike an

ordinary array, an ArrayList does not hold primitive values; an ArrayList stores references

and only references. However, this is not a serious limitation nor even an inconvenience

because Java implements autoboxing and unboxing. Thus, primitive data can be automati-

cally wrapped in objects and subsequently stored using an ArrayList .
 Prior to Java 1.5, every ArrayList was a list of Object references. Because all classes

extend Object , a single ArrayList might store references to various and sundry objects. That

is, a single ArrayList might store references to Strings , Integers , Doubles , and even Dog and

 Cat objects. Although this generality sounds convenient and enticing, it can lead to runtime

problems. So, let’s turn back the clock a bit, consider the ArrayList of old, and take a look

at its defi ciencies as well as Java’s solution: generics .

 The constructors of the original ArrayList class are:

• public ArrayList();
 instantiates an ArrayList that is empty and sets the initial capacity to 10.

• public ArrayList(int initialSize);
 instantiates an ArrayList that is empty and sets the initial capacity to initialSize .

 A few methods that manipulate the data of an ArrayList are:

• void add(int index, Object o)
 inserts o into position index . In order to make room for o, the item currently stored at

position index is shifted “down” to position index � 1. All items stored in locations

greater than index are also shifted down one position.

• boolean add(Object o)
 adds o to the end of the list. The boolean return value is necessary because ArrayList

implements Java’s Collection interface. For our purposes, we can ignore the return value.

• void clear()
 removes all objects from the list.

sim23356_ch16.indd 759sim23356_ch16.indd 759 12/15/08 7:13:26 PM12/15/08 7:13:26 PM

760 Part 3 More Java Classes

• boolean contains (Object o)
 returns true if o is a member of the list.

• Object get(int index)
 returns the Object reference at position index .

• boolean isEmpty()
 returns true if the list has no elements.

• boolean remove (Object o)
 If o is a member of the list, this method removes the fi rst occurrence of o from the list,

returns true , and shifts all elements following o “up” one position—that is, an item

following o and located in position index is moved “up” one position from index to

index � 1.

• Object remove (int index)
 removes and returns a reference to the object o that is currently at position index; shifts

all elements following o up one position.

• Object set (int index, Object o)
 replaces the object at position index with o; returns a reference to the object that was

replaced.

• int size()
 returns the number of objects currently in the list.

• Object[] toArray()
 returns the objects of a list as an array reference.

The following segment constructs an ArrayList that holds four String references.

 ArrayList list � new ArrayList(); // initial capacity is 10
list.add("Bart");
list.add("Marge");
list.add("Maggie");
list.add("Homer", 0); // places “Homer” in position 0, shifts other objects

 Figure 16.1 shows the contents of list after these statements execute.

“Homer”0

list

1

2

3

“Bart”

“Marge”

“Maggie”

 FIGURE 16.1 An ArrayList object

 Even though the initial capacity of list is 10, a call to get(i) for any i � 3 results in a

runtime error. For example, a test such as

 if (list.get(4) �� null)

results in a runtime error.

sim23356_ch16.indd 760sim23356_ch16.indd 760 12/15/08 7:13:26 PM12/15/08 7:13:26 PM

 Chapter 16 Data Structures and Generics 761

 In contrast, the method call

 list.add(4, o)

adds o to the end of the list, while the method calls list.add(5, o) , list.add(6, o) , and so on,

do not succeed unless fi rst preceded by the call, list.add(4, o) .
 Example 16.1 uses an object belonging to ArrayList to manage a “junior” lottery.

 EXAMPLE 16.1 Each year, Sleepy Hollow Elementary School holds a “Principal for a Day” lottery. A

student can participate by entering his/her name and ID number into a pool of candi-

dates. The winner is selected randomly from all entries. Each student is allowed one

entry.

 Problem Statement Implement a class StudentLottery , with methods that

 • enter students in the “Principal for a Day” lottery, and

 • pick a winner from the entries.

The application should check that no student enters the lottery more than once.

 Java Solution The following Student class encapsulates a student. A Student object

holds a student’s name as well as his/her ID number. The Student class has the usual

getter and setter methods. Further, Student overrides the equals(Object o) method

inherited from Object so that two students are equal if they have the same name and

ID number.

 The Student class

 1. public class Student
2. {
3. private String name;
4. private String id;

5. public Student()
6. {
7. name � "";
8. id � "";
9. }

10. public Student (String n, String idNum)
11. {
12. name � n;
13. id � idNum;
14. }

15. public String getName()
16. {
17. return name;
18. }

19. public String getID()
20. {
21. return id;
22. }

sim23356_ch16.indd 761sim23356_ch16.indd 761 12/15/08 7:13:27 PM12/15/08 7:13:27 PM

762 Part 3 More Java Classes

23. public void setName(String n)
24. {
25. name � n;
26. }

27. public void setID(String idNum)
28. {
29. id � idNum;
30. }

31. public boolean equals(Object o) // name and id are the same
32. {
33. return ((((Student)o).name).equals(name) &&
34. (((Student)o).id).equals(id));
35. }
36. }

 The following StudentLottery class uses an ArrayList , entries , to hold Student refer-

ences. Additionally, the class has methods:

 void addStudents()

that enters students in the lottery and

 void pickWinner().

The latter uses the Random class to select one winner from among all student entries.

The addStudents() method checks that there are no duplicate entries. When all students

are entered, the name of the winning student and his/her ID are displayed.

 The StudentLottery class

 37. import java.util.*;

38. public class SchoolLottery
39. {
40. private ArrayList entries; // holds Student references
41. public SchoolLottery()
42. {
43. entries � new ArrayList(250); // initial capacity is 250
44. }

45. public void addStudents()
46. {
47. // prompts for student names and ID numbers
48. // adds students to entries list
49. // does not allow duplicate entries
50. Scanner input � new Scanner(System.in);
51. System.out.println("Press Enter to end input");
52. System.out.print("Name: ");
53. String name � input.nextLine();
54. do
55. {
56. System.out.print("ID: ");
57. String id � input.nextLine();
58. Student student � new Student(name, id);
59. if (!entries.contains(student)) // only one entry per student
60. {
61. entries.add(student);
62. System.out.println(name � " entered in the lottery.");
63. }
64. else

sim23356_ch16.indd 762sim23356_ch16.indd 762 12/15/08 7:13:28 PM12/15/08 7:13:28 PM

 Chapter 16 Data Structures and Generics 763

65. System.out.println(name � " not entered.");

66. System.out.print("\nName: ");
67. name � input.nextLine();
68. } while (! name.equals("")); // signals end of data
69. pickWinner();
70. }

71. public void pickWinner()
72. {
73. // chooses a random entry and displays winners name and ID
74. int numEntries � entries.size(); // size of ArrayList
75. Random random � new Random();
76. Object winner � entries.get(random.nextInt(numEntries));
77. System.out.print("The winner and Principal for a Day is ");
78. System.out.println (((Student) winner).getName()); // note the cast to Student
79. System.out.print("The ID of the winner is ");
80. System.out.println (((Student) winner).getID());
81. }

82. public static void main(String[] args)
83. {
84. SchoolLottery lottery � new SchoolLottery();
85. lottery.addStudents();
86. }
87. }

 Output

 Press Enter to end input

Name: Ichabod Crane
ID: 27512
Ichabod Crane entered in the lottery.

Name: Brom Bones
ID: 34786
Brom Bones entered in the lottery.

Name: Katrina Van Tassel
ID: 978621
Katrina Van Tassel entered in the lottery.

Name: Washington Irving
ID: 23405
Washington Irving entered in the lottery.

Name:
The winner and Principal for a Day is Katrina Van Tassel
The ID of the winner is 978621

 Discussion Notice the casts on lines 78 and 80 in StudentLottery . The reference winner
refers to an Object (line 76). The Java compiler does not know that winner is also a

 Student reference that can invoke getName() and getId() . Consequently, a downcast on

line 78 is necessary. Without the cast, the compiler issues the following syntax error:

 cannot find symbol
symbol : method getName()
location: class java.lang.Object
 System.out.println ((winner).getName());

Likewise, the downcast on line 80 is necessary.

sim23356_ch16.indd 763sim23356_ch16.indd 763 12/15/08 7:13:28 PM12/15/08 7:13:28 PM

764 Part 3 More Java Classes

 As you know, an ArrayList holds references to objects of any class. Consequently, the

statements

 entries.add(new Student("Ichabod Crane", "34786"); // add a Student
entries.add("Brom Bones"); // add a String
entries.add(52); // autoboxing here
 // same as entries.add(new Integer(52))

place a Student reference, a String reference, and an Integer into the ArrayList entries

declared in Example 16.1. There is no problem here; all objects are Object s. The Java com-

piler is happy. Figure 16.2 shows entries after these lines execute.

“Brom Bones”
“34786”

(Student)

(String)

entries

(Integer)52

“Ichabod Crane”

 FIGURE 16.2 An ArrayList can refer to objects of different classes

 This fl exibility may seem appealing, but it has drawbacks. When the corresponding

class fi le executes, a runtime error occurs, the application halts, and the JVM issues the

following message:

 The winner and Principal for a Day is Exception in thread "main" java.lang.Class
 CastException: java.lang.Integer

 What happened? In this case, the “winner” of the lottery turns out to be the Integer object

with value 52. Recall that Integer(52) is stored in entries and can be randomly selected as

the winner. The cast on line 78,

 System.out.println(((Student) winner).getName());

causes the runtime error. Because winner is an Integer , winner cannot be cast to Student .
The program crashes.

 The ArrayList , entries , is not type safe . The program performs an operation, a

cast, that is inappropriate for a particular data type. The error slips by the compiler

because, at compile time, the compiler cannot determine whether or not winner belongs

to Student . The error surfaces only when the program runs and an incorrect cast is

attempted.

 In many applications, an ArrayList is intended to hold a single type of reference.

In fact, the ability to refer to objects of different classes can be a liability leading to

runtime errors, some more serious than an incorrect cast. Java 1.5 introduces gener-
ics , which ensures type safety and allows the compiler to detect type errors before an

application runs.

sim23356_ch16.indd 764sim23356_ch16.indd 764 12/15/08 7:13:30 PM12/15/08 7:13:30 PM

 Chapter 16 Data Structures and Generics 765

 16.3 GENERICS AND ArrayList�E �

A generic class is one that allows you to specify the data type of one or more fi elds

as a parameter.

 For example, the following segment declares and instantiates three different ArrayList
objects, each capable of holding references to one and only one type of object.

 1. ArrayList �Student� students � new ArrayList �Student� ();
2. ArrayList �String� strings � new ArrayList �String� (50);
3. ArrayList �Integer� numbers � new ArrayList �Integer� ();

 The ArrayList students is restricted to Student objects; strings to Strings ; and numbers to

 Integer objects. Here we have three lists such that each list holds references to objects of a

single, specifi ed type. The statement

 students.add("Ichabod Crane"); // "Ichabod Crane" is a String not a Student!

cannot slip by the compiler. The compiler fl ags the error and issues the following

message:

 cannot find symbol
symbol : method add(java.lang.String)
location: class java.util.ArrayList<Student>
list.add("Ichabod Crane");
 ^

 The list students holds Student references, not String references, and the compiler knows

this.

 The generic version of ArrayList is denoted as

 ArrayList<E>.

where E is a placeholder or type parameter for some well-defi ned reference type such as

 String , Student , or Integer .
 The following segments demonstrate how to instantiate an ArrayList�E� object:

• ArrayList �Student�students;

 students � new ArrayList�Student�(); // holds Student references

• ArrayList �String�strings � new ArrayList�String�(); // holds String references

Indeed, the statements

 ArrayList�Student�entries � new ArrayList�Student�();
entries.add(new Integer(52));
entries.getName();

do not trigger a runtime error because they are caught fi rst by the compiler. An error is

fl agged at the compilation stage:

 add(Student) in ArrayList�Student�cannot be applied to (java.lang.Integer)
 entries.add(new Integer(52));

The error message asserts that a reference to an Integer object cannot be placed in a list that

is declared to hold references to Student objects. The type mismatch must be fi xed before

the application runs.

sim23356_ch16.indd 765sim23356_ch16.indd 765 12/15/08 7:13:30 PM12/15/08 7:13:30 PM

766 Part 3 More Java Classes

 Using the ArrayList�E� class, the SchoolLottery class of Example 16.1 can be

rewritten as:

 37. import java.util.*;

38. public class GenericSchoolLottery
39. {
40. private ArrayList�Student� entries; // holds Student references
41. public GenericSchoolLottery()
42. {
43. entries � new ArrayList�Student� (250); // initial capacity is 250
44. }

45. public void addStudents()
46. {
47–69. // as in Example 16.1
70. }

71. public void pickWinner()
72. {
73. // chooses a random entry and displays winner's name and ID
74. int numEntries � entries.size(); // size of ArrayList
75. Random random � new Random();
76. Student winner � entries.get(random.nextInt(numEntries));
77. System.out.print("The winner and Principal for a Day is ");
78. System.out.println (winner.getName()); // no cast necessary
79. System.out.print("The ID of the winner is ");
80. System.out.println (winner.getID()); // no cast necessary
81. }
82. }

 An ArrayList�Student� object is declared and instantiated on lines 40 and 43. In this

revised version of Example 16.1, the return type of get() (line 76) is Student , not Object .
The compiler knows that entries holds Student references. Also, a cast is no longer needed

on lines 78 and 80. Again, the compiler knows that winner is a reference to a Student
object. Of course, any subclass of Student is also a Student , so the array entries and the

variable winner can also refer to Student subclass objects. The compiler is a gatekeeper:

only Student references are allowed.

The most far-reaching benefi t the generic ArrayList�E� class is that the compiler can

recognize type mismatches before the program runs and subsequently crashes.

 16.3.1 A Few More Facts About Java Generics
 In general, a generic class has the form

 ClassName �E
1
 , E

2
 ,…,E

n
 �

where E
i
 are type parameters. Each E

i
 is a stand-in or placeholder for some reference type.

That is, the arguments supplied in place of each E
i
 cannot be primitive types.

sim23356_ch16.indd 766sim23356_ch16.indd 766 12/15/08 7:13:30 PM12/15/08 7:13:30 PM

 Chapter 16 Data Structures and Generics 767

 Restrictions on Generics

 Java places some restrictions on the uses of generics. Two of them are:

• Java does not allow generic arrays. The statement

 E[] myArray � new E[size]; // illegal

 attempts to create an array called myArray that holds elements of type E . This is illegal;

instead, use an explicit cast, such as

 E[] myArray � (E[]) new Object[size]; // legal

 Be aware, however, that the Java compiler will issue a warning to the effect that the

cast may be unsafe. Because of the way that Java implements generics, the compiler

has no way of knowing whether or not this type of cast is safe. Consequently, the com-

piler generates a warning message.

• Java does not permit instantiation of a generic type. For example, the method

 public illegalMethod (E t)
{
 E copy � new E(); // illegal
 // other statements
}

 generates a compilation error.

 Generics, Inheritance, and Polymorphism

 The use of inheritance in combination with generics naturally imposes a helpful limitation

on the kinds of types allowed. For example, the class declaration

 public className �T extends P�

restricts type parameter T to the class P and its subclasses.

 Consider the following small class that contains the method

 double findAverage().

 The method is supposed to calculate and return the average value of data in an array, list .
The type parameter T is intended to be a numeric type such as Integer , Double , Float , Byte ,

 Short , or Long .

 1. public class Average�T � // DOES NOT COMPILE
2. {
3. private T[] list;
4. public Average(T[] l)
5. {
6. list � l;
7. }
8. public double findAverage()
9. {
10. double sum � 0.0;
11. for (int i � 0; i � list.length; i��)
12. sum � sum � list[i].doubleValue();
13. return sum/list.length;
14. }
15. }

sim23356_ch16.indd 767sim23356_ch16.indd 767 12/15/08 7:13:31 PM12/15/08 7:13:31 PM

768 Part 3 More Java Classes

 Not surprisingly, the compiler voices the following objection:

 java:12: cannot find symbol
symbol : method doubleValue()
location: class java.lang.Object
 sum �� list[i].doubleValue();

This message makes perfect sense because the compiler does not know the data type of

 list and in theory, list can be any type. Indeed, to the compiler, the type of list is Object . In

practice, however, the method is meant to handle numeric types. Since each numeric type

extends the abstract class Number , we rewrite the class declaration as:

 public class Average�T extends Number�.

Now the only permissible types are those that extend Number , and the compiler knows that

 Number has a doubleValue() method. T is restricted; T is bounded. There is no compiler

error related to the doubleValue() . Here we have one more example of polymorphism.

 16.3.2 Which Is Better, ArrayList�E � or Array?
 Is an ArrayList�E� object preferable to an array? Not necessarily. One advantage that

 ArrayList�E� has is that the ArrayList�E� class supplies simple and convenient insertion

and removal methods. A call to add(i, x) makes room for element x and places x into the list

at position i . An array has simpler capabilities, and general insertions and deletions must

be programmed explicitly. Another advantage, of course, is that an ArrayList�E� object

can resize itself, while the size of an array remains fi xed. Nonetheless, the advantages of

 ArrayList�E� come with a cost: longer execution time.

 Behind the scenes, Java’s implementation of the ArrayList�E� class uses an array

for storage. An ArrayList�E� object resizes itself by copying all data into a new, larger

array. Obviously, this takes time. Furthermore, with each insertion or deletion, elements

may be shifted to make room for the new element or to close the gap left by the removal.

If elements are added or removed from or near the end of an ArrayList�E� object, the

operations are not so costly, but additions and removals near the beginning require shifting

almost every element in the list. Moreover, recall that an ArrayList�E� stores object refer-

ences, not primitives. Storing and retrieving primitives requires autoboxing and unboxing,

which takes time. Storing primitives in an array does not entail this cost.

 Therefore, if an application is not time-critical, or if the time payoff is worth the

convenience of the automatic insertion/removal methods and resizing capability, then

 ArrayList�E� is a good choice. On the other hand, many array operations are faster than

 ArrayList�E� operations. For example, access to elements in an ArrayList�E� requires

an method call; array access is direct. If you do not plan to make extensive use of the auto-

matic methods provided by ArrayList�E� , and you are able to avoid resizing the array,

then an array is probably a better choice. Resizing can be avoided by instantiating an array

large enough to handle the maximum number of elements. That is, you trade memory usage

for time, a classic software engineering choice.

 In short, the choice of array or ArrayList�E� depends on the application. Each has

advantages and drawbacks.

 16.4 A STACK

 Like an ArrayList , a stack is a dynamic ordered list of data. In contrast to an ArrayList ,
items can be added to and removed from just one end of the list, the top of the stack . Thus,

sim23356_ch16.indd 768sim23356_ch16.indd 768 12/15/08 7:13:31 PM12/15/08 7:13:31 PM

 Chapter 16 Data Structures and Generics 769

access to a stack is more restrictive than access to an ArrayList . Ironically, it is precisely this

restriction that makes a stack especially useful.

 A well-worn analogy compares a stack to a pile (or stack) of trays in a cafeteria. When

you remove a tray from the pile, you take the top tray (well, most people do!); when you

return a tray, you again place it on the top of the pile. You remove and add trays to the top

of the pile of trays. Similarly, you add (or push) and remove (or pop) elements from the top

of the stack. See Figure 16.3 .

A stack of trays

top

Remove a tray

top

Add a tray

top

 FIGURE 16.3 A stack of trays. Trays are removed from the top and inserted at the top.

 The last tray placed on the pile is the fi rst one taken from the pile. For example, if s is a

stack of strings that is initially empty, the operations

 push “Hamlet”,

 push “Rosencranz”, and

 push “Guildenstern”

place the three strings on s . Because “Guildenstern” is the last string pushed onto s , “Guil-

denstern” occupies the top position. See Figure 16.4 a. Two pop operations remove the top

two strings from s . See Figure 16.4 b.

“Guildenstern”
“Rosencranz”
“Hamlet”

(a) (b)

top

“Hamlet”top

 FIGURE 16.4 Stack s after (a) three strings are pushed onto s and (b) two popped

A stack is called a Last-In First-Out (LIFO) list because the last item pushed onto a

stack is always the fi rst item popped from the stack.

 Stacks have many natural and useful applications, including:

• determining whether or not the parentheses of an expression are balanced (Exam-

ple 16.3),

• traversing a graph or network (Example 16.4),

• storing information about nested method calls in a Java application,

• and evaluating numerical or algebraic expressions (Programming Problems 12 and 13).

And, these are just a few of many applications.

 In the next sections, we describe and implement a Stack class. We also use the Stack

class to check whether or not the parentheses, braces, and brackets of an expression are

balanced. You will see that the top-end restrictions of stack access are perfectly suited for

solving many different types of problems.

sim23356_ch16.indd 769sim23356_ch16.indd 769 12/15/08 7:13:32 PM12/15/08 7:13:32 PM

770 Part 3 More Java Classes

 16.4.1 Stack Implementation
 The standard stack operations include:

• Push: add an element the stack,

• Pop: remove and return the top element of the stack,

• Peek: view or “peek at” the top of the stack,

• Empty: determine whether or not there are any elements in the stack, and

• Size: get the number of elements stored in the stack.

We bundle these operations into an interface, StackInterface�E� , that declares the meth-

ods guaranteed to clients of any class that implements StackInterface�E� . Notice that the

StackInterface�E� is generic with type parameter E .

An interface as well as a class can be generic.

 1. public interface StackInterface�E�

2. {
3. public void push(E x);
4. // places x on a stack

5. public E pop();
6. // removes and returns the top item
7. // returns null if the stack is empty

8. public boolean empty();
9. // returns true if no elements are on the stack

10. public E peek();
11. // returns the top item, does not alter the stack
12. // returns null if the stack is empty

13. public int size();
14. // returns the number of items on the stack
15. }

Example 16.2 gives a complete implementation of a Stack�E� class.

 Problem Statement Design a Stack�E� class that implements StackInterface�E� .
Include a main(...) method that demonstrates the operation of a Stack�E� object.

 Java Solution How should the Stack�E� class provide storage for stack elements?

Our choices are limited to the structures we have studied—array or ArrayList�E� . A

stack is theoretically unlimited in size. Consequently, ArrayList�E� seems appropriate

since an ArrayList�E� object can accommodate an arbitrary number of data due to

automatic resizing. Although array access is faster, once an array is instantiated, its size

is fixed. ArrayList�E� has the disadvantage of slow insertions and deletions, but we can

avoid this by identifying the top of the stack with the end of the array. Since insertions

and deletions at the end of an ArrayList�E� object are done efficiently, no elements

 EXAMPLE 16.2

sim23356_ch16.indd 770sim23356_ch16.indd 770 12/15/08 7:13:32 PM12/15/08 7:13:32 PM

 Chapter 16 Data Structures and Generics 771

are shifted during push and pop operations. This makes ArrayList�E� an efficient and

convenient choice for a Stack�E� implementation.

 Figure 16.5 shows an ArrayList�E� implementation of an Integer stack after each

of four calls to push(…) . Remember that an ArrayList�E� object holds references. You

cannot store primitive values in an ArrayList�E� object.

6top

push(6)

push(28)

push(496)

push(8128)

496top

28top

60

281

60

8128

0

2

1

4962

3top

281

60

 FIGURE 16.5 An ArrayList implementation of Stack�Integer �
after four push (…) operations

 The implementation of Stack�E� follows.

 1. import java.util.*; // for ArrayList�E�

2. class Stack�E� implements StackInterface�E�

3. {
4. private ArrayList �E�items;

5. public Stack()
6. // default constructor; creates an empty stack
7. {
8. items � new ArrayList�E�(); // initial capacity is 10
9. }

10. public Stack(int initialCapacity)
11. // one argument constructor, creates a stack with initial capacity initialCapacity
12. {
13. items � new ArrayList�E�(initialCapacity);
14. }

15. public void push(E x)
16. {

sim23356_ch16.indd 771sim23356_ch16.indd 771 12/15/08 7:13:33 PM12/15/08 7:13:33 PM

772 Part 3 More Java Classes

17. items.add(x); // uses the ArrayList method add(E o)
18. }

19. public E pop()
20. {
21. if (empty()) // determine whether or not there is an item to remove
22. return null;
23. return items.remove(items.size()�1); // uses the ArrayList method remove(int n)
24. }

25. public boolean empty()
26. {
27. return items.isEmpty(); // uses the ArrayList method isEmpty()
28. }

29. public int size()
30. {
31. return items.size(); // uses the ArrayList method size()
32. }

33. public E peek()
34. {
35. if (empty()) // determine whether or not there is an item on the stack
36. return null;
37. return items.get(items.size() � 1); // uses the ArrayList method get(int i)
38. }

39. // the following main(…) method is included only to demonstrate Stack methods

40. public static void main (String[] args) // for demonstration only
41. {
42. Stack�Student� s � new Stack�Student�();
43. // push five Student references onto s
44. s.push(new Student("Spanky", "1245"));
45. s.push(new Student("Alfalfa", "1656"));
46. s.push(new Student("Darla", " 6525"));
47. s.push(new Student("Stimie", "1235"));
48. s.push(new Student("Jackie", "3498"));

49. System.out.println("The last name pushed was " � s.peek().getName());
50. System.out.println();
51. System.out.println("The names in reverse order are:");
52. while(!s.empty())
53. System.out.println(s.pop().getName());
54. System.out.println();
55. System.out.println("The size of the stack is now " � s.size());
56. }

57. }

 Output The Stack�E� class contains a main(…) method only to illustrate the properties

and methods of the class. Running the application produces the following output:

 The last name pushed was Jackie

sim23356_ch16.indd 772sim23356_ch16.indd 772 12/15/08 7:13:34 PM12/15/08 7:13:34 PM

 Chapter 16 Data Structures and Generics 773

The names in reverse order are:
Jackie
Stimie
Darla
Alfalfa
Spanky

The size of the stack is now 0.

 Discussion
Line 2: Stack�E� is a generic class. The type parameter E is a stand-in or

placeholder for a reference type E .

 Line 4: Stack�E� data are stored in the ArrayList�E� items .

Lines 5–9: By default, the initial capacity of items is 10. Thus, the stack can hold

10 items before the underlying ArrayList�E� object must be resized. Of course,

the initial stack size is 0. Do not confuse the array capacity with the size of the

stack.

 Lines 10–14: The one-argument constructor sets the initial capacity of items to

 initialCapacity . The initial stack size is 0 as it is in the default constructor.

 Lines 15–18: The push(E x) method places an element x on the top of the stack.

The add(E x) method of ArrayList�E� inserts item x of type E at the end of items .
The top of the stack is the element at position items.size() – 1 .

 Lines 19–24: To remove an item from the stack, first check that the stack

is not empty (line 21). If there is at least one item on the stack, the call

 items.remove(items.size() – 1) removes the last item that was placed into items .
That is, the call removes the element that is on top of the stack, and returns that

item.

 The other methods of Stack are straightforward and require no explanation.

 A main(…) method is included to demonstrate the properties of a Stack�E� object.

A Stack�E� must be declared and instantiated with a type parameter as illustrated on

line 42. Here the type parameter is the class Student . Once a Stack�E� object is instan-

tiated, fi ve student objects are pushed onto the stack and then removed from the stack.

Notice that the objects come off the stack in reverse order.

 16.4.2 A Stack for Checking Balanced Parentheses, Brackets, and Braces
 Have you ever written a Java expression such as

 x[(a � b) � 5)] � 23;

only to have the compiler complain that your expression is missing a parenthesis? (Notice

that an opening parenthesis is missing in front of variable a .)

 Expressions and statements typically include parentheses, braces, and brackets;

syntactically correct expressions require balanced parentheses, braces, and brackets.

For example, the parentheses in the expression ((2 � 3) * 3) are balanced, but those in

 ((2 � 3) * 3 are not. The parentheses and brackets of myArray[2 * (3 � 4)] are balanced, but

the brackets of yourArray[2 * (3 � 4)[are not.

sim23356_ch16.indd 773sim23356_ch16.indd 773 12/15/08 7:13:34 PM12/15/08 7:13:34 PM

774 Part 3 More Java Classes

 With the aid of a stack, determining whether or not the parentheses, braces, and brackets

of an expression are balanced is an easy task that is specifi ed by the following algorithm:

• initialize a stack to empty

• for each character, ch , of an expression

• if ch is a left parenthesis (, brace {, or bracket [
 push ch onto the stack

• if ch is a right parenthesis, brace, or bracket

 if a matching left parenthesis, brace, or bracket is on top of the stack
 pop the stack

else
 report an error and stop

// No characters remain as input.
• if the stack is empty, the expression is correctly balanced. Otherwise, it is not

 Figure 16.6 illustrates the algorithm and Example 16.3 implements the algorithm.

Stack Input String Action

empty ([2 � 3] � (a � b) � 1) Push (

([2 � 3] � (a � b) � 1) Push [

([(top) 2 � 3] � (a � b) � 1) read 2

([�3] � (a � b) � 1) read �

([3] � (a � b) � 1) read 3

([] � (a � b) � 1) read] Pop the matching left bracket [

(� (a � b) � 1) read �

((a � b) � 1) Push (

((a � b) � 1) read a

((�b) � 1) read �

((b) � 1) read b

(() � 1 read) Pop the matching left parenthesis (

(�1) read �

(1) read 1

() read) Pop the matching left parenthesis (

empty end of string The expression is balanced.

 FIGURE 16.6 Using a stack to check that ([2 � 3] � (a � b) � 1) is balanced

 Problem Statement Implement a class with a single utility method

 public static void boolean expressionChecker(String ex)

that determines whether or not the parentheses, braces, and brackets of ex are balanced.

Include a main(…) method that tests expressionChecker(…) .

 Java Solution The following application implements the previous algorithm using

a stack of Character references. Recall that primitive values cannot be stored in a
 Stack�E� object.

 EXAMPLE 16.3

sim23356_ch16.indd 774sim23356_ch16.indd 774 12/15/08 7:13:36 PM12/15/08 7:13:36 PM

 Chapter 16 Data Structures and Generics 775

 1. import java.util.*;

2. public class ExpressionChecker
3. {

4. public static boolean checkExpression(String ex)
5. {
6. Stack�Character� stack � new Stack�Character�();
7. for (int i � 0; i � ex.length(); i��)
8. {
9. char ch � ex.charAt(i);
10. // if ch is a left parenthesis, brace, or bracket push ch onto the stack
11. if (ch �� '(' || ch �� '[' || ch �� '{')
12. stack.push(ch);

13. // if ch is a left parenthesis and there is a matching right parenthesis on the stack, pop
14. else if (ch �� ')' && (!stack.empty()) && stack.peek().equals('('))
15. stack.pop();

16. // if ch is a left bracket and there is a matching right bracket on the stack, pop
17. else if (ch �� '] ' && (!stack.empty()) && stack.peek().equals('['))
18. stack.pop();

19. // if ch is a left brace and there is a matching right brace on the stack, pop
20. else if (ch �� '}' && (!stack.empty()) && stack.peek().equals('{'))
21. stack.pop();

22. // if ch is a left parenthesis, bracket, or brace with no match on the stack,error
23. else if (ch �� ')' || ch �� '] ' || ch �� '}')
24. return false; // expression is incorrect
25. }
26. if (!stack.empty())
27. return false;
28. return true;
29. }

30. public static void main(String [] args)
31. {
32. Scanner input � new Scanner(System.in);
33. System.out.println("Enter an expression; press �ENTER� to exit");
34. System.out.print(": ");

35. String expression � input.nextLine();
36. do
37. {
38. boolean correct � checkExpression(expression);
39. if (correct)
40. System.out.println("Expression " � expression � " is correct");
41. else
42. System.out.println("Expression " � expression � " is incorrect");
43. System.out.print("\n: ");
44. expression � input.nextLine();
45. } while (!expression.equals(""));
46. }
47. }

 Output
 Enter an expression; press �ENTER� to exit
: (1 � 3) * (3 � 5) * 4
Expression (1 � 3) * (3 � 5) * 4 is correct

sim23356_ch16.indd 775sim23356_ch16.indd 775 12/15/08 7:13:37 PM12/15/08 7:13:37 PM

776 Part 3 More Java Classes

: (1 � 3) * x [3 � 2] � (a � 5
Expression (1 � 3) * X [3 � 2] �(a � 5 is incorrect

: array[3 � (4 � 5]
Expression array[3 � (4 � 5] is incorrect

 Discussion The statement on line 6 instantiates a Stack �Character� object. How-

ever, the statement on line 12

 stack.push(ch);

pushes a primitive value onto the stack. Once again, autoboxing invisibly wraps the

value of ch with a Character object. The statement stack. push(ch) is identical to

stack.push(new Character(ch)) .
 Also, notice the check

 (!stack.empty())

on lines 14, 17, and 20. Without fi rst checking whether or not the stack is empty, the

notorious NullPointerException could occur in an attempt to evaluate

 stack.peek().equals('('),
stack.peek().equals('{'), or
stack.peek().equals('[').

 The next example uses a stack to traverse a network of interconnected rooms in a

rather peculiar house.

 The following is an excerpt from the famous short story “The Lady or the Tiger” written

by Frank Stockton in 1884.

 In the very olden time there lived a semi-barbaric king. … When a subject was

accused of a crime of suffi cient importance to interest the king, public notice was

given that on an appointed day the fate of the accused person would be decided

in the king’s arena. … Directly opposite [the accused subject], were two doors,

exactly alike and side-by-side. It was the duty and the privilege of the person on

trial to walk directly to these doors and open one of them. He could open either

door he pleased. … If he opened the one, there came out of it a hungry tiger, the

fi ercest and most cruel that could be procured, which immediately sprang upon

him and tore him to pieces as a punishment for his guilt. … But, if the accused

person opened the other door, there came forth from it a lady, the most suitable to

his years and station that his majesty could select among his fair subjects, and to

this lady he was immediately married, as a reward of his innocence. … This was

the king’s semi-barbaric method of administering justice. Its perfect fairness is

obvious. The criminal could not know out of which door would come the lady;

he opened either he pleased, without having the slightest idea whether, in the next

instant, he was to be devoured or married.

If you have not read the story, you will certainly fi nd the ending surprising. We won’t

spoil it for you here.

 In Hollywood’s version of Stockton’s tale, the semi-barbaric king, now portrayed

as fully barbaric, is bored with simple two-door trials. He has bigger ideas. Two doors?

Why not twenty-two doors? So, he summons the royal architects and builders (also

 EXAMPLE 16.4

sim23356_ch16.indd 776sim23356_ch16.indd 776 12/15/08 7:13:37 PM12/15/08 7:13:37 PM

 Chapter 16 Data Structures and Generics 777

barbaric) and commissions a soundproof 22-room house built on the lowest level of his

arena. The roof of the house is built using a one-way mirror that allows spectators to see

into the house. Hey, this is Hollywood! Figure 16.7 is a blueprint of the king’s “house of

trials.” The small rectangles between rooms designate doors.

0

2 1 8 13

6
3

5

4

7

9

11

10

12

14

18

16

19

15

21

17

20

 FIGURE 16.7 The king’s new House of Trials

 The network (also called a graph) in Figure 16.8 is a second view of the house. Each

numbered circle (vertex) represents a room and each line (edge) that joins two vertices

is a door between rooms.

0 1

2
3

4

5
6 7

9

8
13

11

12

10

17

20

21

18

14
19

15

16

 FIGURE 16.8 The House of Trials of Figure 16.7 , displayed as a network

 A blindfolded prisoner is led into the house and abandoned in one of the rooms, where

his blindfold is removed. In another room the lady waits, and in a third room the tiger

snarls. Unable to hear the cheers and jeers of curious spectators, the prisoner wanders

through the house, from room to room to room, until he fi nds either the lady who leads

him to marital bliss or the tiger that . . . well, you know.

 If you examine the network in Figure 16.8 , you will see that every room is acces-

sible from every other room. So if the prisoner systematically moves through the house,

he will eventually come upon either the lady or the tiger.

 Problem Statement Write an application that simulates the movements of the prisoner

through the rooms of the house. The application should report the rooms that the prisoner

visits, in the order that he visits them, as well as the final outcome—the lady or the tiger.

sim23356_ch16.indd 777sim23356_ch16.indd 777 12/15/08 7:13:39 PM12/15/08 7:13:39 PM

778 Part 3 More Java Classes

 Java Solution Before we can implement an algorithm that moves the prisoner

through the house, we must decide on an internal representation of the house. On

paper, Figures 16.7 and 16.8 visually capture the important features of the house—the

number and location of rooms and the location of each doorway. But these diagrams

cannot serve as data for an “eyeless” program. We choose to represent Figures 16.7

and 16.8 as a two-dimensional array, rooms . The rows and columns of rooms are

indexed by the room numbers. If i and j are two room numbers, then

 rooms(i, j) � 1 if there is a door between room i and room j.
rooms(i, j) � 0 if there is no door between room i and room j.

 Figure 16.9 shows a small network of rooms and the corresponding array representation.

0 1

2
3

0 1 1 0
1 0 1 1

2 1 0 0
3 1

0

1 2 30

1

1
0 0 0

 FIGURE 16.9 A small network and its array representation

 The prisoner “visits” rooms until he discovers the lady or the tiger. To ensure that

the program eventually terminates, the prisoner never revisits the same room. Here is

one method that systematically moves the prisoner through the house until the lady or

the tiger is discovered. Notice that he never “visits” a room twice, although he may

backtrack through a previously visited room.

 Mark the initial room as visited.
Push the initial room onto a stack of room numbers.
// the room at the top of the stack is the room currently occupied by the prisoner
// the stack “remembers” previously visited rooms

while both the lady and the tiger are undiscovered
{
 if there is an unvisited room r adjacent to the room on top of the stack (the current room)
 Visit r; mark r as visited.
 if the lady or tiger is in r,
 the search is over
 otherwise
 push r onto the stack, that is, move the prisoner to room r.

 else if there is no unvisited room adjacent to the room on top of the stack
 backtrack to the previous room , that is, pop the stack
 // the most recently visited room is now on top of the stack
}
report the results

 For example, using Figure 16.8 as a map, assume that the entry room is room 0; the

tiger is in 4; and the lady in 14. From room 0, the prisoner might move to room 1, then

from 1 to 2. Room 2 is a dead end; he can move to no unvisited rooms from 2 because

he has already visited 0 and 1. So, he backtracks to room 1. And, from 1 he can move to

3, then to 5, then to 6. Room 6 is a dead end, so he backtracks to 5. From 5, he can go to

7, and to 4, where he meets an unfortunate fate.

 We use a stack to implement backtracking. Each time the prisoner enters a room,

push the room onto the stack. If the prisoner is ever in a room that is a dead end, then

sim23356_ch16.indd 778sim23356_ch16.indd 778 12/15/08 7:13:40 PM12/15/08 7:13:40 PM

 Chapter 16 Data Structures and Generics 779

pop the stack, that is, backtrack, and continue from there. The stack keeps track of previ-

ous rooms so the prisoner can easily backtrack. Unlike Grimm’s Hansel and Gretel, this

prisoner has no need to leave a trail of pebbles or breadcrumbs. The stack is better than

any trail.

 Here is an implementation.

 1. import java.util.*;

2. public class LadyOrTiger
3. {
4. final int numRooms � 22;
5. private int[][] rooms � // 2d array representation of the house or network
6. {
7. {0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
8. {1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
9. {1,1,0},
10. {0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
11. {0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0},
12. {0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
13. {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
14. {0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
15. {0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},
16. {0,0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0},
17. {0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
18. {0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0},
19. {0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0},
20. {0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0},
21. {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},
22. {0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0},
23. {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0},
24. {0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0},
25. {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0},
26. {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0},
27. {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1},
28. {0,1,0}};

29. private boolean[] visited; // visited[i] � true when a room is visited
30. private int currentRoom, lady, tiger; // room numbers
31. private Stack<Integer> roomStack; // used for backtracking
32. public LadyOrTiger()
33. {
34. Scanner input � new Scanner(System.in);
35. System.out.print("What is the starting room?: ");
36. currentRoom � input.nextInt();
37. System.out.print("Where is the tiger? ");
38. tiger � input.nextInt();
39. System.out.print("Where is the lady? ");
40. lady � input.nextInt();
41. visited � new boolean[numRooms];
42. // no rooms have been visited yet;
43. for (int i � 0; i < numRooms; i��)
44. visited[i] � false;
45. roomStack � new Stack<Integer>();
46. }

47. private int nextRoom(int room) // helper method is private
48. {
49. // returns the room number of an unvisited room selected at random
50. // from the unvisited rooms adjacent to room .
51. // If there is no unvisited room adjacent to room returns noRoom (�1)

sim23356_ch16.indd 779sim23356_ch16.indd 779 12/15/08 7:13:40 PM12/15/08 7:13:40 PM

780 Part 3 More Java Classes

52. // pick the next room randomly from all unvisited adjacent rooms

53. final int noRoom � �1;
54. Random rand � new Random();

55. // holds a list of unvisited rooms that are adjacent to room
56. ArrayList<Integer> unvisitedRooms � new ArrayList<Integer>();
57. for (int i � 0; i < numRooms; i��)
58. if (rooms[room][i] �� 1 && !visited[i]) // get a list of unvisited rooms adjacent to room
59. unvisitedRooms.add(i);
60. if (unvisitedRooms.size() > 0) // pick an unvisited room at random
61. {
62. int roomNumber � rand.nextInt(unvisitedRooms.size());
63. return unvisitedRooms.get(roomNumber);
64. }
65. return noRoom; // no unvisited room available
66. }

67. public void search()
68. {
69. visited[currentRoom] � true;
70. roomStack.push(currentRoom);
71. boolean fateDecided � false;
72. int room � �1;
73. System.out.println("\nStarting in room " � currentRoom � " the prisoner visits rooms:");

74. while (!fateDecided)
75. {
76. // Is there an unvisited room adjacent to the current room?
77. room � nextRoom(roomStack.peek());
78. if (room > � 0) // if there is an unvisited room, visit that room
79. {
80. visited[room] � true;
81. System.out.println(room);
82. if (room �� lady || room �� tiger)
83. fateDecided � true;
84. else
85. roomStack.push(room); // the "current room" is now on top of the stack
86. }
87. else // backtrack
88. roomStack.pop();
89. }
90. if (room �� lady)
91. System.out.println("He found the lady in room " � room);
92. else
93. System.out.println("He found the tiger in room " � room);
94. }

95. public static void main(String[] args)
96. {
97. LadyOrTiger ladyOrTiger � new LadyOrTiger();
98. ladyOrTiger.search();
99. }
100. }

 Output Running the simulation twice with the same input data produces the

following different results. Because the “next room” is selected randomly , the

outcomes differ.

sim23356_ch16.indd 780sim23356_ch16.indd 780 12/15/08 7:13:41 PM12/15/08 7:13:41 PM

 Chapter 16 Data Structures and Generics 781

Output 1 Output 2

What is the starting room?: 0
Where is the tiger? 19

Where is the lady? 21

Starting in room 0 the prisoner visits rooms:
1
3
5
6
14
18
19
He found the tiger in room 19

What is the starting room?: 0
Where is the tiger? 19

Where is the lady? 21

Starting in room 0 the prisoner visits rooms:
1
3
5
6
7
4
8
13
9
11
15
16
12
17
20
21
He found the lady in room 21

Trace Trace

Here is what happens:

0→1→3→5→6→(backtrack to
5)→14→18→19

Here is what happens:

0→2→1→3→5→6→ (backtrack to
5)→7→4→8→13→9→11→15→16→(backtrack
to 15)→(backtrack to 11)→12→17→20→21

 Discussion
Lines 5–28: Here we have hard-wired the rooms array into the code. Of course

this works, but a more flexible version would read the data from a text file.

Lines 47–56: The method

 int nextMove(int room)

accepts a room number and returns the number of an unvisited adjacent room,

chosen randomly. The room need not be chosen randomly. For example, the room

can be chosen as the adjacent room with the lowest number or the one with the

highest number. We choose a random room number to add some non-determinism

to the problem. As you can see from the sample output, identical input does not

produce identical output.

 16.5 A QUEUE

 Like a stack, a queue is an ordered list of data into which data can be inserted and

removed. However, unlike a stack, data is always inserted at one end of a queue, the
rear , and removed from the other end, the front . Figure 16.10 contrasts a queue and a

stack.

sim23356_ch16.indd 781sim23356_ch16.indd 781 12/15/08 7:13:41 PM12/15/08 7:13:41 PM

782 Part 3 More Java Classes

Insert and remove from a queue Insert and remove from a stack

“Zeus”

“Hera”

“Hercules”

Insert “Zeus”
Insert “Hera”
Insert “Hercules”

front

rear

“Hera”

“Hercules”
remove one item

front

rear

“Hera”

“Hercules”

“Hades”

insert “Hades”

front

rear

“Hercules”

“Hera”

“Zeus”

push “Zeus”
push “Hera”
push “Hercules”

top

“Hera”

“Zeus”

pop the stack top

“Hades”

“Hera”

“Zeus”

push “Hades”

top

FIGURE 16.10 Contrasting operations: a queue and a stack

 You might imagine a queue as a waiting line—the kind that you would fi nd in a bank, a

movie theater, or a grocery store. Customers arrive and join the line at the rear, and custom-

ers are serviced from the front of the line.

A queue is called a FIFO list – First In, First Out.

 16.5.1 Queue Implementation
 Typical queue operations include:

• insert: add an item to the rear of the queue.

• remove: remove and return an item from the front of the queue.

• peek: view or “peek at” the front item.

• empty: determine whether or not there are any elements in the queue.

• size: get the number of elements stored in the queue.

These queue operations are specifi ed in the following generic interface:

 1. public interface QueueInterface�E�

2. {
3. public void insert(E x);
4. // inserts x at the rear of the queue

5. public E remove();
6. // removes and returns the front item
7. // returns null if the queue is empty

8. public boolean empty();
9. // returns true if no elements are in the queue

sim23356_ch16.indd 782sim23356_ch16.indd 782 12/15/08 7:13:42 PM12/15/08 7:13:42 PM

 Chapter 16 Data Structures and Generics 783

10. public E peek();
11. // returns the front item, does not alter the queue
12. // returns null if the queue is empty

13. public int size();
14. // returns the number of items in the queue
15. }

As in the case of a stack, we can implement a queue using an ArrayList�E� for storage.

However, this is not the most expedient implementation. Suppose, for example, that items

is an ArrayList�E� and that items holds queue elements. The insert() operation can be

implemented as:

 void insert(E x)
{
 items.add(x):
}

which places element x at the end of items . The method is easy and effi cient.

 On the other hand, the remove() operation, although easy to implement, is not particu-

larly effi cient. If the fi rst queue element is always located at position 0, the remove opera-

tion can be implemented as:

 E remove()
{
 if (empty())
 return null;
 return items.remove(0);
}

The method works correctly but at a cost. When the element at position 0 is deleted from

an ArrayList�E� object, all other elements in the list are shifted. That is, the element in

position 1 is moved to position 0, the element in position 2 is moved to position 1, and so

on. So every remove() operation requires that all remaining elements in items be moved. If

a queue contains 10,000 elements, a single remove() operation requires 9,999 data shifts.

This is not the case with our stack implementation, where the pop() operation removes the

element stored at the position with the highest index. No shifting occurs.

 A queue can be more effi ciently implemented using a simple array for storage. The

only real limitation with such an implementation is that the size of an array is fi xed. How-

ever, if you can estimate the maximum size of a queue, an array implementation is a good

option.

 Figure 16.11 shows a queue that uses an array, items , with maximum capacity 5. The

variable front holds the index of the fi rst item in the queue and a second variable rear holds

the index of the last item in the queue. Figure 16.11 a shows the queue after four insert

operations, (b) after two remove operations, and (c) after one more insert operation.

 The queue shown in Figure 16.11 c contains just three elements, which are stored

in items[2], items[3] , and items[4]; front has the value 2 and rear has the value 4. Will

one more insert() operation throw an ArrayOutOfBoundsException ? Well, not necessar-

ily. There are two available cells in the array: items[0] and items[1]. If the next insert

operation, insert("Saturn") , places "Saturn" in items[0] , then no error occurs. That is, we

consider items[0] to be the cell that follows items[4] . In practice, we imagine the array as

circular. Figure 16.12 shows that the items in the queue, from front to rear , are stored in

locations 2, 3, 4, and 0.

sim23356_ch16.indd 783sim23356_ch16.indd 783 12/15/08 7:13:43 PM12/15/08 7:13:43 PM

784 Part 3 More Java Classes

 By using a “circular array,” we do not waste any array locations, and the queue can

hold as many elements as exist in the underlying array. Nevertheless, overfl ow errors can

still occur once we use all the space in the array.

 Example 16.5 gives an array implementation of a class Queue<E>.

front

rear

0

1

“Earth”2

“Mars”

“Jupiter”

3

insert(“Jupiter”)

4

(c)

“Mercury”front

rear

0

“Venus”1

“Earth”2

“Mars”3

insert(“Mercury”)

insert(“Venus”);

insert(“Earth”)

insert(“Mars”);

4

(a)

front

rear

0

1

“Earth”2

“Mars”3

4

(b)

remove()

remove()

FIGURE 16.11 A queue implemented as an array of size 5

3

“Saturn”
“Saturn”

front

rear 0

0 rear

1

2
front

4

“Jupiter”

“Jupiter”
1

“Earth”

“Earth”

2

“Mars”
“Mars”

3

insert(“Saturn”)

4

FIGURE 16.12 A circular array used to implement a queue

 Problem Statement Implement a queue using a circular array for storage. The
 Queue�E� class should implement QueueInterface�E� .

 Java Solution The Queue�E� class uses an array, items for storage. There are also

four integer fields:

 • front , which holds the index of the fi rst item in the queue,

 • rear , which holds the index of the last item in the queue,

 • numItems , which stores the number of items in the queue, and

 • maxQueue , which stores the maximum capacity of the queue.

The array, items , is considered circular. This means that, if space remains, items[0]
is the storage location following items[maxQueue � 1] , where maxQueue is

 items.length .

 EXAMPLE 16.5

sim23356_ch16.indd 784sim23356_ch16.indd 784 12/15/08 7:13:43 PM12/15/08 7:13:43 PM

 Chapter 16 Data Structures and Generics 785

 Because an array has a fi xed size, it is possible to exceed the capacity of a queue.

In this case, the insert() method issues a message and exits. Alternatively, insert() might

throw an exception.

 The following implementation includes a main(…) method that demonstrates some

of the queue operations.

 1. import java.util.*;

2. public class Queue <E>implements QueueInterface<E>
3. {
4. private E[] items;
5. private int numItems; // number of elements currently in the queue

6. int front, rear; // holds the indices of the front and rear elements
7. int maxQueue; // maximum capacity

8. public Queue() // default constructor, sets maxQueue to 10
9. {
10. items � (E[]) new Object[10]; // new E[10] is illegal; the cast is necessary
11. numItems � 0;
12. front � rear � �1; // �1 indicates that the queue is empty
13. maxQueue � 10;
14. }

15. public Queue(int max) // one argument constructor, accepts maximum capacity
16. {
17. maxQueue � max;
18. items � (E[]) new Object[maxQueue]; // new E[maxQueue] is illegal; the cast is necessary
19. numItems � 0;
20. front � rear � �1; // �1 indicates that the queue is empty
21. }

22. public void insert(E x)
23. // inserts x at the rear of the queue
24. // if overflow occurs, issues a message and exits
25. {
26. if (numItems �� maxQueue) // queue is full
27. {
28. System.out.println("Queue Overflow");
29. System.exit(0);
30. }

31. rear � (rear � 1) % maxQueue; // % maxQueue ensures wraparound
32. items[rear] � x;
33. numItems��;
34. if (numItems �� 1) // if queue was previously empty
35. front � rear;
36. }

37. public E remove()
38. // removes and returns the first item in the queue
39. // if the queue is empty, returns null
40. {
41. if (numItems �� 0) // empty queue
42. return null;
43. E temp � items[front]; // holds the first item in the queue
44. numItems��;
45. if (numItems �� 0) // if the queue is now empty set front and rear to –1
46. front � rear � �1;
47. else
48. front � (front � 1) % maxQueue; // %maxQueue ensures wraparound

sim23356_ch16.indd 785sim23356_ch16.indd 785 12/15/08 7:13:44 PM12/15/08 7:13:44 PM

786 Part 3 More Java Classes

49. return temp;
50. }

51. public E peek()
52. // returns the first item in the queue or null if the queue is empty
53. // does not alter the queue
54. {
55. if (numItems �� 0) // empty queue
56. return null;
57. else
58. return items[front];
59. }

60. public boolean empty()
61. // returns true if the queue is empty
62. {
63. return numItems �� 0;
64. }

65. public int size()
66. // returns the number of items currently in the queue
67. {
68. return numItems;
69. }

70. public static void main(String[] args)
71. {
72. Queue <String>q � new Queue<String>(5);
73. q.insert("Mercury");
74. q.insert("Venus");
75. q.insert("Earth");
76. System.out.println(q.remove() � "removed from queue");
77. q.insert("Mars");
78. q.insert("Jupiter");
79. System.out.println(q.remove() � "removed from queue");
80. q.insert("Saturn");
81. System.out.println(q.remove() � "removed from queue");
82. q.insert("Uranus");
83. q.insert("Neptune");
84. System.out.println(q.remove() � "removed from queue");
85. System.out.println(q.remove() � "removed from queue");
86. System.out.println(q.remove() � "removed from queue");
87. System.out.println(q.remove() � "removed from queue");
88. System.out.println(q.remove() � "removed from queue");
89. System.out.println("Number of remaining items" � q.size());
90. }
91. }

 Output

 Mercury removed from queue
Venus removed from queue
Earth removed from queue
Mars removed from queue
Jupiter removed from queue
Saturn removed from queue
Uranus removed from queue
Neptune removed from queue
Number of remaining items 0

sim23356_ch16.indd 786sim23356_ch16.indd 786 12/15/08 7:13:44 PM12/15/08 7:13:44 PM

 Chapter 16 Data Structures and Generics 787

 Discussion A few lines in the implementation of Queue<E> may need a bit of

clarifi cation.

 Lines 10 and 18:

 items � (E[]) new Object[10];

items � (E[]) new Object[maxQueue];

As noted in Section 16.3, Java does not allow generic arrays. The statement

 items � new E[10];

results in a compilation error. To avoid this error, we instantiate an array of Object
and cast that to E[] .
 When the class is compiled, the compiler issues a warning to the effect that

the cast on lines 10 and 18 may be unsafe. However, no problem occurs here

because every item in the queue belongs to the class represented by E .

 Lines 31 and 48:

 rear � (rear � 1) % maxQueue;

front � (front � 1) % maxQueue;

These lines effect wraparound. For example, suppose that that maximum

capacity of a queue is 10, and that the queue consists of three items stored at

 items[7], items[8] , and item[9]. Since the value of rear is 9,

 rear � (rear � 1)% maxQueue � (9 � 1)% 10 � 0.

Thus, the next item is stored at items[0]. The array is circular; 0 follows 9.

 16.5.2 Queues for Simulation

A queue is an excellent tool for simulations.

 From cars lined up at a tollbooth to print jobs waiting for a printer, queues abound in eve-

ryday life. The next example uses a queue to model and simulate a customer waiting line

at an ATM machine.

 EXAMPLE 16.6 During lunch hour, the ATM machine in a large offi ce complex is in heavy demand.

Customers complain that the waiting time is much too long. The local bank is consider-

ing the addition of a second machine. But fi rst, the bank needs a few statistics to justify

the cost.

 Problem Statement Simulate a waiting line at the ATM machine for a period of one

hour. Make the following assumptions:

 • With equal probability, a customer spends:

 one minute,

 two minutes, or

 three minutes

at the ATM machine.

sim23356_ch16.indd 787sim23356_ch16.indd 787 12/15/08 7:13:45 PM12/15/08 7:13:45 PM

788 Part 3 More Java Classes

 • During any minute:

 no customers arrive (50% chance),

 one customer arrives (40% chance), or

 two customers arrive (10% chance).

At the end of an hour, display the following summary statistics:

 • the number of customers served, that is, the number who accessed the ATM machine,

 • the average time that a customer waits in line before being served, and

 • the number of customers that remain in the waiting line at the end of the

simulation.

 Assume that the ATM is available when the simulation begins and that no customers

are waiting.

 Java Solution Before considering an algorithm that simulates the comings and goings

of customers at an ATM machine, we design a class that models an ATM customer.

 A customer knows his/her arrival time and how much time he/she spends making

an ATM transaction. The following class encapsulates a customer.

1. import java.util.*;

2. public class Customer
3. {
4. private int arrivalTime; // 0..60, the minute of the hour when a customer arrives
5. private int serviceTime; // 1, 2, or 3 minutes

6. public Customer() // default constructor
7. {
8. arrivalTime � 0;
9. serviceTime � 0;
10. }

11. public Customer(int arrTime) // one argument constructor
12. {
13. arrivalTime � arrTime;
14. Random rand � new Random();
15. serviceTime � rand.nextInt(3) � 1; // 1, 2, or 3 minutes
16. }

17. public void setArrivalTime(int arrTime)
18. {
19. arrivalTime � arrTime;
20. }

21. public int getArrivalTime()
22. {
23. return arrivalTime;
24. }

25. public void setServiceTime(int ser)
26. {
27. serviceTime � ser;
28. }

29. public int getServiceTime()
30. {
31. return serviceTime;
32. }
33. }

 The algorithm that simulates an ATM waiting line uses a loop that ticks through a

60-minute simulation.

sim23356_ch16.indd 788sim23356_ch16.indd 788 12/15/08 7:13:46 PM12/15/08 7:13:46 PM

 Chapter 16 Data Structures and Generics 789

 For each minute from 0 through 59
{
 Determine the number of new customers arriving: 0, 1, or 2;
 For each new customer
 Place the new customer in the queue;

 If there are customers waiting and the ATM is available
 {
 Remove a customer from the queue;
 Increment the number of customers served ;
 Add to the total waiting time the waiting time of the current customer;
 Update the time the ATM is next available;
 }
}
Print the summary statistics;

 The following class implements this algorithm.

33. import java.util.*;

34. public class ATMSimulation
35. {
36. Customer customer;
37. int ATMisAvailable; // time the ATM is next available
38. int numArrivals; // number of arrivals in any minute
39. Queue<Customer> queue;

40. // statistics
41. int totalWaitingTime; // for all customers
42. int numCustomersServed;

43. public ATMSimulation() // default constructor
44. {
45. ATMisAvailable � 0; // assume the ATM is available at time 0
46. numArrivals � 0;
47. totalWaitingTime � 0;
48. numCustomersServed � 0;
49. queue � new Queue<Customer>(200);
50. }

51. private int getArrivals()
52. // generate a random integer in the range 0..9
53. // if the random integer is 0, 1, 2, 3, or 4, then no arrivals (50% chance)
54. // if the random integer is 5, 6, 7, or 8, then 1 arrival (40% chance)
55. // if the random integer is 9, then 2 arrivals (10% chance)
56. {
57. Random rand � new Random();
58. int randomInteger � rand.nextInt(10); // 0..9
59. if (randomInteger <� 4) // 0..4
60. return 0; // 50% chance of a single arrival
61. if (randomInteger <� 8) // 5..8
62. return 1; // 40% chance of a single arrival
63. return 2; // 10% chance of 2 arrivals
64. }

65. private void displayStatistics()
66. {
67. System.out.println("Number of customers served" � numCustomersServed);
68. System.out.println("Average wait is about " �
69. totalWaitingTime/numCustomersServed � "minutes");

sim23356_ch16.indd 789sim23356_ch16.indd 789 12/15/08 7:13:47 PM12/15/08 7:13:47 PM

790 Part 3 More Java Classes

70. System.out.println("Customers left in queue: " � queue.size());
71. }

72. public void simulate()
73. {
74. for (int time � 0; time < 60; time��) // for each minute
75. {
76. numArrivals � getArrivals(); // how many customers arrive?
77. for (int i � 1; i <� numArrivals; i��) // place each arrival into the queue
78. queue.insert(new Customer(time));
79. if (!queue.empty() && ATMisAvailable <� time)
80. {
81. customer � queue.remove(); // remove the next customer from the waiting line
82. // Determine the next time that the ATM is available: current time � service time
83. ATMisAvailable � time � customer.getServiceTime();
84. // how long did this customer wait?
85. int timeCustomerWaited � time � customer.getArrivalTime();
86. totalWaitingTime �� timeCustomerWaited; // add customer's wait to total wait
87. numCustomersServed��;
88. }
89. }
90. displayStatistics();
91. }

92. public static void main(String[] args)
93. {
94. ATMSimulation atmSim � new ATMSimulation();
95. atmSim.simulate();
96. }
97. }

 Output Running the application three times produced the following output:

 Number of customers served 30
Average wait is about 5 minutes
Customers left in queue: 16

Number of customers served 29
Average wait is about 8 minutes
Customers left in queue: 13

Number of customers served 32
Average wait is about 6 minutes
Customers left in queue: 6

 Discussion The application simulates the waiting line for each minute of

an hour. During any minute, customers can arrive as well as gain access to the

ATM machine. At the end of the 60-minute interval, a call to the helper method

displayStatistics() prints the summary statistics. The loop on lines 74–89 is the heart

of the simulation.

 The getArrivals() method (lines 51–64) merits some explanation. One of the assump-

tions of the simulation is that the number of arrivals during any particular minute is 0, 1,

or 2 customers with probabilities of 0.50, 0.40, and 0.10, respectively. The method fi rst

generates a random integer between 0 and 9 inclusive. The probability that this random

integer is 0, 1, 2, 3, or 4 is 0.50. The probability that the random number is 5, 6, 7, or

8 is 0.40. And the probability that the number is 9 is 0.10. Consequently, if the random

sim23356_ch16.indd 790sim23356_ch16.indd 790 12/15/08 7:13:47 PM12/15/08 7:13:47 PM

 Chapter 16 Data Structures and Generics 791

number is 0, 1, 2, 3, or 4, we assume that there are no arrivals. There is a 50% chance

that this happens. If the number is 5, 6, 7, or 8 we assume that there is a single arrival.

This happens 40% of the time. And, fi nally, if the random number is 9, we assume that

there are two arrivals.

 16.6 A LINKED LIST

A linked list is an ordered collection, group, or list of items such that each item holds

a reference or “link” to the next item of the collection.

 Figure 16.13 shows a linked list consisting of fi ve planets. The fi rst planet on the list is

Mercury. The arrow or link from Mercury indicates that the second planet is Venus. And, if

you follow the links, you can see that the list of planets (in order) is Mercury, Venus, Earth,

Mars, and Jupiter.

Mercury

Venus

Earth

Jupiter

start

Mars

FIGURE 16.13 A linked list: Mercury, Venus, Earth, Mars, and Jupiter

 Of course, as a data structure, a linked list is a bit more complex than the picture of

 Figure 16.13 . Nonetheless, Figure 16.13 captures the central idea: each item on the list

is linked to the next item. A linked list is ordered in the sense that there is a fi rst item, a

second item, a third item, a next item.

 In the following sections, we design a class LList<E> that implements a linked list. Our

implementation uses objects called nodes , which, like the planet names of Figure 16.13 , are

linked together.

 16.6.1 Nodes
 A node is an object that contains data as well as a reference to another node. Thus, a node

has at least two fi elds, one of which holds the address of another node. The following Node
class has exactly two fi elds, data and next , and two constructors. For convenience, and

temporarily, we assume the fi elds are public and that the type of the data fi eld is String .

 public class Node
{
 public String data;
 public Node next; // next is a reference to a Node

 public Node () // default constructor
 {
 data � “”; // the empty string
 next � null;
 }

sim23356_ch16.indd 791sim23356_ch16.indd 791 12/15/08 7:13:47 PM12/15/08 7:13:47 PM

792 Part 3 More Java Classes

 public Node(String s) // one argument constructor
 {
 data � s;
 next � null;
 }
}

 Notice that the data type of next is Node. That is, the next fi eld of a Node is itself a refer-

ence to a Node object. The next fi eld holds the address of another node. Indeed, Node is a

 recursive data structure.

 You can visualize a Node object as

data
(String)

next
(Node)

 The statements

 Node p � new Node("Mercury"); // the one argument constructor
Node q � new Node ("Venus");

instantiate two Node objects, one referenced by p and another referenced by q . These nodes

and references are shown in Figure 16.14 .

“Mercury” null

p.data

p

p.next

“Venus” null

q.data

q

q.next

FIGURE 16.14 Two Node objects: one referenced by p , the other by q

 Nodes can be linked together to form a “chain of nodes.” Figure 16.15 shows the two nodes

of Figure 16.14 joined in a rather short chain. The horizontal arrow in Figure 16.15 indi-

cates that the fi eld p.next (in the “Mercury” node) holds the address of the “Venus” node,

which also happens to be stored in q .

“Mercury”

p.data

p

p.next

“Venus” null

q.data

q

q.next

FIGURE 16.15 The statement p.next � q links two nodes

 The linking of these two nodes is accomplished by the statement

 p.next � q; // q holds the address of the “Venus” node ,

which assigns the address of the “Venus” node (q) to the next fi eld of the “Mercury” node

(p.next).
 Figure 16.16 shows a chain of four linked nodes. The data element in node 0 is the

string “Mercury” and, as indicated by the arrow, the reference stored in node 0 is the

address of node 1. Node 1 holds the string “Venus” as well as the address of node 2.

Node 2 holds “Earth” and a reference to node 3. Finally, node 3 holds “Mars” and its

 next fi eld is null .

sim23356_ch16.indd 792sim23356_ch16.indd 792 12/15/08 7:13:48 PM12/15/08 7:13:48 PM

 Chapter 16 Data Structures and Generics 793

“Mercury”

node 0

“Venus”

node 1

“Earth”

node 2

“Mars”

node 3

null

FIGURE 16.16 Three linked nodes

 Technically, the data fi eld of each node in Figure 16.16 holds a reference to a String rather

than the characters of the string.

 The code in Figure 16.17 creates the chain of four nodes shown in Figure 16.16 .

1. Node p � new Node ("Mercury");

// create a node referenced by p “Mercury” null

p

2. Node q � p;

// q and p hold the same address “Mercury” null

qp

3. Node r � new Node ("Venus");

// create a new node referenced by r “Mercury” null

qp

“Venus” null

r

4. q.next � r;

// assign the address of the "r-node" to the
// next field of the "q-node." “Mercury”

qp

“Venus” null

r

5. q � r;

// "Move" q so that it references the
// "r-node." “Mercury”

qp

“Venus” null

r

6. r � new Node ("Earth");

// create a new node referenced by r “Mercury”

qp

“Venus” null “Earth” null

r

7. q.next � r;

// assign the address of the "r-node" to the
// next field of the "q-node." “Mercury”

qp

“Venus” “Earth” null

r

8. q � r;

// "Move" q so that it references the
// "r-node." “Mercury”

qp

“Venus” “Earth” null

r

9. r � new Node("Mars");

// create a new node referenced by r “Mercury”

qp

“Venus” “Earth” null

r

“Mars” null

10. q.next � r;

// assign the address of the "r-node" to the
// next field of the "q-node." “Mercury”

qp

“Venus” “Earth”

r

“Mars” null

FIGURE 16.17 Creating a chain of four nodes

sim23356_ch16.indd 793sim23356_ch16.indd 793 12/15/08 7:13:49 PM12/15/08 7:13:49 PM

794 Part 3 More Java Classes

 The statements of Figure 16.17 are repetitive, and Example 16.7 shows how to create an

arbitrary chain of nodes using a loop.

 Problem Statement Implement a class , Chain , that creates a chain of Node objects

such that each Node holds a String entered via the console. Include a method that dis-

plays the data stored in the chain.

 Java Solution In the following application, note that

 • a private Node class is declared within Chain , and

 • a reference front holds the address of the fi rst node in the chain. Without such a

reference, the data in the chain is inaccessible. The reference front serves as an

anchor for the chain of nodes.

 1. import java.util.*;

2. public class Chain
3. {
4. private class Node // a class declared within Chain, an inner class

5. {

6. private String data;

7. private Node next;

8. public Node() // default constructor

9. {

10. data � “” ;

11. next � null;

12. }

13. public Node(String s) // one argument constructor

14. {

15. data � s;

16. next � null;

17. }

18. }

19. private Node front; // holds the address of the first node of the chain

20. public Chain() // constructor builds a chain
21. {
22. Scanner input � new Scanner(System.in);
23. String name;
24. Node q, r;
25. System.out.print("Enter name -- Press <Enter>to signal end of data: ");
26. name � input. nextLine();

27. // create the first node
28. front � new Node(name);
29. q � front; // front and q both reference the first node
30. System.out.print("Enter name: ");
31. name � input. nextLine();

32. while (!name.equals(""))
33. {

 EXAMPLE 16.7

sim23356_ch16.indd 794sim23356_ch16.indd 794 12/15/08 7:13:52 PM12/15/08 7:13:52 PM

 Chapter 16 Data Structures and Generics 795

34. r � new Node(name); // get a new node
35. q.next � r; // link the previous node to the new node
36. q � r; // move q to the "new" node
37. System.out.print("Enter name: ");
38. name � input. nextLine();
39. }
40. }

41. public void printChain()
42. {
43. Node q � front; // q references the first node in the chain
44. System.out.println("\nThe names in the chain of nodes are: ");
45. while (q!� null)
46. {
47. System.out.println(q.data);
48. q � q.next; // move q to the next node in the chain
49. }
50. }

51. public static void main(String[] args)
52. {
53. Chain chain � new Chain();
54. chain.printChain();
55. }
56. }

 Output
 Enter name -- Press <Enter>to signal end of data: Gandalf
Enter name: Frodo
Enter name: Bilbo
Enter name: Sam
Enter name: Gollum
Enter name:

The names in the chain of nodes are:
Gandalf
Frodo
Bilbo
Sam
Gollum

 Discussion
Lines 4–18: Node is declared within Chain ; Node is called an inner class .

Node is defi ned as a private class within Chain . Node is accessible only to Chain

and no other classes.

 Lines 32–39: The while loop works in the same way as the code of Figure 16.17

and creates the chain of nodes shown in Figure 16.18 .

“Frodo” “Bilbo” “Sam”“Gandalf”

front

“Gollum” null

FIGURE 16.18 A chain created by a while loop

sim23356_ch16.indd 795sim23356_ch16.indd 795 12/15/08 7:13:53 PM12/15/08 7:13:53 PM

796 Part 3 More Java Classes

 Lines 41–50: printChain()

 Line 43: Assign to reference variable q the address of the fi rst node in the

chain, which is front .

 Lines 45–49: While q holds the address of some node, that is, q is not null.

 Line 47: Print the data stored in the node referenced by q , that is, print
 q.data .

Line 48: Assign to q the address of the next node in the chain. That is,

“move q down the chain.” If q is referencing the last node, then q gets the

value null and the loop terminates.

 16.6.2 Inner Classes
 The declaration of Node in Example 16.7 may seem a bit unconventional, if not pecu-

liar . Node is a private class declared within another class, Chain . Node is declared solely for

Chain’ s convenience. Node is called an inner class and Chain an outer or surrounding class.

Inner classes are useful when one class has meaning only in the context of another class.

For example, on its own, a Node may have no apparent purpose, but as a part of a chain, a

 Node object has a well-defi ned function.

 The methods of an inner class have direct access to variables and methods of the sur-

rounding outer class. On the other hand, the methods of an outer class can access an inner

class fi eld or invoke an inner class method only via an object of the inner class. For exam-

ple, consider the following class defi nitions.

public class BadOuter
{
 private class Inner

 {

 private String myName;

 // inner class methods

 }

 public void setName(String name)
 {
 myName � name; // illegal
 }
}

public class Outer
{
 private class Inner

 {

 private String myName;

 // inner class methods

 }

 public void setName(String name)
 {
 Inner inner � new Inner();
 inner.myName � name; // legal
 }
}

 BadOuter does not compile because the method setName(…) attempts to access the pri-

vate Inner variable myName directly. Outer , on the other hand, accesses myName via an

instance of Inner .

 16.6.3 The LList�E � Class
 Because each node in a chain holds the address of the next node, a chain of nodes sug-

gests a natural storage structure for a linked list class, LList<E> . In addition to the instance

variable front , which references the fi rst node of the chain, LList<E> includes a fi eld, rear ,

sim23356_ch16.indd 796sim23356_ch16.indd 796 12/15/08 7:13:53 PM12/15/08 7:13:53 PM

 Chapter 16 Data Structures and Generics 797

which holds the address of last node, and a third reference variable current , which can ref-

erence any node in the chain. See Figure 16.19 .

“Frodo” “Bilbo” “Sam”“Gandalf”

front current rear

“Gollum” null

FIGURE 16.19 A linked list: front references the first node, rear the last,
and current holds the address of an arbitrary node

 The methods of LList<E> include methods for adding, removing, and retrieving

data. That is, the methods of LList<E> mirror the methods of ArrayList<E>. These

methods, common to ArrayList<E> and LList<E> , are grouped together in the following

 i nterface :

 public interface ListInterface<E>
 {
 void add(int index, E x);
 // inserts x into position index

 void add(E x);
 // adds x to the end of the list

 void clear();
 // removes all objects from the list

 boolean contains (E x);
 // returns true if x is a member of the list

 E get(int index);
 // returns the Object at position index

 boolean isEmpty();
 // returns true if the list has no elements

 boolean remove (E x);
 // if x is a member of the list, removes the first occurrence of x from the list, shifts all elements
 // position, and returns true ; otherwise returns false.

 E remove (int index);
 // removes and returns the object x at position index ;
 // shifts all elements following x down one position

 E set (int index, E x);
 // replaces the object at index index with x ; returns the replaced object.

 int size();
 // returns the number of objects currently in the list
 }

 The LList<E> class not only implements ListInterface<E> but also provides three additional

methods, not found in ArrayList<E> , that are useful for traversing, or processing the data of

a list. These methods are

• void reset(),
 sets current equal to front

• boolean hasNext()
 returns true if current.next is not null , that is, if current is not equal to rear .

sim23356_ch16.indd 797sim23356_ch16.indd 797 12/15/08 7:13:54 PM12/15/08 7:13:54 PM

798 Part 3 More Java Classes

• E next().
 if current �� null , reports an error and terminates the application; otherwise returns

the data of the current node and moves current down the list, that is, sets current equal

to current.next.

 Figures 16.20 and 16.21 show the actions of three successive calls: reset(), hasNext() , and

next().

“Frodo” “Bilbo” “Sam”“Gandalf”

front current rear

“Gollum” null

 FIGURE 16.20 A call to reset () sets current equal to front and hasNext () returns true

“Frodo” “Bilbo” “Sam”“Gandalf”

front current rear

“Gollum” null

 FIGURE 16.21 A call to next () returns “Gandalf” and moves current down the list

 In Example 16.8, we implement LList<E> . LList<E> implements ListInterface<E> and pro-

vides the additional methods reset(), hasNext() , and next().

 Problem Statement Create a linked list class, LList<E> , that implements

 ListInterface<E> . Include additional methods reset(), hasNext() , and next(). Use a chain

of nodes for storage.

 Java Solution The LList<E> class contains a private inner class Node . The fi elds of

 LList<E> are references front, rear , and current. Each is initially null . In addition to

front, rear , and current, LList<E> maintains an instance variable, length , that holds

number of data stored in the list. Initially, length is 0.

 1. public class LList <E>implements ListInterface<E>
2. {

3. private class Node // an inner class

4. {

5. private E data;

6. private Node next;

7. public Node() // default constructor

8. {

9. data � null;

10. next � null;

11. }

12. public Node(E x) // two-argument constructor

13. {

14. data � x;

15. next � null;

16. }

 EXAMPLE 16.8

sim23356_ch16.indd 798sim23356_ch16.indd 798 12/15/08 7:13:55 PM12/15/08 7:13:55 PM

 Chapter 16 Data Structures and Generics 799

17. } // end Node

18. private Node front, rear, current;
19. private int length; // the size of the list

20. public LList() // default constructor
21. {
22. rear � front � current � null;
23. length � 0;
24. }

25. public void add(E x) // adds x to the end of the list
26. {
27. Node p � new Node(x); // instantiate a new node referenced by p
28. if (rear �� null) // if list is initially empty
29. front � rear � p; // the list has just one node
30. else
31. {
32. rear.next � p; // places the node referenced by p at the end
33. rear � p;
34. }
35. length��;
36. }

37. public void add(int index, E x) // adds x to list at position index
38. {
39. if (index > length) // index out of range
40. {
41. System.out.println("Out of range in add(int index, E x)");
42. System.exit(0);
43. }
44. Node p � new Node(x); // instantiate a new node referenced by p

45. // add to the front of the list
46. if (index �� 0)
47. {
48. p.next � front; // place the address of the first node into the new node

49. front � p; // front references the new node
50. if (rear �� null) // if list was initially empty
51. rear � front; // front and rear reference the single node of the list
52. length��;
53. return;
54. }

55. // add to the end of the list
56. if (index �� length)
57. {
58. add(x);
59. return;
60. }

61. // addition is neither at front nor rear
62. Node q � front;
63. for (int i � 0; i < index � 1; i��) // point q to the node at position index
64. q � q.next;
65. Node r � q.next; // r references the node following q (could be null)
66. q.next � p;
67. p.next � r;
68. length��;
69. }

sim23356_ch16.indd 799sim23356_ch16.indd 799 12/15/08 7:13:56 PM12/15/08 7:13:56 PM

800 Part 3 More Java Classes

70. public void clear() // makes the list empty
71. {
72. front � rear � null;
73. length � 0;
74. }

75. public boolean contains (E x) // returns true if x is a member of the list
76. {
77. Node p � front;
78. for (int i � 0; i < length; i��) // could also use “(while p.next !� null)”
79. {
80. if (x.equals(p.data))
81. return true;
82. p � p.next;
83. }
84. return false; // search unsuccessful
85. }

86. public E get (int index) // returns data at position index
87. {
88. if (index >� length) // if index is out of bounds
89. {
90. System.out.println("Error in get (int index)");
91. System.exit(0);
92. }
93. Node p � front;
94. for (int i � 0 ; i < index; i��)
95. p � p.next; // move through the list, node by node
96. return p.data;
97. }

98. public boolean isEmpty() // returns true if list is empty
99. {
100. return length �� 0;
101. }

102. public boolean remove(E x) // removes first occurrence of x ;
103. // returns true if successful
104. {
105. Node p � front;
106. Node q � null;
107. while (!(p �� null) && !x.equals(p.data)) // look for x
108. {
109. q � p;
110. p � p.next;
111. }
112. if (p �� null) // not found
113. return false;
114. if (!(q �� null)) // if x is in the first node q is null
115. q.next � p.next;
116. if (p �� front)
117. front � front.next;
118. if (p �� rear)
119. rear � q;
120. length��;
121. return true;
122. }
123. public E remove(int index) // removes and returns data at position index
124. {

sim23356_ch16.indd 800sim23356_ch16.indd 800 12/15/08 7:13:57 PM12/15/08 7:13:57 PM

 Chapter 16 Data Structures and Generics 801

125. if (index >� length) // index out of bounds
126. {
127. System.out.println("Error in remove (int index)");
128. System.exit(0);
129. }
130. Node p � front;
131. Node q � null;
132. for (int i � 0; i < index; i��) // q follows p down the list
133. {
134. q � p;
135. p � p.next;
136. }
137. if (current �� p) // if removing the current node, move current to the next node
138. current � p.next;
139. if (!(q �� null)) // if not removing the first node
140. // q follows p , so q is null when p is the first node.
141. q.next � p.next;
142. if (p �� front)
143. front � front.next;
144. if (p �� rear)
145. rear � q;
146. length��;
147. return p.data;
148. }

149. public E set (int index, E x) // sets data at position index to x
150. {
151. if (index >� length) // index out of bounds
152. {
153. System.out.println("Error in get (int index)");
154. System.exit(0);
155. }
156. Node p � front;
157. for (int i � 0; i < index; i��)
158. p � p.next;
159. E temp � p.data;
160. p.data � x;
161. return temp;
162. }

163. public int size() // returns the number of data on the list
164. {
165. return length;
166. }

167. public void reset() // makes the first node the current node
168. {
169. current � front;
170. }

171. public boolean hasNext() // returns true if a call to next() will be successful
172. {
173. if (current �� null)
174. return false;
175. return true;
176. }

177. public E next() // returns data of current node and moves current to the next node
178. {

sim23356_ch16.indd 801sim23356_ch16.indd 801 12/15/08 7:13:57 PM12/15/08 7:13:57 PM

802 Part 3 More Java Classes

179. if (current �� null)
180. {
181. System.out.println("Error in hasNext() ");
182. System.exit(0);
183. }
184. E temp � current.data;
185. current � current.next;
186. return temp;
187. }
188. }

 Discussion The following diagrams illustrate the operation of two of the methods of

LList<E> . You should trace through each of the other methods to be sure that you under-

stand their implementations.

 Lines 25–36: void add(E x)
 This method adds a node with data x to the rear of the list.

 Suppose that a list consists of three nodes as follows:

4 62

front current rear

null

 The method call add(8) results in the following actions:

 Line 27: Node p � new Node(8);

4 62

front current rear

null 8

p

null

Line 32: rear.next � p;

4 62

front current rear

8

p

null

Line 33: rear � p;

4 62

front current rear

8

p

null

 The new node has been added to the end of the list.

 We now consider one of the remove(…) operations.

Lines 123–148: E remove(int index)

 This method removes the node at a given index. For example, remove(0) removes

the fi rst node in the list and remove(2) removes the third node in the list. We trace a

call to remove(2) .
 Unlike an ArrayList , a linked list does not support direct access. To access the

third node, the method must traverse the list from the beginning. We assume that,

prior to the call remove(2) , the list is as follows:

sim23356_ch16.indd 802sim23356_ch16.indd 802 12/15/08 7:13:58 PM12/15/08 7:13:58 PM

 Chapter 16 Data Structures and Generics 803

4 62

(0) (1) (2) (3)

front current rear

8 null

 The call to remove(2) removes the node at index 2, which is also, coincidentally,

the “current” node.

Lines 130–131: Node p � front; Node q � null;

 Reference q follows p down the chain.

4 62

front p

q = null

current rear

8 null

Lines 132–136: for (int i � 0; i � index; i��) {q � p; p � p.next;}

 For i � 0 and i � 1,

• set q equal to p , and

• move p down the list.

Notice that q follows p .

4 6

i = 0

2

front q p current rear

8 null

4 6

i = 1

2

front q pcurrent rear

8 null

Lines 137–138: if (current �� p) current � p.next;

p references the node which is to be removed. If current references the same node

as p , move current down the list.

4 62

front q p current rear

8 null

Lines 139–141: if (!(q �� null)) q.next � p.next;

 If q is null, then the node to be removed is the fi rst node on the list. In this case, q

is not null. Here, p holds the address of the node that is to be removed and q the

address of the preceding node. Change the link in q.next from p to p.next .

4 62

front q p current rear

8 null

 When the method exits, the memory allocated for the deleted node is automatically

reclaimed by the garbage collector. (See Chapter 10.)

sim23356_ch16.indd 803sim23356_ch16.indd 803 12/15/08 7:13:59 PM12/15/08 7:13:59 PM

804 Part 3 More Java Classes

 16.6.4 Why next() and hasNext() ?
 A common list application is traversal. That is, each item of a list is displayed or processed

in some manner. If list belongs to LList<E> then the for loop

 for (int i � 0; i < list.size(); i��)
 System.out.println(list.get(i));

traverses and displays each element of list . Alternatively, the statements

 list.reset();
while (list.hasNext())
 System.out.println(list.next());

accomplish the same task. Is one method preferable to the other?

 The following class traverses a list of 50,000 Integer objects, fi rst using get(i) and then

using next() . The results of this comparison should convince you that next() is a method that

is both convenient and practical.

 1. public class GetVsNext
2. {
3. public static void main(String[] args)
4. {
5. LList <Integer>list � new LList<Integer>();
6. final int NUM_DATA � 50000;
7. for (int i � 0; i < NUM_DATA; i��)
8. list.add(0,i);
9. long start � System.currentTimeMillis(); // get start time in milliseconds

10. for (int j � 0; j < list.size(); j��) // traverse the list

11. list.get(j);

12. long end � System.currentTimeMillis(); // get end time in milliseconds
13. System.out.println("Using get(i): " � (end � start) � " ms"); // display total time
14. start � System.currentTimeMillis();
15. list.reset();

16. while (list.hasNext())

17. list.next();

18. end � System.currentTimeMillis();
19. System.out.println("Using next(): " � (end � start) � " ms");

20. }
21. }

The program produces the following output:

 Using get(i): 42431 ms
Using next(): 10 ms

 Why is there such a considerable difference in time? The traversal on lines 10 and 11,

 for (int j � 0; j < list.size(); j��)
 get(j);

invokes get(j) 50,000 times, once for each node. With each invocation of get(j) , the

statement

 p � p.next;

sim23356_ch16.indd 804sim23356_ch16.indd 804 12/15/08 7:14:21 PM12/15/08 7:14:21 PM

 Chapter 16 Data Structures and Generics 805

is executed j times. (See lines 94 and 95 of Example 16.8.) If j ranges from 0 to 49,999

then

 p � p.next;

executes 0 � 1 � 2� … � 49,999 � 1,249,975,000 times.

 On the other hand, each call to next() requires just one step, and 50,000 calls to next()
perform just 50,000 operations. That’s quite a difference!

 16.6.5 ArrayList�E� or LList�E� : Which Is Better?
 Linked lists and ArrayList s are more similar than different. Like an ArrayList , a linked list is

a data structure that grows dynamically, as needed. Moreover, the methods of ArrayList<E>
are also methods of LList<E> . However, there are some striking differences, and these dif-

ferences can affect the effi ciency of a program.

 Insertions into and deletions from an ArrayList can slow down execution, especially if

these operations occur near the top of the list. A linked list, on the other hand, allows effi -

cient insertions and deletions anywhere in the list. No data are moved by any of the add(…)
or remove(…) methods of LList<E>.
 In contrast to an ArrayList , a linked list does not support direct access to data via

indexing. A linked list provides no effi cient method to access the i th element in the list. To

retrieve the i th element, the fi rst i � 1 elements must be accessed. A method call such as

get(100) must access nodes 0 through 99 to retrieve node 100.

 Example 16.9 compares LLlist<E> with ArrayList<E> , fi rst when data are always

inserted at the beginning of a list, and then when data are inserted at the end of a list. Can

you predict which class provides a more effi cient implementation in each case?

 EXAMPLE 16.9 Problem Statement Write an application that compares the relative effi ciency of

ArrayList<E> with LList<E> when Integer data are added

 1. to the front of the list (only), and

 2. to the rear of the list (only).

 Java Solution The main(...) method of the following class inserts Integer data into a

LList<Integer> object as well as an ArrayList<Integer> object according to the specifi ca-

tions (1) and (2). Each operation is timed.

 1. import java.util.*;

2. public class TestLists <E>
3. {

4. public static void main(String [] args)
5. {
6. final int NUM_DATA � 10000; // number of data
7. LList <Integer>lList � new LList<Integer>();
8. ArrayList <Integer>aList � new ArrayList<Integer>();

9. //////// Insert at front /////////

10. long start � System.currentTimeMillis(); // LList

sim23356_ch16.indd 805sim23356_ch16.indd 805 12/15/08 7:14:21 PM12/15/08 7:14:21 PM

806 Part 3 More Java Classes

11. for (int i � 0; i < NUM_DATA; i��)
12. lList.add(0,i);
13. long elapsed � System.currentTimeMillis() � start;
14. System.out.println("LList � add to front: " � elapsed � " ms");

15. start � System.currentTimeMillis(); // ArrayList
16. for (int i � 0; i < NUM_DATA; i��)
17. aList.add(0, i);
18. elapsed � System.currentTimeMillis() � start;
19. System.out.println("ArrayList � add to front: " � elapsed � " ms");

20. /////////// Insert at rear ////////////

21. lList.clear();
22. aList.clear();
23. start � System.currentTimeMillis(); // LList
24.
25. for (int i � 0; i < NUM_DATA; i��)
26. lList.add(i);
27. elapsed � System.currentTimeMillis() � start;
28. System.out.println("LList � add to rear: " � elapsed � " ms");

29. start � System.currentTimeMillis(); // ArrayList
30. for (int i � 0; i < NUM_DATA; i��)
31. aList.add(i);
32. elapsed � System.currentTimeMillis() � start;
33. System.out.println("ArrayList � add to rear: " � elapsed � " ms");
34. }
35. }

 Output Running the program fi ve times produced the following output:

10000 data
LList � add to front: 16 ms
ArrayList � add to front: 62 ms
LList � add to rear: 0 ms
ArrayList � add to rear: 0 ms

20000 data
LList � add to front: 32 ms
ArrayList � add to front: 218 ms
LList � add to rear: 16 ms
ArrayList � add to rear: 16 ms

40000 data
LList � add to front: 46 ms
ArrayList � add to front: 844 ms
LList � add to rear: 16 ms
ArrayList � add to rear: 15 ms

80000 data
LList � add to front: 79 ms
ArrayList � add to front: 3821 ms
LList � add to rear: 47 ms
ArrayList � add to rear: 15 ms

160000 data
LList � add to front: 141 ms
ArrayList � add to front: 13062 ms
LList � add to rear: 63 ms
ArrayList � add to rear: 15 ms

 Discussion When adding to the front of a list, LList<E> clearly outperforms ArrayList<E> .

This is because the ArrayList<E> method shifts all items in the list to make room for each

new item. When inserting 1000 integers into the front of the list, the fi rst insertion requires

no shifting, the second insertion 1 shift, the third 2 shifts, the fourth 3 shifts, and so on.

Thus, to insert 1000 integers into the front of the list, ArrayList<E> requires 1 � 2 � 3 �

4 � … � 999 � 499,500 shifts. Each time the size of the data is doubled, the execution

time is approximately quadrupled.

sim23356_ch16.indd 806sim23356_ch16.indd 806 12/15/08 7:14:22 PM12/15/08 7:14:22 PM

 Chapter 16 Data Structures and Generics 807

 On the other hand, when inserting data into the front of LList<E> , it makes no differ-

ence whether the size of the list is 10 or 10,000. Each insertion requires the same three

steps:

 1. Node p � new Node(x); // instantiate a new node
2. p.next � front; // connect p to the front
3. front � p; // move the front back to p.

 For 1000 insertions, LList<E> takes just 3000 steps, in contrast to the half a million

performed by ArrayList <E>.

 The situation is different when appending to the end of a list. Notice that, in this

case, adding data to the rear of an ArrayList is slightly faster than adding data to the rear

of a LList . Here, the ArrayList <E>add(…) method shifts no data; nor does the add(…)
method of LList<E>. However, the LList <E> add(...) method requires that a new node

be instantiated, and that rear be assigned the address of the new node. These actions

account for the slightly longer execution times that LList<E> exhibits when inserting

items at the rear of a list. However, this difference is not as pronounced as the difference

exhibited when inserting at the front of a list.

When adding to the front of a list, LList<E> outperforms ArrayList<E>, and when

adding to the rear, the performances of the two are quite close.

 Furthermore, if direct access to data is necessary, ArrayList<E> is clearly superior to

LList<E>. The LList<E> implementation of get(int index) utilizes a loop:

 for (int i � 0; i < index; i��)
 p � p.next;

and consequently every get(index) operation involves index assignments. In contrast, the

 get(index) method of ArrayList<E> is accomplished in one step; no loop is necessary.

 The choice of data structure depends on the application. No data structure is always

“best.”

 16.7 IN CONCLUSION

 Each data structure in this chapter presents a different option for handling a collection of

data. If data is always added or removed from the top of a list, a stack is the obvious choice.

A queue is appropriate for fi rst-in, fi rst-out situations. A queue is a handy simulation tool.

More fl exible list manipulation is provided by an array, an ArrayList , or a linked list. The

choice of the appropriate data structure depends on the application. Although ArrayList<E>
and LList<E> support similar operations, an arbitrary choice of one over the other can result

in performance degradation.

 Finally, although we implement the Stack<E> class using ArrayList<E> and the

Queue<E> class with a circular array, each of these classes can be easily and effi ciently

implemented using a dynamic chain of nodes. We describe these alternate implementations

in the exercises.

 In the Chapter 17, we consider Java’s Collection classes, a hierarchy of classes that

implement numerous data structures. Indeed, the ArrayList<E> class is a member of this

sim23356_ch16.indd 807sim23356_ch16.indd 807 12/15/08 7:14:22 PM12/15/08 7:14:22 PM

808 Part 3 More Java Classes

hierarchy as is the LinkedList<E> class, which is similar but more fl exible than the LList<E>

class of this chapter. And, once again, you will see that choosing the right data structure for

an application can make all the difference.

 Just the Facts

• A data structure is a collection of data together with a set of operations for storing,

retrieving, managing, and manipulating the data.

• Every data structure must be implemented using some underlying storage struc-

ture and appropriate set of methods. The choice of implementation is important for

effi ciency.

• The implementation of a data structure should be invisible to the client.

• Using the right data structure for the right application is a fundamental notion of

effi cient coding and algorithm design.

• Java’s ArrayList class is an indexed list of references that grows as the number of data

increases—a dynamic array.

• Java’s ArrayList class has many built-in methods, including methods to insert into,

remove from, and access an array.

• A generic class is one that allows you to specify the data type of one or more fi elds

as a parameter. This means that a data structure class can be defi ned generically and

instantiated to hold any type of data. For example, ArrayList<E> is a generic class.

The type parameter E specifi es the type of data stored in an ArrayList<E> object. E

cannot be a primitive type.

• A generic class ensures type safety. Generic classes allow the compiler to fi nd type

mismatch errors before runtime.

• Interfaces as well as classes can be generic.

• There are a number of restrictions associated with generic classes with regard to

arrays and constructors.

• Using inheritance and polymorphism together with generic classes maintains type

safety while simultaneously allowing a programmer to write fl exible code that the

compiler might otherwise fl ag as a type mismatch.

• A stack is an ordered list of data that allows insertions and deletions from one end,

the top.

• A stack, despite its very restricted set of methods, is the perfect tool for solving cer-

tain kinds of problems, especially those involving backtracking.

• A queue is an ordered list of data that allows insertions to its rear and deletions from

its front.

• A queue is an excellent tool for simulation.

• A linked list is an ordered list of items such that each item holds a link or reference to

the next item in the list.

• An advantage that a linked list has over an ArrayList is that a linked list allows effi -

cient insertions and deletions anywhere within the list. On the other hand, a linked

list has no effi cient method to access the i th element; each of the fi rst i � 1 elements

must be accessed before processing the i th element.

• Traversing a linked list is more effi ciently accomplished by repeatedly calling the

 next() method rather than the get(…) method.

sim23356_ch16.indd 808sim23356_ch16.indd 808 12/15/08 7:14:23 PM12/15/08 7:14:23 PM

 Chapter 16 Data Structures and Generics 809

• When nodes are deleted from a linked list and are no longer accessible, the Java

garbage collector automatically reclaims the space allocated for those nodes.

• An inner class is a class defi ned within another class. Inner classes are useful when

one class has meaning only in the context of another class.

• The methods of an inner class have direct access to all variables and methods of the

surrounding outer class. On the other hand, the methods of an outer class can access

an inner class fi eld or invoke an inner class method only via an object of the inner

class.

 Bug Extermination

• Be careful when invoking the get(…) method of an ArrayList, x . Even though space

may be reserved for indices greater than x.size() � 1 , the call x.get(k) results in a

runtime error, if k is greater than x.size() � 1.

• Do not attempt to instantiate an object with a type parameter. The following state-

ment generates a compilation error:

 E myObject � new E();

• Java does not allow generic arrays. The statement

 E[] list � new E[10];

 generates a syntax error. However, it is legal to instantiate an array with a cast

such as:

 E[] list � (E[]) new Object[10];

 Nonetheless, the compiler has no way of knowing whether or not this type of cast is

safe. Consequently, the compiler generates a warning message that although legal,

this may be unsafe.

• Always check whether a stack or queue is empty before performing a pop() , peek() ,
or remove() method.

• If the underlying implementation of a stack or queue does not allow for dynamic

and automatic resizing, then overfl ow might occur. In such cases, check for overfl ow

before invoking a push(…) or an insert(…) method.

• Always implement a data structure with methods that are as effi cient as possible.

• Always use the appropriate data structure to solve a problem—neither more nor less

powerful than necessary.

sim23356_ch16.indd 809sim23356_ch16.indd 809 12/15/08 7:14:23 PM12/15/08 7:14:23 PM

810 Part 3 More Java Classes

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

3

1

4

6

5

7

2

10

11

9

12

18

8

19

1413

24

20

22 2321

25

16

15

17

Across
 3 Type of array that can be used to implement a queue

 6 The “next” fi eld of a node refers to a .

 7 Java does not allow generic .

 10 A linked list can be implemented as a chain of .

 11 Dynamic array

 13 Add to a stack

 17 Data is removed from the of a queue.

 18 Inserting into the of an ArrayList is very

effi cient.

 19 First in, fi rst out

 20 When traversing a network, a stack can be used to

.

 21 Last in, fi rst out

 22 Data is accessed from the of a stack .

 24 Remove from a stack

 25 Kind of class with a type parameter

Down
 1 The average time that it takes to access

an element in a linked list depends on the

 of the list.

 2 Cannot be resized

 4 Each item holds a reference to the next.

 5 Data is inserted at the of a queue.

 8 Type safety ensures that type errors are

caught by the .

 9 Nodes of a linked list form a .

 12 A generic class ensures .

 14 A queue is often used for .

 15 ArrayList cannot store types.

 16 Removing the fi rst element in an ArrayList
entails all other elements.

 23 View but do not remove an element.

sim23356_ch16.indd 810sim23356_ch16.indd 810 12/15/08 7:14:24 PM12/15/08 7:14:24 PM

 Chapter 16 Data Structures and Generics 811

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. A slide at the playground is more like a stack than a queue.

b. A car with one working door is more like a stack than a queue.

c. A linked list allows immediate access to any element in the list, independent of

the length of the list, as long as the index of the element is known.

d. An ArrayList , unlike an array, can increase its size dynamically.

e. The index of a circular array that follows the highest numerical index is zero, and

the index that precedes zero is the index with the highest numerical value.

f. A queue is a good data structure for problems that involve backtracking.

g. Using a generic class you can defi ne a data structure independent of data type.

h. A generic class is a class with no brand name.

i. ArrayList objects handle insertion at the front and rear of a list with equal

effi ciency.

j. A short stack is a kind of breakfast made with only two pancakes, or a small

number of chips at the poker table.

 2. Playing Compiler
 Find and correct the syntax and logic error(s) in the following class. Board

encapsulates a two-person game. Board uses a two-dimensional array that holds pieces

of type T . Board also remembers whether it is player 1’s turn or player 2’s turn.

 class Board<T>
{
 private ArrayList <T>items;
 int turn; // which player's turn, 1 or 2

 public Board()
 // default constructor
 {
 items � new <T>bo[8][8];
 turn � 1;
 } // creates an empty 8 by 8 two-dimensional array

 public Board(int initialCapacity, int player)
 // one-argument constructor, creates 2-dim array
 // with initialCapacity rows and columns
 {
 items � new <T>bo[initialCapacity] [initialCapacity];
 turn � player;
 }
 public Board(int initialRowCapacity, int initialColumnCapacity, int player)
 // two-argument constructor, creates 2-dim array with
 // initialCapacity rows and columns
 {
 items � new <T>bo[initialCapacity] [initialCapacity];
 turn � player;
 }

 public T whoseturn()
 // accessor for whose turn it is
 {

sim23356_ch16.indd 811sim23356_ch16.indd 811 12/15/08 7:14:24 PM12/15/08 7:14:24 PM

812 Part 3 More Java Classes

 return (turn);
 }

 public T addtoBoard(T item, int row, int col)
 // lets you put a piece on the board
 {
 bo[row, col] � item;
 }

 public T peek(int row, int col)
 // lets you peek at a piece on the board
 {
 return bo[row][col];
 }

 public void switchturn()
 // lets you switch whose turn it is
 {
 if (turn �� 1)
 turn � 2;
 if (turn �� 2)
 turn � 1;
 }
}

 3. Playing Compiler
 For each of the following fragments, explain and correct the errors. If the fragment

stands correct as it is, then say so.

a. ArrayList <Integer> test � new ArrayList <Integer> (20);
list.add(“35”);
list.add(35);

b. ArrayList temp � new ArrayList();
temp.add(“35”);
temp.add(35);

c. Stack <Integer> � new Stack();
push(1);
push(‘a’);

d. Stack <ArrayList <Integer>> really � new Stack <ArrayList <Integer>>();
e. LList <Integer> testlist � new testlist <Integer>();

testlist[3] � 7;

 4. Which Data Structure?
 For each problem, describe which data structure(s) you would use and give an

explanation for your choice.

a. Java uses garbage collection to fi nd available memory locations and stores such

locations in a repository so that allocations for new objects can be made. Whenever

the new command is used, memory is allocated to create storage for the new object

being instantiated. In what data structure would you store these locations? Why?

b. A video editor allows a user to create movies by splicing together video

clips. The user can add a clip between any two clips and delete or move a

clip to a different location. Finally, the spliced clips are played consecutively

so that the fi nal video looks right. In what data structure would you store the

clips be stored? Why?

sim23356_ch16.indd 812sim23356_ch16.indd 812 12/15/08 7:14:24 PM12/15/08 7:14:24 PM

 Chapter 16 Data Structures and Generics 813

 5. Which Data Structure?
 For each of the following problems, determine the data structure that you would use

to solve the problem in the most effi cient way possible. You should use the simplest

data structure(s) that allows you to attain that effi ciency.

a. You are writing a browser program for the Web, and your browser must remem-

ber all the sites that a user has visited for proper implementation of “back” and

“forward” buttons.

b. You are writing a web crawling program that, given a site, fi nds all the sites to

which it links, then fi nd all the sites to which those sites link, and so on, up to 10

levels. Your program lists all the sites and corresponding levels.

 6. Stack Implementations
 One data structure can sometimes be used to implement another data structure. For

example, in this chapter an ArrayList is used to implement a stack . Describe how you

would implement a stack using

a. a linked list.

b. a queue.

 Does the effi ciency of your push (…) and pop() methods depend on the number of

elements on the stack?

 7. ArrayList<E> Implementation
 When an ArrayList<E> object needs more space, it resizes itself by allocating more

memory and copying the current object to a larger block of memory.

 How much more space does an ArrayList<E> object allocate when it resizes

itself? Consider the following three strategies.

a. Increase the capacity by 10.

b. Double the current capacity.

c. Increase the capacity by 1.

 Assume that

• an ArrayList <E>is initialized with a capacity of 10 values,

• new data come one value at a time, and

• eventually the list will need to accommodate 80 values.

 Calculate the total number of elements that are copied using each of the

three strategies for resizing. Which strategy would use you use to implement

ArrayList<E> and why?

 8. ArrayList <E> vs LList<E>

 ArrayList<E> and LList<E> provide many of the same methods. These are

enumerated in ListInterface<E>. However, LList<E> provides three methods not

provided by ArrayList<E>. These are

• void reset(),
• boolean hasNext(), and

• E next().

 Explain why ArrayList<E> does not implement these methods. Why are these

methods included in the implementation of LList<E> ?

 9. Using Exceptions with Data Structures
a. Rewrite the pop() method of Stack<E> so that pop() throws a

 NoSuchElementException when the stack is empty. You will also have to alter

 StackInterface<E> .

sim23356_ch16.indd 813sim23356_ch16.indd 813 12/15/08 7:14:24 PM12/15/08 7:14:24 PM

814 Part 3 More Java Classes

b. Rewrite the Queue<E> methods insert(E x) and remove() , so that each throws

an appropriate exception rather than returning null or exiting abruptly. Adjust

 QueueInterface<E> appropriately.

c. Five LList<E> methods terminate abruptly under exceptional conditions. Rewrite

these methods so that each throws an appropriate exception.

 10. Find the Flaw
 Suppose that the algorithm used in Example 16.6 was written as:

 For each minute from 0 through 59
 {
 If there are customers waiting and the ATM is available
 {
 Remove a customer from the queue;
 Increment the number of customers served ;
 Add to the total waiting time the waiting time of the current customer;
 Update the time the ATM is next available;
 }
 Determine the number of new customers arriving: 0, 1, or 2;
 For each new customer
 Place the new customer in the queue;
 }
 Print the summary statistics;

 Find the fl aw in this algorithm. Explain how it might generate incorrect output.

 PROGRAMMING EXERCISES
 Programs marked (R) require recursive solutions.

 1. Palindromes
 A palindrome is a sequence of characters that reads the same forwards and

backwards such as “mom,” “dennis sinned,” or “a man a plan a canal panama.”

Write a program that accepts a string of characters and uses a stack to determine

whether or not the string is a palindrome. When deciding whether or not a string is a

palindrome, ignore spaces, case, and punctuation. For example, “Madam I’m Adam”

is a palindrome.

 2. Recursive Network Traversal
 (R) Write a recursive version of the algorithm that moves the prisoner through the

rooms of a house (described iteratively in Example 16.4). A recursive version uses

fewer lines of code and does not explicitly use a stack.

 3. Reversing a List
 Write and test an iterative method that accepts a reference to a LList<E> and returns

a reference to another LList<E> that contains the data of the original list in reverse

order.

 4. Recursive Reversal of a List
 (R) Write and test a recursive method that accepts a reference to a LList<E> and

returns a reference to another LList<E> that contains the data of the original list in

reverse order.

 5. Printing a List
 (R) Write and test a recursive method that accepts a reference to a LList<E> and

prints the items in the list.

sim23356_ch16.indd 814sim23356_ch16.indd 814 12/15/08 7:14:25 PM12/15/08 7:14:25 PM

 Chapter 16 Data Structures and Generics 815

 6. Another Implementation of LList<E>
 The implementation of LList<E> given in this chapter includes a private inner class,

 Node . As such, LList<E> can access the private data of Node . Using an inner class

is a convenience but not a necessity. Defi ne a generic class Node<E> as a public

independent class and implement LList<E> using Node<E>. Because LList<E>

cannot access the private data of Node<E> , your implementation of Node<E>

should include setter and getter methods. Devise a third class that instantiates

a LList<String> object, interactively stores an arbitrary number of strings, and

demonstrates the methods of LList<E> .

 7. Emptying and Printing a Stack
 Write and test an iterative method that pops and prints all data in a stack.

 8. Recursive Emptying and Printing of a Stack
 (R) Write and test a recursive method that pops and prints all data in a stack.

 9. Insertion Sort Using ArrayList

 Write a program that reads 50 strings from a fi le and sorts them by inserting each

string into the appropriate place in an ArrayList<String> object. For example, if the

strings are:

 Shai

 Ralph

 Hillary

 Tom

 Barbara

 Fred

 Then the ArrayList should grow as follows:

 empty

 Shai

 Ralph Shai

 Hillary Ralph Shai

 Hillary Ralph Shai Tom

 Barbara Hillary Ralph Shai Tom

 Barbara Fred Hillary Ralph Shai Tom

 10. Depth First Search
 Write a backtracking program similar to Example 16.4 that accepts a network

(represented by a two-dimensional array) and visits every “room” in the network.

Your search should start with room 0. Rather than visiting adjacent rooms in random

order, use ascending order of room numbers. Your program should print the rooms

in the order visited. For example, using the network in Figure 16.8 , your program

should print: 0, 1, 2, 3, 5, 6, 7, 4, 8, 13, 9, 10, 12, 11, 15, 16, 17, 20, 21, 14, 18, 19.

This program can be done recursively, or iteratively with the help of a stack.

 11. Connected Components of a Network (Graph)
 Not all networks are connected. For example, imagine an estate with many

buildings, each of which has many rooms. If we model this estate with a network,

then the rooms within each building are accessible one to another, but not the rooms

between two buildings.

 Write a program that accepts a possibly disconnected network (represented by

a two-dimensional array) and prints a list of rooms in each building. Number the

buildings beginning with 1. This can be done recursively or iteratively.

sim23356_ch16.indd 815sim23356_ch16.indd 815 12/15/08 7:14:25 PM12/15/08 7:14:25 PM

816 Part 3 More Java Classes

 For example, if the estate array is:

 0 1 0 0 1 0 0

 1 0 0 0 1 0 0

 0 0 0 1 0 1 1

 0 0 1 0 0 1 1

 1 1 0 0 0 0 0

 0 0 1 1 0 0 1

 0 0 1 1 0 1 0

your output should be:

 Building 1: Room numbers 0, 1, 4.

 Building 2: Room numbers 2, 3, 6, 5.

 Hint: Wrap the solution to the previous problem in a loop.

 12. Postfi x Expressions
 Everyone is familiar with arithmetic expressions that place the operator between

the operands. Such an expression is called an infi x expression. For example, 3 � 1,

(3 � 2) * 4, and (4 � 6) * (2 � 3) are infi x expressions. Infi x notation is familiar

but inconvenient because an infi x expression requires parentheses and operator

precedence rules for correct evaluation.

 A postfi x expression is an arithmetic expression in which the operators follow

their corresponding operands. For example, 32� is the postfi x equivalent of 3 � 2.

And, in postfi x notation, 325�* means (2 � 5) * 3, while 325*� means (2 * 5) � 3.

No parentheses are necessary to evaluate a postfi x expression correctly, and every

postfi x expression can be evaluated without precedence rules. Compilers and some

calculators use postfi x expressions. Although postfi x may appear tricky to read, with

the aid of a stack, the evaluation of a postfi x expression is straightforward.

 Write a method that accepts a postfi x expression (string) and returns its

numerical value. For simplicity, assume that all operands are single digits 0 through

9, that there are just two operators ‘�’, and ‘*’, and all postfi x expressions are

syntactically correct.

 The algorithm to evaluate a postfi x expression uses the Stack <Integer> class and

is given below:

 While there are still more symbols in the expression:
 a. Read next symbol ch .
 b. If ch is a n operand (a digit ‘0’...‘9’) then

 push the integer equivalent of ch on the stack.
 // i.e., ch � ‘0’

 c. If ch is an operator (‘�’ or ‘*’)
 pop two values off the stack,
 perform the appropriate operation on them, and
 push the result back on the stack.

Pop the stack and return the value.

 For example, the postfi x string “897*6��” evaluates to: (((9 * 7) � 6) � 8) � 77.

 Figure 16.22 traces the evaluation of “897*6��”.

 13. Infi x to Postfi x Conversion
 Converting infi x expressions to postfi x expressions can be accomplished using the

following algorithm, due to Edsger W. Dijkstra, called the Shunting Yard Algorithm.

 The Shunting Yard Algorithm

 Input: an infix expression (string)
Output: the equivalent postfi x expression (string)

sim23356_ch16.indd 816sim23356_ch16.indd 816 12/15/08 7:14:25 PM12/15/08 7:14:25 PM

 Chapter 16 Data Structures and Generics 817

7
9
8

9
8

69
8

6
63
8

63
8 778

897*6++

push 8

897*6++

push 9

897*6++

push 7

897*6++

pop 7
pop 9
multiply: 9 *7
push 63

897*6++

push 6

897*6++

pop 6
pop 63
add: 63+6
push 69

897*6++

pop 69
pop 8
add: 8+69
push 77

897*6++

pop 77

FIGURE 16.22 The stack during the evaluation of the postfix expression 897*6��

Initialize the postfi x expression to empty.
For each character in the infi x expression
{
 1. read a character, ch, from the infi x expression
 2. if ch is an operand then append ch to the postfi x expression
 3. else if ch is an operator then
 while an operator of greater or equal priority is on the stack
 pop the stack;
 append the popped operator to the postfi x expression;
 push ch
 4. else if ch is a left parenthesis '('
 push ch onto the stack;
 5. else if ch is a right parenthesis ')'
 while the top of the stack is not a left parenthesis '('
 pop the stack and append the operator to the postfi x expression;
 pop and discard the left parenthesis;
}

 While the stack is not empty
 pop the stack and append the popped operators to the postfi x expression;

 Note that the operands always remain in the same order, and only the operators

change position. For example, the infi x expression 6*7–8/9 converts to a postfi x

form of 67*89/�. The stack, the infi x string, and the postfi x string processed are

shown in Figure 16.23 .

INFIX EXPRESSION

POSTFIX EXPRESSION

*

*
/
–––

/
–

6*7–8/9 6*7–8/9 6*7–8/9 6*7–8/9 6*7–8/9 6*7–8/9 6*7–8/9 6*7–8/9

6 6 6 7 6 7 * 6 7 * 8 6 7 * 8 6 7 * 89 67 * 89/–

FIGURE 16.23 Conversion of the infix expression 6*7�8/9 to the postfix expression 67*89/�

 Implement this algorithm using a stack of char. You may assume that all operands

are single digits and operators are from the set { �, �, *, /}. Infi x expressions may

include parentheses.

sim23356_ch16.indd 817sim23356_ch16.indd 817 12/15/08 7:14:25 PM12/15/08 7:14:25 PM

818 Part 3 More Java Classes

 14. Alternate Implementation of Stack<E>

 Use a chain of nodes, rather than an ArrayList, to implement Stack<E>. The time

necessary to perform a push() or pop() operation should always be the same, no

matter how many elements are on the stack. A single variable, top, should reference

the fi rst node of the chain, as shown in Figure 16.24

“Vanilla” “Chocolate” “Rocky Road”

top

“Cookie Dough” null

FIGURE 16.24 A linked implementation of a stack

 15. Which Data Structure Is Better for Insertion Sort: ArrayList or LList?
 Write a program that compares the speed of insertion sort (see Chapter 7), fi rst using

ArrayList<E>, and then using LList<E>. Report and explain your results. Which data

structure appears more suitable for insertion sort? Justify your answer.

 16. A Print Queue
 A print queue is a list of jobs waiting to be printed. Each job is assigned

two integers: an id , and a time that is an estimate of the number of seconds

required by the job. Three printers (A, B, and C) serve the same single queue.

Whenever a job completes, the next job waiting in the queue is serviced. If two

printers finish a job simultaneously, then A has precedence over B, and B has

precedence over C.

 Write a program that simulates a print queue with 30 print jobs such that ids are

numbered 1 through 30, and time s are set to random numbers between 10 and 1000.

A new job should be created every 100 seconds. Your program should report

• the total time, in seconds, for each job,

• the number of seconds that each printer was busy and idle throughout the processing

of all 30 jobs, and

• how many jobs were processed by each printer.

 Total time for each job is counted from the creation of the job until the job is

complete.

 17. A Linked Implementation of a Queue
 Use a chain of nodes to implement the Queue <E> class queue. Implement insert(…)

and remove() effi ciently so that insertions and deletions always take the same

amount of time no matter how large the queue. Hint : Use two references, front and

rear, each a reference to nodes in a chain. See Figure 16.25 .

rear

“Paul” “John” “George”

front

“Ringo” null

FIGURE 16.25 A linked implementation of a queue

 Note that without a reference to the rear of the queue, insertions, which necessarily

occur at the rear of the queue, are expensive because accessing the rear of the queue

requires a traversal of the entire queue. The time required for this traversal increases

with the size of the queue.

sim23356_ch16.indd 818sim23356_ch16.indd 818 12/15/08 7:14:26 PM12/15/08 7:14:26 PM

 Chapter 16 Data Structures and Generics 819

 18. Doubly Linked Lists
 A doubly linked list is a chain of nodes, each of which has three components:

data, next, and previous. The data component holds a reference to some data,

the next component holds the address of the next node in the list, and the

previous component holds the address of the previous node in the list. See

 Figure 16.26 .

dataprevious next dataprevious next dataprevious next

“Marcia” “Jan” “Cindy”

 FIGURE 16.26 A doubly linked list

 Create a class DList<E> that implements the ListInterface <E> using a doubly linked

chain of nodes. Include LList<E> methods

• reset()
• next()
• hasNext()

 Include additional methods:

• Eprevious()
 if current �� null , reports an error and terminates the application; otherwise returns

the data of the current node and sets current equal to current.previous .

• boolean hasPrevious()
 returns true if current.previous is not null.

 Use the features of a doubly linked list to improve the effi ciency of the methods of

 LList<E> . In particular, get(int index) can be done 50% faster because the search can

start from the right or left end of the list, whichever is closer to the index .

 19. Circularly Linked Lists
 A circularly linked list is a chain of nodes such that the last node refers back to

the fi rst. Implement a queue using such a structure. Insertions and deletions should

always take the same amount of time, regardless of the size of the queue. Hint : A

single reference should hold the address of the rear node, which points, of course, to

the front of the queue. See Figure 16.27 .

rear

“Dorothy” “Tinman” “Scarecrow” “Lion”

FIGURE 16.27 A queue implemented using a circularly linked list

 20. Breadth First Search of a Family Tree Using a Queue
 A fi le contains information that describes a family tree. The fi rst line contains

an integer n indicating the number of people in the family tree. The next n

lines contain strings, each representing a unique name in the family tree. The

remainder of the fi le uses n lines to describe who is the child of whom. The i th

line, 1 � i � n , contains a list of people who are children of the i th person. People

are represented by integers: the m th person in the original list of names is listed

as m . If the i th person has no children then the i th line contains the single integer

sim23356_ch16.indd 819sim23356_ch16.indd 819 12/15/08 7:14:27 PM12/15/08 7:14:27 PM

820 Part 3 More Java Classes

0. For example:

 6
 Marie
 Ally
 Raymond
 Robert
 Geoffrey
 Michael
 3 4
 0
 2 5 6
 0
 0
 0

 means that:

 There are six people: Marie, Ally, Raymond, Robert, Geoffrey, Michael

 Marie has two children: Raymond (3) and Robert (4).

 Ally has no children.

 Raymond has three children: Ally (2), Geoffrey (5), Michael (6).

 Robert has no children.

 Geoffrey has no children.

 Michael has no children.

 See Figure 16.28 for a visual representation.

Marie

Raymond

Geoffrey MichaelAlly

Robert

FIGURE 16.28 A visual representation of the family tree

 Write a program that reads such a fi le and stores its information in a two-

dimensional array of integers. For example, the two-dimensional array entry that

corresponds to the preceding data is shown in Figure 16.29 , where entry[i,j] � 1 if i
is the parent of j .

 Use a queue to print all the names in order of generation. For example, the

output for the preceding fi le is:

 Generation 1: Marie

 Generation 2: Raymond Robert

 Generation 3: Ally Geoffrey Michael

 Assume that the fi rst person in the list is the only person in generation 1. Your

algorithm should work like this:
 Defi ne an array, generation, with one entry for each of the names.
Set variable generationNumber � 1;
Print ("Generation " � generationNumber);

sim23356_ch16.indd 820sim23356_ch16.indd 820 12/15/08 7:14:28 PM12/15/08 7:14:28 PM

 Chapter 16 Data Structures and Generics 821

Marie

Marie

Ally

Ally

Raymond

Raymond

Robert

Robert

Geoffrey

Geoffrey

Michael

Michael

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

FIGURE 16.29 A two-dimensional array representation of the family tree

Initialize the queue to 1; Set generation[1] � 1;
Until the queue is empty:
{
 Remove an integer x from the queue;
 if generation[x] > generationNumber
 {
 Increment generationNumber;
 Print ("Generation " � generationNumber);
 }
 Print the string S corresponding to the name of x;
 For each of S’s children:
 {
 Add the corresponding integer k to the queue;
 Set generation[k] � generation[x] � 1;
 }
}

 THE BIGGER PICTURE

 ABSTRACT DATA TYPES
 A Java program consists of interacting classes, and classes consist of data and methods.

When designing a class, you should fi rst decide what the class should do . Look at the

“bigger picture,” so to speak. Implementation comes later. What comes fi rst; then comes

how.

 For example, consider a class that models a deck of cards. Such a class can be specifi ed

as:

 DeckOfCards
{

THE BIGGER PICTURE

sim23356_ch16.indd 821sim23356_ch16.indd 821 12/15/08 7:14:28 PM12/15/08 7:14:28 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
822 Part 3 More Java Classes

 Data:
 deck: an ordered arrangement of 52 Card objects
 Operators:
 dealACard(): returns a single Card chosen from deck
 shuffle(): randomly rearranges the deck
 remainingCards(): returns the number of cards remaining in the deck
}

A client of this class knows that it can instantiate a deck, shuffl e a deck, deal a card from

a deck, and fi nd out how many cards remain in the deck. The client has no idea how these

tasks get done, just that they do. The client need not know how the cards are shuffl ed, just

that they are shuffl ed.

 The specifi cation of DeckOfCards is called an abstract data type (ADT).

An abstract data type (ADT) consists of data and a set of operators that act on that

data. An ADT is defi ned without regard to its implementation.

 The operators of an ADT collectively form its interface . An ADT is completely specifi ed

by its interface, which is independent of its implementation. The client of an ADT is prom-

ised functionality through the interface, but the client need not know anything about the

implementation.

 The implementation of an ADT may change, but as long as the interface remains

unchanged, the correctness of user programs is unaffected. The methods work as adver-

tised. On the other hand, the implementation of an ADT does affect the effi ciency of its

methods. And, as you know, some implementations are better than others.

 A stack can similarly be specifi ed by an ADT:

 ADT Stack
{
 Data:
 An ordered collection of elements such that elements are added and

removed at one end, the top.
 Operators:
 push(Element x): places x in the top position.
 pop(): removes and returns the element in the top position.
 peek(): returns the item in the top position.
 empty(): returns true if there are no elements in the collection.
 size(): returns the number of items currently in the collection.
}

The ADT Stack defi nes the data and the operators but not how the operators are imple-

mented and not how the data is stored or represented. A Java interface is like an ADT in that

it specifi es methods but not implementation.

 Of course, to be of any use, an ADT requires an implementation. This implementation

often involves a data structure.

A data structure consists of a scheme or mechanism that organizes a collection of

related data together with a set of algorithms (or methods) that manipulate the data.

 If that sounds a bit technical, let’s return to the ADT Stack . Example 16.2 provides an

implementation of a stack that uses the ArrayList data structure. Another Stack implemen-

tation might use an ordinary array, and still another might implement a stack with a chain

of nodes. (See Programming Exercise 14.) Every implementation, however, must supply

methods push(), pop(), peek(), empty() , and size() as specifi ed by the ADT Stack .

sim23356_ch16.indd 822sim23356_ch16.indd 822 12/15/08 7:14:29 PM12/15/08 7:14:29 PM

THE BIGGER PICTURE
 Chapter 16 Data Structures and Generics 823

 Throughout this chapter, you have seen many examples of data structures. None of

these were presented as ADTs, but in fact, many of them, like Stack and Queue , are clas-

sic examples of abstract data types. In these cases, the ADT is clearly distinguished from

the underlying implementation. Nonetheless, sometimes it is more diffi cult to distinguish

between an ADT and an implementation.

 For example, a linked list could be implemented somewhat eccentrically using an

 ArrayList rather than a chain of nodes. Is a linked list an ADT with various possible imple-

mentations, or is it defi ned intrinsically as a chain of nodes so that it really has no alterna-

tive natural implementation? Similarly, and even more strangely, one can implement an

array using a chain of nodes. Is an array an ADT with operations that allow indexed access

to equal-sized elements, and thereby allowing different implementations? Or, must an array

specifi cally be implemented with a contiguous section of memory?

 The issue of ADT versus data structure can be confusing, but the matter is more about

terminology than concepts. The bottom line is that if you intend a particular kind of imple-

mentation, then you are not talking about an ADT. With arrays and linked lists, most people

mean implementations rather than ADTs. However, everyone agrees that dynamic arrays,

certain linked list variants, stacks, and queues are all ADTs that can be implemented with

a variety of data structures, including arrays and chains of nodes.

 We reiterate that a data structure consists of an organized collection of data along

with algorithms that manage the data, and an ADT consists of a set of operators that act on

data without regard to implementation. Furthermore, not all implementations are created

equal. Some are more effi cient than others; some are more appropriate to one problem than

another. For example, because the ArrayList operation remove(0) shifts all data whenever

the fi rst element is removed, an ArrayList implementation of the ADT queue provides a

rather ineffi cient remove() operation. A circular array or a chain of nodes is a more effi cient

implementation.

 In the following section, we look at another ADT, a deque , along with several possible imple-

mentations. Again, you will see that each implementation has advantages and disadvantages.

 Deque : An Abstract Data Type Case Study

A deque is an ordered list of elements such that both insertions and removals can take

place at either end.

 Think of a deque as a deck of cards with a limited set of operations that include inserting,

removing, and peeking at cards from both the top and bottom of the deck. Technically,

deque stands for d ouble e nded que ue. Part queue and part stack, a deque is handy when

neither a queue nor a stack is suffi cient, but both are useful.

 The following Java interface describes the ADT deque.

 Java ADT deque

// This generic interface defines the deque ADT.
// A deque is an ordered list with operations
// that operate at either end of a list. You can add an item, remove an item, or
// peek at an item either at the front of the deque or at the back of the deque.

public interface DequeInterface<E>
{

 public void addFront(E item);

 // Inserts item at the front of the deque.

sim23356_ch16.indd 823sim23356_ch16.indd 823 12/15/08 7:14:29 PM12/15/08 7:14:29 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
824 Part 3 More Java Classes

 public void addBack(E item);

 // Inserts item at the back of the deque.

 public E removeFront();

 // Removes item from front of the deque and returns item .
 // Returns null if the deque is empty.

 public E removeBack();

 // Removes item from back of the deque and returns item .
 // Returns null if the deque is empty.

 public E peekFront();

 // Returns the item at the front of the deque, leaves deque unchanged.
 // Returns null if the deque is empty.

 public E peekBack();

 // Returns the item at the back of the deque, leaves deque unchanged.
 // Returns null if the deque is empty.

 public int size();

 // Returns the number of elements in the deque.

 public boolean empty();

 // Returns true if the deque has any elements, otherwise false.
}

 Deque Implementation
 Our goal is a dynamic implementation of Deque<E> so that each method executes in constant

time. That is, each method always requires the same amount of time regardless of the number

of items in the deque. Although such effi ciency is not always feasible with every ADT, it is

possible with a deque. Therefore, we avoid any implementation that produces methods with

execution time that increases as the number of elements in the deque increases.

 Several possible implementations of a deque come to mind, but each has its draw-

backs. Either the data structure does not provide for dynamic growth, or else one of the

operations does not execute effi ciently.

• Circular array. Using a circular array with two stored indices, as we do for a queue,

allows effi cient operations, but a circular array cannot grow dynamically. Its size is

fi xed.

• ArrayList. Using an ArrayList is possible, but only insertions and deletions at the back

end are effi cient. The operations at the front end shift all data in the deque. As the

deque grows, so does the execution time for operations at the front.

• Linked list with one reference variable that holds the address of the fi rst node.
Using a linked list is dynamic, and it allows effi cient insertion and deletion at the front

end. However, operations at the back end are not effi cient because to reach the end of

sim23356_ch16.indd 824sim23356_ch16.indd 824 12/15/08 7:14:29 PM12/15/08 7:14:29 PM

THE BIGGER PICTURE
 Chapter 16 Data Structures and Generics 825

the list every node on the list must be accessed. The time required for this traversal

increases as the size of the list increases.

• Linked list with extra reference variables. Add two additional reference variables,

 last and nextToLast , to the previous linked list implementation. This attempt almost

works. It has all the benefi ts of the previous implementation plus it allows fast inser-

tions at the back end of the list. For example, inserting a new node at the end of the list

can be achieved via:

 last.next � newnode;
nextToLast � last;
last � newnode;

 Unfortunately, the extra variables last and nextToLast do not allow for fast deletions at

the back end of the list. Although last can be shifted back one node, and the last node

easily deleted via

 last � nextToLast;
nextToLast.next � null;

 the nextToLast reference must also “shift back” one node, and that requires travers-

ing the list from the beginning. A nextToNextToLast node would allow us to avoid the

traversal, using

 nextToLast � NextToNextToLast;

 but then NextToNextToLast would need to shift back as well, once again requiring a

traversal from the start.

 Using a linked list to implement a deque is akin to using a bed sheet that just

doesn’t fi t. When you manage to tuck in three corners, the fourth corner pops out. A

linked list implementation has limitations.

 Thus, none of the data structures listed here provides an effi cient implementation of a

deque. The following exercises guide you through two alternative deque implementations.

 Exercises
 1. Devise an implementation of a deque using a circularly linked list . A circularly

linked list is a chain of nodes in which the last node points back to the fi rst. See

Programming Exercise 19. Determine those deque methods that take constant

time and those that take time dependent on the number of elements in the deque.

You do not need to compile the code, as this implementation does not meet our

criterion of effi ciency.

 2. A doubly linked list is a chain of nodes, each of which has three components: data ,

 next , and previous . See Programming Exercise 18. The data component holds a

reference to the data, the next component holds the address of the next node in the

list, and the previous component holds the address of the previous node in the list

 Using a doubly linked list, the methods of a deque can be implemented effi -

ciently so that the execution time of each method is independent of the number

of data. That is, a doubly linked list implementation allows constant time imple-

mentation of every deque method.

 Implement a deque using a doubly linked list such that each method executes in

constant time.

 3. Most word processors, editors, and games maintain a history of the last 50 or so

user actions. An action, keystroke, or move can be undone by clicking the undo

sim23356_ch16.indd 825sim23356_ch16.indd 825 12/15/08 7:14:30 PM12/15/08 7:14:30 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
826 Part 3 More Java Classes

button. The last action performed is, of course, the fi rst one that gets undone

(“last in, fi rst out”). On the other hand, after 50 distinct actions, the fi rst action is

the one that is deleted from the history (“fi rst in, fi rst out”). Only the most recent

50 actions are stored. The history is a little like a stack and a bit like a queue. A

deque seems just right.

 Use a deque to simulate the undo feature of a simple video game. This game

allows you to repeatedly move a stick in one of eight directions: N, S, E, W, NE,

SW, NW, or SE. You can undo up to 10 moves at any time, and then continue

moving the stick again. At most 10 directions are stored at any time. For simplic-

ity, your program should repeatedly accept

 • integers 1 through 8 for the directions N, S, E, W, NE, SW, NW, and SE;

 • 9 for “undo”; and

 • 0 to quit.

 If “undo” is entered and nothing remains to undo, the program should display

a message to that effect. At the end, the current history of directions should be

displayed.

 4. When you visit the Senate in Washington DC, you may spend considerable time

in the waiting line at the visitor’s gallery. There are 90 seats in the gallery. Spec-

tators can enter the gallery in groups of 35 but only when a block of 35 seats

becomes available. Each person who enters may stay as long as he/she likes.

VIPs are allowed to cut to the front of the line rather than wait at the back.

 Write a program using a deque to simulate the waiting line for the Senate

gallery. Assume that the gallery is initially empty and that 100 people are waiting

in line when the day begins. People arrive thereafter at a rate of one person every

20 seconds, with VIPs arriving at a rate of one every 5 minutes. Twenty percent of

all spectators remain in the gallery for 5 minutes, 60% stay 10 minutes, and 20%

stay 20 minutes.

 Calculate the average waiting time for ordinary tourists and for VIPs after

an 8-hour simulation.

 5. Explain how you might implement a stack using a deque.

 6. Explain how you might implement a queue using a deque.

sim23356_ch16.indd 826sim23356_ch16.indd 826 12/15/08 7:14:30 PM12/15/08 7:14:30 PM

 827

CHAPTER CHAPTER 17
 The Java Collections

Framework
 “I think that I shall never see a graph as lovely as a tree.”

 — From Algorhyme by Radia Perlman

 Objectives

 The objectives of Chapter 17 include an understanding of

� the Java Collections Framework,

� a subset of Java’s Collection hierarchy, including:

 � ArrayList ,
 � LinkedList ,
 � HashSet ,
 � TreeSet , and
� effi ciency considerations when choosing a collection.

 17.1 INTRODUCTION

 The data structures of Chapter 16, ArrayList�E�, Stack�E�, Queue�E�, and LList�E� ,

are generally termed collection classes. In this chapter, we continue the study of collection

classes with the Java Collections Framework .

The Java Collections Framework is a hierarchy of interfaces and classes used for

storing and manipulating groups of objects as a single unit, a collection.

 Each collection comes with a set of methods for managing the collection. Initially, the

various collections may seem similar, almost identical, and even redundant. However,

choosing the “wrong” collection for an application can result in a working but ineffi cient

program. Choosing the right collection requires at least some general familiarity with

implementation details. As we examine each of the collections in the Java Collections

Framework, be aware of the underlying implementation, its advantages, and its disadvan-

tages, within the context of a particular application. The Java Collections Framework is

contained in the java.util package. The ArrayList�E� class, introduced in Chapter 16, is a

member of the Java Collections Framework.

sim23356_ch17.indd 827sim23356_ch17.indd 827 12/15/08 7:17:45 PM12/15/08 7:17:45 PM

828 Part 3 More Java Classes

 17.2 THE COLLECTION HIERARCHY

The collection hierarchy consists entirely of interfaces except at the lowest levels

where concrete classes reside.

 At the root of the hierarchy is the Collection�E� interface. Figure 17.1 gives a partial view

of the collection hierarchy. Figure 17.1 shows just those interfaces and classes that we dis-

cuss in the following sections. The complete hierarchy is more extensive.

ArrayList

TreeSet

LinkedList

List
interface

Collection
interface

Set
interface

HashSet
SortedSet
interface

 FIGURE 17.1 A partial view of the Collection hierarchy

 From Figure 17.1 , you can see that the Collection�E� interface splits into List s and Set s.

List�E� is an interface that extends Collection�E�. ArrayList�E� and LinkedList�E�

are classes that implement List�E�. An object belonging to ArrayList�E� or

LinkedList�E� is a collection, indexed from 0, that can contain duplicate items.

 Notice that ArrayList�E� implements List�E� . As you know, an object belonging to

 ArrayList�E� can hold duplicate data. For example, if myList belongs to ArrayList�String�

then the statements

 myList.add("Happy");
myList.add("Happy"); and
myList.add("Happy");

place three identical strings into the collection.

Like List�E�, Set�E� is an interface that extends Collection�E�. HashSet�E�

and TreeSet�E� implement Set�E�. An object belonging to HashSet�E� or

TreeSet�E� is a collection that is not indexed and does not contain duplicate

items.

sim23356_ch17.indd 828sim23356_ch17.indd 828 12/15/08 7:17:46 PM12/15/08 7:17:46 PM

 Chapter 17 The Java Collections Framework 829

 The Collection�E� interface defi nes the following methods. In the descriptions that

 follow, x refers to an object belonging to a class that implements Collection�E�.

• boolean add(E item)

 x.add(item) adds item to x and returns true , if the contents of x have been changed.

If x belongs to a class that implements Set�E� and x already contains item , then

 x.add(item) returns false because Set s do not hold duplicate elements.

• boolean addAll (Collection�E� c)

 x.addAll(c) appends Collection�E� c to Collection�E� x ; x.addAll(c) returns true , if

 x has been altered, that is, if the call x.addAll(c) adds any additional items to x.

• void clear()

 x.clear() removes all elements from x.

• boolean contains (Object item)

 x.contains(item) returns true if there is a member c of x , such that c.equals(item) is

 true.

• boolean containsAll(Collection�E� c)

 x.containsAll(c) returns true if every element in c is also in x , that is, if c is a subset

of x .

• boolean equals(Object item)

 x.equals(item) returns true if item is equal to x .

• boolean isEmpty()

 x.isEmpty() returns true if x has no elements.

• boolean removeAll(Collection c)

 x.removeAll(c) removes all elements from x that are also in Collection c so that x and c

have no common elements; returns true if any element is removed.

• boolean remove(Object item)

 x.remove(item) removes at most one instance of item from x ; returns false if nothing is

removed from x .

• boolean retainAll(Collection�E� c)

 x.retainAll(c) retains all elements of x that are also in c , that is, x.retainsAll(c) is the

intersection of x and c , the collection of elements common to x and c ; returns true if

any element is removed.

• int size()

 x.size() returns the number of elements in x .

• Object[] toArray()

 x.toArray() returns a reference to an array containing the elements in collection x .

• Iterator iterator()

 Given a collection x , it is often desirable to “loop through x ” or “step through x ,”

 processing each object in x . In pseudocode:

 for each object o in x
 process o

An iterator is an object capable of looping through, moving through, or stepping

through a collection.

 The statement

 Iterator�E� iter � x.iterator();

sim23356_ch17.indd 829sim23356_ch17.indd 829 12/15/08 7:17:46 PM12/15/08 7:17:46 PM

830 Part 3 More Java Classes

instantiates an Iterator object. For any Collection x , you can instantiate one or more Iterator
objects.

 You can think of an Iterator object as containing an albeit imaginary pointer or cur-

sor. Initially, when an iterator for a collection is instantiated, this pointer is positioned just

before the fi rst element in a collection.

 Once an Iterator is instantiated, the following methods are available:

• E next()

 returns the next item of the collection and advances the pointer.

 The fi rst call to next() returns the fi rst element in the collection and moves the pointer,

just “before” the second item in the collection.

 A call to next() throws a NoSuchElementException if there is no “next element” in

the collection. For example, if x is a collection of String objects:

 x � ["Harpo" "Groucho" "Zeppo" "Chico"];

 then the following four lines of code iterate through the collection and produce the

output:

 Harpo
Groucho
Zeppo

1. Iterator�String� iter � x.iterator(); // create an iterator for x

Harpo Groucho Zeppo Chico

2. System.out.println(iter.next()); // Print “Harpo” and advance the pointer

Harpo Groucho Zeppo Chico

3. System.out.println(iter.next()) ; // Print “Groucho” and advance the pointer

Harpo Groucho Zeppo Chico

4. System.out.println(iter.next()) ; // Print “Zeppo” and advance the pointer

Harpo Groucho Zeppo Chico

• boolean hasNext()

 returns true if there is a “next element” in the collection.

 For example, if x is the collection [“Harpo” “Groucho” “Zeppo” “Chico”] , then the loop:

 while(iter.hasNext())
 System.out.println(x.next());

 produces the output:

 Harpo
Groucho
Zeppo
Chico

sim23356_ch17.indd 830sim23356_ch17.indd 830 12/15/08 7:17:47 PM12/15/08 7:17:47 PM

 Chapter 17 The Java Collections Framework 831

• void remove()

 removes the last element returned by a call to next(). This method can be

called only once for each call to next() , otherwise this method throws an

 IllegalStateException.
 The following fragment prints the contents of a collection and removes each

element in turn. Notice that each call to remove() is preceded by a call to next().
Again, assume that x is the Collection [“Harpo” “Groucho” “Zeppo” “Chico”] .

 Iterator�String� iter � x.iterator(); // position pointer before "Harpo"
while (iter.hasNext())
{
 System.out.println(iter.next()); // print and advance pointer
 iter.remove(); // remove the last item printed
}

 17.3 THE Set�E �� INTERFACE

The classes that implement Set�E� contain no duplicate objects.

 Naturally, the Set�E� interface inherits all the methods of Collection�E�. No new meth-

ods are added to the Set�E� interface.

 17.3.1 The HashSet Class
 HashSet�E� is a concrete class that implements Set�E�. See Figure 17.1 . To under-

stand HashSet�E� , you must fi rst understand the concept of a hash function :

A hash function, h, is a method or mapping that assigns a non-negative integer to a

given object x.

 That is, h pairs x with a non-negative integer. In more mathematical terms, a hash function

 maps x to an integer in the range [0 .. n].

 For example, suppose that s is a nine-character string representing a social security

number. A hash function that maps s to an integer in the range 0 . . . 999 might pair s with

the last three digits of the social security number. For example, two such mappings, pair-

ings, or assignments are:

 “123456 789 ” → 789, and

 “323465 156 ” → 156

This particular hash function can be expressed as:

 h(s) � Integer.parseInt(s) % 1000 ;

Again, if s is the string “123456 789” then

 h(s) �

h(“123456789”) �

Integer.parseInt(" 123456789 ") % 1000 �

123456789 % 1000 �

789

The method of Figure 17.2 gives a different hash function, one that maps a string, s , to an

integer in the range 0 through 10.

sim23356_ch17.indd 831sim23356_ch17.indd 831 12/15/08 7:17:47 PM12/15/08 7:17:47 PM

832 Part 3 More Java Classes

 public static int hash(String s)
{
 int sum � 0;
 for (int i � 0; i � s.length(); i��)
 sum � sum � (int)(s.charAt(i)); // add ASCII codes of the characters
 return sum % 11;
}

 FIGURE 17.2 A hash function that maps a string to a positive integer

 Given a string, s , the method hash(…) of Figure 17.2 fi rst sums the ASCII values of the

characters comprising s and returns that sum mod 11. The return value is an integer in

the range [0…10]. For example,

 hash(“Moe”) � (77 � 111 � 101) %11 � 289 % 11 � 3
 // ‘M’ has ASCII value 77, 'o' has value 111, and ‘e’ has value 101.

Similarly,
 hash(“Larry”) � (76 � 97 � 114 � 114 � 121) % 11 � 5
hash(“Curly”) � (67 � 117 � 114 � 108 � 121) % 11 � 10

Of what use is a hash function?

A hash function can facilitate the placement and retrieval of objects in a table.

 A hash function generates table (or array) indices. For example, if o is an object and

 hash(o) � 15, then a reference to o might be stored at address or location 15. Thus, a hash

function calculates a storage location.

 In particular, suppose that list is an array of String indexed from 0 to 10 and we

wish to store the names (really references) "Moe", Larry", and "Curly" in list so that

lookup is effi cient. Obviously, we could place the strings, one after the other, into an

array. However, lookup would then necessitate a linear search of the array. Of course,

linear search on an array of size 3 is not problematic, but a linear search on an array of

three million can indeed be slow. Using a hash function, we can do much better than a

linear search.

 With the hash function of Figure 17.2 , we calculate that

 hash("Moe") � 3,
hash("Larry") � 5, and
hash("Curly") � 10.

The values calculated via the hash function tell us where to store (and later where to

retrieve) each string. That is, store the strings at array locations 3, 5, and 10:

 list[3] � "Moe",
list[5] � "Larry", and
list[10] � "Curly".

The table created using a hash function is called a hash set or hash table.

 See Figure 17.3 .

sim23356_ch17.indd 832sim23356_ch17.indd 832 12/15/08 7:17:47 PM12/15/08 7:17:47 PM

 Chapter 17 The Java Collections Framework 833

0 1 2 3 4 5 6 7 8 9 10

Moe Larry Curly

 FIGURE 17.3 A hash table with three entries

 To fi nd or look up an object, x , that is stored in a hash table, simply use the hash function

to calculate the address of the location that holds (or references) x .

 Thus to retrieve "Moe", calculate hash("Moe") � 3 . "Moe" is stored at list[3]. The

hash function computes the address directly. No searching, binary or linear, is required.

No matter how many items are stored in the table, lookup takes the same amount of time.

That is, one lookup takes one step. In this case, we say that lookup is accomplished in

 constant time .

 The idea is simple, and, in the best of all possible worlds, lookups can be achieved

with no searching. However, like people, hash functions are seldom perfect. A hash func-

tion always maps “equal” objects to the same storage location, so once an object is stored,

it can be easily retrieved. Unfortunately, a hash function can generate the same address for

different objects. That is, “unequal” objects can be mapped to the same location, as if they

were “equal.” For example,

 hash(“Moe”) � (77 � 111 � 101) % 11 � 289 % 11 � 3
hash(“Shemp”) � (83 � 104 � 101 � 109 � 112) % 11 � 509 � %11 � 3

When a hash function assigns two unequal objects the same address, a collision occurs.

 Obviously, "Moe" and "Shemp" cannot both occupy location 3 without poking each

other in the eyes! A good hash function produces few collisions, but collisions are often

unavoidable.

 There are many ways to handle collisions. Collision resolution techniques usually

involve some kind of search and consequent slowdown in performance. Even with colli-

sions, however, hashing is one of the most effi cient and effective mechanisms for storing

and retrieving data.

 Java’s HashSet�E� class stores objects in a hash table and handles any collisions that

may occur.

 HashSet�E� has two constructors:

• HashSet�E�() , and

• HashSet�E�(Collection�E� c).

The HashSet�E� methods are those methods of the Collection�E� interface. Notice that

the Collection�E� interface provides methods for:

• inserting objects into a HashSet�E� ,

• removing objects from a HashSet�E� , and

• checking whether or not an object is contained in a HashSet�E�.

Also note that:

• A HashSet�E� contains no duplicates, no matter how many times an item is added.

• A HashSet�E� has no methods that allow direct retrieval of an object. The

only retrieval mechanism is via an iterator, which means stepping through the set.

sim23356_ch17.indd 833sim23356_ch17.indd 833 12/15/08 7:17:48 PM12/15/08 7:17:48 PM

834 Part 3 More Java Classes

On the other hand, the HashSet class does provide a method

 boolean contains(E x)

 for determining whether or not an object is contained in a HashSet�E�.

• A HashSet�E� is not ordered. Objects contained in a HashSet�E� need not imple-

ment the Comparable interface.

HashSet�E� is an appropriate choice when rapid lookup is paramount and ordering

is not required, that is, when your main concern is whether or not some object is in a

collection.

 Example 17.1 demonstrates the construction and utilization of a simple hash table in a

somewhat simplistic scenario.

 In the city of Springfi eld, home of the ever-famous Simpson family, whenever a person

votes in a city election, his/her name is added to a list of voters. This action is important

because several nefarious residents of Springfi eld, including Mayor Quimby himself,

have been known to vote more than once. To curb ballot stuffi ng, a person’s name is

validated (the list is checked) before he/she is allowed to cast a vote. If a person has

already voted, he/she is barred from voting a second time.

 Problem Statement Write an application that adds a name (String) to a list of voters

and also performs rapid lookup when a potential voter arrives at the polls.

 Java Solution Because Springfi eld’s population is well over one million, very fast

lookup minimizes waiting time at the polls. Consequently, HashSet�E� is an excellent

choice for the voter list. Storing names in an array is problematic because searching for

a name necessitates a linear search, which is slow and ineffi cient for our purposes. A

binary search, though faster than linear search, mandates that the array be kept sorted,

which would then make insertion slow and ineffi cient. HashSet�E� with rapid inser-

tion and lookup is ideal for this situation.

 The following program implements the Springfi eld election process.

 1. import java.util.*;

2. public class SpringfieldElection
3. {
4. protected HashSet�String� voters ;

5. public SpringfieldElection ()
6. {
7. voters � new HashSet�String�();
8. }

9. public void validate()
10. {
11. Scanner input � new Scanner(System.in);
12. String name;
13. System.out.println("Enter XXX to exit the system");
14. System.out.print("Name: ");
15. name � input.nextLine();

 EXAMPLE 17.1

sim23356_ch17.indd 834sim23356_ch17.indd 834 12/15/08 7:17:48 PM12/15/08 7:17:48 PM

 Chapter 17 The Java Collections Framework 835

16. while (!name.equals("XXX"))
17. {
18. if (voters.contains(name)) // has name voted?
19. System.out.println(name � " has already voted");
20. else
21. {
22. System.out.println(name � " may vote");
23. voters.add(name);
24. }
25. System.out.print("Name: ");
26. name � input.nextLine();
27. } // end while

28. } // end validate

29. public static void main(String [] args)
30. {
31. SpringfieldElection votingCheck � new SpringfieldElection ();
32. votingCheck.validate();
33. }
34. }

 Output
 Enter XXX to exit the system
Name: Simpson, Homer
Simpson, Homer may vote
Name: Simpson, Marge
Simpson, Marge may vote
Name: Simpson, Homer
Simpson, Homer has already voted
Name: Krusty
Krusty may vote
Name: Flanders, Ned
Flanders, Ned may vote
Name: Krusty
Krusty has already voted
Name: Simpson, Homer
Simpson, Homer has already voted
Name: XXX

 Discussion The program is simple and easy to follow. The work is done in the loop

on lines 16 through 27. This fragment

 • determines if a person has already voted (lines 18–19), and

 • if the person has not voted, gives permission to vote and adds the person’s name

to the list of voters (lines 22–23).

 To construct the hash table of Example 17.1, Java uses a method

 int hashCode()

inherited from Object . The hashCode() method maps an object to an integer (positive or

negative) and calculates a hash table address using that integer. The value returned by

sim23356_ch17.indd 835sim23356_ch17.indd 835 12/15/08 7:17:49 PM12/15/08 7:17:49 PM

836 Part 3 More Java Classes

 hashCode() is derived from an object’s address in memory. Sometimes, it is necessary to

override the hashCode() method and provide your own version of hashCode() . Indeed,

the String class overrides Object ’s hashCode(); so that if s is a string of length n then

 s.hashCode() � s[0]*31 (n�1) � s[1]*31 (n�2) � s[2]*31 (n�3) � ... � s[n � 1]

For example, if s � "Moe" then

 s.hashCode() � 'M'*31 2 � 'o'*31 1 � 'e' �
 � 77*31 2 � 111*31 � 101 � 77,539

 Note that the ASCII codes for 'M', 'o', and 'e' are 77, 111, and 101, respectively.

 The HashSet�E� of Example 17.1 is constructed using the hashCode() method that

is implemented in String. Sun’s documentation states that:

If two objects are equal according to the equals(Object) method, then calling the

hashCode() method on each of the two objects must produce the same integer result.

 All this means is that hashCode() cannot change its mind. Given “equal” objects,

 hashCode() should always compute the same value for each. The hashCode() method of

the previous example does not violate Sun’s specifi cation. Indeed the loop

 for (int i � 1; i �� 9; i��)
{
 String name � input.next();
 System.out.println(name � " hash code: " � name.hashCode());
}

when embedded into a program produces the following output (formatting added for

readability):

 Homer hash code: 69908307

Bart hash code: 2063073
 Marge hash code: 74113692
Lisa hash code: 2368683
 Homer hash code: 69908307

Bart hash code: 2063073
Marge hash code: 74113692
Lisa hash code: 2368683
 Homer hash code: 69908307

and performs as expected. Identical strings have identical hashCode() values.

 The HashSet�E� of Example 17.1 consists of String objects, and the String class

overrides the hashCode() method inherited from Object . There are no problems here: if

two strings are equal they have the same hashCode() value. Suppose, however, that the

objects stored in HashSet�E� are not strings but belong to the following Person class:

 1. public class Person
2. {
3. private String firstName;
4. private String lastName;

5. public Person(String first, String last)
6. {
7. firstName � first;
8. lastName � last;

sim23356_ch17.indd 836sim23356_ch17.indd 836 12/15/08 7:17:50 PM12/15/08 7:17:50 PM

 Chapter 17 The Java Collections Framework 837

9. }

10. public String toString()
11. {
12. return firstName � " " � lastName;
13. }

14. public boolean equals(Object o)
15. {
16. // returns true if first and last names are the same
17. return firstName.equals(((Person)o).firstName) && lastName.equals(((Person)o).lastName);
18. }

19. }

 Notice that Person overrides the equals(Object o) method so that two Person objects are

“equal” if and only if fi rst and last names are identical.

 Now, consider the program of Example 17.1 modifi ed so that the HashSet�E�, voters ,

holds Person , rather than String , references.

 1. import java.util.*;
2. public class SpringfieldElection1
3. {
4. protected HashSet �Person � voters;

5. public SpringfieldElection1 ()
6. {
7. voters � new HashSet �Person �();
8. }

9. public void validate()
10. {
11. Scanner input � new Scanner(System.in);
12. Person person;
13. String fName, lName;
14. System.out.println("Enter XXX for first name to exit the system");
15. System.out.print("First Name: ");
16. fName � input.next();
17. System.out.print("Last Name: ");
18. lName � input.next();

19. while (!fName.equals("XXX"))
20. {
21. person � new Person(fName, lName);

22. if (voters.contains(person))
23. System.out.println(person � " has already voted");
24. else
25. {
26. System.out.println(person � " may vote");
27. voters.add(person);
28. }
29. System.out.print("First Name: ");
30. fName � input.next();
31. System.out.print("Last Name: ");

sim23356_ch17.indd 837sim23356_ch17.indd 837 12/15/08 7:17:51 PM12/15/08 7:17:51 PM

838 Part 3 More Java Classes

32. lName � input.next();
33. } // while
34. } // validate

35. public static void main(String [] args)
36. {
37. SpringfieldElection1 votingCheck � new SpringfieldElection1();
38. votingCheck.validate();
39. }
40. }

 The output of this revised program is:

 Enter XXX for first name to exit the system
First Name: Homer
Last Name: Simpson
Homer Simpson may vote
First Name: Homer
Last Name: Simpson
Homer Simpson may vote
First Name: XXX
Last Name: XXX

Homer has voted twice! Has the system gone awry?

 Seemingly, two objects that are considered “equal” (same fi rst and last names) gen-

erate different hash codes. Yet, equal objects should produce the same hash code. This

anomaly occurs because the default hashCode() method, which is inherited from Object ,
returns an integer based on the address of the calling object. Each time a name is entered,

a new object, with a unique address, is created. Thus, each new Person object with the

name “Homer Simpson” has a distinct address and hence a different hash value—even

though all “Homer Simpson” objects are considered equal according to the defi nition of the

 equals(…) method defi ned in Person.
 A hash code should map “equal” objects to the same value; but in this case, the hash

code maps “equal” objects to different values. The solution to this anomaly calls for a

 hashCode() method that depends on the name fi elds of a Person object and not on the

address of the object. To avoid this problem, a programmer should adhere to the following

guideline:

Whenever a class overrides equals(Object o) that class should also override hashCode().

 The following modifi cation to Person overrides the default hashCode() method. The new

 hashCode() method is based not on the address of an object but on the characters in the

fi rst and last names—the two attribute fi elds that determine whether or not two objects are

equal. Two objects with the same name have the same hashCode() value.

 1. public class Person
2. {
3. private String firstName;
4. private String lastName;

5. public Person(String first, String last)
6. {
7. firstName � first;
8. lastName � last;
9. }

sim23356_ch17.indd 838sim23356_ch17.indd 838 12/15/08 7:17:51 PM12/15/08 7:17:51 PM

 Chapter 17 The Java Collections Framework 839

10. public String toString()
11. {
12. return firstName � " " � lastName;
13. }

14. public int hashCode()
15. {
16. int sum � 0;
17. String s � firstName � lastName;
18. for (int i � 0; i � s.length(); i��) // add the ASCII values of each character
19. sum �� (int)(s.charAt(i));
20. return (sum % 101);
21. }

22. public boolean equals(Object o)
23. {
24. return firstName.equals(((Person)o).firstName) &&

lastName.equals(((Person)o).lastName);
25. }
26. }

 Using this revised version of Person , the Springfi eldElection1 class produces the following

output:

 Enter XXX for first name to exit the system
First Name: Homer
Last Name: Simpson
Homer Simpson may vote
First Name: Homer

Last Name: Simpson
Homer Simpson has already voted
First Name: XXX

Last Name: XXX

Lines 14–21 illustrate one possible hashCode() for Person . Another simpler version of

 hashCode() might take advantage of the fact that String overrides hashCode() .

 public int hashCode() // for Person

 {

 int sum � 0;

 String s � firstName � lastName;

 return s.hashCode() ; // as implemented in String

 }

Finally, remember that HashSet�E� maintains no order among objects. In fact, objects

belonging to HashSet�E� need not be comparable. If order is required, then another col-

lection class is more appropriate.

HashSet�E� is an excellent collection choice when rapid lookup is the criterion and

there is no implied ordering of elements.

 17.3.2 SortedSet�E�
 SortedSet�E� is an interface that extends Set�E�. Unlike a HashSet�E� , the elements

of a class that implements SortedSet�E� are ordered. This, of course, means that the

objects belonging to any class that implements SortedSet�E� must be comparable, that

is, E must implement the Comparable interface.

sim23356_ch17.indd 839sim23356_ch17.indd 839 12/15/08 7:17:51 PM12/15/08 7:17:51 PM

840 Part 3 More Java Classes

 The SortedSet�E� interface defi nes the following methods, and therefore any

class that extends SortedSet�E� must implement these methods. In the descrip-

tions that follow, assume that x refers to an object of a class that implements

 SortedSet�E� .

• E fi rst()

 x.fi rst() returns the fi rst element of x .

• E last()

 x.last() returns the last element of x .

• SortedSet�E� headSet(E a)

 x. headSet(a) returns a reference to a SortedSet containing the elements less than a

in x .

• SortedSet�E� tailSet(E z)

 x.tailSet(z) returns a reference to a SortedSet containing the elements greater than or

equal to z in x .

• SortedSet�E� subSet(E start, E end)

 x.subSet(start, end) returns a reference to a SortedSet containing those objects of x

ranging from start to, but not including, end .

 Figure 17.1 shows that Tree Set�E� implements SortedSet�E� .

 17.3.3 TreeSet�E �

TreeSet�E� is a concrete class that implements SortedSet�E� and consequently

Collection�E�. TreeSet�E� is built upon the model of a binary search tree.

 Although a full development of binary search trees is beyond the scope of our dis-

cussion, an intuitive understanding of the concept is very useful for understanding

when and when not to use Java’s TreeSet�E� class. We begin with the defi nition of

a binary tree.

A binary tree is a set, T, of elements (or nodes) such that

• T is either empty, or

• T contains a single element, called the root, and all other elements of T are

divided into two disjoint sets, each of which is also a binary tree.

 If the defi nition of a binary tree seems a bit circular, it is. That’s because the defi nition of a

binary tree is recursive: a binary tree is defi ned in terms of a binary tree, albeit with a base

case so it’s not truly circular.

 A few pictures should cement the idea for you. Figure 17.4 shows a binary tree consist-

ing of 18 nodes labeled A through R. Like the nodes of a linked list, the nodes of a binary

tree can be used to store data.

 The root of the tree shown in Figure 17.4 is the top node, which we call node-A.

According to the defi nition of a binary tree, the remaining elements of the tree are parti-

tioned into two distinct binary trees. So, if you “erase” node-A, you will notice that the

remaining elements form two smaller trees. Figure 17.5 boxes off those two smaller trees.

One such tree has node-B as its root and the other has node-C. The fi rst tree is called the

 left subtree of node-A and the second the right subtree of node-A.

sim23356_ch17.indd 840sim23356_ch17.indd 840 12/15/08 7:17:52 PM12/15/08 7:17:52 PM

 Chapter 17 The Java Collections Framework 841

left subtree of node-A right subtree of node-A

A
root

C

F

ML

G

N O

R

B

E

J K

D

IH

QP

 FIGURE 17.5 The left and right subtrees of node-A

 Similarly, the left subtree of node-B is the tree rooted at node-D and the right subtree

of node-B is the tree rooted at node-E. See Figure 17.6 . In fact, every node has a left and

right subtree. Of course, as in the case of node-P or node-Q, the left or right subtrees (or

both) may be empty trees.

Nodes of a binary tree that have two empty subtrees are called leaves.

 The leaves of the tree, shown in Figure 17.4 , are the nodes labeled P, Q, I, J, K, L, M, N , and R.

left subtree of node-B

left subtree of
node-C

right subtree of node-C

right subtree of
node-B

A
root

C

F

ML

G

N O

R

B

E

J K

D

IH

QP

 FIGURE 17.6 Left and right subtrees

A
root

C

F

ML

G

N O

R

B

E

J K

D

IH

QP

 FIGURE 17.4 A binary tree

sim23356_ch17.indd 841sim23356_ch17.indd 841 12/15/08 7:17:52 PM12/15/08 7:17:52 PM

842 Part 3 More Java Classes

 Our interest here is in a special type of binary tree called a binary search tree.

A binary search tree is a binary tree with the following additional property:

For any node, N, all data contained in the left subtree of N are less than the data of N

and all data contained in the right subtree of N are greater than or equal to the data of N.

 The tree of Figure 17.7 a is a binary search tree. The name Jan is the datum in the root. Notice that

the data in the left subtree of the root are all alphabetically less than Jan and the data in the right

subtree of the root are all alphabetically greater than Jan. This relationship between a node and

the data of its left and right subtrees is true for any node in a binary search tree.

 The tree of Figure 17.7 b is a binary tree but not a binary search tree. The value of the root

is Alice, but not one of nodes in the left subtree of the root has contents less than Alice.

Jan

Mike

Marcia

(a) A binary search tree

Peter

Cindy

Bobby Greg

CarolAlice

Alice

Cindy

Mike

(b) Not a search tree

Bobby

Greg

CarolMarcia

Jan Peter

 FIGURE 17.7 Two binary trees: (a) is a binary search tree, and (b) is not

 Figure 17.8 shows two binary search trees that hold integer data. Although both are bona

fi de binary search trees, they appear very different: the tree of Figure 17.8 a is “balanced”

and the tree of Figure 17.8 b is not.

 Binary search trees provide a straightforward search strategy. Assume that x is an

object stored in a binary search tree. To locate x ,

 begin at the root of the tree and proceed along a path down the tree, moving from

node to node:

sim23356_ch17.indd 842sim23356_ch17.indd 842 12/15/08 7:17:53 PM12/15/08 7:17:53 PM

 Chapter 17 The Java Collections Framework 843

 At each node N along the path,

 if x equals the contents of N , stop; x has been located.

 if x is less than the contents of N , take the left branch,

 if x is greater than the contents of N , take the right branch.

For example, a search for Carol in the tree of Figure 17.9 is accomplished as follows:

• Compare Carol to the root node, Jan. Carol is less than Jan. Proceed left (Cindy).

• Compare Carol to Cindy. Carol is less than Cindy. Proceed left (Bobby).

• Compare Carol to Bobby. Carol is greater than Bobby. Proceed right (Carol).

• Carol is found. Stop.

 Figure 17.9 shows the path that leads to Carol.

Mike

Marcia Peter

Cindy

Bobby Greg

CarolAlice

Carol < Jan—move left

1

Carol < Cindy—move left 2

Carol > Bobby—move right 3

Carol found—Stop

4

Jan

FIGURE 17.9 The search path for Carol

(a)
(b)

44

55

66

77

88

99

root

46
root

77

67

7155

89

78 92

21

34

22 45

14

173

FIGURE 17.8 Two binary search trees: (a) is “balanced” (b) is not

sim23356_ch17.indd 843sim23356_ch17.indd 843 12/15/08 7:17:53 PM12/15/08 7:17:53 PM

844 Part 3 More Java Classes

 If a binary search tree is “somewhat balanced,” the search routine is similar to a binary

search: each comparison eliminates about half of the data. If n objects are stored in a bal-

anced or nearly balanced binary search tree, on average, it takes approximately log
2
 (n) com-

parisons to locate an object. So, for example, if n � 2 20 � 1,048,576, then on average it takes

about log
2
 (2 20) � 20 comparisons to fi nd an object stored in a balanced binary search tree.

 If a binary search tree is not balanced, however, searching is not so effi cient. Searching

the tree of Figure 17.8 b is, in effect, a linear search. A linear search averages n /2 compari-

sons to locate an element. When n � 2 20 � 1,048,576, a search that takes 20 comparisons

using a balanced tree requires about 524,288 comparisons. That’s quite a difference.

Searching an unbalanced binary search tree is as slow as a linear search. A balanced

binary search tree provides a more effi cient search.

 Java’s TreeSet�E� class stores object references in a balanced binary search tree.

 The constructors of TreeSet�E� are:

 public TreeSet�E�();
public TreeSet�E�(Collection�E� c);
public TreeSet�E�(SortedSet�E� s);
public TreeSet�E�(Comparator�E� c); // Comparator? Coming soon . . .

The methods are those of the Collection�E� and SortedSet�E� interfaces. Although a

binary search tree may contain duplicate elements, a TreeSet�E� object does not.

If objects must be kept sorted, then a TreeSet�E� is an excellent choice. If objects

need not be ordered, a HashSet�E� is probably a better choice.

 Using a small test program, we inserted 10,000,000 random numbers into a HashSet�E� .

The program required 5938 milliseconds to complete 1,000,000 lookups. Using

 TreeSet�E� , the same program took 10,535 milliseconds. When lookup is vital and no

order is required, HashSet�E� is the clearly the winner.

 Example 17.2 brings us back to Springfi eld and a situation where TreeSet�E� is a

handy choice.

 At the end the day, Joe Quimby, mayor of Springfi eld, expects to see an alphabetized list

of all of the citizens who have voted. This sorted data must be retrieved just once, but

insertion and validation checks are done continuously during the day.

 Problem Statement Write an application that does validation checks and produces a

sorted list of voters after the polls have closed.

 Java Solution The following application utilizes both HashSet�E� and TreeSet�E� .

HashSet�E� is used during voting hours. However, once the polls close each day, a

TreeSet�E� collection is built from the HashSet�E� collection so that a sorted list of

voters can be quickly obtained—pleasing Mayor Quimby.

 Notice that the new class MoreVoting extends the Springfi eldElection class of Exam-

ple 17.1.

 1. import java.util.*;

2. public class MoreVoting extends SpringfieldElection

3. {

 EXAMPLE 17.2

sim23356_ch17.indd 844sim23356_ch17.indd 844 12/15/08 7:17:54 PM12/15/08 7:17:54 PM

 Chapter 17 The Java Collections Framework 845

4. TreeSet �String�tree;

5. public MoreVoting()
6. {
7. super(); // call the constructor of SpringfieldElection
8. tree � new TreeSet�String�();
9. }

10. public void makeList()
11. {
12. int count � 0;
13. tree.addAll(voters); // make a TreeSet from the HashSet, voters
14. System.out.println();
15. System.out.println();
16. System.out.println("Today's voters were");
17. // use an iterator to step through the TreeSet. Values are sorted
18. Iterator�String� iterator � tree.iterator();
19. while(iterator.hasNext())
20. System.out.println((��count) � ". " � iterator.next());
21. }

22. public static void main(String [] args)
23. {
24. MoreVoting example � new MoreVoting();
25. example.validate(); // first use the HashSet
26. example.makeList(); // use a TreeSet when we need an ordered list
27. }
28. }

 Output
 Enter XXX to exit the system
Name: Simpson, Homer

Simpson, Homer may vote
Name: Simpson, Marge

Simpson, Marge may vote
Name: Flanders, Ned

Flanders, Ned may vote
Name: Krusty

Krusty may vote
Name: XXX

Today's voters were
1. Flanders, Ned
2. Krusty
3. Simpson, Homer
4. Simpson, Marge

 Discussion The MoreVoting class extends Springfi eldElection so MoreVoting inherits

the HashSet�E� , voters , which was declared protected in Springfi eldElection .

Line 7: A call to the Springfi eldElection constructor is accomplished with the

keyword super .

Line 13: All the voters of the day are added to the TreeSet�E� , tree , via the

add(Collection x) method.

Lines 18–20: In order to traverse the tree, an Iterator object must be instantiated.

The Iterator invokes hasNext() and next(). Notice that the data is displayed in order.

sim23356_ch17.indd 845sim23356_ch17.indd 845 12/15/08 7:17:55 PM12/15/08 7:17:55 PM

846 Part 3 More Java Classes

 17.3.4 The Comparator�E� Interface

The natural order of a class is the order defi ned by the class’s compareTo(...) method.

 The natural order of the Integer class is numerical order. The natural order for String is

based upon the ASCII value of each character. Thus “ABC” precedes “AXY”, that is,

 “ABC”.compareTo("AXY") returns a negative number.

 Of course, some classes are not ordered at all, but any class that implements the

 Comparable interface defi nes a natural order on its objects. For example, objects of the

following Food class are ordered by calories:

 1. public class Food implements Comparable
2. {
3. private String name;
4. private int calories, gramsOfFat;

5. public Food(String n, int cal, int fat)
6. {
7. name � n;
8. calories � cal;
9. gramsOfFat � fat;
10. }

11. public int getFat()
12. {
13. return gramsOfFat;
14. }

15. public int getCalories()
16. {
17. return calories;
18. }

19. public int compareTo(Object food)

20. {

21. if (calories � ((Food)food).calories)

22. return �1;

23. else if (calories �� ((Food)food).calories)

24. return 0;

25. else

26. return 1;

27. }

28. public boolean equals(Object food) // equals is consistent with compareTo(...)
29. {
30. return calories �� ((Food)food).calories;
31. }
32. }

 Notice that the compareTo(...) method is consistent with the equals(...) method of Food .

 A class’s natural order is the order used by TreeSet�E� . For most applications that

utilize TreeSet�E� , this natural order is suitable, but sometimes it may be the case that the

sim23356_ch17.indd 846sim23356_ch17.indd 846 12/15/08 7:17:56 PM12/15/08 7:17:56 PM

 Chapter 17 The Java Collections Framework 847

natural order is inappropriate. For example, an application may require that Food objects

be ordered by fat content rather than calories. Conveniently, a TreeSet�E� collection may

be constructed using an ordering schema different from the natural order of a class. To do

this, defi ne a new class that implements the Comparator�E� interface.

 The single method of Comparator (in java.util) is

 int compare(E object1, E object2)

 that returns

• a positive integer if object1 is greater than object2 ,

• 0 if object1 equals object2 , and

• a negative integer if object1 is less than object2 .

For example, the class

 1. import java.util.*;
2. public class OrderByFatContent implements Comparator�Food�
3. {
4. public int compare(Food food1, Food food2)
5. {
6. if (food1.getFat() � food2.getFat())
7. return �1;
8. else if (food1.getFat() �� food2.getFat())
9. return 0;
10. return 1;
11. }
12. }

defi nes another order for the Food class.

 A TreeSet�Food� collection can use this alternate order instead of the natural order,

if TreeSet�Food� is instantiated as:

 TreeSet�Food� tree � new TreeSet�Food�(new OrderByFatContent ());

Moreover, if a class is defi ned without a natural order, implementing the Comparator inter-

face can add new functionality to the class.

 To avoid subtle bugs, any implementation of compare(…) should be consistent with

the equals(...) method of a class. This means that compare(a, b) returns 0 if and only if

 a.equals(b) also returns 0.

 Example 17.3 gives an alternate order for the String class.

 EXAMPLE 17.3 Problem Statement Occasionally, Mayor Quimby of Springfi eld, feeling a bit zany,

prefers the voter list printed in reverse alphabetical order. Write an application that dis-

plays the list of voters in reverse alphabetical order.

 Java Solution Fulfi lling the mayor’s wishes is a simple task: implement the

Comparator �E� interface as follows:

 1. import java.util.*;

2. public class Reverse implements Comparator�String�
3. {
4. public int compare(String x, String y)
5. {
6. // change the sign of the integer returned by the compareTo(…) method of String

sim23356_ch17.indd 847sim23356_ch17.indd 847 12/15/08 7:17:56 PM12/15/08 7:17:56 PM

848 Part 3 More Java Classes

7. return � (x. compareTo (y));
8. }
9. }

 To construct a TreeSet�String� collection that uses this new ordering scheme, instanti-

ate TreeSet�String� by passing a Reverse object to the TreeSet�String� construc-

tor. TreeSet�String� subsequently uses the order specifi ed by the Reverse class when

building a binary search tree. The following class extends the Springfi eldElection class

of Example 17.1 and overrides the makeList() method, which displays the voter list.

 10. import java.util.*;

11. public class ReverseVoters extends SpringfieldElection
12. {
13. TreeSet �String�tree;
14. public ReverseVoters()
15. {
16. super();
17. tree � new TreeSet�String�(new Reverse()); // use alternative order
18. }
19. public void makeList()
20. {
21. int count � 0;
22. tree.addAll(voters);
23. System.out.println();
24. System.out.println();
25. System.out.println("Voters in reverse order: ");
26. Iterator iterator � tree.iterator();
27. while(iterator.hasNext())
28. System.out.println((��count) � ". " � iterator.next());
29. }

30. public static void main(String [] args)
31. {
32. ReverseVoters reverseVoters � new ReverseVoters();
33. reverseVoters.validate();
34. reverseVoters.makeList();
35. }
36. }

 Output
 Enter XXX to exit the system
Name: Simpson, Homer
Simpson, Homer may vote
Name: Simpson, Marge
Simpson, Marge may vote
Name: Krusty
Krusty may vote
Name: Simpson, Homer
Simpson, Homer has already voted
Name: Bouvier, Selma
Bouvier, Selma may vote
Name: Flanders, Ned
Flanders, Ned may vote
Name: Smithers, Waylon

sim23356_ch17.indd 848sim23356_ch17.indd 848 12/15/08 7:17:57 PM12/15/08 7:17:57 PM

 Chapter 17 The Java Collections Framework 849

 17.4 LISTS

 The collection hierarchy is divided into sets and lists. Sets, as you know, do not contain

duplicate elements. We now turn our attention to lists, collections that allow the occurrence

of duplicate objects. Indeed, a List�E� object would never pass muster in a Springfi eld

election.

 17.4.1 The List�E � Interface
 Figure 17.1 shows that the List�E� interface extends the Collection�E� interface. Sun

provides the following description of the List�E� interface:

The List�E� interface extends the Collection�E� interface defi ning an ordered
collection that permits duplicates. The interface adds position-oriented operations, as

well as the ability to work with just a part of the list.

 The List�E� interface includes the following methods. Assume that x belongs to a

class that implements List�E� .

Smithers, Waylon may vote
Name: XXX

Voters in reverse order:
1. Smithers, Waylon
2. Simpson, Marge
3. Simpson, Homer
4. Krusty
5. Flanders, Ned
6. Bouvier, Selma

 Discussion
 The Reverse class (lines 1–9) implements

 int compare(String x, String y)

using the compareTo(…) method of the String class.

 If x and y are strings, then x. compareTo (y)

 • returns a negative integer if x precedes y alphabetically,

 • return 0 if x and y are the same string, and

 • returns a positive integer if x follows y alphabetically.

The compare (String x, String y) method changes the sign of the value returned by

x.compareTo(y). For example,

 compare("A", "B") � � ("A".compareTo("B")), a positive integer;
compare("B", "A") � � ("B".compareTo("A")), a negative integer; and
compare("A", "A") � � ("A".compareTo("A")) � 0.

 • ReverseVoters extends Springfi eldElection and thus inherits its methods.

 • ReverseVoters instantiates tree using the Reverse class (line 17). Thus, tree is

ordered according to the order specifi ed by the compare(…) method of Reverse .

sim23356_ch17.indd 849sim23356_ch17.indd 849 12/15/08 7:17:57 PM12/15/08 7:17:57 PM

850 Part 3 More Java Classes

• boolean add(E a)
 x.append(a) appends element a to the end of x .

• void add(int index, R a)
 x.add(index, a) inserts a into x at position index . Elements are shifted upwards.

• boolean addAll(Collection�E� c)
 x.addAll(c) appends the elements in c to the end of x .

• boolean addAll(int index, Collection�E� c)
 x.addAll(index, c) inserts the elements in c into x at position index .

• void clear()
 x.clear() makes x empty.

• boolean contains(Object a)
 x.contains(a) returns true if element a is a member of x .

• boolean containsAll(Collection�E� c)
 x.containsAll(c) returns true if the all members of c belong to x .

• boolean equals(Object a)
 x.equals(a) returns true if a is equal to x .

• E get(int index)
 x.get(index) returns the element of x at position index.

• int indexOf(Object a)
 x.indexOf(a) returns the index of the fi rst occurrence of a in x ; or –1, if a is not found.

• int lastIndexOf(Object a)
 x.lastIndexOf(a) returns the index of the last instance of a in x ; or –1, if a is not found.

• boolean remove(Object a)
 x.remove(a) removes the fi rst occurrence of a from x , returns true if successful.

• E remove(int index)
 x.remove(index) removes and returns the element at position index .

• boolean removeAll(Collection�E� c)
 x.removeAll(c) removes all elements from x that are contained in Collection c and

returns true if x is altered.

• boolean retainAll(Collection�E� c)
 x.retainAll(c) retains those elements in c and returns true if x is altered.

• E set(int index, E a)
 x.set(index, a) replaces the current element, b , at position index with a and returns b.

• int size()
 x. size() returns the number of items in x .

• List subList (int start, int end)
 x.subList(start, end) returns a reference to a List consisting of the elements from posi-

tion start to position (end – 1).

• ListIterator�E� listIterator()
 x.listIterator() returns a reference to a ListIterator , which like an Iterator , is used to step

through x .

• ListIterator�E� listIterator(int index)

 x.listIterator(index) returns a reference to a ListIterator that begins at position index.

 ListIterator�E� is an interface that extends Iterator�E�. A ListIterator�E� can

be used to traverse a list forward or in reverse. Because ListIterator�E� extends

 Iterator�E� , ListIterator�E� has methods next() , hasNext() , and remove() of

 Iterator�E�. The cursor is positioned “between” the next and previous elements. The

sim23356_ch17.indd 850sim23356_ch17.indd 850 12/15/08 7:17:58 PM12/15/08 7:17:58 PM

 Chapter 17 The Java Collections Framework 851

methods of a ListIterator�E� also include the following additional methods. In the

descriptions of these methods, assume that the object , iter , belongs to a class that imple-

ments ListIterator�E�.

• E previous()
 iter.previous() returns the previous element in the list. This method can be used to tra-

verse the list in reverse. A call to previous() moves the iterator back one element and

returns that element.

• boolean has Previous()
 iter.hasPrevious() returns true if a listIterator has another element when proceeding in

reverse.

• int nextIndex()
 iter.nextIndex() returns the index of the element that would be returned by the next call

to next() and returns the size of the list if the iterator is positioned at the end of the list.

• int previousIndex()
 iter.previousIndex() returns the index of the element that would be returned by the next

call to previous() and returns �1 if the iterator is at the beginning of the list.

• void set(E a)
 iter.set(a) replaces the last element returned by next() or previous() with a .

• void add(E a)

• iter.add(a) inserts a into the list before the element that would be returned by the next

call to next(). In other words, if an iterator is positioned before an object o , a call to

 add(...) places the new element before o. A call to previous() , after an add operation,

returns the newly inserted element.

 The cursor or list pointer of ListIterator�E� is always positioned between the

items returned by the next call to previous() or the next call to next(). If x is the

 list ["Harpo" "Groucho" "Zeppo" "Chico"] , then Figure 17.10 shows the position of the list

pointer after several calls to previous() and next() .

Listlterator�String� iter � x.iterator();

 Harpo Groucho Zeppo Chico

iter.next()

Harpo Groucho Zeppo Chico

iter.next() // returns "Groucho" and moves the pointer

Harpo Groucho Zeppo Chico

iter.previous() // returns "Groucho" and moves the pointer

Harpo Groucho Zeppo Chico

iter.previous() // returns "Harpo" and moves the pointer

Harpo Groucho Zeppo Chico

iter.hasPrevious() // returns false

 FIGURE 17.10 A ListIterator

 The methods of ListIterator�E� throw unchecked RuntimeException s if an illegal

operation is attempted. For example, E previous() throws a NoSuchElementException if no

previous element exists.

sim23356_ch17.indd 851sim23356_ch17.indd 851 12/15/08 7:17:59 PM12/15/08 7:17:59 PM

852 Part 3 More Java Classes

 One of the oldest and fastest methods for fi nding prime numbers is the Sieve of Era-

tosthenes. The following illustration uses this method to determine all prime numbers

between 2 and 25 inclusive:

 Initialize a list with the integers between 2 and 25 inclusive:

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 Start with p � 2 and cross out all numbers greater than p that are multiples of p , that is,

cross out 4, 6, 8, 10 and so on.

 2 � 3 � 5 � 7 � 9 � 11 � 13 � 15 � 17 � 19 � 21 � 23 � 25

 Being multiples of 2, these numbers are not prime.

 Now, fi nd the next unmarked number p (p � 3), and again cross out all multiples of

 p that are greater than p (6, 9, 12, 15, . . .)

 2 � 3 � 5 � 7 � � � 11 � 13 � � � 17 � 19 � � � 23 � 25

 Once again, fi nd the next unmarked number p (p � 5), and cross out all multiples

(10, 15, 20, 25).

 2 � 3 � 5 � 7 � � � 11 � 13 � � � 17 � 19 � � � 23 � �

 Continue the process. Stop when p exceeds the square root of 25. The numbers that

remain unmarked (2, 3, 5, 7, 11, 13, 17, and 23) are the prime numbers less than 25.

 Problem Statement Design an application that implements the Sieve of Eratosthenes.

Input to the program should be a positive integer, n , that is greater than 1; output should

be all prime numbers less than or equal to n .

 Java Solution In our implementation, we instantiate an ArrayList�E� , sieve , and ini-

tialize each location to true (indicated by T):

T T
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To “cross out a number i ,” set the i th element of sieve to false (indicated by F). For

example, after we cross out multiples of 2, sieve is false at positions 4, 6, 8, 10, 12, 14,

16, 18, 20, 22, and 24:

T T F T F T F T F T F T F T F T F T F T F T F T
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 EXAMPLE 17.4

 17.4.2 The ArrayList�E � Class
ArrayList�E� is a concrete Java class that implements List�E� . As you know from

Chapter 16, an ArrayList�E� object resizes itself, if necessary. As with an array, insertion

and deletion into the middle of an ArrayList�E� is relatively ineffi cient because items are

shifted with each insertion or deletion.

ArrayList�E� is a good choice in situations when random access is required and/or

insertion and deletion usually occur at the end of the list.

 Like an array, the elements of an ArrayList�E� are indexed from 0. Example 17.4 gives a

situation where ArrayList�E� is an appropriate and effi cient choice.

sim23356_ch17.indd 852sim23356_ch17.indd 852 12/15/08 7:17:59 PM12/15/08 7:17:59 PM

 Chapter 17 The Java Collections Framework 853

After the process terminates, sieve has the form:

T T F T F T F F F T F T F F F T F T F F F T F F
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 If the i th element of sieve is true , then i was not eliminated and i is prime.

 The following class implements the Sieve of Eratosthenes.

 1. import java.util.*;

2. public class SieveOfEratosthenes
3. {
4. ArrayList�Boolean� sieve;
5. int num;

6. public SieveOfEratosthenes() // default constructor; num � 25
7. {
8. num � 25;
9. sieve � new ArrayList�Boolean�(26); // need 26 spots for 0 to 25
10. sieve.add(false); // 0 is not prime
11. sieve.add(false); // 1 is not prime
12. for (int i � 2; i �� num; i��) // set all other positions to true
13. sieve.add(true);
14. }

15. public SieveOfEratosthenes(int n)
16. {
17. num � n;
18. sieve � new ArrayList�Boolean�(n � 1);
19. sieve.add(false); // 0 is not prime
20. sieve.add(false); // 1 is not prime
21. for (int i � 2; i �� num; i��) // set all other positions to true
22. sieve.add(true);
23. }

24. public void getPrimes()
25. {
26. int p � 2;
27. while(p * p �� num) // while p �� sqrt(num)
28. {
29. // j will step through multiples of p
30. // setting the j th element of sieve to false
31. for (int j � 2 * p; j �� num; j � � p) // cross out multiples of p
32. sieve.set(j, false);
33. do // find index of the next unmarked (non-zero) entry in sieve
34. {
35. p��;
36. } while((sieve.get(p)).equals(false)); // autoboxing
37. }

38. // print primes
39. System.out.println("The primes less than or equal to " � num � " are:");
40. for (int i � 1; i �� num; i��)
41. if ((sieve.get(i)).equals(true)) // autoboxing
42. System.out.println(i);
43. }

44. public static void main(String [] args)
45. {
46. Scanner input � new Scanner(System.in);
47. System.out.print("Number: ");

sim23356_ch17.indd 853sim23356_ch17.indd 853 12/15/08 7:18:00 PM12/15/08 7:18:00 PM

854 Part 3 More Java Classes

48. int n � input.nextInt();
49. SieveOfEratosthenes s � new SieveOfEratosthenes(n);
50. s.getPrimes();
51. }
52. }

 Output
 Number: 50
The primes less than or equal to 50 are:
 2
 3
 5
 7
11
13
17
19
23
29
31
37
41
43
47

 Discussion Setting values stored in sieve to false incurs no overhead. ArrayList�E�
 provides direct access to any location. Furthermore, the ArrayList�E� , sieve , is cre-

ated by adding Boolean (uppercase “B”) references to the end of the list. This action

involves no shifting of elements. Once sieve is created and initialized, no values are

added to, or deleted from, the middle of sieve . No elements need to be moved. These

characteristics make ArrayList�E� an excellent choice for the Sieve of Eratosthenes.

 17.4.3 The LinkedList�E � Class
 The LinkedList�E� class, like the ArrayList�E� class, implements the List�E� inter-

face, and consequently the Collection�E� interface.

 Java’s implementation of LinkedList�E� is a slightly more complicated version of the

 LList�E� class of Chapter 16. Like the LList�E� class of Chapter 16, LinkedList�E�

is built by linking nodes together; but unlike the LList�E� , each node contains two

references—one pointing to the next node on the list and the other pointing to the previous

node. Such a list is sometimes called a doubly linked list . See Figure 17.11 .

“Dodger” “Fagin” “Nancy”“Oliver”

 FIGURE 17.11 A doubly linked list . Each node has two reference fields .

Java’s LinkedList�E� class is a doubly linked list data structure in contrast to the

LList�E� data structure of Chapter 16, which is singly linked.

 Although the methods of LinkedList�E� and ArrayList�E� are functionally similar,

there are some notable differences between the classes regarding implementation:

• Insertion into an ArrayList�E� at position i requires that all references in positions

greater than or equal to i be shifted upwards one location. In contrast, insertion into

sim23356_ch17.indd 854sim23356_ch17.indd 854 12/15/08 7:18:01 PM12/15/08 7:18:01 PM

 Chapter 17 The Java Collections Framework 855

the middle of a LinkedList�E� requires that a new node be allocated and at most four

references adjusted. No elements are relocated. This always requires the same amount

of time, regardless of the size of the list. See Figure 17.12 .

“Dodger”

1. Get a new node
2. Adjust the references to include the new node in the list

“Oliver”

“Sikes”

“Fagin” “Nancy”

FIGURE 17.12 "Sikes" is added to the list of Figure 17.11. No data are shifted.

• Access to any element in an ArrayList�E� is immediate; an ArrayList�E� (like an

array) provides direct access to any element. On the other hand, accessing the n th node

in a LinkedList�E� involves traversing the list.

 The LinkedList�E� class has the following constructors:

 LinkedList�E� ();
LinkedList�E� (Collection�E� c);

Notice that there is no constructor that sets the initial size of the list. A list is initially empty,

and it grows and shrinks as single items are added or deleted.

 In addition to the methods of the List interface, LinkedList�E� implements the follow-

ing methods that are not available to ArrayList�E� objects. The purpose of each method

should be clear from the method’s name and parameters.

• void addFirst(E x)

• void addLast(E x)

• E getFirst()

• E getLast()

• E removeFirst()

• E removeLast()

 The solution to the next problem involves traversing a list and performing deletions. Because

the solution does not require accessing an element at a particular index, LinkedList�E�
holds a defi nite advantage over ArrayList�E� .

 EXAMPLE 17.5 In the Jewish revolt against Rome, Josephus and 39 of his comrades

were holding out against the Romans in a cave. With defeat imminent,

they resolved that, like the rebels at Masada, they would rather die

than be slaves to the Romans. They decided to arrange themselves in

a circle. One man was designated as number one, and they proceeded

clockwise killing every seventh man . . . Josephus (according to the

story) was among other things an accomplished mathematician; so

he instantly fi gured out where he ought to sit in order to be the last to

go. But when the time came, instead of killing himself he joined the

Roman side.

 —from Matters Mathematical by Herstein and Kaplansky

sim23356_ch17.indd 855sim23356_ch17.indd 855 12/15/08 7:18:03 PM12/15/08 7:18:03 PM

856 Part 3 More Java Classes

 Problem Statement Design an application that determines not only the position of the sur-

vivor but also the order in which the men are removed from the circle. Instead of assuming

that there are 39 rebels, assume that there are n men (where n � 1) and rather than choosing

every seventh man, choose every m th man where n and m are supplied interactively.

 For example, if n � 9 (9 men) and m � 5 (count every fi fth man), the countdown is:

5, 1, 7, 4, 3, 6, 9, 2, and fi nally 8.

 Java Solution Using the LinkedList�E� class, we can simulate “circular counting”

using an iterator, as follows:

 • Iterate through the list.

 • When the iterator reaches the end of the list, create a new iterator positioned at the

beginning of the list.

The end of the list can be detected using the hasNext() method.

 1. import java.util.*;
2. public class Josephus
3. {
4. LinkedList �Integer�men;
5. int numMen;
6. int counter; // number used to count off the men

7. public Josephus()
8. {
9. men � new LinkedList�Integer�();
10. numMen � 39; // defaults to 39 and 7
11. counter � 7;
12. for (int i � 1; i �� numMen; i��) // build a list
13. men.add(i); // autoboxing
14. }

15. public Josephus(int m, int c)
16. // m is the number of men
17. // c is the number used for counting off the men
18. {
19. men � new LinkedList�Integer�();
20. numMen � m;
21. counter � c;
22. for (int i � 1; i �� numMen; i��)
23. men.add(i);
24. }

25. public void count()
26. // determines the last man alive and gives the order in which
27. // the men die
28. {
29. ListIterator i � men.listIterator();
30. Integer man;
31. System.out.println("The order in which the men die is:");
32. while(men.size() � 1) // while more than one man remains
33. {
34. // count out men
35. for (int j � 1; j � counter; j��)
36. {
37. if(!i.hasNext()) // if at the end of the list
38. i � men.listIterator(); // get a new iterator

sim23356_ch17.indd 856sim23356_ch17.indd 856 12/15/08 7:18:03 PM12/15/08 7:18:03 PM

 Chapter 17 The Java Collections Framework 857

 Output
 Number of men: 9
Count: 5
The order in which the men die is:
5 1 7 4 3 6 9 2
8 joins the Romans

 Discussion Each constructor builds a list of Integer references. Each Integer in the

range 1 to numMen represents a soldier.

 Lines 25–50 : void count()

 Line 29: A ListIterator �Integer� i is instantiated. The iterator i is used to

count off the men.

 Line 32: Repeat the statements on Lines 34–44 until just one man survives.

 Lines 35–40: Count off the men, one by one. If the iterator reaches the end of

the list before the process concludes, instantiate a new iterator positioned at

the front of the list. This effectively makes the list circular.

 Lines 41–43: The next man, returned by next() , is the next unlucky fellow. If

the iterator has reached the end of the list, this “next man” is the fi rst man on

the list, so instantiate a new iterator positioned at the front of the list.

 Lines 43–44: At this point, counter men have been marked off. A call to

 remove() removes the last item returned by next(). Consequently, a call to

 next() followed by one to remove() deletes this next man from the list.

 Lines 46–49 : One man remains. The cursor might be positioned so that either

 hasNext() is true or hasPrevious() is true . Both cases are considered.

39. i.next(); // next man
40. }
41. if (!i.hasNext()) // if at the end of the list
42. i � men.listIterator(); // get a new iterator
43. System.out.print(i.next() � " ");
44. i.remove(); // remove the man from the list
45. }
46. if (i.hasNext())
47. System.out.println ("\n" � i.next() � " " � "joins the Romans");
48. else
49. System.out.println ("\n" � i.previous() � " " � "joins the Romans");
50. }

51. public static void main(String [] args)
52. {
53. Scanner input � new Scanner(System.in);
54. System.out.print("Number of men: ");
55. int men � input.nextInt();
56. System.out.print("Count: ");
57. int counter � input.nextInt();
58. Josephus josephus � new Josephus(men, counter);
59. josephus.count();
60. }
61. }

sim23356_ch17.indd 857sim23356_ch17.indd 857 12/15/08 7:18:04 PM12/15/08 7:18:04 PM

858 Part 3 More Java Classes

 17.5 PERFORMANCE ISSUES: CHOOSING
THE RIGHT COLLECTION

 We chose ArrayList�E� for the implementation of the Sieve of Eratosthenes and

LinkedList�E� for the Josephus Problem. Both classes share the same interface. Both

classes implement (mostly) the same methods. Could we have designed the Sieve of

Eratosthenes using LinkedList�E� and the Josephus Problem with ArrayList�E� ? Abso-

lutely, but for a price.

 A LinkedList�E� object can easily take the place of the ArrayList�E� , sieve , in the

SieveOfEratosthenes class of Example 17.4. The changes in code are minor:

 // replace ArrayList�E� with LinkedList�E� on lines 4, 9, and 18
Line 4: LinkedList �Boolean� sieve;
Line 9: sieve � new LinkedList �Boolean�(); // no capacity for LinkedList constructor
Line 18: sieve � new LinkedList �Boolean�(); // no capacity for LinkedList constructor

 However, the change in performance is astounding. When computing all prime numbers

less than 25,000, timed versions of the two programs produced the following results:

 ArrayList Implementation LinkedList Implementation
 Number: 25000 Number: 25000

 ArrayList: 20 ms LinkedList: 13630 ms

The output speaks for itself.

 ArrayList�E� provides direct access to an element. Access to a specifi c element of a

 LinkedList�E� requires traversing the list. Each time the LinkedList�E� implementation

sets a value to false , the list must be traversed. That is not the case with the ArrayList�E�

version of the program. Thus, choosing the wrong Collection class can cause a serious dete-

rioration in effi ciency.

 Similarly, we compare the running time of the Josephus Problem implemented fi rst

using LinkedList�Integer� , as in Example 17.5, and then using ArrayList�Integer�:

 LinkedList Implementation ArrayList Implementation
 Number of men: 100000 Number of men: 100000

 Count: 13 Count: 13
 LinkedList implementation: 170 ms ArrayList implementation: 7671 ms

 In this case, LinkedList�Integer� is the winner. Each time a man is removed from the

list, data in the ArrayList�Integer� are moved to fi ll the gap. This is not the case using

 LinkedList�Integer�; no data are shifted by a remove() operation.

 The next example utilizes ArrayList�E� in a class that adds integers comprised

of an arbitrary number of digits - “big integers.” However, in this application, neither

 ArrayList�E� nor LinkedList�E� provides any striking advantage.

 The integer 2,147,483,647 is the largest value that can be assigned to a variable of type

int . Similarly, 9,223,372,036,854,775,807 is the largest value of type long. Addition with

larger numbers results in overfl ow and incorrect results.

 Problem Statement Design a class BigInt with a method that adds non-negative inte-

gers of arbitrary size and returns the sum as a BigInt reference.

 Java Solution A big integer consists of any number of digits, and to accommodate such

numbers, the BigInt class stores an integer as a list (ArrayList�Integer�) of digits in reverse

 EXAMPLE 17.6

sim23356_ch17.indd 858sim23356_ch17.indd 858 12/15/08 7:18:05 PM12/15/08 7:18:05 PM

 Chapter 17 The Java Collections Framework 859

order . That is, the units digit is stored in position 0, the tens digit in position 1, and so

on. See Figure 17.13 . Storing the numbers in reverse order simplifi es the addition pro-

cess. Because addition is done beginning with the units digits, the index of the process-

ing loop increases from 0. As you will see, this is especially convenient when adding

two numbers of unequal length.

integer: 2957450818

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

8 1 8 0 5 4 7 5 9 2

 FIGURE 17.13 The integer 2957450818 stored (in reverse) as a list of digits

 To accomplish the addition of two large integers, their two corresponding digit lists

are simultaneously traversed from left to right, beginning with the units digit. Digits are

added in turn, fi rst the ones digits, then the tens digits, and so on, keeping track of the

“carry” values, if any.

BigInt adds two numbers exactly as you might add numbers with pencil and paper.

 Figure 17.14 illustrates the addition process.

5+7+carry(0) = 12
(carry = 1)

2+5+carry(1) = 8
(carry = 0)

8+6+carry(0) = 14
(carry = 1)

1 2

carry sum

[1][0] [2]

append final carry

sum is stored as 2841, where 2 is the units digit

825 + 657;

Lists a and b hold 825 and 657 in reverse order

initially, carry = 0

1

2

3

4

0 8

carry sum

2

sum

2 81 4

carry sum

5 2 8

7 5 6

7 5 6

5 2 8

7 5 6

5 2 8

182 4

a

b

a

b

a

b

+

+

+

 FIGURE 17.14 Add 825 � 657 and store the result in sum

sim23356_ch17.indd 859sim23356_ch17.indd 859 12/15/08 7:18:06 PM12/15/08 7:18:06 PM

860 Part 3 More Java Classes

 In addition to adding large integers, the BigInt class overrides toString() so that

toString() returns a String reference representing the sum, with the digits in natural order.

A main(...) method demonstrates the BigInt class.

 1. import java.util.*;
2. public class BigInt
3. {
4. private ArrayList �Integer�num; // holds digits in reverse order

5. public BigInt()
6. {
7. num � new ArrayList�Integer�(1000);
8. }

9. public BigInt(String s) // s must be composed of digit characters '0'..'9'
10. {
11. num � new ArrayList�Integer�(1000);

12. // convert character digits to integer digits, store digits in reverse
13. for (int i � s.length() � 1; i �� 0; i��)
14. num.add(s.charAt(i) � '0');
15. }

16. public String toString() // override toString from Object
17. {

18. // appends each digit to a StringBuilder then converts to String
19. StringBuilder temp � new StringBuilder(num.size());
20. ListIterator �Integer� iter � num.listIterator(num.size()); // start at the end
21. while (iter.hasPrevious())
22. temp.append(iter.previous());
23. return temp.toString();
24. }

25. public BigInt add(BigInt a)
26. {
27. BigInt sum � new BigInt(); // holds the sum

28. // get two iterators for traversing each list of digits
29. // the list pointer for each iterator is positioned at the
30. // beginning of the list
31. ListIterator �Integer� i1 � num.listIterator();
32. ListIterator �Integer� i2 � (a.num).listIterator();

33. int digitSum, carry � 0; // digitSum holds the sum of two digits

34. // traverse each list of digits beginning with the units digit
35. // the units digit is the first digit in the list, i.e., the digit at position 0
36. // stop when one list has no more digits

37. while (i2.hasNext() && i1.hasNext())
38. {
39. // add the two digits
40. digitSum � i1.next() � i2.next() � carry;

41. // adjust the carry digit

sim23356_ch17.indd 860sim23356_ch17.indd 860 12/15/08 7:18:07 PM12/15/08 7:18:07 PM

 Chapter 17 The Java Collections Framework 861

42. carry � digitSum/10;

43. // add the ones digit of the digit sum to the end of sum
44. (sum.num).add(digitSum % 10);
45. }

46. // continue traversing the longer of the two lists
47. // at most one of the following two loops executes
48. while (i1.hasNext())
49. {
50. digitSum � i1.next() � carry;
51. carry � digitSum/10;
52. (sum.num).add(digitSum % 10);
53. }
54. while (i2.hasNext())
55. {
56. digitSum � i2.next() � carry;
57. carry � digitSum/10;
58. (sum.num).add(digitSum % 10);
59. }

60. // the final addition may have resulted in a carry value
61. // if so, add the carry value (1) to the end of the list

62. if (carry �� 1)
63. (sum.num).add(1);
64. return sum;
65. }

66. public static void main(String [] args) // for testing
67. {
68. Scanner input � new Scanner(System.in);
69. System.out.print("First number: ");
70. BigInt a � new BigInt(input.next());
71. System.out.print("Second number: ");
72. BigInt b � new BigInt(input.next());
73. System.out.println(a � " � " � b � " � " � a.add(b));
74. }
75. }

 Output
 First number : 45676543212398765678
Second number: 234543598787
45676543212398765678 � 234543598787 � 45676543446942364465

 Discussion
 Lines 5–8: The default constructor instantiates an ArrayList�E� , num , with

initial capacity of 1000. No values are inserted into num .

 Lines 9–15: The one-argument constructor accepts a String , s , as a parameter.

This String , made up of digit characters, represents an integer. For example, s

might be “1234567890”. Beginning with the last character, each character of s

is converted to an integer and appended, in turn, to the end of the ArrayList�E� ,

 num. Thus, if s is “1234567890” then num holds the digits, in reverse order, as

[0,9,8,7,6,5,4,3,2,1].

sim23356_ch17.indd 861sim23356_ch17.indd 861 12/15/08 7:18:07 PM12/15/08 7:18:07 PM

862 Part 3 More Java Classes

Lines 16–24: toString()
 Here, toString() overrides the toString() method inherited from Object so that a

BigIn t object can be displayed as a string of digits, rather than a memory address.

The statement on line 19 instantiates a StringBuilder object, temp , large enough

to hold the digits of num . Next, an iterator for num is created (line 20) so that the

iterator is positioned at the end of num , and moving from right to left, each digit

of num is appended to temp. Finally, temp is returned as a String . The same effect

could be accomplished, though less effi ciently, using the String class rather than

the StringBuilder class:

 String temp � "";
ListIterator �Integer�iter � num.listIterator(num.size());
while (iter.hasPrevious())
 temp � temp � previous(); // Each concatenation creates a new String object
 // This is inefficient
return temp;

 Lines 25–65: add(BigInt a); // adds two BigInt objects

 Line 27: ArrayList�E� sum holds digits of the sum in reverse order. For

example, the sum of 99 and 1 (100) is stored in sum as [0,0,1].

 Lines 31 and 32: Two ListIterators, i1 and i2 are instantiated: i1 for num

and i2 for a.num. The list pointers for these iterators are positioned at the

beginning of each list. The fi rst item of each list represents the units digit of

each number. The lists are traversed left to right, that is, beginning with the

unit digits.

 Line 33: Initially digitCarry is 0.

 Line 37: Repeat the statements on lines 38–45 while both lists still have

digits remaining.

 Line 40: Moving left to right, add the next digit of each number plus the

carry digit. Store this value in digitSum. The sum of the two digits plus the

carry digit can be a number from 0 to 19, so carry is either 0 or 1.

 Line 42: The carry digit is digitSum/10 . For example, if digitSum is 15, then

 carry � 15/10 � 1; if digitSum is 8 then carry � 8/10 � 0.

 Line 44: Add the units digit of digitSum to the end of the ArrayList�E� ,

 sum.num . For example, if digitSum is 15, then the units digit is digitSum %
10 � 5.

 Lines 48–64: If the two digit lists are not of equal size, exactly one of the

loops, lines 48–53 or lines 54–59, executes. Each loop continues the iteration

until no more digits remain. Finally, if carry equals 1, the digit 1 is added to

the end of sum.num (lines 62–63). The fi nal sum is stored in sum.num and

the method returns a reference to sum .

 The BigInt class could have been just as easily written using LinkedList�E�

rather than ArrayList�E� . The code for the LinkedList�E� version of BigInt is

virtually identical and is not reproduced here. Just substitute LinkedList for

ArrayList and instantiate LinkedList�Integer�() with no initial capacity, rather

than ArrayList �Integer�(1000).

sim23356_ch17.indd 862sim23356_ch17.indd 862 12/15/08 7:18:07 PM12/15/08 7:18:07 PM

 Chapter 17 The Java Collections Framework 863

 Is any one implementation better than the other? Performing 10,000 additions of two

25-digit numbers produced the following results:

 ArrayList : 281 milliseconds LinkedList : 235 milliseconds

In this case, neither collection has a large advantage, but LinkedList has a small edge in per-

formance. On the other hand, ArrayList uses less memory because each node of a LinkedList
holds data as well as two references, while an ArrayList just holds data. See Figure 17.11 .

We examine the results of this example in the exercises (Programming 3).

A time-space trade-off is a common theme when choosing a data structure.

 17.6 THE for-each LOOP

 Because traversing a collection is such a common task, Java 1.5 introduces the for-each loop.

The for-each loop is a convenience that can be used to iterate through a collection

without having to explicitly instantiate an iterator.

 For example, suppose that names is a collection of strings. Using an iterator, the following

code displays each name in the collection, names :

 Iterator �String� iter � names.iterator();
while (iter.hasNext())
{
 String name � names.next();
 System.out.println(name));
}

The collection can also be displayed using the following for-each construction:

 for (String name : names) // "for each" String, name , in the collection names
 System.out.println(name);

The for-each loop cannot be used to alter a collection.

 So, for example, the following fragment is illegal.

 for (String name : names)
 names.remove(); // ILLEGAL

 Methods such as add() , remove() , and clear() cannot be used in conjunction with the

for-each construction. However, the following iteration, which sums a list of integers and

does not alter a collection, is fi ne.

 int sum � 0;
for (Integer number : list) // for each Integer, number , in the collection list
 sum � sum � number; // This is legal

 The equivalent code, using an iterator, is

 int sum � 0;
Iterator �Integer� iter � list.iterator();
while (iter.hasNext())
 sum � sum � iter.next();

sim23356_ch17.indd 863sim23356_ch17.indd 863 12/15/08 7:18:10 PM12/15/08 7:18:10 PM

864 Part 3 More Java Classes

The for-each loop can make your code cleaner and easier to read. It provides a syn-

tactic convenience.

 17.7 IN CONCLUSION

 The classes of the Java Collections Framework implement the Collection�E� interface.

Each collection class implements many of the same methods. In spite of the similarities

among the collection classes, choosing the most appropriate collection for a particular

application can be crucial. The right choice demands understanding the advantages and

disadvantages of each class. The wrong choice can result in an ineffi cient and even sluggish

program. A little knowledge about the inner workings of a class implementation is all that

it takes to guide your choice.

Choosing the right collection makes for effi cient programs.

 Just the Facts

• The Java Collections Framework is a hierarchy of classes and interfaces that manage

and manipulate collections of data.

• Although the classes of the Collection hierarchy may seem redundant, the data struc-

tures underlying each one are different. Choosing the wrong class can result in a

working but ineffi cient program.

• The Collection hierarchy divides into two interfaces, Set and List . A Set allows no

duplicate entries, while a List does allow duplicates. A Set is not indexed; a List ,
however, is indexed from 0.

• Every interface in the Collection hierarchy declares methods that allow the manipula-

tion of the elements in a collection. These methods provide the capability to:

° add elements,

° remove elements,

° append other collections,

° check for equality between collections,

° check whether or not an element is a member of a collection, and

° obtain the size of a collection.

• An iterator is an object capable of stepping through a collection. Iterators use next() ,
 previous() , hasNext() , and hasPrevious() methods to “loop” through a collection.

• HashSet�E� is a class that implements Set�E� . No duplicate values are stored in

a HashSet�E� object. HashSet�E� uses a hash function and a hash table to imple-

ment storage and retrieval.

• HashSet�E� is an appropriate choice when rapid lookup is paramount and ordering

is not needed—in other words, when your objective is primarily to check whether or

not some object is in a collection.

• SortedSet�E� is an interface that extends Set�E�. Unlike HashSet�E� , a

class that implements SortedSet�E� is ordered and therefore must implement the

 Comparable interface. An object of a class that implements SortedSet�E� contains

no duplicate elements.

sim23356_ch17.indd 864sim23356_ch17.indd 864 12/15/08 7:18:10 PM12/15/08 7:18:10 PM

 Chapter 17 The Java Collections Framework 865

• TreeSet�E� is a class that implements SortedSet�E� . A TreeSet�E� object

stores elements in a balanced binary search tree, allowing for fast storage and

retrieval.

• If a set must be kept sorted, then TreeSet�E� is an excellent choice. If objects need

not be ordered, then HashSet�E� is probably a better choice.

• The Comparator �E� interface allows a class (such as TreeSet�E�) to implement

a different ordering scheme on its data by implementing the compare(…) method.

For classes that have no natural ordering, implementing Comparator�E� adds

functionality.

• ArrayList�E� is a class that implements List�E� . An ArrayList�E� object

 provides direct access to any value via an index. ArrayList�E� has additional

 methods that insert and delete values at any index. An array is the underlying storage

structure for the ArrayList�E� class..

• LinkedList�E� implements List�E� . LinkedList�E� , like ArrayList�E� , provides

methods for access via an index, and for insertion and deletion of values. Like any

class that implements List�E� , duplicates are allowed.

• A LinkedList�E� object accesses an element in time that increases proportionately

with the number of elements in the list, but once an iterator is positioned before an

element, insertions and deletions are performed in constant time. An ArrayList�E�

object achieves access in constant time, but general insertions and deletions require

time proportional to the number of elements in the list.

• The for-each construct is a feature of Java 1.5 that can be used for stepping through a

collection without the need for an explicit iterator. This syntactic convenience works

for accessing values, but not for modifying values.

 Bug Extermination

• A poor choice of a particular Collection class can slow a program down. Yes, your

program may run, produce correct results, and be “bug-free,” but effi ciency is an

important consideration. So that your applications run effi ciently, always choose a

 Collection class that suits your particular application or problem. Know how the col-

lection operates. Don’t use a Collection class with more muscle than necessary.

• When an application instantiates HashSet�SomeClass� , and SomeClass overrides

 equals(Object o) , then SomeClass should also override hashCode() . Otherwise, the

 hashCode() method may produce different values for “equal” objects.

• If a class uses a Comparator�E� object, the compare(...) method should be consist-

ent with the class’s equals(...) method. This means that compare(a, b) returns 0 if and

only if a.equals(b) returns 0.

sim23356_ch17.indd 865sim23356_ch17.indd 865 12/15/08 7:18:10 PM12/15/08 7:18:10 PM

866 Part 3 More Java Classes

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 4 Can be called only once for each

call to next()
 6 Implement to defi ne an alternate

order.

 9 Used to traverse a collection

 10 A group of objects considered as a

single unit

 11 Special loop that can be used to

traverse a collection

 14 Maps an object to an integer

 17 Method that can be used to traverse

a list in reverse

 20 Returns true if there is a “next” item

in a collection

 22 Searching an unbalanced binary

search tree is similar to a

search.

 25 Allows duplicates

 26 Extends Iterator

Down
 1 Inserting into the front of an ArrayList is costly because

data are .

 2 A node on a tree with no parent

 3 hashCode() maps two distinct objects to the same number.

 5 The for-each loop is convenient for traversing a list but not

for values.

 7 The Collection hierarchy is divided into Sets and .

 8 The top tiers of the Collection hierarchy consist of .

 12 Provides rapid lookup in an unordered collection

 13 Does not allow duplicates

 15 The natural ordering of a class is achieved by implementing

.

 16 Access to a specifi c element of a linked list involves

the list.

 18 Provides direct access to an object

 19 Searching a balanced binary search tree is similar to a

search.

 21 hashCode() should be consistent with .

 23 The Collection classes belong to the package.

 24 Tree node with no subtrees

1 54

10

15

20

24

21

25

23

18

22

19

26

16

17

1211

14

13

3

6

2

9

7 8

sim23356_ch17.indd 866sim23356_ch17.indd 866 12/15/08 7:18:10 PM12/15/08 7:18:10 PM

 Chapter 17 The Java Collections Framework 867

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. A collection that implements Set�E� can contain duplicate elements.

b. An iterator is a kind of collection.

c. An iterator has a size() method.

d. A list is-a kind of set.

e. Both lists and sets are kinds of collections.

f. ArrayList�E� implements the List�E� interface.

g. At most one iterator is available for each collection.

h. A Comparator is a kind of iterator.

i. TreeSet�E� is a good choice when sorted data is frequently accessed.

j. HashSet�E� is better than a TreeSet�E� when data must remain sorted.

k. The for-each construction is a syntactically cleaner way to accomplish the tasks

of certain Iterator�E� methods.

 2. Hash Codes
 Explain why, in the program of Example 17.1, using the Person class requires that

the programmer override hashCode() , but using String does not, despite the fact that

both classes override equals(…) .

 3. Playing Compiler
 Find and correct all the error(s) in each of the following statements. If a statement

has no errors say so.

a. test � new HashSet�int�();
b. test1 � new TreeSet�Integer�();

Iterator it � test1.iterator;
c. LinkedList �Boolean� test2;

test2 � new LinkedList(10);
d. test3 � newArrayList �Integer� (50);

System.out.print(test3.iterator().next());
e. list � new LinkedList�Integer�();

Iterator �Integer� it1 � list.iterator();
int sum � it1.next();

 4. HashSet, TreeSet, ArrayList, and LinkedList

 Each of the following statements applies to one or more of the four classes:

• HashSet�E�

• TreeSet�E�

• LinkedList�E�

• ArrayList�E�

 Determine the class(es) to which each statement applies.

a. Does not allow duplicate entries.

b. Does not allow ordering.

c. Allows indexed access.

d. Allows constant time insertions and deletions, that is, the time required for the

insertion and deletion of an element is independent of the number of elements in

the collection.

e. Allows an arbitrary number of elements.

f. Allows constant time access to elements, that is, the time required to access an

element is independent of the number of elements in the collection.

g. Sorting is easily accomplished.

sim23356_ch17.indd 867sim23356_ch17.indd 867 12/15/08 7:18:11 PM12/15/08 7:18:11 PM

868 Part 3 More Java Classes

 5. Which Collection Classes?
 For each scenario, describe which Collection class(es) you would use, how you

would use the class(es), and why you choose the class(es).

 a. You want to maintain a list of foods together with the number of calories in

each food. Your list should allow a user to specify a food and retrieve the

number of calories for that food. You should be able to add new foods to

the list.

b. You want to maintain a list of your daily meals—foods and calories. You

should be able to specify a particular day and retrieve the day’s meals. You

should be able to retrieve the total number of calories for any consecutive

number of days.

 6. Which Collection Classes?
 For each scenario, describe which Collection class(es) you would use, how you

would use the class(es), and why you chose those class(es).

a. You keep track of all U.S. states that you have visited. Your program should have

the capability to:

• add a state to the list, and

• determine whether or not you have visited a particular state.

 b. You store the names of all people to whom you have sent email. Your program

should be able to:

• retrieve a particular person’s email address,

• add a new name and email to the list,

• print the list out in alphabetical order.

 7. Implementations—Time–Space Trade-offs

a. Explain why the LinkedList �E� implementation of BigInt (Example 17.6)

performs slightly faster than the ArrayList�E� implementation.

b. Explain why the LinkedList �E� implementation of BigInt uses more memory

than the ArrayList�E� implementation.

c. For BigInt , which do you think is more important, using less memory or having

slightly faster methods? Why?

d. When designing a class, what issues might determine whether memory usage or

time usage is more important?

 8. A New Data Structure: The Priority Queue
 A priority queue is a data structure that allows insertion and deletion of elements.

Each element in a priority queue has a unique integer priority. Unlike the queues of

Chapter 16, items are deleted from a priority queue in order of priority; the element

with highest priority is removed fi rst. A waiting line in a bakery models a priority

queue. As a customer enters the bakery he/she takes a ticket. The customer with the

lowest-numbered ticket is served fi rst. The lowest-numbered ticket has the highest

priority.

 A priority queue should support the following methods:

 • void insert(E data, int priority);
 • E delete();
 • boolean contains(E data);

 a. Design a PriorityQueue class using one (or more) of the Collection classes.

b. Which methods perform in constant time, that is, the time is independent of the

number of elements in the priority queue? Explain your answer.

sim23356_ch17.indd 868sim23356_ch17.indd 868 12/20/08 1:02:01 AM12/20/08 1:02:01 AM

 Chapter 17 The Java Collections Framework 869

 9. Hash Functions
 A good hash function must map equal objects to the same number and should

produce as few collisions as possible. Each of the following hash functions maps a

person’s surname (a string) to an integer in the range 0…25? Which, if any, of these

functions would you classify as a “good” hash function? Explain your answer.

a. The sum of the ASCII values of the characters in the string, mod 26.

b. The alphabetical position of the fi rst character in the string; use 0 for ‘A’, 1 for

‘B’, . . . , 25 for ‘Z’.

c. The alphabetical position of the last character in the string; use 0 for ‘A’, 1 for

‘B’, . . . , 25 for ‘Z’.

d. The alphabetical position of either the fi rst or last character in the string. The

choice of fi rst or last is random.

e. The number of characters in the string.

 10. I Wonder Why (Challenging)
 Did you ever wonder why Java classes are defi ned the way they are? Why are

certain inherited methods overridden and others not? For example, the ��

operator compares references, as does equals(Object o) inherited from Object.
However, equals(Object o) can be, and often is, overridden. String overrides

 equals(Object o) , but StringBuilder does not. When applied to String objects,

 equals(Object o) compares characters but the �� operator compares references.

This is not the case with StringBuilder where both �� and equals(Object o)
compare references.

 a. Why do you think Java’s designers made this choice? Justify your answer.

 b. How is this choice related to the immutability of String objects and/or the fact

that the hashCode() method must assign the same value to “equal” objects. You

may need to do a little research to answer this question.

 PROGRAMMING EXERCISES
 Programs marked (R) require recursive solutions.

 1. Using TreeSet�E�

 Write a program that uses TreeSet�E� to sort a list of integers accepted from the

console. End input with an integer fl ag, �999.

 2. Extending LinkedList
 Create a class called NewList �E� that extends LinkedList�E� and implements an

additional method,

 void printMe()

 that prints the data in the list. Test your new class in main(…) by instantiating a

 NewList�Integer� object, fi lling it with the integers 1 through 100, and printing the

integers using printMe().

 3. Recursively Printing the Elements of a LinkedList
 (R) To recursively print the elements of a LinkedList , an iterator must be passed as

an argument. Redo problem 2 but implement printMe() as follows:

 public void printme()
{ recursivePrintMe(this.listIterator());
}

 This “wrapping” hides the ListIterator parameter needed by the recursive method

and allows printMe() to maintain the same parameter-less signature as the iterative

sim23356_ch17.indd 869sim23356_ch17.indd 869 12/20/08 1:02:02 AM12/20/08 1:02:02 AM

870 Part 3 More Java Classes

version in problem 2. To complete this problem, you should write a private tail

recursive method

 private void recursivePrintMe(ListIterator x)

 that effects the printing.

 4. BigInt —Performance of ArrayList�E� vs LinkedList�E�
 Add a method to the BigInt class of Example 17.6 that performs subtraction of two

arbitrarily long non-negative integers a and b such that a � b . Your method is easier

to implement if it does subtraction as a computer subtracts rather than as you might

do it with paper and pencil.

 To subtract a – b

1. Pad b with leading zeros (on the left) so that b has the same number of digits as a .

2. Compute the complement of b: replace each digit k with 9 � k .

3. Add a to the complement of b.
4. Add 1 to the total.

5. Delete the leftmost digit in the answer.

 For example:

 To compute 14256789 – 3456:

• pad b � 3456 with leading zeroes so that b has the form 00003456;

• compute the complement of 00003456, which is 99996543;

• add 99996543 to a : a � 99996543 � 14256789 � 99996543 � 114253332.

• add 1 to the sum of the previous step: 114253332 � 1 � 114253333.

• delete the leftmost digit from 114253333, giving the fi nal result: 14253333.

 You can check by hand that this is indeed correct.

 Implement the expanded BigInt class with ArrayList�E� and with

 LinkedList�E�. Time the subtractions and additions with each implementation.

Discuss your results.

 5. Hash Sets
 Every pixel on your computer’s screen has a unique position described by a pair

(x, y), such that x and y are positive integers. The x -coordinate of a pixel, p, is the

number of pixels from the left edge of the screen to p ; the y -coordinate of p is the

number of pixels from the top of the screen to p . Thus, the position of the pixel at

the top left corner of your screen is (0, 0).

 Write a Position class with integer fi elds x and y that represent the screen position

of a pixel. Override equals(Object o) .
 The implementation of a video game must determine whether or not a given

position is lit. When the game starts, no position is lit. A hash table is used to keep

track of which positions are lit. Write a program that generates a list of 5000 random

positions (x ranges from 0 to 60, and y ranges from 0 to 40). If the position is unlit,

(not in the hash table) add it to the hash table (i.e., light it), and if it is lit, then

remove it from the table (“unlight” it). Remember to override hashCode() .
 When your program concludes, print a picture using ‘*’s and blanks that

simulates the lit and unlit pixels. Display the number of pixels that are lit.

 6. Golf Records—Performance of ArrayList vs LinkedList
 A golfer keeps track of all the holes he/she plays during a season. For each hole,

the golfer records two integers. The fi rst integer is the par score for that hole, and

the second, his/her score for that hole. Every 19 th entry is the sum of the previous

18 entries. For example, if the fi rst 18 entries are:

 3 4 4 4 5 4 4 4 3 5 4 4 4 4 3 4 4 4

 3 4 6 5 5 4 4 3 4 7 3 4 5 5 4 4 4 5

sim23356_ch17.indd 870sim23356_ch17.indd 870 12/15/08 7:18:12 PM12/15/08 7:18:12 PM

 Chapter 17 The Java Collections Framework 871

 Then the 19th entry is:

 71

 79

 Implement a class Hole that has two integer instance variables

 int par;
int score.

 Include the standard getter and setter methods. Override the equals(Object o)
method that is inherited from Object based on score . Note that you won’t need to

use equals(…) in this problem, but it is good style to provide it in the class for other

clients.

 Write a program that creates a list of 1800 Hole references, representing 100

rounds of golf. The par value for each Hole is a random integer between 3 and 5,

inclusive. The score is a random integer from two below the par value to four above

it. Your program should iterate through the list, calculate the sum after every series

of 18 holes, and insert that sum into the list at the correct position.

 Implement your program with ArrayList�E� and also LinkedList�E�. Time

both programs. Report and explain the results.

 7. An Ad Hoc Circularly Linked List
 A circularly linked list is a linked list in which the last element refers to the fi rst

element. One of the features of a circularly linked list is that given a list item, the

entire list can be processed in order starting with that item. In the text, we created

an ad hoc circularly linked list using LinkedList�E� by creating a new iterator

every time the current iterator reaches the end of the list.

 Write a CircList�E� class that extends LinkedList�E�. Your class should

include a boolean method, display(…) , which given an object e belonging to E ,

searches the list for e , and if found, prints all the data in the list in order starting

with e , wrapping around the end of the list when necessary. The method returns true

if e is found, otherwise false .

 8. Comparator and Comparable
 A Student class has a name fi eld (String) and an array of four integer grades in the

range 0 to 100. Methods include

• String getName() , and

• int getAverage() // returns the integer average of the four grades .

 Student implements the Comparable interface so that compareTo(…) compares

 Student objects alphabetically by name. Studen t also overrides equals(Object 0) and

 toString().
 Gradebook is a class that stores Student objects in a TreeSet , students. Gradebook

has a two-argument constructor

 public Gradebook(int num, Comparator c)

 that populates students by prompting for num names along with four grades for each

name. The parameter c may be null , in which case the TreeSet , students , is created

using the natural order of Student ; otherwise students is created with the order

imposed by c. GradeBook also includes a method

 public void display()

 that iterates through students and displays each student’s name and average.

 The class OrderByAverage implements Comparator�Student�. The compare(…)
method of Comparator compares Student objects based on average grade (an integer).

sim23356_ch17.indd 871sim23356_ch17.indd 871 12/15/08 7:18:12 PM12/15/08 7:18:12 PM

872 Part 3 More Java Classes

 Implement each of these classes. Test them using the following class:

 public class TestGradebook
{
 public static void main(String[] args)
 {
 Gradebook gradeBook � new Gradebook(10, null);
 gb.display(); // alphabetical order, by name
 gradeBook � new Gradebook(10, new OrderByAverage());
 gradeBook.display(); // sorted by average grade
 }
}

 9. Josephus and Recursion
 (R) Example 17.5 describes the famous Josephus Problem. If m � 2, that is, every

other person is counted off and killed, there is a recursive formula for computing

J(n), the number of the last person to be removed from the original circle of n

people. Of course, J(1) � J(2) � 1.

 For general n :

 if n is odd then J(n) � 2 × J(n /2) � 1 ;
 if n is even then J(n) � 2 × J(n /2) – 1.

 Note that n /2 is integer division.

 For example:

 J(19) � 2 × J(9) � 1.

 J(9) � 2 × J(4) � 1.

 J(4) � 2 × J(2) – 1.

 J(2) � 1.

 Hence, J(4) � 1, J(9) � 3, and J(19) � 7.

 Write a recursive method that returns the position of the survivor in the n person

Josephus Problem when m � 2. Time your algorithm for n � 100, 1000, 10000, and

100000. How does the running time of your algorithm compare to the running time

of the program in Example 17.5?

 10. Josephus and Binary Numbers
 There is an interesting connection between the Josephus Problem where m � 2 and

binary numbers. If you write the number of people, n, in binary format, then the

number of the last surviving person can be calculated by rotating the bits once to

the left.

 For example, to calculate J(19), the number of the survivor from a group of 19,

write 19 in binary as 10011, and rotate the bits once to the left to get 00111, which

is 7. Notice that the original leftmost bit moves to the rightmost position.

 Write a program that determines the survivor when m � 2 by converting n

to binary and inserting the bits into a LinkedList�E� object. Then use the data

structure to “rotate” the bits to the left, and fi nally, convert the resulting list of bits

back to an integer.

 Conversion of n to a binary number can be done iteratively or recursively:

 convert(n) // iteratively
 while (n � 1)
 { insert n % 2 into the front of the list;
 n � n/2;
 }

sim23356_ch17.indd 872sim23356_ch17.indd 872 12/15/08 7:18:12 PM12/15/08 7:18:12 PM

 Chapter 17 The Java Collections Framework 873

convert(n) // recursively
 if (n �� 1) then insert 1 into the list and break;
 // else
 insert n % 2 into the front of the list; // inserts rightmost digit into the list
 convert (n / 2); // cuts off the rightmost digit

 Once again, n /2 is integer division and consequently truncates remainders.

 Conversion of the bits back to a number can also be done iteratively or

recursively:

 bitsToInt(list) // iteratively
 sum � 0;
 traverse the list, left to right, starting at the front;
 for each bit b
 { sum � 2 * sum;
 add b to sum;
 }
 return sum;

bitsToInt(list) // recursively
 b � rightmost bit; // rear of the list
 delete the rightmost bit from the list;
 return (b � 2 * bitsToInt(list));

 11. Simulating a Print Queue Using the Collections Framework
 A computer’s operating system keeps track of a print queue for each printer. A print

queue is a list of jobs waiting for access to a printer. A job has

• an ID number,

• a size,

• a time-stamp indicating when it was added to the queue, and

• a priority from 1 to 10.

 The time-stamp is a positive integer representing the number of seconds that

the computer has been operating (uptime) when the job arrived. The operating

system has access to the current uptime of the computer. The size of the job

is the number of seconds required to print the job. The priority of the job

is a measure of the importance of the job. A priority of 10 indicates “most

important.”

 When the current job is fi nished, the operating system chooses the next job. The

next job is the one in the queue with the highest priority. If more than one job has

the highest priority, the operating system chooses the job that has been waiting in

the queue for the longest amount of time. The printer takes fi ve seconds between

jobs to reset itself and prepare for the new job. If a job remains in the queue for a

long period of time, its priority increases by one (to a maximum of 10) for every

200 seconds it remains in the queue.

 Write a program that reads a list of jobs from a fi le and prints the time at which

each job started and fi nished printing. Your program should simulate one print

queue. You will need a Job class and a PrinterQueue class. The latter should be built

from classes of the Collections Framework.

 12. The Map Hierarchy
 A map is a collection of object pairs (key, value) such that each key object is unique.

The key object is used to locate and store the value object. The key serves as an

index into a map collection.

sim23356_ch17.indd 873sim23356_ch17.indd 873 12/15/08 7:18:13 PM12/15/08 7:18:13 PM

874 Part 3 More Java Classes

 Suppose, for example, that student data consists of

 ID

 name

 gpa (grade point average)

 Several students may have the same name and, of course, gpa. However, a student’s

ID number is unique. Consequently, the ID number might serve as the key in a map

of the form

 (id, {name, gpa})

 For example, the table

id (key) name, gpa

19834 Lucy 2.1

18765 Ricky 2.7

18123 Fred 3.4

17654 Ethel 3.4

12987 Ricky 3.9

 is such a map. The key for this map is the ID, and the value is a single object that

holds two strings, a student’s name and his/her gpa.

 Since a key uniquely identifi es each object, a search for any particular object is a

search for a particular key value—that is, searching is based upon the key.

 Like the Collection hierarchy, Java’s Map hierarchy consists of a collection of

interfaces and concrete classes. See Figure 17.15 .

TreeMap

Map
(interface)

SortedMap
(interface)

HashMap

FIGURE 17.15 The Map hierarchy

 Map�K,V� is an interface that is at the root of the hierarchy. SortedMap�K,V� is

also an interface. HashMap�K,V� and TreeMap�K,V� are classes.

 A few commonly used methods of the Map�K,V� interface are:

• void clear() ,
 removes all objects from the map;

• boolean containsKey(Object key)
 returns true if the map contains a value for key;

• V getKey(Object key) ,
 returns the value associated with key ;

• Set �K� keySet() ,
 returns the keys of the map as a Set ;

sim23356_ch17.indd 874sim23356_ch17.indd 874 12/15/08 7:18:13 PM12/15/08 7:18:13 PM

 Chapter 17 The Java Collections Framework 875

• V put(K key, V value),
 inserts the pair (key, value) into the map. If the map contains another value

associated with key , replaces and returns that value. Otherwise returns null .
• int size() ,

 returns the number of (key, value) pairs in the map.

 The SortedMap�K,V� interface extends Map�K,V�. SortedMap�K,V� objects

are stored in key order, lowest to highest.

 Some additional methods of SortedMap are:

• K fi rstKey() ,
 returns the fi rst key in the map;

• K lastKey(),
 returns the highest key in the map;

• SortedMap�K,V� headMap(Key toKey) ,
 returns all (key, value) pairs as a SortedMap�V,K� object with key values less than

 toKey ;
• SortedMap tailMap headMap(Object fromKey) ,

 returns all (key, value) pairs as a SortedMap�V,K� object with key greater than or

equal to fromKey ;
• SortedMap subMap(Object fromKey, Object toKey) ,

 returns all (key, value) pairs as a SortedMap�V,K� object with key greater than or

equal to fromKey and strictly less than toKey.

 TreeMap�K,V� is a class that implements SortedMap�K,V�. Objects are stored

in a balanced tree and are ordered by the key.

 HashMap�K,V� implements Map�K,V�. Objects are stored using a hash table

based on the key. No order is assumed among keys.

 Effi ciency considerations for the HashMap�K,V � and TreeMap�K,V� classes

are similar to those for HashSet�E� and TreeSet�E� classes. The following

problems require the use of both Map classes.

 a. Construct a HashMap�K,V� object that can be used to translate English to both

French and Pig Latin. Your application should:

• prompt for an English word and provide the French and Pig Latin equivalents, and

• print a list of all English words (not necessarily in order).

Just in case you are unfamiliar with either French or Pig Latin, here are a few words

that you can use as data.

English French Pig Latin

chicken le poulet ickenchay

pig le couchon igpay

money l'argent oneymay

hello bonjour ellohay

bye au revoir eyebay

thanks merci anksthay

dog le chien ogday

wine le vin ineway

hot dog le hot dog othay ogday

sim23356_ch17.indd 875sim23356_ch17.indd 875 12/15/08 7:18:13 PM12/15/08 7:18:13 PM

876 Part 3 More Java Classes

b. In general, TreeMap�K,V� operations are slower than HashMap �K,V�

 operations, but because keys are kept in sorted order, the TreeMap�K,V� class

provides a few extra methods and gives additional functionality. Unfortunately,

 TreeMap�K,V� does not implement Collection�E� and does not supply an

 iterator method.

 To circumvent this minor inconvenience, instantiate a Set�E� object from the

(key, value) pairs of a TreeMap�K,V� , then iterate over this set. The TreeMap

method that returns such a set is

 Set�Map.Entry�K,V�� entrySet()

 where Map.Entry�K,V� is a (key, value) pair.

 The following code instantiates such an iterator for a TreeMap tree :

 Iterator�Map.Entry�K,V�� iterator � (tree.entrySet()).iterator();

 Implement the English-French-Pig Latin application using TreeMap�K,V � and

an iterator to display the (key, value) pairs sorted by key.

c. The motor vehicle department has a system whereby each driver is given an

integer rating from 9 to 40 measuring his/her safety record; 9 is the best rating.

Drivers with a rating of 9 get the lowest insurance rates.

 An insurance agent keeps a set of 10,000 clients, storing each client’s account

number and safety number. The latter is used to calculate a client’s annual bill.

The agent occasionally adds or deletes a driver. The agent frequently updates the

safety record of a particular client by increasing the saftey number based upon

citations or accidents. Once a year, the agent updates the safety records of all
clients, subtracting 1 from each client’s safety number. This lets people improve

their scores during “clean” years, that is, years in which they have no accidents or

tickets. Recall that the minimum safety record is 9, so during the annual update,

a driver with safety record of 9 is unaffected. Also once a year, the agent prints a

list of the clients ordered by increasing safety number.

 Write a class, InsuranceAgent , that initializes a list with 10,000 drivers, each

with an account number and randomly selected safety number. Assume that

account numbers begin with 1 and increase to 10,000.

 Your application should be able to:

• add a driver to the list,

• delete a driver,

• add 1 to the safety record of a particular driver,

• iterate through all the clients, subtracting 1 from each one’s safety record (9 is

minimum),

• sort the clients by safety number, and

• calculate the median (middle) safety record.

 It makes sense to implement InsuranceAgent using a HashMap . A TreeMap

would be ineffi cient for the updates. However, a TreeMap is appropriate when

doing the annual sorting. Hence, use a HashMap and convert your HashMap to a

 TreeMap one time each year, after all the insertions, deletions, and modifi cations

have been effected. Then, use TreeMap to sort and calculate the median.

 Write a class that demonstrates InsuranceAgent .

sim23356_ch17.indd 876sim23356_ch17.indd 876 12/15/08 7:18:14 PM12/15/08 7:18:14 PM

THE BIGGER PICTURE
 Chapter 17 The Java Collections Framework 877

 THE BIGGER PICTURE

 TREES
 Trees form the basis of dozens of data structures, each one suited to a specifi c kind of task.

Here we examine two of these: the binary search tree and the shortest path tree. We begin

with the binary search tree, a data structure that provides effi cient storage, retrieval, and

management of data.

 Binary Search Trees
 In Section 17.3.3 we defi ne a binary tree as well as a binary search tree. In this set of exer-

cises, we ask you to implement a binary search tree class that includes methods that build

a tree, traverse a tree, and search a tree.

 As defi ned in this chapter, a binary search tree is a binary tree such that for any node N ,

all data contained in the left subtree of N are less than the data of N and all data contained

in the right subtree of N are greater than or equal to the data of N . That is, a binary search

tree is ordered.

 Figures 17.7 a, 17.8a, and 17.8b are all examples of binary search trees.

 As with a linked list, we can implement a binary search tree by linking nodes. In the case

of a binary tree, each node contains data as well as two reference fi elds. See Figure 17.16 .

20 36

4822

(null)

root

A BST

25

A node

data

left right

root

25

3620

2212 48

A BST of nodes

12

(null) (null) (null) (null) (null) (null)

FIGURE 17.16 A binary search tree

 We begin an implementation of a binary search tree class with the following code segment

that includes a Node class:

 public class BST�E extends Comparable�E��

{
 private class Node

 {

 private E data;

 private Node left;

sim23356_ch17.indd 877sim23356_ch17.indd 877 12/15/08 7:18:14 PM12/15/08 7:18:14 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
878 Part 3 More Java Classes

 private Node right;

 public Node(E x) // Node constructor

 {

 data � x;

 left � right � null;

 }

 }

 private Node root; // a reference to the root of the tree
 public BST() // BST constructor
 {
 root � null; // initially the tree is empty
 }
}

 Of course, to build a binary search tree, we need a method that inserts elements into the

tree. The following method

 void insert(E x)

places a node with value x into a binary search tree. This method can be used repeatedly

to construct a tree.

public void insert(E x)
{
 Node p,q;
 Node newNode � new Node(x);
 if (root �� null) // empty tree
 {
 root � newNode;
 return;
 }
 p � root;
 q � null; // q follows p down the tree

 // p "moves" from the root down the tree
 while (p !� null)
 {
 q � p; // set q to p before reassigning p
 if (x.compareTo(p.data) � 0) // x � p.data
 p � p.left; // set p to left subtree, that is move left
 else
 // x �� p.data; set p to right subtree, move right
 p � p.right;
 }
 // determine whether to place x on left or right
 if (x.compareTo(q.data) � 0)
 q.left � newNode;
 else
 q.right � newNode;
}

The reference p begins at the root and
moves left or right on a path down the
tree until p reaches the leaf where the
new node should be attached.

If p.data is greater than x, p moves
left; otherwise p moves right. p

eventually gets the value null :
(while p !� null)

The reference q follows p down the
tree.

When the while loop terminates, q is
referencing the leaf to which the new
node should be attached.

sim23356_ch17.indd 878sim23356_ch17.indd 878 12/15/08 7:18:15 PM12/15/08 7:18:15 PM

THE BIGGER PICTURE
 Chapter 17 The Java Collections Framework 879

 Exercises
 1. Draw the binary search tree that is created via the following method calls:

 BST�Integer� tree � new BST�Integer�(),
tree.insert(25),
tree.insert(16),
tree.insert(32),
tree.insert(12),
tree.insert(43),
tree.insert(1), and
tree.insert (27).

 2. Draw the binary search tree created by the loop

 BST�Integer� tree � new BST�Integer�()
for (int i � 1; i �� 6; i ��)
 tree.insert(i);

 and the tree created by

 BST�Integer� tree � new BST�Integer�()
for (int i � 6; i �� 1; i ��)

 tree.insert(i);

 3. Devise a method

 boolean contains(E x)

 that returns true if the specifi ed object is in the tree. The method is similar to the

insert(E x), method in that a reference p should move left or right down the tree

until either x is found or p is null . The method can be implemented iteratively or

recursively. Use iteration here.

 4. Write a method

 E search (E x)

 that returns the specifi ed object, if found in the tree, otherwise null. The method

can be implemented iteratively or recursively. Use iteration here.

 Tree Traversal
 Traversing a tree is almost as easy as traversing a list. There are a number of traversal algo-

rithms, but the following inorder traversal method is particularly useful because this method

displays BST data in sorted order. Although some binary search tree methods can be accom-

plished iteratively as easily as recursively, traversals are done more easily using recursion.

 Written as a Java method, this recursive algorithm has the following compact form:

 void traverse (Node root)
{
 if (root !� null) // if the tree is not empty
 {
 traverse(root.left); // recursively traverse the left subtree
 System.out.println(root.data); // display the data of the root
 traverse(root.right); // recursively traverse the right subtree
 }
}

sim23356_ch17.indd 879sim23356_ch17.indd 879 12/15/08 7:18:16 PM12/15/08 7:18:16 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
880 Part 3 More Java Classes

 Figure 17.17 shows a binary search tree and a corresponding recursion tree, which traces

the execution of the traversal algorithm. Note that if a (sub)tree consists of a single node,

traversal amounts to no more than printing the data of the node. In Figure 17.17 , we refer

to a node by the value of its data.

print(75)

2 8 9

3

4

5 6 10 11

12
7

1
traverse(50)

print(50) traverse(75)

traverse(80)

print(80)

traverse(25)

print(25) traverse(30)

print(30)

traverse(15)

print(15)

50

7525

3015 80

FIGURE 17.17 A binary search tree and the actions of an inorder traversal.
Data is displayed in sorted order: 15, 25, 30, 50, 75, 80.

 Exercises
 5. Traverse the binary tree of Figure 17.18 . Note that since this is not a BST, a

traversal does not display data in sorted order.

F

U

N

R

ES

A

R

ET

E

FIGURE 17.18 A binary tree that is not a search tree

 6. Include the following methods in a BST�E� class:

public void insert(E x),
public boolean contains(E x),
public search(E x), and
private void traverse(Node root) // note that this method is private in the BST class.

sim23356_ch17.indd 880sim23356_ch17.indd 880 12/15/08 7:18:16 PM12/15/08 7:18:16 PM

THE BIGGER PICTURE
 Chapter 17 The Java Collections Framework 881

 Because the parameter of traverse(Node root) is the private fi eld root, the

method call traverse(root) cannot be invoked from outside the class. This

presents no diffi culty. Declare traverse(Node root) a private helper method and

include a second public method traversal() that calls traverse(root).

private void traverse (Node root)
{
 // code as given
}

public void traversal()
{
 traverse(root);
}

This “wrapping” trick is common when using recursive methods, and it occurs

for a variety of reasons. Another example can be found in Programming Exer-

cise 3 of this chapter—recursively printing a linked list. You will see a number of

similar examples in the following exercises.

 Include a main(...) method that builds a tree with String data and demonstrates

the methods of BST.

 A binary search tree is a recursive data structure, and so its methods lend

themselves to recursive programming. In the following exercises, we ask you to

write some recursive methods.

 Exercises
 7. (R) The number of nodes in a tree can be found recursively:

int numNodes(Node root)
{
 // if root is null return 0
 // otherwise
 // return
 // the number of nodes in the left subtree of root �
 // the number of nodes in the right subtree of root �
 // 1 (for the root)
}

 Add the following recursive method to BST:

private int numNodes(Node root) // returns the number of nodes in a tree

 Like the traversal method, this method is private. Include a public method

public int size()
{
 return numNodes(root);
}

 8. (R) The maximum value in a BST can be found recursively:

E max(Node root)
{
 // if the right subtree of the root is empty return the data in the root
 // otherwise return the maximum value of the right subtree of the root node
}

sim23356_ch17.indd 881sim23356_ch17.indd 881 12/15/08 7:18:17 PM12/15/08 7:18:17 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
882 Part 3 More Java Classes

 Include the recursive method

 private E max(Node root)

 in the BST class, along with

public E maximum()
{
 return max(root);
}

 9. (R) Add a recursive method to BST that returns the minimum value stored in a

binary search tree.

 10. Replace the iterative versions of the insert(…), contains(…), and search(…)
methods of the BST class with their recursive counterparts.

Shortest Path Trees and Arrays
A binary search tree is a versatile data structure used for many kinds of applications, the

most common being the effi cient storage, retrieval, and management of data. However,

there are many other types of trees used for different kinds of applications. These include

red-black trees, heaps, treaps, height-balanced trees, weight-balanced trees, splay trees,

decision trees, B-trees, ternary trees, n-ary trees, expression trees, mini-max trees, and

more, with applications ranging from database systems to algorithms, caching, compilers,

game playing, and decision theory.

 Unlike binary search trees, shortest path trees have nothing to do with storing and

retrieving data. Shortest path trees are used for determining the shortest path(s) between

two locations on a map. Simpler than a binary search tree, a shortest path tree can be imple-

mented with two one-dimensional arrays.

 The shortest path algorithm might be the most commonly executed algorithm after

perhaps sorting, searching, and Euclid’s greatest common divisor. The shortest path

algorithm is used each time a person requests directions from Mapquest or Google

Maps. Here, we do not discuss the details of the algorithm, but instead focus on the data

structures used. One of these data structures is a surprisingly simple implementation of

a tree.

 Given a representation of a road map, the shortest path algorithm calculates the short-

est route from one place to another. For example, the network in Figure 17.19 shows the

streets in a small town that connect various town attractions. For example, if A signifi es the

post offi ce and B the elementary school, then the direct distance between the post offi ce

and the school is two miles. If C represents the high school, there are many paths between

the high school and the elementary school. The path from C to A to B is three miles, but a

shorter path (two miles) from C to B goes through G.

A

1

1
11

12

2

2

2

3

3

4

BC

D

G

F

E

FIGURE 17.19 A network that depicts the streets of a small town

sim23356_ch17.indd 882sim23356_ch17.indd 882 12/15/08 7:18:17 PM12/15/08 7:18:17 PM

THE BIGGER PICTURE
 Chapter 17 The Java Collections Framework 883

 The information in this network can be stored in a table:

A B C D E F G

A 0 2 1 1000 1000 1000 3

B 2 0 1000 1000 12 1000 1

C 1 1000 0 3 1000 1000 1

D 1000 1000 3 0 2 2 1000

E 1000 12 1000 2 0 4 1000

F 1000 1000 1000 2 4 0 1

G 3 1 1 1000 1000 1 0

The distance between any two adjacent places i and j is located in the table at position (i, j).
For example, the entry in position (E,B) is 12, the distance between E and B. The number

1000 (any number much larger than any possible path value will do) is placed in every posi-

tion (i, j) such that i and j are not adjacent.

 We do not describe how the shortest path algorithm does its job, but we do describe the

data structure used to store the solution. The shortest path algorithm computes the shortest

path from A to every other location including A. The result is stored in a shortest path tree,
with root A. A picture of this tree is shown in Figure 17.20.

1

1

1

2

2

3

A

C

D

B

G

E F

FIGURE 17.20 A shortest path tree rooted at A

 Because there is a unique path between any two nodes of a tree, we can use this tree

to fi nd the shortest distance and corresponding path from any node to A. For example, the

shortest distance from E to A is 6, and the corresponding path is E-D-C-A. Similarly, the

shortest distance from F to A is 3, and the path is F-G-C-A.

 The shortest path tree can be stored using two arrays, one holding the lengths of the

shortest paths to A, and the other, the paths themselves. The latter array is sometimes called

a parent array, because it stores the parent of each node. The parent of the root, A, is null;

A is the parent of B and C; C is the parent of D and G, and so on. The two arrays of this

example are shown below:

A B C D E F G

Shortest Distance 0 2 1 4 6 3 2

From A:

A B C D E F G

 Parent: Null A A C D G C

 The parent array helps determine the actual sequence of nodes in the shortest path

between the root A and any given node. For example, to determine the path between A and

sim23356_ch17.indd 883sim23356_ch17.indd 883 12/15/08 7:18:18 PM12/15/08 7:18:18 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
884 Part 3 More Java Classes

E, start with E, and fi nd the parent of E. That’s D. The parent of D is C, and fi nally the par-

ent of C is A. Thus, the shortest path from E to A is E-D-C-A.

 Exercise
 11. Implement a ShortestPathTree class using two arrays. Include constructors,

getter methods, and setter methods. Finally, include a method that displays

the shortest distance and corresponding path from the root of the tree to any

other node.

Conclusion
The shortest path tree is not a binary search tree. It is not even necessarily a binary tree;

each node can have many children. Compared to a binary search tree with its linked struc-

ture, a shortest path tree is easy to store using just two arrays. Indeed, a tree representation

is only as complicated as it needs to be for its intended use. If your intention is to display

the shortest path between two nodes, then the simple array/parent representation of a short-

est path tree is suffi cient. On the other hand, operations such as storing, searching, deleting,

and retrieving data call for a more complex tree representation such as a binary search tree

or even a balanced binary search tree.

There are many kinds of tree-based data structures. Always choose the simplest one

that allows an effi cient solution to your problem.

sim23356_ch17.indd 884sim23356_ch17.indd 884 12/15/08 7:18:18 PM12/15/08 7:18:18 PM

PA
R

T

 4

PART 4
Basic Graphics, GUIs, and
Event-Driven Programming

18. Graphics: AWT and Swing

19. Event-Driven Programming

20. A Case Study: Video Poker Revisited

sim23356_ch18.indd 885sim23356_ch18.indd 885 12/15/08 7:19:18 PM12/15/08 7:19:18 PM

886

CHAPTER CHAPTER 18
 Graphics: AWT and Swing

 “It don’t mean a thing if it ain’t got that swing”
 — Duke Ellington, Irving Mills

 Objectives

 The objectives of Chapter 18 include an understanding of

 � Java’s Component classes,

� Swing and AWT ,

� frames,

� panels,

� layout managers, and

� simple graphics.

 18.1 INTRODUCTION

 At this point, you already know enough about programming and Java to implement appli-

cations that are challenging, interesting, and useful. Nonetheless, clever data structures,

good error handling, tight code, and fl exible design are not enough. With today’s interac-

tive computer applications, a user-friendly graphical interface is the norm. Windows, click-

able buttons, drop-down menus, input boxes, and eye-catching graphics provide a little

“razzle dazzle” and make programs fun and easy to use.

 In the remainder of the book, we discuss programs that interact with a user via a graphical

user interface (GUI); programs that utilize windows, menus, buttons, checkboxes, and

what we generally call widgets . Input may come by clicking the mouse, pressing a button,

selecting a menu item, or typing a string into a text box. Output can be accomplished not

only with text but with images, sound, and graphics.

 In this chapter, you will learn how to arrange graphical components within a win-

dow and how to use these components to display images, labels, text, and even your own

 graphics. In Chapter 19, we explain how to make your buttons, checkboxes, menus, and

other widgets come alive and respond to user actions.

 18.2 COMPONENTS AND CONTAINERS

 It is probably no surprise that Java provides a hierarchy of classes that facilitates GUI

programming. Part of Java’s Component hierarchy is shown in Figure 18.1 .

sim23356_ch18.indd 886sim23356_ch18.indd 886 12/15/08 7:19:19 PM12/15/08 7:19:19 PM

 Chapter 18 Graphics: AWT and Swing 887

Component
(Abstract)

Container

Window

Frame Dialog

JFrame JDialog

JComponent

All other
Swing

Components

Panel

 FIGURE 18.1 The Component hierarchy

 At the top of the hierarchy is the (abstract) Component class.

A component is an object that can be displayed on the screen.

 For example, buttons, text boxes, checkboxes, and labels are all components. A window is

also a component.

 The Container class extends Component.

A container is an object that holds components.

 Figure 18.2 shows a frame that holds six buttons, three inside the frame and three on the

upper border. A frame is a container and a button is a component.

300
pixels

Three buttons

Three buttons

100
pixels (100, 300)

(400, 400)

(0, 0)

A frame

FIGURE 18.2 Six buttons in a frame

sim23356_ch18.indd 887sim23356_ch18.indd 887 12/15/08 7:19:19 PM12/15/08 7:19:19 PM

888 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 But wait. If Container extends Component , then every Container object is also a

 Component object. So isn’t a frame both a container and a component? Yes, a frame is both a

component and a container. The distinction is really semantic. The Container class indicates

that an object is meant to hold other components. A frame is usually considered a container.

Every component, such as a button, a checkbox, a text box, or a window is an object

belonging to some class that extends Component. These components are placed in

containers.

 The upper left corner of a container is designated as position (0, 0), and (x, y) is the point

located x pixels to the right of and y pixels down from (0, 0). For example, the dot in the

frame of Figure 18.2 marks the point (100, 300), which is 100 pixels right of (0, 0) and

300 pixels down from (0, 0).

 A few useful methods of the Component class and all classes that extend

 Component are:

• void setSize(int width, int height)
 sets the size of a component so that its width is width pixels and its height is height

pixels. This method can be used to resize a button or a window.

• void setLocation(int x, int y)
 places a component at position (x, y) of the container that holds it. When a compo-

nent is placed at position (x, y), the upper left-hand corner of the component is placed

at (x, y). You will see that regardless of the visual shape of a component, every com-

ponent has an upper left-hand corner.

• void setBounds(int x, int y, int width, int height)
 places a component at position (x, y) and resizes the component to the number of

pixels specifi ed by the parameters width and height.

• void setEnabled(boolean enable)
 enables the component if the parameter, enable, is true ; disables the component if

enable is false. If a button is enabled, clicking the button usually triggers some pro-

gram action. For instance, clicking the “X” button of Figure 18.1 closes the frame;

clicking the “-” button minimizes the frame. If a button is not enabled, clicking the

button results in no action. The “turned off” button of Figure 18.2 is disabled. This is

indicated by the faded, “grayed-out” label.

• void setVisible(boolean x)
 hides the component if the parameter is false; displays the component if the param-

eter is true.

• void setName(String name)
 sets the name of the component. For example, someButton.setName("Print Button")

sets the name of someButton to the String “Print Button”.

• int getHeight()
 returns the height in pixels of a component.

• int getWidth()
 returns the width in pixels of a component.

• int getX()
 returns the x -coordinate of the component, that is, the x -coordinate of the upper left

corner of the component.

• int getY()
 returns the y -coordinate of the component, that is, the y -coordinate of the upper left

corner of the component.

sim23356_ch18.indd 888sim23356_ch18.indd 888 12/15/08 7:19:20 PM12/15/08 7:19:20 PM

 Chapter 18 Graphics: AWT and Swing 889

• String getName()
 returns the name of the component.

• boolean isEnabled()
 returns true if the component is enabled, false otherwise.

• boolean isVisible()
 returns true if the component is visible when its container is visible, false otherwise.

Note that a visible component does not display if its parent container is not also visible.

 The Container class defi nes additional methods. The most important of these is

 Component add(Component c),

which places a component, c, in a container and returns c. We discuss other Container
methods as needed.

 18.3 ABSTRACT WINDOWS TOOLKIT AND SWING

 Java provides two packages that contain the classes for graphics programming: the original

Abstract Windows Toolkit (AWT) and the newer Swing package. AWT is the original class

library for graphics programming. The AWT widgets use the interface elements of a particu-

lar platform. In other words, a button on a Windows machine may not look like a button on

a Unix machine or an Apple. The more modern Swing library paints the components on the

screen so that the look and feel of a graphical user interface is consistent from platform to

platform. Swing does not replace AWT; in fact, Swing uses many AWT classes. Swing, how-

ever, does provide new user interface components (buttons, textboxes, checkboxes, menus,

etc.) which are platform independent. Figure 18.3 compares Swing and AWT. The AWT

classes are in java.awt and the Swing classes reside in javax.swing.

AWT in java.awt package Swing in javax.swing package

Each component is mapped to a corresponding

platform-dependent interface called a peer.

Platform-specifi c and prone to platform-

specifi c bugs.

Components may look different on different

platforms. Components have the look of a

particular platform.

No platform-dependent peers.

Code written in Java.

All components look the same, regardless

of the platform.

Components are all prefi xed with

“J,” e.g., JButton, JCheckbox, JLabel.

FIGURE 18.3 AWT and Swing

 Swing classes are all prefi xed with uppercase J. For example JButton , JCheckBox ,

 JWindow , and JMenu are Swing classes that encapsulate buttons, checkboxes, windows,

and menus—your everyday, standard components.

All Swing components except JFrame and JDialog extend JComponent.

 See Figure 18.1 .

 18.4 WINDOWS AND FRAMES

 Every GUI utilizes one or more windows. A GUI may or may not have buttons, check-

boxes, or menus, but windows are indispensable.

sim23356_ch18.indd 889sim23356_ch18.indd 889 12/15/08 7:19:20 PM12/15/08 7:19:20 PM

890 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 The Window class extends Container. That is, a Window is-a Container and as a

Container, a Window holds widgets. Of course, Window also implements all the methods

of parent class Component. A Java Window is a “window” without borders and a title bar.

The Frame class, a member of AWT, extends Window. A Frame is-a Window that includes

a title bar and border. JFrame is a Swing class that extends the AWT class Frame. See

 Figure 18.1 . A JFrame object is a container for other objects such as buttons, labels, text

boxes, and checkboxes.

A JFrame encapsulates what you normally think of as a “window,” and it is the

 primary container used in all our applications.

 JFrame is a Swing class, and we always use the Swing classes in our examples.

 Two JFrame constructors are:

• JFrame()
 creates a new JFrame that is initially invisible.

• JFrame(String title)
 creates a new JFrame with title, title, that is initially invisible. When the frame is

visible, the title appears on the title bar of the frame.

In addition to the methods of Component, some useful JFrame methods are:

• void setTitle(String title)
 sets the title of the frame to title.

• void setResizable(boolean x)
 if x is true, the frame can be resized by the user; if x is false, the frame cannot be

resized. By default, a frame is resizable.

• void setDefaultCloseOperation(int op)
 exits the application when the user closes the frame, provided that op is the JFrame

constant EXIT_ON_CLOSE. If the close operation is not set with EXIT_ON_CLOSE,

when a user clicks on the x in the upper right-hand corner of the window, the window

disappears but the process still runs in the background.

 Adding components to a JFrame and displaying them is very common. Because a JFrame

 is-a Container, use

• the add(Component c) method of Container to add components to a JFrame, and

• the setVisible(boolean x) method of Component to make a JFrame visible.

The next example is the graphical equivalent of the traditional “Hello World” program.

 Problem Statement Design a class that extends JFrame. Include two constructors.

The default constructor sets the title to “I’ve been framed!” A one-argument construc-

tor accepts a String parameter, title. The frame should be positioned at (0, 0) on the user

screen. The dimensions of the frame should be 300 by 300 pixels.

 Java Solution The upper left corner of the screen has coordinates (0, 0). Consequently,

a call to setBounds (0, 0, 300, 300) places the upper left corner of the frame at screen

position (0, 0).

 EXAMPLE 18.1

sim23356_ch18.indd 890sim23356_ch18.indd 890 12/15/08 7:19:21 PM12/15/08 7:19:21 PM

 Chapter 18 Graphics: AWT and Swing 891

 1. import javax.swing.*;

2. public class MyFirstFrame extends JFrame

3. {
4. public MyFirstFrame () // creates a frame with title "I've been framed!"
5. {
6. super("I've been framed!"); // call the one-argument constructor of JFrame
7. setBounds(0, 0, 300, 300); // placed at screen position (0, 0); size 300 by 300
8. }

9. public MyFirstFrame (String title) // creates a frame with title title
10. {
11. super(title); // call the one-argument constructor of JFrame
12. setBounds(0, 0, 300, 300); // placed at (0,0); size 300 by 300
13.
14. }
15. }

The following test class creates, displays, and closes a MyFirstFrame frame.

 16. import javax.swing.*;

17. public class TestMyFirstFrame
18. {
19. public static void main(String[] args)
20. {
21. JFrame frame � new MyFirstFrame ("This is a test");
22. frame.setVisible(true);
23. frame.setResizable(false);
24. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
25. }
26. }

 Output TestMyFirstFrame places a frame in the upper left-hand corner of the screen.

See Figure 18.4 . Notice the String on the title bar.

FIGURE 18.4 A frame in the upper left-hand corner of the screen

 Discussion
 Line 21: The reference frame is declared as a JFrame. Because MyFirstFrame

extends JFrame, upcasting is acceptable.

 Line 22: By default, a frame is invisible; so the call setVisible(true) is essential.

sim23356_ch18.indd 891sim23356_ch18.indd 891 12/15/08 7:19:21 PM12/15/08 7:19:21 PM

892 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 18.4.1 Centering a Frame
 The frame of Example 18.1 appears in the upper left-hand corner of the screen. Placing

the frame there is easy enough because the upper left-hand corner position is (0, 0). Sup-

pose, however, that you would like to place a frame of size 200 by 100 pixels in the center

of the screen. If the screen size (resolution) is 800 by 600, then the upper right-hand cor-

ner of the frame should be positioned at (x , y) such that

x � (800 � 200)/2 � 300

y � (600 � 100)/2 � 250

See Figure 18.5 .

300
600

(300, 250)

250

800

250

screen width: (800 X 600)
frame width: (200 X 100)
frame placed at: (300, 250)

100
300200

FIGURE 18.5 Centering a 200 by 100 frame

 Of course, if the screen resolution is 1024 by 768 then a centered 200 by 100 frame

should be positioned at:

 x � (1024 � 200)/2 � 412

 y � (768 � 100)/2 � 334

So if myFrame belongs to JFrame, the statement

 myFrame.setBounds(300, 250, 200, 100);

 Line 23: The frame cannot be resized by the user. Notice that the center button

in the upper right-hand corner of the frame has been disabled. The frame always

remains 300 by 300.

 Line 24: This line can also be placed in the constructor.

sim23356_ch18.indd 892sim23356_ch18.indd 892 12/15/08 7:19:22 PM12/15/08 7:19:22 PM

 Chapter 18 Graphics: AWT and Swing 893

centers the frame on a screen with dimensions 800 by 600. However, notice that the frame

would not be centered on a screen with different dimensions, such as 1024 by 768.

To center a frame on a screen of any size, use methods of Java’s Toolkit and the

Dimension classes (in AWT).

 The Toolkit class contains a method, getScreenSize(), that returns a Dimension object.

The Dimension class has two public fi elds, width and height, that hold the screen dimensions.

The following segment uses the Toolkit and Dimension classes to obtain the screen size:

 Toolkit toolkit � Toolkit.getDefaultToolkit(); // a static method of the Toolkit class
Dimension dimensions � toolkit.getScreenSize(); // dimensions.width is the width of the screen
 // dimensions.height is the height of the screen

In conjunction with Toolkit and Dimension, we use Java’s Point class, which encapsulates

a two-dimensional point. The Point class has two public fi elds int x and int y that denote

the horizontal and vertical coordinates of a two-dimensional point. The class has a two-

argument constructor

 Point (int x, int y)

that sets the values of x and y.

 The following utility class CenterFrame has a single static method

 public static Point getPosition(int frameWidth, int frameHeight)

that, given the width and height of a frame, returns a Point that holds the coordinates, x and y,

of the position where the frame should be placed so that it is centered on the screen.

 1. import java.awt.*;

2. public class CenterFrame // a utility class
3. {

4. public static Point getPosition(int frameWidth, int frameHeight)
5. {
6. // returns a Point holding the coordinates of
7. // the upper left-hand corner of the (centered) frame

8. Toolkit toolkit � Toolkit.getDefaultToolkit();
9. Dimension dimensions � toolkit.getScreenSize();
10. int x � (dimensions.width � frameWidth)/2; // x coordinate of upper left corner
11. int y � (dimensions.height � frameHeight)/2; // y coordinate of upper left corner
12. return (new Point(x, y)); // return coordinates as a Point object
13. }
14. }

The following program centers a frame regardless of the screen resolution.

 EXAMPLE 18.2 Problem Statement Create a class, AnotherFrameClass, that extends JFrame and

defi nes four constructors.

 • The default constructor does not specify a title, and it centers an untitled 300 by

300 frame.

sim23356_ch18.indd 893sim23356_ch18.indd 893 12/15/08 7:19:23 PM12/15/08 7:19:23 PM

894 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 • The three-argument constructor specifi es a title and the size (width and height) of

a frame. The constructor also centers the frame.

 • The one-argument constructor creates a frame that fi lls the entire screen.

 • The fi ve-argument constructor includes a title, coordinates of the upper left-hand cor-

ner of the frame, and the size of the frame. The frame is not automatically centered.

 Java Solution AnotherFrameClass uses the utility class CenterFrame to center a frame

on the screen.

 1. import java.awt.*;
2. import javax.swing.*;

3. public class AnotherFrameClass extends JFrame
4. {
5. public AnotherFrameClass()
6. {
7. // default constructor
8. // frame contains no title
9. // width � 300, height � 300
10. // centers frame

11. super(); // call default constructor of JFrame
12. final int FRAME_WIDTH � 300;
13. final int FRAME_HEIGHT � 300;
14. Point position � CenterFrame.getPosition(FRAME_WIDTH, FRAME_HEIGHT);
15. setBounds(position.x , position.y , FRAME_WIDTH, FRAME_HEIGHT);
16. }

17. public AnotherFrameClass(String title, int width, int height)

18. // three-argument constructor, set title, width, height, centers frame
19. {
20. super(title); // call the one argument constructor of JFrame

21. // position gives the coordinates of the upper left corner of the frame
22. Point position � CenterFrame.getPosition(width, height);
23. setBounds(position.x , position.y , width, height);
24. }

25. public AnotherFrameClass(String title) // one-argument constructor
26. // creates a frame that fills the entire screen
27. {
28. super(title); // call the one argument constructor of JFrame
29. Toolkit tk � Toolkit.getDefaultToolkit();
30. Dimension d � tk.getScreenSize(); // d has public fields width and height
31. setBounds(0, 0, d.width, d.height);
32. }

33. public AnotherFrameClass(String title, int x, int y, int width, int height)
34. // five-argument constructor, a frame with dimensions width by height is placed at (x, y)
35. {
36. // (x, y) denotes the position of the upper left-hand corner of the frame
37. // width is the width of the frame
38. // height is the height of the frame
39. super(title); // call the one argument constructor of JFrame

sim23356_ch18.indd 894sim23356_ch18.indd 894 12/15/08 7:19:23 PM12/15/08 7:19:23 PM

 Chapter 18 Graphics: AWT and Swing 895

40. setBounds(x, y, width, height);
41. }
42. }

 The following class demonstrates AnotherFrameClass .

 43. import javax.swing.*;

44. public class TestAnotherFrameClass
45. {
46. public static void main(String[] args)
47. {
48. JFrame centerFrame �
 new AnotherFrameClass ("I'm at the center!", 200, 300);
49. centerFrame.setVisible(true);
50. JFrame topFrame �
 new AnotherFrameClass("I'm at the top!", 0, 0, 600, 100);
51. topFrame.setVisible(true);
52. topFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
53. centerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
54. }
55. }

 Output The output of this application appears in Figure 18.6 .

FIGURE 18.6 Two frames, one at the top and one at the center

 Discussion
 Line 48: The three-argument constructor places a frame with the title “I’m at the

center!” in the center of the screen. The method call on line 22

 Point position � CenterFrame.getPosition(width, height);

returns a Point object that holds the screen coordinates of the position that centers

the frame. Because the x and y fi elds of Point are public, they can be accessed

directly with

 setBounds(position.x , position.y , width, height);

 Line 50: The fi ve-argument constructor places the frame titled “I’m at the top” in

the upper left-hand corner of the screen.

sim23356_ch18.indd 895sim23356_ch18.indd 895 12/15/08 7:19:24 PM12/15/08 7:19:24 PM

896 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Now that we can position a frame on the screen, we add a few widgets.

 18.5 LAYOUT MANAGERS

 To add components to a frame, Java provides layout managers .

A layout manager is an object that arranges components in a container such as a

frame. The layout manager classes implement the LayoutManager interface.

 You might think of a layout manager as an interior designer who arranges the furniture in

your home. Different designers use different schemes. Different layout managers arrange

widgets differently.

 A layout manager is an object and consequently belongs to a class. Those classes that

we discuss are:

• BorderLayout,

• FlowLayout, and

• GridLayout.

There are others. Each layout manager works differently. Each has its own scheme.

 18.5.1 BorderLayout

 BorderLayout is the default layout manager for JFrame. That is, unless you specifi cally

instantiate a layout manager for a frame, components are placed in a frame using the

BorderLayout layout manager.

 The BorderLayout manager divides a frame into fi ve areas:

 NORTH WEST SOUTH EAST CENTER

 See Figure 18.7 .

FIGURE 18.7 BorderLayout partitions a frame into five regions

 Using a Toolkit object (tk), the one-argument constructor (lines 25–32) creates a frame

that fi lls the entire screen. The call tk.getScreenSize() returns a Dimension reference d
where d.width and d.height are the width and height of the screen. These values are passed

to SetBounds(...) on line 31.

sim23356_ch18.indd 896sim23356_ch18.indd 896 12/15/08 7:19:25 PM12/15/08 7:19:25 PM

 Chapter 18 Graphics: AWT and Swing 897

 The BorderLayout constructors are:

• BorderLayout()

• BorderLayout(int horizontalgap, int verticalgap)
 where horizontalgap and verticalgap specify horizontal and vertical space, in pixels,

between components.

 The method

 add(Component c, int region)

places a component into a container. The parameter, region, is specifi ed by one of the

constants

 BorderLayout.NORTH,
BorderLayout.SOUTH,
BorderLayout.EAST,
BorderLayout.WEST, or
BorderLayout.CENTER.

If no region is specifi ed, a BorderLayout layout manager places a component in the

center region. Only one component can be placed in a region, and components are

resized to fi t the region.

 The class of Example 18.3 places fi ve buttons in a frame.

A button is a widget that displays some text or image and allows some action to

occur when the button is “pressed”—that is, when the mouse is clicked on the button.

 For the present, we are not concerned with the functionality of a button; for now, clicking

a button triggers no action. Our primary purpose here is to demonstrate the placement of

components in a frame.

 A button is a member of the JButton class. Three constructors of JButton are:

• JButton(),
 creates a button with no text.

• JButton(String text),
 text is text displayed on the button.

• JButton(new ImageIcon (String fi lename))
 displays an image on the button, where fi lename is the name of an image fi le, such as

myPicture.jpg or yourPicture.gif.

 The ImageIcon class is discussed in detail in Section 18.8. To understand the following

example, you do not need to know anything more about ImageIcon.

Of course, a JButton is-a Component; so JButton inherits the methods of Component.

 EXAMPLE 18.3 Problem Statement Create a class, BorderLayoutFrame, that extends JFrame such

that an object belonging to BorderLayoutFrame displays fi ve buttons. Arrange the fi ve

buttons in the frame using the default BorderLayout layout manager. The center button

should display the famous “smiley face” image stored in smiley.jpg. The other four but-

tons should display the word smile in four languages: English, French (sourire), Italian

(sorriso), and Spanish (sonrisa).

sim23356_ch18.indd 897sim23356_ch18.indd 897 12/15/08 7:19:25 PM12/15/08 7:19:25 PM

898 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 The size of the frame should be 300 by 300 and the frame should be positioned at

(0, 0). Include a main(...) method that instantiates the frame.

 Java Solution The button that displays an image is instantiated as:

 new JButton(new ImageIcon("smiley.jpg")).

The image fi le is in the same directory as the BorderLayoutFrame class.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class BorderLayoutFrame extends JFrame
4. {
5. public BorderLayoutFrame()
6. {
7. super("BorderLayout "); // call one-argument constructor of JFrame
8. setBounds(0, 0, 300, 300); // position and size

9. // add the center button; the button displays the image in "smiley.jpg"

10. add(new JButton(new ImageIcon("smiley.jpg")), BorderLayout.CENTER);

11. // add four buttons to NORTH, SOUTH, EAST, and WEST

12. add(new JButton("Smile"), BorderLayout.NORTH);
13. add(new JButton("Sourire"),BorderLayout.SOUTH);
14. add(new JButton("Sorriso"), BorderLayout.EAST);
15. add(new JButton("Sonrisa"),BorderLayout.WEST);
16. }

17. public static void main(String[] args) // for display purposes
18. {
19. JFrame frame � new BorderLayoutFrame ();
20. frame.setVisible(true);
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. }
23. }

 Output Figure 18.8 shows the frame created by BorderLayoutFrame.

FIGURE 18.8 Five JButtons , one displaying an ImageIcon ,
placed with the default layout manager, BorderLayout

sim23356_ch18.indd 898sim23356_ch18.indd 898 12/15/08 7:19:26 PM12/15/08 7:19:26 PM

 Chapter 18 Graphics: AWT and Swing 899

 Discussion Notice that each button fi lls its region. If the frame is expanded, so are the

buttons. That is, the buttons are resized.

 The frame can hold only fi ve components, and components can be covered by other

components. For instance, if the additional statement

 add(new JButton(":)"),BorderLayout.CENTER);

is added to the constructor at line 16, the frame would appear as in Figure 18.9 .

 FIGURE 18.9 Output of the BorderLayout Frame class with one
additional statement: add (new JButton (":) ") ,BorderLayout.CENTER);

 18.5.2 FlowLayout

An object belonging to FlowLayout arranges components horizontally in a container,

left to right, row by row, in the order in which they are added to the container.

 The FlowLayout class has three constructors:

• FlowLayout()
 instantiates a FlowLayout object that center aligns components in a container.

• FlowLayout(int Alignment)
 instantiates a FlowLayout object with the specifi ed alignment: FlowLayout.LEFT,

FlowLayout.CENTER, or FlowLayout.RIGHT, with integer values 0, 1, and 2,

respectively.

• FlowLayout(int Alignment, int horizontalSpace, int verticalSpace)

 instantiates a FlowLayout object with the specifi ed alignment. Parameters

horizontalSpace and verticalSpace specify horizontal and vertical space, in pixels,

between components.

The JFrame method

 setLayout(LayoutManager m);

sets the layout manager for a frame. For example,

 setLayout(new FlowLayout());

sim23356_ch18.indd 899sim23356_ch18.indd 899 12/15/08 7:19:26 PM12/15/08 7:19:26 PM

900 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

or

 LayoutManager manager � new FlowLayoutManager();
setLayout(manager);

changes the layout manager of a frame from the default BorderLayout to FlowLayout.
 Example 18.4 places not fi ve but 26 buttons in a frame using the FlowLayout class.

 In one version of the game Hangman , a program randomly chooses a word from a list of

5000 words. A player attempts to determine the mystery word by guessing letters, one

letter at a time. The player guesses a letter by clicking a labeled button. For example,

if the mystery word is ELEPHANT and the player clicks the E button the computer

displays

E * E * * * * *

 The player made a correct guess and sees all the E s that occur in the secret word. The

player is allowed only six incorrect guesses.

 Problem Statement Create a class AlphabetFrame that extends JFrame. A frame

belonging to AlphabetFrame is a container that holds 26 buttons labeled with the

letters of the alphabet. Such a frame might be used as part of a GUI for a Hangman

application.

 Include a main(...) method that instantiates AlphabetFrame.

 Java Solution
 1. import java.awt.*;
2. import javax.swing.*;

3. public class AlphabetButtons extends JFrame
4. {

5. public AlphabetButtons(int width, int height) // height and width of frame
6. {
7. super("Alphabet Buttons");
8. setLayout(new FlowLayout()); // layout manager
9. setBounds(0, 0, width, height);
10. for (int i � 0; i � 26; i��)
11. {
12. Character letter � (char)(i � 'A');
13. JButton button � new JButton(letter.toString()); // String parameter
14. add(button);
15. }
16. }

17. public static void main(String[] args)
18. {
19. JFrame frame � new AlphabetButtons(300, 300);
20. frame.setVisible(true);
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. }
23. }

 Output Figure 18.10 shows the frame AlphabetButtons. It’s not quite a Hangman game,

but it’s a beginning.

 EXAMPLE 18.4

sim23356_ch18.indd 900sim23356_ch18.indd 900 12/15/08 7:19:27 PM12/15/08 7:19:27 PM

 Chapter 18 Graphics: AWT and Swing 901

FIGURE 18.10 Twenty-six buttons placed with FlowLayout

 Discussion In contrast to the buttons placed by BorderLayout, those arranged by

FlowLayout are not stretched or resized in any way. These buttons are placed consecu-

tively one after the other. When there is no more room in the fi rst row, the second row

begins, and so on. Each row is centered in the frame because the default constructor

FlowLayout() uses center alignment.

 Line 8: The frame uses FlowLayout for placement of components. The default

constructor FlowLayout() is equivalent to FlowLayout(FlowLayout.CENTER).
Notice that the buttons are centered in the frame.

 Line 12: The expression i � 'A' gives the ASCII value of the i th letter of the alphabet,

where A is the 0 th letter; (char)(i � 'A') returns an upper case alphabetical character

(a primitive). The variable letter is a Character reference. Thus, autoboxing occurs.

The next line shows why letter is of type Character and not char.

 Line 13: The JButton constructor requires a String reference as a parameter. The

method call letter.toString() returns the String equivalent of the Character reference

letter. If letter were of type char, the method toString() could not be applied.

 Changing line 19 to

 JFrame frame � new AlphabetButtons(100, 100);

produces the frame of Figure 18.11 . The buttons are not resized, and there is not enough

room to display every button.

 When the frame is expanded, all buttons are visible in three rows. See Figure 18.12 .

FIGURE 18.12 A full width frame that fills the screen

FIGURE 18.11 An
AlphabetButtons
frame of size 100

by 100

sim23356_ch18.indd 901sim23356_ch18.indd 901 12/15/08 7:19:28 PM12/15/08 7:19:28 PM

902 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Finally, if line 8 is changed to

 setLayout(new FlowLayout(FlowLayout.LEFT);

the buttons in each row are left justifi ed and the frame appears as in Figure 18.13 .

 FIGURE 18.13 FlowLayout with LEFT alignment

 18.5.3 GridLayout

The GridLayout layout manager arranges the components of a frame in a grid of

specifi ed dimensions, left to right, top to bottom, row by row.

 The constructors of GridLayout are:

• GridLayout(int rows, int columns)
 where rows and columns specify the number of rows and columns in the grid.

• GridLayout(int rows, int columns, int horizontalSpace, int verticalSpace)
 where rows and columns specify the number of rows and columns in the grid

and horizontalSpace and verticalSpace are the horizontal and vertical gaps between

components.

• GridLayout()
 creates a grid with a single row and a column for each component.

The following example uses GridLayout rather than FlowLayout to place 26 alphabet but-

tons in a frame.

 Problem Statement Place 26 “alphabet buttons” in a frame using GridLayout. The

grid should have 6 rows and 5 columns.

 Java Solution
 1. import java.awt.*;
2. import javax.swing.*;

 EXAMPLE 18.5

sim23356_ch18.indd 902sim23356_ch18.indd 902 12/15/08 7:19:29 PM12/15/08 7:19:29 PM

 Chapter 18 Graphics: AWT and Swing 903

3. import java.util.*;
4. public class GridAlphabetButtons extends JFrame
5. {
6. public GridAlphabetButtons (int width, int height) // two argument constructor
7. { // width and height are frame dimensions
8. super("Grid Layout Alphabet Buttons");
9. setLayout(new GridLayout(6, 5)); // 6 rows; 5 columns
10. setBounds(0, 0, width, height);

11. for (int i � 0; i � 26; i��)
12. {
13. Character alphabet � (char)(i � 'A');
14. JButton button � new JButton(alphabet.toString());
15. add(button);
16. }
17. }

18. public static void main(String[] args)
19. {
20. JFrame frame � new GridAlphabetButtons (300, 300);
21. frame.setVisible(true);
22. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23. }
24. }

 Output Figure 18.14 shows the frame of GridAlphabetButtons.

 FIGURE 18.14 A frame of size 300 by 300 created with GridLayout

 Discussion The only difference between this application and the application of Exam-

ple 18.4 is line 9:

setLayout(new GridLayout(6, 5));

Alternatively, line 9 can be written as

GridLayout grid � new GridLayout(6, 5);
setLayout(grid);

sim23356_ch18.indd 903sim23356_ch18.indd 903 12/15/08 7:19:30 PM12/15/08 7:19:30 PM

904 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

In contrast to the FlowLayout of Example 18.4, a frame of size 100 by 100 resizes and

displays all 26 buttons. The letters in the buttons do not resize and are too small to be

viewable, but all the buttons do appear. See Figure 18.15 .

FIGURE 18.15 GridLayout frame of size 100 by 100

 18.5.4 Placing Components in a Frame Without a Layout Manager
 A layout manager is a convenience but not a necessity. You don’t need a designer to arrange

your furniture! You can place components in a frame without a layout manager.

By default, a frame uses the BorderLayout layout manager. To disable the default

layout manager and place components in a frame without any assistance, set the

layout manager of the frame to null, using setLayout(null).

 The application of the Example 18.6 places three buttons in a frame without the help of a

layout manager.

 Problem Statement Place three buttons, each of size 50 by 50, in a frame of size 300

by 300 such that:

 • the fi rst button is placed at position (30, 30),

 • the second button is placed at (220, 30), and

 • the third button is placed at (125, 125).

Include a main(...) method that instantiates the frame with three buttons.

 Java Solution In the following application, two buttons display text and the third

 displays a picture.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class NoLayoutManager extends JFrame
4. {

5. public NoLayoutManager()
6. {
7. super("No Layout manager");
8. setLayout(null); // no layout manager
9. setBounds(0, 0, 300, 300); // for the frame

 EXAMPLE 18.6

sim23356_ch18.indd 904sim23356_ch18.indd 904 12/15/08 7:19:31 PM12/15/08 7:19:31 PM

 Chapter 18 Graphics: AWT and Swing 905

10. // create the three buttons
11. JButton picture � new JButton(new ImageIcon("smiley.jpg"));
12. JButton smile � new JButton (":-)");
13. JButton frown � new JButton (":-(");

14. // set the position and size of each button
15. picture.setBounds(125, 125, 50, 50);
16. smile.setBounds(30, 30, 50, 50);
17. frown.setBounds(220, 30, 50, 50);

18. // add each button to the frame
19. add(picture);
20. add(smile);
21. add(frown);
22. setResizable(false);
23. }

24. public static void main(String[] args)
25. {
26. JFrame frame � new NoLayoutManager();
27. frame.setVisible(true);
28. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29. }
30. }

 Output Figure 18.16 shows the frame created by placing buttons without a layout

manager.

FIGURE 18.16 A frame created without a layout manager

 Discussion
Lines 15–17: Each button is a component and as such has a setBounds(...) method.

The fi rst two parameters set the position of the button relative to the container, that

is, relative to the frame. These are frame coordinates, not screen coordinates.

Lines 19–21: Once the size and position of each button is established using

setBounds(…), the statements on these lines add the buttons to the frame. Without

a layout manager, it is imperative that a component invoke setBounds(…) before

sim23356_ch18.indd 905sim23356_ch18.indd 905 12/15/08 7:19:32 PM12/15/08 7:19:32 PM

906 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

it is added to the frame. If setBounds(…) is not called, then the component does

not display even after a call to add(...).

Line 22: The frame cannot be resized—notice the “grayed out” maximize box. If

the frame were, in fact, resizable, that is, setResizable(true), then after expanding

the frame, the three buttons would not resize and their positions in the expanded

frame would remain the same. Without a layout manager, the buttons do not resize

automatically. See Figure 18.17 .

FIGURE 18.17 A resizeable NoLayoutManager frame maximized

 18.6 PANELS

 Most Swing applications do not place components directly in a frame. Instead, components

are grouped together and placed in panels .

A panel is an invisible container used for arranging and organizing components.

 A panel can have a layout manager. Components are placed in panels and the panels are

subsequently added to a frame. For example, one panel may hold a group of buttons and

another a group of checkboxes.

 Placing related components in a panel adds fl exibility to frame design. For instance,

you might place fi ve buttons in one panel using a FlowLayout layout manager, and in a

second panel, you might arrange four text boxes using a GridLayout layout manager. Now

you can place these two panels or groups of components in a frame using a BorderLayout
layout manager.

 Swing’s JPanel class extends JComponent. See Figure 18.1 . Two constructors of

JPanel are:

• JPanel()
 instantiates a JPanel object with FlowLayout as the default layout manager.

• JPanel (LayoutManager layoutManager)
 instantiates a JPanel object with the specifi ed layout manager.

sim23356_ch18.indd 906sim23356_ch18.indd 906 12/15/08 7:19:33 PM12/15/08 7:19:33 PM

 Chapter 18 Graphics: AWT and Swing 907

FlowLayout is the default layout manager for JPanel. To use other layout managers, the

setLayout(...) method is available to JPanel objects.

 The application of Example 18.7 arranges 24 buttons and four labels in a frame.

A label is a component that displays text and/or an image. In contrast to a button,

which can be “clicked” and utilized for input, a label is a component that is used

primarily to display a string or an image.

 The Swing class that encapsulates a label is JLabel. One JLabel constructor is

 JLabel(String text),

where text is the string displayed on the label.

 EXAMPLE 18.7 The game How Good Is Your Memory? (also known as Concentration or Mem-
ory) utilizes a frame with 20 numbered buttons. Each button hides a picture. There

are 10 different pairs of identical pictures. For example, there may be a smiley

face hidden by buttons 6 and 19 and question marks hidden by buttons 2 and 16.

See Figure 18.18 .

 FIGURE 18.18 A Concentration game in progress

 The game is played by two people. Players alternately click two buttons, and the

buttons’ hidden pictures are displayed. If the pictures match, the player gets a point, the

pictures remain visible, and that player chooses again. If the pictures do not match, they

are hidden again, and the other player chooses. When all matches have been revealed,

the player with the greater number of points wins.

 The frame also shows each player’s score. Currently, Player 1 is leading 2 to 0.

See Figure 18.18 . On the bottom of the frame are four buttons:

 • The Open button displays the pictures behind the last unmatched pair.

 • The Close button hides the last two unmatched pictures.

 • The Reset button initializes a game.

 • The Quit button exits the program.

Of course, none of the actions for these buttons is implemented in this program. Here

we are strictly interested in showing how to design and lay out components in a frame.

Handling actions comes in Chapter 19.

sim23356_ch18.indd 907sim23356_ch18.indd 907 12/15/08 7:19:34 PM12/15/08 7:19:34 PM

908 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Problem Statement Create a frame that can be used as an interface for How Good Is
Your Memory ?

 Java Solution The program

 • creates 20 numbered buttons,

 • creates four labeled buttons: Close, Open, Reset, and Quit,

 • creates two labels, player1 and score1, one to hold the text “Player 1” and the other

to hold 0, the initial score for Player 1,

 • creates two labels, player2 and score2, one to hold the text “Player 2” and the other

to hold 0, the initial score for Player 2,

 • creates a panel and places the numerical buttons in that panel,

 • creates a second panel and places the Close, Open, Reset, and Quit buttons in the

panel,

 • creates a third panel and places the player1 and score1 labels in the panel,

 • creates a fourth panel and places the player2 and score2 labels in the panel, and

 • places the panels in a frame.

 1. import java.awt.*;
2. import javax.swing.*;

3. public class HowGoodIsYourMemory extends JFrame
4. {
5. public HowGoodIsYourMemory()
6. {
7. super("Let's Play How Good Is Your Memory");
8. setBounds(0, 0, 600, 400);

9. // Create an array of 20 buttons

10. JButton[] button � new JButton[20];
11. for (int i � 0; i < 20; i��)
12. button[i] � new JButton(i � " ");

13. // Create the four bottom row buttons

14. JButton buttonClose � new JButton("Close");
15. JButton buttonReset � new JButton("Reset");
16. JButton buttonOpen � new JButton("Open");
17. JButton buttonQuit � new JButton("Quit");

18. // Labels for Player 1 and Player 1 score

19. JLabel player1 � new JLabel(" Player 1");
20. JLabel score1 � new JLabel(" 0 ");

21. // Labels for Player 2 and Player 2 score

22. JLabel player2 � new JLabel("Player 2 ");
23. JLabel score2 � new JLabel(" 0 ");

24. // Create a panel for the array of numerical buttons
25. // using GridLayout, and
26. // place the buttons in the panel

27. JPanel numberPanel � new JPanel(new GridLayout(4, 5, 10, 10));
28. for (int i � 0; i < 20; i��)
29. numberPanel.add(button[i]);

sim23356_ch18.indd 908sim23356_ch18.indd 908 12/15/08 7:19:35 PM12/15/08 7:19:35 PM

 Chapter 18 Graphics: AWT and Swing 909

30. // Create a panel of bottom buttons
31. // using FlowLayout, and
32. // place the buttons in the panel

33. JPanel bottomPanel � new JPanel(new FlowLayout());
34. bottomPanel.add(buttonClose);
35. bottomPanel.add(buttonOpen);
36. bottomPanel.add(buttonReset);
37. bottomPanel.add(buttonQuit);

38. // Create a panel for the Player 1 labels
39. // using FlowLayout

40. JPanel player1Panel � new JPanel(new FlowLayout());
41. player1Panel.add(player1);
42. player1Panel.add(score1);

43. // Create a panel for the Player 2 labels
44. // using FlowLayout

45. JPanel player2Panel � new JPanel(new FlowLayout());
46. player2Panel.add(player2);
47. player2Panel.add(score2);

48. // Place all panels in the frame using the default BorderLayout layout manager

49. add(bottomPanel, BorderLayout.SOUTH);
50. add(numberPanel, BorderLayout.CENTER);
51. add(player1Panel, BorderLayout.WEST);
52. add(player2Panel, BorderLayout.EAST);

53. setResizable(false); // cannot resize the game
54. setVisible(true);
55. }

56. public static void main(String[] args)
57. {
58. JFrame game � new HowGoodIsYourMemory();
59. game.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
60. }
61. }

 Output The HowGoodIsYourMemory frame is shown in Figure 18.19 .

FIGURE 18.19 How Good Is Your Memory?

 Discussion

Lines 10–12: The 20 numbered buttons are instantiated as an array of JButton, and

each is accessible as button[i], where i is an integer between 0 and 19, inclusive.

sim23356_ch18.indd 909sim23356_ch18.indd 909 12/15/08 7:19:36 PM12/15/08 7:19:36 PM

910 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Lines 14–17: The four buttons that make up the bottom row are instantiated.

Lines 19–20, 22−23: Two labels are created for each player. One label displays

the player, “Player 1” or “Player 2”. The second label shows the current score,

initially 0 for each player.

 Lines 27–29: These statements instantiate a panel for the numerical buttons and

use a 4 by 5 GridLayout layout manager to place the buttons in the panel. The

horizontal and vertical gaps between buttons are set to 10 pixels.

Lines 33–37: The statement on line 33 instantiates a panel for the Close, Open,

Reset, and Quit buttons. The subsequent statements place these buttons in the

panel using the FlowLayout layout manager. FlowLayout is the default for a panel,

so the instantiation of FlowLayout (line 33) is not strictly necessary.

 Lines 40–42, 45–47: The statements on lines 40 − 42 create a panel for the

player1 and score1 labels and place the labels in the panel using FlowLayout.
Those on lines 45 − 47 do the same for the player2 and score2 labels.

 Lines 49–52: Here, the application uses the frame’s default BorderLayout layout

manager to place the four panels in the frame.

 18.7 SOME BASIC GRAPHICS

 No doubt you have moved a frame, minimized and restored a frame, or resized a frame.

Each time that a frame is moved or changed, it must be “repainted” or redrawn on the

screen. What may look like a simple task entails quite a bit of work. Fortuitously, Java

provides two methods, paint(...) and paintComponent(...), that not only redraw a com-

ponent that has been moved, resized, or changed but also facilitate painting your own

custom, home-grown images directly on a panel or other component. Indeed, paint(...) and

paintComponent(...), along with the methods of the Graphics class, provide drawing tools

that DaVinci never imagined.

 18.7.1 The paint () and paintComponent () Methods
 The Component class defi nes a method, paint(...), that draws or renders a component on the

screen. When a frame is fi rst displayed, the system calls paint(...), and paint(...) does the draw-

ing. Likewise, JComponent includes a method, paintComponent(...), which draws Swing

components such as JButtons, JLabels, or JPanels. When a user resizes, moves, covers, or

uncovers a component, the paint(...) or paintComponent(...) method redraws the component.

The method call is automatic, compliments of Java. Technically, for Swing components, the

system fi rst calls paint(...), which in turn calls paintComponent(...).
 For example, when a chess or checkers application fi rst displays the frame containing

the playing board, paint(…) is automatically invoked. If the board contains Swing compo-

nents such as panels, buttons, and labels, then paint(…) invokes paintComponent(…) for

each one of the contained components. If the user minimizes the board, covers it up with

another window, or resizes the board, then the process repeats all over again.

The paint(...) and/or paintComponent(....) methods are invoked automatically whenever

the system determines that a component should be drawn or redrawn on the screen.

sim23356_ch18.indd 910sim23356_ch18.indd 910 12/15/08 7:19:36 PM12/15/08 7:19:36 PM

 Chapter 18 Graphics: AWT and Swing 911

 Like the garbage collector, paint(...) and paintComponent(...) work behind the scenes. An appli-

cation does not explicitly invoke paint(...) or paintComponent(...). That’s done by the system.

 More formally, these two methods are declared as:

 void paint(Graphics g);
void paintComponent(Graphics g);

Notice that each method accepts a single parameter g, a reference to a Graphics object. The

Graphics object encapsulates information about a component and includes methods that

facilitate drawing on a component. Graphics is an abstract class in java.awt.

 18.7.2 The Graphics Context
 The Graphics parameter, g, supplies paint(...) and paintComponent(...) with information

about how to draw a particular component. For example, certain information about the font,

drawing color, and location are encapsulated in g.

Every component that can be drawn on the screen has an associated Graphics object

that encapsulates information about the component such as color and font. When a

component is drawn, the JVM automatically retrieves and passes the component’s

Graphic object, g, to paint(...) and paintComponent(...). The Graphics object g is not

explicitly instantiated using a constructor.

 A component’s Graphics object is also called the component’s graphics context .
 The paint(...) and paintComponent(...) methods use the information encapsulated in

the Graphics parameter g to render a component. So, when the system calls paint(...) or

paintComponent(...), it also sends along the graphics context of the particular component via

the parameter g.

 For example, if a JFrame object, myFrame, is resized then myFrame must be repainted.

Consequently, the system automatically invokes myFrame.paint(g), where g is the graphics

context associated with myFrame. This parameter g supplies information to paint(...) so that

paint(...) knows how to draw myFrame. Indeed, without the graphics context g, paint(...) can-

not do its job; paint(...) needs information. It’s all done rather covertly, behind the scenes.

 The paint(...) and paintComponent(...) methods are called by the system; they work in

the background, and that’s that. But if these methods are always invisible to the program-

mer, we would have little reason to discuss them here. In fact, the programmer can override

these methods to display custom, homemade images. If an application must draw an image

on a panel, be it a complex 3-dimensional surface, colorful text, or a simple stick fi gure,

an understanding of these methods, in conjunction with methods of Graphics, is indispens-

able. You will soon see how a programmer overrides paint(…) and paintComponent(…) to

create custom images, pictures, and stylized text.

 The following methods of Graphics are among the most useful of more than three

dozen methods that can be invoked by the Graphics object of a component.

• void drawString(String message, int x, int y)
 draws message on the component, starting at position (x, y).

• void setColor(Color c)
 sets the color of a component. Color is a class in java.awt.

• void setFont(Font f)
 sets the font to be used when drawing characters on a component. Font belongs to

java.awt.

sim23356_ch18.indd 911sim23356_ch18.indd 911 12/15/08 7:19:37 PM12/15/08 7:19:37 PM

912 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

• void drawImage(Image img, int x, int y, ImageObserver observer)
 draws an image on the component such that img is an image fi le (e.g., .jpg or .gif),
x and y designate the position of the image, and observer is the object on which the

image is drawn—usually this.

 Because these methods use the Color class and Font class, some explanation is in order.

 18.7.3 The Color Class
 As its name suggests, the Color class is used to encapsulate a color. One constructor for

the class is

 Color(int red, int green, int blue)

where parameters red, green, and blue range from 0 to 255 inclusive.

 The colors red, green, and blue form the basis for every possible color. The parameters

indicate how much of each color goes into the mix. The higher the parameter value, the

greater the amount of the corresponding color in the red-green-blue mix. For example,

 Color color � new Color(255, 0, 0) // full red, no green, no blue.
Color color � new Color(0, 0, 0) // no red, no green, no blue; that’s white.
Color color � new Color(150, 0, 150) // an equal mix of red and blue; that’s purple.
Color color � new Color(255, 255, 255) // this is black.

 The Color class also defi nes a number of class constants:

 RED, WHITE, BLUE, GREEN, YELLOW, BLACK, CYAN, MAGENTA, PINK,
ORANGE, GRAY, LIGHTGRAY, and DARKGRAY.

 These colors are accessed with the class name, e.g., Color.RED.

 Every component implements two methods:

• setBackground(Color c)
 sets the background color of a component. The parameter can be null, in which

case the background color is the background color of the parent.

• setForeground(Color c)
 sets the foreground color of a component. The foreground color is the color used for

drawing and displaying text.

 18.7.4 The Font Class
 An object belonging to Font encapsulates the properties of the font used to display text. The

class constructor is

 Font(String name, int style, int size)

where name is the name of a standard font such as Courier or Arial,
 style is a combination of Font class constants:

 Font.PLAIN, Font.BOLD, Font.ITALIC, or Font.BOLD � Font.ITALIC,

with values 0, 1, 2, and 3, respectively, and size is the point size of a character.

 For example, to create a 12 point Courier font that is both bold and italic, use

 Font font � new Font(“Courier”, Font.BOLD � Font.ITALIC, 12);

Since Font.BOLD � Font.ITALIC � 1 � 2 � 3 , the same Font object can be also instanti-

ated as

 Font font � new Font(“Courier”, 3 , 12);

sim23356_ch18.indd 912sim23356_ch18.indd 912 12/15/08 7:19:38 PM12/15/08 7:19:38 PM

 Chapter 18 Graphics: AWT and Swing 913

 The methods of Font are:

• public String getName()
 returns the name of the font.

• public boolean isPlain()
 returns true if the style is Font.PLAIN.

• public boolean isItalic()
 returns true if the style is Font.ITALIC.

• public boolean isBold()
 returns true if the style is Font.BOLD.

• public int getStyle()
 returns 0 if the style is PLAIN .

 returns 1 if the style is BOLD .

 returns 2 if the style is ITALIC .

 returns 3 if the style is BOLD � ITALIC .

• public int getSize()
 returns the font size.

 18.7.5 “Painting” on Panels
 Custom “painting” is usually done on a panel. To paint or draw on a panel,

• extend the JPanel class, and

• override the paintComponent(Graphics g) method so that the redefi ned paint-
Component(...) renders the panel with some customized image or text.

 Images and text are drawn by invoking methods of the Graphics object g, which is passed

to paintComponent(...), as illustrated in Example 18.8.

 EXAMPLE 18.8 Problem Statement Create a panel with a gray background that displays the familiar

Star Wars quotation, “May the Force be with you.” The quote should be drawn in black on

a gray background, with point size 24, using the exotic Flat Brush font. Position the quote

at (50, 50). Include a main(...) method that places the panel in frame. See Figure 18.20 .

 Java Solution The following application

 • defi nes the class StarPanel, which extends JPanel,

 • overrides JPanel’s paintComponent(...) method so that paintComponent(...) paints

the message “May the Force be with you” on a StarPanel object.

Notice that the Graphics object g, which is passed to paintComponent(...), invokes the

setColor(...) and setFont(...) methods. As you know, the parameter g is provided auto-

matically, courtesy of Java.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class StarPanel extends JPanel

4. {
5. public void paintComponent(Graphics g)
6. {
7. super.paintComponent(g); // Call the paintComponent method of the parent
8. g.setColor (Color.BLACK); // Use black for drawing in the panel
9. Font font � new Font("Flat Brush", Font.BOLD, 24);
10. g.setFont (font); // Uses the Flat Brush font when drawing a String

sim23356_ch18.indd 913sim23356_ch18.indd 913 12/15/08 7:19:38 PM12/15/08 7:19:38 PM

914 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

11. setBackground(Color.GRAY);
12. g.drawString ("May the Force be with you", 50, 50);
13. }

14. public static void main(String [] args)
15. {
16. JFrame frame � new JFrame("Star Wars Quotation");
17. frame.setBounds(0, 0, 400, 200);
18. StarPanel panel � new StarPanel();

19. frame.add(panel);
20. frame.setVisible(true);
21. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
22. }
23. }

 Output The frame is displayed in Figure 18.20.

 FIGURE 18.20 Painting a String on a panel

 Discussion

Line 3: StarPanel extends JPanel. Thus StarPanel is-a JPanel . . . and more.

 Line 5: Override the paintComponent(Graphics g) method of JPanel. The

overridden version of paintComponent(...) is invoked each time that a StarPanel
panel must be (re)painted.

 Line 7: This statement is a call to the paintComponent(...) method of JPanel, the

parent class. Such a call paints a generic panel with no frills. When you override

paintComponent(...), you should include this statement.

 Line 8: Invokes the Graphics method that sets the color of the graphics context to

black so that all Graphics actions are done using black.

 Line 9: Instantiates a Font object font using type Flat Brush, style Bold, and point

size 24. (Note: the type Flat Brush may not be available on all systems.)

 Line 10: Invokes the Graphics method that sets the font of the graphics

context to font (from line 9), so that all Strings are painted using font.

 Line 11: The background color of a StarPanel object is gray. Notice that

setBackground(...) is not a Graphics method; it is a JPanel method inherited

from JComponent.

 Line 12: Paints the string on the panel using the color and font encapsulated by

the graphics context.

 The main(...) method creates a frame, adds the StarPanel object panel to it, and

displays the frame.

 The paint(...) method of JFrame and the (overridden) paintComponent(...) method of

StarPanel are automatically invoked when the frame is fi rst displayed or when it needs

to be repainted. The parameter g is never explicitly instantiated . The graphics context

sim23356_ch18.indd 914sim23356_ch18.indd 914 12/15/08 7:19:39 PM12/15/08 7:19:39 PM

 Chapter 18 Graphics: AWT and Swing 915

of each frame and panel is automatically passed to paint(...) and paintComponent(...),
respectively. The overridden version of paintComponent(…) invokes three methods

of g (lines 8, 10, and 12).

 18.7.6 Drawing Shapes
 The Graphics class also defi nes a number of methods that facilitate drawing various shapes

on a panel. Among the most commonly used methods are:

• void drawLine(int startx, int starty, int endx, int endy)
 draws a line segment from point (startx, starty) to point (endx, endy).

• void drawRect(int x, int y, int width, int height)
 draws a rectangle with upper left-hand corner positioned at (x, y). The width and

height of the rectangle are width and height, respectively.

• void fi llRect(int x, int y, int width, int height)
 draws and fi lls the specifi ed rectangle.

• void drawOval(int x, int y, int width, int height)
 draws an ellipse that fi ts within the boundary of the rectangle specifi ed by the parameters x,

y, width, and height. See Figure 18.21 . If width and height are equal, the fi gure is a circle.

(x, y)

height

width

FIGURE 18.21 An oval with bounding rectangle

• void fi llOval(int x, int y, int width, int height)
 draws and fi lls the specifi ed oval.

• void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
 draws an arc using the oval inscribed in the rectangle specifi ed by parameters

x, y, width, and height. The arc begins at startAngle and spans arcAngle. Angles are

given in degrees. See Figure 18.22 .

(x, y)

height

startAngle

width

arcAngle

FIGURE 18.22 The arc drawn by the drawArc () method

 Example 18.9 uses the methods of Graphics to draw a not-so-smiley face.

sim23356_ch18.indd 915sim23356_ch18.indd 915 12/15/08 7:19:39 PM12/15/08 7:19:39 PM

916 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Problem Statement W. C. Fields is reputed to have said, “Start every day off with a

smile—and get it over with.” Create a frame that displays not a smiley face but the rather

glum face of Figure 18.23 . Include Fields’ quotation.

 FIGURE 18.23 A not-so-smiley face

 Java Solution The FacePanel class extends JPanel and draws the face and quotation

on the panel. This is done by overriding the paintComponent(Graphics g) method of

JPanel. The second class, FaceFrame, creates a FacePanel object panel and adds it to a

frame. The FaceFrame class includes a main(...) method.

 1. import java.awt.*;
2. import javax.swing.*;

3. public class FacePanel extends JPanel
4. {
5. public void paintComponent(Graphics g)
6. {
7. super.paintComponent(g);
8. Font font � new Font("Comic Sans Serif", Font.BOLD, 16); // set the font
9. g.setFont(font);
10. setBackground(Color.white); // a method of Component
11. g.setColor(Color.YELLOW); // color for the face, the traditional color
12. g.fillOval(50, 50, 200, 200); // face position (50, 50), a circle of radius 200
13. g.setColor(Color.black); // color for eyes, nose, and mouth
14. g.fillOval(100, 100, 25, 25); // left eye, position (100, 100), circle of radius 25
15. g.fillOval(150, 100, 25, 25); // right eye, position(150, 100), circle of radius 25
16. g.drawLine(125, 135, 100, 160); // upper nose, line from (125, 135) to (120, 160)
17. g.drawLine(100, 160, 120, 160); // lower nose, line from (120, 160) to (100, 160)

18. // mouth – the bounding rectangle is positioned at (75, 175) with width 100 and
19. // height 40. The start angle is 350 degrees and the span is 200 degrees
20. g.drawArc(75, 175, 100, 40, 350, 200); // mouth

21. // Draw the first part of the quote above the picture
22. g.drawString("\"Start every day off with a smile--", 20, 20);

23. // Draw the second part of the quote below the picture
24. g.drawString("and get it over with\"-- W.C. Fields", 20, 300);
25. }
26. }

The FaceFrame class uses FacePanel.

 27. public class FaceFrame extends JFrame
28. {
29. public FaceFrame(String title)

 EXAMPLE 18.9

sim23356_ch18.indd 916sim23356_ch18.indd 916 12/15/08 7:19:40 PM12/15/08 7:19:40 PM

 Chapter 18 Graphics: AWT and Swing 917

30. {
31. super(title);
32. setBounds(0, 0, 400, 400);
33. FacePanel panel � new FacePanel();
34. add(panel); // uses the default BorderLayout; places at center
35. setResizable(false);
36. setVisible(true);
37. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
38. }

39. public static void main(String[] args)
40. {
41. JFrame frown � new FaceFrame("Unhappy Face");
42. }
43. }

 Output Figure 18.24 shows the rather unhappy fellow.

FIGURE 18.24 An unsmiley face

 Discussion The FacePanel class extends JPanel and overrides the paintCompo nent
(Graphics g) method of JPanel. The class uses the Graphics methods to draw the face as

well as the string. Each circle that makes up the face is placed in the frame by specifying

the location of the upper left-hand corner of a bounding rectangle. Figure 18.25 lays

out the frame with the bounding rectangles and the points where each part of the face

is positioned.

 The second class, FaceFrame, extends JFrame. The class instantiates a FacePanel
and adds that panel to the frame using the default BorderLayout layout manager. This

places the panel in the center of the frame and fi lls the whole frame.

 When the frame is fi rst painted or repainted, the paintComponent(...) method of

FacePanel is invoked by the system, not by the application.

sim23356_ch18.indd 917sim23356_ch18.indd 917 12/15/08 7:19:42 PM12/15/08 7:19:42 PM

918 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

(20, 20)

(75, 175)

(20, 300)
Mouth using drawArc()

(50, 50) 200

200

25

25

100

40

(120, 160)

(125, 135)

(150, 100)

(100, 160)

(100, 100)

350º

FIGURE 18.25 A roadmap of an unhappy face

 Problem Statement Design an application that draws the “megaphone of circles” in a

frame. See Figure 18.26 .

FIGURE 18.26 A megaphone of sorts

 Java Solution The following application uses two classes:

 • CirclesPanel extends JPanel and overrides paintComponent(Graphics g), and

 • CircleFrame extends JFrame, instantiates CirclePanel, and adds a CirclesPanel
object to the frame. The CircleFrame class includes a main(...) method.

 EXAMPLE 18.10

sim23356_ch18.indd 918sim23356_ch18.indd 918 12/15/08 7:19:43 PM12/15/08 7:19:43 PM

 Chapter 18 Graphics: AWT and Swing 919

 1. import javax.swing.*;
2. import java.awt.*;

3. public class CirclePanel extends JPanel

4. // Displays 39 circles. The bounding rectangle for each circle is positioned at (10, 10).
5. // The circles range in radius 10 to 400 pixels.
6. // A frame size of at least 440 by 440 is recommended.

7. {
8. public void paintComponent(Graphics g)
9. {
10. super.paintComponent(g);
11. g.setColor(Color.black);
12. setBackground(Color.white);
13. for (int radius � 400; radius � 0; radius �� 10) // draw 39 circles of decreasing radius
14. g.drawOval(10, 10, radius, radius);
15. }
16. }

17. import javax.swing.*;
18. public class CircleFrame extends JFrame
19. {
20. public CircleFrame(String title)
21. {
22. super(title);
23. setBounds(0, 0, 450, 450);
24. JPanel circles � new CirclePanel();
25. add(circles);
26. setVisible(true);
27. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28. }

29. public static void main(String[] args)
30. {
31. JFrame frame � new CircleFrame("Circles");
32. }
33. }

 Output See Figure 18.26 .

 Discussion The CirclePanel class extends JPanel and overrides paintComponent
(Graphics g). By invoking drawOval() 39 times, the for-loop of lines 13 and 14 draws

39 circles. The bounding rectangle for each circle is positioned at (10, 10). The radii of

the circles range from 400 to 10 pixels.

 The constructor of CircleFrame, which extends JFrame,

 • creates a frame of size 450 by 450 pixels,

 • instantiates a CirclePanel object circles, and

 • adds circles to the frame using the default BorderLayout layout manager.

Thus, the panel is placed in the center of the frame.

 The main(...) method of the CircleFrame method instantiates the frame.

 18.7.7 Recursive Drawing
 The next example uses recursion to draw a famous fractal. Figure 18.27 is a picture of

Sierpinski’s Triangle .

sim23356_ch18.indd 919sim23356_ch18.indd 919 12/15/08 7:19:45 PM12/15/08 7:19:45 PM

920 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

FIGURE 18.27 Sierpinski’s Triangle

 Sierpinski’s Triangle is a fractal . A fractal is a geometrical fi gure that is self-similar .

That is, if you magnify any small piece of the fi gure, the magnifi ed image looks like the

whole fi gure. Take a closer look at Figure 18.27 . There are Sierpinski Triangles inside

Sierpinski Triangles inside Sierpinski Triangles. Each little piece of Sierpinski’s Triangle

looks just like the whole triangle. This self-similarity is what makes recursion a natural

choice for drawing the triangle. An iterative version is more complicated. See Program-

ming Exercises 12 and 13 for examples of iterated fractals.

 To generate Sierpinski’s Triangle, begin with an equilateral triangle such as the trian-

gle of Figure 18.28 .

(x2, y2) (x3, y3)

(x1, y1)

FIGURE 18.28 The beginning of a Sierpinski Triangle: an equilateral triangle

 Next, fi nd the midpoint of each side and form three more triangles, as shown numbered in

 Figure 18.29 . Disregard the triangle in the center.

 The midpoint of the side joining (x 1, y 1) and (x 2, y 2) is the point:

 ([x1 � x2]/2, [y1 � y2]/2) .

For example, the midpoint of the line segment joining (10, 20) and (100, 200) is

 ([10 � 100]/2, [20 � 200]/2) � (110/2, 220/2) � (55, 110).

sim23356_ch18.indd 920sim23356_ch18.indd 920 12/15/08 7:19:47 PM12/15/08 7:19:47 PM

 Chapter 18 Graphics: AWT and Swing 921

(x1, y1)

(x3, y3)(x2, y2)

((x1 + x3)/2, (y1 + y3)/2)

((x2 + x3)/2, (y2 + y3)/2)

((x1 + x2)/2, (y1 + y2)/2)

1

2 3

FIGURE 18.29 Form three triangles from the midpoints of the three sides

 Repeat the process, giving nine numbered triangles. See Figure 18.30 .

1

2 3

4

5 6

7

8 9

FIGURE 18.30 Continuing the process

 Continue the process forever, producing 1, 3, 9, 27, 81, 243, 729, . . . triangles. Sierpinski’s

Triangle is the set of points that result if the process is carried out indefi nitely. If the process

is carried out for n iterations, the fi gure is called a Sierpinski Triangle of depth n.
 The program of Example 18.11 draws a Sierpinski Triangle of specifi c depth on

a panel.

 EXAMPLE 18.11 Problem Statement Draw a Sierpinski Triangle of depth 10 on a JPanel. Include a

main(...) method that places the panel in a frame.

 Java Solution To draw a Sierpinski Triangle of depth n , it is necessary to fi rst draw a

triangle. We can certainly do this using the drawLine() method of Graphics. However,

Java provides a Polygon class that makes drawing a triangle, a rectangle, a pentagon, or

any polygon a snap.

sim23356_ch18.indd 921sim23356_ch18.indd 921 12/15/08 7:19:48 PM12/15/08 7:19:48 PM

922 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 To draw a triangle:

 • instantiate an “empty” polygon:

 Polygon triangle � new Polygon();

 • add three points (x, y) to the polygon using Polygon’s addPoint(int x, int y) method:

 triangle.addPoint(0,0);
 triangle.addPoint(100,100);
 triangle.addPoint(50, 150);

 • draw the polygon using the drawPolygon(Polygon p) method of Graphics:

 g.drawPolygon(triangle) // g is a Graphics object

 That’s all there is to it.

 After the triangle is drawn, three recursive calls, each of depth n � 1, are made. The

three recursive calls correspond to the three numbered triangles in Figure 18.29 .

 In the following application, SierpinskiPanel extends JPanel and overwrites

paintComponent(...). The paintComponent(...) method invokes sierpinski(…), which

draws the fi gure recursively. The recursive method includes a parameter depth that is

used to stop the recursion. Each time a recursive call is made, depth is decremented, and

the recursion stops when depth equals 0. The initial value of depth is 10.

 A main(...) method instantiates a frame and adds a SierpinskiPanel object to the frame.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class SierpinskiPanel extends JPanel
4. {
5. // (x1, y1), (x2, y2), and (x3, y3) determine a triangle
6. private int x1, y1, x2, y2, x3, y3;
7. private final int RECURSIVE_DEPTH � 10;

8. public SierpinskiPanel(int a1, int b1, int a2, int b2, int a3, int b3)
9. {
10. // accepts the x and y coordinates of the triangle points
11. // and assigns them to x1, y1, x2, y2, x3, y3
12. x1 � a1;
13. y1 � b1;

14. x2 � a2;
15. y2 � b2;

16. x3 � a3;
17. y3 � b3;
18. }

19. public void paintComponent(Graphics g)
20. {
21. super.paintComponent(g);
22. g.setColor(Color.black);
23. setBackground(Color.white);
24. // pass the coordinates of the initial triangle, along with g
25. sierpinski(x1, y1, x2, y2, x3, y3, RECURSIVE_DEPTH, g);
26. }

27. public void sierpinski(int x1, int y1, int x2, int y2, int x3, int y3, int depth, Graphics g)
28. {
29. // draw the triangle specified by (x1, y1), (x2, y2), and (x3, y3)

30. if (depth > 0) // stops recursion
31. {

sim23356_ch18.indd 922sim23356_ch18.indd 922 12/15/08 7:19:49 PM12/15/08 7:19:49 PM

 Chapter 18 Graphics: AWT and Swing 923

32. depth��;
33. Polygon triangle � new Polygon(); // make a triangle
34. triangle.addPoint(x1, y1);
35. triangle.addPoint(x2, y2);
36. triangle.addPoint(x3, y3);
37. g.drawPolygon(triangle);

38. // recursively draw three triangles using one "original" point and two midpoints

39. // Initially, Triangle 1 of Figure 18.29 � the triangle formed by (x1, y1)
40. // and midpoints of sides joining (x1, y1) & (x2, y2) and (x1, y1) & (x3, y3)

41. sierpinski(x1, y1, (x1 � x2) / 2, (y1 � y2) / 2, (x1 � x3) / 2, (y1 � y3) / 2, depth, g);

42. // Initially, Triangle 2 of Figure 18.29 � the triangle formed by (x2, y2)
43. // and midpoints of sides joining (x2, y2) & (x1, y1) and (x2, y2) & (x3, y3)
44. sierpinski((x1 � x2) / 2, (y1 � y2) / 2, x2, y2, (x3 � x2) / 2, (y3 � y2) / 2, depth, g);

45. // Initially, Triangle 3 of Figure 18.29 � the triangle formed by (x3, y3)
46. // and midpoints of sides joining (x3, y3) & (x1, y1) and (x3, y3) & (x2, y2)

47. sierpinski((x1 � x3) / 2, (y1 � y3) / 2, (x3 � x2) / 2, (y3 � y2) / 2, x3, y3,depth, g);
48. }
49. }

50. public static void main(String[] args)
51. {
52. JFrame frame � new JFrame("Sierpinski's Triangle");
53. // instantiate a panel with the Sierpinski Triangle

54. // instantiate panel with triangle points (x1, y1), (x2, y2) & (x3, y3)
55. // and a maximum depth: points:(210,10), (10, 410), (410, 410);

56. SierpinskiPanel sp � new SierpinskiPanel(210, 10, 10, 410, 410, 410);

57. // add the panel to the frame
58. frame.add(sp);
59. frame.setBounds(0, 0, 450, 450);
60. frame.setVisible(true);
61. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
62. }
63. }

 Output The frame with the depth 10 Sierpinski Triangle is shown in Figure 18.31 .

 FIGURE 18.31 Sierpinski’s Triangle in a JFrame

sim23356_ch18.indd 923sim23356_ch18.indd 923 12/15/08 7:19:50 PM12/15/08 7:19:50 PM

924 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Discussion

Line 6: The points (x1, y1), (x2, y2), (x3, y3) specify a triangle.

Lines 8–18: The constructor assigns values to the coordinates x1, y1, x2, y2, x3,

and y3.

Lines 19–26: Override the paintComponent(Graphics g) method. After setting the

colors for the drawing, this method passes the triangle points and graphic context

to the recursive method sierpinski(…), which draws Sierpinski’s Triangle.

Lines 27–49: sierpinski(…)

Line 30: Technically, drawing Sierpinski’s Triangle is an infi nite process;

like the Energizer bunny, it goes on forever. However, programs must stop,

so we draw a Sierpinski Triangle of depth 10. According to the condition

on line 30, when the recursive depth reaches 0, the recursion stops. On each

invocation of sierpinski(...) the depth is reduced by 1 (line 32).

Lines 33–37: Construct a triangle using the Polygon class, and draw the

triangle.

Lines 41, 44, and 47: These lines exhibit three recursive calls. The

parameters of each call are the coordinates of one of the three triangles carved

out of the larger triangle. Each of these calls again draws the appropriate

triangle and then makes three more recursive calls with three smaller triangles.

This continues until the triangles are very small. The condition on line 30

prevents infi nite recursion.

 The recursive sierpinski(…) method invokes itself many times. Initially, with depth

set to 10 (line 7), sierpinski(...) draws a single triangle (see Figure 18.28) and makes three

recursive calls with depth 9. Eventually, each of these three calls draws a triangle (see Fig-

ure 18.29) and each makes three additional recursive calls with depth 8. That’s nine calls

to sierpinski(...). Similarly, each of these nine calls draws a triangle (see Figure 18.30)

and each makes three additional recursive calls (that’s 27), and so on. This continues until

3 10 recursive calls are eventually made with depth 0. In all, the number of triangles drawn

is 3 0 � 3 1 � 3 2 � 3 3 � ... � 3 9 � 29,524, and the number of recursive calls is 3 0 � 3 1 �
3 2 � 3 3 � ... � 3 9 � 3 10 � 88,573.

 As an experiment, run the program fi rst with the recursive depth set to 1, then to

2, then to 3, and so on. The corresponding pictures show how the fractal takes shape.

Could we get a reasonable picture with the depth set less than 10? At what depth can you

no longer distinguish any new triangles?

 Even when you can no longer distinguish new triangles with the naked eye, you

could magnify the picture to see the extra detail provided by higher depths. Of course,

there is a practical limit to the depth that has nothing to do with the picture’s resolu-

tion. Higher depths mean more computing time. What is the practical limit on the depth

before the program takes too much time? See Short Exercise 10.

 18.7.8 The getGraphics () Method
 Each displayable component has an associated Graphics context. This object is automatically

created and passed to paint(Graphics g) or paintComponent(Graphics g). However, the Graphics

context of a component can also be accessed, not by a constructor, but via the method

 Graphics getGraphics().

sim23356_ch18.indd 924sim23356_ch18.indd 924 12/15/08 7:19:50 PM12/15/08 7:19:50 PM

 Chapter 18 Graphics: AWT and Swing 925

This method, declared in Component and inherited by concrete Component classes such

as JButton and JFrame, returns a component’s Graphics context if the component is dis-

playable, or null if the component is not displayable. The following small class uses the

getGraphics() method to obtain the Graphics context of a JFrame and set the drawing

color to red.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class GetGraphicsDemo extends JFrame
4. {
5. public static void main(String[] args)
6. {
7. GetGraphicsDemo frame � new GetGraphicsDemo();
8. Graphics g;

9. g � frame.getGraphics();
10. System.out.println(g);

11. frame.setVisible(true);
12. g � frame.getGraphics();
13. g.setColor(Color.RED);
14. System.out.println(g.getColor());
15. }
16. }

 The output of this small program is

 null
java.awt.Color[r�255,g�0,b�0]

Before the frame is made visible, the call

 frame.getGraphics() (line 9)

returns null . When the frame is made visible (line 11), the method returns the Graphics

object associated with the displayable frame. On line 13, the Graphics color is set to

red, and the statement on line 14 prints the RGB version of red (i.e., r � 255, g � 0,

b � 0).

 Because the JVM automatically passes the requisite Graphics object to paint(…) or

paintComponent(…) we have no need to invoke getGraphics() in the programs of the previ-

ous examples. However, in Chapter 19, the method does come in handy.

 18.8 DISPLAYING AN IMAGE

 An icon is a small picture that can be displayed on a component. You can place an icon

on a frame or panel directly. You can even display an icon on a button or label. Java’s Icon

interface declares the following methods for working with icons:

• int getIconHeight(),

• int getIconWidth() , and

• void paintIcon(Component c, Graphics g, int x, int y),
 where (x, y) denotes a position in component c.

sim23356_ch18.indd 925sim23356_ch18.indd 925 12/15/08 7:19:53 PM12/15/08 7:19:53 PM

926 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 The ImageIcon class, found in Swing, implements the Icon interface. The constructor

 ImageIcon(String filename)

creates an icon from the specifi ed image fi le.

 The following example displays a vintage US Army photo of two women manually

programming the ENIAC, one of the world’s fi rst computers. Needless to say, they did not

use Java. The image is stored in the fi le eniac.gif.

 Problem Statement Display the image stored in eniac.gif in a frame.

 Java Solution We design two classes. The fi rst class, PicturePanel, extends JPanel. The

constructor accepts the name of an image fi le. PicturePanel overrides paintComponent(...)
so that paintComponent(...)

 • instantiates ImageIcon, and

 • paints the image on the panel.

The second class, ShowPicture, instantiates a JFrame and a PicturePanel. The panel is

added to the frame.

 1. import java.awt.*;
2. import javax.swing.*;

3. public class PicturePanel extends JPanel
4. {
5. private String image; // a filename
6. public PicturePanel(String filename)
7. {
8. image � filename;
9. }
10. public void paintComponent(Graphics g)
11. {
12. super.paintComponent(g);
13. ImageIcon picture � new ImageIcon(image);
14. picture.paintIcon(this, g, 0, 0); // this means "this panel"

15. }
16. }

17. import javax.swing.*;
18. public class ShowPicture extends JFrame
19. {
20. public ShowPicture()
21. {
22. super("Two women programming the Eniac ");
23. setBounds(0, 0, 650, 450);
24. PicturePanel picPanel � new PicturePanel("eniac.gif");
25. add(picPanel);
26. setVisible(true);
27. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
28. }

29. public static void main(String[] args)
30. {

 EXAMPLE 18.12

sim23356_ch18.indd 926sim23356_ch18.indd 926 12/15/08 7:19:53 PM12/15/08 7:19:53 PM

 Chapter 18 Graphics: AWT and Swing 927

31. JFrame frame � new ShowPicture();
32. }
33. }

 Output Figure 18.32 shows the frame created by ShowPicture.

FIGURE 18.32 Programming, B.J., that is, before Java
Source: U.S. Army Photo

 Discussion
Line 13: With the name of an image fi le as a parameter, the constructor

instantiates an ImageIcon object. If the fi le is not found, no picture is displayed,

but the program does not crash.

Line 14: The parameter this indicates that the image is painted on “this panel”

and not another component.

Line 23: The frame size (width 650, height 450) accommodates the entire

image. The image eniac.gif has height 417 pixels and width 640 pixels. You can

determine the height and width of an image fi le in pixels using:

 ImageIcon image � new ImageIcon("eniac.gif");
 System.out.println(image.getIconHeight() � " " � image.getIconWidth());

 18.9 THE repaint () METHOD

 In each of the previous examples, calls to paint(...) and paintComponent(...) have been

system generated. When a component or its container is fi rst displayed or subsequently

resized, the system automatically paints/repaints the component. No work is required from

the programmer. On the other hand, the JVM does not always know when a component

needs to be redrawn. If component A is painted using components B and C, and B or C is

changed, the system has no way to know exactly when to repaint A. In general, the system

will not automatically repaint A at all. The programmer, in these cases, must take control

and explicitly direct the application to repaint the component.

 Surprisingly, your program does not invoke paint(...) or paintComponent(...) to redis-

play a component, but another method of the Component class:

 void repaint().

The repaint() method, in turn, calls paint(...). The following example uses repaint() to

change a message displayed on a panel.

sim23356_ch18.indd 927sim23356_ch18.indd 927 12/15/08 7:19:54 PM12/15/08 7:19:54 PM

928 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Problem Statement Devise an application that paints a message on a panel, prompts

for a new message, and repaints the panel showing the new message.

 Java Solution The following Message class extends JPanel and overrides

paintCompo nent(...) so that a new version of paintComponent(…) paints a String on

the panel.

 The FrameWithAMessage class, which demonstrates Message,

 • interactively prompts a user for a message (a string),

 • interactively reads the message using the Scanner method next(),

 • instantiates a frame and a Message panel,

 • adds the panel to the frame,

 • paints the user’s message on the panel,

 • prompts for a second message, and

 • repaints the panel so that the new message is displayed.

 1. import javax.swing.*;
2. import java.awt.*;

3. public class Message extends JPanel
4. {
5. String message;
6. public Message()
7. {
8. super(); // call the default constructor of JPanel
9. message � "";
10. setBackground(Color.WHITE);
11. }

12. public void paintComponent(Graphics g) // override paintComponent(…) of JPanel
13. {
14. super.paintComponent(g); // first call paintComponent(...) of JPanel
15. Font font � new Font("ARIAL", Font.BOLD, 14);
16. g.setFont(font);
17. g.drawString (message, 30, 30); // display the message
18. }

19. public void setMessage(String msg) // set the value of message
20. {
21. message � msg;
22. }
23. }

24. import java.util.*; // java.util.* is needed for Scanner
25. import javax.swing.*; // java.awt is not necessary for this class

26. public class FrameWithAMessage
27. {
28. public static void main(String[] args)
29. {
30. Scanner input � new Scanner(System.in);
31. System.out.print("Enter Greeting: ");
32. String message � input.next();

33. JFrame frame � new JFrame(); // create a frame
34. frame.setBounds(0, 0, 200, 200);
35. Message panel � new Message(); // create a panel

 EXAMPLE 18.13

sim23356_ch18.indd 928sim23356_ch18.indd 928 12/15/08 7:19:55 PM12/15/08 7:19:55 PM

 Chapter 18 Graphics: AWT and Swing 929

36. panel.setMessage(message);
37. frame.add(panel); // add the panel to the frame
38. frame.setVisible(true); // triggers system call to paintComponent(...)

39. System.out.print("Enter Greeting: ");
40. message � input.next(); // get a new message
41. panel.setMessage(message); // make the new message the panel's message

42. panel.repaint(); // repaint the panel with the new message
43. frame.set DefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
44. }
45. }

 Output Figure 18.33 a shows the frame after line 38 executes; Figure 18.33 b shows the

frame after line 42.

(a) After line 38 executes (b) After line 42 executes

 FIGURE 18.33 Output following lines 38 and 42

 Discussion The Message class is straightforward and requires no explanation. In the

FrameWithAMessage class, the Message object panel is painted twice:

line 38: when setVisible(...) is called and the frame and panel are fi rst displayed,

and also

line 42: when panel.repaint() is called, and the panel is redrawn.

Without the call to panel.repaint() on line 42, the panel would not be redrawn, and after

line 41 the frame would remain as shown in Figure 18.33 a. Of course, if you minimize,

resize, move, cover, or uncover the frame after line 41 executes, the system automati-

cally repaints the frame (and all components contained in the frame). Consequently,

new message would be shown even without the explicit repaint() on line 42.

 You can also explicitly repaint the whole frame rather than just one panel in a

frame. Repainting a frame will automatically repaint each panel contained in the frame.

For example, if you invoke frame.repaint() rather than panel.repaint() on line 42, the

program displays the same output. In general, if only a single panel has been changed, it

is better style to repaint the panel. Repainting a frame is useful when the frame contains

many panels, each of which has been modifi ed.

 Finally, note that any changes that result from adding (or removing) components

are shown immediately, provided that the container is visible . When adding or removing

components, no call to repaint() is necessary (see Short Exercise 6).

sim23356_ch18.indd 929sim23356_ch18.indd 929 12/15/08 7:19:57 PM12/15/08 7:19:57 PM

930 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Why repaint()? Why not call paint(...) or paintComponent(...) directly? The answer is

subtle and has to do with the system’s effi cient management of graphical resources. The

system wants to control any call to paint(…) and may, for various reasons, delay its execu-

tion. Because the system may have other tasks of higher priority than repainting a panel,

execution of paint(...) may not be immediate. At the risk of oversimplifi cation, we say that

repaint() calls paint(…), and paint(...) executes “as soon as possible.”

 You have seen a similar situation with garbage collection. The garbage collector runs

when it is expedient to do so. Similarly, a call to repaint() results in a call to paint(...), but

the system decides when to execute paint(...). Using repaint() gives the system, and not the

programmer, control over graphical resources.

 In Chapter 19, we use repaint() in a few more examples.

 18.10 IN CONCLUSION

 You now know how to place components in a frame as well as how to draw a few simple

fi gures using AWT and Swing. There are many, many more classes and methods in both

of these libraries. Indeed, the Component class declares more than 100 methods. Nonethe-

less, if you study the examples in the chapter and do the exercises, you will have a good

understanding of how components are placed in a frame. Once you know the basics, the

learning curve fl attens out a bit. Yes, there are other layout managers and other drawing

methods. Yes, each class implements many more methods. However, you can get along

quite well for a while using the subset presented here. When you need to expand your rep-

ertoire, excellent documentation for all Swing and AWT classes can be found on Sun’s Java

website. As you create more complex programs and gain experience, you will fi nd Sun’s

documentation invaluable.

 Just the Facts

• The Swing classes provide GUI capabilities that are platform independent.

• The AWT classes provide GUI capabilities that are platform dependent.

• All graphical output is displayed in frames. A frame is a window with borders and

a title bar. Frame is an AWT class. Frame extends Window which extends Container
which extends Component.

• JFrame is Swing’s version of a frame. JFrame extends Frame.

• Frames may contain components. Components can be buttons, labels, menus,

images, etc. Place a component in a frame using the add(…) method of Component.

• To assist with adding components to a frame, Java provides layout managers.

• Each layout manager is a class that implements the LayoutManager interface.

• Layout managers include BorderLayout, GridLayout, and FlowLayout. BorderLayout is

the default layout manager for JFrame.

• A layout manager is not necessary. You can place components at any location

in a container. To place components in a frame without a layout manager, use

setLayout(null) and specify locations with the setBounds(…) method.

• A panel is an invisible container used for grouping components before they are added

to a frame. A panel can have a layout manager. The Swing class that encapsulates a

panel is JPanel.

• The default layout manager for a JPanel object is FlowLayout. This is in contrast to

JFrame with default layout manager BorderLayout.

sim23356_ch18.indd 930sim23356_ch18.indd 930 12/15/08 7:19:58 PM12/15/08 7:19:58 PM

 Chapter 18 Graphics: AWT and Swing 931

• Panels allow nested levels of layout control, providing great fl exibility in the design

of graphical output. Components are placed in panels and the panels are then placed

in a frame.

• A label is a component used to display some text or an image. A button is another

kind of component that displays text or an image (ImageIcon). The difference

between a label and a button is that pressing a button usually triggers an action.

The Swing classes that encapsulate labels and buttons are JLabel and JButton.

• To draw on a panel, extend JPanel and override paintComponent(Graphics g).
When overriding paint Component (Graphics g) begin with the statement

 super.paintComponent(g) .

• The paint(...) and paintComponent(...) methods are automatically invoked when a

frame or panel is fi rst displayed, or needs to be redisplayed due to resizing, mov-

ing, covering, or uncovering. If you need to explicitly redraw a panel or frame, use

repaint().

• Repainting a frame or panel will automatically repaint each of its components. For

example, if you wish to redisplay the contents of all the panels in a frame, repaint

the frame.

• The parameter g of paint(g) and paintComponent(g) is a Graphics object. The

Graphics class provides methods for setting colors, displaying text of various

sizes and fonts, and drawing lines, rectangles, polygons, and ovals.

• A Graphics object g that is passed to paint(...) or paintComponent(...) is not explicitly

created using a constructor. Instead, it is instantiated behind the scenes.

• The Graphics context of a component can be explicitly accessed using the

getGraphics() method.

• Recursion is a powerful technique for drawing fractal images. Fractals can also be

drawn with iterative techniques using stacks and/or queues.

• JPG and GIF images stored in fi les can be directly added to panels and frames (with

or without labels or buttons) using the ImageIcon class of Swing.

• ImageIcon implements Icon, which provides methods for accessing information about

an image fi le, and for painting an image onto a component such as a button, panel,

or frame.

 Bug Extermination

• Remember that visible components contained in a frame or in other components

will only display if their container is also visible. Use the setVisible(Boolean visible)
method to be sure.

• Panels and frames have different default layout managers. Sometimes what you

expect is not what you get. Be sure that you understand how each layout manager

positions components, and choose the one you want.

• When overriding a paint(g) or paintComponent(g) method, begin the method by

invoking the paint(g) or paintComponent(g) method of the parent class, that is,

super.paint(g) or super.paintComponent(g).

• Don’t forget to use repaint() when you explicitly change any part of a component that

you want displayed. Without an explicit repaint() request, the system cannot guess

when the program has made a change to a component that warrants repainting.

• Don’t forget to close a frame using:

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

sim23356_ch18.indd 931sim23356_ch18.indd 931 12/15/08 7:19:58 PM12/15/08 7:19:58 PM

932 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 1 FlowLayout arranges components in a container.

 5 Font class constant

 7 Class that extends component

 8 To place components in a frame with no layout manager,

set the frame’s layout manager to .

 9 Method places a component in a container

 10 BorderLayout divides a frame into regions (number).

 12 Implements the Icon interface

 14 The x and y fi elds of Point are .

 16 Graphical user interface

 19 Default layout manager for a frame

 21 Original graphics package

 23 Components are often grouped together and placed

in .

 24 Positions a component at (x, y) and resizes the component

 25 Newer graphics package

 26 Called automatically whenever a component has to be drawn

on the screen

Down
 2 Every frame is initially .

 3 Used to display text or an image

 4 Bottom BorderLayout constant

 6 Method used to draw a circle

 11 A small picture that can be displayed

on a component

 13 Layout manager that uses a two-

dimensional array structure

 15 Any object that can be displayed on

the screen

 16 Every component that can be drawn

on the screen has an associated

object.

 17 Used to get the dimensions of the screen

 18 A is a window.

 20 Default layout manager for a panel

 22 A button, label, checkbox, for

example (a “nickname”)

1 2

4

7

10

13

23

16

25

17

19

26

21 2220

24

18

12

11

3

5 6

9

14 15

8

sim23356_ch18.indd 932sim23356_ch18.indd 932 12/15/08 7:19:59 PM12/15/08 7:19:59 PM

 Chapter 18 Graphics: AWT and Swing 933

 SHORT EXERCISES
 1. True or False

 If false, give an explanation.

a. Swing is a subset of AWT.

b. Swing is an earlier version of AWT.

c. The names of all Swing classes begin with the uppercase letter J .

d. A Frame is-a Container is-a Window.

e. A JFrame is-a Frame is-a Container is-a Component.
f. A panel is used to group objects together before placing them in a frame.

g. A layout manager is required when placing objects in frames or panels.

h. The paint(g) method is called automatically when a frame is made visible.

i. The paintComponent(g) method is called automatically when a frame is made

visible.

j. A JButton is-a JComponent is-a Component.
k. The Container and Component classes are abstract.

l. A Swing method cannot be called by a recursive method.

m. Any panel placed in a frame must use the same layout manager as the frame.

n. An ImageIcon obtains an image stored in a fi le.

o. A Graphics object is not instantiated explicitly using a constructor.

 2. Which Layout Manager?

 For each of the following, describe how many panels (if any) you would use, which

layout manager (if any) you would use for each panel, and which layout manager

you would use for the frame. Explain your reasoning.

a. A picture of a chess board.

b. A picture of a pinball machine.

c. A logo for your favorite sports team.

d. An online poker GUI with tables, chairs, bets, and cards.

e. A Jeopardy game including the board, along with scores and icons for each

player.

f. An image of the fi rst page of a US passport.

g. An image of your driver’s license.

 3. Playing Compiler

 Find the errors in the following program, which is supposed to display a picture of a

smile with the heading “Smile”.

 import javax.swing.*;
 public class MySecondFrame extends JFrame
 {
 public MySecondFrame ()
 {
 add(new JButton("Smile"), BorderLayout.NORTH); // adds image of smile
 add(new IconImage(“smile.jpg”, BorderLayout.CENTER); // in center with heading
 setBounds(0,0,300,300); // below
 }
 public MySecondFrame (String title)
 {
 super(title);
 setBounds(0, 0, 300, 300);
 }
 }

 The following test class creates, displays, and closes a MySecondFrame frame.

sim23356_ch18.indd 933sim23356_ch18.indd 933 12/15/08 7:19:59 PM12/15/08 7:19:59 PM

934 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 import javax.swing.*;
 public class TestMySecondFrame
 {
 public static void main(String[] args)
 {
 JFrame frame � new MySecondFrame ("This is a test");
 frame.setVisible(true);
 frame.setResizable(false);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 }

 4. Playing Compiler

 The following program is supposed to display an image on one panel, and the word

“huh?” on another, without using layout managers. In fact, the program contains

several syntax errors. When the errors are corrected, the program displays an empty

frame. Find and correct the syntax errors. Explain why the program displays an

empty frame, and then fi x the program. Hint : The panels and buttons did not call the

setBounds(…) method.

 To test your solution, use an image of your choice stored in a fi le called test.jpg.

 import javax.swing.*;
 import java.awt.*;

 public class NoLayoutManagers extends JFrame
 {

 public NoLayoutManagers()
 {
 super("No Layout Managers");
 setLayout(null); // no layout manager
 setBounds(0, 0, 300, 300); // for the frame

 JPanel panel1 � new JPanel (null); // no layout manager for the panel
 JButton picture � new JButton(new ImageIcon("test.jpg"));
 picture.setBounds(125, 125, 50, 50);
 panel1.add(picture);
 panel1.setResizable(false);
 setResizable(false);
 JPanel panel2 � new JPanel (null); // no layout manager for the panel
 JButton button � new JButton(new String “huh?”); // add the word “huh?”
 panel.add(button);
 panel.setBounds(20, 20, 60, 60);
 add(panel);
 }

 public static void main(String[] args)
 {
 JFrame frame � new NoLayoutManager();
 frame.setVisible(true);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 }

 5. Playing Compiler

 Find and correct the syntax and logic errors in the following program, which

is supposed to display an image in the center of a frame, the words “huh?” and

sim23356_ch18.indd 934sim23356_ch18.indd 934 12/15/08 7:19:59 PM12/15/08 7:19:59 PM

 Chapter 18 Graphics: AWT and Swing 935

“what?” in the EAST and WEST sections of the frame, respectively, the digits 0

through 9 from left to right in the NORTH section, and the digits 9 through 0 from

left to right in the SOUTH section.

 import javax.swing.*;
 import java.awt.*;

 public class BorderLayoutExample extends JFrame
 {

 public BorderLayoutExample()
 {
 super("Border Layout Example");

 setBounds(0, 0, 300, 300); // for the frame

 JPanel bottomPanel � new JPanel (new (GridLayout()));
 JPanel topPanel � new JPanel (new (GridLayout()));
 for (int i � 0; i < 10; i��)
 {
 bottomPanel.add (new JLabel(i));
 bottomPanel.add (new JLabel(10 � i));
 }
 add(bottomPanel, BorderLayout.SOUTH);
 add(topPanel, BorderLayout.NORTH);
 add(new String ("huh?"), BorderLayout.EAST);
 add(new String ("what?"), BorderLayout.WEST);

 JLabel picture � new JLabel(new ImageIcon("test.jpg"));
 add(picture, BorderLayout.CENTER);
 }

 public static void main(String[] args)
 {
 JFrame frame � new BorderLayoutExample();
 frame.setVisible(true);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
 }

 6. What’s the Output?

 The remove(…) method of the Container class removes a specifi ed component

from its container. Suppose that, in Example 18.7, How Good Is Your Memory ? the

following lines are inserted after line 54:

 numberPanel.remove(button[0]);
 numberPanel.remove(button[1]);
 numberPanel.add(button[0]);
 numberPanel.add(button[1]);

 Describe the changes to Figure 18.19.

 7. Components and Containers

 Answer each of the following questions:

a. How does the use a label differ from that of a button? Do labels and buttons look

different?

b. What is the difference between a frame and a panel?

sim23356_ch18.indd 935sim23356_ch18.indd 935 12/15/08 7:19:59 PM12/15/08 7:19:59 PM

936 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

c. Why do you think there is a setResizeable(…) method for the JFrame class but

not for the JPanel class?

d. What is the difference between Panel and JPanel?

 8. Panels and Frames

 The following question was posted on a Java Developer Forum. Be the “expert,” and

explain why this user sees only one panel on his/her frame.

 “Trying to add two JPanels in one JFrame but only ever get one JPanel and it’s

always the last. Can someone please explain this to me? Thanks”

 import java.awt.*;
 import javax.swing.*;

 // Program modifed for anonymity and clarity
 // Original posted program was less concise and poorly formatted

 public class query
 {
 public static void main(String[] args)
 {

 JFrame myFrame � new JFrame("Anonymous");
 myFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 myFrame.setSize(800, 300);

 JPanel panel_1 � new JPanel(new GridLayout(2, 3, 5, 5));

 panel_1.add(new JButton("Main"));
 panel_1.add(new JButton("Help"));
 panel_1.add(new JButton("Save"));

 JPanel panel_2 � new JPanel(new GridLayout(2, 3, 5, 5));

 panel_2.add(new JButton("1"));
 panel_2.add(new JButton("2"));
 panel_2.add(new JButton("3"));
 panel_2.add(new JButton("4"));
 panel_2.add(new JButton("5"));
 panel_2.add(new JButton("6"));

 myFrame.add(panel_1);
 myFrame.add(panel_2);
 myFrame.setVisible(true);
 }
 }

 9. Images

 An ImageIcon, stored as a JPG or GIF fi le, can be attached to a button or label,

which, in turn, can be added to a frame or panel.

a. Consult Sun’s documentation and confi rm that an ImageIcon may not be

added directly to a frame or panel. Describe in your own words what you

have discovered.

b. How might you display an image in a panel or frame without using an

 intermediate button or label?

 10. A Time Complexity Experiment
 Run the Sierpinski program of Example 18.11 for various depths.

sim23356_ch18.indd 936sim23356_ch18.indd 936 12/15/08 7:20:00 PM12/15/08 7:20:00 PM

 Chapter 18 Graphics: AWT and Swing 937

a. Find the smallest depth for which the program takes more than 1 minute to fi nish

running.

b. Estimate the depth at which the program would take more than an hour.

 Hint : The number of recursive calls plus the number of triangles drawn

approximately triples with each new depth.

 11. Opaque Containers

 When a container paints itself, it fi rst paints its background and then triggers an

avalanche of “component painting.” That is, each component paints itself before any

of the components it contains. This ensures that the background of a panel is visible

only where it is not covered by one of its components.

 Containers can either be opaque or transparent. This property is set using

setOpaque(true) or setOpaque(false), respectively. Painting, as described above,

occurs when a container is opaque . But when a container is transparent, something

more complicated and time intensive occurs.

 What extra work is needed when a container is transparent ?

 12. Double Buffering

 A common problem when running graphic-intensive applications is fl icker or

jumpiness. A computer monitor typically redraws the screen approximately

60 times every second. Any kind of drawing that takes more than a 60th of a

second occurs over more than one redraw , and that causes the image to fl icker.

Flickering makes an application look amateurish at best and can render a program

too annoying to use. Swing drawing methods solve this problem using a trick

called double buffering .

 Look up the term and explain how double buffering reduces fl icker.

 PROGRAMMING EXERCISES
 1. An ID Card

 Using BorderLayout , design an ID card with your picture in the center, your name

on the top, and your personal information (height, weight, eye color, address) split

left and right. The bottom section of the card should display “Java Programmer

Identifi cation Card”. The ID card should be the size of a typical driver’s license

positioned in the center of the screen with no resizing allowed.

 2. Hangman Revisited

 Add three additional panels to the frame of Example 18.3, the Hangman example.

These new panels should display the player’s name, a picture of the gallows, and a

sequence of stars with one star for each letter in the secret word. For example, if the

secret word is “hangman”, the frame should show seven stars:

 * * * * * * *

 Include a two-argument constructor:

 Hangman(String playerName, String secretWord)

 Implement a class that displays the frame. The gallows can look like Figure 18.34 ,

but you may prefer to use your own artwork.

 3. A Checkers Board

 Create a frame using Grid Layout that displays a picture of a checkers board. The

board should have 64 panels. Each panel should have the appropriate background

color, green or white; see Figure 18.35 . Checkers, should not be placed on the board.

The board is not resizable.

sim23356_ch18.indd 937sim23356_ch18.indd 937 12/15/08 7:20:00 PM12/15/08 7:20:00 PM

938 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 4. A Fancier Checkers Board

 Create a frame using GridLayout that makes a picture of a checkers board. The board

should have 64 panels. Each panel should have the appropriate background color,

green or white. Three red checkers should be drawn in random green positions on

the board. The board is not resizable. See Figure 18.36 .

 FIGURE 18.36 A checkers board with three “red” checkers

 5. A Checkers Board with a Data Model
 Create a class CheckerBoard that extends JFrame . Using GridLayout , a CheckerBoard

object displays a picture of a checkers board. The board should have 64 panels.

Each panel should have the appropriate background color, green or white, and

contain either a red or black checker, or no checker.

 Include two constructors:

• The default constructor should set up the normal starting confi guration for checkers.

See Figure 18.37 .

FIGURE 18.34 Gallows for a Hangman game FIGURE 18.35 A checkers board

sim23356_ch18.indd 938sim23356_ch18.indd 938 12/15/08 7:20:00 PM12/15/08 7:20:00 PM

 Chapter 18 Graphics: AWT and Swing 939

FIGURE 18.37 A checkers board with a normal starting configuration

• A one-argument constructor CheckerBoard(char [][] checkers) accepts a two-

dimensional array of char that stores the board positions of the checkers: 'r' for

red, 'b' for black, and 'e' for empty. The array determines the position of each

checkers piece.

 6. A Personal Logo

 Write a program that draws your own personal logo. Design the logo so that it can

be used as a “splash screen” for your programming assignments. Include images,

drawings, and whatever else you want, but make sure that the logo, in some way,

shows your identity.

 7. Dice

 Create a frame with two panels. On each panel draw a picture of a die with one to

six spots. The number of spots on each die should be chosen randomly. Use any

layout manager you like, and display the dice with your own colors and design.

 8. Faces

 Create a frame with three buttons in the NORTH section of the frame. The buttons

should be labeled with the names of three of your favorite TV or movie characters

such as Moe, Larry, and Curly, or Bart, Homer, and Marge, or perhaps Sleepy,

Dopey, and Grumpy.

 Place a label in the CENTER section of the frame. It would be nice if, when

you click a button, a picture of the corresponding character appears on the label.

However, button-clicking is a topic for Chapter 19. For the present, the constructor

should place a randomly chosen image of one of the three characters in the CENTER

section of the frame. Because the image is randomly chosen, the same picture does

not show each time the frame is instantiated. In the SOUTH section of the frame,

include a quotation from the character or caption about the character.

 Include a main(...) method that instantiates your frame.

 9. A Tic-Tac-Toe Board

 Create a class TicTacToe that extends JFrame . TicTacToe contains an array of nine

panels arranged as a 3 by 3 Tic-Tac-Toe board. The panels display the numbers 1

through 9. Your implementation should defi ne a panel class, which extends JPanel ,
and has methods x() and o() that draw X’s and O’s, respectively, on the panel. A

 reset() method should erase whatever is in the panel.

sim23356_ch18.indd 939sim23356_ch18.indd 939 12/15/08 7:20:01 PM12/15/08 7:20:01 PM

940 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Write another class that tests TicTacToe . Input consists of a character, X, O, or E ,

along with an integer between 0 and 9, inclusive. Digits 1–9 represent squares 1–9,

respectively, and 0 indicates “all squares.” Use a scanner for interactive input.

 If a user enters an X or O , the application should draw that character on the

corresponding square(s). On input E , the program erases the indicated square(s).

 For example,

• O 3 places an O in upper right corner (square 3),

• X 0 draws an X on every square, and

• E 0 erases the entire board.

 10. Recursive Megaphone

 (R) Rewrite Example 18.10 recursively. Use a tail recursive helper method inside

the overridden paintComponent(…) instead of the for loop.

 11. Tunnel Vision

 Create a class TunnelVision that extends JFrame. Include a one-argument constructor

TunnelVision (int numSquares) that draws numSquares squares nested one inside the

other. The outermost square should be drawn at the perimeter of the frame, and each

inner square should have its four corners at the midpoints of the previous square. The

area of each inner square is half the area of the square in which it is inscribed. For

example, TunnelVision(3) should display a drawing like the one in Figure 18.38 .

 FIGURE 18.38 A square inside a square inside a square

 Test the method with different values. You can write this program recursively or

iteratively.

 12. The von Koch Snowfl ake

 The Swedish mathematician Niels Fabian Helge von Koch (1870–1924) introduced

the Koch curve in 1904. To construct the Koch curve,

• Draw a line segment with endpoints labeled A and E. See Figure 18.39 .

A E

 FIGURE 18.39 The first step in the construction of the Koch curve.

• Divide the segment into three equal-length segments, AB, BD, and DE, and replace

the middle segment BD with two segments BC and CD, with lengths equal to BD.

This is called applying the Koch rule. Note that BCD forms an equilateral triangle.

See Figure 18.40 .

A B

C

D E

 FIGURE 18.40 The Koch curve

sim23356_ch18.indd 940sim23356_ch18.indd 940 12/15/08 7:20:02 PM12/15/08 7:20:02 PM

 Chapter 18 Graphics: AWT and Swing 941

• Apply the Koch rule to each of the four resulting segments. See Figure 18.41 .

A B

C

D E

 FIGURE 18.41 The Koch curve continued

 After an infi nite number of applications of the Koch rule, the result is a fi gure with

an infi nite perimeter.

 The Koch Rule
 If AE is a segment with endpoints A � (x, y) and E � (u, v), the points B , C , and D

of Figure 18.40 are calculated as follows:

B � (2x � u ______
3
 ,

2y � v

3
) ,

C � (1 __
2
 (u � x) �

 √
__

 3

6
 (v � y), 1 __

2
 (v � y) �

 √
__

 3

6
 (u � x)) , and

D � (x � 2u ______
3
 ,

y � 2v

3
)

Note that this calculation works even if the segment AE is not horizontal. The new

triangle appears on the left side of the segment, where your orientation is looking

from A toward E ; see Figure 18.40 . Of course, if you reverse A and E then the

triangle ends up on the other side of the segment.

 The von Koch Snowfl ake
 A von Koch snowfl ake is a fractal constructed from von Koch curves. To draw the

von Koch snowfl ake, start with an equilateral triangle, and apply the construction

described above to each side of the triangle in clockwise order. If you process points

in clockwise order around the triangle, the new triangles will always be constructed

correctly, that is, toward the outside rather than the inside.

 Figure 18.42 shows the fi rst four iterations of the von Koch snowfl ake.

 FIGURE 18.42 Building the von Koch snowflake

 An n-iteration von Koch snowfl ake is the picture resulting from n iterations of

this process. The von Koch snowfl ake is the resulting picture after an infi nite

number of iterations. The snowfl ake has some unusual properties. You may be

surprised to learn that the von Koch snowfl ake has an infi nite perimeter, but a

fi nite area!

sim23356_ch18.indd 941sim23356_ch18.indd 941 12/15/08 7:20:03 PM12/15/08 7:20:03 PM

942 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Programming Exercise: Exhibit an n -iteration von Koch snowfl ake in a frame.

Extend JFrame and include a one-argument constructor with parameter n. Test

your program with n � 5.

 Programming Hints and Suggestions
 There are a number of ways to draw the von Koch snowfl ake. Here is one suggestion

that uses a queue and iteration. See Chapter 16. The algorithm draws each iteration

of an n -iteration snowfl ake.

 Initialize a queue Q with a set of four points such that the fi rst three points

form an equilateral triangle in clockwise order, and the last point, identical to

the fi rst, is used as a fl ag or marker. For example, you can start with the points:

(200, 200√3), (300, 100√3), (100, 100√3), (200, 200√3).

 These points determine a large equilateral triangle. Note that, although these

points are given as fl oating-point numbers, to use them as screen coordinates

you must round them to integers.

 The algorithm is short but not simple. It processes all the points in the queue,

drawing lines between each consecutive pair, and while doing so, it adds those

points plus the new intermediate points to the rear of the queue (for the next

iteration). For example, if the initial points in the queue are A, B, C, and A ,

after the fi rst iteration, three lines are be drawn: AB, BC, and CA . And, the new

list of points in the queue for the next iteration is A, x, y, z, B, u, v, w, C, p, q,

r, A, where the lowercase letters represent the intermediate points created by

applying the Koch rule on AB, BC, and CA, respectively.

 On the next iteration, apply the Koch rule to every point that was added to

the queue in the previous iteration. The algorithm terminates after reaching the

last point in the last iteration. Here is the pseudocode:

 Repeat n times
{
 ClearScreen ;
 A � Q.delete();
 Q.insert(A);
 E � 0;
 while(E is not (200, 200√3))
 {
 E � Q.delete();
 Draw a line joining A and E;
 Q.insert(B); // B, C, and D computed as described in "The Koch Rule"
 Q.insert (C);
 Q.insert (D);
 Q.insert (E);
 A � E;
 }
}
Alternatively, the von Koch snowfl ake can be programmed recursively in a manner

similar to the Sierpinski example of this chapter. The choice of recursion or iteration,

and the details of the recursive method, are left to you.

 13. The Square Koch Curve and the Squarefl ake

 This exercise is similar to the von Koch snowfl ake of Exercise 12. The square Koch

curve uses a square bump on each line segment instead of a triangle. See Figure 18.43 .

sim23356_ch18.indd 942sim23356_ch18.indd 942 12/15/08 7:20:04 PM12/15/08 7:20:04 PM

 Chapter 18 Graphics: AWT and Swing 943

A B

C D

E F

A F

 FIGURE 18.43 The square Koch curve

 The n-iteration von Koch squarefl ake starts with a square and uses the “square

Koch rule” on each side in each iteration. For a segment AF , if A � (x, y) and

 F � (u, v), then:

B � (2x � u ______
3
 ,

2y � v

3
) , C � (2x � u � y � v

3
 ,

2y � v � u � x

3
) .

D � (x � 2u � y � v

3
 ,

y � 2v � u � x

3
) , and E � (x � 2u ______

3
 ,

y � 2v

3
) .

 The new square appears on the left side of the segment AF , where your orientation is

looking from A toward F ; see Figure 18.42 . This calculation works regardless of the

angle of segment AF , that is, whether or not AF is horizontal.

 Programming Exercise: Design a class that extends JFrame that exhibits an n -

iteration von Koch squarefl ake. Include a one-argument constructor with parameter

 n , and test your program with n � 4.

 The same hints given in Programming Exercise 12 apply here. You can start with

points (100, 100), (100, 200), (200, 200), (200, 100), (100, 100) that form a square

in clockwise order.

 14. The Chaos Game

 Write a program that implements the following iterative algorithm, known as “The

Chaos Game.”

 "Hardwire" into your program three points of an equilateral triangle (x
1
 , y

1
),

(x
2
 , y

2
), and (x

3
 , y

3
). These should be screen coordinates.

 Let w be one of the three vertices, chosen at random.
 Repeat forever // 10000 drawn points is enough
 {
 Pick one vertex, (x

1
 , y

1
), (x

2
 , y

2
), or (x

3
 , y

3
), at random. Call this point v .

 Draw a point p exactly halfway between w and v .
 Set w equal to p .
}

a. Describe the fi gure.

b. Try it again with a right triangle.

c. Explain how the algorithm might have produced such fi gures.

 Note: Java does not provide a method that draws a single point (x, y). To draw a

point, use:

 void drawRectangle(x, y, 1, 1) or void drawOval(x, y, 1, 1).

sim23356_ch18.indd 943sim23356_ch18.indd 943 12/15/08 7:20:04 PM12/15/08 7:20:04 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
944 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 THE BIGGER PICTURE

 FRACTALS AND COMPUTER GRAPHICS

The set of exercises at the end of this section requires some familiarity with complex numbers. A short
introduction appears in the appendix at the end of this section. The appendix also includes two Java classes
that may be useful when completing the exercises. With just a little mathematics and a few Java methods,
you will be amazed at the beautiful and colorful images that you can create.

 The Sierpinski triangle of Example 18.11 is a fractal . So are the von Koch snowfl ake

and squarefl ake of Programming Exercises 12 and 13. Mathematician Benoit Mandelbrot

describes a fractal as “a rough or fragmented geometric shape that can be subdivided in

parts, each of which is (at least approximately) a reduced size copy of the whole.”

 Fractals can model objects such as leaves, clouds, ferns, mountains, or even the

coastline of England—objects more complex than those constructed from the rigid lines,

circles, and spheres of Euclidean geometry. Fractals have found their way into the realms

of abstract art. Fractal images have even been used in science fi ction fi lms: Star Trek II
used fractal images to create computer-generated images of outer space. Figure 18.44

shows a few pictures of these strange, but beautiful, geometric objects called fractals.

 FIGURE 18.44 Some fractals

 Obviously, fractals are detailed, intricate objects. One particularly remarkable prop-

erty of a fractal is “self-similarity,” a characteristic described above by Mandlebrot and

more precisely by Ivars Peterson in The Mathematical Tourist :

 Fractal objects contain structures nested within one another. Each small

structure is a miniature, though not necessarily identical, version of the

sim23356_ch18.indd 944sim23356_ch18.indd 944 12/15/08 7:20:05 PM12/15/08 7:20:05 PM

THE BIGGER PICTURE
 Chapter 18 Graphics: AWT and Swing 945

larger form. The mathematics of fractals mirrors this relation between

patterns seen in the whole and patterns seen in parts of the whole.

 As we have already noted, the Sierpinski triangle is a fractal image; the von Koch snow-

fl ake is another. And, although the Sierpinski triangle simply and effectively illustrates the

notion of self-similarity, there are more striking illustrations. The last decade has produced

some amazing, and quite beautiful, computer-generated pictures of fractals. In the upcom-

ing exercises, you are asked to write programs that draw fractal images more exotic and

colorful than either the Sierpinski triangle or the von Koch snowfl ake.

 Some Colorful Fractals
 Two of the most famous fractal images are the Julia set and the Mandelbrot set. See

 Figure 18.45 .

FIGURE 18.45 Two famous fractals

 Ivars Peterson describes the Mandelbrot set:

 It has the appearance of a snowman with a bad case of warts. . . . On

superfi cial inspection, the Mandelbrot set looks like a self-similar

fractal, with infi nitely many copies of itself within itself. On detailed

investigation, however, the set is extraordinarily complicated. The baby

Mandelbrot sets within the parent Mandelbrot sets are fuzzier than the

original. They have more hair and other curious features. . . . Fractals

such as the Mandelbrot set are called nonlinear fractals. For self-

similar fractals, lines that show up within a fi gure, whether blown up

or reduced in size, remain lines. For nonlinear fractals such a change in

scale doesn’t preserve the straightness of individual lines.

 In the following exercises, we ask you to write applications that draw pictures like those of

 Figure 18.45 . But before you can paint the Julia and Mandelbrot sets on a frame, we take a

short but easy mathematical side trip.

 Iterated Algorithms and Fractals
 In his award-winning play Arcadia, Tom Stoppard, through the voice of his character

Valentine, gives an intuitive and reasonable explanation of an iterated algorithm :

 You have some x and y equation. Any value for x gives you a value for

 y . So you put a dot where it’s right for both x and y . Then you take the

next value of x, which gives you another value for y, and when you’ve

done that a few times you join up the dots and that’s your graph of

whatever the equation is, [however] what she’s doing is, every time she

sim23356_ch18.indd 945sim23356_ch18.indd 945 12/15/08 7:20:06 PM12/15/08 7:20:06 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
946 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

works out a value for y , she’s using that as her next value for x . And so

on. Like a feedback.

 We illustrate this process with y � x 2 , or equivalently, the function f (x) � x 2 . First, choose

an initial value, say, x
0
 � 2. Now, compute some values of y � f (x) starting with x � 2:

 f (2) � 2 2 � 4; 4 is the “next x ”

 f (4) � 16; 16 is the “next x ”

 f (16) � 256; 256 is the “next x ”

 f (256) � 65,536;

 f (65536) � 4,294,967,296; etc.

Notice every time we “work out a value for y [we are] using that as the next value for x .

Like a feedback.” You can see that the computed values of our example are growing larger

and larger. That is, the computed values are unbounded . However, this is not always the

case. Depending on the initial value x
0
 the computed values may behave quite differently.

 Figure 18.46 shows the values computed by f (x) � x 2 for several different choices of x
0.

Remember, each computed “ y -value” becomes the next “ x -value.”

 Orbits, Escape Sets, and Prisoner Sets
 Let y � f (x), and x

0
 be some initial value for an iterative process.

 The set {x0, y1
, y

2
, y

3
, . . .}, where y

1
 � f(x

0
), y

2
 � f(y

1
), y

3
 � f(y

2
), . . . ,

and y
n�1

 � f(y
n
), is called the orbit of x

0
.

 For example, if f (x) � x 2 and x
0
 � 2 the orbit of 2 is {2, 4, 16, 256, 65536, …}; see

table 5 in Figure 18.46 .

 The tables of Figure 18.46 provide several other examples:

 x
0
 � 0 orbit of 0 � {0} (table 1)

 x
0
 � �1 orbit of 1 � {1, �1} (table 2)

 x
0
 � 0.5 orbit of .5 � {0.5, 0.25, 0.0625, 0.00390625, . . .} (table 3)

 It is not too diffi cult to see that for f (x) � x 2

 if x
0
 is greater than 1 or less than �1, then the orbit of x

0
 is unbounded, and

 if x
0
 is between �1 and 1, inclusive, then the orbit of x

0
 is bounded.

The set of all points with unbounded orbits is called the escape set for f (x).

 The set of points with bounded orbits is called the prisoner set for f (x).

 Thus for f (x) � x 2 ,

 the prisoner set is { x | �1 � x � 1}, and

 the escape set is { x | x � �1 or x � 1}.

So, �3, 27, and �231 are members of the escape set of f (x) � x 2 , but �0.3, 0.222, and

0.9999 belong to the prisoner set of f (x) � x 2 .

 All this mathematics, but where are the pretty pictures? Patience and you will soon see.

 Complex Numbers
 The story becomes a bit more interesting when we consider complex rather than real num-

bers. If you are unfamiliar with complex numbers, read the short introduction that appears

in the appendix at the end of this section.

 Let’s use the same quadratic function, f (z) � z 2 , but now assume that z is a complex

variable, that is, a variable that holds a complex number. Suppose that we iterate with initial

sim23356_ch18.indd 946sim23356_ch18.indd 946 12/15/08 7:20:06 PM12/15/08 7:20:06 PM

THE BIGGER PICTURE
 Chapter 18 Graphics: AWT and Swing 947

value z
0
 � i . Remember i 2 � �1, so

 f (i) � i 2 � �1,

 f (�1) � 1,

 f (1) � 1,

 f (1) � 1, etc.

And the orbit of i is { i , �1, 1}, a bounded set. Consequently, because the orbit of i is

bounded, i is a member of the prisoner set of f (z) � z 2

 Now, suppose that z
0
 � 1 � i :

 f (1� i) � (1� i)(1� i) � 2 i ,

 f (2i) � (2 i)(2 i) � �4,

 f (�4) � 16,

 f (16) � 256, etc.

Thus the orbit of 1 � i is {1 � i , 2 i , �4, 16, 256, . . .} which grows without bound.

 In this case the orbit of z
0
 � 1 � i is unbounded or “escapes to infi nity.” Thus, 1 � i is

a member of the escape set.

Initial value x
0
 � 0 Initial value x

0
 � �1 Initial value x

0
 � .5

x y
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

 x y
�1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1
 1 1

x y
0.5 0.25
0.25 0.0625
0.0625 0.00390625
0.00390625 1.52588e-05
1.52588e-05 2.32831e-10
2.32831e-10 5.42101e-20
5.42101e-20 2.93874e-39
2.93874e-39 8.63617e-78
8.63617e-78 7.45834e-155
7.45834e-155 5.56268e-309

Table 1: The computed
values are all 0.

Table 2: The computed values
are all 1.

Table 3: The computed values get closer
and closer to 0 (notice the exponent: �309).

Initial value x
0
 � .99 Initial value x

0
 � 1.01 Initial value x

0
 � 2

x y
0.99 0.9801
0.9801 0.960596
0.960596 0.922745
0.922745 0.851458
0.851458 0.72498
0.72498 0.525596
0.525596 0.276252
0.276252 0.076315
0.076315 0.00582398
0.00582398 3.39187e-05
3.39187e-05 1.15048e-09
1.15048e-09 1.3236e-18
1.3236e-18 1.75192e-36

x y
1.01 1.0201
1.0201 1.0406
1.0406 1.08286
1.08286 1.17258
1.17258 1.37494
1.37494 1.89046
1.89046 3.57385
3.57385 12.7724
12.7724 163.134
163.134 26612.6
26612.6 7.08229e � 08
7.08229e � 08 5.01588e � 17
5.01588e � 17 2.5159e � 35

x y
2 4
4 16
16 256
256 65536
65536 4.29497e � 09
4.29497e � 09 1.84467e � 19
1.84467e � 19 3.40282e � 38
3.40282e � 38 1.15792e � 77
1.15792e � 77 1.34078e � 154

Table 4: The computed
values approach 0.

Table 5: The computed values
grow without bound.

Table 6: The computed values grow
without bond.

FIGURE 18.46 Values of f(x) � x 2 using various starting points x0

sim23356_ch18.indd 947sim23356_ch18.indd 947 12/15/08 7:20:07 PM12/15/08 7:20:07 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
948 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 There is a theorem that can help to determine whether or not a starting or initial point

is in the escape set of f (z) � z 2 � c , where c is a complex number

 Theorem: Let f (z) � z 2 � c , and let z
0
 be an initial point in an iterative

process. If any point in the orbit of z
0
 has absolute value greater than

max(abs (c), 2), where abs(c) is the absolute value of c , then z
0
 is in

the escape set of f (z) � z 2 � c .

 In other words, if the absolute value of any one point in the orbit of z
0
 exceeds max(abs (c), 2),

then the orbit escapes to infi nity, it is unbounded, and z
0
 is in the escape set. For a complex

number z � x � yi, the absolute value, abs(z), is defi ned as √

 x2 � y2 .

 Let’s look again at f (z) � z 2 with z
0
 � �2 � i . Here c � 0, so max(abs(0), 2)) � 2.

Thus,

 f (�2 � i) � 3 � 4i. And, abs(3 � 4i) � √

 32 � 42 � 5 � 2.

So, by the theorem, we know that z
0
 � �2 � i is in the escape set of f (z) � z 2 . We do not

have to compute any additional values in the orbit of �2 � i .
 Similarly, if

 f (z) � z2 � (3 � 4i) with z
0
 � i,

then

 c � 3 � 4i and abs(c) � √

 32 � 42 � 5.

so

 max(abs(c), 2) � max(5, 2) � 5.

 The theorem states that if any value in the orbit of z
0
 � i has absolute value greater

than 5, then z
0
 � i is in the escape set of f (z). So we begin computing the orbit of z

0
 � i :

 f (i) � �1 � (3 � 4i) � 2 � 4i. And, abs(2 � 4i) � √

 22 � 42 � √

 20 � 4.47;

f (2 � 4i) � �9 � 20i. And, abs(�9 � 20i) � √

 92 � 202 � 21.9 � 5.

Stop. No further values need be computed; z
0
 � i is in the escape set of f (z) � z 2 � (3 � 4 i).

 For the following exercises, you may fi nd the Complex and ComplexFunctions classes

in the appendix of this section helpful.

 Exercise
 1. Use the Complex class and the ComplexFunctions class (in the appendix of this

section) to iterate the function f (z) � z 2 , fi rst with z
0
 � 0.5 � 0.5 i , and then with

z
0
 � 1 � i . Determine the orbit of each point.

 The Julia Set
 Let f (z) � z 2 � c , where z is a complex variable and c is some complex constant. For exam-

ple, f (z) � z 2 � (2 � 3 i), f (z) � z 2 � 7 or f (z) � z 2 .

 The Julia set is the boundary of the escape set of f (z). In other words, the Julia set is

the boundary of the set of starting points z
0
 whose orbits escape to infi nity.

 In the next exercise, you are asked to paint the Julia set on a frame, point by point. Java,

however, does not come equipped with a drawPoint() or drawPixel() method. Nonetheless,

you can paint or draw a single point (x, y) using:

 void drawRect(x, y, 1, 1) or void drawOval(x, y, 1, 1).

 Exercises
 2. Write a computer application that paints the Julia set for f (z) � z 2 on a frame.

Here, c � 0. Your application should color all points in the prisoner set of

sim23356_ch18.indd 948sim23356_ch18.indd 948 12/15/08 7:20:08 PM12/15/08 7:20:08 PM

THE BIGGER PICTURE
 Chapter 18 Graphics: AWT and Swing 949

 f (z) � z 2 black and vary the colors in the escape set depending on how fast the

iterations tend to infi nity. See the hints below.

 Your program should examine only those complex numbers that lie in the

shaded square of Figure 18.47 and determine which are in the prisoner set

of f (z) � z 2 and which are in the escape set. Notice the lower corner of the square

is at �2 � 2 i and the upper corner at 2 � 2 i.

�2 � 2i

2 � 2i

(�2, �2)

(2, 2)

y (imaginary axis)

x (real axis)

 FIGURE 18.47 A portion of the complex plane

 Of course, the complex numbers in the shaded section of Figure 18.47 are not

specifi ed as screen coordinates. You must map each complex number that you

process to some point in your frame.

 Hints:
 Because the collection of complex numbers in Figure 18.47 is infi nite, you must

limit your application to a fi nite subset. The following loop does precisely that:

 for (double x � �2 ; x � 2; x �� 0.005)
 for (double y � �2; y � 2; y �� 0.005)
 // Determine whether or not z � x � yi is in the escape set
 // or the prisoner set of f(x) � z2;

 If no point in the orbit of z exceeds max(abs(c), 2) � max(0, 2) � 2 after, say,

50 iterations, assume that z is in the prisoner set. Of course, there is always the

chance of an error if it takes more than 50 iterations to exceed 2, but usually 50 is

enough. If any point in the orbit of z exceeds 2, then you know (by the theorem)

that z is in the escape set.

 Here is the fun part. Color each point z . If z is in the prisoner set, color it

black. If it is in the escape set, color it with RGB (red, green, blue) values based

on the number of iterations it took before “escaping.” For example, let color �

50 � the number of iterations before escaping.

 Here is a one possibility for calculating the color:

 int red � (color * 24 % 256); // a number from 0 to 255
int green � (color * 6 % 256);
int blue � (color * 13 % 256);
Color c � new Color(red, green, blue);

 You might experiment with the constants 24, 6, and 13. Every combination will

give a picture with different hues and colors.

 3. The picture from Exercise 2 was not too exotic. Using a different value for c in

the function f (z) � z 2 � c , you can get some pretty neat fractals.

 Draw the Julia set for each constant c .

sim23356_ch18.indd 949sim23356_ch18.indd 949 12/15/08 7:20:09 PM12/15/08 7:20:09 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
950 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

a. c � 0.3 � 4 i , i.e., use f (z) � z 2 � (0.3 � 4 i)

b. c � �1 � 0 i, i.e., use f (z) � z 2 � 1

c. Try your own constant c .

 The Mandelbrot Set
 The Julia set considers different starting points of a fi xed complex function. In contrast, the

Mandelbrot set considers different complex functions with a fi xed starting point. Consider

the collection of all complex functions of the form f (z) � z 2 � c , where c is a complex

constant. Iterate each of these function with starting point z
0
 � 0.

 For example,

 if c � 0, f (z) � z 2 . Iterate beginning with 0:

 The orbit of 0 is {0, 0, 0, 0, . . . } � bounded,

 if c � i , f (z) � z 2 � i . Iterate beginning with 0:

 f (0) � i
f (i) � �1 � i
f (�1 � i) � �2i
f (�2i) � 4 � i

The orbit of 0 is {0, i , i � 1, �2 i , 4 � i, . . .} � unbounded, and

 if c � 1 � i , f (z) � z 2 � (1 � i). Iterate beginning with 0:

 f (0) � 1 � i;
f (1 � i) � 1 � 3;

f (1 � 3i) � �7 � 7i;

The orbit of 0 is { 0, 1 � i , 1 � 3 i , �7 � 7 i, . . .} � unbounded.

 For each constant c and function f (z) � z 2 � c , if 0 is in the prisoner set of f (z), then

 c is a member of the Mandelbrot set.

 Exercises
 4. Write an application that paints the Mandelbrot set on a frame.

 Let f (z) � z 2 � c , such that c � a � bi with �1 � a � 2, and �1.5 � b � 1.5.

 For each c, determine whether 0 is in the escape set or the prisoner set of f (z),

and paint the point c with an appropriate color. Make points in the Mandelbrot

set black. Vary the colors of the other points as in the Julia set program. You will

get some really incredible pictures!

 Use an increment value of 0.01.

 5. The Mandelbrot set considers different complex functions with a fi xed starting point.

Normally, the starting point is 0, as in Exercise 4. Redo Exercise 4 using a variety of

complex starting points. Report and explain your results.

 APPENDIX: COMPLEX NUMBERS
 A complex number is a number of the form

 a � bi

where a and b are real numbers and i 2 � �1. For example, 4 � 3 i , �5 � 8 i, and 6 i are

complex numbers. So are 7 � 7 � 0 i and 0 � 0 � 0 i .
 If z � a � bi is a complex number, a is called the real part of z and b is called the

 imaginary part of z . For example, 4 is the real part of 4 � 3 i and 3 is the imaginary part.

sim23356_ch18.indd 950sim23356_ch18.indd 950 12/15/08 7:20:09 PM12/15/08 7:20:09 PM

THE BIGGER PICTURE
 Chapter 18 Graphics: AWT and Swing 951

 A complex number can be visualized as a two-dimensional point in the complex plane

as shown in Figure 18.48 .

5i

4 � 2i

X (real axis)

Y (imaginary axis)

2 � 5i

�5

 FIGURE 18.48 Four complex numbers shown in the complex plane

 Notice that 4 � 2 i is identifi ed with the point (4, 2), 5 i with the point (0, 5), and �5 with

the point (�5, 0).

 Complex Arithmetic
 Arithmetic on complex numbers is performed as follows:

 Addition:

 (a � bi) � (c � di) � (a � c) � (b � d)i
For example, (3 � 4i) � (9 � 2i) � (3 � 9) � (4 � 2)i � 12 � 2i

 Subtraction:

 (a � bi) � (c � di) � (a � c) � (b � d)i
For example, (3 � 4i) � (9 � 2i) � (3 � 9) � (4 � (�2))i � �6 � 6i

 Multiplication:

 Multiplication is accomplished just as you would multiply (a � bi)(c � di),
keeping in mind that i 2 � �1.

 (a � bi)(c � di) �
ac � bdi 2 � cbi � adi �

ac � bd (�1) � (cb � ad)i �
(ac � bd) � (cb � ad)i

 For example, (2 � 3 i)(7 � 2i) � (2)(7) � (3)(2) � [(3)(7) � (2)(2)] i � 8 � 25 i

 Absolute value:

 The absolute value of a complex number a � bi is the distance from (0, 0) to the

point a � bi. This is calculated using Pythagoras’s theorem.

 That is, abs(a � bi) � √

 a2 � b2 .

 For example, abs(4 � 3 i) � √

 32 � 42 � 5;

sim23356_ch18.indd 951sim23356_ch18.indd 951 12/15/08 7:20:10 PM12/15/08 7:20:10 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
952 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 A Complex Class
 The following class encapsulates a complex number:

 public class Complex
{
 private double re; // real part
 private double im; // imaginary part
 public Complex() // default constructor
 {
 re � im � 0;
 }

 public Complex(double a, double b) // a � b i
 {
 re � a;
 im � b;
 }

 Complex add(Complex z)
 {
 // (a � b i) � (c � d i) � (a � c) � (b � d) i .

 Complex sum � new Complex();
 sum.re � re � z.re;
 sum.im � im � z.im;
 return sum;
 }

 Complex sub(Complex z)
 {
 // (a � b i) � (c � d i) � (a � c) � (b � d) i .

 Complex difference � new Complex();
 difference.re � re � z.re;
 difference.im � im � z.im;
 return difference;
 }

 Complex mul(Complex z)
 {
 // (a � b i) * (c � d i) � (ac � bd) � (cb � ad) i
 Complex product � new Complex();
 product.re � re * z.re � im * z.im; // (ac � bd)
 product.im � re * z.im � im * z.re; // (cb � ad)
 return product;
 }

 double abs()
 {
 return Math.sqrt(re * re � im * im);
 }

 double real()
 {
 return re;
 }

sim23356_ch18.indd 952sim23356_ch18.indd 952 12/15/08 7:20:11 PM12/15/08 7:20:11 PM

THE BIGGER PICTURE
 Chapter 18 Graphics: AWT and Swing 953

 double imaginary()
 {
 return im;
 }
}

 Complex Functions
 Just as the function f (x) � x 2 , where x is a real number, pairs a real number, x , with its

square, the complex valued function f (z) � z 2 pairs a complex number z with its square.

For example,

 f (i) � i2 � �1

f (2 � 3i) � (2 � 3i) * (2 � 3i) � (4 � 9) � (6 � 6) i � �5 � 12i

f (3 � 7i) � (3 � 7i)(3 � 7i) � �40 � 42i

Similarly, if f (z) � z 2 � (3 � 2 i), then

 f (i) � i2 � (3 � 2i) � �1 � (3 � 2i) � 2 � 2i

f (2 � 3i) � (2 � 3i)(2 � 3i) � (3 � 2i) � (�5 � 12i) � (3 � 2i) � �2 � 14i

For example, a complex function such as f (z) � z 2 and f (z) � z 2 � (3 � 2 i) can be

implemented as:

 A ComplexFunctions Class
public class ComplexFunctions
{

 public static Complex f(Complex z)
 {
 // f(z) � z * z
 return z.mul(z);
 }

 public static Complex g(Complex z)
 {
 // f(z) � z * z � (3 � 2 i)
 Complex constant � new Complex(3, 2); // 3 � 2 i
 return (z.mul(z)).add(constant); // z * z � (3 � 2 i)
 }

}

sim23356_ch18.indd 953sim23356_ch18.indd 953 12/15/08 7:20:11 PM12/15/08 7:20:11 PM

954

CHAPTER CHAPTER 19
 Event-Driven Programming

 “Life happens at the level of events, not words.”
 — Alfred Adler

 “What wonderful things are events!”
 — Disraeli

 “The face of Garbo is an idea, that of Hepburn an event.”
 — Ethel Barrymore

 Objectives

 The objectives of Chapter 19 include an understanding of

� event-driven programming,

� the event delegation model,

� button events,

� radio button events,

� mouse events,

� menu events,

� checkbox events,

� text fi elds,

� text areas,

� labels, and

� dialog boxes.

 19.1 INTRODUCTION

 Webster’s Dictionary defi nes an event as:

an occurrence, an episode, a happening, an incident, an occasion.

 In terms of programming, an event may not be an episode or an occasion, but an event

is certainly an occurrence. Pressing a button or selecting a checkbox is an event. Choos-

ing an item from a menu is also an event. Simply moving the mouse is an event. Events

happen.

 Clicking the X button that you see in the upper right-hand corner of a window and also

in Figure 19.1a generates or fi res an event.

(a) (b)

FIGURE 19.1
Clicking a button

generates an event

sim23356_ch19.indd 954sim23356_ch19.indd 954 12/15/08 7:26:06 PM12/15/08 7:26:06 PM

 Chapter 19 Event-Driven Programming 955

 The system responds to this event by closing the window. In a word processing envi-

ronment, clicking the button of Figure 19.1b generates an event. The response sends a

document to the printer.

 An application can ignore an event or respond to an event. In any program, many

events occur but only some are signifi cant. For example, each mouse click generates an

event, but only some clicks warrant a response.

 Programs that respond to events are called event-driven programs . Almost all popu-

lar commercial programs are event-driven, including word processors, video games, and

spreadsheets. Event-driven programming is the focus of this chapter.

 19.2 THE DELEGATION EVENT MODEL

 The delegation event model is Java’s mechanism for handling events.

The delegation event model specifi es that when some source, such as a button or the

mouse generates an event, the response is delegated or handed over to some other

object.

 For example, when a user presses an Exit button (the event source), the button object does

not close the application; another object carries out or handles the response. The source

passes the buck, so to speak. The source creates the event, an “event object,” and then the

JVM sends or passes the event object to another object for processing. More specifi cally:

• Whenever an event is generated, an event object belonging to the EventObject class

is automatically instantiated. This event object encapsulates information about the

event, including the source of the event—a button, the mouse, a checkbox, a menu

item—along with other pertinent information such as the number of mouse clicks,

the current screen position of the mouse, or whether or not a checkbox is checked.

• The event object generated by the source object is passed to one or more listeners.

A listener is an object with methods that process or handle the event.

 The listeners do the work. For example, when you click a printer button, an event

object is instantiated, and that object is sent to a listener , which then sends a message

to the printer. It’s not the button that notifi es the printer; a listener does that. When

you click an Exit button, a listener issues the command such as System.exit(0) . The

listener is a servant, patiently waiting to respond to events.

• A listener object waits until an event is passed to it. When the listener receives an

event, the listener responds to the event.

Thus, the principal actors of the event delegation model are three: the source, the event, and

the listener. We discuss each of these in a bit more detail.

 19.2.1 The Source Object

The source object is the component that generates an event.

 The event source may be a button, a textbox, a list, a mouse, a checkbox, a radio button, a

key, a scroll bar, a menu item, or some other component.

sim23356_ch19.indd 955sim23356_ch19.indd 955 12/15/08 7:26:07 PM12/15/08 7:26:07 PM

956 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 19.2.2 The Event Object
 As you know, when an exception occurs, such as “array index out of bounds” or “fi le not

found,” an object belonging to some Exception class is automatically created. The excep-

tion object may belong to NullPointerException, IOException, ArithmeticException , or any

other class that extends Exception . The Exception object encapsulates information about

the particular exception that has occurred. Exceptions are automatically generated by the

JVM but handled by the programmer.

 Event objects are similar to exception objects: event objects are generated automati-

cally; they encapsulate information about the event, and the programmer chooses whether

to handle or ignore the event.

When an event occurs, such as clicking a button, checking a checkbox, or press-

ing a key, an object belonging to a class that extends EventObject is automatically

instantiated.

 When a button is clicked or a menu item selected, an ActionEvent object is created;

when a checkbox is checked or unchecked, an ItemEvent is instantiated; when a key is

pressed, a KeyEvent is generated. A partial view of the EventObject hierarchy is shown

in Figure 19.2.

EventObject
(abstract)

AWTEvent
(abstract)

ListSelectionEvent

AdjustmentEvent

InputEvent
(abstract)

ActionEvent

KeyEvent MouseEvent

ComponentEvent ItemEvent TextEvent

FIGURE 19.2 A partial view of the EventObject hierarchy

 An object belonging to EventObject encapsulates information about the event, such

as the source of the event. EventObject , which belongs to the java.util package, also

defi nes two important methods:

• Object getSource()
 returns the source of the event, such as a reference to a particular button or check-

box, and

• String toString()
 returns a string equivalent of the event.

sim23356_ch19.indd 956sim23356_ch19.indd 956 12/15/08 7:26:07 PM12/15/08 7:26:07 PM

 Chapter 19 Event-Driven Programming 957

So, when you press a button or choose a menu item, an object belonging to ActionEvent is

created by the JVM and subsequently passed to a listener object. The listener can invoke

 getSource() to determine the source component that generated the event.

 19.2.3 The Listener

A listener waits or “listens” for an event to occur. A listener is automatically notifi ed

when certain events occur.

 For example, when a button is pressed, a listener associated with the button is notifi ed and

responds; when the mouse is clicked, a “mouse listener” is sent a message and responds.

 As you might guess, a listener is an object and, as such, every listener belongs to a

class. It is the programmer’s responsibility to defi ne listener classes for each event that

requires a response. The methods of a listener class perform the actions that handle events.

A listener, however, is not an independent agent.

Every listener must implement one or more listener interfaces.

 Thus, a listener is required to implement the methods declared in some interface. Every

listener is under contract. For example, when a button is pressed, an ActionEvent object is

generated and passed to a listener. The listener responsible for the button event must imple-

ment the ActionListener interface in the java.awt.event package:

 public interface ActionListener
{
 public void actionPerformed(ActionEvent e);
}

Similarly, when a checkbox is clicked, an ItemEvent is generated and sent to a listener that

implements the ItemListener interface. ItemListener declares a single method

 void itemStateChanged(ItemEvent e).

So that a listener can receive events from a source, a connection must be established

between the source and a listener. If no connection is established, the listener listens

forever while the source generates unprocessed events. It is the source’s job to register

the listener by invoking a “registration method.” Not registering the listener is a common

source of errors.

 We discuss the details of listener registration a bit later.

 Figure 19.3 shows how the event delegation model plays out. A user action causes a

source to generate an event. An event object encapsulating the details of the event is auto-

matically created by the JVM and passed to a listener object registered by the source. When

an event object is received by a listener, the listener handles the event. Each listener must

implement the appropriate interfaces.

Source
User

Action

acts on generates passed to

handlesregisters

Listeners Events

Event
Object

Listener

FIGURE 19.3 The event delegation model

sim23356_ch19.indd 957sim23356_ch19.indd 957 12/15/08 7:26:07 PM12/15/08 7:26:07 PM

958 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Figure 19.4 lists some of the most common user actions along with the source, the class of

the event object, and the required listener interface. This table provides a quick and easily

accessible reference.

Action
Source of
Event

Event Class
Listener
Interface

Listener Methods
to Implement

Button clicked JButton ActionEvent ActionListener actionPerformed(ActionEvent e)

Menu item selected JMenuItem ActionEvent ActionListener actionPerformed(ActionEvent e)

Press Enter in a text fi eld JTextField ActionEvent ActionListener actionPerformed(ActionEvent e)

Click a checkbox JCheckBox
ActionEvent
ItemEvent

ActionListener
ItemListener

actionPerformed(ActionEvent e)
itemStateChanged(ItemEvent e)

Click a radio

button
JRadioButton

ActionEvent
ItemEvent

ActionListener
ItemListener

actionPerformed(ActionEvent e)
itemStateChanged(ItemEvent e)

Mouse

moved,

dragged,

pressed,

released,

clicked,

entered,

exited

Component MouseEvent

MouseListener

MouseMotionListener

mousePressed(MouseEvent e)
mouseReleased(MouseEvent e)
mouseEntered(MouseEvent e)
mouseExited(MouseEvent e)
mouseClicked(MouseEvent e)

mouseDragged(MouseEvent e)
MouseMoved(MouseEvent e)

FIGURE 19.4 Java user actions and events, and their corresponding listeners

 Thus, event handling is a two-step process:

 1. Create a class that implements the appropriate listener interface(s) (see Figure 19.4).

Code all the methods of the listener interface to effect the appropriate action for the event.

For example, clicking a button generates an ActionEvent event. To handle the response,

defi ne a class that implements the ActionListener interface. Similarly, checking a check-

box generates an ItemEvent event. The listener class must implement ItemListener .

 2. Register the listener objects with the event source by using the “ addEventtype-
Listener ” methods (e.g., addActionListener(…), addItemListener(…), addMouse-
Listener(…), addKeyListener(…), etc.). This registration makes the connection

between the listener and the source.

The event delegation model is very fl exible.

• A source object may register many listeners.

• Different source objects may register the same listener.

• A listener may implement more than one listener interface.

• If a listener implements more than one listener interface, a source may register

that listener multiple times, once for each interface.

These options are illustrated in the examples of this chapter.

 19.2.4 A Simple Example—Hello Goodbye
 Well, that’s the general picture. A little too general and a bit confusing? No doubt! But a

simple example should clear things up.

sim23356_ch19.indd 958sim23356_ch19.indd 958 12/15/08 7:26:08 PM12/15/08 7:26:08 PM

 Chapter 19 Event-Driven Programming 959

 EXAMPLE 19.1 Problem Statement Design a GUI application consisting of a single frame with three

buttons labeled Hello, Goodbye, and Exit. Pressing the Hello button displays the string

“Hello” in the frame, pressing the Goodbye button displays “Goodbye”, and pressing

the Exit button closes the frame and terminates the application. When the program

begins, the frame is empty. See Figure 19.5.

FIGURE 19.5 A frame with three buttons

 Java Solution We implement the application in three steps.

 1. Set up the GUI. That’s easy. Chapter 18 is all about setting up GUIs.

• Extend JFrame .

• Instantiate three buttons.

• Place the three buttons on a panel.

• Place the panel in the SOUTH area of the frame.

• Override paint(Graphics g) so that the method paints a string (“Hello” or

“Goodbye”) in the frame.

 Here is the code that sets up the frame.

 1. import java.awt.*;
2. import javax.swing.*;
3. public class HelloAndGoodbye extends JFrame
4. {
5. private JButton helloButton;
6. private JButton goodbyeButton;
7. private JButton exitButton ;
8. private String message;

9. public HelloAndGoodbye() // constructor
10. {
11. helloButton � new JButton("Hello");
12. goodbyeButton � new JButton("Goodbye");
13. exitButton � new JButton("Exit");
14. message � ""; // initializes message to the empty string, so that if no button

// is pressed, nothing appears on the screen

sim23356_ch19.indd 959sim23356_ch19.indd 959 12/15/08 7:26:08 PM12/15/08 7:26:08 PM

960 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

15. setTitle("Hello and Goodbye");
16. setBounds(0, 0, 300, 300);

17. JPanel buttonPanel � new JPanel();
18. buttonPanel.add(helloButton); // add buttons to panel
19. buttonPanel.add(goodbyeButton);
20. buttonPanel.add(exitButton);
21. add(buttonPanel,BorderLayout.SOUTH); // add panel to the frame
22. setVisible(true);
23. }

24. public void paint (Graphics g) // override paint()
25. {
26. super.paint (g);
27. Font f � new Font("Arial", Font.BOLD, 16);
28. g.setFont(f);
29. g.drawString(message, 100, 100);
30. }

31. public static void main(String[] args)
32. {
33. HelloAndGoodbye frame � new HelloAndGoodbye();
34. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
35. }
36. }

 2. Design a listener class that implements the appropriate listener interface(s).
 Refer to Figure 19.4. Clicking a button always generates an ActionEvent object. The

appropriate listener interface is ActionListener . Thus to handle an ActionEvent :

• Declare a listener class that implements the ActionListener interface.

• Implement the single method of ActionListener

 void actionPerformed(ActionEvent e)

 The following code segment includes an inner class, ButtonListener (line 18), that

responds to a button event. Recall that an inner class is a class that is defi ned within

another class. An inner class can access the variables and methods of its surround-

ing class, but the surrounding class can access the data and methods of an inner

class only via an object. See Section 16.6.2 for a brief discussion of inner classes.

 This inner class is the listener and, by contract, ButtonListener must implement

the method

 void actionPerformed(ActionEvent e).

 The package java.awt.event must be imported.

 1. import java.awt.*;
2. import javax.swing.*;
3. import java.awt.event.*;

4. public class HelloAndGoodbye extends JFrame
5. {
6. private JButton helloButton;
7. private JButton goodbyeButton;
8. private JButton exitButton ;
9. private String message;

10. public HelloAndGoodbye()

sim23356_ch19.indd 960sim23356_ch19.indd 960 12/15/08 7:26:10 PM12/15/08 7:26:10 PM

 Chapter 19 Event-Driven Programming 961

11. {
12. // as above
13. }

14. public void paint(Graphics g)
15. {
16. // as above
17. }

18. // the ButtonListener class, an inner class that handles button events.
19. private class ButtonListener implements ActionListener // the listener
20. {
21. public void actionPerformed(ActionEvent e) // must implement this method
22. {
23. if (e.getSource() �� helloButton) // event source is helloButton
24. {
25. message � "Hello"; // change the message String
26. repaint(); // repaint the frame
27. }
28. else if (e.getSource() �� goodbyeButton) // source is goodbyeButton
29. {
30. message � "Goodbye"; // change the message string
31. repaint(); // repaint the frame
32. }
33. else // the source is exitButton
34. System.exit(0);
35. }
36. }
37.
38. public static void main(String[] args)
39. {
40. // as before
41. }
42. }

 3. Register the listener, that is, make a connection between the button and the
listener.

 Because a button generates an ActionEvent object, registration is effected by the

method

 void add ActionListener (ActionListener listener).

 The complete program follows.

 1. import java.awt.*;
2. import javax.swing.*;
3. import java.awt.event.*;

4. public class HelloAndGoodbye extends JFrame
5. {
6. private JButton helloButton;
7. private JButton goodbyeButton;
8. private JButton exitButton ;
9. private String message;

10. public HelloAndGoodbye()
11. {
12. helloButton � new JButton("Hello");
13. goodbyeButton � new JButton("Goodbye");
14. exitButton � new JButton("Exit");
15. message � "";

sim23356_ch19.indd 961sim23356_ch19.indd 961 12/15/08 7:26:10 PM12/15/08 7:26:10 PM

962 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

16. setTitle("Hello and Goodbye");
17. setBounds(0, 0, 300, 300);
18. JPanel buttonPanel � new JPanel();
19. buttonPanel.add(helloButton); // add buttons to panel
20. buttonPanel.add(goodbyeButton);
21. buttonPanel.add(exitButton);
22. add(buttonPanel,BorderLayout.SOUTH);

23. // register the listener with each button

24. helloButton.addActionListener(new ButtonListener());

25. goodbyeButton.addActionListener(new ButtonListener());

26. exitButton.addActionListener(new ButtonListener());

27. setVisible(true);
28. }

29. public void paint(Graphics g)
30. {
31. super.paint(g);
32. Font f � new Font("Arial", Font.BOLD, 16);
33. g.setFont(f);
34. g.drawString(message, 100, 100);
35. }

36. private class ButtonListener implements ActionListener // the listener
37. {
38. public void actionPerformed(ActionEvent e) // must implement this method
39. {
40. if (e.getSource() �� helloButton) // event source is helloButton
41. {
42. message � "Hello"; // change the message String
43. repaint(); // repaint the frame
44. }
45. else if (e.getSource() �� goodbyeButton) // source is goodbyeButton
46. {
47. message � "Goodbye"; // change the message string
48. repaint(); // repaint the frame
49. }
50. else // the source is exit Button
51. System.exit(0);
52. }
53. }

54. public static void main(String[] args)
55. {
56. HelloAndGoodbye frame � new HelloAndGoodbye();
57. frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
58. }
59. }

 Output See Figure 19.5.

 Discussion
 Line 3: The ActionListener interface is defi ned in the package java.awt.event .
The statement

 import java.awt.*;

sim23356_ch19.indd 962sim23356_ch19.indd 962 12/15/08 7:26:10 PM12/15/08 7:26:10 PM

 Chapter 19 Event-Driven Programming 963

does not import the java.awt.event package. An explicit

 import java.awt.event.*;

is necessary.

 Lines 6–8 : Declare the three JButton references.

 Line 9: The String reference message refers to either "Hello" or "Goodbye".

 Lines 10–28: The Constructor
 Lines 12–14 : Instantiate the three JButton objects

 Line 15 : Initially message refers to the empty string.

 Lines 18–21 : Instantiate a panel, and add the buttons to the panel using

JPanel ’s default layout manager (FlowLayout).

 Line 22 : Place the panel in the frame using the JFrame ’s default layout

manager (BorderLayout).

 Line 24–26 : Register the listener with the three buttons. The listener class

is the inner class ButtonListener (lines 36–53). A connection must be set up

between each event source (a button) and the listener. The JButton method

 void addActionListener (new ButtonListener())

makes this connection. The listener must be registered with each of the

buttons. This registration can also be accomplished with the following

statements:

 ButtonListener buttonListener � new ButtonListener();
helloButton.addActionListener(buttonListener);
goodbyeButton.addActionListener(buttonListener);
exitButton.addActionListener(buttonListener);

Notice that all three buttons register the same listener, ButtonListener , which

handles events emanating from any of the three buttons.

 Lines 29–35: Override the paint(Graphics g) method of JFrame so that each time

the frame is repainted, the string referenced by message is drawn. Sometimes this

string is "Hello" and other times "Goodbye".

 Lines 36–53: The ButtonListener class (an inner class)
 Line 36 : ButtonListener must implement the ActionListener interface. See

Figure 19.4.

 Line 38 : The only method of the ActionListener interface is

 public void actionPerformed(ActionEvent e)

 By contract, ButtonListener implements this method.

 Line 40 : The object e belongs to ActionEvent, which extends EventObject .
ActionEvent inherits

 Object getSource()

which returns the object that triggered the event. Thus getSource() can return

a reference to helloButton, goodbyeButton, or exitButton .

 Lines 41–44 : If the event source is helloButton , change message to "Hello"
and repaint the frame. The repaint() method calls paint(Graphics g).

 Lines 45–49 : If the event source is goodbyeButton , change message to

"Goodbye" and repaint the frame.

 Line 51 : The event source is exitButton . Exit the application .

sim23356_ch19.indd 963sim23356_ch19.indd 963 12/15/08 7:26:11 PM12/15/08 7:26:11 PM

964 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 In Example 19.1, the listener class, ButtonListener , is an inner class, that is, a class

defi ned inside another class. Although a listener can be an external public class, using a

private inner class is more secure, effi cient, and semantically clear.

 In the remaining sections, we discuss some commonly used components and provide a

few simple applications that demonstrate how these components are used. There are many

components not explicitly discussed in this chapter. However, once you understand the

event delegation model, the learning curve becomes a bit fl atter and using new and different

components is a snap.

 19.3 COMPONENT AND JCOMPONENT

 The hierarchy of Figure 19.6 shows that most Swing components inherit from Component
and JComponent . JFrame extends Component and Container, but not JComponent .

Component
(abstract)

Container

Window

Frame

JComponent

JFrame

Other Swing
Components

FIGURE 19.6 All Swing classes derive from Component

 As a subclass of Component , each Swing component inherits a multitude of methods

defi ned in Component , including:

• void setSize(int width, int height)

• void setLocation(int x, int y)

• void setBounds(int x, int y, int width, int height)

• void setEnabled(boolean b)

• void setVisible(boolean b)

• void setName(String s)

• void setFont(Font f)

• void setBackground(Color c)

• void setForeground(Color c)

• void resize(int width, int height)

• void repaint()

sim23356_ch19.indd 964sim23356_ch19.indd 964 12/20/08 1:03:24 AM12/20/08 1:03:24 AM

 Chapter 19 Event-Driven Programming 965

• int getHeight()

• int getWidth()

• int getx()

• int gety()

• int getName()

• Color getBackground()

• Color getForeground()

• boolean isEnabled()

• boolean isVisible()

 Moreover, all components also inherit

• Component add(Component c), and

• void setLayout(LayoutManager layoutManager)

from Container.
 A button is certainly one of the most commonly utilized Component s. And, because

we have already used buttons in several layout applications, JButton is a good place to

start our discussion of Swing components. Like every class that extends Component and

 Container , JButton inherits the methods of these two superclasses.

 19.4 BUTTONS

 Buttons come in all shapes, sizes, and colors. Some display images and others text. Buttons

generate action events, and a “button listener” might send a document to a printer, copy or

paste text, save a fi le, open a fi le, or change a font style. And those are just a few actions

related to a word processor. There are Exit buttons, Go buttons, Submit buttons, Clear

buttons, and Resume buttons. Buttons are part of almost every GUI. Buttons are almost a

necessity.

 Here are the basics of the JButton class:

 Class: JButton

 Generates: ActionEvent

 Listener: Must implement ActionListener

 Listener method to implement: void actionPerformed(ActionEvent e)

 Register a listener: void addActionListener(ActionListener a)

 Constructors:

• JButton ()

 instantiates a JButton object that displays neither text nor image.

• JButton(String text)
 instantiates a JButton object that displays text .

• JButton (Icon icon)

 instantiates a JButton object that displays an image;

 can be invoked as JButton button(new ImageIcon(String fi lename)),
 where fi lename is the name of a graphic fi le such as zap.gif .

• JButton (String text, Icon icon)

 instantiates a JButton object that displays text as well as an image.

sim23356_ch19.indd 965sim23356_ch19.indd 965 12/15/08 7:26:12 PM12/15/08 7:26:12 PM

966 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

Some JButton Methods:

• public void setHorizontalAlignment(int alignment)
 sets the horizontal alignment of the text and/or image on the button. The align-

ment parameter is a Swing constant:

 SwingConstants.LEFT (numerical value: 2)
 SwingConstants.RIGHT (numerical value: 4, default)
 SwingConstants.CENTER (numerical value: 0)

• public int getHorizontalAlignment()
 returns the horizontal alignment.

• public void setVerticalAlignment(int alignment)
 sets the vertical alignment of the text and/or image on the button. The alignment

parameter is a Swing constant:

 SwingConstants.TOP (numerical value: 1)
 SwingConstants.BOTTOM (numerical value: 3)
 SwingConstants.CENTER (numerical value: 0, default)

• public int getVerticalAlignment()
 returns the vertical alignment.

• void setText(String text)
 sets the text that is displayed on the button.

• String getText()
 returns the text displayed on the button.

• void setIcon(Icon image) // e.g., setIcon(new ImageIcon("zap.gif "));
 sets the icon that is displayed.

• Icon getIcon()
 returns a reference to the button’s icon.

 There are many more JButton methods that can add some pizzazz to a GUI. One such

method is the setRolloverIcon(Icon image) method that sets a mouse rollover image.

Another useful JButton method is setMnemonic(int mnemonic), which assigns a key

sequence such as ALT-P to a button so that pressing ALT-P performs the same function

as the button. The preceding methods together with those inherited from Component
and Container are a beginning. Once you are comfortable with these methods, you

should explore Sun’s website and discover many more additional methods available to

a JButton object.

 Example 19.2 uses several buttons as part of the implementation of an interactive Tic-

Tac-Toe board.

 19.4.1 JButton in Action—Tic-Tac-Toe

 Problem Statement Design an interactive Tic-Tac-Toe board. The board should ini-

tially show nine empty squares. See Figure 19.7.

 Two players , X and O, alternately click on empty squares. Each time a player clicks

a square, the appropriate symbol (X or O) appears in the square and that square (button)

is disabled. See Figure 19.8.

 EXAMPLE 19.2

sim23356_ch19.indd 966sim23356_ch19.indd 966 12/15/08 7:26:13 PM12/15/08 7:26:13 PM

 Chapter 19 Event-Driven Programming 967

FIGURE 19.7 A Tic-Tac-Toe board

 FIGURE 19.8 The Tic-Tac-Toe board after five moves

 A Reset button clears the board. An Exit button terminates the application. In our appli-

cation, X always makes the fi rst move.

 Java Solution The following application extends JFrame . The constructor, which

builds the GUI,

• instantiates two JButton objects: resetButton and exitButton ,

• registers a listener (ButtonListener) with each button,

• places the buttons in a panel,

• creates an array of nine JButton objects, one for each square of the Tic-Tac-Toe

board,

• registers a listener (ButtonListener) with each of the nine array buttons,

• places the nine buttons in a panel using the GridLayout layout manager, and

• places the two panels of buttons in the frame.

sim23356_ch19.indd 967sim23356_ch19.indd 967 12/15/08 7:26:13 PM12/15/08 7:26:13 PM

968 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

The inner class, ButtonListener , responds to button events. This inner class

• implements the ActionListener interface and consequently

actionPerformed(ActionEvent e), and

• determines the source of an event:

 if the source is the Reset button, all buttons are cleared of text and enabled;

 if the source is the Exit button, the application terminates;

 if the source is one of the nine board buttons, that button’s text is set " X " or

"O", and the button is disabled.

The application follows.

 1. import java.awt.*;
2. import javax.swing.*;
3. import java.awt.event.*;

4. public class TicTacToeBoard extends JFrame
5. {
6. private JButton resetButton; // clear board
7. private JButton exitButton ; // ends game
8. private JButton[] board; // as a 3 by 3 grid of buttons
9. private int turn; // 1 for "X" and 0 for "O"

10. public TicTacToeBoard() // constructor builds the GUI
11. {
12. turn � 1; // for "'X"'
13. setTitle("Tic Tac Toe");
14. setBounds(0, 0, 300, 300);
15. resetButton � new JButton("Reset");
16. exitButton � new JButton("Exit");

17. // register listener with buttons
18. resetButton.addActionListener(new ButtonListener());
19. exitButton.addActionListener(new ButtonListener());

20. // add buttons to a panel and
21. // add the panel to the bottom of the frame
22. JPanel bottomPanel � new JPanel();
23. bottomPanel.add(resetButton);
24. bottomPanel.add(exitButton);

25. // instantiate a Panel for the board
26. // use the GridLayout layout manager (3 by 3) for the board

27. JPanel boardPanel � new JPanel();
28. boardPanel.setLayout(new GridLayout(3, 3));
29. board � new JButton[9];

30. for (int i � 0; i � 9; i��)
31. {
32. board[i] � new JButton();
33. board[i].setFont(new Font("Arial", Font.BOLD, 72));

34. // register the listener for each button

35. board[i].addActionListener(new ButtonListener());
36. boardPanel.add(board[i]);
37. }

sim23356_ch19.indd 968sim23356_ch19.indd 968 12/15/08 7:26:13 PM12/15/08 7:26:13 PM

 Chapter 19 Event-Driven Programming 969

38. // add both panels to the frame

39. add(bottomPanel,BorderLayout.SOUTH);
40. add(boardPanel,BorderLayout.CENTER);
41. setVisible(true);
42. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
43. }

44. private class ButtonListener implements ActionListener // responds to button event
45. {
46. public void actionPerformed(ActionEvent e) // ActionListener Interface method
47. {
48. if (e.getSource() �� resetButton) // Reset button?
49. for(int i � 0; i � 9; i��)
50. {
51. // remove X's and O's
52. board[i].setText("");

53. // enable all board buttons
54. board[i].setEnabled(true);
 turn � 1;
55. }
56. else if (e.getSource() �� exitButton)
57. System.exit(0);

58. else
59. for (int i � 0; i � 9; i��) // for each board square
60. if (e.getSource() �� board[i])
61. {
62. if (turn �� 1) // X's turn
63. board[i].setText("X"); // put an "X" on the board
64. else // O's turn
65. board[i].setText("O"); // put an "O" on the board
66. board[i].setEnabled(false); // disable or "gray-out" the button
67. turn � (turn � 1) % 2; // change turn designator, toggles 0 and 1
68. return; // source determined; return
69. }
70. }
71. }
72. public static void main(String [] args)
73. {
74. TicTacToeBoard frame � new TicTacToeBoard();
75.
76. }
77. }

 Output See Figures 19.7 and 19.8 for typical output

 Discussion
 Lines 6–8: The Declarations
 resetButton clears the board; exitButton terminates the program, and the nine

buttons of the board array comprise the game board.

 Line 9: The variable turn keeps track of the current player. A value of 1 indicates

that it is X ’s turn to move; 0 indicates that it is O ’s turn .

 Line 12: Player X makes the fi rst move.

 Line 18–19 : The inner class ButtonListener (lines 44–71) responds to events

generated by JButton objects. To respond to an event, a listener class must

sim23356_ch19.indd 969sim23356_ch19.indd 969 12/15/08 7:26:14 PM12/15/08 7:26:14 PM

970 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

register with the event source. The buttons resetButton and exitButton register the

ButtonListener via the method calls:

 resetButton.addActionListener(new ButtonListener());
exitButton.addActionListener(new ButtonListener()).

and consequently, establish a connection.

Lines 22–24: These statements create a JPanel, buttonPanel, and place

resetButton and exitButton in the panel using the default layout manager,

FlowLayout .

Lines 27–28: Here, the code instantiates a panel with layout manager

GridLayout (3, 3). This panel holds the nine buttons that constitute the game board.

Lines 30–37: For i � 0 to 8 the application

• creates a button, board[i], without text or icon (line 32);

• sets the font to Arial, Bold, 72 point (line 33);

• registers the listener, ButtonListener , with the new button via the method call

 addActionListener(Action Event) (line 35);

• places the button on the panel using GridLayout (line 36).

Each of the 11 buttons (board[0]…board[8], resetButton , and exitButton) registers

the same listener, ButtonListener .

Lines 39–40: Two panels have been created, bottomPanel and boardPanel . The

constructor places these two panels in the frame using the default BorderLayout
layout manager.

Lines 44–71: The ButtonListener class
 The inner class ButtonListener must implement the ActionListener interface.

See Figure 19.4. Thus, ButtonListener must implement the sole method of the

ActionListener interface:

 void actionPerformed(ActionEvent e).

When a button is pressed, an ActionEvent object is generated and passed as a

parameter to actionPerformed(…), which handles the event as follows:

 If the source of the event is resetButton (line 48),

 remove the text from all buttons (line 52), and enable all buttons (line 54).

 This action refreshes the board.

 If the source of the event is exitButton (line 56),

 call System.out.exit(0) and terminate the application (line 57).

 If the source of the event is one of the board buttons,

• set the button text to " X ", if it is X’s turn; otherwise set the button text to " O ";

• disable the button (line 66);

• change the value of turn (line 67). If turn is 1 then (1 � 1) % 2 � 0;

 if turn is 0 then (0 � 1) % 2 � 1.

 19.5 LABELS

A label is an area that can be used to display text or images. A label is not a source

of events.

sim23356_ch19.indd 970sim23356_ch19.indd 970 12/15/08 7:26:14 PM12/15/08 7:26:14 PM

 Chapter 19 Event-Driven Programming 971

 Here are the basics:

Class: JLabel

Constructors:

• JLabel ()
 instantiates a JLabel object that displays neither text nor an image.

• JLabel (String text)
 instantiates a JLabel object with text, text .

• JLabel(Icon icon) // e.g., JLabel label � new JLabel(new ImageIcon("pic.jpg"))
 instantiates a JLabel object that displays icon .

• JLabel (String text, int horizontalAlignment)
 instantiates a JLabel object that displays text . Alignment is determined by one of

the Swing constants : LEFT, RIGHT, CENTER

• JLabel(Icon icon, int horizontalAlignment)
 instantiates a JLabel object that displays icon . Alignment is determined by one of

the Swing constants: LEFT, RIGHT, CENTER

• JLabel(String text, Icon icon, int horizontalAlignment)
 instantiates a JLabel that displays text and icon . Alignment is determined by one of

the Swing constants: LEFT, RIGHT, CENTER

The JLabel class provides the same getters and setters as JButton , such as setText(String text)
and setAlignment(int alignment).
 Example 19.3 uses buttons and labels to create an electronic photo album. The buttons

generate the source events. The labels are used for display.

 19.5.1 A Photo Album—JLabel in Action

 EXAMPLE 19.3 Travelin’ Tina has recently returned from an Italian vacation with an extensive collec-

tion of full-size digital photos as well as a small “thumbnail” version of each photo.

She has saved the large photos in fi les named photo0.jpg, photo1.jpg, photo2.jpg , and so

on. The pictures in the thumbnail collection are appropriately named thumbnail0.jpg,
thumbnail1.jpg , etc.

 Problem Statement Devise an application that displays nine thumbnail pictures in

a single frame so that when Tina clicks on any thumbnail, a full size version shows in

another frame. The lower panel of the thumbnail frame contains two buttons, a Next but-

ton and an Exit button. When the Next button is clicked, the next batch of nine thumb-

nail pictures comes into view. After the last thumbnail is shown, the display cycles

around and the fi rst thumbnail is once again displayed. The Exit button terminates the

application. Figure 19.9 shows the fi rst “tray” of thumbnails.

 Java Solution The following solution consists of three interacting classes:

 1. PhotoAlbum

 • PhotoAlbum maintains two ArrayList�ImageIcon� objects: one list holds

full-size photos, the other thumbnails.

 • PhotoAlbum provides methods that return the number of photos, the i th photo, or

the i th thumbnail.

sim23356_ch19.indd 971sim23356_ch19.indd 971 12/15/08 7:26:16 PM12/15/08 7:26:16 PM

972 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

FIGURE 19.9 Nine thumbnail pictures displayed in a frame

 This class is not part of the GUI. The class strictly maintains the data of the

application.

 2. PictureFrame

 • PictureFrame extends JFrame , displays a single picture on a label, and places

the label in the center of a frame.

 • PictureFrame also provides a method that changes the picture.

 Figure 19.10 shows this frame.

FIGURE 19.10 A full-size photo

C
ou

rt
es

y
C

ha
rl

es
 S

im
on

so
n

C
ou

rt
es

y
C

ha
rl

es
 S

im
on

so
n

sim23356_ch19.indd 972sim23356_ch19.indd 972 12/18/08 7:47:39 PM12/18/08 7:47:39 PM

 Chapter 19 Event-Driven Programming 973

 3. ManagePhotos

 • ManagePhotos extends JFrame and contains three panels in the NORTH , CENTER ,

and SOUTH sections of the frame. This is the frame shown in Figure 19.9.

 • The NORTH panel holds a label that displays a title string. The title string of

Figure 19.9 is “My Trip to Pompeii”.

 • The CENTER panel is a grid of nine buttons. Each button displays one

thumbnail. Clicking a button displays the corresponding full size photo in a

 PictureFrame object.

 • The SOUTH panel contains two buttons, Next and Exit . Clicking the Next button

changes the nine pictures in the center grid. The Next button is dis abled if there

are fewer than 10 pictures.

 In the exercises, we ask you to add a Previous button that allows a user to move

backward as well as forward through the pictures (see Programming Exercise 3).

 ManagePhotos includes a call to validate(), which is defi ned in Container . Sun’s

documentation states:

AWT uses validate() to cause a container to lay out its subcomponents again after the

components it contains have been added to or modifi ed.

 Contrast this method with repaint(), which does not lay out components again, but

instead calls paint(g) to render each component again. The latter method is used when

component features like color or text on a label have changed, but no new layout is

necessary—that is, the size and location of the components stays fi xed.

 ///////////////////////////// PhotoAlbum class /////////////////////////////

1. import java.awt.*;
2. import javax.swing.*;
3. import java.util.*; // for ArrayList
4. import java.io.*;

5. public class PhotoAlbum
6. {
7. ArrayList�ImageIcon� thumbnails; // holds thumbnail pics
8. ArrayList�ImageIcon� photos; // holds full size pics

9. public PhotoAlbum() // constructor, adds the photos and thumbnails to the ArrayLists
10. {
11. thumbnails � new ArrayList�ImageIcon� (); // set initial capacity
12. photos � new ArrayList�ImageIcon�();
13. int picNum � 0;

14. while((new File("Pompeii/thumbnail" � picNum � ".jpg").exists())) // for each photo
15. {
16. ImageIcon thumb � new ImageIcon("Pompeii/thumbnail" � picNum � ".jpg"); // thumbnail0.jpg, etc.
17. ImageIcon full � new ImageIcon("Pompeii/photo" � picNum � ".jpg"); // photo0.jpg, etc.
18. thumbnails.add(thumb); // adds to the end of the ArrayList
19. photos.add(full);
20. picNum��;
21. }
22. }

23. public ImageIcon getPhoto(int i) // returns the ith photo
24. {
25. return photos.get(i);
26. }

sim23356_ch19.indd 973sim23356_ch19.indd 973 12/15/08 7:26:17 PM12/15/08 7:26:17 PM

974 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

27.
28. public ImageIcon getThumbnail(int i) // returns the ith thumbnail
29. {
30. return thumbnails.get(i);
31. }

32. public int numPhotos() // returns the number of photos in the album
33. {
34. return photos.size();
35. }
36. }

 ///////////////////////////// PictureFrame class /////////////////////////////

37. import java.awt.*;
38. import javax.swing.*;

39. public class PictureFrame extends JFrame
40. {
41. private JLabel pictureLabel;
42. private JPanel picturePanel;
43. public PictureFrame() // default constructor
44. {
45. super("Picture Frame"); // invoke parent constructor
46. JFrame PictureFrame � new JFrame();

47. // Make the frame fill the entire screen
48. Toolkit tk � Toolkit.getDefaultToolkit();
49. Dimension dim � tk.getScreenSize(); // returns screen width, height
50. setBounds(0,0, dim.width, dim.height);

51. // place a label in a panel; place the panel in the frame
52. pictureLabel � new JLabel();
53. picturePanel � new JPanel();
54. picturePanel.add(pictureLabel);
55. add(picturePanel, BorderLayout.CENTER);
56. }

57. public void changePhoto(Icon icon)
58. // change the picture displayed in the frame by changing
59. // the picture displayed in the label
60. {
61. pictureLabel.setIcon(icon);
62. }
63. }

///////////////////////////// ManagePhotos class /////////////////////////////

64. import java.awt.*;
65. import javax.swing.*;
66. import java.awt.event.*;

67. public class ManagePhotos extends JFrame
68. {
69. private JButton nextButton; // to show the next nine thumbnails
70. private JButton exitButton; // exit application
71. private JPanel buttonPanel; // for the next and Exit buttons

72. private PhotoAlbum album; // holds photos and thumbnails
73. private JButton[] display; // one button for each thumbnail
74. private JPanel displayPanel; // holds 9 thumbnail buttons

sim23356_ch19.indd 974sim23356_ch19.indd 974 12/15/08 7:26:18 PM12/15/08 7:26:18 PM

 Chapter 19 Event-Driven Programming 975

75. private JLabel titleLabel; // displays title of the display
76. private JPanel titlePanel; // holds the title label

77. private PictureFrame PictureFrame; // displays one large photo
78. int nextPicture; // number of next thumbnail placed in the display

79. public ManagePhotos() // default constructor
80. {
81. setTitle("Pompeii Thumbnails");
82. setBounds(0, 0, 600, 500);
83. album � new PhotoAlbum();

84. // create the title label and place it in a panel

85. titleLabel � new JLabel();

86. titleLabel.setFont(new Font("Comic Sans Serif", Font.BOLD, 24));

87. titleLabel.setForeground(Color.RED);

88. titleLabel.setText("My Trip to Pompeii");

89. titlePanel � new JPanel();

90. titlePanel.add(titleLabel);

91. // create the buttons and place them in a panel
92. nextButton � new JButton("Next");
93. if (album.numPhotos() �� 9)
94. nextButton.setEnabled(false);
95. exitButton � new JButton("Exit");
96. buttonPanel � new JPanel();
97. buttonPanel.add(nextButton); // add the two buttons to the panel
98. buttonPanel.add(exitButton);

99. // register the listener for the buttons
100. nextButton. addActionListener (new ButtonListener());
101. exitButton. addActionListener (new ButtonListener());

102. // create a button for each thumbnail
103. // register a listener with each button
104. display � new JButton[album.numPhotos()]; // instantiate the array
105. for (int i � 0; i � album.numPhotos(); i��)
106. {
107. display[i] � new JButton(album.getThumbnail(i)); // populate the array
108. display[i].addActionListener(new ButtonListener()); // register a listener for each thumbnail
109. }

110. displayPanel � new JPanel(); // panel holds 9 buttons that display thumbnails
111. displayPanel.setLayout(new GridLayout(3, 3));

112. // place the thumbnails in a panel
113. for (int i � 0; i � 9; i��) // for the first nine thumbnails
114. if (i � album.numPhotos())
115. displayPanel.add(display[i]);

116. // place the three panels in the frame
117. add(titlePanel, BorderLayout.NORTH);
118. add(buttonPanel,BorderLayout.SOUTH);
119. add(displayPanel, BorderLayout.CENTER);

120. // reset nextPicture
121. if (album.numPhotos() � 9)
122. nextPicture � 0;
123. else
124. nextPicture � 9;

125. setVisible(true);

sim23356_ch19.indd 975sim23356_ch19.indd 975 12/15/08 7:26:18 PM12/15/08 7:26:18 PM

976 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

126. // create an empty PictureFrame object that displays a photo
127. PictureFrame � new PictureFrame();
128. }

129. // responds to button events
130. private class ButtonListener implements ActionListener
131. {
132. // method in the ActionListener interface
133. public void actionPerformed(ActionEvent e)
134. {
135. if (e.getSource() �� nextButton)
136. {
137. remove(displayPanel); // the current display of thumbnails
138. displayPanel � new JPanel();
139. displayPanel.setLayout(new GridLayout(3, 3));

140. for(int i � 1; i �� 9; i��) // display next 9 thumbnails
141. {
142. displayPanel.add(display[nextPicture]);
143. // increment nextPicture and wrap around to 0
144. nextPicture � (nextPicture � 1) % album.numPhotos();
145. }
146. add(displayPanel, BorderLayout.CENTER);
147. validate(); // layout the components of the frame again
148. }
149. else if (e.getSource() �� exitButton)
150. {
151. System.exit(0);
152. }
153. else // determine which thumbnail button was clicked
154. for(int i � 0; i � (album.numPhotos()); i��)
155. {
156. if (e.getSource() �� display[i]) // clicked on a thumbnail
157. {
158. PictureFrame.changePhoto(album.getPhoto(i)); // change the large photo
159. PictureFrame.setVisible(true);
160. return;
161. }
162. }
163. }
164. }

165. public static void main(String[] args)
166. {
167. ManagePhotos frame � new ManagePhotos();
168. }
169. }

 Output Figure 19.9 shows the initial tray of thumbnail pictures. Clicking the third pic-

ture in the fi rst row displays the frame of Figure 19.10.

 Discussion

Lines 1–36: The PhotoAlbum Class

 Lines 14–21: The photos and thumbnails are added to the appropriate lists.

The photos are stored in fi les conveniently named photo i .jpg and thumbnail i. jpg .

The condition of the while loop on line 14:

 new File("Pompeii/thumbnail" � picNum � ".jpg").exists()

sim23356_ch19.indd 976sim23356_ch19.indd 976 12/15/08 7:26:19 PM12/15/08 7:26:19 PM

 Chapter 19 Event-Driven Programming 977

returns true if a fi le with the name thumbnail i .jpg , where i � 0, 1, 2, . . ., exists.

After loading the last pair of thumbnail and full-size photos, the condition on line

14 returns false and the loop terminates.

Lines 37–63: The PictureFrame Class

 This class is very simple. Its purpose is to display a single image. Initially, an

empty label is placed in a panel, which in turn is placed in the CENTER section of

a frame. The method changePhoto(ImageIcon image) places image in the label.

See Figure 19.10.

Lines 64–169: The ManagePhotos Class

 This class extends JFrame . Figure 19.9 shows a frame created using this class.

The frame has three panels.

 In the NORTH section of the frame is a panel, titlePanel , which is declared on

line 76 and holds a label, titleLabel , declared on line 75. The panel and label are

instantiated in the constructor on lines 85–90. The statements on lines 85–90 also

set the font and foreground color of the label.

 The CENTER section of the frame shows a 3 by 3 grid of nine buttons. Each

button displays a thumbnail version of a larger photo. The statement on line 73

declares display as an array of thumbnail buttons, and the statement on line 74

declares the panel, displayPanel , that holds the buttons. The array referenced by

 display is created on line 104 and populated with JButton references on line 107.

On line 108, each button registers a listener.

 The loop on lines 113–115 adds (at most) nine buttons to the panel.

 The SOUTH section of the frame of Figure 19.9 holds a panel, buttonPanel ,
with two buttons, nextButton and exitButton . These JButton references are

declared on lines 70–71 and instantiated in the constructor (lines 92 and 95). If

there are nine or fewer pictures, the nextButton is disabled (lines 93–94). Each

button registers a listener (lines 100–101).

 The three panels are placed in the frame using the default BorderLayout
layout manager (lines 117–119).

 In addition to the components of the frame, a PictureFrame reference is

declared on line 77 and a PictureFrame object instantiated on line 127. This frame

holds one large photo. Initially, this frame is not visible.

 The inner class ButtonListener (lines 130–163) responds to button events.

 If the source of an event is nextButton , the listener handles the event by

• removing the panel of thumbnails currently displayed in the frame

(line 137),

• creating a new panel (lines 138 and 139),

• placing the next nine thumbnail buttons in the panel (lines 140–145),

• adding the panel to the frame (line 146), and

• validating the frame, that is, laying out the frame’s components again (line 147).

The integer variable nextPicture (declared on line 78) holds the number of the

next picture that is placed in the display panel. Initially nextPicture is 0. After

the fi rst nine pictures are placed, nextPicture has the value 9. Note that the fi rst

nine pictures are numbered 0 through 8. The variable nextPicture is updated on

line 144. The value of nextPicture returns to 0 after it reaches the number of the

last photo. This is accomplished with the % operator (line 144).

sim23356_ch19.indd 977sim23356_ch19.indd 977 12/15/08 7:26:19 PM12/15/08 7:26:19 PM

978 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 If the event source is exitButton the application exits (lines 149–152).

 Otherwise, the event source is one of the thumbnail buttons. When the particular

button is determined (line 156), a new photo is placed in the frame referenced by

PictureFrame , and that frame is made visible (lines 158–159).

 19.6 TEXT FIELDS

A text fi eld holds one line of text (a string) and can be used for input or output.

 See Figure 19.11.

FIGURE 19.11 A text field in a frame

 Here are the basics:

Class: JTextField

Generates: ActionEvent when a user presses the Enter key.

Listener: Must implement ActionListener

 Listener method to implement: void actionPerformed(ActionEvent e)

Register a listener: void addActionListener(ActionListener a)

Constructors:
• JTextField(int numColumns)

 creates a JTextField object with numColumns columns that are visible. The initial

string of the text fi eld is the empty string, that is, the string with no characters.

• JTextField (String text)
 creates a JTextField object and initializes the text to text , which is shown with

enough columns to display the entire string.

• JTextField (String text, int numColumns)

 creates a JTextField object with numColumns columns and initial text, text .

 Methods:
• void setText(String text)

 places text in the text fi eld.

• String getText()
 returns the text in a text fi eld.

• void setEditable(boolean editable)
 if editable is false , the string in the text fi eld is read-only, that is, it cannot

be changed.

• boolean isEditable()
 returns false if the text fi eld is read-only.

sim23356_ch19.indd 978sim23356_ch19.indd 978 12/15/08 7:26:20 PM12/15/08 7:26:20 PM

 Chapter 19 Event-Driven Programming 979

• void setColums(int numColums)
 sets the number of columns that are displayed by the text fi eld.

• int getColumns()
 returns the number of columns that are displayed by the text fi eld.

• void setFont(Font font)
 set the font to font .

• void setHorizontalAlignment (int alignment) alignment is

 JTextField.LEFT, JTextField.RIGHT , or JTextField.CENTER. The default is LEFT .

 Example 19.4 uses a text fi eld for input.

 19.6.1 A Loan Calculator—JTextField in Action

 EXAMPLE 19.4 The following formula determines the monthly payment on a loan such that:

 • amount is the amount borrowed,

 • interest is the yearly percent interest rate (e.g., 6.5), and

 • years is the duration of the loan in years.

 payment � amount � interest /1200.0 ______________________

1 � (1 � interest _______
1200.0

)
 �12 (years)

 �

 Problem Statement Design an application that accepts

 • the amount of a loan,

 • the duration (in years) of the loan, and

 • the yearly interest rate

and calculates the monthly payment. Use three text fi elds for input and an addi-

tional text fi eld for output.

 Java Solution The following solution utilizes two classes:

 • LoanPayment , a utility class with a single static method

 double getPayment(double amount, double interest, double years)

 that calculates and returns the monthly payment, and

 • LoanCalculator , a class that extends JFrame , with three text fi elds for input and

one for output. See Figure 19.12.

 // A utility class with a static method that returns a loan payment rounded to two decimal places //

1. public class LoanPayment
2. {
3. public static double getPayment(double amount, double interest, double years)
4. {
5. double payment �
 amount * ((interest / 1200.0) / (1 � Math.pow (1 � interest/1200.0, �years * 12)));
6. return(Math.round(payment * 100)) / 100.00; // rounds to 2 decimal places
7. }
8. }

sim23356_ch19.indd 979sim23356_ch19.indd 979 12/15/08 7:26:20 PM12/15/08 7:26:20 PM

980 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

////////////// Loan Calculator Class //////////////

9. import java.awt.*;
10. import javax.swing.*;
11. import java.awt.event.*;

12. public class LoanCalculator extends JFrame
13. {
14. private JTextField amountField;
15. private JTextField interestField;
16. private JTextField yearsField;
17. private JTextField paymentField;
18. private JButton submitButton;
19. private JButton clearButton;
20. private JButton exitButton;

21. public LoanCalculator() // constructor
22. {
23. super("Monthly Payment");
24. setBounds(0, 0, 250, 200);
25. JPanel panel � new JPanel(); // for text fields and labels

26. // make a label for each text field
27. // add the labels and text fields to the panel

28. JLabel amountLabel � new JLabel();
29. amountLabel.setFont(new Font("Courier", Font.BOLD, 12));
30. amountLabel.setText(" Amount:");
31. amountField � new JTextField(10);
32. panel.add(amountLabel); // place the label in the panel
33. panel.add(amountField); // place the text field in the panel

34. JLabel interestLabel � new JLabel();
35. interestLabel.setFont(new Font("Courier", Font.BOLD, 12));
36. interestLabel.setText("Interest:");
37. interestField � new JTextField(10);
38. panel.add(interestLabel);
39. panel.add(interestField);

40. JLabel yearsLabel � new JLabel();
41. yearsLabel.setFont(new Font("Courier", Font.BOLD, 12));

FIGURE 19.12 A loan calculator GUI

sim23356_ch19.indd 980sim23356_ch19.indd 980 12/15/08 7:26:21 PM12/15/08 7:26:21 PM

 Chapter 19 Event-Driven Programming 981

42. yearsLabel.setText(" Years:");
43. yearsField � new JTextField(10);
44. panel.add(yearsLabel);
45. panel.add(yearsField);

46. JLabel paymentLabel � new JLabel();
47. paymentLabel.setFont(new Font("Courier", Font.BOLD, 12));
48. paymentLabel.setText(" Payment:");
49. paymentField � new JTextField(10);
50. panel.add(paymentLabel);
51. panel.add(paymentField);
52. paymentField.setEditable(false); // read-only

53. add(panel, BorderLayout.CENTER); // add the panel to the frame

54. // add three buttons to the bottom of the frame

55. JPanel buttonPanel � new JPanel(); // holds the buttons
56. submitButton � new JButton("Submit"); // calculates
57. exitButton � new JButton("Exit"); // ends application
58. clearButton � new JButton("Clear"); // clears all fields
59. buttonPanel.add(submitButton); // add buttons to buttonPanel
60. buttonPanel.add(clearButton);
61. buttonPanel.add(exitButton);
62. add(buttonPanel, BorderLayout.SOUTH); // add buttonPanel to bottom of frame

63. // register a listener with each button

64. submitButton.addActionListener(new ButtonListener());
65. clearButton.addActionListener(new ButtonListener());
66. exitButton.addActionListener(new ButtonListener());

67. setResizable(false);
68. setVisible(true);
69. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
70. }

71. private class ButtonListener implements ActionListener // responds to the button events
72. {
73. public void actionPerformed(ActionEvent e) // method of ActionListener
74. {
75. if (e.getSource() �� submitButton) // calculates payment
76. try // DoubleParseDouble() throws NumberFormatException
77. {
78. // retrieve data from the text fields; the data are strings
79. // use Double.parseDouble(..) to convert the strings to numbers
80. double amount � Double.parseDouble(amountField.getText());
81. double interest � Double.parseDouble(interestField.getText());
82. double years � Double.parseDouble(yearsField.getText());
83. double payment � LoanPayment.getPayment(amount, interest, years);
84. // setText() requires a String reference, payment � "" returns a String
85. paymentField.setText(payment � "");
86. }
87. catch(NumberFormatException ex) // if a text field has bad data
88. {
89. paymentField.setText("Illegal Input");
90. }

91. else if (e.getSource() �� clearButton) // clear all fields

sim23356_ch19.indd 981sim23356_ch19.indd 981 12/15/08 7:26:22 PM12/15/08 7:26:22 PM

982 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

92. {
93. amountField.setText("");
94. interestField.setText("");
95. yearsField.setText("");
96. paymentField.setText("");
97. }
98. else
99. System.exit(0);
100. }
101. }

102. public static void main(String[] args)
103. {
104. LoanCalculator frame � new LoanCalculator();
105. }

106. }

 Output Figure 19.13 shows the results of running the program twice, once with good

data in and once with illegal data.

FIGURE 19.13 LoanCalculator: with legal and illegal data

 Discussion
Lines 1–8: The LoanPayment class provides a single utility method that

returns the monthly payment (double) when values are supplied to parameters

amount, interest , and years . The return value is rounded to two decimal places

(line 6). For example, if

 payment � 1000. 34 8456765, then
 payment * 100 � 1000 34 .8456765, and
 round(payment * 100) � round(100034.8456765) � 1000 35 , and finally
 round(payment * 100) / 100.00 � 100035/100.00 � 1000. 35 .

 Lines 14–20: These statements are the declarations for the components that are

shown in Figure 19.12.

 Lines 21–70: The default constructor

 Figure 19.12 shows four labeled text fi elds. Consequently, there are four

groups of statements that instantiate the four text fi eld/label pairs, set the

sim23356_ch19.indd 982sim23356_ch19.indd 982 12/15/08 7:26:22 PM12/15/08 7:26:22 PM

 Chapter 19 Event-Driven Programming 983

characteristics, and place the components in the panel that is instantiated on

line 25. The statement groups are lines 28–33, 34–39, 40–45, and 46–51.

Each statement group

 • instantiates a label (lines 28, 34, 40, 46)

 • sets the font for the label (lines 29, 35, 41, 47)

 • sets the name of the label (lines 30, 36, 42, 48)

 • instantiates a text fi eld (lines 31, 37, 43, 49)

 • places the label in a panel (lines 32, 38, 44, 50)

 • places the text fi eld in a panel (lines 33, 39, 45, 51)

 The payment fi eld is not editable (line 52).

 Finally, the panel is added to the frame (line 53).

 The visual layout of the labels and text fi elds consists of four rows because

the width of the panel is just large enough to hold a single label/text fi eld pair.

Because the panel is not resizable, its width is constant. If the panel were

resizable, the four labels and four text fi elds might stretch into longer and

fewer rows.

 Lines 55–62 handle the buttons that are shown in Figure 19.12. That is, three

JButton objects are created and placed in a panel. The panel is then added to the

SOUTH section of the frame. Finally, a listener is registered with each button

(lines 64–66).

Lines 71–101: The ButtonListener class

 To respond to a button-generated event, ButtonListener must implement the

ActionListener interface and consequently the ActionPerformed(ActionEvent e)
method. When an event occurs, an ActionEvent object is passed to

ActionPerformed(...), which handles the response. The event source can be

submitButton, clearButton, or exitButton.
 The code on lines 75–90 handles the response to an event generated by

submitButton . The listener responds by:

 • retrieving the values in the text fi elds labeled Amount , Interest , and Years

(lines 80–82),

 • passing these values to the getPayment(...) method belonging to LoanCalculator
(line 83), and

 • placing the return value in the text fi eld labeled Payment (line 85).

 To calculate the monthly payment, the three strings returned by getText()
must be converted to numerical (double) data. This is done via calls to

Double.parseDouble(String s) (lines 80–82).

 If a user enters faulty data such as “100x” into one of the text fi elds,

Double.parseDouble(String s) throws a NumberFormatException exception.

The exception is caught by the catch block of lines 87–90.

 The response to an event generated by clearButton is handled by the code

of lines 91–97. The response is simple: all text fi elds are set to the empty

string.

 The response to an exitButton event is a call to System.exit(0) (line 99).

 Finally, note that the listener does not receive events generated by the text

fi eld. Indeed, the text fi eld does not register any listener. If the Enter key is

pressed, an event is generated but no listener responds. Only an event fi red by a

button merits a response.

sim23356_ch19.indd 983sim23356_ch19.indd 983 12/15/08 7:26:23 PM12/15/08 7:26:23 PM

984 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 19.7 TEXT AREAS

A text fi eld holds a single line of data; a text area holds multiple lines.

 The number of lines and the length of each line of a text area are defi ned in the constructor.

Moreover, a text area can also display horizontal and vertical scroll bars , if desired. See

Figure 19.14.

FIGURE 19.14 A text area with a vertical scroll bar

 Here are the basics:

 Class: JTextArea

 Generates: ActionEvent when a user presses the Enter key .

 Listener: Must implement ActionListener .

 Listener method to implement: void actionPerformed(ActionEvent e)

 Register a listener: void addActionListener (ActionListener a)

 Constructors:

• public JTextArea ()

 instantiates a JTextArea object that displays no initial text.

• public JTextArea (String text)
 ins tantiates a JTextArea object that displays the string text .

• public JTextArea(int rows, int cols)
 instantiates a JTextArea object with rows rows and cols columns and displays no

initial text.

• public JTextArea(String text, int rows, int cols)
 instantiates a JTextArea object with rows rows and cols columns and displays the

string text .

 The methods of JTextField are also applicable to JTextArea . Additionally, the follow-

ing methods are also available:

• void append(String text)
 appends text to the end of a text area.

• void insert (String text, int place)
 inserts text at position place.

sim23356_ch19.indd 984sim23356_ch19.indd 984 12/15/08 7:26:24 PM12/15/08 7:26:24 PM

 Chapter 19 Event-Driven Programming 985

• void replaceRange(String text, int start, int end)
replaces the characters from position start to position end with text .

• void setLineWrap(boolean wrap)
 if wrap is set to true , lines that exceed the allocated number of colums of a text

area will wrap to the next line. The default is false .

• boolean getLineWrap()
 returns true if line wrapping is enabled.

• void setWrapStyleWord(boolean wrap)
 if line wrap is enabled and wrap is set to true then lines wrap only at whitespace.

That is, no single word appears on two lines.

• boolean getWrapStyleWord()
returns true if word wrapping is enabled.

• void setRows(int rows)
 sets the number of rows of a text area to rows .

• int getRows()
 returns the number of visible rows.

• int getLineCount()
 returns the number of lines displayed in a text area. Lines are determined by the

newline character. A wrapped line does not constitute two lines.

 In addition to the text area methods, JTextArea and JTextField inherit the following

methods familiar to anyone who has used a word processor or text editor. These methods

are inherited from JTextComponent.

• void copy()
 copies selected text to the system clipboard. Text is selected as you normally select

text when using an editor or a word processor.

• void cut()
 removes the selected text from the text area (fi eld) and moves the text to the system

clipboard.

• void paste()
 places the contents of the system clipboard into the text area (fi eld). If text in the

component has been selected, that text is replaced. If text is not selected, the clip-

board text is inserted at the position of the cursor.

• void selectAll()
 marks as selected all the text in the component.

 Finally, even if you have not read Chapter 15 (Stream I/O), you can easily use the fol-

lowing two methods that read data from a fi le into a text area and write the data of a text

area to a fi le.

• read (Reader in, Object o) throws IOException

 initializes the text area using the Reader stream in. For our purposes, o should be

set to null . The following statements read the contents of myFile.txt into text area

 textArea:

 FileReader in � new FileReader("myFile.txt");
textArea.read(in, null); // the contents of myFile.txt is read into the text area.
in.close();

 Because FileReader is-a Reader , the upcast causes no problem.

• write (Writer out) throws IOException

sim23356_ch19.indd 985sim23356_ch19.indd 985 12/15/08 7:26:24 PM12/15/08 7:26:24 PM

986 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 writes the contents of a text area to the Writer stream. The following segment writes the

contents of textArea to a text fi le, output.txt :

 FileWriter out � new FileWriter("output.txt");
textArea.write(out);
out.close();

 19.7.1 Scroll Bars
 Scroll bars are often a necessary addition to a text area.

You can add a scroll bar to a text area by placing a text area in a scroll pane.

 Although we do not discuss the JScrollPane class in any detail, the following code seg-

ments demonstrate how you can add scroll bars to a text area. If you prefer that horizontal

and vertical scroll bars appear only when necessary (the default), pass a JTextArea refer-

ence to JScrollPane :

 private JTextArea textArea � new JTextArea();
JScrollPane scrollArea � new JScrollPane(textArea);

Or, you can set the scroll bar policy with the following segment:

 private JTextArea textArea � new JTextArea();
JScro llPane scrollArea �

new JScrollPane(textArea, int verticalPolicy, int horizontalPolicy);

where verticalPolicy is one of:

• ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED

• ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS

• ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER

and horizontalPolicy is one of:

• ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED

• ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS

• ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER

Example 19.5 uses two text areas, one text fi eld, and four buttons to decipher a coded

message.

 A Caesar cipher is an encryption method that replaces each letter of some text with

another letter that is a fi xed number of positions farther down in the alphabet. For exam-

ple, a 3 -shift replaces A with D, B with E, W with Z, and cycling back, X with A, Y with

B, and Z with C. So, a 3-shift encodes CAESAR as FDHVDU; but a 15-shift encodes

CAESAR as RPTHPH.

 Breaking a Caesar cipher requires trying up to 25 different shifts. While that may

have been a tedious task for Roman cryptographers, it is no challenge at all for modern-

day Java programmers.

 Problem Statement Write an application that displays two text areas, a text fi eld,

and fi ve buttons. A user enters a character shift number (0–25) in the text fi eld and, in

 EXAMPLE 19.5

 19.7.2 Encryption with GUI—Using JTextArea

sim23356_ch19.indd 986sim23356_ch19.indd 986 12/15/08 7:26:24 PM12/15/08 7:26:24 PM

 Chapter 19 Event-Driven Programming 987

one text area, a message, either coded or uncoded. If the message is uncoded, the user

clicks a button labeled Encode and a coded version appears in the second text fi eld. An

uncoded message may contain punctuation and whitespace that will be removed when

encoded. Encoded messages are comprised of uppercase letters with no punctuation or

whitespace. If the original message is a coded message, the Decode button produces

a version of the message using the supplied shift number. The decoded message may

make sense or it may not, depending on whether or not the shift value is correct.

 A Move button transfers a message from the output area to the input area. This

allows you to transfer a coded message to the input box without retyping the message.

A Clear button clears all text areas. See Figure 19.15.

FIGURE 19.15 The left text area is for input, the right for output

 Java Solution The following solution consists of two classes:

 • The CaesarCipher class is a utility class that consists of two static methods: one

method encodes a string using a shift in the range 0−25. The second method

decodes a message.

 • The Decoder class extends JFrame and sets up the GUI shown in Figure 19.15. The

constructor sets up the GUI and an inner class, ButtonListener , responds to events gen-

erated by the fi ve GUI buttons. The Encode button invokes CaesarCipher.code(String
msg, int shift) and the Decode button CaesarCipher.decode(String msg, int shift).

 1. public class CaesarCipher
2. {
3. public static String code(String msg, int shift)
4. {
5. // Encodes msg using the supplies shift
6. // Shift must be an integer in the range 0 � 25
7. // Returns the encoded message

8. String codedMessage � new String();
9. msg � msg.toUpperCase(); // change all letters to uppercase
10. for (int i � 0; i < msg.length(); i��) // for each letter of the message
11. {

sim23356_ch19.indd 987sim23356_ch19.indd 987 12/15/08 7:26:25 PM12/15/08 7:26:25 PM

988 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

12. char ch � msg.charAt(i);
13. if (ch �� 'A' && ch �� 'Z') // do not include punctuation or whitespace
14. {
15. int oldPositionInAlphabet � ch � 'A'; // 0 to 25
16. int newPositionInAlphabet � (oldPositionInAlphabet � shift) % 26; // %26 enables cycling
17. codedMessage � codedMessage � (char)(newPositionInAlphabet � 'A'); // ASCII value
18. }
19. }
20. return codedMessage;
21. }

22. public static String decode(String msg, int shift)
23. {
24. // Decodes msg using the supplies shift
25. // Shift must be an integer in the range 0 � 25
26. // Returns the decoded message

27. String decodedMessage � new String();
28. for (int i � 0; i � msg.length(); i��) // for each letter of the message
29. {
30. char ch � msg.charAt(i);
31. int oldPositionInAlphabet � ch � 'A'; // 0..25
32. int newPositionInAlphabet � (oldPositionInAlphabet � shift);
33. if (newPositionInAlphabet � 0)
34. newPositionInAlphabet � newPositionInAlphabet � 26;
35. decodedMessage � decodedMessage � (char)(newPositionInAlphabet � 'A');
36. }
37. return decodedMessage;
38. }
39. }

40. import java.awt.*;
41. import javax.swing.*;
42. import java.awt.event.*;

43. public class Decoder extends JFrame
44. {
45. private JTextArea inputTextArea;
46. private JTextArea outputTextArea;
47. private JTextField shiftTextField;
48. private JButton encodeButton;
49. private JButton decodeButton;
50. private JButton clearButton;
51. private JButton moveButton; // move text from output area to input area
52. private JButton exitButton;

53. public Decoder() // constructor
54. {
55. super("Message Decoder");
56. setBounds(0, 0, 500, 300);
57. JPanel topPanel � new JPanel(); // for the text field
58. JLabel shiftLabel � new JLabel("Enter shift (0�25)");
59. shiftTextField � new JTextField(5);
60. topPanel.add(shiftLabel);
61. topPanel.add(shiftTextField);

62. JPanel buttonPanel � new JPanel();
63. encodeButton � new JButton("Encode");
64. decodeButton � new JButton("Decode");
65. moveButton � new JButton(" Move ");
66. clearButton � new JButton("Clear");
67. exitButton � new JButton("Exit");
68. buttonPanel.add(encodeButton);

sim23356_ch19.indd 988sim23356_ch19.indd 988 12/15/08 7:26:25 PM12/15/08 7:26:25 PM

 Chapter 19 Event-Driven Programming 989

69. buttonPanel.add(decodeButton);
70. buttonPanel.add(moveButton);
71. buttonPanel.add(clearButton);
72. buttonPanel.add(exitButton);

73. JPanel textPanel � new JPanel(new GridLayout(1, 2)); // two text areas
74. inputTextArea � new JTextArea("Enter Text", 25, 20); // include directions in the input area
75. outputTextArea � new JTextArea(25, 20);
76. inputTextArea.setLineWrap(true);
77. outputTextArea.setLineWrap(true);
78. outputTextArea.setEditable(false);

79. // Get Scroll Panes for the TextAreas

80. JScrollPane inputPane � new JScrollPane(inputTextArea); // scroll bars if necessary
81. JScrollPane outputPane � new JScrollPane(outputTextArea);
82. textPanel.add(inputPane);
83. textPanel.add(outputPane);

84. // Place the three panels in the frame

85. add(topPanel, BorderLayout.NORTH);
86. add(buttonPanel, BorderLayout.SOUTH);
87. add(textPanel, BorderLayout.CENTER);

88. // register listener with the buttons

89. encodeButton.addActionListener(new ButtonListener());
90. decodeButton.addActionListener(new ButtonListener());
91. moveButton.addActionListener(new ButtonListener());
92. clearButton.addActionListener(new ButtonListener());
93. exitButton.addActionListener(new ButtonListener());

94. setResizable(false);
95. setVisible(true);
96. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
97. } // end of constructor

98. // Listener class for the buttons
99. private class ButtonListener implements ActionListener
100. {
101. public void actionPerformed(ActionEvent e)
102. {

103. if (e.getSource() �� encodeButton)
104. try // shift must be an integer, 0..25, or an exception is thrown
105. {
106. int shift � Integer.parseInt(shiftTextField.getText());
107. if (shift � 25 || shift � 0)
108. throw new Exception();
109. String inputText � inputTextArea.getText();
110. String outputText � CaesarCipher.code(inputText,shift);
111. outputTextArea. setText(outputText);
112. inputTextArea.cut();
113. }
114. catch(Exception ex)
115. {
116. outputTextArea.setText("Illegal shift");
117. }
118. else if (e.getSource() �� decodeButton)
119. try // shift must be an integer, 0..25, or an exception is thrown
120. {
121. int shift � Integer.parseInt(shiftTextField.getText());

sim23356_ch19.indd 989sim23356_ch19.indd 989 12/15/08 7:26:26 PM12/15/08 7:26:26 PM

990 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

122. if (shift � 25 || shift � 0)
123. throw new Exception();
124. String inputText � inputTextArea.getText();
125. String outputText � CaesarCipher.decode(inputText, shift);
126. outputTextArea.setText(outputText);
127. }
128. catch (Exception ex)
129. {
130. outputTextArea.setText("Illegal shift");
131. }
132. else if (e.getSource() �� clearButton)
133. // clears text areas and the text field
134. {
135. outputTextArea.setText("");
136. inputTextArea.setText("Enter text");
137. shiftTextField.setText("");
138. }
139. else if (e.getSource() �� moveButton)
140. // move text from outputTextArea to inputTextArea
141. {
142. inputTextArea.setText(outputTextArea.getText());
143. outputTextArea.setText("");
144. }
145. else
146. System.exit(0);
147. }
148. }

149. public static void main(String[] args)
150. {
151. Decoder frame � new Decoder();
152. }
153. }

 Output The message displayed in the left text area of Figure 19.16 is an English

version of a message that Julius Caesar reportedly sent to his good friend, Mark

Antony. Trusting no one, Caesar encrypted his message using a 13 character shift.

The encoded message appears in the second text area.

FIGURE 19.16 An uncoded and a coded message

sim23356_ch19.indd 990sim23356_ch19.indd 990 12/15/08 7:26:26 PM12/15/08 7:26:26 PM

 Chapter 19 Event-Driven Programming 991

 Clicking the Move button transfers the encoded message to the left text area. Then,

clicking the Decode button, with shift 13, decodes the message back to the original, but

without punctuation or whitespace. See Figure 19.17.

FIGURE 19.17 The coded message of Figure 19.16 now decoded

 Discussion
Lines 53–97: The Constructor

 The statements on lines 57–61:

 • create a panel, a label ("Enter shift (0–25)") and a text fi eld, and

 • place the two components in the panel.

The statements on lines 62–72:

 • create a panel for the fi ve buttons,

 • instantiate fi ve JButton objects, and

 • place the buttons in the panel.

The statements on lines 73–83:

 • create a panel, two text areas, and two scroll panes that provide the text areas

with scroll bars as needed, and

 • place the scroll panes in the panel.

 The statements on lines 85–87 add the three panels to the frame.

 The statements on lines 89–93 register a listener with each button.

Lines 98–152: The ButtonListener class

 The ButtonListener class responds to the events generated by the fi ve buttons

placed at the SOUTH section of the frame. Because a button generates an action

event, the ButtonListener class implements the ActionListener interface with

its single method, actionPerformed(ActionEvent e). There are fi ve buttons, and

consequently actionPerformed(...) has fi ve distinct code sections, each of which

respond to a particular event.

 • The statements on lines 103–117 handle an event generated by encodeButton.
Notice the try-catch construction. If the text fi eld has an illegal entry such

sim23356_ch19.indd 991sim23356_ch19.indd 991 12/15/08 7:26:27 PM12/15/08 7:26:27 PM

992 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

as a number out of the range 0–25 or an ill-formed integer such as XIII, the

method throws an exception. The single statement of the catch block dis-

plays “Illegal shift” in the output text area. If no exception occurs, the text

 displayed in inputTextArea and the number shown in s hiftTextField are passed to

CaesarCipher .encode(String msg, int shift). The encoded string is displayed in

outputTextArea. Because encode(…) is static, the method can be invoked using

the class name, CaesarCipher .

 • The statements on lines 118–131 respond to an event generated by

decodeButton in much the same way as the code of lines 103–117.

 • The statements on line 132–138 respond to an event generated by clearButton

by setting the text of outputTextArea and shiftTextField to the empty string and

resetting inputTextArea to “Enter text.”

 • The statements on lines 139–144 respond to a moveButton event by invoking

getText() to retrieve the text displayed in outputTextArea , and setText(...) to

place that text in the input area. Finally, the text of outputTextArea is set to the

empty string.

 • Line 146, a call to System.exit(0), is a response to an event generated by

exitButton.

 19.8 DIALOG BOXES

A dialog box is a pop-up window that is used for both input and output.

 Dialog boxes provide specifi c but simple functionality that could otherwise be built from

labels, buttons, and listeners but with more effort (see Short Exercise 5). However, dialog

boxes effect input and output without your having to deal with events and listeners. Fig-

ure 19.18 shows a typical, and perhaps familiar, dialog box.

FIGURE 19.18 A message dialog box

Swing ’s JOptionPane class provides a few useful dialog boxes, including

• message dialog box,

• confi rmation dialog box, and

• input dialog box.

 19.8.1 The Message Dialog Box

A message dialog box displays a message and does nothing else.

sim23356_ch19.indd 992sim23356_ch19.indd 992 12/15/08 7:26:27 PM12/15/08 7:26:27 PM

 Chapter 19 Event-Driven Programming 993

 Figure 19.18 shows a message dialog box. To incorporate a message dialog box into an

application, invoke one of the static methods of JOptionPane :

• public static void showMessageDialog(Component parent, Object message);

• public static void showMessageDialog(Component parent, Object message, String title,
 int messageType);

• public static void showMessageDialog(Component parent, Object message, String title,
 int messageType, Icon icon);

such that

• parent is the parent component of the dialog box. Use null to signify the default

component.

• message is the object that the dialog box displays. Technically, message can be any

object: a button, a label, a text fi eld. However, for the most part, message is a string.

• title is the text displayed on the title bar.

• messageType is one of the following constants:

• JOptionPane.ERROR_MESSAGE (numerical value: 0)

• JOptionPane.INFORMATION_MESSAGE (numerical value: 1)

• JOptionPane.PLAIN_MESSAGE (numerical value: −1)

• JOptionPane.WARNING_MESSAGE (numerical value: 2)

• JOptionPane.QUESTION_MESSAGE (numerical value: 3)

• icon is an image that can be displayed on the dialog box.

 The message dialog box of Figure 19.18 is the result of the following statement:

 JOptionPane.showMessageDialog(null, "Password Incorrect",
"WeSellEverything.com", JOptionPane.ERROR_MESSAGE);

 The icon displayed by the message is Java’s standard icon that is displayed when

 messageType is passed:

 JOptionPane.ERROR_MESSAGE .

 Whenever messageType is passed by one of the JOptionPane constants, the sys-

tem uses a standard icon in the dialog box. These are shown in Figure 19.19.

JOptionPane.INFORMATION_MESSAGE

JOptionPane.PLAIN_MESSAGE

JOptionPane.WARNING_MESSAGE

JOptionPane.QUESTION_MESSAGE

FIGURE 19.19 Four message dialog boxes

sim23356_ch19.indd 993sim23356_ch19.indd 993 12/15/08 7:26:28 PM12/15/08 7:26:28 PM

994 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 19.8.2 Confirmation Dialog Box

A confi rmation dialog box displays a question, expects a reply, and returns an

integer value.

 See Figure 19.20.

FIGURE 19.20 A confirmation dialog box

 As with a message dialog box, you can use a confi rmation dialog box by calling one

of the static methods of JOptionPane:

• public static int showConfi rmDialog(Component parent, Object message);

• public static int showConfi rmDialog(Co mponent parent, Object message, String title,
 int optionType);

• public static int showConfi rmDialog(Co mponent parent, Object message, String title,
 int optionType, int messageType);

• public static int showConfi rmDialog(Co mponent parent, Object message, String title,
 int optionType, int messageType, Icon icon);

 The optionType parameter determines the options that appear as buttons. The parameter

accepts one of the following JOptionPane constants:

• YES_NO_OPTION (numerical value: 0)

• YES_NO_CANCEL_OPTION (numerical value: 1)

• OK_CANCEL_OPTION (numerical value: 2)

If no option type is specifi ed, the YES_NO_CANCEL_OPTION is the default.

 Like the message dialog box, the messageType parameter can be one of the

 following constants:

• ERROR_MESSAGE

• INFORMATION_MESSAGE

• PLAIN_MESSAGE

• WARNING_MESSAGE

• QUESTION_MESSAGE

The return value, an integer, is one of the following constants:

• CANCEL_OPTION (numerica l value: 2)

• CLOSED_OPTION (numerical value: −1, dialog closed without choosing one of

the options)

• NO_OPTION (numerical value: 1)

• OK_OPTION (numerical value: 0)

• YES _OPTION (numerical value: 0)

sim23356_ch19.indd 994sim23356_ch19.indd 994 12/15/08 7:26:29 PM12/15/08 7:26:29 PM

 Chapter 19 Event-Driven Programming 995

A constant can be accessed as

 JOptionPane.YES_NO_OPTION , or JOptionPane.YES_OPTION , etc.

 The following segment uses the confi rmation dialog box and the message dialog box

to ask a question and get a reply. Figure 19.21 shows the dialog when a user chooses the

“No” option.

 int answer � JOptionPane. showConfirmDialog
 (null, "Are you having a good day?",
 "Greeting", JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);

if (answer �� JOptionPane.NO_OPTION)
 JOptionPane.showMessageDialog(null, "Sorry about that", "Greeting",
 JOptionPane.PLAIN_MESSAGE, new ImageIcon("frown.jpg"));

else if (answer �� JOptionPane.YES_OPTION)
 JOptionPane.showMessageDialog(null,"I'm glad to hear that!",
 "Greeting", JOptionPane.PLAIN_MESSAGE, new
ImageIcon("smiley.jpg"));

FIGURE 19.21 A confirmation dialog box and a message dialog box

 19.8.3 Input Dialog Box

An input dialog box can be used to obtain string input from a user.

 The available JOptionPane methods are:

• public static String showInputDialog(Object message),

• public static String showInputDialog(Component parent, Object message), and

• public static String showInputDialog(Co mponent parent, Object message,
 String title, int messageType)

The parameters have the same meaning as the parameters of the message dialog box and

the confi rmation dialog box.

 Indeed, you can substitute an input dialog box for a Scanner object in any of the inter-

active programs of the previous chapters. However, unlike the Scanner methods nextInt()
or nextDouble(), an input dialog box always returns a String reference. The string returned

by an input dialog box is either the string supplied by the user or null if the user chooses

Cancel or closes the dialog box. This string can be converted to a numerical value, if

necessary.

 For example, the text-based segment

 1. Scanner input � new Scanner(System.in);
2. System.out.println("Enter a number");
3. try // if user supplies bad data

sim23356_ch19.indd 995sim23356_ch19.indd 995 12/15/08 7:26:29 PM12/15/08 7:26:29 PM

996 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

4. {
5. double number � input.nextDouble();
6. System.out.println("The square root of "� number � "is "� Math.sqrt(number));
7. }
8. catch (Exception e) // actually InputMismatchException
9. {
10. System.out.println("Input Error");
11. }

can be rewritten using dialog boxes as

 1. // get input from the user via an input dialog box; input is returned as a String reference
2. String numberString � JOptionPane. showInputDialog(null,

"Enter a number:", "Square Root Calculator",
JOptionPane.QUESTION_MESSAGE);

3. if (numberString !� null) // Cancel or Close option returns null
 {
4. // convert to double
5. try // if parseDouble() throws an exception
6. {
7. double number � Double.parseDouble(numberString);
8. // display result with a message dialog box
9. JOptionPane.showMessageDialog(null, "The square root of " � number � " is "
 � Math.sqrt(number),"Square Root Calculator",
 JOptionPane.INFORMATION_MESSAGE);
10. }
11. catch (NumberFormatException e)
12. {
13. JOptionPane.showMessageDialog(null, "Input error: " � numberString,
 "Square Root Calculator", JOptionPane.ERROR_MESSAGE);
14. }
15. }

 Figure 19.22 shows dialogs that occur when the previous segment executes twice.

 (a) Correct Input

 (b) Incorrect Input

FIGURE 19.22 Two dialogs: one using correct data, the other incorrect data

sim23356_ch19.indd 996sim23356_ch19.indd 996 12/15/08 7:26:29 PM12/15/08 7:26:29 PM

 Chapter 19 Event-Driven Programming 997

 Swing also provides a version of the input dialog box that allows selection from a drop-

down list of options. See Figure 19.23.

FIGURE 19.23 Input dialog box with a list of options

 The JOptionPane method that displays an option dialog is:

 public static Object showInputDialog(Component parent,
 Object message,
 String title,
 int messageType,
 Icon icon,
 Object [] options,
 Object selected)

The array, options , is a list of choices that appears in the drop-down box. This array can

be an array of references to objects of any class, but it is usually an array of String refer-

ences. The parameter selected gives the values that initialize the input. For the dialog box of

Figure 19.23, selected is Green. The value of selected can be null. The value of icon can also

be null . The return value belongs to Object and is usually cast to String.
 The following short segment that utilizes an input dialog box and a message dialog

box administers a personality test, of sorts.

 1. String[] colors � {"Yellow", "Green", "Blue", "Red", "Orange"}; // options array

2. String choice � (String)JOptionPane.showInputDialog(null,"What is your favorite color",
 "Psychology Test", JOptionPane.QUESTION_MESSAGE, null, colors,"Green");

3. if (choice ! � null) // can be null if user cancels or closes dialog box
4. {
5. String personality � new String();
6. if (choice .equals("Blue"))
7. personality � " You are calm and compassionate";
8. else if (choice .equals("Green"))
9. personality � " You are sincere and sociable";
10. else if (choice .equals("Yellow"))
11. personality � " You are wise with a good business sense";
12. else if (choice .equals("Red"))
13. personality � " You are outgoing and ambitious";
14. else if (choice .equals("Orange"))
15. personality � " You are flamboyant and dramatic";
16. JOptionPane.showMessageDialog(null, personality,
17. "Personality diagnosis", JOptionPane.INFORMATION_MESSAGE);
18. }

sim23356_ch19.indd 997sim23356_ch19.indd 997 12/15/08 7:26:30 PM12/15/08 7:26:30 PM

998 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 The logic of the fragment is simple. Notice that, on line 2, the return value is cast to String .

Figure 19.24 illustrates a typical dialog.

FIGURE 19.24 An input dialog using a drop-down list

 19.9 MOUSE EVENTS

 In previous examples, clicking a JButton object with the mouse results in an ActionEvent
generated by the button rather than the mouse. Although the ActionEvent was triggered by

clicking the mouse, this event is not the same as a MouseEvent . A MouseEvent is caused

by any pressing, releasing, dragging, or moving the mouse, independent of the events

generated by “clicked components.” Processing MouseEvent s facilitates drawing or drag-

ging components on the screen.

 A listener class that handles events fi red by dragging and moving the mouse imple-

ments the MouseMotionListener interface with methods:

• void mouseDragged(MouseEvent e) and

• void mouseMoved(MouseEvent e)

A listener class that handles events generated by clicking the mouse, pressing the

mouse, releasing the mouse, entering a component, or exiting a component implements

 MouseListener with methods:

• void mouseClicked(MouseEvent e)
 mouse is pressed and released

• void mouseEntered(MouseEvent e)
 mouse enters a component

• void mouseExited(MouseEvent e)
 mouse leaves a component

• void mousePressed(MouseEvent e)
 mouse is pressed

• void mouseReleased(MouseEvent e)
 mouse is released

sim23356_ch19.indd 998sim23356_ch19.indd 998 12/15/08 7:26:30 PM12/15/08 7:26:30 PM

 Chapter 19 Event-Driven Programming 999

 The following small class that implements MouseListener changes the text on

a label whenever the mouse enters or exits the label. The class implements the fi ve

methods of MouseListener , but three of these methods are empty. The label registers

the listener.

 1. public class MouseDemo extends JFrame
2. {
3. JPanel panel;
4. JLabel label;
5. public MouseDemo()
6. {
7. setBounds(0, 0, 300, 300);
8. panel � new JPanel();
9. label � new JLabel("Start");
10. panel.add(label);
11. add(panel);
12. setVisible(true);
13. label.addMouseListener(new MouseHandler()); // label registers listener
14. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15. }

16. private class MouseHandler implements MouseListener
17. {
18. public void mousePressed(MouseEvent e){} // empty methods
19. public void mouseReleased(MouseEvent e){}
20. public void mouseClicked(MouseEvent e){}

21. public void mouseEntered(MouseEvent e)
22. {
23. label.setText("Mouse Entered");
24. }
25. public void mouseExited(MouseEvent e)
26. {
27. label.setText("Mouse Exited");
28. }
29. }
30. }

 A few useful MouseEvent methods are:

• Component getComponent()
 returns component where the MouseEvent occurred.

• int getX()
 returns the horizontal coordinate of the event.

• int getY()
 returns the vertical coordinate of the event.

• Point getPoint()
 returns a reference to a two-dimensional Point object such that the public fi elds x and

 y hold the horizontal and vertical coordinates of the event.

 Example 19.6 uses these methods to implement a simple paint program.

sim23356_ch19.indd 999sim23356_ch19.indd 999 12/15/08 7:26:30 PM12/15/08 7:26:30 PM

1000 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 19.9.1 A Simple Paint Program

 Graphics programs such as Microsoft Paint provide tools for drawing all types of

predefi ned shapes as well as “freehand” sketches using the mouse. Paint provides

“pencil drawing” as well as thick-lined paintbrush drawing and spray paint drawing.

Each of these options utilizes the mouse like a pencil, a paintbrush, or a can of spray

paint. Although we are not quite ready to build an entire graphics drawing application,

we can implement a simple system that provides pencil drawing. All we need to do

is respond to mouse events. The following application defi nes three listener classes,

MouseButtonListener, MoveMouseListener, and ButtonListener , which implement

 MouseListener , MouseMotionListener , and ActionListener , respectively.

 Problem Statement Implement a rather primitive drawing application that allows

a user to pencil-draw fi gures by dragging the mouse. Drawing can be done using

one of three colors chosen via an input dialog box. The application should also

provide an Erase button that clears the screen. Figure 19.25 shows a pencil-drawn

masterpiece.

FIGURE 19.25 A pencil-drawn masterpiece

 Java Solution The artwork is accomplished by drawing tiny line segments that join

“close” points. When the mouse is pressed, a “starting point” is recorded. As the user

drags the mouse, lines are drawn from the start point to the current mouse position,

then from that point to the next mouse position, and so on. For example, if the mouse is

pressed at starting position (38, 32) and then dragged over (39, 32), (40, 32), (41, 33),

and (41, 34), very short line segments are drawn connecting

 (38, 32) and (39, 32),

 (39, 32) and (40, 32),

 (40, 32) and (41, 33), and

 (41, 33) and (41, 34).

When the mouse button is released, line-drawing stops. The process involves three

events,

mouse pressed, mouse dragged, and mouse released,

each of which requires a response.

 The application defi nes three new classes: ColorPoint , PointData , and PencilDrawing ,

the GUI.

 EXAMPLE 19.6

sim23356_ch19.indd 1000sim23356_ch19.indd 1000 12/15/08 7:26:31 PM12/15/08 7:26:31 PM

 Chapter 19 Event-Driven Programming 1001

 ColorPoint encapsulates a single screen point. A ColorPoint has three components:

 • x , the horizontal coordinate,

 • y , the vertical coordinate, and

 • a color.

The class has three fi elds as well as the standard getter and setter methods.

 PointData does all the bookkeeping for the application. PointData registers the start-

ing point when the mouse is initially pressed and also keeps a list of every point over

which the mouse is dragged, a history of points. Why do we need to save every point?

Suppose, for example, that the frame is minimized and later restored. As you already

know, when a frame is restored, paint(...) is automatically invoked. So that paint(…) can

restore the frame exactly as it was, the application must override the default paint(...)
method with a version that recreates the last drawing. If the application does not over-

ride paint(…), then whenever the frame is minimized and restored, the default paint(…)
method paints an empty frame.

 To accomplish this restoration correctly, an A rrayList of those points used to create

the drawing is maintained. Each time the mouse is pressed, the program saves all the

points over which the mouse is subsequently dragged. When the mouse is released, a

 null is inserted into this list of points, and no new points are saved until the mouse is

pressed again. The null value marks a break between points so that no line is drawn

between the last point of the one sequence of points and the fi rst point of the next

sequence. The overridden paint(…) method uses this ArrayList of points to repaint the

image. The paint(…) method plays “connect the dots” with all of the points of the last

drawn image, with the exception of the points separated by null .
 The methods of the PointData class are the standard getter and setter methods along

with a method that returns the number of saved points.

 PencilDrawing extends JFrame and contains three inner classes:

 • ButtonListener , which respond to button events,

 • MoveMouseListener , which responds to “mouse dragged” events by drawing tiny

line segments from point to point as the mouse is moved, and

 • MouseButtonListener , which responds to events that occur when the mouse is

pressed or released.

In addition to the listeners and constructors, PencilDrawing overrides paint(…) so that

whenever a frame is repainted, the drawn image is not erased.

 The frame fi lls the entire screen and is not resizable. However, the frame can be

minimized and restored.

1. import java.awt.*;
2. import javax.swing.*;
3. import java.awt.event.*;
4. import java.util.*;

5. public class ColorPoint
6. {
7. private Color color;
8. private int x; // horizontal coordinate
9. private int y; // vertical coordinate
10. public ColorPoint() // default constructor
11. {
12. color � Color.BLACK;
13. x � 0;
14. y � 0;

sim23356_ch19.indd 1001sim23356_ch19.indd 1001 12/15/08 7:26:32 PM12/15/08 7:26:32 PM

1002 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

15. }

16. // three-argument constructor
17. public ColorPoint(int x, int y, Color color)
18. {
19. this.x � x;
20. this.y � y;
21. this.color � color;
22. }

23. public void setX(int x)
24. {
25. this.x � x;
26. }

27. public void setY(int y)
28. {
29. this.y � y;
30. }

31. public void setColor(Color c)
32. {
33. color � c;
34. }

35. public void setColor(String c) // set Color from a String description
36. { // lists just a few possible colors
37. if (c.equals("Red"))
38. color � Color.RED;
39. else if (c.equals("Blue"))
40. color � Color.BLUE;
41. else if (c.equals("Black"))
42. color � Color.BLACK;
43. else if (c.equals("Green"))
44. color � Color.GREEN;
45. else if (c.equals("Magenta"))
46. color � Color.MAGENTA; // etc
47. }

48. public int getX()
49. {
50. return x;
51. }

52. public int getY()
53. {
54. return y;
55. }

56. public Color getColor()
57. {
58. return color;
59. }
60. }

//////////////////////////// The PointData class ////////////////////////////

61. import java.util.*; // for ArrayList
62. import java.awt.*;

63. public class PointData

sim23356_ch19.indd 1002sim23356_ch19.indd 1002 12/15/08 7:26:32 PM12/15/08 7:26:32 PM

 Chapter 19 Event-Driven Programming 1003

64. {
65. private ArrayList �ColorPoint� pointHistory; // drawn points
66. private final int capacity � 1000; // initial capacity of ArrayList
67. private ColorPoint startPoint;
68. public PointData()
69. {
70. pointHistory � new ArrayList�ColorPoint�(capacity);
71. startPoint � new ColorPoint();
72. }

73. public ColorPoint get(int i)
74. {
75. return pointHistory.get(i);
76. }

77. public void setColor(Color c)
78. {
79. startPoint.setColor(c);
80. }

81. public void setColor(String c)
82. {
83. startPoint.setColor(c);
84. }

85. public void add(ColorPoint p)
86. {
87. pointHistory.add(p);
88. }

89. public void setX(int x)
90. {
91. startPoint.setX(x);
92. }

93. public void setY(int y)
94. {
95. startPoint.setY(y);
96. }

97. public int getX()
98. {
99. return startPoint.getX();
100. }

101. public int getY()
102. {
103. return startPoint.getY();
104. }

105. public Color getColor()
106. {
107. return startPoint.getColor();
108. }

109. public int size()
110. {
111. return pointHistory.size();
112. }

113. }

sim23356_ch19.indd 1003sim23356_ch19.indd 1003 12/15/08 7:26:33 PM12/15/08 7:26:33 PM

1004 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

//////////////////////////// The PencilDrawing class ////////////////////////////

114. import java.awt.*;
115. import java.awt.event.*;
116. import javax.swing.*;

117. public class PencilDrawing extends JFrame
118. {
119. private JButton eraseButton; // clears screen
120. private JButton colorButton; // changes color
121. private JButton exitButton; // ends application
122. private JPanel paper; // the drawing surface
123. private JPanel buttonPanel; // holds 3 buttons
124. private PointData points ; // manages the data for the application

125. public PencilDrawing() // default constructor
126. {
127. super("Pencil Draw");

128. Toolkit tk � Toolkit.getDefaultToolkit(); // so that frame fills the screen
129. Dimension dim � tk.getScreenSize();
130. setBounds(0, 0, dim.width, dim.height);
131. points � new PointData();

132. // place buttons
133. buttonPanel � new JPanel();
134. eraseButton � new JButton("Erase");
135. colorButton � new JButton("Color");
136. exitButton � new JButton("Exit");
137. buttonPanel.add(eraseButton);
138. buttonPanel.add(colorButton);
139. buttonPanel.add(exitButton);
140. add(buttonPanel, BorderLayout.SOUTH);

141. // place the drawing panel in the frame
142. paper � new JPanel();
143. add(paper);

144. // register the mouse listeners
145. addMouseListener(new MouseButtonListener());
146. addMouseMotionListener(new MoveMouseListener());

147. // register the button listeners
148. eraseButton.addActionListener(new ButtonListener());
149. colorButton.addActionListener(new ButtonListener());
150. exitButton.addActionListener(new ButtonListener());
151. setResizable(false);
152. setVisible(true);
153. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
154. }

155. public void paint(Graphics g)
156. {
157. super.paint(g);
158. // get the graphics context for the drawing panel
159. g � paper.getGraphics();
160. // recreate the image from the PointHistory object points
161. for (int i � 0; i � points.size() �1; i��)
162. if (points.get(i � 1)! � null && points.get(i)! � null)
163. {
164. g.setColor(points.get(i).getColor());

sim23356_ch19.indd 1004sim23356_ch19.indd 1004 1/9/09 3:55:04 AM1/9/09 3:55:04 AM

 Chapter 19 Event-Driven Programming 1005

165. g.drawLine(points.get(i).getX(), points.get(i).getY(),
166. points.get(i � 1).getX(), points.get(i � 1).getY());
167. }
168. }

169. private class ButtonListener implements ActionListener
170. {
171. public void actionPerformed(ActionEvent e)
172. {
173. String options[] � {"Black", "Red", "Blue", "Green", "Magenta"};
174. if (e.getSource() �� colorButton)
175. {
176. String drawColor �
177. (String) JOptionPane.showInputDialog(null, "Choose a color",
 "ColorChooser", JOptionPane.QUESTION_MESSAGE, null,
 options, "BLACK");

178. if (drawColor !� null) // cancel returns null
179. points.setColor(drawColor);
180. }
181. else if (e.getSource() �� eraseButton)
182. {
183. points � new PointData(); // empty the history
184. paper.repaint(); // repaint the single JPanel
185. }
186. else
187. System.exit(0); // exitButton
188. }
189. }

190. private class MouseButtonListener implements MouseListener
191. {
192. public void mouseClicked (MouseEvent e)
193. {} // required by MouseListener interface but does nothing
194. public void mouseEntered (MouseEvent e)
195. {} // required by MouseListener interface but does nothing
196. public void mouseExited (MouseEvent e)
197. {} // required by MouseListener interface but does nothing
198. public void mouseReleased (MouseEvent e)
199. {
200. // add a null ColorPoint to the points
201. // to signify the end of a continuous
202. // section when redrawing the image
203. points.add(null);
204. }

205. public void mousePressed (MouseEvent e)
206. {
207. // this is where drawing starts
208. points.setX(e.getX());
209. points.setY(e.getY());
210. }
211. }

212. private class MoveMouseListener implements MouseMotionListener
213. {
214. public void mouseMoved(MouseEvent e)
215. { }
216. public void mouseDragged(MouseEvent e)
217. {
218. Graphics g � paper.getGraphics();
219. g.setColor(points.getColor());

sim23356_ch19.indd 1005sim23356_ch19.indd 1005 12/15/08 7:26:33 PM12/15/08 7:26:33 PM

1006 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

220. int x1 � points.getX(); // get start point
221. int y1 � points.getY();
222. int x2 � e.getX(); // get current mouse-over point
223. int y2 � e.getY();
224. g.drawLine(x1, y1, x2, y2);
225. // add the last point to the list of points
226. points.add(new ColorPoint(x1, y1, points.getColor()));

227. points.setX(x2); // update the start point with the last point
228. points.setY(y2);
229. }
230. }

231. public static void main(String[] args)
232. {
233. PencilDrawing d � new PencilDrawing();
234. }
235. }

 Output When the program begins, a blank frame with three buttons fi lls the entire

screen. The user draws on the frame by pressing the mouse button while he/she drags

the mouse, creating a picture, hopefully better than the one in Figure 19.25.

 Discussion Although the application may appear long, the logic is easy to follow. The

methods of the auxiliary classes, ColorPoint and PointData , are mostly getter and setter

methods and require no explanation.

Lines 119–124 : The PencilDrawing declarations include three button references,

two panel references—one for the buttons and the other for a drawing panel, and a

PointData reference, points . A PointData object holds the current start point as well

as a list of all points in the last drawn image.

 Lines 125–154: The constructor of PencilDrawing creates the GUI and registers

listeners. Nothing in the constructor is new, just the usual suspects: button and

panel instantiations as well as the requisite add...Listener() method calls.

Lines 155–168: Overrides the paint(..) method. See the explanation at the end of

this section.

Lines 169–189: ButtonListener is an inner class that provides the response

to each of three button events. If the event source is colorButton , a call to

JOptionPane.showInputDialog (…) displays a pop-up window that presents the

user with a list of colors (line 177). The response to eraseButton instantiates

an empty list of previously drawn points, effectively disposing of the old list,

and then calls repaint(). When the frame is repainted, the list of previously

drawn points is empty, so the call to repaint() paints an empty frame. Unlike

a professional graphics program, our application cannot erase sections of a

picture. It’s all or nothing. Indeed, our erase procedure more closely resembles

an Etch-A-Sketch toy plotter than a realistic paint program.

Lines 190–211: Because the inner class MouseButtonListener implements

the MouseListener interface, by contract, the MouseButtonListener class must

implement the fi ve methods:

 • void mouseClicked (MouseEvent e),

 • void mouseEntered (MouseEvent e),

sim23356_ch19.indd 1006sim23356_ch19.indd 1006 12/15/08 7:26:34 PM12/15/08 7:26:34 PM

 Chapter 19 Event-Driven Programming 1007

 • void mouseExited (MouseEvent e),

 • void mouseReleased (MouseEvent e), and

 • void mousePressed (MouseEvent e).

For this application, only the mouse pressed and released events are of interest.

Nonetheless, all fi ve methods require implementation, even if three perform no

actions (lines 193, 195, 197). The fi ve methods are part of the MouseListener
interface and, by contract, require implementation.

 The mousePressed (ActionEvent e) method records the point where the mouse

is fi rst pressed. This location is the starting point for the next tiny line segment that

is drawn (lines 208–209). The call e.getx() returns the x -coordinate of this point,

and e.gety() returns the y -coordinate. The calls to

 points.SetX(e.getx()) and points.SetY(e.gety())

store the starting point coordinates in the PointData object. The method

 void mouseReleased (MouseEvent e)

performs a single action:

 points.add(null) (line 203) .

 This method adds a null reference to the ArrayList of previously drawn points.

The null reference signals that a segment of the drawing is complete and that the

mouse has been released. For example, suppose that you

 • fi rst drag the mouse over the points (53, 24), (60, 39), . . . (65, 45), then

 • release the mouse, and

 • begin drawing again with the point sequence (122, 48), (123, 48), . . ., (152, 149).

The list of saved points (technically, a list of point references) includes a null
reference between (65, 45) and (122, 48):

 (53, 24), (60, 39), . . ., (65, 45), null, (122, 48), (123, 48), . . ., (152, 149).

 The null value indicates that (65, 45) and (122, 48) are not connected when

the frame is repainted. See Figure 19.26a. Without including the null reference

or some other type of fl ag, when the frame is minimized and restored, paint(...)
connects (65, 45) and (122,48) and “restores” a picture that is different than the

original. See Figure 19.26b.

(a) (b)

FIGURE 19.26 Without the null reference, (a) is repainted as (b)

Lines 212–230: The second listener class is MoveMouseListener , which

implements the MouseMotionListener interface. Although the

sim23356_ch19.indd 1007sim23356_ch19.indd 1007 12/15/08 7:26:34 PM12/15/08 7:26:34 PM

1008 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

MouseMotionListener interface has two methods, one method,

mouseMoved(MouseEvent e), is of no interest to the application, and consequently

has no statements. The mouseDragged(MouseEvent e) is the method that draws

the tiny line segments between close points. After retrieving the graphics object for

the panel and setting the color to the color of the start point (lines 218–219), the

method

 • retrieves the start point (x1, y1) which is stored in the points object

(line 220–221),

 • gets the coordinates of the point over which the mouse is being dragged (x2, y2)
(line 222–223),

 • draws a line segment from (x1, y1) to (x2, y2) (line 224),

 • adds a point with coordinates (x2, y2) to the “point history” list (line 226), and

 • sets the new start point to (x2, y2) (lines 227–228).

 Lines 155–168: The overriden paint(...) method redraws the image on the frame

when the frame is repainted. This is done in the for loop on lines 161–167. The list

of saved points is used to once again draw the same tiny line segments. A value of

 null in the list signals that the mouse had been released and no segment connects

the points before and after null . The method points.get(i) returns the i th point on

the list.

 19.9.2 A Coin Sliding Puzzle
 The next example uses the mouse to move or drag images on a screen.

 Figures 19.27a and b show two different arrangements of eight coins that are placed

on a fl at surface such as a table. One arrangement is in the shape of the letter H and

the other in the shape of an O . A classic coin sliding puzzle, described by Harry Lang-

man in Scripta Mathematica ,1 challenges a player to transform the confi guration of

Figure 19.27a to that of Figure 19.27b by sliding just four coins, one at a time, to new

positions. When one slides a coin, no other coin on the table can be moved or disturbed

in any way. No coin may be picked up. Furthermore, when a coin is repositioned, it must

be moved into a position such that it touches exactly two other coins. Figure 19.27c shows

the resulting arrangement of coins after sliding the left uppermost coin in Figure 19.27a.

Notice that the relocated coin touches exactly two other coins.

(a) An “H” Configuration (b) An “O” Configuration (c) One Coin Is Moved

FIGURE 19.27 Transform (a) to (b) using four coin-slides

 1 Harry Langman. Curiosa 342: Easy but not obvious. Scripta Mathematica , 19(4):242, December 1953.

 EXAMPLE 19.7

sim23356_ch19.indd 1008sim23356_ch19.indd 1008 12/15/08 7:26:35 PM12/15/08 7:26:35 PM

 Chapter 19 Event-Driven Programming 1009

 The output displayed in Figure 19.29 shows one solution to this puzzle. Surpris-

ingly, rearranging the coins from the O pattern back to the H requires six moves.

 Problem Statement Design a GUI-based application that allows a user to solve the

puzzle by interactively moving (“sliding”) coins displayed in a frame. When the applica-

tion begins, a frame should display the arrangement of numbered coins as shown in Fig-

ure 19.28. A user can slide a coin to a new position by dragging the coin with the mouse.

The GUI should have a Reset button that restores the coins to the original confi guration

and also an Exit button.

FIGURE 19.28 A GUI for the coin-sliding puzzle

 The following program does not enforce the rules of the puzzle. Indeed, the pro-

gram allows you to drag a coin through other coins, and place it anywhere. You can even

leave one coin on top of another! It is the player’s responsibility to follow the rules and

not cheat. Adding code to implement and enforce the rules is left as an exercise (see

Programming Exercise 13).

 Java Solution The solution consists of two classes: CoinPuzzle and CoinFrame .

 CoinPuzzle extends JPanel and builds the GUI shown in Figure 19.28. To draw

the eight circles that represent coins, CoinPuzzle overrides PaintComponent(...) and

uses the fi llOval(...) method of Graphics . Two inner classes handle mouse events and

button events. Note that the MouseHandler listener class implements two interfaces,

MouseListener and MouseMotionListener .
 CoinFrame , which extends JFrame , instantiates a CoinPuzzle panel. CoinFrame
also includes the main(...) method of the application.

 1. import java.awt.*;
2. import javax.swing.*;
3. import java.awt.event.*;
4. public class CoinPuzzle extends JPanel
5. // A GUI for the H --� O coin puzzle
6. {
7. // (x[i],y[i]) is the corner point of a bounding square for circle i
8. private int[] x � {100, 100, 100, 150, 200, 250, 250, 250};
9. private int[] y � {100, 150, 200, 150, 150, 100, 150, 200};

10. private final int RADIUS � 50; // radius of each coin
11. private JButton reset,exit;

sim23356_ch19.indd 1009sim23356_ch19.indd 1009 12/15/08 7:26:36 PM12/15/08 7:26:36 PM

1010 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

12. int circleNumber; // �1 for no circle

13. public CoinPuzzle()
14. {
15. setLayout(null); // no layout manager for the panel
16. setBackground(Color.WHITE);

17. reset � new JButton("Reset");
18. reset.setBounds(20, 500, 100, 50);

19. exit � new JButton("Exit");
20. exit.setBounds(230, 500, 100, 50);

21. add(reset);
22. add(exit);
23. circleNumber � �1; // No circle

24. // register listeners
25. addMouseListener(new MouseHandler());
26. addMouseMotionListener(new MouseHandler());

27. reset.addActionListener(new ButtonHandler());
28. exit.addActionListener(new ButtonHandler());
29. }

30. public void paintComponent(Graphics g)
31. {
32. super.paintComponent(g);
33. g.setColor(Color.BLACK);
34. g.setFont(new Font("Arial", Font.BOLD, 20));
35. g.drawString(" Transform the H to an O", 20, 470);

36. // Draw 8 circles
37. // Upper left corner of bounding box for circle-i is (x[i], y[i])

38. for(int i � 0; i � 8; i��)
39. g.fillOval(x[i], y[i], RADIUS, RADIUS);

40. g.setColor(Color.WHITE);

41. // Make labels for the coins
42. String[] numbers � {"0", "1", "2", "3", "4", "5", "6", "7"};
43. // Place a number on each coin
44. for(int i � 0; i � 8; i��)
45. g.drawString(numbers[i],x[i] � 20, y[i] � 30);
46. }

47. private class ButtonHandler implements ActionListener
48. {
49. public void actionPerformed(ActionEvent e)
50. {
51. if (e.getSource() �� reset) // reset corner points to the original arrangement
52. {
53. x[0] � 100; x[1] � 100; x[2] � 100; x[3] � 150; x[4] � 200; x[5] � 250; x[6] � 250; x[7] � 250;
54. y[0] � 100; y[1] � 150; y[2] � 200; y[3] � 150; y[4] � 150; y[5] � 100; y[6] � 150; y[7] � 200;
55. circleNumber � �1;

sim23356_ch19.indd 1010sim23356_ch19.indd 1010 12/15/08 7:26:36 PM12/15/08 7:26:36 PM

 Chapter 19 Event-Driven Programming 1011

56. repaint();
57. }
58. if (e.getSource() �� exit)
59. System.exit(0);
60. }
61. }

62. private class MouseHandler implements MouseListener, MouseMotionListener
63. {
64. public void mouseReleased(MouseEvent e)
65. {
66. circleNumber � �1; // done dragging a circle
67. }

68. public void mousePressed(MouseEvent e)
69. {
70. int newX � e.getX();
71. int newY � e.getY();
72. for (int i � 0; i � 8; i��)
73. // if the mouse is in the bounding square of a circle
74. if (newX �� x[i] � 50 && newX �� x[i] && newY �� y[i] && newY �� y[i] � 50)
75. {
76. circleNumber � i; // circle i can be dragged
77. break;
78. }
79. }

80. public void mouseDragged(MouseEvent e)
81. {
82. if (circleNumber �� 0)
83. { // change the upper corner of the bounding rectangle
84. x[circleNumber] � e.getX();
85. y[circleNumber] � e.getY();
86. repaint();
87. }
88. }
89. public void mouseMoved(MouseEvent e){} // empty method
90. public void mouseEntered(MouseEvent e){} // empty method
91. public void mouseExited(MouseEvent e){} // empty method
92. public void mouseClicked(MouseEvent e){} // empty method
93. }
94. }

95. public class CoinFrame extends JFrame
96. {
97. public CoinFrame()
98. {
99. super("Coin-sliding Puzzle"); // call one-argument constructor of JFrame
100. setBounds(0, 0, 400, 600);
101. CoinPuzzle panel � new CoinPuzzle();
102. add(panel); // uses the default BorderLayout; places at center
103. setResizable(false);
104. setVisible(true);
105. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
106. }

107. public static void main(String[] args)
108. {
109. JFrame frown � new CoinFrame();
110. }
111. }

sim23356_ch19.indd 1011sim23356_ch19.indd 1011 12/15/08 7:26:37 PM12/15/08 7:26:37 PM

1012 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Output Figure 19.29 gives a solution to the coin-sliding problem. Four moves are

required. The realignment is accomplished without moving a coin through, across, or

above another coin.

 FIGURE 19.29 A solution to the H-O coin-sliding problem.
 A coin cannot be dragged over another coin.

 Discussion
Lines 8–9: Each circle that is drawn on a panel is specifi ed by an invisible

bounding square. The points (x[0], y[0]), (x[1], y[1])...(x[5], y[5]) represent the

coordinates of the upper left-hand corners of the bounding squares for the initial

confi guration of six circles. Figure 19.30 shows one such circle situated inside

a bounding square. The point (x[0], y[0]) is the location of the upper left-hand

corner of the square.

Lines 13–29: The Constructor

 The statements on lines 15–22 instantiate and place the two buttons in the panel.

Notice that there is no layout manager (line 15); the buttons are place using

setBounds(...).

0

(x[0], y[0])

FIGURE 19.30
A circle shown within
a bounding square

sim23356_ch19.indd 1012sim23356_ch19.indd 1012 12/15/08 7:26:37 PM12/15/08 7:26:37 PM

 Chapter 19 Event-Driven Programming 1013

 On line 23, the instance variable circleNumber is initialized to �1, indicating

that no circle is currently selected. As long as circleNumber has the value �1,

dragging the mouse accomplishes nothing.

 The statements on lines 25 and 26 register the mouse listeners and those

on lines 27 and 28 register the button listeners. It is necessary that CoinPuzzle

registers MouseHandler twice, once for each interface, MouseListener and

MouseMotionListener .

Lines 30–46: paintComponent(Graphics g)

 The statement on line 32 is a call to the paintComponent(…) method of JPanel .
 The statements on lines 33 and 34 set the font and color of the Graphics object. The

assigned font and color are used whenever a Graphics method paints on the panel.

Line 35: The Graphics object g paints user instructions on the panel beginning at

position (20, 470). The for loop of lines 38 and 39 paints six circles. The upper left

corner of the bounding square of circle i is situated at (x[i], y[i]).
 The for loop on lines 44 and 45 paints a number on each circle.

Lines 47–61: The ButtonHandler class

Line 47: private class ButtonHandler implements ActionListener
 Because ButtonHandler implements ActionListener , ButtonHandler is bound,

by contract, to implement actionPerformed(ActionEvent e).

Lines 49–61 : actionPerformed(ActionEvent e)
The actionPerformed(...) method listens for events generated by the Reset and

Exit buttons. The statements on lines 51–57 implement a response to events

generated by the Reset button: the arrays x and y are reset to their original

values and the panel is repainted. The statements on lines 58 and 59 realize a

response to the Exit button: the application terminates.

Lines 62–93: The MouseHandler class
 To handle mouse events, MouseHandler implements two interfaces, MouseListener
and MouseMotionListener (line 62). This necessitates the implementation of seven

different methods.

 Lines 64–67: mouseReleased(MouseEvent e)
 When the mouse is released, dragging has terminated and a circle is no longer

selected. Deselection is indicated by assigning �1 to circleNumber . No circle

can be moved if circleNumber is �1.

 Lines 68–79: mousePressed(MouseEvent e)

 The coordinates of the point where the mouse is pressed are recorded in

 newX and newY . If the point (newY, newY) resides within one of the bounding

squares, circleNumber is assigned the number of the corresponding circle and,

as long as the mouse remains pressed, that circle can be dragged.

Lines 80–88: mouseDragged(MouseEvent e)
 If circle i is currently selected (line 82), the coordinates of the current mouse

position are assigned to x[i] and y[i], thus changing the coordinates of the

bounding square. The circle is repainted within the new bounding square, that

is, the circle is moved to the position of the mouse.

 Lines 89–92: Four empty but necessary methods

 Because MouseHandler implements MouseListener and

 MouseMotionListener , these methods must be included. They are empty

methods; although by contract they are necessary, they do nothing.

sim23356_ch19.indd 1013sim23356_ch19.indd 1013 12/15/08 7:26:38 PM12/15/08 7:26:38 PM

1014 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 If the user presses the mouse anywhere within the bounding square, the associated circle

can be dragged. The square fi ts tightly around the circle, and this approximation is not

a major problem. As an exercise, you might implement mousePressed so that, to move

a circle, the user must press the mouse within the boundary of the circle (see Program-

ming Exercise 13).

 19.10 CHECKBOXES AND RADIO BUTTONS

 Two components that can be used for simple input are checkboxes and radio buttons. See

Figure 19.31.

FIGURE 19.31 Four checkboxes and a group of three radio buttons

Checkboxes and radio buttons differ in that you may check or select any number of

checkboxes in a group but only one radio button.

 We begin with checkboxes.

 19.10.1 JCheckBox

A checkbox is a component that can be either selected or not—that is, switched or

toggled on or off.

 If a checkbox, with only two possible states, seems like a button, it should be no surprise

that JCheckBox extends AbstractButton.
 Here are the basics:

Class: JCheckBox

Generates: ActionEvent and ItemEvent when the state of a checkbox changes.

Listener: Must implement ActionListener to respond to an ActionEvent and

 ItemListener to respond to an ItemEvent .

 Listener method to implement: void actionPerformed(ActionEvent e) for ActionListener
 void itemStateChanged(ItemEvent e) for ItemListener

Register a listener: void addActionListener(ActionListener a)
 // for ActionListener interface

 void addItemListener(ItemListener i) // for ItemListener interface

sim23356_ch19.indd 1014sim23356_ch19.indd 1014 12/15/08 7:26:38 PM12/15/08 7:26:38 PM

 Chapter 19 Event-Driven Programming 1015

 Constructors:
• JCheckBox ()

 creates an unselected checkbox with no text.

• JCheckBox(String text)
 creates an unselected checkbox with accompanying text, text .

• JCheckBox(String text, boolean selected)
 creates a checkbox with text, text . If selected is true , the checkbox is initially

selected.

• JCheckBox(Icon image)
 creates an unselected checkbox with picture image and no text.

• JCheckBox(Icon i, boolean selected)
 creates a checkbox with picture image. If selected is true , the checkbox is initially

selected.

• JCheckBox(String text, Icon i)
 creates an unselected checkbox with picture image and text, text .

• JCheckBox(String text, Icon i, boolean selected)
 creates an unselected checkbox with picture image and text, text . If selected is

 true , the checkbox is initially selected.

 Methods:
• boolean isSelected()

• void setSelected(boolean selected)

• void addActionListener(ActionListener ActionListener)

• void addItemListener(ItemListener ItemListener)

 The following class extends JFrame and uses four checkboxes to record a pizza order. The

checkboxes are shown in Figure 19.31.

 1. public class PizzaOrder extends JFrame
2. {
3. private JCheckBox pepperoniCB;
4. private JCheckBox mushroomCB;
5. private JCheckBox onionCB;
6. private JCheckBox anchovyCB;
7. private String toppings � "";

8. public PizzaOrder()
9. {
10. // instantiate checkboxes
11. pepperoniCB � new JCheckBox("Pepperoni");
12. mushroomCB � new JCheckBox("Mushrooms");
13. onionCB � new JCheckBox("Onions");
14. anchovyCB � new JCheckBox("Anchovies");

15. // add checkboxes to the frame
16. setLayout(new FlowLayout());
17. add(pepperoniCB);
18. add(mushroomCB);
19. add(onionCB);
20. add(anchovyCB);

sim23356_ch19.indd 1015sim23356_ch19.indd 1015 12/15/08 7:26:39 PM12/15/08 7:26:39 PM

1016 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

21. // register listeners for checkboxes
22. pepperoniCB. addItemListener (new CheckBoxListener());
23. mushroomCB. addItemListener (new CheckBoxListener());
24. onionCB. addItemListener (new CheckBoxListener());
25. anchovyCB. addItemListener (new CheckBoxListener());
26. }

27. // implement listener class for checkboxes
28. private class CheckBoxListener implements ItemListener
29. {
30. public void itemStateChanged(ItemEvent e)
31. {
32. if (e.getSource() �� pepperoniCB || e.getSource() �� mushroomCB ||
 e.getSource() �� onionCB || e.getSource() �� anchovyCB)
33. {
34. toppings � "";
35. if (pepperoniCB.isSelected())
36. toppings � toppings � " " � "pepperoni";
37. if (mushroomCB.isSelected())
38. toppings � toppings � " " � "mushrooms";
39. if (onionCB.isSelected())
40. toppings � toppings � " " � "onion";
41. if (anchovyCB.isSelected())
42. toppings � toppings � " " � "anchovies";
43. }
44. }
45. }
46. }

 19.10.2 JRadioButton
 Next to the four checkboxes of Figure 19.31 is a group of three radio buttons. A user may

check one, two, three, or all four checkboxes but may select only one of the three radio

buttons. These radio buttons are members of a “button group,” and turning on one button

in the group turns off the others. That is, one and only one member of a button group may

be selected at any time. An application may include any number of button groups. For

example, the frame of Figure 19.31 might include a second button group consisting of two

buttons labeled Eat-in and Take-out.

When you include radio buttons in an application, create a button group and add

the radio buttons to the button group. This ensures that only one radio button in the

group is ever selected.

 Here are the basics:

 Class: JRadioButton

 Generates: ActionEvent and ItemEvent when the state of a radio button changes.

 Listener: Must implement ActionListener to respond to an ActionEvent and

 ItemListener to respond to an ItemEvent .

sim23356_ch19.indd 1016sim23356_ch19.indd 1016 12/15/08 7:26:39 PM12/15/08 7:26:39 PM

 Chapter 19 Event-Driven Programming 1017

 Listener method to implement: void actionPerformed(ActionEvent e)
 void itemStateChanged(ItemEvent e)

 Register a listener: void addActionListener(ActionListener a)
 void addItemListener(ItemListener i)

 Constructors:
• JRadioButton()
• JRadioButton(String text)
• JRadioButton(String s, boolean selected)
• JRadioButton(Icon i)
• JRadioButton(Icon i, boolean selected)
• JRadioButton(String text, Icon i)
• JRadioButton(String text, Icon i, boolean selected)

 Methods:
• void setSelected(boolean selected)
• boolean isSelected()
• addActionListener(ActionListener a)
• addItemListener(ItemListener a)

The ButtonGroup class encapsulates a group of radio buttons.

 Constructor for ButtonGroup: ButtonGroup()

 Method that adds a radio button to a button group: void add(JRadioButton radioButton)

 The following addition to PizzaOrder adds the group of three radio buttons shown in

Figure 19.31. The additional code

• creates three radio buttons,

• add the buttons to the frame,

• creates a ButtonGroup object,

• adds the radio buttons to the button group,

• registers listeners, and

• implements a listener class that implements the ItemListener interface.

 1. public class PizzaOrder extends JFrame
2. {
3. private JCheckBox pepperoniCB;
4. private JCheckBox mushroomCB;
5. private JCheckBox onionCB;
6. private JCheckBox anchovyCB;
7. private String toppings � "";
8. private double price;

9. private JRadioButton smallRB;
10. private JRadioButton mediumRB;
11. private JRadioButton largeRB; // default selection

12. public PizzaOrder() // default constructor

13. {
14. // instantiate checkboxes
15. pepperoniCB � new JCheckBox("Pepperoni");
16. mushroomCB � new JCheckBox("Mushrooms");
17. onionCB � new JCheckBox("Onions");

sim23356_ch19.indd 1017sim23356_ch19.indd 1017 12/15/08 7:26:40 PM12/15/08 7:26:40 PM

1018 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

18. anchovyCB � new JCheckBox("Anchovies");

19. // instantiate the radio buttons
20. smallRB � new JRadioButton("Small",false);
21. mediumRB � new JRadioButton("Medium",false);
22. largeRB � new JRadioButton("Large",true); // default selection
23. setLayout(new FlowLayout());
24. add(pepperoniCB);
25. add(mushroomCB);
26. add(onionCB);
27. add(anchovyCB);

28. // add the radio buttons to the frame
29. add(smallRB);
30. add(mediumRB);
31. add(largeRB);
32.
33. // create a button group
34. ButtonGroup pizzaSizes � new ButtonGroup();

35. // add buttons to the button goup
36. pizzaSizes.add(smallRB);
37. pizzaSizes.add(mediumRB);
38. pizzaSizes.add(largeRB);

39. // register a listener with each checkbox
40. pepperoniCB.addItemListener(new CheckBoxListener());
41. mushroomCB.addItemListener(new CheckBoxListener());
42. onionCB.addItemListener(new CheckBoxListener());
43. anchovyCB.addItemListener(new CheckBoxListener());

44. // register a listener with each button
45. smallRB.addItemListener(new PizzaButtonListener());
46. mediumRB.addItemListener(new PizzaButtonListener());
47. largeRB.addItemListener(new PizzaButtonListener());
48. }

49. // implement listener class for checkboxes
50. private class CheckBoxListener implements ItemListener
51. {
52. public void itemStateChanged(ItemEvent e)
53. {
54. if (e.getSource() �� pepperoniCB || e.getSource() �� mushroomCB ||
55. e.getSource() �� onionCB || e.getSource() �� anchovyCB)
56. {
57. toppings � "";
58. if (pepperoniCB.isSelected())
59. toppings � toppings � " " � "pepperoni";
60. if (mushroomCB.isSelected())
61. toppings � toppings � " " � "mushrooms";
62. if (onionCB.isSelected())

sim23356_ch19.indd 1018sim23356_ch19.indd 1018 12/15/08 7:26:40 PM12/15/08 7:26:40 PM

 Chapter 19 Event-Driven Programming 1019

63. toppings � toppings � " " � "onion";
64. if (anchovyCB.isSelected())
65. toppings � toppings � " " � "anchovies";
66. }
67. }
68. }

69. private class PizzaButtonListener implements ItemListener
70. {
71. public void itemStateChanged(ItemEvent e)
72. {
73. if (e.getSource() instanceof JRadioButton)
74. {
75. if (smallRB.isSelected())
76. price � 8.75;
77. else if (mediumRB.isSelected())
78. price � 10.75;
79. else
80. price � 15.75;
81. }
82. }
83. }

84. public static void main(String[] args)
85. {
86. PizzaOrder frame � new PizzaOrder();
87. frame.setTitle("Pizza Order");
88. frame.setBounds(0, 0, 400, 200);
89. frame.setVisible(true);
90. }
91. }

 The condition on line 73

 if (e.getSource() instanceof JRadioButton)

can also be implemented as

 if ((e.getSource() �� smallRB) || (e.getSource() �� mediumRB) || (e.getSource() �� largeRB))

 19.11 MENUS

 If you have used a text editor or a word processor, no doubt, you have used a menu. A GUI

application that includes menus requires the use of three Swing classes:

• JMenuBar,

• JMenu, and

• JMenuItem.

Figure 19.32 shows a menu bar and two different menus, the Edit menu and the File menu.

The menu bar is the bar, or thin strip, on which the two menus reside. Clicking on a menu

reveals several menu items. For example, clicking on the File menu or the Edit menu shows

the menu items of Figure 19.32.

sim23356_ch19.indd 1019sim23356_ch19.indd 1019 12/15/08 7:26:40 PM12/15/08 7:26:40 PM

1020 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

Menu items

Menu bar

Edit menu

File menu

Menu items

FIGURE 19.32 A menu bar, two menus, and seven menu items

Adding one or more menus to a GUI is a three-step process:

1. Create a menu bar.

2. Create each menu and add each to the menu bar.

3. Create the menu items and add them to the appropriate menus.

 1. Create the menu bar.
 To create a menu bar, use the constructor

 JMenuBar().

 To place a menu bar in a frame, use the JFrame method

 void setJMenuBar(JMenuBar menuBar).

 Within the constructor of a JFrame , you can add a menu bar to a frame using the

statements:

 JMenuBar menuBar � new JMenuBar();
 setJMenuBar(menuBar);

 Otherwise, you can add a menu bar as follows:

 JFrame frame � new JFrame();
JMenuBar menuBar � new JMenuBar();
frame. setJMenuBar(menuBar);

 2. Create each menu and add each menu to the menu bar.
 Here, the appropriate constructor is

 JMenu(String menu),
 where menu is the name of the menu.

 To add a menu to a menu bar, use the JMenuBar method

 JMenu addJMenu(JMenu m) ,

 which adds a menu, m , to the end of a menu bar.

 For example, the following segment adds two menus to the menu bar:

 JMenuBar menuBar � new JMenuBar(); // create a menu bar
JMenu fileMenu � new JMenu("File"); // create a File menu
JMenu editMenu � new JMenu("Edit"); // create an Edit menu
menuBar.add(fileMenu); // add the File menu to the menu bar
menuBar.add(editMenu); // add the Edit menu to the menu bar

sim23356_ch19.indd 1020sim23356_ch19.indd 1020 12/15/08 7:26:40 PM12/15/08 7:26:40 PM

 Chapter 19 Event-Driven Programming 1021

 In fact, you can add any component to a menu bar with the Container method:

 Component add(Component c).

 3. Create the menu items and add the items to the appropriate menu.
 As you might expect, the JMenuItem constructor is

 JMenuItem(String item)

 To add a menu item to a menu, use the JMenu method

 JMenuItem add (JMenuItem menuItem)

 The following segment, embedded in an application, creates the menus shown in

Figure 19.32.

 1. JFrame frame � new JFrame();
2. frame.setBounds(0, 0, 500, 500);

3. // create the menu bar
4. JMenuBar menuBar � new JMenuBar();
5. frame.setJMenuBar(menuBar); // add menu bar to frame

6. // create a menu ("File")
7. JMenu fileMenu � new JMenu("File");

8. // add the file menu to the menu bar
9. menuBar.add(fileMenu);

10. // create four menu items–Open, New, Save, and Exit
11. JMenuItem openMenuItem � new JMenuItem(“Open”);
12. JMenuItem newMenuItem � new JMenuItem(“New”);
13. JMenuItem saveMenuItem � new JMenuItem(“Save”);
14. JMenuItem exitMenuItem � new JMenuItem(“Exit”);

15. // add the three menu items to the File menu
16. fileMenu.add (openMenuItem);
17. fileMenu.add (newMenuItem);
18. fileMenu.add(saveMenuItem);
19. fileMenu.add (exitMenuItem);

20. // create a second menu, "Edit"
21. JMenu editMenu � new JMenu("Edit");

22. // add the Edit menu to the menu bar
23. menuBar.add(editMenu);

24. // create three menu items, Copy, Cut, and Paste
25. JMenuItem copyMenuItem � new JMenuItem(“Copy”);
26. JMenuItem cutMenuItem � new JMenuItem(“Cut”);
27. JMenuItem pasteMenuItem � new JMenuItem(“Paste”);

28. // add the Cut and Paste menu items to the Edit menu

sim23356_ch19.indd 1021sim23356_ch19.indd 1021 12/15/08 7:26:41 PM12/15/08 7:26:41 PM

1022 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

29. editMenu.add(copyMenuItem);
30. editMenu.add(cutMenuItem);
31. editMenu.add(pasteMenuItem);

32. frame.setVisible(true)

 Useful methods available to JMenuItem and JMenu are:

• boolean isSelected()
 returns true if the menu or menu item is selected.

• void setSelected(boolean selected)
 sets the status of the menu or menu item.

• void doClick()
 clicks the menu via the code, not the mouse.

• String getActionCommand()
 returns the text or label of a menu item.

 Selecting a menu item generates an ActionEvent object. A response requires that the

programmer:

• create an event listener class that implements the interface ActionListener and the

actionPerformed(ActionEvent) method, and

• register the listener with the appropriate source via the method

 void addActionListener(…).

 19.11.1 A Simple Text Editor with Menus, Checkboxes,
and Radio Buttons

 The application of Example 19.8 uses menus, checkboxes, radio buttons, and dialog boxes

to implement a rudimentary text editor.

 A word processor such as Word or WordPerfect produces formatted documents with

numerous fonts, type sizes, and type styles. Format information is saved using “characters”

that are not part of the ASCII (or any other standard) character set. These binary fi les are

readable only by programs that know how to interpret the special encoding of the fi le. In

contrast, a text editor, such as Notepad, produces standard text fi les that any other program

can read. A text fi le is a sequence of characters encoded using the ASCII character code.

 Problem Statement Implement a simple text editor. The application should have:

 • functioning File and Edit menus as seen in Figure 19.32,

 • the capability to display text in bold or italics, and

 • the capability to display text in one of three fonts : Times New Roman, Courier, or

Arial.

Although the text can be viewed in three fonts and two styles, the text is saved strictly as

a sequence of ASCII characters. In this application, the text is treated as a single group

of characters that share the same style and font. It would require a bit more work to

allow each character to have its own style and font.

 Java Solution The following application contains no diffi cult algorithms or complex

logic. Indeed, you may be surprised by how easy it is to build a text editor using Swing

components.

 EXAMPLE 19.8

sim23356_ch19.indd 1022sim23356_ch19.indd 1022 12/15/08 7:26:41 PM12/15/08 7:26:41 PM

 Chapter 19 Event-Driven Programming 1023

 1. import java.awt.*;
2. import java.awt.event.*;
3. import javax.swing.*;
4. import java.io.*;

5. public class Editor extends JFrame
6. {
7. JMenuBar menuBar;
8. JMenu fileMenu, editMenu;
9. JMenuItem openMenuItem, newMenuItem, saveMenuItem, exitMenuItem;
10. JMenuItem copyMenuItem, cutMenuItem, pasteMenuItem;

11. JTextArea text; // the area that holds all text
12. JPanel textPanel; // for the text area
13. JScrollPane scrollPane; // provides scroll bars for the text area

14. JCheckBox boldCB, italicCB; // checkboxes for bold and italic

15. ButtonGroup buttonGroup; // a group of radio buttons that control font style
16. JRadioButton timesRB, courierRB, arialRB; // New Times Roman, Courier, Arial

17. public Editor() // default constructor, sets up GUI
18. {
19. setBounds(0, 0, 500, 500);
20. // create the menu bar
21. // place the menu bar in the frame
22. menuBar � new JMenuBar();
23. setJMenuBar(menuBar);

24. // create a File menu
25. fileMenu � new JMenu("File");

26. // add the File menu to the menu bar
27. menuBar.add(fileMenu);

28. // create four menu items : Open, Close, Save, and Exit
29. openMenuItem � new JMenuItem("Open");
30. newMenuItem � new JMenuItem("New");
31. saveMenuItem � new JMenuItem("Save");
32. exitMenuItem � new JMenuItem("Exit");

33. // add the four menu items to the File menu
34. fileMenu.add(openMenuItem);
35. fileMenu.add(newMenuItem);
36. fileMenu.add(saveMenuItem);
37. fileMenu.add(exitMenuItem);

38. // create the Edit menu
39. editMenu � new JMenu("Edit");

40. // add the Edit menu to the menu bar
41. menuBar.add(editMenu);

42. // create three menu items, Copy, Cut, and Paste
43. copyMenuItem � new JMenuItem("Copy");
44. cutMenuItem � new JMenuItem("Cut");
45. pasteMenuItem � new JMenuItem("Paste");

46. // add the Copy, Cut, and Paste menu items to the Edit menu
47. editMenu.add(copyMenuItem);
48. editMenu.add(cutMenuItem);

sim23356_ch19.indd 1023sim23356_ch19.indd 1023 12/15/08 7:26:42 PM12/15/08 7:26:42 PM

1024 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

49. editMenu.add(pasteMenuItem);

50. // place a text area in a scroll pane and in a panel
51. textPanel � new JPanel();
52. text � new JTextArea(30,50);
53. text.setFont(new Font("Times New Roman", Font.PLAIN, 12)); // initial font
54. scrollPane � new JScrollPane(text);
55. text.setLineWrap(true);
56. text.setWrapStyleWord(true); // wrap at whitespace
57. textPanel.add(scrollPane);
58. add(textPanel,BorderLayout.CENTER);

59. // checkboxes control Bold an/or italic type
60. boldCB � new JCheckBox("Bold");
61. italicCB � new JCheckBox("Italic");

62. // Use 3 radio buttons for the font style
63. buttonGroup � new ButtonGroup(); // first make a button group
64. timesRB � new JRadioButton("Times New Roman");
65. courierRB � new JRadioButton("Courier");
66. arialRB� new JRadioButton("Arial");
67. buttonGroup.add(timesRB); // add to button group
68. buttonGroup.add(courierRB);
69. buttonGroup.add(arialRB);
70. timesRB.setSelected(true);

71. // place the checkboxes and the radio buttons
72. // on a panel and place the panel in the SOUTH
73. // section of the frame

74. JPanel viewPanel � new JPanel();
75. JLabel viewLabel � new JLabel(" View Text "); // separate boxes and buttons
76. viewPanel.add(boldCB);
77. viewPanel.add(italicCB);
78. viewPanel.add(viewLabel);
79. viewPanel.add(timesRB);
80. viewPanel.add(courierRB);
81. viewPanel.add(arialRB);
82. add(viewPanel, BorderLayout.SOUTH);

83. // register listeners for the checkboxes and radio buttons
84. ClickListener clickListener � new ClickListener();
85. boldCB.addItemListener(clickListener);
86. italicCB.addItemListener(clickListener);
87. timesRB.addItemListener(clickListener);
88. courierRB.addItemListener(clickListener);
89. arialRB.addItemListener(clickListener);

90. // register listeners for the menu items
91. MenuListener menuListener � new MenuListener();
92. openMenuItem.addActionListener(menuListener);
93. newMenuItem.addActionListener(menuListener);
94. saveMenuItem.addActionListener(menuListener);
95. exitMenuItem.addActionListener(menuListener);
96. copyMenuItem.addActionListener(menuListener);
97. cutMenuItem.addActionListener(menuListener);
98. pasteMenuItem.addActionListener(menuListener);
99. setVisible(true);
100. setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
101. }

sim23356_ch19.indd 1024sim23356_ch19.indd 1024 12/15/08 7:26:42 PM12/15/08 7:26:42 PM

 Chapter 19 Event-Driven Programming 1025

102. // Listener for the checkboxes and radio buttons
103. // Listener responds to ItemEvent objects, not ActionEvent objects
104. // Constants: PLAIN � 0; BOLD � 1; ITALIC � 2; BOLD � ITALIC � 3

105. private class ClickListener implements ItemListener
106. {
107. public void itemStateChanged(ItemEvent e)
108. {
109. int fontStyle � Font.PLAIN;

110. if (boldCB.isSelected())
111. fontStyle � fontStyle � Font.BOLD;
112. if (italicCB.isSelected())
113. fontStyle � fontStyle � Font.ITALIC;

114. // determine font style
115. if (timesRB.isSelected())
116. text.setFont(new Font("Times New Roman", fontStyle,12));
117. else if (courierRB.isSelected())
118. text.setFont(new Font("Courier", fontStyle, 12));
119. else if (arialRB.isSelected())
120. text.setFont(new Font("Arial", fontStyle, 12));
121. }
122. }

123. private class MenuListener implements ActionListener
124. {
125. public void actionPerformed(ActionEvent e)
126. {
127. if (e.getSource() �� openMenuItem)
128. { // get the name of the input file
129. String fileName � JOptionPane.showInputDialog(null, "Enter File name", "File",
 JOptionPane.QUESTION_MESSAGE);

130. if (fileName �� null || fileName.equals("")) // user chooses Cancel or X (close)
131. return;
132. try
133. { // create a FileReader object to read the text file
134. FileReader in � new FileReader(fileName);
135. text.read(in, null);
136. in.close();
137. }
138. catch (IOException ex) // if the file is not found
139. {
140. JOptionPane.showMessage Dialog(null, "File not Found", "Input Error",
 JOptionPane.ERROR_MESSAGE);
141. }
142. }
143. else if (e.getSource() �� newMenuItem)
144. {
145. text.setText(""); // clear the text area
146. }
147. else if (e.getSource() �� saveMenuItem)
148. {
149. String fileName � JOptionPane.showInputDialog(null, "Enter File name","File",
 JOptionPane.QUESTION_MESSAGE);

150. if (fileName �� null || fileName.equals("")) // cancel or close
151. return;
152. try

sim23356_ch19.indd 1025sim23356_ch19.indd 1025 12/15/08 7:26:43 PM12/15/08 7:26:43 PM

1026 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

153. {
154. FileWriter out � new FileWriter(fileName);
155. text.write(out);
156. out.close();
157. }
158. catch (IOException ex) // if file cannot be opened or some other error occurs
159. {
160. JOptionPane.showMessageDialog(null, "File cannot be saved", "Output Error",
 JOptionPane.ERROR_MESSAGE);
161. }
162. }
163. else if (e.getSource() �� exitMenuItem)
164. {
165. System.exit(0);
166. }
167. else if (e.getSource() �� copyMenuItem)
168. {
169. text.copy(); // copies selected text to the system clipboard
170. }
171. else if (e.getSource() �� cutMenuItem)
172. {
173. text.cut(); // cuts selected text; copies text to clipboard
174. }
175. else if (e.getSource() �� pasteMenuItem)
176. {
177. text.paste(); // pastes text from the system clipboard
178. }
179. }
180. }

181. public static void main(String [] args)
182. {
183. Editor ed � new Editor();
184. }
185. }

 Output Two screens of output are shown in Figure 19.33.

FIGURE 19.33 Choosing the Save menu item. Text is displayed in plain Arial on left, and
bold Courier on right screen.

sim23356_ch19.indd 1026sim23356_ch19.indd 1026 12/15/08 7:26:43 PM12/15/08 7:26:43 PM

 Chapter 19 Event-Driven Programming 1027

 Discussion
Lines 7–16: The declarations

 Although the application may seem a bit long, it is indeed rather simple. The

declarations (lines 7–16) specify the components of the GUI as seen in Figure 19.33:

two menus: File and Edit, a text area with scroll bars, two checkboxes, and a group of

three radio buttons.

Lines 17–101: The constructor

 The constructor lays out the GUI and registers listeners with various components:

Lines 22–23: These statements create a menu bar and place the menu bar in

the frame.

Lines 24–27: The File menu is instantiated and placed on the menu bar.

Lines 28–32: Four menu items are created.

Lines 33–37: The four menu items are added to the File menu.

Lines 38–49: The Edit menu is set up in a manner similar to the File menu.

Lines 50–58: A text area, text , is instantiated and passed to a scroll pane.

This ensures that the text area has scroll bars as needed. The scroll pane is

placed in a panel, and the panel is placed in the center of the frame.

Lines 59–61: Two checkboxes are created: one indicates whether or not the

font is bold , and the other indicates italic .

Lines 62–70: A button group is created for three radio buttons. The radio

buttons indicate the font style: New Times Roman, Courier, or Arial. The

radio button timesRB is initially selected (line 70).

Lines 71–82: The checkboxes are placed in a panel, and a label View

Text follows the checkboxes; then the radio buttons are placed in the

panel. The panel of boxes and buttons is placed in the SOUTH section of

the frame.

Lines 83–89: Register the inner class, ClickListener , as a listener class for

the checkboxes and radio buttons. C lickListener implements the ItemListener
interface.

Lines 90–98: Register MenuListener with the menu items.

 The constructor is nothing more than a direct layout of the GUI components.

 Lines 105–122: ClickListener , a listener class that implements ItemListener
ClickListener responds to events that occur whenever a radio button is clicked

or a checkbox is (un)checked. To respond to an item event, a listener class must

implement the ItemListener interface, which has a single method

 void itemStateChanged(ItemEvent e).

 If any of the boxes or buttons generates an event, the same code executes. First,

the type of font, plain, bold, italic, or combination bold and italic is determined

(lines 109–113). Suppose, for example, that both boldCB and italicCB are selected:

 The variable fontStyle is initialized to 0 (PLAIN)

 Because the Bold checkbox is selected, fontStyle � fontStyle � BOLD �
0 � 1 � 1.

 Because the Italic checkbox is selected, fontStyle � fontStyle � ITALIC �
1 � 2 � 3 .

 The value 3 indicates a bold and italic font.

sim23356_ch19.indd 1027sim23356_ch19.indd 1027 12/15/08 7:26:44 PM12/15/08 7:26:44 PM

1028 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Next, a sequence of if-else statements determines which type of font has

been chosen (lines 115–119). Finally, the font property of the text area is

reset (line 120).

Lines 123–179: MenuListener , a listener class that implements ActionListener .

 Menu items generate action events, and a class that handles an action event must

implement the ActionListener interface. As you already know, ActionListener
declares just a single method

void actionPerformed(ActionEvent e).

Lines 127–141: Selecting the Open menu item triggers an action event. In

response, the method queries the user, via an input dialog box, for the name of an

input fi le (line 129). If the user clicks Cancel or closes the dialog box, the method

returns. No fi le name is supplied; no action is taken (130–131). However, if the

user supplies a fi le name, a FileReader is instantiated, the read(...) method of

JTextArea reads the contents of the fi le into the text area, text , and, subsequently,

the stream is closed (lines 134–136).

 Of course, any time that a program attempts to open a fi le there is the chance

of an IOException exception. Because of this possibility, the statements on lines

134–136 are enclosed by a try block. The corresponding catch block (lines

139–141) handles an exception by issuing an error message via a pop-up message

dialog box.

Lines 143–146: If a user selects the New menu item, the application responds by

setting the text of the text area to the empty string. This action clears the text box.

Lines 147–161: Selecting the Save menu item triggers an event similar to the one

generated when choosing the Open menu item.

Lines 167–178: These lines show the responses to the menu items Copy, Cut, and

Paste. In each case, a JTextArea method is invoked. For example, if the Cut menu

item is selected, the cut() method, shown on line 173, moves all selected text from

the text area to the system clipboard.

 19.12 DESIGNING EVENT LISTENER CLASSES

 When designing listener classes, a programmer has options: an event listener may respond

to any number of events and implement any number of listener interfaces. For example,

the coin sliding application (Example 19.7) includes a single listener that handles the

events generated by both the Reset and the Exit buttons. Both buttons register this listener.

A second listener, which responds to mouse events, implements two listener interfaces:

MouseListener and MouseMotionListener , and the CoinPuzzle panel registers this listener

twice, once for each interface.

 An alternative implementation might include separate listener classes for each button

event and two distinct listeners for mouse events: one that implements MouseMotionList-
ener and another that implements MouseListener . This approach would have each button

register its own distinct listener, and the CoinPuzzle panel register the two different mouse

event listeners.

 Still other implementations are possible. All button and mouse events might even

be handled within a single class. However, one listener class that responds to every

sim23356_ch19.indd 1028sim23356_ch19.indd 1028 12/15/08 7:26:44 PM12/15/08 7:26:44 PM

 Chapter 19 Event-Driven Programming 1029

mouse and button event may be cumbersome, diffi cult to maintain, and not logically

organized.

 No rules, other than good style and common sense, govern the organization of

your listener classes. In our examples, we usually create a separate class for each kind

of event listener. But determining which events are of the same kind can be tricky. Too

few or too many listener classes can result in complex, ineffi cient, and hard to main-

tain code. As you gain experience and develop your own style, you will fi nd the right

balance.

 19.13 IN CONCLUSION

 This chapter gives a brief introduction to event-driven programming and specifi cally

Java’s event delegation model. Events are generated by components and, in this chap-

ter, you have seen just a handful of Swing components. The documentation on Sun’s

website includes many more components than we can possibly include in a single

chapter. Try experimenting. Start with JScrollBar , JComboBox , or JList . Once you

master a few components, working with others becomes easier. Like any set of tools,

however, knowing how to use each one is only half the battle. It takes practice and

experience to decide which combination of components is the simplest, most effi cient,

and most effective.

 Just the Facts

• An event is an occurrence to which a program may respond.

• There are dozens of possible events, including pressing a button, clicking and

 dragging the mouse, choosing a menu item, or selecting a checkbox.

• The delegation event model is Java’s mechanism for handling events.

• Java’s event delegation model uses three objects: the source, the event object, and the

listener.

• The source is the object that generates the event, be it the mouse, a button, a textbox,

or a menu.

• The event object encapsulates information about the event.

• Event objects are passed to a listener object registered by the source.

• Using information encapsulated by the event object, the listener object handles

the event.

• Every listener must implement at least one listener interface. Each listener interface

declares methods that handle certain kinds of events. A listener may implement more

than one interface.

• To handle an event, a connection must be established between the source and a lis-

tener. The source must register each listener. The source effects registration via a

method call such as addActionerListener (...) or addMouseListener(...).

• A source may register more than one listener. Indeed, if a listener implements more

than one listener interface, a source may register that listener multiple times, once

for each interface.

• More than one source can register the same listener.

sim23356_ch19.indd 1029sim23356_ch19.indd 1029 12/15/08 7:26:45 PM12/15/08 7:26:45 PM

1030 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

• It is good style to declare listener classes as private inner classes, though this is not

necessary.

• Designing listener classes involves choosing how many and which events are handled

by the class. A common style organizes listener classes by kind—for example, one

listener might handle all button-generated events.

• There are dozens of source objects (components) that generate events. In this chapter,

we discuss only a few.

• JButton is a commonly used class of objects that generate events. Many simple

applications can be built using buttons. A button listener class implements

 ActionListener .

• Use a label to display an image or text on a panel when you do not need to process

an event. A label does not generate events. That is, a label is an output object. A label

does not necessitate a listener. A label object belongs to JLabel .

• A text fi eld is an object that holds a single line of text. A text fi eld can be used for

input or output and is appropriate for programs such as calculators or spreadsheets.

A text fi eld generates an action event when Enter is pressed. A text fi eld belongs to

 JTextField.

• A text area is similar to a text fi eld except that a text area can hold more than

one line of text. A text area, placed in a scroll pane, can exhibit scroll bars when

necessary.

• Dialog boxes provide specifi c but simple functionality that could otherwise be built

from labels, buttons, and listeners, albeit with more effort. However, dialog boxes

effect input and output without your having to deal with events and listeners. Dialog

boxes belong to JOptionPane .

• Mouse movements and mouse clicks generate events. The listeners that respond to

mouse-generated events implement MouseListener and MouseMotionListener .

• Checkboxes and radio buttons are two components used for input. A user may

check any number of checkboxes but select only one radio button in a group.

Both objects may implement one or both of two interfaces— ActionListener and

 ItemListener .

• Menus are built from three classes, JMenu, JMenuBar , and J MenuItem . Menu bars

hold menus, which in turn, hold menu items. A menu item listener implements

 ActionListener .

 Bug Extermination

• The source object must register every listener to which it sends events. Neglecting to

register listeners is a common error.

• There are many ways to implement interactive input and output. When in doubt, it

is best to use the simplest tool that does the job. In order of simplicity, try dialog

boxes, text boxes, buttons, radio buttons or checkboxes, menus, and fi nally the

mouse.

• Every listener must implement the appropriate interface(s) required by the sources

that register the listener. For example, a listener that responds to a button event

must implement ActionListener , and not, for example, ItemListener . If appropriate,

a listener may implement more than one interface. See Example 19.7.

sim23356_ch19.indd 1030sim23356_ch19.indd 1030 12/15/08 7:26:46 PM12/15/08 7:26:46 PM

 Chapter 19 Event-Driven Programming 1031

• Each listener must fulfi ll its contract by implementing every method of each interface

that it implements. If the listener has no relevant action for an interface method, then

implement that method with an empty block, { }.

• If two or more sources register the same listener, that listener must implement all

appropriate interfaces and be able to respond to events from each source. To deter-

mine the source of an event, use getSource().

• If a listener implements more than one interface, a source must register the listener

multiple times, once for each different interface that implements a response to events

fi red by that source. See Example 19.7, lines 25–26.

• It may be tricky to choose between validate() and repaint() when redisplaying a

frame or panel after modifying its components. The AWT validate() method lays

out components after the components have been modifi ed. Contrast this method

with repaint(), which does not lay out components again, but instead calls paint(g) to

render each component again. The repaint() method is used when component features

have changed, but no new layout is necessary, that is, the size, location, and number

of the components stays fi xed. The validate() method is necessary when the compo-

nent layout has changed.

sim23356_ch19.indd 1031sim23356_ch19.indd 1031 12/15/08 7:26:46 PM12/15/08 7:26:46 PM

1032 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 EXERCISES

 LEARN THE LINGO
 Test your knowledge of the chapter’s vocabulary by completing the following crossword

puzzle.

Across
 3 Holds multiple lines of text

 6 Dragging or moving the mouse over a component

generates a .

 8 A dialog box can have buttons Yes, No, and

Cancel .

 9 A listener must with a source .

 11 Radio buttons should belong to a .

 12 Responds to events .

 13 Method that identifi es the source of the event .

 17 Event class

 18 A pop-up window

 21 A button listener must implement .

 22 Pressing in a text fi eld generates an event .

 23 A "!" in a dialog box indicates a message .

 24 A menu is added to a .

 25 Component used for output but not input

 26 Component that can be selected or not

Down
 1 An event is generated by some .

 2 A dialog box is incapable of input .

 4 When a button is pressed, an event object is

generated and passed as a parameter to .

 5 Provides scroll bars to a text area

 7 A listener is usually implemented as a(n)

 class .

 10 Holds a single line of text

 14 Clicking a checkbox generates a(n) .

 15 A component registers a listener with a method

that has the prefi x .

 16 Class that defi nes dialog boxes

 19 When implementing the MouseListener interface,

a listener must implement methods .

 20 A is added to a menu .

1

9

13

14

11

3 4

8

7

17

25

2019

22

26

23

24

18

1615

21

10

2

6

12

5

sim23356_ch19.indd 1032sim23356_ch19.indd 1032 12/15/08 7:26:46 PM12/15/08 7:26:46 PM

 Chapter 19 Event-Driven Programming 1033

 SHORT EXERCISES
 1. True or False
 If false, give an explanation.

a. Every listener also generates events.

b. Every component requires at least one listener.

c. Event objects are automatically generated whether or not there is a listener.

d. There is no need for a source to register a listener if the listener is the default

listener.

e. A listener that implements a particular interface must implement every method

declared in that interface.

f. Every GUI contains both input and output components.

g. An input dialog box and a text fi eld are functionally equivalent.

h. A text fi eld and a message dialog box are functionally equivalent.

i. Dialog boxes do not require listeners.

j. A menu contains menu bars that in turn contain menu items.

k. A listener class may implement only one interface.

n. A source may register only one listener.

m. A listener class may handle events from only one source.

 2. What’s Wrong?
 Determine whether or not there is an error in each of the following statement

groups. If there is an error, correct it.

a. JPanel x � new JFrame();
b. JFrame y � new JFrame(); y.setTitle(“Oops”);
c. JButton b � new JButton(“Oops”); JFrame z � new JFrame();

 z.add(b, BorderLayout.SOUTH);
d. JButton c � new JButton(); c.addActionListener(new ActionListener());
e. private class W implements MouseListener, ActionListener

 3. Event Delegation Model Review
 Give an example of each the following, and justify your answers.

a. A source that never needs to register a listener (i.e., generates no events).

b. A listener interface requiring the implementation of fi ve methods.

c. A Swing class that is used only for output, never for input.

d. A source that generates events from more than one event class.

e. An event class whose events are naturally handled by a listener that implements

two different listener interfaces.

 4. GUI Design
 Determine whether you would use a button, a dialog box (specify: message,

confi rmation, or input), or a text fi eld when designing a GUI for the following

features of a chess program. Justify your choice for each feature.

 The chess game should allow a player to:

a. repeatedly undo the last move,

b. choose to play again or quit when the game is over,

c. click on the piece that he/she wishes to move,

d. choose whether or not he/she wishes to move fi rst, and

e. warn a player when he/she attempts to make an illegal move.

 5. Simulation
 Java offers many different tools and features. Some of these are absolutely

necessary, and some are merely convenient. For example, because a switch

sim23356_ch19.indd 1033sim23356_ch19.indd 1033 12/15/08 7:26:46 PM12/15/08 7:26:46 PM

1034 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

statement can be realized with nested if-then-else statements, a switch statement is a

convenience, not a necessity. Not all GUI features are necessary. Explain how you

might simulate the component in column A with the corresponding components and

objects in column B.

A B

A button A label and a mouse listener

An input dialog box A text fi eld and a listener

A confi rmation dialog box A button and a listener

A radio button Buttons, labels, and listeners

A checkbox Buttons, labels, and listeners

 6. Debugging
 The following program is supposed to display two buttons—Switch and Exit. When

Switch is pressed, the two buttons switch their text (Switch becomes Exit and vice

versa). When Exit is pressed, the program terminates. As written, the program has

numerous syntax and semantic errors, some careless and some more serious. Debug

the program and fi x it so that it works correctly.

 import java.awt.*;
import javax.swing.*;

public class Switch extends JFrame
{
 private JButton switchButton;
 private JButton exitButton ;

 public Switch() // constructor
 {
 switchButton � new JButton("Switch");
 exitButton � new JButton("Exit");

 setTitle("Switch");
 setBounds(0, 0, 300, 300);

 switchButton.addActionListener(new ButtonListener());
 exitButton.addActionListener(newButtonListener());
 JPanel buttonPanel � new JPanel();
 buttonPanel.add(switchButton); // add buttons to panel
 buttonPanel.add(exitButton);
 add(buttonPanel,BorderLayout.CENTER); // add panel to the frame
 setVisible(true);
 }

 private class ButtonListener implements ActionListener // the listener
 {
 public void actionPerformed(ActionEvent e) // must implement this method
 {
 if (e.getSource() �� switchButton)
 {
 if (switchButton.getText() � "switch")
 {
 switchButton.setText() � "exit";
 exitButton.Text � "switch";
 repaint(); // repaint the frame
 }
 else
 if (exitButton.text �� "switch") // the source is exit Button

sim23356_ch19.indd 1034sim23356_ch19.indd 1034 12/15/08 7:26:46 PM12/15/08 7:26:46 PM

 Chapter 19 Event-Driven Programming 1035

 {
 switchButton.text � "switch";
 exitButton.text � "exit";
 }
 else
 System.exit(0);
 }
 }

 public static void main(String [] args)
 {
 Switch frame � new Switch();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

 7. More Debugging
 Can you determine what the following program is supposed to do? Find and correct

the errors so that the program performs correctly.

 import java.awt.*;
import javax.swing.*;

public class Mystery extends JFrame
{
 private JButton aButton;

 public Mystery() // constructor
 {
 aButton � new JButton("mystery");
 setTitle � "Mystery";
 setBounds(0, 0, 300, 300);
 JPanel buttonPanel � new JPanel();
 buttonPanel.add(aButton); // add button to panel
 buttonPanel.add(buttonPanel, BorderLayout.CENTER); // add panel to the frame
 aButton.addActionListener(new ButtonListener()); // register the listener
 aButton.setVisible(true);
 }

 private class ButtonListener implements ActionListener // the listener
 {
 public void actionPerformed(ActionEvent e) // must implement this method
 {
 // Do not react to the event
 }
 }

 public static void main(String [] args)
 {
 Mystery frame � new Mystery();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }
}

 8. Listener Trade-Offs: Code Simplicity and Effi ciency
 A GUI displays a 10 by 20 grid of images. Clicking on an image triggers some

action. Here are three ways to design the GUI.

 a. Use 200 JButton objects with a grid layout. Create a listener to handle button

clicks, and register the listener with each button.

sim23356_ch19.indd 1035sim23356_ch19.indd 1035 12/15/08 7:26:47 PM12/15/08 7:26:47 PM

1036 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

b. Use 200 JLabel objects with a grid layout. Register a single mouse listener to check

for clicks, and depending on the location of a click, follow the appropriate action.

c. Use no labels or buttons. Draw images on the frame using g.DrawImage(…),
where g is a Graphics object. Register a single mouse listener to check for

clicks, and depending on the location of a click, follow the appropriate action,

and call repaint().

 What are the advantages and disadvantages of each method with respect to

simplicity and effi ciency? Be specifi c. Consider the number of objects that you

defi ne, the number of events that must handled, and the diffi culty of implementing

the listener methods that handle the events.

 9. GUI Design
 Without writing any code, describe those components and listeners (if any) that you

would use to design the following GUIs. Sketch a picture of the GUI.

 a. A purchase order form for online shopping .
 A store sells 50 different items and allows you to order any number of each item.

The prices and pictures of each item are shown. You are asked to choose a state of

residence so that tax can be computed. You are asked to choose a shipping method

so that shipping costs can be calculated. The total bill is displayed as you make

changes, but you can undo anything and recalculate until you click Finished.

b. A solitaire blackjack program .
 A player is dealt cards face up, and the computer (dealer) is dealt two cards face

down. The player may ask for another card if the total of his/her hand is under 21.

The player has a bankroll that is displayed, along with his/her current bet.

 PROGRAMMING EXERCISES
 1. Rise to Vote Sir
 Write a program that displays three buttons with the names or images of three

candidates for public offi ce. Imagine that a person votes by clicking the button

that shows the candidate of his/her choice. Display the current number of votes

above each button. Include a Finished button that erases the images of the losers

and displays only the winner’s image with a message of congratulations. Be sure to

consider a tie.

 2. A Two-Way Listener
 Write an application with a GUI that displays a button labeled Reverse and two

text fi elds. The fi rst text fi eld accepts a string, and the second displays the string in

reverse. The reverse string should be displayed either when the cursor is in the fi rst

text fi eld and the Enter key is pressed, or when the Reverse button is clicked. That is,

your listener must handle events generated by either the text fi eld or the button.

 3. A Modifi ed Photo Album
 Modify the photo album (Example 19.3) in this chapter so that there is a Previous

button, which allows the user to scroll back through the previous nine thumbnails.

 4. Fixed GPA Calculation—One Listener
 Write a program that calculates the grade point average (GPA) of up to fi ve letter

grades, each of which can be A, B, C, D, or F. Use fi ve separate text fi elds for

grade input, and a label for output. Your program does not need to respond to

events generated by a text fi eld. Instead, include a button labeled Calculate along

with a listener class that responds to a button event. Handle erroneous data with an

appropriate message. When calculating the GPA, a value of 4 is assigned to A, 3 to

B, 2 to C, and so on.

sim23356_ch19.indd 1036sim23356_ch19.indd 1036 12/15/08 7:26:47 PM12/15/08 7:26:47 PM

 Chapter 19 Event-Driven Programming 1037

 5. Fixed GPA—No Listeners
 Rewrite the program of Exercise 4 using input dialog boxes. Each box should

provide a drop-down list of grades. You do not need to implement any listeners.

 6. Fixed GPA—Two Listeners
 Rewrite the program of Exercise 4 using radio buttons. Why are radio buttons more

appropriate than checkboxes?

 7. General GPA Calculation
 Write a program that calculates the GPA of up to 100 letter grades A through F. Use

one text area for all the grades, and add scroll bars to the text area. You may ignore

any symbols other than A, B, C, D, or F. However, if other symbols are encountered,

a warning should be displayed stating that only the letters A, B, C, D, and F were

processed.

 8. General GPA Calculation
 Rewrite the program of Exercise 7 without using a text area. Use the simplest

components that get the job done without sacrifi cing clarity of the interface.

 9. Stop and Go
 Write a program that displays two buttons at the bottom of a frame: one reads

 STOP and the other GO . When STOP is clicked, the application should display

a red circle above the buttons, and when GO is clicked, a green circle.

 10. Weakling Point
 Write a program that can be used as a visual aid for a short three-slide

presentation—like PowerPoint but without the muscle and versatility. Your program

should have a frame that is split vertically into two panels: the right panel holds a

text area with scroll bars, and the left displays a label with an image. Place three

buttons beneath the two panels. Each button should display the title of a “slide.”

When you click on a button, an image associated with that slide should appear on

the label, and related text should appear in the text area to its right. The text should

be read from one or more fi les.

 11. 123-Nim
 Write a program that allows a person to play 123-Nim against the computer. The

initial confi guration of 123-Nim consists of a pile of 5 to 50 sticks. Each player may

take 1, 2, or 3 sticks on his/her turn, hence the name “123-Nim.” The player who takes

the last stick wins the game. The player should be shown the initial pile of sticks and

given the opportunity to go fi rst or second. The computer and player alternate turns

until the game is over. When the game is over, a message appears stating who won,

and the player may choose to quit or play again. A running total of the number of

games played and the number won by the player is kept in some area of the screen.

 A perfect strategy for this game has the computer choosing n % 4 sticks, where

 n is the number of sticks remaining in the game, and n % 4 is not zero. If n % 4 �� 0,

then the computer randomly chooses 1, 2, or 3 sticks.

 12. Extending the Text Editor
 The text editor program of Example 19.8 is very rudimentary. Most text editors

include Find and Replace functions. Add these functions to the Editor class.

 13. Enhancing the Sliding Coins Simulator
 Implement any or all of the following enhancements to the Sliding Coins program of

Example 19.7. Each enhancement is independent of the others.

 a. A coin may not be dragged over any other coin.

b. A coin may only be dropped if it is touching exactly two other coins.

c. A running total of the number of coin slides is displayed.

sim23356_ch19.indd 1037sim23356_ch19.indd 1037 12/15/08 7:26:47 PM12/15/08 7:26:47 PM

1038 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

d. Unlimited “undos” are allowed.

e. The mousePressed() method is implemented so that, to move a circle, the user

must press the mouse strictly within the boundary of the circle.

 14. A Simple Calculator
 Write a program that simulates a very simple, but unconventional, calculator. The

application’s GUI should include two text fi elds, F1 and F2, for numerical input and

also a label for output. So, to compute 23 � 56, a user enters 23 into F1 and 56 into

F2. There should be four buttons labeled �, �, *, and / . When button B is pressed,

the operation (F1) B (F2) is computed and the result displayed on the label. If a

button is pressed and a fi eld F1 or F2 is empty, then the program should display an

error message.

 Include a button that copies the result of the computation to F1 and another that

copies the result to F2. These buttons facilitate subsequent computation using the

result of the previous computation.

 Use exceptions to catch any ill-formed input in the text fi elds. A Quit button

ends the program.

 15. More Coin Sliding
 Expand Example 19.7 to include two additional coin-sliding games. Instead of a

 Reset button, the GUI should display three buttons: the fi rst resets the H-O game of

the example, and the second and third buttons show different starting confi gurations.

 One of the new games displays a pyramid of six coins as the initial

confi guration. See Figure 19.34a. The player must slide the coins into the

confi guration of Figure 19.34b using a minimum number of moves. As usual, any

coin that is moved must be placed in a position touching two other coins. This can

be done with seven moves.

(a) (b)

FIGURE 19.34 Change (a) to (b)

 A second game transforms the arrangement of Figure 19.35a to that of Figure 19.35b.

This can be done by moving just three coins.

(a) (b)

 FIGURE 19.35 Make the arrow point down

sim23356_ch19.indd 1038sim23356_ch19.indd 1038 12/15/08 7:26:47 PM12/15/08 7:26:47 PM

 Chapter 19 Event-Driven Programming 1039

 16. Extending the Sketch Pad
 The sketch pad implemented in Example 19.6 is bare-bones. Modify the sketch

pad program to include the option of drawing ovals/circles. Add two buttons,

Line and Circle, at the bottom. When Line is clicked, the program works

as it did originally. When Circle is clicked, circles/ovals are drawn instead

of lines.

 Only one of the two buttons should be enabled at any time. You can achieve this

effect by disabling a button after it has been clicked, and enabling it when the other

(enabled) button is pressed. The program begins in the line drawing mode, that is,

with the line button disabled. An alternative implementation uses a group of two

radio buttons.

 To draw an oval, follow this procedure:

 When the mouse button is pressed, a start point (x, y) is recorded, and when the

mouse is dragged and subsequently released, an end point (u,v) is recorded. An oval

is drawn with width | x � u| and height | y � v | by invoking

 drawOval(x, y, width, height) .

 17. Multiplication Quiz Generator
 Write a program that displays 10 multiple choice questions, one question at a time,

each with four possible answers labeled A, B, C, and D. When the user answers one

question, the next question appears. The application should display the number of

questions that have appeared and the number that have been answered correctly.

There should be a menu or button option to quit and restart.

 The multiple choice questions should be randomly generated multiplication

problems using numbers between 0 and 99. One of the choices should be the correct

answer. It is a good idea to generate all 10 questions fi rst and store them in an array

(or ArrayList). This allows a clean separation of data and GUI. Use a radio button

group for the answers to each question.

 18. A Trivia Quiz Generator
 Write a program that displays 10 multiple choice trivia questions, each with four

possible answers labeled A, B, C, and D. The questions can come from one of three

categories such as horror movies, classic TV, and rock and roll, or action heroes,

cereal brands, and nursery rhymes. Choose three categories that interest you. Be

imaginative. The questions along with the correct answers are stored in three text

fi les, one for each category. Each fi le has at least 25 questions, but additional

questions make the application more interesting.

 With a button click, a user selects a category and 10 questions from that category

are randomly chosen and displayed on the screen. When the user has answered the

questions, he/she clicks a Finished button, the quiz is scored, and the results are

displayed.

 Use a radio button group for the answers to each question. There should be a

menu or button option to quit and restart.

 As an optional feature, you might include three levels of questions so that a user

can select either beginner, intermediate, or advanced.

 19. Car or Goat?
 The Monty Hall Problem derives its name from a classic TV game show, “ Let’s

Make a Deal ” starring perennial host Monty Hall. During the show, a contestant

is shown three closed doors labeled 1, 2, and 3. Behind one of the doors is a new

sports car and behind each of the other doors is a rather handsome goat. Of course,

Monty knows which door conceals the car.

 After the contestant selects a door (1, 2, or 3), Monty opens one of the other two

doors revealing a goat. Two doors now remain closed; one hides a car, the other a

sim23356_ch19.indd 1039sim23356_ch19.indd 1039 12/15/08 7:26:48 PM12/15/08 7:26:48 PM

1040 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

goat. The contestant is now given an option: stick with his/her original choice or

switch to the other closed door.

 Should the contestant switch doors? Keep the original door? Stay or switch, does

it make a difference? How often does the contestant go home with the car and how

often with a goat? You may be surprised by the answer.

 Write an application that simulates this game. Use a random number to choose

the door (1, 2, or 3) that hides the car.

 The GUI should display three doors labeled 1, 2, and 3. A player chooses a

door by clicking on the door. After a player chooses a door, one of the other doors

is opened, revealing the picture of a goat, or perhaps just the word Goat. The player

now has a choice: click on the original door again or switch doors by clicking on the

other closed door. The player clicks on one of the two doors and the door is opened

revealing the prize, a car or a goat.

 Your GUI should also provide a Reset button allowing a contestant to play again.

Include labels that show the number of times the game is played, the number of

times the contestant switches doors, the number of times a player wins the car, and

the number of times the player chooses the goat. Include an Exit button.

 Play the game many times, always switching doors. Then play a series of games

in which you never switch. What have you discovered?

 Note: In the actual game show, Monty knows the location of the grand prize,

and does not always open up a second door. His choice of whether or not to

show another door is based on the contestant’s fi rst guess, and his instincts

about the contestant’s personality—is he/she more likely to stay or switch?

This gives Hall a huge advantage, compared to what can be expected with our

simulation.

 20. Binary Nim
 Write a GUI program to play Binary-Nim. Binary-Nim begins with three to

eight piles of sticks, such that each pile contains at most 10 sticks. The number

of piles and the number of sticks in each pile should be chosen randomly. Each

pile may have a different number of sticks. At each turn, a player may remove

any number of sticks, but only from a single pile. The player who removes the

last stick wins.

 The computer and player alternate turns until the game is over. A player

should be given the choice of going fi rst or second after he/she sees the initial

confi guration. When the game is over, the application should display a message

stating who won. A running total of the number of games won and lost should be

displayed in some area of the screen. After each game, a player may choose to

quit or play again.

 Random play is fi ne, but you won’t enjoy the game very much because the player

can win too easily. There is a perfect but complex winning strategy that involves

binary numbers. The data model for the perfect strategy uses a two-dimensional

array with one row for each pile. Each row holds the digits (0’s and 1’s) of the binary

number representing the number of sticks in that pile. The bits are right justifi ed.

You might research this strategy and incorporate it into your program, or else devise

your own strategy. Whatever you do, it is good style to separate the computer’s game

strategy from the GUI.

 21. (R) Graphical Tower of Hanoi
 The famous Tower of Hanoi problem is frequently used to demonstrate recursion.

The basic version of the puzzle consists of three pegs, two of which are empty. The

third peg contains a stack of disks, piled on top of each other in size order, with the

largest disks at the bottom. See Figure 19.36.

sim23356_ch19.indd 1040sim23356_ch19.indd 1040 12/15/08 7:26:48 PM12/15/08 7:26:48 PM

 Chapter 19 Event-Driven Programming 1041

FIGURE 19.36 An initial configuration for the Tower of Hanoi with four disks

 The task is to move all the disks to one of the other pegs, with the caveat that you

may never move more than one disk at a time, and you may never place a larger disk

on top of a smaller one.

 The Famous Recursive Solution
 A simple and elegant recursive solution follows:

 TowerHanoi(n, Start, Using, Finish)
// n is the number of disks
// Start is the peg with n disks
// Finish is the peg to which the n disks must be moved
// Using is the extra peg

 void TowerHanoi(n, Start, Using, Finish)
 {
 if n is 0 then exit
 // otherwise
 TowerHanoi(n � 1, Start, Finish, Using)
 Move one disk from Start to Finish
 TowerHanoi(n � 1, Using, Start, Finish)
 }

 This solution not only works, but it transfers the disks using the minimum

number of steps.

 The Obscure Iterative Solution
 It is not as well known, but there is a simple and elegant iterative solution. Color

the base of the Start peg black, and color the disks alternately white and black,

so that no two disks (or disk and base) of the same color are touching. Next,

color the bases of the Finish and Using pegs black and white, respectively. If you

add the rule that two disks (or disk and base) of the same color may never touch,

then every move is uniquely determined and, like the recursive solution, this

unique set of moves transfers n disks from Start to Finish using the minimum

number of steps.

 As the number of disks increases, the minimum number of moves required to

solve the puzzle grows exponentially . That is, the number of moves approximately

doubles with each additional disk. For example, a tower of three disks requires at

least seven moves, a tower of size four requires 15, and for 25 disks the minimum

number of moves is 33,554,431. In general, transferring n disks from one peg to

another requires at least 2 n � 1 moves.

 a. Program both methods and verify that each solves the problem for n � 4 and n � 5.

b. Make a GUI for Tower of Hanoi, so that a user may specify the number of disks

(up to eight), and by clicking buttons, move forward and backward through the

sim23356_ch19.indd 1041sim23356_ch19.indd 1041 12/15/08 7:26:48 PM12/15/08 7:26:48 PM

1042 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

solution. The application should display each move graphically with a picture of

all three pegs and the disks on each. Your program should display four buttons:

 • Reset,

 • Next,

 • Previous, and

 • Exit.

 Hints : One way to design the program is to run the solution in advance and store

the solution in an array (or ArrayList). A more effi cient way that does not require

preprocessing an exponential time computation is to use the iterative algorithm and

create a method that calculates the unique next move from the current confi guration.

 Depending on your design, the data model will utilize a representation of the

current confi guration, or an array of confi gurations. A single confi guration with n

disks can be stored as an array of size n containing values from the set {1, 2, 3}. The

 i th value in the array is the number of the peg (1, 2, or 3) on which the i th largest

disk is currently sitting. For example, the starting confi guration for fi ve disks is an

array of fi ve 1’s, since all fi ve disks are on peg 1. If the four smallest disks are on

peg 2 and the largest on peg 1, the array would have the form {1, 2, 2, 2, 2}.

 The GUI should draw a picture of a given confi guration. To do this, the GUI can

query the data model for the current confi guration.

 22. The Combo Box—Another Component
 A combo box is a familiar component that offers a selection of items such that a user

may choose exactly one item. Figure 19.37 shows a combo box that presents a user

with a choice of four colors.

FIGURE 19.37 A combo box displays one item unless the arrow is clicked

 Here are the basics:

 Class: JComboBox

 Generates:

• ActionEvent when an item is selected;

• two ItemEvent s when a new item is selected—one for deselecting the old item, and

one for selecting the new item.

 An ItemEvent object has two additional methods:

• Object getItem(), and

• int getStateChanged()
 returns an integer: ItemEvent.SELECTED or ItemEvent . DESELECTED

 with respective integer values 1 and 2.

 Listener: Implements ActionListener and/or ItemListener .

 Listener method to implement: void actionPerformed(ActionEvent e)
 void itemStateChanged(ItemEvent e)

sim23356_ch19.indd 1042sim23356_ch19.indd 1042 12/15/08 7:26:48 PM12/15/08 7:26:48 PM

 Chapter 19 Event-Driven Programming 1043

 Register a listener: void addActionListener(ActionEvent a)
 void addItemListener(ItemEvent i)

 Constructors:
 • JComboBox()
• JTComboBox(Object[] options)

 creates a combo box, initialized with options . The parameter options may be an array

of any Object , but is usually an array of String .

 Methods:
 • Object getSelectedItem()

 returns the selected item or null if no value is selected.

• int getSelectedItemIndex()
 returns the selected index or �1 if no item is selected.

• int getItemCount()
 returns the number of options.

• void addItem(Object x)
 adds an item to the end of the list of options.

• void removeItemAt(int i)
 removes the item at index i .

• void removeItem(Object s)
 removes item s from the list of options.

• void removeAllItems()
 removes all options.

• void addActionListener(ActionListener x) , and

• void addItemListener(ItemListener x)

 The following segment instantiates a combo box called colorOption with the choices

Red, Blue, Green, and Yellow:

 public class ComboColorDemo extends JFrame
 {
 private JComboBox coloroption;
 private String[] colors � new String[4];
 …
 public ComboColorDemo()
 {
 panel.setBackground(Color.red);

 colors[0] � "Red"; // initialize names to be displayed
 colors[1] � "Blue";
 colors[2] � "Green";
 colors[3] � "Yellow";

 colorOption � new JComboBox(colors);

 …
 }
 …
 }

 Write a program that places the colorOption combo box in a panel with a red back-

ground. Whenever a color is selected from the combo box, the background of the

panel should change appropriately.

sim23356_ch19.indd 1043sim23356_ch19.indd 1043 12/15/08 7:26:49 PM12/15/08 7:26:49 PM

1044 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 23. The List Box—One More Component
 A list box is similar to a combo box but allows the user to choose more than one

value. That is, list box is to combo box as checkbox is to radio button. Like a combo

box, a list box displays more that one value. See Figure 19.38.

A list box without scroll bars

A list box with scroll bars

FIGURE 19.38 Two list boxes

 Here are the basics:

 Class: JList
 Generates : ListSelectionEvent
 Listener: ListSelectionListener
 Method to implement : void valueChanged(ListSelectionEvent e).
 Register a listener: void addListSelectionListener(ListSelectionListener l)

 Constructor:
 public JList(Object [] choices) // choices is usually an array of String

 Methods
• Object getSelectedValue()

 returns the fi rst selected item or null if no value is selected.

• int getSelectedIndex()
 returns the index of the fi rst selected item or �1 if no item is selected.

• Object[] getSelectedValues()
 returns an Object array of selected items.

• int[] getSelectedIndices()
 returns an array of all selected indices.

• boolean isSelected(int x)
 returns true if the item with index x is selected.

• void setVisibleRowCount(int n)
 sets the number of rows displayed, used when a list box is displayed in a

scroll pane.

• void setSelectionMode(int n)
 sets to single or multiple selection mode using the constants from the

 ListSelectionModel :
 ° ListSelectionModel .SINGLE_SELECTION , (value 0),

sim23356_ch19.indd 1044sim23356_ch19.indd 1044 12/15/08 7:26:49 PM12/15/08 7:26:49 PM

 Chapter 19 Event-Driven Programming 1045

THE BIGGER PICTURE

° ListSelectionModel .SINGLE_INTERVAL_SELECTION , (value 1),

° ListSelectionModel .MULTIPLE_INTERVAL_SELECTION , (value 2).

 Of course, numerous additional methods are detailed on Sun’s website.

 Write a program that creates a list box containing your name and the names of

10 of your closest friends. The list should be placed in a panel and then in a frame.

An array of empty labels should be placed in a second panel and added to the frame.

When you select any name(s) from the list, the corresponding phone number(s)

should be displayed in the labels. The names and phone numbers should be read

from a fi le when the program begins.

 24. Submenus—One Last Feature
 A submenu is a menu that drops down from a menu item. See Figure 19.39.

FIGURE 19.39 A submenu of cult films

 That’s right, menu items can be menus. Thus, if movies and cultMovies are both

menus, that is, both belong to JMenu , then movies.add(cultMovies) creates a

submenu such as the one displayed in Figure 19.39. Theoretically, there is no limit

to the level of nested menus. Of course, more than two or three levels may be

somewhat excessive.

 Create a frame with a Format menu containing two submenus Color and Font.

Pick four colors for the menu items of the Color menu and three fonts for the Font

menu. The application should initially display a label Test Me, in a default font, on

a white background. The font and the background should change as the user makes

menu selections.

 THE BIGGER PICTURE

 ARTIFICIAL INTELLIGENCE
 Artifi cial Intelligence (AI) is a special area of computer science dealing with devices and

applications that exhibit human intelligence and behavior, including the ability to learn and

adapt from experience. AI is interdisciplinary—a mix of computer science, cognitive sci-

ence, psychology, and engineering. Current research in AI includes:

• machine vision—applications in automated camera/video focus, and autonomous

vehicles,

• knowledge based (expert) systems—applications in medical diagnosis, oil exploration,

• speech recognition—applications in automated phone systems,

sim23356_ch19.indd 1045sim23356_ch19.indd 1045 12/15/08 7:26:49 PM12/15/08 7:26:49 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
1046 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

• natural language processing—applications in automated translation, and

• game playing—applications in chess programs, poker, as well as other games.

Success in these areas has been both academic and commercial. And in some cases the suc-

cesses have been dramatic. Nevertheless, AI suffers somewhat unfairly from an identity cri-

sis. The distinction between artifi cial intelligence and clever engineering is not always clear.

Before programs could play chess, most of the AI community agreed that a chess playing

program would demonstrate artifi cial intelligence. But now that that a chess program rou-

tinely holds its own against a world champion human player, that perception has changed.

Indeed, a championship chess program owes its success to advances in algorithms, paral-

lel hardware architectures, speed and memory, and chess knowledge. Are these advances

in AI, or in algorithms, hardware, and software? That depends on your perspective. But,

regardless of your point of view, it is safe to say that AI research has contributed greatly to

advances in all areas of computer science.

 A complete history of artifi cial intelligence is beyond the scope of this short “bigger

picture,” but a quick look is worthwhile. AI began, according to some, with Alan Turing’s

famous article “Computing Machinery and Intelligence,” published in Mind magazine

(October 1950). In this paper, Turing raises the question “can machines think?” and

defi nes the famous “Turing Test,” an attempt to defi ne exactly what is considered artifi -

cial intelligence.

 The Turing test works like this: a human interrogator sits in a room with two terminals,

one connected to a human subject and one to a machine (or program). The interrogator

types questions at either terminal. Are the responses coming from a human or a machine?

If the interrogator cannot determine the identity of the human subject more than 50% of the

time, then the program exhibits artifi cial intelligence.

 There have been many debates about the validity of this test, both philosophical and

practical. However, since it is diffi cult to produce reasonable alternatives, for better or worse,

the Turing Test stands as the measure of artifi cial intelligence. In fact, in 1990, Dr. Hugh

Loebner at the Cambridge Center for Behavioral Studies in Massachusetts offered a prize of

$100,000, as well as the solid 18-carat gold medal shown in Figure 19.40, for any program

that could pass the Turing Test.

FIGURE 19.40 The two sides of the solid 18-carat gold medal pledged
as part of the Loebner prize

 Since no program has ever come close to passing the test, or is likely to win the prize in

the near future, a competition is held each year and a $2000 consolation prize is awarded to

C
ou

rt
es

y
D

r.
H

ug
h

Lo
eb

ne
r

sim23356_ch19.indd 1046sim23356_ch19.indd 1046 12/17/08 3:02:49 PM12/17/08 3:02:49 PM

THE BIGGER PICTURE
 Chapter 19 Event-Driven Programming 1047

the creator of the most “human-seeming” entry. When/if any program ever passes the Turing

Test, the author will win the prize of $100,000 along with the solid gold medal, after which the

Loebner Prize competition will dissolve. If this ever happens, it would not be so surprising if

the winning program were to protest this policy, arguing intelligently, of course, that the pro-

gram itself should win the prize rather than its author—a science fi ction drama, to be sure.

 Although no computer program is likely to pass an unrestricted Turing Test anytime

soon, machines have already passed Turing tests in restricted domains. For example, a

chess master frequently cannot determine whether an opponent is a world-class human

player or a world-class program.

 In the following experiment you will ascertain whether or not you can write a program

that exhibits artifi cial intelligence in a restricted game domain. Can you distinguish between

the play of your program and that of a human? Can your program beat the play of its author?

 An AI Experiment
 In this exercise, you develop a GUI for a one-person game called SameGame (pronounced

sa-me-ga-me). And, in the process, you will see how human intuition combined with a

computer algorithm allows a program to play better than its creator. Whether you consider

this genuine AI or just clever software design is a moot point. Regardless of your opinion,

the experiment captures the style and fl avor of an AI problem coupled with a dose of event-

driven programming.

 SameGame
 The game begins with a 10 by 15 grid fi lled with colored circles, each of which is randomly

chosen to be one of three colors. Figure 19.41 shows a typical starting confi guration.

Black 50

Total Score 0

Green 46

Possible Points 0

Grey 54

High Score 774

FIGURE 19.41 A starting SameGame configuration

 A player clicks on one circle and all circles of the same color “connected” to that circle

are highlighted. One circle is connected to another via up-down or left-right connections (not

diagonal connections). The picture in Figure 19.42 shows a group of highlighted green circles.

This connected group is the result of the player clicking on one of the highlighted circles.

sim23356_ch19.indd 1047sim23356_ch19.indd 1047 12/15/08 7:26:50 PM12/15/08 7:26:50 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
1048 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

Black 50

Total Score 0

Green 46

Possible Points 81

Grey 54

High Score 774

FIGURE 19.42 The highlighted green group is selected

 When the mouse button is released, the highlighted group is removed from the picture,

and the other circles cascade downward, fi lling the empty slots. Only connected groups of

two or more may be deleted. Single circles may not be clicked and deleted. Figure 19.43

shows the board after the green group of Figure 19.42 is deleted.

Black 50

Total Score 81

Green 35

Possible Points 0

Grey 54

High Score 774

FIGURE 19.43 The pieces fall downward into the gaps left by the deleted green pieces

 Depending on the locations of the deleted pieces, empty slots can occur in several places

in any column. Every column must be compacted downward until all the empty slots are

fi lled with colored circles.

sim23356_ch19.indd 1048sim23356_ch19.indd 1048 12/15/08 7:26:50 PM12/15/08 7:26:50 PM

THE BIGGER PICTURE
 Chapter 19 Event-Driven Programming 1049

 If a column is emptied, then the columns to the right of the missing column shift to the

left. See Figures 19.44 and 19.45.

Black 44

Total Score 322

Green 35

Possible Points 9

Grey 37

High Score 774

FIGURE 19.44 A small group of black pieces is selected. When it is deleted,
the board collapses left to fill in the missing column.

Black 39

Total Score 331

Green 35

Possible Points 0

Grey 37

High Score 774

FIGURE 19.45 The black highlighted pieces are deleted, and since a whole column
disappears, the board collapses left

 Scoring works as follows: Each deleted group of circles earns points, and the more cir-

cles in a group, the more points earned. In particular, a group of k circles earns (k � 2) 2 points.

sim23356_ch19.indd 1049sim23356_ch19.indd 1049 12/15/08 7:26:51 PM12/15/08 7:26:51 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
1050 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

So, a two-circle group earns nothing, but a 32-circle group earns (32 � 2) 2 � 900 points.

There is also a bonus of 1000 points if no circles remain at the end of the game.

 For example, when the highlighted green group of Figure 19.46 is deleted, the player

earns (6 � 2) 2 � 16 points and the player’s score increases from 725 to 741. The new board

confi guration is shown in Figure 19.47.

Black 8

Total Score 725

Green 20

Possible Points 16

Grey 7

High Score 774

FIGURE 19.46 The selected group earns 16 points

Black 8

Total Score 741

Green 14

Possible Points 0

Grey 7

High Score 774

FIGURE 19.47 The deletion of six circles selected in Figure 19.46 results
in a number of columns disappearing, and the board collapses leftwards.

The score increases by 16 from 725 to 741

sim23356_ch19.indd 1050sim23356_ch19.indd 1050 12/15/08 7:26:51 PM12/15/08 7:26:51 PM

THE BIGGER PICTURE
 Chapter 19 Event-Driven Programming 1051

 Design—The View and the Data Model

When designing the program that plays SameGame, or any visual game, separate the

view from the data model.

 The data model consists of the data and logic of the program. The data model keeps track

of the locations of the pieces and the current score. The data model also determines the

connected groups, and how the board collapses when a group is deleted. Indeed, the data

model is responsible for almost all of the program’s functionality.

 The view processes input through mouse clicks and scroll-down menus. The view dis-

plays the board and other relevant information, such as a player’s score. That is, the view is

in charge of the GUI. The view sends messages to the data model so that the data model can

update its data structures, and the data model provides information about what the board

should look like. The view is very much a client of the data model, but not vice versa.

 The View
 Certainly, a GUI for this game includes a Start button and a Quit button. Allowing a single

“undo” is a nice option, and unlimited “undos” is an even nicer feature.

 With the assistance of the data model, the GUI draws the colored circles on the board.

The circles can be realized with buttons, labels, or graphics. Choose three images to your

liking: three differently colored circles, three distinguishable smiley faces, or, if you prefer,

pictures of three friends. To allow highlighting of connected groups, it is helpful to have

three additional similar, but highlighted, images. This second set of images is used on a

 mouseover , that is, when the mouse rolls over a spot but no clicking occurs.

 Use labels to display the score, high score, and the numbers of each color remaining.

Another nice feature is a Possible Points label. This label, on a mouseover, displays the

potential points gained if the mouse were to be clicked. For example, on a mouseover,

the green group of circles in Figure 19.46 is potentially worth (6 � 2) 2 � 16 points; the

 Possible Points label would show 16.

 The Data Model—Data Structure and Algorithms
 The data model represents the board and, since the board is a two-dimensional grid, the

obvious choice of data structure is a two-dimensional array of integers, with a different

integer signifying each color and a blank space. In fact, you may want to use more than one

two-dimensional array. You might use one array for the original data, another as a tempo-

rary copy that can be “marked up” while fi nding connected groups, and still another to help

implement “undo” features. You decide.

 The data model requires a method that accepts a position (row, column) in the array

and computes the set of all “color-connected” positions. If you have diffi culty with this

method, revisiting Example 16.4 (The Lady or the Tiger) might help.

 Another method determines the new board confi guration after a color group is deleted.

It is all too easy to write an erroneous version of this method. Make sure that your method

works when:

• a single column has more than one block of circles that are deleted, and when

• multiple columns completely disappear.

It is easier to avoid bugs by fi rst compacting each column and then, if necessary, sliding

columns over to the left, rather than fi rst sliding columns to the left and then compacting.

Finally, compacting a single column should be done effi ciently with a single loop, and not

with nested loops.

sim23356_ch19.indd 1051sim23356_ch19.indd 1051 12/15/08 7:26:51 PM12/15/08 7:26:51 PM

TH
E

BI
GG

ER
 P

IC
TU

RE
1052 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Exercise
 1. The Game Program
 Design an interactive SameGame application. On a mouseover, the connected group

of pieces should be highlighted, and on a mouseclick, the group should be deleted.

The current score and high score for the session should be displayed. Optionally, the

GUI might display the number of each different type of piece (e.g. black, gray and

green circles) remaining.

 How to Teach Your Computer to Play SameGame
 Once you have implemented a version of SameGame for a human player, you can teach a

computer to play the game.

 Computer Strategy—The Algorithm

 A very simple strategy tries every move and chooses the one that earns the most points. This

method of play is called the greedy strategy, and the greedy strategy is sometimes successful.

However, any experienced SameGame player will tell you that the greedy strategy is usually

not the best way to play the game. There is a way to improve the greedy strategy by looking

ahead. Indeed, if the program looks ahead until no more moves are possible, the program

plays perfectly!

 The following recursive algorithm, recScore(...), accepts a board and returns the maxi-

mum possible score attainable. When the algorithm returns, parameter move references the

move that leads to that score. Board is a class that stores a board confi guration; Board has

a fi eld currentScore .

 int recScore(Board board, Move move) // move references the best move
{
 (if board is empty)
 return board.currentScore // there is no more looking ahead.

 else
 {
 int max � 0;
 move � null;
 for each move m
 // m is any non-empty spot on board
 {
 Board newBoard � the board configuration after making move m
 newBoard.currentScore � board.currentScore � score from making move m
 tempScore � recScore(newboard, m);
 // tempScore is the best we can do from newBoard
 if (tempScore > max)
 {
 max � tempScore;
 move � m;
 }
 }
 }

 return max;
}

 The problem with this algorithm is that the number of possible confi gurations is astronomi-

cal and the program cannot run to completion within your lifetime. Nonetheless, you can

use a restricted version of the same algorithm.

 As you look ahead, count the levels of recursion. Pass each recursive call an additional

parameter, level . The value of level starts at 0, and level � 1 is passed to any subsequent

sim23356_ch19.indd 1052sim23356_ch19.indd 1052 12/15/08 7:26:52 PM12/15/08 7:26:52 PM

THE BIGGER PICTURE
 Chapter 19 Event-Driven Programming 1053

recursive call. When level reaches some predetermined value (you can experiment with

this), the program stops recursing. In other words, stop the recursion after n levels, where

 n is some predetermined constant.

 At this point, the algorithm returns currentScore plus an estimate of the best score pos-

sible from this particular non-empty confi guration. The method that calculates this “guesti-

mate” is called an evaluation function . If the program reaches an empty board within its n

level horizon, no estimate is necessary: the current score is precise; the evaluation function

is not needed. Otherwise, an evaluation function is useful, and its usefulness increases as

the depth of look-ahead increases.

 Estimating a Confi guration with Heuristics—The Evaluation Function

 An evaluation function is a method that estimates, without looking ahead, the best score

from a particular position. A simple evaluation function for SameGame might add up the

squares of the number of remaining circles of each color.

 For example, if the numbers of remaining red, green, and yellow circles are 8, 12,

and 3, respectively, then this evaluation function returns 8 2 � 12 2 � 3 2 � 217. This

particular evaluation function naively assumes impossibly high scores; a player cannot

achieve these scores even if he/she removes all the remaining circles of each color at

once. Nonetheless, the function does distinguish one position from another in a way that

hopefully has some bearing on reality, that is, the higher-evaluated positions offer better

scoring opportunities.

 Develop your own evaluation function. Use your intuition developed through experi-

ence to quantitatively capture the essence of your own style of play. Your evaluation func-

tion should somehow mirror your skill and expertise. These ad hoc ideas that form your

evaluation are called heuristics —rules of thumb that work well but imperfectly.

 Exercise
 2. The Experiment
 Modify your SameGame program so that the computer suggests a move at each

turn. Store an initial random starting confi guration and play the game without

using any computer help. Play again using only the computer’s suggestions. Then

play the game a third time using the computer’s suggestions only when you feel

they might help. Play with different starting confi gurations and see which method

gives the highest overall scores. Tabulate and analyze your results.

sim23356_ch19.indd 1053sim23356_ch19.indd 1053 12/15/08 7:26:52 PM12/15/08 7:26:52 PM

1054

CHAPTER CHAPTER 20
 A Case Study:

Video Poker, Revisited
 “There are few things that are so unpardonably neglected in our country as poker.”

 — Mark Twain

 “I must complain the cards are ill shuffl ed till I have a good hand.”
 — Jonathan Swift

 Objective

 This chapter presents a case study focusing on the design and implementation of a GUI

for the video poker game developed in Chapter 11.

 The objective of this chapter is an understanding of the design principle that entails the

separation of the data model from the interface, or more simply, the model from the view .

 20.1 INTRODUCTION

 Chapter 11 guides you through the design and implementation of a video poker

game. From the problem specifi cation, to the determination and responsibilities of the

classes, to implementation and testing, the case study illustrates a methodology for

 program design.

 The video poker game of Chapter 11, while functional and even fun, gives the

player a text-based interface. Input is accomplished with a Scanner object; output with

 System.out.println(). In this chapter, we replace the rather bland user interface developed in

Chapter 11 with a more visual GUI that utilizes buttons, labels, and pictures. Even if you

have forgotten the implementation details of Chapter 11, you may be surprised at how eas-

ily we can accomplish this task.

The separation of model from view that was underscored in the case study of

Chapter 11 enables us to plug in a new graphical interface with minimal effort.

 For non-players, the rules of poker are explained in Section 11.2.

 20.2 A QUICK REVIEW

 The poker application of Chapter 11 consists of seven interacting classes:

 Player, PokerGame, Bet, Deck, Card, Hand, and Bankroll . The details of these classes

are summarized in Figure 11.5, and the classes are implemented in Section 11.9.

sim23356_ch20.indd 1054sim23356_ch20.indd 1054 12/15/08 7:28:20 PM12/15/08 7:28:20 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1055

The Player class provides a text-based user interface. It is the Player class that we

reimplement here, replacing text-based input and output with a GUI of buttons, labels,

and pictures.

Replacing the text-based UI of Chapter 11 with a GUI does not require knowledge of

the implementation details of the other classes.

 To replace the old user interface with a GUI, all that you need is information about

the objectives and methods of some of the classes. Figure 20.1 lists those classes and

methods that we use in creating a new GUI-based poker game. The information sum-

marized in Figure 20.1 and a few methods that we discuss in the chapter are all that you

need. Except for the Player class, which handles all input and output, no class needs

alteration.

Class Purpose Constructor Method Method

Bankroll Manages the

number of coins in

the machine

Bankroll();

Sets initial coin

number to 0

void alterBankroll(int n);

Adds n coins to the number

of coins in the machine

int getBankRoll();

Returns the number of coins

currently in the machine

Hand Maintains a hand

of fi ve cards
Hand();

Creates an empty

hand

String[] getHand();

Returns an array of fi ve

String references that

describes a hand, e.g., {“Ace

of Hearts”, “2 of Spades”,

“3 of Diamonds”, …}

Bet Manages the

current bet or

wager

Bet(int n);

Sets the bet to n

coins

int getBet();

Returns the current bet

void setBet(int n);

Sets the bet to n coins

PokerGame Plays the game:

deals and updates

the hands,

maintains the list

of discarded cards

PokerGame(Bet

bet, Bankroll

bankroll, Player

player);

Initializes the bet

and bankroll for a

player

void viewInitialHand();

Requests a hand of fi ve

cards via hand.getHand()

Asks the player to display

the hand via the message

player.displayHand(hand)

void discardOrHoldCards();

Queries the player for the list of

discarded cards:

player.getDiscard(…);

Updates the hand;

Requests that the player display

the new hand:

player,displayHand()

Evaluates the hand;

determines the winnings/losses;

updates the bankroll;

Asks the player to display the

results: player.displayResults()

FIGURE 20.1 A few video poker classes and methods

 20.3 A VISUAL POKER GAME

 Figure 20.2 shows a screenshot of a video poker game. The GUI is not a text menu but a

display of buttons, labels, and images. Figure 20.2 shows that the player was dealt a hand

of two pair. A hand of two pair pays 2 to 1, the bet is three coins, so the payout is six. The

current bankroll is 12 coins.

sim23356_ch20.indd 1055sim23356_ch20.indd 1055 12/15/08 7:28:21 PM12/15/08 7:28:21 PM

1056 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 FIGURE 20.2 A video poker GUI

 Before playing a hand of poker, a player must insert coins into the machine. This

action is simulated by clicking the Add 1 or the Add 5 button. These buttons can be clicked

repeatedly. Each time a player clicks one of these buttons, either 1 or 5 coins are “inserted”

into the machine. The bottom panel of the GUI displays the current number of coins, that

is, the bankroll . Figure 20.3 gives a screenshot of the game after a player has inserted three

coins into the machine by clicking the Add 1 button three times.

 FIGURE 20.3 A player inserts three coins

 Once a player inserts a few coins into the machine, he/she clicks one of the fi ve Bet

buttons, thus placing a bet from one to fi ve coins, but not more than the number of coins in

the machine. Subsequently, a hand of fi ve cards is dealt. Figure 20.4 shows a typical poker

sim23356_ch20.indd 1056sim23356_ch20.indd 1056 12/15/08 7:28:21 PM12/15/08 7:28:21 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1057

hand displayed as fi ve card images. The bet of two coins is displayed in the upper left-hand

corner of the frame.

 FIGURE 20.4 A player bets two coins and a hand is dealt

 After the initial hand is dealt, a player has the option of keeping or discarding any

of those fi ve cards. To “hold” or keep a card, a player clicks the number that is displayed

below the card, and that number is replaced by the word Hold. The two aces of Figure 20.5

are designated Hold.

 FIGURE 20.5 Two cards are marked Hold

 After deciding which cards are to be kept and which discarded, a player clicks the Deal

button, and those cards that the player chooses to discard are replaced with different cards.

The hand is scored and the number of coins updated. See Figure 20.6.

sim23356_ch20.indd 1057sim23356_ch20.indd 1057 12/15/08 7:28:22 PM12/15/08 7:28:22 PM

1058 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 FIGURE 20.6 The player keeps the two aces. The other three cards are
replaced, resulting in a hand containing two pair, which pays 2 to 1.

 The game of Figure 20.6 is a winner. The fi nal hand includes two pair paying 2 to 1.

Consequently, the initial bet of two coins pays back four coins, and the bankroll increases

from three to seven coins. All winning hands and the corresponding payoffs are enumer-

ated in Section 11.2.

 In the following sections, we develop a new Player class, one that is graphical

and uses Swing components for input and output. Figures 20.2 through 20.6 serve as a

model.

 We begin the new Player class by extending JFrame and placing buttons and labels

in the frame. Next, we add a listener class and a few auxiliary methods. The graphical

version of Player refl ects the logic of the text version but with Swing components replac-

ing Scanner input and calls to System.out.println(). The new interface plugs directly into

the video poker application of Chapter 11 with surprising ease. Among the classes of the

video poker application, Player is the only class that we replace. No other classes need to

be changed, added, deleted, or modifi ed in any way. All input and output is handled by a

 Player object.

Because the design of the poker game in Chapter 11 separates the data model from

the user interface, it is easy to replace the text based interface with a new GUI.

 20.4 LAYING OUT THE FRAME

 As a fi rst step, we create a Player class that extends JFrame and includes the buttons and

labels of the GUI. By now, this should be a straightforward task. The following code

builds a nonfunctioning GUI, that is, a GUI with no listeners. Figure 20.3 provides a

blueprint and guide for component layout. When instantiated, a Player object duplicates

Figure 20.3.

sim23356_ch20.indd 1058sim23356_ch20.indd 1058 12/15/08 7:28:22 PM12/15/08 7:28:22 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1059

 /////////////// Player class, a GUI for video poker ///////////////

1. public class Player extends JFrame
2. {
3. private JLabel resultLabel; // label displays the type of hand and the payout
4. private JLabel[] cardLabel; // an array of 5 labels that display card images
5. private JButton[] holdButton; // click to keep a particular card
6. private JButton add1Button; // add 1 coin
7. private JButton add5Button // clicking adds 5 coins;
8. private JLabel bankrollLabel; // label that displays the current number of coins
9. private JButton quitButton; // exit the application
10. private JButton dealButton; // click to display the updated hand
11. private JButton[] betAndPlayButton; // clicking any of these buttons makes a bet and begins play

12. public Player() // default constructor, places all components
13. {
14. super("Video Poker");
15. setBounds(0, 0, 400, 500);

16. // the label at the top of the frame
17. resultLabel � new JLabel();
18. resultLabel.setFont(new Font("Arial", Font.BOLD, 18));
19. resultLabel.setText("Video poker");

20. // The five card images; the initial image is "Back.gif," which is a dummy card
21. cardLabel � new JLabel[5];
22. for (int i � 0; i � 5; i��)
23. cardLabel[i] � new JLabel(new ImageIcon("Back.gif"));

24. // the five hold/discard buttons
25. holdButton � new JButton[5];
26. for (int i � 0; i � 5; i��)
27. {
28. holdButton[i] � new JButton("" � (i � 1)); // initially these have numbers
29. holdButton[i].setFont(new Font("Arial", Font.BOLD, 18));
30. holdButton[i].setEnabled(false); // initially turned off
31. }

32. // the five bet and play buttons
33. betAndPlayButton � new JButton[5];
34. for (int i � 0; i � 5; i��)
35. {
36. betAndPlayButton[i] � new JButton("Bet " � (i � 1));
37. betAndPlayButton[i].setEnabled(false); // initially turned off
38. betAndPlayButton[i].setFont(new Font("Arial", Font.BOLD, 15));
39. }

40. // the deal button, initially turned off
41. dealButton � (new JButton("Deal"));
42. dealButton.setFont(new Font("Arial", Font.BOLD, 18));
43. dealButton.setEnabled(false);

44. // the quit button
45. quitButton � new JButton("Quit");
46. quitButton.setFont(new Font("Arial", Font.BOLD, 15));

47. // label that displays current number of coins, the bankroll
48. bankrollLabel � new JLabel();
49. bankrollLabel.setFont(new Font("Arial", Font.BOLD, 24));
50. bankrollLabel.setText("Coins remaining: " � 0); // initially no coins

51. // two buttons that add 1 or 5 coins to the machine
52. add1Button � new JButton("Add 1");

sim23356_ch20.indd 1059sim23356_ch20.indd 1059 12/15/08 7:28:22 PM12/15/08 7:28:22 PM

1060 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

53. add5Button � new JButton("Add 5");
54. add1Button.setFont(new Font("Arial", Font.BOLD, 15));
55. add5Button.setFont(new Font("Arial", Font.BOLD, 15));

56. // panel that holds play buttons, card labels, hold buttons, deposit buttons, deal and quit
57. JPanel centerPanel � new JPanel(new GridLayout(4,5));
58. // add the five bet buttons
59. for (int i � 0; i � 5; i��)
60. centerPanel.add(betAndPlayButton[i]);

61. // add the five labels that display the card images
62. for (int i � 0; i � 5; i��)
63. centerPanel.add(cardLabel[i]);

64. // add the five hold buttons
65. for (int i � 0; i � 5; i��)
66. centerPanel.add(holdButton[i]);

67. // add the two deposit buttons, a blank button, the deal and quit buttons
68. centerPanel.add(add1Button);
69. centerPanel.add(add5Button);
70. centerPanel.add(new JButton()); // a blank button as a separator
71. centerPanel.add(dealButton);
72. centerPanel.add(quitButton);

73. // add the label that displays the results to the NORTH section of the frame
74. add(resultLabel, BorderLayout.NORTH);
75. // add the label that displays the coin count to the SOUTH section of the frame
76. add(bankrollLabel, BorderLayout.SOUTH);

77. // add the panel with the buttons and card labels to the CENTER section of the frame
78. add(centerPanel, BorderLayout.CENTER);

79. setResizable(false);
80. setVisible(true);
81. }

82. }

 With the frame of the new GUI in place, we now animate a few components and provide

listeners that respond to events.

 20.5 ADDING COINS

 Before playing a hand of poker, a player must deposit coins into the machine. This is

accomplished by clicking the Add 1 button or Add 5 button. Each click increases the bank-

roll by either one or fi ve coins. Once coins have been added, the appropriate Bet buttons

are enabled. For example, if a player deposits three coins, the buttons labeled Bet 1, Bet 2,

and Bet 3 are enabled but Bet 4 and Bet 5 are not. The Bet 4 and Bet 5 buttons are disabled

because you cannot bet four or more coins when there are just three coins in the machine! If

a player deposits seven coins, then all fi ve buttons are enabled. A Bankroll object manages

the number of coins deposited into the machine.

 Clicking Add 1 or Add 5 generates an action event that we handle with an inner

class called ButtonHandler . This listener handles the events generated by either button.

The following code

• declares and initializes a Bankroll reference, bankroll , and

• implements ButtonListener , an inner class that responds to events generated by

 add1Button and add5Button.

sim23356_ch20.indd 1060sim23356_ch20.indd 1060 12/15/08 7:28:23 PM12/15/08 7:28:23 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1061

The response of ButtonListener necessitates:

• incrementing the bankroll,

• displaying the number of coins in the machine on the label referenced by bankrollLabel , and

• enabling the appropriate Bet and Play buttons.

 Figure 20.3 shows the game after three coins have been “inserted” into the machine.

Notice that some buttons are enabled and others disabled.

 20.6 THE FIRST HAND

 After a player inserts coins, he/she is ready to play a hand of poker. Now, the player clicks

one of the buttons labeled Bet 1, Bet 2, . . . , Bet 5. Clicking one of these buttons determines

the current bet and deals the initial poker hand. To the Player class we add code that:

• registers the ButtonListener class with each of the fi ve Bet buttons, and

 1. public class Player extends JFrame
2. {
3. private JLabel resultLabel; // label displays the type of hand and the payout
4. private JLabel[] cardLabel; // an array of 5 labels that display card images
5. private JButton[] holdButton; // click to keep a particular card
6. private JButton add1Button; // clicking adds 1 coin
7. private JButton add5Button; // clicking adds 5 coins
8. private JLabel bankrollLabel; // label that displays the current number of coins
9. private JButton quitButton; // exit the application
10. private JButton dealButton; // click to display the updated hand
11. private JButton[] betAndPlayButton; // clicking buttons makes a bet and private begins play
12. Bankroll bankroll; // manages the number of coins in the machine

13. public Player() // constructor, places all components, registers listeners
14. {
15. // as above
16. bankroll � newBankroll();
17. add1Button.addActionListener(new ButtonListener()); // register listener
18. add5Button.addActionListenet(new Button Listener()); // register listener
19. }

20. private class ButtonListener implements ActionListener // responds to button events
21. {
22. public void actionPerformed(ActionEvent e)
23. {
24. if ((e.getSource() �� add1Button) ||
 (e.getSource() �� add5Button))
25. {
26. if (e.getSource() �� add1Button)
27. bankroll.alterBankroll(1); // add one coin to the bankroll
28. else
29. bankroll.alterBankroll(5); // add 5 coins
30.
31. int br � bankroll.getBankroll(); // total number of coins deposited
32. bankrollLabel. setText("Coins remaining: "� br); // display total coins on label

33. // enable the appropriate bet buttons
34. for (int i � 0; i � 5; i��)
35. if (br �� (i � 1))
36. betAndPlayButton[i].setEnabled(true);
37. return;
38. }
39. }
40. }

sim23356_ch20.indd 1061sim23356_ch20.indd 1061 12/15/08 7:28:23 PM12/15/08 7:28:23 PM

1062 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 1. public class Player extends JFrame
2. {
3. private JLabel resultLabel; // label displays the type of hand and the payout
4. private JLabel[] cardLabel; // an array of 5 labels that display card images
5. private JButton[] holdButton; // click to keep a particular card
6. private JButton add1Button; // add 1 coin
7. private JButton add5Button // clicking adds 5 coins;
8. private JLabel bankrollLabel; // label that displays the current number of coins
9. private JButton quitButton; // exit the application
10. private JButton dealButton; // click to display the updated hand
11. private JButton[] betAndPlayButton; // clicking any of these buttons makes a bet and begins play
12. Bankroll bankroll; // maintains number of coins in the machine
13. PokerGame pokerGame;
14. Bet bet;
15. Hand hand;

16. public Player() // default constructor, lays out components, registers listeners
17. {
18. // as previously coded
19.
20. for (int i � 0; i � 5; i��) // register ButtonListener with each button
21. betAndPlayButton[i].addActionListener(new ButtonListener());
22. }

23. private class ButtonListener implements ActionListener
24. {
25. public void actionPerformed(ActionEvent e)
26. {
27. if ((e.getSource() �� add1Button) ||
 (e.getSource() �� add5Button))
28. { // as previously coded }

29. for (int i � 0; i � 5; i��) // respond to betAndPlayButton[i]
30. if (e.getSource() �� betAndPlayButton[i])
31. {
32. bet � new Bet();
33. bet.setBet(i � 1); // set the bet for this hand
34. resultLabel.setText("Bet is " � (i � 1)); // display the bet on the label
35. pokerGame � new PokerGame(bet, bankroll,Player.this); // instantiate PokerGame
36. pokerGame.viewInitialHand(); // ask pokerGame to deal the first hand
37. for (int j � 0; j � 5; j��) // for each hold button
38. {
39. holdButton[j].setText("" � (j � 1)); // display the card number
40. holdButton[j].setEnabled(true); // enable the button
41. }
42. dealButton.setEnabled(true); // enable the deal button
43. add1Button.setEnabled(false); // disable add1Button..
44. add5Button.setEnabled(false); // disable add5Button
45. quitButton.setEnabled(false); // disable quitButton
46. for (int j � 0; j � 5; j��) // disable all betAndPlayButtons
47. betAndPlayButton[j].setEnabled(false);

• responds to the Bet button events by:

• instantiating and setting the bet,

• displaying the bet on the label referenced by resultLabel ,

• instantiating a new PokerGame with bet, bankroll , and player as parameters,

• displaying images of the cards that make up the hand,

• enabling the Hold and Deal buttons, and

• disabling the Bet buttons, the Add 1 and Add 5 buttons, and the Quit button.

Figure 20.4 shows the GUI after a hand has been dealt. At this stage of play, only the Hold

and Deal buttons are enabled.

sim23356_ch20.indd 1062sim23356_ch20.indd 1062 12/15/08 7:28:23 PM12/15/08 7:28:23 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1063

48. return;
49. }
50. }
51. }

 Notice that the response to a betAndPlayButton event includes sending a message to

 pokerGame (line 36):

 pokerGame .viewInitialHand()

The viewInitialhand() method of PokerGame consists of two method calls:

 public void viewInitialHand()
{
 hand.newHand();
 player .displayHand(hand);
}

 The call to newHand() creates a new hand of fi ve cards. This method works correctly regard-

less of the interface. However, the second call is a Player method, displayHand(hand).
 The text-based version of Player implements displayHand(Hand hand) as:

 public void displayHand(Hand hand)
{
 String [] handString � hand.getHand();
 for(int i � 0; i � 5; i��)
 System.out.println ((i � 1) � ". " � handString[i]);
}

 That is, a hand is displayed on the screen as a list of strings:

 Ace of Hearts

 Queen of Clubs

 Queen of Hearts

 3 of Spades

 4 of Hearts

Of course, textual output is inappropriate for our new version of Player . Instead, we

incorporate a similar method into our new graphical Player class that displays fi ve card

images rather than fi ve lines of text. To accomplish this we use a collection of 52 card

images, conveniently named Ace of Hearts.gif , Ace of Spades.gif , . . . , 10 of Hearts.gif ,
 10 of Spades.gif, and so on.

 Moreover, the Hand method

 String[] getHand()

returns an array of fi ve strings, e.g., {“Ace of Spades”, “Queen of Clubs”, “Queen of

Hearts”, “3 of Spades”, “4 of Hearts”}.

 A revised displayHand() for a revised Player class can be written as:

 public void displayHand(Hand hand)
{
 String[] handString � hand.getHand();
 for (int i � 0; i � 5; i��)
 {
 String name � handString[i] � ".gif"; // name is an image file name
 cardLabel[i].setIcon(new ImageIcon(name)); // display images on labels
 }
}

sim23356_ch20.indd 1063sim23356_ch20.indd 1063 12/15/08 7:28:24 PM12/15/08 7:28:24 PM

1064 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

Thus, in addition to the constructor and the inner class ButtonListener , the GUI version of

 Player, like the text version, implements the displayHand (Hand hand) method. Both accom-

plish the same task: one with words, the other with pictures; one with System.out.println(),
the other with labels.

 20.7 HOLD THOSE CARDS

 A player has the option of holding or discarding any or all of his/her fi ve cards. To retain

a card, a player presses the numbered button shown directly below the card. The response

to pressing any one of these buttons changes the button’s text from a number to the string

“Hold” and disables the button. Figure 20.5 shows that two buttons have been marked Hold

and disabled.

 To register a listener with each such button, we add the following statement to the

constructor:

 for (int i � 0; i � 5; i��)
 holdButton[i].addActionListener(new ButtonListener());

To respond to events generated by these buttons, we add code to ButtonListener that

changes a button’s text to “Hold” and disables the button:

 for (int i � 0; i � 5; i��)
 if (e.getSource() �� holdButton[i]) // source is button[i]
 {
 holdButton[i].setText("Hold");
 holdButton[i].setEnabled(false);
 return;
 }

 Once a player clicks a Hold button, the button is disabled and the decision cannot be

reversed. You could certainly add a mechanism that allows a player to change his/her mind,

but we opt for simplicity.

 20.8 THE NEW HAND

 After a player decides which cards to hold and which to discard, he/she clicks the Deal

button. This action generates an event. The response to this event

• invokes pokerGame.discardOrHoldCards(),

• disables the Deal and Hold buttons, and

• enables the other buttons.

Figure 20.6 shows a game confi guration after the Deal button has been clicked. In addition

to registering ButtonHandler as a listener for dealButton , we add the following if statement

to the ButtonHandler class to handle a Deal button event:

 if (e.getSource() �� dealButton)
{
 pokerGame.discardOrHoldCards(); // discardOrHoldCards() does the work

 // enable and disable the appropriate buttons
 dealButton.setEnabled(false);
 for(int j � 0; j � 5; j��)
 holdButton[j].setEnabled(false);

sim23356_ch20.indd 1064sim23356_ch20.indd 1064 12/15/08 7:28:24 PM12/15/08 7:28:24 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1065

 for (int i � 0; i � 5; i��)
 if (bankroll.getBankroll() �� (i � 1))
 betAndPlayButton[i].setEnabled(true);
 add1Button.setEnabled(true);
 add5Button.setEnabled(true);
 quitButton.setEnabled(true);
}

 The PokerGame method discardOrHoldCards() defi ned in Chapter 11 manages the

updated hand.

 public void discardOrHoldCards();
{
 player.getDiscard(holdCards);
 hand.updateHand(holdCards);
 player.displayHand(hand);
 int payoff � hand.evaluateHand();
 int winnings � updateBankroll(payoff);
 player.displayResults(payoff, winnings);
}

 Notice that discardOrHoldCards() invokes three Player methods:

• void getDiscard(boolean[] holdCards),

• void displayHand(Hand hand), and

• void displayResults(int payoff, int winnings).

 The getDiscard(boolean[] holdCards) method of the text-based Player class sets

holdCards[i] to true if the player opts to keep the i th card and false otherwise. That is, the

Player method getDiscard(…) tells the caller which cards to keep and which to discard.

The new GUI Player class must do likewise. When a player retains a card, the corre-

sponding Hold button is disabled. Consequently, getDiscard(boolean[] holdCards) can be

implemented by checking whether or not a Hold button is enabled:

 public void getDiscard(boolean[] holdCards)
{
 for (int i � 0; i � 5; i��) // check whether or not the Hold button is enabled
 if (holdButton[i].isEnabled()) // button was not clicked
 holdCards[i] �false;
 else // button was clicked and enabled
 holdCards[i] � true;
}

 We have already implemented displayHand(Hand hand) in the GUI Player class, so that

leaves just displayResults(int payoff, int winnings).
 The text-based version of Player implements this method as:

 public void displayResults(int payoff, int winnings)
{
 String nameOfHand � "Lose";
 if (payoff �� 250)
 nameOfHand � "Royal Flush";
 else if (payoff �� 50)
 nameOfHand � "Straight Flush";

sim23356_ch20.indd 1065sim23356_ch20.indd 1065 12/15/08 7:28:24 PM12/15/08 7:28:24 PM

1066 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 else if (payoff �� 25)
 nameOfHand � "Four of a Kind";
 else if (payoff �� 9)
 nameOfHand � "Full House";
 else if (payoff �� 6)
 nameOfHand � " Flush";
 else if (payoff �� 4)
 nameOfHand � "Straight ";
 else if (payoff �� 3)
 nameOfHand � "Three of a Kind";
 else if (payoff �� 2)
 nameOfHand � "Two Pair";
 else if (payoff �� 1)
 nameOfHand � " Pair of Jacks or Better";

 if (winnings � 0)
 {
 System.out.println("Winner: " � nameOfHand);

 System.out.println("Payoff is " � winnings � " coins.");

 }
 else
 System.out.println("You lost your bet of " � bet.getBet());

 System.out.println("Current Bankroll is " � bankroll.getBankroll());

 System.out.println();

}

Indeed, this method can be incorporated into the new Player class with minimal change.

The game’s outcome is displayed on two labels rather than in a text-based window using

 System.out.println(). The only code that must be altered is the fi nal if-else statement:

 // use a label rather than println() for output
if (winnings � 0)
 resultLabel.setText ("Winner: " � nameOfHand � " � pays " � winnings);
else
 resultLabel.setText ("You lost your bet of " � bet.getBet());
 bankrollLabel.setText ("Coins remaining: " � bankroll.getBankroll());

 20.9 THE COMPLETE Player CLASS

 The new Player class has the following skeletal form that includes a constructor, three

methods, and a private inner class:

 public class Player extends JFrame
{
 // The Constructor
 public Player()
 {
 sets up the components of the GUI
 registers listener with buttons
 }

 // Three Methods
 public void displayHand(Hand hand)

sim23356_ch20.indd 1066sim23356_ch20.indd 1066 12/15/08 7:28:24 PM12/15/08 7:28:24 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1067

 {
 displays images of the five cards in hand
 }

 public void getDiscard(boolean[] holdCards)
 {
 holdCards[i] � true if the ith Hold Button is disabled
 }

 public void displayResults(int payoff, int winnings)
 {
 displays the outcome of a hand
 }

 // Listener—an Inner Class
 private class ButtonListener implements ActionListener
 {
 public void ActionPerformed(ActionEvent e)
 {
 responds to events generated by GUI buttons
 }
 }

The complete class, although rather lengthy, is direct and uncomplicated. The card images

are assumed to be in a folder, Cards, which is in the same directory as the Player class.

 1. import javax.swing.*;
2. import java.awt.*;
3. import java.awt.event.*;

4. public class Player extends JFrame
5. {
6. private JLabel resultLabel; // label displays the type of hand and the payout
7. private JLabel[] cardLabel; // an array of 5 labels that display card images
8. private JButton[] holdButton; // click to keep a particular card
9. private JButton add1Button; // add 1 coin
10. private JButton add5Button; // clicking adds 5 coins;
11. private JLabel bankrollLabel; // label that displays the current number of coins
12. private JButton quitButton; // exit the application
13. private JButton dealButton; // click to display the updated hand
14. private JButton[] betAndPlayButton; // clicking makes a bet and begins play

15. private Bankroll bankroll;
16. private PokerGame pokerGame;
17. private Bet bet;
18. private Hand hand;

19. public Player() // constructor
20. {

21. super("Video Poker");
22. bet � new Bet();
23. bankroll � new Bankroll();
24. setBounds(0, 0, 400, 500);

25. // the label places at the NORTH area of the frame

sim23356_ch20.indd 1067sim23356_ch20.indd 1067 12/15/08 7:28:25 PM12/15/08 7:28:25 PM

1068 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

26. resultLabel � new JLabel();
27. resultLabel.setFont(new Font("Arial", Font.BOLD, 18));
28. resultLabel.setText("Video poker");

29. // Display five card images, the initial image is "Back.gif" – a dummy card
30. cardLabel � new JLabel[5];
31. for (int i � 0; i � 5; i��)
32. cardLabel[i] � new JLabel(new ImageIcon("Cards/Back.gif"));

33. // the five hold/discard buttons
34. holdButton � new JButton[5];
35. for (int i � 0; i � 5; i��)
36. {
37. holdButton[i] � new JButton("" �(i � 1)); // initially display numbers 1 � 5
38. holdButton[i].setFont(new Font("Arial", Font.BOLD, 18));
39. holdButton[i].setEnabled(false); // initially turned off
40. }

41. // the five "bet and play" buttons
42. betAndPlayButton � new JButton[5];
43. for (int i � 0; i � 5; i��)
44. {
45. betAndPlayButton[i] � new JButton("Bet " � (i � 1)); // display Bet 1, Bet 2,…Bet 5
46. betAndPlayButton[i].setEnabled(false); // initially turned off
47. betAndPlayButton[i].setFont(new Font("Arial", Font.BOLD, 15));
48. }

49. // the deal button, initially turned off
50. dealButton � (new JButton("Deal"));
51. dealButton.setFont(new Font("Arial", Font.BOLD, 18));
52. dealButton.setEnabled(false);

53. // the quit button
54. quitButton � new JButton("Quit");
55. quitButton.setFont(new Font("Arial", Font.BOLD, 15));

56. // label that displays current number of coins, i.e., the "bankroll"
57. bankrollLabel � new JLabel();
58. bankrollLabel.setFont(new Font("Arial", Font.BOLD, 24));
59. bankrollLabel.setText("Coins remaining: " � 0); // initially no coins

60. // two buttons that either add 1 or 5 coins to the machine
61. add1Button � new JButton("Add 1"); // displays "Add1"
62. add5Button � new JButton("Add 5");
63. add1Button.setFont(new Font("Arial", Font.BOLD, 15));
64. add5Button.setFont(new Font("Arial", Font.BOLD, 15));

65. // panel holds bet buttons, card labels, hold buttons, deposit buttons, deal and quit
66. JPanel centerPanel � new JPanel(new GridLayout(4,5));

67. // add the five bet buttons
68. for (int i � 0; i � 5; i��)
69. centerPanel.add(betAndPlayButton[i]);

70. //add the five labels that display the card images

sim23356_ch20.indd 1068sim23356_ch20.indd 1068 12/15/08 7:28:25 PM12/15/08 7:28:25 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1069

71. for (int i � 0; i � 5; i��)
72. centerPanel.add(cardLabel[i]);

73. // add the five hold buttons
74. for (int i � 0; i � 5; i��)
75. centerPanel.add(holdButton[i]);

76. // add the two deposit buttons, a blank button, the deal and quit buttons
77. centerPanel.add(add1Button);
78. centerPanel.add(add5Button);
79. centerPanel.add(new JButton()); // a blank button as a separator
80. centerPanel.add(dealButton);
81. centerPanel.add(quitButton);

82. // add the label that displays the game results to the NORTH section of the frame
83. add(resultLabel, BorderLayout.NORTH);
84. // add the label that displays the coin count to the SOUTH section of the frame
85. add(bankrollLabel, BorderLayout.SOUTH);

86. // add the panel that holds the buttons and card labels to the CENTER section of the frame
87. add(centerPanel, BorderLayout.CENTER);

88. // register listeners, one inner class does all listening
89. add1Button.addActionListener(new ButtonListener());
90. add5Button.addActionListener(new ButtonListener());
91. dealButton.addActionListener(new ButtonListener());
92. quitButton.addActionListener(new ButtonListener());

93. for (int i � 0; i � 5; i��)
94. betAndPlayButton[i].addActionListener(new ButtonListener());

95. for (int i � 0; i � 5; i��)
96. holdButton[i].addActionListener(new ButtonListener());
97. setResizable(false);
98. setVisible(true);
99. }

100. public void displayHand(Hand hand) // displays images of five cards
101. {
102. String[] handString � hand.getHand();
103. for (int i � 0; i � 5; i��)
104. {
105. String name � "Cards/" � handString[i] � ".gif "; // name is a file name.
106. cardLabel[i].setIcon(new ImageIcon(name));
107. }
108. }

109. public void getDiscard(boolean[] holdCards) // maintains hold/discard information
110. {
111. for (int i � 0; i � 5; i��)
112. {
113. if (holdButton[i].isEnabled()) // card is discarded
114. holdCards[i] � false;
115. else // card is retained
116. holdCards[i] � true;
117. }
118. }

sim23356_ch20.indd 1069sim23356_ch20.indd 1069 12/15/08 7:28:25 PM12/15/08 7:28:25 PM

1070 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

119. public void displayResults(int payoff, int winnings) // displays the final outcome on a label
120. {
121. String nameOfHand � "Lose";
122. if (payoff �� 250)
123. nameOfHand � "Royal Flush";
124. else if (payoff �� 50)
125. nameOfHand � "Straight Flush";
126. else if (payoff �� 25)
127. nameOfHand � "Four of a Kind";
128. else if (payoff �� 9)
129. nameOfHand � "Full House";
130. else if (payoff �� 6)
131. nameOfHand � " Flush";
132. else if (payoff �� 4)
133. nameOfHand � "Straight ";
134. else if (payoff �� 3)
135. nameOfHand � "Three of a Kind";
136. else if (payoff �� 2)
137. nameOfHand � "Two Pair";
138. else if (payoff �� 1)
139. nameOfHand � " Pair of Jacks or Better";

140. if (winnings � 0) // display outcome on resultLabel
141. resultLabel.setText("Winner: "� nameOfHand � " � pays " � winnings);
142. else
143. resultLabel.setText("You lost your bet of " � bet.getBet());

144. bankrollLabel.setText("Coins remaining: " � bankroll.getBankroll());
145. }

146. private class ButtonListener implements ActionListener // respond to button events
147. {
148. public void actionPerformed(ActionEvent e)
149. {
150. if ((e.getSource() �� add1Button) || (e.getSource() �� add5Button)) // click Add 1/ Add 5
151. {
152. if (e.getSource() �� add1Button)
153. bankroll.alterBankroll(1);
154. else
155. bankroll.alterBankroll(5);

156. int br � bankroll.getBankroll();
157. bankrollLabel. setText("Coins remaining: " � br);
158. for (int i � 0; i � 5; i��)
159. if (br �� (i � 1))
160. betAndPlayButton[i].setEnabled(true);
161. return;
162. }
163. if (e.getSource() �� quitButton) // click the Quit button
164. System.exit(0);

165. for (int i � 0; i � 5; i��) // click one of the five bet buttons
166. if (e.getSource() �� betAndPlayButton[i])
167. {
168. bet � new Bet();

sim23356_ch20.indd 1070sim23356_ch20.indd 1070 12/15/08 7:28:26 PM12/15/08 7:28:26 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1071

169. bet.setBet(i � 1);
170. resultLabel.setText("Bet is " � (i � 1));
171. pokerGame � new PokerGame(bet, bankroll, Player.this);
172. pokerGame.viewInitialHand();

173. for(int j � 0; j � 5; j��) // enable the hold buttons
174. {
175. holdButton[j].setText("" � (j � 1));
176. holdButton[j].setEnabled(true);
177. }

178. // enable and disable other buttons
179. add1Button.setEnabled(false);
180. add5Button.setEnabled(false);
181. quitButton.setEnabled(false);
182. dealButton.setEnabled(true);
183. for (int j � 0; j � 5; j��)
184. betAndPlayButton[j].setEnabled(false);
185. return;
186. }

187. for (int i � 0; i � 5; i��) // respond to a Hold button event
188. if (e.getSource() �� holdButton[i])
189. {
190. holdButton[i].setText("Hold");
191. holdButton[i].setEnabled(false);
192. return;
193. }

194. if (e.getSource() �� dealButton) // respond to a Deal button event
195. {
196. pokerGame.discardOrHoldCards();
197. dealButton.setEnabled(false);
198. for(int j � 0; j � 5; j��)
199. holdButton[j].setEnabled(false);

200. for (int i � 0; i � 5; i��)
201. if (bankroll.getBankroll() �� (i � 1)) // enough coins ?
202. betAndPlayButton[i].setEnabled(true);

203. add1Button.setEnabled(true);
204. add5Button.setEnabled(true);
205. quitButton.setEnabled(true);
206. }
207. }
208. }

209. public static void main(String[] args)
210. {
211. Player pm � new Player();
212. }
213. }

Figures 20.3 through 20.6 give screenshots of the GUI as it changes during one complete

game.

sim23356_ch20.indd 1071sim23356_ch20.indd 1071 12/15/08 7:28:26 PM12/15/08 7:28:26 PM

1072 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 20.10 IN CONCLUSION

 The video poker application, as presented here and also in Chapter 11, emphasizes an

important program design principle:

Separate the interface from the data model.

Because of this separation of interface and model, we can easily replace the original text-

based interface with a GUI or even add an additional interface. Poker-playing algorithms

are not intertwined with Player class logic. A Player object sends messages to the objects

of the other classes, and likewise the other classes send messages to Player . Information

is passed back and forth between classes. A programmer can easily design a new interface

without understanding the implementation details of the game. The division of labor is

clear, and that makes the task easier.

 WHAT’S NEXT?

 This chapter has no short exercises, no crossword puzzle, no true-false questions, no com-

piler playing, and no Bigger Picture. Instead, we suggest a few longer projects. Each of

these projects gives you the opportunity to synthesize what you have learned, gain experi-

ence, and hone your problem-solving and programming skills.

 When you have completed a few projects, here’s what to try next:

• Read other programmers’ code.
 This will help you develop opinions about good and bad programming style. You will

see how other people think. You may discover a new trick or two, and you may even

learn what you do not want to do.

• Design your own projects.
 Design your own projects from scratch. Think of a favorite game or application, and

build it. Beginners get little practice with the progression from conception to design

to fi nal implementation. Explore this process fully.

• Push ahead.
 You have reached the end of the text, but hardly the end of Java. Java is a

large and practical language with features that extend beyond the contents of

this introductory text. Network programming, servelets, threads, and database

 programming are a few of the features that enable you to write practical

 commercial programs. At this point you should be able to learn the rudiments

of these features. Don’t be afraid to try.

• Have fun.
 Java is playdough for grown-ups—a tool to help mold ideas. Play with Java. Better

yet, get paid to play with it.

 PROJECTS
 1. Tic-Tac-Toe
 You know how to play. Create a GUI for a Tic-Tac-Toe game that pits a human

player against the computer. The computer should never lose, and it should win

if the player makes an error. That is, the computer should play perfectly. Allow

the player to choose whether or not to play fi rst. Keep a running total of the wins,

losses, and ties. After each game, the player may play again or quit.

sim23356_ch20.indd 1072sim23356_ch20.indd 1072 12/15/08 7:28:26 PM12/15/08 7:28:26 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1073

 2. An Electronic Photo Album
 Design a program that maintains an electronic photo album. The program should

display the photos sorted by name, four per page, and allow user to move forward or

backward through the album. Store the actual photos (jpg images) in a directory, and

maintain a sorted fi le with the names of the images currently in the photo album.

Options to add and delete photos should be available. There are fi le exceptions that

can occur with this project, so be sure to catch them.

 3. A Calculator
 Create a version of the calculator supplied with Windows. See Figure 20.7.

FIGURE 20.7 A calculator GUI

 The data model should keep track of the memory, the last number entered, the

current number, and the last operation. Use a separate class for the GUI.

 4. An Artist’s Palette
 Design a program that simulates an artist’s color palette. A frame should display

three color buttons: Red, Green, and Blue. Another part of the frame shows a

surface, initially white, for mixing colors. When the artist clicks on a color, that

color is “added” to the color displayed in the mixing area. Adding a color to the

“current color” is accomplished by a 1 to 9 weighted average. That is, if you click

on color A and the current color is P , the new color is .1 A � .9 P . Note that since

the palette starts white, it takes a number of color additions before dark colors

appear.

 For example, if the current color is a shade of light purple with RGB values

(128, 0, 128) and you click on green (0, 255, 0), then the new color is .9(128, 0,

128) � .1(0, 255, 128) � (115, 26, 115), a deeper shade of purple.

 Similarly, adding green (0, 255, 0) to white (255, 255, 255) results in

.9(255, 255, 255) � .1(0, 255, 0) �

 (230, 230, 230) � (0, 25, 0) �
(230, 255, 230).

 This is a very light shade of green. Of course, the RGB numbers are rounded to the

nearest integer.

 The artist should be able to store the current palette color. Use a menu with a

Store item. When a color is stored, a new button, showing the stored color, appears

along with the original Red, Green, and Blue buttons and any other stored colors.

sim23356_ch20.indd 1073sim23356_ch20.indd 1073 12/15/08 7:28:26 PM12/15/08 7:28:26 PM

1074 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

Stored colors can also be used to mix colors. Allow a maximum of six stored colors.

The menu should also include a Remove option that allows the artist to remove any

stored color.

 The program should also allow the artist to undo up to 10 previous actions and

provide the artist with the option of saving the stored colors in a fi le, which is loaded

when the program starts.

 It will be helpful to use the getGreen(), getRed(), and getBlue() methods of the Color
class.

 5. Peg Solitaire
 Design a computer version of Peg Solitaire. Peg Solitaire is a game consisting

of a wooden board with 33 holes, each big enough to hold a small wooden

or plastic peg. Initially, each hole, except the center hole, contains a peg. See

Figure 20.8.

FIGURE 20.8 Peg solitaire. The center hole is empty.

 A player can move a peg into an unoccupied hole by “jumping over” another

peg. The peg that is “jumped over” is removed from the board. The object of the

game is to remove as many pegs as possible. A perfect game removes all pegs except

one, with the remaining peg occupying the center hole. When there are no more

jumps possible, the program should inform the player, display the fi nal number of

pegs remaining, and ask the user if he/she wants to play again or quit. The best score

achieved so far should be displayed.

 Include three buttons that handle the following options:

 • unlimited undos (Hint: keep a stack of “jumps” in the data model),

• quit the game, and

• reset the board.

 6. Solitaire Concentration (a.k.a. Memory)
 Solitaire Concentration, also known as Memory, is played on a 4 by 6 grid hiding

12 pairs of images. Each cell of the grid displays a number from 1 to 24. Hidden

behind each cell is one of the 24 images. The images can be anything you like:

playing cards, smiley faces, a picture of Bart Simpson, or birds of the Northwest.

The starting board confi guration is shown in Figure 20.9.

 When a player clicks a cell, the hidden image is revealed. After the player

sees that image, he/she clicks on another cell and the image hidden by that cell

is displayed. If the two images match, as they do in Figure 20.10a they remain

visible, and the player chooses two more cells without penalty. Otherwise, the two

unmatched images are hidden again, and the player continues but with one mark

against him/her. The number of marks against the player is displayed prominently

on the frame.

sim23356_ch20.indd 1074sim23356_ch20.indd 1074 12/15/08 7:28:27 PM12/15/08 7:28:27 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1075

FIGURE 20.9 An initial configuration for solitaire concentration

FIGURE 20.10 Clicking 7 and 16 reveals matched images. Clicking 7 and 10 does not.

 When all 24 images have been matched, the player may quit, or play again. The

best score for a session is also displayed.

 On a mouseover, light up a button. This lets the player know that it is okay to click.

The setRolloverIcon(Icon image) method of JButton allows you to do this without an

extra listener or class.

 7. An Interior Design Aid
 Write a program that aids in the placement of objects such as furniture or audio

equipment in a room. Assume that the shape of each object is rectangular. By

clicking and dragging the mouse, a user creates rectangles of different sizes that

remain in place when the mouse is released. Rectangles should not be permitted to

overlap.

 In the data model, a rectangle can be stored by its coordinates. All currently

displayed rectangles should be stored. The user should be able to move an object

and/or erase it.

 8. A Craps Table
 The craps table of Figure 20.11 shows the many bets that a player can make.

 The simplest of these bets is a “pass line” bet. To make a pass line bet, a player

places one or more chips on the table in the area marked “pass line.” A pass line bet

always pays 1 to 1. Once all bets are placed, a “shooter” rolls the dice. This is called

the “come out” roll.

 • If the come out roll shows 7 or 11, the pass line bet wins and the game is over.

• If the come out roll shows 2, 3, or 12, the pass line bet loses and the game is over.

sim23356_ch20.indd 1075sim23356_ch20.indd 1075 12/15/08 7:28:27 PM12/15/08 7:28:27 PM

1076 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

• If the come out roll shows 4, 5, 6, 8, 9, or 10, that number is the called the “point,” and

the shooter rolls again and continues to roll until he rolls the point or a 7. If the shooter

rolls a 7, the pass line player loses his bet and the game is over. If the shooter rolls the

point, the player wins, and the game is over.

 For example, assume that Gamblin’ Gus makes a pass line bet of one chip. On the

fi rst toss of the dice, the shooter rolls a 5. That’s the point. Gus hopes for another 5.

The shooter rolls again. It’s a 3. And again; it’s a 6. And again; it’s a 12. On the next

roll the shooter rolls a 5. That’s the point. Lucky Gus wins.

 In addition to pass line bets, some other possible bets are:

 Don’t Pass Line: This is the opposite of a pass line bet. That is , the player loses

when the pass line bet wins and wins when the pass line bet loses, except if a 12 is

rolled on the come out roll. When this occurs, the game is a tie and the player takes

back his/her wager. The payoff is 1 to 1.

 Place Bets : A place bet is made after the point has been established. To make a

place bet, place one or more chips on 4, 5, 6, 8, 9, or 10. If your number is rolled

before a 7, you win. If a 7 is rolled before your number, you lose. Unlike the pass

line bet, these bets do not pay 1 to 1. If you bet on 4 or 10, the payoff is 9 to 5. That

is, you win 9 chips for every 5 chips that you bet. If you bet on 5 or 9, the payoff is

7 to 5. And if you bet on 6 or 8, the payoff is 7 to 6.

 Field Bets: A fi eld bet is a one-roll bet. A player bets that the next roll of the dice

will be a 2, 3, 4, 9, 10, 11, or 12. A 2 pays 2 to 1, a 12 pays 3 to 1, and each of the

other numbers pays 1 to 1.

 These are just a few of the many possible bets.

 Design an interactive video craps game that includes pass line bets, don’t-pass

bets, place bets, and fi eld bets as well as any other type of bet that you may wish to

include. Indeed, there are many websites that enumerate and describe all the rules

and bets of craps. Take a look.

 The GUI should display a picture of a craps table. To make a one-chip pass line,

place, fi eld, or don’t-pass bet, the player clicks in the appropriate area of the table.

Each time the player clicks, the bet increases by one chip. For example, clicking the

pass line three times makes a pass line wager of three chips.

 Your application should obviously include a Roll Dice button and a Quit button.

On each roll of the dice the GUI should display the results. A picture of two dice

would be nice. The program should also query the player for an initial bankroll and

display and update the bankroll after every game. Include a mechanism to add chips

to the bankroll.

 9. An Arithmetic Tutor
 Design and implement a program that helps a third grade student to learn his/her

multiplication tables. The program should display a table such as the table in

FIGURE 20.11 A craps table

sim23356_ch20.indd 1076sim23356_ch20.indd 1076 12/15/08 7:28:27 PM12/15/08 7:28:27 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1077

Figure 20.12. To practice multiplication, the student clicks on a cell and types the

product of the row value and the column value. At any time, he/she can press a

Check button, and all correct answers are displayed in bold black, while incorrect

answers are displayed in red. Empty cells are left empty. There should also be an

Answers button that, when clicked, fi lls in all the answers in bold black.

x 1 2 3 4

2

3

FIGURE 20.12 A multiplication table

 The student can vary the range of digits that appear in the table, one range for the

rows and one for the columns. In Figure 20.12, the row range is 2 to 3 and the

column range 1 to 4.

 10. A Graphical Mastermind Program
 Mastermind is a game for two players. Each player chooses a secret code consisting

of four colors. Each color can be chosen from a set of six colors, {Red, Green, Blue,

Yellow, Black, White}. A player may choose duplicate colors. Each player attempts

to guess the other player’s secret code.

 Let’s call the two players Mack and Mabel. In order to discover Mabel’s secret

code, Mack makes a guess at Mabel’s four-color code. Mabel responds by telling Mack

a. the number of exact matches between Mack’s guess and her secret code, and

b. the number of inexact matches between Mack’s guess and her secret code.

 An exact match means the codes match color and position. An inexact match

means that the codes match color, but they are not in the correct position. No

match is counted twice, and exact matches take precedence over inexact matches.

Consequently, the total number of matches, exact or inexact, is between zero and four.

 For example, if Mabel’s secret code is:

(Red, Red, Green, White)

 then the match responses for the following guesses are shown below:

 (Red, Blue, Black, Green) 1 Exact 1 Inexact

 (Red, Red, Red, Black) 2 Exact 0 Inexact

 (Green, Red, Red, White) 2 Exact 2 Inexact

 (Black, Yellow, Red, Green) 0 Exact 2 Inexact

 (Green, Red, Red, Red) 1 Exact 2 Inexact

 The players alternate making guesses and giving responses until one of them

guesses the other’s secret code.

 The Project Design a program that pits the computer against a human in a game of

Mastermind. There are many design issues, the most diffi cult having to do with the

computer’s strategy. We make a few suggestions on the more diffi cult problems, but

otherwise leave the design to you.

 A ColorCode Class Before detailing the computer’s strategy, let’s take a closer

look at a color code. A skeletal ColorCode class might be defi ned as:

 public class ColorCode
{
 private int[] code; // each color has a code number
 // 0 � Red, 1 � Green, 2 � Blue, 3 � Yellow, 4 � Black, 5 � White

sim23356_ch20.indd 1077sim23356_ch20.indd 1077 12/15/08 7:28:27 PM12/15/08 7:28:27 PM

1078 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 public ColorCode(int [] colors) // constructor
 {
 code � new int[4];
 for (int i � 0; i � 4; i��)
 code[i] � colors[i]
 }

 public ColorCode(String [] colors) // constructor
 {
 code � new int[4];
 for (int i � 0; i � 4; i ��)
 if (colors[i] .equals("Red")
 code[i] � 0;
 else if (…)
 }

 int exactMatch (ColorCode c)
 {
 // returns the number of exact matches between this and c
 }

 int inexactMatch (ColorCode c)
 {
 // returns the number of inexact matches between this and c
 }

 String toString()
 {
 // returns a string version of the code
 }

 // also include necessary getter and setter methods
}

 Computer Strategy When formulating a guess, many people use an ill-defi ned

intuitive approach that tries to identify the code piece by piece. This naïve approach

guesses codes that cannot possibly be correct in order to obtain more information

about what might actually be correct. This method can be effective and is by no

means a bad strategy. However, by its very nature this technique is impossible to

simulate on a computer. A strategy that is better suited to computer simulation, but

not so well suited to a human, is described below. This strategy usually uncovers a

code in six guesses or less, which beats all but the best and luckiest players.

 At the beginning of the game, every color code is a viable candidate. There are

6 4 � 1296 possible codes, (six colors for each of four positions). A human opponent

secretly selects a code and the computer attempts to guess that code. The computer

employs a strategy that keeps track of those codes that remain consistent with all

previously acquired information. That is, the computer never chooses a guess unless

the possibility exists that the guess is the correct one.

 The computer begins with a random guess because any code is possible at this

point. This guess might be accomplished with four random numbers between 0

and 5, inclusive, which represent a four-color code. After making this initial guess,

all subsequent guesses are carefully planned. How does the machine continue?

 Suppose, for example, that the computer’s fi rst guess scored 2 exact matches

and 0 inexact matches. Then the only remaining possibilities are those codes that

match 2 exact and 0 inexact with the computer’s fi rst guess. All other codes are

permanently eliminated. The computer generates all the possible codes and tests

sim23356_ch20.indd 1078sim23356_ch20.indd 1078 12/15/08 7:28:27 PM12/15/08 7:28:27 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1079

each one against its fi rst guess. If a code matches 2 exact and 0 inexact with the fi rst

guess, then that code is a viable candidate and must be remembered. So, add that

code to a HashSet object h , where h holds all viable candidate codes.

 For its second guess, the computer chooses some object from h , perhaps the

last object added, or one chosen at random and retrieved via an iterator. Remember,

a HashSet is not ordered. The second guess is compared to the secret code. If, for

example, the second guess has 1 exact and 1 inexact match, the computer iterates

through h and eliminates all the codes that this information rules out. That is,

all codes in h that do not match up 1 exact and 1 inexact with the second guess

are deleted.

 With each subsequent guess, more codes are deleted from h. The process continues

until just a single code remains in the hash set. Here is the strategy in action:

 Guess Exact Inexact
 (Red, Red, Green, White) 2 0

 The next guess must match 2-0 with the fi rst guess.

 (Red, Red, Black, Yellow) 1 1

 The next guess must match 2-0 with the fi rst guess and 1-1 with the second guess.

 (Red, Yellow, Green, Blue) 0 3

 The next guess must match 2-0 with the fi rst guess, 1-1 with the second guess,

and 0-3 with the third guess.

 (Blue, Red, Yellow, White) 2 2

 Now the process becomes more diffi cult for a human because there are so few

candidate codes still viable. How many and which ones? Your program’s hash

set holds the answer to this question. What is diffi cult for humans is a snap to a

computer.

 Design As always, separate the GUI from the data model. The data model must

keep track of the codes, the guesses, and the HashSet . In other words, the data

model handles the computer strategy. The GUI should give the human player a

pretty color picture of the guesses and the replies, as well as some type of scorecard

and the options to quit, start over, and play again.

 11. Chess and Checkers
 Design an application that allows two people to play chess or checkers. Whenever a

player moves a piece, the application should check the validity of the move.

 12. Your Own Game
 Design a GUI-based program based on a game that you enjoy. It might be your

version of a commercial board game such as Monopoly or Scrabble, a card game

such as Black Jack or Texas Hold ‘Em, or perhaps a television game such as Deal

or No Deal, Jeopardy!, or Wheel of Fortune. Start simple. Begin with just a few

features and gradually add more.

 13. The Check Please
 Design a GUI-based program that can be used in a restaurant to generate a

customer’s check. Assume that the menu consists of:

 • appetizers

• salads

• pasta courses

• entrees

• side dishes

• desserts

• drinks

sim23356_ch20.indd 1079sim23356_ch20.indd 1079 12/15/08 7:28:28 PM12/15/08 7:28:28 PM

1080 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 Initially, the program reads the day’s menu from a text fi le. Each item is stored on

three lines of the fi le:

 1. category (see choices above),

 2. item description (any text), and

 3. price (double).

 Each item should be displayed graphically under the appropriate category. The

server selects any number of items from the menu and the application generates a

bill. The bill includes 5% sales tax.

 Use the following typical no-frills bill as a template for your bill:

 2 Shrimp Cocktail 12.50

 1 Caesar Salad 5.00

 1 Spinach Salad 4.50

 1 Seafood pasta 18.50

 1 Swordfi sh 23.00

 2 Coffees 4.00

 Total 67.50

 Tax (5%) 3.38

 Total 70.88

 Number of guests: 2

 Server: Maurice

 Of course, your bill should include the restaurant name and be a bit fancier. Your

program should write the bill to another fi le so that the bill can be printed.

 You can use menus or buttons for the GUI as long as the server has a clear way

to select items.

 14. The Convex Hull Problem—A Geometric Algorithm
 This is a challenging problem that uses more complex algorithms than do the

other problems in this chapter. The problem considers a set of two-dimensional

points, S , and determines a subset of these points called the convex hull, which

intuitively serves as an outer boundary.

 Imagine that a nail is hammered into each point of S and a rubber band stretched

around all the nails and then released. The convex hull of S is the set of those points

touched by the rubber band. See Figure 20.13.

FIGURE 20.13 The convex hull is the set of points that are joined by the lines

sim23356_ch20.indd 1080sim23356_ch20.indd 1080 12/15/08 7:28:28 PM12/15/08 7:28:28 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1081

 The convex hull is used to determine the outer border of a set of points, and it

is useful in many geometric applications. Convex hull is the “sorting” of geometric

algorithms. Like sorting, convex hull is fundamental, and just as there are dozens of

algorithms for sorting, so it is for convex hull.

 The Graham Scan Algorithm The particular algorithm that we discuss is due to

Ron Graham, who discovered it in 1972. Graham Scan, as it is called, works by

picking the lowest point p , that is, the one with the minimum y -value (note this must

be on the convex hull), and then scanning the rest of the points in counterclockwise

order with respect to p . As this scanning is done, the points that should remain on

the convex hull are kept and the rest are discarded, leaving only the points in the

convex hull when the algorithm terminates.

 To visualize the algorithm, imagine fi rst that, by luck, all the points are actually

in the convex hull, that is, no points get discarded. In this case, each time we move

to the next point, we make a left turn with respect to the line determined by the last

two points of the hull. Of course, normally this does not happen and a right turn

occurs. These right turns are what cause points to be discarded.

 As the points are considered in counterclockwise order, Graham Scan checks

whether or not we make a left turn. When a move is a left turn, we store the new

point. If the move is not a left turn, then the algorithm backtracks to the fi rst pair of

points from which the turn would be a left turn and discards all points over which

it backs up. Because Graham Scan involves storing points and backtracking, we

choose to implement the algorithm with a stack of points.

 Let’s look at an example. Suppose that an initial set of points, S is contained in

an array P :

 i P[i]

 0 (0, 0)

 1 (�5, �2)

 2 (�2, �1)

 3 (�6, 0)

 4 (�3.5, 1)

 5 (�4.5, 1.5)

 6 (�2.5, �5)

 7 (1, �2.5)

 8 (2.5, .5)

 9 (�2.2, 2.2)

 See Figure 20.14.

9

80

2

1

4
5

3

6

7

FIGURE 20.14 An initial set of two-dimensional points stored in an array. Each point is
labeled by its index in the array.

sim23356_ch20.indd 1081sim23356_ch20.indd 1081 12/15/08 7:28:28 PM12/15/08 7:28:28 PM

1082 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

 First, the lowest point is swapped into position 0 of the list. That is, the point

(�2.5, �5) is now in position 0 and the point (0, 0) occupies position 6. See

Figure 20.15.

9

86

2

1

4
5

3

0

7

FIGURE 20.15 The lowest point is in position 0 of the array

 The points are then sorted by their polar angles with respect to the lowest point,

so that they can be considered in counterclockwise order. That is, the points are

rearranged in the array as:

 i P[i]

 0 (�2.5, �5)

 1 (1, �2.5)

 2 (2.5, 5)

 3 (0, 0)

 4 (�2, �1)

 5 (�2.2, �.2)
 6 (�3.5, 1)

 7 (�4.5, 1.5)

 8 (�6, 0)

 9 (�5, �2)

 See Figure 20.16.

1

3

5

6
7

8

9

0

2

4

FIGURE 20.16 The points are sorted into counterclockwise order

sim23356_ch20.indd 1082sim23356_ch20.indd 1082 12/15/08 7:28:28 PM12/15/08 7:28:28 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1083

 The turn from line 0–1 to point 2 is left, from 1–2 to 3 is left, and from 2–3 to 4 is

left. At this stage, points 0, 1, 2, 3, and 4 have been pushed on a stack, with 4 the top

element. This “partial hull” is shown in Figure 20.17.

5

67

8

9

4

3
2

1

0

FIGURE 20.17 The beginning

 The turn from line 3–4 to point 5 is a right turn, so pop the stack. The turn from 2–3 to

5 is also a right turn, so, once again, pop the stack. The turn from 1–2 to 5 is a left turn,

so push 5 onto the stack. The stack now holds points 0, 1, 2, and 5. See Figure 20.18.

5

67

8

9
4

3
2

1

0

FIGURE 20.18 Backtracking and discarding points 3 and 4

 The turn from line 2–5 to 6 is left, so push 6 onto the stack. Next, the turn from 5–6

to 7 is right, so pop 6 and push 7 because the turn from line 2–5 to 7 is left. The

remaining turns are left, so push 8 and 9. The fi nal stack contains 0125789 and the

convex hull is shown in Figure 20.19.

 The Graham Scan Algorithm
 Input: An array of two-dimensional points, P .

 Output: The convex hull of P .

 1. Find the lowest point p, (the point with the minimum y -coordinate). If there is

more than one point with the minimum y -coordinate, then use the leftmost one.

2. Sort the remaining points in counterclockwise order around p . That is, sort them

by increasing angle with respect to p and the horizontal . If any points have the

same angle with respect to p (they all lie on the same line), then sort them by

increasing distance from p .

3. Push the fi rst three points onto a stack.

sim23356_ch20.indd 1083sim23356_ch20.indd 1083 12/15/08 7:28:29 PM12/15/08 7:28:29 PM

1084 Part 4 Basic Graphics, GUIs, and Event-Driven Programming

4. For each remaining point c in sorted order, do the following:

 b � the point on top of the stack.
 a � the point below b on the stack.
 while a left turn is not made in moving from line a-b to point c do // See below
 {
 pop the stack.
 b � the point on top of the stack.
 a � the point below b on the stack.
 }
 Push c onto the stack.

 The convex hull is the set of points remaining on the stack.

 The Problem Design a visual application that determines the convex hull for a

set of two-dimensional points. Like the poker game of this chapter, this program

consists of two parts. The data model is somewhat technical; the GUI is entertaining

and fun. Let’s look at the GUI fi rst.

 Initially, a user selects a set of points by clicking the mouse at several screen

locations. The GUI draws each point on the screen. A point can be “drawn” with a

small circle, using g.drawOval() . After all points have been selected, the user runs

the algorithm. When a new point is pushed onto the stack, a line should be drawn

from the point previously on top of the stack to the new point. Whenever a point is

popped from the stack, the line from that point to the point on the top of the stack

should be erased.

 The GUI animates the Graham Scan algorithm and makes the computation

intuitive. In order to see the algorithm perform step by step, have a Next button that

runs the algorithm until the next time the stack is modifi ed.

Figures 20.17 through 20.19 might give you some ideas for the GUI.

 Because we are using screen coordinates, we assume that all points have integer

coordinates. Moreover, recall that the point lowest on the screen has the largest

 y -coordinate. You can use Java’s Polygon class to implement the GUI, but that is not

necessary.

 The Data Model Create a class CHPoint that extend Java’s Point class (in java.awt
.Point). CHPoint contains a very important but diffi cult method:

 int leftOrRight(Point b, Point c),

5

6
7

8

9

4

3
2

1

0

FIGURE 20.19 The convex hull

sim23356_ch20.indd 1084sim23356_ch20.indd 1084 12/15/08 7:28:29 PM12/15/08 7:28:29 PM

 Chapter 20 A Case Study: Video Poker, Revisited 1085

 that returns 1, �1, or 0 depending upon whether the “sweeping movement” from the

line this-b to the line this-c goes clockwise (1), counterclockwise (�1), or neither

(0). The result is clockwise when a right turn is made, counterclockwise when a left

turn is made, and neither when this, b, and c are collinear.

 This method is necessary for deciding whether a left or right turn is made

when moving from line a-b to point c in step 4 of the Graham Scan algorithm.

The method is also used for sorting points by their polar angles in step 2 of the

algorithm. To compare two points, b and c , with respect to the lowest point p ,

use p.leftOrRight(CHPoint b, CHPoint c) . The CHPoint class should implement the

 Comparable interface.

 The implementation of leftOrRight(Point b, Point c) , is not obvious, and it

stems from the cross product of two vectors. Even if you know nothing about

vectors and cross products, you can use the following if -statements to implement

 leftOrRight(Point b, Point c).
 Let a, b, and c be three two-dimensional points such that a.x is the x -coordinate

of a and a.y the y -coordinate.

 if (c.x – a.x)(b.y – a.y) � (c.y – a.y)(b.x – a.x)
 then the movement from line a-b to line a-c is clockwise.

 if (c.x – a.x)(b.y – a.y) � (c.y – a.y)(b.x – a.x)
 then the movement from line a-b to line a-c is counterclockwise.

 Otherwise the three points are collinear.

 Why the Math Works—Just in Case You’re Interested To gain an intuitive

understanding, concentrate on the case where the lines a-b and a-c both have

positive slope. A clockwise motion implies that the line a-b has a steeper (greater)

slope than line a-c . This means that (b.y – a.y)/(b.x – a.x) � (c.y – a.y)/(c.x – a.x) .
Multiply this inequality by (c.x – a.x)(b.x – a.x) to get the inequalities above.

 The reasons for performing the multiplication and using this “cross product”

rather than the division version are twofold:

1. to avoid having to check for division by zero, and

2. so that the inequality works consistently for the cases where both slopes are not

positive.

sim23356_ch20.indd 1085sim23356_ch20.indd 1085 12/15/08 7:28:29 PM12/15/08 7:28:29 PM

sim23356_ch20.indd 1086sim23356_ch20.indd 1086 12/15/08 7:28:29 PM12/15/08 7:28:29 PM

A
PPEN

D
ICES

 APPENDICES
 A. Java Keywords

 B. The ASCII Character Set

 C. Operator Precedence

 D. Javadoc

 E. Packages

sim23356_Appendices.indd A-1sim23356_Appendices.indd A-1 12/15/08 7:35:14 PM12/15/08 7:35:14 PM

A-2

APPENDIX A
 Java Keywords

 abstract assert boolean break byte

case catch char class const*

continue default do double else

enum extends fi nal fi nally fl oat

for goto* if implements import

instanceof int interface long native

new package private protected public

return short static strictfp super

switch synchronized this throw throws

transient try void volatile while

 *Keywords const and goto are currently not used.

 The words true, false, and null signify literals and may not be used as identifi er names.

sim23356_Appendices.indd A-2sim23356_Appendices.indd A-2 12/15/08 7:35:15 PM12/15/08 7:35:15 PM

 A-3

APPENDIX B
 The ASCII Character Set
 Control Characters
Character Value (Decimal) Control key Interpretation

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

^@

^A

^B

^C

^D

^E

^F

^G

^H

^I

^J

^K

^L

^M

^N

^O

^P

^Q

^R

^S

^T

^U

^V

^W

^X

^Y

^Z

^[

^\

^]

^^

^_

Null character

Start of heading

Start of text

End of text

End of transmission

Enquiry

Acknowledge

Bell

Backspace

Horizontal tab

Line Feed

Vertical tab

Form Feed

Carriage Return

Shift Out

Shift In

Data link escape

Device control 1

Device control 2

Device control 3

Device control 4

Negative acknowledge

Synchronous idle

End transmission block

Cancel

End of medium

Substitute

Escape

File separator

Group separator

Record separator

Unit separator

sim23356_Appendices.indd A-3sim23356_Appendices.indd A-3 12/15/08 7:35:20 PM12/15/08 7:35:20 PM

Printing Characters
Character Value

(Decimal)

Character Value

(Decimal)

Character Value

(Decimal)

Space

!

"

#

$

%

&

`

(

)

*

�

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

�

>

?

@

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

`

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

DEL

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

A-4 Appendix B The ASCII Character Set

sim23356_Appendices.indd A-4sim23356_Appendices.indd A-4 12/19/08 4:47:57 AM12/19/08 4:47:57 AM

 A-5

APPENDIX C
 Operator Precedence
High

Operator Associativity

() [] • left to right

�� (postfi x) �� (postfi x) right to left

! �� (prefi x) �� (prefi x) � (unary plus) � (unary minus) (type) ~ right to left

* / % left to right

� � left to right

<< >> >>> (bitwise operators) left to right

< <� > >� instanceof left to right

�� !� left to right

& (bitwise AND) left to right

^ (bitwise exclusive OR) left to right

| (bitwise inclusive OR) left to right

&& left to right

�� left to right

&: (ternary conditional operator) right to left

� �� �� *� /� %� &� ^� |� <<� >>� >>>� right to left

Low

 (type) signifi es the cast operator.

 The operators

 ~, <<, >>, >>>, &, ^ , | , &:, &�, ^�, |�, <<�, >>�, and >>>�

are not discussed in this book.

sim23356_Appendices.indd A-5sim23356_Appendices.indd A-5 12/15/08 7:35:21 PM12/15/08 7:35:21 PM

A-6

APPENDIX D
 Javadoc
 Introduction
 Sun provides extensive online documentation for each Java class in the form of HTML

documents that are accessible using any web browser. If you have not already viewed Sun’s

documentation, you might use Google or some other search engine to locate this extensive

archive.

 Documentation Comments

 By including documentation comments in your own classes, you can generate HTML

documents, complete with hyperlinks and readable through a browser, that describe

your own classes and methods.

 A documentation comment begins with the compound symbol /**, ends with */, and imme-

diately precedes a public item such as a class, method, or fi eld. Like ordinary comments,

documentation comments may contain any text you wish to include.

 Documentation comments may also include tags. Each tag appears on a separate line

and includes special information. Common tags are:

• @param parameterNameAndDescription ,

 gives the name and a description of a parameter.

• @return description ,

 gives a description of the return value of a method.

• @throws exceptionTypeDescription

 gives a description of the types of exceptions that are thrown by a method.

• @author author

 gives the name of the author.

• @version version

 gives the version number of the class.

sim23356_Appendices.indd A-6sim23356_Appendices.indd A-6 12/15/08 7:35:22 PM12/15/08 7:35:22 PM

 Appendix D Javadoc A-7

 /**

 An employee of a company.

 An employee has a name and salary

 @author John Doe

 @version 1.42

*/
public class Employee
{
 protected String name;
 protected double salary;

 /** default constructor */

 public Employee()
 {
 name � "";
 salary � 0.0;
 }

 /** Two-argument constructor

 @param n name (String)

 @param s salary (double) */

 public Employee(String n,double s)
 {
 name � n;
 salary � s;
 }

 /** Changes salary

 @param s salary (double) */

 public void setSalary(double s)
 {
 salary � s;
 }

 /** Changes name

 @param n name (String) */

 public void setName(String n)
 {
 name � n;
 }

 /** @return salary (double) */

 public double getSalary()
 {
 return salary;
 }

 /** @return name (String) */

 public String getName()
 {
 return name;
 }
}

 /**

 The manager of a department;

 Manager extends Employee,

 A Manager has a department.

 */

public class Manager extends Employee
{
 private String dept;

 /** default constructor */

 public Manager()
 {
 super();
 dept � "";
 }

 /** Two-argument constructor

 @param n name of the manager

 @param s salary of the manager

 @param d department of the manager */

 public Manager(String n, double s, String d)
 {
 super(n, s);
 dept � d;
 }

 /** sets the name of the department

 @param d department name */

 public void setDept(String d)
 {
 dept � d;
 }

 /** @return name of the department */

 public String getDept()
 {
 return dept;
 }
}

 A Javadoc Example
 The following example shows a simple class hierarchy that includes documentation

 comments containing various tags.

sim23356_Appendices.indd A-7sim23356_Appendices.indd A-7 12/15/08 7:35:22 PM12/15/08 7:35:22 PM

A-8 Appendix D Javadoc

 The documentation comments are used to create HTML documents that describe Employee

and Manager .

 To generate documentation for a particular class, enter “javadoc classname.java ”

from the command prompt. The result is an HTML fi le, classname.html, constructed

in the style of Sun’s online documentation.

 For example, the commands

javadoc Employee.java and javadoc Manager.java

generate the fi les

 Employee.html and Manager.html .

These fi les are accessible with any browser. In addition to these fi les, the javadoc command

produces a number of auxilary fi les such as help-doc.html and overview-tree.html that are

linked to Employee.html and Manager.html .
 The Employee.html and Manager.html fi les are shown in the list that follows.

Employee.html

Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class Employee
java.lang.Object
 Employee

public class Employee
extends java.lang.Object

An employee of a company. An employee has a name and salary.

Field Summary
protected

java.lang.String
name

protected double salary

Constructor Summary
Employee()

default constructor

Employee(java.lang.String n, double s)
Two-argument constructor

sim23356_Appendices.indd A-8sim23356_Appendices.indd A-8 12/15/08 7:35:23 PM12/15/08 7:35:23 PM

 Appendix D Javadoc A-9

Method Summary
java.lang.String getName()

double getSalary()

void setName(java.lang.String n)
Changes name

void setSalary(double s)
Changes salary

Methods inherited from class java.lang.Object

clone, equals, fi nalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail
name
protected java.lang.String name

salary
protected double salary

Constructor Detail
Employee
public Employee()

default constructor

Employee
public Employee(java.lang.String n,

double s)
Two-argument constructor

Parameters:
n - name (String)

s - salary (double)

Method Detail
setSalary
public void setSalary(double s)

Changes salary

Parameters:
 s - salary (double)

sim23356_Appendices.indd A-9sim23356_Appendices.indd A-9 12/15/08 7:35:23 PM12/15/08 7:35:23 PM

A-10 Appendix D Javadoc

setName
public void setName(java.lang.String n)

Changes name

Parameters:
 n - name (String)

getSalary
public double getSalary()

Returns:
 salary (double)

getName
public java.lang.String getName()

Returns:
 name (String)

Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Manager.html

Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class Manager
java.lang.Object
 Employee
 Manager

public class Manager
extends Employee

The manager of a department; Manager extends Employee. A Manager has a department.

Field Summary

Fields inherited from class Employee

name, salary

Constructor Summary
Manager()

default constructor

Manager(java.lang.String n, double s, java.lang.String d)
Two-argument constructor

sim23356_Appendices.indd A-10sim23356_Appendices.indd A-10 12/15/08 7:35:24 PM12/15/08 7:35:24 PM

 Appendix D Javadoc A-11

Method Summary
java.lang.String getDept()

void setDept(java.lang.String d)
sets the name of the department

Methods inherited from class Employee

getName, getSalary, setName, setSalary

Methods inherited from class java.lang.Object

clone, equals, fi nalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail
Manager
public Manager()

default constructor

Manager
public Manager(java.lang.String n,

double s,
java.lang.String d)

Two-argument constructor

Parameters:
n - manager’s name (String)

s - manager’s salary (double)

d - manager’s department (String)

Method Detail
setDept
public void setDept(java.lang.String d)

sets the name of the department

Parameters:
 d - department name (String)

getDept
public java.lang.String getDept()

Returns:
 department name(String)

Package Class Tree Deprecated Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

sim23356_Appendices.indd A-11sim23356_Appendices.indd A-11 12/15/08 7:35:24 PM12/15/08 7:35:24 PM

A-12

 Packages
 Packages and the import Statement

 A package is a named collection of classes and interfaces.

 Packages are used to organize related classes. Every Java class in Sun’s extensive library is

contained in some package. Scanner , HashSet , and Random belong to java.util; the Swing

classes belong to javax.swing ; the stream classes are found in java.io ; and Math , String ,

 System , and the wrapper classes are located in java.lang .

 A class’s package name tells the compiler how to locate the class. For example, if a

class instantiates a Scanner object, the Java compiler must be directed to the package that

contains the Scanner class, that is, to java.util . This can be accomplished in several ways,

but in this text, our choice is the import statement

 import java.util.*; // Scanner belongs to the java.util package

 Without the information provided by this statement, the compiler cannot locate the

 Scanner class and issues an error message:

 C:\JavaPrograms\NoImport.java:5: cannot find symbol

 symbol : class Scanner

location: class NoImport
 Scanner input � new Scanner(System.in);

 To utilize Scanner , either one of the following two import statements works equally

well:

• import java.util.*;

• import java.util.Scanner;

A class that includes the fi rst statement can use all the classes in the java.util pack-

age, such as Random , TreeSet , and HashSet . A class that includes the second version

can use the Scanner class and only the Scanner class. Neither import statement is

more effi cient than the other, and the choice does not affect the size of the compiled

class fi le.

 In general, to use SomeClass belonging to somePackage , use one of the import

statements:

• import somePackage.*; // imports all classes in somepackage

• import somePackage.SomeClass; // imports only SomeClass

 The java.lang package, which contains the Math, String, and System classes, is

automatically imported into every application, so no explicit import statement is

required when using the classes of this package.

 APPENDIX E

sim23356_Appendices.indd A-12sim23356_Appendices.indd A-12 12/15/08 7:35:24 PM12/15/08 7:35:24 PM

 Packages and the Fully Qualifi ed Name of a Class
 An import statement is simple and convenient but not necessary. Without an import state-

ment, you can still utilize any Java class by using its fully qualifi ed name .

 The fully qualifi ed name of a class consists of its package name, followed by a

period, followed by the class name.

 For example, the fully qualifi ed name of the Scanner class is java.util. Scanner; the fully

qualifi ed name of String is java.lang .String; and the fully qualifi ed name of JButton is

 java.swing .JButton.
 Although the following program does not include an import statement, the program

compiles.

 public class NoImport Necessary
{
 public static void main(String[] args)
 {
 java.util.Scanner input � new java.util.Scanner (System.in);
 int number � input.nextInt();
 }
}

Here, the fully qualifi ed name java.util.Scanner provides the compiler with the information

needed to locate the Scanner class. An import statement would be redundant.

 The Default Package
 Although it may not be apparent, the classes in the examples of this text belong to a

 package, the default package .

 If you do not specifi cally place your classes in a package, your classes are

automatically placed in the default package of the current directory.

For small applications, you can certainly keep all classes in the default package. However,

if you are working on a large project that involves dozens of classes, it is often wise to

organize related classes by placing them into your own named packages.

 How to Create Your Own Packages
 It is not diffi cult to create your own packages.

 You can instruct the Java compiler to place a class fi le into a package by including a

 package statement of the form

 package packagename ;

as the fi rst statement of a class defi nition.

The following three classes are all members of the animal package:

 package animal ;

import java.util.*;
public class Baboon
{
 ………
}

 package animal;

import java.util.*;
public class Sardine
{
 ………
}

 package animal;

import java.util.*;
public class Cobra
{
 ………
}

If a class belongs to a named package, the name of the package is part of the class’s fully

qualifi ed name, that is, the complete class name is packagename.classname . For example,

 Appendix E Packages A-13

sim23356_Appendices.indd A-13sim23356_Appendices.indd A-13 12/15/08 7:35:25 PM12/15/08 7:35:25 PM

the full names of the classes belonging to the animal package are:

 animal.Baboon,
animal.Sardine , and

 animal.Cobra ,

just as the Scanner and JButton classes are fully named java.util.Scanner and javax.swing
.JButton , respectively.

 Packages, Package Names, and Directories
 A package name is usually comprised of lowercase letters. The name of a package can be a

single word or several words separated by periods, such as java.util or java.awt.event .
 When a package is created, the compiled class fi les belonging to the package must be

placed in a specifi c directory that mirrors the name of the package. For example, consider

the following Baboon class:

 package animal.primate;
public class Baboon
{
}

 The class fi le, Baboon.class , must be stored in a directory of the form

 ...\animal\primate\

If you normally store all your Java programs in a directory such as c:\javaprograms , then

the Baboon.class must be saved below c:\javaprograms as

 c:\javaprograms\ animal \ primate \Baboon.class.

To locate animal.primate.Baboon.class , the JVM must know where to begin its search, that

is, the JVM needs to know about c:\javaprograms , the root directory for your Java pro-

grams. Once the system knows the name of the root directory, the full classname

 animal.primate.Baboon.class

supplies the remainder of the complete address of the fi le, which is:

 c:\javaprograms\animal\primate\Baboon.class .

 To set the root directory to c:\javaprograms , you must add it to the class path of your

system.

 The class path tells the JVM where to begin looking for class fi les.

The class path gives a starting point. The class path contains the name of the root directory.

 The root directory for your Java classes can be any directory at all, such as c:\
javaprograms , or c:\myprograms . The procedure for adding a root directory to the class

path is system dependent and varies according to your operating system. Check the

documentation of your operating system to determine how to do this.

 Example
 The following example guides you through the creation of a package animal.primate that

contains two class fi les, Baboon.class and Gorilla.class . In the example, we assume that the

root directory for all Java classes is

 c:\javaprograms

 1. If it is not already there, add c:\javaprograms to the class path of your system.

 2. Create a directory under c:\javaprograms named animal .
 You now have a directory

 c:\javaprograms\animal\

A-14 Appendix E Packages

sim23356_Appendices.indd A-14sim23356_Appendices.indd A-14 12/15/08 7:35:25 PM12/15/08 7:35:25 PM

 3. Create a directory under c:\javaprograms\animal named primate .

 You now have a directory

 c:\javaprograms\animal\primate

 4. Use a package statement with each class. Defi ne and compile your classes.

 package animal.primate;

public class Baboon
{
 // code for baboon
}

 package animal.primate;

public class Gorilla
{
 // code for Gorilla
}

 5. Place the compiled class fi les into the directory c:\javaprograms\animal\primate .

 (If you are already working in this directory, then, of course, this step is automatic.)

Baboon.class

primate

animal

javaprograms

C:

Gorilla.class

 You now have a package containing two classes. Another class can conveniently use either

of the two classes in this package by including an import statement

 import animal.primate.*;

 Alternatively, a class can import just a single class from the package, say Baboon , using

 import animal.primate.Baboon;

 Package Documentation
 Using the javadoc tool (see Appendix D) it is possible to generate documentation for an

entire package. To do this you must be in the directory above the package directory. From

that directory, issue the command

 javadoc –d targetDirectory package

where targetDirectory is the directory into which the documentation should be placed and

 package is the name of the package.

 For example, to generate documentation for the animal.primate class, you must be in

the c:\javaprograms\animal directory. From this directory, issue the command

 javadoc –d c:\myjavaprograms\myJavadocs animal.primate

 Appendix E Packages A-15

sim23356_Appendices.indd A-15sim23356_Appendices.indd A-15 12/15/08 7:35:26 PM12/15/08 7:35:26 PM

I-1

INDEXINDEX
� operator, 250–251

� � operator, 251–252, 366

A
Abstract class, 540–541

Abstract data type (ADT), 822–823

Abstract Windows Toolkit (AWT), 352, 889

Access modifier, 405, 409

Actual parameters, 207

Actual type, 596

Ad-hoc polymorphism, 589–590

ADT, 822–823

AI, 1045–1050

Algorithm, 11

ALU, 3

Anagramming, 319

API, 686–687

Apparent type, 596

Application, 23

Application programming interface (API), 686–687

Arcadia (Stoppard), 945

Argument, 27, 192, 207

Arithmetic and logic unit (ALU), 3

Array, 759

Array-based errors, 279–280

Array declaration, 240–241

Array index out of bounds error, 279–280

Array initialization, 249

Array instantiation, 241–242

ArrayList, 759–764

ArrayList<E>, 765, 768, 805–807, 852–854

Arrays and lists, 239–297

� operator, 250–251

� � operator, 251–252

binary search, 261–264

bugs, 279–280

case study (Fifteen Puzzle), 271–278

declaration, 240–241

initialization, 249

insertion sort, 255–258

instantiation, 241–242

linear search, 259–261

methods, 253–254

searching, 259–264

sorting, 255–258, 297

two-dimensional arrays, 264–271

Artificial intelligence (AI), 1045–1050

ASCII character set, A-3, A-4

ASCII code, 4, 15, 36, 58

Assembly language, 15

Attributes, 349

Autoboxing, 641

Automatic boxing, 641

Automatic unboxing, 641

AWT, 352, 889

B
Balanced parentheses, brackets, braces, 773–781

Bansal, Sonal, 689

Base, 35

Base class, 534

Behaviors, 349

Binary encoding, 58–60

Binary file, 703

Binary file input, 720–723

Binary file output, 716–720

Binary format, 4

Binary numbers, 58

Binary operator, 42

Binary search, 261–264

Binary search tree, 840, 877

Binary tree, 840

Bioinformatics, 394

Bit, 4, 58

Bitwise operators, 93–94

Block, 26, 100, 123

“Bob” (Yankovic), 390

Bohm, Corrado, 191

boolean, 38–41

boolean addAll(Collection<E> c), 829, 850

boolean addAll(int index, Collection<E> c), 850

boolean add(E a), 850

boolean add(E item), 829

boolean add(Object o), 759

boolean contains (E item), 829

boolean contains (E x), 850

boolean contains (Object o), 760

boolean containsAll(Collection<E> c), 829, 850

boolean endsWith (String suffix), 365

boolean equals (E item), 829

boolean equals (Object t), 365

boolean equalsignoreCase (String t), 365

boolean getLineWrap(), 985

boolean getWrapStyleWord(), 985

boolean isEditable(), 978

boolean isEmpty(), 760, 829

INDEXINDEX

sim23356_index.indd I-1sim23356_index.indd I-1 12/18/08 11:06:04 PM12/18/08 11:06:04 PM

INDEX

 Index I-2

boolean isEnabled(), 889

boolean isVisible(), 889

Boolean operators, 39

boolean remove (E a), 850

boolean remove (E item), 829

boolean remove (Object o), 760

boolean removeAll(Collection c), 829

boolean removeAll(Collection<E> c), 850

boolean retainAll(Collection<E> c), 829, 850

boolean startsWith (String prefix), 365

Boolean types, 60

BorderLayout, 896–899

Bray, Tim, 689

Break statement, 118, 120

break statement, 168–170

Brooks, Frederick, 460

Buffer, 696

BufferedInput Stream, 695, 696

BufferedReader, 699, 707, 708

BufferedWriter class, 713–714

Bugs, 51–52

Button, 897, 965–970

Butts, Alfred Mosher, 319

Byte, 4

byte, 65

Byte overflow, 59, 89

Byte Stream classes, 692–695

Bytecode, 8, 15

C
Caesar, Julius, 358

Caesar cipher, 358, 986

camelCase, 26

Carry-lookahead adder, 21

Cast, 45, 74–76

Cat in the Hat Comes Back, The, 298

Catch block, 653

Centering a frame, 893–896

Central processing unit (CPU), 3

Chaining, 67

char, 36–38

char charAt (int i), 371

char charAt (int index), 365

Character data, 75

Character Stream classes, 692–695

Character.isDigit(char ch), 647

Character.isLetter(char ch), 647

Character.isLetterOrDigit(char ch), 647

Character.isLowerCase(char ch), 647

Character.isUpperCase(char ch), 647

Character.isWhiteSpace(char ch), 647

Character.toLowerCase(char ch), 647

Character.toUpperCase(char ch), 647

Checkboxes, 1014–1016

Checked exception, 662

Child class, 534

Cho-Han, 410–413

Chromosome, 396

Circularly linked list, 871

CISC, 15

Class, 26

abstract, 540–541

ArrayList, 759–764

bugs, 386, 449

collection, 827

Color, 912

components, 405–407, 409–410

DecimalFormat, 381–385

defined, 350

Exception, 666

File, 375–381

Font, 912–913

generic, 765–768

HashSet, 831–839

inner, 796

Object, 547–553, 604–610

object, and, 351

PrintWriter, 378

programmer-defined, 403–462

Random, 353–354

Stream. See Stream I/O

String, 354–356, 364

StringBuilder, 369–375

Wrapper. See Wrapper classes

Class variable, 420

Classic recursive algorithm, 315–319

Classy sounds [myPod()], 438–446

Client/server model, 750

Coin sliding puzzle, 1008–1014

Collection, 827

Collection class, 827. See also Java Collection Framework

Color class, 912

Comment, 24–25

Comparable interface, 556–557

Comparator<E>, 846–849

Compilation error, 51

Compiler, 7

Compiling Java programs, 9

Complements, 401

Complex arithmetic, 951

Complex class, 952

Complex functions, 953

Complex instruction set computer (CISC), 15

Complex numbers, 946–947, 950–953

Component, 462, 887, 964–965

Component getComponent(), 99

Component hierarchy, 887

Component-oriented programming (COP), 462

Composition, 562

sim23356_index.indd I-2sim23356_index.indd I-2 12/18/08 11:06:08 PM12/18/08 11:06:08 PM

I-3 Index

Compound statement, 100

Computer, 3

Computer program, 3, 23

Computer system, 3

“Computing Machinery and Intelligence”

(Turing), 1046

Concatenation, 46, 356–362

Condition, 97, 123

Confirmation dialog box, 994–995

Connect Four, 293–294

Console input, 695–701

Console output, 701–705

Constant, 73

Constructor, 406–407, 410

Container, 887

Control unit (CU), 3

Controversy of checked exceptions, 688–690

Convex hull problem, 1080–1081, 1084–1085

COP, 462

Counting sort, 287

CPU, 3

CPU clock, 3

CU, 3

D
Dangling else, 108–109

Data model, 469, 1051

Data structure, 758, 822

Data type, 31

boolean, 38–41

byte, 65

char, 36–38

double, 34–36

float, 65

int, 31

long, 65

mixing, 44–46

pecking order, 74

short, 65

DataInputStream, 720–723

DataOutputStream, 716–720

Day of the week, 33–34

DecimalFormat class, 381–384

Declared type, 596

Decrement operator, 81

Default constructor, 406, 410

Default package, 406, 409, A-13

Delegation event model

event object, 956

example, 958–964

listener, 957–958

source object, 955

DeMorgan’s law, 56

Deque, 823–826

Derived class, 534

Designing with classes and objects, 463–522.

See also Video Poker

Bankroll class, 477–478

Bet class, 474–475

bugs, 511

Card class, 475–477

class attributes/behaviors, 473

classes, 467–468

complete application, 501–511

data model/view, 469

Deck class, 478–480

Hand class, 480–492

interactions among classes, 471–473

iterative refinement, 470–473

MVC, 520–521

output displayed by application, 498–501

Player class, 495–498

PokerGame class, 493–495

problem definition (video poker game), 464–466

problem statement, 467–466

responsibilities of each class, 468–469

simplified design, 473–474

Dialog box, 992–998

confirmation, 994–995

defined, 992

input, 995–998

message, 992–993

Diamond problem, 583–584

Dice class, 403–408

Dijkstra, Edsger W., 135

Displaying an image, 925–927

Distributive law, 60

DNA base, 396

DNA molecule, 400

DNA palindrome, 400–401

do-while statement, 147–151

Documentation comments, A-6

double, 34–36

Double helix, 401

Double toString(double x), 647

Double.valueOf(String s), 647

Doubly linked list, 854

Downcasting, 544–545

Dynamic binding, 591–598

E
E get(int index), 850

E remove(int index), 850

E set(int index, E a), 850

Eckel, Bruce, 689, 690

else-if construction, 109–115

Encapsulation, 350, 418–420

ENIAC, 2

sim23356_index.indd I-3sim23356_index.indd I-3 12/18/08 11:06:09 PM12/18/08 11:06:09 PM

 Index I-4

equals (...) method, 366

equals (Object p) method, 549–550

Errors, 51–52

Escape sequence, 28, 37

Escape set, 946

Evaluation function, 1053

Event, 954

Event-driven programming, 954–1053

bugs, 1030–1031

buttons, 965–970

checkboxes, 1014–1016

component/JComponent, 964–965

delegation event model, 955–964

dialog boxes, 992–998

event, defined, 954

event listener classes, 1022–1023

label, 970–978

menus, 1019–1022

mouse events, 998–1014

radio buttons, 1016–1019

scroll bars, 986

text areas, 984–992

text fields, 978–983

Event listener classes, 1022–1023

Event object, 956

Exception, 651–690

API, 688

architecture, 687

catch can throw, 665

checked/unchecked, 660–662

controversy of checked exceptions, 688–690

defined, 651

finally block, 667–672

hierarchy, 652

multiple catch blocks, 659–660

programmer-generated classes, 666

subclasses, 651

system-generated, 656

throws clause, 662–665

try-throw-catch construction, 654–656

Exclusive-or (XOR), 60, 94

Explicit cast, 74

Exponent, 35

Extended ASCII, 698n

extends, 534

F
Factoring, 535–540

Fibonacci sequence, 235n, 338–342

Field, 406, 409

FIFO list, 782

Fifteen puzzle, 271

File, 703–704

File class, 375–381

File pointer, 729

FileInputStream, 705

FileOutputStream, 711, 712

FileReader, 707, 708

FileWriter class, 712–713

Final variable, 72–73

finally block, 667–672

First-in-first-out (FIFO) list, 782

Fixed-length records, 730–731

Flag, 142

Flavius, Josephus, 337

float, 65

Floating-point arithmetic, 185–188

FlowLayout, 899–902

Font class, 912–913

for-each loop, 863–864

for statement, 151–160

Formal parameters, 207

Fractal, 920, 944

Frame, 887, 890

Friendly numbers, 133

Fully qualified name, A-13

Functional programming, 461

G
Garbage collection, 436–438

Gene, 396

Generic class, 765–768

getGraphics() method, 924–925

getNumDice(), 408

Getter method, 408

“Go To Statement Considered Harmful” (Dijkstra), 135

Goldbach, Christian, 190

Graham, Ron, 1081

Graham scan algorithm, 1081–1083

Graphics

Color class, 912

Font class, 912–913

getGraphics() method, 924–925

paint(), paintComponent(), 910–911

painting on panels, 913–915

parameter/context, 911

recursive drawing, 919–924

shapes, 915–919

GridLayout, 902–904

H
Halting problem, 188

Hardware, 3

has-a relationship, 561

Hash function, 831–834

HashSet class, 831–839

hasNext(), 804

Heuristics, 1053

sim23356_index.indd I-4sim23356_index.indd I-4 12/18/08 11:06:09 PM12/18/08 11:06:09 PM

I-5 Index

Hexadecimal numbers, 15

HGP, 394

High-level language, 7

Human Genome Project (HGP), 394

I
I/O. See Stream I/O

Icon, 925

Icon geticon(), 966

if clause, 100

if-else statement, 102–115

dangling else, 108–109

else-if construction, 109–115

nested statements, 104–108

if statement, 98–102

imageicon, 926

Implementation, 758

import statement, 352, A-12

Increment operator, 80

Infinite loop, 144–145

Information hiding, 418–420

Inheritance, 523–588

abstract class, 540–541

bugs, 564

Comparable interface, 556–557

composition, 562

defined, 527

downcasting, 544–545

encapsulation, 535

equals (Object p) method, 549–550

extending the hierarchy, 541–543

extends, 534

factoring, 535–540

general rules, 534

generic sort, 558

has-a relationship, 561

instanceof operator, 545–546

interface, 553–556

is-a relationship, 535

multiple, 555, 583–585

Object class, 547–553

override, 534

protected, 534

sorting, 558

super (...), 534

toString(), 552

upcasting, 543, 545, 555

Initialization, 65–66

Initialization statement, 65–66

Input dialog box, 995–998

Input hierarchy, 693

Input/output devices, 6

Input/output (I/O). See Stream I/O

Input stream, 691

Insertion sort, 255–258

Instance variable, 406, 409

instanceof operator, 545–546

int, 31

int compareTo (String t), 365

int compareToIgnoreCase (String t), 365

int getColumns(), 979

int getHeight(), 888

int getLineCount(), 985

int getRows(), 985

int getWidth(), 888

int getX(), 99, 888

int getY(), 99, 888

int indexOf (String s), 372

int indexOf (String s, int from), 372

int indexOf (String t), 365

int IndexOf (String t, int from), 365

int indexOf(E a), 850

int lastindexOf(E a), 850

int length(), 365, 372

int size(), 760, 829, 850

Integer parseint(String s), 647

Integer.toString(int x), 647

Integer.valueOf(String s), 647

Interface, 410, 553–556, 600–603

IP address, 750

is-a relationship, 535

Iterated algorithm, 945

Iterator iterator(), 829

J
Jacobs, B., 620

Jacopini, Guiseppe, 191

Java Collection Framework

ArrayList<E>, 852–854

bugs, 865

collection hierarchy, 828

Comparator<E>, 846–849

defined, 827

for-each loop, 863–864

HashSet class, 831–839

iterator, 829

LinkedList<E>, 854–857

List<E>, 849–851

performance/efficiency issues, 858–863

Set<E>, 831–849

SortedSet<E>, 839–840

TreeSet<E>, 840–845

Java Development Kit (JDK), 9

Java interpreter, 8

Java keywords, A-2

Java libraries, 352

Java Virtual Machine (JVM), 8

java.awt, 352

sim23356_index.indd I-5sim23356_index.indd I-5 12/18/08 11:06:09 PM12/18/08 11:06:09 PM

 Index I-6

Javadoc, A-6 to A-11

java.lang, 354

java.text, 352

java.util, 352

JButton, 897, 965–966

JCheckBox, 1014–1016

JComponent, 964–965

JDK, 9

JFrame, 890

JLabel, 907, 971

Josephus puzzle, 337

JPanel, 906

JRadioButton, 1016

JTextArea, 984

JTextField, 978

Julia set, 948

JUMBLE, 393

JVM, 8

K
Keywords, 25, A-2

Koch curve, 940

Koch rule, 940

L
Label, 907, 970–978

“Lady or the Tiger, The” (Stockton), 776

Langman, Harry, 1008

Last-in first-out (LIFO) list, 769

Late binding, 591–598

Layout managers

BorderLayout, 896–899

FlowLayout, 899–902

GridLayout, 902–904

programming without, 904–906

Leaves, 841

Libraries, 352

LIFO list, 769

Linear search, 259–261

Linked list, 791–807

ArrayList<E>, compared, 805–807

defined, 791

LList<E>, 796–803, 805–807

next()/hasNext(), 804

node, 791–796

LinkedList<E>, 854–857

List<E>, 849–851

List subList (int start, int end), 850

Listener, 955. See also Event listener class, 957–958

ListIterator<E> listiterator(), 850

ListIterator<E> listiterator (int index), 850

Lists. See Arrays and lists

LList<E>, 796–803, 805–807

Local variable, 209–211

Loebner, Hugh, 1046

Logical error, 52

long, 65

Loop recursion, 301, 314–315

Loops. See Repetition

Loyd, Sam, 271

Lucas, Edouard, 335

M
Machine language, 7

main(...), 431–432

Main method, 192

main(String[] args), 431–432

Mandelbrot set, 945, 950

Map, 873

Markov matrix, 290–291

Mathematical Tourist, The (Peterson), 944

Matrix arithmetic, 289–290

Max sort, 558

Memory address, 5

Memory leak, 437

Menus, 1019–1022

Message dialog box, 992–993

Method, 26, 191–238

argument passing, 208

array, 253–254

bugs, 223

defined, 191

header, 207

local variable, 209–211

main, 192

method block, 207, 209

multiple return statements, 214–216

name, 207

overloading, 217–221

parameter list, 208

pass by value, 209

predefined methods, 193–200

return statement, 209

returning a variable, 200–204

scope, 212–214

string, 363

this, 433–434

void, 204–206

Method block, 207, 209

Method calls, 194

Method overloading, 217–221, 589–590

Mixing data types, 44–46

Model-view-controller (MVC), 520–521

Modulus operator, 31

Mouse events, 998–1014

MouseListener, 998

MouseMotionListener, 998

sim23356_index.indd I-6sim23356_index.indd I-6 12/18/08 11:06:09 PM12/18/08 11:06:09 PM

I-7 Index

Multi-line comment, 24–25

Multiple inheritance, 555, 583–585

Multiple recursive calls, 309–311

Mutations, 396

MVC, 520–521

myPod(), 438–446

Mythical Man Month, The (Brooks), 460

N
n-iteration von Koch snowflake, 940

Named constant, 73

Natural order, 846

Nested if-else statement, 104–108

Nested loops, 160–167

Newline character, 27

next(), 804

nextLine() method, 363

No-argument constructor, 406, 410

Node, 791–796

Null, 437

O
Object class, 547–553, 604–610

Object get (int index), 760

Object getSource(), 956

Object-oriented programming (OOP), 348–462, 462

class. See Class

encapsulation, 418–420

garbage collection, 436–438

information hiding, 418–420

inheritance. See Inheritance

object, 349–352

polymorphism. See Polymorphism

programmer-defined classes, 403–462

programming style, 628–635

Object remove (int index), 760

Object serialization, 724–728

Object set (int index, Object o), 760

Object[] toArray(), 760, 829

ObjectInputStream, 725

ObjectOutputStream, 725

Obtaining data from outside a program, 69–73

Octal numbers, 15

Off by one error, 145–147

One-argument constructor, 407, 410

OOP. See Object-oriented programming (OOP)

“OOP Oversold—A Critique of the OO Paradigm”

(Jacobs), 620

Opcode, 15

Operand, 31

Operating system, 6

Operator precedence, A-5

Orbit, 946

Outer class, 796

Output devices, 6

Output hierarchy, 693

Output stream, 691

Overloading, 217–221

override, 534

P
Package, 352

create your own, A-13

default, A-13

directories, A-14

documentation, A-15

fully qualified name, A-13

import statement, A-12

name, A-14

Package access, 405, 409

paint(), 910–911

Paint program, 1000–1008

paintComponent(), 910–911

Painting on panels, 913–915

Pal, Gaurav, 689

Palindrome, 391, 400

Panel, 906

Parameter, 207

Parent array, 883

Parent class, 534

Partitioning the array, 288

Pascal’s triangle, 343

Point getPoint(), 99

Polymorphism, 589–635

ad hoc, 589–590

behind the scenes, 610–612

benefits of, 603–604

bugs, 613

defined, 589

dynamic binding, 591–598

interface, 600–603

late binding, 591–598

Object class, 604–610

program extensibility, 598–600

upcasting, 590

Positive Markov matrix, 290–291

Postfix expression, 816

Postfix operator, 81

Precedence rules, A-5

Prefix operator, 80

Primary memory, 5

Primitive data type, 31

Primitive variable, 240

Print methods, 47–48

Printin methods, 47–48

PrintStream, 701

PrintWriter class, 378, 702, 715, 716

sim23356_index.indd I-7sim23356_index.indd I-7 12/18/08 11:06:10 PM12/18/08 11:06:10 PM

 Index I-8

Prisoner set, 946

private, 534

Private access, 406

Procedural programming, 461

Program design. See Designing with classes and objects

Program layout, 27

Programming style, 82, 628–635

Promote, 45, 74

Protected, 534

Protein, 395

Protocol, 755

public, 405

Public access, 406

public boolean canRead(), 704

public boolean canWrite(), 704

public boolean delete(), 704

public boolean exists(), 704

Public class, 409

public int getHorizontalAlignment(), 966

public int getVerticalAlignment(), 966

public long length(), 704

public void setHorizontalAlignment(int alignment), 966

public void setVerticalAlignment(int alignment), 966

Q
Queue, 781–791

R
Radio buttons, 1016–1019

Ragged arrays, 291–292

RAM, 5

Random access files, 728–737

Random access memory (RAM), 5

Random class, 353–354

Reader hierarchy, 694

Reading data, 70–71

Real type, 596

Recursion, 298–345

bugs, 314, 328

case study (anagram generator), 319–326

classic recursive algorithm, 315–319

complexity, 337–342

defined, 298

multiple recursive calls, 309–311

parameters, 304–309

recursive thinking, 301–304

tail (loop), 301, 314–315

Recursive drawing, 919–924

Recursive thinking, 301–304

Reduced instruction set computer (RISC), 15

Reference variable, 240

Relational operators, 41

Relative address, 729

repaint() method, 927–930

Repetition, 137–190

break statement, 168–170

do-while statement, 147–151

halting problem, 188

infinite loop, 144–145

nested loops, 160–167

off by one error, 145–147

for statement, 151–160

while statement, 137–144

Reserved word, 25

Returned value, 192

Reverse complements, 401

RISC, 15

rollDice(), 407

Runtime error, 52

Runtime stack, 311

S
Scanner class, 352

Scanner object, 69–72, 351–352

Scope, 212–214

Scrabble, 319

Scripta Mathematica (Langman), 1008

Scroll bars, 986

Searching, 259–264

Secondary memory, 6

Selection and decision, 97–136

if-else statement, 102–115

if statement, 98–102

switch statement, 115–123

Selection sort, 558

Self-similarity, 944

Sentinel, 142

Serialized objects, 724–728

Set, 576

Set<E>, 831–849

setBackground(Color c), 911

setForeground(Color c), 911

setNumDice(int n), 408

Setter method, 408

Shapes, 915–919

short, 65

Short circuit evaluation, 44

Shortcut assignment operators, 77

Shortest path trees, 882–884

Sierpinski’s Triangle, 920

Sieve of Eratosthenes, 288

Sign magnitude, 21

Simulation, 787–791

Single-line comment, 24

SMTP, 755

Socket, 750

Software, 3, 6–10

sim23356_index.indd I-8sim23356_index.indd I-8 12/18/08 11:06:10 PM12/18/08 11:06:10 PM

I-9 Index

Software componentry, 462

Software engineering, 460

Software productivity problem, 461

Sort, 296–297

counting, 287

generic, 558

insertion, 255–258

max, 558

selection, 558

SortedSet<E>, 839–840

Source program, 7

Stack, 311, 768–781

balanced parentheses, brackets, braces, 773–781

how it works, 768–769

implementation, 770–773

LIFO list, as, 769

Stack-overflow error, 314

Static method, 424–431

Static variable, 420–424

Storing data, 67–68

Storing integers, 17–22

Stream, 691

Stream I/O, 691–756

binary file input, 720–723

binary file output, 716–720

bugs, 740–741

Byte Stream classes, 692–695

Character Stream classes, 692–695

console input, 695–701

console output, 701–705

files, 703–704

fixed-length records, 730–731

Input hierarchy, 693

networks, 750–756

object serialization, 724–728

Output hierarchy, 693

random access files, 728–737

Reader hierarchy, 694

socket, 750

TCP, 750–753

text file input, 705–711

text file output, 711–716

Writer hierarchy, 694

String, 27

String class, 354–356, 364

String concat (String t), 365

String concatenation, 356–362

String getName(), 889

String getText(), 978

String literal, 27

String methods, 364–366

String object, 364

String reference, 364

String replace (char oldChar, char

newChar), 365

String substring (int index), 365, 372

String substring (int start, int end), 365, 372

String toLower (), 365

String toString(), 372, 956

String toUpperCase(), 366

String trim(), 366

StringBuilder append (char c), 371

StringBuilder append (String s), 371

StringBuilder append (StringBuilder s), 371

StringBuilder class, 369–375

StringBuilder delete (int start, int end), 371

StringBuilder deleteCharAt (int i), 371

StringBuilder insert (int index, char ch), 372

StringBuilder insert (int index, String s), 372

StringBuilder replace (int start, int end,

String s), 372

StringBuilder reverse (), 372

Stub, 488

Style, 82

Sub-packages, 352n

Subclass, 534

Subset, 576

Sudoku puzzle, 293

super (...), 534

Superclass, 534

Surrounding class, 796

Swing, 889

switch expression, 117

switch statement, 115–123

System-generated exceptions, 656–659

System.out.printin, 27

T
Tail recursion, 301, 314–315

TCP, 750–753

Text areas, 984–992

Text editor, 1022–1028

Text fields, 978–983

Text file, 375, 703

Text file input, 705–711

Text file output, 711–716

this, 432–435

Thread, 753

throws clause, 662–665

toString(), 552

Towers of Hanoi, 335

Tree, 877–881

Tree traversal, 879–881

TreeSet<E>, 840–845

TriviaTest class, 413–418

Truncate, 75

try-throw-catch construction, 654–656

Turing, Alan, 188

Turing test, 1046

sim23356_index.indd I-9sim23356_index.indd I-9 12/18/08 11:06:10 PM12/18/08 11:06:10 PM

 Index I-10

Two-argument constructor, 407

Two-dimensional arrays, 264–271

Two’s complement, 20

U
UML, 473

Unary operator, 42

Unboxing, 641

Unchecked exception, 660–662

Unicode, 59, 698n

Upcasting, 543, 545, 555, 590

V
Valid Java identifier, 25

Variable

declaration, 64–65

defined, 61

final, 72–73

initialization, 65–67

instance, 406

local, 209–211

primitive, 240

reference, 240

static, 420–424

Variable declaration, 64

Video Poker, 1054–1072. See also Designing

with classes and objects

adding coins, 1060–1061

first hand, 1061–1064

hold those hands, 1064

laying out the frame, 1058–1060

new hand, 1064–1066

Player class, 1066–1071

visual poker game, 1055–1058

View, 469, 1051

void add(int index, Object o), 759

void add(int index, R a), 850

void append(String text), 984

void clear(), 759, 829, 850

void close() throws IOException, 711

void copy(), 985

void cut(), 985

void drawLine(int startx, int starty, int endx,

int endy), 915

void drawl(int x, int y, int width, int height, int

startApple, int arcAngle), 915

void drawOval(int x, int y, int width,

int height), 915

void drawRect(int x, int y, int width,

int height), 915

void drawString(String message, int x,

int y), 911

void fillOval(int x, int y, int width, int height), 915

void fillRect(int x, int y, int width,

int height), 915

void flush() throws IOException, 711

void insert (String text, int place), 984

Void methods, 204–206

void mouseClicked(MouseEvent e), 998

void mouseEntered(MouseEvent e), 998

void mouseExited(MouseEvent e), 998

void mousePressed(MouseEvent e), 998

void mouseReleased(MouseEvent e), 998

void paste(), 985

Void reference, 437

void replaceRange(String text, int start,

int end), 985

void selectAll(), 985

void setBounds(int x, int y, int width,

int height), 888

void setColor(Color c), 911

void setColumns(int numColumns), 979

void setDefaultCloseOperation(int op), 890

void setEditable(boolean editable), 978

void setEnabled(boolean enable), 888

void setFont(Font f), 911

void setFont(Font font), 979

void setHorizontalAlignment (int alignment), 979

void seticon(Icon image), 966

void setLineWrap(boolean wrap), 985

void setLocation(int x, int y), 888

void setName(String name), 888

void setResizable(boolean x), 890

void setRows(int rows), 985

void setSize(int width, int height), 888

void setText(String text), 966, 978

void setTitle (String title), 890

void setVisible (boolean x), 888

void setWrapStyleWord(boolean wrap), 985

void write(int b) throws IOException, 711

von Koch snowflake, 940

W
Web servers, 750

while statement, 137–144

actions of while loop, 140

do-while loop, contrasted, 149

infinite loop, 144–145

off by one error, 145–147

semantics, 144

syntax, 143

terminating the loop, 142, 168–170

Window, 890

Wrapper classes, 639–651

arithmetic expressions, 644

autoboxing/unboxing, 641

immutability, 645–646

sim23356_index.indd I-10sim23356_index.indd I-10 12/18/08 11:06:11 PM12/18/08 11:06:11 PM

I-11 Index

Wrapper classes (continued)
implement Comparable interface, 642

inheritance, 641–642

methods, 647

properties, 640

what are they, 639–640

Writer hierarchy, 694

Y
Yankovic, Weird Al, 390

Z
Zeller, Christian, 33

sim23356_index.indd I-11sim23356_index.indd I-11 12/18/08 11:06:11 PM12/18/08 11:06:11 PM

sim23356_index.indd I-12sim23356_index.indd I-12 12/18/08 11:06:11 PM12/18/08 11:06:11 PM

Java Programming employs a distinctive pedagogy that is both challenging and engaging. The
text begins with programming fundamentals, moves through the object-oriented paradigm,
and concludes with basic graphics and event-driven programming. The modularity of the text
makes the book suitable for introductory and intermediate-level programming courses while
the separation of graphics from basic programming structures makes the text easily adaptable to
different styles of courses. Moreover, this approach is especially helpful to beginners, who when
presented with programs that mix fundamentals with GUI design, events, and OOP, have
difficulty separating these concepts.

Pedagogical Highlights:

 Just the Facts, a summary of the fundamental ideas at the end of each chapter

 Bug Extermination, tips on some commonly occurring bugs and hints for how best to avoid them

 Examples that follow an easy-to-understand format: problem description, Java solution,
typical output, and discussion. Programming examples are stand-alone applications that are
dissected line by line

 Crossword puzzles that test student understanding of terminology

 Short answer questions that check basic comprehension

 Debugging and tracing exercises that can be done without a computer

 Short programming problems that reinforce the concepts of the chapter

 Longer programming assignments that require some creativity and algorithm development

 The Bigger Picture, optional topics in computer science that explore a larger framework of
ideas introduced in the chapter and extend beyond the study of programming

“The authors have done a fantastic job in explaining object-oriented concepts in simple terms.”
 Shyamal Mitra, University of Texas at Austin

“Sensible, clear, coherent explanations of interfaces, inheritance and polymorphism….
The examples are so interesting and fun.… The exercises are great.”
 Kathy Liszka, University of Akron

“The text does a good job of focusing on the core concepts important to beginners, without
getting bogged down with the esoteric and seldom-used aspects of Java and OOP…. The Bigger
Picture sections are excellent.”
 Blayne Mayfield, Oklahoma State University

Java Program
m

ing:

From the Ground Up

Ralph Bravaco Shai Simonson

Bravaco
Simonson

From
 the G

round U
p

Java Programming:

M
d. D

alim
 #995054 12/3/08 C

yan M
ag Y

elo B
lack

	Cover Page

	Title Page

	Copyright Page

	DEDICATION
	PREFACE
	CONTENTS
	Part 1: The Fundamental Tools

	Chapter 1: An Introduction to Computers and Java

	1.1 Introduction
	1.2 What Is a Computer?
	1.3 The Hardware
	1.4 The Software
	1.5 Programming and Algorithms
	1.6 In Conclusion
	Exercises
	The Bigger Picture: 1. Machine Language and Computer Architecture

	2. Algorithms
	3. Storing Integers

	Chapter 2: Expressions and Data Types

	2.1 Introduction
	2.2 In the Beginning…
	2.3 Data Types and Expressions
	2.4 In the Beginning . . . Again
	2.5 In Conclusion
	Exercises
	The Bigger Picture: 1. Binary Encoding I—ASCII Encoding

	2. Binary Encoding II—Decimal Encoding

	3. Boolean Types

	Chapter 3: Variables and Assignment

	3.1 Introduction
	3.2 Variables
	3.3 Variable Declarations: How a Program Obtains Storage for Data

	3.4 How a Program Stores Data: Initialization and Assignment

	3.5 How a Program Uses Stored Data
	3.6 Obtaining Data from Outside a Program
	3.7 A Scanner Object for Interactive Input
	3.8 Final Variables
	3.9 Type Compatibility and Casting
	3.10 A Few Shortcuts
	3.11 Increment and Decrement Operators
	3.12 An Expanded Precedence Table
	3.13 Style
	3.14 In Conclusion
	Exercises
	The Bigger Picture: Bitwise Operators, Boolean Operators, and an Interesting Puzzle

	Chapter 4: Selection and Decision: if Statements

	4.1 Introduction
	4.2 The if Statement
	4.3 The if-else Statement
	4.4 The switch Statement
	4.5 In Conclusion
	Exercises
	The Bigger Picture: “Go To” Statement Considered Harmful

	Chapter 5: Repetition

	5.1 Introduction
	5.2 The while statement
	5.3 Loops: A Source of Power, a Source of Bugs

	5.4 The do-while Statement
	5.5 The for Statement
	5.6 Nested Loops
	5.7 The break Statement Revisited
	5.8 In Conclusion
	Exercises
	The Bigger Picture: 1. Floating-Point Arithmetic

	2. Loops and Computability

	Chapter 6: Methods

	6.1 Introduction
	6.2 Java’s Predefined Methods

	6.3 Writing Your Own Methods
	6.4 Method Overloading
	6.5 In Conclusion
	Exercises
	The Bigger Picture: 1. Time Complexity

	2. Recursion, a Preview

	Chapter 7: Arrays and Lists: One Name for Many Data
	7.1 Introduction
	7.2 Array Fundamentals: Declaration and Instantiation

	7.3 Using an Array
	7.4 Array Initialization
	7.5 A Caveat: Using the = and the == Operators

	7.6 Arrays and Methods
	7.7 Sorting an Array with Insertion Sort
	7.8 Searching an Array
	7.9 Two-Dimensional Arrays
	7.10 A Case Study—Putting It All Together
	7.11 In Conclusion
	Exercises
	The Bigger Picture: 1. Array Implementation

	2. Sorting

	Chapter 8: Recursion

	8.1 Introduction
	8.2 A Simple Recursive Method
	8.3 Recursive Thinking
	8.4 The Runtime Stack: Tail Recursion versus Classic Recursion

	8.5 Quicksort—A Classic Recursive Algorithm

	8.6 A Case Study—Designing an Anagram Generator

	8.7 In Conclusion
	Exercises
	The Bigger Picture: The Complexity of Recursive Algorithms

	Part 2: Principles of Object-Oriented Programming

	Chapter 9: Objects and Classes I: Encapsulation, Strings, and Things

	9.1 Introduction
	9.2 Objects
	9.3 From Classes Come Objects
	9.4 Java Libraries and Packages
	9.5 Strings are Objects
	9.6 The StringBuilder Class
	9.7 The Mysterious String[] args
	9.8 Classes for Handling Files
	9.9 The DecimalFormat Class
	9.10 In Conclusion
	Exercises
	The Bigger Picture: Bioinformatics

	Chapter 10: Objects and Classes II: Writing Your Own Classes

	10.1 Introduction
	10.2 A Dice Class
	10.3 A More General Look at Classes
	10.4 Using the Dice Class
	10.5 A TriviaTest Class
	10.6 Encapsulation and Information Hiding

	10.7 The Keyword static
	10.8 The Omnipresent main (String[]args) Method

	10.9 The Keyword this
	10.10 Garbage Collection
	10.11 A Case Study: Classy Sounds
	10.12 In Conclusion

	Exercises

	The Bigger Picture: Software Engineering

	Chapter 11: Designing with Classes and Objects

	11.1 Introduction
	11.2 The Problem: A Video Poker Game
	11.3 Problem Statement
	11.4 Determine the Classes
	11.5 Determine Responsibilities of Each Class

	11.6 Iterative Refinement

	11.7 Some Attributes
	11.8 Video Poker After Some Refinement

	11.9 Implementing the Video Poker Application

	11.10 In Conclusion
	11.11 Appendix: The Complete Application

	Exercises
	The Bigger Picture: Software Design and the Model-View-Controller Paradigm

	Chapter 12: Inheritance

	12.1 Introduction
	12.2 A Basic Remote Control Unit
	12.3 Inheritance and Encapsulation
	12.4 The is-a Relationship: A DirectRemote is-a Remote

	12.5 Inheritance via Factoring: Movies and Plays

	12.6 Inheritance via Abstract Classes

	12.7 Extending the Hierarchy
	12.8 Upcasting and Downcasting
	12.9 Everything Inherits: The Object Class
	12.10 Interfaces
	12.11 A Generic Sort
	12.12 Composition and the has-a Relationship
	12.13 In Conclusion
	Exercises
	The Bigger Picture: Multiple Inheritance

	Chapter 13: Polymorphism

	13.1 Introduction
	13.2 Two Simple Forms of Polymorphism
	13.3 Dynamic (or Late) Binding
	13.4 Polymorphism Makes Programs Extensible
	13.5 Interfaces and Polymorphism
	13.6 Polymorphism and the Object Class
	13.7 In Conclusion
	Exercises
	The Bigger Picture: Programming Paradigms and Styles

	Part 3: More Java Classes

	Chapter 14: More Java Classes: Wrappers and Exceptions

	14.1 Introduction
	14.2 The Wrapper Classes
	14.3 Exceptions and Exception Handling
	14.4 In Conclusion
	Exercises
	The Bigger Picture: APIs and Exceptions

	Chapter 15: Stream I/O and Random Access Files

	15.1 Introduction
	15.2 The Stream Classes
	15.3 The Byte Stream and the Character Stream Classes

	15.4 Console Input
	15.5 Console Output
	15.6 Files
	15.7 Text File Input
	15.8 Text File Output
	15.9 Binary Files and Data Streams
	15.10 Object Serialization
	15.11 Random Access Files
	15.12 In Conclusion
	Exercises
	The Bigger Picture: Streams and Networks

	Chapter 16: Data Structures and Generics

	16.1 Introduction
	16.2 The “Old” ArrayList Class
	16.3 Generics and ArrayList<E>
	16.4 A Stack
	16.5 A Queue
	16.6 A Linked List
	16.7 In Conclusion
	Exercises
	The Bigger Picture: Abstract Data Types

	Chapter 17: The Java Collections Framework

	17. 1 Introduction
	17.2 The Collection Hierarchy
	17.3 The Set<E> Interface
	17.4 Lists
	17.5 Performance Issues: Choosing the Right Collection

	17.6 The for-each Loop
	17.7 In Conclusion
	Exercises
	The Bigger Picture: Trees

	Part 4: Basic Graphics, GUIs, and Event-Driven Programming

	Chapter 18: Graphics: AWT and Swing

	18.1 Introduction
	18.2 Components and Containers
	18.3 Abstract Windows Toolkit and Swing

	18.4 Windows and Frames
	18.5 Layout Managers
	18.6 Panels
	18.7 Some Basic Graphics
	18.8 Displaying an Image
	18.9 The repaint () Method
	18.10 In Conclusion
	Exercises
	The Bigger Picture: Fractals and Computer Graphics

	Chapter 19: Event-Driven Programming

	19.1 Introduction
	19.2 The Delegation Event Model
	19.3 Component and JComponent
	19.4 Buttons
	19.5 Labels
	19.6 Text Fields
	19.7 Text Areas
	19.8 Dialog Boxes
	19.9 Mouse Events
	19.10 Checkboxes and Radio Buttons
	19.11 Menus
	19.12 Designing Event Listener Classes

	19.13 In Conclusion
	Exercises
	The Bigger Picture: Artificial Intelligence

	Chapter 20: A Case Study: Video Poker, Revisited

	20.1 Introduction
	20.2 A Quick Review
	20.3 A Visual Poker Game
	20.4 Laying Out the Frame
	20.5 Adding Coins
	20.6 The First Hand
	20.7 Hold Those Cards
	20.8 The New Hand
	20.9 The Complete Player Class
	20.10 In Conclusion

	Project

	Appendix A: Java Keywords
	Appendix B: The ASCII Character Set
	Appendix C: Operator Precedence
	Appendix D: Javadoc
	Appendix E: Packages
	Index

