

JAVA DEMYSTIFIED

JIM KEOGH

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London

Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Demystified / Java Demystified / Keogh/ 225454-8 /
blind folio FM:i

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/0071469974

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United
States of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

0-07-146997-4

The material in this eBook also appears in the print version of this title: 0-07-225454-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every
occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the
trademark owner, with no intention of infringement of the trademark. Where such designations appear in
this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity
discounts to use as premiums and sales promotions, or for use in corporate training programs. For more
information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-
4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under
the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-
Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with
these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS
OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee
that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under
no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if
any of them has been advised of the possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071469974

http://dx.doi.org/10.1036/0071469974

������������

Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/0071469974

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graaf, without whose
help and support this book couldn’t be written.

Demystified / Java Demystified / Keogh/ 225454-8 /
blind folio iii

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ABOUT THE AUTHOR

Jim Keogh is a member of the faculty of Columbia University where he teaches

courses on Java Application Development, and is also a member of the Java Com-

munity Process Program. He developed the first e-commerce track at Columbia and

became its first chairperson. Jim spent more than a decade developing advanced

systems for major Wall Street firms and is also the author of several best-selling

computer books.

Demystified / Java Demystified / Keogh/ 225454-8
blind folio iv

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

CONTENTS AT A GLANCE

CHAPTER 1 Inside Java 1

CHAPTER 2 Data Types and Variables 17

CHAPTER 3 Expressions and Statements 41

CHAPTER 4 Control Structures 65

CHAPTER 5 Arrays 91

CHAPTER 6 Methods and Polymorphism 109

CHAPTER 7 Classes 125

CHAPTER 8 Inheritance 145

CHAPTER 9 Exception Handling 165

CHAPTER 10 Multithreading 181

CHAPTER 11 Files and Streams 209

CHAPTER 12 Graphical User Interface 223

CHAPTER 13 JDBC and Java Data Objects 255

CHAPTER 14 Java Applets 289

Final Exam 303

Answers to Quizzes and Final Exam 309

Index 325

v

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CONTENTS

Introduction xv

CHAPTER 1 Inside Java 1
Computer Programs 1

Data 2
Programming Languages 3
In the Beginning 5

How a Computer Language Becomes
a Standard 7

And Then Java 7
An Inside Look at Java 9

Writing a Java Program from Scratch 10
Compiling a Java Program 11
Running a Java Program 12

Taking Apart a Java Program 13
Class Definition 13
Method Definition 14
Statement 15

Quiz 16

CHAPTER 2 Data Types and Variables 17
Data and Numbers 17

Playing with Numbering Systems 20
Numbers and Characters 20
Looking Up the Unicode Value 22

vii

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here

http://dx.doi.org/10.1036/0071469974

Literals 22
Integer Literals 23
Floating-point Literals 24
Boolean Literals 25
Character Literals 26
String Literals 28

Data Types 28
Integer Data Types 29
Floating-point Data Types 31
Character Data Type 31
Boolean Data Type 32
Casting Data Types 32

Variables 33
Declaring a Variable 34
Declaring Multiple Variables 36
Initializing a Variable 36
Scope of a Variable 38
The Life of a Variable 39

Quiz 40

CHAPTER 3 Expressions and Statements 41
Expressions 41
Types of Expressions 43
Operators 45

Arithmetic Operators 46
Relational Operators 50
Logical Operators 52
Bitwise Operators 56

Statements 63
Quiz 63

CHAPTER 4 Control Structures 65
Program Flow 65
Control Statements 66

viii Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Selection Statements 67
The if Statement 67
The switch Statement 76

Iteration Statements 80
The for Loop 80
The while Loop 85
The do while Loop 87

Jump Statements 88
break 88
continue 89
return 90

Quiz 90

CHAPTER 5 Arrays 91
Inside an Array 91
Allocating Memory for an Array 93
Initializing Arrays 94
Multidimensional Arrays 94

Creating a Multidimensional Array 95
Values Assigned to Array Elements 96
The Length Data Member 96
Passing an Array to a Method 98
Returning an Array from a Method 100
Alternate Ways of Creating an Array 101
The Arrays Class 102

equals() 102
fill() 104
sort() 106
binarySearch() 106

Quiz 107

CHAPTER 6 Methods and Polymorphism 109
An Inside Look at Methods 110
Types of Methods 110

CONTENTS ix

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Method Definition 111
The Method Header 111
The Method Body 112
The Method Return Value 113

The Argument List 114
Elements of an Argument List 115
How an Argument List Works 115

Command-Line Arguments 116
Passing Command-Line Arguments 117

Calling a Method 119
Polymorphism 120

The Method Signature 121
Quiz 123

CHAPTER 7 Classes 125
Class Definition 125
Defining a Method Member 127

Access Specifiers 127
Declaring Instance Variables 129
Constructor 130

Declaring an Instance of a Class 131
Accessing Members of a Class 132
Overloading Member Methods 133

Overloading a Constructor 134
The this Keyword 135
Garbage Collection 136
The finalize() Method 137
Inner Classes 138
Static Initializers 139
Packages 140

Using a Package 141
CLASSPATH 142
Packages and Access Protection 143

Quiz 143

x Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Inheritance 145
What Is Inheritance? 145
When to Use Inheritance 146
Inside Inherence 147
Accessing Members of an Inherited Class 147
The Superclass Can Be Instantiated 149
One-way Inheritance 149
Calling Constructors 150
Using the super Keyword 150
Multilevel Inheritance 152
Overriding Method Members Using Inheritance 154

Dynamic Method Dispatch 156
Abstract Classes 159
The final Keyword and Inheritance 161
The Object Class and Subclasses 162
Quiz 163

CHAPTER 9 Exception Handling 165
What Is an Exception? 165
Exception Handlers 166
Basic Exception Handling 167
Multiple Catch Blocks 168
The Finally Block 169
Working with Uncaught Exceptions 170
Nested Try Statements 171
Throwing an Exception 172

Methods That Don't Handle Exceptions 174
Checked and Unchecked Exceptions 175
Creating an Exception Subclass 176
Quiz 180

CHAPTER 10 Multithreading 181
Multitasking 181
Overhead 182
Threads 183
Synchronization 184

CONTENTS xi

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Thread Classes and the Runnable
Interface 185

The Main Thread 185
Creating Your Own Thread 187
Creating a Thread by Using extends 189
Using Multiple Threads in a Program 190
Using isAlive() and join() 192
Setting Thread Priorities 195
Synchronizing Threads 197

The Synchronized Method 198
Using the Synchronized Statement 201

Communicating Between Threads 202
Suspending and Resuming Threads 206
Quiz 208

CHAPTER 11 Files and Streams 209
Files and File Systems 209
The File Class 210
Listing Files Contained in a Directory 213
Streams 214

Writing to a File 214
Reading from a File 216
Appending to a File 217
Reading and Writing an Object to a File 219

Quiz 222

CHAPTER 12 Graphical User Interface 223
What Is a User Interface? 223
What Is a GUI? 225
A Simple GUI 226
swing 228

Content Container 230
Java Layout Managers 232
Push Buttons 236
Labels and Text Fields 237
Radio Buttons and Check Boxes 238

xii Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Combo Boxes 240
Text Area 242
Scroll Pane 243

Getting Data from GUI Components 245
Reading a Push Button 247
Reading Radio Buttons and Check Boxes 249
Reading a Combo Box 251
Disabling and Enabling GUI Elements 253

Quiz 253

CHAPTER 13 JDBC and Java Data Objects 255
Database 101 255
The Concept of JDBC 256

JDBC Driver Types 257
JDBC API Packages 258

The JDBC Process 258
Load the JDBC Driver 258
Connect to the DBMS 259
Create and Execute an SQL Query 260
Terminate the Connection to the DBMS 263

Trapping Exceptions 264
Avoid Timing Out 265

More on Statement Objects 265
The Statement Object 266
The PreparedStatement Object 268
The CallableStatement Object 270

The ResultSet Object 272
Reading the Resultset 273
Positioning the Virtual Cursor 275
Fetching Rows 278
Updatable Resultset 280

Metadata 284
Data Types 285
Exceptions 287
Quiz 287

CONTENTS xiii

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 14 Java Applets 289
Java Applet Basics 289
Writing a Java Applet 291

Structure of a Java Applet 291
Calling a Java Applet 293
Running a Java Applet 294
Other Attributes 294

Adding Graphics to the Applet Window 295
Passing Parameters 297

Restrictions 298
Using Dialog Boxes with an Applet 299
The Status Window 301
Quiz 302

Final Exam 303

Answers to Quizzes and Final Exam 309
Chapter 1 309
Chapter 2 310
Chapter 3 311
Chapter 4 311
Chapter 5 312
Chapter 6 313
Chapter 7 313
Chapter 8 314
Chapter 9 315
Chapter 10 316
Chapter 11 316
Chapter 12 317
Chapter 13 318
Chapter 14 319
Final Exam 319

Index 325

xiv Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INTRODUCTION

This book is for everyone who wants to learn the basics of the Java programming

language without taking a formal course. This book also serves as a supplemental

classroom text. For best results, you should start at the beginning of the book and go

straight through.

If you are confident about your basic knowledge of programming, skip the first

chapter but take the quiz at the end of the chapter to see if you are actually ready to

jump into Java.

If you get 90 percent of the answers correct, you’re ready. If you get 75 to 89 per-

cent correct, skim through Chapters 1 and 2. If you get less than 75 percent of the

answers correct, then find a quiet place and begin reading Chapter 1. Doing so will

get you in shape to tackle the rest of the chapters on Java.

In order to learn Java, you must have some computer skills. If we were to tell you

otherwise, we’d be cheating you. Don’t be intimidated. None of the computer

knowledge you need goes beyond basic use of the operating system and how to enter

text into an editor.

This book includes a practice quiz at the end of every chapter. These quizzes con-

tain questions that are similar to the kinds of questions used in a Java course. You can

and should refer to the chapters when taking the quizzes. When you think you’re

ready, take a quiz, write down your answers, and then give your list of answers to a

friend. Have your friend tell you your score, but not which questions you answered

incorrectly. You’ll find the answers in the back of the book. Stay with one chapter

until you pass the quiz.

There is also a final exam at the end of this book. The questions are practical and

are drawn from all chapters in the book. Take the exam when you have finished all

the chapters and have completed all the quizzes. A satisfactory score is at least 75

percent correct answers. Have a friend tell you your score without letting you know

which questions you missed on the exam.

xv

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

We recommend that you spend an hour or two each day with the book. You

should expect to complete one chapter each week. Take it at a steady pace. Take

time to absorb the material. Don’t rush. You’ll complete the course in a few

months, and then you can use this book as a comprehensive permanent reference.

xvi Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / FM

P:\010Comp\DeMYST\454-8\fm.vp
Monday, April 12, 2004 1:11:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
1

Inside Java

Computer programming might seem mystifying and something that should be left to

university scientists, but it isn’t. With a little time and effort you can easily master

computer programming and take control over your computer in a way you never

thought you could. If you can read this book and take a few notes, you have all the

skills needed to write a computer program. A computer program is a set of instruc-

tions for the computer to follow. Those instructions are written in a programming

language that is very similar to English. There are many computer languages. One of

the more popular is Java. By now you probably have heard all the hoopla about Java

and how Java is revolutionizing the world of computer programming. You’ll be in

the forefront of this revolution by learning how to put your computer through its

paces by writing your own Java program. Let’s begin at the beginning with the basics

and then work up to everything you need to know to write a Java program.

Computer Programs
You probably use a personal computer; however, a personal computer is only one

kind of computer. Other kinds of computers include personal digital assistants

1

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

2 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

(PDAs), powerful computers that run corporations, and tiny computers in automo-

biles, aircraft, and home appliances.

All computers have one thing in common: They perform computations and make

logical decisions billions of times faster than you and I are capable of doing. Technically,

computers perform only two kinds of computations—addition and subtraction.

Ready for your first quiz? How would you know whether two numbers are the

same number? Subtract them. If the difference is zero, the numbers are the same. If

the difference is a positive number, the first number is larger than the second number.

If the difference is a negative number, the first number is smaller than the second

number. This is the way a computer makes a logical decision.

A computer programmer instructs a computer how to perform a computation and

how to make a logical decision by writing a computer program. A computer program

contains all the steps that must be followed in a specific order to perform a computa-

tion and to reach a logical decision.

Data
Many computer instructions require the computer to manipulate information that is

provided by the programmer, by a person who uses the computer, or by another com-

puter. This information is called data.

You provide a program with data each time you enter your ID and password into

your computer. The program receives your ID and password and then validates them

before giving you access to your computer. Here’s another quiz. What computation

is used to validate your ID and password? Subtraction! The program subtracts the ID

and password that you enter into your computer from the valid ID and password. If

the difference is zero, they match and access is granted.

A programmer can enter data directly into an instruction if the programmer pro-

vides the data. For example, here is an instruction telling the computer to add two

numbers (the programmer placed these numbers into the instruction):

10 + 15

Surprised to see how simple a computer instruction can be? If so, you’re in for a

treat because many of the instructions you write using the Java programming lan-

guage are simple to understand and simple to write.

Many times the programmer doesn’t have data for an instruction at the time when

the program is written, such as a user’s ID and password. The person who uses the

program must then enter this data when the program runs.

However, the instruction still must be aware of the data when the program is writ-

ten, so the programmer uses a placeholder for data in the instruction. You can think of a

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

placeholder as a temporary label for the data. Programmers call these labels variables,

which you’ll learn more about later in this book. The following example is the same

instruction used to add two numbers, except the lettersA andB are placeholders for the

numbers:

A + B

The computer replaces these letters with numbers when the person who uses the

program enters numbers into the program or when the numbers are provided to the

program by another computer program.

Programming Languages
A computer programming language such as Java makes it easy for a programmer to

write instructions for a computer because those instructions are written using Eng-

lish-like words. However, a computer doesn’t understand those English-like words.

Instead, a computer understands instructions written in machine language. Machine

language instructions consist of a series of zeros and ones that are understood by the

computer’s central processing unit (CPU), which is the part of the computer where

all the processing occurs.

Although programmers tend to refer to machine language as a single language, there

are actually different versions of machine language. Think of these versions as dialects.

A CPU understands only one dialect of a machine language. This means that a program

written in one dialect can be run only on computers that have a CPU that understands

that dialect. This makes the program computer dependent, sometimes referred to as ma-

chine dependent. That is, a machine language program written for one kind of computer

cannot run on a different kind of computer.

You don’t need to be a rocket scientist to see problems writing programs using

machine language. First, who in their right mind wants to write a program using only

a series of zeros and ones? We think in words, not numbers. Also, who would want to

spend all this time writing a program when it can run on only one kind of computer?

The introduction of assembly language addressed at least one of these problems.

Assembly language is another programming language that consists of English ab-

breviations called assembly language instructions, each of which represents an ele-

mentary operation of the computer.

A programmer first decided what operation needed to be performed and then used

the assembly language instruction to tell the computer to perform the operation. The

computer still only understands zeros and ones, so a program called an assembler is

used to translate assembly language instructions into machine language.

CHAPTER 1 Inside Java 3

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is an example of an assembly language program. You can probably figure

out what operation the computer is being told to perform. The computer is being told

to sum 10 and 15.

ADD 10, 15

You must admit that assembly language had a big advantage over machine lan-

guage—the programmer could use English-like words to write instructions for the

computer. However, there were critical disadvantages, too.

The programmers had to learn many assembly language abbreviations that weren’t

intuitive, such as POP and PUSH. Also, many instructions were necessary to carry out

fundamental operations. And the biggest headache was portability. Each kind of com-

puter understood its own dialect of assembly language, making it practically impossi-

ble to write an assembly language program that could run on different kinds of

computers without having to rewrite the program.

Assembly language evolved into high-level programming languages that are in-

tuitive because they use English-like words, statements (sentences), and punctua-

tion to instruct the computer to do something. C, C++, and Java are popular high-

level programming languages used today.

In addition, a single instruction can be written to perform a related set of opera-

tions. No longer must a programmer write one instruction for each operation. Also,

programs written in a high-level programming language can be run on different

computers without the programmers having to rewrite them.

Here’s how a high-level programming language works: A programmer uses

keywords of a programming language to form statements that tell a computer to do

something. Keywords are similar to English words that you use to form sentences to

tell someone to do something.

You’ve probably surmised that the computer doesn’t understand a program writ-

ten in a high-level computer language because computers only understand machine

language. Therefore, the high-level computer language program must be translated

into machine language.

This translation process involves two steps. First, the program is translated into an

intermediate stage called an object file. Second, the object file is converted into the

machine language program that can be run on the computer.

Translating the program into an object file is called compiling and is performed

by a translator program called a compiler. The process of converting an object file

into a machine language program is called linking and is performed by a program

called a linker.

You might be wondering why the program isn’t compiled directly to machine lan-

guage. The reason is because a typical program has two or more object files that

4 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 1 Inside Java 5

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

must be joined together to form the machine language program. Programmers call

joining object files linking.

Compiling and linking are important features of a high-level programming lan-

guage because these two processes enable a program to run on different kinds of

computers without the programmer having to rewrite the program.

This is made possible because there is a different compiler and linker for each

kind of computer that is capable of translating a specific high-level programming

language into machine language for a specific kind of computer. For example, a pro-

gram written in C++ can be compiled and linked so that it runs on different kinds of

computers without having to be rewritten.

Here is the high-level programming language version of the assembly language

example shown previously in this section:

10 + 15

In the Beginning
In the 1950s, FORTRAN (FORmula TRANslator) and COBOL (COmmon Busi-

ness Oriented Languages) were two popular high-level computer languages, and

they’re still in use today.

FORTRAN, developed by IBM, is a high-level programming language designed

to perform complex mathematical computations for scientific and engineering ap-

plications. COBOL, developed by the federal government, is designed to process

and manipulate large amounts of data. Although both of these languages achieved

their objectives very well, they were not flexible and lacked the capabilities required

to build compilers and operating systems.

Therefore, engineers sought to develop a more versatile high-level programming

language, and by the late 1960s a new programming language was developed by

Martin Richards. It was called the BCPL programming language and was used to

write compilers. Soon after the introduction of BCPL, Ken Thompson developed an

enhanced version of BCPL and called it the B programming language. The B pro-

gramming language was used to create the first versions of the Unix operating sys-

tem at Bell Laboratories.

BCPL and the B programming languages had a major disadvantage in the way they

used computer memory. Today, computer memory is relatively inexpensive. However,

in the 1960s, computer memory was expensive, and both BCPL and B used computer

memory inefficiently.

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Think of computer memory as a bunch of boxes. Each box can store one bottle of

soda (data). You must reserve a box before you can store a bottle of soda in a box.

Therefore, it makes sense that you reserve ten boxes if you have to store ten bottles of

soda and that you reserve five boxes if five bottles of soda are to be stored. BCPL and

B required that the same number of boxes be reserved regardless of the number of

soda bottles being stored. So, let’s say that each time you wanted to store one soda

bottle, you had to reserve ten boxes. This meant that nine boxes went unused and

were therefore wasted.

In 1972, Dennis Ritchie created the C programming language at Bell Labora-

tories. It overcame the failings of BCPL and B. The C programming language incor-

porated many of the features found in BCPL and B, plus it introduced new features

that, among other things, enabled a programmer to specify exactly the amount of

memory needed to store data in computer memory.

Although the C programming language addressed the drawbacks of BCPL and B,

some programmers felt that it lacked the capability to mimic the way we look at the

real world. This is an important drawback because computer programs are designed

to simulate the real word inside a computer. Therefore, the C programming language

couldn’t simulate the real world to meet the desire of programmers.

We look at the real world as objects. Those objects have attributes (data) and be-

haviors. Take a window, for example. The dimensions of the window are attributes.

Also, the window can be opened and closed, which are functionalities associated

with a window.

The C programming language is a procedural language that is focused on mim-

icking real-world behavior inside a computer. Unfortunately, the C programming

language doesn’t provide a way to combine behavior with attributes.

In 1980, Bjarne Stroustrup developed a new programming language at Bell Labo-

ratories called C++. The most outstanding advancement of C++ was the capability

to combine attributes and functionality into objects. And with this came the growth

of object-oriented design and object-oriented programming (see Object-Oriented

Programming Demystified for more on this subject).

You are probably wondering why Stroustrup used the ++ instead of coming up

with a completely new name for the language. The ++ is the incremental operator in

C (and in Java), which you’ll learn about later in this book. For now, it is important to

know that the incremental operator adds 1 to the current value. C++ is said to incre-

ment the C programming language by incorporating all the features found in C and

then adding new features. Therefore, you can think of C++ as an extension of the C

programming language.

6 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 1 Inside Java 7

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

How a Computer Language Becomes a Standard
Did you ever wonder how a computer language is developed? It takes a lot of perse-

verance and luck. Let’s backtrack a bit and recall the components of a programming

language. All programming languages consist of keywords and functionality.

A keyword is an English-like word. Functionality is the action performed by the

computer when the keyword is used in a program. Think of functionality as the defi-

nition of the keyword.

The initial step in developing a programming language is to come up with a list of

keywords and functionality. Ideally, the keywords and functionality of your program-

ming language provide a much-needed improvement over an existing programming

language; otherwise, no one except you will use your new language.

Next, get the word out among the members of the technical community and stir up

an interest in the new programming language. If there is enough of a buzz and a real

benefit, leaders in technology and industry will push to standardize the new pro-

gramming language.

Standardization is the formal process where the technical community, through a

standards organization, agrees to a set of keywords and corresponding functionality.

The well-known standards organizations are the American National Standards Insti-

tute (ANSI; www.ansi.org) and the International Standards Organization (ISO;

www.iso.ch). The Java Community Process (www.jcp.org) establishes standards for

the Java programming language.

Once standards are established, software tools manufacturers develop compilers,

linkers, and other software tools that recognize programs written in the new pro-

gramming language and converts those programs to machine language programs so

they can run on different kinds of computers. The new programming language is

also taught in institutions, written about in books, and used by programmers to write

programs.

And Then Java
C++ and the other high-level programming languages all had one drawback: Pro-

grams written in those languages had to be recompiled in order to run on different

kinds of computers. Business organizations wanted a programming language that

enables them to develop a program that can run on all computers without having to

recompile the program.

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In a round about way, Sun Microsystems met this demand with the introduction of

the Java programming language. In 1991, Sun Microsystems launched the Green

project to develop a programming language suited for writing programs for con-

sumer electronic devices such as televisions and computers used in automobiles.

They expected this to become a hot new market.

James Gosling, one of the chief engineers on the Green project, created the Oak

programming language to meet this objective. It was named for the tree outside his

office. However, there was a problem. A programming language called Oak already

existed. Gosling and other Green project engineers sat around a coffeehouse trying

to come up with a new name of their language—thus, Java was born.

The need for programs to run consumer electronic devices never materialized, but

in 1993 the World Wide Web exploded. What once was a communications network

for academia and governments became a new means for commerce and the general

public to communicate with each other.

The web page became a key way to communicate. Each web page was written

manually using the Hypertext Markup Language (HTML) to display text and graph-

ics on remote computers. These are known as static web pages because the content

remains static each time the web page is viewed.

However, web page developers wanted a robust way to build dynamic web pages

that could be customized for each person who visits the website. They wanted web

pages generated by a computer program that could also interact automatically with

databases and computer systems used throughout an organization.

Gosling’s Java programming language was perfect for creating dynamic web

pages with interactive content that enables the web page to be customized for each

visitor to the website. In addition, Java ran on practically any kind of computer with-

out having to be recompiled.

Sun Microsystems formally introduced Java in 1995, and it became the program-

ming language of choice for large-scale enterprise applications built around the

World Wide Web four years later.

Today, the Java programming language has grown to include several versions

called editions. The most commonly used edition is the Java 2 Standard Edition

(J2SE), which is the one we’ll be exploring in this book. There is also the Java 2

Enterprise Edition (J2EE), which is used to build applications for corporations.

Java 2 Micro Edition (J2ME) is yet another common edition of Java; it’s designed for

building applications for mobile devices such as cell phones and personal digital as-

sistants. You can learn more about J2EE by picking up a copy of J2EE: The Com-

plete Reference. And you can learn more about J2ME by reading J2ME: The

Complete Reference.

8 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

An Inside Look at Java
Let’s get down to some basics about Java. A program is a series of instructions writ-

ten in a programming language that tell a computer to perform specific tasks. This is

like directions you write telling a friend how to drive to your house. Each instruction

must be precisely written so that the computer understands what you want it to do.

No doubt you’ve heard the term computer application. A computer application is

typically a group of related programs that collectively tell a computer how to mimic

the real world. For example, your local supermarket has a transaction-processing ap-

plication that is used to record, process, and report on purchases. The most visible

part of the transaction-processing application is the scanner at the checkout counter.

The transaction-processing application used by your supermarket consists of many

programs.

A Java program consists of one or more Java classes that are written using the Java

programming language. A class is like a cookie cutter that is used to define a real-

world object inside your computer. Much like a cookie cutter defines what a cookie

looks like, a class defines what an object looks like. And like a cookie cutter, a class is

used to make a real object in your program. You’ll see how this is done in Chapter 7.

These classes contain instructions that tell a computer what to do as well as the

data necessary for the computer to carry out the task. Classes are written into a Java

source code file using an editor. A Java source code file is similar to a word process-

ing document. However, instead of containing text, the Java source code file has in-

structions written in the Java programming language. An editor is a barebones word

processor that doesn’t have all the fancy formatting capabilities you typically find in

a word processor.

You write Java source code, which becomes a Java program. The source code

must be saved to a disk in a file that has the file extension .java.

Java works differently than C++ and other high-level programming languages.

High-level programming languages must be compiled into object code that is linked

by a linker to form the machine language program that runs on a computer.

Java source code is not compiled into object code. Instead, Java source code is

compiled into bytecode and saved in a file that has the file extension .class. The

Java compiler is a component of the Java 2 Software Development Kit (J2SDK) that

is available for downloading, free of charge, from the java.sun.com website.

NOTE: The Java compiler is also a component of commercially available Java

Integrated Development Environments (IDEs) such as Borland’s JBuilder. Besides

the Java compiler, an IDE includes an editor, debugger, and other timesaving

software tools.

CHAPTER 1 Inside Java 9

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The bytecode that is generated by the Java compiler is interpreted by the Java Vir-

tual Machine (JVM), which translated bytecode into machine language that runs on

the computer. Today, a Java Virtual Machine is available for most kinds of comput-

ers and can be downloaded free of charge from the java.sun.com website.

The Java Virtual Machine is key to the success of Java because the bytecode pro-

duced by the Java compiler is readable by every Java Virtual Machine, regardless of

the kind of computer that is running the Java Virtual Machine. The goal of the indus-

try has been finally achieved. A program can be compiled once and run on practi-

cally any computer without having to be recompiled or modified in any way.

Writing a Java Program from Scratch
Before getting into the details of Java, let’s jump into the waters and write, compile,

and run the traditional HelloWorld program, which is the first program every pro-

grammer writes. It contains all the basic elements of a Java program and will help to

build your confidence as you learn all the ins and outs of Java throughout this book.

Begin by downloading the Java 2 Software Development Kit from java.sun.com.

It will take a few minutes before the entire file is copied onto your computer. Once

the download is completed, click the J2SDK icon and install the development kit.

Make sure that you add the/bin subdirectory to your path so you can compile your

Java program in any directory on your computer.

After the J2SDK is installed on your computer, you are ready to write your first

Java program. You’ll need to write Java instructions into an editor. Most computers

come with an editor. If you are using a Windows computer, open Notepad. If you are

using a Unix/Linux-based computer, open vi. Enter Figure 1-1 into your editor. This

is the HelloWorld Java program.

Save the file as HelloWorld.java. Make sure that the filename is spelled ex-

actly the same way as shown here. Otherwise, you’ll receive a compiler error. The

class name and filename are case sensitive.

10 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

Figure 1-1 The HelloWorld program

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If you are using Notepad, select Save As. You’ll notice that the default file name is

*.txt. Replace this with HelloWorld.java. To open this file in Notepad,

you’ll need to change File Type from Text Document (*.txt) to All Files (*.*) in or-

der to see files that have extensions other than *.txt.

Compiling a Java Program
I’ll explain the parts of the HelloWorld.java program in the next section. For

now, let’s compile and run the program. You run the compiler from the command

line. If you are using a Windows computer, open a Command Prompt window. If you

are using a Unix/Linux computer, you’ll need to open a shell window.

Type following at the prompt and then press ENTER:

javac HelloWorld.java

A new command prompt appears on the screen if the Java program successfully

compiled. If you display the directory, you’ll see HelloWorld.class, which is

the bytecode file of your program. On a Windows computer, you display the direc-

tory at the command prompt by typing dir then pressing ENTER. On a Unix/Linux

computer, type ls and press ENTER.

If compiling was not successful, you might see a variety of things on the screen.

Here are some of them, along with possible solutions:

• 'javac' is not recognized as an internal or external command, operable

program or batch file There are two likely causes of this type of error.

First, you downloaded the J2SDK but didn’t install it. If this is the case, you

need to install the J2SDK. Second, you installed the J2SDK but didn’t place

the J2SDK’s bin subdirectory on your computer’s path. If this is the case,

you need to place the bin subdirectory on your computer’s path.

• "...should be declared in a file named ..." If you see this as part of

the message displayed on the screen after you tried to compile the Java

program, the likely cause is you didn’t use the exact spelling shown in

this chapter. Filenames must be typed just as they appear in this chapter,

including upper- and lowercase letters. Double-check the spelling and

the case.

• javac: invalid flag: If you see this message followed by a long

list of words that begin with a hyphen, the compile likely can’t find

the Java program file. Display the current directory to be sure you see

HelloWorld.java in the directory. If you don’t see it there, then

resave the Java program file to that directory. Another possibility is

that you misspelled the name of the file when you tried to compile it.

CHAPTER 1 Inside Java 11

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Try again, making sure you spell the filename correctly. Another common

problem is that you did not include the file extension with the filename

when you compiled the file. You must include .java when compiling

a file.

• HelloWorld.java:6: ';' expected Any time you see a message displayed

that contains the word expected, suspect that a syntax error has occurred.

A syntax error simply means that the compiler didn’t understand something

you wrote in your program file. The message is usually followed by the

part of your program the compiler didn’t understand. Here’s how to fix

the problem: The number next to the filename in the message tells you the

line number of the program that is likely to have caused the problem. In

this example, line 6 contains the problem instruction. Alongside the line

number is the Java syntax the compiler expected to see in your program. In

this example, the compiler expected to see a semicolon. Also, look carefully

at the code displayed along with the message. You’ll see a caret (^) pointing

to the place in the code where the compiler discovered the problem. With all

these clues at hand, your job is to display your Java program in your editor,

make the necessary corrections, and then recompile your program.

Running a Java Program
Once you’ve successfully compiled your Java program, it’s time to run it. Type the

following line at the command prompt and press ENTER:

java HelloWorld

You should see “Hello world!” displayed on the screen in the Command Prompt

window. If you don’t see it, one of two common problems has occurred:

• 'java' is not recognized as an internal or external command, operable

program or batch file If you see this message, your computer cannot

find the java class loader. Make sure that the Java Virtual Machine is

installed on your computer. If it’s not, download the Java Virtual Machine

for you computer from java.sun.com.

• Exception in thread "main" java.lang.NoClassDefFoundError: You

probably entered HelloWorld.java or HelloWorld.class instead

of HelloWorld when trying to run your program. Don’t include the file

extension when running your Java program.

12 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Taking Apart a Java Program
Now that you’ve compiled and run your first Java program, let’s take a closer look at

it to see how the HelloWorld program works. There are three parts to this program:

the class definition, the method definition, and a statement.

Class Definition
The class definition in the HelloWorld program contains all the pieces of the pro-

gram necessary to display “Hello world!” on the screen. The class definition, shown

in Figure 1-2, consists of the following:

• The class keyword

• The class name

• The class body

The keywordclass informs the compiler that you are defining a class. The key-

word class must be followed by the name of the class. In this example,

HelloWorld is the class name. The class name in the HelloWorld program must

be the same as the program’s filename. Both names must match exactly; otherwise,

you’ll receive a compiler error when you compile the program.

Notice that the name of this class is made up of two words: Hello and World. Java

doesn’t permit you to use spaces in a class name; however, it is a good idea to capital-

ize the first letter of each word used in the class name. This makes it easier for you

and other programmers to read.

The class body is where attributes are declared and methods defined. The class

body begins with a left brace ({), called an open brace, and ends with a right brace (}),

called a close brace.

CHAPTER 1 Inside Java 13

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

Figure 1-2 The class definition must have these components.

Class keyword Class name

Class body

Open brace

Close brace

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Method Definition
Previously in this chapter you learned that a class has two elements. These are attrib-

utes and behaviors, which are called methods. An attribute is data that is associated

with the class, and a method is a functionality of the class. An attribute isn’t a re-

quired part of a class, but every Java application must define one method—the

main()method. Themain()method, shown in Figure 1-3, is where the Java pro-

gram begins.

A method definition consists of the following items:

• Method name

• Method argument

• Method body

• Method return value

The method name is used to identify the method and to call the method whenever

you need the program to perform the functionality provided by the method. You’ll

learn all about methods in Chapter 5. For now, simply understand that the Java Vir-

tual Machine calls the main() method when the program runs.

The method argument is the data identified between the parentheses to the right of

the method name and is used by the method to provide the necessary functionality.

The main() method in the HelloWorld program has one method argument:

String args[]. You’ll learn about this argument in Chapter 5. For now, we’ll

hold off discussing it because the HelloWorld program doesn’t use it.

The method body is where you place statements that instruct the computer to per-

form specific functionality. A pair of braces similar to the class body defines the

method body. Statements contained in a method body are executed sequentially. The

program terminates when the last statement in the main() method executes.

14 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

Figure 1-3 All Java applications must have a main() method because the main()
method is the entry point to the application.

Method body

Method name Method argument list

No method return value

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The method’s return value is the data returned to the part of the program that re-

quested the method to perform its functionality. Not all methods have a return value,

which you’ll learn about in Chapter 5. In this example, themain()method doesn’t

have a return value. Therefore, we must precede the name of the method with the

keyword void, which indicates there isn’t a return value.

You’ll notice that two other keywords are used alongside the name of the main()
method. These are public and static. The keyword public means that the

method can be called from outside the class definition. The main() method is also

public because it is called by the Java Virtual Machine. The keyword static is an

advanced topic that is discussed in Chapter 5. For now, simply know that thestatic
keyword must appear in the method definition.

Statement
As you learned earlier in this chapter, a statement is an instruction to the computer to

do something. This example contains one statement that tells the computer to dis-

play the words “Hello world!” on the screen.

As shown in Figure 1-4, this statement calls one of Java’s standard methods:

println(). You’ll learn about the println()method in Chapter 5. For now, it

is important to understand that the functionality of the println() method is to

display data on the screen. However, you must tell the println() method what

data you want displayed. You do this by placing the data between the parentheses

when calling the println() method. In this case, the words “Hello world!” are

placed between the parentheses and appear on the screen.

Finally, every statement in a Java program must end in a semicolon (;). Otherwise,

the compiler won’t recognize the statement and is likely to display an error message

when you try to compile the program.

CHAPTER 1 Inside Java 15

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

Figure 1-4 This statement tells Java to display “Hello world!” on the screen.

Statement

Calling a method to
display text on the screen

Text displayed
on the screen

Semicolon

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is a compiler?

2. What is a high-level programming language?

3. What is machine language?

4. What is a key difference between C and Java?

5. What is a key difference between C++ and Java?

6. What is bytecode?

7. What is the Java Virtual Machine?

8. What is the purpose of the main() method in a Java application?

9. Must all Java classes have at least one attribute declared?

10. What happens after the last statement in the main() method executes?

16 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\ch01.vp
Saturday, April 10, 2004 11:15:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
2

Data Types and
Variables

Practically every Java program you write focuses on data and instructions. Data is

information used by a computer to execute an instruction given to it by you, the pro-

grammer. Let’s begin our trek toward mastering Java by taking a close look at data.

You’ll learn what data is, how to store data in memory, and how your Java programs

can use data to achieve the goals of your program.

Data and Numbers
For many of us, the terms information and data are synonymous. However, informa-

tion and data are distinctly different. Data is the smallest amount of meaningful in-

formation. No doubt this sounds like technical double talk, so let’s look at an

example to illustrate the difference between data and information.

17

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

18 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

A person’s name is information and not data because a person’s name can be re-

duced to a person’s first name, middle name, and last name. A person’s first name,

middle name, and last name are data because they cannot be reduced to smaller

amounts of meaningful information.

It is important to make a distinction between information and data because a Java

program uses data and not information. That is, you don’t instruct a computer to ask

the users of your program to enter their name. Instead, the users are prompted to en-

ter a first name, middle name, and last name. We view data as one or more characters

that can be a mixture of alphabetical characters, numeric characters, and symbols

such as punctuation. However, a computer sees data as a series of numbers repre-

sented as numbers of the binary numbering system. These are the much talked about

zeros and ones.

Numbering system is one of those intimidating terms that conjure images of dreaded

math courses. However, a number system is nothing more than a way of counting, some-

thing you probably learned in the third grade.

We use the decimal numbering system all the time to count. The decimal number

system has ten digits, which are 0 through 9. When we reach 9, we carry over 1 to the

left column and begin counting again from 0.

9
+ 1
10

However, many other numbering systems exist. All of them do exactly the same

thing. They are used to count. The only difference among numbering systems is the

number of digits. You’ll encounter three numbering systems as you read computer

books: the octal numbering system, the hexadecimal numbering system, and the bi-

nary numbering system.

The octal numbering system consists of eight digits, from 0 through 7. When you

reach 7, you carry over 1 to the left column and begin counting again. This is illus-

trated in the follow example. The sum of this addition calculation looks wrong be-

cause we’ve learned that 7 + 1 = 8 and not 10. However, this is only true if we use the

decimal numbering system. However, the octal numbering system is used in this ex-

ample, so the following sum is correct:

7
+ 1
10

The hexadecimal numbering system has 16 digits. Hex, which is what program-

mers called the hexadecimal numbering system, is baffling at first glance because it

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

is difficult to imagine digits beyond 9. Letters A through F are used for numbers 10

through 15.

Take a look at the following example. It probably resembles a strangely formatted

algebra problem. It isn’t algebra because lettersA andB are not placeholders for real

digits. These letters are real digits in the hex numbering system.

A
+ 1
B

Let’s convert the previous problem from the hexadecimal number system to the

decimal numbering system so you can have a better understanding of the calcula-

tion. Here’s the same calculation in decimal:

10
+ 1
11

The binary numbering system is probably the most talked about numbering sys-

tem aside from the decimal numbering system because the binary numbering system

is used to represent data and instructions inside a computer.

The binary numbering system consists of two digits: 0 and 1. When counting, you

carry over 1 to the left column when you reach digit 1 and then begin counting again.

This is shown in the next example. No doubt the next example looks strange, but

that’s because we tend to assume that all calculations are performed using the deci-

mal numbering system:

1
+ 1
10

The binary numbering system is the natural choice for representing numbers in-

side a computer because a computer is really a bunch of tiny switches. The binary

digit 0 is used to represent a switch that is turned off, and the binary digit 1 represents

a switch that is turned on. Programmers call each of these switches a bit. Those not

familiar with computers usually think the term bit refers to a “little bit of informa-

tion.” That’s incorrect. The term bit is an abbreviation for binary digit.

It is important to understand that any number you can write using the decimal

numbering system can also be written in other numbering systems, regardless of the

number of digits used by a numbering system.

Likewise, any calculation that can be performed using the decimal numbering

system can be performed using any numbering system. This means you can perform

complex calculus using the binary numbering system if you wish, although not

many of us would do such a thing.

CHAPTER 2 Data Types and Variables 19

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Playing with Numbering Systems
You can show off your new understanding of number systems by using the Calcula-

tor that comes with Windows to convert from one numbering system to another.

Here’s what you need to do:

1. Open the Windows Calculator. You’ll find it under Programs | Accessories.

2. Select View from the menu bar and then Scientific from the drop-down

menu. The image of the calculator expands to show, among other things,

the four numbers systems spoken about in this section.

3. Select the Dec radio button, if it is not already selected, and enter the

number 15.

4. Select the Hex radio button, and the letter F appears, which is the equivalent

of the decimal value 15 in hexadecimal.

5. Select the Oct radio button, and the number 15 is converted to 17, which is

how the number 15 is represented in the octal numbering system.

6. Select the Bin radio button and the number 15 is converted to 1111. This is

the binary numbering system’s representation of the decimal value 15.

Numbers and Characters
Computer memory is really a bunch of switches. When you want to place a decimal

number in memory, the number is converted to the binary numbering system’s repre-

sentation of the number and then switches (computer memory) are turned on and off

to represent the number.

Therefore, if we wanted to store the number 15 in memory, the number is first

converted to its binary equivalent, which is 1111. Next, four switches (computer

memory) are turned on. As you’ll recall from the previous section, placing the

switch in the “on” position represents a binary 1.

Fortunately, you don’t have to turn on or turn off any switches. As you’ll see later

in this chapter, the Java compiler does this for you.

Computer memory is divided into groups of eight switches, called a byte. Each

group is uniquely identified inside the computer by an address called a memory ad-

dress.A byte is the minimum amount of switches (memory) used store a number. This

means that the decimal number 15 is represented as 00001111 in memory. The first

four zeros are called leading zeros. Therefore, 1111 and 00001111 are equivalent.

The largest decimal value that can be stored in a byte of memory is 255, which is the

equivalent of 11111111 in binary. Numbers larger than 255 can be stored by using

more than one byte of memory to store the number.

20 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Now that you understand how numbers are stored in a computer, you’re probably

wondering how letters, punctuation, and other characters found on the keyboard are

stored. The answer lies in a secret code. Well, it is really a not-so-secret code.

A consortium of hardware and software manufacturers in the late 1980s assigned

a unique 16-digit (decimal numbering system) number to each character used in the

languages throughout the world. They called it Unicode. Unicode has room to repre-

sent 1,114,112 individual characters, although about 95,221 characters are currently

represented in Unicode, which includes nearly all characters used in the languages

around the world. Each character requires two bytes of memory (16 switches) in or-

der to store the character in memory.

Prior to the adoption of Unicode, programmers used the American Standard Code

for Information Interchange (ASCII) code to represent characters. The ASCII code

uses one byte of memory, but it is based on seven bits of the byte, so it has room to

represent 128 characters. It soon became apparent that the ASCII code wasn’t suffi-

cient as computer usage spread around the global, because languages such as Rus-

sian, Arabic, Japanese, and Chinese have more than 128 characters. For example,

Chinese ideographs have 21,000 characters. The adoption of Unicode addresses this

concern. The first 128 characters and corresponding values in Unicode are the same

as in ASCII. Fortunately, you don’t have to be concerned about Unicode or ASCII

because the Java compiler automatically converts characters to the binary equivalent

of their Unicode value.

Let’s say your program has prompted a user to enter his first name (in this case, Bob)

and has saved it to memory. Each letter of the name is converted to its equivalent

Unicode value, which is shown in Table 2-1 as a decimal number. The equivalent binary

value of the Unicode value is used to determine switch (memory) settings.

Upper- and lowercase letters are assigned their own Unicode value. Numbers that

are used as characters also have a Unicode value. These are typically numbers used

for street addresses, ZIP codes, and other situations where the number is not used in

a calculation.

It is important to understand that the Unicode value is a number just like any num-

ber. For example, the Unicode value 66 is the number 66. The computer treats the

Unicode value 66 the same as if you entered the number 66 into the computer. There

is no difference.

CHAPTER 2 Data Types and Variables 21

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

Character Unicode (Decimal) Binary

B 66 0000000001000010

o 111 0000000001101111

b 98 0000000001100010

Table 2-1 Unicode and Binary Values of Bob

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You are probably wondering how a program knows that the number 66 really

means the character B and not simply the number 66. It knows the difference because

of the way the programmer writes the program. If the programmer uses the keyword

char in the program, then the number is converted to its Unicode letter. If the pro-

grammer uses the keywordint (or one of a number of similar keywords, which you’ll

learn about later in this chapter), then the number is treated as a number.

Looking Up the Unicode Value
The Unicode value of a character can be determined in a number of ways. The most di-

rect way is to let the computer tell you the Unicode value. You can do this by running

the following Java program. Replace the letter B with the character you want to look

up. Make sure you place the character within single quotations. The program displays

the Unicode decimal value of the character. You’ll learn the details of how this pro-

gram works later in this chapter when you learn about data types and variables:

class Demo {
public static void main(String args[]) {

char x = 'B';
double a = x;
System.out.println("Unicode is " + a);

}
}

Literals
Data is a number or character that is represented as a literal. Think of a literal as a

number or character that you enter directly into your Java program. For example, the

letter B used in the preceding program is a literal character.

Java has five kinds of literals:

• Integer

• Floating point

• Boolean

• Character

• String

22 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Integer Literals
An integer is a whole number, which is a number that doesn’t have a decimal value.

An integer literal is a whole number entered directly into your Java program. The

whole number can be entered as a decimal value, octal value, or a hexadecimal

value, although most times you’ll use a decimal value.

You enter an integer literal into your program the normal way you write a number.

For example, here is how you would enter the decimal value 5 as an integer literal:

class Demo {
public static void main(String args[]) {

System.out.println("Decimal Integer Literal: "
+ 5);

}
}

Octal values are written in a slightly different format. An octal value must always

be written with a leading zero. The leading zero is the signal to the Java compiler

that the integer literal is written using the octal numbering system. Remember that 7

is the largest digit used as an octal value. Here’s how would you write the decimal

value 5 using octal:

class Demo {
public static void main(String args[]) {

System.out.println("Octal Integer Literal: " + 05);
}

}

An integer literal written in the hexadecimal numbering system also has a special

format. Hexadecimal must be written with a leading zero followed by an x, which is

then followed by the hexadecimal value. Remember that the largest digit in the hexa-

decimal numbering system is 15. LettersA throughF represents values 11 through 15.

Here’s how to write an integer literal in hexadecimal:

class Demo {
public static void main(String args[]) {

System.out.println("Octal Integer Literal: "
+ 0x5);

}
}

CHAPTER 2 Data Types and Variables 23

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Floating-point Literals
Floating point is the term programmers use to refer to a real number. A real number

is composed of a whole number and a fraction that is represented as a decimal value.

Real numbers are referred to as a floating-point numbers because of the way com

puters notate a decimal value. Instead of placing a decimal in a real number, the

computer notates the real number as a whole number and then notates the decimal

position separately.

Let’s say that 5.55 is a real number that needs to be stored by a program. Because

this contains a decimal value, the number must be notated as a floating-point number.

The number is stored as 555. Notice that the decimal is missing. However, the position

of the decimal is notated separately. Behind the scenes, the computer might say some-

thing like, “Place the decimal between the first and second occurrences of the digit 5.”

Fortunately, you don’t need to be concerned how a floating-point number is notated.

All you need to do is to write the floating-point number into your program.

You can write a floating-point number in one of two ways. Either you can enter

the number into your program the same way you enter a real number anywhere (that

is, you can simply write 5.55), or you can write a real number using scientific nota-

tion. Scientific notation is typically used whenever you need to write a very large or

very small number. Instead of writing a long series of digits that seem to go on for-

ever, you can use an exponent. An exponent specifies a power of ten by which a value

is multiplied.

You write an exponent in your program by preceding the exponent with the letter

E or e.Either a plus sign or negative sign follows this symbol to indicate whether the

number is very large (plus sign) or very small (negative sign). If you leave out the

sign, the computer assumes that exponent is positive.

The following example illustrates how to write a real number in your program

using scientific notation:

class Demo {
public static void main(String args[]) {

System.out.println("Scientific Notation.: "
+ 5E+10);

System.out.println("Scientific Notation.: "
+ 5E-20);

System.out.println("Scientific Notation.: "
+ 5E30);

}
}

Real numbers written in scientific notation typically have many digits following

the decimal. However, all those digits may not be important to your program. Let’s

24 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

look at a simple example so that you understand this point. Let’s say you have the

real number 5.5543213421. Suppose this number represented the change someone

is to receive after making a purchase. Only two of the ten digits following the deci-

mal are important because the smallest denomination of U.S. currency is a penny.

Therefore, the change is $5.55.

Programmers call the numbers following the decimal that are important to the

program significant numbers. In the previous example, there are two significant

numbers: 55. The other numbers (43213421) are insignificant and can be ignored by

your program.

Some Java programs require that a number have a specific degree of accuracy.

This is called precision. For example, the previous example requires two significant

digits of precision because the customer expects to receive every penny of change

that is due.

Floating-point literals are stored with a precision of approximately seven signifi-

cant digits or approximately 15 significant digits. Seven-digit precision is called sin-

gle precision, whereas 15-digit precision is called double precision. The word

approximately is used because values may not correspond exactly to decimal digits

because numbers are represented as binary values.

By default, floating-point values are stored using single precision. Therefore,

5.1234567891011121314 is stored as 5.1234567. If your program requires more

than seven significant digits, you need to store the value using double precision.

Using the symbol F or f at the end of the value, as shown in this example, specifies

double precision:

class Demo {
public static void main(String args[]) {

System.out.println("Scientific Notation.: "
+ 5E+10F);

System.out.println("Scientific Notation.: "
+ 5E-20F);

System.out.println("Scientific Notation.: "
+ 5E30f);

}
}

Boolean Literals
Whenever you see the term Boolean, you should think of true and false, yes and no,

on and off, and 0 and 1, because a Boolean value can be one of two values. A Boolean

value cannot be yes, no, and maybe. It must be one value or another value.

CHAPTER 2 Data Types and Variables 25

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You write a Boolean literal by using the Boolean operators true and false. You’ll

learn more about these in the next chapter. In this example, two Boolean literals are

assigned to variables. You’ll learn about variables later in this chapter. For now,

think of a variable as an empty box into which your program places a Boolean value.

The box is actually computer memory that is identified by a label. We usebox1 and

box2 as labels for memory in the following example:

class Demo {
public static void main(String args[]) {

boolean box1 = true;
boolean box2 = false;

}
}

Character Literals
A character is a letter, number, punctuation, or any other character defined in

Unicode. It is easy to become confused between a number that is treated as a charac-

ter and a number that is treated as a numeric value because they look very much

alike. For example, the house number in the address 121 Gordon Street is treated as a

character, as compared to the expression 5 + 10, which contains numeric values.

However, programs treat these differently. A numeric value can be directly used

in a calculation, whereas a number character is a Unicode value that must be con-

verted to a numeric value.

A character literal is a character defined by Unicode that you write into your program

by placing the character between single quotations. Be careful. Placing a character lit-

eral in double quotations is a common error made when writing a character literal. As

you’ll learn in the next section, double quotations are used to write a string literal, which

is materially different from a character literal.

Here’s how to write a character literal in your program:

class Demo {
public static void main(String args[]) {

System.out.println("Character Literal: " + 'A');
}
}

As good practice, don’t write numeric values as character literals if they will be used

in a calculation. Numeric values should be written as integer literals or as floating-point

literals; otherwise, you’ll need to convert the character literal version of the number of an

integer literal or floating-point literal before it can be used in a calculation.

26 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Escape Characters
Not all characters used in your program are printable characters. Some characters can-

not be printed on the screen. These are called nonprintable characters and are used to

give special direction to the computer and to programs. Nonprintable characters are

the first 32 characters defined in the Unicode table. Table 2-2 shows the more com-

monly used nonprintable characters.

For example, you use a nonprintable character each time you want a new line to

appear in a word processing document. You don’t see the newline character because

it isn’t displayed on the screen. Instead, the word processor recognizes the newline

character as a special command to move the cursor to the beginning of a new line.

You write a nonprintable character into your program by using the escape character

followed by the symbol in the Unicode table that is used to represent the nonprintable

character. The forward slash (\) is the escape character in Java. The combination of the

escape character and the symbol used to represent the nonprintable character is called

an escape sequence. The escape sequence is also referred to as a control sequence or

control character because nonprintable characters are commonly used to control the

behavior of programs and sometimes hardware.

The follow example illustrates how to write an escape sequence in a program. Here,

the newline escape sequence (\n) is used to place the second portion of the text on its

own line. Notice that the escape sequence consists of two characters. The first charac-

ter is the forward slash, and the second character is the symbol found on the Unicode

table. However, the escape sequence is enclosed within single quotation marks be-

cause both characters are treated as single characters and not as two characters.

class Demo {
public static void main(String args[]) {

System.out.println("Line 1" + '\n' + "Line 2");
}
}

CHAPTER 2 Data Types and Variables 27

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

Escape Character Description

\n Newline character (also called a linefeed character)

\t Tab character

\r Carriage return character

\f Formfeed character

\b Backspace character

Table 2-2 Escape Characters

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

28 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

String Literals
A string is a series of related characters, such as the name Amber Leigh. You write a

string literal in a program by enclosing the series of characters in double quotations on

a single line. The most common use of a string literal in a program is to initialize a

String object. You’ll learn about String objects in Chapter 7. For now, think of a String

object as something that is used to store a string literal in memory and lets you do

things with the string literal such as counting the number of characters in it.

The following example shows how to write a string literal to initialize a String

object:

class Demo {
public static void main(String args[]) {

String name = "Amber Leigh";
}
}

Data Types
When some people who are learning computer programming hear the termmemory,

they go into a state of panic because memory is something abstract. It is difficult to

imagine what memory is because no one can really feel and touch it.

However, there isn’t any need to panic when learning about memory. Think of

memory as a bunch of empty boxes. Each box can hold eight binary digits (bits), col-

lectively known as a byte, as you learned in Chapter 1. A number called a memory

address uniquely identifies each “box.”

Fortunately, you don’t have to be concerned about memory addresses because

Java handles memory addresses for your. However, you do have to be concerned

about telling Java how many boxes you’ll need to store data in memory.

Let’s say your program needs to store an integer into memory. An integer takes up

four boxes (four bytes). Therefore, you need to tell Java to reserve four boxes of

memory for your program before your program can store the integer into memory.

No programmer wants to memorize the number of boxes (bytes) needed to store

various kinds of data into memory. So, instead of telling Java to reserve a specific num-

ber of boxes, programmers simply use a keyword that tells Java the kind of data the

program needs to store in memory. This keyword is called adata type.A data type tells

Java how much memory to reserve and the kind of data that will be stored in that mem-

ory location. A data type also tells Java the kinds of operation that can be performed

using the data stored at that memory location. Table 2-3 lists the data types used to tell

Java the amount of boxes (bytes) of memory to reserve.

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 Data Types and Variables 29

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

Your job is to select the data type that provides your program with sufficient

memory to store data. Table 2-3 shows the range of values that can be stored in each

data type. Refer to this table whenever you are choosing a data type for your applica-

tion in order to ensure you reserve enough memory to store the data.

Let’s say your program needs to store –2,147,483,650 in memory. By consulting

Table 2-3, you’ll notice that this value is beyond the range of the int data type. This

means if you had told Java to reserve an int data type and your program stored

–2,147,483,650 into that memory location, some of the data would be lost because

there is simply not enough room to store this number. The long data type is the pre-

ferred choice because this value fits within the range of the long data type.

Every data type falls into one of four of the following groups:

• Integer Stores whole numbers and signed numbers

• Floating point Stores real numbers (whole numbers and fractional values)

• Character Stores characters

• Boolean Stores a true or false value

Integer Data Types
The integer data type group contains four data types: byte, short, int, and long. These

are used to store signed values. (A signed value is a number that is either positive or

negative.) Unlike other programming languages, such as C++, Java doesn’t permit

the storage of unsigned values.

You might be curious about the importance of signed and unsigned numbers. The

issue surrounds the largest value of a signed number that can be stored in memory.

Data Type Data Type Size in Bits Range of Values Group

byte 8 –128 to 127 Integer

short 16 –32,768 to 32,767 Integer

int 32 –2,147,483,648 to 2,147,483,647 Integer

long 64 –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Integer

char 16 (Unicode) 65,000 (Unicode) Character

float 32 3.4e-038 to 3.4e+038 Floating point

double 64 1.7e-308 to 1.7e+308 Floating point

boolean 1 0 or 1 Boolean

Table 2-3 Simple Java Data Types

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see in Table 2-3, the byte data type reserves one box (a byte) that holds

eight bits. One of those bits is used to represent the sign. The other seven bits are used

to hold the value of the number. The smallest value can be –128, and the largest value

can be 127. However, by treating the value as an unsigned number, we can use all

eight bits to represent the value. This means the smallest value is 0 and the largest is

256. A larger number can be stored in same memory size if the number is always

positive.

byte
The byte data type is the smallest data type in the integer group. You tell Java to re-

serve enough memory to store a byte by using the keywordbyte. You won’t use the

byte data type often in your program unless your program sends and receives infor-

mation to and from a file or over a computer network. Programmers use the byte data

type when working with binary data that isn’t compatible with other data types, such

as reading a graphics file that contains a picture.

short
The short data type is the least used of the data types in the integer data type group.

This is because programmers have traditionally used the short data type for pro-

grams that took advantage of the efficiencies of a 16-bit computer. However, 16-bit

computers have been replaced with 64-bit computers, making the short data type

practically obsolete.

int
The int data type is the most frequently used data type in the integer data type group.

It is used for control variables (Chapter 4) and array indexes (Chapter 5), and it’s

used for performing integer math.

You’ll notice in Table 2-3 that an int data type tells Java to reserve 32 bits of mem-

ory. Depending on the nature of their program, some programmers feel 32 bits is too

much memory for the value they intend to store in memory. Therefore, they use a byte

or short data type instead of an int data type.

This is a false savings because the choice of data type tells Java the kind of data your

program will store in memory. Your choice doesn’t direct Java to use the data type you

choose. The Java Virtual Machine has the ultimate say in deciding how much memory

to reserve. However, you can be assured that the Java Virtual Machine will reserve suf-

ficient memory to store the value placed there by your program.

30 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

long
The long data type is the best choice whenever your program needs to store very

large whole numbers that are beyond the range of the int data type. Always consult

Table 2-3 to determine whether an integer value used by your program is beyond the

range of the int data type.

Floating-point Data Types
The floating-point data type group consists of data types used to store real numbers.

A real number contains a whole number and a decimal value. There are two data

types in the floating-point data type group: float and double.

float
A float data type is used to store single-precision values and is perfect for storing

United States currency, where a fraction of a penny isn’t critical to the program.

However, you should always verify the result of any calculation that uses a data type

in the floating-point data type group to ensure that the value isn’t truncated. Trunca-

tion occurs when one or more digits to the left of the decimal are dropped because of

insufficient room in memory to store those digits.

double
The double data type is used when you have very large or very small values that are be-

yond the range of a float. A double data type is used to store double-precision values.

Character Data Type
The character data type group contains the char data type, which is used to store a

character in memory. Previously in this chapter, you learned that each character is

assigned an integer in Unicode. It is this integer that is stored in memory.

Besides telling Java that the program needs to store a character in memory, the

char data type tells Java how to interpret the integer that represents the character. As

you saw at the beginning of this chapter, the letter B is assigned the integer 66 in

Unicode. This means when your program stores the letter B in memory, Java stores

the integer 66 in memory (66 is a number, just as if you stored the number 66 in

memory). However, by using the char data type, you are telling Java that 66 must be

CHAPTER 2 Data Types and Variables 31

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

interpreted as Unicode and not as a number. This means that the character B is used

within the program and not the integer 66.

Boolean Data Type
The Boolean data type group consists of the boolean data type. The boolean data

type tells Java to reserve memory sufficient to store a Boolean value. A Boolean

value is either true or false.

You should use a boolean data type whenever your program needs to store one of

two possible values that represents the state of a condition, such as on/off, true/false,

yes/no, or 0/1. Java will then decide how to efficiently store this condition in memory.

Casting Data Types
Sometimes your program will call a method that performs a specific functionality

and then returns a value to your program. However, the value returned by the method

maybe of a data type different from the data type you used to tell Java to reserve

memory for your program.

Let’s say the prompt needs to read a character from the keyboard. In order to do this,

you need to call the System.in.read() method. You’ll learn how to do this in

Chapter 11. For now, you need to know that this method returns the character entered

into the keyboard as the integer that corresponds to the character’s Unicode value.

Suppose that your program saves the return value from theSystem.in.read()
method as a character instead of as an integer, as shown in the following example. The

name choice is called a variable.You’ll learn about variables in the next section. For

now, think of a variable as a name that you assign to the box of memory that is used to

store the character read from the keyboard. Also notice that the char data type is used

to tell Java to reserve enough memory to store the character. You’re also telling Java

that you’ll be using the name choice throughout your program to refer to that memory

location (box of memory).

class Demo {
public static void main(String args[]) {

char choice = System.in.read();
}

}

There is a problem, however. The System.in.read()method returns an in-

teger (technically a byte data type). Memory is reserved to store a char data type.

These are unlike data types. An error message is displayed when you try compiling

this example.

32 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can temporarily change the data type returned by the System.in.read()
method from an integer to a char data type by casting the value this method returns.

Casting temporarily changes a value from one data type to another data type in order to

carry out an operation. In the previous example, the operation is to store the character

entered into the keyboard in memory.

You cast a value by placing the temporary data type within parentheses, as shown

in the next example:

class Demo {
public static void main(String args[])

throws java.io.IOException {
char choice = (char) System.in.read();

}
}

Here’s what happens when a value is cast:

1. The method System.in.read() returns an integer representing

the character entered into the keyboard.

2. The return value (integer) is temporarily converted to (cast as) a char

data type, making it the same data type as the choice variable.

3. The converted integer is assigned to the choice variable.

You probably noticed something a little different in the previous example. Along-

side the main()method name is “throws java.io.IOException”. This is

telling Java that an IOException will be created by the method if something

doesn’t go right when a character is read from the keyboard. You’ll learn about ex-

ceptions in Chapter 9.

Variables
Previously in this chapter, you learned that computer memory is divided into chucks

of eight bits (one byte). Each byte is identified by a unique memory address similar

to how each house in your town in identified by a unique address.

However, you might be more comfortable thinking of each chuck of memory as

an empty box that is identified by a unique number. Using numbers to identify boxes

(memory location) isn’t the most intuitive way for you to keep track of them within

your program. A more appropriate way is to assign a name to the boxes that is mean-

ingful to you and that you tell Java to reserve for your program.

CHAPTER 2 Data Types and Variables 33

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In the previous example, we use the word choice for the name of the box (memory lo-

cation) that Java reserved to store the character entered at the keyboard. We refer to the

wordchoice in the program whenever the program needs to access data stored in the cor-

responding box (memory location). Java is smart enough to translate the word choice

into the actual address of the box (memory address).

The memory location that a program reserves is referred to as a variable, and the

name you give to the variable is called an identifier.Therefore, choice is an identifier

that refers to a memory location called a variable.

Java automatically relates the identifier to the variable’s memory address. Each

time you refer to the identifier in your program, Java looks up the memory address

that corresponds to the identifier and accesses that memory address. This process is

called resolving.

Declaring a Variable
Your program must tell Java to reserve memory before your program can store data

in memory. The instruction to reserve memory is called declaring a variable. You

declare a variable by using a declaration statement within your program. A declara-

tion statement consists of three components:

• Data type

• Identifier

• Semicolon

The data type is one of the keywords described in Table 2-3, and it tells Java the

kind of data your program will be storing in memory. Java then knows how much

memory to reserve. The identifier is the name you will use within your program to

refer to that memory location. The semicolon is Java punctuation that tells Java it has

reached the end of the statement.

Here’s how to declare a variable. In this example, Java is told to reserve enough

memory to store an int and that you will use the identifiergradewithin the program

to refer to that memory location:

class Demo {
public static void main(String args[]) {

int grade;
}

}

The name you select as the identifier for the variable should be meaningful and

represent the nature of data that is stored in the corresponding memory location. The

34 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

previous example stores a grade in memory. Therefore, it makes sense to use the

wordgrade as the identifier. In this way, we will always remember the nature of data.

There are some restrictions that apply to choosing an identifier, however:

• An identifier cannot begin with a number.

• An identifier cannot contain spaces.

• An identifier cannot be one of the following Java keywords:

abstract do instanceof static while

assert double int strictfp

boolean else interface super

break extends long switch

byte final native synchronized

case finally new this

catch float package throw

char for private throws

class goto protected transient

const if public try

continue implements return void

default import short volatile

The identifier name must be unique within the code block within which the vari-

able is declared and the outer code blocks (see “Scope of a Variable” later in this

chapter). This means you cannot declare two variables using the same identifier

within the same code block; otherwise, there will be a compiler error. However, you

can declare variables in different code blocks using the same identifier.

Java Naming Convention
Java programmers have developed a unique naming style, called the Java Naming

Convention, that is used when naming identifiers. The Java Naming Convention isn’t a

steadfast rule that is enforced by the Java compiler. Instead, it is a style that is adhered

to voluntarily by Java programmers. Therefore, you, too, should use the Java Naming

Convention when naming identifiers in your program.

The Java Naming Convention calls for identifiers used for variables to begin with

a lowercase letter and then for concatenated words used in the identifier to start with

an uppercase letter. Suppose we changed the identifier used in the previous example

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

CHAPTER 2 Data Types and Variables 35

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

from grade to mygrade. To conform to the Java Naming Convention, we must

write the identifier asmyGrade because the word grade is concatenated to the word

my and therefore the concatenated word must begin with an uppercase letter.

Declaring Multiple Variables
Variables are typically declared at the beginning of a program, at the beginning of a

method definition, or at the beginning of a class definition. In this way, you don’t

have to look all over your code for the definition of a variable.

Variables can be declared in separate statements or in one statement if variables

are the same data type. Variables of different data types must be declared in different

statements. You can declare variables of the same data type in the same statements

by placing identifiers along side each other and separating them with commas.

Here is an example of how to declare multiple variables in a program. The first

statement declares three variables in one statement. The other statements each de-

clare a variable. We could have declared all these variables in one statement because

they are the same data type, but we didn’t in order to illustrate an alternative way of

declaring a variable.

class Demo {
public static void main(String args[]) {

int projectGrade, finalGrade, midTermGrade;
int quiz1;
int quiz2;
int quiz3;

}
}

Initializing a Variable
Whenever you declare a variable, it is always best to store an initial value in the corre-

sponding memory location. In this way, you won’t experience an error if you try to use

the value assigned to the variable before you actually assign a value to the variable.

That would be like drinking a glass of water before you filled the glass with water.

The process of storing an initial value to a variable is called initialization and is

typically performed in the statement that declares the variable by using the assign-

ment operator (=). You’ll learn about operators in Chapter 3. For now, you need to

know that the assignment operator is an equal sign and that it copies the value on its

right to the variable on its left.

36 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 Data Types and Variables 37

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

Behind the scenes, Java stores a copy of the value that appears on the right of the

assignment operator and stores the copy in the memory address that corresponds to

the variable identifier in the statement.

A variable can be initialized using the following:

• A literal

• An expression

• Another variable

The following example illustrates how to initialize a variable using literal values:

class Demo {
public static void main(String args[]) {

int projectGrade = 0,
finalGrade = 0, midTermGrade = 0;

int quiz1 = 0;
int quiz2 = 0;
int quiz3 = 0;

}
}

As you’ll learn in the next chapter, an expression is a mathematical statement that

contains operators and operands. An operator is a symbol you use in arithmetic. An op-

erand is the value used by the operator to perform the operation. For example, 5 + 10 is

an expression. The addition sign is the operator, and each of the numbers is an operand.

You can use the result of an expression to initialize a variable. This is illustrated in

the following example:

class Demo {
public static void main(String args[]) {

int totalFee = 50 + 100 + 50;
}

}

You can also initialize a variable by using another variable that has already been ini-

tialized. This is illustrated in the next example, where four variables are declared. The

first three variables declare individual fees, each of which is initialized. The last variable

contains the total fee, which is initialized by using the previously declared variables.

Here’s what Java is told to do: In the first declaration statement, Java is told to re-

serve memory sufficient to store an int, and that memory location will be called

fee1 throughout the program. Java is then told to copy the value 50 to that memory

location. A similar process occurs for the next two variables.

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

38 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

The last statement tells Java to reserve memory for another int, which will be

calledtotalFee in the program. Java is then told to add the values stored infee1,

fee2, and fee3 and copy the sum to the memory location that is associated with

the variable totalFee. It is important to understand that values stored in fee1,

fee2, and fee3 remain intact while Java executes the last statement.

class Demo {
public static void main(String args[]) {

int fee1 = 50;
int fee2 = 100;
int fee3 = 50;
int totalFee = fee1 + fee2 + fee3;

}
}

Scope of a Variable
A Java application is divided into sections of code call code blocks.The beginning of

a code block is defined by an open brace ({) and ends with a closed brace (}). As

you’ll see in later chapters, code blocks are used to define methods, classes, and con-

trol structures, such as if statements and loops.

We’ll explore each of these later in this book. For now, it is important to under-

stand that a code block also defines the scope of a variable. Other statements within

the same code block can access a variable that is declared within a code block. State-

ments outside the code block cannot access the variable, with a few exceptions that

we’ll talk about in the appropriate chapters.

A statement that can access a variable is said to bewithin the scope of the variable.

Programmers sometimes say that a variable is visible to the statement. A statement

that cannot access a variable is out of scope of the variable. Programmers say the

variable is hidden from the statement.

As you’ll see in the next example, a code block can be placed within another code

block. This is referred to as nesting. Variables declared in the outer code block are

within the scope of statements in the inner code block. However, variables declared

in the inner code block are not within the scope of statements in the outer code block.

The next example contains three code blocks. The outermost code block is used to

define the class. The next code block is used to define the main()method. The in-

nermost code block is used to define the if statement. Statements within the if
statement code block execute only if the value stored in thegradevariable is zero.

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The grade variable is declared in the main() method code block and is initial-

ized to zero, causing statements within the if statement to execute because the value

stored in the grade variable is zero. Notice that the value of the grade variable is

displayed on the screen by theSystem.out.println()method. This is possible

because the grade variable is declared in an outer code block.

Now take a look at the last statement in the program and you’ll see the Sys-
tem.out.println() method try to display the value of variable x. When you

compile this program, you’ll receive an error message because variable x is not de-

clared. This can become confusing because variable x is declared within the if
statement code block. The problem is that the statement that is trying to display the

value of variablex in the outer code block and therefore is out of scope of variablex.

Simply said, the statement cannot access variable x because variable x cannot be

seen from the outside code block.

You can avoid this problem by declaring variables in the outermost code block if

the variables need to be accessed by statements contained in other code blocks.

class Demo {
public static void main (String args[]) {

int grade = 0;
if (grade == 0)
{

int x = 0;
System.out.println (grade);

}
System.out.println(x);

}
}

The Life of a Variable
Java continues to reserve memory for a variable as long as the variable remains

within scope. Once the variable goes out of scope, the program can no longer access

that memory location. Values stored there are lost forever.

A variable goes out of scope when the program executes the last statement within

the code block where the variable is declared. In the previous example, variable x is

destroyed after the statement displays the value of thegrade variable on the screen.

The program then leaves the if statement code block and continues with the state-

ment that follows the closed brace of the if statement code block.

Programmers define the life of a variable beginning when the variable is declared

and ending when the variable goes out of scope.

CHAPTER 2 Data Types and Variables 39

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is the purpose of a data type?

2. Can variables of different data types be declared in the same statement?

3. What is the purpose of casting?

4. How would you determine the proper data type for a variable?

5. What is a variable identifier?

6. What is the relationship between a variable identifier and a memory

address?

7. What is the scope of a variable?

8. What is precision?

9. What value is stored in memory when you assign a character to a char

variable?

10. Do the float and double data types have the same precision?

40 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 2

P:\010Comp\DeMYST\454-8\ch02.vp
Saturday, April 10, 2004 11:25:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
3

Expressions and
Statements

If only you knew how to express yourself, you could have any computer eating out of

your hands. Well, using a few choice words won’t let you feed a computer, but it will

give you the capability to put nearly any computer through its paces to automate a

process or solve a problem. In the previous chapter, you learned how to store infor-

mation in a computer’s memory. In this chapter, you’ll learn how to do something

with that information by creating expressions and then using them to form state-

ments that tell the computer to do something.

Expressions
You express your thoughts and ideas to friends and family by organizing nouns,

verbs, and other types of words together into a sentence. If you construct the sen-

tence properly, another person will understand what you are trying to say.

41

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Nearly the same concept applies when you convey your thoughts and ideas to a

computer. However, instead of nouns and verbs, you express yourself using mathe-

matical-like expressions. Just the mention of math is enough to make some people

shun reading further because of a rough time in an old math class.

Put aside any bad experiences you might have had in math class. Learning how to

express yourself to a computer isn’t at all difficult because you’ll be using mathe-

matical expressions that you use every day.

Most of us never give a second thought to calculating a sales price or counting the

change returned to us after making a purchase. And yet to do these tasks we use

mathematical expressions. That is, we use numbers, an equal sign, a plus sign, a mi-

nus sign, a multiplication sign, and a division sign in the correct order to perform

such calculations. The order in which we place numbers and mathematical signs is a

mathematical expression.

Programmers have their own terms for numbers and mathematical signs. Num-

bers in an expression are called operands, and mathematical signs are called opera-

tors. In the following expression, 5 and 10 are operands and the plus sign is an

operator:

5 + 10

In Java, an expression has an operator and at least one operand, although many

expressions have two operands. An operator is a symbol that tells Java to perform an

operation using the operands. Although we think of an operand as a number, an oper-

and can also be a variable or the result of another expression.

Here is an example of how two variables are used as operands in an expression. As

you’ll recall from the previous chapter, a variable is a name that corresponds to a

memory address. Java replaces the variable with the value stored in the memory

address before performing the operation specified in an expression. In this example,

Java replaces A with the value stored in the corresponding memory address. Like-

wise, B is replaced with the value stored in its corresponding memory address. Java

then adds both values.

A + B

The next example illustrates how the result of another expression is used as an op-

erand. Two expressions are shown here. The first is addition, and the second expres-

sion subtracts 5 from the result of the first expression. Java performs the addition

before the subtraction in this example.

5 + 10 - 5

42 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Types of Expressions
There are two types of expressions: simple expressions and compound expressions.

A simple expression is an expression that contains one operator. A compound

expression is an expression that contains two or more operators.

Here is an example of a simple expression:

5 + 10

And here is an example of a compound expression:

5 + 10 – 5

Compound expressions can be baffling because it usually isn’t clear which opera-

tion is performed first. Programmers refer to this as the order of operation. Does Java

perform subtraction or addition first in the previous example?

It really doesn’t matter because you’ll arrive at the same answer whether you per-

form subtraction or addition first. However, that’s not always going to be the case, and

the order in which operations are performed can affect the result of the expression.

As an example, evaluate this compound expression:

10 * 5 + 2

Puzzling isn’t it? The result of the compound expression could be 52 if multiplica-

tion is performed before addition. It could also be 70 if addition is performed before

multiplication.

In order to determine how Java evaluates a compound expression, programmers

consult the Java Precedence Table (see Table 3-1). The Java Precedence Table lists

each operator in the order in which its operation is performed by Java. Operators

having a higher precedence value are evaluated before operators that have a lower

precedence value. You’ll be introduced to all these operators later in this chapter.

CHAPTER 3 Expressions and Statements 43

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

Order of Operation Type of Operator Operator

1 Postfix operators [] . (params) expr++ expr--

2 Unary operators ++expr --expr +expr -expr ~ !

3 creation or cast

4 new (type)expr

5 Multiplicative * / %

Table 3-1 Java Precedence Table

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

44 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

Notice that addition and subtraction operators have the same precedence value.

Therefore, Java performs operations left to right in the 5 + 10 – 5 compound expres-

sion. That is, addition followed by subtraction.

However, Java performs multiplication before addition in the 10 * 5 + 2 com-

pound expression, thus making 52 the correct result. This is because multiplication

has a higher precedence than addition.

NOTE: Operators evaluate left to right if there are multiple operators at the same

precedence level in an expression.

Admittedly, order of operations confuses even a seasoned Java programmer. And

let’s face it: Some Java programmers don’t want to take the time to look up an opera-

tor on the Java Precedence Table. So here’s the shortcut they use: Instead of referring

to the Java Precedence Table, programmers place parentheses around portions of a

compound expression that they want evaluated before other portions. Notice that pa-

rentheses have the highest order of operation in the Java Precedence Table.

Let’s say that we’re unsure whether multiplication or addition is performed first

in a compound expression. Rather than look up these operators in the Java Prece-

dence Table, we could simply place parentheses around the portion of the expression

Order of Operation Type of Operator Operator

6 Additive + -

7 Shift << >> >>>

8 Relational < > <= >= instanceof

9 Equality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise inclusive OR |

13 Logical AND &&

14 Logical OR ||

15 Conditional ? :

16 Assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Table 3-1 Java Precedence Table (continued)

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

that we want evaluated first. In the following example, addition is performed before

multiplication:

10 * (5 + 2)

A compound expression can contain multiple parentheses in two possible

forms. Sets of parentheses can appear in multiple levels or the same level within

the expression. Here’s a compound expression that uses multiple levels of paren-

theses. Programmers call these nested parentheses. The highest-level parentheses

are (20*4). The lower-level parentheses are (5 +2 + (20 * 4)).

10 * (5 + 2 + (20 * 4))

Java begins evaluating with the expression contained in the highest-level paren-

theses and then works its way down to the next-highest-level parentheses. There-

fore, Java evaluates (20 * 4) first and then adds the product with 7 before multiplying

the sum by 10.

Java evaluates parentheses from left to right if two sets of parentheses are on the

same level as shown here. In this example, (5 +2) is evaluated before (20 * 4):

10 * (5 + 2) + (20 * 4)

Although using parentheses clarifies the order of operation for you and for Java,

expect to run into the common problem of unbalanced parentheses, which occurs

when there is an uneven number of an opening and closing parentheses in a com-

pound expression. Even experienced Java programmers make this mistake, so don’t

be embarrassed if you join their ranks. Here’s an example of unbalance parentheses.

Note that there are more opening parentheses than closing parentheses.

10 * (5 + 2 + (20*4)

Here’s a trick you can use to help reduce the likelihood of making this mistake.

Count the number of opening parentheses and the number of closing parenthesis in a

compound expression. Both counts should be the same. If they’re not, there is an un-

balanced parenthesis, and you need to match each pair to find the missing parenthe-

sis. If you don’t, your program won’t compile.

Operators
Two general types of operators are available in Java: binary operators and unary op-

erators. A binary operator requires two operands, such as the addition operator used

CHAPTER 3 Expressions and Statements 45

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

in previous examples in this chapter. A unary operator requires one operand. For

example, the incremental operator (++), which you’ll learn about later in this

chapter, is a unary operator because it increments the value of an operand. That is, it

adds one to the value of the operand.

Operators are also organized into the following four groups:

• Arithmetic operators

• Relational operators

• Logical operators

• Bitwise operators

Arithmetic Operators
Arithmetic operators perform arithmetic operations. Table 3-2 contains a list of

arithmetic operators. You are already familiar with many of these operators because

they are the same operators you use everyday to perform arithmetic. However, you’ll

notice a few that are unusual, so we’ll take a close look at those in this section.

46 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

Operation Operator

Addition +

Subtraction and unary minus -

Multiplication *

Division /

Modulus %

Addition assignment +=

Subtraction assignment -=

Multiplication assignment *=

Division assignment /=

Modulus assignment %=

Increment ++

Decrement --

Table 3-2 Arithmetic Operators

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Modulus Operator
The modulus operator is probably the first operator that catches your eye as being

strange. It looks as if it should return the percentage of an operand because the sym-

bol for the modulus operator is a percentage symbol. However, the modulus operator

has nothing to do with percentage. Instead, the modulus operator returns the remain-

der of the division of two operands. This sounds confusing, so let’s go directly to an

example and see how the modulus operator works. Run the following example and

you’ll see “modulus: 4” displayed on the screen (4 is the remainder of 14 / 5).

class Demo {
public static void main (String args[]) {

System.out.println ("modulus: " + 14%5);
}

}

Assignment Operator
The assignment operator (=) is probably one of the most misleading of all the opera-

tors because the symbol for the assignment operator is commonly used to express

equality. That is, two values are the same.

However, the assignment operator in Java tells Java to copy the value of the right

operand and place it in the left operand. This is illustrated in the next example, where

the assignment operator in the first statement within the main()method tells Java

to copy the value 5 (right operand) to the variable a (left operand):

class Demo {
public static void main (String args[]) {

int a = 5;
System.out.println ("assignment operator: " + a);

}
}

There is a tendency to say “a equals 5,” but that’s not what is happening here. In-

stead, we should say “a is assigned the value 5.” Later in this chapter, you’ll learn

about the relational equivalent operator (==), which is used to determine whether

two operands are equal.

Combined Assignment Operator
You’ll notice several strange-looking arithmetical operators in Table 3-2 that seem

to use two operator symbols, such as +=. These operators combine two operations

CHAPTER 3 Expressions and Statements 47

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

into one operation. Notice that the first operator symbol is an arithmetical operator.

The second operator symbol is the assignment operator.

Here’s how this works: First, Java performs the operation specified by the first op-

erator using the operand on the left and right of the operator. The result is then

assigned to the left operand.

The next example illustrates how each of these combined operators works. The

first statement assigns the value 5 to variable a, which is then displayed on the

screen. Next, the += operator is used. First, Java adds 5 to the value stored in variable

a. Remember that the variable a represents the value 5. The sum of these values is

10. Next, Java assigns the sum to the left operand, which is variablea. The new value

of variable a is 10.

See if you can determine what happens when the other statements are executed in

this example and then run the example to check your answers:

class Demo {
public static void main (String args[]) {

int a = 5;
System.out.println ("a = 5: " + a);
a += 5;
System.out.println ("a += 5: " + a);
a -= 5;
System.out.println ("a -= 5: " + a);
a *= 2;
System.out.println ("a *= 2: " + a);
a /= 5;
System.out.println ("a /= 5: " + a);
a %=5;
System.out.println ("a %= 5: " + a);

}
}

Increment and Decrement Operators
The increment (++) and decrement (--) operators are two operators you might not

have seen used outside of Java programming circles. Two aspects of these operators

may seem unusual. First, each operator’s symbol is a combination of two other oper-

ators. The increment operator uses two addition symbols, and the decrement opera-

tor uses two subtraction symbols. The other unusual feature is that both use one

operand. That is, they are unary operators.

The increment operator adds 1 to the value of its operand and then assigns the sum

to the operand. The decrement operator subtracts 1 from its operand and then assigns

the difference to the operand. Both operators are illustrated in the next example.

48 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

First, the value 5 is assigned to the variable a, which is then displayed on the

screen. The increment operator then increases the value of variable a by 1. Variable

a is then displayed on the screen once again. The decrement operator then decreases

the value of variable a by 1, and it is again displayed on the screen.

class Demo {
public static void main (String args[]) {

int a = 5;
System.out.println ("Initial value: " + a);
a++;
System.out.println ("increment operator: " + a);
a--;
System.out.println ("decrement operator: " + a);

}
}

The increment and decrement operators can be placed on either side of the oper-

and. Their position tells Java when to add 1 to and subtract 1 from the operand.

Placing the increment or decrement operator on the left of the operand tells Java to

increment or decrement the operand before performing any additional operation on

the operand. Placing the increment or decrement operator on the right of the operand

tells Java to increment or decrement the operand after performing any additional op-

erations on the operand.

This is a bit confusing, especially when you view the previous example, because

only one operation is being performed with the operand. It doesn’t make any differ-

ence where you place the increment or decrement operator because you always end

up with the same result.

However, the increment and decrement operators are commonly used in com-

pound expressions where the positions of these operators have a material effect on

the result of the expression, as you’ll see in the next example.

Notice the first expression that uses the increment operator (b=a++). What is the

value of variableb? What is the value of variablea? Variableb is assigned the value

of variablea before Java increments the value of variablea. Therefore, variableb is

assigned the value 5 and variable a is then incremented by 1 to have a value 6.

However, the operation changes in the second expression that uses the increment

operator (b = ++a). Remember that before this statement executes, variable b has

the value 5 and variablea has the value 6. Because the increment operator appears to

the left of variable a, Java increments the value of variable a before assigning its

value to variableb. After this statement executes, variablea has the value 7 and vari-

able b is assigned the value 7.

The position of the decrement operator has a similar effect as the increment

operator. See if you can determine the value of variable a and variable b each

CHAPTER 3 Expressions and Statements 49

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

time the decrement operator is used in the next example. Run the example to

check your answers.

class Demo {
public static void main (String args[]) {

int a = 5, b = 0;
System.out.println ("Initial value: a = " + a + " b = "

+ b);
b = a++;
System.out.println (" b = a++ value: a = " + a + " b = "

+ b);
b = ++a;
System.out.println ("b = ++a value: a = " + a + " b = "
+ b);

b = a--;
System.out.println ("b = a-- value: a = " + a + " b = "
+ b);
b = --a;
System.out.println ("b = --a value: a = " + a + " b = "

+ b);

}
}

Here are the rules for using the increment and decrement operators:

• Placing the incremental/decrement operator to the left of the variable causes

the value of the variable to be incremented/decremented before the value is

used in another operation.

• Placing the increment/decrement operator to the right of the variable causes

the value of the variable to be incremented/decremented after the value is

used in another operation.

Relational Operators
Many of your programs will compare two values to determine whether they are or

are not the same or to determine the relationship between the two values. This hap-

pens each time you enter a password into a program. The program compares the

password that you enter with the known password. It also happens when a program

determines whether your final grade is equal to or greater than the passing grade

for a course.

The operators that tell Java to determine this relationship are called relational op-

erators because they determine the relationship between two operands. A relational

50 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

operator is used in a condition expression in order to test whether a particular kind of

relationship exists between two operands, as called for by the program.

For example, a program may need to determine whether both operands are the

same. Another program may need to know whether the left operand is greater than

the right operand. And still another program might want to find out whether the

operands are not the same. A relational operator enables you to test for any relation-

ship between two operands.

All relational operators direct Java to return a Boolean value that indicates

whether the relationship that is being tested is true or false. You’ll recall from the

previous chapter that a Boolean value is either true or false.

A conditional expression is used by Java to determine whether a portion of the

program should or should not be executed. As you’ll learn in Chapter 4, you can use

a control statement to tell Java whether or not to execute one or multiple statements

based on a condition.

One of the most commonly used control statements is the if statement, which

tells Java to test a condition. (If the condition is true, then execute one or more

statements. If the condition is not true, then don’t execute those statements.) The

expression that states the condition is called a conditional expression, and it uses

one or more relational operators. Table 3-3 lists the relational operators. The fol-

lowing example illustrates how to use a relational operator in an if statement

within your program.

The following example gives you a peek at how theif…else constructor is used

in a program. You’ll be formally introduced to it in Chapter 4; however, let’s see how

a relational operator is used to have Java make a decision.

The if…else statement is fairly intuitive. It tells Java that if the conditional ex-

pression is true, then execute the statement within the body of the if statement. If it

isn’t true, then execute the statement in the body of the else statement. Only one

CHAPTER 3 Expressions and Statements 51

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

Operation Operator Example

Equal to == a == b

Not equal to != a != b

Greater than > a > b

Less than < a < b

Greater than or equal to >= a >= b

Less than or equal to <= a <= b

Table 3-3 Relational Operators

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

statement will be executed depending on the evaluation of the conditional expres-

sion. The other statement will not be executed.

The conditional expression in this example uses the greater than or equal to (>=)

relational operator. Java is told to compare the value of variableb to the value of vari-

able a. If variable b is greater than or equal to variable a, then the conditional ex-

pression is true; otherwise, the conditional expression is false.

class demo {
public static void main (String args[]) {

int a = 5, b = 7;
if (b >= a)
{

System.out.println (
" b is greater than or equal to a");

}
else
{

System.out.println (
" b is not greater than or equal to a");

}
}

}

Logical Operators
As you saw in the previous section, an if statement is a conditional statement that

tells Java to evaluate a relational expression. Based on whether or not the relational

expression is true, Java either executes or skips statements within anif statement.

There are times when you’ll need Java to evaluate two relational expressions to

determine whether statements are to be executed or not. This happens when your

program validates a user ID and password. In this case, both conditions must be true

for Java to execute statements contained in the if statement.

There are other occasions when statements are executed if either relational ex-

pression is true. For example, a person might enter a valid user ID or a guest ID into

your program. Either is acceptable.

In order to have Java evaluate two relational expressions, those expressions must

be linked together using a logical operator. There are three logical operators, as

shown in Table 3-4. These are AND (&&), OR (||), and the ternary (?:) operators.

52 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Expressions and Statements 53

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

The AND Logical Operator (&&)
The AND logical operator is used to check to see if the results of two relational ex-

pressions are true. If both relational expressions are true, then the AND logical oper-

ator returns a Boolean true. If one or both relational expression is false, then the

AND logical operator returns a Boolean false.

The following example illustrates how to use the AND logical operator in a pro-

gram. This example determines whether a student passes or fails a course. The first

statement within themain()method declares two integer variables that are used to

store the grade for the final exam and the grade for the class project. Both of these are

initialized with a grade.

Two relational expressions are used in an if statement to determine whether the

word pass or fail should be displayed on the screen. These expressions are linked to-

gether using the AND logical operator. This might look a bit confusing, but it isn’t.

Here’s what Java is being told to do: First, Java is told to evaluate the relational ex-

pression on the left of the AND logical operator. This relational expression asks the

question, is the value of the gradeFinalExam variable greater than or equal

to 70? The answer is true. The value of gradeFinalExam is 80.

Operation Operator Comment Example

AND && If the first relational expression is

false, then the second relational

expression is not evaluated.

a == b && b == c

OR || If the first relational expression is true,

then the second relational expression is

not evaluated.

a == b || b == c

AND & If the first relational expression is

false, then the second relational

expression is also evaluated.

OR | If the first relational expression is true,

then the second relational expression is

also evaluated.

Ternary if-then-else ?: If the conditional expression is true,

then use the first value (i.e., b),

otherwise, use the second value (i.e., c).

a == 50 ? b : c

Table 3-4 Logical Operators

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

54 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

Next, Java is told to evaluate the relational expression on the right of the AND

logical operator. This relational expression asks the question, is the value of variable

gradeClassProject greater than or equal to 70? The answer is true because the

value of the gradeClassProject variable is 90.

Java is then asked to compare the results of both of these relational expressions.

The AND logical operator asks the question, are both relational expressions true? If

so, then Java is told to execute the statement within the if statement. If either rela-

tional expression is false, then Java is told to execute the statement within the else
statement.

class Demo {
public static void main (String args[]) {

int gradeFinalExam = 80, gradeClassProject =90;
if (gradeFinalExam >= 70 && gradeClassProject >= 70)
{

System.out.println ("Pass”);
}
else
{

System.out.println ("Fail”);
}

}
}

The OR Logical Operator (||)
The OR logical operator is also used to check the results of two relational expres-

sions to see if they are true. However, only one of those relational expressions needs

to be true for the OR logical operator to return a Boolean true. The OR logical opera-

tor returns a Boolean false only if both relational expressions are false.

Let’s take a look at how this works in this next example. This example is a slight

modification of the previous example. Notice that the grade for the final exam is ini-

tialized to 60. However, the student needs only to receive a passing grade for either

the final exam or the class project in order to pass the course.

The OR logical operator is used to link together both relational expressions in the

if statement. Java is told to perform basically the same evaluations of these rela-

tional expressions as performed in the previous example. However, the final step is

for Java to determine whether either of the relational expressions is true. If so, then

the OR logical operator returns a Boolean true, which is the case in this example.

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Expressions and Statements 55

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

class Demo {
public static void main (String args[]) {

int gradeFinalExam = 60, gradeClassProject =90;
if (gradeFinalExam >= 70 || gradeClassProject >= 70)
{

System.out.println ("Pass”);
}
else
{

System.out.println ("Fail”);
}

}
}

Single AND Operator (&) and OR Operator (|)
Java has two versions of the AND logical operator and the OR logical operator. The

first version uses a double ampersand (&&) and double vertical bar (||). The double

ampersand tells Java to evaluate the first relational expression. If the first relational

expression is false, then Java does not evaluate the second relational expression be-

cause both relational expressions must be true in order for the AND logical operator

to return a Boolean true. If the first relational expression is false, then the AND logi-

cal operator must return a false.

Likewise, the double vertical bar (||) tells Java to evaluate the first relational

expression. If the first relational expression is true, then Java does not evaluate the

second relational expression because only one relational expression must be true in

order for the OR logical operator to return a Boolean true. If the first relational ex-

pression is true, then the OR logical operator must return a true.

The single ampersand (&) and single vertical bar (|) versions of these logical op-

erators tell Java to evaluate both relational expressions regardless of whether or not

the first relational expression returns a true or false.

The Ternary Operator (?:)
The ternary logical operator is more similar to anif...else statement than it is to

the AND logical operator and the OR logical operator. This is because the ternary

logical operator is used to have Java make a decision.

The ternary logical operator is composed of three elements—a relational expres-

sion and two values. If the relational expression is true, then Java uses the first value.

Otherwise, the second value is used.

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example illustrates the ternary logical operator. It begins by declar-

ing an integer variable called gradeClassProject and initializing it with the

grade 90. The next statement declares a char variable called grade and uses the

ternary logical operator to determine the initial grade.

To the left of the question mark is the relational expression that asks Java to deter-

mine if the value of the gradeClassProject is greater than or equal to 70. If

this expression is true, then the value to the right of the question mark is used. If this

expression is false, then the value to the right of the colon is used.

Although this example uses one relational expression, you can use two or more

relational expressions if they are linked together using the AND logical operator or

the OR logical operator.

class Demo {
public static void main (String args[]) {

int gradeClassProject = 90;
char grade = gradeClassProject >= 70 ? 'P' : 'F';
System.out.println("Course grade: " + grade);

}
}

Bitwise Operators
Previously in this book, you learned that information is stored inside a computer as

numbers represented in the binary numbering system. Most of us know this as zeros

and ones. You normally don’t use the binary numbering system in your program. In-

stead, you use the decimal numbering system to represent numbers, and you use the

characters on your keyboard to represent characters. Java takes and converts these

values to binary for you when you compile and run your program.

However, more advanced Java programmers sometimes have a need to work with

binary digits (bits). This is common for programmers who write network communi-

cations programs. These programmers use bitwise operators to change the value of a

bit from zero to one, or vice versa.

I’ll show you how to use bitwise operators in this section, but you may simply

want to give it a glance or skip it altogether until you move into the advanced Java

programmer ranks.

Working at the bit level can become confusing because we normally don’t view

data as a bit. If you decide to plunge into this section, then take your time. Analyze

each bitwise operation by writing the bits on paper and then change its value just as

the bitwise operator tells Java to change the bit value inside your computer. After

you have a understanding of how a bitwise operator works, run the example to see if

the result you achieve on paper matches the output of the example.

56 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 Expressions and Statements 57

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

A bitwise operator is used to change the value of a bit. Table 3-5 contains the

bitwise operators available in Java.

Bitwise AND Operator (&)
Let’s begin exploring bitwise operators with the bitwise AND operator (&). The

bitwise AND operator compares two bits. If both bits are 1’s, then the AND operator

returns a binary 1. Otherwise, it returns a binary 0.

The best way to see how this works is to create an equation. For this example,

we’ll use the binary equivalent of decimal values 15 and 10. The actual numbers

aren’t important to learning how the AND bitwise operator works. The top value is

15, and the middle value is 10. The bottom value is determined by the AND oper-

ator by comparing the digits of the top and middle values. Notice that the bottom

value is the same as the middle value. If you convert the bottom value from the bi-

nary numbering system to the decimal numbering system, you’ll notice that the

AND bitwise operator returns the value 10 in this example.

00001111
& 00001010
00001010

Bitwise operators are typically used in programs that exchange data, such as

network communications software. Therefore, the result of a bitwise operation is-

n’t displayed on the screen. However, we’ll use the bitwise operator in examples

that display the decimal value equivalent of the binary value returned by the

bitwise operator.

Operation Operator Example

Bitwise AND & a & b

Bitwise inclusive OR | a | b

Bitwise exclusive OR ^ a ^ b

Left shift << a << b

Right shift >> a >> b

Unsigned right shift >>> a >>> b

Bitwise complement ~ a ^ b ~a

Table 3-5 Bitwise Operators

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s begin with the following example, which uses the AND bitwise operator to

change the bit values described in the previous equation:

class Demo {
public static void main (String args[]) {

int a = 15, b = 10, c;
c = a & b;
System.out.println ("a & b = " + c);

}
}

Bitwise OR Operators
The next bitwise operator we’ll explore is the bitwise OR operator. Actually, there

are two versions of the bitwise OR operator in Java—the inclusive OR operator (|)

and the exclusive OR operator (^). Both of these operators are used to compare the

value of two bits.

The bitwise inclusive OR operator returns a binary 1 if one of the bits is a binary 1.

However, a binary 0 is returned if both bits are a binary 0. Let’s set up our expression

again to see how the inclusive OR operator works. The following expression uses the

same binary numbers used to explain other bitwise operators in this chapter. When-

ever both bits are 0, the bitwise inclusive OR operator returns a binary 0; otherwise, a

binary 1 is returned.

00001111
| 00001010

00001111

The following example illustrates how to use the bitwise inclusive OR operator in

a program. As with previous examples in this chapter, numbers are represented as

decimal values. Java converts these to binary, and then applies the inclusive OR opera-

tor. The result is then converted from a binary value to a decimal value, which is then

displayed on the screen. The example uses the same numbers as used in the previous

expression. What number is displayed on the screen by this example? Run the exam-

ple to verify that your answer is correct.

class Demo {
public static void main (String args[]) {

int a = 15, b = 10, c;
c = a | b;
System.out.println ("a | b = " + c);

}
}

58 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The bitwise exclusive OR operator (^), referred to as XOR, compares two bits. If

either bit is a binary 1, then the XOR operator returns a binary 1. If both bits are a bi-

nary 1, then the XOR operator returns a binary 0. And if neither bit is a binary 1, then

a binary 0 is returned. This is illustrated in the following expression.

00001111
^ 00001010
00000101

Here is how you use the bitwise exclusive OR operator in a Java program. This ex-

ample uses the decimal equivalent of the numbers used in the previous expression.

What number does this example display on the screen?

class Demo {
public static void main (String args[]) {

int a = 15, b = 10, c;
c = a ^ b;
System.out.println ("a ^ b = " + c);

}
}

Bitwise Shift Operators
So far in this chapter, you learned that the value of a bit can be changed by using the

AND bitwise operator and the OR bitwise operators to compare the values of two

bits. Another way to change the value of a bit is to use bit shifting.

Bit shifting is the technique of moving (shifting) a bit to either the left or the right

position in a binary number. Let’s see how this works using the following binary

number. This is equivalent to the decimal value 15:

00001111

We can change the value of each bit by shifting each bit to the right. In doing so,

the rightmost bit is removed from the value and the leftmost bit is replaced with a

zero. Here’s the new value that results from shifting bits to the right. This is equiva-

lent to the decimal value 7:

00000111

Keep in mind that the numeric value of these bits typically is irrelevant to an ap-

plication that uses bitwise operators. For example, you won’t shift bits to change a

value from 15 to 7. In some applications, such as in network communications, pro-

grammers use a bit as a flag rather than a numeric value. A bit might be turned on (1)

to signify that the program is ready to transmit a message, and a bit can be turned off

(0), implying that the program isn’t going to transmit a message.

CHAPTER 3 Expressions and Statements 59

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java has three bitwise operators used to shift bits:

• Left shift (<<) operator

• Signed right shift (>>) operator

• Unsigned right shift (>>>) operator

The left shift operator moves bits one position to the left, dropping the leftmost bit

and replacing the rightmost bit with a zero. Here how this works. Let’s shift the fol-

lowing number one bit to the left:

00001111

Here’s the value after shifting is completed. This is equivalent to the decimal value 30:

00011110

The following example illustrates how to use the bitwise left shift operator in a

Java program. This example begins by declaring two ints. One is initialized to the

decimal value 15, and the other is initialized to 0.

Next, the left shift operator is used to shift bits to the left. The left shift operator re-

quires two operands. The left operand contains the value whose bits are being

shifted. The right operand is an integer that tells Java how many places to shift the

bits. This example shifts the bits left one position; however, you can change the left

operand to any integer. If your application needs to shift bits two places, then replace

1 in this statement with 2. After bits are shifted, the resulting value is assigned to a

variable and then displayed on the screen.

class Demo {
public static void main (String args[]) {

int a = 15, c = 0;
c = a << 1;
System.out.println (" a << 1 = " + c);

}
}

Two right shift operators are available in Java. These are the signed right shift op-

erator (>>) and the unsigned right shift operator (>>>). Both of these operators shift

bits to the right by one position, which leaves the leftmost bit position empty. The

signed right shift operator fills the empty position with a bit whose value represents

the sign. If the value is a positive number, then the leftmost position is filled with a 0.

If the value is a negative number, then the leftmost position is filled with a 1. The

signed right shift operator uses the same sign as is used in the value before the bits

are shifted.

Let’s use the signed right shift operator to change the value of the following bi-

nary value. The value of the leftmost bit is significant in this example because

60 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

that value is a signed value. The leftmost bit is 1, which means that this is a nega-

tive value:

10001111

Here’s the same value after the bits are shifted to the right one position. The

leftmost bit must remain 1 because this bit signifies that this is a negative value:

10000111

The following example shows how to use a signed right shift operator in a Java

program. Similar to the left shift operator, the right shift operator also requires two

operands. The left operand is the value whose bits are being shifted to the right. The

right operand is an integer that indicates the number of positions the value is being

shifted. In this example, bits are being shifted one place to the right:

class Demo {
public static void main (String args[]) {

int a = -15, c = 0;
c = a >> 1;
System.out.println (" a >> 1 = " + c);

}
}

The unsigned right shift operator performs nearly the same operation as the

signed right shift operator, except the unsigned right shift operator fills the leftmost

empty space(s) with 0 because the value isn’t a signed value.

Here’s the unsigned right shift operator version of the previous program:

class Demo {
public static void main (String args[]) {

int a = 15, c = 0;
c = a >>> 1;
System.out.println (" a >>> 1 = " + c);

}
}

Bitwise Complement Operator
Still another way programmers change the value of bits is by using the complement

operator (~) to flip each bit. The complement operator changes a binary 0 to a binary 1,

and it changes a binary 1 to a binary 0.

Let’s see how this works on the following value:

00001111

CHAPTER 3 Expressions and Statements 61

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

By using the complement operator, we reverse each bit and end up with the fol-

lowing value. This is equivalent to the decimal value –16 because the leftmost bit is a

binary 1, which symbolizes a negative sign:

11110000

Here’s how to use the complement operator in a Java program. The complement

operator requires one operand, which is the value whose bits are being flipped. The

resulting value is then assigned to a variable and displayed on the screen.

class Demo {
public static void main (String args[]) {

int a = 15, c = 0;
c = ~a;
System.out.println (" ~a = " + c);

}
}

Two’s Complement
There are times when you’ll come across a situation where you’ll need to change the

sign of a binary number from a positive to a negative or from a negative to a positive.

You can change the sign by using a technique called two’s complement. The two’s

complement technique adds 1 to the one’s complement value that results in the sign

being changed.

One’s complement, two’s complement. These are confusing terms. You might

be scratching your head asking yourself, “What is a complement?” Let’s return to

the example in the previous section to get a better understanding of what a comple-

ment is. The example used the complement operator (~) to reverse each bit in a bi-

nary number. A 0 became a 1, and a 1 became a 0. Programmers call this one’s

complement.

Two’s complement requires you to first perform one’s complement on a number

(that is, change all the 0’s to 1’s, and all the 1’s to 0’s) and then add 1 to the result.

Let’s see how this works in the following example. As in the previous example,

we’ll use decimal values instead of binary values to make it easier to understand how

two’s complement works. The example starts by assigning the value 15 to variable

a, which is later displayed on the screen. Next, the sign of the value 15 is changed

from positive, which is implied, to negative by using two’s complement. The com-

plement operator tells Java to flip the bits and then add 1 to the value to change the

sign from positive to negative. The result is assigned to variable c and is then dis-

played on the screen.

62 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class Demo {
public static void main (String args[]) {

int a = 15, c = 0;
c = ~a+1;
System.out.println (" a = " + a);
System.out.println (" ~a + 1 = " + c);

}
}

Statements
The purpose of learning Java is to be able to take control of a computer. In order to do

this, you must learn how to use Java keywords, operators, and operands to create ex-

pressions. You can think of keywords, operators, and operands as words understood

by Java, and you can think of an expression as the way to organize those words to

convey your request to Java. That request must be placed into a statement before

Java will fulfill your request. Think of a statement as a sentence.

A statement is a sentence that consists of an expression that gives an instruction

to Java. Every statement must end in a semicolon. Java doesn’t recognize an ex-

pression as an instruction unless the expression is in a statement that terminates

with a semicolon.

Think of this as a period at the end of a sentence. If you leave off the period, the

reader won’t know where one thought ends and another begins. The reader will

quickly become confused. The same is true about Java. Java becomes confused if

you leave out a semicolon.

By now you should be very familiar with writing statements because statements

were used throughout every example in this chapter.

Quiz
1. What is a compound expression?

2. What is a unary operator?

3. What is the difference between an operator and an operand?

4. What is the purpose of parentheses in a compound expression?

5. What is precedence?

CHAPTER 3 Expressions and Statements 63

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. What does the modulus operator return?

7. Why is the position of the increment and decrement operators important?

8. What does a relational operator do?

9. What does a bitwise operator do?

10. What does the || operator do?

64 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 3

P:\010Comp\DeMYST\454-8\ch03.vp
Saturday, April 10, 2004 11:32:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
4

Control
Structures

Some people believe that computers are smarter than humans, but that’s giving

computers more credit than they are due. Computers are as smart as the programmers

who write instructions that computers follow. In many of those programs, a computer

executes some instructions only if certain conditions exist. This requires the com-

puter to make a decision. Programmers tell computers how to make decisions by

using control statements in their programs. In this chapter, you’ll learn how to tell a

computer to make a decision and how to use various Java control statements in your

program.

Program Flow
A computer executes instructions sequentially, beginning with the first instruction

in the program and continuing until no more instructions exists. As you learned in

65

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Chapter 1, all Java applications begin with the first instruction in the definition of the

main() method. The program then flows to the second instruction, then the third

instruction, and so on, until the last instruction in themain()method is executed.

Typically, some of the instructions in the main() method call groups of other

instructions contained within a method definition. For example, each time the

System.out.println()method is called, the flow of the program jumps from

themain()method to theSystem.out.println()method. The flow returns

to the instruction that called the System.out.println()method after the last

instruction in the System.out.println() method definition executes.

Regardless of whether all the instructions are contained in the main()method or

are divided among other methods, the flow of a program remains sequential. That is,

all instructions are executed at some point.

In the real world, rarely do all instructions contained in a program execute. Some

instructions execute all the time, whereas other instructions execute only when cer-

tain conditions are met. Therefore, all instructions within a program do not execute

sequentially. Instead, some instructions are skipped.

This happens in a program used to register students for courses. Whenever a stu-

dent registers for a course, the program determines whether the student has fulfilled

prerequisites. If this condition is true, the program executes instructions that register

the student for the course. If the condition is false, the instructions that register the

student for the course are skipped.

Programmers change the flow of a program by using control statements that tell

the computer to evaluate an expression and, based on the evaluation, either execute

or skip one or more instructions.

Control Statements
A control statement tells Java to alter the sequence in which statements are executed

within a program. There are three kinds of control statements: selection statements,

iteration statements, and jump statements.

A selection control statement tells Java to evaluate an expression. If the expres-

sion is true, Java is told to execute one or more statements. If the expression is false,

Java is told either to skip those statements or to execute a different set of statements.

The if...else control statement briefly discussed in the previous chapter is an

example of a selection control statement.

An iteration statement tells Java to execute one or more statements repeatedly.

Programmers refer to an iteration statement as a loop because, after the last state-

ment is executed within the iteration statement, Java automatically returns to the

66 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

top of the iteration statement (the top of the loop) and begins executing the instruc-

tions again.

A jump statement transfers control to another part of the program. The return
statement is a jump statement used in many programs to transfer control from a

method back to the statement that called the method.

Selection Statements
A selection statement tells Java to evaluate a condition and then decide whether or

not to execute one or a set of statements, depending on whether the condition is true.

There are two types of selection statements: the if statement and the switch
statement.

The if statement tells Java that if an expression is true, then execute these state-

ments. Some programming languages call theif statement anif...then statement.

Both have the same effect on a program. Typically, the if statement is combined

with an else statement. The else statement contains another set of statements

that are executed if the expression isn’t true. Programmers call this combination an

if...else statement.

The switch statement tells Java to compare the value in the switch state-

ment to values stored in one or more case statements. If there is a match,

the statements defined in the corresponding case statement are executed. The

switch statement is also known as the switch...case statement.

The if Statement
The if statement is the most commonly used control statement to have Java make a

decision. The if statement directs Java to evaluate an expression. If the expression

is true, Java is told to execute one or more statements within theif statement. Other-

wise, if the expression is not true, those statements are skipped.

The expression evaluated in anif statement is called a conditional expression. A

conditional expression must evaluate to a Boolean value. That is, the expression

must evaluate to either a true or false value. An expression used as a conditional

expression for the if statement that evaluates to something other than a Boolean

value will cause a compiler error.

A conditional expression is typically a relational expression. As you’ll recall

from the last chapter, a relational expression determines whether two values are the

same or different by using a relational operator. The result can be only true or false.

CHAPTER 4 Control Structures 67

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A conditional expression can also be the keyword true or false without any

operators and operands. For example, if you place the keyword true in the condi-

tional expression of theif statement, the statements within theif statement will be

executed. You’ll see how this is done later in this chapter. You could also use the

keyword false in the conditional expression, but that wouldn’t make any sense

because statements within the if statement will never execute.

Forms of the if Statement
Theif statement has two forms: One form is anif statement without a code block,

and the other form is an if statement with a code block. Let’s take a look at the first

form of the if statement.

The first form of the if statement has three parts, as shown in the following ex-

ample. The first part is the keywordif. The second part is the conditional expression.

The conditional expression must be contained within parentheses. The third part is

one statement that is executed if the conditional expression is true. Only one state-

ment can be executed in the first form of the if statement. The second form of the

if statement must be used if multiple statements need to be executed if the condi-

tional expression is true.

In this example, Java is told to compare the value of variable a and variable b. If

they match, Java executes the statement that displays a message on the screen. If they

are different, the statement is skipped.

class Demo {
public static void main (String args[]) {

int a = 80, b = 80;
if (a==b)

System.out.println("Hello world!");
}

}

Some programmers find that the first form of the if statement can cause con-

fusion when a program is being read because there isn’t any symbol that tells

you where the end of theif statement is. This becomes evident in the next example,

where another statement appears below the statement within theif statement. What

is displayed on the screen when this program executes?

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)

System.out.println("Hello world!");
System.out.println("Goodbye!");

68 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
}

If you quickly read this program, you might think that the statement that displays

the “Goodbye!” message is part of theif statement because there isn’t anything in the

program that tells you where the if statement ends.

Actually, the statement that displays the “Hello world!” message is the only state-

ment contained within the if statement. “Hello world!” is displayed only if the

conditional expression is true. “Goodbye!” is displayed regardless of whether

the conditional expression in the if statement is true or false because the statement

that displays the “Goodbye!” message is not part of the if statement.

The second form of theif statement is nearly identical to the first form; however,

the second form uses opening and closing braces to designate statements that are to

be executed if the conditional expression is true.

Here is the previous example using the second form of theif statement. The sec-

ond form of the if statement has four parts. The first part is the keyword if. The

second part is the conditional expression contained within parentheses. The third part

is the body of theif statement that is defined by the opening and closing braces. The

fourth part is one or more statements executed if the conditional expression is true.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)
{

System.out.println("Hello world!");
}
System.out.println("Goodbye!");

}
}

You have the option of using either form of theif statement if one statement is to

be executed if the conditional expression is true. However, you must use the second

form of the if statement if more than one statement is executed if the conditional

expression is true, and those statements must be contained with the opening and

closing braces.

TIP: Here’s a tip for avoiding a common compiler error when using the second

form of the if statement. Always insert the opening and closing brace into your

program before writing statements that are to execute if the conditional expression is

true. This eliminates any chance that you will forget to include the closing brace in

the if statement, which is an oversight that even professional Java programmers

sometimes make.

CHAPTER 4 Control Structures 69

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As previously mentioned in this chapter, the conditional expression can be as

simple as the Boolean value true. This is illustrated in the next example. Although

using the keyword true as the conditional expression is equivalent to a relational

expression evaluating true, it really doesn’t make any sense to use it in the if state-

ment because the statements within theif statement will always execute. You could

simply eliminate the if statement to achieve the same results. However, using the

keyword true as the conditional expression does makes sense when it’s used in an

iteration control statement, which you’ll learn about later in this chapter.

class Demo {
public static void main (String args[]) {

if (true)
{

System.out.println("Hello world!");
}
System.out.println("Goodbye!");

}
}

The else Clause
Many times programmers combine anif statement with anelse clause. Anelse
clause provides one or more alternative statements that are executed when the condi-

tional expression in the if statement is false. Think of the else clause as telling

Java to execute one or more statements if Java doesn’t execute the statements within

the if statement.

The else clause has two forms that are nearly identical to the two forms of the

if statement. The first form is without opening and closing braces and is used to

execute only one statement. This is illustrated in the next example where the “Good-

bye!” message is displayed only if the conditional expression in the if statement is

evaluated false.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)

System.out.println("Hello world!");
else

System.out.println("Goodbye!");
}

}

70 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Control Structures 71

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

The second form of theelse clause uses opening and closing braces within which

you place one or more statements that are executed if the conditional expression is

not true. The following example shows how this form of theelse clause is used in a

Java program. You can include any number of statements within the braces of the

else clause, although only one statement is shown in this example.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)

System.out.println("Hello world!");
else
{

System.out.println("Goodbye!");
}

}
}

You can mix and match forms of theif statement with forms of theelse clause,

depending on the nature of your program. There isn’t any requirement that these forms

match. For example, you can use anif statement without braces with anelse state-

ment that uses braces, and vice versa. Basically, if you have one statement to execute,

don’t use the braces; otherwise, use the braces.

The else if Clause
Theelseif clause is a combination of theelse clause and theif statement. It lets

you tell Java to evaluate another conditional expression. Think of theelseif clause

as saying, “If the first condition isn’t true, evaluate the second condition. If the second

condition is true, execute these statements.”

Theelseif clause takes the same forms as theif statement. That is, theelse
if clause requires a conditional expression contained within parentheses and a state-

ment that is executed if the condition is true. You also have the option of using open-

ing and closing braces. As with the if statement and the else clause, the braces

are optional if the else if clause executes one statement, and they are required if

multiple statements are executed.

The following example shows you how to use theelse if clause. This example

uses a conditional expression in the if statement to tell Java to compare values of

two variables. If they are the same value, the message “a and b match” is displayed

on the screen. If they don’t match, the condition in the else if clause tells Java to

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

determine whether variable a is less than variable b. If this is true, the message “a is

less than b” is displayed.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)

System.out.println("a and b match");
else if (a < b)

System.out.println("a less than b");
}

}
}

It is very common for programmers to include an else clause in whenever an

else if clause is used in order to give Java instructions to follow if neither the if
statement andelseif clause conditional expressions are false. Think of theelse
clause as the default action Java should perform unless one of the previous condi-

tions are met.

The next example illustrates how to use theelse clause in this manner. This exam-

ple displays the messagea is greater thanb. We make this the default action because

this is the only condition that could exist if the previous two conditions are not true. If

a is not equal to b and a is not less than b, then a must be greater than b. There-

fore, we use an else clause instead of an else if clause to test the condition if a
is greater than b.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a==b)

System.out.println("a and b match");
else if (a < b)

System.out.println("a is less than b");
else

System.out.println("a is greater than b");
}

}
}

Too much of a good thing isn’t good, and this is true about the else if clause.

Using too many else if clauses makes a program difficult for other programmers

to read, although the length doesn’t impair Java’s ability to carry out your instructions.

If you find yourself using a lot of else clauses in the same if statement, you

should replace the if statement and all those else clauses with a switch control

72 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Control Structures 73

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

statement, which you’ll learn about later in this chapter. The switch statement is

easier for you to read and provides a similar functionality as theif...else clause

of an if statement.

Nested if Statement
Sometimes you’ll come across a situation when you need to make another decision

if the first decision is true. For example, you might tell Java that if the student’s ID is

valid, it should determine whether the student’s password is valid. If the student’s

ID isn’t valid, you don’t need to make a decision about the student’s password.

You tell Java to make those decisions by using a nestedif statement. A nestedif
statement is anif statement that exists within anotherif statement. This is illustrated

in the next example. Programmers call a nestedif statement an innerif statement,

and they call the first if statement the outer if statement.

This example tells Java to determine whether the value of variablea is greater than

zero. If this is true, Java is told to determine whether the value of variable a is the

same as variable b. If this is the case, the message “a and b match” is displayed.

Notice that Java skips the secondif statement if the conditional expression in the

firstif statement is false. Eachif statement has anelse clause in this example

that displays an appropriate message when either conditional expression is false.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a > 0)

if (a == b)
System.out.println("a and b match");

else
System.out.println("a and b are different");

else
System.out.println(

"a is less than 0 or equal to 0 ");
}

}

Don’t confuse a nestedif statement with theif...else clause of anif state-

ment, which tells Java to evaluate the second conditional expression in the else
if clause only if the conditional expression in theif statement is false. In a nestedif
statement, the second conditional expression is evaluated only if the conditional

expression in the first if statement is true.

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

An outer if statement can have multiple nested if statements. These can take

two forms. The first form is to have each nestedif statement on the same level. The

second form is to have each nestedif statement on a different level. This means that

each nested if statement has its own nested if statement.

The next example shows the first form of multiple nestedif statements. This has

one outerif statement and two innerif statements. Braces are used in this example

to make it easier for you to see where theif statements begin and end. The outerif
statement determines whether the value of variable a is greater than zero. If so, Java

tests whether variable a is the same as the value of variable b. Regardless of the

outcome of this test, Java then determines whether the value of variable a is greater

than the value of variable b.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a > 0)
{

if (a == b)
{

System.out.println("a and b match");
}
if (a > b)
{

System.out.println("a greater than b ");
}

}
}

}

The next example shows the second form of nesting multipleif statements, where

each if statement is on its own level. The outermost if statement tells Java to de-

termine whether the value of variablea is greater than zero. If so, Java is told to deter-

mine whether the value of variable b is greater than zero. If this is the case, Java

determines whether the values of both variables are the same.

The outermost if statement has only one inner (nested) if statement. The inner

if statement also has one inner (nested) if statement.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a > 0)
{

if (b > 0)
{

74 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if (a == b)
{

System.out.println("a and b match");
}

}
}

}
}

Compound Conditions
Under certain situations, you can avoid using a nested if statement and use a com-

pound conditional expression instead. A compound conditional expression consists

of two relational expressions that are linked using a logical operator.

You’ll recall from the previous chapter that there are two logical operators: the

AND (&&) operator and the OR (||) operator. The AND operator returns a Boolean

true if both relational expressions are true; otherwise, a Boolean false is returned.

The OR operator returns a Boolean true if one of the relational expressions is true;

otherwise, a Boolean false is returned.

The following example shows how to use a compound conditional expression in

an if statement. The form is also used for the else...if clause and any other

place where you use a conditional expression in your program.

This example uses a compound conditional statement in the first if statement

where Java is told to determine whether the value ofa is greater than zero. If so, Java

evaluates the second relational expression to determine whether the value of b is

greater than zero. If a isn’t greater than zero, the second expression is not evaluated

because the compound expression requires both relational expressions to be true for

the compound expression to be true. (Refer to the previous chapter to learn how to

force Java to evaluate both relational expressions.) Only if both relational expressions

are true will the compound expression be true and the statement within the first if
statement executed.

Compare this example with the previous example and you’ll notice how we elimi-

nated one nested if statement by using a compound expression. You should use a

compound expression rather than a nested if statement wherever possible.

class Demo {
public static void main (String args[]) {

int a = 80, b = 90;
if (a > 0 && b > 0)
{

if (a == b)
{

CHAPTER 4 Control Structures 75

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("a and b match");
}

}
}

}

The switch Statement
An alternative to using a long series of if...else clauses in your if statements is

to use the switch control statement, commonly referred to as a switch...case
statement or simply theswitch statement. Theswitch statement tells Java to com-

pare a value to one of many values, each of which is contained in acase statement. If

there is a match, Java executes the statements contained in the case statement.

The format of theswitch statement is illustrated in the next example. Aswitch
statement has seven parts. These are the keyword switch, the value used for

comparison, braces that define the body of the switch statement, the case key-

word, thecase constant, the semicolon, and statements that are executed if the value

matches the case value.

The switch keyword appears at the beginning of every switch statement and

is followed by a value that is enclosed within parentheses. The value must be a char,

byte, short, or int data type and can be either a literal or a variable. However, the value

cannot be of any other data type or an expression.

The body of the switch statement should contain at least one case statement,

but it can contain as manycase statements as required by the program. Acase state-

ment consists of thecase keyword followed by acase constant, and it ends with a

colon. The case constant must be a literal that is of the char, byte, short, or int data

type. The case statement also consists of one or more statements that are executed

if the value of the switch statement matches the case constant.

Here’s what happens when Java executes the switch statement. First, Java

compares the value of theswitch statement to the constant of the first case state-

ment. If there isn’t a match, Java compares the value to the constant of the nextcase
statement. This continues until there is a match or until Java reaches the closing brace

of the switch statement.

If there is a match, Java executes each statement contained beneath thecase state-

ment whose constant matches the switch value. If one of those statements is the

break statement, Java immediately exits the body of the switch statement and

executes the next statement below the closing brace.

However, if there isn’t abreak statement, Java continues to compare theswitch
value against the constants of all the case statements that follow the case state-

ment that matched the switch statement value.

76 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s see how this works in the next example. The switch value is 80. Java will

compare the switch value to each of the case constants, beginning with the first

case statement. There isn’t a match until the third case statement. Java then

executes the System.out.println() statement that displays “80” on the screen.

Once “80” is displayed, Java executes the break statement, which causes Java to

exit the switch statement.

class Demo {
public static void main (String args[]) {

switch (80) {
case 100:

System.out.println("100");
break;

case 90:
System.out.println("90");
break;

case 80:
System.out.println("80");
break;

}
}

}

The next example is a modification of the previous one. The switch value is

changed to 90 and thebreak statement is removed from thecase statement whose

constant is 90. Java behaves differently in this example than it does in the previous

example.

Here’s what is happening: Java compares the switch value to the first case
constant, as was done in the previous example. Because the firstcase constant isn’t

a match, Java compares the second case constant, where there is a match. Java

proceeds to execute the statement beneath this case constant, which displays “90”

on the screen.

Afterward, Java moves to the next statement. Notice that the next statement is an-

other case statement and not a break statement. A break statement tells Java

to break out of the switch statement. Because there isn’t a break statement,

Java continues by comparing the switch value to the next case constant.

class Demo {
public static void main (String args[]) {

switch (90) {
case 100:

System.out.println("100");
break;

case 90:

CHAPTER 4 Control Structures 77

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("90");
case 80:

System.out.println("80");
break;

}
}

}

Previously in this chapter, you learned that anelse clause is used in anif state-

ment to define statements that will execute if the condition in the if statement isn’t

true. The switch statement has a similar feature called a default statement.

The default statement is written similar to a case statement, and it’s placed after

the last case statement. The default statement doesn’t have a constant or a break
statement because it is the last statement within the switch statement. However, the

default statement has other statements beneath it that are executed when Java reaches

the default statement.

The following example illustrates how to use a default statement in your program.

This example tells Java to examine the constant for eachcase statement, looking for

a match for the switch value, which is 70. Because none match, Java executes the

statement beneath the default statement, which displays a message on the screen.

class Demo {
public static void main (String args[]) {

switch (70) {
case 100:

System.out.println("100");
break;

case 90:
System.out.println("90");
break;

case 80:
System.out.println("80");
break;

default:
System.out.println("No match.");

}
}

}

Something very interesting happens to the default statement when the break
statement isn’t used in acase statement whose constant matches theswitch value.

Java executes statements beneath the default statement if the break statement is

excluded from a matching case statement.

78 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s see how this works in the next example. Java is told to look at the case
constants and find a match to the switch value, which is 80. When a match is

found, Java displays “80” on the screen.

However, notice that the matching case statement doesn’t have a break state-

ment. This means that Java continues to the next line of the program below the

statement that displays 80, which contains the default statement. When Java encoun-

ters a default statement, it always runs the statements contained within the default

statement. Therefore, “No match” is also displayed on the screen.

class Demo {
public static void main (String args[]) {

switch (80) {
case 100:

System.out.println("100");
break;

case 90:
System.out.println("90");
break;

case 80:
System.out.println("80");

default:
System.out.println("No match.");

}
}

}

Nested switch Statements
As withif statements, you can also nestswitch statements. A nestedswitch state-

ment is a switch statement that is placed within a case statement or default

statement of anotherswitch statement. The purpose for nesting aswitch statement

is to tell Java to make another decision after making the first decision.

The next example shows how to nest a switch statement. The nested switch
statement appears in the case 90 statement. Java begins by comparing the switch
value to each case constant. Only one case statement matches the switch value.

Java then compares the second switch value, which is the character B, to a second

set of case statements.

You can include as many case statements as needed by your program in the

nested switch statement. Likewise, you can also include a default statement.

class Demo {
public static void main (String args[]) {

char a = 'B';

CHAPTER 4 Control Structures 79

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

80 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

switch (90) {
case 100:

System.out.println("100");
break;

case 90:
switch (a){

case 'a':
System.out.println("A");
break;

case 'b':
System.out.println("B");
break;

}
break;

case 80:
System.out.println("80");
break;

default:
System.out.println("No match.");

}
}

}

Iteration Statements
An iteration statement is what programmers call a loop. It causes Java to continue to

execute one or more statements as long as a condition exists. Think of an iteration

statement as being a drill instructor who tells you to continue to do push-ups until

you’re told to stop.

Java has three kinds of iteration statements: the for loop, the while loop, and

the do...while loop.

The for Loop
The for loop tells Java to executes one or more statements contained in the for
loop as long as a specified condition is true. The condition is specified in a control

expression, which is a relational expression that evaluates to either a Boolean true or

a Boolean false.

If the control expression is false, Java moves to the statement that follows thefor
loop in the program. If the control expression is true, Java enters the for loop and

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Control Structures 81

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

executes statements contained in the for loop. After the last statement within the

loop is executed, Java once again evaluates the control expression to determine

whether it should enter the loop for another iteration.

The for loop has three expressions that are contained within parentheses and

separated with a semicolon. Each expression is optional. However, the parentheses

and the semicolon are required. You’ll be including all three expressions in most of

your programs.

The first expression is called the initialization expression and is used to declare

and initialize a control variable that is typically used in the conditional expression.

This is the first expression within the for loop that is evaluated by Java. Technically,

the initialization expression and the control variable don’t have to be used in the

conditional expression, but for our examples they will be used this way.

The second expression is the conditional expression. This is the second expres-

sion in the for loop that is evaluated by Java. The conditional expression sets the

threshold for when Java enters the for loop. You can use any relational expression

and compound relational expressions that are linked together using a logical operator

as the conditional expression for the for loop.

The third expression is the iteration expression, and it’s the first expression evalu-

ated by Java after executing statements within the loop. The iteration expression

changes the value of the control variable. Typically, the change involves increment-

ing or decrementing the control variable.

The next example illustrates how to write a for loop in your Java program.

Here’s what Java is being told to do: The first time it encounters the for loop, Java

evaluates the first expression. This expression declares the variable x and then initi-

alizes it to zero. Variable x is used as the control variable. A control variable is a

variable whose value is used in the conditional expression to help control the number

of iterations that Java executes in the for loop.

Next, Java evaluates the second expression, which is the conditional expression that

determines whether Java should enter thefor loop. The conditional expression tells

Java to determine whether the value of x is less than 2. If so, the conditional expres-

sion is true, and Java enters the for loop. The value of x is zero, making the condi-

tional expression true.

Java enters the loop and executes theSystem.out.println() statement that

displays the value of variable x on the screen. After this statement executes, Java

evaluates the third expression. The third expression increments the value of variablex.

The value of variable x becomes 1.

Java then evaluates the second expression to determine whether it should reenter

the loop. Because the value of x is still less than 2, Java again enters thefor loop and

displays the value of x on the screen.

Once again, Java evaluates the third expression and increments the value of x,

changing its value to 2. The second expression is then evaluated. This time, the value

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ofx is 2, thus causing the conditional expression to be false. Java no longer enters the

for loop and instead goes to the statement beneath thefor loop. There isn’t any, so

the program ends.

class Demo {
public static void main (String args[]) {

for (int x = 0; x < 2; x++)
System.out.println("Current value of x = " + x);

}
}

Although the previous example has one statement within a for loop, you can

include multiple statements within a for loop by using opening and closing braces,

similar to how braces are used in the if statement.

Here is how to format the for loop to use multiple statements:

class Demo {
public static void main (String args[]) {

for (int x = 0; x < 2; x++)
{

System.out.println ("Current value of x:");
System.out.println(x);

}
}

}

Alternative Initialization Expression
The for loop is very flexible because various forms of the three expressions can be

used with the for loop. Also, as you’ll see later in this chapter, a for loop doesn’t

require any expression.

For now, let’s take a look at the first of two alternative forms of initialization

expression. In the following example, the control variable is declared outside of the

initialization expression of the for loop; however, the initialization expression still

sets the initial value of the control variable:

class Demo {
public static void main (String args[]) {

int x;
for (x = 0; x < 2; x++)

System.out.println("Current value of x = " + x);
}

}

82 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This next example illustrates a second alternative to the initialization expression.

In this example, the initialization expression is inserted in the program before the

for loop. There isn’t an initialization expression in thefor loop; however, thefor
loop still needs the semicolon that follows what would normally be the initialization

expression in the for loop.

The advantage of declaring and initializing the control variable outside the for
loop is so that the control variable can be used by statements outside of thefor loop.

class Demo {
public static void main (String args[]) {

int x = 0;
for (; x < 2; x++)

System.out.println("Current value of x = " + x);
}

}

Alternative Conditional Expression
An alternative form of the conditional expression is also used with a for loop.

This is to use a Boolean value instead of a relational expression that evaluates to a

Boolean value.

For example, you could simply use the keyword true as the conditional expres-

sion. This transforms the for loop into an endless loop. An endless loop is a loop

where a statement within the body of the loop controls when the loop ends.

There are three ways in which to create an endless for loop. The first way is to

use a Boolean variable initialized to true as the conditional expression. A statement

within the body of thefor loop then changes the value of the variable tofalse. This

is shown in the next example, which begins by declaring a Boolean variable calledy
and initializing it to true. Variable y is then used as the conditional expression in

thefor loop. The control variablex is initialized in the initialization expression and

incremented in the iteration expression. However, it is not used in the conditional

expression. Instead, the control variable is used in the conditional expression of anif
statement within the body of the for loop. If the control variable is 5, the value of y
is changed tofalse in theif statement, thus causing Java to break out of the loop.

class Demo {
public static void main (String args[]) {

boolean y = true;
for (int x = 0; y ; x++)
{

System.out.println("Current value of x = " + x);
if (x == 5)

CHAPTER 4 Control Structures 83

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

y = false;
}

}
}

The second way to create an endlessfor loop is to simply use the keywordtrue
as the conditional expression. In order to break out of the loop, you’ll need to include

a break statement within the body of the loop.

This method is illustrated in the next example. The body of thefor loop contains

anif statement that uses the control variable in its conditional expression. When Java

detects that the conditional variable is 5, thebreak statement within theif statement

is executed. This is the same break statement used in the switch statement. The

break statement tells Java to exit the for loop.

class Demo {
public static void main (String args[]) {

for (int x = 0; true ; x++)
{

System.out.println("Current value of x = " + x);
if (x == 5)

break;
}

}
}

The third way to create an endlessfor loop is to simply not include a conditional

expression. Java assumes that the condition is true if the conditional expression is

not found in a for loop.

The following example shows how to create this type of endlessfor loop. You’ll

notice that this example is practically the same as the previous example, except the

conditional expression is empty in the for loop. Although there isn’t a conditional

expression, you are still required to include the semicolon.

class Demo {
public static void main (String args[]) {

for (int x = 0; ; x++)
{

System.out.println("Current value of x = " + x);
if (x == 5)

break;
}

}
}

84 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Some programmers prefer not to use a control variable in an endless for loop.

Instead, they use statements within the body of the for loop to control when Java

should break out of the loop.

Let’s say that you’ve written a program that displays a menu. You could place state-

ments that read the keyboard inside an endlessfor loop. When a valid menu item is

received by one of those statements, you can break out of the loop and process the

menu item. You can continue to loop until a valid menu item is entered.

Nested for Loops
You can place one or more for loops within the body of another for loop. Pro-

grammers call this nestingfor loops. The nestedfor loop is referred to as the inner

for loop and is placed inside the outer for loop.

Each time Java loops around the outerfor loop, it loops around the innerfor loop

until it breaks out of the inner loop. Let’s see how this works in the next example,

which has two for loops. Statements in the outer loop are executed five times before

the conditional expression is false. The statement in the inner loop is executed three

times before the conditional expression in the inner loop is false. Each time the outer

loop is looped, the inner loop is looped three times.

class Demo {
public static void main (String args[]) {

for (int x = 0; x < 5 ; x++)
{

System.out.println("Current value of x = " + x);
for (int y = 0; y < 3 ; y++)

System.out.println(
"Current value of y = " + y);

}
}

}

The while Loop
Another kind of iteration statement is the while loop. The while loop tells Java

to execute one or more statements contained in the body of the while as long as a

conditional expression is true. Statements within thewhile loop are not executed if

the conditional statement is false.

When Java sees a while loop in your program, it immediately evaluates the

while loop’s conditional expression, which is a relational expression. If the

CHAPTER 4 Control Structures 85

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

condition is false, Java skips the body of thewhile loop and continues by executing

the first statement that appears below the body of thewhile loop in your program.

However, if the conditional expression is true, Java enters the body of thewhile
loop and executes each statement within the body in sequence. If one of those state-

ments is a break statement, Java immediately exits the body of the while loop

and continues by executing the first statement below the body of thewhile loop.

If Java doesn’t encounter a break statement, it continues executing statements

within the while loop until the bottom of the loop is reached. At that time, Java

returns to the top of thewhile loop and reevaluates the conditional expression. If the

conditional expression is still true, Java reenters the body of the while loop and

reexecutes those statements. If the conditional expression is false, Java jumps out

of the while loop and executes the first statement after the bottom of the body of the

while loop.

The while loop consists of four components: the keyword while, the condi-

tional expression placed within parentheses, the body of thewhile loop defined by

opening and closing braces, and one or more statements within the body of thewhile
loop that are executed if the conditional expression is true.

The following example illustrates how to use a while loop in your program.

This example begins by declaring an integer variable and initializing it to zero. The

while loop uses the integer variable in the conditional expressionx<5. If variablex
is less than 5, Java is told to execute the two statements within the body of thewhile
loop. The first statement displays the value ofx on the screen. The second statement

uses the incremental operator to increase the value of x by 1.

After the value ofx is incremented, Java returns to the top of the loop and reevalu-

ates the conditional expression. The value ofx is now 1 and is still less than 5, so the

conditional expression is true and Java once again enters the body of the while loop

to execute those two statements. Java continues to loop through the while loop until

the value ofx is 5, at which time Java exits the loop. Because there isn’t another state-

ment that follows the closing brace of the while loop, the program terminates.

class Demo {
public static void main (String args[]) {

int x = 0;
while (x < 5)
{

System.out.println("Current value of x = " + x);
x++;

}
}

}

86 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Control Structures 87

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

In the previous section of this chapter, you learned how to create an endless for
loop. An endless loop is one where the conditional expression is always true. The

break statement is the only way to exit the loop.

You can create an endless while loop by using the keyword true as the con-

ditional expression. Here’s how to create an endless while loop: First, notice that

the conditional expression consists of the keyword true. This causes Java to exe-

cute statements within the body of the while loop. The first statement displays the

value ofx. The second statement uses the incremental operator to increase the value

of x by 1. You’ve seen both of these statements used in the previous example.

The next statement is anif statement. The conditional expression in theif state-

ment determines whether the value of x is 5. If so, the break statement within the

body of theif statement executes, causing Java to exit thewhile loop. If the value

of x isn’t 5, Java returns to the top of the while loop, where it finds the conditional

expression to still be true, causing it to again enter the body of the while loop and

execute those statements.

class Demo {
public static void main (String args[]) {

int x = 0;
while (true)
{

System.out.println("Current value of x = " + x);
x++;
if (x == 5)

break;
}

}
}

The do while Loop
The do while loop is another iteration statement that works nearly identically to a

while loop, with one exception. As you learned in the previous section, the condi-

tional expression in a while loop must be true for statements within the body of

the while loop to execute at least once. If the conditional expression is never true,

those statements will never be executed.

However, statements within a do while loop execute at least once, even if the

conditional expression is false. Think of thedowhile loop as telling Java, “Execute

these statements and then check to see if the condition is true.”

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The do while loop has six components: the keyword do, the body of the do
while loop defined by opening and closing braces, statements within the body of the

do while loop, the keyword while, the conditional expression contained within

parentheses, and a semicolon.

The following example shows how to use a do while loop in your program. In

this example, Java displays the value of x on the screen before evaluating the con

ditional expression x > 0. Notice that the conditional expression is false, causing

Java to exit the loop. However, the statement within the body of the do while loop

executed once.

Programmers commonly use a do while loop to display a menu and then read

the menu selection from the keyboard because the menu is displayed at least once

before the conditional expression evaluates the menu selection.

class Demo {
public static void main (String args[]) {

int x = 0;
do
{
System.out.println("Current value of x = " + x);

} while (x > 0);
}

}

Jump Statements
A jump statement is another control statement that transfers control to another part

of the program. There are three kinds of jump statements:break, continue, and

return.

break
You were introduced to the break statement when you learned about the switch
statement, thefor loop, and thewhile loop. Thebreak statement tells Java to exit

a code block defined by opening and closing braces and used in a loop or a switch
statement.

88 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Control Structures 89

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

continue
The continue statement is used within the body of a loop to tell Java to immedi-

ately return to the top of the loop without executing statements that appear below the

continue statement. This has the same effect as Java reaching the end of the loop.

The following example shows how the continue statement works in a pro-

gram. You’ll notice that this example is a slight modification of the example used in

the while loop section of this chapter. The example begins by initializing variable

x to zero. Java is then told to enter the body of thewhile loop if the value ofx is less

than 5, which it is.

Inside the body of the while loop, Java displays the value of x before the con-
tinue statement has an opportunity to execute. The value ofx is then incremented,

and Java is then told to determine whether the value ofx is 3. If it’s not, Java displays

the value of x again before returning to the top of the loop.

However, when the value of x is 3, Java enters the body of the if statement and

executes the continue statement. The continue statement tells Java to return

to the top of the loop and reevaluate the conditional expression of the while loop.

The while loop conditional expression is true, so Java reenters the body of the

while loop and continues to executes those statements. Notice that the second

System.out.println() statement isn’t executed when the value of x is 3

because Java is told to skip that statement and return to the top of the loop.

class Demo {
public static void main (String args[]) {

int x = 0;
while (x < 5)
{

System.out.println ("Before continue x = " + x);
x++;
if (x == 3)

continue;
System.out.println ("After continue x = " + x);

}
}

}

Here is the output of this program:

Before continue x = 0
After continue x = 1

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Before continue x = 1
After continue x = 2
Before continue x = 2
Before continue x = 3 //The continue statement executes
After continue x = 4
Before continue x = 4
After continue x = 5

return
The return statement is used in methods to return control back to the statement

that called the method. Thereturn statement may or may not return a value. You’ll

learn more about how to use thereturn statement in Chapter 6, where methods are

introduced.

Quiz
1. What is the normal flow of a program?

2. What is an endless loop?

3. What is the purpose of a conditional expression?

4. Can a switch statement use a Boolean value as the switch variable?

5. How is a constant used in a switch statement?

6. What is the difference between a while loop and a do while loop?

7. What is the purpose of a default statement in a switch statement?

8. What does the term nested mean in relation to a control statement?

9. What does the break statement do?

10. What does the continue statement do?

90 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 4

P:\010Comp\DeMYST\454-8\ch04.vp
Saturday, April 10, 2004 11:51:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
5

Arrays

Reserving memory to store data is a no-brainer. You simply use a data type and a

name to declare a variable. You learned how this is done in Chapter 2. However, sup-

pose you have to reserve memory for 100 data elements. At first this may not seem

challenging because all you need to do is declare 100 variables. However, try doing

this, and you’ll discover that you need to come up with 100 unique and meaningful

names—one name for each variable. Some programmers find themselves doing a

little head-banging trying to name 100 variables. Fortunately, there is a better way.

You can use an array instead of a variable. An array requires one unique, meaningful

name that can be used to reference all 100 data elements—or as many data elements

that you need for your program. You’ll learn about arrays in this chapter and see how

to use them in your Java program.

Inside an Array
Previously in this book, you learned that before you can store data in computer mem-

ory you must first reserve memory. Think of this as making sure there is an empty

91

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

bag available in which to place your groceries at the checkout counter before you

begin checking out.

You use a data type to tell Java how much space to reserve in memory and the kind

of data that you plan to store in that memory location. For example, you’ll recall that

the char data type tells Java to reserve enough space in memory to store a char and

that you’ll be using that memory location to store a character.

Each memory location is uniquely identified by a memory address that’s similar to

an address for a house in your town. You don’t have to be concerned about memory

addresses because Java takes care of them for you. However, you do have to tell Java

what name you’ll be using in your program to refer to each memory address you ask

Java to reserve.

The name you give to a memory address should reflect the nature of the data you’ll

be storing there. For example, finalGrade might be a good name for a memory

location that is used to store a student’s final grade.

Java associates the name you provide with the memory address that is reserved

for your data. Each time you reference the name in your program, Java automatically

looks up the corresponding memory address and then uses that memory address to

store or retrieve data.

You reserve memory by using a declaration statement in your program, as shown

here:

int finalGrade;

This statement tells Java to reserve memory sufficient enough to store an integer

and that you’ll be storing an integer in that location. It also tells Java that you’ll be

calling that memory location by the name finalGrade within your program.

The name you give to a memory location is referred to as a variable primarily be-

cause you can change the value stored at that memory location countless times while

your program runs. Therefore, the value of a memory location “varies.”

An array is a collection of variables of the same data type, and the collection is

assigned a name. This collection is referred to as an array. Each variable within the

collection is called an array element. An array element is identified by combining

the array name and a unique index. An index is an integer from zero to 1 minus the

maximum number of elements in the array. The index is contained within opening

and closing square brackets to the right of the array name.

Let’s say that we have declared an array calledfinalGrades and want to refer-

ence the first element of that array within our program. Here’s how you reference it:

finalGrades[0]

Notice that an array element is referenced nearly the same way you reference a vari-

able, with one exception: Although both a variable and an array element have a unique

and meaningful name, you reference the array element by specifying its index.

92 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use an array element in the same way you use a variable in your program.

Here are two common ways to use an array element. The first statement assigns the

integer 90 to the array element, and the second statement assigns the value of

the array element to a variable:

finalGrades[0] = 90;
myFinalGrade = finalGrades[0];

Allocating Memory for an Array
Similar to a variable, you must tell Java to reserve memory for an array. You do this

by declaring an array. Programmers call declaring an array allocating memory for

the array. Memory is allocated dynamically in a three-step process. The first step is

to declare a reference to the memory allocated for the array. The second step is to

reserve memory, and the third step is to assign the reserved memory location to the

reference. All three steps are shown in the following example:

class Demo {
public static void main (String args[]) {

int finalGrades[] = new int[100];
}

}

Here’s what is happening. First, the new operator tells Java to reserve memory to

hold 100 integers, as shown here:

new int[100]

The new operator then returns the address of the first memory location. Think of

the other memory locations reserved by the new operator being laid side by side in

sequence next to the first memory location.

Java is also told to create a reference to an array of integers, as shown here:

int finalGrades[]

Think of a reference as something that points to the first memory address of the block

of memory that is reserved for the array. The reference is called finalGrades[].

Then, Java is told to assign the address of the first memory location to the reference,

as shown here:

int finalGrades[] = new int[100];

Here’s an important point to remember whenever you declare an array: Always

specify the number of array elements you need in the declaration of an array. If you

CHAPTER 5 Arrays 93

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

need 100 array elements, you place 100 in the declaration. However, remember that

the first index of an array is 0, not 1. Some programmers get confused and place 0 as the

array size or 1 when referencing the first array element. Both of these are incorrect.

Initializing Arrays
Initialization is the process of placing an initial value in memory by assigning the

value to either a variable or an array element. In Chapter 2, you learned how to initial-

ize a variable by assigning a value when the variable is declared, as shown here:

int myGrade = 0;

An array is initialized a little differently. You place the initial values of each array

element within braces, as shown in the following example:

class Demo {
public static void main (String args[]) {

int finalGrades[]= {95, 87, 93, 84, 79};
}

}

Notice that you don’t explicitly specify the array size. Instead, the number of ini-

tial values implies the array size. The previous example implies that the array has five

array elements because five values are used to initialize the array. A comma must

separate each initial value, and all the initial values must be contained within braces.

Don’t use the new operator to declare an array if you plan to initialize the array

because Java dynamically allocates sufficient memory for the array using the initial

values to determine the size of the array.

Multidimensional Arrays
The arrays you’ve seen so far in this chapter are called one-dimensional arrays

because they consist of one list of array elements. Think of the pair of square brackets

used to declare an array as a dimension.

Arrays can have more than one dimension. These are referred to as multidimen-

sional arrays. Think of a multidimensional array as being declared within two or

more pairs of square brackets, where each square bracket is a dimension.

94 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Arrays 95

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

Some programmers call a multidimensional array as an array of an array. For

example, a two-dimensional array has two lists of array elements. Each element of

the first list (first dimension) points to another array (second dimension).

Programmers use multidimensional arrays to organize lists of relation infor-

mation so that these lists can be manipulated within a Java program. However, pro-

grammers usually work with a multidimensional array that has no more than two

dimensions because an array of any more dimensions is difficult to work with.

Creating a Multidimensional Array
You declare a multidimensional array by using thenew operator, which is very simi-

lar to the way you use the new operator for a single-dimensional array. The following

example illustrates how this is done. This example declares a two-dimensional array.

The first dimension consists of three array elements, and the second dimension con-

sists of two array elements. Think of this as saying, each of the three array elements

has two array elements of its own (see Figure 5-1).

class Demo {
public static void main (String args[]) {

int grades[][] = new int [3][2];
}

}

You can declare additional dimensions by inserting a pair of square brackets for

each additional dimension. For example, here’s the declaration for a three-dimen-

sional array:

int grades[][][] = new int [5][2][3];

A three-dimensional array can be a little difficult to comprehend because we’re

not used to organizing data in three dimensions. Think of a three-dimensional array

this way: Each array element in the first dimension has two array elements of its

own, and each of those three array elements has two array elements of its own.

Figure 5-1 Each element of the first dimension has its own two elements.

grades[0][0]

grades[2][0]

grades[0][1]

grades[2][1]

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Values Assigned to Array Elements
An element of an array is used in an expression similar to how a variable is used in an

expression. The only difference between a variable and an array element is that you

must specify both the array name and the index when using an array element.

You can assign a value to an array element by using the assignment operator, as

shown here. This example assigns 90 to the first array element of the grades array:

grades[0] = 90;

The value assigned to an array element is used in an expression similar to how

you use the value of a variable in an expression. This is illustrated in the following

example, where the value of grades[0] is assigned to the second element of the

array grades:

grades[1] = grades[0];

You assign a value to a multidimensional array practically the same way you do in

a single-dimensional array, except you must use the index of both dimensions when

referencing the array element.

The following example assigns a grade to the second element (second dimension)

of the first array element (first dimension):

grades[0][1] = 90;

Likewise, you reference each dimension of a multidimensional array whenever

you need to access the value stored in an array element. This is illustrated in the fol-

lowing example, where the value assigned to the second element (second dimension)

of the first array element (first dimension) is assigned to the third element of the first

array element:

grades[0][2] = grades[0][1];

The same format is used for arrays that contain more than two dimensions, except

that you’ll need to include each dimension when referencing an array element in the

expression.

The Length Data Member
Sometimes when working with arrays, you’ll need to refer to the length of the array.

For example, suppose you want to access each array element. You can do this quite

easily by using a for loop. As you’ll recall from the previous chapter, a for loop

can use a control variable and a conditional expression that evaluates the value of the

96 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Arrays 97

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

control variable. For each turn around the loop, the control variable is typically incre-

mented using the incremental operator.

A for loop is a perfect way to step through array elements because with each

iteration of the for loop, Java is told to move to the next array element. The condi-

tional expression is set to evaluate false when the last array element is accessed by

Java. And to do that, you must include the size of the array in the conditional expres-

sion. Programmers also call the size of the array, the length of the array.

You have two ways in which to reference the length of an array. You can explicitly

place the length into the conditional expression, and you can reference the length
data member of the array object. Before exploring the length data member, let’s

examine the explicit way of specifying the length of an array.

The following example shows how to use afor loop to access each array element.

Notice that the length of the array is explicitly included in thefor loop’s conditional

expression. This example declares an array of three elements. Therefore, the length

of the array is 3. It also initializes the array.

class demo {
public static void main (String args[]) {

int myGrades[] = { 90, 70, 80 };
for (int x = 0; x < 3; x++)
{

System.out.println("The value of array element x is " +
myGrades[x]);

}
}

}

Thefor loop is then used to walk Java through each element of the array, printing

the value of each array element on the screen. The control variable is used as the index

for each array element. The for loop continues until the value of x is equal to the

length of the array, at which time Java breaks out of the loop and the program ends.

Now that you have an idea of how to use afor loop to step through elements of an

array, let’s modify the previous example to use the length data member instead

of explicitly placing the length of the array in the conditional expression of the

for loop.

If you are familiar with other programming languages, such as C, you might be-

come a little confused about the length data member, because an array in some

programming languages does not have any methods associated with it. An array in

other programming languages is a collection of variables of a specified data type.

Java treats an array as an instance of a class, which is called an object. You’ll learn

about classes in Chapter 7. For now, think of a class as a cookie cutter that defines

data and methods. A cookie cutter isn’t a cookie. Therefore, a class isn’t real data

and methods. That is, memory isn’t reserved for the data and methods associated

with a class.

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When you press a cookie cutter into dough and then remove the cookie cutter, what

remains is a real cookie (although you still need to bake it). When you declare an

object of a class, what remains is a real object. That is, memory is reserved for the

data and methods associated with the object of the class.

Therefore, when you declare an array, Java treats the array as if you declared an

object of an array that has data members. Later in this chapter, we’ll explore the

methods associated with an array object. An array has data members: the array ele-

ments and the length data member. The value of the length data member is the

length of the array. You can reference the length data member in your program

any time you need to refer to the length of the array.

Let’s see how this works. The next example is a modification of the previous

example where the length data member of the array is used in the conditional ex-

pression in place of explicitly specifying the length of the array. Notice that you use

the array name to reference the length data member.

class Demo {
public static void main (String args[]) {

int myGrades[] = { 90, 70, 80 };
for (int x = 0; x < myGrades.length; x++)
{

System.out.println("The value of array element x is " +
myGrades[x]);

}
}

}

Passing an Array to a Method
As you learned in Chapter 1, a method is a block of statements that is identified by a

unique name. You call the name of the method in your program whenever you want

to execute those statements. Sometimes a method requires data in order to execute

those statements. That data is provided to the method by the program when the

method is called. This is called passing data to the method.

Let’s say you have a method that calculates a grade based on the number of correct

answers and the number of questions asked on the test. This method needs two data

elements in order to calculate the grade: the number of correct answers and the total

number of questions on the test. Both of these are provided to the method by the

program that calls the method.

98 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Arrays 99

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

Data required by a method is called an argument that is contained in an argument

list. An argument list consists of data elements, each represented as data type and

name, which is very similar to the way you declare a variable.

Sometimes a method returns data to the program that called the method. This is

called a return value. For example, the method that calculated the grade probably

returns the grade to the program that asked for the grade to be calculated.

Now that you have an understanding of how a method works, let’s see how you

can pass an array to a method. The first step is to define a method that will receive the

array. This is shown in the following example:

class Demo {
public static void main (String args[]) {

float grade;
float rawTest[] = {70,100};
grade = gradeCalc(rawTest);

System.out.println("Your grade is: " + grade);
}
static float gradeCalc(float test[])
{

return (test[0]/test[1]) * 100;
}

}

The method is calledgradeCalc() and is defined below themain()method.

The purpose of the gradeCalc() method is to calculate a grade based on the

number of responses the student correctly gave on the test and the number of test

questions. Both these values are stored in elements of an array that is passed to the

gradeCalc() method. After the calculation is completed, the grade is returned

by the gradeCalc() method.

Let’s see how this program works. The program begins in themain()method by

declaring a float variable and an array calledrawTest. The array has two array ele-

ments that store two float values. The first array element is the number of correct

answers. The second array element is the number of questions on the test. Notice that

the array is initialized when it is declared.

The program then calls thegradeCalc()method. ThegradeCalc()method

expects to receive a reference to the array that contains the data necessary to calculate

the grade. You place the name of the array between parentheses in order to pass an

array to a method.

Let’s follow the array into the definition of thegradeCalc()method. The argu-

ment of the gradeCalc() method consists of float test[]. Notice that this

doesn’t declare the length of an array. Instead, it declares a reference to an array,

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

which is similar to the reference that is declared when you dynamically declare an

array. Think of a reference as a pointer to the first address of the block of memory

that contains the array. It just so happens that the name of an array is also a pointer to

the address of the block of memory that contains the array. Therefore, the argument

is assigned the pointer to the array.

The gradeCalc()method then uses each element of the array to calculate the

grade. The result of the calculation is then returned to the statement in the main()
method that called the gradeCalc() method.

The grade returned by gradeCalc() is then assigned to the variable a, which

is then displayed on the screen.

Returning an Array from a Method
Sometimes a method needs to return an array to the statement that calls the method.

This is accomplished by placing the array name in the return statement of the

method, as is shown in the following example:

class Demo {
public static void main (String args[]) {

float rawTest[];
rawTest = testData();
System.out.println("Correction Answers: " +

rawTest[0]);
System.out.println("Total Questions: " +

rawTest[1]);
}
static float[] testData()
{

float rawTest[] = {70,100};
return rawTest;

}
}

Let’s see how this program works. It begins in the main()method with a decla-

ration of a reference to an array of floats. Remember that a declaration of a reference

is not the same as declaring an array. A reference is simply a pointer to an array, and

an array is actually a block of memory.

The reference is used to receive the return value from thetestData()method.

The testData() method returns the number of correct answers and the number

of questions appearing on the test. You’ll notice from looking at the definition of the

100 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

testData() method that there are no arguments because the testData()
method doesn’t require any additional information to complete its processing.

The testData() method declares an array of floats that consists of two array

elements. This is the same array used in the previous example. The first array element

contains the number of correct answers, and the second array element contains the

number of questions appearing on the test. Notice that the name of the array is used

as the return value. As you’ll recall from the previous section, the array name points

to the first address of the memory that contains the array. It is this address that is

assigned to the array reference in the statement that calls thetestData()method.

An array is returned by a method. That is, both the method and the statement that

called the method have access to the array. Either one can change the elements of

the array.

Alternate Ways of Creating an Array
In Java, you have several other ways to declare an array other than those discussed so

far in this chapter. One of those ways is to place the square brackets on the left side of

the array name. In the examples so far, we’ve placed the square brackets on the right

side of the array. Either way is acceptable, as shown here. There is no advantage or

disadvantage to using one way over the other.

float rawTest []
float rawTest [] []
float [] rawTest
float [] [] rawTest

Another alternative is to declare an array reference in two different statements.

Previously in this chapter, we declared the array reference in the same statement that

declared the array. Here are examples of both ways:

float rawTest = new float [4];

and

float rawTest;
rawTest = new float [4];

Also, you can declare a multidimensional array by specifying only one dimension

rather than all dimensions. This is referred to as an irregular array because all the

dimensions of the array are not created in the same statement. There is no advantage

or disadvantage to declaring an irregular array.

CHAPTER 5 Arrays 101

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here’s how this works: The first statement in the following example declares a

two-dimensional array where only the dimension is defined in the statement that

declares the array. Subsequent statements declare the second dimension.

float rawTest[][] = new float[3][];
rawTest [0] = new float [2];
rawTest [1] = new float [2];
rawTest [2] = new float [2];

The Arrays Class
Previously in this book you learned that a class is like a cookie cutter. A cookie cutter

defines all the parts of a cookie, and a class defines all the parts of an object of that

class. Think of the object of the class as the cookie made by a cookie cutter.

As you’ll recall, parts of a class are called members of a class, and they fall within

two categories: data members and method members. A data member is like the

length data member for an array, which you were introduced to earlier in this

chapter. A method member is a method that is associated with the class.

You’ll learn a lot more about classes in Chapter 7, but for now that’s all you need

to know in order to understand how to use the Arrays class in your program. The

Arrays class is a class already defined for you in thejava.util package that came

with your Java compiler. Its purpose is to make it easy for you to work with arrays.

Typically, you’ll want to search, sort, and otherwise manipulate elements of an

array. You can use loops and a variety of statements and expressions to do these things.

However, you can save a lot of time and reduce the amount of statements you have to

write by using methods defined in the Arrays class.

The Arrays class defines a number of methods. We’ll take a close look at

how to use the more common methods: equals(), fill(), sort(), and

binarySearch().

equals()
The equals() method is used to compare elements of two arrays. Each array is

passed as an argument to theequals()method, which then computes whether the

arrays are equal to each other. If so, the equals()method returns a Boolean true;

otherwise, a Boolean false is returned.

The following example shows how to use theequals()method in your program:

102 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

import java.util.*;
class Demo {

public static void main(String args[]) {
int student1Grades []= new int[3];
student1Grades [0] = 90;
student1Grades [1] = 80;
student1Grades [2] = 70;
int student2Grades []= new int[3];
student2Grades [0] = 90;
student2Grades [1] = 80;
student2Grades [2] = 70;
if (Arrays.equals(student1Grades, student2Grades))

System.out.println("Match");
else

System.out.println("No Match");
}

}

This example declares two arrays, both containing student grades. Theequals()
method is then called and passed the name of both arrays. The value returned by

the equals() method becomes the conditional expression for the if statement.

Remember that statements within an if statement are executed if the conditional

expression is true; otherwise, statements within the else statement are executed.

An appropriate message is displayed on the screen, depending on the value returned

by the equals() method.

Two special things happen in this example because we are using the equals()
method. The first thing is that the java.util package is imported into the pro-

gram. Many of the packages you’ll be using come with your Java compiler. Each

package is given a name. In this example, java.util is the name of the package

we’re using in this program. You must import into your program the package that con-

tains the classes your program uses; otherwise, you’ll experience a compiler error.

This is because Java needs to know the class definition before you can use the class

in your program. The java.util package contains the definition of the Arrays
class, which we use in this example.

Another special thing that is going on in this example is that the equals()
method is called by referencing the name of theArrays class. The class name must

precede the member of the class that you want to use in your program, and the class

name and the name of the class member must be separated by a period, which is

called a dot operator. Think of this as telling Java, “Use theequals()method that

is defined in the Arrays class.”

CHAPTER 5 Arrays 103

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

104 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

fill()
The fill() method is a handy tool to use whenever you have to assign an initial

value to an array that has a large number of array elements. Suppose you’ve declared

an array of 2,000 integers and, following good programming practice, you decide to

initialize each array element to zero. Previously in this chapter, you learned the two

ways to accomplish this. First, you can assign an initial value when you declare the

array. However, you’ll end up with a very long statement consisting of 2,000 zeros.

Alternatively, you can declare an array that has 2,000 elements and then write 2,000

statements to assign zero to each array element.

Neither of these options is appealing because both are time consuming and fraught

with opportunities for you to make typographical errors. The best solution is to have

thefill()method assign zero to all those array elements. The following example

shows how this is done.

This example declares an array of 2,000 floats. Thefill()method is then called

to initialize each element of the array. Thefill()method requires two arguments.

The first argument is the array name, and the second argument is the value that will

be assigned to each array element. It is critical that the initial value is of a data type

that is compatible with the data type of the array; otherwise, you’ll receive a compile

error. After the fill()method is finished, this program displays the value of each

array element.

import java.util.*;
class Demo {

public static void main(String args[]) {
int studentIDs[] = new int [2000];
Arrays.fill(studentIDs, 0);
for (int i = 0; i < studentIDs.length; i++)
System.out.println(studentIDs [i]);

}
}

Sometimes you’ll have a need to reset the value of a range of array elements

rather than the value for the entire array. Let’s say that after initializing the array

of 2,000 student IDs used in the previous example, you replaced the initialized value

with real student IDs from a database. However, in doing so, you realized that a range

of 100 of those student IDs is wrong and must be reset to zero.

You have three ways of addressing this problem. First, you could start over

by using the fill() method to reset all the array elements to zero. Second, you

could manually reset the range of the 100 incorrect IDs to zero. Third, you could use

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

another version of the fill() method to reset only a specific range of array ele-

ments to a value. The third choice is obviously the best one.

The other version of thefill()method enables you to specify the range of array

elements you want filled by the fill()method. Programmers call this overloading

the method. You’ll learn about overloading methods in Chapter 6. For now, simply

think of overloading as a method that has the same name as another method but

has different kinds of data passed to it within the parentheses, which is called an

argument list.

This is illustrated in the next example. You’ll notice that the first part of this exam-

ple is the same as the previous example, except thefill()method assigns 1 instead

of 0 to the array elements.

After the value of the array is displayed on the screen, the other version of the

fill()method is called to reset the value of 100 array elements from 1 to 0. This

version of thefill()method requires four arguments. The first argument is the ar-

ray name, and the second argument is the index of the first array element whose value

will be changed.

The third argument is the index of the array element that comes after the last array

element whose value will be changed. This is a bit confusing, so let’s take a closer look

at this example. The second argument is 200. This tells thefill()method to change

values beginning withstudentIDs[200]. The third argument is 301, which refers

to studentIDs[301]. This tells the fill() method to stop changing values

when it reaches array elementstudentIDs[301]. In other words, the value of array

elementstudentIDs[301] is not changed. The last array element that is changed

by the fill() method is studentIDs[300].

The fourth argument of thefill()method is the value that will be assigned to the

range of array elements. In this example, array elements from studentIDs[200]
to studentIDs[300] are changed from 1 to 0.

import java.util.*;
class Demo {

public static void main(String args[]) {
float studentIDs[] = new float [2000];
Arrays.fill(studentIDs, 1);
for (int i = 0; i < studentIDs.length; i++)
System.out.println(studentIDs [i]);

Arrays.fill(studentIDs,200,301, 0);
for (int i = 0; i < studentIDs.length; i++)
System.out.println(studentIDs [i]);

}
}

CHAPTER 5 Arrays 105

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

sort()
Sorting values of array elements is one of the basic things you’ll do with an array. The

easiest way to sort an array is by calling the sort()method of the Arrays class.

Thesort()method requires that you pass it the name of the array. It then rearranges

values of array elements so that they are sorted.

Let’s see how this works in the next example. This example declares an array of

Strings and then assigns a name to each of the array elements. Notice that these names

are not in sorted order. The sort()method is called and is passed the name of the

array. After the array is sorted, elements of the array are displayed on the screen—in

sorted order.

import java.util.*;
class Demo {

public static void main(String args[]) {
String myArray[]= new String[4];
myArray [0] = "Mary";
myArray [1] = "Adam";
myArray [2] = "Clark";
myArray [3] = "Bob";
Arrays.sort(myArray);
for (int i = 0; i < 4; i++)

System.out.println(myArray[i]);
}

}

binarySearch()
That last commonly used method of the Arrays class that we’ll discuss is the

binarySearch()method. ThebinarySearch()method is used to locate an

array element that contains a particular value. This is very useful when you have a

very large array. Instead of having to examine each array element yourself looking

for a particular value, you can call the binarySearch()method, and it will find

the value in the array for you.

The binarySearch()method requires that the array be sorted before the search

begins; otherwise, thebinarySearch()method won’t be able to find the search cri-

teria. Therefore, you’ll need pass the array to thesort()method before calling the

binarySearch() method.

The binarySearch() method requires two arguments. The first argument is

the array name, and the second argument is the search criteria. The search criteria

106 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Arrays 107

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

must be compatible with the data type of the array; otherwise, you’ll receive a com-

piler error.

ThebinarySearch()method returns an integer. The integer can be a positive

number or a negative number. A positive number represents the index of the array

element that contains the search value. A negative number means that the search

criterion isn’t a value in the index.

The following example shows how to use thebinarySearch()method in your

program. You’ll notice that this example is nearly the same as the previous example,

and it uses the same array and array element values. Those values are sorted by the

sort() method before the binarySearch() method is called.

Two arguments are passed to the binarySearch() method. The first ar

gument is the array name, and the second argument is the search criteria. The

binarySearch() method returns a 2 when this program runs because 2 repre-

sents the index of the array element that contains the value Clark. The index is then

displayed on the screen.

import java.util.*;
class Demo {

public static void main(String args[]) {
int index;
String myArray[]= new String[4];
myArray [0] = "Mary";
myArray [1] = "Adam";
myArray [2] = "Clark";
myArray [3] = "Bob";
Arrays.sort(myArray);
index = Arrays.binarySearch(myArray, "Clark");
System.out.println("Clark is in array element: " + index);

}
}

Quiz
1. What is an index?

2. What is a reference to an array?

3. What does the new operator return when an array is declared?

4. What is the index of the first element of an array?

5. How do you pass an array to a method?

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. How do you return an array from a method?

7. How do you determine the number of array elements of an array?

8. What does the third parameter of the fill() method (the second version

of the method) represent?

9. What does it mean when the binarySearch() method returns a negative

number?

10. What is a package?

108 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 5

P:\010Comp\DeMYST\454-8\ch05.vp
Saturday, April 10, 2004 11:51:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

109

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

CHAPTER
6

Methods and
Polymorphism

The best part of calling is plumber to fix a leaky pipe is that you don’t have to fix the

pipe yourself. You don’t even need to know how to fix a pipe. Instead, you simply say,

“This pipe has a leak. Fix it.” A few hours later, the plumber returns telling you that

the pipe is fixed—and presents you with the bill. The plumber is like a method in a

Java program because a programmer calls a method to perform a task, and then the

method tells the programmer whether the task was successfully completed. Fortu-

nately, a method doesn’t present the programmer with a bill. In this chapter, you

learn how to call a method from within your program and how to create your own

methods.

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

110 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

An Inside Look at Methods
A method is the part of a Java program that contains the logic to perform a task. Each

time you need the task performed, you simply call the method. The method then

does its thing and comes back and tells you that the task is completed.

Let’s say your Java program displays a course registration form on the screen

whenever a student needs to register for a course. You can create a method to display

the course registration form and then call the method whenever you need the form

displayed. The method handles all the steps necessary to display the form.

A major reason for using methods is to drastically reduce the number of duplicated

statements in a program. This can be seen in the example of the course registration

form. Suppose that 15 statements are needed to display the course registration form.

Also suppose that you didn’t create a method to display the form. This means you’ll

need to write 15 statements each time you want to display the course registration

form—a total of 150 statements if the form is displayed ten times in your program.

An alternative is to place these 15 statements in a method and then call the method

ten times. Those 15 statements are written once in your program, saving you from

having to write 135 statements.

Another reason for using a method is to make it easy for you to maintain the pro-

gram. Changes are made in one place—in the method. You don’t have to hunt down

and change statements in all the places in your program. Instead, you look in one

place in your program and make the change once.

Using a method also reduces the risk of errors. Typographical errors commonly

occur when you type instructions into your program. By reducing the number of

statements that are repeated in a program, you also reduce number of opportunities

for making typographical errors.

Types of Methods
The two types of methods are nonstatic methods and static methods. A nonstatic

method is a method that is a member of a class and can only be called by an instance

of that class. A static method is also member of a class, but it can be called without

having to be declared by an instance of the class.

Typically the task performed by a nonstatic method is dependent on data stored in

an instance of the class. For example, suppose you have a class calledstudent that

has a nonstatic method called display(). The display() nonstatic method

displays information about a student that’s contained in the class. You’ll learn all

about classes in Chapter 7.

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A static method usually performs tasks that are not directly associated with data

members of the class. In fact, a static method may not have any relationship with the

class other than being a static method of it.

Many of the methods you will use in your programs will be member methods.

The Method Definition
Before a method can be called within a program, it must be defined in a method

definition within the definition of a class. A method definition contains all the state-

ments necessary for the method to perform a task, and it’s organized into two parts:

the method header and the body of the method.

The Method Header
The method header consists of three basic elements, but it sometimes includes an

access and behavioral modifier. We’ll explore the basic elements in this section.

You’ll learn about the other elements in Chapter 7. The three basic elements are the

method name, the method argument list, and the data type of the value returned by

the method. The method name and method argument list are collectively referred to

as the method signature, which uniquely identifies a method from other methods.

The method name is a name you give to the method. The name should reflect the

task that the method performs. For example,display() is a good name for a method

that displays data on the screen because the name implies the task performed by the

method. Also, the name must conform to the Java Naming Convention (see Chapter 1).

The method argument list consists of the data the method needs to perform the

task. You’ll recall that in Chapter 5 we defined a method that calculates a grade

based on the number of correct answers and the number of questions on a test. This

method requires both of these data elements in order to calculate the grade. These

are passed to the method’s argument list by the statement that calls the method.

The method argument list is formed by specifying the data type and name of each

data element passed to the method. This is shown in the next example. Two argu-

ments are shown here. The first argument is the number of correct answers, and the

second argument is the number of questions on the test. Both are of the int data type.

calcGrade(int correctAns, int numberTestQuestions)

The name of an argument should reflect the nature of the data stored in the argu-

ment. The name must also conform to the Java Naming Convention. You use the

name of the argument within statements of the method whenever you need to refer to

CHAPTER 6 Methods and Polymorphism 111

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the data stored in the argument. For example, you would use correctAns to refer

to the number of correct answers given by the student.

Any number of arguments can be included in an argument list as long as a comma

separates the arguments and the name of each argument is unique. That is, you cannot

have two arguments called correctAns.

The argument list is optional. Only a method that requires data from the statement

that called the method needs to have an argument list. However, the method defini-

tion still requires the parentheses even if there isn’t an argument list, as shown in the

following example:

display ()

The remaining part of the method header is the data type of the return value. Some

methods return data back to the statement that called the method after the method

completes its task. Other methods don’t return anything back.

If data is returned by the method, you must include the data type of that data in the

method header. If data isn’t returned by the method, you must use void as the data

type. The keyword void infers nothing (that is, no return data type). Don’t confuse

void (nothing) with zero. Zero is a value, whereasvoid is the absence of a value.

The data type of the data returned by the method is placed to the left of the method

name, as shown in this example, where the method returns a float:

float calcGrade(int correctAns, int numberTestQuestions)

However, if thecalcGrade()method didn’t return data,void is placed to the

left of the method name, as shown here:

void calcGrade(int correctAns, int numberTestQuestions)

The Method Body
The body of the method is defined within the opening and closing braces and appears

below the method header. This is where you place statements that are executed when

the method is called. Java executes the first statement below the opening brace and

continues to execute statements sequentially until the closing brace is reached or

until a return statement is executed.

The following example illustrates how to construct the body of a method:

void calcGrade(int correctAns, int numberTestQuestions)
{

//Place statements here
}

112 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Methods and Polymorphism 113

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

The Method Return Value
Depending on the task performed by a method, the method may return data to the

statement that called it. For example, thecalcGrade()method shown previously

in this chapter calculates and returns a grade.

Programmers call data that is returned by a method a return value. The return

value is placed to the right of the keywordreturn in a return statement. Java imme-

diately exits the method and returns to the statement that called the method when the

return statement executes. Statements below the return statement are not executed.

A return value can be a literal, a variable, or an object. Some programmers place

an expression in the return statement. Java then evaluates the expression and returns

the result of the expression. The return value must be compatible with the return data

type specified in the method header; otherwise, you’ll receive a compiler error.

A return statement can be placed anywhere in the body of a method. Keep in mind

that no statement below the return statement is executed once Java executes the return

statement. Typically programmers place a return statement immediately before the

closing brace in the body of the method if the method has a return value. The return

statement is excluded from a method if the method doesn’t have a return value.

Multiple return statements can be used to return different return values, depending

on conditions within the body of the method.

Say you created a method to validate a user password. The value 0 is returned if

the password is valid. A value of 1 is returned if the password is invalid. Two return

statements are used within an if...else statement. One within an if statement

that is executed only if the password is valid, and the other in anelse statement that

is executed if the password is invalid. Only one ever executes. This is illustrated in

the following code segment, where the password entered by the user is assigned to the

variable password:

if (password == "Bob")
return 0;

else
return 1;

Some programmers always use a return statement in a method, even if the method

doesn’t require a return value. They do so to signal whether or not the method success-

fully performed the task. A zero is returned if the task was performed successfully.

A nonzero number is returned if the method had problems performing a task.

Some programmers return a negative number to signal that a problem has occurred.

Other programmers return a positive value that corresponds to the error that helps

them identify the problem. This is commonly referred to as an error code.

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s return to the method that validates a user password and see how error codes

are used. The validation task consists of three subtasks. The first subtask is to open

the database that contains valid passwords. The second subtask is to search for the

user password passed by the statement that called the method. The third subtask is to

report back the password’s status.

We could return –1 if the first subtasks fails because the method couldn’t open the

database. Likewise, we could return –2 if there is a problem searching the database.

If both subtasks are successfully completed, we could return 0 if the user password is

valid and 1 if it isn’t valid.

Error codes are commonly used only in complex programs and methods, where it

is difficult and time consuming to track down problems occurring in the program.

The following example is a complete method definition that illustrates how to return

a value to the statement that called the method. This example calculates and returns a

test grade. You’ll notice that the return statement contains an expression rather

than a return value. Remember that Java evaluates the expression before executing the

return statement. The result of the expression replaces the expression in the return

statement, and the result is returned.

float calcGrade(int correctAns, int totalQuestions)
{

return (correctAns / totalQuestions) * 100;
}

The Argument List
Now that you know how to define a method, let’s take a closer look at the method

argument list. Previously you learned that some methods require data in order to

perform a task and that the data is supplied by the statement that calls the method. This

data is referred to as an argument and is passed to a method in the form of an argument

list. Think of an argument list as the collection of data a method needs to perform a task.

The statement that calls the method places data between the parentheses of

the method call, as shown in this example, which passes two integer literals to the

calcGrade() method defined in the previous section of this chapter:

calcGrade(70, 100)

Some programmers call data passed to a method a parameter list. Each data ele-

ment in the parameter list is referred to as a parameter. Therefore, 70 and 100, col-

lectively, comprise the parameter list, and each is a parameter. Other programmers use

114 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the terms argument list and arguments as synonymous for parameter list and param-

eters. We’ll use the terms argument list and arguments throughout this book.

You have three things to remember when using an argument list. First, the data

passed to a method by the statement must be compatible with the data type of the

method’s argument list, as specified in the method definition.

Second, the order in which data is passed to a method must be the same order as the

method’s argument list.

Third, you must pass the method the correct number of arguments. That is, the

number of arguments in the argument list in the method definition must be the same

as the number of data elements passed to the method.

Failure to do these three things might result in a compiler error or cause the method

to process erroneous data. For example, switching the position of the data passed to

the calcGrade() method results in the method calculating an erroneous grade.

Elements of an Argument List
An argument list consists of two elements: the argument data type and the argument

name. An argument data type is the same as a data type of a variable. It tells Java the

amount of memory to reserve for the argument and the kind of data that will be

stored there.

An argument name is similar to a variable name. It is an alias for the memory ad-

dress that contains the data passed by the statement that calls the method. You use the

argument name within the method the same as you use a variable name.

How an Argument List Works
Before data is passed to a method, it is stored in memory. When the method is called,

Java allocates memory based on the data types of the arguments specified in the

method definition. Java then makes available to the method the data passed by

the statement that called the method.

Data is made available to a method in two way: pass by value and pass by refer-

ence. Pass by value makes a copy of the data available to the method. That is, Java

makes a copy of the data passed to the method and stores the copy in memory that is

allocated for the argument. Statements with the method can change the value of the data

passed to it, but that change isn’t available to the statement that called the method

because each has its own copy of the data.

The following is an example of how data is passed by value to a method. This

example declares three ints. One stores the value returned by the method, and the

other two store values passed to the method, which are initialized to 70 and 100,

CHAPTER 6 Methods and Polymorphism 115

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

respectively. A copy of these values are assigned to the arguments correctAns
andtotalQuestions by Java. The values 70 and 100 appear twice in memory—

once for the calcGrade() method, and the other for the main() method.

class Demo {
public static void main (String args[]) {

float a;
int b = 70, c = 100;
a = calcGrade (b, c);
System.out.println("Your grade is: " + a);

}
static float calcGrade(int correctAns, int totalQuestions)
{

return (correctAns / totalQuestions) * 100;
}

}

Command-Line Arguments
A command-line argument is data that is passed to your Java program from the

command line when you run the program. The command line is also called the com-

mand prompt. (You can display the command prompt in Windows by selecting Start |

Programs | Accessories | Command Prompt.)

Sometimes programmers use a command-line argument to override a default

setting in the Java program. For example, a Java program might use the system’s date

as today’s date throughout the program unless a date is passed in a command-line

argument, which overrides the default date.

A Java program receives data from the command line in the main()method’s ar-

gument list. You probably noticed the main()method’s argument list in examples

throughout this book, as shown here:

void main (String args[])

The main() method’s argument list consists of one argument, which is a refer-

ence to an array of String objects called args. You’ll learn about String objects in

Chapter 7. For now, think of a String object as one or more words, such as “Bob Smith”

or “121 Main Street.”

As you’ll recall from the previous chapter, a reference to an array isn’t an array.

Instead, it is something that points to the memory address that contains the first ele-

ment of the array. Data passed to a program is placed in memory, and the memory

address of the first data element is assigned to the args reference. You’ve seen this

done previously in this chapter when an array is passed to a method.

116 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The number of data elements placed on the command line determines the number

of array elements in theargs array. You can determine the number of array elements

by using the lengthmember of the array, which you learned about in the previous

chapter. The following example will refresh your memory on how this is done:

class Demo {
public static void main (String args[]) {

System.out.println("
The number of command line arguments is: " + args.length);

}
}

Data passed on the command line is assigned to each of theargs array elements,

and you can access that data from within your program by referencing the array

element the same way you reference any array element (see Chapter 5).

Let’s see how this is done. The following example begins by determining whether

there are any command-line arguments. If there aren’t any, an appropriate message

is displayed. If there are, a for loop is used to display each element of the array

pointed to by the args reference.

class Demo {
public static void main (String args[]) {

if (args.length > 0)
{

for (int x = 0; x < args.length; x++)
{
System.out.println(

"Command line argument " + x + " : " + args[x]);
}

}
else
{

System.out.println(
"There are no command line arguments.");

}
}

}

Passing Command-Line Arguments
Now that you know how to use command-line arguments within your program, let’s

turn our attention to how arguments are passed from the command line to your

program. If you are using Windows, you may not have had the opportunity to use the

command line because many programs running in Windows are started by double-

clicking an icon or selecting the program from a menu.

CHAPTER 6 Methods and Polymorphism 117

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In order to run a program from the command line and pass it command-line argu-

ments, you’ll need to display a command line on the screen. You do this in Windows

by selecting Start | Programs | Accessories | Command Prompt in many versions of

Windows.

We’ll use the example in the previous section to illustrate how to pass a command-

line argument. Type the following on the command line and press ENTER to run the

program:

java demo Amber

Here’s what is happening: The first word, java, is used to run the Java Virtual

Machine. The second word, demo, is the name of the Java program, which is the

program shown in the previous section. The third word, Amber, is the command-

line argument.

When you press ENTER, your operating system runs the Java Virtual Machine and

passes it the name of your program and the command-line argument. The Java Virtual

Machine then uses the command-line argument as it executes your program.

You can pass multiple command-line arguments to your program by typing them

on the command line and separating them with a space. Arguments are assigned to

the args array in the order in which those arguments appear on the command line.

For example, the first argument is assigned to the first array element, the second

argument is assigned to the second array element, and so on.

The following command line shows you how to use multiple command-line argu-

ments. Notice there are two command-line arguments:Amber and Joanne. When

the program runs, Amber is assigned to args[0] and Joanne is assigned to

args[1].

java demo Amber Joanne

There might be an occasion when you need to pass a command-line argument that

consists of two or more words, such as “Amber Leigh.” There’s a problem. These words

are separated by a space, which will confuse Java because it interprets these words as

two command-line arguments instead of as one command-line argument.

The solution to this problem is to place all the words that comprise the command-

line argument within double quotation marks. This causes Java to interpret the space

as part of the argument rather than the beginning of a new argument. The following

command line illustrates how this is done. There are two command-line arguments

in this example ("Amber Leigh" and Joanne):

java demo "Amber Leigh" Joanne

On other occasions, you may want quotation marks to be part of the command-line

argument. For example, the command-line argument might be "Amber" including

the quotation marks. The problem is that the operating system shell interprets the

118 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Methods and Polymorphism 119

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

quotation marks as a signal to make everything between them the command-line

argument—excluding the quotation marks.

The solution is to precede each quotation mark with a backslash (\). The back-

slash tells the operating system shell that the quotation mark is part of the command-

line argument. The following command-line argument shows you how this works.

When the program runs, args[0] is assigned "Amber" andargs[1] is assigned

Joanne.

java demo \"Amber\" Joanne

Calling a Method
Previously in this chapter, you saw how to call a method within a statement. You

simply use the method name followed by any arguments. The arguments must be

contained within parentheses. Empty parentheses are used if the method doesn’t

require any arguments. You need to consider a number of factors when calling a

method. We’ll discuss those factors in this section.

The first thing to consider is that Java is case sensitive. Therefore, you must be

careful to use exactly the name of the method that appears in the method definition

when calling it. Otherwise, Java will think you want to use a different method, and it

will then display a compiler error if that method isn’t found.

Second, make sure you include all the arguments in the method call that are found

in the method definition. The method call must have the same number of arguments.

Arguments passed by the method call must be of a data type that is compatible with

arguments in the method definition. Also, those arguments must appear in the

method call in the same order as the arguments appear in the method definition.

You’ll receive a compiler error if there is a mismatch of arguments.

Some methods return a value; however, the statement that calls the method can

ignore the return value without experiencing a compile error. Here’s a modified ver-

sion of the example used earlier in this chapter to call a method to calculate a grade:

class Demo {
public static void main (String args[]) {

float rawTest[] = {70,100};
calcGrade (rawTest);

}
static float calcGrade (float test[])
{

return (test[0]/test[1]) * 100;
}

}

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

120 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

You’ll notice that a statement calls the calcGrade (rawTest) method and

passes it the name of an array. ThecalcGrade()method calculates and returns the

grade back to this statement. However, the statement does nothing with the grade.

Although this isn’t a Java error, it is illogical to call thecalcGrade()method with-

out doing something with the grade returned by the method. Therefore, you need to

make sure it makes sense to your program to ignore the return value of a method.

A common practice among programmers is to call a method from within an

expression when the return value of the method is used in the expression. This is

illustrated in the next example. This example applies a curve to the grade calculated

bycalcGrade(), which you’ve seen used in the previous example. The call to the

calcGrade() method is made within the expression that calculates the curve.

Java calls the method before evaluating the expression.

class Demo {
public static void main (String args[]) {

float rawTest[] = {70,100};
double finalGrade, curve = 1.2;
finalGrade = curve * calcGrade (rawTest);
System.out.println(

"Your final grade is: " + finalGrade);
}
static float calcGrade (float test[])
{

return (test[0]/test[1]) * 100;
}

}

Polymorphism
The Greeks coined a term to refer to something that has multiple forms—polymor-

phism. This term is also used by programmers to describe Java’s capability to have

a method take on different meanings (forms), depending on the context in which

the method is called within a program.

Java implements polymorphism by enabling a programmer to overload a method.

A programmer “overloads” a method by defining two or more methods using the

same name but defining different argument lists for each method.

You are probably wondering why any programmer would want to use the same name

for two methods. On the surface, this seems as if it would confuse anyone calling

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 Methods and Polymorphism 121

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

the method. However, overloading actually makes it easier to use methods because the

programmer doesn’t have to remember a lot of method names. The programmer only

needs to remember the method name and the appropriate argument lists.

The next example illustrates the benefits of overloading a method. This example

defines a method called displayError(), which displays an error message on

the screen. The error message is contained in theSystem.out.println() state-

ment within the body of the displayError() method.

You’ll notice that this is a generic error message that doesn’t provide any clue as to

the nature of the error. In some circumstances, this error message is fine. In other

circumstances, a programmer may want a more informative error message.

Therefore, we overloaded thedisplayError()method with another method

calleddisplayError(). The other version of thedisplayError()method has

one argument: the text of the error message that will be displayed on the screen.

A programmer has the option to call thedisplayError()method and use the

generic error message or to call the other version and provide the displayError()
method the error message to display on the screen. In either case, the programmer

still calls the displayError() method and either includes an argument in the

method call or excludes the argument, depending on whether the programmer wants

a generic error message or a custom error message displayed.

class Demo {
public static void main (String args[]) {

displayError();
displayError("Your printer is out of paper.");

}
static void displayError()
{

System.out.println("An error has occurred.");
}
static void displayError (String errorMsg)
{

System.out.println(errorMsg);
}

}

The Method Signature
Although we tend to use a method name to identify a method, Java identifies a method

by its signature. As you’ll recall from earlier in this chapter, a method’s signature is

the combination of the method name and the method argument list.

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This means that the programmer sees both versions of the displayError()
method as the same method. However, Java sees these versions as different methods

because their argument lists are different.

An argument list can be different in several ways. You can have a different

number of arguments, the same number of arguments but different data types, or

the same number arguments and the same data types but in a different order in the

argument lists.

Some of these differences can be seen in the next example. Notice that the third and

fourth versions of thedisplayError()method contain basically the same argu-

ments, except the order in which they appear in the argument lists are reversed. Java

considers each a different method.

class Demo {
public static void main (String args[]) {

displayError();
displayError("Your printer is out of paper.");
displayError("ver3", 1);
displayError(1, "ver4");

}
static void displayError()
{

System.out.println("An error has occurred.");
}
static void displayError (String errorMsg)
{

System.out.println(errorMsg);
}
static void displayError (String errorMsg,

int errorNum)
{

System.out.println("ver 3");
}
static void displayError (int errorNum,

String errorMsg)
{

System.out.println("ver 4");
}

}

122 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What are the components of a method header?

2. What are the components of a method signature?

3. What is the purpose of a return statement?

4. What are the two components of an argument?

5. What is a command-line argument?

6. How can a quotation mark be passed as a command-line argument?

7. What is polymorphism?

8. What is overloading a method?

9. What is a method?

10. What are the two kinds of methods available in Java?

CHAPTER 6 Methods and Polymorphism 123

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 6

P:\010Comp\DeMYST\454-8\ch06.vp
Saturday, April 10, 2004 11:46:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
7

Classes

Some programming languages lack class, but that can’t be said about Java because

Java has more class than the British Royals (although Java’s class is a bit more

technical than the class spawned by the upper crust). Java’s class is used to mimic a

real-world item in a Java program, such as a student, a course registration form, or

a transcript. Real-world things consist of attributes and behaviors, such as a stu-

dent’s name and a student registering for a course. A Java class also has attributes

and behaviors, known as data andmethods. You’ll learn how to create and use Java

classes in this chapter.

Class Definition
A primary objective of object-oriented programming languages such as Java is to

emulate real-world things—which we’ll call objects—by defining a class within a

program. You can also think of a class as a new data type that you define and that is

used to create instances of the class.

125

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

A class combines attributes and behaviors that are associated with an object into

a new data type. This is referred to as encapsulation. Programmers like to say that

attributes and behaviors are encapsulated within a class definition.

A class definition is like a cookie cutter that defines the attributes and behaviors of

a class. Attributes and behaviors are consideredmembers of the class. It is important

to understand that a class definition is a template rather than the emulation of a real

object. This is similar to how a cookie cutter isn’t a cookie. The cookie cutter must be

pressed into cookie dough in order to make a real cookie.

The cookie of a class is called an instance of the class. Many programmers refer to

an instance of a class as an object of the class or simply as an object. We’ll use the

term instance throughout this book so that you don’t confuse object (the term that refers

to a real-world object) with an object created by a class.

Think of a class in this way: A cookie cutter makes a cookie, and a class makes an

instance or object. You’ll learn how to create an instance of a class later in this chapter.

For now, we’ll focus on defining a class.

A class definition consists of three components: the keyword class, the class

name, and the class body. Theclasskeyword is used to tell Java that you are defining a

class. The class name is the name you’ll be calling the class within your Java program.

The class name must conform to the Java Naming Convention, which is presented in

Chapter 1. The class body is defined by an opening and closing brace and is the place

where you declare attributes and define behaviors.

Here is the form of a Java class definition. This class is called myClass.

class myClass {
}

An attribute of a class is data that is associated with the class. Programmers call

an attribute an instance variable. In Chapter 2, you learned about instance variables

of the program class. Each instance of a class has its own copy of the data that is

assigned to an instance variable. More about this in a moment.

A behavior of a class is a method that is associated with the class. Programmers

call this amethod member. In Chapter 6, you learned about method members of the

program class. Each instance of a class shares method members of the class.

If you create two instances ofmyClass, each instance has its own instance variable

but shares the same member method.

In Chapter 1, you learned that a Java application is a class referred to as an appli-

cation class. The Java application class must define the main() method, which is

the entry point into the application. The Java application is actually a class definition,

and the main() method is a member method of that class. However, you do not

need to have a main() method in other classes that you define in your program

because there is only one main() method in a Java program.

126 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You place class definitions of other classes outside of the Java application class

definition. Here’s an example of how this is done. This example is a valid Java appli-

cation. It will compile, but nothing happens when you run it because the main()
method doesn’t contain any statements.

Class Demo {
public static void main (String args[]) {

}
}
class myClass {

}

Defining a Method Member
A member method is defined nearly identically to the way a method is defined,

which you learned how to do in Chapter 6. However, there are two differences. First,

the definition of a method member must be placed within the body of a class definition.

The other difference is that you must include an access specifier, which tells Java

how the method member can be called within the Java program (see “Access Specifi-

ers” next in this chapter).

As you’ll recall from Chapter 6, a method definition consists of a method name,

an argument list, a return value, and the body of the method. The method name is

used to call the method within your Java program. The argument list is used to provide

the method with information needed for it to perform a task. An argument list is

optional. If a method has all the information necessary to perform a task, an argu-

ment list isn’t necessary. If a method needs information to perform the task, an argument

list is required.

The return value is information returned by the method to the statement that

called the method. The return value is also optional because not every method needs

to return a value. The body of the method is defined using an opening and closing

brace within which you place the statements to be executed when the method is

called by a statement in your program.

Access Specifiers
Each member of a class has an access specifier that tells Java how that member can

be accessed by other parts of the program. The three types of access specifiers are

public, private, and protected.

CHAPTER 7 Classes 127

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A class member designated as public can be accessed by any part of the program

as long as an instance of the class is created before the member is accessed. Many

methods are designated as public in order for parts of the program to call those methods.

The exception to this rule involves public static members of a class. You can access a

public static member of a class without first creating an instance of the class.

A class member designated private can be accessed only by members of the same

class. A private member cannot be accessed by other parts of the program. Many in-

stance variables are designated as private in order to protect them from other parts of

the program. Typically, only method members of the class can access instance vari-

ables.

A class member designated protected can be accessed by method members of the

same class and by method members of a class that inherits the class. It can also be

accessed by classes in the same package (see “Packages” later in this chapter).

You’ll learn about inheritance in Chapter 8. Other parts of the program cannot ac-

cess a protected member of a class. Some method members and maybe a few in-

stance variables are designed as protected, depending on the nature of the program.

You place the access specifier to the left of the data type of a method member defi-

nition and to the left of the data type when declaring an instance variable, which

you’ll see later in this chapter.

You do not have to include the access specifier. If you exclude an access specifier,

Java assumes that the member is designated public, making it available to all parts of

the program that are in the same package as the class.

The following example shows how to define a method member called print(),

which is a member of the myClass class. This method displays text that is received

from the statement that calls the method. There isn’t a return value, and the method can

be accessed by any part of the program. You’ll notice that the body of the main()
method contains no statements, so nothing happens when this program runs.

class Demo {
public static void main (String args[]) {

}
}
class myClass {
public void print(String str){

System.out.println(str);
}

}

128 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Declaring Instance Variables
Previously in this chapter, you learned that an instance variable is data that is associated

with a class, such as a student’s ID number for the class that emulates a student. An

instance variable is declared similarly to how you declare a variable (Chapter 2),

with three exceptions.

You’ll recall that a variable is declared by specifying a data type followed by the

name of the variable in a statement. The following statement declares a student ID.

The variable is an int data type and is called student.

int student;

The same statement is used to declare an instance variable. However, an instance

variable must be declared within the body of the class and should be preceded by an

access specifier. Remember that Java designates an instance variable as available to

classes within the same package as this class if you don’t use an access specifier.

The following example shows how to declare an instance variable. Instance vari-

ables are usually designated as private, thus limiting the access to these variables to

only method members of the same class.

class Demo {
public static void main (String args[]) {

}
}
class myClass {

private int student;

}

The third difference between declaring a variable and declaring an instance vari-

able is in the way both are initialized. You’ll recall that initialization is the process of

assigning a variable an initial value. You can initialize a variable when the variable is

declared, as shown in this next statement:

int student = 12345;

However, some programmers initialize an instance variable by using the class

constructor (see the next section).

Keep in mind that changes to an instance variable of one instance don’t have

any effect on the instance variable of a different instance. This means that if we de-

clare two instances called student of the myClass class, each instance has its

own student instance variable. A change to one instance variable doesn’t change

the other.

CHAPTER 7 Classes 129

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructor
A constructor is automatically called whenever an instance of the class is created.

Technically, the constructor is called before the new operator completes its opera-

tion when declaring an instance of the class (see the section “Declaring an Instance

of a Class”). Programmers use the constructor to initialize instance variables as well

as to perform other tasks when an instance of the class is created.

A constructor is defined nearly the same way as how you define a method member

of a class, with three exceptions. First, the name of the constructor must be the same

name as the class. Second, the constructor has an implicit return value, which is the

class type. That is, you are not permitted to define a return value for a constructor.

Third, the constructor must be designated with any access specifier or no access

specifier.

The following example illustrates how to define a constructor. This example de-

fines the myClass class that contains an instance variable called student and a

method member called myClass(). This method member is the constructor for

the class because it has the same name as the class. The constructor is designated as

having public access. The constructor in this example initializes the instance variable

student with a student ID number.

class Demo {
public static void main (String args[]) {

}
}
class myClass {

private int student;
myClass (){

student = 12345;
}

}

You don’t have to define a constructor for your program unless there is a need to

execute statements when an instance is created. If you don’t define a constructor,

Java uses a default constructor.

You can define multiple constructors for your program, with each one having a

different argument list. For example, a constructor without an argument list might

initialize instance variables with default values. Another constructor with an argument

list might initialize instance variables with values passed to the constructor when the

instance is declared.

130 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Classes 131

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

Declaring an Instance of a Class
Remember that a class definition is like a cookie cutter and not a cookie. This means

that you must use the class definition to make a real copy of the class, which is called

an instance of the class. You do this by declaring an instance of the class within your

program.

When an instance is declared, Java reserves memory for all instance variables and

then calls the constructor. Initial values are then stored in memory, if the constructor

initializes instance variables. Also, any other statements within the constructor are

executed.

Here’s how to declare an instance of a class. This statement probably looks familiar

because it is basically the same statement used to declare an array (see Chapter 5).

myClass x = new myClass();

Three tasks occur in this statement. First, the new operator tells Java to reserve a

block of memory for the instance. This block of memory is large enough to store in-

stance variable(s). The new operator returns the address of that block of memory.

Second, a reference to an instance of myClass is declared, which is called x.

The reference is declared by using the name of the class. This is called the class type.

Finally, the third task is to assign the first address of the block of memory of the in-

stance to the reference. The reference (in this case, x) is used anytime you want to

refer to the instance within the program.

Although the previous example declared a reference and an instance of a class in

one statement, these declarations can be placed in two statements, as shown in the

next example. The first statement declares the reference, and the second statement

assigns the instance to the reference.

myClass x;
x = new myClass();

Programmers declare a reference separately from the declaration of an instance of

a class in order to assign different instances to the same reference, unless the reference

is declared final. Any reference declared final cannot be reassigned a value. You’ll

see how this is done in the next example.

Notice that the next example begins by declaring three references to myClass.

The next two statements declare an instance of myClass, which is assigned to

reference x and reference y, respectively.

Next, the referencex is assigned to the referencecurrent. Bothx andcurrent
refer the same instance of the class because the value of x points to the memory

block that contains the instance. This memory address, stored in reference x, is

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

copied (assigned) to referencecurrent. This mean that bothx andcurrent can

be used to access members of the same instance because both point to the same

address in memory.

The last statement assigns the value of referencey tocurrent. The value ofy is

the memory address of the second instance of myClass. Both y and current
point to the same memory address, which contains the second instance of the class.

Programmers use this technique to switch between instances of classes.

myClass x,y,current;
x = new myClass();
y = new myClass();
current = x;
current = y;

In the previous examples, the new operator is followed by the class name. The

class name actually calls the constructor of the class (see the section titled “Con-

structor”). The new operator dynamically allocates memory for the instance of the

class.Dynamic allocationmeans that Java reserves memory at run time rather than

at compile time. However, it is possible that sufficient memory isn’t available in the

computer that runs your program. If this occurs, an exception is thrown by the new
operator (see Chapter 9).

Accessing Members of a Class
Once an instance of a class is declared, a reference to the instance is used to access

members of the class. To access a member of the class, you use the name of the refer-

ence followed by the dot operator and then the name of the member. You can see how

this is done in the next example.

The following example defines the myClass class, which has three members.

These are an instance variable calledstudent, a constructor, and a method member

called print(). The instance variable is assigned a student ID by the constructor

when an instance is declared. The instance is then used to call theprint()method

member. The print() method member displays the student ID on the screen.

class Demo {
public static void main (String args[]) {

myClass x = new myClass();
x.print();

}
}
class myClass {

132 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int student;
myClass(){

student = 1234;
}
public void print(){

System.out.println("Hello, student: " + student);
}

}

Overloading Member Methods
In Chapter 6, you learned that Java identifies a method by its method signature,

which is a combination of the method name and argument list. This means that two

methods can have the same name and different arguments.

The same is true about the method members of a class. That is, a class can have

multiple methods that have the same name as long as each method member’s argument

list is unique within the class definition. Two method members of the same class

cannot have the same method signature. However, methods that are members of

different classes can have the same method signature. When there are two method

members of the same class that have the same method name, programmers say that

the second method overloads the first method.

As you’ll recall from Chapter 6, programmers overload methods to reduce the

number of methods that need to be learned. Typically, methods that have the same

name perform variations of the same task. Instead of remembering a different name

for each variation, a programmer only needs to remember one method name and the

appropriate argument list.

This is illustrated in the next example, where two method members have the name

print(). One version doesn’t have an argument list and displays a default greeting

whenever it is called. The other version enables the programmer to enter text that

will be incorporated into the message. As you can see, the programmer has the option

to use the default greeting or to use a personal greeting.

class Demo {
public static void main (String args[]) {

myClass x = new myClass();
x.print();
x.print("Bob");

}
}
class myClass {

CHAPTER 7 Classes 133

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

public void print(){
System.out.println("Hello.");

}
public void print(String str){

System.out.println("Hello, " + str);
}

}

Overloading a Constructor
A common use of overloading a method is to overload a constructor. Previously in

this chapter, you learned that a constructor is used with thenew operator to create an

instance of a class. The default constructor doesn’t have an argument list. Program-

mers overload a constructor by defining a constructor that has a parameter list. This

is called a parameterized constructor. You can use any number and type of argu-

ments in the argument of a constructor.

There are many reasons for overloading a constructor. A common reason is to

enable a programmer to override values used to initialize instance variables. This is

illustrated in the next example, where two constructors are defined. One constructor

initializes the instance variable to zero, and the other constructor initializes the

instance variable to whatever value is passed to the constructor by the programmer.

Two instances of myClass are created in this example. The first instance is

declared using the default value to initialize the instance variable. The second in-

stance uses the parameterized constructor, which is passed the number 354. The

value of the instance variable is then displayed on the screen.

class Demo {
public static void main (String args[]) {

myClass x = new myClass();
myClass y = new myClass(354);
x.print();
y.print();

}
}
class myClass {

int student;
myClass(){

student = 0;
}
myClass(int ID){

student = ID;

134 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
public void print(){

System.out.println("Hello, student: " + student);
}

}

The this Keyword
A method member of a class has implicit access to instance variables and other

method members of the class that defines a method member. In previous examples

throughout this book, you’ve seen how a method member of a class is used to initialize

an instance variable of the same class.

There will likely be occasions when you’ll need to declare a variable in the definition

of a method member that has the same variable name as an instance variable. A vari-

able that is declared within a method member is called a local variable. Whenever a

statement in a method member references a variable name, Java uses the local variable

before an instance variable if both variables have the same name.

However, you can tell Java to use an instance variable rather than a local variable

of the same name by using the this keyword. The this keyword is a way to refer

to the object of the class within the class definition.

Using the this keyword can be confusing to understand. However, remember

how you access a class member in your program. First, you declare a reference to an

instance of the class, and then you use the name of the reference whenever you want

to refer to a member of the class.

For example, suppose we created an instance of a class and assigned it to the refer-

encenewClass. Here’s how you would access thedisplay()method member of

newClass, assuming such method member was defined in the class definition:

newClass.display()

In essence, you do the same thing when you want to access a class member from a

method member of the same class. However, the reference to the class is implied.

That is, you don’t need to make reference to the instance of the class when accessing

another member of the class. Java assumes that you want to use a member of the class.

However, when there is a conflict, such as two variables having the same name,

you must explicitly tell Java which one you want to use. If you want to use the local

variable, simply use the name of the variable. If you want to use the instance vari-

able, you’ll need to reference the instance in the statement that accesses the instance

variable.

CHAPTER 7 Classes 135

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

No doubt you see a problem. There can be many instances of the class, each having

a different reference. Therefore, you cannot refer to the reference of the instance in

the class definition. The solution is to use the this keyword in place of the refer-

ence name. The this keyword tells Java to use the current instance.

The following example illustrates how to use thethis keyword in a Java program.

This example defines a class called myClass that has three members: the instance

variable student and two method members. The first method member is a con-

structor that is used to initialize the instance variable. The second method member is

called display(). The display() method member declares a local variable

also called student, which is initialized with a value that is different from the

value of the instance value. Also in thedisplay()method are two statements that

display each variable on the screen. One statement displays the local variable, and

the other uses the this keyword to display the instance variable.

class Demo {
public static void main (String args []) {

myClass x = new myClass ();
x.display();

}
}
class myClass {

int student;
myClass(){

student = 1234;
}
void display() {

int student = 12;
System.out.println("Hello, student " + student);
System.out.println("Hello, student " +

this.student);
}

}

Garbage Collection
Your program can access members of a class as long as the instance of the class re-

mains in scope, which you learned about previously in this chapter. Although an

instance may go out of scope, the instance remains in memory until Java garbage

collection removes it.

In some computer languages, such as C and C++, a programmer can remove any

instance or data type from memory that is declared dynamically, such as you do using

136 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

thenew operator in Java. For example, thedelete keyword instructs C and C++ to

remove an object or data type from memory and make that memory available for

other use.

You cannot explicitly direct Java to remove from memory an instance or anything

else that is declared dynamically. Instead, Java removes it behind the scenes without

your intervention. The good thing about garbage collection is that you won’t forget

to release unneeded memory. The not-so-good thing is that you have no control over

when memory is released. This can become problematic if you have a memory-

intense program and a limited amount of available memory on the computer that

runs your program. Simply said, you cannot release memory for use by another part

of your program. Only Java can release memory at Java’s own schedule.

The finalize() Method
The finalize() method is another special method member of a class. The fi-
nalize()method member is called immediately before memory allocated for an

instance is released by Java’s garbage collection. You might be asking yourself

whether thefinalize()method member is an alternative to using a destructor in

your class definition. The answer is no.

A destructor, as you’ll recall, is a special method member that is called when an

instance of a class goes out of scope. Although an instance goes out of scope, the in-

stance remains in memory until it is picked up by Java’s garbage collection.

The finalize()method member is called after the instance goes out of scope

and immediately before the instance is picked up by Java’s garbage collection. That

is, the finalize()method member is called after the destructor is called and be-

fore the instance is removed from memory.

Programmers place statements within the finalize() method member that

release resources, such as those acquired to connect the program to a network or to a file.

The following example shows how to define afinalize()method member of

a class. You must designate the finalize()method member as having protected

access by using the protected access specifier, and you must use void as the return

type because finalize() does not return any value after it executes. Any state-

ment that you want executed when finalize() is called must be placed within

the body of the finalize() method member.

class Demo {
public static void main (String args[]) {

myClass x = new myClass();
}

CHAPTER 7 Classes 137

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
class myClass {

int student;
myClass(){

student = 0;
}
protected void finalize (){

//Place statements here
}

}

Inner Classes
A class definition can contain the definition of another class. This is called nested

classes. The two kinds of nested classes are static nested classes and nonstatic

nested classes.

A static nested class is one that is designed with a static modifier and cannot di-

rectly access members of its enclosing class. Instead, it must create an instance of the

enclosing class and use the instance to access members of the enclosing class.

Nested classes are rarely used.

A nonstatic class is called an inner class and is commonly used by programmers.

An inner class is defined within an enclosing class. The enclosing class is referred to

as an outer class. An inner class has access to all members of the outer class directly

without having to declare an instance of the outer class.

The inner class can contain instance variables and method members. However,

only the inner class knows those members. The outer class can access members of an

inner class by declaring an instance of the inner class and then using the instance to

access members of the inner class. The inner class is not accessible from outside the

outer class definition. This means that you cannot declare an instance of an inner

class within your program. An instance of an inner class can only be declared within

the definition of the outer class.

The following example illustrates how this is done. This example defines a class

called Outer. Within the Outer class definition is the definition of the Inner
class. You’ll notice there isn’t anything unusual about these definitions. They look

similar to other class definitions used in this chapter.

However, notice how the instance variable student is displayed on the screen

in this example. The instance variable student is declared as a member of the

Outer class, as is the display() member method. The display() method

member doesn’t contain statements that directly display the instance variable on the

138 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

screen. Instead, thedisplay()method member declares an instance of theInner
class and calls the Inner class’s print() member method, which directly dis-

plays the instance variable. The Inner class can directly access the Outer class’s

instance variable.

class Demo {
public static void main (String args []) {

Outer outer = new Outer();
outer.display();

}
}
class Outer {

int student = 1234;
void display() {

Inner inner = new Inner();
inner.print();

}
class Inner {

void print() {
System.out.println("Hello, student " + student);

}
}

}

Static Initializers
Sometimes, programmers define a class whose sole purpose is to initialize variables

that are used by other classes in the program. Programmers call such a class a static

initializer. A static intitalizer class contains static variables that can be used within a

program directly without declaring an instance of the class. This is Java’s way of

effectively enabling a program to create a global variable, which is a variable that

can be used throughout the program.

You reference a static variable by using the class name and the name of the static

variable separated by a dot, as shown in the following example. This example defines

the DefaultValues class. This class contains the static variable

passingGrade, which is initialized within the class. ThepassingGrade vari-

able is then called within the main() method and displayed on the screen.

class DefaultValues {
static int passingGrade = 70;

}

CHAPTER 7 Classes 139

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class demo {
public static void main(String args[]) {

System.out.println(
"The value of the passing grade is : " + DefaultValues.

passingGrade);
}

}

Packages
Programmers organize classes into groups, and each group is stored in a package.

The package provides naming and visibility control in addition to being an efficient

way to manage classes. Programmers reference a package at the top of their source

code whenever a class contained in the package is used in the source.

Before showing you how to access classes stored in a package, let’s explore how

to define your own package. You create a package by including thepackage state-

ment as the first statement in your Java source file. Classes defined within the source

file become members of the package.

The package statement looks like this:

package MyPackage;

This statement creates a package called MyPackage and places any classes de-

fined in the source code into this package when the source code is compiled. If you

exclude the package statement in your source code, Java uses the default package

to store your classes, which is the package used in examples throughout this book.

The default package has no name. Programmers use the default package for sample

programs, but they create their own packages for real-world applications.

You can use the same package statement in multiple source code files in order

to have the classes stored in those files placed in the same package. Programmers

typically have many source code files whose classes are stored in the same package.

Java stores a package in a directory of the same name on your disk drive. This

means that the MyPackage package is stored in the directory MyPackage. The

name of the directory must exactly match the name of the package, and the package

must always reside in that directory.

It is not unusual for programmers to create a hierarchy of packages, where a parent

package is associated with a child package. You will see this done all the time with

the Java class library. The Java class library consists of many hierarchical packages.

For example, Java GUI classes are stored with the following hierarchy:

java.awt.image

140 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this case, java is the parent package, and awt is the child package, which is

also a parent package to image.

You can create your own hierarchy of packages by specifying the package hierar-

chy in thepackage statement. Each package in the hierarchy must be separated by

a dot, as shown here:

package MyPackage.MyDaughter.MyGranddaughter

A directory structure is created to replicate the package hierarchy. Each package

in the hierarchy gets its own directory/subdirectory. For example, the MyPackage
hierarchy is stored in the following directory structure:

C:\MyPackage\MyDaugher\MyGraddaughter

The names of these directories must exactly match the names of these packages.

Using a Package
You access classes stored in a package by using an import statement at the top of

your source code. Theimport statement must contain the name of the package and

the class(es) you want to use in your source code.

Let’s say that you want to use the Student class that is contained in the

MyPackage package. You’d write the following import statement at the top of

your source code:

import MyPackage.Student

Theimport statement tells Java where to reference the class. Once a class is im-

ported into your source code, you can use the name of the class to reference it. You

don’t need to reference the package name.

In real-world applications, you’ll probably want to import all the classes of a

package rather than a few classes. You do this by using an asterisk rather than a class

name in theimport statement. Using the asterisk may increase compile time, but it

will have no effect on run-time performance. Here’s how you import all the classes

in the MyPackage package:

import MyPackage.*

You can reference a class within a package without having to import the package

by using the fully qualified class name in a statement within your source code. A

fully qualified class name consists of the package name, a dot, and the class name.

Let’s say that the Student class in MyPackage has a method member called

display(), and we want to call that method within our source code. Here’s how

this is done:

MyPackage.Student.display();

CHAPTER 7 Classes 141

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that the fully qualified class name is used rather than an import state-

ment. Using theimport statement or using the fully qualified class name produces

the same results.

You reference a package hierarchy in the import statement the same way you

reference a single package, except you use all the package names in the hierarchy,

separating each one with a dot.

CLASSPATH
Packages can cause you problems when compiling and running a program because

of the way Java locates packages. Java uses the CLASSPATH environment variable

to locate packages. If the directory containing a package is not referenced in the

CLASSPATH, the package won’t be found by Java.

An environment variable is a memory location allocated by an operating system

whose contents are available to programs running within the operating system. Some

environment variables are defined automatically by the operating system. Other envi-

ronment variables are defined by a program when the program is installed. And still

other environment variables are defined by a programmer. TheCLASSPATH environ-

ment variable is defined when you install Java on your computer.

Previously in this chapter, you learned that the default package is used whenever

you don’t specify a package in your source code. The default package is stored in the

default current working directory, and the default current working directory is on the

CLASSPATH. This is why you can compile and run programs without explicitly

specifying a package.

As you’ll recall, each package is stored in its own directory. That directory must

be included on the CLASSPATH in order for your source code to use the package;

otherwise, you won’t be able to compile your source code because the compiler

won’t know where to look for the package.

The CLASSPATH sets the top of the class hierarchy, so you must include the top

directory of your package hierarchy in the CLASSPATH. You do so by editing the

CLASSPATH. In Windows, you create or edit an environment variable by following

these steps:

1. Select the Control Panel.

2. Select Systems.

3. Select the Advanced tab.

4. Select Environment Variables.

5. Select New to insert the CLASSPATH environment variable, if it doesn’t

exist. You do this by entering a variable name (CLASSPATH) and a value,

which is the path to the package.

142 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6. If CLASSPATH already exists, highlight CLASSPATH and select Edit.

Then place the path to the package at the end of the CLASSPATH.

7. Click OK.

Packages and Access Protection
Previously in this chapter, you learned how access specifiers are used to control

access to members of a class. Packages provide a mechanism for controlling access,

too. A class is a container that encapsulates members of the class. A package is also a

container that encapsulates classes and subordinates packages.

Packages provide four kinds of access control to classes contained in a package:

• Control of subclasses in the same package

• Control of no subclasses in the same package

• Control of subclasses in a different package

• Control of classes that are not in the same package or not a subclass

The following table shows the effect access specifiers have on packages.

Same

Package

Same

Package,

Subclass

Same

Package, No

Subclass

Different

Package,

Subclass

Different

Package,

No Subclass

No Modifier Yes Yes Yes No No

Public Yes Yes Yes Yes Yes

Protected Yes Yes Yes Yes No

Private Yes No No No No

Quiz
1. What is an instance variable?

2. What is the difference between an instance and an object?

3. What is a class?

4. What is a constructor?

5. What is the difference between a destructor and the finalize() method

member of a class?

6. What does overloading a method member mean?

CHAPTER 7 Classes 143

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

7. How do you declare an instance of a class?

8. What is the purpose of an access specifier?

9. Can a constructor have an argument list?

10. What is a common reason for overloading a constructor?

144 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 7

P:\010Comp\DeMYST\454-8\ch07.vp
Saturday, April 10, 2004 11:56:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
8

Inheritance

Some say that inheriting wealth is the best thing that can happen to you, because you

don’t have to scrimp and save to get what you want. Instead, someone else has done

that for you, letting you focus on spending the money. Inheritance has a similar ef-

fect when you’re writing a Java program. Although you’ll still need to count your

pennies, you can utilize someone else’s classes. Instead of writing all the classes for

yourself, you can focus on creating only classes that no one else has written. You’ll

learn how to inherit classes in this chapter.

What Is Inheritance?
In the previous chapter, you learned that a class definition defines attributes and be-

haviors of a real-world object. Attributes are represented as instance variables, and

behaviors are represented as method members of a class.

Some objects have some things in common yet other things that are unique to

each kind of object. For example, a graduate student and an undergraduate student

are both students. That is, they have the same attributes and behaviors of all students.

Yet a graduate student also has attributes and behaviors that are different from other

145

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

146 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

kinds of students, such as paying tuition based on the graduate per-credit rate. An

undergraduate student pays tuition at the undergraduate per-credit rate.

Programmers tend to declare instance variables and define method members that

are common to multiple objects in one class definition. Then, classes that define related

objects can inherit that class. In the case of a student, a programmer would define

a student class that defines all the attributes and behaviors common to all students.

A programmer would also define a graduate student class and an undergraduate stu-

dent class. Both of these classes would inherit the common attributes and behaviors

of a student from the student class.

From a practical viewpoint, a programmer would have to replicate attributes and

behaviors common to all students in both the graduate student class and the under-

graduate student class if the student classes were not inherited. This amounts to re-

dundant code, which is something to avoid because it unnecessarily makes your

program complex and requires you to maintain the same code in more than one place

in the program.

When to Use Inheritance
Programmers follow a simple rule to determine when inheritance is appropriate for a

program. The rule is called “is a,” and it requires an object to have a relationship with

another object before it can inherit the object.

The “is a” rule asks the question, Is object A an object B? If so, then object A can

inherit object B. If not, then object A should not inherit object B. Technically, there is

nothing prohibiting one class from inheriting another class, but each inheritance

should pass the “is a” rule.

Let’s apply the “is a” rule to the student example discussed in the previous section

of this chapter. The three objects in this example are student, graduate student, and

undergraduate student.

First, apply the “is a” rule to the graduate student object. You do this by asking the

question, Is a graduate student a student? Sure is! Therefore, the graduate student

can inherit the student object.

Next, apply the “is a” rule to the undergraduate student object by asking, Is an

undergraduate student a student? That’s also true. Therefore, the undergraduate

student can inherit the student object.

Now let’s look at a slightly different example. Suppose you want to have the grad-

uate student object inherit the undergraduate student object. Will this pass the “is a”

test? In order to answer this question, you need to ask, Is a graduate student an under-

graduate student? The answer is no. Therefore, you know that the graduate student

should not inherit the undergraduate student.

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Inheritance 147

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

Inside Inherence
You cause a class to inherit another class by using the keywordextends in the class

definition. Think of this as telling Java that the second class is extending the class defi-

nition of the first class. The class that is being inherited is called a superclass. Some

programmers also call this a parent. The class doing the inheriting is called a sub-

class or a child.

The keyword extends is placed in the class definition of the subclass. Here is

the form for using the extends keyword. Class B is inheriting some or all the at-

tributes and behaviors of classA, depending on the access specifier (see Chapter 7).

class B extends class A {
}

The following example illustrates how to inherit a class. This example contains

two class definitions. First is the Student class definition and the second is the

GraduateStudent class definition. The GraduateStudent class is a sub-

class and inherits the Student class by using the extends keyword, which is

placed to the right of the class name.

class Student {

}

class GraduateStudent extends Student {

}

Accessing Members of an Inherited Class
As you’ll recall from Chapter 7, members of a class can be accessed based on its ac-

cess specifier. There are three access specifiers: public, private, and protected. A

member of any class can access a member designated as public. A member desig-

nated as private can only be accessed by a method member of its own class. A mem-

ber designated as protected can be accessed by method members of its own class and

by method members of subclasses that inherit the superclass.

This may seem confusing, so let’s take a look at an example so you can see how

this works. This example declares two classes other than the Java application class

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

called demo. These are the Student class and the GraduateStudent class.

The GraduateStudent class inherits the Student class.

class Demo {
public static void main (String args[]) {

GraduateStudent gs = new GraduateStudent();
gs.display();

}
}
class Student {

private int studentID;
Student (){

studentID = 12345;
}
protected void display(){

System.out.println("Student ID: " + studentID);
}

}

class GraduateStudent extends Student {

}

There are two members of the Student class besides the constructor. These are

an instance variable called studentID and a display() method member that

displays the value of the instance variable on the screen. The constructor (see Chap-

ter 7) is used to initialize the instance variable.

The GraduateStudent class doesn’t have any members, but it can access

public and protected members of the Student class because the

GraduateStudent class inherits the Student class. This means that an in-

stance of the GraduateStudent class can access the display() member

method of the Student class, just as if the display() method member was a

member of the GraduateStudent class.

This is illustrated in statements within the main() method of the application.

The first statement declares an instance of theGraduateStudent class. The sec-

ond statement uses the instance to call the display() method member. Looking

at the main() method, you’d think that the display() method is a member of

theGraduateStudent class, when in fact thedisplay()method is a member

of the Student class.

148 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Inheritance 149

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

The Superclass Can Be Instantiated
There is practically no difference between a superclass and a subclass class, except

that a subclass has access to public and protected members of the superclass. This

means you can declare an instance of the superclass without having to declare an in-

stance if the subclass.

Let’s modify the previous example to illustrate how this is done. This example is

practically the same as the previous one. The GraduateStudent class inherits

the Student class. However, we don’t declare an instance of the

GraduateStudent class in themain()method. Instead, we declare an instance

of the Student class. We then proceed to call the display()method to display

the value of the studentID instance variable on the screen.

class Demo {
public static void main (String args[]) {

Student s = new Student();
s.display();

}
}
class Student {

private int studentID;
Student (){

studentID = 12345;
}
protected void display(){

System.out.println("Student ID: " + studentID);
}

}

class GraduateStudent extends Student {

}

One-way Inheritance
Inheritance is a one-way street. That is, a subclass can access public and protected

members of the superclass, but the superclass cannot access members of the sub-

class. In fact, the superclass doesn’t know the existence of the subclass.

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is important to keep in mind whenever you use inheritance in your program;

otherwise, you might use a method member of the superclass to interact with mem-

bers of the subclass, only to discover that you receive an error when you compile

your program.

Calling Constructors
At least two constructors are involved whenever a subclass inherits a superclass. Both

of these classes have a constructor. As you’ll recall from Chapter 7, every class has a

default constructor that is automatically called when you create an instance of a class.

This is true even if you don’t define a constructor in your class. A default constructor is

defined for every class as part of the Java language. It has no arguments. However, if a

constructor is declared in a class, then the default constructor doesn’t exist.

Java calls the constructor of the subclass and the superclass when you declare an

instance of the subclass. That is, both constructors execute. Java calls the constructor

of the superclass first and then calls the constructor of the subclass. Only if a con-

structor does not explicitly invoke another constructor does Java implicitly invoke

the superclass constructor automatically. The implicit call is super(), so the

superclass must define a constructor with no arguments.

As you’ll see later in this chapter, you use multilevel inheritance in your program.

This means a superclass is inherited by a subclass, and the subclass is inherited by

another subclass. Each class has at least one default constructor, and all of them are

executed whenever an instance of the lowest subclass is declared.

Java executes each constructor beginning with the constructor of the superclass,

followed by the constructor of the first subclass, and then the constructor of the sec-

ond subclass. This is true only if all classes in the inheritance chain have constructors

that have no arguments.

Using the super Keyword
On occasion, you’ll need to explicitly reference the members of the superclass from a

method member of a subclass. For example, the superclass may have overloaded con-

structors. As you’ll recall from Chapter 7, a class definition can define two or more

constructors, each of which has a different method signature. One constructor might

not have an argument list, whereas another constructor may have an argument list.

150 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Typically, the constructor of a superclass is called from within a constructor of a

subclass using the following statement:

super ();

This statement tells Java to run the constructor of the superclass that doesn’t con-

tain an argument list. Here’s a similar statement that tells Java to run a constructor of

the superclass that has an argument list that consists of one integer:

super (5555);

The super keyword is used to refer to a member of a superclass other than the

constructor. Let’s suppose you want to call the superclass’s display() method

from within a subclass’s display() method. Here’s how this is written:

super.display();

You’ll notice that the keyword super is used in the same way a reference to an

instance is used to refer to a member of a class within your program.

The following example illustrates how to use the super keyword within a Java

program. This example defines the GraduateStudent class and Student
class, which you’ve seen used in previous examples in this chapter.

The Student class defines two constructors, both of which initialize the in-

stance variable. The first constructor uses a default value for the initialization. The

second constructor uses the value of the argument list as the initialization value.

The second constructor is said to overload the first constructor. The Student
class also defines a display()method member that is used to display the value

of the instance variable on the screen.

The GraduateStudent class defines a constructor and defines a dis-
play() method member. The GraduateStudent constructor contains one

statement that uses the super keyword to call the overloaded constructor of the

Student class, passing it the value 5555. The GraduateStudent display

member method also has one statement. This statement uses the super keyword to

tell Java to run thedisplay()member method of theStudent class, which dis-

plays the value of the instance variable on the screen. Here’s the value displayed on

the screen:

Student ID: 5555

class Demo {
public static void main (String args[]) {

GraduateStudent gs = new GraduateStudent ();
gs.display();

}
}
class Student {

CHAPTER 8 Inheritance 151

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private int studentID;
Student (){

studentID = 12345;
}
Student (int sID){

studentID = sID;
}
protected void display(){

System.out.println("Student ID: " + studentID);
}

}
class GraduateStudent extends Student {
GraduateStudent(){

super (5555);
}
public void display() {
super.display();

}
}

Multilevel Inheritance
As mentioned previously in this chapter, you can use multilevel inheritance in your

program. Multilevel inheritance enables a subclass to inherit members of more than

one superclass. Programmers use multilevel inheritance to group together simpler

objects into more complex objects.

Some programming languages, such as C++, have various kinds of multiple in-

heritance. However, Java has one kind of multiple inheritance called multilevel in-

heritance. Multilevel inheritance limits a subclass to inherit from one superclass.

However, that superclass can itself be a subclass of another superclass.

Let’s take a look at an example so you can clearly see this relationship. We’ll de-

fine three classes: the Person class, the Student class, and the

GraduateStudent class. Notice that each of these classes pass the “is a” test.

That is, a graduate student is a student, and a student is a person. This means that we

can relate together these classes using inheritance. Classes that don’t pass the “is a”

test shouldn’t be related together.

Multilevel inheritance limits a subclass to inherit from one superclass. However,

we need the GraduateStudent class to inherit members of both the Student
class and thePerson class. We can work around the limits of multilevel inheritance

by first creating an inheritance relationship between the Person class and the

152 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Student class. That is, the Student class will inherit the Person class. The

Student class has access to all its own members and access to the public and pro-

tected members of the Person class.

Next, we create an inheritance relationship between the Student class and the

GraduateStudent class. The GraduateStudent class inherits the public

and protected members of theStudent class, which includes access to the public and

protected members of the Person class, because the Student class has already

inherited access to those members by inheriting the Person class.

This example creates a two-level inheritance. The first level consists of the Per-
son class and the Student class. The Person class is the superclass, and the

Student class is the subclass. The second level consists of theStudent class and

theGraduateStudent class, where theStudent class is the superclass and the

GraduateStudent class is the subclass.

You can have any number of levels of inheritance in your program as long as each

class passes the “is a” test. However, programmers try to avoid using more than three

levels because each level adds a degree of complexity to the program and makes it a

little more difficult to maintain and update.

The following program illustrates the previous example. This program defines

the Person class, the Student class, and the GraduateStudent class. The

Person class contains an instance variable called name, a constructor that

initializes the instance variable, and a method member that displays the instance

variable on the screen. TheStudent class is similar to thePerson class, but its in-

stance variable stores a student ID. The GraduateStudent class has one mem-

ber—a method member called display(). The display() method member

callsdisplay()method members of thePerson class and theStudent class.

Statements in the main() method declare an instance of the

GraduateStudent class and call thedisplay()method member of that class

to display the name and student ID of the student. Each of these are processed behind

the scenes by the corresponding class.

class Demo {
public static void main (String args[]) {

GraduateStudent gs = new GraduateStudent ();
gs.display();

}
}
class Person {
private String name;
Person(){

name = "Bob Smith";
}
protected void displayName(){

CHAPTER 8 Inheritance 153

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Student Name: " + name);
}

}
class Student extends Person {

private int studentID;
Student (){

studentID = 12345;
}
protected void displayStudentID(){
System.out.println("Student ID: " + studentID);

}
}
class GraduateStudent extends Student {

protected void display(){
displayName();
displayStudentID();

}
}

Overriding Method Members
Using Inheritance

Previously you learned that a method member enables an instance of a class to per-

form a specific kind of behavior, such as displaying instance variables on the screen.

A subclass inherits behavior from a superclass when a subclass can access method

members of the superclass. You saw this in the previous example, where the

GraduateStudent class called method members of its superclass to display in-

stance variables.

Sometimes the behavior of a method member of a superclass doesn’t meet the

needs of a subclass. For example, the manner in which a superclass’s method mem-

ber displays an instance variable isn’t exactly the way the subclass wants the in-

stance variable displayed.

In this case, a programmer defines another version of the superclass’s method

member within the subclass and includes statements that enhance the original be-

havior of the superclass’s method member. Programmers referred to this as overrid-

ing a method member.

Don’t confuse overriding a method member with overloading a method, which

you learned about in Chapter 6. Overloading a method requires you to define a

method that has the same method name but a different argument list than a method

154 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that is already defined. That is, each method has a different signature. Overriding a

method member requires you to use the same method name and the same argument

list as a method member defined in a subclass’s superclass.

You might think that having two method members with the same signature will

confuse Java. It won’t, and here’s why: Java uses method members of the class

whose instances call the method. Therefore, if you use an instance of the subclass in

your program to call the method member, Java uses the subclass’s version of the

method member.

Let’s take a look at an example to see how this works. The following program is a

variation of the program used in the previous example. Here’s what is happening in

this program: three classes are defined. They are the Person class, the Student
class, and the GraduateStudent class. The Person class and the Student
class both declare an instance variable, initialize the instance variable, and define a

method member called display() that displays its instance variable. Notice that

these instance variables are designed with the protected access specifier. This means

they can be accessed directly by the subclass.

Neither version of the display() method member is suitable for the

GraduateStudent class. Therefore, the GraduateStudent class overrides

the display() method member. Statements within the new version of the dis-
play() method directly access instance variables of the Person class and the

Student class.

An instance of the GraduateStudent class is declared in the main()
method, and the instance is used to call the display() method. Java uses the

display() method member defined in the GraduateStudent class.

class Demo {
public static void main (String args[]) {

GraduateStudent gs = new GraduateStudent ();
gs.display();

}
}
class Person {

protected String name;
Person(){

name = "Bob Smith";
}
void display(){
System.out.println("Person Class: " + name);

}
}
class Student extends Person {

protected int studentID;

CHAPTER 8 Inheritance 155

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Student (){
studentID = 12345;

}
void display(){
System.out.println("Student Class: " + studentID);

}
}
class GraduateStudent extends Student {

void display(){
System.out.println("Graduate Student Class:");
System.out.println("Name:" + name);
System.out.println("Student ID: " + studentID);

}
}

Dynamic Method Dispatch
Dynamicmethod dispatchmight seem to be a term you need four years at MIT to un-

derstand. However, the concept of dynamic method dispatch is rather simply to un-

derstand. Let’s begin by translating this term into everyday English.

The word dynamic refers to doing something when the program runs as opposed

to when the program is compiled. You’ve seen this word used previously in this book

when you learned how to dynamically declare an object (that is, declaring memory

for an object at run time rather than compile time).Method dispatch simply means

the program is calling a method member of a class. Therefore, dynamic method dis-

patch means deciding which method member to call when your program runs rather

than making that decision when your program is compiled.

The method member that we’re talking about is a method member of a subclass

that overrides a method member of a superclass. You learned how to override

method members in the previous section of this chapter.

You call a method member by using a reference to its instance, the dot operator, and

the name of the method member, which you learned how to do in this chapter. For ex-

ample, here is how to call the display() method member of the Person class:

Person p = new Person ();
p.display();

Suppose that the Person class is a superclass, and its subclass (called the Stu-
dent class) needs to modify the behavior of thedisplay()method member. The

Student class does this by overriding thedisplay()method member. You saw

how to do this in the previous section of this chapter. You determine which version of

the display() method member to call by referencing the appropriate instance.

156 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, you’d reference the instance of the Person class when calling the

Person class’s display() method member. Likewise, you’d reference the in-

stance of theStudent class when calling itsdisplay()method member. These

calls are made at compile time.

Dynamic method dispatch enables you to use the same reference to call different

versions of an overridden method member. These calls are made at run time. Let’s

discuss how this works.

In Chapter 7, you learned how to assign an instance of a class to a reference and

then use the reference to call members of the instance. Typically, programmers de-

clare a reference, declare an instance, and assign the instance to the reference all in

one statement, as shown here:

Person p = new Person();

Alternatively, a reference can be declared in one statement, and the assignment of

the instance to the reference happens in another statement, as illustrated here:

Person p;
p = new Person();

Java uses dynamic method dispatch when you declare a reference and then assign

the reference with the reference of an instance whose method member you want to

call. Throughout the program, you can switch references and thus call different ver-

sions of the overridden method member.

The following example illustrates how to call method members this way by using

dynamic method dispatch:

class Demo {
public static void main (String args[]) {

Person temp;
Person p = new Person ();
Student s = new Student ();
GraduateStudent gs = new GraduateStudent ();
temp = p;
temp.display();
temp = s;
temp.display();
temp = gs;
temp.display();

}
}
class Person {

protected String name;
Person(){

name = "Bob Smith";

CHAPTER 8 Inheritance 157

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
void display(){
System.out.println("Person Class: " + name);

}
}
class Student extends Person {

protected int studentID;
Student (){

studentID = 12345;
}
void display(){
System.out.println("Student Class: " + studentID);

}
}
class GraduateStudent extends Student {

void display(){
System.out.println("Graduate Student Class:");
System.out.println("Name:" + name);
System.out.println("Student ID: " + studentID);

}
}

As you can see, the example defines three classes—the Person class, the Stu-
dent class, and theGraduateStudent class. All three are the same classes used in

the previous example in this chapter. ThePerson class defines adisplay()method

member, and the other two classes override the display() method member.

Dynamic method dispatch occurs within the main() method, where the first

statement declares a reference of the Person class called temp. The temp refer-

ence is later assigned references to instances of the Person class, the Student
class, and the GraduateStudent class.

Remember that a reference points to the first member address of the instance.

When a reference to an instance is assigned to the temp reference, the temp refer-

ence also points to the same instance. This is illustrated in the following statement of

the preceding program:

temp = p;

Prior to this assignment, the program declares p as a reference to an instance of

the Person class and assigns it an instance. Likewise, the program declares temp
as a reference to an instance of thePerson class. However,temp is not assigned an

instance of the class. Instead, temp is a reference to nothing—that is until the pro-

gram assigns it the referencep, at which time both the referencetemp andp point to

the same instance.

158 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the temp reference is assigned another reference, the temp reference is

used to access members of the instance, which in this program is calling the dis-
play() method member of the instance.

Abstract Classes
So far in this chapter, you have seen how a subclass can override a method member

of its superclass. However, overriding the method member is optional for a subclass.

There will be occasions when the superclass requires that a subclass override a

method member.

Let’s say that you want any class that inherits thePerson class to define adis-
play()method in order to display a person’s name. Each subclass has it own way

of displaying a person’s name. For example, the Student class might use the stu-

dent’s first name, whereas the GraduateStudent class might use the graduate

student’s first name.

You could define a display() method member in the Person class with

statements that display a person’s name, but none of the subclasses will use this

method member because each overrides the method with its own way of displaying

this information to the user.

Another option is not to define thedisplay()method member in thePerson
class and leave each subclass to define its own method member. The problem with

this option is that the programmer writing a subclass has the option not to define such

a method member.

The third and preferred alternative is to define a general display() method

member in thePerson class and let each subclass provide its own details within the

display() method member in order to retrieve a person’s name. A general

method member is a method definition that contains a method name, and argument

list, and return value, but no method body. Each subclass overrides this method

member and provides its own method body. A subclass must override this method

member. It cannot simply use the method member of the superclass.

The superclass that defines a general method member is called an abstract class,

and the general method is called an abstractmethod member. You cannot declare an

instance of an abstract class. All abstract classes must be superclasses.

You define an abstract class similarly to how you define any class, except you pre-

cede the class name with the keyword abstract. Within the abstract class defini-

tion, there must be at least one abstract method member. You declare an abstract

method member similarly to how you define a method member, except the definition

CHAPTER 8 Inheritance 159

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

begins with the keyword abstract. The following example shows how to define

an abstract class and abstract method member:

abstract Person {
abstract void display();

}

Notice there isn’t a body defined for the display() method member because

this version of the display() method member can never be called. Therefore, it

doesn’t make sense to place statements within the body of the method member.

The following example shows how to use an abstract class and abstract method

member in a program. This example is very similar to other examples used

throughout this chapter in that it defines a Person class, a Student class, and a

GraduateStudent class.

What is different in this program is that thePerson class is anabstract class,

and the display() method member of that class is an abstract method. Another

difference is that an instance of the Person class is not declared within the pro-

gram. If we tried to declare an instance of the Person class, we’d receive a com-

piler error. Likewise, if the Student class and GraduateStudent class fail to

define a display() method member, we’d also receive a compiler error.

class Demo {
public static void main (String args[]) {

Student s = new Student ();
GraduateStudent gs = new GraduateStudent ();
s.display();
gs.display();

}
}
abstract class Person {

abstract void display();
}
class Student extends Person {

protected int studentID;
Student (){

studentID = 12345;
}
void display(){
System.out.println("Student Class: " + studentID);

}
}
class GraduateStudent extends Student {

void display(){
System.out.println("Graduate Student Class:");

160 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Student ID: " + studentID);
}

}

Although you cannot declare an instance of an abstract class, you can declare a

reference to an abstract class and use the reference to point to instances of other ap-

propriate classes. For example, the following statement is illegal because the Per-
son class is an abstract class:

Person p = new Person();

However, the following statement is legal because you can declare a reference to

the Person class even though the Person class is an abstract class:

Person p;

An abstract class can define nonabstract members. A nonabstract member can be

accessed by a subclass of the abstract class. This is illustrated in the next example,

where an instance variable called name is declared in the Person class, and the

constructor of the Person class initializes the instance valuable. The Student
class inherits thePerson class and has access to the initialized instance variable.

abstract class Person {
protected String name;
Person(){

name = "Bob Smith";
}
abstract void display();

}
class Student extends Person {

protected int studentID;
Student (){

studentID = 12345;
}
void display(){
System.out.println("Student Class: " + studentID);
System.out.println("Student Class: " + name);

}
}

The final Keyword and Inheritance
The final keyword has two uses in inheritance. First, the final keyword is used

with a method member of a superclass to prevent a subclass from overriding the

CHAPTER 8 Inheritance 161

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

method member. The second use is to use the final keyword with a class to pre-

vent the class from becoming a superclass (that is, to prevent another class from

inheriting it).

Let’s begin exploring the final keyword by using it to prevent a subclass from

overriding a superclass’s method member. Suppose that a superclass defines a

method member that displays a warning message on the screen. In order to prevent

subclasses from overriding this superclass’s method member, we designate the

method member as final. The keyword final tells Java that this is the final defini-

tion of the method member.

You designate a member method as final by preceding the method member defi-

nition with the keyword final, as shown here. Any attempt by a subclass to over-

ride the warningMsg() method member will result in a compiler error.

class Person {
final void warningMsg(){

System.out.println("Invalid Entry.");
}

}

A class can inherit any other class. However, you can prevent your class from be-

ing inherited by preceding the name of the class with the keywordfinal. The key-

word final tells Java that no class can inherit this class. This means that the only

way to access members of the class is to declare an instance of the class within a pro-

gram and use the instance to access its members.

The following example shows how to use the final keyword to prevent the

Person class from being inherited by other classes:

final class Person {
void warningMsg(){

System.out.println("Invalid Entry.");
}

}

The Object Class and Subclasses
Java defines a master superclass called the Object class that is automatically in-

herited by all other classes, including classes you define in your program. This

means that your class is a subclass of the Object class without you having to in-

herit the Object class by using the extends keyword. This also means that your

class can access method members defined in the Object class.

162 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Object class defines 11 member methods that are available to all classes

you define. These are shown in Table 8-1.

Quiz
1. What is an abstract method member of a class?

2. Explain the “is a” rule of inheritance.

3. What is the purpose of the keyword extends?

4. What effect does the keyword final have on a method member?

5. What is a superclass?

6. What is an abstract class?

7. What is the Object class?

8. How can you prevent a class from being inherited?

9. What is the purpose of the keyword super?

10. What is multilevel inheritance?

CHAPTER 8 Inheritance 163

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 8

Method Member Description

Object clone() Creates a new object of the object being cloned

boolean equals(Object obj) Determines whether two objects are equal

void finalize() Called before the garbage collector recycles

an object

Class getClass() Retrieves the class of an object at run time

int hashCode() Returns the hash code of an object

void notify() Resumes execution of a thread that is waiting

for an object to be called

void notifyAll() Resumes execution of all threads that are

waiting for an object to be called

String toString() Returns a string of the object

void wait()
void wait(long milliseconds)
void wait(int nanoseconds)

Waits for another thread in order to call

an object

Table 8-1 Method Members of the Object Class

P:\010Comp\DeMYST\454-8\ch08.vp
Saturday, April 10, 2004 12:06:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
9

Exception
Handling

It might be wishful thinking to suppose that every program you write will work per-

fectly each time it runs. The fact of the matter is, well-designed and craftily coded

programs run nearly perfectly all the time, but that’s not good enough for many ap-

plications that can’t afford to have an error cause them to crash. There isn’t any way

to guarantee that errors won’t occur. However, there is a way to have your program

handle errors when they happen—by writing code that handles those exceptions to

normal operations of your program. Programmers call this exception handling,

which is the topic of this chapter.

What Is an Exception?
An exception is something other than what occurs normally. For example, most cars

stop at red lights. A car that passes through a red light is an exception. Exception

165

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

handling is something that addresses the exception, by either correcting the problem

or preventing the problem from worsening. In the case of the erratic motorist who

runs the red light, a police officer addresses this exception by stopping the car and

giving the driver a summons. Hopefully, the summons corrects the driver’s poor

driving behavior. The police officer might also park his police car near the intersec-

tion to prevent the problem from worsening. Only the foolhardy would tempt fate by

driving through a red light in clear view of a police officer.

In programming, two kinds of exceptions might occur with a program. These are

commonly referred to as compile errors and run-time errors. A compile error usu-

ally occurs because the programmer made a fundamental mistake in the program,

such as failing to include a semicolon at the end of a statement or mistyping the name

of a variable. The compiler catches these kinds of errors.

A run-time error occurs when the program runs and is caused by a number of rea-

sons, such as the program anticipating something that doesn’t happen. Let’s say that

a program calculates the average grade of students who take a test. The instructor

first enters into the program the number of students who sat for the test and then en-

ters the test scores. The program tallies the scores and divides by the number of stu-

dents who sat for the test. Suppose the instructor entered zero as the number of

students who took the test, but entered the test scores. The program tries to divide by

zero when calculating the average grade. This is illegal and causes a run-time error.

In this case, the program anticipated that the instructor would enter a number greater

than zero, which didn’t happen.

Run-time errors are more serious than compile errors because the programmer is

around to address a compiler error, but is likely not available when a run-time error

occurs. Therefore, programmers must anticipate run-time problems and build into a

program ways to address those problems automatically.

Exception Handlers
Programmers build into their programs exception handlers designed to react to run-

time errors. An exception handler is a portion of the program that contains state-

ments that execute automatically whenever a specific run-time error occurs while

the program runs. Including an exception handler in a program is referred to as ex-

ception handling.

Not all computer languages support exception handling. Therefore, programmers

are left to their own vices to handle run-time errors, usually by testing conditions that

might generate a run-time error. For example, a programmer is likely to test whether

an instructor input a valid entry (for example, zero number of students sitting for the

166 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

test) before processing the input. The program traps an invalid entry before the entry

causes the run-time error.

A lot of conditions need to be tested for in a typical program, which makes this

approach to exception handling complex and cumbersome for many programs to

enact. Fortunately, Java supports exception handling, enabling a programmer to

avoid having to identify conditions that have the potential of causing run-time errors

and having to devise and code a test to catch errors before an error impacts the opera-

tion of the program.

Basic Exception Handling
Certain statements within a program are susceptible to causing a run-time error.

These statements typically depend on a source outside of the control of the program,

such as input from the person using the program or processing that could generate a

run-time error.

Rather than test input received from outside sources and from processing, pro-

grammers tell Java to monitor those statements and then throw an exception if a run-

time error occurs. Programmers provide Java with statements that are to be executed

if an exception is thrown. This is referred to as catching an exception.

Statements that you want monitored by Java must appear within a try block. A try

block consists of the keyword try followed by opening and closing braces, which

define the block itself. Statements appearing within the opening and closing braces

are monitored by Java for exceptions.

Statements that are executed when an exception is thrown by Java are placed

within a catch block. A catch block consists of the keyword catch followed by

opening and closing braces. Statements within the opening and closing braces are

executed when an exception is thrown. A catch block responds to one kind of excep-

tion, which is specified within the catch block’s parentheses. Multiple catch blocks

are used to respond to multiple exceptions.

Every try block must have at least one catch block or a finally block. The catch

block must appear immediately following its corresponding try block. Failure to

pair them causes a compiler error.

Let’s see how the try and catch blocks are used in a program. The following exam-

ple uses a try block to monitor statements in the main()method. These statements

declare and initialize variables and then perform division. Notice that the value of

variableb is zero and that variableb is used as the divider in the division expression,

which generates a run-time error.

CHAPTER 9 Exception Handling 167

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

At the end of the try block is a catch block. The catch block is said to catch an

ArithmeticException that is represented by the variable e. Think of

ArithmeticException as a type of exception and the variable e as the specific

exception within this exception type. Exceptions of the ArithmeticException
variety are errors in arithmetic. Therefore, catch catches arithmetic errors.

Code that is being monitored by the try block generates an arithmetic error when

it tries to divide by zero. When Java detects this error, it throws a “divide by zero” ex-

ception and assigns it to variable e. The content of variable e is then used by the

statement within the body of the catch block to display the exception on the screen.

The following message is displayed on the screen when you run this program:

Error: java.lang.ArithmeticException: / by zero

class Demo {
public static void main (String args[]) {

try {
int a = 10, b = 0, c;
c = a/b;

} catch (ArithmeticException e) {
System.out.println("Error: " + e);

}
}

}

Multiple Catch Blocks
In the real world, a series of statements might generate more than one kind of run-

time error. Therefore, programmers use multiple catch blocks, each one designed to

catch a specific type of exception.

Multiple catch blocks must immediately follow the try block where the exception

might be thrown. Also, each of those catch blocks must follow one another, which is

illustrated in the next example.

When an exception occurs, Java throws the exception to each catch block in the

order the catch blocks appear beneath the related try block. Let’s say there are two

catch blocks. If the first catch block catches the exception, the second catch block is-

n’t thrown the exception because the first catch block handles it.

The following example shows how to use multiple catch blocks within your

program. This example is nearly the same as the previous example, except an

array is used instead of variables. We do this in order to demonstrate how the sec-

ond catch block works. The second catch block catches the exception

168 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ArrayIndexOutOfBoundsException, which is thrown if the program uses

an index that is out of bounds of the array. Notice that the program references a[3]
in the calculation. However, there isn’t an index 3. Therefore, Java throws an out-of-

bounds exception, causing the second catch block to display the following message

on the screen:

Error: java.lang.ArrayIndexOutOfBoundsException: 3

class Demo {
public static void main (String args[]) {

try {
int a[] = new int[3];
a[0] = 10;
a[1] = 0;
a[2] = a[0]/a[3];

} catch (ArithmeticException e) {
System.out.println("Error: " + e);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Error: " + e);

}
}

}

The Finally Block
The finally block is used to place statements that must execute regardless of whether

an exception is or is not thrown. That is, statements within the finally block execute

all the time. Typically, programmers place statements within a finally block that re-

lease resources reserved by the program.

For example, a connection to a database might have been opened at the beginning of

the program. If an exception is thrown before the program properly terminates, the da-

tabase connection might still be open. Programmers resolve this problem by placing

statements that close the database connection in the finally block, because statements

in the finally block are executed whether there is or isn’t an exception thrown.

The following example illustrates how to use the finally block in your program.

You’ll notice that this example is the same as the previous example, except we in-

cluded the finally block. The finally block contains one statement that displays a

message on the screen, showing you that the statement executed:

class Demo {
public static void main (String args[]) {

CHAPTER 9 Exception Handling 169

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

try {
int a[] = new int[3];
a[0] = 10;
a[1] = 0;
a[2] = a[0]/a[3];

} catch (ArithmeticException e) {
System.out.println("Error: " + e);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Error: " + e);

} finally {
System.out.println(

"The finally block executed.");
}

}
}

Working with Uncaught Exceptions
Although there are many exceptions that can occur when your program executes,

you don’t have to write a catch block to catch all of them. It is simply not feasible to

do so. Instead, any exception that doesn’t have a catch block in your program is

caught by Java’s default catch block, which is called the default handler.

The default handler displays two kinds of information on the screen whenever it

catches an exception: a string that describes the exception and a stack trace. A stack

trace shows you what has been executed, beginning with a point in your program

where the exception was thrown to the point when the program terminated.

This is clearly illustrated in the next example, which causes a “divide by zero” ex-

ception to be thrown. Notice that this example does not contain a try block or a catch

block. Therefore, all exceptions are caught by the default handler.

class Demo {
public static void main (String args[]) {

int a = 10, b = 0, c;
c = a/b;

}
}

Here’s what the default handler displays on the screen when it encounters the

exception:

Exception in thread "main" java.lang.ArithmeticException:
/ by zero at demo.main(demo.java:4)

170 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Exception Handling 171

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

The first line is the string message that describes the exception. The second line is

the stack trace. The stack trace is saying that the exception occurred at line 4 in the

main()method of the demo.java program. If you look at line 4 of the previous ex-

ample, you’ll notice that it’s the line that contains the calculation. This is where the

program terminated once the exception is thrown.

If the exception is caused by a statement within a method called from the

main() method, the stack trace includes both methods, showing you the path to-

ward the statement that caused the exception. You can see this in the next example,

where the calculation that causes the “divide by zero” error is placed in a method

called by a statement within the main() method:

class Demo {
public static void main (String args[]) {

myMethod();
}
static void myMethod() {

int a = 10, b = 0, c;
c = a/b;

}
}

Here is the stack trace that is displayed when the previous example is executed:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at demo.myMethod(demo.java:7)
at demo.main(demo.java:3)

The first line is the message that describes the exception. The second line begins the

stack trace. Beginning by reading the stack trace from the last line, here’s what the

stack trace is saying: First, the main()method of the demo.java program is called.

Then, in line 3 of the program, myMethod() is called. Line 7 of the program,

which is within the myMethod() definition, is where the program terminated

because of an exception.

Nested Try Statements
Sometimes programmers combine two or more try blocks by placing one try block

within another try block. This is referred to as nesting a try block, where the inner try

block is considered the nested try block (that is, nested within the outer try block).

Collectively they are called a nested pair of try blocks.

Each try block in the nested pair should have one or more catch blocks or a finally

block that catch exceptions thrown by Java. The catch blocks are placed following

the corresponding try block identically to the way single try blocks and catch blocks

are written.

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a statement in an inner try block causes an exception to be thrown, the catch

blocks associated with the inner try block are the first to be matched to the exception.

If none of those catch blocks catches the exception, the catch blocks associated with

the outer try block are matched. If the exception still isn’t caught, the default handler

catches the exception.

The following example illustrates how a nested try block works. This example is

similar to the previous example used to show you how to use two catch blocks in

your program. There is one error in this program. We are trying to access array ele-

ment a[3], which doesn’t exist. Therefore, the array index is out of bounds.

This example contains two try blocks. The inner try block contains statements

that cause the error. The catch block associated with the inner try block catches only

arithmetic exceptions. This means that it does not catch the “out of bounds” excep-

tion. The outer try block contains only the inner try block. However, the catch block

associated with the outer try block does catch arithmetic exceptions. Therefore, it is

this catch block that catches the arithmetic exception thrown by the inner try block.

It is important to understand that although the outer try block in this example does

not contain any statements other than the inner try block, you can include statements

within the outer try block.

class Demo {
public static void main (String args[]) {

try {
try {

int a[] = new int[3];
a[0] = 10;
a[1] = 0;
a[2] = a[0]/a[3];

} catch (ArithmeticException e) {
System.out.println("Error: " + e);

}
} catch (ArrayIndexOutOfBoundsException e) {

System.out.println("Error: " + e);
}

}
}

Throwing an Exception
Sometimes programmers find it advantageous to throw an exception explicitly from

the program whenever the program encounters an error that can be addressed by a

172 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

catch block. Let’s say that user input is used as the divisor for a calculation. The pro-

gram determines that the input is zero and therefore would lead to a “divide by zero”

error if the expression is calculated. Rather than perform the calculation, the pro-

grammer could write statements to have the program explicitly throw a “divide by

zero” exception.

Programmers also explicitly throw an exception to test the function of catch blocks.

Think about this for a second. You can write catch blocks to process exceptions, but

there isn’t any way to test these catch blocks until an exception occurs—and the ex-

ception may never occur during testing. Programmers throw an exception during test-

ing in order to determine how successful a catch block handles an exception.

You explicitly throw an exception by using the throw keyword in a statement

within your program. Thethrow keyword must be followed by the exception that is

being thrown. The exception is specified using thenew operator, the name of the ex-

ception, and the error message that is to be displayed when the exception is caught

by a catch block.

The fol lowing example i l lustrates how to explici t ly throw an

ArithmeticException. This example evaluates the divisor before performing

a calculation. If the divisor is zero, the exception is thrown rather than the calculation

being performed.

The statement that calls the throw keyword uses the new operator to create an

instance of the ArithmeticException exception. In this example,

ArithmeticException() is a constructor that accepts a parameter that is used

as the error message. There is also a constructor that does not accept a parameter. It is

used if you don’t want to create your own exceptions message.

The catch block matches the exception and therefore catches it. The parameter e
contains the following value:

java.lang.ArithmeticException: Divide by zero.

The first part is provided by Java and the “Divide by zero.” portion is the parame-

ter of theArithmeticException constructor. The catch block also corrects the

problem by assigning zero to variablea, which is then displayed on the screen by the

statement following the catch block.

class Demo {
public static void main(String args[]) {
int a = 10, b = 0, c;
try {

if (b == 0)
throw new ArithmeticException (

"Divide by zero.");
else

CHAPTER 9 Exception Handling 173

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

c = a/b;
} catch (ArithmeticException e) {
System.out.println("Error: " + e);
a = 0;

}
System.out.println("a = " + a);

}
}

It is important to understand that the throw keyword must use an instance of a

throwable object or a subclass of a throwable object. This means that you must use

an exception and cannot use an int, char, or String.

Methods That Don't Handle Exceptions
A method that can cause an exception does not have to handle the exception. How-

ever, the method header must specify the exceptions that the method can cause. In

this way, a programmer who calls the method can provide a catch block to handle

any exceptions that are not caught by the method.

You specify exceptions by using the keyword throws in the method header to

the right of the parameter list. Programmers call this the exception list. A comma

must separate each exception in the exception list. The programmer who calls the

method does not have to provide any catch blocks to catch the exceptions the method

throws. The default handler provided by Java catches exceptions that are not caught

by the program.

The following example shows how to specify exceptions that are thrown but not

caught by a method. Two exceptions can be thrown by myMethod(). These are

ArithmeticException and ArrayIndexOutOfBoundsException.

However, myMethod() does not catch either of them. The main() method does

catch theArithmeticException exception, but it leaves Java’s default handler

to catch the ArrayIndexOutOfBoundsException exception.

class Demo {
static void myMethod()

throws ArithmeticException,
ArrayIndexOutOfBoundsException {

int a[] = new int[3];
a[0] = 10;
a[1] = 0;
a[2] = a[0]/a[1];
System.out.println("Inside myMethod.");

}

174 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void main(String args[]) {
try {

myMethod();
}catch (ArithmeticException e) {

System.out.println("Error: " + e);
}

}
}

Checked and Unchecked Exceptions
The two groups of exception classes are checked and unchecked. Checked exception

classes must be included in a method’s throw list if the method can throw the excep-

tions and doesn’t catch the exceptions. This is because the Java compiler checks to

see whether a catch block will handle these exceptions. That is, a checked exception

must be explicitly handled either by being caught or by being declared as thrown.

Unchecked exception classes are exceptions that you don’t need to include in a

method’s throw list because the compiler does not check to see whether a catch

block will handle those exceptions. Both checked and unchecked exceptions are de-

fined in the java.lang package, which is implicitly imported into all Java pro-

grams.

Table 9-1 contains a list of unchecked exception classes, and Table 9-2 contains a

list of checked exception classes.

CHAPTER 9 Exception Handling 175

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

Exception Description

ArithmeticException Arithmetic error, such as divide by zero.

ArrayIndexOutOfboundsException Array index is out of bounds.

ArrayStoreException Assignment to an array element of an

incompatible type.

ClassCastException Invalid cast.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an

unlocked thread.

IllegalStateException Environment or application is in incorrect state.

Table 9-1 Java Unchecked Exception Classes

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating an Exception Subclass
Many programmers define their own exception classes rather than use Java’s built-in

exception classes. This enables them to tailor exceptions to the specific needs of

their Java programs. You, too, can define your own exception class by creating a

176 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

Exception Description

IllegalthreadStateException Requested operation not compatible with

current thread state.

IndexOutOfBoundsException Some type of index is out of bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric

format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

UnsupportedOperationException An unsupported operation was encountered.

Table 9-1 Java Unchecked Exception Classes (continued)

Exception Description

ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the

Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or

interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchfieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

IOException An exception occurred during an input/output process.

SQLException An exception occurred when interacting with a

database management system using SQL.

Table 9-2 Java Checked Exception Classes

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Exception Handling 177

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

subclass of Java’s Exception class. That is, you must extend the

RuntimeException class.

As you’ll recall from Chapter 8, a subclass is a class that inherits another class.

The class that is being inherited is called a superclass. The superclass of all excep-

tion subclasses is Java’s Exception class. The Exception class is itself a sub-

class of the Throwable class. The Throwable class defines several very useful

methods that help to handle an exception. Your subclass inherits these methods. This

means you can use those methods as if you defined them in your subclass. Table 9-3

contains a listing of the methods defined in theThrowable class. You can override

any of them (see Chapter 8).

The name of your new exception is the name of the class that defines the excep-

tion. Suppose we wanted to create an exception called DivideByZero. We’ll use

this in place of ArithmeticException, the exception used in the examples

throughout this chapter.

In order to create the DivideByZero exception, we need to define a class

called DivideByZero and then inherit the Exception class. You’ll recall from

Chapter 8 that we inherit a superclass by using the keyword extends followed by

the name of the superclass, as shown here:

class DivideByZero extends Exception

The class definition contains statements that handle the exception. You can place

any statements you want in the class definition. Some programmers simply have

Method Description

Throwable
fillInStackTrace()

Returns a throwable object that contains a complete

stack trace. This object can be rethrown.

String
getLocalizedMessage()

Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.

void
printStackTrace(PrintWriter
stream)

Sends the stack trace to the specified stream.

String toString() Returns a String object containing a description of

the exception. This method is called by println()
when outputting a Throwable object.

Table 9-3 Methods Defined in the Throwable Class

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

178 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

their exception class display a message on the screen, which is what we’ll do in the

following exception class definition. The DivideByZero class contains three

members: an integer variable, a constructor, and a method member. The program ex-

plicitly throws the exception by calling the DivideByZero constructor and

passes it an integer that represents details about the exception. The constructor as-

signs the integer to the detail variable. The toString()method member then

returns the message displayed on the screen by the program.

class DivideByZero extends ArithmeticException {
private int detail;
DivideByZero () {
detail = 0;

}
DivideByZero (int a) {
detail = a;

}
public String toString() {
return "DivideByZero [" + detail + "]";

}
}

The following example shows how to use your own exception within a program.

The example begins by defining the DivideByZero class. It then defines the pro-

gram class. The program class defines two methods: calc() and main(). The

calc() method uses its parameter as the divisor in a calculation. However, the

calc()method determines whether parameter is zero before performing the divi-

sion. If it is, aDivideByZero exception is thrown. If it isn’t, the expression is cal-

culated and the results are returned to the statement that calls the calc() method.

Notice that throws DivideByZero is used in the method header. We need this

because the calc() method can throw a DivideByZero exception and doesn’t

have a catch block to handle the exception. Also notice that the DivideByZero
exception is your exception and not an exception class defined by Java. Once you

define your own exception class, you use the name of the exception class as if you

were using a Java-defined exception class.

The main() method calls the calc() method twice within a try block. The

first time the method is called, it is passed a one, which doesn’t cause an exception to

be thrown. The second time that the method is called, it is passed a zero, which does

cause a DivideByZero exception. The catch block associated with the try block

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

catches this exception and handles it the same way it handles a Java-defined excep-

tion. Here’s what is displayed on the screen when an exception is thrown:

Result: 1
Error: DivideByZero[0]

class DivideByZero extends ArithmeticException {
private int detail;
DivideByZero () {
detail = 0;

}
DivideByZero (int a) {
detail = a;

}
public String toString() {
return "DivideByZero [" + detail + "]";

}
}
class Demo{

static void calc(int a) throws DivideByZero {
int b = 10, c;
if (a == 0)
{
throw new DivideByZero (a);

}
else
{
c = b/a;
System.out.println("Result: " + a);

}
}
public static void main(String args[]) {

try {
calc(1);
calc(0);

} catch (DivideByZero e) {
System.out.println("Error: " + e);

}
}

}

CHAPTER 9 Exception Handling 179

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is an exception?

2. What is the purpose of a try block?

3. What is the purpose of a catch block?

4. What happens if an exception is thrown and you didn’t catch it within your

program?

5. What is the parent of the Exception class?

6. How can you create your own exception class?

7. What should you do if you define a method that might throw an exception

but you don’t catch the exception within the method definition?

8. How many exceptions can be caught by a catch block?

9. What is the purpose of the finally block?

10. Can you override methods inherited by your exception class?

180 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 9

P:\010Comp\DeMYST\454-8\ch09.vp
Saturday, April 10, 2004 12:34:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
10

Multithreading

Marathon runners sometimes are faced with a dilemma when two major races fall

during the same week because they have to choose which race to run in. They probably

wish there was a way a part of them could go to one race and another part to the other

race. That can’t happen—that is, unless the runner is a Java program, because two

parts of the same Java program can run concurrently by using multithreading. You’ll

learn about multithreading and how to run parts of your program concurrently in this

chapter.

Multitasking
Multitasking is performing two or more tasks at the same time. Nearly all operating

systems are capable of multitasking by using one of two multitasking techniques:

process-based multitasking and thread-based multitasking.

Process-based multitasking is running two programs concurrently. Programmers

refer to a program as a process. Therefore, you could say that process-based

multitasking is program-based multitasking.

181

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Thread-based multitasking is having a program perform two tasks at the same

time. For example, a word processing program can check the spelling of words in a

document while you write the document. This is thread-based multitasking.

A good way to remember the difference between process-based multitasking and

thread-based multitasking is to think of process-based as working with multiple

programs and thread-based as working with parts of one program.

The objective of multitasking is to utilize the idle time of the CPU. Think of the

CPU as the engine of your car. Your engine keeps running regardless of whether the

car is moving. Your objective is to keep your car moving as much as possible so you

can get the most miles from a gallon of gas. An idling engine wastes gas.

The same concept applies to the CPU in your computer. You want your CPU cycles

to be processing instructions and data rather than waiting for something to process.

A CPU cycle is somewhat similar to your engine running.

It may be hard to believe, but the CPU idles more than it processes in many desk-

top computers. Let’s say that you are using a word processor to write a document.

For the most part, the CPU is idle until you enter a character from the keyboard or

move the mouse. Multitasking is designed to use the fraction of a second between

strokes to process instructions from either another program or from a different part

of the same program.

Making efficient use of the CPU may not be too critical for applications running

on a desktop computer because most of us rarely need to run concurrent programs or

run parts of the same program at the same time. However, programs that run in a net-

worked environment, such as those that process transactions from many computers,

need to make a CPU’s idle time productive.

Overhead
The operating system must do extra work to manage multitasking. Programmers call

this extra work overhead because resources inside your computer are used to manage

the multitasking operation rather than being used by programs for processing instruc-

tions and data.

Process-based multitasking has a larger overhead than thread-based multitasking.

In process-based multitasking, each process requires its own address space in mem-

ory. The operating system requires a significant amount of CPU time to switch from

one process to another process. Programmers call this context switching, where each

process (program) is a context. Additional resources are needed for each process to

communicate with each other.

182 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In comparison, the threads in thread-based multitasking share the same address

space in memory because they share the same program. This also has an impact on

context switching, because switching from one part of the program to another happens

within the same address space in memory. Likewise, communication among parts of

the program happens within the same memory location.

Threads
A thread is part of a program that is running. Thread-based multitasking has multiple

threads running at the same time (that is, multiple parts of a program running con-

currently). Each thread is a different path of execution.

Let’s return to the word processing program example to see how threads are used.

Two parts of the word processor are of interest: The first is the part of the program

that receives characters from the keyboard, saves them in memory, and displays them

on the screen. The second part is the portion of the program that checks spelling.

Each part is a thread that executes independently of each other, even though they are

part of the same program. While one thread receives and processes characters entered

into the keyboard, the other thread sleeps. That is, the other thread pauses until the

CPU is idle. The CPU is normally idle between keystrokes. It is this time period

when the spell checker thread awakens and continues to check the spelling of the

document. The spell checker thread once again pauses when the next character is

entered into the keyboard.

The Java run-time environment manages threads, unlike in process-based multi-

tasking where the operating system manages switching between programs. Threads

are processed asynchronously. This means that one thread can pause while other

threads continue to process.

A thread can be in one of four states:

• Running A thread is being executed.

• Suspended Execution is paused and can be resumed where it left off.

• Blocked A resource cannot be accessed because it is being used by

another thread.

• Terminated Execution is stopped and cannot be resumed.

All threads are not equal. Some threads are more important than other threads and

are giving higher priority to resources such as the CPU. Each thread is assigned a

thread priority that is used to determine when to switch from one executing thread to

another. This is called context switching.

CHAPTER 10 Multithreading 183

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A thread’s priority is relative to the priority of other threads. That is, a thread’s

priority is irrelevant if it is the only thread that is running. A lower-priority thread runs

just as fast as a higher-priority thread if no other threads are executing concurrently.

Thread priorities are used when the rules of context switching are being applied.

These rules are as follows:

• A thread can voluntarily yield to another thread. In doing so, control is turned

over to the highest-priority thread.

• A higher-priority thread can preempt a lower-priority thread for use of the

CPU. The lower-priority thread is paused regardless of what it’s doing to

give way to the higher-priority thread. Programmers call this preemptive

multitasking.

• Threads of equal priority are processed based on the rules of the operating

system that is being used to run the program. For example, Windows uses time

slicing, which involves giving each high-priority thread a few milliseconds of

CPU cycles, and keeps rotating among the high-priority threads. In Solaris, the

first high-priority thread must voluntarily yield to another high-priority thread.

If it doesn’t, the second high-priority thread must wait for the first thread to

terminate.

Synchronization
Multithreading occurs asynchronously, meaning one thread executes independently

of the other threads. In this way, threads don’t depend on each other’s execution. In

contrast, processes that run synchronously depend on each other. That is, one process

waits until the other process terminates before it can execute.

Sometimes the execution of a thread is dependent on the execution of another

thread. Let’s say you have two threads—one handles gathering login information,

and the other validates a user’s ID and password. The login thread must wait for the

validation thread to complete processing before it can tell the user whether or not the

login is successful. Therefore, both threads must execute synchronously, not asyn-

chronously.

Java enables you to synchronize threads by defining a synchronized method. A

thread that is inside a synchronized method prevents any other thread from calling

another synchronized method on the same object. You’ll learn how to do this later in

the chapter.

184 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Thread Classes and the
Runnable Interface

You construct threads by using the Thread class and the Runnable interface.

This means that your class must extend the Thread class or implement the

Runnable interface. The Thread class defines the methods you use to manage

threads. Table 10-1 contains the commonly used methods of the Thread class.

You’ll see how these are used throughout the examples in this chapter.

The Main Thread
Every Java program has one thread, even if you don’t create any threads. This thread

is called the main thread because it is the thread that executes when you start your

program. The main thread spawns threads that you create. These are called child

threads. The main thread is always the last thread to finish executing because typically

the main thread needs to release a resource used by the program such as network

connections.

Programmers can control the main thread by first creating a Thread object

and then using method members of the Thread object to control the main thread.

You create a Thread object by calling the currentThread() method. The

currentThread() method returns a reference to the thread. You then use this

reference to control the main thread just like you control any thread, which you’ll

learn how to do in this chapter.

CHAPTER 10 Multithreading 185

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

Method Description

getName() Returns the name of the thread.

getPriority() Returns the priority of the thread.

isAlive() Determines whether the thread is running.

join() Pauses until the thread terminates.

run() The entry point into the thread.

sleep() Suspends a thread. This method enables you to specify the period

the thread is suspended.

start() Starts the thread.

Table 10-1 Commonly Used Methods Defined in the Thread Class

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s create a reference to the main thread and then change the name of the thread

from main to Demo Thread. The following program shows how this is done. Here’s

what is displayed on the screen when the program runs:

Current thread: Thread[main,5,main]
Renamed Thread: Thread[Demo Thread,5,main]

class Demo {
public static void main (String args[]) {

Thread t = Thread.currentThread();
System.out.println("Current thread: " + t);
t.setName("Demo Thread");
System.out.println("Renamed Thread: " + t);

}
}

As you previously learned in this chapter, a thread is automatically created when

you execute a program. The objective of this example is to declare a reference to a

thread and then assign that reference a reference to the main thread. This is done in the

first statement of the main() method.

We declare the reference by specifying the name of the class and the name for the

reference, which is done in the following line of code:

Thread t

We acquire a reference to the main thread by calling the currentThread()
method member of the Thread class using the following method call:

Thread.currentThread()

The reference returned by the currentThread() method is then assigned to

the reference previously declared in the opening statement. We then display the

thread on the screen:

Thread[main,5,main]

Information within the square brackets tells us something about the thread. The

first appearance of the word main is the name of the thread. The number 5 is the

thread’s priority, which is normal priority. The priority ranges from 1 to 10, where 1

is the lowest priority and 10 is the highest. The last occurrence of the word main is

the name of the group of threads with which the thread belongs. A thread group is a

data structure used to control the state of a collection of threads. You don’t need to be

concerned about a thread group because the Java run-time environment handles this.

ThesetName()method is then called to illustrate how you have control over the

main thread of your program. The setName() method is a method member of

theThread class and is used to change the name of a thread. This example uses the

186 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Multithreading 187

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

setName()method to change the main thread’s name from main to Demo Thread.

The thread is once again displayed on the screen to show that the name has been

changed. Here’s what is displayed:

Renamed Thread: Thread[Demo Thread,5,main]

Creating Your Own Thread
Remember, your program is the main thread, and other portions of your program can

also be a thread. You can designate a portion of your program as a thread by creating

your own thread. The easiest way to do this is to implement the Runnable inter-

face. Implementing the Runnable interface is an alternative to your class inheriting

the Thread class.

An interface describes one or more method members that you must define in your

own class in order to be compliant with the interface. These methods are described

by their method name, argument list, and return value.

The Runnable interface describes the method classes needed to create and in-

teract with a thread. In order to use the Runnable interface in your class, you must

define the methods described by the Runnable interface.

Fortunately, only you need to define one method described by the Runnable
interface—therun()method. Therun()method must be a public method, and it

doesn’t require an argument list or have a return value.

The content of the run() method is the portion of your program that will be-

come the new thread. Statements outside the run() method are part of the main

thread. Statements inside the run() method are part of the new thread. Both the

main thread and the new thread run concurrently when you start the new thread,

which you’ll learn how to do in the next example. The new thread terminates when

the run() method terminates. Control then returns to the statement that called the

run() method.

When you implement the Runnable interface, you’ll need to call the following

constructor of theThread class. This constructor requires two arguments. The first

argument is the instance of the class that implements the Runnable interface and

tells the constructor where the new thread will be executed. The second argument is

the name of the new thread. Here’s the format of the constructor:

Thread (Runnable class, String name)

The constructor creates the new thread, but it does not start the thread. You ex-

plicitly start the new thread by calling the start()method. The start()method

calls therun()method you defined in your program. Thestart()method has no

argument list and does not return any values.

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example illustrates how to create and start a new thread. Here’s

what is displayed when this program runs:

Main thread started
Child thread started
Child thread terminated
Main thread terminated

NOTE: The output of this program may be different when you run this program.

Some Java run-time environments terminate the main thread before the child thread,

whereas others terminate the child thread before the main thread. Therefore, the text

shown here might appear in a different order when you run this program.

class MyThread implements Runnable {
Thread t;
MyThread () {

t = new Thread(this,"My thread");
t.start();

}
public void run() {

System.out.println("Child thread started");
System.out.println("Child thread terminated");

}
}
class Demo {

public static void main (String args[]){
new MyThread();
System.out.println("Main thread started");
System.out.println("Main thread terminated");

}
}

This example begins by defining a class called MyThread, which implements

the Runnable interface. Therefore, we use the keyword implements to imple-

ment the Runnable interface. Next, a reference to a thread is declared. Defining

the constructor for the class follows this. The constructor calls the constructor of the

Thread class. Because we are implementing the Runnable interface, we need to

pass the constructor reference to the instance of the class that will execute the new

thread and the name of the new thread. Notice that we use the keyword this as ref

erence to the instance of the class. The keyword this is a reference to the current

instance of the class.

The constructor returns a reference to the new thread, which is assigned to the

reference declared in the first statement in the MyThread class definition. We use

188 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

this reference to call the start() method. Remember that the start() method

calls the run() method.

Next, we define therun()method. Statements within therun()method become

the portion of the program that executes when the thread executes. There are only two

displayed statements in the run() method. Later in this chapter, we’ll expand the

run() method to include more interesting statements.

Next, we define the program class. The program class explicitly executes the new

thread by creating an instance of the MyThread class. This is done by using the

new operator and calling the constructor of MyThread.

Finally, the program finishes by displaying two lines on the screen.

Creating a Thread by Using extends
You can inherit theThread class as another way to create a thread in your program.

As you’ll recall from Chapter 8, you can cause your class to inherit another class by

using the keywordextendswhen defining your class. When you declare an instance

of your class, you’ll also have access to members of the Thread class.

Whenever your class inherits the Thread class, you must override the run()
method, which is an entry into the new thread. The following example shows how to

inherit the Thread class and how to override the run() method.

This example defines theMyThread class, which inherits theThread class. The

constructor of theMyThread class calls the constructor of theThread class by us-

ing thesuper keyword and passes it the name of the new thread, which is My thread.

It then calls the start() method to activate the new thread.

Thestart()method calls therun()method of theMyThread class. As you’ll

notice in this example, the run()method is overridden by displaying two lines on

the screen that indicate that the child thread started and terminated. Remember that

statements within therun()method constitute the portion of the program that runs

as the thread. Therefore, your program will likely have more meaningful statements

within the definition of the run() method than those used in this example.

The new thread is declared within themain()method of theDemo class, which is

the program class of the application. After the thread starts, two messages are dis-

played, indicating the status of the main thread.

class MyThread extends Thread {
MyThread(){
super("My thread");
start();

}

CHAPTER 10 Multithreading 189

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

190 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

public void run() {
System.out.println("Child thread started");
System.out.println("Child thread terminated");

}
}

class Demo {
public static void main (String args[]){

new MyThread();
System.out.println("Main thread started");
System.out.println("Main thread terminated");

}
}

NOTE: As a rule of thumb, you should implement the Runnable interface if the

run() method is the only method of the Thread class that you need to override.

You should inherit the Thread class if you need to override other methods defined

in the Thread class.

Using Multiple Threads in a Program
It is not unusual to need to run multiple instances of a thread, such as when your pro-

gram prints multiple documents concurrently. Programmers call this spawning a

thread. You can spawn any number of threads you need by first defining your own

class that either implements the Runnable interface or inherits the Thread class

and then declaring instances of the class. Each instance is a new thread.

Let’s see how this is done. The next example defines a class called MyThread
that implements the Runnable interface. The constructor of the MyThread class

accepts one parameter, which is a string that is used as the name of the new thread. We

create the new thread within the constructor by calling the constructor of theThread
class and passing it a reference to the object that is defining the thread and the name

of the thread. Remember that the this keyword is a reference to the current object.

The start() method is then called, which calls the run() method.

The run() method is overridden in the MyThread class. Two things happen

when the run()method executes. First, the name of the thread is displayed on the

screen. Second, the thread pauses for 2 seconds when thesleep()method is called.

Thesleep()method is defined in theThread class can accept one or two param-

eters. The first parameter is the number of milliseconds the thread is to pause. The

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Multithreading 191

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

second parameter is the number of microseconds the thread pauses. In this example,

we’re only interested in milliseconds, so we don’t need to include the second param-

eter (2,000 nanoseconds is 2 seconds). After the thread pauses, another statement is

displayed on the screen stating that the thread is terminating.

The main()method of the Demo class declares four instances of the same thread

by calling the constructor of the MyThread class and passing it the name of the

thread. Each of these is treated as a separate thread. The main thread is then paused 10

seconds by a call to the sleep()method. During this time, the threads continue to

execute. When the main thread awakens, it displays the message that the main thread

is terminating.

Here’s what is displayed on the screen when this example runs:

Thread: 1
Thread: 2
Thread: 3
Thread: 4
Terminating thread: 1
Terminating thread: 2
Terminating thread: 3
Terminating thread: 4
Terminating thread: main thread.

class MyThread implements Runnable {
String tName;
Thread t;
MyThread (String threadName) {

tName = threadName;
t = new Thread (this, tName);
t.start();

}
public void run() {

try {
System.out.println("Thread: " + tName);
Thread.sleep(2000);

} catch (InterruptedException e) {
System.out.println("Exception: Thread "

+ tName + " interrupted");
}
System.out.println("Terminating thread: " + tName);

}
}
class Demo {

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

192 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

public static void main (String args []) {
new MyThread ("1");
new MyThread ("2");
new MyThread ("3");
new MyThread ("4");
try {

Thread.sleep (10000);
} catch (InterruptedException e) {
System.out.println(

"Exception: Thread main interrupted.");
}
System.out.println(

"Terminating thread: main thread.");
}

}

Using isAlive() and join()
Typically, the main thread is the last thread to finish in a program. However, there isn’t

any guarantee that the main thread won’t finish before a child thread finishes. In the

previous example, we told the main method to sleep until the child threads terminate.

However, we estimated the time it takes for the child threads to complete processing.

If our estimate was too short, a child thread could terminate after the main thread

terminates. Therefore, the sleep technique isn’t the best one to use to guarantee that

the main thread terminates last.

Programmers use two other techniques to ensure that the main thread is the last

thread to terminate. These techniques involve calling the isAlive()method and

the join() method. Both of these methods are defined in the Thread class.

TheisAlive()method determines whether a thread is still running. If it is, the

isAlive()method returns a Boolean true value; otherwise, a Boolean false is re-

turned. You can use the isAlive() method to examine whether a child thread

continues to run. The join() method works differently than the isAlive()
method. Thejoin()method waits until the child thread terminates and “joins” the

main thread. In addition, you can use the join()method to specify the amount of

time you want to wait for a child thread to terminate.

The following example illustrates how to use the isAlive() method and the

join() method in your program. This example is nearly the same as the previous

example. The difference lies in the main() method of the Demo class definition.

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Multithreading 193

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

After the threads are declared using the constructor of the MyThread class, the

isAlive()method is called for each thread. The value returned by theisAlive()
method is then displayed on the screen. Next, thejoin()method is called for each

thread. The join() method causes the main thread to wait for all child threads to

complete processing before the main thread terminates.

Here is what is displayed on the screen when this program runs:

Thread Status: Alive
Thread 1: true
Thread 2: true
Thread 3: true
Thread 4: true
Threads Joining.
Thread: 1
Thread: 2
Thread: 3
Thread: 4
Terminating thread: 1
Terminating thread: 2
Terminating thread: 3
Terminating thread: 4
Thread Status: Alive
Thread 1: false
Thread 2: false
Thread 3: false
Thread 4: false
Terminating thread: main thread.

class MyThread implements Runnable {
String tName;
Thread t;
MyThread (String threadName) {

tName = threadName;
t = new Thread (this, tName);
t.start();

}
public void run() {

try {
System.out.println("Thread: " + tName);
Thread.sleep(2000);

} catch (InterruptedException e) {
System.out.println("Exception: Thread "

+ tName + " interrupted");

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
System.out.println("Terminating thread: " + tName);

}
}
class Demo {

public static void main (String args []) {
MyThread thread1 = new MyThread ("1");
MyThread thread2 = new MyThread ("2");
MyThread thread3 = new MyThread ("3");
MyThread thread4 = new MyThread ("4");
System.out.println("Thread Status: Alive");
System.out.println("Thread 1: "

+ thread1.t.isAlive());
System.out.println("Thread 2: "

+ thread2.t.isAlive());
System.out.println("Thread 3: "

+ thread3.t.isAlive());
System.out.println("Thread 4: "

+ thread4.t.isAlive());
try {

System.out.println("Threads Joining.");
thread1.t.join();
thread2.t.join();
thread3.t.join();
thread4.t.join();

} catch (InterruptedException e) {
System.out.println(

"Exception: Thread main interrupted.");
}
System.out.println("Thread Status: Alive");
System.out.println("Thread 1: "

+ thread1.t.isAlive());
System.out.println("Thread 2: "

+ thread2.t.isAlive());
System.out.println("Thread 3: "

+ thread3.t.isAlive());
System.out.println("Thread 4: "

+ thread4.t.isAlive());
System.out.println(

"Terminating thread: main thread.");
}

}

194 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Setting Thread Priorities
Previously in this chapter, you learned that each thread has an assigned priority that

is used to let more important threads use resources ahead of lower-priority resources.

Priority is used as a guide for the operating system to determine which thread gets

accesses to a resource such as the CPU. In reality, an operating system takes other

factors into consideration. Typically, programmers have little or no control over those

other factors. Therefore, they establish a priority for their threads without further

concern over those other factors.

A priority is an integer from 1 to 10 inclusive, where 10 is the highest priority, re-

ferred to as the maximum priority, and 1 is the lowest priority, also known as the min-

imum priority. The normal priority is 5, which is the default priority for each thread.

In general, a thread with a higher priority bumps a thread with a lower priority from

using a resource. The lower-priority thread pauses until the higher-priority thread

is finished using the resource. Whenever two threads of equal priority need the same

resource, the thread that accesses the resource first has use of the resource. What

happens to the second thread depends on the operating system under which your

program is running. Some operating systems force the second thread to wait until the

first thread is finished with the resource. Other operating systems require the first

thread to give the second thread access to the resource after a specified time period.

This is to ensure that one thread doesn’t hog a resource and prevent other threads

from utilizing it.

In the real world, the first thread usually pauses while using the resource because

another resource it needs isn’t available. It is during this pause that the operating sys-

tem has the first thread relinquish the resource. The problem is, you don’t know if

and when the pause will occur. It is best to always cause a thread to pause periodi-

cally whenever the thread is using a resource for a long period time. In this way, the

thread shares the resource with other threads. You learn how to pause a thread in

the “Suspending and Resuming a Thread” section of this chapter.

You need to keep in mind that there is a downside to periodically pausing a thread.

Pausing a thread diminishes the performance of your program and could cause a back-

log for use of the resource. Therefore, you need to monitor the performance of your

program regularly to make sure you are not experiencing this negative aspect of

pausing a thread.

For now let’s focus on something you do have control over—setting the priority

of a thread. You set a thread’s priority by calling the setPriority() method,

which is defined in theThread class. ThesetPriority()method requires one

parameter, which is the integer representing the level of priority. You have two ways

in which to represent the priority. You can use an integer from 1 to 10, or you can use

CHAPTER 10 Multithreading 195

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

final variables defined in the Thread class. These variables are MIN_PRIORITY,

MAX_PRIOIRTY, and NORM_PRIOIRTY.

You can determine the priority level of a thread by calling thegetPriority()
method, which is also defined in the Thread class. The getPriority()method

does not requires an argument, and it returns the integer representing the level of

priority for the thread.

The following example illustrates how to use the setPriority() and

getPriority() methods. This example creates two child threads and sets the

priority for each. First, the low-priority thread starts, followed by the high-priority

thread. Here’s what is displayed when you run this program (notice that the high-

priority thread runs ahead of the low-priority thread, even though the low-priority

thread started first):

NOTE: The results displayed on your screen might be different from the results

shown here because of the way your operating system handles thread priorities.

low priority started
high priority started
high priority running.
low priority running.
low priority stopped.
high priority stopped.

class MyThread implements Runnable {
Thread t;
private volatile boolean running = true;
public MyThread (int p, String tName) {

t = new Thread(this,tName);
t.setPriority (p);

}
public void run() {

System.out.println(t.getName() + " running.");
}
public void stop() {

running = false;
System.out.println(t.getName() + " stopped.");

}
public void start() {
System.out.println(t.getName() + " started");
t.start();

}
}

196 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class Demo {
public static void main(String args[]) {

Thread.currentThread().setPriority(10);
MyThread lowPriority =

new MyThread (3, "low priority");
MyThread highPriority =

new MyThread (7, "high priority");
lowPriority.start();
highPriority.start();
try {

Thread.sleep(1000);
} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");
}
lowPriority.stop();
highPriority.stop();
try {

highPriority.t.join();
lowPriority.t.join();

} catch (InterruptedException e) {
System.out.println(

"InterruptedException caught");
}

}
}

Synchronizing Threads
A major concern when two or more threads share the same resource is that only one of

them can access the resource at one time. Programmers address this concern by syn-

chronizing threads, much the same way baseball players take turns being up to bat.

Threads are synchronized in Java through the use of a monitor. Think of a monitor

as an object that enables a thread to access a resource. Only one thread can use a

monitor at any one time period. Programmers say that the thread owns the monitor

for that period of time. The monitor is also called a semaphore.

A thread can own a monitor only if no other thread owns the monitor. If the moni-

tor is available, a thread can own the monitor and have exclusive access to the resource

associated with the monitor. If the monitor is not available, the thread is suspended

until the monitor becomes available. Programmers say that the thread is waiting for

the monitor.

CHAPTER 10 Multithreading 197

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Fortunately, the task of acquiring a monitor for a resource happens behind the scenes

in Java. Java handles all the details for you. You do have to synchronize the threads

you create in your program if more than one thread will use the same resource.

You have two ways in which you can synchronize threads: You can use the syn-

chronized method or the synchronized statement.

The Synchronized Method
All objects in Java have a monitor. A thread enters a monitor whenever a method

modified by the keyword synchronized is called. The thread that is first to call

the synchronized method is said to be inside the method and therefore owns the method

and resources used by the method. Another thread that calls the synchronized

method is suspended until the first thread relinquishes the synchronized method.

If a synchronized method is an instance method, the synchronized method activates

the lock associated with the instance that called the synchronized method, which is the

object known as this during the execution of the body of the method. If the syn-

chronized method is static, it activates the lock associated with the class object that

defines the synchronized method.

Before you learn how to define a synchronized method in your program, let’s see

what might happen if synchronization is not used in a program. This is the objective of

the following example. This program displays two names within parentheses using

two threads. This is a three-step process, where the opening parenthesis, the name,

and the closing parenthesis are displayed in separate steps.

The example defines three classes: the Parentheses class, the MyThread
class, and the Demo class, which is the program class. The Parentheses class

defines one method called display(), which receives a string in its argument list

and displays the string in parentheses on the screen. The MyThread class defines a

thread. In doing so, the constructor ofMyThread requires two arguments. The first

argument is a reference to an instance of the Parentheses class. The second ar

gument is a string containing the name that will be displayed on the screen. Therun()
method uses the instance of the Parentheses class to call its display()method,

passing the display() method the name that is to appear on the screen.

The rest of the action happens in the main() method of the Demo class. The

first statement declares an instance of theParentheses class. The next two classes

create two threads. Notice that both threads use the same instance of theParenthe-
ses class.

Here’s what is displayed when you run this program. It’s probably not what you

expected to see. Each name should be enclosed within its own parentheses. The

problem is that the display() method isn’t synchronized.

198 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Multithreading 199

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

NOTE: If a variable is assigned by one thread and is used or assigned by other

threads, all access to the variable should be enclosed in a synchronized method or a

synchronized statement.

(Bob(Mary)
)

class Parentheses {
void display(String s) {
System.out.print ("(" + s);
try {

Thread.sleep (1000);
} catch (InterruptedException e) {

System.out.println ("Interrupted");
}
System.out.println(")");

}
}
class MyThread implements Runnable {

String s1;
Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2) {

p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run() {
p1.display(s1);

}
}
class Demo{

public static void main (String args[]) {
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try {

name1.t.join();
name2.t.join();

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
}

}

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The problem with the previous example is that two threads use the same resource

concurrently. The resource is the display()method defined in the Parenthe-
ses class. In order to have one thread take control of the display()method, we

must synchronize the display() method. This is done by using the keyword

synchronized in the header of the display()method, which is illustrated in

the next example.

Here’s what is displayed when you run the next example. This is what you ex-

pected to see in the previous example.

(Bob)
(Mary)

class Parentheses {
synchronized void display(String s) {
System.out.print ("(" + s);
try {

Thread.sleep (1000);
} catch (InterruptedException e) {

System.out.println ("Interrupted");
}
System.out.println(")");

}
}
class MyThread implements Runnable {

String s1;
Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2) {

p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run() {
p1.display(s1);

}
}
class Demo{

public static void main (String args[]) {
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try {

200 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

name1.t.join();
name2.t.join();

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
}

}

Using the Synchronized Statement
Synchronizing a method is the best way to restrict the use of a method one thread at a

time. However, there will be occasions when you won’t be able to synchronize a

method, such as when you use a class that is provided to you by a third party. In such

cases, you don’t have access to the definition of the class, which prevents you from

using the synchronized keyword.

An alternative to using the synchronized keyword is to use the synchronized

statement. A synchronized statement contains a synchronized block, within which is

placed objects and methods that are to be synchronized. Calls to the methods con-

tained in the synchronized block happen only after the thread enters the monitor of

the object.

Although you can call methods within a synchronized block, the method declara-

tion must be made outside a synchronized block.

The following example shows how to use a synchronized statement. This is basi-

cally the same as the previous example; however, the synchronized statement is used

instead of the synchronized keyword. The synchronized statement is placed in

the run() method within the MyThread class. The synchronized statement syn-

chronizes the instance of the Parentheses class and thus prevents two threads

from calling the display() method concurrently.

class Parentheses {
void display(String s) {
System.out.print ("(" + s);
try {

Thread.sleep (1000);
} catch (InterruptedException e) {

System.out.println ("Interrupted");
}
System.out.println(")");

}
}
class MyThread implements Runnable {

String s1;

CHAPTER 10 Multithreading 201

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Parentheses p1;
Thread t;
public MyThread (Parentheses p2, String s2) {

p1= p2;
s1= s2;
t = new Thread(this);
t.start();

}
public void run() {

synchronized(p1){
p1.display(s1);

}
}

}
class Demo{

public static void main (String args[]) {
Parentheses p3 = new Parentheses();
MyThread name1 = new MyThread(p3, "Bob");
MyThread name2 = new MyThread(p3, "Mary");
try {

name1.t.join();
name2.t.join();

} catch (InterruptedException e) {
System.out.println("Interrupted");

}
}

}

Here, thedisplay()method is not modified bysynchronized. Instead, the syn-

chronized statement is used inside the caller’srun()method. This causes the same

correct output as before, because each thread waits for the prior one to finish before

proceeding.

Communicating Between Threads
Threads have opened programmers to a new dimension in programming, where parts

of a program can execute asynchronously, each processing independently of the other.

However, sometimes threads have to coordinate their processing and therefore need

to be able to communicate with each other during processing. Programmers call this

interprocess communication.

202 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can have threads communicate with each other in your program by using the

wait(),notify(), andnotifyAll()methods. These methods are called from

within a synchronized method. The wait() method tells a thread to relinquish a

monitor and go into suspension. There are two forms of the wait() method. One

form doesn’t require an argument and causes a thread to wait until it is notified. The

other form of the wait()method let’s you specify the amount of time to wait. You

specify the length of time in milliseconds, which is passed to thewait()method.

Thenotify()method tells a thread that is suspended by thewait()method to

wake up again and regain control of the monitor. The notifyAll()method wakes

up all threads that are waiting for control of the monitor. Only the thread with the

highest priority is given control over the monitor. The other threads wait in suspen-

sion until the monitor becomes available again.

The following example shows you how to use these methods in an application. The

objective of the program is to have the Publisher class give a value to the

Consumer class through the use of aQueue class. ThePublisher class places a

value on the queues and then waits until the Consumer class retrieves the value

before the Publisher class places another value on the queue.

This example defines four classes: the Queue class, the Publisher class, the

Consumer class, and the Demo class. The Queue class defines two instance val-

ues: exchangeValue and a flag. The exchangeValue is used to store the value

placed on the queue by the publisher. The flag variable is used as a sign indicating

whether a value has been placed on the queue. This is set to false by default, which

enables the producer to place a value on to the queue. TheQueue class also defines a

get() method and a put() method. The put() method is used to place a value

on to the queue (that is, to assign a value to the exchangeValue variables). The

get()method is used to retrieve the value contained on the queue (that is, to return

the value of exchangeValue). Once the value is assigned, the put() method

changes the value of the flag from false to true, indicating there is a value on the

queue. Notice how the value of the flag is used within the get() method and the

put() method to have the thread that calls the method wait until either there is a

value on the queue or there isn’t a value on the queue, depending on which method is

being called.

ThePublisher class declares an instance of theQueue class and then calls the

put()method to place five integers on the queue. Although the put()method is

called within afor loop, each integer is placed on the queue and then there is a pause

until the integer is retrieved by the Consumer class.

TheConsumer class is very similar in design to thePublisher class, except the

Consumer class calls the get()method five times from within a for loop. Each

call to theget()method is paused until thePublisher class places an integer in

the queue.

CHAPTER 10 Multithreading 203

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

204 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

The main() method of the Demo class creates instances of the Queue class,

the Publisher class, and the Consumer class. Notice that both constructors

of the Publisher class and the Consumer class are passed a reference to the in-

stance of the same Queue class. They use the instance of the Queue class for inter-

process communication.

Here’s what you see when you run this program. Notice that the value placed on

the queue by thePublisher is retrieved by theConsumer before thePublisher
places the next value on the queue.

Put: 0
Get: 0
Put: 1
Get: 1
Put: 2
Get: 2
Put: 3
Get: 3
Put: 4
Get: 4

class Queue {
int exchangeValue;
boolean busy = false;
synchronized int get() {

if (!busy)
try {

wait();
} catch (InterruptedException e) {

System.out.println(
"Get: InterruptedException");

}
System.out.println("Get: " + exchangeValue);
notify();

return exchangeValue;
}
synchronized void put (int exchangeValue) {

if (busy)
try {

wait();
} catch (InterruptedException e) {

System.out.println(
"Put: InterruptedException");

}
this.exchangeValue = exchangeValue;

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 Multithreading 205

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

busy = true;
System.out.println("Put: " + exchangeValue);
notify();

}
}
class Publisher implements Runnable {

Queue q;
Publisher(Queue q) {

this.q = q;
new Thread (this, "Publisher").start();

}
public void run() {

for (int i = 0; i < 5; i++){
q.put(i);

}
}

}
class Consumer implements Runnable {

Queue q;
Consumer (Queue q) {

this.q = q;
new Thread (this, "Consumer").start();

}
public void run() {

for (int i = 0; i < 5; i++){
q.get();

}
}

}
class Demo {

public static void main(String args []) {
Queue q = new Queue ();
new Publisher (q);
new Consumer (q);

}
}

NOTE: If your program seems to hang when using two or more threads, you should

suspect that a deadlock has occurred. A deadlock occurs when all threads in conten-

tion for a resource wait, thinking that another thread is using the resource when

actually no thread is using it. Look for code where two threads access two syn-

chronized objects. They could be doing this in an unusual sequence. Redesign your

program to avoid this situation. A deadlock can also occur in a rare time-slicing

sequence, where the operating system causes a circular dependency of two threads.

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Suspending and Resuming Threads
There might be times when you need to temporarily stop a thread from processing and

then resume processing, such as when you want to let another thread use the current

resource. You can achieve this objective by defining your own suspend and resume

methods, as shown in the following example.

This example defines a MyThread class. The MyThread class defines

three methods: the run() method, the suspendThread() method, and the

resumeThread()method. In addition, theMyThread class declares the instance

variable suspended, whose value is used to indicate whether or not the thread is

suspended.

The run() method contains a for loop that displays the value of the counter

variable. Each time the counter variable is displayed, the thread pauses briefly. It then

enters a synchronized statement to determine whether the value of thesuspended
instance variable is true. If so, thewait()method is called, causing the thread to be

suspended until the notify() method is called.

ThesuspendThread()method simply assigns true to thesuspended instance

variable. The resumeThread() method assigns false to the suspended in-

stance variable and then calls the notify()method. This causes the thread that is

suspended to resume processing.

The main()method of the Demo class declares an instance of MyThread and

then pauses for about a second before calling the suspendThread() method

and displaying an appropriate message on the screen. It then pauses for about another

second before calling the resumeThread()method and again displaying an ap-

propriate message on the screen.

The thread continues to display the value of the counter variable until the thread is

suspended. The thread continues to display the value of the counter variable once the

thread resumes processing. Here’s what is displayed when you run this program:

Thread: 0
Thread: 1
Thread: 2
Thread: 3
Thread: 4
Thread: Suspended
Thread: Resume
Thread: 5
Thread: 6
Thread: 7
Thread: 8
Thread: 9

206 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thread exiting.

class MyThread implements Runnable {
String name;
Thread t;
boolean suspended;
MyThread() {

t = new Thread(this, "Thread");
suspended = false ;
t.start();

}
public void run() {

try {
for (int i = 0; i < 10; i++) {

System.out.println("Thread: " + i);
Thread.sleep(200);
synchronized (this) {

while (suspended) {
wait();

}
}

}
} catch (InterruptedException e) {

System.out.println("Thread: interrupted.");
}
System.out.println("Thread exiting.");

}
void suspendThread() {

suspended = true;
}
synchronized void resumeThread() {

suspended = false;
notify();

}
}
class Demo {

public static void main (String args []) {
MyThread t1 = new MyThread();
try{

Thread.sleep(1000);
t1.suspendThread();
System.out.println("Thread: Suspended");
Thread.sleep(1000);
t1.resumeThread();

CHAPTER 10 Multithreading 207

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("Thread: Resume");
} catch (InterruptedException e) {
}
try {

t1.t.join();
} catch (InterruptedException e) {

System.out.println (
"Main Thread: interrupted");

}
}

}

Quiz
1. What is a thread?

2. What is multitasking?

3. What kind of overhead occurs during multitasking?

4. What is a thread priority?

5. What is synchronization?

6. What is the Runnable interface?

7. When should you extend the Thread class?

8. If you create one thread in your program, how many threads actually run?

9. What method must you override when you create a thread in your program?

10. How do you define the portion of your program that becomes a thread?

208 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 10

P:\010Comp\DeMYST\454-8\ch10.vp
Saturday, April 10, 2004 12:45:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
11

Files and
Streams

If memory could last forever, we would never need to store information on a disk.

Until that day arrives, you’ll need to save information processed by your program to

a disk and efficiently retrieve that information from the disk. Java has a variety of file

and stream classes designed specifically to handle the storage and flow of informa-

tion to and from a disk. File classes let your program interact with a computer’s file

system, and stream classes focus on managing the flow of bytes between your pro-

gram and the file system. You’ll learn how to use both kinds of classes in this chapter.

Files and File Systems
A file is a logical grouping of related bytes stored in secondary storage. Secondary

storage is a disk, CD, or tape that is capable of permanently retaining information. A

file system is software used to organize and maintain files on a second storage device.

209

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Each file has properties that describe the file. The file system determines the kinds

of properties that describe a file; however, typically they include the file’s name, per-

missions to access the file, and the date and time when the file was last updated. The

three commonly used file permissions are read/write, read-only, and execute.

The read/write permission signifies that a program can read the contents of the

file and write information to the file. The read-only permission gives your program

the right to read the contents of the file, but not to write to the file. The execute per-

mission means the file contains a computer program.

Files are organized in a series of directories and subdirectories, sometimes called

folders. The topmost directory is called the root directory. It is from here that the hi-

erarchy of subdirectories begins. Collectively, these directories and subdirectories

are referred to as thedirectory structure, which is created by the administrator who is

responsible for maintaining the secondary storage device.

The File Class
The File class is contained in the java.io package and defines the methods you

use to interact with the file system and to navigate the directory structure, much the

same way you interactively move from one subdirectory to another.

You create an instance of a File class by using one of three constructors, as

shown here:

File file1 = new File(String directory);
File file1 = new File(String directory, String fileName);
File file1 = new File(File directoryObject,

String fileName);

The first constructor requires that you pass it a path to the file. Many times the

path is a directory hierarchy that ends with the subdirectory needed by your pro-

gram. For example, c:\junk\test is a directory path that leads to the test
subdirectory within the junk directory of the C drive.

The second constructor requires two parameters. The first parameter is the direc-

tory path, and the second parameter is the name of a file contained in the last subdi-

rectory on the path. Let’s say the directory path is c:\junk\test and the

filename is demo.java. If we pass these to the second constructor, we are telling

Java that the demo.java file is located in the c:\junk\test subdirectory.

The third constructor is very similar to the second constructor, except the direc-

tory path is passed as an instance of the File class instead of as a string.

210 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It is important to remember that these constructors do not create a directory or

subdirectory, nor do they create a file. Instead, think of these constructors as pointing

to either a directory path or a file.

Once your program can point to a directory path or file, you can call methods de-

fined in theFile class to interact with the directory path or file. Table 11-1 contains

a list of commonly used methods. The following program shows you how to use

many of these methods. This program points to the \junk\test directory path

and then inquires about the test subdirectory. Here’s what is displayed on the

screen after this program runs. You can change the directory path to one that you

have on your computer. If you do, your results might be slightly different from those

shown here:

Name: test
Path: \junk\test
Absolute Path: C:\junk\test
Parent: \junk
Exists: true
Write: true
Read: true
Directory: true
File: false
Absolute: false
Length: 0

import java.io.*;
class Demo {

public static void main(String args[]) {
File file1 = new File ("\\junk\\test");
System.out.println("Name: " + file1.getName());
System.out.println("Path: " + file1.getPath());
System.out.println("Absolute Path: "

+ file1.getAbsolutePath());
System.out.println("Parent: " + file1.getParent());
System.out.println("Exists: " + file1.exists());
System.out.println("Write: " + file1.canWrite());
System.out.println("Read: " + file1.canRead());
System.out.println("Directory: "

+ file1.isDirectory());
System.out.println("File: " + file1.isFile());
System.out.println("Absolute: "

+ file1.isAbsolute());
System.out.println("Length: " + file1.length());

}
}

CHAPTER 11 Files and Streams 211

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

212 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

Method Description

isFile() Returns a Boolean true if the object is a file;

otherwise, a false is returned. False is also

returned if the instance of the File class refers to

a directory, subdirectory, a pipe, or a device driver.

isAbsolute() Returns a Boolean true if the file contains an

absolute path; otherwise, a Boolean false is returned.

boolean renameTo(File newName) Renames a directory, subdirectory, or file to the

name passed to the renameTo() method.

delete() Deletes the disk file.

void deleteOnExit() Removes the file when the Java Virtual Machine

terminates.

boolean isHidden() Returns a Boolean true if the directory path or file

is hidden; otherwise, this method returns a

Boolean false.

boolean setLastModified(long
millisec)

Sets the timestamp on the file. The timestamp

must specify the date and time in milliseconds,

beginning with January 1, 1970 and ending with

the current date and time.

boolean setReadOnly() Sets the file to read-only.

compareTo() Compares two files.

length() The length of the file in bytes.

isDirectory() Returns a Boolean true if it is a directory;

otherwise, a boolean false is returned.

canRead() Returns a Boolean true if the directory path or file

has read permission; otherwise, a Boolean false

is returned.

canWrite() Returns a Boolean true if the directory path or file

has write permission; otherwise, a Boolean false

is returned.

exists() Returns a Boolean true if the directory path or file

exists; otherwise, a Boolean false is returned.

getParent() Returns the name of the parent directory path that

contains the subdirectory.

getAbsolutePath() Returns the absolute path.

getPath() Returns the directory path.

getName() Returns the name of the directory path or file.

Table 11-1 Methods Defined in the File Class

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Files and Streams 213

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

NOTE: Windows uses a backslash as a separator between subdirectories. Unix and

Linux use a forward slash for the same purpose. Java converts a forward slash to a

backslash if you are running aWindows machine. If you use a backslash, remember

that you must use two backslashes instead of one. The first backslash is an escape

character, and the second is the backslash. This is illustrated in the previous

program.

Listing Files Contained in a Directory
You can return the contents of a directory by calling the list() method. The

list()method returns an array of strings containing the names of the files stored

in the directory. Thelist()method can only be used on a directory; therefore, you

should call the isDirectory() method prior to calling the list() method to

determine whether the file is in fact a directory. The isDirectory()method re-

turns a Boolean true if the file is a directory; otherwise, a Boolean false is returned.

The following example shows how to use theisDirectory()method and the

list() method to retrieve and display the contents of a directory on the screen.

The example begins by referencing thetemp directory. The nametemp is assigned

to a string, which is then passed to the constructor of the File object. Before

searching the directory, we determine whether it is indeed a directory by calling the

isDirectory() method. If it is not a directory, the program displays an appro-

priate message on the screen; otherwise, the program proceeds to retrieve the con-

tents of the directory.

The list() method is called to retrieve the contents of the directory, which is

stored in an array of strings called str. The program enters a for loop in order to

step through elements of the string array. Each entry in the array is passed to the con-

structor of theFile class. This enables us to call theisDirectory()method to

determine whether the array element is a subdirectory. If it is, we indicate that it is a

subdirectory when the name is displayed on the screen. If it’s not, only the name of

the entry is displayed.

import java.io.File;
class Demo {

public static void main(String args[]) {
String dir = " /temp";
File file1 = new File(dir);
if (file1.isDirectory()) {

System.out.println("Directory:" + dir);
String str[] = file1.list();
for (int i=0; i <str.length; i++) {

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

File file2 = new File (dir + "/" + str[i]);
if (file2.isDirectory()) {

System.out.prinln("Directory: "+ str[i]);
}
else {

System.out.println(str[i]);
}

}
} else {

System.out.println("Not a directory ");
}

}
}

Streams
No doubt you’ve heard the term stream used to describe water or even electrons

flowing across an electrical circuit. A stream in a Java program is very similar to

these, except instead of water and electrons, a stream in Java consists of bytes.

Java has several stream classes that are built upon four abstract classes. These

are InputStream, OutputStream, Reader, and Writer. You indirectly

use these classes when you use Java’s concrete stream classes to interact with a

stream of bytes.

Many subclasses are available in Java to interact with streams. Rather than

explore all these subclasses, we’ll focus on four commonly used file routines that il-

lustrate some subclasses. You’ll learn how to write to a file, read from a file, append

to a file, and write and read objects to and from a file.

Typically, a program stores data in one of three ways: as individual pieces of data

that are not encapsulated in a class, as data that is encapsulated in a class, or as data

stored in a database. The next three sections of this chapter show you how to store

and retrieve data that is not encapsulated in a class. The last section of this chapter

shows you how to store and retrieve data that is encapsulated in a class. Also, in

Chapter 13, you’ll learn how to store and retrieve data to and from a database.

Writing to a File
In order to write data to a file, you need to first create a file output stream. A file out-

put stream opens the file or creates a new file if the file doesn’t exist. Once the file

output stream is open, you can write data to the file using a print writer.

214 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You open a fi le output stream by using the constructor of the

FileOutputStream class and passing it the name of the file you want to open.

You can include the full path as part of the filename if the file isn’t in the current

directory. The constructor returns a reference to the file output stream.

You create a print writer by calling the constructor of the PrintWriter class

and passing it a reference to the file output stream. The constructor returns a refer-

ence to PrintWriter. You use the PrintWriter reference to call methods of

the PrintWriter class to write to the file. After you finish writing to the file, you

must call the close() method to close the file.

The following example illustrate how to open a file output stream, create a printer

writer, and write data to a file. The example begins by declaring and initializing three

strings that will be written to the file. Next, the program opens the file output stream

and creates a print writer. The file for this example is called Student.dat and is

stored in the current directory. The example then calls the print() method de-

fined in the PrintWriter class to write data to the Student.dat file. Each

time the print() method is called, it is passed the data that is to be written to the

file. The file is closed after the last data element is written.

Notice that all the statements involved in opening the file output stream and writ-

ing to the file are contained within a try block. Should any exceptions occur, such as

insufficient disk space, an exception is thrown and caught by the catch block.

import java.io.*;
import java.util.*;
public class Demo {

public static void main(String args[])
{

String studentFirstName = "Bob ";
String studentLastName = " Smith ";
String finalGrade = "A";
try

{
PrintWriter out = new PrintWriter(

new FileOutputStream("Student.dat"));
out.print(studentFirstName);
out.print(studentLastName);
out.println(grade);

}
catch (IOException e)

{
System.out.println(e);

}
finally {

CHAPTER 11 Files and Streams 215

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

out.close();
}

}
}

Reading from a File
You have several ways to read data from a file. You can read a byte of data at a time.

You can read a specific number of bytes at a time. You can also read a line of bytes

at one time. A line consists of a series of bytes that end with a byte that corresponds

to a newline character. This is similar to pressing the ENTER key at the end of a sen-

tence. The ENTER key typically causes the program to insert a newline character.

Once the line is read, you have the program divide the line into meaningful seg-

ments, such as a student’s first name and last name, by using functions defined in

the String class. Alternatively, your program can simply display the entire line

on the screen. Another common approach to reading from a file is to read data as

strings. That is, a string is read from a file rather than bytes. You’ll see how this is

done later in this section.

In order to read a file, you’ll need to open the file. There are a number of ways to

do this in Java. A common way is to create a file reader by using the constructor of

the FileReader class and passing it the name of the file you want opened. The

filename should include the full path name if the file isn’t in the current directory.

It takes time to read bytes from a disk drive. Programmers refer to this as neces-

sary overhead, the cost of reading a file. In order to reduce this overhead, program-

mers read a chunk of bytes at one time and store them in memory called a buffer. The

program then reads bytes from the buffer instead of the disk drive.

You can use this same technique in your program by creating a buffer reader,

which creates the buffer for storing data from the disk drive. You create a buffer

reader by using the BufferedReader constructor and passing it a reference to

the FileReader used to open the file. The BufferedReader class defines the

methods you use to read data from the buffer. This approach also applies to writing

data, and in the previous example, using BufferedWriterwould have made the

program more efficient.

The following example shows how to create a file reader and buffer reader. It then

uses them to read from the file created in the previous example. This example opens

the Student.dat file, which contains data about one student. This data is copied

from the file and into the buffer. The readLine() method is then called to read

one line at a time from the buffer, which is assigned to a string variable.

Notice that all this takes place in the conditional expression of the while loop.

We do this in order to determine when we’ve reached the end of the file. The

216 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Files and Streams 217

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

readLine() method returns a null when the end of the file is reached. The pro-

gram enters the while loop to print the line on the screen as long as the line isn’t

null (that is, as long as we haven’t reached the end of the file). Once the end of file is

reached, the program breaks out of thewhile loop and calls theclose()method,

which closes the file.

import java.io.*;
import java.util.*;
public class Demo {

public static void main(String args[])
{

String line;
try
{

BufferedReader in = new BufferedReader(
new FileReader("Student.dat"));

while ((line = in.readLine()) != null)
{

System.out.println(line);
}

}
catch (IOException e)
{

System.out.println(e);
}
finally {

in.close();
}

}
}

Appending to a File
Think of a file as a long strip of tape, where the first byte written to the file is at the be-

ginning of the tape, and subsequent bytes fall into place behind the first byte. When

you wrote data to a file previously in this chapter, the data was always written at the

beginning of the file. This is fine if you don’t want to retain the data already stored in

the file, because the new data will overwrite the existing data in the file.

However, programmers usually want to add data to a file rather than replace existing

data. To do this, new data must be written after the last byte in the file rather than being

written at the beginning of the file. Programmers call this appending data to a file.

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You append data to a file by setting the second parameter of the

FileOutputStream constructor to true. As you’ll recall from the “Writing to a

File” section of this chapter, theFileOutputStream constructor is used to open

a file for writing. The version of the constructor used in the “Writing to a File” sec-

tion consisted of one argument, which is the filename. Bytes are written at the

beginning of the file by default.

Another version of the FileOutputStream constructor uses two arguments.

The first argument is again the filename, and the second argument is the Boolean

value true. This causes bytes to be written at the end of the file. The file is created if it

doesn’t exist.

The following example illustrates how to append data to a file. This example is

nearly the same program as the example shown in the “Writing to a File” section, ex-

cept we use the second version of theFileOutputStream constructor and pass it a

Boolean true as the second argument, causing data to be written at the end of the file.

import java.io.*;
import java.util.*;
public class Demo {

public static void main(String args[])
{

String studentFirstName = "Mary";
String studentLastName = " Jones ";
String grade = "A";
try
{

PrintWriter out = new PrintWriter(
new FileOutputStream("Student.dat”, true));

out.print(studentFirstName);
out.print(studentLastName);
out.println(grade);

}
catch (IOException e)
{

System.out.println(e);
}
finally {

out.close();
}

}
}

218 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reading and Writing an Object to a File
Previously in this chapter, you learned how to write data to a file and read data from a

file that is not encapsulated in the class definition. That is, the student name and

grade used in previous examples were not associated with each other in a class.

In the real world, many data elements you want stored in a file will be data mem-

bers of a class. As you’ll recall, a class is a cookie cutter that describes attributes and

behaviors of an object, such as a student. Attributes are basically data, and behaviors

are methods. When you press the cookie cutter into the dough, you make a real

cookie. When you declare an instance of a class, you create a real object of the class

(in this case, a real student).

Many attributes of a class are held in instance variables. An instance variable rep-

resents a memory location used to store data for an instance of the object. Suppose

two instance variables are defined in a class definition, and you created five objects

of that class. Java sets aside five sets of instance variables, each independent of the

other. However, each of these five objects share the same set of methods associated

with the class.

When a programmer needs to retain an instance of a class, the programmer saves

the instance to the file. In doing so, only the instance variables are stored in the file.

Methods are not saved in the file. This is a different technique than we used previ-

ously in this chapter, where we saved individual data elements.

We retrieve this data from a file by reading an object from the file rather than read-

ing individual data elements. That is, we read the entire set of instance variables

from the file, which are stored in memory and accessed by using a reference to

the class.

Here are the steps you must follow in order to be able to write and read an object to

and from a file. The initial step is to implement theSerializable interface in the

class whose objects you are going to write to a file. The Serializable interface

enables instances of the class to be converted to a byte stream that can be written to

disk or transmitted over a network. Programmers call this serialization. The byte

stream is then deserialized when the object is read and reconstituted back to the

instance of the class.

Next, you create an instance of the class and assign values to instance variables.

With the data in place, you’re ready to open the file. You open a file by using thenew
operator to call the constructor of the FileOutputStream class and pass it the

name of the file, which you learned how to do previously in this chapter. The new
operator returns a reference to FileOutputStream. This reference is passed to

the constructor of the ObjectOutputStream class, which defines the methods

used to write an object to a file.

CHAPTER 11 Files and Streams 219

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once you create an instance of the ObjectOutputStream, you are ready to

write an object to the file. In order to do this, you need to call thewriteObject()
method and pass it a reference to the instance of the object you want written to the

file. Instance variables of the object are saved to the file. Static variables of the object

are not saved. You then call the close() method to close the file.

Reading an object from a file is just as easy as writing an object to a file. However,

you use the FileInputStream instead of the FileOutputStream, and you

use the ObjectInputStream class rather than the ObjectOutputStream
class. You read an object from the file by callingreadObject(), which is defined

in the ObjectInputStream class. The readObject()method returns an in-

stance of theObject class. You’ll need to cast this to the specific class of the object.

For instance, in the next example we save instances of theStudent class. When we

read an instance from the file, we cast it as Student. The object returned by the

readObject() method is then assigned to a reference to that object and used as

you would any object in your program.

Let’s take a look at how this works in real life by examining the following exam-

ple. The example defines a Student class consisting of three instance variables.

These are the student’s first and last name and grade. Notice that the class imple-

ments the Serializable interface, so we can convert the instance to a byte

stream. Three instances of the class are declared, each passing data to the constructor

of the class. This data is assigned to instance variables. Notice that we used an array

of objects for this purpose so that a for loop can be used to write each object to the

file. This reduces the number of lines of code that needs to be written.

We then open the Student.dat file by calling the FileOutputStream
constructor and passing it two arguments. The first argument is the filename, and the

second argument is a Boolean true signifying that we want to append to the file.

The writeObject() method is then called within the first for loop and

passed a reference to each instance of theStudent class that is declared in this pro-

gram. After the last instance is written to the file, the file is closed.

Next, we open the file again. This time the file is opened so we can read objects

from the file. ThereadObject()method is called within the secondfor loop to

retrieve each object from the file. Notice that we cast the return value of the

readObject() method to Student. We do this because the readObject()
method returns a reference to the Object class, which is too general to be used

in this program. The Object class is the superclass of all objects. The

readStudentInfo array is used to store each object after it is read from the file.

After the last object is read from the file, the file is closed and each instance vari-

able of each object read from the file is displayed on the screen.

import java.io.*;
import java.util.*;

220 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 Files and Streams 221

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

public class Demo {
public static void main(String args[])
{
Student[] writeStudentInfo = new Student[3];
Student[] readStudentInfo = new Student[3];
writeStudentInfo [0] = new Student (

”Bob", "Smith", "B");
writeStudentInfo [1] = new Student (

”Mary", "Jones", "A");
writeStudentInfo [2] = new Student (

”Tom", "Jones", "B+");
try
{
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream("Student.dat",true));
for (int y = 0; y < 3; y ++){

out.writeObject(writeStudentInfo[y]);
}
out.close();
ObjectInputStream in = new ObjectInputStream(

new FileInputStream("Student.dat"));
for (int x = 0; x < 3; x++) {
readStudentInfo[x] =

(Student) in.readObject();
}
in.close();
for (int i = 0; i < 3; i++){

System.out.println(
readStudentInfo [i].studentFirstName);

System.out.println(
readStudentInfo [i].studentLastName);

System.out.println(
readStudentInfo [i].studentGrade);

}
}
catch (Exception e)
{
System.out.println(e);

}
}

}
class Student implements Serializable
{

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

String studentFirstName, studentLastName,studentGrade;
public Student () { };
public Student (String fn, String ln, String grade)
{
studentFirstName = fn;
studentLastName = ln;
studentGrade = grade;

}
}

Quiz
1. Why do you need to serialize a class in order to save its objects to a file?

2. What is a stream?

3. What is the benefit of using the File class?

4. What is the difference between saving data elements to a file and saving

an object to a file?

5. What is the purpose of a filename filter?

6. Can the PrintWriter class open a file?

7. How would you specify the path when opening a file?

8. What is the purpose of using the BufferedReader class?

9. How would you append data to the end of a file?

10. How can you determine the parent directory path that contains a

subdirectory?

222 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 11

P:\010Comp\DeMYST\454-8\ch11.vp
Saturday, April 10, 2004 1:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
12

Graphical User
Interface

If someone mentioned to you the word Excel, you probably conjure the image of an

Excel spreadsheet that consists of columns, rows, menus, buttons, and assorted com-

ponents. You might say that this image is the face of the Excel program because it is

the portion of the program that you see. Programmers call that image a graphical

user interface (GUI) because, collectively, those components are used to interact

with the program. In this chapter, you’ll learn how to use in your own program the

push buttons, radio buttons, text boxes, and other components found in commercial

programs.

What Is a User Interface?
An interface is a way to interact with something. For example, your television re-

mote control is an interface to your television. Throughout this book, you learned

223

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

how to use the Application Program(ming) Interface (API) to write code that inter-

acts with a computer. A user interface is the way someone interacts with a program.

The simplest user interface consists of two components: a prompt displayed on

the screen and the keyboard used to enter information into the program. The prompt

might be some text that tells the user of the program to enter a student ID. The user

then enters the student ID into the program using the keyboard. The program then

processes the student ID when the ENTER key is pressed.

The following example illustrates how to create this simple user interface. Sys-
tem.in is used to reference the standard input to the computer, which by default is

the keyboard. The person running your program could redirect the standard input to

another input device, such as a file.

This example uses an InputStreamReader object and a BufferedReader
object to improve reading information from the keyboard. Information entered by the

user into the keyboard is stored as a series of bytes. However, our example needs a se-

quence of characters. The InputStreamReader converts the bytes into characters.

We want to read information from the keyboard quickly. To do so, we want to read char-

acters from memory (called a buffer) rather than directly from the keyboard. However,

the InputStreamReader doesn’t use a buffer. Therefore, we need to use the

BufferedReader, which reads characters from the InputStreamReader and

saves them to a buffer. We then called the readLine() method defined in the

BufferedReader class to read one full line of text from the buffer.

This example illustrates a very simple user interface. It displays a prompt on the

screen and then calls the readLine() method. The readLine() method re-

turns all the characters that were entered into the keyboard, which are then collec-

tively assigned to the String studentID and displayed on the screen.

import java.io.*;
public class Demo {
public static void main(String args[]) {

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));

try {
System.out.print("Enter your student ID: ");
String studentID = stdin.readLine();
System.out.println("Student ID: " + studentID);

} catch (IOException e) {
System.out.println("Exception:" + e);

}
}

}

224 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What Is a GUI?
No doubt you’ve heard the term GUI used whenever anyone talks about a user inter-

face for a program. GUI is an acronym for graphical user interface. Practically ev-

ery program used today uses graphics as a way for a user to interact with the program

because a GUI is an intuitive and efficient way to collect information from a user and

to display information for a user to read.

Researchers at Xerox’s Palo Alto Research Center (PARC) are credited with de-

veloping the GUI, which was later enhanced by Apple Computer and then by

Microsoft. At the heart of a GUI are the standard graphical elements that collectively

form the user interface. These elements are commonly recognized as windows,

menus, push buttons, labels, text boxes, radio buttons, and other similar GUI objects

that you see used in nearly all commercial programs today.

Besides making a program look pretty, the standard GUI dramatically reduces the

time necessary for someone to learn how to use a new program. Arguably, 75 percent

of every program is the same. That is, it uses the same two-dozen or so graphical ele-

ments. Each of those graphical elements operates identically across programs. For

example, nearly everyone who has used a computer program knows to select the

down arrow to the right of a text box in order to see a list of values that can be entered

into the text box. The values are likely to change from program to program, but the

process used to select those values is the same in all programs.

You have two ways in which you can create a GUI for your program. First is the

simple approach of using a message dialog box and an input dialog box. A dialog

box is a small window. You’ve seen a dialog box when you select File | Open from

the menu bar—the Open dialog box is displayed.

A message dialog box is a dialog box that displays a message and an OK push but-

ton, which is what you see whenever a warning message is displayed on the screen.

An input dialog box is similar to a message dialog box, except you can enter infor-

mation into an input dialog box.

Both the message dialog box and the input dialog box are displayed by calling one

method, which you’ll learn how to do in the next section. This is a quick-and-dirty

way to create a GUI for your program. However, these are very limiting because you

won’t be able to use all the GUI elements in these dialog boxes.

The second way to create a GUI for your program is to use radio buttons, push

buttons, and other GUI objects that you see in most programs. Most of this chapter

shows you how to create a GUI object for your program.

CHAPTER 12 Graphical User Interface 225

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Simple GUI
The easiest way to create a GUI for your program is to use a message dialog box and

an input dialog box. A message dialog box is used to display a message on the

screen, and an input dialog box prompts the user to enter information that is returned

to your program for processing.

Let’s take a look at how to create a message dialog box. You create a message dia-

log box by calling the showMessageDialog()method, which is defined in the

JOptionPane class contained in thejavax.swing package. This means you’ll

need to import the javax.swing package at the top of your program in order to

call the showMessageDialog() method.

The showMessageDialog() method requires four arguments. The first ar-

gument is a reference to the parent that calls the showMessageDialog()
method. Many programmers simply use null as the value for this argument because

there isn’t a parent for this dialog box.

The second argument is the message you want displayed on the screen. The third

argument is the caption that appears in the title bar of the dialog box, and the last ar-

gument is a constant that states the kind of message dialog box you want displayed.

Table 12-1 contains a list of the most commonly used message constants. Each one

displays an icon within the message dialog box that corresponds to the kind of mes-

sage being displayed.

The showMessageDialog() method also displays an OK push button that

the user selects to acknowledge the message. The push button closes the dialog box

when selected.

Here is how you call the showMessageDialog() method:

226 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Constants Description

JOptionPane.PLAIN_MESSAGE Used to display a general-purpose message

JOptionPane.ERROR_MESSAGE Used to display an error message

JOptionPane.INFORMATION_MESSAGE Used to display a general-purpose message

JOptionPane.WARNING_MESSAGE Used to display a warning message

JOptionPane.QUESTION_MESSAGE Used to question the user regarding a user

response to your program

Table 12-1 Constants Used to Determine the Kind of Message Dialog Box to Display

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JOptionPane.showMessageDialog(null, "Message", "Window Caption",

JOptionPane.PLAIN_MESSAGE);

Figure 12-1 shows the dialog box created by this method call.

An input dialog box is created by calling the showInputDialog() method,

which is also defined in the JOptionPane class. The showInputDialog()
method requires one argument, which is a message prompting the user to enter infor-

mation into the dialog box.

The showInputDialog() method displays the message and a text box,

which is where the user enters information. In addition, the OK and Cancel push but-

ton are displayed. Selecting OK causes the showInputDialog()method to re-

turn the information that the user entered into the text box. Selecting either push

button closes the dialog box.

Information that the user enters into the text box is returned by the

showInputDialog() method as a string, which is usually assigned to a String

variable and then processed by the program. Here is how to call the

showInputDialog():

String str = JOptionPane.showInputDialog("Enter Student ID: ");

Figure 12-2 shows the input dialog that is displayed when this method is called.

The following example illustrates how to call both the

showMessageDialog()method and theshowInputDialog()method from

CHAPTER 12 Graphical User Interface 227

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-1 Here is a “plain” message dialog box. It is useful for displaying any kind

of message on the screen.

Figure 12-2 The showInputDialog() method displays an input dialog box that is

used to gather information from the user of your program.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

228 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

within a program. This example begins by importing all the swing classes, which is

necessary to call either dialog box method. Next, a string is declared and is later used

to store information returned by the showInputDialog() method. The

showMessageDialog()method is called first to display the message dialog box.

Once the user acknowledges the message by selecting the OK push button, the mes-

sage dialog box closes and the showInputDialog() method is called to display

the input dialog box. The information returned by the showInputDialog()
method is then assigned to the string.

import javax.swing.*;
public class Demo {

public static void main(String[] args) {
String str;
JOptionPane.showMessageDialog(null,

"Message", "Window Caption", JOptionPane.
PLAIN_MESSAGE);

str = JOptionPane.showInputDialog (
"Enter Student ID ");

System.exit(0);
}

}

swing
In the previous section, you learned how to use theJOptionPane class that’s con-

tained in the javax.swing package. The javax.swing package contains a

large collection of GUI classes that have become known as the Java Foundation

Classes (JFC). Thejavax.swing package contains a richer collection of graphic

classes than the Abstract Windows Toolkit (AWT) packages of classes. AWT and

JFC are complementary. Programmers use both libraries to create a graphical inter-

face to their programs.

The JFC contains a wealth of interesting classes you can incorporate into your pro-

gram. In fact, the JFC contains so many classes, there aren’t enough pages in this book

to explain each of them. Therefore, we’ll focus on the common classes used to create a

GUI for a typical program. You can learn about the entire JFC at java.sun.com.

Let’s begin by covering the basics of a GUI. All GUIs require a window that can

be minimized, maximized, and resized by the person using the computer. A window

needs a content container that is used to contain push buttons, text boxes, and other

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GUI elements that comprise the GUI for your program. The content container ap-

pears inside the window.

Typically, programmers define their own window class that contains the definition

for all the elements of their window, including the content container and GUI elements.

An instance of the window class is then declared any time the programmer needs a win-

dow. Any changes to the window occur in one place—the window class.

The window class extends theJFrame class. TheJFrame class is a JFC that de-

fines all the methods necessary to manage the window, such as the methods for

resizing it. This means that your window class has all the features found in the

JFrame class.

Three commonly used methods are defined in the JFrame class. These are the

setSize() method, the setDefaultCloseOperation() method, and

thesetVisible()method. ThesetSize()method requires two arguments:

the integers that define the width and height of the window, measured in pixels. For

example, the following method defines the size of the window to be 400 pixels

wide and 100 pixels high:

setSize(400,100);

ThesetDefaultCloseOperation()method defines how the window be-

haves when the user closes the window (for example, by clicking the “X” in the win-

dow’s upper-right corner). The setDefaultCloseOperation() method

requires one argument: a constant that defines the behavior. Many programmers use

theEXIT_ON_CLOSE constant (which causes the window to exit when the user se-

lects Close), as shown here:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

The window you create is not shown until you call thesetVisible()method.

The setVisible() method requires one argument: a Boolean true or false. A

Boolean true causes the window to be displayed. A Boolean false causes the window

to be hidden from view. Here’s the setVisible() method.

setVisible(true);

Typically, each window has a caption on the title bar that describes the purpose of

the window. You create the window caption by calling the constructor of the

JFrame class and passing it the caption. Because your window class extends the

JFrame class, you can call the constructor by using super, as shown here:

super ("Window Title");

The follow example illustrates how to define your own window class and display

the window on the screen. Figure 12-3 shows the window it displays.

CHAPTER 12 Graphical User Interface 229

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import javax.swing.*;
public class Demo {

public static void main(String[] args) {
Window win = new Window();

}
}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

}
}

Content Container
Before you can insert GUI elements into the window, you need to create a container

for them. Think of a container as a box into which you place the GUI elements. The

container is then placed inside the window.

A container is defined in theContainer class found in the Abstract Windowing

Toolkit. You can access the Container class by importing the java.awt pack-

age. You declare an instance of the Container class by calling the

getContentPane()method of the JFrame class within the window class you

defined for your program. The getContentPane() method returns a reference

to the content container, which is assigned to a Container object reference. This

is illustrated in the following statement:

Container ca = getContentPane();

The Container class defines many methods, but the method that is most com-

monly used is the setBackground() method. The setBackground()
method colors the content container, giving your window a background color. The

setBackground() method requires one argument: the constant defined in the

230 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-3 You create a window by defining your own window class that extends the

JFrame class.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Graphical User Interface 231

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Color class that refers to the color you want for the background. Table 12-2 lists the

most commonly used color constants.

The follow example shows how to declare an instance of a container and display

the container within the window. You’ll notice that this example builds upon the pre-

vious example. This example colors the background of the container light gray:

Import java.awt.*;
import javax.swing.*;

public class Demo {
public static void main(String[] rgs) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightgray);

}
}

Constant Color

Color.white White

Color.lightGray Light Gray

Color.gray Gray

Color.black Black

Color.blue Blue

Color.green Green

Color.cyan Cyan

Color.magenta Magenta

Color.orange Orange

Color.pink Pink

Color.yellow Yellow

Table 12-2 Color Constants Used to Paint the Content Container of a Window

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

232 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Java Layout Managers
In some programming languages you specify the pixel coordinates where the GUI ele-

ment should appear within the window. Programmers call this specifying the exact po-

sition of the GUI element. Positing GUI elements within the container is a little tricky

because you specify relative positions rather than exact positions. That is, you specify

generally where you want the GUI element to be positioned on the screen, and the Java

virtual engine determines the exact location.

At first, this technique of locating GUI elements within the container appears ar-

chaic. However, there is a very logical reason Java uses this technique. Remember

that a Java program is machine independent. This means that the program that runs

on your computer must also be able to run on any kind of computer that has a Java

Virtual Machine running. And those other computers are likely to have a different

screen than the screen you used to design your program.

To compensate for these differences, Java requires the Java Virtual Machine to

determine the exact screen location for GUI elements. You simply provide a general

location on the screen for where you want the GUI element.

Your first step is to decide on a layout manager for the container. Think of a layout

manager as a way that Java organizes the container. There are four commonly used

layout managers: the Flow Layout Manager, the Border Layout Manager, the Grid

Layout Manager, and the Gridbag Layout Manager.

Flow Layout Manager
The Flow Layout Manager is used to place GUI elements in the container the way

words are placed on a page—that is, from left to right then at the beginning of the

next line. GUI elements are automatically repositioned in the center of the container

whenever the window is resized.

You use the Flow Layout Manager by declaring an instance of theFlowLayout
class, as shown here:

FlowLayout flm = new FlowLayout();

As you’ll soon discover when you begin placing GUI elements in a container, you

have little control over the placement of the elements. For example, the

FlowLayout class enables you to specify if you want GUI elements to be cen-

tered, flush left, or flush right by passing the constructor an appropriate constant.

The default behavior is to center elements, so you don’t need to pass the constructor

a constant to center the elements. You can specify left or right by passing the con-

structor the FlowLayout.LEFT or FlowLayout.RIGHT constant. You can

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

CHAPTER 12 Graphical User Interface 233

also specify the horizontal and vertical gap between GUI elements by passing the

constructor integers for both these values. The integer represents the number of pix-

els that will separate elements.

Many of the examples in this chapter use the Flow Layout Manager.

Border Layout Manager
The Border Layout Manager divides the container into five regions. These are north,

south, east, west, and center. You use the Border Layout Manager by declaring an in-

stance of the BorderLayout class, which is shown in the next example.

The add() method of the container class is used to place a GUI element in the

container. A version of the add() method requires two arguments. The first argu-

ment is a reference to the GUI element. The second argument is the layout manager

reference used to position the element.

You use one of the BorderLayout class’s constants to specify the position.

The BorderLayout class’s constants are listed here:

BorderLayout.NORTH

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST

BorderLayout.CENTER

The following example illustrates how to use the Border Layout Manager. This

example displays a window that contains two push buttons. You’ll learn more about

push buttons in the “Push Buttons” section. One button is placed in the west area of

the container, and the other button is displayed in the east area of the container

(Figure 12-4).

Figure 12-4 The Border Layout Manager divides the container into five areas, known

as north, south, east, west, and center.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import java.awt.*;
import javax.swing.*;

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
BorderLayout blm = new BorderLayout();
ca.setLayout(blm);
JButton bt1 = new JButton("Start Test 1");
ca.add(bt1,blm.WEST);
JButton bt2 = new JButton("Start Test 2");
ca.add(bt2,blm.EAST);
setContentPane(ca);

}
}

Grid Layout Manager and the Gridbag Layout Manager
The Grid Layout Manager divides the container into rows and columns. You create the

Grid Layout Manager by declaring an instance of the GridLayout class, which is

shown here:

GridLayout glm = new GridLayout();

You specify the number of rows and columns that form the grid when you declare

the instance of the GridLayout class. You do so by passing the constructor two ar-

guments. Both arguments are integers. The first argument specifies the number of

rows, and the second argument specifies the number of columns. Each cell is of equal

size regardless of the size of the GUI element assigned to that cell.

A drawback of using the Grid Layout Manager is that you cannot specify the cell

to place a GUI element. Elements are placed in cells from left to right in the order in

which they are added to the container.

It is for this reason that some programmers prefer to use the Gridbag Layout Man-

ager. The Gridbag Layout Manager enables you to place a GUI element into a specific

234 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cell. You create a Gridbag Layout Manager by declaring an instance of the

GridbagLayout class, which is shown in the next example.

You’ll also need to declare an instance of the GridBagConstraints class.

The GridBagConstraints class is used to specify where to position the GUI

element in the grid. You assign a row and column number to thegridx andgridy
attributes, respectively, and then pass a reference to the instance of the

GridBagConstraints class to the container’s add()method when adding

a new GUI element to the container.

The following example shows how to create a grid and then position two buttons

within the grid. Figure 12-5 displays the grid created by this example.

import java.awt.*;
import javax.swing.*;

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
GridBagLayout gblm = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
ca.setLayout(gblm);
JButton bt1 = new JButton("Start Test 1");
gbc.gridx = 1;
gbc.gridy = 0;
ca.add(bt1,gbc);
JButton bt2 = new JButton("Start Test 2");

CHAPTER 12 Graphical User Interface 235

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-5 You can create a grid and specify the location of GUI elements on the grid

by using the Gridbag Layout Manager.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

gbc.gridx = 1;
gbc.gridy = 1;
ca.add(bt2,gbc);
setContentPane(ca);

}
}

Push Buttons
Now that you’ve learned how to create a window and a container and then specify a

layout manager, we can turn our attention to adding GUI elements to the container.

Let’s begin by creating a push button.

You must follow three steps to add a push button to the container. First, you’ll need

to create the push button. This is done by declaring an instance of theJButton class.

With few exceptions, most buttons you’ll create will have a label on them. Passing text

to the constructor creates the label. Here’s how you’d create a “Start” button:

JButton start = new JButton("Start");

The second step is to pass a reference to the instance of JButton to the add()
method of the container. Depending on the layout manager you choose, you may

also want to specify the location of the button as the second argument to the add()
method (see “Java Layout Managers”).

The third step is to pass a reference to the content pane of the container to the

setContentPane() method. Think of the content pane as a pane of glass that

fits into the container. GUI elements are on this pane of glass. The

setContentPane() method places the pane of glass into the window (con-

tainer). You create a content pane by calling thegetContentPane()method, as

shown in the following example.

Figure 12-6 shows the window displayed when you run the example.

import java.awt.*;
import javax.swing.*;

public class Demo {

236 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-6 Adding two push buttons to the window

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void main(String[] args) {
Window win = new Window();

}
}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
JButton start = new JButton("Start");
ca.add(start);
JButton stop = new JButton("Stop");
ca.add(stop);
setContentPane(ca);

}
}

Labels and Text Fields
Two of the most commonly used GUI elements are the label and the text field. The

label element is used to place text in the container, and the text field element enables

the person who uses your program to enter text.

You create a label by declaring an instance of the JLabel class and passing its

constructor the text that will appear as the label, as shown here, where “Student

Information” is the text of the label:

JLabel lab1 = JLabel("Student Information");

You create a text field by declaring an instance of the JTextField class and

passing the constructor of this class two arguments. The first argument is the text

that will appear in the text field. The second argument is the number of characters

that can be entered into the text field. Some programmers simply leave out the first

argument because they’ll use the label GUI element to label the text field instead of

placing default text within the text field.

The following example shows how to add a label and text field to a container. No-

tice that that add() method is called for each GUI element. Once all the elements

have been added to the content pane, thesetContentPane()method is called to

CHAPTER 12 Graphical User Interface 237

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

place the content pane in the container. Figure 12-7 shows the window that is dis-

played when this example runs.

import java.awt.*;
import javax.swing.*;

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
JLabel lab1 = new JLabel("Student Information");
ca.add(lab1);
JTextField text = new JTextField("First Name",25);
ca.add(text);
setContentPane(ca);

}
}

Radio Buttons and Check Boxes
Radio buttons and check boxes enable the user of your program to choose a selection

rather than having to enter the selection into a text field. Radio buttons are usually

displayed in a group. Only one radio button within the group can be selected. All

other radio buttons become deselected automatically when the user selects one radio

button within the group. Typically, one radio button within the group must be se-

238 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-7 The JLabel class is used create a label, and the JTextField class is

used to create a text field.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:11:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Graphical User Interface 239

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

lected. In contrast, check boxes are not grouped together, enabling a user to select

none, all, or a combination of check boxes.

You create a radio button by declaring an instance of the JRadioButton class.

Each radio button is uniquely identified within the group by a label. You create the

label by passing text to the JRadioButton constructor, as shown here:

JRadioButton rb1 = new JRadioButton("Pass");

You must also create a radio button group. You do this by declaring an instance of

the ButtonGroup class, as shown here:

ButtonGroup passFail = new ButtonGroup();

You add a radio button to the button group by calling theadd()method of the in-

stance of theButtonGroup class. This is shown in the following statement, where

the radio button rb1 is added to the button group passFail:

passFail.add(rb1);

You then add the button group to the content pane by calling the add()method,

as shown in previous examples.

You create a check box by declaring an instance of the JCheckBox class and

passing its constructor the text that will be used as the label for the check box. This is

shown here:

JCheckBox cb1 = new JCheckBox("Completed");

A reference to the check box is passed to theadd()method of the content pane in

order for the check box to appear in the content pane. This is basically the same step

used to pass a reference to the button group to theadd()method of the content pane.

Once all the GUI elements are added to the content pane, the

setContentPane()method is called and is passed a reference to the content pane.

The following example shows how to display radio buttons and a check box in the

content pane of a window. Figure 12-8 shows the window that is displayed when you

run the following example:

import java.awt.*;
import javax.swing.*;

Figure 12-8 Radio buttons must appear in a button group. Check boxes do not have to

appear in a button group.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
JCheckBox cb1 = new JCheckBox("Completed");
ButtonGroup passFail = new ButtonGroup();
JRadioButton rb1 = new JRadioButton("Pass");
JRadioButton rb2 = new JRadioButton("Fail");
passFail.add(rb1);
passFail.add(rb2);
ca.add(cb1);
ca.add(rb1);
ca.add(rb2);
setContentPane(ca);

}
}

Combo Boxes
A combo box is a GUI element that enables the user of your program to select an

item from a list of items contained in a drop-down menu. You create a combo box by

declaring an instance of the JComboBox class, as shown here:

JComboBox combo1 = new JComboBox();

Once the instance is declared, you insert items into the drop-down list by calling

the addItem() method defined in JComboBox. The addItem() method re-

quires one argument: the text of the item you want added to the combo box. The fol-

lowing statement inserts the text “One” into the instance of the JComboBox called

combo1.

combo1.addItem("One");

240 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Graphical User Interface 241

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Two additional steps are necessary to place the combo box in the container of the

window. First, you’ll need to place the combo box in the content pane by calling

the add()method of the content pane. Second, you’ll place the content pane in the

container by calling the setContentPane() method.

The following example shows how to create a combo box in a Java program.

Figure 12-9 shows the window displayed when you run this example.

import java.awt.*;
import javax.swing.*;

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
ca.setBackground(Color.lightGray);
JComboBox combo1 = new JComboBox();
combo1.addItem("One");
combo1.addItem("Two");
combo1.addItem("Three");
ca.add(combo1);
setContentPane(ca);

}
}

Figure 12-9 A combo box GUI element contains a drop-down list from which the user

of your program selects an item.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Text Area
The text area GUI element is used to place a block of text in the window. You create

a text area by declaring an instance of the JTextArea class, as shown here:

JTextArea ta = new JTextArea("Default text",5, 30);

The constructor of theJTextArea requires two arguments: the number of lines

and the number of characters that can appear on each line. Programmers refer to the

number of lines as the height of the text area and the number of characters as its

width. The number of characters you specify is really an approximation made by the

Java Virtual Machine because the actual number of characters that fit on a line de-

pends on the font used to display the text.

Another version of the JTextArea() constructor uses three arguments, the first

of which is the text that appears in the text area. This is illustrated in the statement at

the beginning of this section. The other two arguments are the number of lines and the

number of characters, which define the height and width of the text area.

You can place text within the text area by calling the setText() method and

passing it the text you want displayed in the text area. This is illustrated in the next

statement, where the instance of the JTextArea is called ta:

ta.setText("Default text");

A text area can be used to display text, but you can also use it to have the user of your

program enter text or edit text that already appears in the text area. You determine

whether the user can edit the text area by calling the setEditable()method and

passing it either a Boolean true (to make the text area editable) or a Boolean false (to

make the text read-only). This is shown here:

ta.setEditable(true);

The following example shows how to create a text area in a window. This example

shows a text area that is five lines high and approximately 30 characters wide. It con-

tains default text. Figure 12-10 shows the window displayed by this example:

import java.awt.*;
import javax.swing.*;

242 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-10 The text area GUI element is used to display a block of text or to receive

a block of text from the user of your program.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public class Demo {
public static void main(String[] args) {

Window win = new Window();
}

}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
ca.setBackground(Color.lightGray);
JTextArea ta = new JTextArea("Default text",5, 30);
ca.add(ta);

setContentPane(ca);
}

}

Scroll Pane
Sometimes the entire contents of a GUI element won’t fit in the space allocated for

the element. This is the case when text exceeds the height of a text area. In order to

enable the user to see additional contents, you can use a scroll pane. A scroll pane is a

GUI element that enables the user to scroll another GUI component both horizon-

tally and vertically by using a scroll bar.

You create a scroll pane by declaring an instance of the JScrollPane class, as

shown here:

JScrollPane sp = new JScrollPane(
ta, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

The constructor of the JScrollPane class accepts three arguments. The first

argument is a reference to the GUI element that will use the scroll bars. In the pre-

ceding statement, ta is a reference to a text area GUI element. The second and third

arguments are constants of theJScrollPane class that specify the behavior of the

vertical and horizontal scroll bars. The preceding statement causes both the vertical

and horizontal scroll bars to always appear, even if all the content of the GUI element

CHAPTER 12 Graphical User Interface 243

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

appears on the screen. Table 12-3 contains the list of constants you can use to set the

behavior of the scroll bars.

The follow example illustrates how to use a scroll pane in your program. This exam-

ple displays both a vertical and horizontal scroll bar around a text area. Figure 12-11

shows the window displayed by this example.

244 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Constant Description

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED Displays a vertical scroll bar only

when the contents extend beyond

the area of the GUI element

JScrollPane.VERTICAL_SCROLLBAR_NEVER Indicates to never use a vertical

scroll bar, even if the contents

extend beyond the area of the

GUI element

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS Indicates to always show a

vertical scroll bar, even if the

contents do not extend beyond

the area of the GUI element

JScrollPane.HORIZONTAL_SCROLLBAR_AS_
NEEDED

Displays a horizontal scroll bar

only when the contents extend

beyond the area of the GUI

element

JScrollPane.HORIZONTAL_SCROLLBAR_NEVER Indicates to never use a horizontal

scroll bar, even if the contents

extend beyond the area of the GUI

element

Table 12-3 Constants for Use with the Scroll Pane

Figure 12-11 A vertical and a horizontal scroll bar can be added to the text area by

using the scroll pane GUI element.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import java.awt.*;
import javax.swing.*;
public class Demo {

public static void main(String[] args) {
Window win = new Window();

}
}
class Window extends JFrame {

public Window () {
super ("Window Title");
setSize(400,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
ca.setBackground(Color.lightGray);
JTextArea ta = new JTextArea("Default text",5, 30);
JScrollPane sp = new JScrollPane(

ta, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

ca.add(sp);
setContentPane(ca);

}
}

Getting Data from GUI Components
The purpose of using GUI elements is to make it easy for the user to enter informa-

tion into your program. So far in this chapter, you learned how to create a window

and display GUI elements in the window. Now we’ll turn our attention to gathering

information from those GUI elements.

Each time a person interacts with a GUI element, they cause an event to occur.

Your program must have two features in order to react to an event: an event listener

and a handler method, also called an event-handling method.

Think of an event listener as a part of your program that monitors the GUI looking

for a particular event to occur, such as when the user clicks a push button. When the

event happens, the listener detects the event and then calls an event handler. An event

handler is a method that reacts to a specific event, such as the selection of a particular

push button.

CHAPTER 12 Graphical User Interface 245

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

246 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Suppose that you have two text areas and a push button on the window. A person

can select all or a portion of the text appearing in the first text area and then click the

push button to copy the text to the second text area. You’ll see how this works a little

later in this chapter. For now, we’ll simply explain how this is done.

The program uses a listener to monitor events that happen with the push button.

When the user clicks the push button, the listener recognizes the event and then calls

the event handler that is associated with the push button. The event handler is a

method that contains statements that read the selected text in the first text area and

then places a copy of the text into the second text area.

An event listener is an interface that your program must implement. Actually,

there are many event listeners, each designed to listen for particular GUI events.

Table 12-4 contains commonly used event listeners.

You need to perform two steps in order to use an event listener. First, you’ll need

to implement the appropriate event listener interface. You’ll see how this is done in

examples throughout the rest of this chapter.

Second, you need to associate the listener with a GUI element. Let’s say you cre-

ated a push button using the following statement:

JButton bt = new JButton("Copy");

A push button GUI element requires an ActionListener interface, so you’ll

need to implement that ActionListener interface in the class that creates the

push button. You associate the push button to the ActionListener interface by

calling the addActionListener() method that is defined by the JButton
class. The addActionListener() method requires that you pass it the this
keyword to reference the action event. This is illustrated in the following statement:

bt.addActionListener(this);

TheActionListener detects when the push button is selected by the user and

then calls the actionPerformed() method. The actionPerformed()
method is a method you define in your program that reacts to the event. The

Event Listener GUI Element

ActionListener Buttons

ItemListener Check boxes, radio buttons, and combo boxes

KeyListener Keyboard input

MouseListener Mouse actions

MouseMotionListener Mouse movements

Table 12-4 Commonly Used Event Listeners

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

actionPerformed()method requires one argument—a reference to the event,

as shown here:

actionPerformed(actionEvent event)

Statements within the method can use the event to determine the proper course of

action to take.

Reading a Push Button
As mentioned in the previous section, you’ll need to implement the

ActionListener in order for your program to respond to the push button GUI

element. The following example shows how to react to the selection of a push button.

This example displays two text areas and one push button called Copy.

The addActionListener() method is called for the push button to associ-

ate the push button with the action listener. If you fail to call the

addActionListener()method, your program won’t be able to react to the se-

lection of a push button.

The push button and the text areas are then added to the content pane through a call

to theadd()method; then the content pane is placed in the container through a call to

the setContentPane() method.

The actionPerformed() method is defined next. Statements within this

method are executed when the user clicks the push button. This example causes the

highlighted text in the first text area to be copied to the second text area when the user

clicks the push button. Figure 12-12 shows the window when this example is run.

The actionPerformed() method is called whenever any push button is

clicked. Although this example shows one push button, typically you’ll have

multiple push buttons in the window of your application. You determine which

push button was clicked by calling the event.getSource() method. The

CHAPTER 12 Graphical User Interface 247

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-12 The second text area contains selected text copied from the first text area

when the Copy push button is clicked.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

248 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

event.getSource() method returns the reference of the push button that was

selected by the user. You can compare this reference using an if statement to refer-

ence each push button on the screen to determine which push button was clicked.

You can also determine the kind of action that was performed by calling the

event.getActionCommand() method. Try displaying the action that is re-

turned by the event.getActionCommand() method and see the kinds of

actions that occur for the push button.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Demo {

public static void main(String[] args)
{

Window win = new Window();
}

}
class Window extends JFrame implements ActionListener {

JTextArea ta1 = new JTextArea("default text", 2, 25);
JTextArea ta2 = new JTextArea(2, 25);
JButton bt1 = new JButton("Copy");
public Window ()
{

super ("Hello world!");
setSize(400,200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
bt1.addActionListener(this);
ca.add(bt1);
ca.add(ta1);
ca.add(ta2);
setContentPane(ca);

}
public void actionPerformed(ActionEvent event) {

ta2.setText(ta1.getSelectedText());
}

}

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12 Graphical User Interface 249

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Reading Radio Buttons and Check Boxes
Radio buttons and check boxes are read using theItemListener, which you’ll need

to implement in the class that reacts to these GUI elements. An ItemListener is

very similar to an ActionListener in that a radio button and a check box button

have anaddItemListener()method that is called to associate the button with the

ItemListener. Also, as with the addActionListener() method, you must

pass the ItemListener() method the this keyword.

The ItemListener calls the itemStateChanged() method each time

the status of the radio button or check box changes. Therefore, you need to define an

itemStateChanged() method into your program in order to react to these

changes. The itemStateChanged() method must have one argument—an

ItemEvent object.

The following example shows how to react to a check box, which is the same tech-

nique used to react to a radio button, only a reference is made to the radio button inside

of the check box. You change a check box by either selecting the check box or dese-

lecting the check box. This is referred to as a state change. You can determine what

changed by calling thegetStateChange()method. ThegetStateChange()
method returns an integer that is compared to two ItemEvent constants. These are

ItemEvent.SELECTED and ItemEvent.DESELECTED.

Let’s take a look inside the itemStateChanged() method to see how the

getStateChange() method is used. The first statement calls the

getStateChange()method and assigns the return value to the state integer. The

value of the state integer is compared to both ItemEvent constants using an if
statement. Eachif statement has a nested if that is used to determine which check

box generated the event. ThegetItem()method is called to retrieve a reference to

the check box, which is then compared to references of check boxes that we created

in the program. When there is a match, an appropriate message is displayed in the

text area through a call to thesetText()method. Figure 12-13 shows the window

created by this example.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class Demo {

public static void main(String[] args)
{

Window win = new Window();
}

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
class Window extends JFrame implements ItemListener {

JTextArea ta = new JTextArea(2, 25);
JCheckBox cb1 = new JCheckBox("Test 1");
JCheckBox cb2 = new JCheckBox("Test 2");
public Window ()
{

super ("Hello world!");
setSize(400,200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
cb1.addItemListener(this);
cb2.addItemListener(this);
ca.add(cb1);
ca.add(cb2);
ca.add(ta);
setContentPane(ca);

}
public void itemStateChanged(ItemEvent event) {

int state = event.getStateChange();
if (state == ItemEvent.SELECTED) {
if(event.getItem() == cb1)
ta.setText("Test 1 Selected");
if(event.getItem() == cb2)

ta.setText("Test 2 Selected");
}
if (state == ItemEvent.DESELECTED) {

if(event.getItem() == cb1)
ta.setText("Test 1 Deselected");

if(event.getItem() == cb2)
ta.setText("Test 2 Deselected");

}
}

}

250 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Reading a Combo Box
A combo box also uses theItemListener; therefore, you use the same technique for

associating a combo box with theItemListener as you use to associate a check box

with the ItemListener.

You’ll also need to define an itemStateChanged() method. Within the

itemStateChanged()method, you need to call thegetItem()method in or-

der to retrieve the text displayed in the combo box. You’ll need to convert the return

value to a string by using the following statement (note that the getItem()
method is prefaced by a reference to the ItemEvent):

String pick = event.getItem().toString();

The following example shows how to read the contents of a combo box. This exam-

ple displays a combo box and a text area. Whenever someone selects a different item

from the drop-down list, the ItemListener calls the itemStateChanged()
method, where the text appearing in the combo box is retrieved through a call to the

getItem() method and then displayed in the text area. Figure 12-14 shows what

you’ll see when you run this example.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Demo {
public static void main(String[] args)

CHAPTER 12 Graphical User Interface 251

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-13 The status of the check box is read through a call to the

getStateChange() method, which is then used to determine

the appropriate message to display in the text area.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
Window win = new Window();

}
}
class Window extends JFrame implements ItemListener {

JTextArea ta = new JTextArea(2, 25);
JComboBox combo1 = new JComboBox();

public Window ()
{

super ("Hello world!");
setSize(400,200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
Container ca = getContentPane();
ca.setBackground(Color.lightGray);
FlowLayout flm = new FlowLayout();
ca.setLayout(flm);
combo1.addItemListener(this);
combo1.addItem("Test 1");
combo1.addItem("Test 2");

ca.add(combo1);
ca.add(ta);
setContentPane(ca);

}
public void itemStateChanged(ItemEvent event) {

String pick = event.getItem().toString();
ta.setText(pick);

}
}

252 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

Figure 12-14 Each time text in the combo box changes, the event triggers the program

to copy the text into the text area.

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Disabling and Enabling GUI Elements
You’ve probably noticed when using a GUI application that some GUI elements are

grayed out and inaccessible to you. Programmers call these disabled GUI elements.

GUI elements are disabled whenever they shouldn’t be used or do not apply to the

current process.

For example, you’ll recall in a previous section that we used a push button to copy text

from one text area to another text area. We could disable the push button until the user

enters text into the first text area because we cannot copy something that isn’t there.

Once text is entered into the first text area, we would then enable the push button.

You can enable and disable a GUI element by calling thesetEnabled()method

and passing it a Boolean true to enable the element or a Boolean false to disable the el-

ement. Here’s a statement that enables button 1 (bt1 is a reference to a button):

bt1.setEnabled(true);

Quiz
1. What is the purpose of an event listener?

2. What is an event handler?

3. Can you display GUI elements in a window?

4. What is the purpose of a content pane?

5. Why would you want to disable a GUI element?

6. Can a window be created but not shown?

7. How do you place a content pane in a container?

8. What is the purpose of a layout manager?

9. Can you explicitly specify the location of a GUI element in a window?

10. What is a major difference between creating a GUI in Java as opposed

to creating a GUI in another programming language such as C++?

CHAPTER 12 Graphical User Interface 253

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 12

P:\010Comp\DeMYST\454-8\ch12.vp
Saturday, April 10, 2004 2:12:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
13

JDBC and Java
Data Objects

Whenever you go through the checkout counter at your local supermarket, informa-

tion about your purchase is stored in a computer database. When you use your credit

card, the date, time, place, and information about your purchase is recorded in the

credit card company’s database. Your school records and medical records are stored

in a database. In fact, there is practically nothing you do that isn’t stored in some da-

tabase. Information is collected, stored, updated, retrieved, and deleted by a com-

puter program. In this chapter, you’ll learn how to create a Java program that

performs these interactions with a database.

Database 101
Let’s take a moment to review basic database concepts before you learn how to write

your own program that talks to a database. Skip this section if you are familiar with

255

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

databases; otherwise, read on because you’ll need this information to understand the

rest of the material in this chapter.

Think of a database as an Excel workbook. An excel workbook consists of several

spreadsheets called tables, each identified by a tab. You display a table by selecting

the tab. A table consists of columns and rows. Typically, each column has similar

information, such as the first names of all the students in your class. A row usually

consists of one set of relation information. You might find a student’s first name, last

name, student ID, and other pertinent information about a particular student in a row

of the table.

A database is nearly the same organization of information as an Excel workbook.

A database is a collection of tables. A table is a collection of rows. A row is a collec-

tion of columns. Data is stored where a row and column intersect. You know this as a

cell in Excel.

Database management software (DBMS) is a type of application that enables you

to organize data into a database. It also manages the data for you. You simply tell the

DBMS to do something, and it does it. For example, you might say, “Store this stu-

dent registration in the database,” and information about the registration is placed in

the proper rows and tables in the database. Likewise, you might say, “Show me all

courses Bob Smith is taking this term,” and the DBMS searches the database and

gives you a copy of the information that you requested.

Many commercially available DBMS products are on the market. These include

familiar names such as Microsoft Access, IBM’s DB2, Oracle, Sybase, and MySQL,

to mention a few. All these products organize and manage data for you and are capa-

ble of following your instructions.

Those instructions, called queries, are written using Structured Query Language

(SQL). SQL is beyond the scope of this book; however, later in this chapter, you’ll

learn how to incorporate SQL queries into your program and have your program

send those queries to the DBMS for processing.

There is a lot more to learn about databases, but I’ll leave you to explore that in an-

other book. For now, we’ll turn our attention to learning how your program connects

to a DBMS, sends a query, and retrieves the data returned by the DBMS.

The Concept of JDBC
Sun Microsystems faced a challenge in the late 1990s. They had to find a way for

Java developers to write high-level Java code to access popular DBMS products.

256 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 257

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

The problem was a language barrier. Each DBMS required that its own low-level

language be used whenever a program needed to interact with it. As a result,

low-level code written to interact with Oracle needed to be rewritten to interact

with DB2.

Sun Microsystems created specifications for a JDBC driver and the JDBC Appli-

cation Programming Interface (API) to meet this challenge. The JDBC driver speci-

fications described detail functionality of how the JDBC driver should work. It was

up to the DBMS manufacturers to build the drivers.

The JDBC driver is a translator that converts low-level proprietary DBMS mes-

sages to messages that are understood by the Java run-time environment. The driver

also converts Java code written using the JDBC API to low-level proprietary DBMS

messages through the Java run-time environment.

This two-way street enables Java developers to write instructions in Java that can

talk to any DBMS so long as a JDBC driver is available for the DBMS. JDBC drivers

are available for nearly every commercial DBMS from the Sun Microsystems

website (www.sun.com) or from the DBMS manufacturer’s website.

JDBC Driver Types
JDBC drivers fall into four groups, which are called the JDBC driver types.

The JDBC driver types are as follows:

• Type 1 JDBC to ODBC driver This driver type converts the Java JDBC

API to Microsoft’s Open Database Connection (ODBC) driver, which in

turn talks to the DBMS. The ODBC driver is also called the JDBC/ODBC

bridge. Avoid using the JDBC/ODBC bridge in a mission-critical application

because the extra translation might negatively impact performance.

• Type 2 Java/Native Code driver The Java/Native Code driver is specific

to each DBMS. The disadvantage of using a Java/Native Code driver is the

loss of code portability.

• Type 3 JDBC driver The Type 3 JDBC driver is referred to as the Java

Protocol and is the most commonly used JDBC driver.

• Type 4 JDBC driver Type 4 JDBC driver is known as the Type 4

Database Protocol and is similar to the Type 3 JDBC driver, except SQL

queries are translated into the format required by the DBMS. This is the

fastest way to communicate SQL queries to the DBMS.

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JDBC API Packages
You don’t have to be concerned about JDBC drivers except to make sure that the

proper JDBC driver for your DBMS is installed. Instead, you’ll focus on using the

JDBC API to have your program communicate with the DBMS.

The JDBC API consists of a bunch of classes that are contained in two packages.

The first package is called java.sql and contains core Java data objects of the

JDBC API. The second package is calledjavax.sql and extends thejava.sql
package.

As you’ll see throughout this chapter, you’ll need to import both the

javax.sql and the java.sql package into your program in order to use the

JDBC API to connect to and interact with the DBMS.

The JDBC Process
Your program needs to perform five routines to connect the DBMS before you begin

interacting with it. Collectively, these five routines are called the JDBC process and

are as follows:

1. Load the JDBC driver.

2. Connect to the DBMS.

3. Create and execute an SQL query.

4. Process the response from the DBMS.

5. Disconnect the DBMS.

Load the JDBC Driver
The first routine is to load the JDBC driver. This tells the Java run-time environ-

ment which JDBC driver to use with your program. You load the JDBC driver by

calling the Class.forName() class and passing it the name of the driver as an

argument to the method. We’ll be using the JDBC/ODBC bridge as the driver in

the examples throughout this chapter because this is the driver you use to connect

your program to Microsoft Access, which is the DBMS most likely to be available

on your computer.

The JDBC/ODBC bridge is called sun.jdbc.odbc.JdbcOdbcDriver.

You load this driver by placing the following statement in your program:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

258 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Associating the JDBC/ODBC Bridge with the Database
Before you can load the JDBC/ODBC bridge, you must associate the database with

the driver. Use the ODBC Data Source Administrator to associate the database

with the JDBC/ODBC bridge by following these steps:

1. Select Start| Settings and then select the Control Panel.

2. Select ODBC 32 to display the ODBC Data Source Administrator.

3. Add a new user by selecting the Add button.

4. Select the driver, then select Finish. Use the Microsoft Access driver

if you are using Microsoft Access; otherwise, select the driver for the

DBMS you are using. If you don’t find the driver for your DBMS on

the list, you’ll need to install the driver. Contact the manufacturer of the

DBMS for more information on how to obtain the driver.

5. Enter the name of the database as the data source name in the ODBC

Microsoft Access Setup dialog box. This is the name that will be used

within your Java database program to connect to the DBMS.

6. Enter a description for the data source. This is optional. It will be a

reminder of the kind of data stored in the database.

7. Click the Select button. You’ll be prompted to browse the directory of each

hard drive connected to your computer in order to define the direct path to

the database. Click OK once you locate the database, and the directory path

and the name of the database will be displayed in the ODBC Microsoft

Access Setup dialog box.

8. Because this is your database, you can determine whether a login name

and password are required to access the database. If this is the case, click

the Advanced button to display the Set Advanced Options dialog box. This

dialog box is used to assign a login name, also referred to as a user ID,

and a password to the database. Select OK. Otherwise, skip this step.

9. When the ODBC Microsoft Access Setup dialog box appears, select OK.

10. Select OK to close the ODBC Data Source Administrator dialog box.

Connect to the DBMS
Once you load the driver, you must connect to the DBMS by calling the Driver
Manager.getConnection() method that is defined in the

DriverManager class, which is responsible for managing driver information.

CHAPTER 13 JDBC and Java Data Objects 259

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You must pass the DriverManager.getConnection() method the URL

of the database along with the user ID and password, if required by the DBMS.

The DriverManager.getConnection() method returns a Connec-
tion interface that is used throughout the process to reference the database. The

java.sql.Connection interface manages communication between the driver

and your program.

The following example shows routines that load the driver and connect to the data-

base. The database is called CustomerInformation. The actual location of the

CustomerInformation database is specified when you associate the ODBC driver with

the DBMS by using Windows. The user ID is “jim” and the password is “keogh”. You

create the user ID and password using the DBMS application.

This example begins by declaring the url, userID, and password strings.

The program then declares a reference to an instance of theConnection class call

dB. The program enters a try block where theforName()method is called to load

the driver. The getConnection() method is called in the next statement and is

passed the url, userID, and password strings. This connects to the database

and logs on to the DBMS. Both userID and password are optional arguments if

the DBMS doesn’t require a logon. The getConnection() method returns an

instance of the Connection class, which is assigned to the Connection refer-

ence declared earlier in the program. At this point, the program is connected, logged

onto the DBMS, and ready to send the DBMS a query.

NOTE: This example is a partial program that is expanded throughout the chapter.

String url = "jdbc:odbc:CustomerInformation";
String userID = "jim";
String password = "keogh";
private Connection dB;
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

Create and Execute an SQL Query
Once the connection is made and you log onto the DBMS, your program is ready to

create an SQL query and send it to the DBMS for processing. An SQL query consists

of one or more SQL commands that are contained in an SQL statement.

Your program needs to perform several steps in order to send the SQL query to the

DBMS. For the first step, you need an instance of the Statement class because

the Statement class defines the executeQuery() method used to send and

260 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

execute the SQL query to the DBMS. You create an instance of theStatement class

by calling the createStatement() method defined in the Connection
class. ThecreateStatement()class returns an instance of theStatementclass.

Next, you must send the SQL query to the DBMS. You do this by calling

the executeQuery() method and passing it the SQL query. The

executeQuery() method returns an instance of the ResultSet class, which

contains the response from the DBMS. You then use the methods defined in the

ResultSet class to access the DBMS responses. Once your program receives a

response, you’ll need to terminate the statement by calling theclose()method.

Let’s see how this is done. The following example enhances the previous example

by creating an SQL query and sending it to the DBMS. Like the previous example,

this example isn’t a complete program. You’ll see the completed version of this pro-

gram later in the chapter after you learn how all five routines work.

The first portion of this example is nearly identical to the previous example,

except for two statements. One statement declares a reference to an instance of the

Statement class, and the other declares a reference to a ResultSet class.

Let’s jump inside the second try block. The first statement creates an SQL query,

which is used to initialize the String object called query. This is the query that will

be sent by the program to the DBMS.

The query tells the DBMS to return all the columns from the Registration table

where the studentID column equals 1234. The SELECT keyword is used to identify

the name of column(s) you want the DBMS to return. This example uses an asterisk

in place of column names. The asterisk is a wildcard character that tells the DBMS to

return all columns. The FROM keyword is used to specify the name of the table that

contains the columns. The WHERE keyword, called a WHERE clause, sets the selec-

tion criteria the DBMS uses to choose rows to return to the program.

Beneath the query is the call to the createStatement() method. This

returns an instance of theStatement class, which is assigned to theStatement
reference called DataRequest . Next, the query is passed to the

executeQuery()method. The executeQuery()method sends the query to

the DBMS. The DBMS response is then assigned the reference to the ResultSet
class called result. You use this to reference data returned by the DBMS in

response to your query. You’ll see how this is done in the next section.

String url = "jdbc:odbc:CustomerInformation";
String userID = "jim";
String password = "keogh";
Statement dataRequest;
ResultSet results;
private Connection dB;
try {

CHAPTER 13 JDBC and Java Data Objects 261

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

262 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}

String query =
"SELECT * FROM Registration WHERE studentID = '1234'";

dataRequest = dB.createStatement();
results = dataRequest.executeQuery (query);

Process Data Returned by the DBMS
The ResultSet class defines methods used to interact with the data returned by

the DBMS. Later in this chapter, you’ll learn how to use these methods. However,

the following abbreviated example gives you a preview of a commonly used routine

for extracting data returned by the DBMS. Error-catching code is purposely re-

moved from this example in order to minimize code clutter. You’ll find the com-

pleted version of this routine later in this chapter.

This example picks up where the previous example leaves off. At this point in the

program, the response from the DBMS is already assigned the reference to the

ResultSet called result. Before we can do anything with the data, we need

places in our program to store the data. Therefore, the first three statements in this

example declare three strings. The first two strings will be assigned data returned by

the DBMS. The printRow string is used to combine the values of firstName
and lastName into one string, which is then displayed on the screen.

Now that we have space reserved in memory to store data returned from the

DBMS, the next thing we need to do is determine whether any data was returned by

the DBMS. You can never assume that the DBMS found data to match your query.

We determine whether at least one row of data was returned by callingnext(). The

next method returns a Boolean value indicating whether there is a next row.

The return value of the next() method is evaluated by the if statement. If the

return value is false, there isn’t a next row and therefore an appropriate message is

displayed on the screen and the program exits this routine.

If the return value of thenext()method is true, the program proceeds to retrieve

the data. The data is stored in a row set. Think of a row set as one row of a table. You

access each column of the row by calling a version of the get()method that is ap-

propriate to the data type of the column.

We call thegetString()method in this example because both columns of the

row set contain strings. ThegetString()method as well as theget()methods

for other data types require one argument, which is a reference to the column whose

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

value you want to retrieve. The reference can be the name of the column or the col-

umn number. We use the column name in this example.

The getString() method returns the value of the specified column. We as-

sign this value to the appropriate string variable declared previously in this program.

You can then use the variable as you use any other variable within your program. In

this example, the firstName and lastName variables are concatenated and

assigned to the printRow variable, which is displayed on the screen.

Notice that we call thegetString()method and display theprintRow vari-

able within a do...while loop. After data from the first row set is copied to

variables and displayed, the next() method is called once again to determine

whether the response from the DBMS contains another row of data. If it does, the

statements within the do...while loop are executed again to retrieve data from

the next row in the row set. Otherwise, the program exits the do...while loop.

String firstName;
String lastName;
String printrow;
boolean records = results.next();
if (!records) {

System.out.println("No data returned");
return;

}
else
{

do {
firstName = results.getString ('FirstName') ;
lastName = results.getString ('LastName') ;
printRow = firstName + " " + lastName;
System.out.println(printrow);

} while (results.next());
}

Terminate the Connection to the DBMS
The fifth routine of the process is to close the instance of ResultSet and the con-

nection to the DBMS. You do this by calling theclose()method, as shown here:

result.close();
bD.close();

The instance ofResultSet is automatically closed when you close the connection

to the DBMS; however, many programmers prefer to explicitly close the instance of

ResultSet.

CHAPTER 13 JDBC and Java Data Objects 263

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Trapping Exceptions
Previous examples in this chapter did not address the likelihood that there could be

exceptions when connecting to and interacting with a DBMS. We purposely did this

to keep the examples simple. Now that you’ve learned how to use the basic JDBC

API, we’ll turn our attention to handling exceptions.

Let’s begin with loading the driver. First,Class.forName() throws aClassNot
FoundException if anything unusual happens when the driver is being loaded.

You trap this exception by using a catch block, as shown in the following example.

When the catch block catches the ClassNotFoundException, the

getMessage() method is called to retrieve the description of the exception,

which is then displayed on the screen. The exit()method is then called to termi-

nate the program. Notice that theexit()method is passed the integer 1. This value

is returned to the operating system by the program when the program terminates, in-

dicating that the program terminated abnormally because it couldn’t load the driver.

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch (ClassNotFoundException e) {

System.err.println(

"Unable to load the JDBC/ODBC bridge." + e.getMessage());

System.exit(1);

}

The next chance of an exception occurring is when the program tries to connect to

the DBMS. A number of things can go wrong, such as inaccurate URL for the data-

base or an inaccurate user ID and/or password. If thegetConnection()method

encounters something unusual, it throws an SQLException.

The following example builds on the previous example to illustrate how to catch

the SQLException in your program. This exception is caught in the second catch

block. Notice that the exit()method is called within the catch block to terminate

the program. The exit() method is passed the integer 2, which is returned when

the program terminates, indicating that the program terminated abnormally because

of a problem encountered when connecting to the database.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

264 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dB = DriverManager.getConnection(url,userID,password);
}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}
finally {

dB.close();
}

Avoid Timing Out
In the real world, the DBMS may not be available at the time your program needs to

connect to it. This is typically caused by a high demand for the DBMS at the moment

your program tries to connect to it.

It is not too unusual for a program to end up on a seemingly never-ending line

waiting for a turn to connect to the DBMS. Rather than wait forever, you can set a

timeout period after which the DriverManager ceases its attempt to connect to

the DBMS.

You set the timeout period by calling the DriverManager.setLogin
Timeout()method. This method requires that you pass the number of seconds for

it to wait before timing out.

You can find out the current timeout period by calling the DriverManager
.getLoginTimeout() method. This method returns an integer that represents

the number of seconds the DriverManager waits before timing out.

More on Statement Objects
Previously in this chapter, you learned that after you open a connection to the

DBMS, you call thecreateStatement()method, which returns an instance of

the Statement class. The instance of the Statement class is used to call the

executeQuery() method, which sends your SQL query to the DBMS.

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

CHAPTER 13 JDBC and Java Data Objects 265

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Three types of statement objects can be used to execute the query: Statement,

PreparedStatement, and CallableStatement. The Statement state-

ment object executes a query immediately when the query is executed. The query is

compiled before it is executed by the DBMS. The PreparedStatement
statement object is used to execute a compiled query. A compiled query is one in

which the statements in the query are already translated into code understood by

the DBMS.

The CallableStatement statement object is used to execute a stored proce-

dure. A stored procedure is a query written by a programmer that is stored in the

DBMS. You execute a stored procedure by sending an SQL query to the DBMS that

tells the DBMS to run a specific stored procedure. This is faster to execute than a reg-

ular SQL query. When a regular SQL query executes, your program must send the

query to the DBMS, where it is compiled and then executed. When a stored proce-

dure is executed, you don’t send the full query because it already resides in the

DBMS. Instead, you send the command to run the stored procedure followed by the

name of the stored procedure.

The Statement Object
Use the Statement object when you need to execute a query immediately. You

execute a query that uses the Statement object by call ing the

executeQuery() method, which you’ve seen previously in this chapter.

If the query is inserting a new row or updating or deleting a row, you use

theexecuteUpdate()method instead of theexecuteQuery()method. The

executeUpdate() method returns an integer that indicates the number of rows

updated by the query.

The following example illustrates how to use the Statement object. This

example returns all columns in the Registration table. Nothing is displayed when

this program runs. In order to display data retrieved from the DBMS, you need to re-

place the comment in the second try block with statements that read data from the

resultsets, which you saw how to do earlier in this chapter.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
Statement dataRequest;
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

266 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Monday, April 12, 2004 2:18:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}
try {

String query = "SELECT * FROM Registration";
dataRequest = dB.createStatement();
results = dataRequest.executeQuery (query);
//Place code here to interact with the ResultSet

}
catch (SQLException e){

System.err.println("SQL error." + e);
System.exit(3);

}
finally {

dataRequest.close();
dB.close();

}

The next example shows how to used the executeUpdate() method. This

program is nearly the same as the previous example, except for two statements. The

SQL query changes the value of a column in a particular row of a table.

Here’s what the query is telling the DBMS to do: Update the Registration table.

Find the row where the value of the StudentID column is 123. When you find that

row, change the value of the Enrolled column of that row to Y.

The other statement that is changed calls the executeUpdate() method,

which is passed the SQL query that changes the value of the Enrolled column in the

Registration table. We must use the executeUpdate() method because the

query changes the table rather than simply requesting data from the table.

String url = "jdbc:odbc:Registration";

String userID = "jim";

String password = "keogh";

Statement dataRequest;

Connection dB;

int rowsUpdated;

try {

CHAPTER 13 JDBC and Java Data Objects 267

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

268 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

dB = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException e) {

System.err.println(

"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);

}

catch (SQLException e) {

System.err.println("Cannot connect to the database." + e);

System.exit(2);

}try {

String query =

"UPDATE Registration SET Enrolled='Y' WHERE StudentID = '123';

dataRequest = dB.createStatement();

rowsUpdated = dataRequest.executeUpdate (query);

dataRequest.close();

}

catch (SQLException e){

System.err.println("SQL error." + e);

System.exit(3);

}

finally {

dataRequest.close();

dB.close();

}

The PreparedStatement Object
An SQL query must be compiled before the DBMS processes it. Compiling occurs

after an execution method is called. Programmers precompile an SQL query before

execution whenever the SQL query is going to be executed multiple times. This re-

duces the time necessary to execute the SQL query because it only needs to be com-

piled once, not each time it executes. An SQL query can be precompiled and

executed by using the PreparedStatement object.

Rarely in the real world is the same SQL query executed multiple times because

usually the search criterion changes with each execution. Suppose you want to find

out whether a student is registered for a course. You’d use nearly the same SQL

query each time, but you’d probably change the student ID for each execution of the

SQL query.

P:\010Comp\DeMYST\454-8\ch13.vp
Monday, April 12, 2004 2:18:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 269

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

In situations like this, you still can use thePreparedStatement object if you

write the SQL query a certain way. You’ll need to use a question mark as a place-

holder for data that changes with each execution of the SQL query. For example,

you’d use a question mark instead of the student ID.

Executing a PreparedStatement object is a three-step process. The

first step is to declare a PreparedStatement object and assign it to a

PreparedStatement reference, as shown here. Remember that dB is a

reference to the connection to the DBMS. You pass the query to prepared
Statement.

PreparedStatement pstatement = dB.prepareStatement(query);

The second step is to replace the question mark with the value that will be used for

the SQL query. You do this by calling one of the setXXX() methods, where XXX
represents the data type of the value.

ThesetXXX()method requires two arguments. The first argument is an integer

that represents the position of the question mark in the SQL query. You can use as

many question marks as you need in the SQL query as along as you identify the posi-

tion of the question mark that the value will replace. The second argument is the

value. In the following statement, we’re replacing the first question mark in the SQL

query with the string "123":

pstatement.setString(1, "123");

The third step is called the executeQuery() method, as shown here. Notice

that you don’t pass theexecuteQuery()method the SQL query like you did pre-

viously when you called this method. You don’t need to because the SQL query

was already passed when the instance of the PreparedStatement object was

declared.

Results = pstatement.executeQuery ();

The following example shows how to use the PreparedStatement object in

your program. This program lets you change student ID numbers each time the SQL

query executes.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}try {

String query = "
SELECT * FROM Registration WHERE studentID = ?";

PreparedStatement pstatement =
dB.preparedStatement(query);

pstatement.setString(1, "123");
results = pstatement.executeQuery ();
//Place code here to interact with the ResultSet

}
catch (SQLException e){

System.err.println("SQL error." + e);
System.exit(3);

}
finally {
pstatement.close();

dB.close();
}

The CallableStatement Object
Programmers use the CallableStatement object to call a stored procedure. A
stored procedure is a block of code that is identified by a unique name and is stored in

the DBMS. The nature of the block of code is dependent on the DBMS. Typically,

the code iswritten in PS/SQL,TransactSQL,C, or another programming language.

You execute a stored procedure by sending theDBMS the name of the stored pro-

cedure and then telling theDBMS to run it. Programmers call this invoking the name

of the stored procedure. Stored procedures are frequently used in applicationswhere

a block of code is executed multiple times in order to minimize the time necessary

to transport the block of code across the network and have it compiled. A stored

procedure is transported and compiled once, and you execute it subsequent times

by invoking its name.

270 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Monday, April 12, 2004 2:19:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 271

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

Three parameters are used when calling a stored procedure with the

CallableStatement object. These are IN, OUT, and INOUT. The IN parame-

ter contains the data needed for the stored procedure to execute, which is similar to a

parameter of a method. You set the value of the IN parameter by calling the

setXXX() method, which was described in the previous section.

The OUT parameter contains the value returned after the stored procedure fin-

ishes executing. The out parameter must be registered using the

registerOutParameter() method and then is later retrieved by using the

getXXX() method. The getXXX() method is very similar to the setXXX()
method except the getXXX() method retrieves a value instead of setting a value.

The XXX is replaced with the appropriate data type of the value identical to the

setXXX() method.

The INOUT parameter is used to pass information to the stored procedure and to

retrieve information from a stored procedure using the techniques described in the

previous two paragraphs.

The following example illustrates how to call a stored procedure and retrieve a

value returned by the stored procedure. This example is similar to other listings used

in this chapter, but it has been modified slightly to call a stored procedure.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
String lastOrderNumber;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}try {

String query = "{ CALL LastOrderNumber}";
CallableStatement cstatement = dB.prepareCall(query);
cstatement.registerOutParameter(1, Types. VARCHAR);
cstatement.execute();

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

lastOrderNumber = cstatement.getString(1);
}

catch (SQLException e){
System.err.println("SQL error." + e);
System.exit(3);

}
finally {

cstatement.close();
dB.close();

}

You’ll notice that the first statement in the second try{} block creates the SQL

query that calls the stored procedure LastOrderNumber, which retrieves the

most recently used order number.

Next, theprepareCall()method of theConnection object is called and is

passed the SQL query, which returns a CallableStatement object called

cstatement . The OUT parameter must be regis tered using the

registerOutParameter() method of the CallableStatement object.

The registerOutParameter()method requires two parameters. The first

parameter is an integer that represents the number of the parameter, which is 1. This

means that the parameter is the first parameter of the stored procedure. The second

parameter of registerOutParameter() is the data type of the value returned

by the stored procedure, which is Types.VARCHAR.

Next, the execute() method of the CallableStatement object is called

to execute the SQL query. Notice that the execute() method doesn’t require

the name of the query. This is because the query is already identified when the

CallableStatement object is returned by the prepareCall() SQL query

method.

The getString() method is called once the stored procedure executes to

retrieve the return value of the stored procedure, which is the last order number.

The ResultSet Object
TheexecuteQuery()method sends the SQL query to the DBMS for processing

and returns aResultSet object that contains data returned by the DBMS. You use

the methods defined in the ResultSet object to copy data returned by the DBMS

to a Java collection or variable(s) for further processing.

Data returned by the DBMS is stored in a resultset. Think of a resultset as a virtual

table that consists of rows and columns similar to a spreadsheet. The resultset also

272 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 273

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

contains metadata, which is information that describes data, such as the name of a

column and its size and data type.

You move through the resultset by using a virtual pointer to point to each

row in the table. You move the virtual pointer by using methods defined in the

ResultSet object. Once you point to a row, you can then use other methods of

the ResultSet object to retrieve values stored in each column of that row.

The virtual cursor is positioned above the first row when the DBMS returns the

resultset. This means that you must move the virtual cursor to the first row in order to

access data returned by the DBMS. Thenext()method is used to move the virtual

cursor down a row. If there is a next row, the next() method returns true; other-

wise, a false is returned, indicating that you have reached the end of the resultset.

Use the getXXX()method to copy data from a column of the current row to an

element of a Java collection or a variable. Previously in this chapter, you learned

about thegetXXX()method. TheXXX is a placeholder for the data type of the col-

umn. For example, the getString() method copies value of a String column

from the resultset to a Java collection or a variable. You must make sure that the data

type used in the getXXX() method corresponds to the data of the column.

The getXXX() method requires one parameter—an integer that represents the

number of the column within the resultset whose value you want to copy to your pro-

gram. Columns appear in the order in which they are entered into the SQL query’s

SELECT statement.

Suppose your SQL query requested StudentFirstName and StudentLastName as

the first two columns in the SELECT statement. These would become the first and

second columns of the resultset. Therefore, to copy the value of the

StudentFirstName column, you’d type getString(1), and the getString()
method would return the value of the StudentFirstName column of the current row.

The student’s last name is copied by using getString(2) because the student’s

last name is in the second column returned by the DBMS.

Reading the Resultset
The following example illustrates how to read values from the resultset into vari-

ables that can be further processed by your program. You’ll notice that many of the

statements used in this example were used in previous examples, so you probably

know what to tell Java to do. Feel free to return to previous sections of this chapter to

review any statements that seem unfamiliar to you.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

274 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

String printRow;
String firstName;
String lastName;
Statement dataRequest;
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}
try {

String query = "SELECT FirstName,LastName FROM Students";
dataRequest = dB.createStatement();
results = dataRequest.executeQuery (query);

}
catch (SQLException e){

System.err.println("SQL error." + e);
System.exit(3);

}
boolean records = results.next();
if (!records) {

System.out.println("No data returned");
System.exit(4);

}
try {
do {

firstName = results.getString (1) ;
lastName = results.getString (2) ;
printRow = firstName + " " + lastName;
System.out.println(printRow);

} while (results.next());
dataRequest.close();

}

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

catch (SQLException e) {
System.err.println("Data display error." + e);
System.exit(5);

}
finally {

dB.close();
}

Here’s what is happening in this example. After a connection is made to the data-

base, a query is defined in the second try block that retrieves the students’ first name

and last name from the Students table of the Registration database.

The students’ names are returned in the resultset. Before the program can copy

these names, the virtual pointer must be moved from the row above the first row of

the resultset to the first row. This is done by calling the next() method.

We can’t assume that any data was returned by the DBMS because maybe no data

matches the data requested by the SQL query. Therefore, we must test the results

returned by the next() method. If a false is returned, no row exists. Therefore,

the “No data returned” message is displayed and the program terminates.

However, if a true value is returned, the do...while loop is entered. The

do...while loop is where the getString() method is called to copy values

from the first and second columns of the resultset to the variables firstName and

lastName. The values of these variables are then concatenated and assigned to the

printRow variable, which is then displayed on the screen.

The next()method is called again to move the virtual cursor to the next row

in the resultset. The value returned by the next() method is evaluated by the

conditional statement in the do...while loop. If a true is returned, the program

executes the statements within the do...while loop again; otherwise, the pro-

gram exits the do...while loop and calls the close() method, which closes

the Statement object. You learned how the close()method works previously

in this chapter.

Positioning the Virtual Cursor
Six methods are defined by theResultSet object:first(),last(),previ-
ous(), absolute(), relative(), and getRow(). These methods are used

to move the virtual cursor in the resultset.

The first()method moves the virtual cursor to the first row in the resultset,

and the last() method positions the virtual cursor at the last row. The previ-
ous() method moves the virtual cursor to the previous row. The absolute()
method enables you to specify the number of the row where you want the virtual

CHAPTER 13 JDBC and Java Data Objects 275

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cursor positioned. You specify the row number as an integer that you pass to the

absolute() method.

The relative() method moves the virtual cursor a specified number of rows

from the current row. You pass therelative()method an integer that represents the

number of rows to move. You use a positive (optional) or negative sign to indicate the di-

rection in which to move the virtual cursor. For example, a value of -6 moves the virtual

cursor back six rows from the current row, whereas a value of 3 moves the virtual cursor

forward three rows.

You can always determine the number of the current row by calling thegetRow()
method. The getRow()method returns an integer, which is the number of the cur-

rent row.

In order to position the virtual cursor in the resultset, you must create a scrollable

resultset. You do this by passing the createStatement() method one of three

constants: TYPE_FORWARD_ONLY, TYPE_SCROLL_INSENSITIVE, or TYPE_
SCROLL_SENSITIVE.

The TYPE_FORWARD_ONLY constant restricts the virtual cursor to downward

movement, which is the default setting. This means you won’t be able to move the

virtual cursor to previous rows.

The TYPE_SCROLL_INSENSITIVE and TYPE_SCROLL_SENSITIVE
constants enable the virtual cursor to move in both directions. The TYPE_
SCROLL_INSENSITIVE constant makes the resultset insensitive to changes

made by another program to data in the table whose rows are reflected in the

resultset. TheTYPE_SCROLL_SENSITIVE constant makes the resultset sensitive

to those changes.

Suppose that another program updates, deletes, or changes data in the Students ta-

ble while your program is copying the student names from the resultset to variables

in your program. If you created the resultset as insensitive, it will not automatically

be updated to reflect those changes. However, if you create the resultset as sensitive,

those changes will be reflected in the resultset.

A word of caution: The values of variables that have already been copied from

columns in the resultset are not updated automatically. Let’s say that you’ve copied

names from the first row to variables and then moved the virtual cursor to the next

row. Then, while you’re on the next row, the names in the first row are updated in the

Students table. The resultset will be updated with those changes if you created a sen-

sitive resultset; however, your variables will not be updated because you already

copied those values from the row.

The following example shows how to reposition the virtual cursor in the resultset.

This example creates an insensitive resultset and then uses various methods to move

the virtual cursor up and down within the resultset.

276 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 277

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

String url = "jdbc:odbc:Registration";

String userID = "jim";

String password = "keogh";

String printRow;

String firstName;

String lastName;

Statement dataRequest;

ResultSet results;

Connection dB;

try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Db = DriverManager.getConnection(url,userID,password);

}

catch (ClassNotFoundException e) {

System.err.println(

"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);

}

catch (SQLException e) {

System.err.println(

"Cannot connect to the database." + e);

System.exit(2);

}

try {

String query = "SELECT FirstName,LastName FROM Students";

dataRequest = dB.createStatement(

TYPE_SCROLL_INSENSITIVE);

results = dataRequest.executeQuery (query);

}

catch (SQLException e){

System.err.println("SQL error." + e);

System.exit(3);

}

boolean records = results.next();

if (!records) {

System.out.println("No data returned");

System.exit(4);

}

try {

do {

results.first();

results.last();

results.previous();

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

results.absolute(10);

results.relative(-2);

results.relative(2);

firstName = results.getString (1) ;

lastName = results.getString (2) ;

printRow = firstName + " " + lastName;

System.out.println(printRow);

} while (results.next());

dataRequest.close();

}

catch (SQLException e) {

System.err.println("Data display error." + e);

System.exit(5);

}

finally {

dB.close();

}

How to Test Whether the JDBC Driver Is Scrollable
Some JDBC drivers may not support some or all of the scrollable features mentioned

in this section. The following example shows how you can test whether the JDBC

driver your program uses supports the scrollable features.

boolean forward, insensitive, sensitive;
DataBaseMetaData meta = dB.getMetaData();
forward = meta.supportsResultsSetType(

ResultSet.TYPE_FORWARD_ONLY);
insensitive = meta.supportsResultsSetType(

ResultSet. TYPE_SCROLL_INSENSITIVE);
sensitive = meta.supportsResultsSetType(

ResultSet. TYPE_SCROLL_SENSITIVE);
System.out.println("forward: " + forward);
System.out.println("insensitive: " + insensitive);
System.out.println("sensitive: " + sensitive);

Fetching Rows
Whenever you request rows from a DBMS, the JDBC driver fetches the number of

rows defined by the fetch size and discards the previously fetched set of rows. It is

important to understand that there is a difference between the number of rows

fetched from the DBMS and the number of rows that appear in a resultset.

278 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the JDBC driver might fetch 500 rows from the DBMS, but include

only 100 of those rows in the resultset based on the resultset’s maximum row setting.

In this case, the resultset silently drops 400 rows, although all 500 rows are trans-

ferred over the network from the DBMS to your program.

You can increase the efficiency of fetching rows by using the

setFetchSize()method to set the number of rows that the JDBC fetches from

the DBMS. In the real world, the DBMS administrator will tell you the preferred

fetch size setting to use because this is dependent on the performance specification

of the DBMS in use. Some DBMS may not implement the fetch size control. If fetch

size isn’t supported, the methods will compile and execute, but have no effect.

The following example shows you how to set the fetch size from within your

program by calling the setFetchSize() method defined in the Statement
object. Here, we’ve set the fetch size to 500 rows. This means no more than 500 rows

will be fetched at a time.

String url = "jdbc:odbc:CustomerInformation";
String userID = "jim";
String password = "keogh";
String printRow;
String firstName;
String lastName;
Statement dataRequest;
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}
try {

String query = "SELECT FirstName,LastName FROM
Students";

dataRequest = dB.createStatement(
TYPE_SCROLL_INSENSITIVE);

CHAPTER 13 JDBC and Java Data Objects 279

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dataRequest.setFetchSize(500);
results = dataRequest.executeQuery (query);

}
catch (SQLException e){

System.err.println("SQL error." + e);
System.exit(3);

}
finally {

db.close();
}

Updatable Resultset
Previously in this chapter, you learned that a resultset is a virtual table of rows and

columns that contain data copied from one or more tables of a database. Throughout

this chapter, you’ve seen examples of how to select a subset of rows and columns

from tables in the database and copy them into the resultset. You then copy data from

the resultset into your program for further processing.

You can also update data in the resultset. For example, you might want to change

the value of a column before further processing the data. You can do this by passing

the Connection object’s createStatement() method the constant

CONCUR_UPDATABLE. Once you do this, you can then change the values of a row,

delete a row, or insert a new row.

NOTE: Use the constant CONCUR_READ_ONLY to prevent the resultset from

being updated.

Changing the Value of a Resultset
You can change the value of a column in the current row of the resultset by calling the

updateXXX() method, where XXX is replaced with the data type of the column

you’re updating.

The updateXXX() method requires two parameters. The first parameter indi-

cates the column of the current row whose value is being changed. You indicate the

column in one of two ways. You can use the number of the column or the column

name. Some programmers prefer to use the column name rather than the column num-

ber because they don’t have to be concerned with the column sequence. The second

parameter of the updateXXX()method is the new value that will override the cur-

rent value of the column in the current row.

280 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13 JDBC and Java Data Objects 281

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

Sometimes you’ll want to simply leave the column empty. You do this by calling

the updateNull() method. A null value, as you’ll recall, is another way of say-

ing that the column is empty. TheupdateNull()method requires one parameter,

which is the column number whose contents will become null. The

updateNull() method doesn’t accept the name of the column as a parameter.

Once theupdateXXX()method is called, you’ll need to call theupdateRow()
method. The updateRow() method changes the values in the columns of the cur-

rent row of the resultset based on the values of the updateXXX() methods.

The following example shows how to update a resultset. In this example, Mary

Jones was recently married and changed her last name to Smith. The

updateString() method is used to change the value of the last name column of

the resultset to 'Jones'. The change takes effect once the updateRow()method

is called.

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
Statement dataRequest;
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println("Cannot connect to the database." + e);
System.exit(2);

}
try {

String query =
"SELECT FirstName,LastName FROM Students
WHERE FirstName = 'Mary' and LastName = 'Jones'";

dataRequest = dB.createStatement(
ResultSet.CONCUR_UPDATABLE);

results = dataRequest.executeQuery (query);
}
catch (SQLException e){

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.err.println("SQL error." + e);
System.exit(3);

}
boolean records = results.next();
if (!records) {

System.out.println("No data returned");
System.exit(4);

}
try {

results.updateString ("LastName", "Jones");
results.updateRow();
dataRequest.close();

}
catch (SQLException e) {

System.err.println("Data display error." + e);
System.exit(5);

}

Deleting a Row in the Resultset
You can remove a row from the resultset by calling the deleteRow() method.

Programmers frequently use this method to pare down the number of rows that must

be processed by their program. Those rows that shouldn’t be processed are elimi-

nated from the resultset rather than you having to refine the SQL query selection

criteria and rerun the SQL query.

The deleteRow() method requires one parameter—an integer that indicates

the row number of the row being deleted. Typically, a programmer moves the virtual

cursor to the row in the resultset that is to be deleted. Before deleting the row, how-

ever, the programmer usually examines the values in relative columns in order to be

sure that the row should be deleted.

Once you’re sure the current row is the row you want deleted, you call the

deleteRow() method, as shown here:

Results.deleteRow();

Inserting a Row in the Resultset
You might have a need to incorporate a row of your own data into the resultset supplied

by the DBMS. You can do this by inserting a new row in the resultset. Keep in mind

that you still need to write and execute an SQL query to insert a new row into the un-

derlying table in the database if you want or need data to be contained in the table.

282 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inserting a row into the resultset is a three-step process. First, position the cursor

at the row by calling the moveToInsertRow() method.

Second, place values into the columns of the new row. You do this by calling

the updateXXX() method, as described previously in this chapter. The

updateXXX() method must be passed the column name or number as the first

parameter and the value that will be placed in the column as the second parameter.

Remember that XXX must be replaced with the data type of the column.

Third, you call the insertRow() method after calling the updateXXX()
method. The insertRow() method opens a new row in the resultset and places

values specified in the updateXXX() method into each column. The following

example illustrates how to insert a new row in a resultset:

String url = "jdbc:odbc:Registration";
String userID = "jim";
String password = "keogh";
Statement dataRequest;
ResultSet results;
Connection dB;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dB = DriverManager.getConnection(url,userID,password);

}
catch (ClassNotFoundException e) {

System.err.println(
"Unable to load the JDBC/ODBC bridge." + e);

System.exit(1);
}
catch (SQLException e) {

System.err.println(
"Cannot connect to the database." + e);

System.exit(2);
}
try {

String query = "SELECT FirstName,LastName FROM Students";
DataRequest = dB.createStatement(CONCUR_UPDATABLE);
results = dataRequest.executeQuery (query);

}
catch (SQLException e){

System.err.println("SQL error." + e);
System.exit(3);

}
boolean records = results.next();
if (!records) {

CHAPTER 13 JDBC and Java Data Objects 283

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

System.out.println("No data returned");
System.exit(4);

}
try {

results.moveToInsertRow ();
results.updateString (1, "Tom");
results.updateString (2, "Smith");
results.insertRow();
results.moveToCurrentRow();
dataRequest.close();

}
catch (SQLException e) {

System.err.println("Data display error." + e);
System.exit(5);

}
finally {

dB.close();
}

Metadata
As you previously learned in this chapter, metadata is data about data, such as the

name of a column, the data type of a column, and the size of the column. Metadata is

returned by the DBMS as part of the resultset. You can access metadata by using the

DatabaseMetaData interface.

In order to access metadata, you must call thegetMetaData()method, which

is defined in the Connection class. The getMetaData() method returns a

DatabaseMetaData object that contains metadata. An assortment of metadata

is available to your program. You retrieve specific metadata by calling the appropri-

ate method. Here are some of the more commonly used methods (notice that the

name of the method implies the nature of the metadata it returns):

• getDatabaseProductName() Returns the product name of the

database

• getUserName() Returns the user’s name

• getURL() Returns the URL of the database

284 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• getSchemas() Returns all the schema names available in this database

• getPrimaryKeys() Returns primary keys

• getProcedures() Returns stored procedure names

• getTables() Returns the names of tables in the database

Two types of metadata can be retrieved from the DBMS. The first type contains

metadata that describes the database in the DBMS, which is accessible by calling the

appropriate method in the preceding table.

The other type of metadata describes the resultset. In order to access metadata of

the resultset, you need to call the getMetaData() method defined by the

ResultSet object, as shown here:

ResultSetMetaData rm = result.getMetaData();

The getMetaData() method returns a ResultSetMetaData object that

contains the metadata for the resultset. Here are the commonly called methods used

to retrieve specific metadata from the resultset:

• getColumnCount() Returns the number of columns contained in the

resultset

• getColumnName(int number) Returns the name of the column

specified by column number

• getColumnType(int number) Returns the data type of the column

specified by the column number

We don’t have room in this chapter to fit in all the methods used to retrieve

metadata. You can find information about those methods by visiting Sun

Microsystems’ website at java.sun.com.

Data Types
Throughout this chapter, we refer to thesetXXX() andgetXXX()methods used to

store a value in a column of a resultset and to retrieve a value from a column of a

resultset.. The XXX refers to the data type of the column. Table 13-1 contains a list of

data types and their Java equivalents. You can use this list to determine the proper data

name to use when replacing the XXX in the setXXX() and getXXX() methods.

CHAPTER 13 JDBC and Java Data Objects 285

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

286 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

SQL Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

TINYINT Byte

SMALLINT Short

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Float

DOUBLE Double

BINARY Byte[]

VARBINARY Byte[]

LONGVARBINARY Byte[]

BLOB java.sql.Blob

CLOB java.sql.Clob

ARRAY java.sql.Array

STRUCT java.sql.Struct

REF java.sql.Ref

DATALINK java.sql.Types

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

Table 13-1 A List of Data Types for Use with the setXXX() and getXXX()
Methods

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exceptions
JDBC methods throw three kinds of exceptions: SQLExceptions,

SQLWarnings, andDataTruncation.SQLExceptions commonly reflects

an SQL syntax error in the query and is thrown by many of the methods contained in

the java.sql package. Hopefully, the syntax errors in your code get resolved

quickly. In production, connectivity issues with the database most commonly cause

this exception. It can also be caused by subtle coding errors, such as trying to access

an object that has been closed. For example, you try to roll back a transaction in a

catch clause and don’t check first whether the database connection is still valid.

The getNextException()method of the SQLExceptions object is used to

return details about the SQL error or a null value if the last exception was retrieved.

ThegetErrorCode()method of theSQLException object is used to retrieve

vendor-specific error codes.

The SQLWarnings exception throws warnings received by the Connection
object from the DBMS. The getWarnings() method of the Connection ob-

ject retrieves the warning, and thegetNextWarning()method of theConnec-
tion object retrieves subsequent warnings.

Finally, whenever data is lost due to truncation of the data value, a

DataTruncation exception is thrown.

Quiz
1. How is storing data in a DBMS different from storing data in a file?

2. What is a resultset?

3. How can you retrieve data stored in a resultset?

4. How do you move the virtual cursor throughout the resultset?

5. How can you update a value in a resultset?

6. How can you update a value in a table?

7. What is metadata?

8. How do you update metadata?

9. How do you select a column in a resultset?

10. Why would you retrieve metadata?

CHAPTER 13 JDBC and Java Data Objects 287

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 13

P:\010Comp\DeMYST\454-8\ch13.vp
Saturday, April 10, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

289

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

CHAPTER
14

Java Applets

A Java applet is a small Java application used to enhance the capabilities of a web

page because a Java applet can do things that the web page can’t do directly itself,

such as calculations. A web page is a document that is written in Hypertext Markup

Language (HTML). HTML instructions function similarly to how keywords and

statements in Java instruct the Java environment to do something. However, HTML

lacks the keywords that are common to Java. For example, HTML cannot tell a web

browser to make decisions or repeat instructions. This is where a Java applet comes

in—a Java applet embellishes the capabilities of HTML. You’ll learn how to create

your own Java applets in this chapter.

Java Applet Basics
A Java applet is a program you write using Java, in much the same way as the other

Java applications you created throughout this book. However, a Java applet does not

have amain()method. Instead, a Java applet has 200 or so methods inherited from

the JApplet class. These methods are called by the browser in response to events

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

that occur when the browser runs. Your job is to override these methods, providing

them with your own Java statements that are executed when the browser calls these

methods.

Here’s how this works: Let’s say you created a browser-based registration form

for your school using a Java applet. This form enables students to register for classes

over the Internet. A student visits the school’s website and clicks the registration

link, and the browser loads and runs your Java applet. One of the first things the

browser does is to call the Java applet’s paint()method. The paint()method

contains statements that draw the registration form of your Java applet on the screen.

Your job is to place statements in the paint() method that draw the form.

Now suppose the student drags the browser window to a different location on the

desktop. This becomes a browser event—something that happens that might require

the browser to react. In this example, the browser needs to redraw the form in the new

location on the desktop. The browser reacts to this event by calling the Java applet’s

paint() method.

You’re probably puzzled at why there isn’t a main()method in the Java applet.

To answer this question, we need to return to the concepts you learned at the begin-

ning of this book. The main() method is the entry point into a Java application.

Whenever a Java application executes, the Java environment calls the main()
method and executes each statement within the main()method sequentially, until

the last statement executes or until a statement tells the Java environment to termi-

nate the program.

A Java applet is really an extension of the browser program, and they both work as

a team. The entry point is the browser, not the Java applet. The Java applet simply

defines methods that supplement the browser program.

A program that runs a Java applet is called an applet container. Therefore, a

browser is an applet container. The Java 2 Software Development Kit has a program

called the appletviewer that’s used to test Java applets. This, too, is an applet con-

tainer, and you’ll learn how to use it later in this chapter. We’ll use the term browser

throughout this book to refer to an applet container because most of your Java applets

will be running in a browser.

A browser doesn’t understand Java. Therefore, the browser gets help from the

Java class loader whenever the browser encounters a Java applet. The Java class

loader is a program that loads a Java applet into memory and creates an object of the

Java applet class that contains methods that can be called upon when the browser

needs certain tasks to be performed.

290 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 14 Java Applets 291

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

Writing a Java Applet
Let’s begin by easing your mind. Although there are more than 200 methods in a

Java applet, you only have to overwrite a few of them because the JApplet class’s

definitions of the other methods are adequate to handle most browser request. In

fact, many of these methods are empty, and others contain a minimum number of

statements to respond to calls from the browser.

Your job is to overwrite selected methods in order to control how these methods

react to requests made by the browser. The five methods that most programmers

overwrite in their Java applets are init(), start(), paint(), stop(), and

destroy(). You must overwrite theinit(),start() andpaint()methods.

The init() method is called when the browser begins the Java applet for the

first time. Typically, you’ll place statements in this method that declare objects and

initialize variables used in the Java applet.

The start() method is called whenever the browser restarts the Java applet

after temporarily stopping it by calling thestop()method. Let’s say that a student

is using your Java applet to register for a course, but temporarily opens an e-mail.

The browser calls the stop() method to stop the Java applet and then calls the

start() method when the student again selects the open browser window on

the desktop.

The paint() method is called whenever the browser needs to draw the

screen. The browser draws the screen the first time the Java applet runs and while

the Java applet is running, if the screen needs to be refreshed (such as when the

student moves the browser window on the desktop).

Thedestroy()method is called immediately before the termination of the Java

applet.

Structure of a Java Applet
A Java applet looks very similar to a Java application because both have an application

class. However, a Java applet must extend theJApplet class, which is not the case

with a Java application. The JApplet class is contained in the javax.swing
package.

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

292 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

The following example is a Java applet. You might think that something is missing

because the body of the class is empty. Although it is true that the class is empty, the

JApplet class contains the definitions of the 200+ methods that might be called by

the browser.

import javax.swing.JApplet;
public class Demo extends JApplet {
}

Now let’s customize this Java applet by overwriting the JApplet class’s

paint()method to display “Hello word!” onscreen. Thepaint()method requires

one argument, which is a reference to a Graphics object. The Graphics object is used

to call methods of the Graphics class that enable you to, among other things, dis-

play text and lines on the screen. The method receives reference to a Graphics object

when the browser calls the paint() method.

We’ll place one statement within the paint() method, which is called the

drawString() method. The drawString() method displays a string of

characters on the screen. You’ll need to pass the drawString() method three

arguments. The first augment is the string that is to be displayed on the screen. The

other two arguments are screen coordinates that specify where the string is to be

placed on the screen. The second argument is called the x coordinate and the third

argument is called the y coordinate.

The screen is referred to as the Java applet window and is divided into columns

and rows. Where a column and row meet is called a picture element (or pixel). An x, y

coordinate identifies each pixel. The x coordinate (x-axis) represents the column

number, and the y coordinate (y-axis) represents the row number. This is similar in

concept to a cell of a spreadsheet.

The pixel in the upper-leftmost corner of the Java applet window has the coordi-

nate 0,0. The maximum coordinate depends on the size of the Java applet window and

the resolution of the computer monitor used to display the Java applet. Many com

puters have a resolution that is 800 pixels wide (columns) and 600 pixels high (rows).

The following example illustrates how to write a Hello word! Java applet. Notice

that we place the text at coordinate 15, 15.

import javax.swing.JApplet;
public class Demo extends JApplet {

public void paint(Graphics g){
g.drawString("Hello world!", 15,15);

}
}

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 14 Java Applets 293

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

You compile a Java applet the same way you compile a Java application. First,

you write the Java applet source code using an editor and save it in a file that has an

extension of .java. Next, you compile the source code using the Java compile, such

as javac Demo.java. This produces the Java class (in this case, Demo.class)

that is made available to the HTML document that calls the Java applet.

Calling a Java Applet
You cannot directly run a Java applet from the Java environment as you do a Java

application. Java applets must be called from a document written in HTML. HTML is

called a markup language because it consists of standard tags that describe how text

and images are to be displayed on the screen. A browser interprets tags in an HTML

document and displays text and images on the screen appropriately.

Many HTML tags consist of an opening tag and a closing tag. The opening and

closing tags tell the browser how to display everything that appears between these tags

in the HTML document. The name of a tag is contained within angle brackets, such

as<applet>, which is the HTML tag used to tell the browser to load and run an ap-

plet. The closing tag is identical except a forward slash is placed in front of the name,

as in </applet>.

An HTML document must begin with the<html> tag and end with the</html>
tag. All other tags are placed within these two tags. In order to run a Java applet, you

must place the opening <applet> tag and the closing </applet> tag within the

<html> and </html> tags.

The <applet> tag requires three attributes. Think of an attribute as an argument

to a method. Each attribute must use the corresponding HTML attribute name fol-

lowed by the assignment operator (=), and then a value. Attributes are placed within

the angle brackets following the name of the applet in the opening tag.

The first attribute is called code, and its value is the name of the Java applet

enclosed within double quotations. The second attribute is called width. It defines

the width of the window within which the Java applet appears on the screen. Width is

measured as an integer that represents the number of pixels that fit across the window.

The third attribute is calledheight, and it’s an integer that identifies the number of

pixels that fit between the top and bottom of the Java applet window.

The following example shows you an HTML document that loads and runs a Java

applet. The Java applet is calledDemo.class and runs in a window 300 pixels wide

by 45 pixels high. The Java applet window should not be larger than 800 pixels

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

wide and 600 pixels high; otherwise, it may not fit on most computer screens. An HTML

document must be saved in a file that has the extension of either .html or .htm.

For example, you might save the following program in a file called demo.html:

<html>
<applet code="Demo.class" width="300" height="45">
</applet>

</html>

Running a Java Applet
In order to run the Java applet, you need to display the HTML document that con-

tains the call to the Java applet. Typically, the HTML document and the Java applet

both reside on a web server that is connected to the Internet or to an intranet, which is

commonly used on local networks in corporations. The browser is usually located

on a PC that is connected to the Internet or intranet.

You probably have experience displaying web pages. A web page is an HTML

document. Therefore, you display the HTML document that calls your Java applet

the same way in which you display a web page.

In the real world, programmers don’t use a web server in the early stages of test-

ing a Java applet. Instead, they display the HTML document that calls the Java applet

from an appletviewer, such as the appletviewer that comes with the Java 2 Platform

Standard Edition. In this way, programmers don’t have to waste time copying the

HTML document file and Java applet file to the web server each time they want to test

a change. Instead, they display the HTML document from their computer using the

appletviewer. Here’s what you type to run the appletviewer. Notice that you call

the HTML document and not the Java applet. This is because the HTML document

calls the Java applet.

Appletviewer Demo.htm.

Other Attributes
The three attributes of the <applet> tag are just the minimum attributes for a Java

applet. Other attributes are available that provide additional information to the browser

or appletviewer on how to call the Java applet. These are shown in Table 14-1.

294 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding Graphics to the Applet Window
A Java applet can perform nearly everything that a Java application can perform. For

example, you can enhance the previous example by including graphical elements such

as a line and rectangle.

You draw a line on the screen by calling the drawLine() method defined in

the Graphics class. Beginning and ending coordinates define the line. These

coordinates are integers that correspond to pixels on the applet window. Each coordi-

nate consists of two integers. The first integer represents the column and the second

integer represents the row position of the pixel in the applet window. For example,

coordinate 10,5 means ten pixels from the left of the applet window (ten columns)

and five pixels from the top of the applet window (five rows).

In order to draw a line, you must pass thedrawLine()method four arguments.

The first two arguments are coordinates for the beginning point of the line, and the

last two arguments are coordinates for the endpoint of the line.

CHAPTER 14 Java Applets 295

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

Attribute Description

codebase Assigns the base URL of the applet. The base URL is the directory on

the remote computer that contains the applet class. The default directory

is the same directory where the HTML document that contains the

applet tag is stored.

code The name of the applet. This is a required attribute.

alt Text that is displayed if the web browser is unable to run the Java

applet for any reason, such as the Java applet cannot be found on the

remote computer.

name Specifies the name for the instance of the Java applet. The name
attribute is then used by other Java applets called by the same HTML

document to communicate with the instance of the Java applet.

width, height Used to tell the web browser the number of pixels that define the width

and height of the Java applet window.

vspace, hspace Used to specify the space above and below the Java applet (vspace)

and on both sides of the applet (hspace).

param, name, value Used to define a parameter that is available to the Java applet once it

is loaded and executed. param is a tag. name is an attribute of the

param tag that is assigned the name of the parameter. value is also

an attribute of the param tag and is assigned the value of the parameter.

Table 14-1 Attributes for the Applet Tag

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the following statement tells Java to draw a line beginning at coordi-

nate 10, 5 (column 10, row 5) and ending at coordinate 375, 5 (column 375, row 5):

g.drawLine(10, 5, 375,5);

All coordinates must be specified as an integer. Coordinates that exceed the size

of the applet window will have no effect. That is, you won’t see a line beyond pixels

that falls within the applet window.

The next example illustrates how to draw a line in an applet window. This example

forms a box and then displays a person’s name on the screen. Previously, you learned

how to use the drawString() method to position text at a location specified by

coordinates passed in the last two arguments to the drawString() method. It is

important to remember that the coordinates passed to the drawString()method

relate to the applet window and are not related to the lines the applet draws on the

screen. You can run this example by using the HTML document that appears after

this Java applet.

import java.awt.Graphics;
import javax.swing.JApplet;
public class Demo extends JApplet {

public void paint (Graphics g)
{

g.drawLine(10, 5, 375,5);
g.drawLine(10, 5,2,25);
g.drawLine(375, 5,375,100);
g.drawLine(2, 25,2,100);
g.drawString("Mary Jones", 15,15);

}
}

<html>
<applet code="Demo.class" width="400" height="45">
</applet>

</html>

You can also dress up an applet window by drawing a rectangle around the text

using the drawRect() method. The drawRect() method also requires two

coordinates to be passed as arguments. The first coordinate (first two arguments)

specifies the upper-left corner of the rectangle, and the second coordinate (last two

arguments) specifies the lower-right corner of the rectangle.

The following example illustrates how to call the drawRect()method to draw a

rectangle around a name. You can use the previous HTML document to run this applet.

import java.awt.Graphics;
import javax.swing.JApplet;

296 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public class Demo extends JApplet {
public void paint (Graphics g)
{
g.drawRect(10, 5, 375,75);
g.drawString("Mary Jones", 20,20);

}
}

Passing Parameters
Many times your applet requires information from the HTML document in order to

process information. Let’s say that the applet displays a personal greeting on the

screen; however, the name of the person being greeted isn’t included in the applet.

Instead, the name is provided by the HTML document when the applet is called.

You can pass information to an applet from an HTML document by using the

<param> HTML tag. The <param> tag consists of two attributes: name and

value. The name attribute is used to identify the name used in the applet to rep-

resent the parameter. Think of this as the name of an argument for a Java method.

Thevalue attribute is used to identify the value being passed to the applet. Think of

this as the value that is passed to an argument for a Java method.

The <param> tag must be placed within the opening and closing <applet>
tags in the HTML document. This is shown in the next example, where the parame-

ter FirstName is assigned the value “Bob” and then passed to the applet. Al-

though this example shows one parameter, you can use as many parameters as

necessary by inserting additional <param> tags in the HTML document.

<html>
<applet code="Demo.class" width="400" height="45">

<param name="FirstName" value="Bob">
</applet>

</html>

Next, you need to modify the applet so it reads the parameter passed from the HTML

document. To do this, you need to do two things to your applet. First, you need to reserve

memory so you can store the parameter. You do this by declaring a String variable.

Second, you call thegetParameter()method. ThegetParameter()method

requires one parameter—the name of thename parameter specified in the correspond-

ing attribute of the<param> tag. ThegetParameter()method returns the corre-

sponding value.

Programmers commonly place the getParameter() method call in the

init()method that the applet overwrites because an applet reads a parameter once

when it begins. This is shown in the next example, where a person’s name is passed

CHAPTER 14 Java Applets 297

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

as a parameter and placed in a welcome message. Notice that the variable used to

store the parameter is combined with strings to create the greeting. These are joined

by using the concatenation operator (+).

import javax.swing.JApplet;
import java.awt.Graphics;
public class Demo extends JApplet {

private String firstName;
public void init()

{
firstName = getParameter("FirstName");

}
public void paint(Graphics g)

{
g.drawString("Hello, "+ firstName +"!", 30, 30);

}
}

Restrictions
A Java application can do certain things that an applet cannot. For example, an appli-

cation can delete files on the local computer, but an applet cannot because an applet is

considered untrustworthy.

An applet runs in a sandbox. It can display and receive information, but it cannot

access the local file system unless the person using the Java applet gives it the neces-

sary privilege to access the local file system. This privilege is granted via a web

browser setting.

The web browser examines an applet using a bytecode verifier before the Java

applet runs to make sure that the applet complies with the Java security policy. The

Java security policy restricts what a Java applet can and cannot do on the local com-

puter. These restrictions may vary based on the web browser and whether the Java

applet is loaded from the local computer or from a remote computer.

Anticipate that an applet won’t be able to initiate a print job or read and write local

files. In addition, an applet usually cannot access the following items:

• The clipboard

• A local computer’s event queue

• The local computer’s operating system properties

• The local computer’s operating security properties

298 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Dialog Boxes with an Applet
Practically all the techniques you learned to use when writing a Java application can

also be used to write an applet. One of those features is a professional-looking user

interface for your applet that includes dialog boxes, push buttons, text boxes, and all

the other niceties that we’ve come to expect from a computer program.

You learned how to create a graphical user interface (GUI) for your program in

the previous chapter. You can use many of those techniques to create a user interface

for your applet. The quickest way to incorporate a GUI in an applet is to use a message

dialog box and an input dialog box.

As you’ll recall from the previous chapter, a message dialog box is a GUI display

that presents the user with a message and an OK button. An input dialog box presents

the user with a message, a text box used to enter information, and an OK button. Infor-

mation entered into the input dialog box becomes available for use by your applet.

You create both of these dialog boxes by using a method defined in the

JOptionPane class, which is contained in the javax.swing package. A num-

ber of very useful methods are defined in the JOptionPane class; however,

we’re interested in only two of them: showMessageDialog() and

showInputDialog().

The showMessageDialog() method displays a message dialog box. This

method requires four arguments. The first argument is a reference to its parent dialog

box. Typically, there isn’t a parent, so you’ll pass it a null. The second argument is a

string that contains the message that will be displayed in the dialog box. The third

argument is also a string. It’s used as the caption for the dialog box. The last argument

is a static variable indicating the kind of message dialog box you want displayed.

We’ll use PLAIN_MESSAGE for our purposes. The other kinds of message dia-

log boxes are mentioned in the previous chapter. Here is the way you call the

showMessageDialog() method:

JOptionPane.showMessageDialog(null, "Message" , "Caption",
JOptionPane.PLAIN_MESSAGE);

TheshowInputDialog()method is used to display an input dialog box and re-

quires one argument—a string containing the message that tells the user to enter infor-

mation into the dialog box. After the user selects OK, the showInputDialog()
method returns the information entered by the user as a string. You can then process

the string within your applet. Here’s how you call the showInputDialog()
method. In this case, value is a string variable that was previously declared some-

where in the program that executes this statement.

value = JOptionPane.showInputDialog ("Message");

CHAPTER 14 Java Applets 299

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example shows how both dialog boxes are used in an applet. This

example calculates a grade. First, the user is asked to enter the total number of questions

on the test (see Figure 14-1). Next, the user is asked to enter the number of correct

answers (see Figure 14-2). The applet then calculates the grade and displays the grade

in a message box (see Figure 14-3). The HTML document used to run this applet is

shown at the end of the example.

import java.awt.Graphics;
import javax.swing.*;
public class Demo extends JApplet {

double doubleGrade;
public void init()
{

String totalNumberQuestions;
String totalCorrectAnswers;
double doubleNumberQuestions;
double doubleCorrectAnswers;
totalNumberQuestions = JOptionPane.showInputDialog (

"Enter the total number of
test questions.");

totalCorrectAnswers = JOptionPane.showInputDialog (
"Enter the total number of

correct answers.");
doubleNumberQuestions = Double.parseDouble(

totalNumberQuestions);
doubleCorrectAnswers = Double.parseDouble(

totalCorrectAnswers);
doubleGrade = (

doubleCorrectAnswers/doubleNumberQuestions) *
100;

}
public void paint (Graphics g)
{

JOptionPane.showMessageDialog(null,
"Your grade is " + doubleGrade + "%",
"Grade", JOptionPane.PLAIN_MESSAGE);

}
}

<html>
<applet code="Demo.class" width="400" height="75">
</applet>
</html>

300 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 14 Java Applets 301

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

The Status Window
It is always good programming practice to give the user of your applet a status while

your applet is running. In this way, if your applet is busy processing, the user will see

a frequently changing message telling the user that the applet is working fine or that

the applet experienced an error.

The status line, located at the bottom of the applet window, is used to display the

current status of your applet. You write to the status line by calling theshowStatus()
method. The showStatus() method requires one argument—the message you

want displayed on the status line.

The following example illustrates how to display the status of your applet on the

status line of the applet window. You can use the HTML document shown in the

Figure 14-1 Prompts the user to enter the total number of questions that appear

on the test

Figure 14-2 Prompts the user to enter the total number of correctly answered questions

Figure 14-3 Displays the grade for the test

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

previous example to run this applet. Figure 14-4 shows what happens when you run

this applet.

import javax.swing.JApplet;
import java.awt.Graphics;
public class Demo extends JApplet {

public void paint(Graphics g)
{
g.drawString("Hello world!", 30, 30);
showStatus("The Hello world applet is running.");

}
}

Quiz
1. What is an applet?

2. What restrictions are imposed on an applet?

3. How do you execute an applet?

4. Why doesn’t an applet have a main() method?

5. Why don’t you have to overwrite all the methods of the JApplet class?

6. Why can’t an applet be run from the command line?

7. What is the purpose of the init() method?

8. Why would you use an applet?

9. What is the purpose of a status line?

10. How is a parameter passed to an applet?

302 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 14

Figure 14-4 Displays a message on the status line of the applet window

P:\010Comp\DeMYST\454-8\ch14.vp
Saturday, April 10, 2004 2:20:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER A

Final Exam

1. What is the difference between an applet and a Java application?

2. Can statements in an applet write a file to the local computer?

3. Can an applet be executed from the command line?

4. What is the entry point into an applet?

5. What are the three methods that should be overwritten in every applet?

6. What method is called once the applet is loaded?

7. What is the purpose of the start() method?

8. Can an applet use GUI elements?

9. How do you run an applet?

10. Can a parameter be passed to an applet from the command line?

11. What method do you call to display a GUI window?

12. For which GUI elements do you use the ItemListener?

13. Is the following the correct order in which you assemble a GUI window?

Window, container, content pane, GUI elements

14. What is the relationship between the content pane and GUI elements?

15. True or false? All GUI elements should always be enabled.

303

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix A

P:\010Comp\DeMYST\454-8\appa.vp
Saturday, April 10, 2004 2:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

16. How do you obtain a content pane?

17. How do you set the background color of the container?

18. Can you use pixel coordinates to position GUI elements in a window?

19. Why would you use the Gridbag Layout Manager over the Grid Layout

Manager?

20. What is a major difference between creating a GUI in Java as opposed

to creating a GUI in another programming language such as C++?

21. What is the purpose of an access specifier?

22. What is an interface?

23. True or false? Each instance of a class has its own instance variable.

24. How can one class inherit another class?

25. What is an abstract class?

26. What is overloading?

27. What is a method signature?

28. What does encapsulation refer to in Java?

29. What is the entry point to a Java application?

30. What is the Java Virtual Machine?

31. How can a Java application run on practically any computer?

32. What is a resultset?

33. What is an embedded query?

34. What is a DBMS?

35. What is the difference between a while loop and a do...while loop?

36. What is the difference between an int and a float?

37. What is System in System.out.println()?

38. What does the new operator do?

39. Assuming that x equals 10, evaluate this expression: !x==10

40. Why would you create an endless loop?

41. What is the difference between an array and the Arrays class?

42. What kind of code is generated by the Java compiler?

43. How do you temporarily change from one data type to another?

44. What does a variable identifier represent?

304 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix A

P:\010Comp\DeMYST\454-8\appa.vp
Saturday, April 10, 2004 2:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

45. What determines the accuracy of a value?

46. Can variables of the same data type be declared in the same statement?

47. When does a variable go out of scope?

48. How is a value assigned to a character variable represented in memory?

49. How precise is a single-precision value?

50. What kind of operator requires one operand?

51. What rules does Java follow to evaluate an expression?

52. What is the importance of the position of the incremental operator?

53. In a switch...case statement, can all the case statements be evaluated?

54. How would you make sure that a switch...case statement responds

to a switch value if the value isn’t included in a case statement?

55. How do you describe placing one if statement within another if statement?

56. In a loop, how do you tell Java to skip the remaining statements in the loop

and go to the top of the loop?

57. How do you identify an array element?

58. How do you group together and distribute classes that you’ve defined and

want to use in other programs?

59. What term is used to describe Java’s capability to have a method take on

a different form depending on the context in which the method is called

within a program?

60. What kind of member method can be called without first declaring an in-

stance of its class?

61. What is the purpose of a constructor?

62. What is like a cookie cutter and describes a new data type consisting of

member variables and member methods?

63. When is a constructor called?

64. What method is automatically called immediately before Java garbage

collection releases memory used by an instance of a class?

65. What is the purpose of an argument list?

66. How would you determine whether a subclass should inherit a superclass?

67. How do you prevent a subclass from overwriting a method of a superclass?

68. What class is automatically inherited by all other classes in Java?

69. How can you explicitly call a superclass method in a subclass?

Final Exam 305

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix A

P:\010Comp\DeMYST\454-8\appa.vp
Saturday, April 10, 2004 2:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

70. How do you design a program to handle exceptions?

71. What kind of exceptions should you trap in your program?

72. How are exceptions handled if you don’t trap exceptions within your program?

73. Are all exceptions generated by Java?

74. Is there a way to make sure statements are executed regardless of whether

an exception is or is not thrown?

75. What is the term used to describe executing two processes simultaneously?

76. How does thread priority work?

77. How do you prevent two threads from trying to access the same resource

at the same time?

78. What interface would you implement to create threads within your program?

79. Do you have any threads running in a program in which you don’t create

a thread?

80. What method must be overwritten if you implement the Runnable interface?

81. How do you create a thread?

82. How do you convert instance variables into a byte stream?

83. What is a flow of bytes called?

84. What is the purpose of using the File class?

85. How does a BufferedReader work?

86. What does the getParent() method of the File class return?

87. You use the getXXX() method to retrieve data from a resultset. What does

the XXX stand for?

88. Can all resultsets be updated?

89. What is the term used to describe the column name in a resultset?

90. True or false? The only way you can refer to a column in a resultset is by

using the name of the column.

91. What does the last() method do in relationship to a resultset?

92. When you declare an instance of the FileOutputStream class, you

pass its constructor two arguments. The first argument is the filename.

What is the second argument?

93. If you require 15 significant digits to the right of the decimal, what kind

of precision do you require?

94. What computer language does a computer understand?

306 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix A

P:\010Comp\DeMYST\454-8\appa.vp
Saturday, April 10, 2004 2:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

95. What uniquely identifies each block of computer memory?

96. What operator returns the remainder after dividing two numbers?

97. What value is returned by a relational operator?

98. How would you change the value of a bit?

99. In the expression a == 10 || b == 20, what condition(s) must be met

for this expression to be true?

100. What is the normal flow of a Java application?

Final Exam 307

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix A

P:\010Comp\DeMYST\454-8\appa.vp
Saturday, April 10, 2004 2:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER B

Answers to
Quizzes and
Final Exam

Chapter 1
1. A compiler is a program that translates a program written in a high-level

programming language into bytecode or object code, depending on the

language used to write the program.

2. A high-level programming language contains English-like words used by

programmers to instruct a computer to perform specific functionality.

3. Machine language is the only language a computer understands. Instruc-

tions written in machine language are written as a series of zeros and ones.

4. The key difference between C and Java is that Java enables a programmer

to define classes. Classes cannot be defined in C.

309

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

310 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

5. The key difference between C++ and Java is that a Java program can run

on different kinds of computers without having to be recompiled. A C++

program must be recompiled to run on different kinds of computers.

6. Bytecode is compiled Java code that can be executed on any computer that

is running the Java Virtual Machine.

7. The Java Virtual Machine is a program that interprets Java bytecode.

8. The main() method in a Java application is the entry point into the

application.

9. No. You can define a Java class without declaring an attribute as a member

of the class.

10. A Java application terminates after the last statement in the main()
method executes.

Chapter 2
1. A data type is a keyword a programmer uses to tell Java the kind of data

that needs to be stored in memory.

2. No. Only variables of the same data type can be declared in the same

statement.

3. Casting is a way to temporarily convert a value from one data type to

another in order to make it compatible with an operation.

4. The best way to determine the proper data type for a variable is to decide

the minimum and maximum values that need to be stored in memory and

then find the data type whose range complements these values.

5. A variable identifier is a name that you give a variable. You use this name

throughout your program to refer to the memory location that Java associ-

ates with the variable identifier.

6. A memory address is a unique number that identifies a location in memory. A

variable identifier is a name the programmer uses to refer the corresponding

memory location.

7. The scope of a variable is defined by the code block within which the vari-

able is declared. A variable goes out of scope when the program leaves the

code block within which the variable is declared.

8. Precision is the number of digits that are accurate to the right of the

decimal point.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. The integer assigned to the character in Unicode is stored in memory when

a character is assigned to a char variable.

10. No. A float is single precision (seven significant digits to the right of the deci-

mal), whereas double is double precision (15 significant digits to the right of

the decimal).

Chapter 3
1. A compound expression is an expression that is composed of two or more

subexpressions.

2. A unary operator is an operator that requires one operand.

3. An operator tells Java to perform an operation using one or more values

that are referred to as operands.

4. Parentheses are placed around subexpressions that are to be evaluated

before other subexpressions.

5. Precedence defines the order in which Java performs operations in an

expression.

6. The modulus operator returns the remainder after dividing two numbers.

7. If the increment or decrement operator is used in a compound expression, such

as a = ++b, the position of the increment or decrement operator tells Java to in-

crement/decrement a value either before the assignment operation or after the

assignment. If the increment/decrement operator is positioned before the vari-

able, the value is incremented/decremented before the assignment. If the incre-

ment/decrement operator is positioned after the variable (for example, a++),

the value is incremented/decrement after the assignment.

8. A relational operator compares two values and returns a Boolean value.

9. A bitwise operator changes the value of a bit.

10. The OR logical operator (||) compares the results of two expressions. If

either expression is true, then the OR logical operator returns a true value;

otherwise, a false value is returned.

Chapter 4
1. The normal flow of a program begins with the first statement in the main()

method. Then statements are executed sequentially until the last statement in

the main() method executes.

Answers to Quizzes and Final Exam 311

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

312 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

2. An endless loop is a loop where the conditional expression is always true.

3. A conditional expression is a relational expression that determines whether

Java should or should not execute one or more statements.

4. No. A switch statement cannot use a Boolean value as the switch variable.

5. A constant is a value associated with a case statement that is compared

to a switch variable within a switch statement.

6. Statements within the body of a while loop execute only if the condition

statement is true. Statements within the body of a do while loop execute

at least once, even if the condition statement is false.

7. The purpose of a default statement in a switch statement is to specify

statements that are to be executed if none of the case constants match

the switch value.

8. The term nested means that one control statement is placed within another

control statement.

9. The break statement tells Java to exit a block such as a for loop or

a switch statement.

10. The continue statement tells Java to go to the top of the loop without ex-

ecuting statements that appear below the continue statement in the loop.

Chapter 5
1. An index is an integer used to identify an array element.

2. A reference to an array points to the memory address of the first element

of the array.

3. The new operator dynamically allocates memory for an array and returns

the memory address of the first array element.

4. The index of the first element of an array is always zero.

5. You pass an array to a method by passing the array name.

6. You return an array from a method by returning the array name.

7. You determine the number of array elements of an array by using the

length data member of the array.

8. The third parameter of the fill() tells the fill() method to stop filling

when it reaches the array element that has the index passed as the third

parameter.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. The binarySearch() method returns a negative number when the

search criteria isn’t found in the array.

10. A package is a group of predefined classes that is imported into your program

whenever you want to use one of the predefined classes in your program.

Chapter 6
1. A method header consists of three elements: the method name, the method

argument, and the data type of the value returned by the method.

2. The components of a method signature are the method name and the

method argument list.

3. A return statement in used in a method to return a value to the statement

that calls the method.

4. The two components of an argument are the data type and the name of the

argument.

5. A command-line argument is an argument passed to a program while the

program is being run from the command line.

6. In order to pass a quotation mark as a command-line argument, you must

precede the quotation mark with a backslash.

7. Polymorphism is a term used by programmers to describe Java’s capability

to have a method take on different meanings (forms), depending on the

context in which the method is called within a program.

8. Overloading a method is the technique of defining two or more methods

with the same method name but with different argument lists.

9. A method is the part of a Java program that contains the logic to perform

a task.

10. The two kinds of methods in Java are nonstatic methods and static methods.

Chapter 7
1. An instance variable is a nonstatic variable declared as a member of a class.

2. An instance and an object both refer to a declaration of a class. Programmers

use these terms interchangeably.

3. A class is like a cookie cutter that describes a new data type that consists of

instance variables and method members.

Answers to Quizzes and Final Exam 313

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. A constructor is a method member of a class that is automatically called

when an instance of the class is declared.

5. Both are method members of a class. However, a destructor is called auto-

matically when an instance of a class goes out of scope. The finalize()
method member is called automatically, immediately before Java garbage

collection releases the memory used by the instance of the class.

6. Overloading a method member means that two or more method members

of a class have the same method name but have different argument lists.

7. You declare an instance of a class by using the new operator, as shown here:

new myClass()

8. An access specifier is used to limit access to the members of a class.

9. Yes. A constructor can have an argument list.

10. A constructor is overloaded for many reasons, the most common of which is

to give the programmer the opportunity to provide an initial value for instance

variables.

Chapter 8
1. An abstract method member of a class is a member method that must be

overridden by a subclass that inherits the class that defines the abstract

method member. An abstract method member does not have a method body

because an abstract method member cannot be called. Only method mem-

bers that override an abstract method member can be called.

2. The “is a” rule of inheritance defines the relationship between a superclass

and a subclass. This rule requires that a subclass “is a” superclass. For ex-

ample, a student class (subclass) should be a person in order to inherit the

person class.

3. The keyword extends is used by a subclass to specify a superclass to

inherit.

4. The keyword final prohibits a method member that is designated as final

from being overridden by a method member of a subclass.

5. A superclass is a class that is being inherited by a subclass.

6. An abstract class is a class that contains at least one abstract method member.

You cannot declare an instance of an abstract class.

314 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. The Object class is a class defined by Java that is automatically inherited

by all other classes defined in Java, including the classes you define in your

program.

8. You can prevent a class from being inherited by designating the class with

the keyword final.

9. The keyword super is used in a subclass to explicitly reference method

members of the superclass.

10. Multilevel inheritance occurs when a subclass is inherited by another subclass.

Chapter 9
1. An exception is something that doesn’t normally occur. In programming,

two kinds of exceptions might occur with a program. These are commonly

referred to as compile errors and run-time errors. Exception classes in Java

handle run-time errors.

2. A try block contains statements that are monitored for exceptions.

3. A catch block immediately follows a try block and handles exceptions

thrown by statements within the try block.

4. If an exception is thrown and you didn’t catch it within your program,

Java’s default handlers will respond to the exception.

5. The Throwable class is the parent of the Exception class.

6. You create your own exception class by inheriting Java’s Exception class

or any subclass of Exception, such as the RuntimeException class.

7. If you define a method that might throw a checked exception but you don’t

catch the exception within the method definition, you must use the keyword

throws in the method header and list the exceptions that can be thrown by

the method.

8. One exception class can be caught by a catch block. You can use multiple

catch blocks to catch multiple exceptions.

9. The finally block contains statements that are executed regardless of whether

an exception is thrown or not thrown.

10. Yes, you can override methods inherited by your exception class from the

Throwable class.

Answers to Quizzes and Final Exam 315

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

316 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

Chapter 10
1. A thread is a portion of a program that runs concurrently with other portions

of a program.

2. Multitasking is doing two or more tasks concurrently.

3. CPU processing time is needed to switch among concurrent threads. This is

called overhead because this processing is not directly related to processing

the program.

4. A thread priority is an integer, 1 through 10, that specifies whether or not a

thread should be preempted by a higher-priority thread. The lowest priority

is 1. The default normal priority is 5. The highest priority is 10.

5. Synchronization is the technique of requiring only one thread to have access

to a resource at one time. Other threads that need the resource must wait

until the resource is available.

6. A Runnable interface is an interface used to create threads within your

program because you only need to define the run() method.

7. You should extend the Thread class rather than implementing the Runnable
interface in your program if you need to override more than the run()method

of the Thread class.

8. You have two threads—the main thread and the child thread you created.

9. You must override the run() method.

10. You define the portion of your program that becomes a thread by overriding

the run() method. Statements within the run() method become the thread.

Chapter 11
1. Synchronizing a class converts its instance variables into a byte stream.

2. A stream is a flow of bytes.

3. The File class is used to interact with the file system of a computer.

4. Data saved with an object is encapsulated within the object and is usually

treated as a single unit by your program. That is, you save and read an

instance of a class and not instance variables of the class. Saving data

elements using the PrintWriter class saves data individually.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 317

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

5. A filename filter is used to filter a file directory so that only filenames

that contain a specified pattern of characters are returned to your program.

6. The PrintWriter class cannot open a file. It uses a reference to another

class, such as the FileOutputStream class, that opens the file.

7. You specify the path when opening a file by including the full path with the

filename.

8. The BufferedReader class is used to read data from a file into a mem-

ory buffer and then to read data from the memory buffer into your program.

9. You append data to the end of a file by using the version of the FileOpenStream

construct that accepts two arguments. The first argument is the filename, and

the second argument is a Boolean true, which causes all data to be written to the

end of the file.

10. You can determine the parent directory path that contains a subdirectory by

calling the getParent() method defined in the File class.

Chapter 12
1. An event listener monitors changes that occur to a GUI element.

2. An event handler is a method you define that is called when an event occurs

to a GUI element.

3. You cannot display GUI elements in a window. You must place GUI ele-

ments in a content pane and then place the content pane in the container

of the window.

4. The purpose of a content pane is to group together GUI elements that are

placed within the container of a window.

5. You would you want to disable a GUI element if the GUI element is not

appropriate for the current process.

6. A window can be created but not shown. You have to explicitly tell the Java

Virtual Machine to display the window by calling the setVisible(true)
method.

7. You place a content pane in a container by calling the

setContentPane(ca) method and passing it a reference

to the content pane.

8. The purpose of a layout manager is to map areas of the container

where you can position GUI elements.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. You cannot explicitly specify the location of a GUI element in a window.

Instead, you specify a relative position for each GUI element within the

layout manager.

10. A major difference between creating a GUI in Java as opposed to creating

a GUI in another programming language such as C++ is that you cannot ex-

plicitly position GUI elements in a window. This is because the Java Virtual

Machine needs flexibility to adapt your GUI layout to various computers

without you having to rewrite your program.

Chapter 13
1. A DBMS is software that enables you to organize and manage data by using

SQL queries. Data stored in a file may or may not be organized and is man-

aged directly by your program.

2. A resultset is a virtual table of data that is returned by a DBMS in response

to an SQL query.

3. You retrieve data stored in a resultset by using the getXXX() method and

passing the method reference to the column whose value you want to access.

4. You move the virtual cursor by calling the next(),first(), last(),

previous(), absolute(), relative(), and getRow() methods.

5. You update a value in a resultset (if the resultset is an updatable resultset)

by calling the updateXXX() method, where XXX is the data type of the

column being updated. The updateXXX() method requires two parame-

ters. The first identifies the column, and the second is the value that will

be placed in the column.

6. You update a value in a table by creating and executing an SQL query that

contains an update statement.

7. Metadata is data about data, such as a column’s name, data type, and size.

8. You cannot update metadata. Metadata is set when you create a database and

table. Metadata changes only when those components of a DBMS change.

9. You select a column in a resultset by referring to the position of the column

in the resultset.

10. You retrieve metadata in order for your program to learn about the data

stored in a table or about the table and database themselves.

318 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14
1. An applet is a type of Java program that is called by an HTML document.

2. Typically, an applet cannot access the clipboard, the local computer’s event

queue, the local computer’s operating system properties, and the local com-

puter’s operating security properties.

3. An applet is executed by a browser when the browser encounters the

<applet> tag in an HTML document.

4. The main() method is the entry point into a Java application. The entry

point into an applet is where the browser encounters the <applet> tag in

an HTML document. Therefore, an applet doesn’t need to have a main()
method.

5. You only have to overwrite methods of the JApplet class if you want to

change the default behavior of those methods. Typically, you’ll only need

to change the default behavior of a few methods, not all the methods de-

fined in the JApplet class.

6. An applet cannot be run from the command line because it does not have

a main() method defined.

7. The init() method is called once when the applet first executes and

usually has statements that initialize variables used by the other methods

defined in the applet.

8. An HTML document does not have the capability to perform complex

processing. Therefore, you would use an applet to enhance the capabilities

of an HTML document.

9. The status line is used to display messages that keep the applet’s user

informed as to the status of the applet.

10. You pass a parameter to an applet by using the <param> tag in the HTML

page that calls the applet. Parameters are then identified using the name
and value attributes of the <param> tag.

Final Exam
1. An applet must be run using a browser or the appletviewer. A Java applica-

tion can be run from the command line using the Java Virtual Machine.

2. Probably not. An applet is restricted in what it can do on the local machine.

However, the local environment governs those restrictions. Many local

environments protect the local file system from an applet.

Answers to Quizzes and Final Exam 319

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3. No. An applet must be run from either a browser or the appletviewer.

4. The entry point into an applet is the browser. It is from there that the

methods defined in the applet are called.

5. init(), start(), and paint().

6. init().

7. The start() method contains statements that are executed each time

the applet is started.

8. Yes.

9. You run an applet by using the applet tag in an HTML document.

10. No, because an applet cannot be run from a command line. A parameter

can be passed to an applet from an HTML document.

11. You call the setVisible() method and pass it a Boolean true.

12. Radio button, check boxes, combo boxes, and other GUI elements that use

a list of items from which the user makes a selection.

13. Yes.

14. GUI elements are added to the content pane. The content pane is then placed

in the container of the window.

15. False. A GUI element should be enabled only if it is used in the current

process.

16. You call the getContentPane() method.

17. You call the setBackground() method and pass it a constant that

corresponds to the color you want to use.

18. No. You cannot use pixel coordinates because they are machine specific,

and their position may differ in various machines. Java is a machine-inde-

pendent language; therefore, you must use relative coordinates rather than

explicit coordinates to position GUI elements in a window.

19. The Gridbag Layout Manager enables you to specify the cell of the grid

where a GUI element is to be positioned. The Grid Layout Manager places

GUI elements in the next available cell in the grid.

20. In many programming languages, you can specify the exact location of each

GUI element on the screen. In Java, you specify the relative position, and the

Java Virtual Machine determines the exact placement of the GUI element.

21. An access specifier determines what parts of your program have access to

members of a class.

320 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22. An interface is a predefined set of methods that a class must define in order

to implement the interface. The interface tells a programmer that he/she

must define a specific set of methods in a class in order to use (implement)

the interface.

23. True.

24. You can cause a class to inherit another class by using the keyword extends
in the class header.

25. An abstract class is a class that cannot be instantiated.

26. Overloading is a technique of creating two or more versions of the same

method, where the name of the method remains the same but the method

signature is different in each version.

27. A method signature consists of the method name and an argument list.

28. Encapsulation refers to combining related data and methods into a class

and protecting the data from other parts of the program.

29. The main() method is the entry point into every Java application.

30. The Java Virtual Machine is a machine-dependent executable program

capable of translating Java bytecode into machine-readable instructions.

31. A Java application can run on any computer that has a Java Virtual Machine

because the Java application’s bytecode is machine independent and is

interpreted by the Java Virtual Machine, which is machine specific.

32. A resultset is data returned to a Java application from a DBMS in response

to an SQL query sent by the application.

33. An embedded query is an SQL query that is part of a program such as your

Java program.

34. A DBMS is a database management system used to store, retrieve, and main-

tain large amounts of data, and it can follow instructions written in SQL.

35. Statements within a while loop may never be executed if the while
loop condition expression is false. Statements within a do...while loop,

however, always executes at least once, even if the while loop condition

expression is false.

36. An int is a data type used for whole numbers. A float is a data type used for

mixed numbers.

37. System is the name of the System class.

38. The new operator reserves memory for an object and returns a reference to

that object and invokes a constructor method if one exists for the object.

Answers to Quizzes and Final Exam 321

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

39. This expression evaluates to false because the exclamation point reverses

the logic of the expression. In other words, it says “x does not equal 10.”

40. You use an endless loop whenever one or more statements within the loop

determine when the loop should terminate.

41. The Arrays class provides methods that are used to manipulate elements

of an array. An array does not have those methods.

42. The Java compiler generates bytecode, which can be executed on any com-

puter that is running the Java Virtual Machine.

43. You cast the first data type to temporarily become the second data type.

44. A variable identifier represents the memory address where a value represented

by the variable identifier is stored.

45. The precision of a value determines the accuracy of the value.

46. Yes.

47. A variable goes out of scope when the program leaves the code block within

which the variable is declared.

48. A value of a character variable is an integer that corresponds to the Unicode

value of that character; therefore, the character is represented as an integer

in memory.

49. A single-precision value has seven significant digits to the right of the decimal.

50. The unary operator requires one operand.

51. Java follows the precedence rules, also known as the order of operation to

evaluate an expression.

52. If the incremental operator precedes a value, such as a = ++b, then the

value is incremented before being assigned. If the incremental operator

succeeds a value, such as a = b++, then the value is incremented after

the assignment.

53. Yes, if the break statement is not used within each case statement.

54. Use a default statement that executes if no case statement matches the

switch value.

55. The second if statement is referred to as a nested if statement.

56. You insert a continue statement at the point where you want Java to

return to the top of the loop.

57. You reference the name of the array followed by the array element’s index

value placed within square brackets.

322 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 323

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

58. You place your classes in a package that can be imported whenever you

want to use them in other programs.

59. Polymorphism.

60. A static method.

61. A constructor is typically used to initialize member data when an instance

of the class is declared.

62. A class.

63. A constructor is called automatically when an instance of its class is declared.

A constructor can also be called directly. For example, you can use super()
in a subclass to call the constructor of the superclass.

64. The finalize() method.

65. An argument list contains values required by a method to complete a process.

66. The subclass must comply with the “is a” rule, which states that the subclass

“is a” superclass, such as “a graduate student ‘is a’ student.”

67. You precede the name of the class with the keyword final.

68. The Object class.

69. You precede the method name with the keyword super.

70. You place the code that might generate the exception in a try block and

then define one or more catch blocks to trap and react to exceptions.

71. You should trap any exceptions your program can recover from, including

run-time exceptions.

72. Java’s default exception handler will respond to the exception.

73. No. You can create your own exceptions that are thrown by statements in

your program.

74. Yes. You can place those statements in a finally block. Java always

executes the finally block regardless of whether exceptions occur in

the program.

75. Multitasking.

76. Each thread is assigned an integer, 1 through 10, that indicates the thread’s

priority. The lowest priority is 1, and the highest is 10. A higher-priority

thread should preempt a lower-priority thread.

77. Use the synchronization technique.

78. The Runnable interface.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

324 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Appendix B

79. Yes. Every program has a main thread that is created when the program

executes.

80. You must override the run() method.

81. The easiest way to create a thread is to implement the Runnable interface

and then overwrite the run() method. Statements within the run() method

become the thread.

82. You serialize the class that contains the instance variables.

83. A stream.

84. The File class enables your program to interact with the file system.

85. First, you create a BufferedReader by declaring an instance

of the BufferedReader class. Then, the methods defined in the

BufferedReader class are used to read data from a file into a memory

buffer and to read data from the memory buffer into your program.

86. The getParent()method returns the parent directory path of a subdirectory

or file.

87. The XXX is replaced by the data type of the data being retrieved from the

resultset.

88. No. Only updatable resultsets can be updated.

89. Metadata.

90. False. You can refer to the position of the column in the resultset.

91. The last() method positions the virtual cursor at the last row in the

resultset.

92. The second argument is a Boolean value that determines whether data will

be appended to the file. A Boolean true causes data to be written to the end

of the file.

93. Double precision.

94. Machine language.

95. A memory address.

96. The modulus operator.

97. A Boolean value.

98. You use a bitwise operator.

99. Either a == 10 or b == 20.

100. The normal flow of a Java application begins with the first statement in the

main() method. Then statements are sequentially executed until the last

statement in the main() method executes.

P:\010Comp\DeMYST\454-8\appb.vp
Saturday, April 10, 2004 2:25:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INDEX

\ (backslash), 119, 213

. (dot operators), 103

" (double quotation marks), 118–119

/ (forward slash), 213

; (semicolon), 15

?: (ternary operators), 55–56

&

bitwise AND operators, 57–58

single AND operators, 55

&& (AND logical operators), 53–54

<< (left shift operators), 60–61

>> (signed right shift operators), 60–61

>>> (unsigned right shift operators), 60–61

^ (bitwise exclusive OR operators), 58–59

{ } (braces), 13

| (bitwise inclusive OR operators), 58–59

| (single OR operators), 55

|| (OR logical operators), 54–55

˜ (bitwise complement operator), 61–62

A
access specifiers, 127–128

American National Standards Institute. See ANSI

AND bitwise operators, 57–58

AND logical operators, 53–54

single, 55

ANSI, 7

answers

final exam, 319–324

quizzes, 309–319

applets, 289–290

attributes, 293, 294–295

browsers, 290

calling, 293–294

containers, 290

graphics, 295–298

passing parameters, 297–298

picture elements (pixels), 292

restrictions, 298

running, 294

status windows, 301–302

structure of, 291–293

using dialog boxes with, 299–301

windows, 292

writing, 291–295

application classes, 126

applications, 9

argument lists, 105, 114–116

arguments, command-line, 116–119

arithmetic operators, 46–50

array elements, 92–93

values assigned to, 96

arrays, 91–93

allocating memory for, 93–94

alternate ways of creating, 101–102

arrays of, 95

declaring, 93–94

defined, 92

initializing, 94

irregular, 101

length data member, 96–98

325

Demystified / Java Demystified / Keogh/ 225454-8 / Index

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

multidimensional, 94–95

one-dimensional, 94

passing to a method, 98–100

returning from methods, 100–101

arrays class, 102–107

ASCII, 21

assemblers, 3–4

assembly language instructions, 3–5

assignment operators, 47

B
B programming language, 5

BCPL, 5

Bell Laboratories, 5–6

binary numbering system, 19

binary operators, 45–46

See also operators

binarySearch() method, 106–107

bit shifting, 59

bits, 19

bitwise operators, 56–63

AND (&), 57–58

complement operators, 61–62

OR, 58–59

shift operators, 59–61

two’s complement, 62–63

Boolean data types, 32

Boolean literals, 25–26

Border Layout Manager, 233–234

braces, 13

break statements, 88

buffer readers, 216–217

byte data types, 30

bytes, 20, 28

C
C programming language, 6

C++ programming language, 6

CallableStatement object, 270–272

catch blocks, 167–168

multiple, 168–169

character data types, 31–32

character literals, 26

characters, 20–22

escape, 27

nonprintable, 27

classes, 9, 97

abstract, 159–161

access specifiers, 127–128

accessing members of, 132–133

arrays class, 102–107

attributes, 126

behaviors, 126

constructors, 130, 134–135

declaring instances of classes, 131–132

defining method members, 127–130

definition, 13, 125–127

File class, 210–213

finalize() method, 137–138

garbage collection, 136–137

inner, 138–139

instance variables, 126, 129

Java Foundation Classes (JFC), 228

members, 126

nested, 138

Object class and subclasses, 162–163

objects, 126

overloading a constructor, 134–135

overloading member methods, 133–135

packages, 140–143

static initializers, 139–140

superclasses, 177

this keyword, 135–136

types, 131

See also inheritance

CLASSPATH environment variable, 142–143

COBOL, 5

combined assignment operators, 47–48

command-line arguments, 116–119

compile errors, 166

compilers, 4

Java, 9

compiling, 4–5

Java programs, 11–12

computer applications, 9

computer dependent programs, 3

326 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

conditional expressions, 51–52, 67–68, 81

alternative, 83–85

compound conditions, 75–76

See also if statements

context switching, 182, 183

continue statements, 89–90

control expressions, 80

control sequences, 27

control statements, 66–67

control variables, 81

D
data

defined, 2–3

vs. information, 17–18

literals, 22–28

data types, 28–29, 285–287

Boolean, 32

byte, 30

casting, 32–33

character, 31–32

double, 31

float, 31

floating-point, 31

int, 30

integer, 29–31

long, 31

short, 30

table of, 29

for use with setXXX() and getXXX(), 286

databases, 255–256

See also JDBC

DBMS, 256

avoiding timing out, 265

connecting to, 259–260

fetching rows, 278–280

metadata, 284–285

processing data returned by, 262–263

terminating the connection to, 263

trapping exceptions, 264–265

See also JDBC; ResultSet object

deadlocks, 205

decimal numbering system, 18

decrement operators, 48–50

default statements, 78–79

dialog boxes, 226–228

using with applets, 299–301

See also GUIs

directory structure, 210

See also files

do while loops, 87–88

dot operators, 103

double data types, 31

double precision, 25

dynamic allocation, 132

dynamic method dispatch, 156–159

E
else clause, 70–71

See also if statements

else if clause, 71–73

See also if statements

encapsulation, 126

equals() method, 102–103

error codes, 113–114

escape characters, 27

escape sequences, 27

event listeners, 245–247

exam, 303–307

answers, 319–324

exception handling

basic, 167–168

default handler, 170

exception handlers, 166–167

finally block, 169–170

methods that don’t handle exceptions,

174–175

multiple catch blocks, 168–169

nested try statements, 171–172

throwing exceptions, 172–175

uncaught exceptions, 170–171

exceptions

catching, 167

checked and unchecked, 175–176

defined, 165–166

exception list, 174

subclass, 176–179

throwing, 172–175

INDEX 327

Demystified / Java Demystified / Keogh/ 225454-8 / Index

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

trapping, 264–265

uncaught, 170–171

expressions, 41–42

conditional, 51–52, 67–68, 75–76, 81, 83–85

control, 80

initialization, 81, 82–83

order of operation, 43

types of, 43–45

extends keyword, 147, 189–190

F
File class, 210–213

methods defined in, 212

files, 209–210

appending to a file, 217–218

folders, 210

listing files contained in a directory, 213–214

reading and writing objects to a file, 219–222

reading from, 216–217

writing to a file, 214–216

See also streams

fill() method, 104–105

final exam, 303–307

answers, 319–324

final keyword, 161–162

finalize() method, 137–138

finally block, 169–170

float data types, 31

floating-point data types, 31

floating-point literals, 24–25

Flow Layout Manager, 232–233

folders, 210

See also files

for loops, 80–85

nested, 85

FORTRAN, 5

G
garbage collection, 136–137

Gosling, James, 8

graphical user interfaces. See GUIs

Green project, 8

Grid Layout Manager, 234–236

Gridbag Layout Manager, 234–236

GUIs

Border Layout Manager, 233–234

check boxes, 238–240, 249–251

color constants, 231

combo boxes, 240–241, 251–252

constants for scroll panes, 244

content containers, 230–231

defined, 225

disabling and enabling elements, 253

Flow Layout Manager, 232–233

getting data from, 245–253

Grid Layout Manager, 234–236

Gridbag Layout Manager, 234–236

Java Foundation Classes (JFC), 228

Java layout managers, 232–236

labels, 237–238

message constants, 226

push buttons, 236–237, 247–248

radio buttons, 238–240, 249–251

scroll pane, 243–245

simple, 226–228

text area, 242–243

text fields, 237–238

window class, 228–230

H
HelloWorld program, 10–12

class definition, 13

method definition, 14–15

statement, 15

hexadecimal numbering system, 18–19

HTML, 293–294

See also applets

I
identifiers, 34

IDEs, 9

if statements, 67–68

compound conditions, 75–76

else clause, 70–71

else if clause, 71–73

forms of, 68–70

nested, 73–75

328 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

increment operators, 48–50

information, vs. data, 17–18

inheritance

abstract classes, 159–161

accessing members of an inherited class,

147–148

calling constructors, 150

child, 147

defined, 145–146

extends keyword, 147

final keyword, 161–162

instantiating superclasses, 149

multilevel, 152–154

Object class, 162–163

one-way, 149–150

overriding method members, 154–159

parents, 147

subclasses, 147, 162–163

super keyword, 150–152

superclasses, 147, 149

when to use, 146

See also classes

initialization expressions, 81

alternative, 82–83

instance variables, 126

declaring, 129

int data types, 30

integer data types, 29–31

integer literals, 23

Integrated Development Environments. See IDEs

International Standards Organization. See ISO

interprocess communication, 202

isAlive() method, 192–194

ISO, 7

J
Java

development of, 7–8

editions, 8

Java 2 Software Development Kit (J2SDK), 10

Java applets. See applets

Java Community Process, 7

Java Foundation Classes (JFC), 228

Java layout managers, 232–236

Java Naming Convention, 35–36

Java Precedence Table, 43–44

Java Virtual Machine, 10

javax.swing package, 228

JDBC

API packages, 258

associating the JDBC/ODBC bridge with the

database, 259

connecting to the DBMS, 259–260

creating and executing an SQL query,

260–263

development of, 256–257

driver types, 257

fetching rows, 278–280

loading the driver, 258–259

metadata, 284–285

process, 258–263

processing data returned by the DBMS,

262–263

ResultSet object, 272–284

terminating the connection to the DBMS, 263

testing whether the driver is scrollable, 278

See also DBMS

join() method, 192–194

jump statements, 88–90

JVM. See Java Virtual Machine

K
keywords

extends, 147, 189–190

final, 161–162

super, 150–152

synchronized, 198–201

this, 135–136

L
languages, 3–5

B programming language, 5

BCPL, 5

becoming standards, 7

C programming language, 6

C++ programming language, 6

INDEX 329

Demystified / Java Demystified / Keogh/ 225454-8 / Index

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COBOL, 5

FORTRAN, 5

history, 5–6

Java, 7–8

layout managers, 232–236

leading zeros, 20

linkers, 4

linking, 4–5

list() method, 213–214

literals, 22

Boolean, 25–26

character, 26

floating-point, 24–25

integer, 23

string, 28

local variables, 135

logical operators, 52–56

long data types, 31

M
machine dependent programs, 3

memory, 28–29

memory addresses, 20, 28

metadata, 284–285

method dispatch, dynamic, 156–159

method members, 126

defining, 127–130

of the Object class, 162–163

overloading, 133–135

overriding, 154–159

methods, 110

argument lists, 105, 114–116

binarySearch(), 106–107

body, 112

calling, 119–120

command-line arguments, 116–119

definition, 14–15, 111–114

equals(), 102–103

fill(), 104–105

finalize(), 137–138

header, 111–112

isAlive(), 192–194

join(), 192–194

list(), 213–214

method call, 114

overloading, 105

parameter lists, 114

pass by reference, 115

pass by value, 115–116

passing arrays to, 98–100

polymorphism, 120–122

return values, 113–114

returning arrays from, 100–101

signature, 111, 121–122

sort(), 106

synchronized, 198–201

that don’t handle exceptions, 174–175

types of, 110–111

modulus operators, 47

multitasking, 181–182

multithreading

child threads, 185

communicating between threads, 202–205

creating threads by using extends keyword,

189–190

creating your own threads, 187–189

deadlocks, 205

isAlive() method, 192–194

join() method, 192–194

main thread, 185–187

Runnable interface, 185, 187–188, 190

setting thread priorities, 195–197

suspending and resuming threads, 206–208

synchronization, 184, 197–202

Thread class, 185

threads, 183–184

using multiple threads in a program, 190–192

See also multitasking; overhead

N
naming conventions, 35–36

necessary overhead, 216

nonprintable characters, 27

nonstatic methods, 110

numbering systems, 18–20

numbers, 20–22

330 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

floating-point, 24–25

significant, 25

Unicode, 21–22

O
object files, 4

octal numbering system, 18

one’s complement, 62–63

operators, 45–46

AND, 53–54

arithmetic, 46–50

assignment, 47

bitwise, 56–63

combined assignment, 47–48

dot, 103

increment and decrement operators, 48–50

logical, 52–56

modulus, 47

OR, 54–55

relational, 50–52

single AND and OR operators, 55

ternary, 55–56

two’s complement, 62–63

OR logical operators, 54–55

single, 55

overhead, 182–183

necessary, 216

P
packages, 140–143

parameter lists, 114

See also argument lists

parameterized constructors, 134

polymorphism, 120–122

See also methods

precedence, 43–44

precision, 25

PreparedStatement object, 268–270

programming languages. See languages

programs, 1–3, 9

computer dependent, 3

flow, 65–66

writing a Java program from scratch, 10–12

Q
quizzes

answers, 309–319

Chapter 1, 16

Chapter 2, 40

Chapter 3, 63–64

Chapter 4, 90

Chapter 5, 107–108

Chapter 6, 123

Chapter 7, 143–144

Chapter 8, 163

Chapter 9, 180

Chapter 10, 208

Chapter 11, 222

Chapter 12, 253

Chapter 13, 287

Chapter 14, 302

R
relational operators, 50–52

ResultSet object, 272–273

changing the value of a resultset, 280–282

deleting a row in a resultset, 282

fetching rows, 278–280

inserting a row in a resultset, 282–284

positioning the virtual cursor, 275–278

reading the resultset, 273–275

updating the resultset, 280–284

return statements, 90

return values, 99, 113–114

See also methods

Richards, Martin, 5

Ritchie, Dennis, 6

root directory, 210

Runnable interface, 185, 187–188, 190

running Java programs, 12

run-time errors, 166

S
selection statements, 67–80

if statements, 67–76

switch statements, 76–80

INDEX 331

Demystified / Java Demystified / Keogh/ 225454-8 / Index

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

semaphores, 197

semicolons, 15

serialization, 219

short data types, 30

significant numbers, 25

single precision, 25

sort() method, 106

SQL, 256

creating and executing a query, 260–263

standardization, 7

statement objects, 265–266

CallableStatement object, 270–272

PreparedStatement object, 268–270

Statement object, 266–268

statements, 15, 63

control, 66–67

default statements, 78–79

if statements, 67–76

iteration, 80–88

jump, 88–90

selection, 67–80

switch statements, 76–80

synchronized, 201–202

static initializers, 139–140

static methods, 110–111

streams, 214

appending to a file, 217–218

opening a file output stream, 214–216

reading and writing objects to a file, 219–222

reading from a file, 216–217

See also files

string literals, 28

Stroustrup, Bjarne, 6

Sun Microsystems, 8

JDBC, 256–257

super keyword, 150–152

switch statements, 76–79

default statements, 78–79

nested, 79–80

synchronization, 184, 197–202

synchronized method, 198–201

synchronized statement, 201–202

T
ternary operators, 55–56

this keyword, 135–136

Thompson, Ken, 5

threads, 183–184

child threads, 185

communicating between, 202–205

creating by using extends keyword, 189–190

creating your own, 187–189

isAlive() method, 192–194

join() method, 192–194

main thread, 185–187

setting priorities, 195–197

spawning, 190

suspending and resuming, 206–208

synchronizing, 197–202

Thread class, 185

using multiple threads in a program, 190–192

See also multithreading

troubleshooting

compiling, 11–12

running Java programs, 12

try blocks, 167–168

nested try statements, 171–172

two’s complement, 62–63

U
unary operators, 45–46

See also operators

Unicode, 21–22

user interfaces, 223–224

See also GUIs

V
variables, 32, 33–34

CLASSPATH environment variable, 142–143

control, 81

declaring, 34–36

defined, 3

initializing, 36–38

instance variables, 126, 129

332 Java Demystified

Demystified / Java Demystified / Keogh/ 225454-8 / Chapter 1

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

life of, 39

local, 135

multiple, 36

resolving, 34

scope, 38–39

virtual cursor, 273, 275

positioning, 275–278

virtual pointer. See virtual cursor

W
while loops, 85–87

X
XOR, 59

Z
zeros, leading, 20

INDEX 333

Demystified / Java Demystified / Keogh/ 225454-8 / Index

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Java Demystified / Keogh/ 225454-8 /
blind folio 334

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Java Demystified / Keogh/ 225454-8 /
blind folio 335

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Java Demystified / Keogh/ 225454-8 /
blind folio 336

P:\010Comp\DeMYST\454-8\index.vp
Monday, April 12, 2004 1:06:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Terms of Use
	Want to learn more?
	About the Author
	Contents at a Glance
	Contents
	Introduction
	Chapter 1 Inside Java
	Computer Programs
	Data

	Programming Languages
	In the Beginning
	How a Computer Language Becomes a Standard
	And Then Java
	An Inside Look at Java

	Writing a Java Program from Scratch
	Compiling a Java Program
	Running a Java Program

	Taking Apart a Java Program
	Class Definition
	Method Definition
	Statement

	Quiz

	Chapter 2 Data Types and Variables
	Data and Numbers
	Playing with Numbering Systems
	Numbers and Characters
	Looking Up the Unicode Value

	Literals
	Integer Literals
	Floating-point Literals
	Boolean Literals
	Character Literals
	String Literals

	Data Types
	Integer Data Types
	Floating-point Data Types
	Character Data Type
	Boolean Data Type
	Casting Data Types

	Variables
	Declaring a Variable
	Declaring Multiple Variables
	Initializing a Variable
	Scope of a Variable
	The Life of a Variable

	Quiz

	Chapter 3 Expressions and Statements
	Expressions
	Types of Expressions
	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators

	Statements
	Quiz

	Chapter 4 Control Structures
	Program Flow
	Control Statements
	Selection Statements
	The if Statement
	The switch Statement

	Iteration Statements
	The for Loop
	The while Loop
	The do while Loop

	Jump Statements
	break
	continue
	return

	Quiz

	Chapter 5 Arrays
	Inside an Array
	Allocating Memory for an Array
	Initializing Arrays
	Multidimensional Arrays
	Creating a Multidimensional Array

	Values Assigned to Array Elements
	The Length Data Member
	Passing an Array to a Method
	Returning an Array from a Method
	Alternate Ways of Creating an Array
	The Arrays Class
	equals()
	fill()
	sort()
	binarySearch()

	Quiz

	Chapter 6 Methods and Polymorphism
	An Inside Look at Methods
	Types of Methods
	The Method Definition
	The Method Header
	The Method Body
	The Method Return Value

	The Argument List
	Elements of an Argument List
	How an Argument List Works

	Command-Line Arguments
	Passing Command-Line Arguments

	Calling a Method
	Polymorphism
	The Method Signature

	Quiz

	Chapter 7 Classes
	Class Definition
	Defining a Method Member
	Access Specifiers
	Declaring Instance Variables
	Constructor

	Declaring an Instance of a Class
	Accessing Members of a Class
	Overloading Member Methods
	Overloading a Constructor

	The this Keyword
	Garbage Collection
	The finalize() Method
	Inner Classes
	Static Initializers
	Packages
	Using a Package
	CLASSPATH
	Packages and Access Protection

	Quiz

	Chapter 8 Inheritance
	What Is Inheritance?
	When to Use Inheritance
	Inside Inherence
	Accessing Members of an Inherited Class
	The Superclass Can Be Instantiated
	One-way Inheritance
	Calling Constructors
	Using the super Keyword
	Multilevel Inheritance
	Overriding Method Members Using Inheritance
	Dynamic Method Dispatch

	Abstract Classes
	The final Keyword and Inheritance
	The Object Class and Subclasses
	Quiz

	Chapter 9 Exception Handling
	What Is an Exception?
	Exception Handlers
	Basic Exception Handling
	Multiple Catch Blocks
	The Finally Block
	Working with Uncaught Exceptions
	Nested Try Statements
	Throwing an Exception
	Methods That Don't Handle Exceptions

	Checked and Unchecked Exceptions
	Creating an Exception Subclass
	Quiz

	Chapter 10 Multithreading
	Multitasking
	Overhead
	Threads
	Synchronization
	The Thread Classes and the Runnable Interface
	The Main Thread
	Creating Your Own Thread
	Creating a Thread by Using extends
	Using Multiple Threads in a Program
	Using isAlive() and join()
	Setting Thread Priorities
	Synchronizing Threads
	The Synchronized Method
	Using the Synchronized Statement

	Communicating Between Threads
	Suspending and Resuming Threads
	Quiz

	Chapter 11 Files and Streams
	Files and File Systems
	The File Class
	Listing Files Contained in a Directory
	Streams
	Writing to a File
	Reading from a File
	Appending to a File
	Reading and Writing an Object to a File

	Quiz

	Chapter 12 Graphical User Interface
	What Is a User Interface?
	What Is a GUI?
	A Simple GUI
	swing
	Content Container
	Java Layout Managers
	Push Buttons
	Labels and Text Fields
	Radio Buttons and Check Boxes
	Combo Boxes
	Text Area
	Scroll Pane

	Getting Data from GUI Components
	Reading a Push Button
	Reading Radio Buttons and Check Boxes
	Reading a Combo Box
	Disabling and Enabling GUI Elements

	Quiz

	Chapter 13 JDBC and Java Data Objects
	Database 101
	The Concept of JDBC
	JDBC Driver Types
	JDBC API Packages

	The JDBC Process
	Load the JDBC Driver
	Connect to the DBMS
	Create and Execute an SQL Query
	Terminate the Connection to the DBMS

	Trapping Exceptions
	Avoid Timing Out

	More on Statement Objects
	The StatementObject
	The PreparedStatementObject
	The CallableStatementObject

	The ResultSet Object
	Reading the Resultset
	Positioning the Virtual Cursor
	Fetching Rows
	Updatable Resultset

	Metadata
	Data Types
	Exceptions
	Quiz

	Chapter 14 Java Applets
	Java Applet Basics
	Writing a Java Applet
	Structure of a Java Applet
	Calling a Java Applet
	Running a Java Applet
	Other Attributes

	Adding Graphics to the Applet Window
	Passing Parameters

	Restrictions
	Using Dialog Boxes with an Applet
	The Status Window
	Quiz

	Final Exam
	Answers to Quizzes and Final Exam
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Final Exam

	Index

	Copyright © 2004 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Chapter 1 Inside Java:
	Introduction:
	Data:
	Computer Programs:
	Programming Languages:
	In the Beginning:
	How a Computer Language Becomes a Standard:
	An Inside Look at Java:
	Writing a Java Program from Scratch:
	Compiling a Java Program:
	Running a Java Program:
	Taking Apart a Java Program:
	Method Definition:
	Statement:
	And Then Java:
	Chapter 2 Data Types and Variables:
	Data and Numbers:
	Literals:
	String Literals:
	Declaring a Variable:
	Variables:
	Quiz:
	Chapter 3 Expressions and Statements:
	Chapter 4 Control Structures:
	Playing with Numbering Systems:
	Numbers and Characters:
	Looking Up the Unicode Value:
	Expressions:
	Types of Expressions:
	Declaring Multiple Variables:
	Initializing a Variable:
	Scope of a Variable:
	The Life of a Variable:
	Bitwise Operators:
	Statements:
	Program Flow:
	Control Statements:
	Operators:
	Arithmetic Operators:
	Relational Operators:
	Logical Operators:
	Selection Statements:
	The if Statement:
	The switch Statement:
	Iteration Statements:
	Jump Statements:
	continue:
	return:
	Chapter 5 Arrays:
	Chapter 6 Methods and Polymorphism:
	Integer Literalsq:
	Floating-point Literals:
	Boolean Literals:
	Character Literals:
	Creating a Multidimensional Array:
	Inside an Array:
	Allocating Memory for an Array:
	Initializing Arrays:
	Multidimensional Arrays:
	The for Loop:
	The while Loop:
	The do while Loop:
	break:
	An Inside Look at Methods:
	Types of Methods:
	The Argument List:
	Command-Line Arguments:
	The Method Definition:
	Passing Command-Line Arguments:
	The Method Signature:
	Calling a Method:
	Polymorphism:
	Chapter 7 Classes:
	Class Definition:
	The Method Header:
	The Method Body:
	The Method Return Value:
	Defining a Method Member:
	Overloading a Constructor:
	The this Keyword:
	Garbage Collection:
	Declaring an Instance of a Class:
	Accessing Members of a Class:
	Overloading Member Methods:
	Inner Classes:
	Static Initializers:
	Packages:
	Access Specifiers:
	Declaring Instance Variables:
	Constructor:
	Using a Package:
	CLASSPATH:
	Packages and Access Protection:
	Chapter 8 Inheritance:
	Chapter 9 Exception Handling:
	Values Assigned to Array Elements:
	The Length Data Member:
	Passing an Array to a Method:
	Returning an Array from a Method:
	Alternate Ways of Creating an Array:
	The Arrays Class:
	Multilevel Inheritance:
	Overriding Method Members Using Inheritance:
	What Is Inheritance?:
	When to Use Inheritance:
	Inside Inherence:
	Accessing Members of an Inherited Class:
	The Superclass Can Be Instantiated:
	One-way Inheritance:
	Calling Constructors:
	Using the super Keyword:
	Nested Try Statements:
	Throwing an Exception:
	Dynamic Method Dispatch:
	Abstract Classes:
	Methods That Don't Handle Exceptions:
	Checked and Unchecked Exceptions:
	Creating an Exception Subclass:
	Chapter 10 Multithreading:
	Multitasking:
	Overhead:
	Threads:
	Synchronization:
	What Is an Exception?:
	Exception Handlers:
	Basic Exception Handling:
	Multiple Catch Blocks:
	The Finally Block:
	Working with Uncaught Exceptions:
	The Thread Classes and the Runnable Interface:
	Setting Thread Priorities:
	Synchronizing Threads:
	Elements of an Argument List:
	How an Argument List Works:
	The Synchronized Method:
	Using the Synchronized Statement:
	The final Keyword and Inheritance:
	The Object Class and Subclasses:
	Communicating Between Threads:
	Suspending and Resuming Threads:
	Chapter 11 Files and Streams:
	The Main Thread:
	Creating Your Own Thread:
	Creating a Thread by Using extends:
	Using Multiple Threads in a Program:
	Writing to a File:
	Reading from a File:
	Appending to a File:
	Reading and Writing an Object to a File:
	Chapter 12 Graphical User Interface:
	What Is a User Interface?:
	What Is a GUI?:
	A Simple GUI:
	swing:
	Content Container:
	Java Layout Managers:
	Push Buttons:
	Labels and Text Fields:
	Radio Buttons and Check Boxes:
	Integer Data Types:
	Floating-point Data Types:
	Character Data Type:
	Boolean Data Type:
	Casting Data Types:
	Combo Boxes:
	Text Area:
	Scroll Pane:
	Chapter 13 JDBC and Java Data Objects:
	Database 101:
	JDBC API Packages:
	Getting Data from GUI Components:
	Reading a Push Button:
	Reading Radio Buttons and Check Boxes:
	Reading a Combo Box:
	Disabling and Enabling GUI Elements:
	The Concept of JDBC:
	JDBC Driver Types:
	Trapping Exceptions:
	Avoid Timing Out:
	More on Statement Objects:
	The StatementObject:
	The JDBC Process:
	Load the JDBC Driver:
	Connect to the DBMS:
	Create and Execute an SQL Query:
	Terminate the Connection to the DBMS:
	Files and File Systems:
	The File Class:
	Listing Files Contained in a Directory:
	Streams:
	Data Types:
	Chapter 14 Java Applets:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Index:
	Java Applet Basics:
	Reading the Resultset:
	Positioning the Virtual Cursor:
	Fetching Rows:
	Updatable Resultset:
	Calling a Java Applet:
	Running a Java Applet:
	Other Attributes:
	Writing a Java Applet:
	Structure of a Java Applet:
	Adding Graphics to the Applet Window:
	Passing Parameters:
	Metadata:
	Exceptions:
	Restrictions:
	Using Dialog Boxes with an Applet:
	The Status Window:
	Chapter 8:
	Chapter 1:
	Chapter 2:
	Chapter 3:
	Chapter 4:
	Chapter 5:
	Chapter 6:
	Chapter 7:
	Chapter 9:
	Chapter 10:
	Chapter 11:
	Chapter 12:
	Chapter 13:
	Chapter 14:
	The PreparedStatementObject:
	The CallableStatementObject:
	equals():
	fill():
	sort():
	binarySearch():
	The finalize() Method:
	Using isAlive() and join():
	The ResultSet Object:

