

The C++ Standard Library

Second Edition

This page intentionally left blank

The C++ Standard Library

A Tutorial and Reference

Second Edition

Nicolai M. Josuttis

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and the publisher was aware of a

trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or

special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Josuttis, Nicolai M.

The C++ standard library : a tutorial and reference / Nicolai M. Josuttis.—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-62321-8 (hardcover : alk. paper)

1. C++ (Computer program language) I. Title.

QA76.73.C153J69 2012

005.13’3-dc23

2011045071

Copyright c© 2012 Pearson Education, Inc.

This book was typeset by the author using the LATEX document processing system.

All rights reserved. Printed in the United States of America. This publication is protected by copy-

right, and permission must be obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. To obtain permission to use material from this work, please

submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,

Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-62321-8

ISBN-10: 0-321-62321-5

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing, March 2012

To those who care

for people and mankind

This page intentionally left blank

Contents

Preface to the Second Edition xxiii

Acknowledgments for the Second Edition xxiv

Preface to the First Edition xxv

Acknowledgments for the First Edition xxvi

1 About This Book 1

1.1 Why This Book . 1

1.2 Before Reading This Book . 2

1.3 Style and Structure of the Book . 2

1.4 How to Read This Book . 4

1.5 State of the Art . 5

1.6 Example Code and Additional Information . 5

1.7 Feedback . 5

2 Introduction to C++ and the Standard Library 7

2.1 History of the C++ Standards . 7

2.1.1 Common Questions about the C++11 Standard 8

2.1.2 Compatibility between C++98 and C++11 9

2.2 Complexity and Big-O Notation . 10

3 New Language Features 13

3.1 New C++11 Language Features . 13

3.1.1 Important Minor Syntax Cleanups . 13

3.1.2 Automatic Type Deduction with auto 14

3.1.3 Uniform Initialization and Initializer Lists 15

3.1.4 Range-Based for Loops . 17

3.1.5 Move Semantics and Rvalue References 19

viii Contents

3.1.6 New String Literals . 23

3.1.7 Keyword noexcept . 24

3.1.8 Keyword constexpr . 26

3.1.9 New Template Features . 26

3.1.10 Lambdas . 28

3.1.11 Keyword decltype . 32

3.1.12 New Function Declaration Syntax . 32

3.1.13 Scoped Enumerations . 32

3.1.14 New Fundamental Data Types . 33

3.2 Old “New” Language Features . 33

3.2.1 Explicit Initialization for Fundamental Types 37

3.2.2 Definition of main() . 37

4 General Concepts 39

4.1 Namespace std . 39

4.2 Header Files . 40

4.3 Error and Exception Handling . 41

4.3.1 Standard Exception Classes . 41

4.3.2 Members of Exception Classes . 44

4.3.3 Passing Exceptions with Class exception_ptr 52

4.3.4 Throwing Standard Exceptions . 53

4.3.5 Deriving from Standard Exception Classes 54

4.4 Callable Objects . 54

4.5 Concurrency and Multithreading . 55

4.6 Allocators . 57

5 Utilities 59

5.1 Pairs and Tuples . 60

5.1.1 Pairs . 60

5.1.2 Tuples . 68

5.1.3 I/O for Tuples . 74

5.1.4 Conversions between tuples and pairs 75

5.2 Smart Pointers . 76

5.2.1 Class shared_ptr . 76

5.2.2 Class weak_ptr . 84

5.2.3 Misusing Shared Pointers . 89

5.2.4 Shared and Weak Pointers in Detail . 92

5.2.5 Class unique_ptr . 98

Contents ix

5.2.6 Class unique_ptr in Detail . 110

5.2.7 Class auto_ptr . 113

5.2.8 Final Words on Smart Pointers . 114

5.3 Numeric Limits . 115

5.4 Type Traits and Type Utilities . 122

5.4.1 Purpose of Type Traits . 122

5.4.2 Type Traits in Detail . 125

5.4.3 Reference Wrappers . 132

5.4.4 Function Type Wrappers . 133

5.5 Auxiliary Functions . 134

5.5.1 Processing the Minimum and Maximum 134

5.5.2 Swapping Two Values . 136

5.5.3 Supplementary Comparison Operators 138

5.6 Compile-Time Fractional Arithmetic with Class ratio<> 140

5.7 Clocks and Timers . 143

5.7.1 Overview of the Chrono Library . 143

5.7.2 Durations . 144

5.7.3 Clocks and Timepoints . 149

5.7.4 Date and Time Functions by C and POSIX 157

5.7.5 Blocking with Timers . 160

5.8 Header Files <cstddef>, <cstdlib>, and <cstring> 161

5.8.1 Definitions in <cstddef> . 161

5.8.2 Definitions in <cstdlib> . 162

5.8.3 Definitions in <cstring> . 163

6 The Standard Template Library 165

6.1 STL Components . 165

6.2 Containers . 167

6.2.1 Sequence Containers . 169

6.2.2 Associative Containers . 177

6.2.3 Unordered Containers . 180

6.2.4 Associative Arrays . 185

6.2.5 Other Containers . 187

6.2.6 Container Adapters . 188

6.3 Iterators . 188

6.3.1 Further Examples of Using Associative and Unordered Containers 193

6.3.2 Iterator Categories . 198

x Contents

6.4 Algorithms . 199

6.4.1 Ranges . 203

6.4.2 Handling Multiple Ranges . 207

6.5 Iterator Adapters . 210

6.5.1 Insert Iterators . 210

6.5.2 Stream Iterators . 212

6.5.3 Reverse Iterators . 214

6.5.4 Move Iterators . 216

6.6 User-Defined Generic Functions . 216

6.7 Manipulating Algorithms . 217

6.7.1 “Removing” Elements . 218

6.7.2 Manipulating Associative and Unordered Containers 221

6.7.3 Algorithms versus Member Functions 223

6.8 Functions as Algorithm Arguments . 224

6.8.1 Using Functions as Algorithm Arguments 224

6.8.2 Predicates . 226

6.9 Using Lambdas . 229

6.10 Function Objects . 233

6.10.1 Definition of Function Objects . 233

6.10.2 Predefined Function Objects . 239

6.10.3 Binders . 241

6.10.4 Function Objects and Binders versus Lambdas 243

6.11 Container Elements . 244

6.11.1 Requirements for Container Elements 244

6.11.2 Value Semantics or Reference Semantics 245

6.12 Errors and Exceptions inside the STL . 245

6.12.1 Error Handling . 246

6.12.2 Exception Handling . 248

6.13 Extending the STL . 250

6.13.1 Integrating Additional Types . 250

6.13.2 Deriving from STL Types . 251

7 STL Containers 253

7.1 Common Container Abilities and Operations . 254

7.1.1 Container Abilities . 254

7.1.2 Container Operations . 254

7.1.3 Container Types . 260

Contents xi

7.2 Arrays . 261

7.2.1 Abilities of Arrays . 261

7.2.2 Array Operations . 263

7.2.3 Using arrays as C-Style Arrays . 267

7.2.4 Exception Handling . 268

7.2.5 Tuple Interface . 268

7.2.6 Examples of Using Arrays . 268

7.3 Vectors . 270

7.3.1 Abilities of Vectors . 270

7.3.2 Vector Operations . 273

7.3.3 Using Vectors as C-Style Arrays . 278

7.3.4 Exception Handling . 278

7.3.5 Examples of Using Vectors . 279

7.3.6 Class vector<bool> . 281

7.4 Deques . 283

7.4.1 Abilities of Deques . 284

7.4.2 Deque Operations . 285

7.4.3 Exception Handling . 288

7.4.4 Examples of Using Deques . 288

7.5 Lists . 290

7.5.1 Abilities of Lists . 290

7.5.2 List Operations . 291

7.5.3 Exception Handling . 296

7.5.4 Examples of Using Lists . 298

7.6 Forward Lists . 300

7.6.1 Abilities of Forward Lists . 300

7.6.2 Forward List Operations . 302

7.6.3 Exception Handling . 311

7.6.4 Examples of Using Forward Lists . 312

7.7 Sets and Multisets . 314

7.7.1 Abilities of Sets and Multisets . 315

7.7.2 Set and Multiset Operations . 316

7.7.3 Exception Handling . 325

7.7.4 Examples of Using Sets and Multisets 325

7.7.5 Example of Specifying the Sorting Criterion at Runtime 328

xii Contents

7.8 Maps and Multimaps . 331

7.8.1 Abilities of Maps and Multimaps . 332

7.8.2 Map and Multimap Operations . 333

7.8.3 Using Maps as Associative Arrays . 343

7.8.4 Exception Handling . 345

7.8.5 Examples of Using Maps and Multimaps 345

7.8.6 Example with Maps, Strings, and Sorting Criterion at Runtime 351

7.9 Unordered Containers . 355

7.9.1 Abilities of Unordered Containers . 357

7.9.2 Creating and Controlling Unordered Containers 359

7.9.3 Other Operations for Unordered Containers 367

7.9.4 The Bucket Interface . 374

7.9.5 Using Unordered Maps as Associative Arrays 374

7.9.6 Exception Handling . 375

7.9.7 Examples of Using Unordered Containers 375

7.10 Other STL Containers . 385

7.10.1 Strings as STL Containers . 385

7.10.2 Ordinary C-Style Arrays as STL Containers 386

7.11 Implementing Reference Semantics . 388

7.12 When to Use Which Container . 392

8 STL Container Members in Detail 397

8.1 Type Definitions . 397

8.2 Create, Copy, and Destroy Operations . 400

8.3 Nonmodifying Operations . 403

8.3.1 Size Operations . 403

8.3.2 Comparison Operations . 404

8.3.3 Nonmodifying Operations for Associative and Unordered Containers . . . 404

8.4 Assignments . 406

8.5 Direct Element Access . 408

8.6 Operations to Generate Iterators . 410

8.7 Inserting and Removing Elements . 411

8.7.1 Inserting Single Elements . 411

8.7.2 Inserting Multiple Elements . 416

8.7.3 Removing Elements . 417

8.7.4 Resizing . 420

Contents xiii

8.8 Special Member Functions for Lists and Forward Lists 420

8.8.1 Special Member Functions for Lists (and Forward Lists) 420

8.8.2 Special Member Functions for Forward Lists Only 423

8.9 Container Policy Interfaces . 427

8.9.1 Nonmodifying Policy Functions . 427

8.9.2 Modifying Policy Functions . 428

8.9.3 Bucket Interface for Unordered Containers 429

8.10 Allocator Support . 430

8.10.1 Fundamental Allocator Members . 430

8.10.2 Constructors with Optional Allocator Parameters 430

9 STL Iterators 433

9.1 Header Files for Iterators . 433

9.2 Iterator Categories . 433

9.2.1 Output Iterators . 433

9.2.2 Input Iterators . 435

9.2.3 Forward Iterators . 436

9.2.4 Bidirectional Iterators . 437

9.2.5 Random-Access Iterators . 438

9.2.6 The Increment and Decrement Problem of Vector Iterators 440

9.3 Auxiliary Iterator Functions . 441

9.3.1 advance() . 441

9.3.2 next() and prev() . 443

9.3.3 distance() . 445

9.3.4 iter_swap() . 446

9.4 Iterator Adapters . 448

9.4.1 Reverse Iterators . 448

9.4.2 Insert Iterators . 454

9.4.3 Stream Iterators . 460

9.4.4 Move Iterators . 466

9.5 Iterator Traits . 466

9.5.1 Writing Generic Functions for Iterators 468

9.6 Writing User-Defined Iterators . 471

xiv Contents

10 STL Function Objects and Using Lambdas 475

10.1 The Concept of Function Objects . 475

10.1.1 Function Objects as Sorting Criteria . 476

10.1.2 Function Objects with Internal State . 478

10.1.3 The Return Value of for_each() . 482

10.1.4 Predicates versus Function Objects . 483

10.2 Predefined Function Objects and Binders . 486

10.2.1 Predefined Function Objects . 486

10.2.2 Function Adapters and Binders . 487

10.2.3 User-Defined Function Objects for Function Adapters 495

10.2.4 Deprecated Function Adapters . 497

10.3 Using Lambdas . 499

10.3.1 Lambdas versus Binders . 499

10.3.2 Lambdas versus Stateful Function Objects 500

10.3.3 Lambdas Calling Global and Member Functions 502

10.3.4 Lambdas as Hash Function, Sorting, or Equivalence Criterion 504

11 STL Algorithms 505

11.1 Algorithm Header Files . 505

11.2 Algorithm Overview . 505

11.2.1 A Brief Introduction . 506

11.2.2 Classification of Algorithms . 506

11.3 Auxiliary Functions . 517

11.4 The for_each() Algorithm . 519

11.5 Nonmodifying Algorithms . 524

11.5.1 Counting Elements . 524

11.5.2 Minimum and Maximum . 525

11.5.3 Searching Elements . 528

11.5.4 Comparing Ranges . 542

11.5.5 Predicates for Ranges . 550

11.6 Modifying Algorithms . 557

11.6.1 Copying Elements . 557

11.6.2 Moving Elements . 561

11.6.3 Transforming and Combining Elements 563

11.6.4 Swapping Elements . 566

11.6.5 Assigning New Values . 568

11.6.6 Replacing Elements . 571

Contents xv

11.7 Removing Algorithms . 575

11.7.1 Removing Certain Values . 575

11.7.2 Removing Duplicates . 578

11.8 Mutating Algorithms . 583

11.8.1 Reversing the Order of Elements . 583

11.8.2 Rotating Elements . 584

11.8.3 Permuting Elements . 587

11.8.4 Shuffling Elements . 589

11.8.5 Moving Elements to the Front . 592

11.8.6 Partition into Two Subranges . 594

11.9 Sorting Algorithms . 596

11.9.1 Sorting All Elements . 596

11.9.2 Partial Sorting . 599

11.9.3 Sorting According to the nth Element 602

11.9.4 Heap Algorithms . 604

11.10 Sorted-Range Algorithms . 608

11.10.1 Searching Elements . 608

11.10.2 Merging Elements . 614

11.11 Numeric Algorithms . 623

11.11.1 Processing Results . 623

11.11.2 Converting Relative and Absolute Values 627

12 Special Containers 631

12.1 Stacks . 632

12.1.1 The Core Interface . 633

12.1.2 Example of Using Stacks . 633

12.1.3 A User-Defined Stack Class . 635

12.1.4 Class stack<> in Detail . 637

12.2 Queues . 638

12.2.1 The Core Interface . 639

12.2.2 Example of Using Queues . 640

12.2.3 A User-Defined Queue Class . 641

12.2.4 Class queue<> in Detail . 641

12.3 Priority Queues . 641

12.3.1 The Core Interface . 643

12.3.2 Example of Using Priority Queues . 643

12.3.3 Class priority_queue<> in Detail . 644

xvi Contents

12.4 Container Adapters in Detail . 645

12.4.1 Type Definitions . 645

12.4.2 Constructors . 646

12.4.3 Supplementary Constructors for Priority Queues 646

12.4.4 Operations . 647

12.5 Bitsets . 650

12.5.1 Examples of Using Bitsets . 651

12.5.2 Class bitset in Detail . 653

13 Strings 655

13.1 Purpose of the String Classes . 656

13.1.1 A First Example: Extracting a Temporary Filename 656

13.1.2 A Second Example: Extracting Words and Printing Them Backward . . . 660

13.2 Description of the String Classes . 663

13.2.1 String Types . 663

13.2.2 Operation Overview . 666

13.2.3 Constructors and Destructor . 667

13.2.4 Strings and C-Strings . 668

13.2.5 Size and Capacity . 669

13.2.6 Element Access . 671

13.2.7 Comparisons . 672

13.2.8 Modifiers . 673

13.2.9 Substrings and String Concatenation . 676

13.2.10 Input/Output Operators . 677

13.2.11 Searching and Finding . 678

13.2.12 The Value npos . 680

13.2.13 Numeric Conversions . 681

13.2.14 Iterator Support for Strings . 684

13.2.15 Internationalization . 689

13.2.16 Performance . 692

13.2.17 Strings and Vectors . 692

13.3 String Class in Detail . 693

13.3.1 Type Definitions and Static Values . 693

13.3.2 Create, Copy, and Destroy Operations 694

13.3.3 Operations for Size and Capacity . 696

13.3.4 Comparisons . 697

13.3.5 Character Access . 699

13.3.6 Generating C-Strings and Character Arrays 700

Contents xvii

13.3.7 Modifying Operations . 700

13.3.8 Searching and Finding . 708

13.3.9 Substrings and String Concatenation . 711

13.3.10 Input/Output Functions . 712

13.3.11 Numeric Conversions . 713

13.3.12 Generating Iterators . 714

13.3.13 Allocator Support . 715

14 Regular Expressions 717

14.1 The Regex Match and Search Interface . 717

14.2 Dealing with Subexpressions . 720

14.3 Regex Iterators . 726

14.4 Regex Token Iterators . 727

14.5 Replacing Regular Expressions . 730

14.6 Regex Flags . 732

14.7 Regex Exceptions . 735

14.8 The Regex ECMAScript Grammar . 738

14.9 Other Grammars . 739

14.10 Basic Regex Signatures in Detail . 740

15 Input/Output Using Stream Classes 743

15.1 Common Background of I/O Streams . 744

15.1.1 Stream Objects . 744

15.1.2 Stream Classes . 744

15.1.3 Global Stream Objects . 745

15.1.4 Stream Operators . 745

15.1.5 Manipulators . 746

15.1.6 A Simple Example . 746

15.2 Fundamental Stream Classes and Objects . 748

15.2.1 Classes and Class Hierarchy . 748

15.2.2 Global Stream Objects . 751

15.2.3 Header Files . 752

15.3 Standard Stream Operators << and >> . 753

15.3.1 Output Operator << . 753

15.3.2 Input Operator >> . 754

15.3.3 Input/Output of Special Types . 755

xviii Contents

15.4 State of Streams . 758

15.4.1 Constants for the State of Streams . 758

15.4.2 Member Functions Accessing the State of Streams 759

15.4.3 Stream State and Boolean Conditions 760

15.4.4 Stream State and Exceptions . 762

15.5 Standard Input/Output Functions . 767

15.5.1 Member Functions for Input . 768

15.5.2 Member Functions for Output . 771

15.5.3 Example Uses . 772

15.5.4 sentry Objects . 772

15.6 Manipulators . 774

15.6.1 Overview of All Manipulators . 774

15.6.2 How Manipulators Work . 776

15.6.3 User-Defined Manipulators . 777

15.7 Formatting . 779

15.7.1 Format Flags . 779

15.7.2 Input/Output Format of Boolean Values 781

15.7.3 Field Width, Fill Character, and Adjustment 781

15.7.4 Positive Sign and Uppercase Letters . 784

15.7.5 Numeric Base . 785

15.7.6 Floating-Point Notation . 787

15.7.7 General Formatting Definitions . 789

15.8 Internationalization . 790

15.9 File Access . 791

15.9.1 File Stream Classes . 791

15.9.2 Rvalue and Move Semantics for File Streams 795

15.9.3 File Flags . 796

15.9.4 Random Access . 799

15.9.5 Using File Descriptors . 801

15.10 Stream Classes for Strings . 802

15.10.1 String Stream Classes . 802

15.10.2 Move Semantics for String Streams . 806

15.10.3 char* Stream Classes . 807

15.11 Input/Output Operators for User-Defined Types 810

15.11.1 Implementing Output Operators . 810

15.11.2 Implementing Input Operators . 812

15.11.3 Input/Output Using Auxiliary Functions 814

Contents xix

15.11.4 User-Defined Format Flags . 815

15.11.5 Conventions for User-Defined Input/Output Operators 818

15.12 Connecting Input and Output Streams . 819

15.12.1 Loose Coupling Using tie() . 819

15.12.2 Tight Coupling Using Stream Buffers 820

15.12.3 Redirecting Standard Streams . 822

15.12.4 Streams for Reading and Writing . 824

15.13 The Stream Buffer Classes . 826

15.13.1 The Stream Buffer Interfaces . 826

15.13.2 Stream Buffer Iterators . 828

15.13.3 User-Defined Stream Buffers . 832

15.14 Performance Issues . 844

15.14.1 Synchronization with C’s Standard Streams 845

15.14.2 Buffering in Stream Buffers . 845

15.14.3 Using Stream Buffers Directly . 846

16 Internationalization 849

16.1 Character Encodings and Character Sets . 850

16.1.1 Multibyte and Wide-Character Text . 850

16.1.2 Different Character Sets . 851

16.1.3 Dealing with Character Sets in C++ . 852

16.1.4 Character Traits . 853

16.1.5 Internationalization of Special Characters 857

16.2 The Concept of Locales . 857

16.2.1 Using Locales . 858

16.2.2 Locale Facets . 864

16.3 Locales in Detail . 866

16.4 Facets in Detail . 869

16.4.1 Numeric Formatting . 870

16.4.2 Monetary Formatting . 874

16.4.3 Time and Date Formatting . 884

16.4.4 Character Classification and Conversion 891

16.4.5 String Collation . 904

16.4.6 Internationalized Messages . 905

xx Contents

17 Numerics 907

17.1 Random Numbers and Distributions . 907

17.1.1 A First Example . 908

17.1.2 Engines . 912

17.1.3 Engines in Detail . 915

17.1.4 Distributions . 917

17.1.5 Distributions in Detail . 921

17.2 Complex Numbers . 925

17.2.1 Class complex<> in General . 925

17.2.2 Examples Using Class complex<> . 926

17.2.3 Operations for Complex Numbers . 928

17.2.4 Class complex<> in Detail . 935

17.3 Global Numeric Functions . 941

17.4 Valarrays . 943

18 Concurrency 945

18.1 The High-Level Interface: async() and Futures 946

18.1.1 A First Example Using async() and Futures 946

18.1.2 An Example of Waiting for Two Tasks 955

18.1.3 Shared Futures . 960

18.2 The Low-Level Interface: Threads and Promises 964

18.2.1 Class std::thread . 964

18.2.2 Promises . 969

18.2.3 Class packaged_task<> . 972

18.3 Starting a Thread in Detail . 973

18.3.1 async() in Detail . 974

18.3.2 Futures in Detail . 975

18.3.3 Shared Futures in Detail . 976

18.3.4 Class std::promise in Detail . 977

18.3.5 Class std::packaged_task in Detail 977

18.3.6 Class std::thread in Detail . 979

18.3.7 Namespace this_thread . 981

18.4 Synchronizing Threads, or the Problem of Concurrency 982

18.4.1 Beware of Concurrency! . 982

18.4.2 The Reason for the Problem of Concurrent Data Access 983

18.4.3 What Exactly Can Go Wrong (the Extent of the Problem) 983

18.4.4 The Features to Solve the Problems . 987

Contents xxi

18.5 Mutexes and Locks . 989

18.5.1 Using Mutexes and Locks . 989

18.5.2 Mutexes and Locks in Detail . 998

18.5.3 Calling Once for Multiple Threads . 1000

18.6 Condition Variables . 1003

18.6.1 Purpose of Condition Variables . 1003

18.6.2 A First Complete Example for Condition Variables 1004

18.6.3 Using Condition Variables to Implement a Queue for Multiple Threads . . 1006

18.6.4 Condition Variables in Detail . 1009

18.7 Atomics . 1012

18.7.1 Example of Using Atomics . 1012

18.7.2 Atomics and Their High-Level Interface in Detail 1016

18.7.3 The C-Style Interface of Atomics . 1019

18.7.4 The Low-Level Interface of Atomics . 1019

19 Allocators 1023

19.1 Using Allocators as an Application Programmer 1023

19.2 A User-Defined Allocator . 1024

19.3 Using Allocators as a Library Programmer . 1026

Bibliography 1031

Newsgroups and Forums . 1031

Books and Web Sites . 1032

Index 1037

This page intentionally left blank

Preface to the Second Edition

I never thought that the first edition of this book would sell so long. But now, after twelve years, it’s

time for a new edition that covers C++11, the new C++ standard.

Note that this means more than simply adding new libraries. C++ has changed. Almost all typical

applications of parts of the library look a bit different now. This is not the result of a huge language

change. It’s the result of many minor changes, such as using rvalue references and move semantics,

range-based for loops, auto, and new template features. Thus, besides presenting new libraries and

supplementary features of existing libraries, almost all of the examples in this book were rewritten

at least partially. Nevertheless, to support programmers who still use “old” C++ environments, this

book will describe differences between C++ versions whenever they appear.

I learned C++11 the hard way. Because I didn’t follow the standardization as it was happening I

started to look at C++11 about two years ago. I really had trouble understanding it. But the people

on the standardization committee helped me to describe and present the new features as they are

intended to be used now.

Note, finally, that this book now has a problem: Although the book’s size grew from about 800

to more than 1,100 pages, I still can’t present the C++ standard library as a whole. The library part

of the new C++11 standard alone now has about 750 pages, written in very condensed form without

much explanation. For this reason, I had to decide which features to describe and in how much

detail. Again, many people in the C++ community helped me to make this decision. The intent was

to concentrate on what the average application programmer needs. For some missing parts, I provide

a supplementary chapter on the Web site of this book, http://www.cppstdlib.com, but you still

will find details not mentioned here in the standard.

The art of teaching is not the art of presenting everything. It’s the art of separating the wheat

from the chaff so that you get the most out of it. May the exercise succeed.

http://www.cppstdlib.com

Acknowledgments for the Second

Edition

¨ ¨

¨

¨

This book presents ideas, concepts, solutions, and examples from many sources. Over the past

several years, the C++ community introduced many ideas, concepts, proposals, and enhancements

to C++ that became part of C++11. Thus, again I’d like to thank all the people who helped and

supported me while preparing this new edition.

First, I’d like to thank everyone in the C++ community and on the C++ standardization commit-

tee. Besides all the work to add new language and library features, they had a hard time explaining

everything to me, but they did so with patience and enthusiasm.

Scott Meyers and Anthony Williams allowed me to use their teaching material and book manu-

scripts so that I could find many useful examples not yet publicly available.

I’d also like to thank everyone who reviewed this book and gave valuable feedback and clar-

ifications: Dave Abrahams, Alberto Ganesh Barbati, Pete Becker, Thomas Becker, Hans Boehm,

Walter E. Brown, Paolo Carlini, Lawrence Crowl, Beman Dawes, Doug Gregor, David Grigsby,

Pablo Halpern, Howard Hinnant, John Lakos, Bronek Kozicki, Dietmar Kuhl, Daniel Krugler, Mat

Marcus, Jens Maurer, Alisdair Meredith, Bartosz Milewski, P. J. Plauger, Tobias Schule, Peter

Sommerlad, Jonathan Wakely, and Anthony Williams.

There is one person who did an especially outstanding job. Whenever I had a question, Daniel

Krugler answered almost immediately with incredible accurateness and knowledge. Everyone in the

standardization process know that he treats everybody this way. Without him, both the C++ standard

and this book would not have the quality they have now.

Many thanks to my editor Peter Gordon, Kim Boedigheimer, John Fuller, and Anna Popick from

Addison-Wesley. Besides their support, they found the right balance between patience and pressure.

The copy editor Evelyn Pyle and the proofreader Diane Freed did an incredible job translating my

German English into American English. In addition, thanks to Frank Mittelbach for solving my

LATEX issues.

Last but not least, all my thanks go to Jutta Eckstein. Jutta has the wonderful ability to force

and support people in their ideals, ideas, and goals. While most people experience this only when

working with her, I have the honor to benefit in my day-to-day life.

Preface to the First Edition

In the beginning, I only planned to write a small German book (400 pages or so) about the C++ stan-

dard library. That was in 1993. Now, in 1999 you see the result — a book in English with more than

800 pages of facts, figures, and examples. My goal is to describe the C++ standard library so that

all (or almost all) your programming questions are answered before you think of the question. Note,

however, that this is not a complete description of all aspects of the C++ standard library. Instead,

I present the most important topics necessary for learning and programming in C++ by using its

standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific

details needed to support everyday programming tasks. Specific code examples are provided to help

you understand the concepts and the details.

That’s it — in a nutshell. I hope you get as much pleasure from reading this book as I did from

writing it. Enjoy!

Acknowledgments for the First

Edition

¨

¨ ¨

This book presents ideas, concepts, solutions, and examples from many sources. In a way it does

not seem fair that my name is the only name on the cover. Thus, I’d like to thank all the people and

companies who helped and supported me during the past few years.

First, I’d like to thank Dietmar Kuhl. Dietmar is an expert on C++, especially on input/output

streams and internationalization (he implemented an I/O stream library just for fun). He not only

translated major parts of this book from German to English, he also wrote sections of this book using

his expertise. In addition, he provided me with invaluable feedback over the years.

Second, I’d like to thank all the reviewers and everyone else who gave me their opinion. These

people endow the book with a quality it would never have had without their input. (Because the

list is extensive, please forgive me for any oversight.) The reviewers for the English version of this

book included Chuck Allison, Greg Comeau, James A. Crotinger, Gabriel Dos Reis, Alan Ezust,

Nathan Myers, Werner Mossner, Todd Veldhuizen, Chichiang Wan, Judy Ward, and Thomas Wike-

hult. The German reviewers included Ralf Boecker, Dirk Herrmann, Dietmar Kuhl, Edda Lorke,

Herbert Scheubner, Dominik Strasser, and Martin Weitzel. Additional input was provided by Matt

Austern, Valentin Bonnard, Greg Colvin, Beman Dawes, Bill Gibbons, Lois Goldthwaite, Andrew

Koenig, Steve Rumsby, Bjarne Stroustrup, and David Vandevoorde.

Special thanks to Dave Abrahams, Janet Cocker, Catherine Ohala, and Maureen Willard who

reviewed and edited the whole book very carefully. Their feedback was an incredible contribution

to the quality of this book.

A special thanks goes to my “personal living dictionary” — Herb Sutter — the author of the

famous “Guru of the Week” (a regular series of C++ programming problems that is published on the

comp.lang.c++.moderated Internet newsgroup).

I’d also like to thank all the people and companies who gave me the opportunity to test my

examples on different platforms with different compilers. Many thanks to Steve Adamczyk, Mike

Anderson, and John Spicer from EDG for their great compiler and their support. It was a big help

during the standardization process and the writing of this book. Many thanks to P. J. Plauger and

Dinkumware, Ltd, for their early standard-conforming implementation of the C++ standard library.

Many thanks to Andreas Hommel and Metrowerks for an evaluative version of their CodeWarrior

Programming Environment. Many thanks to all the developers of the free GNU and egcs compilers.

Many thanks to Microsoft for an evaluative version of Visual C++. Many thanks to Roland Hartinger

Acknowledgments for the First Edition xxvii

from Siemens Nixdorf Informations Systems AG for a test version of their C++ compiler. Many

thanks to Topjects GmbH for an evaluative version of the ObjectSpace library implementation.

Many thanks to everyone from Addison Wesley Longman who worked with me. Among oth-

ers this includes Janet Cocker, Mike Hendrickson, Debbie Lafferty, Marina Lang, Chanda Leary,

Catherine Ohala, Marty Rabinowitz, Susanne Spitzer, and Maureen Willard. It was fun.

In addition, I’d like to thank the people at BREDEX GmbH and all the people in the C++ com-

munity, particularly those involved with the standardization process, for their support and patience

(sometimes I ask really silly questions).

Last but not least, many thanks and kisses for my family: Ulli, Lucas, Anica, and Frederic. I

definitely did not have enough time for them due to the writing of this book.

Have fun and be human!

This page intentionally left blank

Chapter 1

About This Book

1.1 Why This Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This

led to the goal of standardization. Only by having a standard could programs be written that would

run on different platforms — from PCs to mainframes. Furthermore, a standard library would enable

programmers to use general components and a higher level of abstraction without losing portability

rather than having to develop all code from scratch.

Now, with the second standard, called C++11 (see Section 2.1, page 7, for the detailed history of

C++ standards), we have a huge C++ standard library whose specification requires more than double

the size of the core language features. The library enables the use of

• Input/output (I/O) classes

• String types and regular expressions

• Various data structures, such as dynamic arrays, linked lists, binary trees, and hash tables

• Various algorithms, such as a variety of sorting algorithms

• Classes for multithreading and concurrency

• Classes for internationalization support

• Numeric classes

• Plenty of utilities

However, the library is not self-explanatory. To use these components and to benefit from their

power, you need an introduction that explains the concepts and the important details instead of

simply listing the classes and their functions. This book is written exactly for that purpose. First,

it introduces the library and all its components from a conceptual point of view. Next, the book

describes the details needed for practical programming. Examples are included to demonstrate the

exact use of the components. Thus, this book is a detailed introduction to the C++ library for both

the beginner and the practicing programmer. Armed with the data provided herein, you should be

able to take full advantage of the C++ standard library.

2 Chapter 1: About This Book

Caveat: I don’t promise that everything described is easy and self-explanatory. The library

provides a lot of flexibility, but flexibility for nontrivial purposes has a price. The library has traps

and pitfalls, which I point out when we encounter them and suggest ways of avoiding them.

1.2 Before Reading This Book

To get the most from this book, you should already know C++. (The book describes the standard

components of C++ but not the language itself.) You should be familiar with the concepts of classes,

inheritance, templates, exception handling, and namespaces. However, you don’t have to know all

the minor details about the language. The important details are described in the book; the minor

details about the language are more important for people who want to implement the library rather

than to use it.

Note that the language has changed during the standardization of C++11, just as it changed

during the standardization of C++98, so your knowledge might not be up-to-date. Chapter 3 provides

a brief overview of and introduction to the latest language features that are important for using the

C++11 library. Many of the new library features use these new language features, so you should read

Chapter 3 to review all the new features of C++. But I will also refer to that chapter when libraries

use new language features.

1.3 Style and Structure of the Book

The C++ standard library provides components that are somewhat, but not totally, independent of

one another, so there is no easy way to describe each part without mentioning others. I considered

various approaches for presenting the contents of this book. One was on the order of the C++ stan-

dard. However, this is not the best way to explain the components of the C++ standard library from

scratch. Another approach was to start with an overview of all components, followed by chapters

that provided more details. Alternatively, I could have sorted the components, trying to find an order

that had a minimum of cross-references to other sections. My solution was to use a mixture of all

three approaches. I start with a brief introduction of the general concepts and the utilities that the

library uses. Then, I describe all the components, each in one or more chapters. The first compo-

nent is the standard template library (STL). There is no doubt that the STL is the most powerful,

most complex, and most exciting part of the library. Its design influences other components heav-

ily. Then, I describe the more self-explanatory components, such as special containers, strings, and

regular expressions. The next component discussed is one you probably know and use already: the

IOStream library. That component is followed by a discussion of internationalization, which had

some influence on the IOStream library. Finally, I describe the library parts dealing with numerics,

concurrency, and allocators.

Each component description begins with the component’s purpose, design, and some examples.

Next, a detailed description begins with various ways to use the component, as well as any traps and

pitfalls associated with it. The description usually ends with a reference section, in which you can

find the exact signature and definition of a component’s classes and its functions.

1.3 Style and Structure of the Book 3

List of Contents

The first five chapters introduce this book and the C++ standard library in general:

• Chapter 1: About This Book introduces the book’s subject and describes its contents.

• Chapter 2: Introduction to C++ and the Standard Library provides a brief overview of the

history of the C++ standard library and the context of its standardization and introduces the

concept of complexity.

• Chapter 3: New Language Features provides an overview of the new language features you

should know to read this book and to use the C++ standard library.

• Chapter 4: General Concepts describes the fundamental library concepts that you need to

understand to work with all the components. In particular, the chapter introduces the namespace

std, the format of header files, and the general support of error and exception handling.

• Chapter 5: Utilities describes several small utilities provided for the user of the library and

for the library itself. In particular, the chapter describes classes pair<> and tuple<>, smart

pointers, numeric limits, type traits and type utilities, auxiliary functions, class ratio<>, clocks

and timers, and available C functions.

Chapters 6 through 11 describe all aspects of the STL:

• Chapter 6: The Standard Template Library presents a detailed introduction to the concept of

the STL, which provides container classes and algorithms that are used to process collections of

data. The chapter explains step-by-step the concept, the problems, and the special programming

techniques of the STL, as well as the roles of its parts.

• Chapter 7: STL Containers explains the concepts and describes the abilities of the STL’s con-

tainer classes. The chapter describes arrays, vectors, deques, lists, forward lists, sets, maps, and

unordered containers with their common abilities, differences, specific benefits, and drawbacks

and provides typical examples.

• Chapter 8: STL Container Members in Detail lists and describes all container members (types

and operations) in the form of a handy reference.

• Chapter 9: STL Iterators explains the various iterator categories, the auxiliary functions for

iterators, and the iterator adapters, such as stream iterators, reverse iterators, insert iterators, and

move iterators.

• Chapter 10: STL Function Objects and Using Lambdas details the STL’s function object

classes, including lambdas, and how to use them to define the behavior of containers and algo-

rithms.

• Chapter 11: STL Algorithms lists and describes the STL’s algorithms. After a brief introduc-

tion and comparison of the algorithms, each algorithm is described in detail, followed by one or

more example programs.

Chapters 12 through 14 describe “simple” individual standard classes of the C++ standard library:

• Chapter 12: Special Containers describes the container adapters for queues and stacks, as well

as the class bitset, which manages a bitfield with an arbitrary number of bits or flags.

• Chapter 13: Strings describes the string types of the C++ standard library (yes, there are more

than one). The standard provides strings as “kind of” fundamental data types with the ability to

use different types of characters.

4 Chapter 1: About This Book

• Chapter 14: Regular Expressions describes the interface to deal with regular expressions,

which can be used to search and replace characters and substrings.

Chapters 15 and 16 deal with the two closely related subjects of I/O and internationalization:

• Chapter 15: Input/Output Using Stream Classes covers the standardized form of the com-

monly known IOStream library. The chapter also describes details that are typically not so well

known but that may be important to programmers, such as the correct way to define and integrate

special I/O channels.

• Chapter 16: Internationalization covers the concepts and classes for the internationalization

of programs, such as the handling of different character sets and the use of different formats for

floating-point numbers and dates.

The remaining chapters cover numerics, concurrency, and allocators:

• Chapter 17: Numerics describes the numeric components of the C++ standard library: in par-

ticular, classes for random numbers and distributions, types for complex numbers, and some

numeric C functions.

• Chapter 18: Concurrency describes the features provided by the C++ standard library to enable

and support concurrency and multithreading.

• Chapter 19: Allocators describes the concept of different memory models in the C++ standard

library.

The book concludes with a bibliography and an index.

Due to the size of this book I had to move material that is not so relevant for the average appli-

cation programmer but should be covered to a supplementary chapter provided on the Web site of

this book: http::/www.cppstdlib.com. That material includes:

• Details of bitsets (introduced in Section 12.5)

• Class valarray<> (very briefly introduced in Section 17.4)

• Details of allocators (introduced in Chapter 19)

1.4 How to Read This Book

This book is both an introductory user’s guide and a structured reference manual about the C++

standard library. The individual components of the C++ standard library are somewhat independent

of one another, so after reading Chapters 2 through 5 you could read the chapters that discuss the

individual components in any order. Bear in mind that Chapters 6 through 11 all describe the same

component. To understand the other STL chapters, you should start with the introduction to the STL

in Chapter 6.

If you are a C++ programmer who wants to know, in general, the concepts and all parts of

the library, you could simply read the book from beginning to end. However, you should skip the

reference sections. To program with certain components of the C++ standard library, the best way

to find something is to use the index, which I have tried to make comprehensive enough to save you

time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you’ll

find a lot of examples throughout the book. They may be a few lines of code or complete programs.

http://www.cppstdlib.com

1.5 State of the Art 5

In the latter case, you’ll find the name of the file containing the program as the first comment line.

You can find the files on the Internet at the Web site of the book: http://www.cppstdlib.com.

1.5 State of the Art

The C++11 standard was completed while I was writing this book. Please bear in mind that some

compilers might not yet conform to the standard. This will most likely change in the near future.

As a consequence, you might discover that not all things covered in this book work as described on

your system, and you may have to change example programs to fit your specific environment.

1.6 Example Code and Additional Information

You can access all example programs and acquire more information about this book and the C++

standard library from my Web site: http://www.cppstdlib.com. Also, you can find a lot of

additional information about this topic on the Internet. See the bibliography, which is also provided

on the Web site, for some of them.

1.7 Feedback

I welcome your feedback (good and bad) on this book. I tried to prepare it carefully; however,

I’m human, and at some point I have to stop writing and tweaking. So, you may find some errors,

inconsistencies, or subjects that could be described better. Your feedback will give me the chance to

improve later editions.

The best way to reach me is by email. However, to avoid spam problems, I haven’t included

an email address inside this book. (I had to stop using the email address I put in the first edi-

tion after I started getting thousands of spam emails per day.) Please refer to the book’s Web site,

http://www.cppstdlib.com, to get an email address for feedback.

Many thanks.

http://www.cppstdlib.com
http://www.cppstdlib.com
http://www.cppstdlib.com

This page intentionally left blank

Chapter 2

Introduction to C++ and the

Standard Library

In this chapter, I discuss the history and different versions of C++ and introduce the Big-O notation,

which is used to specify the performance and scalability of library operations.

2.1 History of the C++ Standards

The standardization of C++ was started in 1989 by the International Organization for Standardization

(ISO), which is a group of national standards organizations, such as ANSI in the United States. To

date, this work has resulted in four milestones, which are more or less C++ standards available on

different platforms throughout the world:

1. C++98, approved in 1998, was the first C++ standard. Its official title is Information Technology

— Programming Languages — C++, and its document number is ISO/IEC 14882:1998.

2. C++03, a so-called “technical corrigendum” (“TC”), contains minor bug fixes to C++98. Its

document number is ISO/IEC 14882:2003. Thus, both C++98 and C++03 refer to the “first C++

standard.”

3. TR1 contains library extensions for the first standard. Its official title is Information Technology

— Programming Languages — Technical Report on C++ Library Extensions, and its document

number is ISO/IEC TR 19768:2007. The extensions specified here were all part of a namespace

std::tr1.

4. C++11, approved in 2011, is the second C++ standard. C++11 has significant improvements in

both the language and the library, for which the extensions of TR1 have become part of name-

space std). The official title is again Information Technology — Programming Languages —

C++, but a new document number is used: ISO/IEC 14882:2011.

8 Chapter 2: Introduction to C++ and the Standard Library

This books covers C++11, which long had the working title “C++0x,” with the expectation that it

would be done no later than 2009.1 So, both C++11 and C++0x mean the same thing. Throughout

the book, I use the term C++11.

Because some platforms and environments still do not support all of C++11 (both language

features and libraries), I mention whether a feature or behavior is available only since C++11.

2.1.1 Common Questions about the C++11 Standard

Where Is the Standard Available?

The latest freely available draft of the C++11 standard is available as document N3242 (see

[C++Std2011Draft]). While that draft should be adequate for most users and programmers, those

who need the real standard have to pay ISO or a national body a price for it.

Why Did the Standardization Take So Long?

You may wonder why the standardization process for both standards took 10 years or more and why

it is still not perfect. Note, however, that the standard is the result of many people and companies

suggesting improvements and extensions, discussing them with others, waiting for implementations

to test them, and solving all problems caused by the intersection of all the features. Nobody was

working as a full-time employee for the new C++ standard. The standard is not the result of a

company with a big budget and a lot of time. Standards organizations pay nothing or almost nothing

to the people who work on developing standards. So, if a participant doesn’t work for a company

that has a special interest in the standard, the work is done for fun. Thank goodness a lot of dedicated

people had the time and the money to do just that. Between 50 and 100 people regularly met about

three times a year for a week to discuss all topics and finish the task and used email throughout the

rest of the year. As a result, you won’t get anything perfect or consistently designed. The result is

usable in practice but is not perfect (nothing ever is).

The description of the standard library took up about 50% of the first standard, and that increased

to 65% in the second standard. (With C++11, the number of pages covering the library rose from

about 350 to about 750 pages.)

Note that the standard has various sources. In fact, any company or country or even individuals

could propose new features and extensions, which then had to get accepted by the whole standard-

ization organization. In principle, nothing was designed from scratch.2 Thus, the result is not very

homogeneous. You will find different design principles for different components. A good example

is the difference between the string class and the STL, which is a framework for data structures and

algorithms:

• String classes are designed as a safe and convenient component. Thus, they provide an almost

self-explanatory interface and check for many errors in the interface.

1 The usual joke here is that x finally became a hexadecimal b.
2 You may wonder why the standardization process did not design a new library from scratch. The major

purpose of standardization is not to invent or to develop something; it is to harmonize an existing practice.

2.1 History of the C++ Standards 9

• The STL was designed to combine different data structures with different algorithms while

achieving the best performance. Thus, the STL is not very convenient and is not required to

check for many logical errors. To benefit from the powerful framework and great performance

of the STL, you must know the concepts and apply them carefully.

Both of these components are part of the same library. They were harmonized a bit, but they still

follow their individual, fundamental design philosophies.

Nevertheless, another goal of C++11 was to simplify things. For this reason, a lot of proposals

were introduced in C++11 to solve problems, inconsistencies, and other flaws people found in prac-

tice. For example, the way to initialize values and objects was harmonized with C++11. Also, the

more or less broken smart pointer class auto_ptr was replaced by multiple improved smart pointer

classes, previously matured in Boost, a Web site dedicated to free peer-reviewed portable C++ source

libraries (see [Boost]) to gain practical experience before being included in a new standard or another

technical corrigendum.

Is This the Last C++ Standard?

C++11 is not the end of the road. People already have bug fixes, additional requirements, and

proposals for new features. Thus, there will probably be another “technical corrigendum” with fixes

of bugs and inconsistencies, and sooner or later, there might be a “TR2” and/or a third standard.

2.1.2 Compatibility between C++98 and C++11

A design goal of C++11 was that it remain backward compatible with C++98. In principle, every-

thing that compiled with C++98 or C++03 should compile with C++11. However, there are some

exceptions. For example, variables cannot have the name of newly introduced keywords anymore.

If code should work with different C++ versions but benefit from the improvements of C++11, if

available, you can evaluate the predefined macro __cplusplus. For C++11, the following definition

holds when compiling a C++ translation unit:

#define __cplusplus 201103L

By contrast, with both C++98 and C++03, it was:

#define __cplusplus 199711L

Note, however, that compiler vendors sometimes provide different values here.

Note that backward compatibility applies only to the source code. Binary compatibility is not

guaranteed, which leads to problems, especially when an existing operation got a new return type,

because overloading by the return type only is not allowed (for example, this applies to some STL

algorithms and to some member functions of STL containers). So, compiling all parts, including the

libraries, of a C++98 program using a C++11 compiler should usually work. Linking code compiled

using a C++11 compiler with code compiled using a C++98 compiler might fail.

10 Chapter 2: Introduction to C++ and the Standard Library

2.2 Complexity and Big-O Notation

For certain parts of the C++ standard library — especially for the STL — the performance of algo-

rithms and member functions was considered carefully. Thus, the standard requires a certain com-

plexity of them. Computer scientists use a specialized notation to express the relative complexity of

an algorithm. Using this measure, one can quickly categorize the relative runtime of an algorithm, as

well as perform qualitative comparisons between algorithms. This measure is called Big-O notation.

Big-O notation expresses the runtime of an algorithm as a function of a given input of size n. For

example, if the runtime grows linearly with the number of elements — doubling the input doubles

the runtime — the complexity is O(n). If the runtime is independent of the input, the complexity is

O(1). Table 2.1 lists typical values of complexity and their Big-O notation.

Type Notation Meaning

Constant O(1) The runtime is independent of the number of elements.

Logarithmic O(log(n)) The runtime grows logarithmically with respect to the number of

elements.

Linear O(n) The runtime grows linearly (with the same factor) as the number

of elements grows.

n-log-n O(n ∗ log(n)) The runtime grows as a product of linear and logarithmic com-

plexity.

Quadratic O(n2) The runtime grows quadratically with respect to the number of

elements.

Table 2.1. Typical Values of Complexity

It is important to observe that Big-O notation hides factors with smaller exponents, such as con-

stant factors. In particular, it doesn’t matter how long an algorithm takes. Any two linear algorithms

are considered equally acceptable by this measure. There may even be some situations in which the

constant is so huge in a linear algorithm that even an exponential algorithm with a small constant

would be preferable in practice. This is a valid criticism of Big-O notation. Just be aware that it is

only a rule of thumb; the algorithm with optimal complexity is not necessarily the best one.

Table 2.2 lists all the categories of complexity with a certain number of elements to give you a

feel of how fast the runtime grows with respect to the number of elements. As you can see, with

a small number of elements, the running times don’t differ much. Here, constant factors that are

hidden by Big-O notation may have a big influence. However, the more elements you have, the

bigger the differences in the running times, so constant factors become meaningless. Remember to

“think big” when you consider complexity.

Some complexity definitions in the C++ reference manual are specified as amortized. This means

that the operations in the long term behave as described. However, a single operation may take

longer than specified. For example, if you append elements to a dynamic array, the runtime depends

on whether the array has enough memory for one more element. If there is enough memory, the

complexity is constant because inserting a new last element always takes the same time. However, if

there is not enough memory, the complexity is linear because, depending on the number of elements,

you have to allocate new memory and copy all elements. Reallocations are rather rare, so any

2.2 Complexity and Big-O Notation 11

Complexity Number of Elements

Type Notation 1 2 5 10 50 100 1,000 10,000

Constant O(1) 1 1 1 1 1 1 1 1

Logarithmic O(log(n)) 1 2 3 4 6 7 10 13

Linear O(n) 1 2 5 10 50 100 1,000 10,000

n-log-n O(n ∗ log(n)) 1 4 15 40 300 700 10,000 130,000

Quadratic O(n2) 1 4 25 100 2,500 10,000 1,000,000 100,000,000

Table 2.2. Runtime with Respect to the Complexity and the Number of Elements

sufficiently long sequence of that operation behaves as if each operation has constant complexity.

Thus, the complexity of the insertion is “amortized” constant time.

This page intentionally left blank

Chapter 3

New Language Features

The core language and the library of C++ are usually standardized in parallel. In this way, the library

can benefit from improvements in the language, and the language can benefit from experiences of

library implementation. As a result, a C++ standard library always uses specific language features,

which might not be available with previous versions of the standard.

Thus, C++11 is not the same language as C++98/C++03, and C++98/C++03 differs from C++

before it was standardized. If you didn’t follow its evolution, you may be surprised by the new

language features the library uses. This chapter gives you a brief overview of the new features of

C++11, which are important for the design, understanding, or application of the C++11 standard

library. The end of this chapter covers some of the features that were available before C++11 but are

still not widely known.

While I was writing this book (in 2010 and 2011), not all compilers were able to provide all the

new language features of C++11. I expect that this will soon change because all major C++ compiler

vendors were part of the standardization process. But for some period of time, you may be restricted

in your use of the library. Throughout the book I’ll use footnotes to mention any restrictions that are

typical and important.

3.1 New C++11 Language Features

3.1.1 Important Minor Syntax Cleanups

First, I’d like to introduce two new features of C++11 that are minor but important for your day-to-

day programming.

Spaces in Template Expressions

The requirement to put a space between two closing template expressions has gone:

vector<list<int> >; // OK in each C++ version

vector<list<int>>; // OK since C++11

Throughout the book (as in real code) you will find both forms.

14 Chapter 3: New Language Features

nullptr and std::nullptr_t

C++11 lets you use nullptr instead of 0 or NULL to specify that a pointer refers to no value (which

differs from having an undefined value). This new feature especially helps to avoid mistakes that

occurred when a null pointer was interpreted as an integral value. For example:

void f(int);

void f(void*);

f(0); // calls f(int)

f(NULL); // calls f(int) if NULL is 0, ambiguous otherwise

f(nullptr); // calls f(void*)

nullptr is a new keyword. It automatically converts into each pointer type but not to any integral

type. It has type std::nullptr_t, defined in <cstddef> (see Section 5.8.1, page 161), so you can

now even overload operations for the case that a null pointer is passed. Note that std::nullptr_t

counts as a fundamental data type (see Section 5.4.2, page 127).

3.1.2 Automatic Type Deduction with auto

With C++11, you can declare a variable or an object without specifying its specific type by using

auto.1 For example:

auto i = 42; // i has type int

double f();

auto d = f(); // d has type double

The type of a variable declared with auto is deduced from its initializer. Thus, an initialization is

required:

auto i; // ERROR: can’t dedulce the type of i

Additional qualifiers are allowed. For example:

static auto vat = 0.19;

Using auto is especially useful where the type is a pretty long and/or complicated expression. For

example:

vector<string> v;

...

auto pos = v.begin(); // pos has type vector<string>::iterator

auto l = [] (int x) -> bool { // l has the type of a lambda

..., // taking an int and returning a bool

};

The latter is an object, representing a lambda, which is introduced in Section 3.1.10, page 28.

1 Note that auto is an old keyword of C. As the counterpart of static, declaring a variable as local, it was

never used, because not specifying something as static implicitly declared it as auto.

3.1 New C++11 Language Features 15

3.1.3 Uniform Initialization and Initializer Lists

Before C++11, programmers, especially novices, could easily become confused by the question of

how to initialize a variable or an object. Initialization could happen with parentheses, braces, and/or

assignment operators.

For this reason, C++11 introduced the concept of uniform initialization, which means that for

any initialization, you can use one common syntax. This syntax uses braces, so the following is

possible now:

int values[] { 1, 2, 3 };

std::vector<int> v { 2, 3, 5, 7, 11, 13, 17 };

std::vector<std::string> cities {

"Berlin", "New York", "London", "Braunschweig", "Cairo", "Cologne"

};

std::complex<double> c{4.0,3.0}; // equivalent to c(4.0,3.0)

An initializer list forces so-called value initialization, which means that even local variables of

fundamental data types, which usually have an undefined initial value, are initialized by zero (or

nullptr, if it is a pointer):

int i; // i has undefined value

int j{}; // j is initialized by 0

int* p; // p has undefined value

int* q{}; // q is initialized by nullptr

Note, however, that narrowing initializations — those that reduce precision or where the supplied

value gets modified — are not possible with braces. For example:

int x1(5.3); // OK, but OUCH: x1 becomes 5

int x2 = 5.3; // OK, but OUCH: x2 becomes 5

int x3{5.0}; // ERROR: narrowing

int x4 = {5.3}; // ERROR: narrowing

char c1{7}; // OK: even though 7 is an int, this is not narrowing

char c2{99999}; // ERROR: narrowing (if 99999 doesn’t fit into a char)

std::vector<int> v1 { 1, 2, 4, 5 }; // OK

std::vector<int> v2 { 1, 2.3, 4, 5.6 }; // ERROR: narrowing doubles to ints

As you can see, to check whether narrowing applies, even the current values might be considered, if

available at compile time. As Bjarne Stroustrup writes in [Stroustrup:FAQ] regarding this example:

“The way C++11 avoids a lot of incompatibilities is by relying on the actual values of initializers

(such as 7 in the example above) when it can (and not just type) when deciding what is a narrowing

conversion. If a value can be represented exactly as the target type, the conversion is not narrowing.

Note that floating-point to integer conversions are always considered narrowing — even 7.0 to 7.”

To support the concept of initializer lists for user-defined types, C++11 provides the class tem-

plate std::initializer_list<>. It can be used to support initializations by a list of values or in

any other place where you want to process just a list of values. For example:

16 Chapter 3: New Language Features

void print (std::initializer_list<int> vals)

{

for (auto p=vals.begin(); p!=vals.end(); ++p) { // process a list of values

std::cout << *p << "\n";

}

}

print ({12,3,5,7,11,13,17}); // pass a list of values to print()

When there are constructors for both a specific number of arguments and an initializer list, the

version with the initializer list is preferred:

class P

{

public:

P(int,int);

P(std::initializer_list<int>);

};

P p(77,5); // calls P::P(int,int)

P q{77,5}; // calls P::P(initializer_list)

P r{77,5,42}; // calls P::P(initializer_list)

P s = {77,5}; // calls P::P(initializer_list)

Without the constructor for the initializer list, the constructor taking two ints would be called to

initialize q and s, while the initialization of r would be invalid.

Because of initializer lists, explicit now also becomes relevant for constructors taking more

than one argument. So, you can now disable automatic type conversions from multiple values, which

is also used when an initialization uses the = syntax:

class P

{

public:

P(int a, int b) {

...

}

explicit P(int a, int b, int c) {

...

}

};

P x(77,5); // OK

P y{77,5}; // OK

P z {77,5,42}; // OK

P v = {77,5}; // OK (implicit type conversion allowed)

P w = {77,5,42}; // ERROR due to explicit (no implicit type conversion allowed)

3.1 New C++11 Language Features 17

void fp(const P&);

fp({47,11}); // OK, implicit conversion of {47,11} into P

fp({47,11,3}); // ERROR due to explicit

fp(P{47,11}); // OK, explicit conversion of {47,11} into P

fp(P{47,11,3}); // OK, explicit conversion of {47,11,3} into P

In the same manner, an explicit constructor taking an initializer list disables implicit conversions

for initializer lists with zero, one, or more initial values.

3.1.4 Range-Based for Loops

C++11 introduces a new form of for loop, which iterates over all elements of a given range, array,

or collection. It’s what in other programming languages would be called a foreach loop. The general

syntax is as follows:

for (decl : coll) {

statement

}

where decl is the declaration of each element of the passed collection coll and for which the state-

ments specified are called. For example, the following calls for each value of the passed initializer

list the specified statement, which writes it on a line to the standard output cout:

for (int i : { 2, 3, 5, 7, 9, 13, 17, 19 }) {

std::cout << i << std::endl;

}

To multiply each element elem of a vector vec by 3 you can program as follows:

std::vector<double> vec;

...

for (auto& elem : vec) {

elem *= 3;

}

Here, declaring elem as a reference is important because otherwise the statements in the body of the

for loop act on a local copy of the elements in the vector (which sometimes also might be useful).

This means that to avoid calling the copy constructor and the destructor for each element, you

should usually declare the current element to be a constant reference. Thus, a generic function to

print all elements of a collection should be implemented as follows:

template <typename T>

void printElements (const T& coll)

{

for (const auto& elem : coll) {

std::cout << elem << std::endl;

}

}

18 Chapter 3: New Language Features

Here, the range-based for statement is equivalent to the following:

{

for (auto _pos=coll.begin(); _pos != coll.end(); ++_pos) {

const auto& elem = *_pos;

std::cout << elem << std::endl;

}

}

In general, a range-based for loop declared as

for (decl : coll) {

statement

}

is equivalent to the following, if coll provides begin() and end() members:

{

for (auto _pos=coll.begin(), _end=coll.end(); _pos!=_end; ++_pos) {

decl = *_pos;

statement

}

}

or, if that doesn’t match, to the following by using a global begin() and end() taking coll as

argument:

{

for (auto _pos=begin(coll), _end=end(coll); _pos!=_end; ++_pos) {

decl = *_pos;

statement

}

}

As a result, you can use range-based for loops even for initializer lists because the class template

std::initializer_list<> provides begin() and end() members.

In addition, there is a rule that allows you to use ordinary C-style arrays of known size. For

example:

int array[] = { 1, 2, 3, 4, 5 };

long sum=0; // process sum of all elements

for (int x : array) {

sum += x;

}

for (auto elem : { sum, sum*2, sum*4 }) { // print some multiples of sum

std::cout << elem << std::endl;

}

3.1 New C++11 Language Features 19

has the following output:

15

30

60

Note that no explicit type conversions are possible when elements are initialized as decl inside the

for loop. Thus, the following does not compile:

class C

{

public:

explicit C(const std::string& s); // explicit(!) type conversion from strings

...

};

std::vector<std::string> vs;

for (const C& elem : vs) { // ERROR, no conversion from string to C defined

std::cout << elem << std::endl;

}

3.1.5 Move Semantics and Rvalue References

One of the most important new features of C++11 is the support of move semantics. This feature

goes further into the major design goal of C++ to avoid unnecessary copies and temporaries.

This new feature is so complex that I recommend using a more detailed introduction to this topic,

but I will try to give a brief introduction and summary here.2

Consider the following code example:

void createAndInsert (std::set<X>& coll)

{

X x; // create an object of type X

...

coll.insert(x); // insert it into the passed collection

}

Here, we insert a new object into a collection, which provides a member function that creates an

internal copy of the passed element:

namespace std {

template <typename T, ...> class set {

public:

... insert (const T& v); // copy value of v

¨ ¨

2 This introduction is based on [Abrahams:RValues] (with friendly permission by Dave Abrahams), on

[Becker:RValues] (with friendly permission by Thomas Becker), and some emails exchanged with Daniel

Krugler, Dietmar Kuhl, and Jens Maurer.

20 Chapter 3: New Language Features

...

};

}

This behavior is useful because the collection provides value semantics and the ability to insert

temporary objects or objects that are used and modified after being inserted:

X x;

coll.insert(x); // inserts copy of x

...

coll.insert(x+x); // inserts copy of temporary rvalue

...

coll.insert(x); // inserts copy of x (although x is not used any longer)

However, for the last two insertions of x, it would be great to specify a behavior that the passed

values (the result of x+x and x) are no longer used by the caller so that coll internally could avoid

creating a copy and somehow move the contents of them into its new elements. Especially when

copying x is expensive — for example, if it is a large collection of strings — this could become a

big performance improvement.

Since C++11, such a behavior is possible. The programmer, however, has to specify that a move

is possible unless a temporary is used. Although a compiler might find this out in trivial cases,

allowing the programmer to perform this task lets this feature be used in all cases, where logically

appropriate. The preceding code simply has to get modified as follows:

X x;

coll.insert(x); // inserts copy of x (OK, x is still used)

...

coll.insert(x+x); // moves (or copies) contents of temporary rvalue

...

coll.insert(std::move(x)); // moves (or copies) contents of x into coll

With std::move(), declared in <utility>, x can be moved instead of being copied. However,

std::move() doesn’t itself do any moving, but merely converts its argument into a so-called rvalue

reference, which is a type declared with two ampersands: X&&. This new type stands for rvalues

(anonymous temporaries that can appear only on the right-hand side of an assignment) that can be

modified. The contract is that this is a (temporary) object that is not needed any longer so that you

can steal its contents and/or its resources.

Now, the collection can provide an overloaded version of insert(), which deals with these

rvalue references:

namespace std {

template <typename T, ...> class set {

public:

... insert (const T& x); // for lvalues: copies the value

... insert (T&& x); // for rvalues: moves the value

...

};

}

3.1 New C++11 Language Features 21

The version for rvalue references can now be optimized so that its implementation steals the contents

of x. To do that, however, we need the help of the type of x, because only the type of x has access to

its internals. So, for example, you could use internal arrays and pointers of x to initialize the inserted

element, which would be a huge performance improvement if class x is itself a complex type, where

you had to copy element-by-element instead. To initialize the new internal element, we simply call

a so-called move constructor of class X, which steals the value of the passed argument to initialize

a new object. All complex types should — and in the C++ standard library will — provide such a

special constructor, which moves the contents of an existing element to a new element:

class X {

public:

X (const X& lvalue); // copy constructor

X (X&& rvalue); // move constructor

...

};

For example, the move constructor for strings typically just assigns the existing internal character

array to the new object instead of creating a new array and copying all elements. The same applies to

all collection classes: Instead of creating a copy of all elements, you just assign the internal memory

to the new object. If no move constructor is provided, the copy constructor will be used.

In addition, you have to ensure that any modification — especially a destruction — of the passed

object, where the value was stolen from, doesn’t impact the state of the new object that now owns

the value. Thus, you usually have to clear the contents of the passed argument (for example, by

assigning nullptr to its internal member referring to its elements).

Clearing the contents of an object for which move semantics were called is, strictly speaking,

not required, but not doing so makes the whole mechanism almost useless. In fact, for the classes of

the C++ standard library in general, it is guaranteed that after a move, the objects are in a valid but

unspecified state. That is, you can assign new values afterward, but the current value is not defined.

For STL containers, it is guaranteed that containers where the value was moved from are empty

afterward.

In the same way, any nontrivial class should provide both a copy assignment and a move assign-

ment operator:

class X {

public:

X& operator= (const X& lvalue); // copy assignment operator

X& operator= (X&& rvalue); // move assignment operator

...

};

For strings and collections these operators could be implemented by simply swapping the internal

contents and resources. However, you should also clear the contents of *this because this object

might hold resources, such as locks, for which it is better to release them sooner. Again, the move

semantics don’t require that, but it is a quality of move support that, for example, is provided by the

container classes of the C++ standard library.

Finally, note the following two remarks about this feature: (1) overloading rules for rvalue and

lvalue references and (2) returning rvalue references.

22 Chapter 3: New Language Features

Overloading Rules for Rvalue and Lvalue References

The overloading rules for rvalues and lvalues are as follows:3

• If you implement only

void foo(X&);

without void foo(X&&), the behavior is as in C++98: foo() can be called for lvalues but not

for rvalues.

• If you implement

void foo(const X&);

without void foo(X&&), the behavior is as in C++98: foo() can be called for rvalues and for

lvalues.

• If you implement

void foo(X&);

void foo(X&&);

or

void foo(const X&);

void foo(X&&);

you can distinguish between dealing with rvalues and lvalues. The version for rvalues is allowed

to and should provide move semantics. Thus, it can steal the internal state and resources of the

passed argument.

• If you implement

void foo(X&&);

but neither void foo(X&) nor void foo(const X&), foo() can be called on rvalues, but

trying to call it on an lvalue will trigger a compile error. Thus, only move semantics are provided

here. This ability is used inside the library: for example, by unique pointers (see Section 5.2.5,

page 98), file streams (see Section 15.9.2, page 795), or string streams (see Section 15.10.2,

page 806),

This means that if a class does not provide move semantics and has only the usual copy constructor

and copy assignment operator, these will be called for rvalue references. Thus, std::move() means

to call move semantics, if provided, and copy semantics otherwise.

Returning Rvalue References

You don’t have to and should not move() return values. According to the language rules, the standard

specifies that for the following code:4

X foo ()

{

X x;

...

3 Thanks to Thomas Becker for providing this wording.
4 Thanks to Dave Abrahams for providing this wording.

3.1 New C++11 Language Features 23

return x;

}

the following behavior is guaranteed:

• If X has an accessible copy or move constructor, the compiler may choose to elide the copy. This

is the so-called (named) return value optimization ((N)RVO), which was specified even before

C++11 and is supported by most compilers.

• Otherwise, if X has a move constructor, x is moved.

• Otherwise, if X has a copy constructor, x is copied.

• Otherwise, a compile-time error is emitted.

Note also that returning an rvalue reference is an error if the returned object is a local nonstatic

object:

X&& foo ()

{

X x;

...

return x; // ERROR: returns reference to nonexisting object

}

An rvalue reference is a reference, and returning it while referring to a local object means that you

return a reference to an object that doesn’t exist any more. Whether std::move() is used doesn’t

matter.

3.1.6 New String Literals

Since C++11, you can define raw string and multibyte/wide-character string literals.

Raw String Literals

Such a raw string allows one to define a character sequence by writing exactly its contents as a raw

character sequence. Thus, you save a lot of escapes necessary to mask special characters.

A raw string starts with R"(and ends with)". The string might contain line breaks. For example,

an ordinary string literal representing two backslashes and an n would be defined as an ordinary

string literal as follows:

"\\\\n"

and as a raw string literal as follows:

R"(\\n)"

To be able to have)" inside the raw string, you can use a delimiter. Thus, the complete syntax of a

raw string is R"delim(...)delim", where delim is a character sequence of at most 16 basic characters

except the backslash, whitespaces, and parentheses.

24 Chapter 3: New Language Features

For example, the raw string literal

R"nc(a\

b\nc()"

)nc";

is equivalent to the following ordinary string literal:

"a\\\n b\\nc()\"\n "

Thus, the string contains an a, a backslash, a newline character, some spaces, a b, a backslash, an n,

a c, a double quote character, a newline character, and some spaces.

Raw string literals are especially useful when defining regular expressions. See Chapter 14 for

details.

Encoded String Literals

By using an encoding prefix, you can define a special character encoding for string literals. The

following encoding prefixes are defined:

• u8 defines a UTF-8 encoding. A UTF-8 string literal is initialized with the given characters as

encoded in UTF-8. The characters have type const char.

• u defines a string literal with characters of type char16_t.

• U defines a string literal with characters of type char32_t.

• L defines a wide string literal with characters of type wchar_t.

For example:

L"hello" // defines ‘‘hello’’ as wchar_t string literal

The initial R of a raw string can be preceded by an encoding prefix.

See Chapter 16 for details about using different encodings for internationalization.

3.1.7 Keyword noexcept

C++11 provides the keyword noexcept. It can be used to specify that a function cannot throw —

or is not prepared to throw. For example:

void foo () noexcept;

declares that foo() won’t throw. If an exception is not handled locally inside foo() — thus, if

foo() throws — the program is terminated, calling std::terminate(), which by default calls

std::abort() (see Section 5.8.2, page 162).

noexcept targets a lot of problems (empty) exception specifications have. To quote from

[N3051:DeprExcSpec] (with friendly permission by Doug Gregor):

• Runtime checking: C++ exception specifications are checked at runtime rather than

at compile time, so they offer no programmer guarantees that all exceptions have

been handled. The runtime failure mode (calling std::unexpected()) does not

lend itself to recovery.

• Runtime overhead: Runtime checking requires the compiler to produce additional

code that also hampers optimizations.

3.1 New C++11 Language Features 25

• Unusable in generic code: Within generic code, it is not generally possible to know

what types of exceptions may be thrown from operations on template arguments, so

a precise exception specification cannot be written.

In practice, only two forms of exception-throwing guarantees are useful: An operation

might throw an exception (any exception) or an operation will never throw any excep-

tion. The former is expressed by omitting the exception-specification entirely, while the

latter can be expressed as throw() but rarely is, due to performance considerations.

Especially because noexcept does not require stack unwinding, programmers can now express the

nothrow guarantee without additional overhead. As a result, the use of exception specifications is

deprecated since C++11.

You can even specify a condition under which a function throws no exception. For example, for

any type Type, the global swap() usually is defined as follows:

void swap (Type& x, Type& y) noexcept(noexcept(x.swap(y)))

{

x.swap(y);

}

Here, inside noexcept(...), you can specify a Boolean condition under which no exception gets

thrown: Specifying noexcept without condition is a short form of specifying noexcept(true).

In this case, the condition is noexcept(x.swap(y)). Here, the operator noexcept is used,

which yields true if an evaluated expression, which is specified within parentheses, can’t throw

an exception. Thus, the global swap() specifies that it does not throw an exception if the member

function swap() called for the first argument does not throw.

As another example, the move assignment operator for value pairs is declared as follows:

pair& operator= (pair&& p)

noexcept(is_nothrow_move_assignable<T1>::value &&

is_nothrow_move_assignable<T2>::value);

Here, the is_nothrow_move_assignable type trait is used, which checks whether for the passed

type, a move assignment that does not throw is possible (see Section 5.4.2, page 127).

According to [N3279:LibNoexcept], noexcept was introduced inside the library with the fol-

lowing conservative approach (words and phrases in italics are quoted literally):

• Each library function ... that ... cannot throw and does not specify any undefined behavior — for

example, caused by a broken precondition — should be marked as unconditionally noexcept.

• If a library swap function, move constructor, or move assignment operator ... can be proven not

to throw by applying the noexcept operator, it should be marked as conditionally noexcept.

No other function should use a conditional noexcept specification.

• No library destructor should throw. It must use the implicitly supplied (nonthrowing) exception

specification.

• Library functions designed for compatibility with C code ... may be marked as unconditionally

noexcept.

Note that noexcept was deliberately not applied to any C++ function having a precondition that, if

violated, could result in undefined behavior. This allows library implementations to provide a “safe

mode” throwing a “precondition violation” exception in the event of misuse.

26 Chapter 3: New Language Features

Throughout this book I usually skip noexcept specifications to improve readability and save

space.

3.1.8 Keyword constexpr

Since C++11, constexpr can be used to enable that expressions be evaluated at compile time. For

example:

constexpr int square (int x)

{

return x * x;

}

float a[square(9)]; // OK since C++11: a has 81 elements

This keyword fixes a problem C++98 had when using numeric limits (see Section 5.3, page 115).

Before C++11, an expression such as

std::numeric_limits<short>::max()

could not be used as an integral constant, although it was functionally equivalent to the macro

INT_MAX. Now, with C++11, such an expression is declared as constexpr so that, for example,

you can use it to declare arrays or in compile-time computations (metaprogramming):

std::array<float,std::numeric_limits<short>::max()> a;

Throughout this book I usually skip constexpr specifications to improve readability and save space.

3.1.9 New Template Features

Variadic Templates

Since C++11, templates can have parameters that accept a variable number of template arguments.

This ability is called variadic templates. For example, you can use the following to call print()

for a variable number of arguments of different types:

void print ()

{

}

template <typename T, typename... Types>

void print (const T& firstArg, const Types&... args)

{

std::cout << firstArg << std::endl; // print first argument

print(args...); // call print() for remaining arguments

}

If one or more arguments are passed, the function template is used, which by specifying the first

argument separately allows the first argument to print and then recursively calls print() for the

remaining arguments. To end the recursion, the non-template overload of print() is provided.

3.1 New C++11 Language Features 27

For example, an input such as

print (7.5, "hello", std::bitset<16>(377), 42);

would output the following (see Section 12.5.1, page 652 for details of bitsets):

7.5

hello

0000000101111001

42

Note that it is currently under discussion whether the following example also is valid. The reason is

that formally for a single argument the variadic form is ambiguous with the nonvariadic form for a

single argument; however, compilers usually accept this code:

template <typename T>

void print (const T& arg)

{

std::cout << arg << std::endl;

}

template <typename T, typename... Types>

void print (const T& firstArg, const Types&... args)

{

std::cout << firstArg << std::endl; // print first argument

print(args...); // call print() for remaining arguments

}

Inside variadic templates, sizeof...(args) yields the number of arguments.

Class std::tuple<> makes heavy use of this feature (see Section 5.1.2, page 68).

Alias Templates (Template Typedef)

Since C++11, template (partial) type definitions also are supported. However, because all approaches

with the typename keyword failed for some reason, the keyword using was introduced here, and

the term alias template is used for it. For example, after

template <typename T>

using Vec = std::vector<T,MyAlloc<T>>; // standard vector using own allocator

the term

Vec<int> coll;

is equivalent to

std::vector<int,MyAlloc<int>> coll;

See Section 5.2.5, page 108, for another example.

Other New Template Features

Since C++11, function templates (see Section 3.2, page 34) may have default template arguments.

In addition, local types can be used now as template arguments, and functions with internal linkage

can now be used as arguments to nontype templates of function pointers or function references.

28 Chapter 3: New Language Features

3.1.10 Lambdas

C++11 introduced lambdas, allowing the definition of inline functionality, which can be used as a

parameter or a local object.

Lambdas change the way the C++ standard library is used. For example, Section 6.9, page 229,

and Section 10.3, page 499, discuss how to use lambdas with STL algorithms and containers. Sec-

tion 18.1.2, page 958, demonstrates how to use lambdas to define code that can run concurrently.

Syntax of Lambdas

A lambda is a definition of functionality that can be defined inside statements and expressions. Thus,

you can use a lambda as an inline function.

The minimal lambda function has no parameters and simply does something. For example:

[] {

std::cout << "hello lambda" << std::endl;

}

You can call it directly:

[] {

std::cout << "hello lambda" << std::endl;

} (); // prints ‘‘hello lambda’’

or pass it to objects to get called:

auto l = [] {

std::cout << "hello lambda" << std::endl;

};

...

l(); // prints ‘‘hello lambda’’

As you can see, a lambda is always introduced by a so-called lambda introducer: brackets within

which you can specify a so-called capture to access nonstatic outside objects inside the lambda.

When there is no need to have access to outside data, the brackets are just empty, as is the case here.

Static objects such as std::cout can be used.

Between the lambda introducer and the lambda body, you can specify parameters, mutable, an

exception specification, attribute specifiers, and the return type. All of them are optional, but if one

of them occurs, the parentheses for the parameters are mandatory. Thus, the syntax of a lambda is

either

[...] {...}

or

[...] (...) mutableopt throwSpecopt ->retTypeopt {...}

A lambda can have parameters specified in parentheses, just like any other function:

auto l = [] (const std::string& s) {

std::cout << s << std::endl;

};

l("hello lambda"); // prints ‘‘hello lambda’’

3.1 New C++11 Language Features 29

Note, however, that lambdas can’t be templates. You always have to specify all types.

A lambda can also return something. Without any specific definition of the return type, it is

deduced from the return value. For example, the return type of the following lambda is int:

[] {

return 42;

}

To specify a return type, you can use the new syntax C++ also provides for ordinary functions (see

Section 3.1.12, page 32). For example, the following lambda returns 42.0:

[] () -> double {

return 42;

}

In this case, you have to specify the return type after the parentheses for the arguments, which are

required then, and the characters “->.”

Between the parameters and the return specification or body, you can also specify an exception

specification like you can do for functions. However, as for functions exception specifications are

deprecated now (see Section 3.1.7, page 24).

Captures (Access to Outer Scope)

Inside the lambda introducer (brackets at the beginning of a lambda), you can specify a capture to

access data of outer scope that is not passed as an argument:

• [=] means that the outer scope is passed to the lambda by value. Thus, you can read but not

modify all data that was readable where the lambda was defined.

• [&] means that the outer scope is passed to the lambda by reference. Thus, you have write access

to all data that was valid when the lambda was defined, provided that you had write access there.

You can also specify individually for each object that inside the lambda you have access to it by

value or by reference. So, you can limit the access and mix different kinds of access. For example,

the following statements:

int x=0;

int y=42;

auto qqq = [x, &y] {

std::cout << "x: " << x << std::endl;

std::cout << "y: " << y << std::endl;

++y; // OK

};

x = y = 77;

qqq();

qqq();

std::cout << "final y: " << y << std::endl;

30 Chapter 3: New Language Features

produce the following output:

x: 0

y: 77

x: 0

y: 78

final y: 79

Because x gets copied by value, you are not allowed to modify it inside the lambda; calling ++x

inside the lambda would not compile. Because y is passed by reference, you have write access to it

and are affected by any value change; so calling the lambda twice increments the assigned value 77.

Instead of [x, &y], you could also have specified [=, &y] to pass y by reference and all other

objects by value.

To have a mixture of passing by value and passing by reference, you can declare the lambda as

mutable. In that case, objects are passed by value, but inside the function object defined by the

lambda, you have write access to the passed value. For example:

int id = 0;

auto f = [id] () mutable {

std::cout << "id: " << id << std::endl;

++id; // OK

};

id = 42;

f();

f();

f();

std::cout << id << std::endl;

has the following output:

id: 0

id: 1

id: 2

42

You can consider the behavior of the lambda to be like the following function object (see Sec-

tion 6.10, page 233):

class {

private:

int id; // copy of outside id

public:

void operator() () {

std::cout << "id: " << id << std::endl;

++id; // OK

}

};

3.1 New C++11 Language Features 31

Due to mutable, operator () is defined as a nonconstant member function, which means that write

access to id is possible. So, with mutable, a lambda becomes stateful even if the state is passed by

value. Without mutable, which is the usual case, operator () becomes a constant member function

so that you only have read access to objects that were passed by value. See Section 10.3.2, page 501,

for another example of using mutable with lambdas, which also discusses possible problems.

Type of Lambdas

The type of a lambda is an anonymous function object (or functor) that is unique for each lambda

expression. Thus, to declare objects of that type, you need templates or auto. If you need the type,

you can use decltype() (see Section 3.1.11, page 32), which is, for example, required to pass a

lambda as hash function or ordering or sorting criterion to associative or unordered containers. See

Section 6.9, page 232, and Section 7.9.7, page 379, for details.

Alternatively, you can use the std::function<> class template, provided by the C++ standard

library, to specify a general type for functional programming (see Section 5.4.4, page 133). That

class template provides the only way to specify the return type of a function returning a lambda:

// lang/lambda1.cpp

#include<functional>

#include<iostream>

std::function<int(int,int)> returnLambda ()

{

return [] (int x, int y) {

return x*y;

};

}

int main()

{

auto lf = returnLambda();

std::cout << lf(6,7) << std::endl;

}

The output of the program is (of course):

42

32 Chapter 3: New Language Features

3.1.11 Keyword decltype

By using the new decltype keyword, you can let the compiler find out the type of an expres-

sion. This is the realization of the often requested typeof feature. However, the existing typeof

implementations were inconsistent and incomplete, so C++11 introduced a new keyword. For

example:

std::map<std::string,float> coll;

decltype(coll)::value_type elem;

One application of decltype is to declare return types (see below). Another is to use it in metapro-

gramming (see Section 5.4.1, page 125) or to pass the type of a lambda (see Section 10.3.4, page 504).

3.1.12 New Function Declaration Syntax

Sometimes, the return type of a function depends on an expression processed with the arguments.

However, something like

template <typename T1, typename T2>

decltype(x+y) add(T1 x, T2 y);

was not possible before C++11, because the return expression uses objects not introduced or in scope

yet.

But with C++11, you can alternatively declare the return type of a function behind the parameter

list:

template <typename T1, typename T2>

auto add(T1 x, T2 y) -> decltype(x+y);

This uses the same syntax as for lambdas to declare return types (see Section 3.1.10, page 28).

3.1.13 Scoped Enumerations

C++11 allows the definition of scoped enumerations — also called strong enumerations, or enumer-

ation classes — which are a cleaner implementation of enumeration values (enumerators) in C++.

For example:

enum class Salutation : char { mr, ms, co, none };

The important point is to specify keyword class behind enum.

Scoped enumerations have the following advantages:

• Implicit conversions to and from int are not possible.

• Values like mr are not part of the scope where the enumeration is declared. You have to use

Salutation::mr instead.

• You can explicitly define the underlying type (char here) and have a guaranteed size (if you skip

“: char” here, int is the default).

• Forward declarations of the enumeration type are possible, which eliminates the need to recom-

pile compilation units for new enumerations values if only the type is used.

3.2 Old “New” Language Features 33

Note that with the type trait std::underlying_type, you can evaluate the underlying type of an

enumeration type (see Section 5.4.2, page 130).

As an example, error condition values of standard exceptions are scoped enumerators (see Sec-

tion 4.3.2, page 45).

3.1.14 New Fundamental Data Types

The following new fundamental data types are defined in C++11:

• char16_t and char32_t (see Section 16.1.3, page 852)

• long long and unsigned long long

• std::nullptr_t (see Section 3.1.1, page 14)

3.2 Old “New” Language Features

Although C++98 is more than 10 years old now, programmers still can be surprised by some of the

language features. Some of those are presented in this section.

Nontype Template Parameters

In addition to type parameters, it is also possible to use nontype parameters. A nontype parameter

is then considered part of the type. For example, for the standard class bitset<> (see Section 12.5,

page 650), you can pass the number of bits as the template argument. The following statements

define two bitfields: one with 32 bits and one with 50 bits:

bitset<32> flags32; // bitset with 32 bits

bitset<50> flags50; // bitset with 50 bits

These bitsets have different types because they use different template arguments. Thus, you can’t

assign or compare them unless a corresponding type conversion is provided.

Default Template Parameters

Class templates may have default arguments. For example, the following declaration allows one to

declare objects of class MyClass with one or two template arguments:

template <typename T, typename container = vector<T>>

class MyClass;

If you pass only one argument, the default parameter is used as the second argument:

MyClass<int> x1; // equivalent to: MyClass<int,vector<int>>

Note that default template arguments may be defined in terms of previous arguments.

34 Chapter 3: New Language Features

Keyword typename

The keyword typename was introduced to specify that the identifier that follows is a type. Consider

the following example:

template <typename T>

class MyClass {

typename T::SubType * ptr;

...

};

Here, typename is used to clarify that SubType is a type defined within class T. Thus, ptr is a

pointer to the type T::SubType. Without typename, SubType would be considered a static member,

and thus

T::SubType * ptr

would be a multiplication of value SubType of type T with ptr.

According to the qualification of SubType being a type, any type that is used in place of T must

provide an inner type SubType. For example, the use of type Q as a template argument is possible

only if type Q has an inner type definition for SubType:

class Q {

typedef int SubType;

...

};

MyClass<Q> x; // OK

In this case, the ptr member of MyClass<Q> would be a pointer to type int. However, the subtype

could also be an abstract data type, such as a class:

class Q {

class SubType;

...

};

Note that typename is always necessary to qualify an identifier of a template as being a type, even

if an interpretation that is not a type would make no sense. Thus, the general rule in C++ is that any

identifier of a template is considered to be a value except if it is qualified by typename.

Apart from this, typename can also be used instead of class in a template declaration:

template <typename T> class MyClass;

Member Templates

Member functions of classes may be templates. However, member templates may not be virtual. For

example:

3.2 Old “New” Language Features 35

class MyClass {

...

template <typename T>

void f(T);

};

Here, MyClass::f declares a set of member functions for parameters of any type. You can pass any

argument as long as its type provides all operations used by f().

This feature is often used to support automatic type conversions for members in class templates.

For example, in the following definition, the argument x of assign() must have exactly the same

type as the object it is called for:

template <typename T>

class MyClass {

private:

T value;

public:

void assign (const MyClass<T>& x) { // x must have same type as *this

value = x.value;

}

...

};

It would be an error to use different template types for the objects of the assign() operation even

if an automatic type conversion from one type to the other is provided:

void f()

{

MyClass<double> d;

MyClass<int> i;

d.assign(d); // OK

d.assign(i); // ERROR: i is MyClass<int>

// but MyClass<double> is required

}

By providing a different template type for the member function, you relax the rule of exact match.

The member function template argument may have any template type, then, as long as the types are

assignable:

template <typename T>

class MyClass {

private:

T value;

public:

template <typename X> // member template

void assign (const MyClass<X>& x) { // allows different template types

value = x.getValue();

}

36 Chapter 3: New Language Features

T getValue () const {

return value;

}

...

};

void f()

{

MyClass<double> d;

MyClass<int> i;

d.assign(d); // OK

d.assign(i); // OK (int is assignable to double)

}

Note that the argument x of assign() now differs from the type of *this. Thus, you can’t access

private and protected members of MyClass<> directly. Instead, you have to use something like

getValue() in this example.

A special form of a member template is a template constructor. Template constructors are usu-

ally provided to enable implicit type conversions when objects are copied. Note that a template

constructor does not suppress the implicit declaration of the copy constructor. If the type matches

exactly, the implicit copy constructor is generated and called. For example:

template <typename T>

class MyClass {

public:

// copy constructor with implicit type conversion

// - does not suppress implicit copy constructor

template <typename U>

MyClass (const MyClass<U>& x);

...

};

void f()

{

MyClass<double> xd;

...

MyClass<double> xd2(xd); // calls implicitly generated copy constructor

MyClass<int> xi(xd); // calls template constructor

...

}

Here, the type of xd2 is the same as the type of xd and so is initialized via the implicitly generated

copy constructor. The type of xi differs from the type of xd and so is initialized by using the

template constructor. Thus, if you implement a template constructor, don’t forget to provide a default

constructor if its default behavior does not fit your needs. See Section 5.1.1, page 60, for another

example of member templates.

3.2 Old “New” Language Features 37

Nested Class Templates

Nested classes may also be templates:

template <typename T>

class MyClass {

...

template <typename T2>

class NestedClass;

...

};

3.2.1 Explicit Initialization for Fundamental Types

If you use the syntax of an explicit constructor call without arguments, fundamental types are ini-

tialized with zero:

int i1; // undefined value

int i2 = int(); // initialized with zero

int i3{}; // initialized with zero (since C++11)

This feature enables you to write template code that ensures that values of any type have a certain

default value. For example, in the following function, the initialization guarantees that x is initialized

with zero for fundamental types:

template <typename T>

void f()

{

T x = T();

...

}

If a template forces the initialization with zero, its value is so-called zero initialized. Otherwise it’s

default initialized.

3.2.2 Definition of main()

I’d also like to clarify an important, often misunderstood, aspect of the core language: namely, the

only correct and portable versions of main(). According to the C++ standard, only two definitions

of main() are portable:

int main()

{

...

}

and

38 Chapter 3: New Language Features

int main (int argc, char* argv[])

{

...

}

where argv (the array of command-line arguments) might also be defined as char**. Note that the

return type int is required.

You may, but are not required to, end main() with a return statement. Unlike C, C++ defines

an implicit

return 0;

at the end of main(). This means that every program that leaves main() without a return statement

is successful. Any value other than 0 represents a kind of failure (see Section 5.8.2, page 162, for

predefined values). Therefore, my examples in this book have no return statement at the end of

main().

To end a C++ program without returning from main(), you usually should call exit(),

quick_exit() (since C++11), or terminate(). See Section 5.8.2, page 162, for details.

Chapter 4

General Concepts

This chapter describes the fundamental C++ standard library concepts that you need to work with

all or most components:

• The namespace std

• The names and formats of header files

• The general concept of error and exception handling

• Callable objects

• Basic concepts about concurrency and multithreading

• A brief introduction to allocators

4.1 Namespace std

If you use different modules and/or libraries, you always have the potential for name clashes. This is

because modules and libraries might use the same identifier for different things. This problem was

solved by the introduction of namespaces to C++. A namespace is a certain scope for identifiers.

Unlike a class, a namespace is open for extensions that might occur at any source. Thus, you could

use a namespace to define components that are distributed over several physical modules. A typical

example of such a component is the C++ standard library, so it follows that it uses a namespace.

In fact, all identifiers of the C++ standard library are defined in a namespace called std. With

C++11, this also applies to identifiers that were introduced with TR1 and had namespace std::tr1

there (see Section 2.1, page 7). In addition, namespace posix is reserved now, although it is not

used by the C++ standard library.

Note that the following namespaces nested within std are used inside the C++ standard library:

• std::rel_ops (see Section 5.5.3, page 138)

• std::chrono (see Section 5.7.1, page 144)

• std::placeholders (see Section 6.10.3, page 243)

• std::regex_constants (see Section 14.6, page 732)

• std::this_thread (see Section 18.3.7, page 981)

40 Chapter 4: General Concepts

According to the concept of namespaces, you have three options when using an identifier of the C++

standard library:

1. You can qualify the identifier directly. For example, you can write std::ostream instead of

ostream. A complete statement might look like this:

std::cout << std::hex << 3.4 << std::endl;

2. You can use a using declaration. For example, the following code fragment introduces the local

ability to skip std:: for cout and endl:

using std::cout;

using std::endl;

Thus, the example in option 1 could be written like this:

cout << std::hex << 3.4 << endl;

3. You can use a using directive. This is the easiest option. By using a using directive for namespace

std, all identifiers of the namespace std are available as if they had been declared globally. Thus,

the statement

using namespace std;

allows you to write

cout << hex << 3.4 << endl;

Note that in complex code, this might lead to accidental name clashes or, worse, to different

behavior due to some obscure overloading rules. You should never use a using directive when

the context is not clear, such as in header files.

The examples in this book are quite small, so for my own convenience, I usually use using directives

throughout this book in complete example programs.

4.2 Header Files

The use of namespace std for all identifiers of the C++ standard library was introduced during the

standardization process. This change is not backward compatible to old header files, in which iden-

tifiers of the C++ standard library are declared in the global scope. In addition, some interfaces of

classes changed during the standardization process (however, the goal was to stay backward compat-

ible if possible). So, a new style for the names of standard header files was introduced, thus allowing

vendors to stay backward compatible by providing the old header files.

The definition of new names for the standard header files was a good opportunity to standardize

the extensions of header files. Previously, several extensions for header files were used; for example,

.h, .hpp, and .hxx. However, the new standard extension for header files might be a surprise:

Standard headers no longer have extensions. Hence, include statements for standard header files

look like this:

#include <iostream>

#include <string>

This convention also applies to header files assumed from the C standard. C header files now have

the new prefix c instead of the old extension .h:

4.3 Error and Exception Handling 41

#include <cstdlib> // was: <stdlib.h>

#include <cstring> // was: <string.h>

Inside these header files, all identifiers are declared in namespace std.

One advantage of this naming scheme is that you can distinguish the old string header for char*

C functions from the new string header for the standard C++ class string:

#include <string> // C++ class string

#include <cstring> // char* functions from C

The new naming scheme of header files does not necessarily mean that the filenames of standard

header files have no extensions from the point of view of the operating system. How include

statements for standard header files are handled is implementation defined. C++ systems might

add an extension or even use built-in declarations without reading a file. In practice, however, most

systems simply include the header from a file that has exactly the same name as used in the include

statement. So, in most systems, C++ standard header files simply have no extension. In general, it

is still a good idea to use a certain extension for your own header files to help identify them in a file

system.

To maintain compatibility with C, the “old” standard C header files are still available. So if

necessary, you can still use, for example:

#include <stdlib.h>

In this case, the identifiers are declared in both the global scope and namespace std. In fact, these

headers behave as if they declare all identifiers in namespace std, followed by an explicit using

declaration.

For the C++ header files in the “old” format, such as <iostream.h>, there is no specification in

the standard. Hence, they are not supported. In practice, most vendors will probably provide them

to enable backward compatibility. Note that there were more changes in the headers than just the

introduction of namespace std. In general, you should either use the old names of header files or

switch to the new standardized names.

4.3 Error and Exception Handling

The C++ standard library is heterogeneous. It contains software from diverse sources that have

different styles of design and implementation. Error and exception handling is a typical example

of these differences. Parts of the library, such as string classes, support detailed error handling,

checking for every possible problem that might occur and throwing an exception if there is an error.

Other parts, such as the STL and valarrays, prefer speed over safety, so they rarely check for logical

errors and throw exceptions only if runtime errors occur.

4.3.1 Standard Exception Classes

All exceptions thrown by the language or the library are derived from the base class exception,

defined in <exception>. This class is the root of several standard exception classes, which form a

hierarchy, as shown in Figure 4.1. These standard exception classes can be divided into three groups:

42 Chapter 4: General Concepts

nested_exception

future_error

code()

runtime_error

logic_error

bad_function_call

bad_typeid

bad_cast

bad_alloc

exception

what()
system_error

code()

bad_exception

bad_weak_ptr

invalid_argument

domain_error

out_of_range

length_error

underflow_error

range_error

overflow_error

bad_array_new_length

ios_base::failure

Figure 4.1. Hierarchy of Standard Exceptions

1. Language support

2. Logic errors

3. Runtime errors

Logic errors usually can be avoided because the reason is inside the scope of a program, such as a

precondition violation. Runtime exceptions are caused by a reason that is outside the scope of the

program, such as not enough resources.

Exception Classes for Language Support

Exceptions for language support are used by language features. So in a way they are part of the core

language rather than the library. These exceptions are thrown when the following operations fail:

• An exception of class bad_cast, defined in <typeinfo>, is thrown by the dynamic_cast

operator if a type conversion on a reference fails at runtime.

• An exception of class bad_typeid, defined in <typeinfo>, is thrown by the typeid opera-

tor for runtime type identification. If the argument to typeid is zero or the null pointer, this

exception gets thrown.

• An exception of class bad_exception, defined in <exception>, is used to handle unexpected

exceptions. It can be thrown by the function unexpected(), which is called if a function throws

an exception that is not listed in an exception specification Note, however, that the use of excep-

tion specifications is deprecated since C++11 (see Section 3.1.7, page 24).

4.3 Error and Exception Handling 43

These exceptions might also be thrown by library functions. For example, bad_cast might be

thrown by use_facet<> if a facet is not available in a locale (see Section 16.2.2, page 864).

Exception Classes for Logic Errors

Exception classes for logic errors are usually derived from class logic_error. Logic errors are

errors that, at least in theory, could be avoided by the program; for example, by performing additional

tests of function arguments. Examples of such errors are a violation of logical preconditions or a

class invariant. The C++ standard library provides the following classes for logic errors:

• An exception of class invalid_argument is used to report invalid arguments, such as when a

bitset (array of bits) is initialized with a char other than ’0’ or ’1’.

• An exception of class length_error is used to report an attempt to do something that exceeds

a maximum allowable size, such as appending too many characters to a string.

• An exception of class out_of_range is used to report that an argument value is not in the

expected range, such as when a wrong index is used in an array-like collection or string.

• An exception of class domain_error is used to report a domain error.

• Since C++11, an exception of class future_error is used to report logical errors when using

asynchronous system calls (see Chapter 18). Note that runtime errors in this domain are raised

via class system_error.

In general, classes for logic errors are defined in <stdexcept>. However, class future_error is

defined in <future>.

Exception Classes for Runtime Errors

Exceptions derived from runtime_error are provided to report events that are beyond the scope of

a program and are not easily avoidable. The C++ standard library provides the following classes for

runtime errors:

• An exception of class range_error is used to report a range error in internal computations.

In the C++ standard library, the exception can occur since C++11 in conversions between wide

strings and byte strings (see Section 16.4.4, page 901).

• An exception of class overflow_error is used to report an arithmetic overflow. In the C++

standard library the exception can occur if a bitset is converted into an integral value (see Sec-

tion 12.5.1, page 652).

• An exception of class underflow_error is used to report an arithmetic underflow.

• Since C++11, an exception of class system_error is used to report errors caused by the under-

lying operating system. In the C++ standard library, this exception can be thrown in the context of

concurrency, such as class thread, classes to control data races, and async() (see Chapter 18).

• An exception of class bad_alloc, defined in <new>, is thrown whenever the global operator

new fails, except when the nothrow version of new is used. This is probably the most important

runtime exception because it might occur at any time in any nontrivial program.

Since C++11, bad_array_new_length, derived from bad_alloc, will be thrown by new if

the size passed to new is less than zero or such that the size of the allocated object would exceed

the implementation-defined limit (that is, if it’s a logic error rather than a runtime error).

44 Chapter 4: General Concepts

• An exception of class bad_weak_ptr, defined in <memory>, is thrown whenever the creation of

a weak pointer out of a shared pointer fails. See Section 5.2.2, page 89, for details.

• An exception of class bad_function_call, defined in <functional>, is thrown whenever a

function wrapper object gets invoked but has no target. See Section 5.4.4, page 133, for details.

In addition, for the I/O part of the library, a special exception class called ios_base::failure is

provided in <ios>. An exception of this class may be thrown when a stream changes its state due

to an error or end-of-file. Since C++11, this class is derived from system_error; before C++11, it

was directly derived from class exception. The exact behavior of this exception class is described

in Section 15.4.4, page 762.

Conceptionally, bad_alloc can be considered a system error. However, for historical reasons

and because of its importance, implementations are encouraged to throw a bad_alloc rather than a

system_error exception if an error represents an out-of-memory condition.

In general, classes for runtime errors are defined in <stdexcept>. Class system_error, how-

ever, is defined in <system_error>.

Exceptions Thrown by the Standard Library

As the previous description shows, almost all exception classes can be thrown by the C++ standard

library. In particular, bad_alloc exceptions can be thrown whenever storage is allocated.

In addition, because library features might use code provided by the application programmer,

functions might throw any exception indirectly.

Any implementation of the standard library might also offer additional exception classes either as

siblings or as derived classes. However, the use of these nonstandard classes makes code nonportable

because you could not use another implementation of the standard library without breaking your

code. So, you should always use only the standard exception classes.

Header Files for Exception Classes

The exception classes are defined in many different header files. Thus, to be able to deal with all

exceptions the library might throw, you have to include:

#include <exception> // for classes exception and bad_exception

#include <stdexcept> // for most logic and runtime error classes

#include <system_error> // for system errors (since C++11)

#include <new> // for out-of-memory exceptions

#include <ios> // for I/O exceptions

#include <future> // for errors with async() and futures (since C++11)

#include <typeinfo> // for bad_cast and bad_typeid

4.3.2 Members of Exception Classes

To handle an exception in a catch clause, you may use the interface provided by the exception

classes. For all classes, what() is provided; for some classes, code() also is provided.

4.3 Error and Exception Handling 45

The Member what()

For all standard exception classes, only one member can be used to get additional information be-

sides the type itself: the virtual member function what(), which returns a null-terminated byte

string:

namespace std {

class exception {

public:

virtual const char* what() const noexcept;

...

};

}

The content of the string returned by what() is implementation defined. Note that the string might

be a null-terminated multibyte string that is suitable to convert and display as wstring (see Sec-

tion 13.2.1, page 664). The C-string returned by what() is valid until the exception object from

which it is obtained gets destroyed or a new value is assigned to the exception object.

Error Codes versus Error Conditions

For the exception classes system_error and future_error, there is an additional member to get

details about the exception. However, before going into details, we have to introduce the difference

between error codes and error conditions:

• Error codes are light-weight objects that encapsulate error code values that might be implemen-

tation-specific. However, some error codes also are standardized.

• Error conditions are objects that provide portable abstractions of error descriptions.

Depending on the context, for exceptions the C++ standard library sometimes specifies error code

and sometimes error conditions. In fact:

• Class std::errc provides error conditions for std::system_error exceptions corresponding

to standard system error numbers defined in <cerrno> or <errno.h>.

• Class std::io_errc provides an error code for std::ios_base::failure exceptions thrown

by stream classes since C++11 (see Section 15.4.4, page 762).

• Class std::future_errc provides error codes for std::future_error exceptions thrown by

the concurrency library (see Chapter 18).

Tables 4.1 and 4.2 list the error condition values that are specified by the C++ standard library

for system_error exceptions. These are scoped enumerators (see Section 3.1.13, page 32), so

the prefix std::errc:: has to be used. The values of these conditions are required to have the

corresponding errno value defined in <cerrno> or <errno.h> This is not the error code; the error

codes usually will be implementation-specific.

46 Chapter 4: General Concepts

Error Condition Enum Value

address_family_not_supported EAFNOSUPPORT

address_in_use EADDRINUSE

address_not_available EADDRNOTAVAIL

already_connected EISCONN

argument_list_too_long E2BIG

argument_out_of_domain EDOM

bad_address EFAULT

bad_file_descriptor EBADF

bad_message EBADMSG

broken_pipe EPIPE

connection_aborted ECONNABORTED

connection_already_in_progress EALREADY

connection_refused ECONNREFUSED

connection_reset ECONNRESET

cross_device_link EXDEV

destination_address_required EDESTADDRREQ

device_or_resource_busy EBUSY

directory_not_empty ENOTEMPTY

executable_format_error ENOEXEC

file_exists EEXIST

file_too_large EFBIG

filename_too_long ENAMETOOLONG

function_not_supported ENOSYS

host_unreachable EHOSTUNREACH

identifier_removed EIDRM

illegal_byte_sequence EILSEQ

inappropriate_io_control_operation ENOTTY

interrupted EINTR

invalid_argument EINVAL

invalid_seek ESPIPE

io_error EIO

is_a_directory EISDIR

message_size EMSGSIZE

network_down ENETDOWN

network_reset ENETRESET

network_unreachable ENETUNREACH

no_buffer_space ENOBUFS

no_child_process ECHILD

no_link ENOLINK

no_lock_available ENOLCK

no_message_available ENODATA

no_message ENOMSG

no_protocol_option ENOPROTOOPT

no_space_on_device ENOSPC

no_stream_resources ENOSR

no_such_device_or_address ENXIO

no_such_device ENODEV

no_such_file_or_directory ENOENT

no_such_process ESRCH

not_a_directory ENOTDIR

not_a_socket ENOTSOCK

Table 4.1. Error Conditions of system_errors, Part 1

4.3 Error and Exception Handling 47

Error Condition Enum Value

not_a_stream ENOSTR

not_connected ENOTCONN

not_enough_memory ENOMEM

not_supported ENOTSUP

operation_canceled ECANCELED

operation_in_progress EINPROGRESS

operation_not_permitted EPERM

operation_not_supported EOPNOTSUPP

operation_would_block EWOULDBLOCK

owner_dead EOWNERDEAD

permission_denied EACCES

protocol_error EPROTO

protocol_not_supported EPROTONOSUPPORT

read_only_file_system EROFS

resource_deadlock_would_occur EDEADLK

resource_unavailable_try_again EAGAIN

result_out_of_range ERANGE

state_not_recoverable ENOTRECOVERABLE

stream_timeout ETIME

text_file_busy ETXTBSY

timed_out ETIMEDOUT

too_many_files_open_in_system ENFILE

too_many_files_open EMFILE

too_many_links EMLINK

too_many_symbolic_link_levels ELOOP

value_too_large EOVERFLOW

wrong_protocol_type EPROTOTYPE

Table 4.2. Error Conditions of system_errors, Part 2

Table 4.3 lists the error code values that are specified by the C++ standard library for exceptions

of type future_errc. These are scoped enumerators (see Section 3.1.13, page 32), so the prefix

std::future_errc:: has to be used.1

The only error code specified for ios_base::failure exceptions is std::io_errc::stream.

Error Code Meaning

broken_promise shared state abandoned

future_already_retrieved get_future() already called

promise_already_satisfied Shared state already has a value/exception or already invoked

no_state No shared state

Table 4.3. Error Codes of future_errors

1 Note that in the C++11 standard, the error codes of future errors are defined explicitly with

future_errc::broken_promise having the value 0. But because error code 0 usually stands for “no error,”

this was a design mistake. The fix is that all future error code values are now defined to be implementation-

specific.

48 Chapter 4: General Concepts

Dealing with Error Codes and Error Conditions

For error codes and error conditions, two different types are provided by the C++ standard library:

class std::error_code and class std::error_condition. This might lead to the impression

that dealing with errors is pretty complicated. However, the library is designed so that you can

always compare error codes with error conditions using both the objects or enumeration values.

For example, for any error object ec of type std::error_code or std::error_condition the

following is possible:

if (ec == std::errc::invalid_argument) { // check for specific error condition

...

}

if (ec == std::future_errc::no_state) { // check for specific error code

...

}

Thus, when dealing with errors only to check for specific error codes or conditions, the difference

between codes and conditions doesn’t matter.

To be able to deal with error codes and error conditions, class std::system_error, including

its derived class std::ios_base::failure, and class std::_future_error provide the addi-

tional nonvirtual member function code() returning an object of class std::error_code:2

namespace std {

class system_error : public runtime_error {

public:

virtual const char* what() const noexcept;

const error_code& code() const noexcept;

...

};

class future_error : public logic_error {

public:

virtual const char* what() const noexcept;

const error_code& code() const noexcept;

...

};

}

Class error_code then provides member functions to get some details of the error:

namespace std {

class error_code {

public:

2 Strictly speaking, these declarations are in different header files, and what() is not declared as virtual here

but derives its virtuality from its base class.

4.3 Error and Exception Handling 49

const error_category& category() const noexcept;

int value() const noexcept;

string message() const;

explicit operator bool() const noexcept;

error_condition default_error_condition() const noexcept;

...

};

}

This interface is driven by the following design:

• Different libraries might use the same integral values for different error codes. So, each error has

a category and a value. Only inside a category is each value distinct and has a clear specified

meaning.

• message() yields a corresponding message, which usually is part of what what() yields in

general for all exceptions, although this is not required.

• operator bool() yields whether an error code is set (0 is the value that stands for “no error”).

When exceptions are caught, this operator usually should yield true.

• default_error_condition() returns the corresponding error_condition, again providing

category(), value(), message(), and operator bool():

namespace std {

class error_condition {

public:

const error_category& category() const noexcept;

int value() const noexcept;

string message() const;

explicit operator bool() const noexcept;

...

};

}

Class std::error_category provides the following interface:

namespace std {

class error_category {

public:

virtual const char* name() const noexcept = 0;

virtual string message (int ev) const = 0;

virtual error_condition default_error_condition (int ev)

const noexcept;

bool operator == (const error_category& rhs) const noexcept;

bool operator != (const error_category& rhs) const noexcept;

...

};

}

50 Chapter 4: General Concepts

Here, name() yields the name of the category. message() and default_error_condition()

return the message and the default error condition according to the passed value (this is what the

corresponding error_code member functions call). Operators == and != allow you to compare

error categories.

The following category names are defined by the C++ standard library:

• "iostream" for I/O stream exceptions of type ios_base::failure

• "generic" for system exceptions of type system_error, where the value corresponds to a

POSIX errno value

• "system" for system exceptions of type system_error, where the value does not correspond

to a POSIX errno value

• "future" for exceptions of type future_error

For each category, global functions are provided that return the category:3

const error_category& generic_category() noexcept; // in <system_errror>

const error_category& system_category() noexcept; // in <system_error>

const error_category& iostream_category(); // in <ios>

const error_category& future_category() noexcept; // in <future>

Thus, for an error code object e, you can also call the following to find out whether it is an I/O

failure:

if (e.code().category() == std::iostream_category())

The following code demonstrates how to use a generic function to process (here, print) different

exceptions:

// util/exception.hpp

#include <exception>

#include <system_error>

#include <future>

#include <iostream>

template <typename T>

void processCodeException (const T& e)

{

using namespace std;

auto c = e.code();

cerr << "- category: " << c.category().name() << endl;

cerr << "- value: " << c.value() << endl;

cerr << "- msg: " << c.message() << endl;

cerr << "- def category: "

<< c.default_error_condition().category().name() << endl;

3 It’s probably an oversight that iostream_category() is not declared with noexcept.

4.3 Error and Exception Handling 51

cerr << "- def value: "

<< c.default_error_condition().value() << endl;

cerr << "- def msg: "

<< c.default_error_condition().message() << endl;

}

void processException()

{

using namespace std;

try {

throw; // rethrow exception to deal with it here

}

catch (const ios_base::failure& e) {

cerr << "I/O EXCEPTION: " << e.what() << endl;

processCodeException(e);

}

catch (const system_error& e) {

cerr << "SYSTEM EXCEPTION: " << e.what() << endl;

processCodeException(e);

}

catch (const future_error& e) {

cerr << "FUTURE EXCEPTION: " << e.what() << endl;

processCodeException(e);

}

catch (const bad_alloc& e) {

cerr << "BAD ALLOC EXCEPTION: " << e.what() << endl;

}

catch (const exception& e) {

cerr << "EXCEPTION: " << e.what() << endl;

}

catch (...) {

cerr << "EXCEPTION (unknown)" << endl;

}

}

This allows to handle exceptions as follows:

try {

...

}

catch (...) {

processException();

}

52 Chapter 4: General Concepts

Other Members

The remaining members of the standard exception classes create, copy, assign, and destroy exception

objects.

Note that besides what() and code(), for any of the standard exception classes, no additional

member is provided that describes the kind of exception. For example, there is no portable way to

find out the context of an exception or the faulty index of a range error. Thus, a portable evaluation

of an exception could print only the message returned from what():

try {

...

}

catch (const std::exception& error) {

// print implementation-defined error message

std::cerr << error.what() << std::endl;

...

}

The only other possible evaluation might be an interpretation of the exact type of the exception. For

example, when a bad_alloc exception is thrown, a program might try to get more memory.

4.3.3 Passing Exceptions with Class exception_ptr

Since C++11, the C++ standard library provides the ability to store exceptions into objects of type

exception_ptr to process them later or in other contexts:

#include <exception>

std::exception_ptr eptr; // object to hold exceptions (or nullptr)

void foo ()

{

try {

throw ...;

}

catch (...) {

eptr = std::current_exception(); // save exception for later processing

}

}

void bar ()

{

if (eptr != nullptr) {

std::rethrow_exception(eptr); // process saved exception

}

}

4.3 Error and Exception Handling 53

current_exception() returns an exception_ptr object that refers to the currently handled ex-

ception The value returned by current_exception() is valid as long as an exception_ptr refers

to it. rethrow_exception() rethrows the stored exception so that bar() behaves as the initial ex-

ception thrown in foo() would have occured inside bar().

This feature is especially useful to pass exception between threads (see Section 18.2.1, page 964).

4.3.4 Throwing Standard Exceptions

You can throw standard exceptions inside your own library or program. All logic error and run-

time error standard exception classes that provide the what() interface have only a constructor for

std::string and (since C++11) for const char*. The value passed here will become the de-

scription returned by what(). For example, the class logic_error is defined as follows:

namespace std {

class logic_error : public exception {

public:

explicit logic_error (const string& whatString);

explicit logic_error (const char* whatString); // since C++11

...

};

}

Class std::system_error provides the ability to create an exception object by passing an error

code, a what() string, and an optional category:

namespace std {

class system_error : public runtime_error {

public:

system_error (error_code ec, const string& what_arg);

system_error (error_code ec, const char* what_arg);

system_error (error_code ec);

system_error (int ev, const error_category& ecat,

const string& what_arg);

system_error (int ev, const error_category& ecat,

const char* what_arg);

...

};

}

To provide an error_code object, make_error_code() convenience functions are provided that

take only the error code value.

Class std::ios_base::failure provides constructors taking a what() string and (since

C++11) an optional error_code object. Class std::future_error provides only a constructor

taking a single error_code object.

54 Chapter 4: General Concepts

Thus, throwing a standard exception is pretty easy:

throw std::out_of_range ("out_of_range (somewhere, somehow)");

throw

std::system_error (std::make_error_code(std::errc::invalid_argument),

"argument ... is not valid");

You can’t throw exceptions of the base class exception and any exception class that is provided for

language support (bad_cast, bad_typeid, bad_exception).

4.3.5 Deriving from Standard Exception Classes

Another possibility for using the standard exception classes in your code is to define a special ex-

ception class derived directly or indirectly from class exception. To do this, you must ensure that

the what() mechanism or code() mechanism works, which is possible because what() is virtual.

For an example, see class Stack in Section 12.1.3, page 635.

4.4 Callable Objects

At different places, the C++ standard library uses the term callable object, which means objects that

somehow can be used to call some functionality:

• A function, where additional args are passed to as arguments

• A pointer to a member function, which is called for the object passed as the first additional

argument (must be reference or pointer) and gets the remaining arguments as member function

parameters

• A function object (operator () for a passed object), where additional args are passed as argu-

ments

• A lambda (see Section 3.1.10, page 28), which strictly speaking is a kind of function object

For example:

void func (int x, int y);

auto l = [] (int x, int y) {

...

};

class C {

public:

void operator () (int x, int y) const;

void memfunc (int x, int y) const;

};

4.5 Concurrency and Multithreading 55

int main()

{

C c;

std::shared_ptr<C> sp(new C);

// bind() uses callable objects to bind arguments:

std::bind(func,77,33)(); // calls: func(77,33)

std::bind(l,77,33)(); // calls: l(77,33

std::bind(C(),77,33)(); // calls: C::operator()(77,33)

std::bind(&C::memfunc,c,77,33)(); // calls: c.memfunc(77,33)

std::bind(&C::memfunc,sp,77,33)(); // calls: sp->memfunc(77,33)

// async() uses callable objects to start (background) tasks:

std::async(func,42,77); // calls: func(42,77)

std::async(l,42,77); // calls: l(42,77)

std::async(c,42,77); // calls: c.operator()(42,77)

std::async(&C::memfunc,&c,42,77); // calls: c.memfunc(42,77)

std::async(&C::memfunc,sp,42,77); // calls: sp->memfunc(42,77)

}

As you can see, even smart pointers (see Section 5.2, page 76) can be used to pass an object a

member function is called for. See Section 10.2.2, page 487, for details about std::bind() and

Section 18.1, page 946, for details about std::async().

To declare callable objects, in general class std::function<> can be used (see Section 5.4.4,

page 133).

4.5 Concurrency and Multithreading

Before C++11, there was no support for concurrency in the language and the C++ standard library,

although implementations were free to give some guarantees. With C++11, this has changed. Both

the core language and the library got improvements to support concurrent programming.

The following apply in the core language, for example:

• We now have a memory model, which guarantees that updates on two different objects used by

two different threads are independent of each other. Before C++11, there was no guarantee that

writing a char in one thread could not interfere with writing another char in another thread (see

section “The memory model” in [Stroustrup:C++0x]).

• A new keyword, thread_local, was introduced for defining thread-specific variables and ob-

jects.

In the library, we got the following:

• Some guarantees regarding thread safety

• Supporting classes and functions for concurrency (starting and synchronizing multiple threads)

56 Chapter 4: General Concepts

The supporting classes and functions are discussed in Chapter 18. The guarantees are discussed

throughout the book. However, I want to give an overview of the general guarantees here.

The General Concurrency Guarantees of the C++ Standard Library

The general constraints the C++ standard library provides regarding concurrency and multithreading

since C++11 are as follows:

• In general, sharing a library object by multiple threads — where at least one thread modifies the

object — might result in undefined behavior. To quote the standard: “Modifying an object of

a standard library type that is shared between threads risks undefined behavior unless objects

of that type are explicitly specified as being sharable without data races or the user supplies a

locking mechanism.”

• Especially during the construction of an object in one thread, using that object in another thread

results in undefined behavior. Similarly, destructing an object in one thread while using it in an-

other thread results in undefined behavior. Note that this applies even to objects that are provided

for thread synchronization.

The most important places where concurrent access to library objects is supported are as follows:

• For STL containers (see Chapter 7) and container adapters (see Chapter 12), the following guar-

antees are given:

– Concurrent read-only access is possible. This explicitly implies calling the nonconstant mem-

ber functions begin(), end(), rbegin(), rend(), front(), back(), data(), find(),

lower_bound(), upper_bound(), equal_range(), at(), and except for associative con-

tainers, operator [] as well as access by iterators, if they do not modify the containers.

– Concurrent access to different elements of the same container is possible (except for class

vector<bool>). Thus, different threads might concurrently read and/or write different ele-

ments of the same container. For example, each thread might process something and store

the result in “its” element of a shared vector.

• For formatted input and output to a standard stream, which is synchronized with C I/O (see

Section 15.14.1, page 845), concurrent access is possible, although it might result in interleaved

characters. This by default applies to std::cin, std::cout, std::cerr. However, for string

streams, file streams, or stream buffers, concurrent access results in undefined behavior.

• Concurrent calls of atexit() and at_quick_exit() (see Section 5.8.2, page 162) are synchro-

nized. The same applies to functions that set or get the new, terminate, or unexpected handler

(set_new_handler(), set_unexpected(), set_terminate() and the corresponding get-

ters). Also, getenv() is synchronized.

• For all member functions of the default allocator (see Chapter 19) except destructors, concurrent

access is synchronized.

Note also that the library guarantees that the C++ standard library has no “hidden” side effects that

break concurrent access to different objects. Thus, the C++ standard library

• Does not access reachable objects other than those required for a specific operation,

• Is not allowed to internally introduce shared static objects without synchronization,

• Allows implementations to parallelize operations only if there are no visible side effects for the

programmer. However, see Section 18.4.2, page 983.

4.6 Allocators 57

4.6 Allocators

In several places, the C++ standard library uses special objects to handle the allocation and dealloca-

tion of memory. Such objects are called allocators. They represent a special memory model and are

used as an abstraction to translate the need to use memory into a raw call for memory. The use of

different allocator objects at the same time allows you to use different memory models in a program.

Originally, allocators were introduced as part of the STL to handle the nasty problem of different

pointer types on PCs (such as near, far, and huge pointers). Now, allocators serve as a base for

technical solutions that use certain memory models, such as shared memory, garbage collection, and

object-oriented databases, without changing the interfaces. However, this use is relatively new and

not yet widely adopted (this will probably change).

The C++ standard library defines a default allocator as follows:

namespace std {

template <typename T>

class allocator;

}

The default allocator is used as the default value everywhere an allocator can be used as an argu-

ment. It does the usual calls for memory allocation and deallocation; that is, it calls the new and

delete operators. However, when or how often these operators are called is unspecified. Thus, an

implementation of the default allocator might, for example, cache the allocated memory internally.

The default allocator is used in most programs. However, other libraries sometimes provide allo-

cators to fit certain needs. In such cases, you must simply pass them as arguments. Only occasionally

does it make sense to program allocators. In practice, the default allocator is typically used. The

discussion of allocators is deferred until Chapter 19, which covers in detail not only allocators but

also their interfaces.

This page intentionally left blank

Chapter 5

Utilities

This chapter describes the general utilities of the C++ standard library. These utilities are small and

simple classes, types, or functions that perform frequently needed tasks:

• Class pair<> and class tuple<>

• Smart pointer classes (class shared_ptr<> and class unique_ptr)

• Numeric limits1

• Type traits and type utilities

• Auxiliary functions (for example, min(), max(), and swap())

• Class ratio<>1

• Clocks and timers

• Some important C functions

Most, but not all, of these utilities are described in clause 20, “General Utilities,” of the C++ standard.

The rest are described along with more major components of the library either because they are used

primarily with that particular component or due to historical reasons. For example, some general

auxiliary functions are defined as part of the <algorithm> header, although they are not algorithms

in the sense of the STL (which is described in Chapter 6).

Several of these utilities are also used within the C++ standard library. For example, type pair<>

is used whenever two values need to be treated as a single unit — for example, if a function has to

return two values or when elements of containers are key/value pairs — and type traits are used

wherever complicated type conversions are necessary.

1 One could argue that numeric limits and class ratio<> should be part of Chapter 17, which covers numerics,

but these classes are used in some other parts of the library, so I decided to describe them here.

60 Chapter 5: Utilities

5.1 Pairs and Tuples

In C++98, the first version of the C++ standard library, a simple class was provided to handle value

pairs of different types without having to define a specific class. The C++98 class was used when a

value pair was returned by standard functions and the container elements were key/value pairs.

TR1 introduced a tuple class, which extended this concept for an arbitrary but still limited number

of elements. Implementations did portably allow tuples with up to ten elements of different types.

With C++11, the tuple class was reimplemented by using the concept of variadic templates (see

Section 3.1.9, page 26). Now, there is a standard tuple class for a heterogeneous collection of any

size. In addition, class pair is still provided for two elements and can be used in combination with

a two-element tuple.

However, the pair class of C++11 was also extended a lot, which to some extent demonstrates

the enhancements that C++ as a language and its library received with C++11.

5.1.1 Pairs

The class pair treats two values as a single unit. This class is used in several places within the

C++ standard library. In particular, the container classes map, multimap, unordered_map, and

unordered_multimap use pairs to manage their elements, which are key/value pairs (see Sec-

tion 7.8, page 331). Other examples of the use of pairs are functions that return two values, such as

minmax() (see Section 5.5.1, page 134).

The structure pair is defined in <utility> and provides the operations listed in Table 5.1.

In principle, you can create, copy/assign/swap, and compare a pair<>. In addition, there are type

definitions for first_type and second_type, representing the types of the first and second values.

Element Access

To process the values of the pair direct access to the corresponding members is provided. In fact,

the type is declared as struct instead of class so that all members are public:

namespace std {

template <typename T1, typename T2>

struct pair {

// member

T1 first;

T2 second;

...

};

}

5.1 Pairs and Tuples 61

Operation Effect

pair<T1,T2> p Default constructor; creates a pair of values of types T1 and

T2, initialized with their default constructors

pair<T1,T2> p(val1,val1) Creates a pair of values of types T1 and T2, initialized with

val1 and val1

pair<T1,T2> p(rv1,rv2) Creates a pair of values of types T1 and T2, move

initialized with rv1 and rv2

pair<T1,T2> p(piecewise_ Creates a pair of values of types T1 and T2, initialized by

construct, the elements of the tuples t1 and t2

t1,t2)

pair<T1,T2> p(p2) Copy constructor; creates p as copy of p2

pair<T1,T2> p(rv) Move constructor; moves the contents of rv to p (implicit

type conversions are possible)

p = p2 Assigns the values of p2 to p (implicit type conversions are

possible since C++11)

p = rv Move assigns the values of rv to p (provided since C++11;

implicit type conversions are possible)

p.first Yields the first value inside the pair (direct member access)

p.second Yields the second value inside the pair (direct member

access)

get<0>(p) Equivalent to p.first (since C++11)

get<1>(p) Equivalent to p.second (since C++11)

p1 == p2 Returns whether p1 is equal to p2 (equivalent to

p1.first==p2.first && p1.second==p2.second)

p1 != p2 Returns whether p1 is not equal to p2 (!(p1==p2))

p1 < p2 Returns whether p1 is less than p2 (compares first or if

equal second of both values)

p1 > p2 Returns whether p1 is greater than p2 (p2<p1)

p1 <= p2 Returns whether p1 is less than or equal to p2 (!(p2<p1))

p1 >= p2 Returns whether p1 is greater than or equal to p2

(!(p1<p2))

p1.swap(p2) Swaps the data of p1 and p2 (since C++11)

swap(p1,p2) Same (as global function) (since C++11)

make_pair(val1,val2) Returns a pair with types and values of val1 and val2

Table 5.1. Operations of pairs

For example, to implement a generic function template that writes a value pair to a stream, you have

to program:2

2 Note that this output operator does not work where ADL (argument-dependent lookup) does not work (see

Section 15.11.1, page 812, for details).

62 Chapter 5: Utilities

// generic output operator for pairs (limited solution)

template <typename T1, typename T2>

std::ostream& operator << (std::ostream& strm,

const std::pair<T1,T2>& p)

{

return strm << "[" << p.first << "," << p.second << "]";

}

In addition, a tuple-like interface (see Section 5.1.2, page 68) is available since C++11. Thus, you

can use tuple_size<>::value to yield the number of elements and tuple_element<>::type to

yield the type of a specific element, and you can use get() to gain access to first or second:

typedef std::pair<int,float> IntFloatPair;

IntFloatPair p(42,3.14);

std::get<0>(p) // yields p.first

std::get<1>(p) // yields p.second

std::tuple_size<IntFloatPair>::value // yields 2

std::tuple_element<0,IntFloatPair>::type // yields int

Constructors and Assignment Operators

The default constructor creates a value pair with values that are initialized by the default constructor

of their type. Because of language rules, an explicit call of a default constructor also initializes

fundamental data types, such as int. Thus, the declaration

std::pair<int,float> p; // initialize p.first and p.second with zero

initializes the values of p by using int() and float(), which yield zero in both cases. See Sec-

tion 3.2.1, page 37, for a description of the rules for explicit initialization for fundamental types.

The copy constructor is provided with both versions for a pair of the same types and as member

template, which is used when implicit type conversions are necessary. If the types match, the normal

implicitly generated copy constructor is called.3 For example:

void f(std::pair<int,const char*>);

void g(std::pair<const int,std::string>);

...

void foo() {

std::pair<int,const char*> p(42,"hello");

f(p); // OK: calls implicitly generated copy constructor

g(p); // OK: calls template constructor

}

3 A template constructor does not hide the implicitly generated copy constructor. See Section 3.2, page 36, for

more details about this topic.

5.1 Pairs and Tuples

¨

63

Since C++11, a pair<> using a type that has only a nonconstant copy constructor will no longer

compile:4

class A

{

public:

...

A(A&); // copy constructor with nonconstant reference

...

};

std::pair<A,int> p; // Error since C++11

Since C++11, the assignment operator is also provided as a member template so that implicit type

conversions are possible. In addition, move semantics — moving the first and second elements —

are supported.

Piecewise Construction

Class pair<> provides three constructors to initialize the first and second members with initial

values:

namespace std {

template <typename T1, typename T2>

struct pair {

...

pair(const T1& x, const T2& y);

template<typename U, typename V> pair(U&& x, V&& y);

template <typename... Args1, typename... Args2>

pair(piecewise_construct_t,

tuple<Args1...> first_args,

tuple<Args2...> second_args);

...

};

}

The first two of these constructors provide the usual behavior: passing one argument for first and

one for second, including support of move semantics and implicit type conversions. However, the

third constructor is something special. It allows passing two tuples — objects of a variable number

of elements of different types (see Section 5.1.2, page 68) — but processes them in a different

way. Normally, by passing one or two tuples, the first two constructors would allow initializing

a pair, where first and/or second are tuples. But the third constructor uses the tuples to pass

their elements to the constructors of first and second. To force this behavior, you have to pass

std::piecewise_construct as an additional first argument. For example:

4 Thanks to Daniel Krugler for pointing this out.

64 Chapter 5: Utilities

// util/pair1.cpp

#include <iostream>

#include <utility>

#include <tuple>

using namespace std;

class Foo {

public:

Foo (tuple<int, float>) {

cout << "Foo::Foo(tuple)" << endl;

}

template <typename... Args>

Foo (Args... args) {

cout << "Foo::Foo(args...)" << endl;

}

};

int main()

{

// create tuple t:

tuple<int,float> t(1,2.22);

// pass the tuple as a whole to the constructor of Foo:

pair<int,Foo> p1 (42, t);

// pass the elements of the tuple to the constructor of Foo:

pair<int,Foo> p2 (piecewise_construct, make_tuple(42), t);

}

The program has the following output:

Foo::Foo(tuple)

Foo::Foo(args...)

Only where std::piecewise_construct is passed as the first argument is class Foo forced to use

a constructor that takes the elements of the tuple (an int and a float) rather than a tuple as a whole.

This means that in this example, the varargs constructor of Foo is called. If provided, a constructor

Foo::Foo(int,float) would be called.

As you can see, both arguments have to be a tuple to force this behavior. Therefore, the first

argument, 42, is explicitly converted into a tuple, using make_tuple() (you could instead pass

std::tuple(42)).

Note that this form of initialization is required to emplace() a new element into an (unordered)

map or multimap (see Section 7.8.2, page 341, and Section 7.9.3, page 373).

5.1 Pairs and Tuples 65

Convenience Function make_pair()

The make_pair() function template enables you to create a value pair without writing the types

explicitly.5 For example, instead of

std::pair<int,char>(42,’@’)

you can write the following:

std::make_pair(42,’@’)

Before C++11, the function was simply declared and defined as follows:

namespace std {

// create value pair only by providing the values

template <template T1, template T2>

pair<T1,T2> make_pair (const T1& x, const T2& y) {

return pair<T1,T2>(x,y);

}

}

However, since C++11, things have become more complicated because this class also deals with

move semantics in a useful way. So, since C++11, the C++ standard library states that make_pair()

is declared as:

namespace std {

// create value pair only by providing the values

template <template T1, template T2>

pair<V1,V2> make_pair (T1&& x, T2&& y);

}

where the details of the returned values and their types V1 and V2 depend on the types of x and y.

Without going into details, the standard now specifies that make_pair() uses move semantics if

possible and copy semantics otherwise. In addition, it “decays” the arguments so that the expression

make_pair("a","xy") yields a pair<const char*,const char*> instead of a pair<const

char[2],const char[3]> (see Section 5.4.2, page 132).

The make_pair() function makes it convenient to pass two values of a pair directly to a function

that requires a pair as its argument. Consider the following example:

void f(std::pair<int,const char*>);

void g(std::pair<const int,std::string>);

...

void foo() {

f(std::make_pair(42,"empty")); // pass two values as pair

g(std::make_pair(42,"chair")); // pass two values as pair with type conversions

}

5 Using make_pair() should cost no runtime. The compiler should always optimize any implied overhead.

66 Chapter 5: Utilities

As the example shows, make_pair() works even when the types do not match exactly, because

the template constructor provides implicit type conversion. When you program by using maps or

multimaps, you often need this ability (see Section 7.8.2, page 341).

Note that since C++11, you can, alternatively, use initializer lists:

f({42,"empty"}); // pass two values as pair

g({42,"chair"}); // pass two values as pair with type conversions

However, an expression that has the explicit type description has an advantage because the resulting

type of the pair is not derived from the values. For example, the expression

std::pair<int,float>(42,7.77)

does not yield the same as

std::make_pair(42,7.77)

The latter creates a pair that has double as the type for the second value (unqualified floating literals

have type double). The exact type may be important when overloaded functions or templates are

used. These functions or templates might, for example, provide versions for both float and double

to improve efficiency.

With the new semantic of C++11, you can influence the type make_pair() yields by forcing

either move or reference semantics. For move semantics, you simply use std::move() to declare

that the passed argument is no longer used:

std::string s, t;

...

auto p = std::make_pair(std::move(s),std::move(t));

... // s and t are no longer used

To force reference semantics, you have to use ref(), which forces a reference type, or cref(),

which forces a constant reference type (both provided by <functional>; see Section 5.4.3,

page 132). For example, in the following statements, a pair refers to an int twice so that, finally, i

has the value 2:

#include <utility>

#include <functional>

#include <iostream>

int i = 0;

auto p = std::make_pair(std::ref(i),std::ref(i)); // creates pair<int&,int&>

++p.first; // increments i

++p.second; // increments i again

std::cout << "i: " << i << std::endl; // prints i: 2

Since C++11, you can also use the tie() interface, defined in <tuple>, to extract values out of a

pair:

5.1 Pairs and Tuples 67

#include <utility>

#include <tuple>

#include <iostream>

std::pair<char,char> p=std::make_pair(’x’,’y’); // pair of two chars

char c;

std::tie(std::ignore,c) = p; // extract second value into c (ignore first one)

In fact, here the pair p is assigned to a tuple, where the second value is a reference to c (see Sec-

tion 5.1.2, page 70, for details).

Pair Comparisons

For the comparison of two pairs, the C++ standard library provides the usual comparison operators.

Two value pairs are equal if both values are equal:

namespace std {

template <typename T1, typename T2>

bool operator== (const pair<T1,T2>& x, const pair<T1,T2>& y) {

return x.first == y.first && x.second == y.second;

}

}

In a comparison of pairs, the first value has higher priority. Thus, if the first values of two pairs

differ, the result of their comparison is used as the result of the overall comparison of the pairs. If

the members first are equal, the comparison of the members second yields the overall result:

namespace std {

template <typename T1, typename T2>

bool operator< (const pair<T1,T2>& x, const pair<T1,T2>& y) {

return x.first < y.first ||

(!(y.first < x.first) && x.second < y.second);

}

}

The other comparison operators are defined accordingly.

Examples of Pair Usage

The C++ standard library uses pairs a lot. For example, the (unordered) map and multimap containers

use pair as a type to manage their elements, which are key/value pairs. See Section 7.8, page 331,

for a general description of maps and multimaps, and in particular Section 6.2.2, page 179, for an

example that shows the usage of type pair.

Objects of type pair are also used inside the C++ standard library in functions that return two

values (see Section 7.7.2, page 323, for an example).

68 Chapter 5: Utilities

5.1.2 Tuples

Tuples were introduced in TR1 to extend the concept of pairs to an arbitrary number of elements.

That is, tuples represent a heterogeneous list of elements for which the types are specified or deduced

at compile time.

However, with TR1 using the language features of C++98, it was not possible to define a template

for a variable number of elements. For this reason, implementations had to specify all possible

numbers of elements a tuple could have. The recommendation in TR1 was to support at least ten

arguments, which meant that tuples were usually defined as follows, although some implementations

did provide more template parameters:

template <typename T0 = ..., typename T1 = ..., typename T2 = ...,

typename T3 = ..., typename T4 = ..., typename T5 = ...,

typename T6 = ..., typename T7 = ..., typename T8 = ...,

typename T9 = ...>

class tuple;

That is, class tuple has at least ten template parameters of different types, with an implementation-

specific default value used to give unused tuple elements a default type with no abilities. This was

in fact an emulation of variadic templates, which in practice, however, was quite cumbersome and

very limited.

With C++11, variadic templates were introduced to enable templates to accept an arbitrary num-

ber of template arguments (see Section 3.1.9, page 26). As a consequence, the declaration for class

tuple, which happens in <tuple>, is now reduced to the following:

namespace std {

template <typename... Types>

class tuple;

}

Tuple Operations

In principle, the tuple interface is very straightforward:

• You can create a tuple by declaring it either explicitly or implicitly with the convenience function

make_tuple().

• You can access elements with the get<>() function template.

Here is a basic example of this interface:

// util/tuple1.cpp

#include <tuple>

#include <iostream>

#include <complex>

#include <string>

using namespace std;

5.1 Pairs and Tuples 69

int main()

{

// create a four-element tuple

// - elements are initialized with default value (0 for fundamental types)

tuple<string,int,int,complex<double>> t;

// create and initialize a tuple explicitly

tuple<int,float,string> t1(41,6.3,"nico");

// ‘‘iterate’’ over elements:

cout << get<0>(t1) << " ";

cout << get<1>(t1) << " ";

cout << get<2>(t1) << " ";

cout << endl;

// create tuple with make_tuple()

// - auto declares t2 with type of right-hand side

// - thus, type of t2 is tuple

auto t2 = make_tuple(22,44,"nico");

// assign second value in t2 to t1

get<1>(t1) = get<1>(t2);

// comparison and assignment

// - including type conversion from tuple<int,int,const char*>

// to tuple<int,float,string>

if (t1 < t2) { // compares value for value

t1 = t2; // OK, assigns value for value

}

}

The following statement creates a heterogeneous four-element tuple:

tuple<string,int,int,complex<double>> t;

The values are initialized with their default constructors. Fundamental types are initialized with 0

(this guarantee applies only since C++11).

The statement

tuple<int,float,string> t1(41,6.3,"nico");

creates and initializes a heterogeneous three-element tuple.

70 Chapter 5: Utilities

Alternatively, you can use make_tuple() to create a tuple in which the types are automatically

derived from the initial values. For example, you can use the following to create and initialize a tuple

of the corresponding types int, int, and const char*.6

make_tuple(22,44,"nico")

Note that a tuple type can be a reference. For example:

string s;

tuple<string&> t(s); // first element of tuple t refers to s

get<0>(t) = "hello"; // assigns "hello" to s

A tuple is no ordinary container class where you can iterate over the elements. Instead, for element

access, member templates are provided so that you have to know the index of elements you want to

access at compile time. For example, you get access to the first element of tuple t1 as follows:

get<0>(t1)

Passing an index at runtime is not possible:

int i;

get<i>(t1) // compile-time error: i is no compile-time value

The good news is that it is also a compile-time error to pass an invalid index:

get<3>(t1) // compile-time error if t1 has only three elements

In addition, tuples provide the usual copy, assignment, and comparison operations. For all of them,

implicit type conversions are possible (because member templates are used), but the number of

elements must match. Tuples are equal if all elements are equal. To check whether a container is

less than another container, a lexicographical comparison is done (see Section 11.5.4, page 548).

Table 5.2 lists all operations provided for tuples.

Convenience Functions make_tuple() and tie()

The convenience function make_tuple() creates a tuple of values without explicitly specifying

their types. For example, the expression

make_tuple(22,44,"nico")

creates and initializes a tuple of the corresponding types int, int, and const char*.

By using the special reference_wrapper<> function object and its convenience functions

ref() and cref() (all available since C++11 in <functional>; see Section 5.4.3, page 132) you

can influence the type that make_tuple() yields. For example, the following expression yields a

tuple with a reference to variable/object x:

string s;

make_tuple(ref(s)) // yields type tuple<string&>, where the element refers to s

6 The type of "nico" is const char[5], but it decays to const char* using the type trait std::decay()

(see Section 5.4.2, page 132).

5.1 Pairs and Tuples 71

Operation Effect

tuple<T1,T2,...,Tn> t Creates a tuple with n elements of the specified types, initialized

with their default constructors (0 for fundamental types)

tuple<T1,T2,...,Tn> Creates a tuple with n elements of the specified types,

t(v1,v2,...,vn) initialized with the specified values

tuple<T1,T2> t(p) Creates a tuple with two elements of the specified type, initialized

with the values of the passed pair p (ps types must match)

t = t2 Assigns the values of t2 to t

t = p Assigns a pair p to a tuple with two elements (the types of the pair

p must match)

t1 == t2 Returns whether t1 is equal to t2 (true if a comparison with == of

all elements yields true)

t1 != t2 Returns whether t1 is not equal to t2 (!(t1==t2))

t1 < t2 Returns whether t1 is less than TIt2 (uses lexicographical

comparison)

t1 > t2 Returns whether t1 is greater than t2 (t2<t1)

t1 <= t2 Returns whether t1 is less than or equal to t2 (!(t2<t1))

t1 >= t2 Returns whether t1 is greater than or equal to t2 (!(t1<t2))

t1.swap(t2) Swaps the data of t1 and t2 (since C++11)

swap(t1,t2) Same (as global function) (since C++11)

make_tuple(v1,v2,...) Creates a tuple with types and values of all passed values, and

allows extracting values out of a tuple

tie(ref1,ref2,...) Creates a tuple of references, which allows extracting (individual)

values out of a tuple

Table 5.2. Operations of tuples

This can be important if you want to modify an existing value via a tuple:

std::string s;

auto x = std::make_tuple(s); // x is of type tuple<string>

std::get<0>(x) = "my value"; // modifies x but not s

auto y = std::make_tuple(ref(s)); // y is of type tuple<string&>, thus y refers to s

std::get<0>(y) = "my value"; // modifies y

By using references with make_tuple(), you can extract values of a tuple back to some other

variables. Consider the following example:

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

float f;

std::string s;

// assign values of t to i, f, and s:

std::make_tuple(std::ref(i),std::ref(f),std::ref(s)) = t;

72 Chapter 5: Utilities

To make the use of references in tuples even more convenient, the use of tie() creates a tuple of

references:

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

float f;

std::string s;

std::tie(i,f,s) = t; // assigns values of t to i, f, and s

Here, std::tie(i,f,s) creates a tuple with references to i, f, and s, so the assignment of t

assigns the elements in t to i, f, and s.

The use of std::ignore allows ignoring tuple elements while parsing with tie(). This can be

used to extract tuple values partially:

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

std::string s;

std::tie(i,std::ignore,s) = t; // assigns first and third value of t to i and s

Tuples and Initializer Lists

The constructor taking a variable number of arguments to initialize a tuple is declared as explicit:

namespace std {

template <typename... Types>

class tuple {

public:

explicit tuple(const Types&...);

template <typename... UTypes> explicit tuple(UTypes&&...);

...

};

}

The reason is to avoid having single values implicitly converted into a tuple with one element:

template <typename... Args>

void foo (const std::tuple<Args...> t);

foo(42); // ERROR: explicit conversion to tuple<> required

foo(make_tuple(42)); // OK

This situation, however, has consequences when using initializer lists to define values of a tuple. For

example, you can’t use the assignment syntax to initialize a tuple because that is considered to be an

implicit conversion:

std::tuple<int,double> t1(42,3.14); // OK, old syntax

std::tuple<int,double> t2{42,3.14}; // OK, new syntax

std::tuple<int,double> t3 = {42,3.14}; // ERROR

5.1 Pairs and Tuples 73

In addition, you can’t pass an initializer list where a tuple is expected:

std::vector<std::tuple<int,float>> v { {1,1.0}, {2,2.0} }; // ERROR

std::tuple<int,int,int> foo() {

return { 1, 2, 3 }; // ERROR

}

Note that it works for pair<>s and containers (except array<>s):

std::vector<std::pair<int,float>> v1 { {1,1.0}, {2,2.0} }; // OK

std::vector<std::vector<float>> v2 { {1,1.0}, {2,2.0} }; // OK

std::vector<int> foo2() {

return { 1, 2, 3 }; // OK

}

But for tuples, you have to explicitly convert the initial values into a tuple (for example, by using

make_tuple()):

std::vector<std::tuple<int,float>> v { std::make_tuple(1,1.0),

std::make_tuple(2,2.0) }; // OK

std::tuple<int,int,int> foo() {

return std::make_tuple(1,2,3); // OK

}

Additional Tuple Features

For tuples, some additional helpers are declared, especially to support generic programming:

• tuple_size<tupletype>::value yields the number of elements.

• tuple_element<idx,tupletype>::type yields the type of the element with index idx (this

is the type get() returns).

• tuple_cat() concatenates multiple tuples into one tuple.

The use of tuple_size<> and tuple_element<> shows the following example:

typename std::tuple<int,float,std::string> TupleType;

std::tuple_size<TupleType>::value // yields 3

std::tuple_element<1,TupleType>::type // yields float

You can use tuple_cat() to concatenate all forms of tuples, including pair<>s:

int n;

auto tt = std::tuple_cat (std::make_tuple(42,7.7,"hello"),

std::tie(n));

Here, tt becomes a tuple with all elements of the passed tuples, including the fact that the last

element is a reference to n.

74 Chapter 5: Utilities

5.1.3 I/O for Tuples

The tuple class was first made public in the Boost library (see [Boost]). There, tuple had an

interface to write values to output streams, but there is no support for this in the C++ standard

library. With the following header file, you can print any tuple with the standard output operator

<<:7

// util/printtuple.hpp

#include <tuple>

#include <iostream>

// helper: print element with index IDX of tuple with MAX elements

template <int IDX, int MAX, typename... Args>

struct PRINT_TUPLE {

static void print (std::ostream& strm, const std::tuple<Args...>& t) {

strm << std::get<IDX>(t) << (IDX+1==MAX ? "" : ",");

PRINT_TUPLE<IDX+1,MAX,Args...>::print(strm,t);

}

};

// partial specialization to end the recursion

template <int MAX, typename... Args>

struct PRINT_TUPLE<MAX,MAX,Args...> {

static void print (std::ostream& strm, const std::tuple<Args...>& t) {

}

};

// output operator for tuples

template <typename... Args>

std::ostream& operator << (std::ostream& strm,

const std::tuple<Args...>& t)

{

strm << "[";

PRINT_TUPLE<0,sizeof...(Args),Args...>::print(strm,t);

return strm << "]";

}

This code makes heavy use of template metaprogramming to recursively iterate at compile time over

the elements of a tuple. Each call of PRINT_TUPLE<>::print() prints one element and calls the

7 Note that this output operator does not work where ADL (argument-dependent lookup) does not work (see

Section 15.11.1, page 812, for details).

5.1 Pairs and Tuples 75

same function for the next element. A partial specialization, where the current index IDX and the

number of elements in the tuple MAX are equal, ends this recursion. For example, the program

// util/tuple2.cpp

#include "printtuple.hpp"

#include <tuple>

#include <iostream>

#include <string>

using namespace std;

int main()

{

tuple <int,float,string> t(77,1.1,"more light");

cout << "io: " << t << endl;

}

has the following output:

io: [77,1.1,more light]

Here, the output expression

cout << t

calls

PRINT_TUPLE<0,3,Args...>::print(cout,t);

5.1.4 Conversions between tuples and pairs

As listed in Table 5.2 on page 71, you can initialize a two-element tuple with a pair. Also, you can

assign a pair to a two-element tuple.

Note that pair<> provides a special constructor to use tuples to initialize its elements. See

Section 5.1.1, page 63, for details. Note also that other types might provide a tuple-like interface. In

fact, class pair<> (see Section 5.1.1, page 62) and class array<> (see Section 7.2.5, page 268) do.

76 Chapter 5: Utilities

5.2 Smart Pointers

Since C, we know that pointers are important but are a source of trouble. One reason to use pointers is

to have reference semantics outside the usual boundaries of scope. However, it can be very tricky to

ensure that their lifetime and the lifetime of the objects they refer to match, especially when multiple

pointers refer to the same object. For example, to have the same object in multiple collections

(see Chapter 7), you have to pass a pointer into each collection, and ideally there should be no

problems when one of the pointers gets destroyed (no “dangling pointers” or multiple deletions of

the referenced object) and when the last reference to an object gets destroyed (no “resource leaks”).

A usual approach to avoid these kinds of problems is to use “smart pointers.” They are “smart”

in the sense that they support programmers in avoiding problems such as those just described. For

example, a smart pointer can be so smart that it “knows” whether it is the last pointer to an object

and uses this knowledge to delete an associated object only when it, as “last owner” of an object,

gets destroyed.

Note, however, that it is not sufficient to provide only one smart pointer class. Smart pointers can

be smart about different aspects and might fulfill different priorities, because you might pay a price

for the smartness. Note that with a specific smart pointer, it’s still possible to misuse a pointer or to

program erroneous behavior.

Since C++11, the C++ standard library provides two types of smart pointer:

1. Class shared_ptr for a pointer that implements the concept of shared ownership. Multiple

smart pointers can refer to the same object so that the object and its associated resources get re-

leased whenever the last reference to it gets destroyed. To perform this task in more complicated

scenarios, helper classes, such as weak_ptr, bad_weak_ptr, and enable_shared_from_this,

are provided.

2. Class unique_ptr for a pointer that implements the concept of exclusive ownership or strict

ownership. This pointer ensures that only one smart pointer can refer to this object at a time.

However, you can transfer ownership. This pointer is especially useful for avoiding resource

leaks, such as missing calls of delete after or while an object gets created with new and an

exception occurred.

Historically, C++98 had only one smart pointer class provided by the C++ standard library, class

auto_ptr<>, which was designed to perform the task that unique_ptr now provides. However,

due to missing language features, such as move semantics for constructors and assignment operators

and other flaws, this class turned out to be difficult to understand and error prone. So, after class

shared_ptr was introduced with TR1 and class unique_ptr was introduced with C++11, class

auto_ptr officially became deprecated with C++11, which means that you should not use it unless

you have old existing code to compile.

All smart pointer classes are defined in the <memory> header file.

5.2.1 Class shared_ptr

Almost every nontrivial program needs the ability to use or deal with objects at multiple places at the

same time. Thus, you have to “refer” to an object from multiple places in your program. Although

the language provides references and pointers, this is not enough, because you often have to ensure

5.2 Smart Pointers 77

that when the last reference to an object gets deleted, the object itself gets deleted, which might

require some cleanup operations, such as freeing memory or releasing a resource.

So we need a semantics of “cleanup when the object is nowhere used anymore.” Class

shared_ptr provides this semantics of shared ownership. Thus, multiple shared_ptrs are able to

share, or “own,” the same object. The last owner of the object is responsible for destroying it and

cleaning up all resources associated with it.

By default, the cleanup is a call of delete, assuming that the object was created with new. But

you can (and often must) define other ways to clean up objects. You can define your own destruction

policy. For example, if your object is an array allocated with new[], you have to define that the

cleanup performs a delete[]. Other examples are the deletion of associated resources, such as

handles, locks, associated temporary files, and so on.

To summarize, the goal of shared_ptrs is to automatically release resources associated with

objects when those objects are no longer needed (but not before).

Using Class shared_ptr

You can use a shared_ptr just as you would any other pointer. Thus, you can assign, copy, and

compare shared pointers, as well as use operators * and ->, to access the object the pointer refers to.

Consider the following example:

// util/sharedptr1.cpp

#include <iostream>

#include <string>

#include <vector>

#include <memory>

using namespace std;

int main()

{

// two shared pointers representing two persons by their name

shared_ptr<string> pNico(new string("nico"));

shared_ptr<string> pJutta(new string("jutta"));

// capitalize person names

(*pNico)[0] = ’N’;

pJutta->replace(0,1,"J");

// put them multiple times in a container

vector<shared_ptr<string>> whoMadeCoffee;

whoMadeCoffee.push_back(pJutta);

whoMadeCoffee.push_back(pJutta);

whoMadeCoffee.push_back(pNico);

whoMadeCoffee.push_back(pJutta);

whoMadeCoffee.push_back(pNico);

78 Chapter 5: Utilities

// print all elements

for (auto ptr : whoMadeCoffee) {

cout << *ptr << " ";

}

cout << endl;

// overwrite a name again

*pNico = "Nicolai";

// print all elements again

for (auto ptr : whoMadeCoffee) {

cout << *ptr << " ";

}

cout << endl;

// print some internal data

cout << "use_count: " << whoMadeCoffee[0].use_count() << endl;

}

After including <memory>, where shared_ptr class is defined, two shared_ptrs representing

pointers to strings are declared and initialized:

shared_ptr<string> pNico(new string("nico"));

shared_ptr<string> pJutta(new string("jutta"));

Note that because the constructor taking a pointer as single argument is explicit, you can’t use the

assignment notation here because that is considered to be an implicit conversion. However, the new

initialization syntax is also possible:

shared_ptr<string> pNico = new string("nico"); // ERROR

shared_ptr<string> pNico{new string("nico")}; // OK

You can also use the convenience function make_shared() here:

shared_ptr<string> pNico = make_shared<string>("nico");

shared_ptr<string> pJutta = make_shared<string>("jutta");

This way of creation is faster and safer because it uses one instead of two allocations: one for the

object and one for the shared data the shared pointer uses to control the object (see Section 5.2.4,

page 95, for details).

Alternatively, you can declare the shared pointer first and assign a new pointer later on. However,

you can’t use the assignment operator; you have to use reset() instead:

shared_ptr<string> pNico4;

pNico4 = new string("nico"); // ERROR: no assignment for ordinary pointers

pNico4.reset(new string("nico")); // OK

5.2 Smart Pointers 79

The following two lines demonstrate that using shared pointers is just like using ordinary pointers:

(*pNico)[0] = ’N’;

pJutta->replace(0,1,"J");

With operator *, you yield the object pNico refers to to assign a capital ’N’ to its first character.

With operator ->, you get access to a member of the object pJutta refers to. Thus, here the member

function replace() allows you to replace substrings (see Section 13.3.7, page 706).

pJutta:

“Jutta”

pNico:

“Nicolai”

whoMadeCoffee:

pJutta:

“Jutta”

pNico:

“Nico”

whoMadeCoffee:

Figure 5.1. Using shared_ptrs

Next we insert both pointers multiple times into a container of type vector<> (see Section 7.3,

page 270). The container usually creates its own copy of the elements passed, so we would insert

copies of strings if we inserted the strings directly. However, because we pass pointers to the strings,

these pointers are copied, so the container now contains multiple references to the same object. This

means that if we modify the objects, all occurrences of this object in the container get modified.

Thus, after replacing the value of the string pNico

*pNico = "Nicolai";

all occurrences of this object now refer to the new value, as you can see in Figure 5.1 and according

to the corresponding output of the program:

Jutta Jutta Nico Jutta Nico

Jutta Jutta Nicolai Jutta Nicolai

use_count: 4

The last row of the output is the result of calling use_count() for the first shared pointer in the

vector. use_count() yields the current number of owners an object referred to by shared pointers

has. As you can see, we have four owners of the object referred to by the first element in the vector:

pJutta and the three copies of it inserted into the container.

At the end of the program, when the last owner of a string gets destroyed, the shared pointer calls

delete for the object it refers to. Such a deletion does not necessarily have to happen at the end of

the scope. For example, assigning the nullptr (see Section 3.1.1, page 14) to pNico or resizing

the vector so that it contains only the first two elements would delete the last owner of the string

initialized with nico.

80 Chapter 5: Utilities

Defining a Deleter

We can declare our own deleter, which, for example, prints a message before it deletes the referenced

object:

shared_ptr<string> pNico(new string("nico"),

[](string* p) {

cout << "delete " << *p << endl;

delete p;

});

...

pNico = nullptr; // pNico does not refer to the string any longer

whoMadeCoffee.resize(2); // all copies of the string in pNico are destroyed

Here, we pass a lambda (see Section 3.1.10, page 28) as the second argument to the constructor of a

shared_ptr. Having pNico declared that way, the lambda function gets called when the last owner

of a string gets destroyed. So the preceding program with this modification would print

delete Nicolai

when resize() gets called after all statements as discussed before. The effect would be the same

if we first changed the size of the vector and then assigned nullptr or another object to pNico.

For another example application of shared_ptr<>, see how elements can be shared by two

containers in Section 7.11, page 388.

Dealing with Arrays

Note that the default deleter provided by shared_ptr calls delete, not delete[]. This means

that the default deleter is appropriate only if a shared pointer owns a single object created with new.

Unfortunately, creating a shared_ptr for an array is possible but wrong:

std::shared_ptr<int> p(new int[10]); // ERROR, but compiles

So, if you use new[] to create an array of objects you have to define your own deleter. You can do

that by passing a function, function object, or lambda, which calls delete[] for the passed ordinary

pointer. For example:

std::shared_ptr<int> p(new int[10],

[](int* p) {

delete[] p;

});

You can also use a helper officially provided for unique_ptr, which calls delete[] as deleter (see

Section 5.2.5, page 106):

std::shared_ptr<int> p(new int[10],

std::default_delete<int[]>());

Note, however, that shared_ptr and unique_ptr deal with deleters in slightly different ways. For

example, unique_ptrs provide the ability to own an array simply by passing the corresponding

element type as template argument, whereas for shared_ptrs this is not possible:

5.2 Smart Pointers 81

std::unique_ptr<int[]> p(new int[10]); // OK

std::shared_ptr<int[]> p(new int[10]); // ERROR: does not compile

In addition, for unique_ptrs, you have to specify a second template argument to specify your own

deleter:

std::unique_ptr<int,void(*)(int*)> p(new int[10],

[](int* p) {

delete[] p;

});

Note also that shared_ptr does not provide an operator []. For unique_ptr, a partial special-

ization for arrays exists, which provides operator [] instead of operators * and ->. The reason for

this difference is that unique_ptr is optimized for performance and flexibility. See Section 5.2.8,

page 114, for details.

Dealing with Other Destruction Policies

When the cleanup after the last owning shared pointer is something other than deleting memory, you

have to specify your own deleter. You can understand this to specify your own destruction policy.

As a first example, suppose that we want to ensure that a temporary file gets removed when the

last reference to it gets destroyed. This is how it could be done:

// util/sharedptr2.cpp

#include <string>

#include <fstream> // for ofstream

#include <memory> // for shared_ptr

#include <cstdio> // for remove()

class FileDeleter

{

private:

std::string filename;

public:

FileDeleter (const std::string& fn)

: filename(fn) {

}

void operator () (std::ofstream* fp) {

fp->close(); // close.file

std::remove(filename.c_str()); // delete file

}

};

int main()

{

// create and open temporary file:

82 Chapter 5: Utilities

std::shared_ptr<std::ofstream> fp(new std::ofstream("tmpfile.txt"),

FileDeleter("tmpfile.txt"));

...

}

Here, we initialize a shared_ptr with a newly created output file (see Section 15.9, page 791). The

passed FileDeleter ensures that this files gets closed and deleted with the standard C function

remove(), provided in <cstdio> when the last copy of this shared pointer loses the ownership

of this output stream. Because remove() needs the filename, we pass this as an argument to the

constructor of FileDeleter.

Our second example demonstrates how to use shared_ptrs to deal with shared memory:8

// util/sharedptr3.cpp

#include <memory> // for shared_ptr

#include <sys/mman.h> // for shared memory

#include <fcntl.h>

#include <unistd.h>

#include <cstring> // for strerror()

#include <cerrno> // for errno

#include <string>

#include <iostream>

class SharedMemoryDetacher

{

public:

void operator () (int* p) {

std::cout << "unlink /tmp1234" << std::endl;

if (shm_unlink("/tmp1234") != 0) {

std::cerr << "OOPS: shm_unlink() failed" << std::endl;

}

}

};

std::shared_ptr<int> getSharedIntMemory (int num)

{

void* mem;

int shmfd = shm_open("/tmp1234", O_CREAT|O_RDWR, S_IRWXU|S_IRWXG);

if (shmfd < 0) {

throw std::string(strerror(errno));

}

8 There are multiple system-dependent ways to deal with shared memory. Here, the standard POSIX way with

shm_open() and mmap() is used, which requires shm_unlink() to be called to release the (persistent) shared

memory.

5.2 Smart Pointers 83

if (ftruncate(shmfd, num*sizeof(int)) == -1) {

throw std::string(strerror(errno));

}

mem = mmap(nullptr, num*sizeof(int), PROT_READ | PROT_WRITE,

MAP_SHARED, shmfd, 0);

if (mem == MAP_FAILED) {

throw std::string(strerror(errno));

}

return std::shared_ptr<int>(static_cast<int*>(mem),

SharedMemoryDetacher());

}

int main()

{

// get and attach shared memory for 100 ints:

std::shared_ptr<int> smp(getSharedIntMemory(100));

// init the shared memory

for (int i=0; i<100; ++i) {

smp.get()[i] = i*42;

}

// deal with shared memory somewhere else:

...

std::cout << "<return>" << std::endl;

std::cin.get();

// release shared memory here:

smp.reset();

...

}

First, a deleter SharedMemoryDetacher is defined to detach shared memory. The deleter releases

the shared memory, which getSharedIntMemory() gets and attaches. To ensure that the deleter is

called when the last use of the shared memory is over, it is passed when getSharedIntMemory()

creates a shared_ptr for the attached memory:

return std::shared_ptr<int>(static_cast<int*>(mem),

SharedMemoryDetacher()); // calls shmdt()

Alternatively, you could use a lambda here (skipping prefix std::):

return shared_ptr<int>(static_cast<int*>(mem),

[](int* p) {

cout << "unlink /tmp1234" << endl;

84 Chapter 5: Utilities

if (shm_unlink("/tmp1234") != 0) {

cerr << "OOPS: shm_unlink() failed"

<< endl;

}

});

Note that the passed deleter is not allowed to throw exceptions. Therefore, we only write an error

message to std::cerr here.

Because the signature of shm_unlink() already fits, you could even use shm_unlink() directly

as deleter if you don’t want to check its return value:

return std::shared_ptr<int>(static_cast<int*>(mem),

shm_unlink);

Note that shared_ptrs provide only operators * and ->. Pointer arithmetic and operator [] are

not provided. Thus, to access the memory, you have to use get(), which yields the internal pointer

wrapped by shared_ptr to provide the full pointer semantics:

smp.get()[i] = i*42;

Thus, get() provides an alternative of calling:

(&*smp)[i] = i*42;

For both examples, another possible implementation technique is probably cleaner than this: Just

create a new class, where the constructor does the initial stuff and the destructor does the cleanup.

You can then just use shared_ptrs to manage objects of this class created with new. The benefit

is that you can define a more intuitive interface, such as an operator [] for an object representing

shared memory. However, you should then carefully think about copy and assignment operations; if

in doubt, disable them.

5.2.2 Class weak_ptr

The major reason to use shared_ptrs is to avoid taking care of the resources a pointer refers to.

As written, shared_ptrs are provided to automatically release resources associated with objects no

longer needed.

However, under certain circumstances, this behavior doesn’t work or is not what is intended:

• One example is cyclic references. If two objects refer to each other using shared_ptrs, and you

want to release the objects and their associated resource if no other references to these objects

exist, shared_ptr won’t release the data, because the use_count() of each object is still 1.

You might want to use ordinary pointers in this situation, but doing so requires explicitly caring

for and managing the release of associated resources.

• Another example occurs when you explicitly want to share but not own an object. Thus, you

have the semantics that the lifetime of a reference to an object outlives the object it refers to.

Here, shared_ptrs would never release the object, and ordinary pointers might not notice that

the object they refer to is not valid anymore, which introduces the risk of accessing released data.

5.2 Smart Pointers 85

For both cases, class weak_ptr is provided, which allows sharing but not owning an object. This

class requires a shared pointer to get created. Whenever the last shared pointer owning the object

loses its ownership, any weak pointer automatically becomes empty. Thus, besides default and copy

constructors, class weak_ptr provides only a constructor taking a shared_ptr.

You can’t use operators * and -> to access a referenced object of a weak_ptr directly. Instead,

you have to create a shared pointer out of it. This makes sense for two reasons:

1. Creating a shared pointer out of a weak pointer checks whether there is (still) an associated

object. If not, this operation will throw an exception or create an empty shared pointer (what

exactly happens depends on the operation used).

2. While dealing with the referenced object, the shared pointer can’t get released.

As a consequence, class weak_ptr provides only a small number of operations: Just enough to

create, copy, and assign a weak pointer and convert it into a shared pointer or check whether it refers

to an object.

Using Class weak_ptr

Consider the following example:

// util/weakptr1.cpp

#include <iostream>

#include <string>

#include <vector>

#include <memory>

using namespace std;

class Person {

public:

string name;

shared_ptr<Person> mother;

shared_ptr<Person> father;

vector<shared_ptr<Person>> kids;

Person (const string& n,

shared_ptr<Person> m = nullptr,

shared_ptr<Person> f = nullptr)

: name(n), mother(m), father(f) {

}

~Person() {

cout << "delete " << name << endl;

}

};

86 Chapter 5: Utilities

shared_ptr<Person> initFamily (const string& name)

{

shared_ptr<Person> mom(new Person(name+"’s mom"));

shared_ptr<Person> dad(new Person(name+"’s dad"));

shared_ptr<Person> kid(new Person(name,mom,dad));

mom->kids.push_back(kid);

dad->kids.push_back(kid);

return kid;

}

int main()

{

shared_ptr<Person> p = initFamily("nico");

cout << "nico’s family exists" << endl;

cout << "- nico is shared " << p.use_count() << " times" << endl;

cout << "- name of 1st kid of nico’s mom: "

<< p->mother->kids[0]->name << endl;

p = initFamily("jim");

cout << "jim’s family exists" << endl;

}

Here, a class Person has a name and optional references to other Persons, namely, the parents

(mother and father) and the kids (a vector; see Section 7.3, page 270).

First, initFamily() creates three Persons: mom, dad, and kid, initialized with corresponding

names based on the passed argument. In addition, kid is initialized with the parents, and for both

parents, kid is inserted in the list of kids. Finally, initFamily() returns the kid. Figure 5.2 shows

the resulting situation at the end of initFamily() and after calling and assigning the result to p.

As you can see, p is our last handle into the family created. Internally, however, each object has

references from the kid to each parent and backwards. So, for example, nico was shared three times

before p gets a new value. Now, if we release our last handle to the family — either by assigning

a new person or nullptr to p or by leaving the scope of p at the end of main() — none of the

Persons gets released, because each still has at least one shared pointer referring to it. As a result,

the destructor of each Person, which would print “delete name,” never gets called:

nico’s family exists

- nico shared 3 times

- name of 1st kid of nicos mom: nico

jim’s family exists

Using weak_ptrs instead helps here. For example, we can declare kids to be a vector of weak_ptrs:

5.2 Smart Pointers 87

name:

mother:

father:

kids:

“nico’s mom”

name:

mother:

father:

kids:

“nico’s dad”

name:

mother:

father:

kids:

“nico”

mom:

name:

mother:

father:

kids:

“nico’s mom”

dad:

kid:

name:

mother:

father:

kids:

“nico’s dad”

name:

mother:

father:

kids:

“nico”

p:

Figure 5.2. A Family Using shared_ptrs Only

// util/weakptr2.cpp
...

class Person {

public:

string name;

shared_ptr<Person> mother;

shared_ptr<Person> father;

vector<weak_ptr<Person>> kids; // weak pointer !!!

Person (const string& n,

shared_ptr<Person> m = nullptr,

shared_ptr<Person> f = nullptr)

: name(n), mother(m), father(f) {

}

~Person() {

cout << "delete " << name << endl;

}

};

...

By doing so, we can break the cycle of shared pointers so that in one direction (from kid to parent)

a shared pointer is used, whereas from a parent to the kids, weak pointers are used (the dashed line

in Figure 5.3).

88 Chapter 5: Utilities

name:

mother:

father:

kids:

“nico’s mom”

p:

name:

mother:

father:

kids:

“nico’s dad”

name:

mother:

father:

kids:

“nico”

mom:

name:

mother:

father:

kids:

“nico’s mom”

dad:

kid:

name:

mother:

father:

kids:

“nico’s dad”

name:

mother:

father:

kids:

“nico”

Figure 5.3. A Family Using shared_ptrs and weak_ptrs

As a result, the program now has the following output:

nico’s family exists

- nico shared 1 times

- name of 1st kid of nicos mom: nico

delete nico

delete nico’s dad

delete nico’s mom

jim’s family exists

delete jim

delete jim’s dad

delete jim’s mom

As soon as we lose our handle into a family created — either by assigning a new value to p or

by leaving main() — the kid’s object of the family loses its last owner (use_count() yielded 1

before), which has the effect that both parents lose their last owner. So all objects, initially created

by new, are deleted now so that their destructors get called.

Note that by using weak pointers, we had to slightly modify the way we access the object referred

to via a weak pointer. Instead of calling

p->mother->kids[0]->name

we now have to insert lock() into the expression

p->mother->kids[0].lock()->name

5.2 Smart Pointers 89

which yields a shared_ptr out of the weak_ptr the vector of kids contains. If this modification

is not possible — for example, because the last owner of the object released the object in the mean-

time — lock() yields an empty shared_ptr. In that case, calling operator * or -> would cause

undefined behavior.

If you are not sure that the object behind a weak pointer still exists, you have several options:

1. You can call expired(), which returns true if the weak_ptr doesn’t share an object any longer.

This option is equivalent to checking whether use_count() is equal to 0 but might be faster.

2. You can explicitly convert a weak_ptr into a shared_ptr by using a corresponding

shared_ptr constructor. If there is no valid referenced object, this constructor will throw a

bad_weak_ptr exception. This is an exception of a class derived from std::exception, where

what() yields "bad_weak_ptr".9 See Section 4.3.1, page 43, for details about all standard ex-

ceptions.

3. You can call use_count() to ask for the number of owners the associated object has. If the

return value is 0, there is no valid object any longer. Note, however, that you should usu-

ally call use_count() only for debugging purposes; the C++ standard library explicitly states:

“use_count() is not necessarily efficient.”

For example:

try {

shared_ptr<string> sp(new string("hi")); // create shared pointer

weak_ptr<string> wp = sp; // create weak pointer out of it

sp.reset(); // release object of shared pointer

cout << wp.use_count() << endl; // prints: 0

cout << boolalpha << wp.expired() << endl; // prints: true

shared_ptr<string> p(wp); // throws std::bad_weak_ptr

}

catch (const std::exception& e) {

cerr << "exception: " << e.what() << endl; // prints: bad_weak_ptr

}

5.2.3 Misusing Shared Pointers

Although shared_ptrs improve program safety, because in general resources associated with ob-

jects are automatically released, problems are possible when objects are no longer in use. One

problem just discussed is “dangling pointers” caused by cyclic dependencies.

As another problem, you have to ensure that only one group of shared pointers owns an object.

The following code will not work:

9 For exceptions, the return value of what() is usually implementation specific. However, the standard specifies

to yield "bad_weak_ptr" here. Nevertheless, implementations might not follow this advice; for example, GCC

4.6.1 returned "std::bad_weak_ptr".

90 Chapter 5: Utilities

int* p = new int;

shared_ptr<int> sp1(p);

shared_ptr<int> sp2(p); // ERROR: two shared pointers manage allocated int

The problem is that both sp1 and sp2 would release the associated resource (call delete) when

they lose their ownership of p. In general, having two owning groups means that the release of the

associated resource is performed twice whenever the last owner of each group loses the ownership

or gets destroyed. For this reason, you should always directly initialize a smart pointer the moment

you create the object with its associated resource:

shared_ptr<int> sp1(new int);

shared_ptr<int> sp2(sp1); // OK

This problem might also occur indirectly. In the example just introduced, suppose that we want to

introduce a member function for a Person that creates both the reference from a kid to the parent

and a corresponding reference back:

shared_ptr<Person> mom(new Person(name+"’s mom"));

shared_ptr<Person> dad(new Person(name+"’s dad"));

shared_ptr<Person> kid(new Person(name));

kid->setParentsAndTheirKids(mom,dad);

Here is a naive implementation of setParentsAndTheirKids():

class Person {

public:

...

void setParentsAndTheirKids (shared_ptr<Person> m = nullptr,

shared_ptr<Person> f = nullptr) {

mother = m;

father = f;

if (m != nullptr) {

m->kids.push_back(shared_ptr<Person>(this)); // ERROR

}

if (f != nullptr) {

f->kids.push_back(shared_ptr<Person>(this)); // ERROR

}

}

...

};

The problem is the creation of a shared pointer out of this. We do that because we want to set the

kids of members mother and father. But to do that, we need a shared pointer to the kid, which

we don’t have at hand. However, creating a new shared pointer out of this doesn’t solve the issue,

because we then open a new group of owners.

One way to deal with this problem is to pass the shared pointer to the kid as a third argument.

But the C++ standard library provides another option: class std::enable_shared_from_this<>.

You can use class std::enable_shared_from_this<> to derive your class, representing ob-

jects managed by shared pointers, with your class name passed as template argument. Doing so al-

5.2 Smart Pointers 91

lows you to use a derived member function shared_from_this() to create a correct shared_ptr

out of this:

class Person : public std::enable_shared_from_this<Person> {

public:

...

void setParentsAndTheirKids (shared_ptr<Person> m = nullptr,

shared_ptr<Person> f = nullptr) {

mother = m;

father = f;

if (m != nullptr) {

m->kids.push_back(shared_from_this()); // OK

}

if (f != nullptr) {

f->kids.push_back(shared_from_this()); // OK

}

}

...

};

You find the whole resulting program in util/enableshared1.cpp.

Note that you can’t call shared_from_this() inside the constructor (well, you can, but the

result is a runtime error):

class Person : public std::enable_shared_from_this<Person> {

public:

...

Person (const string& n,

shared_ptr<Person> m = nullptr,

shared_ptr<Person> f = nullptr)

: name(n), mother(m), father(f) {

if (m != nullptr) {

m->kids.push_back(shared_from_this()); // ERROR

}

if (f != nullptr) {

f->kids.push_back(shared_from_this()); // ERROR

}

}

...

};

The problem is that shared_ptr stores itself in a private member of Person’s base class,

enable_shared_from_this<>, at the end of the construction of the Person.

So, there is absolutely no way to create cyclic references of shared pointers during the construc-

tion of the object that initializes the shared pointer. You have to do it in two steps — one way or the

other.

92 Chapter 5: Utilities

5.2.4 Shared and Weak Pointers in Detail

Let’s summarize and present the whole interface that shared and weak pointers provide.

Class shared_ptr in Detail

As introduced in Section 5.2.1, page 76, class shared_ptr provides the concept of a smart pointer

with shared ownership semantics. Whenever the last owner of a shared pointer gets destroyed, the

associated object gets deleted (or the associated resources are cleaned up).

Class shared_ptr<> is templatized for the type of the object the initial pointer refers to:

namespace std {

template <typename T>

class shared_ptr

{

public:

typedef T element_type;

...

};

}

The element type might be void, which means that the shared pointer shares ownership of an object

with an unspecified type, like void* does.

An empty shared_ptr does not share ownership of an object, so use_count() yields 0. Note,

however, that due to one special constructor, the shared pointer still might refer to an object.

Tables 5.3 and 5.4 list all operations provided for shared pointers.

Whenever ownership is transferred to a shared pointer that already owned another object, the

deleter for the previously owned object gets called if that shared pointer was the last owner. The same

applies if a shared pointer gets a new value either by assigning a new value or by calling reset():

If the shared pointer previously owned an object and was the last owner, the corresponding deleter

(or delete) gets called for the object. Note again that the passed deleter shall not throw.

The shared pointers might use different object types, provided that there is an implicit pointer

conversion. For this reason, constructors, assignment operators, and reset() are member templates,

whereas comparison operators are templatized for different types.

All comparison operators compare the raw pointers the shared pointers internally use (i.e., they

call the same operator for the values returned by get()). They all have overloads for nullptr as

argument. Thus, you can check whether there is a valid pointer or even whether the raw pointer is

less than or greater than nullptr.

The constructor taking a weak_ptr argument throws bad_weak_ptr (see Section 5.2.2, page 89)

if the weak pointer is empty (expired() yields true).

5.2 Smart Pointers 93

Operation Effect

shared_ptr<T> sp Default constructor; creates an empty shared pointer,

using the default deleter (calling delete)

shared_ptr<T> sp(ptr) Creates a shared pointer owning *ptr, using the default

deleter (calling delete)

shared_ptr<T> sp(ptr,del) Creates a shared pointer owning *ptr, using del as deleter

shared_ptr<T> sp(ptr,del,ac) Creates a shared pointer owning *ptr, using del as deleter

and ac as allocator

shared_ptr<T> sp(nullptr) Creates an empty shared pointer, using the default deleter

(calling delete)

shared_ptr<T> sp(nullptr,del) Creates an empty shared pointer, using del as deleter

shared_ptr<T> sp(nullptr, Creates an empty shared pointer, using del as deleter

del,ac) and ac as allocator

shared_ptr<T> sp(sp2) Creates a shared pointer sharing ownership with sp2

shared_ptr<T> sp(move(sp2)) Creates a shared pointer owning the pointer previously

owned by sp2 (sp2 is empty afterward)

shared_ptr<T> sp(sp2,ptr) Alias constructor; creates a shared pointer sharing

ownership of sp2 but referring to *ptr

shared_ptr<T> sp(wp) Creates a shared pointer out of a weak pointer wp

shared_ptr<T> sp(move(up)) Creates a shared pointer out of a unique_ptr up

shared_ptr<T> sp(move(ap)) Creates a shared pointer out of an auto_ptr ap

sp.~shared_ptr() Destructor; calls the deleter if sp owns an object

sp = sp2 Assignment (sp shares ownership with sp2 afterward,

giving up ownership of the object previously owned)

sp = move(sp2) Move assignment (sp2 transfers ownership to sp)

sp = move(up) Assigns unique_ptr up (up transfers ownership to sp)

sp = move(ap) Assigns auto_ptr ap (ap transfers ownership to sp)

sp1.swap(sp2) Swaps pointers and deleters of sp1 and sp2

swap(sp1,sp2) Swaps pointers and deleters of sp1 and sp2

sp.reset() Gives up ownership and reinitializes the shared pointer as

being empty

sp.reset(ptr) Gives up ownership and reinitializes the shared pointer

owning *ptr, using the default deleter (calling delete)

sp.reset(ptr,del) Gives up ownership and reinitializes the shared pointer

owning *ptr, using del as deleter

sp.reset(ptr,del,ac) Gives up ownership and reinitializes the shared pointer

owning *ptr, using del as deleter and ac as allocator

make_shared(...) Creates a shared pointer for a new object initialized by the

passed arguments

allocate_shared(ac,...) Creates a shared pointer for a new object initialized by the

passed arguments, using allocator ac

Table 5.3. Operations of shared_ptrs, Part 1

94 Chapter 5: Utilities

Operation Effect

sp.get() Returns the stored pointer (usually the address of the owned

object or nullptr if none)

*sp Returns the owned object (undefined behavior if none)

sp->... Provides member access for the owned object (undefined

behavior if none)

sp.use_count() Returns the number of shared owners (including sp) or 0 if

the shared pointer is empty

sp.unique() Returns whether sp is the only owner (equivalent to

sp.use_count()==1 but might be faster)

if (sp) Operator bool(); yields whether sp is empty

sp1 == sp2 Calls == for the stored pointers (nullptr is possible)

sp1 != sp2 Calls != for the stored pointers (nullptr is possible)

sp1 < sp2 Calls < for the stored pointers (nullptr is possible)

sp1 <= sp2 Calls <= for the stored pointers (nullptr is possible)

sp1 > sp2 Calls > for the stored pointers (nullptr is possible)

sp1 >= sp2 Calls >= for the stored pointers (nullptr is possible)

static_pointer_cast(sp) static_cast<> semantic for sp

dynamic_pointer_cast(sp) dynamic_cast<> semantic for sp

const_pointer_cast(sp) const_cast<> semantic for sp

get_deleter(sp) Returns the address of the deleter, if any, or nullptr

otherwise

strm << sp Calls the output operator for its raw pointer (is equal to

strm<<sp.get())

sp.owner_before(sp2) Provides a strict weak ordering with another shared pointer

sp.owner_before(wp) Provides a strict weak ordering with a weak pointer

Table 5.4. Operations of shared_ptrs, Part 2

get_deleter() yields a pointer to the function defined as a deleter, if any, or nullptr other-

wise. The pointer is valid as long as a shared pointer owns that deleter. To get the deleter, however,

you have to pass its type as a template argument. For example:

auto del = [] (int* p) {

delete p;

};

std::shared_ptr<int> p(new int, del);

decltype(del)* pd = std::get_deleter<decltype(del)>(p);

Note that shared pointers do not provide a release() operation to give up ownership and return the

control of an object back to the caller. The reason is that other shared pointers might still own the

object.

5.2 Smart Pointers 95

More Sophisticated shared_ptr Operations

A few operations are provided that might not be obvious. Most of them were motivated and intro-

duced with [N2351:SharedPtr].

The constructor taking another shared pointer and an additional raw pointer is the so-called alias-

ing constructor, which allows you to capture the fact that one object owns another. For example:

struct X

{

int a;

};

shared_ptr<X> px(new X);

shared_ptr<int> pi(px, &px->a);

The object of type X “owns” its member a, so to create a shared pointer to a, you need to keep the

surrounding object alive by attaching to its reference count by means of the aliasing constructor.

Other, more complex, examples exist, such as referring to a container element or to a shared library

symbol.10

Note that, as a consequence, the programmer has to ensure that the lifetimes of both objects

match. Otherwise, dangling pointers or resource leaks might occur. For example:

shared_ptr<X> sp1(new X);

shared_ptr<X> sp2(sp1,new X); // ERROR: delete for this X will never be called

sp1.reset(); // deletes first X; makes sp1 empty

shared_ptr<X> sp3(sp1,new X); // use_count()==0, but get()!=nullptr

Both make_shared() and allocate_shared() are provided to optimize the creation of a shared

object and its associated control block (for example, maintaining the use count). Note that

shared_ptr<X>(new X(...))

performs two allocations: one for X and one for the control block used, for example, by the shared

pointer to manage its use count. Using

make_shared<X>(...)

instead is considerably faster, performing only one allocation, and safer because a situation where the

allocation of X succeeds but the allocation of the control block fails cannot occur.

allocate_shared() allows passing your own allocator as first argument here.

The cast operators allow casting a pointer to a different type. The semantic is the same as the

corresponding operators, and the result is another shared pointer of a different type. Note that using

the ordinary cast operators is not possible, because it results in undefined behavior:

shared_ptr<void> sp(new int); // shared pointer holds a void* internally

...

shared_ptr<int>(static_cast<int*>(sp.get())) // ERROR: undefined behavior

static_pointer_cast<int*>(sp) // OK

10 Thanks to Peter Dimov for pointing this out.

96 Chapter 5: Utilities

Class weak_ptr in Detail

As introduced in Section 5.2.2, page 84, class weak_ptr is a helper of class shared_ptr to share an

object without owing it. Its use_count() returns the number of shared_ptr owners of an object,

for which the weak_ptrs sharing the object do not count. Also, a weak_ptr can be empty, which is

the case if it is not initialized by a shared_ptr or if the last owner of the corresponding object was

deleted. Class weak_ptr<> is also templatized for the type of the object the initial pointer refers to:

namespace std {

template <typename T>

class weak_ptr

{

public:

typedef T element_type;

...

};

}

Table 5.5 lists all operations provided for weak pointers.

The default constructor creates an empty weak pointer, which means that expired() yields

true. Because lock() yields a shared pointer, the use count of the object increments for the lifetime

of the shared pointer. This is the only way to deal with the object a weak pointer shares.

Thread-Safe Shared Pointer Interface

In general, shared pointers are not thread safe. Thus, to avoid undefined behavior due to data races

(see Section 18.4.1, page 982), you have to use techniques, such as mutexes or locks, when shared

pointers refer to the same object in multiple threads. However, reading the use count while another

thread modifies it does not introduce a data race, although the value might not be up-to-date. In fact,

one thread might check a use count while another thread might manipulate it. See Chapter 18 for

details.

Corresponding to the atomic C-style interface for ordinary pointers (see Section 18.7.3, page

1019), overloaded versions for shared pointers are provided, which allow dealing with shared point-

ers concurrently. Note that concurrent access to the pointers, not to the values they refer to, is meant.

For example:11

std::shared_ptr<X> global; // initially nullptr

void foo()

{

std::shared_ptr<X> local{new X};

...

std::atomic_store(&global,local);

}

11 Thanks to Anthony Williams for providing this example.

5.2 Smart Pointers 97

Operation Effect

weak_ptr<T> wp Default constructor; creates an empty weak pointer

weak_ptr<T> wp(sp) Creates a weak pointer sharing ownership of the pointer owned by

sp

weak_ptr<T> wp(wp2) Creates a weak pointer sharing ownership of the pointer owned by

wp2

wp.~weak_ptr() Destructor; destroys the weak pointer but has no effect on the

object owned

wp = wp2 Assignment (wp shares ownership of wp2 afterward, giving up

ownership of the object previously owned)

wp = sp Assigns shared pointer sp (wp shares ownership of sp afterward,

giving up ownership of the object previously owned)

wp.swap(wp2) Swaps the pointers of wp and wp2

swap(wp1,wp2) Swaps the pointers of wp1 and wp2

wp.reset() Gives up ownership of owned object, if any, and reinitializes as

empty weak pointer

wp.use_count() Returns the number of shared owners (shared_ptrs owning the

object) or 0 if the weak pointer is empty

wp.expired() Returns whether wp is empty (equivalent to wp.use_count()==0

but might be faster)

wp.lock() Returns a shared pointer sharing ownership of the pointer owned

by the weak pointer (or an empty shared pointer if none)

wp.owner_before(wp2) Provides a strict weak ordering with another weak pointer

wp.owner_before(sp) Provides a strict weak ordering with a shared pointer

Table 5.5. Operations of weak_ptrs

Table 5.6 lists the high-level interface. A corresponding low-level interface (see Section 18.7.4,

page 1019) is also provided.

Operation Effect

atomic_is_lock_free(&sp) Returns true if the atomic interface to sp is lock free

atomic_load(&sp) Returns sp

atomic_store(&sp,sp2) Assigns sp2 to sp

atomic_exchange(&sp,sp2) Exchange values of sp and sp2

Table 5.6. High-Level Atomic Operations of shared_ptr

98 Chapter 5: Utilities

5.2.5 Class unique_ptr

The unique_ptr type, provided by the C++ standard library since C++11, is a kind of a smart

pointer that helps to avoid resource leaks when exceptions are thrown. In general, this smart pointer

implements the concept of exclusive ownership, which means that it ensures that an object and its

associated resources are “owned” only by one pointer at a time. When this owner gets destroyed or

becomes empty or starts to own another object, the object previously owned also gets destroyed, and

any associated resources are released.

Class unique_ptr succeeds class auto_ptr, which was originally introduced with C++98 but

is deprecated now (see Section 5.2.7, page 113). Class unique_ptr provides a simple and clearer

interface, making it less error prone than auto_pointers have been.

Purpose of Class unique_ptr

Functions often operate in the following way:12

1. Acquire some resources.

2. Perform some operations.

3. Free the acquired resources.

If bound to local objects, the resources acquired on entry get freed automatically on function exit

because the destructors of those local objects are called. But if resources are acquired explicitly

and are not bound to any object, they must be freed explicitly. Resources are typically managed

explicitly when pointers are used.

A typical example of using pointers in this way is the use of new and delete to create and

destroy an object:

void f()

{

ClassA* ptr = new ClassA; // create an object explicitly

... // perform some operations

delete ptr; // clean up (destroy the object explicitly)

}

This function is a source of trouble. One obvious problem is that the deletion of the object might be

forgotten, especially if you have return statements inside the function. There also is a less obvious

danger that an exception might occur. Such an exception would exit the function immediately,

without calling the delete statement at the end of the function. The result would be a memory leak

or, more generally, a resource leak.

12 This motivation, originally written for class auto_ptr, is adapted, with permission, from Scott Meyers’ book

More Effective C++. The general technique was originally presented by Bjarne Stroustrup as the “resource

allocation is initialization” idiom in his books The C++ Programming Language, 2nd edition and The Design

and Evolution of C++.

5.2 Smart Pointers 99

Avoiding such a resource leak usually requires that a function catch all exceptions. For example:

void f()

{

ClassA* ptr = new ClassA; // create an object explicitly

try {

... // perform some operations

}

catch (...) { // for any exception

delete ptr; // - clean up

throw; // - rethrow the exception

}

delete ptr; // clean up on normal end

}

To handle the deletion of this object properly in the event of an exception, the code gets more

complicated and redundant. If a second object is handled in this way, or if more than one catch

clause is used, the problem gets worse. This is bad programming style and should be avoided because

it is complex and error prone.

A smart pointer can help here. The smart pointer can free the data to which it points whenever the

pointer itself gets destroyed. Furthermore, because it is a local variable, the pointer gets destroyed

automatically when the function is exited, regardless of whether the exit is normal or is due to an

exception. The class unique_ptr was designed to be such a smart pointer.

A unique_ptr is a pointer that serves as a unique owner of the object to which it refers. As a

result, an object gets destroyed automatically when its unique_ptr gets destroyed. A requirement

of a unique_ptr is that its object have only one owner.

Here is the previous example rewritten to use a unique_ptr:

// header file for unique_ptr

#include <memory>

void f()

{

// create and initialize an unique_ptr

std::unique<ClassA> ptr(new ClassA);

... // perform some operations

}

That’s all. The delete statement and the catch clause are no longer necessary.

100 Chapter 5: Utilities

Using a unique_ptr

A unique_ptr has much the same interface as an ordinary pointer; that is, operator * dereferences

the object to which it points, whereas operator -> provides access to a member if the object is a class

or a structure:

// create and initialize (pointer to) string:

std::unique_ptr<std::string> up(new std::string("nico"));

(*up)[0] = ’N’; // replace first character

up->append("lai"); // append some characters

std::cout << *up << std::endl; // print whole string

However, no pointer arithmetic, such as ++, is defined (this counts as an advantage because pointer

arithmetic is a source of trouble).

Note that class unique_ptr<> does not allow you to initialize an object with an ordinary pointer

by using the assignment syntax. Thus, you must initialize the unique_ptr directly, by using its

value:

std::unique_ptr<int> up = new int; // ERROR

std::unique_ptr<int> up(new int); // OK

A unique_ptr does not have to own an object, so it can be empty.13 This is, for example, the case

when it is initialized with the default constructor:

std::unique_ptr<std::string> up;

You can also assign the nullptr or call reset() :

up = nullptr;

up.reset();

In addition, you can call release(), which yields the object a unique_ptr owned, and gives up

ownership so that the caller is responsible for its object now:

std::unique_ptr<std::string> up(new std::string("nico"));

...

std::string* sp = up.release(); // up loses ownership

You can check whether a unique pointer owns an object by calling operator bool():

if (up) { // if up is not empty

std::cout << *up << std::endl;

}

Instead, you can also compare the unique pointer with nullptr or query the raw pointer inside the

unique_ptr, which yields nullptr if the unique_ptr doesn’t own any object:

if (up != nullptr) // if up is not empty

if (up.get() != nullptr) // if up is not empty

13 Although the C++ standard library does define the term empty only for shared pointers, I don’t see any reason

not to do that in general.

5.2 Smart Pointers 101

Transfer of Ownership by unique_ptr

A unique_ptr provides the semantics of exclusive ownership. However, it’s up to the programmer

to ensure that no two unique pointers are initialized by the same pointer:

std::string* sp = new std::string("hello");

std::unique_ptr<std::string> up1(sp);

std::unique_ptr<std::string> up2(sp); // ERROR: up1 and up2 own same data

Unfortunately, this is a runtime error, so the programmer has to avoid such a mistake.

This leads to the question of how the copy constructor and the assignment operator of

unique_ptrs operate. The answer is simple: You can’t copy or assign a unique pointer if you use

the ordinary copy semantics. However, you can use the move semantics provided since C++11 (see

Section 3.1.5, page 19). In that case, the constructor or assignment operator transfers the ownership

to another unique pointer.14

Consider, for example, the following use of the copy constructor:

// initialize a unique_ptr with a new object

std::unique_ptr<ClassA> up1(new ClassA);

// copy the unique_ptr

std::unique_ptr<ClassA> up2(up1); // ERROR: not possible

// transfer ownership of the unique_ptr

std::unique_ptr<ClassA> up3(std::move(up1)); // OK

After the first statement, up1 owns the object that was created with the new operator. The second,

which tries to call the copy constructor, is a compile-time error because up2 can’t become another

owner of that object. Only one owner at a time is allowed. However, with the third statement, we

transfer ownership from up1 to up3. So afterward, up3 owns the object created with new, and up1

no longer owns the object. The object created by new ClassA gets deleted exactly once: when up3

gets destroyed.

The assignment operator behaves similarly:

// initialize a unique_ptr with a new object

std::unique_ptr<ClassA> up1(new ClassA);

std::unique_ptr<ClassA> up2; // create another unique_ptr

up2 = up1; // ERROR: not possible

up2 = std::move(up1); // assign the unique_ptr

// - transfers ownership from up1 to up2

Here, the move assignment transfers ownership from up1 to up2. As a result, up2 owns the object

previously owned by up1.

14 Here is the major difference with auto_ptr, which did transfer the ownership with the ordinary copy seman-

tics, resulting in a source of trouble and confusion.

102 Chapter 5: Utilities

If up2 owned an object before an assignment, delete is called for that object:

// initialize a unique_ptr with a new object

std::unique_ptr<ClassA> up1(new ClassA);

// initialize another unique_ptr with a new object

std::unique_ptr<ClassA> up2(new ClassA);

up2 = std::move(up1); // move assign the unique_ptr

// - delete object owned by up2

// - transfer ownership from up1 to up2

A unique_ptr that loses the ownership of an object without getting a new ownership refers to no

object.

To assign a new value to a unique_ptr, this new value must also be a unique_ptr. You can’t

assign an ordinary pointer:

std::unique_ptr<ClassA> ptr; // create a unique_ptr

ptr = new ClassA; // ERROR

ptr = std::unique_ptr<ClassA>(new ClassA); // OK, delete old object

// and own new

Assigning nullptr is also possible, which has the same effect as calling reset():

up = nullptr; // deletes the associated object, if any

Source and Sink

The transfer of ownership implies a special use for unique_ptrs; that is, functions can use them to

transfer ownership to other functions. This can occur in two ways:

1. A function can behave as a sink of data. This happens if a unique_ptr is passed as an argument

to the function by rvalue reference created with std::move(). In this case, the parameter of

the called function gets ownership of the unique_ptr. Thus, if the function does not transfer it

again, the object gets deleted on function exit:

void sink(std::unique_ptr<ClassA> up) // sink() gets ownership

{

...

}

std::unique_ptr<ClassA> up(new ClassA);

...

sink(std::move(up)); // up loses ownership

...

5.2 Smart Pointers 103

2. A function can behave as a source of data. When a unique_ptr is returned, ownership of

the returned value gets transferred to the calling context. The following example shows this

technique:15

std::unique_ptr<ClassA> source()

{

std::unique_ptr<ClassA> ptr(new ClassA); // ptr owns the new object

...

return ptr; // transfer ownership to calling function

}

void g()

{

std::unique_ptr<ClassA> p;

for (int i=0; i<10; ++i) {

p = source(); // p gets ownership of the returned object

// (previously returned object of f() gets deleted)

...

}

} // last-owned object of p gets deleted

Each time source() is called, it creates an object with new and returns the object, along with

its ownership, to the caller. The assignment of the return value to p transfers ownership to p.

In the second and additional passes through the loop, the assignment to p deletes the object that

p owned previously. Leaving g(), and thus destroying p, results in the destruction of the last

object owned by p. In any case, no resource leak is possible. Even if an exception is thrown, any

unique_ptr that owns data ensures that this data is deleted.

The reason that no std::move() is necessary in the return statement of source() is that

according to the language rules of C++11, the compiler will try a move automatically (see Sec-

tion 3.1.5, page 22).

unique_ptrs as Members

By using unique_ptrs within a class, you can also avoid resource leaks. If you use a unique_ptr

instead of an ordinary pointer, you no longer need a destructor because the object gets deleted with

the deletion of the member. In addition, a unique_ptr helps to avoid resource leaks caused by

exceptions thrown during the initialization of an object. Note that destructors are called only if any

construction is completed. So, if an exception occurs inside a constructor, destructors are called

only for objects that have been fully constructed. This can result in resource leaks for classes with

multiple raw pointers if during the construction the first new was successful but the second was not.

For example:

15 If you assume to declare the return type as rvalue reference, don’t do that; doing so would return a dangling

pointer (see Section 3.1.5, page 22).

104 Chapter 5: Utilities

class ClassB {

private:

ClassA* ptr1; // pointer members

ClassA* ptr2;

public:

// constructor that initializes the pointers

// - will cause resource leak if second new throws

ClassB (int val1, int val2)

: ptr1(new ClassA(val1)), ptr2(new ClassA(val2)) {

}

// copy constructor

// - might cause resource leak if second new throws

ClassB (const ClassB& x)

: ptr1(new ClassA(*x.ptr1)), ptr2(new ClassA(*x.ptr2)) {

}

// assignment operator

const ClassB& operator= (const ClassB& x) {

*ptr1 = *x.ptr1;

*ptr2 = *x.ptr2;

return *this;

}

~ClassB () {

delete ptr1;

delete ptr2;

}

...

};

To avoid such a possible resource leak, you can simply use unique_ptrs:

class ClassB {

private:

std::unique_ptr<ClassA> ptr1; // unique_ptr members

std::unique_ptr<ClassA> ptr2;

public:

// constructor that initializes the unique_ptrs

// - no resource leak possible

ClassB (int val1, int val2)

: ptr1(new ClassA(val1)), ptr2(new ClassA(val2)) {

}

5.2 Smart Pointers 105

// copy constructor

// - no resource leak possible

ClassB (const ClassB& x)

: ptr1(new ClassA(*x.ptr1)), ptr2(new ClassA(*x.ptr2)) {

}

// assignment operator

const ClassB& operator= (const ClassB& x) {

*ptr1 = *x.ptr1;

*ptr2 = *x.ptr2;

return *this;

}

// no destructor necessary

// (default destructor lets ptr1 and ptr2 delete their objects)

...

};

Note, first, that you can skip the destructor now because unique_ptr does the job for you. You also

have to implement the copy constructor and assignment operator. By default, both would try to copy

or assign the members, which isn’t possible. If you don’t provide them, ClassB also would provide

only move semantics.

Dealing with Arrays

By default, unique_ptrs call delete for an object they own if they lose ownership (because they

are destroyed, get a new object assigned, or become empty). Unfortunately, due to the language rules

derived from C, C++ can’t differentiate between the type of a pointer to one object and an array of

objects. However, according to language rules for arrays, operator delete[] rather than delete

has to get called. So, the following is possible but wrong:

std::unique_ptr<std::string> up(new std::string[10]); // runtime ERROR

Now, you might assume that as for class shared_ptr (see Section 5.2.1, page 80), you have to

define your own deleter to deal with arrays. But this is not necessary.

Fortunately, the C++ standard library provides a partial specialization of class unique_ptr for

arrays, which calls delete[] for the referenced object when the pointer loses the ownership to it.

So, you simply have to declare:

std::unique_ptr<std::string[]> up(new std::string[10]); // OK

Note, however, that this partial specialization offers a slightly different interface. Instead of operators

* and ->, operator [] is provided to access one of the objects inside the referenced array:

std::unique_ptr<std::string[]> up(new std::string[10]); // OK

...

std::cout << *up << std::endl; // ERROR: * not defined for arrays

std::cout << up[0] << std::endl; // OK

106 Chapter 5: Utilities

As usual, it’s up to the programmer to ensure that the index is valid. Using an invalid index results

in undefined behavior.

Note also that this class does not allow getting initialized by an array of a derived type. This

reflects that fact that polymorphism does not work for plain arrays.

Class default_delete<>

Let’s look a bit into the declaration of class unique_ptr. Conceptionally, this class is declared as

follows:16

namespace std {

// primary template:

template <typename T, typename D = default_delete<T>>

class unique_ptr

{

public:

...

T& operator*() const;

T* operator->() const noexcept;

...

};

// partial specialization for arrays:

template<typename T, typename D>

class unique_ptr<T[], D>

{

public:

...

T& operator[](size_t i) const;

...

}

}

Here, we can see that there is a special version of unique_ptr to deal with arrays. That version

provides operator [] instead of operators * and -> to deal with arrays rather than single objects. But

both use class std::default_delete<> as deleter, which itself is specialized to call delete[]

instead of delete for arrays:

namespace std {

// primary template:

template <typename T> class default_delete {

public:

void operator()(T* p) const; // calls delete p

16 In the C++ standard library, class unique_ptr is actually more complicated because some template magic

is used to specify the exact return type for operators * and ->.

5.2 Smart Pointers 107

...

};

// partial specialization for arrays:

template <typename T> class default_delete<T[]> {

public:

void operator()(T* p) const; // calls delete[] p

...

};

}

Note that default template arguments automatically also apply to partial specializations.

Deleters for Other Associated Resources

When the object you refer to requires something other than calling delete or delete[], you have

to specify your own deleter. Note, however, that the approach to defining a deleter differs slightly

from that for shared_ptrs. You have to specify the type of the deleter as second template argument.

That type can be a reference to a function, function pointer, or function object (see Section 6.10,

page 233). If a function object is used, its “function call operator” () should be declared to take a

pointer to the object.

For example, the following code prints an additional message before deleting an object with

delete:

class ClassADeleter

{

public:

void operator () (ClassA* p) {

std::cout << "call delete for ClassA object" << std::endl;

delete p;

}

};

...

std::unique_ptr<ClassA,ClassADeleter> up(new ClassA());

To specify a function or a lambda, you have to either declare the type of the deleter as void(*)(T*)

or std::function<void(T*)> or use decltype (see Section 3.1.11, page 32). For example, to

use your own deleter for an array of ints specified as a lambda, this looks as follows:

std::unique_ptr<int,void(*)(int*)> up(new int[10],

[](int* p) {

...

delete[] p;

});

or

108 Chapter 5: Utilities

std::unique_ptr<int,std::function<void(int*)>> up(new int[10],

[](int* p) {

...

delete[] p;

});

or

auto l = [](int* p) {

...

delete[] p;

};

std::unique_ptr<int,decltype(l)>> up(new int[10], l);

To avoid having to specify the type of the deleter when passing a function pointer or a lambda,

you could also use an alias template, a language feature provided since C++11 (see Section 3.1.9,

page 27):

template <typename T>

using uniquePtr = std::unique_ptr<T,void(*)(T*)>; // alias template

...

uniquePtr<int> up(new int[10], [](int* p) { // used here

...

delete[] p;

});

This way, you would have more or less the same interface to specify deleters as for shared_ptrs.

Here is a complete example of using your own deleter:

// util/uniqueptr1.cpp

#include <iostream>

#include <string>

#include <memory> // for unique_ptr

#include <dirent.h> // for opendir(), ...

#include <cstring> // for strerror()

#include <cerrno> // for errno

using namespace std;

class DirCloser

{

public:

void operator () (DIR* dp) {

if (closedir(dp) != 0) {

std::cerr << "OOPS: closedir() failed" << std::endl;

}

}

};

5.2 Smart Pointers 109

int main()

{

// open current directory:

unique_ptr<DIR,DirCloser> pDir(opendir("."));

// process each directory entry:

struct dirent *dp;

while ((dp = readdir(pDir.get())) != nullptr) {

string filename(dp->d_name);

cout << "process " << filename << endl;

...

}

}

Here, inside main(), we deal with the entries of the current directory, using the standard POSIX

interface of opendir(), readdir(), and closedir(). To ensure that in any case the directory

opened is closed by closedir(), we define a unique_ptr, which causes the DirCloser to be

called whenever the handle referring to the opened directory gets destroyed. As for shared pointers,

deleters for unique pointers may not throw. For this reason, we print only an error message here.

Another advantage of using a unique_ptr is that no copies are possible. Note that readdir()

is not stateless, so it’s a good idea to ensure that while using a handle to deal with a directory, a copy

of the handle can’t modify its state.

If you don’t want to process the return value of closedir(), you could also pass closedir()

directly as a function pointer, specifying that the deleter is a function pointer. But beware: The often

recommended declaration

unique_ptr<DIR,int(*)(DIR*)> pDir(opendir("."),

closedir); // might not work

is not guaranteed to be portable, because closedir has extern "C" linkage, so in C++ code, this

is not guaranteed to be convertible into int(*)(DIR*). For portable code, you would need an

intermediate type definition like this:17

extern "C" typedef int(*DIRDeleter)(DIR*);

unique_ptr<DIR, DIRDeleter> pDir(opendir("."),

closedir); // OK

Note that closedir() returns an int, so we have to specify int(*)(DIR*) as the type of the

deleter. Note, however, that a call through a function pointer is an indirect call, which is harder to

optimize away.

See Section 15.12.3, page 822, for another example of using your own unique_ptr deleter to

restore a redirected output buffer.

¨17 Thanks to Daniel Krugler for pointing this out.

110 Chapter 5: Utilities

5.2.6 Class unique_ptr in Detail

As introduced in Section 5.2.5, page 98, class unique_ptr provides the concept of a smart pointer

with exclusive ownership semantics. Once a unique pointer has exclusive control, you cannot (acci-

dentally) create a situation in which multiple pointers own the associated object. The major goal is

to ensure that with the end of the pointer’s lifetime, the associated object gets deleted (or its resource

gets cleaned up). This especially helps to provide exception safety. In contrast to shared pointers, a

minimum space and time overhead is the focus of this class.

Class unique_ptr<> is templatized for the type of the object the initial pointer refers to and its

deleter:

namespace std {

template <typename T, typename D = default_delete<T>>

class unique_ptr

{

public:

typedef ... pointer; // may be D::pointer

typedef T element_type;

typedef D deleter_type;

...

};

}

A partial specialization for arrays is provided (note that by language rules, it has the same default

deleter, which is default_delete<T[]> then):

namespace std {

template <typename T, typename D>

class unique_ptr<T[], D>

{

public:

typedef ... pointer; // may be D::pointer

typedef T element_type;

typedef D deleter_type;

...

};

}

The element type T might be void so that the unique pointer owns an object with an unspecified

type, like void* does. Note also that a type pointer is defined, which is not necessarily defined

as T*. If the deleter D has a pointer typedef, this type will be used instead. In such a case,

the template parameter T has only the effect of a type tag, because there is no member as part of

class unique_ptr<> that depends on T; everything depends on pointer. The advantage is that a

unique_ptr can thus hold other smart pointers.

If a unique_ptr is empty, it does not own an object, so get() returns the nullptr.

Table 5.7 lists all operations provided for unique pointers.

5.2 Smart Pointers 111

Operation Effect

unique_ptr<...> up Default constructor; creates an empty unique pointer,

using an instance of the default/passed deleter type as

deleter

unique_ptr<T> up(nullptr) Creates an empty unique pointer, using an instance of the

default/passed deleter type as deleter

unique_ptr<...> up(ptr) Creates a unique pointer owning *ptr, using an instance

of the default/passed deleter type as deleter

unique_ptr<...> up(ptr,del) Creates a unique pointer owning *ptr, using del as deleter

unique_ptr<T> up(move(up2)) Creates a unique pointer owning the pointer previously

owned by up2 (up2 is empty afterward)

unique_ptr<T> up(move(ap)) Creates a unique pointer owning the pointer previously

owned by the auto_ptr ap (ap is empty afterward)

up.~unique_ptr() Destructor; calls the deleter for an owned object

up = move(up2) Move assignment (up2 transfers ownership to up)

up = nullptr Calls the deleter for an owned object and makes up empty

(equivalent to up.reset())

up1.swap(up2) Swaps pointers and deleters of up1 and up2

swap(up1,up2) Swaps pointers and deleters of up1 and up2

up.reset() Calls the deleter for an owned object and makes up empty

(equivalent to up=nullptr)

up.reset(ptr) Calls the deleter for an owned object and reinitializes the

shared pointer to own *ptr

up.release() Gives up ownership back to the caller (returns owned

object without calling the deleter)

up.get() Returns the stored pointer (the address of the object

owned or nullptr if none)

*up Single objects only; returns the owned object (undefined

behavior if none)

up->... Single objects only; provides member access for the

owned object (undefined behavior if none)

up[idx] Array objects only; returns the element with index idx of

the stored array (undefined behavior if none)

if (up) Operator bool(); yields whether up is empty

up1 == up2 Calls == for the stored pointers (nullptr is possible)

up1 != up2 Calls != for the stored pointers (nullptr is possible)

up1 < up2 Calls < for the stored pointers (nullptr is possible)

up1 <= up2 Calls <= for the stored pointers (nullptr is possible)

up1 > up2 Calls > for the stored pointers (nullptr is possible)

up1 >= up2 Calls >= for the stored pointers (nullptr is possible)

up.get_deleter() Returns a reference of the deleter

Table 5.7. Operations of unique_ptrs

112 Chapter 5: Utilities

The constructor taking a pointer and a deleter as arguments is overloaded for different types, so

the following behavior is specified:

D d; // instance of the deleter type

unique_ptr<int, D> p1(new int, D()); // D must be MoveConstructible

unique_ptr<int, D> p2(new int, d); // D must be CopyConstructible

unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d

unique_ptr<int, const D&> p4(new int, D()); // Error: rvalue deleter object

// can’t have reference deleter type

For single objects, the move constructor and the assignment operator are member templates, so a

type conversion is possible. All comparison operators are templatized for different element and

deleter types.

All comparison operators compare the raw pointers the shared pointers internally use (call the

same operator for the values returned by get()). They all have overloads for nullptr as argument.

Thus, you can check whether there is a valid pointer or even if the raw pointer is less than or greater

than nullptr.

The specialization for array types has the following differences compared to the single-object

interface:

• Instead of operators * and ->, operator [] is provided.

• The default deleter calls delete[] rather than just delete.

• Conversions between different types are not supported. Pointers to derived element types are

especially not possible.

Note that the deleter interface differs from class shared_ptr (see Section 5.2.1, page 80, for details).

However, as for shared pointers, deleters shall not throw.

5.2 Smart Pointers 113

5.2.7 Class auto_ptr

Unlike C++11, the C++98 standard library provided only one smart pointer class, auto_ptr, which

is deprecated since C++11. Its goal was to provide the semantics that unique_ptr now does.

However, class auto_ptr introduced a few problems:

• At the time of its design, the language had no move semantics for constructors and assignment

operators. However, the goal was still to provide the semantics of ownership transfer. As a

result, copy and assignment operators got a move semantic, which could cause serious trouble,

especially when passing an auto_ptr as argument.

• There was no semantic of a deleter, so you could use it only to deal with single objects allocated

with new.

• Because this was initially the only smart pointer provided by the C++ standard library, it was

often misused, especially assuming that it provided the semantics of shared ownership as class

shared_ptr does now.

Regarding the danger of unintended loss of ownership, consider the following example, consisting

of a naive implementation of a function that prints the object to which an auto_ptr refers:

// this is a bad example

template <typename T>

void bad_print(std::auto_ptr<T> p) // p gets ownership of passed argument

{

// does p own an object ?

if (p.get() == NULL) {

std::cout << "NULL";

}

else {

std::cout << *p;

}

} // Oops, exiting deletes the object to which p refers

Whenever an auto_ptr is passed to this implementation of bad_print(), the objects it owns, if

any, are deleted. The reason is that the ownership of the auto_ptr that is passed as an argument is

passed to the parameter p, and p deletes the object it owns on function exit. This is probably not the

programmer’s intention and would result in fatal runtime errors:

std::auto_ptr<int> p(new int);

*p = 42; // change value to which p refers

bad_print(p); // Oops, deletes the memory to which p refers

*p = 18; // RUNTIME ERROR

That behavior especially applies when passing an auto_ptr to a container. With unique_ptr,

such a mistake is no longer possible, because you explicitly would have to pass the argument with

std::move().

114 Chapter 5: Utilities

5.2.8 Final Words on Smart Pointers

As we have seen, C++11 provides two concepts of a smart pointer:

1. shared_ptr for shared ownership

2. unique_ptr for exclusive ownership

The latter replaces the old auto_ptr of C++98, which is deprecated now.

Performance Issues

You might wonder why the C++ standard library not only provides one smart pointer class with

shared ownership semantics because this also avoids resource leaks or transfers ownership. The

answer has to do with the performance impact of shared pointers.

Class shared_ptr is implemented with a nonintrusive (noninvasive) approach, which means

that objects managed by this class don’t have to fulfill a specific requirement, such as a common

base class. The big advantage is that this concept can be applied to any type, including fundamental

data types. The price is that a shared_ptr object internally needs multiple members: an ordinary

pointer to the referenced object and a reference counter shared by all shared pointers that refer to the

same object. Because weak pointers might refer to a shared object, you even need another counter.

(Even if no more shared pointer uses an object, you need the counter until all weak pointers end

referring to it; otherwise, you can’t guarantee that they return a use_count() of 0.)18

Thus, shared and weak pointers internally need additional helper objects, to which internal point-

ers refer, which means that a couple of specific optimizations are not possible (including empty base

class optimizations, which would allow elimination of any memory overhead).

Unique pointers do not require any of this overhead. Their “smartness” is based on special con-

structors and special destructors and the elimination of copy semantics. With a stateless or empty

deleter a unique pointer should consume the same amount of memory as a native pointer, and there

should be no runtime overhead compared to using native pointers and doing the deletes manually.

However, to avoid the introduction of unnecessary overhead, you should use function objects (in-

cluding lambdas) for deleters to allow the best optimizations with, ideally, zero overhead.

Usage Issues

Smart pointers are not perfect, and you still have to know which problems they solve and which

problems remain. For example, for any smart pointer class, you should never create multiple smart

pointers out of the same ordinary pointer.

See Section 7.11, page 388, for an example of using shared pointers in multiple STL containers.

Classes shared_ptr and unique_ptr provide different approaches to deal with arrays and

deleters. Class unique_ptr has a partial specialization for arrays, which provides a different in-

terface. It is more flexible and provides less performance overhead but might require a bit more

work to use it.

Finally, note that in general, smart pointers are not thread safe, although some guarantees apply.

See Section 5.2.4, page 96, for details.

18 Thanks to Howard Hinnant for pointing this out.

5.3 Numeric Limits 115

5.3 Numeric Limits

Numeric types in general have platform-dependent limits. The C++ standard library provides these

limits in the template numeric_limits. These numeric limits replace and supplement the ordinary

preprocessor C constants, which are still available for integer types in <climits> and <limits.h>

and for floating-point types in <cfloat> and <float.h>. The new concept of numeric limits has

two advantages: First, it offers more type safety. Second, it enables a programmer to write templates

that evaluate these limits.

The numeric limits are discussed in the rest of this section. Note, however, that it is always better

to write platform-independent code by using the minimum guaranteed precision of the types. These

minimum values are provided in Table 5.8.19

Type Minimum Size

char 1 byte (8 bits)

short int 2 bytes

int 2 bytes

long int 4 bytes

long long int 8 bytes

float 4 bytes

double 8 bytes

long double 8 bytes

Table 5.8. Minimum Size of Built-In Types

Class numeric_limits<>

You usually use templates to implement something once for any type. However, you can also use

templates to provide a common interface that is implemented for each type, where it is useful. You

can do this by providing specializations of a general template. A typical example of this technique

is numeric_limits, which works as follows:

• A general template provides the default numeric values for any type:

namespace std {

// general numeric limits as default for any type

template <typename T>

class numeric_limits {

public:

// by default no specialization for any type T exists

static constexpr bool is_specialized = false;

19 Note that “bytes” means an octet with 8 bits. Strictly speaking, it is possible that even a long int has one

byte with at least 32 bits.

116 Chapter 5: Utilities

... // other members are meaningless for the general template

};

}

This general template of the numeric limits says that no numeric limits are available for type T.

This is done by setting the member is_specialized to false.

• Specializations of the template define the numeric limits for each numeric type as follows:

namespace std {

// numeric limits for int

// - implementation defined

template<> class numeric_limits<int> {

public:

// yes, a specialization for numeric limits of int does exist

static constexpr bool is_specialized = true;

static constexpr int min() noexcept {

return -2147483648;

}

static constexpr int max() noexcept {

return 2147483647;

}

static constexpr int digits = 31;

...

};

}

Here, is_specialized is set to true, and all other members have the values of the numeric

limits for the particular type.

The general numeric_limits template and its standard specializations are provided in the header

file <limits>. The specializations are provided for any fundamental type that can represent numeric

values: bool, char, signed char, unsigned char, char16_t, char32_t, wchar_t, short,

unsigned short, int, unsigned int, long, unsigned long, long long, unsigned long

long, float, double, and long double.20 They can be supplemented easily for user-defined

numeric types.

Tables 5.9 and 5.10 list all members of the class numeric_limits<> and their meanings. Appli-

cable corresponding C constants for these members, defined in <climits>, <limits.h>, <cfloat>,

and <float.h>, are also given.

20 The specializations for char16_t, char32_t, long long, and unsigned long long are provided since

C++11.

5.3 Numeric Limits 117

Member Meaning C Constants

is_specialized Type has specialization for numeric limits

is_signed Type is signed

is_integer Type is integer

is_exact Calculations produce no rounding errors (true for all

integer types)

is_bounded The set of values representable is finite (true for all

built-in types)

is_modulo Adding two positive numbers may wrap to a lesser

result

is_iec559 Conforms to standards IEC 559 and IEEE 754

min() Minimum finite value (minimum positive normalized

value for floating-point types with denormalization;

meaningful if is_bounded||!is_signed)

INT_MIN,FLT_MIN,

CHAR_MIN,...

max() Maximum finite value (meaningful if is_bounded) INT_MAX,FLT_MAX,...

lowest() Maximum negative finite value (meaningful if

is_bounded; since C++11)

digits Character/integer: number of bits, excluding sign

(binary digits)

CHAR_BIT

Floating point: number of radix digits in the mantissa FLT_MANT_DIG,...

digits10 Number of decimal digits (meaningful if

is_bounded)

FLT_DIG,...

max_digits10 Number of required decimal digits to ensure that

values that differ are always differentiated (meaningful

for all floating-point types; since C++11)

radix Integer: base of the representation (almost always 2)

Floating point: base of the exponent representation FLT_RADIX

min_exponent Minimum negative integer exponent for base radix FLT_MIN_EXP,...

max_exponent Maximum positive integer exponent for base radix FLT_MAX_EXP,...

min_exponent10 Minimum negative integer exponent for base 10 FLT_MIN_10_EXP,...

max_exponent10 Maximum positive integer exponent for base 10 FLT_MAX_10_EXP,...

epsilon() Difference of 1 and least value greater than 1 FLT_EPSILON,...

round_style Rounding style (see page 119)

round_error() Measure of the maximum rounding error (according to

standard ISO/IEC 10967-1)

has_infinity Type has representation for positive infinity

infinity() Representation of positive infinity, if available

has_quiet_NaN Type has representation for nonsignaling “Not a

Number”

quiet_NaN() Representation of quiet “Not a Number,” if available

Table 5.9. Members of Class numeric_limits<>, Part 1

118 Chapter 5: Utilities

Member Meaning C Constants

has_signaling_NaN Type has representation for signaling “Not a

Number”

signaling_NaN() Representation of signaling “Not a Number,” if

available

has_denorm Whether type allows denormalized values (variable

numbers of exponent bits; see page 119)

has_denorm_loss Loss of accuracy is detected as a denormalization

loss rather than as an inexact result

denorm_min() Minimum positive denormalized value

traps Trapping is implemented

tinyness_before Tinyness is detected before rounding

Table 5.10. Members of Class numeric_limits<>, Part 2

The following is a possible full specialization of the numeric limits for type float, which is platform

dependent and shows the exact signatures of the members:

namespace std {

template<> class numeric_limits<float> {

public:

// yes, a specialization for numeric limits of float does exist

static constexpr bool is_specialized = true;

inline constexpr float min() noexcept {

return 1.17549435E-38F;

}

inline constexpr float max() noexcept {

return 3.40282347E+38F;

}

inline constexpr float lowest() noexcept {

return -3.40282347E+38F;

}

static constexpr int digits = 24;

static constexpr int digits10 = 6;

static constexpr int max_digits10 = 9;

static constexpr bool is_signed = true;

static constexpr bool is_integer = false;

static constexpr bool is_exact = false;

static constexpr bool is_bounded = true;

static constexpr bool is_modulo = false;

static constexpr bool is_iec559 = true;

5.3 Numeric Limits 119

static constexpr int radix = 2;

inline constexpr float epsilon() noexcept {

return 1.19209290E-07F;

}

static constexpr float_round_style round_style

= round_to_nearest;

inline constexpr float round_error() noexcept {

return 0.5F;

}

static constexpr int min_exponent = -125;

static constexpr int max_exponent = +128;

static constexpr int min_exponent10 = -37;

static constexpr int max_exponent10 = +38;

static constexpr bool has_infinity = true;

inline constexpr float infinity() noexcept { return ...; }

static constexpr bool has_quiet_NaN = true;

inline constexpr float quiet_NaN() noexcept { return ...; }

static constexpr bool has_signaling_NaN = true;

inline constexpr float signaling_NaN() noexcept { return ...; }

static constexpr float_denorm_style has_denorm = denorm_absent;

static constexpr bool has_denorm_loss = false;

inline constexpr float denorm_min() noexcept { return min(); }

static constexpr bool traps = true;

static constexpr bool tinyness_before = true;

};

}

Note that since C++11, all members are declared as constexpr (see Section 3.1.8, page 26). For

example, you can use max() at places where compile-time expressions are required:

static const int ERROR_VALUE = std::numeric_limits<int>::max();

float a[std::numeric_limits<short>::max()];

Before C++11, all nonfunction members were constant and static, so their values could be deter-

mined at compile time. However, function members were static only, so the preceding expressions

were not possible. Also note that before C++11, lowest() and max_digits10 were not provided

and that empty exception specifications instead of noexcept (see Section 3.1.7, page 24) were used.

The values of round_style are shown in Table 5.11. The values of has_denorm are shown in

Table 5.12. Unfortunately, the member has_denorm is not called denorm_style. This happened

because during the standardization process, there was a late change from a Boolean to an enumerative

value. However, you can use the has_denorm member as a Boolean value because the standard

120 Chapter 5: Utilities

Round Style Meaning

round_toward_zero Rounds toward zero

round_to_nearest Rounds to the nearest representable value

round_toward_infinity Rounds toward positive infinity

round_toward_neg_infinity Rounds toward negative infinity

round_indeterminate Indeterminable

Table 5.11. Round Style of numeric_limits<>

Denorm Style Meaning

denorm_absent The type does not allow denormalized values

denorm_present The type allows denormalized values to the nearest

representable value

denorm_indeterminate Indeterminable

Table 5.12. Denormalization Style of numeric_limits<>

guarantees that denorm_absent is 0, which is equivalent to false, whereas denorm_present is 1

and denorm_indeterminate is -1, both of which are equivalent to true. Thus, you can consider

has_denorm a Boolean indication of whether the type may allow denormalized values.

Example of Using numeric_limits<>

The following example shows possible uses of some numeric limits, such as the maximum values

for certain types and determining whether char is signed:

// util/limits1.cpp

#include <iostream>

#include <limits>

#include <string>

using namespace std;

int main()

{

// use textual representation for bool

cout << boolalpha;

// print maximum of integral types

cout << "max(short): " << numeric_limits<short>::max() << endl;

cout << "max(int): " << numeric_limits<int>::max() << endl;

cout << "max(long): " << numeric_limits<long>::max() << endl;

cout << endl;

5.3 Numeric Limits 121

// print maximum of floating-point types

cout << "max(float): "

<< numeric_limits<float>::max() << endl;

cout << "max(double): "

<< numeric_limits<double>::max() << endl;

cout << "max(long double): "

<< numeric_limits<long double>::max() << endl;

cout << endl;

// print whether char is signed

cout << "is_signed(char): "

<< numeric_limits<char>::is_signed << endl;

cout << endl;

// print whether numeric limits for type string exist

cout << "is_specialized(string): "

<< numeric_limits<string>::is_specialized << endl;

}

The output of this program is platform dependent. Here is a possible output of the program:

max(short): 32767

max(int): 2147483647

max(long): 2147483647

max(float): 3.40282e+38

max(double): 1.79769e+308

max(long double): 1.79769e+308

is_signed(char): false

is_specialized(string): false

The last line shows that no numeric limits are defined for the type string. This makes sense because

strings are not numeric values. However, this example shows that you can query for any arbitrary

type whether or not it has numeric limits defined.

122 Chapter 5: Utilities

5.4 Type Traits and Type Utilities

Almost everything in the C++ standard library is template based. To support the programming of

templates, sometimes called metaprogramming, template utilities are provided to help both program-

mers and library implementers.

Type traits, which were introduced with TR1 and extended with C++11, provide a mechanism

to define behavior depending on types. They can be used to optimize code for types that provide

special abilities.

Other utilities, such as reference and function wrappers, might also be helpful.

5.4.1 Purpose of Type Traits

A type trait provides a way to deal with the properties of a type. It is a template, which at compile

time yields a specific type or value based on one or more passed template arguments, which are

usually types.

Consider the following example:

template <typename T>

void foo (const T& val)

{

if (std::is_pointer<T>::value) {

std::cout << "foo() called for a pointer" << std::endl;

}

else {

std::cout << "foo() called for a value" << std::endl;

}

...

}

Here, the trait std::is_pointer, defined in <type_traits>, is used to check whether type T is

a pointer type. In fact, is_pointer<> yields either a type true_type or a type false_type, for

which ::value either yields true or false. As a consequence, foo() will output

foo() called for a pointer

if the passed parameter val is a pointer.

Note, however, that you can’t do something like:

template <typename T>

void foo (const T& val)

{

std::cout << (std::is_pointer<T>::value ? *val : val)

<< std::endl;

}

The reason is that code is generated for both *val and val. Even when passing an int so that the

expression is_pointer<T>::value yields false at compile time, the code expands to:

5.4 Type Traits and Type Utilities 123

cout << (false ? *val : val) << endl;

And this won’t compile, because *val is an invalid expression for ints.

But you can do the following:

// foo() implementation for pointer types:

template <typename T>

void foo_impl (const T& val, std::true_type)

{

std::cout << "foo() called for pointer to " << *val

<< std::endl;

}

// foo() implementation for non-pointer types:

template <typename T>

void foo_impl (const T& val, std::false_type)

{

std::cout << "foo() called for value to " << val

<< std::endl;

}

template <typename T>

void foo (const T& val)

{

foo_impl (val, std::is_pointer<T>());

}

Here, inside foo(), the expression

std::is_pointer<T>()

at compile time yields std::true_type or std::false_type, which defines which of the pro-

vided foo_impl() overloads gets instantiated.

Why is that better than providing two overloads of foo(): one for ordinary types and one for

pointer types?

template <typename T>

void foo (const T& val); // general implementation

template <typename T>

void foo<T*> (const T& val); // partial specialization for pointers

One answer is that sometimes, too many overloads are necessary. In general, the power of type traits

comes more from the fact that they are building blocks for generic code, which can be demonstrated

by two examples.

124 Chapter 5: Utilities

Flexible Overloading for Integral Types

In [Becker:LibExt], Pete Becker gives a nice example, which I modified slightly here. Suppose that

you have a function foo() that should be implemented differently for integral and floating-point

type arguments. The usual approach would be to overload this function for all available integral and

floating-point types:21

void foo (short); // provide integral version

void foo (unsigned short);

void foo (int);

...

void foo (float); // provide floating-point version

void foo (double);

void foo (long double);

This repetition is not only tedious but also introduces the problem that it might not work for new

integral or floating-point types, either provided by the standard, such as long long, or provided as

user-defined types.

With the type traits, you can provide the following instead:

template <typename T>

void foo_impl (T val, true_type); // provide integral version

template <typename T>

void foo_impl (T val, false_type); // provide floating-point version

template <typename T>

void foo (T val)

{

foo_impl (val, std::is_integral<T>());

}

Thus, you provide two implementations — one for integral and one for floating-point types — and

choose the right implementation according to what std::is_integral<> yields for the type.

Processing the Common Type

Another example for the usability of type traits is the need to process the “common type” of two or

more types. This is a type I could use to deal with the values of two different types, provided there

is a common type. For example, it would be an appropriate type of the minimum or the sum of two

values of different type. Otherwise, if I want to implement a function that yields the minimum of

two values of different types, which return type should it have:

template <typename T1, typename T2>

??? min (const T1& x, const T2& y);

21 According to the C++ standard, the term integral type includes bool and character types, but that’s not meant

here.

5.4 Type Traits and Type Utilities 125

Using the type traits, you can simply use the std::common_type<> to declare this type:

template <typename T1, typename T2>

typename std::common_type<T1,T2>::type min (const T1& x, const T2& y);

For example, the expression std::common_type<T1,T2>::type yields int if both arguments are

int, long, if one is int and the other is long, or std::string if one is a string and the other is a

string literal (type const char*).

How does it do that? Well, it simply uses the rules implemented for operator ?:, which has

to yield one result type based on the types of both operands. In fact, std::common_type<> is

implemented as follows:

template <typename T1, typename T2>

struct common_type<T1,T2> {

typedef decltype(true ? declval<T1>() : declval<T2>()) type;

};

where decltype is a new keyword in C++11 (see Section 3.1.11, page 32) to yield the type of

an expression, and declval<> is an auxiliary trait to provide a declared value of the passed type

without evaluating it (generating an rvalue reference for it).

Thus, when operator ?: is able to find a common type, common_type<> will yield it. If not, you

can still provide an overload of common_type<> (this, for example, is used by the chrono library to

be able to combine durations; see Section 5.7.2, page 145).

5.4.2 Type Traits in Detail

The type traits are usually defined in <type_traits>.

(Unary) Type Predicates

As introduced in Section 5.4.1, page 122, the type predicates yield std::true_type if a spe-

cific property applies and std::false_type if not. These types are specialization of the helper

std::integral_constant, so their corresponding value members yield true or false:

namespace std {

template <typename T, T val>

struct integral_constant {

static constexpr T value = val;

typedef T value_type;

typedef integral_constant<T,v> type;

constexpr operator value_type() {

return value;

}

};

typedef integral_constant<bool,true> true_type;

typedef integral_constant<bool,false> false_type;

}

126 Chapter 5: Utilities

Trait Effect

is_void<T > Type void

is_integral<T > Integral type (including bool, char, char16_t,

char32_t, wchar_t)

is_floating_point<T > Floating-point type (float, double, long double)

is_arithmetic<T > Integral (including bool and characters) or

floating-point type

is_signed<T > Signed arithmetic type

is_unsigned<T > Unsigned arithmetic type

is_const<T > const qualified

is_volatile<T > volatile qualified

is_array<T > Ordinary array type (not type std::array)

is_enum<T > Enumeration type

is_union<T > Union type

is_class<T > Class/struct type but not a union type

is_function<T > Function type

is_reference<T > Lvalue or rvalue reference

is_lvalue_reference<T > Lvalue reference

is_rvalue_reference<T > Rvalue reference

is_pointer<T > Pointer type (including function pointer but not pointer

to nonstatic member)

is_member_pointer<T > Pointer to nonstatic member

is_member_object_pointer<T > Pointer to a nonstatic data member

is_member_function_pointer<T > Pointer to a nonstatic member function

is_fundamental<T > void, integral (including bool and characters),

floating-point, or std::nullptr_t

is_scalar<T > Integral (including bool and characters),

floating-point, enumeration, pointer, member pointer,

std::nullptr_t

is_object<T > Any type except void, function, or reference

is_compound<T > Array, enumeration, union, class, function, reference,

or pointer

is_trivial<T > Scalar, trivial class, or arrays of these types

is_trivially_copyable<T > Scalar, trivially copyable class, or arrays of these types

is_standard_layout<T > Scalar, standard layout class, or arrays of these types

is_pod<T > Plain old data type (type where memcpy() works to

copy objects)

is_literal_type<T > Scalar, reference, class, or arrays of these types

Table 5.13. Traits to Check Type Properties

Table 5.13 lists the type predicates provided for all types. Table 5.14 lists the traits that clarify details

of class types.

5.4 Type Traits and Type Utilities 127

Trait Effect

is_empty<T > Class with no members, virtual member

functions, or virtual base classes

is_polymorphic<T > Class with a (derived) virtual member function

is_abstract<T > Abstract class (at least one pure virtual

function)

has_virtual_destructor<T > Class with virtual destructor

is_default_constructible<T > Class enables default construction

is_copy_constructible<T > Class enables copy construction

is_move_constructible<T > Class enables move construction

is_copy_assignable<T > Class enables copy assignment

is_move_assignable<T > Class enables move assignment

is_destructible<T > Class with callable destructor (not deleted,

protected, or private)

is_trivially_default_constructible<T > Class enables trivial default construction

is_trivially_copy_constructible<T > Class enables trivial copy construction

is_trivially_move_constructible<T > Class enables trivial move construction

is_trivially_copy_assignable<T > Class enables trivial copy assignment

is_trivially_move_assignable<T > Class with trivial move assignment

is_trivially_destructible<T > Class with trivial callable destructor

is_nothrow_default_constructible<T > Class enables default construction that doesn’t

throw

is_nothrow_copy_constructible<T > Class enables copy construction that doesn’t

throw

is_nothrow_move_constructible<T > Class enables move construction that doesn’t

throw

is_nothrow_copy_assignable<T > Class enables copy assignment that doesn’t

throw

is_nothrow_move_assignable<T > Class enables move assignment that doesn’t

throw

is_nothrow_destructible<T > Class with callable destructor that doesn’t

throw

Table 5.14. Traits to Check Type Properties of Class Types

Note that bool and all character types (char, char16_t, char32_t, and wchar_t) count as

integral types and that type std::nullptr_t (see Section 3.1.1, page 14) counts as a fundamental

data type.

Most, but not all, of these traits are unary. That is, they use one template argument. For example,

is_const<> checks whether the passed type is const:

is_const<int>::value // false

is_const<const volatile int>::value // true

128 Chapter 5: Utilities

is_const<int* const>::value // true

is_const<const int*>::value // false

is_const<const int&>::value // false

is_const<int[3]>::value // false

is_const<const int[3]>::value // true

is_const<int[]>::value // false

is_const<const int[]>::value // true

Note that a nonconstant pointer or reference to a constant type is not constant, whereas an ordinary

array of constant elements is.22

Note that the traits checking for copy and move semantics only check whether the corresponding

expressions are possible. For example, a type with a copy constructor with constant argument but no

move constructor is still move constructible.

The is_nothrow... type traits are especially used to formulate noexcept specifications (see

Section 3.1.7, page 24).

Traits for Type Relations

Table 5.15 lists the type traits that allow checking relations between types. This includes checking

which constructors and assignment operators are provided for class types.

Trait Effect

is_same<T1,T2 > T1 and T2 are the same types (including

const/volatile qualifiers)

is_base_of<T,D > Type T is base class of type D

is_convertible<T,T2 > Type T is convertible into type T2

is_constructible<T,Args...> Can initialize type T with types Args

is_trivially_constructible<T,Args...> Can trivially initialize type T with types Args

is_nothrow_constructible<T,Args...> Initializing type T with types Args doesn’t

throw

is_assignable<T,T2 > Can assign type T2 to type T

is_trivially_assignable<T,T2 > Can trivially assign type T2 to type T

is_nothrow_assignable<T,T2 > Assigning type T2 to type T doesn’t throw

uses_allocator<T,Alloc > Alloc is convertible into T::allocator_type

Table 5.15. Traits to Check Type Relations

22 Whether this is correct is currently an issue to decide in the core language group.

5.4 Type Traits and Type Utilities 129

Note that a type like int represents an lvalue or an rvalue. Because you can’t assign

42 = 77;

is_assignable<> for a nonclass type as first type always yields false_type. For class types,

however, passing their ordinary type as first type is fine because there is a funny old rule that you

can invoke member functions of rvalues of class types.23 For example:

is_assignable<int,int>::value // false

is_assignable<int&,int>::value // true

is_assignable<int&&,int>::value // false

is_assignable<long&,int>::value // true

is_assignable<int&,void*>::value // false

is_assignable<void*,int>::value // false

is_assignable<const char*,std::string>::value // false

is_assignable<std::string,const char*>::value // true

Trait is_constructible<> yields, for example, the following:

is_constructible<int>::value // true

is_constructible<int,int>::value // true

is_constructible<long,int>::value // true

is_constructible<int,void*>::value // false

is_constructible<void*,int>::value // false

is_constructible<const char*,std::string>::value // false

is_constructible<std::string,const char*>::value // true

is_constructible<std::string,const char*,int,int>::value // true

std::uses_allocator<> is defined in <memory<> (see Section 19.1, page 1024).

Type Modifiers

The traits listed in Table 5.16 allow you to modify types.

All modifying traits add a type property, provided it doesn’t exist yet, or remove a property

provided it exists already. For example, type int might only be extended:

typedef int T;

add_const<T>::type // const int

add_lvalue_reference<T>::type // int&

add_rvalue_reference<T>::type // int&&

add_pointer<T>::type // int*

make_signed<T>::type // int

make_unsigned<T>::type // unsigned int

remove_const<T>::type // int

remove_reference<T>::type // int

remove_pointer<T>::type // int

¨23 Thanks to Daniel Krugler for pointing this out.

130 Chapter 5: Utilities

Trait Effect

remove_const<T > Corresponding type without const

remove_volatile<T > Corresponding type without volatile

remove_cv<T > Corresponding type without const and volatile

add_const<T > Corresponding const type

add_volatile<T > Corresponding volatile type

add_cv<T > Corresponding const volatile type

make_signed<T > Corresponding signed nonreference type

make_unsigned<T > Corresponding unsigned nonreference type

remove_reference<T > Corresponding nonreference type

add_lvalue_reference<T > Corresponding lvalue reference type (rvalues become lvalues)

add_rvalue_reference<T > Corresponding rvalue reference type (lvalues remain lvalues)

remove_pointer<T > Referred type for pointers (same type otherwise)

add_pointer<T > Type of pointer to corresponding nonreference type

Table 5.16. Traits for Type Modifications

whereas type const int& might be reduced and/or extended:

typedef const int& T;

add_const<T>::type // const int&

add_lvalue_reference<T>::type // const int&

add_rvalue_reference<T>::type // const int& (yes, lvalue remains lvalue)

add_pointer<T>::type // const int*

make_signed<T>::type // undefined behavior

make_unsigned<T>::type // undefined behavior

remove_const<T>::type // const int&

remove_reference<T>::type // const int

remove_pointer<T>::type // const int&

Note again that a reference to a constant type is not constant, so you can’t remove constness

there. Note that add_pointer<> implies the application of remove_reference<>. However,

make_signed<> and make_unsigned<> require that the arguments be either integral or enumer-

ation types, except bool, so passing references results in undefined behavior.

Note that add_lvalue_reference<> converts an rvalue reference into an lvalue reference,

whereas add_rvalue_reference<> does not convert an lvalue reference into an rvalue reference

(the type remains as it was). Thus, to convert an lvalue into a rvalue reference, you have to call:

add_rvalue_reference<remove_reference<T>::type>::type

Other Type Traits

Table 5.17 lists all remaining type traits. They query special properties, check type relations, or

provide more complicated type transformations.

5.4 Type Traits and Type Utilities 131

Trait Effect

rank<T > Number of dimensions of an array type (or 0)

extent<T,I=0> Extent of dimension I (or 0)

remove_extent<T > Element types for arrays (same type otherwise)

remove_all_extents<T > Element type for multidimensional arrays (same type

otherwise)

underlying_type<T > Underlying type of an enumeration type (see Section 3.1.13,

page 32)

decay<T > Transfers to corresponding “by-value” type

enable_if<B,T =void> Yields type T only if bool B is true

conditional<B,T,F > Yields type T if bool B is true and type F otherwise

common_type<T1,...> Common type of all passed types

result_of<F,ArgTypes > Type of calling F with argument types ArgTypes

alignment_of<T > Equivalent to alignof(T)

aligned_storage<Len > Type of Len bytes with default alignment

aligned_storage<Len,Align > Type of Len bytes aligned according to a divisor of size_t

Align

aligned_union<Len,Types...> Type of Len bytes aligned for a union of Types...

Table 5.17. Other Type Traits

The traits that deal with ranks and extents allow you to deal with (multidimensional) arrays.

For example:

rank<int>::value // 0

rank<int[]>::value // 1

rank<int[5]>::value // 1

rank<int[][7]>::value // 2

rank<int[5][7]>::value // 2

extent<int>::value // 0

extent<int[]>::value // 0

extent<int[5]>::value // 5

extent<int[][7]>::value // 0

extent<int[5][7]>::value // 5

extent<int[][7],1>::value // 7

extent<int[5][7],1>::value // 7

extent<int[5][7],2>::value // 0

remove_extent<int>::type // int

remove_extent<int[]>::type // int

remove_extent<int[5]>::type // int

remove_extent<int[][7]>::type // int[7]

remove_extent<int[5][7]>::type // int[7]

remove_all_extents<int>::type // int

132 Chapter 5: Utilities

remove_all_extents<int[]>::type // int

remove_all_extents<int[5]>::type // int

remove_all_extents<int[][7]>::type // int

remove_all_extents<int[5][7]>::type // int

Trait decay<> provides the ability to convert a type T into its corresponding type when this type

is passed by value. Thus, it converts array and function types into pointers as well as lvalues into

rvalues, including removing const and volatile. See Section 5.1.1, page 65, for an example of its

use.

As introduced in Section 5.4.1, page 124, common_type<> provides a common type for all

passed types (may be one, two, or more type arguments).

5.4.3 Reference Wrappers

Class std::reference_wrapper<>, declared in <functional>, is used primarily to “feed” refer-

ences to function templates that take their parameter by value. For a given type T, this class provides

ref() for an implicit conversion to T& and cref() for an implicit conversion to const T&, which

usually allows function templates to work on references without specialization.

For example, after a declaration such as

template <typename T>

void foo (T val);

by calling

int x;

foo (std::ref(x));

T becomes int&, whereas by calling

int x;

foo (std::cref(x));

T becomes const int&.

This feature is used by the C++ standard library at various places. For example:

• make_pair() uses this to be able to create a pair<> of references (see Section 5.1.1, page 66).

• make_tuple() uses this to be able to create a tuple<> of references (see Section 5.1.2, page 70).

• Binders use this to be able to bind references (see Section 10.2.2, page 491).

• Threads use this to pass arguments by reference (see Section 18.2.2, page 971).

Note also that class reference_wrapper allows you to use references as first-class objects, such as

element type in arrays or STL containers:

std::vector<MyClass&> coll; // Error

std::vector<std::reference_wrapper<MyClass>> coll; // OK

See Section 7.11, page 391, for details.

5.4 Type Traits and Type Utilities 133

5.4.4 Function Type Wrappers

Class std::function<>, declared in <functional>, provides polymorphic wrappers that gene-

ralize the notion of a function pointer. This class allows you to use callable objects (functions,

member functions, function objects, and lambdas; see Section 4.4, page 54) as first-class objects.

For example:

void func (int x, int y);

// initialize collections of tasks:

std::vector<std::function<void(int,int)>> tasks;

tasks.push_back(func);

tasks.push_back([] (int x, int y) {

...

});

// call each task:

for (std::function<void(int,int)> f : tasks) {

f(33,66);

}

When member functions are used, the object they are called for has to be the first argument:

class C {

public:

void memfunc (int x, int y) const;

};

std::function<void(const C&,int,int)> mf;

mf = &C::memfunc;

mf(C(),42,77);

Another application of this is to declare functions that return lambdas (see Section 3.1.10, page 31).

Note that performing a function call without having a target to call throws an exception of type

std::bad_function_call (see Section 4.3.1, page 43):

std::function<void(int,int)> f;

f(33,66); // throws std::bad_function_call

134 Chapter 5: Utilities

5.5 Auxiliary Functions

The C++ standard library provides some small auxiliary functions that process minimum and maxi-

mum, swap values, or provide supplementary comparison operators.

5.5.1 Processing the Minimum and Maximum

Table 5.18 lists the utility functions <algorithm> provides to process the minimum and/or maxi-

mum of two or more values. All minmax() functions and all function for initializer lists are provided

since C++11.

Operation Effect

min(a,b) Returns the minimum of a and b, comparing with <

min(a,b,cmp) Returns the minimum of a and b, comparing with cmp

min(initlist) Returns the minimum in initlist, comparing with <

min(initlist,cmp) Returns the minimum in initlist, comparing with cmp

max(a,b) Returns the maximum of a and b, comparing with <

max(a,b,cmp) Returns the maximum of a and b, comparing with cmp

max(initlist) Returns the maximum in initlist, comparing with <

max(initlist,cmp) Returns the maximum in initlist, comparing with cmp

minmax(a,b) Returns the minimum and maximum of a and b, comparing with <

minmax(a,b,cmp) Returns the minimum and maximum of a and b, comparing with cmp

minmax(initlist) Returns the minimum and maximum of initlist comparing with <

minmax(initlist,cmp) Returns the minimum and maximum of initlist comparing with cmp

Table 5.18. Operations to Process Minimum and Maximum

The function minmax() returns a pair<> (see Section 5.1.1, page 60), where the first value is

the minimum, and the second value is the maximum.

For the versions with two arguments, min() and max() return the first element if both values

are equal. For initializer lists, min() and max() return the first of multiple minimum or maximum

elements. minmax() returns the pair of a and b for two equal arguments and the first minimum but

the last maximum element for an initializer list. However, it is probably a good programming style

not to rely on this.

Note that the versions taking two values return a reference; the versions taking initializer lists

return copies of the values:

namespace std {

template <typename T>

const T& min (const T& a, const T& b);

template <typename T>

T min (initializer_list<T> initlist);

...

}

5.5 Auxiliary Functions 135

The reason is that for an initializer list, you need an internal temporary, so returning a reference

would return a dangling reference.

Both functions are also provided with the comparison criterion as an additional argument:

namespace std {

template <typename T, typename Compare>

const T& min (const T& a, const T& b, Compare cmp);

template <typename T, typename Compare>

T min (initializer_list<T> initlist, Compare cmp);

...

}

The comparison argument might be a function or a function object (see Section 6.10, page 233) that

compares both arguments and returns whether the first is less than the second in some particular

order.

The following example shows how to use the maximum function by passing a special comparison

function as an argument:

// util/minmax1.cpp

#include <algorithm>

// function that compares two pointers by comparing the values to which they point

bool int_ptr_less (int* a, int* b)

{

return *a < *b;

}

int main()

{

int x = 17;

int y = 42;

int z = 33;

int* px = &x;

int* py = &y;

int* pz = &z;

// call max() with special comparison function

int* pmax = std::max (px, py, int_ptr_less);

// call minmax() for initializer list with special comparison function

std::pair<int*,int*> extremes = std::minmax ({px, py, pz},

int_ptr_less);

...

}

136 Chapter 5: Utilities

Alternatively, you could use new language features, such as a lambda, to specify the comparison

criterion and auto to avoid the explicit declaration of the return value:

auto extremes = std::minmax ({px, py, pz}, [](int*a, int*b) {

return *a < *b;

});

Note that the definitions of min() and max() require that both types match. Thus, you can’t call

them for objects of different types:

int i;

long l;

...

std::max(i,l); // ERROR: argument types don’t match

std::max({i,l}); // ERROR: argument types don’t match

However, you could qualify explicitly the type of your template arguments (and thus the return type):

std::max<long>(i,l); // OK

std::max<long>({i,l}); // OK

5.5.2 Swapping Two Values

The function swap() is provided to swap the values of two objects. The general implementation of

swap() is defined in <utility> as follows:24

namespace std {

template <typename T>

inline void swap(T& a, T& b) ... {

T tmp(std::move(a));

a = std::move(b);

b = std::move(tmp);

}

}

Thus, internally, the values are moved or move assigned (see Section 3.1.5, page 19, for details of

move semantics). Before C++11, the values were assigned or copied.

By using this function, you can have two arbitrary variables x and y swap their values by calling

std::swap(x,y);

Of course, this call is possible only if move or copy semantics are provided by the parameter type.

Note that swap() provides an exception specification (that’s why ... is used in the previous

declarations). The exception specification for the general swap() is:25

24 Before C++11, swap() was defined in <algorithm>.
25 See Section 3.1.7, page 24, for details about noexcept and Section 5.4.2, page 127, for the type traits used

here.

5.5 Auxiliary Functions 137

noexcept(is_nothrow_move_constructible<T>::value &&

is_nothrow_move_assignable<T>::value)

Since C++11, the C++ standard library also provides an overload for arrays:

namespace std {

template <typename T, size_t N>

void swap (T (&a)[N], T (&b)[N])

noexcept(noexcept(swap(*a,*b)));

}

The big advantage of using swap() is that it enables you to provide special implementations for

more complex types by using template specialization or function overloading. These special imple-

mentations might save time by swapping internal members rather than by assigning the objects. This

is the case, for example, for all standard containers (see Section 7.1.2, page 258) and strings (see

Section 13.2.8, page 674). For example, a swap() implementation for a simple container that has

only an array and the number of elements as members could look like this:

class MyContainer {

private:

int* elems; // dynamic array of elements

int numElems; // number of elements

public:

...

// implementation of swap()

void swap(MyContainer& x) {

std::swap(elems,x.elems);

std::swap(numElems,x.numElems);

}

...

};

// overloaded global swap() for this type

inline void swap (MyContainer& c1, MyContainer& c2)

noexcept(noexcept(c1.swap(c2)))

{

c1.swap(c2); // calls implementation of swap()

}

So, calling swap() instead of swapping the values directly might result in substantial performance

improvements. You should always offer a specialization of swap() for your own types if doing so

has performance advantages.

Note that both types have to match:

int i;

long l;

std::swap(i,l); // ERROR: argument types don’t match

138 Chapter 5: Utilities

int a1[10];

int a3[11];

std::swap(a1,a3); // ERROR: arrays have different types (different sizes)

5.5.3 Supplementary Comparison Operators

Four function templates define the comparison operators !=, >, <=, and >= by calling the operators

== and <. These functions are declared in <utility> and are usually defined as follows:

namespace std {

namespace rel_ops {

template <typename T>

inline bool operator!= (const T& x, const T& y) {

return !(x == y);

}

template <typename T>

inline bool operator> (const T& x, const T& y) {

return y < x;

}

template <typename T>

inline bool operator<= (const T& x, const T& y) {

return !(y < x);

}

template <typename T>

inline bool operator>= (const T& x, const T& y) {

return !(x < y);

}

}

}

To use these functions, you need only define operators < and ==. Using namespace std::rel_ops

defines the other comparison operators automatically. For example:

#include <utility>

class X {

public:

bool operator== (const X& x) const;

bool operator< (const X& x) const;

...

};

5.5 Auxiliary Functions 139

void foo()

{

using namespace std::rel_ops; // make !=, >, etc., available

X x1, x2;

...

if (x1 != x2) { // OK

...

}

if (x1 > x2) { // OK

...

}

}

These operators are defined in a subnamespace of std, called rel_ops. They are in a separate

namespace so that user-defined relational operators in the global namespace won’t clash even if all

identifiers of namespace std become global by using a general using directive:

using namespace std; // operators are not in global scope

On the other hand, users who want to get their hands on them explicitly can implement the following

without having to rely on lookup rules to find them implicitly:

using namespace std::rel_ops; // operators are in global scope

Some implementations define the operators by using two different argument types:

namespace std {

namespace rel_ops {

template <typename T1, typename T2>

inline bool operator!=(const T1& x, const T2& y) {

return !(x == y);

}

...

}

}

The advantage of such an implementation is that the types of the operands may differ, provided the

types are comparable. But note that this kind of implementation is not provided by the C++ standard

library. Thus, taking advantage of it makes code nonportable.

140 Chapter 5: Utilities

5.6 Compile-Time Fractional Arithmetic with

Class ratio<>

Since C++11, the C++ standard library provides an interface to specify compile-time fractions and

to perform compile-time arithmetic with them. To quote [N2661:Chrono] (with minor modifica-

tions):26

The ratio utility is a general purpose utility inspired by Walter E. Brown allowing one to

easily and safely compute rational values at compile time. The ratio class catches all

errors (such as divide by zero and overflow) at compile time. It is used in the duration

and time_point libraries [see Section 5.7, page 143] to efficiently create units of time. It

can also be used in other “quantity” libraries (both standard-defined and user-defined),

or anywhere there is a rational constant which is known at compile time. The use of this

utility can greatly reduce the chances of runtime overflow because a ratio and any ratios

resulting from ratio arithmetic are always reduced to lowest terms.

The ratio utility is provided in <ratio>, with class ratio<> defined as follows:

namespace std {

template <intmax_t N, intmax_t D = 1>

class ratio {

public:

typedef ratio<num,den> type;

static constexpr intmax_t num;

static constexpr intmax_t den;

};

}

intmax_t designates a signed integer type capable of representing any value of any signed integer

type. It is defined in <cstdint> or <stdint.h> with at least 64 bits. Numerator and denominator

are both public and are automatically reduced to the lowest terms. For example:

// util/ratio1.cpp

#include <ratio>

#include <iostream>

using namespace std;

int main()

{

typedef ratio<5,3> FiveThirds;

cout << FiveThirds::num << "/" << FiveThirds::den << endl;

26 Thanks to Walter E. Brown, Howard Hinnant, Jeff Garland, and Marc Paterno for their friendly permission

to quote [N2661:Chrono] here and in the following section covering the chrono library.

5.6 Compile-Time Fractional Arithmetic with Class ratio<> 141

typedef ratio<25,15> AlsoFiveThirds;

cout << AlsoFiveThirds::num << "/" << AlsoFiveThirds::den << endl;

ratio<42,42> one;

cout << one.num << "/" << one.den << endl;

ratio<0> zero;

cout << zero.num << "/" << zero.den << endl;

typedef ratio<7,-3> Neg;

cout << Neg::num << "/" << Neg::den << endl;

}

The program has the following output:

5/3

5/3

1/1

0/1

-7/3

Table 5.19 lists the compile-time operations defined for ratio types. The four basic arithmetic

compile-time operations +, -, *, and / are defined as ratio_add, ratio_subtract,

ratio_multiply, and ratio_divide. The resulting type is a ratio<>, so the static member type

yields the corresponding type. For example, the following expression yields std::ratio<13,21>

(computed as 6
21 + 7

21):

std::ratio_add<std::ratio<2,7>,std::ratio<2,6>>::type

Operation Meaning Result

ratio_add Reduced sum of ratios ratio<>

ratio_subtract Reduced difference of ratios ratio<>

ratio_multiply Reduced product of ratios ratio<>

ratio_divide Reduced quotient of ratios ratio<>

ratio_equal Checks for == true_type or false_type

ratio_not_equal Checks for != true_type or false_type

ratio_less Checks for < true_type or false_type

ratio_less_equal Checks for <= true_type or false_type

ratio_greater Checks for > true_type or false_type

ratio_greater_equal Checks for >= true_type or false_type

Table 5.19. Operations of ratio<> Types

142 Chapter 5: Utilities

In addition, you can compare two ratio types with ratio_equal, ratio_not_equal,

ratio_less, ratio_less_equal, ratio_greater, or ratio_greater_equal. As with type

traits, the resulting type is derived from true_type or false_type (see Section 5.4.2, page 125),

so its member value yields true or false:

ratio_equal<ratio<5,3>,ratio<25,15>>::value // yields true

As written, class ratio catches all errors, such as divide by zero and overflow, at compile time. For

example,

ratio_multiply<ratio<1,numeric_limits<long long>::max()>,

ratio<1,2>>::type

won’t compile, because 1
max

times 1
2 results in an overflow, with the resulting value of the denomi-

nator exceeding the limit of its type.

Similarly, the following expression won’t compile, because this is a division by zero:

ratio_divide<fiveThirds,zero>::type

Note, however, that the following expression will compile because the invalid value is detected when

member type, num, or den are evaluated:

ratio_divide<fiveThirds,zero>

Name Unit

yocto 1
1,000,000,000,000,000,000,000,000 (optional)

zepto 1
1,000,000,000,000,000,000,000 (optional)

atto 1
1,000,000,000,000,000,000

femto 1
1,000,000,000,000,000

pico 1
1,000,000,000,000

nano 1
1,000,000,000

micro 1
1,000,000

milli 1
1,000

centi 1
100

deci 1
10

deca 10

hecto 100

kilo 1, 000

mega 1, 000, 000

giga 1, 000, 000, 000

tera 1, 000, 000, 000, 000

peta 1, 000, 000, 000, 000, 000

exa 1, 000, 000, 000, 000, 000, 000

zetta 1, 000, 000, 000, 000, 000, 000, 000 (optional)

yotta 1, 000, 000, 000, 000, 000, 000, 000, 000 (optional)

Table 5.20. Predefined ratio Units

5.7 Clocks and Timers 143

Predefined ratios make it more convenient to specify large or very small numbers (see Table 5.20).

They allow you to specify large numbers without the inconvenient and error-prone listing of zeros.

For example,

std::nano

is equivalent to

std::ratio<1,1000000000LL>

which makes it more convenient to specify, for example, nanoseconds (see Section 5.7.2, page 145).

The units marked as “optional” are defined only if they are representable by intmax_t.

5.7 Clocks and Timers

One of the most obvious libraries a programming language should have is one to deal with date

and time. However, experience shows that such a library is harder to design than it sounds. The

problem is the amount of flexibility and precision the library should provide. In fact, in the past, the

interfaces to system time provided by C and POSIX switched from seconds to milliseconds, then to

microseconds, and finally to nanoseconds. The problem was that for each switch, a new interface

was provided. For this reason, a precision-neutral library was proposed for C++11. This library is

usually called the chrono library because its features are defined in <chrono>.

In addition, the C++ standard library provides the basic C and POSIX interfaces to deal with

calendar time. Finally, you can use the thread library, provided since C++11, to wait for a thread or

the program (the main thread) for a period of time.

5.7.1 Overview of the Chrono Library

The chrono library was designed to be able to deal with the fact that timers and clocks might be

different on different systems and improve over time in precision. To avoid having to introduce a new

time type every 10 years or so — as happened with the POSIX time libraries, for example — the goal

was to provide a precision-neutral concept by separating duration and point of time (“timepoint”)

from specific clocks. As a result, the core of the chrono library consists of the following types or

concepts, which serve as abstract mechanisms to specify and deal with points in and durations of

time:

• A duration of time is defined as a specific number of ticks over a time unit. One example is a

duration such as “3 minutes” (3 ticks of a “minute”). Other examples are “42 milliseconds” or

“86,400 seconds,” which represents the duration of 1 day. This concept also allows specifying

something like “1.5 times a third of a second,” where 1.5 is the number of ticks and “a third of a

second” the time unit used.

• A timepoint is defined as combination of a duration and a beginning of time (the so-called

epoch). A typical example is a timepoint that represents “New Year’s Midnight 2000,” which is

described as “1,262,300,400 seconds since January 1, 1970” (this day is the epoch of the system

clock of UNIX and POSIX systems).

144 Chapter 5: Utilities

• The concept of a timepoint, however, is parametrized by a clock, which is the object that defines

the epoch of a timepoint. Thus, different clocks have different epochs. In general, operations

dealing with multiple timepoints, such as processing the duration/difference between two time-

points, require using the same epoch/clock. A clock also provides a convenience function to

yield the timepoint of now.

In other words, timepoint is defined as a duration before or after an epoch, which is defined by a

clock (see Figure 5.4).

timepoint

epoch
of a clock

duration

timepoint

duration

timepoint

duration

duration

Figure 5.4. Epoch, Durations, and Timepoints

For more details about the motivation and design of these classes, see [N2661:Chrono].27 Let’s

look into these types and concepts in detail.

Note that all identifiers of the chrono library are defined in namespace std::chrono.

5.7.2 Durations

A duration is a combination of a value representing the number of ticks and a fraction representing

the unit in seconds. Class ratio is used to specify the fraction (see Section 5.6, page 140). For

example:

std::chrono::duration<int> twentySeconds(20);

std::chrono::duration<double,std::ratio<60>> halfAMinute(0.5);

std::chrono::duration<long,std::ratio<1,1000>> oneMillisecond(1);

Here, the first template argument defines the type of the ticks, and the optional second template

argument defines the unit type in seconds. Thus, the first line uses seconds as unit type, the second

line uses minutes (“60
1 seconds”), and the third line uses milliseconds (“ 1

1000 of a second”).

For more convenience, the C++ standard library provides the following type definitions:

27 I use some quotes of [N2661:Chrono] in this book with friendly permission by the authors.

5.7 Clocks and Timers 145

namespace std {

namespace chrono {

typedef duration<signed int-type >= 64 bits,nano> nanoseconds;

typedef duration<signed int-type >= 55 bits,micro> microseconds;

typedef duration<signed int-type >= 45 bits,milli> milliseconds;

typedef duration<signed int-type >= 35 bits> seconds;

typedef duration<signed int-type >= 29 bits,ratio<60>> minutes;

typedef duration<signed int-type >= 23 bits,ratio<3600>> hours;

}

}

With them, you can easily specify typical time periods:

std::chrono::seconds twentySeconds(20);

std::chrono::hours aDay(24);

std::chrono::milliseconds oneMillisecond(1);

Arithmetic Duration Operations

You can compute with durations in the expected way (see Table 5.21):

• You can process the sum, difference, product, or quotient of two durations.

• You can add or subtract ticks or other durations.

• You can compare two durations.

The important point here is that the unit type of two durations involved in such an operation might

be different. Due to a provided overloading of common_type<> (see Section 5.4.1, page 124) for

durations, the resulting duration will have a unit that is the greatest common divisor of the units of

both operands.

For example, after

chrono::seconds d1(42); // 42 seconds

chrono::milliseconds d2(10); // 10 milliseconds

the expression

d1 - d2

yields a duration of 41,990 ticks of unit type milliseconds (1
1000 seconds).

Or, more generally, after

chrono::duration<int,ratio<1,3>> d1(1); // 1 tick of 1/3 second

chrono::duration<int,ratio<1,5>> d2(1); // 1 tick of 1/5 second

the expression

d1 + d2

yields 8 ticks of 1
15 second and

d1 < d2

yields false. In both cases, d1 gets expanded to 5 ticks of 1
15 second, and d2 gets expanded to 3

ticks of 1
15 second. So the sum of 3 and 5 is 8, and 5 is not less than 3.

146 Chapter 5: Utilities

Operation Effect

d1 + d2 Process sum of durations d1 and d2

d1 - d2 Process difference of durations d1 and d2

d * val Return result of val times duration d

val * d Return result of val times duration d

d / val Return of the duration d divided by value val

d1 / d2 Compute factor between durations d1 and d2

d % val Result of duration d modulo value val

d % d2 Result of duration d modulo the value of d2

d1 == d2 Return whether duration d1 is equal to duration d2

d1 != d2 Return whether duration d1 differs from duration d2

d1 < d2 Return whether duration d1 is shorter than duration d2

d1 <= d2 Return whether duration d1 is not longer than duration d2

d1 > d2 Return whether duration d1 is longer than duration d2

d1 <= d2 Return whether duration d1 is not shorter than duration d2

++d Increment duration d by 1 tick

d++ Increment duration d by 1 tick

--d Decrement duration d by 1 tick

d-- Decrement duration d by 1 tick

d += d1 Extend the duration d by the duration d1

d -= d1 Shorten the duration d by the duration d1

d *= val Multiply the duration d by val

d /= val Divide the duration d by val

d %= val Process duration d modulo val

d %= d2 Process duration d modulo the value of d2

Table 5.21. Arithmetic Operations of durations

You can also convert durations into durations of different units, as long as there is an implicit type

conversion. Thus, you can convert hours into seconds but not the other way around. For example:

std::chrono::seconds twentySeconds(20); // 20 seconds

std::chrono::hours aDay(24); // 24 hours

std::chrono::milliseconds ms; // 0 milliseconds

ms += twentySeconds + aDay; // 86,400,000 milliseconds

--ms; // 86,399,999 milliseconds

ms *= 2; // 172,839,998 milliseconds

std::cout << ms.count() << " ms" << std::endl;

std::cout << std::chrono::nanoseconds(ms).count() << " ns" << std::endl;

These conversions result in the following output:

172839998 ms

172839998000000 ns

5.7 Clocks and Timers 147

Other Duration Operations

In the preceding example, we use the member count() to yield the current number of ticks, which

is one of the other operations provided for durations. Table 5.22 lists all operations, members,

and types available for durations besides the arithmetic operations of Table 5.21. Note that the

default constructor default-initializes (see Section 3.2.1, page 37) its value, which means that for

fundamental representation types, the initial value is undefined.

Operation Effect

duration d Default constructor; creates duration (default-initialized)

duration d(d2) Copy constructor; copies duration (d2 might have a different

unit type)

duration d(val) Creates duration of val ticks of ds unit type

d = d2 Assigns duration d2 to d (implicit conversion possible)

d.count() Returns ticks of the duration d

duration_cast<D>(d) Returns duration d explicitly converted into type D

duration::zero() Yields duration of zero length

duration::max() Yields maximum possible duration of this type

duration::min() Yields minimum possible duration of this type

duration::rep Yields the type of the ticks

duration::period Yields the type of the unit type

Table 5.22. Other Operations and Types of durations

You can use these members to define a convenience function for the output operator << for

durations:28

template <typename V, typename R>

ostream& operator << (ostream& s, const chrono::duration<V,R>& d)

{

s << "[" << d.count() << " of " << R::num << "/"

<< R::den << "]";

return s;

}

Here, after printing the number of ticks with count(), we print the numerator and denominator of

the unit type used, which is a ratio processed at compile time (see Section 5.6, page 140). For

example,

std::chrono::milliseconds d(42);

std::cout << d << std::endl;

will then print:

[42 of 1/1000]

28 Note that this output operator does not work where ADL (argument-dependent lookup) does not work (see

Section 15.11.1, page 812, for details).

148 Chapter 5: Utilities

As we have seen, implicit conversions to a more precise unit type are always possible. However,

conversions to a coarser unit type are not, because you might lose information. For example, when

converting an integral value of 42,010 milliseconds into seconds, the resulting integral value, 42,

means that the precision of having a duration of 10 milliseconds over 42 seconds gets lost. But you

can still explicitly force such a conversion with a duration_cast. For example:

std::chrono::seconds sec(55);

std::chrono::minutes m1 = sec; // ERROR

std::chrono::minutes m2 =

std::chrono::duration_cast<std::chrono::minutes>(sec); // OK

As another example, converting a duration with a floating-point tick type also requires an explicit

cast to convert it into an integral duration type:

std::chrono::duration<double,std::ratio<60>> halfMin(0.5);

std::chrono::seconds s1 = halfMin; // ERROR

std::chrono::seconds s2 =

std::chrono::duration_cast<std::chrono::seconds>(halfMin); // OK

A typical example is code that segments a duration into different units. For example, the follow-

ing code segments a duration of milliseconds into the corresponding hours, minutes, seconds, and

milliseconds (to output the first line starting with raw: we use the output operator just defined):

using namespace std;

using namespace std::chrono;

milliseconds ms(7255042);

// split into hours, minutes, seconds, and milliseconds

hours hh = duration_cast<hours>(ms);

minutes mm = duration_cast<minutes>(ms % chrono::hours(1));

seconds ss = duration_cast<seconds>(ms % chrono::minutes(1));

milliseconds msec

= duration_cast<milliseconds>(ms % chrono::seconds(1));

// and print durations and values:

cout << "raw: " << hh << "::" << mm << "::"

<< ss << "::" << msec << endl;

cout << " " << setfill(’0’) << setw(2) << hh.count() << "::"

<< setw(2) << mm.count() << "::"

<< setw(2) << ss.count() << "::"

<< setw(3) << msec.count() << endl;

Here, the cast

std::chrono::duration_cast<std::chrono::hours>(ms)

converts the milliseconds into hours, where the values are truncated, not rounded. Thanks to the

modulo operator %, for which you can even pass a duration as second argument, you can easily

5.7 Clocks and Timers 149

process the remaining milliseconds with ms % std::chrono::hours(1), which is then converted

into minutes. Thus, the output of this code will be as follows:

raw: [2 of 3600/1]::[0 of 60/1]::[55 of 1/1]::[42 of 1/1000]

02::00::55::042

Finally, class duration provides three static functions: zero(), which yields a duration of 0 sec-

onds, as well as min() and max(), which yield the minimum and maximum value a duration can

have.

5.7.3 Clocks and Timepoints

The relationships between timepoints and clocks are a bit tricky:

• A clock defines an epoch and a tick period. For example, a clock might tick in milliseconds

since the UNIX epoch (January 1, 1970) or tick in nanoseconds since the start of the program. In

addition, a clock provides a type for any timepoint specified according to this clock.

The interface of a clock provides a function now() to yield an object for the current point in

time.

• A timepoint represents a specific point in time by associating a positive or negative duration to a

given clock. Thus, if the duration is “10 days” and the associated clock has the epoch of January

1, 1970, the timepoint represents January 11, 1970.

The interface of a timepoint provides the ability to yield the epoch, minimum and maximum

timepoints according to the clock, and timepoint arithmetic.

Clocks

Table 5.23 lists the type definitions and static members required for each clock.

Operation Effect

clock::duration Yields the duration type of the clock

clock::rep Yields the type of the ticks (equivalent to

clock::duration::rep)

clock::period Yields the type of the unit type (equivalent to

clock::duration::period)

clock::time_point Yields the timepoint type of the clock

clock::is_steady Yields true if the clock is steady

clock::now() Yields a time_point for the current point in time

Table 5.23. Operations and Types of Clocks

The C++ standard library provides three clocks, which provide this interface:

1. The system_clock represents timepoints associated with the usual real-time clock of the cur-

rent system. This clock also provides convenience functions to_time_t() and from_time_t()

150 Chapter 5: Utilities

to convert between any timepoint and the C system time type time_t, which means that you can

convert into and from calendar times (see Section 5.7.4, page 158).

2. The steady_clock gives the guarantee that it never gets adjusted.29 Thus, timepoint values

never decrease as the physical time advances, and they advance at a steady rate relative to real

time.

3. The high_resolution_clock represents a clock with the shortest tick period possible on

the current system.

Note that the standard does not provide requirements for the precision, the epoch, and the range

(minimum and maximum timepoints) of these clocks. For example, your system clock might have

the UNIX epoch (January 1, 1970) as epoch, but this is not guaranteed. If you require a specific

epoch or care for timepoints that might not be covered by the clock, you have to use convenience

functions to find it out.

For example, the following function prints the properties of a clock:

// util/clock.hpp

#include <chrono>

#include <iostream>

#include <iomanip>

template <typename C>

void printClockData ()

{

using namespace std;

cout << "- precision: ";

// if time unit is less or equal one millisecond

typedef typename C::period P; // type of time unit

if (ratio_less_equal<P,milli>::value) {

// convert to and print as milliseconds

typedef typename ratio_multiply<P,kilo>::type TT;

cout << fixed << double(TT::num)/TT::den

<< " milliseconds" << endl;

}

else {

// print as seconds

cout << fixed << double(P::num)/P::den << " seconds" << endl;

}

cout << "- is_steady: " << boolalpha << C::is_steady << endl;

}

We can call this function for the various clocks provided by the C++ standard library:

29 The steady_clock was initially proposed as monotonic_clock.

5.7 Clocks and Timers 151

// util/clock1.cpp

#include <chrono>

#include "clock.hpp"

int main()

{

std::cout << "system_clock: " << std::endl;

printClockData<std::chrono::system_clock>();

std::cout << "\nhigh_resolution_clock: " << std::endl;

printClockData<std::chrono::high_resolution_clock>();

std::cout << "\nsteady_clock: " << std::endl;

printClockData<std::chrono::steady_clock>();

}

The program might, for example, have the following output:

system_clock:

- precision: 0.000100 milliseconds

- is_steady: false

high_resolution_clock:

- precision: 0.000100 milliseconds

- is_steady: true

steady_clock:

- precision: 1.000000 milliseconds

- is_steady: true

Here, for example, the system and the high-resolution clock have the same precision of 100 nanosec-

onds, whereas the steady clock uses milliseconds. You can also see that both the steady clock and

high-resolution clock can’t be adjusted. Note, however, that this might be very different on other

systems. For example, the high-resolution clock might be the same as the system clock.

The steady_clock is important to compare or compute the difference of two times in your

program, where you processed the current point in time. For example, after

auto system_start = chrono::system_clock::now();

a condition to check whether the program runs more than one minute:

if (chrono::system_clock::now() > system_start + minutes(1))

might not work, because if the clock was adjusted in the meantime, the comparison might yield

false, although the program did run more than a minute. Similarly, processing the elapsed time of

a program:

auto diff = chrono::system_clock::now() - system_start;

auto sec = chrono::duration_cast<chrono::seconds>(diff);

cout << "this program runs: " << s.count() << " seconds" << endl;

152 Chapter 5: Utilities

might print a negative duration if the clock was adjusted in the meantime. For the same reason, using

timers with other than the steady_clock might change their duration when the system clock gets

adjusted (see Section 5.7.5, page 160, for details).

Timepoints

With any of these clocks — or even with user-defined clocks — you can deal with timepoints. Class

time_point provides the corresponding interface, parametrized by a clock:

namespace std {

namespace chrono {

template <typename Clock,

typename Duration = typename Clock::duration>

class time_point;

}

}

Four specific timepoints play a special role:

1. The epoch, which the default constructor of class time_point yields for each clock.

2. The current time, which the static member function now() of each clock yields (see Sec-

tion 5.7.3, page 149).

3. The minimum timepoint, which the static member function min() of class time_point yields

for each clock.

4. The maximum timepoint, which the static member function max() of class time_point yields

for each clock.

For example, the following program assigns these timepoints to tp and prints them converted into a

calendar notation:

// util/chrono1.cpp

#include <chrono>

#include <ctime>

#include <string>

#include <iostream>

std::string asString (const std::chrono::system_clock::time_point& tp)

{

// convert to system time:

std::time_t t = std::chrono::system_clock::to_time_t(tp);

std::string ts = std::ctime(&t); // convert to calendar time

ts.resize(ts.size()-1); // skip trailing newline

return ts;

}

int main()

{

5.7 Clocks and Timers 153

// print the epoch of this system clock:

std::chrono::system_clock::time_point tp;

std::cout << "epoch: " << asString(tp) << std::endl;

// print current time:

tp = std::chrono::system_clock::now();

std::cout << "now: " << asString(tp) << std::endl;

// print minimum time of this system clock:

tp = std::chrono::system_clock::time_point::min();

std::cout << "min: " << asString(tp) << std::endl;

// print maximum time of this system clock:

tp = std::chrono::system_clock::time_point::max();

std::cout << "max: " << asString(tp) << std::endl;

}

After including <chrono>, we first declare a convenience function asString(), which converts a

timepoint of the system clock into the corresponding calendar time. With

std::time_t t = std::chrono::system_clock::to_time_t(tp);

we use the static convenience function to_time_t(), which converts a timepoint into an object of

the traditional time type of C and POSIX, type time_t, which usually represents the number of

seconds since the UNIX epoch, January 1, 1970 (see Section 5.7.4, page 157). Then,

std::string ts = std::ctime(&t);

uses ctime() to convert this into a calendar notation, for which

ts.resize(ts.size()-1);

removes the trailing newline character.

Note that ctime() takes the local time zone into account, which has consequences we will dis-

cuss shortly. Note also that this convenience function probably will work only for system_clocks,

the only clocks that provide an interface for conversions to and from time_t. For other clocks, such

an interface might also work but is not portable, because the other clocks are not required to have

epoch of the system time as their internal epoch.

Note also that the output format for timepoints might better get localized by using the time_put

facet. See Section 16.4.3, page 884, for details, and page 886 for an example.

Inside main(), the type of tp, declared as

std::chrono::system_clock::time_point

is equivalent to:30

std::chrono::time_point<std::chrono::system_clock>

30 According to the standard, a system_clock::time_point could also be identical to

time_point<C2,system_clock::duration>, where C2 is a different clock but has the same epoch

as system_clock.

154 Chapter 5: Utilities

Thus, tp is declared as the timepoint of the system_clock. Having the clock as template argument

ensures that only timepoint arithmetic with the same clock (epoch) is possible.

The program might have the following output:

epoch: Thu Jan 1 01:00:00 1970

now: Sun Jul 24 19:40:46 2011

min: Sat Mar 5 18:27:38 1904

max: Mon Oct 29 07:32:22 2035

Thus, the default constructor, which yields the epoch, creates a timepoint, which asString() con-

verts into

Thu Jan 1 01:00:00 1970

Note that it’s 1 o’clock rather than midnight. This may look a bit surprising, but remember that the

conversion to the calendar time with ctime() inside asString() takes the time zone into account.

Thus, the UNIX epoch used here — which, again, is not always guaranteed to be the epoch of the

system time — started at 00:00 in Greenwich, UK. In my time zone, Germany, it was 1 a.m. at that

moment, so in my time zone the epoch started at 1 a.m. on January 1, 1970. Accordingly, if you start

this program, your output is probably different, according to your time zone, even if your system

uses the same epoch in its system clock.

To have the universal time (UTC) instead, you should use the following conversion rather than

calling ctime(), which is a shortcut for asctime(localtime(...)) (see Section 5.7.4, page 157):

std::string ts = std::asctime(gmtime(&t));

In that case, the output of the program would be:

epoch: Thu Jan 1 00:00:00 1970

now: Sun Jul 24 17:40:46 2011

min: Sat Mar 5 17:27:38 1904

max: Mon Oct 29 06:32:22 2035

Yes, here, the difference is 2 hours for now(), because this timepoint is when summertime is used,

which leads to a 2-hour difference to UTC in Germany.

In general, time_point objects have only one member, the duration, which is relative to the

epoch of the associated clock. The timepoint value can be requested by time_since_epoch().

For timepoint arithmetic, any useful combination of a timepoint and another timepoint or duration is

provided (see Table 5.24).

Although the interface uses class ratio (see Section 5.6, page 140), which ensures that over-

flows by the duration units yield a compile-time error, overflows on the duration values are possible.

Consider the following example:

// util/chrono2.cpp

#include <chrono>

#include <ctime>

#include <iostream>

#include <string>

using namespace std;

5.7 Clocks and Timers 155

Operation Yields Effect

timepoint t timepoint Default constructor; creates a timepoint

representing the epoch

timepoint t(tp2) timepoint Creates a timepoint equivalent to tp2 (the

duration unit might be finer grained)

timepoint t(d) timepoint Creates a timepoint having duration d after

the epoch

time_point_cast<C,D>(tp) timepoint Converts tp into a timepoint with clock C and

duration D (which might be more coarse

grained)

tp += d timepoint Adds duration d to the current timepoint tp

tp -= d timepoint Subtracts duration d from the current

timepoint tp

tp + d timepoint Returns a new timepoint of tp with duration d

added

d + tp timepoint Returns a new timepoint of tp with duration d

added

tp - d timepoint Returns a new timepoint of tp with duration d

subtracted

tp1 - tp2 duration Returns the duration between timepoints tp1

and tp2

tp1 == tp2 bool Returns whether timepoint tp1 is equal to

timepoint tp2

tp1 != tp2 bool Returns whether timepoint tp1 differs from

timepoint tp2

tp1 < tp2 bool Returns whether timepoint tp1 is before

timepoint tp2

tp1 <= tp2 bool Returns whether timepoint tp1 is not after

timepoint tp2

tp1 > tp2 bool Returns whether timepoint tp1 is after

timepoint tp2

tp1 >= tp2 bool Returns whether timepoint tp1 is not before

timepoint tp2

tp.time_since_epoch() duration Returns the duration between the epoch and

timepoint tp

timepoint::min() timepoint Returns the first possible timepoint of type

timepoint

timepoint::max() timepoint Returns the last possible timepoint of type

timepoint

Table 5.24. Operations of time_points

156 Chapter 5: Utilities

string asString (const chrono::system_clock::time_point& tp)

{

time_t t = chrono::system_clock::to_time_t(tp); // convert to system time

string ts = ctime(&t); // convert to calendar time

ts.resize(ts.size()-1); // skip trailing newline

return ts;

}

int main()

{

// define type for durations that represent day(s):

typedef chrono::duration<int,ratio<3600*24>> Days;

// process the epoch of this system clock

chrono::time_point<chrono::system_clock> tp;

cout << "epoch: " << asString(tp) << endl;

// add one day, 23 hours, and 55 minutes

tp += Days(1) + chrono::hours(23) + chrono::minutes(55);

cout << "later: " << asString(tp) << endl;

// process difference from epoch in minutes and days:

auto diff = tp - chrono::system_clock::time_point();

cout << "diff: "

<< chrono::duration_cast<chrono::minutes>(diff).count()

<< " minute(s)" << endl;

Days days = chrono::duration_cast<Days>(diff);

cout << "diff: " << days.count() << " day(s)" << endl;

// subtract one year (hoping it is valid and not a leap year)

tp -= chrono::hours(24*365);

cout << "-1 year: " << asString(tp) << endl;

// subtract 50 years (hoping it is valid and ignoring leap years)

tp -= chrono::duration<int,ratio<3600*24*365>>(50);

cout << "-50 years: " << asString(tp) << endl;

// subtract 50 years (hoping it is valid and ignoring leap years)

tp -= chrono::duration<int,ratio<3600*24*365>>(50);

cout << "-50 years: " << asString(tp) << endl;

}

5.7 Clocks and Timers 157

First, expressions, such as

tp = tp + Days(1) + chrono::hours(23) + chrono::minutes(55);

or

tp -= chrono::hours(24*365);

allow adjusting timepoints by using timepoint arithmetic.

Because the precision of the system clock usually is better than minutes and days, you have to

explicitly cast the difference between two timepoints to become days:

auto diff = tp - chrono::system_clock::time_point();

Days days = chrono::duration_cast<Days>(diff);

Note, however, that these operation do not check whether a combination performs an overflow. On

my system, the output of the program is as follows:

epoch: Thu Jan 1 01:00:00 1970

later: Sat Jan 3 00:55:00 1970

diff: 2875 minute(s)

diff: 1 day(s)

-1 year: Fri Jan 3 00:55:00 1969

-50 years: Thu Jan 16 00:55:00 1919

-50 years: Sat Mar 5 07:23:16 2005

You can see the following:

• The cast uses static_cast<> for the destination unit, which for ordinary integral unit types

means that values are truncated instead of rounded. For this reason, a duration of 47 hours and

55 minutes converts into 1 day.

• Subtracting 50 years of 365 days does not take leap years into account, so the resulting day is

January 16 instead of January 3.

• When deducting another 50 years the timepoint goes below the minimum timepoint, which is

March 5, 1904 on my system (see Section 5.7.3, page 152), so the result is the year 2005. No

error processing is required by the C++ standard library in this case.

This demonstrates that chrono is a duration and a timepoint but not a date/time library. You can com-

pute with durations and timepoints but still have to take epoch, minimum and maximum timepoints,

leap years, and leap seconds into account.

5.7.4 Date and Time Functions by C and POSIX

The C++ standard library also provides the standard C and POSIX interfaces to deal with date and

time. In <ctime>, the macros, types, and functions of <time.h> are available in namespace std.

The types and functions are listed in Table 5.25. In addition, the macro CLOCKS_PER_SEC defines

the unit type of clock() (which returns the elapsed CPU time in 1
CLOCKS PER SEC seconds).

See Section 16.4.3, page 884, for some more details and examples using these time functions and

types.

158 Chapter 5: Utilities

Identifier Meaning

clock_t Type of numeric values of elapsed CPU time returned by clock()

time_t Type of numeric values representing timepoints

struct tm Type of “broken down” calendar time

clock() Yields the elapsed CPU time in 1
CLOCKS PER SEC seconds

time() Yields the current time as numeric value

difftime() Yields the difference of two time_t in seconds as double

localtime() Converts a time_t into a struct tm taking time zone into account

gmtime() Converts a time_t into a struct tm not taking time zone into account

asctime() Converts a struct tm into a standard calendar time string

strftime() Converts a struct tm into a user-defined calendar time string

ctime() Converts a time_t into a standard calendar time string taking time zone into

account (shortcut for asctime(localtime(t)))

mktime() Converts a struct tm into a time_t and queries weekday and day of the year

Table 5.25. Definitions in <ctime>

Note that time_t usually is just the number of seconds since the UNIX epoch, which is January 1,

1970. However, according to the C and C++ standard, this is not guaranteed.

Conversions between Timepoints and Calendar Time

The convenience function to transfer a timepoint to a calendar time string was already discussed

in Section 5.7.3, page 153. Here is a header file that also allows converting calendar times into

timepoints:

// util/timepoint.hpp

#include <chrono>

#include <ctime>

#include <string>

// convert timepoint of system clock to calendar time string

inline

std::string asString (const std::chrono::system_clock::time_point& tp)

{

// convert to system time:

std::time_t t = std::chrono::system_clock::to_time_t(tp);

std::string ts = ctime(&t); // convert to calendar time

ts.resize(ts.size()-1); // skip trailing newline

return ts;

}

5.7 Clocks and Timers 159

// convert calendar time to timepoint of system clock

inline

std::chrono::system_clock::time_point

makeTimePoint (int year, int mon, int day,

int hour, int min, int sec=0)

{

struct std::tm t;

t.tm_sec = sec; // second of minute (0 .. 59 and 60 for leap seconds)

t.tm_min = min; // minute of hour (0 .. 59)

t.tm_hour = hour; // hour of day (0 .. 23)

t.tm_mday = day; // day of month (0 .. 31)

t.tm_mon = mon-1; // month of year (0 .. 11)

t.tm_year = year-1900; // year since 1900

t.tm_isdst = -1; // determine whether daylight saving time

std::time_t tt = std::mktime(&t);

if (tt == -1) {

throw "no valid system time";

}

return std::chrono::system_clock::from_time_t(tt);

}

The following program demonstrates these convenience functions:

// util/timepoint1.cpp

#include <chrono>

#include <iostream>

#include "timepoint.hpp"

int main()

{

auto tp1 = makeTimePoint(2010,01,01,00,00);

std::cout << asString(tp1) << std::endl;

auto tp2 = makeTimePoint(2011,05,23,13,44);

std::cout << asString(tp2) << std::endl;

}

The program has the following output:

Fri Jan 1 00:00:00 2010

Mon May 23 13:44:00 2011

Note again that both makeTimePoint() and asString() take the local time zone into account.

For this reason, the date passed to makeTimePoint() matches the output with asString(). Also,

it doesn’t matter whether daylight saving time is used (passing a negative value to t.tm_isdst in

160 Chapter 5: Utilities

makeTimePoint() causes mktime() to attempt to determine whether daylight saving time is in

effect for the specified time).

Again, to let asString() use the universal time UTC instead, use asctime(gmtime(...))

rather than ctime(...). For mktime(), there is no specified way to use UTC, so makeTimePoint()

always takes the current time zone into account.

Section 16.4.3, page 884, demonstrates how to use locales to internationalize the reading and

writing of time data.

5.7.5 Blocking with Timers

Durations and timepoints can be used to block threads or programs (i.e., the main thread). These

blocks can be conditionless or can be used to specify a maximum duration when waiting for a lock,

a condition variable, or another thread to end (see Chapter 18):

• sleep_for() and sleep_until() are provided by this_thread to block threads (see Sec-

tion 18.3.7, page 981).

• try_lock_for() and try_lock_until() are provided to specify a maximum interval when

waiting for a mutex (see Section 18.5.1, page 994).

• wait_for() and wait_until() are provided to specify a maximum interval when waiting for

a condition variable or a future (see Section 18.1.1, page 953 or Section 18.6.4, page 1010).

All the blocking functions that end with ..._for() use a duration, whereas all functions that end with

..._until() use a timepoint as argument. For example,

this_thread::sleep_for(chrono::seconds(10));

blocks the current thread, which might be the main thread, for 10 seconds, whereas

this_thread::sleep_until(chrono::system_clock::now()

+ chrono::seconds(10));

blocks the current thread until the system clock has reached a timepoint 10 seconds later than now.

Although these calls look the same, they are not! For all ..._until() functions, where you

pass a timepoint, time adjustments might have an effect. If, during the 10 seconds after calling

sleep_until(), the system clock gets adjusted, the timeout will be adjusted accordingly. If, for

example, we wind the system clock back 1 hour, the program will block for 60 minutes and 10

seconds. If, for example, we adjust the clock forward for more than 10 seconds, the timer will end

immediately.

If you use a ..._for() function, such as sleep_for(), where you pass a duration, or if you use

the steady_clock, adjustments of the system clock usually will have no effect on the duration of

timers. However, on hardware where a steady clock is not available, and thus the platform gives

no chance to count seconds independently of a possibly adjusted system time, time adjustments can

also impact the ..._for() functions.

All these timers do not guarantee to be exact. For any timer, there will be a delay because the

system only periodically checks for expired timers, and the handling of timers and interrupts takes

some time. Thus, durations of timers will take their specified time plus a period that depends on the

quality of implementation and the current situation.

5.8 Header Files <cstddef>, <cstdlib>, and <cstring> 161

5.8 Header Files <cstddef>, <cstdlib>,

and <cstring>

The following header files compatible with C are often used in C++ programs: <cstddef>,

<cstdlib>, and <cstring>. They are the C++ versions of the C header files <stddef.h>,

<stdlib.h>, and <string.h> and they define some common constants, macros, types, and func-

tions.

5.8.1 Definitions in <cstddef>

Identifier Meaning

NULL Pointer value for “not defined” or “no value”

nullptr_t Type of nullptr (since C++11)

size_t Unsigned type for size units, such as number of elements

ptrdiff_t Signed type for differences of pointer

max_align_t Type with maximum alignment in all contexts (since C++11)

offsetof(type,mem) Offset of a member mem in a structure or union type

Table 5.26. Definitions in <cstddef>

Table 5.26 shows the definitions of the <cstddef> header file. Before C++11, NULL was of-

ten used to indicate that a pointer points to nothing. Since C++11, nullptr is provided for this

semantics (see Section 3.1.1, page 14).

Note that NULL in C++ is guaranteed to be simply the value 0 (either as an int or as a long).

In C, NULL is often defined as (void*)0. However, this is incorrect in C++, which requires that the

type of NULL be an integer type. Otherwise, you could not assign NULL to a pointer. This is because

in C++ there is no automatic conversion from void* to any other type. Since C++11, you should

use nullptr instead (see Section 3.1.1, page 14).31 Note also that NULL is also defined in the header

files <cstdio>, <cstdlib>, <cstring>, <ctime>, <cwchar>, and <clocale>.

31 Due to the mess with the type of NULL, several people and style guides recommend not using NULL in C++.

Instead, 0 or a special user-defined constant, such as NIL, might work better. Fortunately, this problem is solved

with nullptr.

162 Chapter 5: Utilities

5.8.2 Definitions in <cstdlib>

Table 5.27 shows the most important definitions of the <cstdlib> header file. The two constants

EXIT_SUCCESS and EXIT_FAILURE are defined as arguments for exit() and can also be used as a

return value in main().

Definition Meaning

EXIT_SUCCESS Indicates a normal end of the program

EXIT_FAILURE Indicates an abnormal end of the program

exit (int status) Exit program (cleans up static objects)

quick_exit (int status) Exit program with cleanup according to

at_quick_exit() (since C++11)

_Exit (int status) Exit program with no cleanup (since C++11)

abort() Abort program (might force a crash on some systems)

atexit (void (*func)()) Call func on exit

at_quick_exit (void (*func)()) Call func on quick_exit() (since C++11)

Table 5.27. Definitions in <cstdlib>

The functions that are registered by atexit() are called at normal program termination in reverse

order of their registration. It doesn’t matter whether the program exits due to a call of exit() or the

end of main(). No arguments are passed.

The exit() and abort() functions are provided to terminate a program in any function without

going back to main():

• exit() destroys all static objects, flushes all buffers, closes all I/O channels, and terminates

the program, including calling atexit() functions. If functions passed to atexit() throw

exceptions, terminate() is called.

• abort() terminates a program immediately with no cleanup.

Neither of these functions destroys local objects, because no stack unwinding occurs. To ensure

that the destructors of all local objects are called, you should use exceptions or the ordinary return

mechanism to return to and exit main().

Since C++11, the quick_exit() semantics provided does not destroy objects but calls func-

tions registered by calls to at_quick_exit() in the reverse order of their registration and calls

_Exit(), which terminates the program then without any destruction or cleanup.32 This means that

quick_exit() and _Exit() do not flush standard file buffers (standard output and error output).

The usual way for C++ to abort programs — which is an unexpected end in contrast to an ex-

pected end signaling an error — is to call std::terminate(), which by default calls abort().

This is done, for example, if a destructor or a function declared with noexcept (see Section 3.1.7,

page 24) throws.

32 This feature was introduced to avoid the risk that detached threads access global/static objects (see Sec-

tion 18.2.1, page 967).

5.8 Header Files <cstddef>, <cstdlib>, and <cstring> 163

5.8.3 Definitions in <cstring>

Table 5.28 shows the most important definitions of the <cstring> header file: the low-level func-

tions to set, copy, and move memory. One application of these functions is character traits (see

Section 16.1.4, page 855).

Definition Meaning

memchr (const void* ptr, int c, size_t len) Finds character c in first len bytes of ptr

memcmp (const void* ptr1, const void* ptr2, Compares len bytes of ptr1 and ptr2

size_t len)

memcpy (void* toPtr, const void* fromPtr, Copies len bytes of fromPtr to toPtr

size_t len)

memmove (void* toPtr, const void* fromPtr, Copies len bytes of fromPtr to toPtr

size_t len) (areas may overlap)

memset (void* ptr, int c, size_t len) Assigns character c to first len bytes of ptr

Table 5.28. Definitions in <cstring>

This page intentionally left blank

Chapter 6

The Standard Template Library

The heart of the C++ standard library — the part that influenced its overall architecture — is the

standard template library (STL). The STL is a generic library that provides solutions to managing

collections of data with modern and efficient algorithms. It allows programmers to benefit from

innovations in the area of data structures and algorithms without needing to learn how they work.

From the programmer’s point of view, the STL provides a bunch of collection classes that meet

various needs, together with several algorithms that operate on them. All components of the STL are

templates, so they can be used for arbitrary element types. But the STL does even more: It provides a

framework for supplying other collection classes or algorithms for which existing collection classes

and algorithms work. All in all, the STL gives C++ a new level of abstraction. Forget programming

dynamic arrays, linked lists, binary trees, or hash tables; forget programming different search algo-

rithms. To use the appropriate kind of collection, you simply define the appropriate container and

call the corresponding member functions and algorithms to process the data.

The STL’s flexibility, however, has a price, chief of which is that it is not self-explanatory. There-

fore, the subject of the STL fills several chapters in this book. This chapter introduces the general

concept of the STL and explains the programming techniques needed to use it. The first examples

show how to use the STL and what to consider while doing so. Chapters 7 through 11 discuss the

components of the STL (containers, iterators, function objects, and algorithms) in detail and present

several more examples.

6.1 STL Components

The STL is based on the cooperation of various well-structured components, key of which are con-

tainers, iterators, and algorithms:

• Containers are used to manage collections of objects of a certain kind. Every kind of container

has its own advantages and disadvantages, so having different container types reflects different

requirements for collections in programs. The containers may be implemented as arrays or as

linked lists, or they may have a special key for every element.

166 Chapter 6: The Standard Template Library

• Iterators are used to step through the elements of collections of objects. These collections may

be containers or subsets of containers. The major advantage of iterators is that they offer a

small but common interface for any arbitrary container type. For example, one operation of this

interface lets the iterator step to the next element in the collection. This is done independently

of the internal structure of the collection. Regardless of whether the collection is an array, a tree,

or a hash table, it works. This is because every container class provides its own iterator type that

simply “does the right thing” because it knows the internal structure of its container.

The interface for iterators is almost the same as for ordinary pointers. To increment an iterator,

you call operator ++. To access the value of an iterator, you use operator *. So, you might

consider an iterator a kind of a smart pointer that translates the call “go to the next element” into

whatever is appropriate.

• Algorithms are used to process the elements of collections. For example, algorithms can search,

sort, modify, or simply use the elements for various purposes. Algorithms use iterators. Thus,

because the iterator interface for iterators is common for all container types, an algorithm has to

be written only once to work with arbitrary containers.

To give algorithms more flexibility, you can supply certain auxiliary functions called by the

algorithms. Thus, you can use a general algorithm to suit your needs even if that need is very

special or complex. For example, you can provide your own search criterion or a special oper-

ation to combine elements. Especially since C++11, with the introduction of lambdas, you can

easily specify almost any kind of functionality while running over the elements of a container.

The concept of the STL is based on a separation of data and operations. The data is managed by

container classes, and the operations are defined by configurable algorithms. Iterators are the glue

between these two components. They let any algorithm interact with any container (Figure 6.1).

� � � � � � � � 	
 � � � 	 � � � � � � 	 � � � 	 �

� � � � � � � � 	

� � � � � � � � 	

Figure 6.1. STL Components

In a way, the STL concept contradicts the original idea of object-oriented programming: The

STL separates data and algorithms rather than combining them. However, the reason for doing so is

very important. In principle, you can combine every kind of container with every kind of algorithm,

so the result is a very flexible but still rather small framework.

One fundamental aspect of the STL is that all components work with arbitrary types. As the name

“standard template library” indicates, all components are templates for any type, provided that type

is able to perform the required operations. Thus, the STL is a good example of the concept of generic

programming. Containers and algorithms are generic for arbitrary types and classes, respectively.

6.2 Containers 167

The STL provides even more generic components. By using certain adapters and function ob-

jects (or functors), you can supplement, constrain, or configure the algorithms and the interfaces for

special needs. However, I’m jumping the gun. First, I want to explain the concept step-by-step by

using examples. This is probably the best way to understand and become familiar with the STL.

6.2 Containers

Container classes, or containers for short, manage a collection of elements. To meet different needs,

the STL provides different kinds of containers, as shown in Figure 6.2.

Vector:

Array:

Deque:

Forward-List:

List:

Set/Multiset:

Map/Multimap:

Unordered Set/Multiset:

Unordered Map/Multimap:

Sequence Containers: Associative Containers: Unordered Containers:

Figure 6.2. STL Container Types

There are three general kinds of containers:

1. Sequence containers are ordered collections in which every element has a certain position. This

position depends on the time and place of the insertion, but it is independent of the value of

the element. For example, if you put six elements into an ordered collection by appending each

element at the end of the collection, these elements are in the exact order in which you put them.

The STL contains five predefined sequence container classes: array, vector, deque, list, and

forward_list.1

2. Associative containers are sorted collections in which the position of an element depends on its

value (or key, if it’s a key/value pair) due to a certain sorting criterion. If you put six elements into

a collection, their value determines their order. The order of insertion doesn’t matter. The STL

contains four predefined associative container classes: set, multiset, map, and multimap.

3. Unordered (associative) containers are unordered collections in which the position of an ele-

ment doesn’t matter. The only important question is whether a specific element is in such a

collection. Neither the order of insertion nor the value of the inserted element has an influ-

1 Class array was added with TR1; forward_list was added with C++11.

168 Chapter 6: The Standard Template Library

ence on the position of the element, and the position might change over the lifetime of the con-

tainer. Thus, if you put six elements into a collection, their order is undefined and might change

over time. The STL contains four predefined unordered container classes: unordered_set,

unordered_multiset, unordered_map, and unordered_multimap.

Unordered containers were introduced with TR1 and created a bit of confusion in container ter-

minology. Officially, unordered containers are categorized as “unordered associative containers.”

For this reason, it’s a bit unclear, what is meant by “associative container”: Is it a general term of

(ordered) associative containers and unordered associative containers, or is it the counterpart of un-

ordered containers? The answer often depends on the context. Throughout this book, I mean the

“old” sorted associative containers when I use the term “associative containers” and use the term

“unordered containers” without “associative” in the middle.

The three container categories introduced here are just logical categories according to the way

the order of elements is defined. According to this point of view, an associative container can be

considered a special kind of sequence container because sorted collections have the additional ability

to be ordered according to a sorting criterion. You might expect this, especially if you have used other

libraries of collection classes, such as those in Smalltalk or the NIHCL,2 in which sorted collections

are derived from ordered collections. However, the STL collection types are completely distinct

from one another and have very different implementations that are not derived from one another. As

we will see:

• Sequence containers are usually implemented as arrays or linked lists.

• Associative containers are usually implemented as binary trees.

• Unordered containers are usually implemented as hash tables.

Strictly speaking, the particular implementation of any container is not defined by the C++ standard

library. However, the behavior and complexity specified by the standard do not leave much room for

variation. So, in practice, the implementations differ only in minor details.

When choosing the right container, abilities other than the order of elements might be taken into

account. In fact, the automatic sorting of elements in associative containers does not mean that those

containers are especially designed for sorting elements. You can also sort the elements of a sequence

container. The key advantage of automatic sorting is better performance when you search elements.

In particular, you can always use a binary search, which results in logarithmic complexity rather than

linear complexity. For example, this means that for a search in a collection of 1,000 elements, you

need, on average, only 10 instead of 500 comparisons (see Section 2.2, page 10). Thus, automatic

sorting is only a (useful) “side effect” of the implementation of an associative container, designed to

enable better performance.

The following subsections discuss the container classes in detail: how containers are typically

implemented and the benefits and drawbacks this introduces. Chapter 7 covers the exact behavior

of the container classes, describing their common and individual abilities and member functions in

detail. Section 7.12, page 392, discusses in detail when to use which container.

2 The National Institutes of Health’s Class Library was one of the first class libraries in C++.

6.2 Containers 169

6.2.1 Sequence Containers

The following sequence containers are predefined in the STL:

• Arrays (a class called array)

• Vectors

• Deques

• Lists (singly and doubly linked)

We start with the discussion of vectors because arrays came later, with TR1, into the C++ standard

and have some special properties that are not common for STL containers in general.

Vectors

A vector manages its elements in a dynamic array. It enables random access, which means that you

can access each element directly with the corresponding index. Appending and removing elements

at the end of the array is very fast.3 However, inserting an element in the middle or at the beginning

of the array takes time because all the following elements have to be moved to make room for it

while maintaining the order.

The following example defines a vector for integer values, inserts six elements, and prints the

elements of the vector:

// stl/vector1.cpp

#include <vector>

#include <iostream>

using namespace std;

int main()

{

vector<int> coll; // vector container for integer elements

// append elements with values 1 to 6

for (int i=1; i<=6; ++i) {

coll.push_back(i);

}

// print all elements followed by a space

for (int i=0; i<coll.size(); ++i) {

cout << coll[i] << ’ ’;

}

cout << endl;

}

3 Strictly speaking, appending elements is amortized very fast. An individual append may be slow when a

vector has to reallocate new memory and to copy existing elements into the new memory. However, because

such reallocations are rather rare, the operation is very fast in the long term. See Section 2.2, page 10, for a

discussion of complexity.

170 Chapter 6: The Standard Template Library

The header file for vectors is included with

#include <vector>

The following declaration creates a vector for elements of type int:

vector<int> coll;

The vector is not initialized by any value, so the default constructor creates it as an empty collection.

The push_back() function appends an element to the container:

coll.push_back(i);

This member function is provided for all sequence containers, where appending an element is pos-

sible and reasonably fast.

The size() member function returns the number of elements of a container:

for (int i=0; i<coll.size(); ++i) {

...

}

size() is provided for any container class except singly linked lists (class forward_list).

By using the subscript operator [], you can access a single element of a vector:

cout << coll[i] << ’ ’;

Here, the elements are written to the standard output, so the output of the whole program is as

follows:

1 2 3 4 5 6

Deques

The term deque (it rhymes with “check”4) is an abbreviation for “double-ended queue.” It is a

dynamic array that is implemented so that it can grow in both directions. Thus, inserting elements at

the end and at the beginning is fast. However, inserting elements in the middle takes time because

elements must be moved.

The following example declares a deque for floating-point values, inserts elements from 1.1 to

6.6 at the front of the container, and prints all elements of the deque:

// stl/deque1.cpp

#include <deque>

#include <iostream>

using namespace std;

int main()

{

deque<float> coll; // deque container for floating-point elements

4 It is only a mere accident that “deque” also sounds like “hack” :-) .

6.2 Containers 171

// insert elements from 1.1 to 6.6 each at the front

for (int i=1; i<=6; ++i) {

coll.push_front(i*1.1); // insert at the front

}

// print all elements followed by a space

for (int i=0; i<coll.size(); ++i) {

cout << coll[i] << ’ ’;

}

cout << endl;

}

In this example, the header file for deques is included with

#include <deque>

The following declaration creates an empty collection of floating-point values:

deque<float> coll;

Here, the push_front() member function is used to insert elements:

coll.push_front(i*1.1);

push_front() inserts an element at the front of the collection. This kind of insertion results in a

reverse order of the elements because each element gets inserted in front of the previous inserted

elements. Thus, the output of the program is as follows:

6.6 5.5 4.4 3.3 2.2 1.1

You could also insert elements in a deque by using the push_back() member function. The

push_front() function, however, is not provided for vectors, because it would have a bad runtime

for vectors (if you insert an element at the front of a vector, all elements have to be moved). Usu-

ally, the STL containers provide only those special member functions that in general have “good”

performance, where “good” normally means constant or logarithmic complexity. This prevents a

programmer from calling a function that might cause bad performance.

Nevertheless, it is possible to insert an element at the beginning of a vector — as it is possible to

insert an element in the middle of both vectors and deques — by using a general insert function we

will come to later.

Arrays

An array (an object of class array)5 manages its elements in an array of fixed size (sometimes called

a “static array” or “C array”). Thus, you can’t change the number of elements but only their values.

Consequently, you have to specify its size at creation time. An array also enables random access,

which means that you can access each element directly with the corresponding index.

The following example defines an array for string values:

5 Class array<> was introduced with TR1.

172 Chapter 6: The Standard Template Library

// stl/array1.cpp

#include <array>

#include <string>

#include <iostream>

using namespace std;

int main()

{

// array container of 5 string elements:

array<string,5> coll = { "hello", "world" };

// print each element with its index on a line

for (int i=0; i<coll.size(); ++i) {

cout << i << ": " << coll[i] << endl;

}

}

The header file for arrays is included with

#include <array>

The following declaration creates an array for five elements of type string:

array<string,5> coll

By default, these elements are initialized with the default constructor of the element’s type. This

means that for fundamental data types, the initial value is undefined.

However, in this program, an initializer list (see Section 3.1.3, page 15) is used, which allows

initializing class objects at creation time by a list of values. Since C++11, such a way of initialization

is provided by every container, so we could also use it for vectors and deques. In that case, for

fundamental data types zero initialization is used, which means that fundamental data types are

guaranteed to be initialized with 0 (see Section 3.2.1, page 37).

Here, by using size() and the subscript operator [], all elements are written with their index

line-by-line to the standard output. The output of the whole program is as follows:

0: hello

1: world

2:

3:

4:

As you can see, the program outputs five lines, because we have an array with five strings defined.

According to the initializer list, the first two elements were initialized with "hello" and "world",

and the remaining elements have their default value, which is the empty string.

Note that the number of elements is a part of the type of an array. Thus, array<int,5> and

array<int,10> are two different types, and you can’t assign or compare them as a whole.

6.2 Containers 173

Lists

Historically, we had only one list class in C++11. However, since C++11, two different list contain-

ers are provided by the STL: class list<> and class forward_list<>. Thus, the term list might

refer to the specific class or be a general term for both list classes. However, to some extent, a for-

ward list is just a restricted list and, in practice, this difference is not so important. So, when I use

the term list I usually mean class list<>, which nevertheless often implies that abilities also apply

to class forward_list<>. For specifics of class forward_list<>, I use the term forward list. So,

this subsection discusses “ordinary” lists, which have been part of the STL since the beginning.

A list<> is implemented as a doubly linked list of elements. This means each element in the

list has its own segment of memory and refers to its predecessor and its successor.

Lists do not provide random access. For example, to access the tenth element, you must navigate

the first nine elements by following the chain of their links. However, a step to the next or previous

element is possible in constant time. Thus, the general access to an arbitrary element takes linear

time because the average distance is proportional to the number of elements. This is a lot worse than

the amortized constant time provided by vectors and deques.

The advantage of a list is that the insertion or removal of an element is fast at any position. Only

the links must be changed. This implies that moving an element in the middle of a list is very fast

compared to moving an element in a vector or a deque.

The following example creates an empty list of characters, inserts all characters from ’a’ to ’z’,

and prints all elements:

// stl/list1.cpp

#include <list>

#include <iostream>

using namespace std;

int main()

{

list<char> coll; // list container for character elements

// append elements from ’a’ to ’z’

for (char c=’a’; c<=’z’; ++c) {

coll.push_back(c);

}

// print all elements:

// - use range-based for loop

for (auto elem : coll) {

cout << elem << ’ ’;

}

cout << endl;

}

174 Chapter 6: The Standard Template Library

As usual, the header file for lists, <list>, is used to define a collection of type list for character

values:

list<char> coll;

To print all elements, a range-based for loop is used, which is available since C++11 and allows

performing statements with each element (see Section 3.1.4, page 17). A direct element access by

using operator [] is not provided for lists. This is because lists don’t provide random access, and so

an operator [] would have bad performance.

Inside the loop, auto is used to declare the type of the coll element currently being processed.

Thus, the type of elem is automatically deduced as char because coll is a collection of chars (see

Section 3.1.2, page 14, for details of type deduction with auto). Instead, you could also explicitly

declare the type of elem:

for (char elem : coll) {

...

}

Note that elem is always a copy of the element currently processed. Thus, you can modify it, but

this would have an effect only for the statements called for this element. Inside coll, nothing

gets modified. To modify the elements in the passed collection, you have to declare elem to be a

nonconstant reference:

for (auto& elem : coll) {

... // any modification of elem modifies the current element in coll

}

As for function parameters, you should generally use a constant reference to avoid a copy operation.

Thus, the following function template outputs all elements of a passed container:

template <typename T>

void printElements (const T& coll)

{

for (const auto& elem : coll) {

std::cout << elem << std::endl;

}

}

Before C++11, you had to use iterators to access all elements. Iterators are introduced later, so you

will find a corresponding example in Section 6.3, page 189.

However, another way to “print” all elements before C++11 (without using iterators) is to print

and remove the first element while there are elements in the list:

// stl/list2.cpp

#include <list>

#include <iostream>

using namespace std;

int main()

{

6.2 Containers 175

list<char> coll; // list container for character elements

// append elements from ’a’ to ’z’

for (char c=’a’; c<=’z’; ++c) {

coll.push_back(c);

}

// print all elements

// - while there are elements

// - print and remove the first element

while (! coll.empty()) {

cout << coll.front() << ’ ’;

coll.pop_front();

}

cout << endl;

}

The empty() member function returns whether the container has no elements. The loop continues

as long as it returns false (that is, the container contains elements):

while (! coll.empty()) {

...

}

Inside the loop, the front() member function returns the first element:

cout << coll.front() << ’ ’;

The pop_front() function removes the first element:

coll.pop_front();

Note that pop_front() does not return the element it removed. Thus, you can’t combine the previ-

ous two statements into one.

The output of the program depends on the character set in use. For the ASCII character set, it is

as follows:6

a b c d e f g h i j k l m n o p q r s t u v w x y z

Forward Lists

Since C++11, the C++ standard library provides an additional list container: a forward list. A

forward_list<> is implemented as a singly linked list of elements. As in an ordinary list, each

element has its own segment of memory, but to save memory the element refers only to its successor.

6 For other character sets, the output may contain characters that aren’t letters, or it may even be empty (if ’z’

is not greater than ’a’).

176 Chapter 6: The Standard Template Library

As a consequence, a forward list is in principle just a limited list, where all operations that move

backward or that would cause a performance penalty are not supported. For this reason, member

functions such as push_back() and even size() are not provided.

In practice, this limitation is even more awkward than it sounds. One problem is that you can’t

search for an element and then delete it or insert another element in front of it. The reason is that

to delete an element, you have to be at the position of the preceding element, because that is the

element that gets manipulated to get a new successor. As a consequence, forward lists provide

special member functions, discussed in Section 7.6.2, page 305.

Here is a small example of forward lists:

// stl/forwardlist1.cpp

#include <forward_list>

#include <iostream>

using namespace std;

int main()

{

// create forward-list container for some prime numbers

forward_list<long> coll = { 2, 3, 5, 7, 11, 13, 17 };

// resize two times

// - note: poor performance

coll.resize(9);

coll.resize(10,99);

// print all elements:

for (auto elem : coll) {

cout << elem << ’ ’;

}

cout << endl;

}

As usual, the header file for forward lists, <forward_list>, is used to be able to define a collection

of type forward_list for long integer values, initialized by some prime numbers:

forward_list<long> coll = { 2, 3, 5, 7, 11, 13, 17 };

Then resize() is used to change the number of elements. If the size grows, you can pass an

additional parameter to specify the value of the new elements. Otherwise, the default value (zero for

fundamental types) is used. Note that calling resize() is really an expensive operation here. It has

linear complexity because to reach the end, you have to go element-by-element through the whole

list. But this is one of the operations almost all sequence containers provide, ignoring possible bad

performance (only arrays do not provide resize(), because their size is constant).

As for lists, we use a range-based for loop to print all elements. The output is as follows:

2 3 5 7 11 13 17 0 0 99

6.2 Containers 177

6.2.2 Associative Containers

Associative containers sort their elements automatically according to a certain ordering criterion.

The elements can be either values of any type or key/value pairs. For key/value pairs, each key,

which might be of any type, maps to an associated value, which might be of any type. The criterion

to sort the elements takes the form of a function that compares either the value or, if it’s a key/value

pair, the key. By default, the containers compare the elements or the keys with operator <. However,

you can supply your own comparison function to define another ordering criterion.

Associative containers are typically implemented as binary trees. Thus, every element (every

node) has one parent and two children. All ancestors to the left have lesser values; all ancestors to

the right have greater values. The associative containers differ in the kinds of elements they support

and how they handle duplicates.

The major advantage of associative containers is that finding an element with a specific value

is rather fast because it has logarithmic complexity (in all sequence containers, you have linear

complexity). Thus, when using associative containers, with 1,000 elements you have 10 instead of

500 comparisons on average. However, a drawback is that you can’t modify values directly, because

doing so would corrupt the automatic sorting of the elements.

The following associative containers are predefined in the STL:

• A set is a collection in which elements are sorted according to their own values. Each element

may occur only once, so duplicates are not allowed.

• A multiset is the same as a set except that duplicates are allowed. Thus, a multiset may contain

multiple elements that have the same value.

• A map contains elements that are key/value pairs. Each element has a key that is the basis for the

sorting criterion and a value. Each key may occur only once, so duplicate keys are not allowed.

A map can also be used as an associative array, an array that has an arbitrary index type (see

Section 6.2.4, page 185, for details).

• A multimap is the same as a map except that duplicates are allowed. Thus, a multimap may

contain multiple elements that have the same key. A multimap can also be used as dictionary

(See Section 7.8.5, page 348, for an example).

All these associative container classes have an optional template argument for the sorting criterion.

The default sorting criterion is the operator <. The sorting criterion is also used as the test for

equivalence;7 that is, two elements are duplicates if neither of their values/keys is less than the other.

You can consider a set as a special kind of map, in which the value is identical to the key. In fact,

all these associative container types are usually implemented by using the same basic implementation

of a binary tree.

Examples of Using Sets and Multisets

Here is a first example, using a multiset:

7 Note that I use the term equivalent here, not equal, which usually implies using operator == for the element

as a whole.

178 Chapter 6: The Standard Template Library

// stl/multiset1.cpp

#include <set>

#include <string>

#include <iostream>

using namespace std;

int main()

{

multiset<string> cities {

"Braunschweig", "Hanover", "Frankfurt", "New York",

"Chicago", "Toronto", "Paris", "Frankfurt"

};

// print each element:

for (const auto& elem : cities) {

cout << elem << " ";

}

cout << endl;

// insert additional values:

cities.insert({"London", "Munich", "Hanover", "Braunschweig"});

// print each element:

for (const auto& elem : cities) {

cout << elem << " ";

}

cout << endl;

}

After declaring the set types in the header file <set>, we can declare cities being a multiset of

strings:

multiset<string> cities

With the declaration, a couple of elements are passed for initialization and later inserted using an

initializer list (see Section 3.1.3, page 15). To print all the elements, we use a range-based for loop

(see Section 3.1.4, page 17). Note that we declare the elements to be const auto&, which means

that we derive the type of the elements from the container (see Section 3.1.2, page 14) and avoid

having to create a copy for each element the body of the loop is called for.

Internally, all the elements are sorted, so the first output is as follows:

Braunschweig Chicago Frankfurt Frankfurt Hanover New York

Paris Toronto

The second output is:

6.2 Containers 179

Braunschweig Braunschweig Chicago Frankfurt Frankfurt Hanover

Hanover London Munich New York Paris Toronto

As you can see, because we use a multiset rather than a set, duplicates are allowed. If we had

declared a set instead of a multiset, each value would be printed only once. If we were to use an

unordered multiset, the order of the elements would be undefined (see Section 6.2.3, page 182).

Examples of Using Maps and Multimaps

The following example demonstrates the use of maps and multimaps:

// stl/multimap1.cpp

#include <map>

#include <string>

#include <iostream>

using namespace std;

int main()

{

multimap<int,string> coll; // container for int/string values

// insert some elements in arbitrary order

// - a value with key 1 gets inserted twice

coll = { {5,"tagged"},

{2,"a"},

{1,"this"},

{4,"of"},

{6,"strings"},

{1,"is"},

{3,"multimap"} };

// print all element values

// - element member second is the value

for (auto elem : coll) {

cout << elem.second << ’ ’;

}

cout << endl;

}

After including <map>, a map with elements that have an int as the key and a string as value gets

declared:

multimap<int,string> coll;

Because the elements of maps and multimaps are key/value pairs, the declaration, the insertion, and

the access to elements are a bit different:

180 Chapter 6: The Standard Template Library

• First, to initialize (or assign or insert) elements, you have to pass key/value pairs, which is done

here by assigning nested initializer lists. The inner lists define the key and the value of each

element; the outer list groups all these elements. Thus, {5,"tagged"} specifies the first element

inserted.

• When processing the elements, you again have to deal with key/value pairs. In fact, the type

of an element is pair<const key,value> (type pair is introduced in Section 5.1.1, page 60).

The key is constant because any modification of its value would break the order of the elements,

which are automatically sorted by the container. Because pairs don’t have an output operator,

you can’t print them as a whole. Instead, you must access the members of the pair structure,

which are called first and second.

Thus, the following expression yields the second part of the key/value pair, which is the value

of the multimap element:

elem.second

Similarly, the following expression yields the first part of the key/value pair, which is the key of

the multimap element:

elem.first

As a result, the program has the following output:

this is a multimap of tagged strings

Before C++11, there was no clear guarantee for the order of equivalent elements (elements having an

equal key). So, until C++11, the order of "this" and "is" might be the other way around. C++11

guarantees that newly inserted elements are inserted at the end of equivalent elements that multisets

and multimaps already contain. In addition, the order of equivalent elements is guaranteed to remain

stable if insert(), emplace(), or erase() is called.

Other Examples for Associative Containers

Section 6.2.4, page 185, gives an example for using a map, which can be used as a so-called asso-

ciative array.

Section 7.7 discusses sets and multisets in detail, with additional examples. Section 7.8 discusses

maps and multimaps in detail, with additional examples.

Multimaps can also be used as dictionaries. See Section 7.8.5, page 348, for an example.

6.2.3 Unordered Containers

In unordered containers, elements have no defined order. Thus, if you insert three elements, they

might have any order when you iterate over all the elements in the container. If you insert a fourth

element, the order of the elements previously inserted might change. The only important fact is that

a specific element is somewhere in the container. Even when you have two containers with equal

elements inside, the order might be different. Think of it as like a bag.

Unordered containers are typically implemented as a hash table (Figure 6.3). Thus, internally,

the container is an array of linked lists. Using a hash function, the position of an element in the array

gets processed. The goal is that each element has its own position so that you have fast access to

6.2 Containers 181

hashfunc()

Nico

Jack

Jennifer

Timothy

George

Lucas

Anica

Fred

Jutta

Nico Jack

Timothy

Anica

Jutta

Lucas

Jennifer George Fred

Buckets: Entries (linked list):Hash function: Values/Keys:

Figure 6.3. Unordered Containers Are Hash Tables

each element, provided that the hash function is fast. But because such a fast perfect hash function

is not always possible or might require that the array consumes a huge amount of memory, multiple

elements might have the same position. For this reason, the elements in the array are linked lists so

that you can store more than one element at each array position.

The major advantage of unordered containers is that finding an element with a specific value

is even faster than for associative containers. In fact, the use of unordered containers provides

amortized constant complexity, provided that you have a good hash function. However, providing a

good hash function is not easy (see Section 7.9.2, page 363), and you might need a lot of memory

for the buckets.

According to associative containers, the following unordered containers are predefined in the

STL:

• An unordered set is a collection of unordered elements, where each element may occur only

once. Thus, duplicates are not allowed.

• An unordered multiset is the same as an unordered set except that duplicates are allowed. Thus,

an unordered multiset may contain multiple elements that have the same value.

• An unordered map contains elements that are key/value pairs. Each key may occur only once,

so duplicate keys are not allowed. An unordered map can also be used as an associative array,

an array that has an arbitrary index type (see Section 6.2.4, page 185, for details).

• An unordered multimap is the same as an unordered map except that duplicates are allowed.

Thus, an unordered multimap may contain multiple elements that have the same key. An un-

ordered multimap can also be used as dictionary (see Section 7.9.7, page 383, for an example).

182 Chapter 6: The Standard Template Library

All these unordered container classes have a couple of optional template arguments to specify a hash

function and an equivalence criterion. The equivalence criterion is used to find specific values and

to identify duplicates. The default equivalence criterion is the operator ==.

You can consider an unordered set as a special kind of unordered map, in which the value is

identical to the key. In fact, all these unordered container types are usually implemented by using

the same basic implementation of a hash table.

Examples of Using Unordered Sets and Multisets

Here is a first example, using an unordered multiset of strings:

// stl/unordmultiset1.cpp

#include <unordered_set>

#include <string>

#include <iostream>

using namespace std;

int main()

{

unordered_multiset<string> cities {

"Braunschweig", "Hanover", "Frankfurt", "New York",

"Chicago", "Toronto", "Paris", "Frankfurt"

};

// print each element:

for (const auto& elem : cities) {

cout << elem << " ";

}

cout << endl;

// insert additional values:

cities.insert({"London", "Munich", "Hanover", "Braunschweig"});

// print each element:

for (const auto& elem : cities) {

cout << elem << " ";

}

cout << endl;

}

After including the required header file

#include <unordered_set>

we can declare and initialize an unordered set of strings:

unordered_multiset<string> cities { ... };

6.2 Containers 183

Now, if we print all elements, the order might be different because the order is undefined. The only

guarantee is that duplicates, which are possible because a multiset is used, are grouped together in

the order of their insertion. Thus, a possible output might be:

Paris Toronto Chicago New York Frankfurt Frankfurt Hanover

Braunschweig

Any insertion can change this order. In fact, any operation that causes rehashing can change this

order. So, after inserting a couple more values, the output might be as follows:

London Hanover Hanover Frankfurt Frankfurt New York Chicago

Munich Braunschweig Braunschweig Toronto Paris

What happens depends on the rehashing policy, which can be influenced in part by the programmer.

For example, you can reserve enough room so that rehashing won’t happen up to a specific number

of elements. In addition, to ensure that you can delete elements while processing all elements,

the standard guarantees that deleting elements does not cause a rehashing. But an insertion after a

deletion might cause rehashing. For details, see Section 7.9, page 355.

In general, associative and unordered containers provide the same interface. Only declarations

might differ, and unordered containers provide special member functions to influence the internal

behavior or to inspect the current state. Thus, in the example presented here, only the header files

and types differ from the corresponding example using an ordinary multiset, which was introduced

in Section 6.2.2, page 177.

Again, before C++11, you needed iterators to access the elements. See Section 6.3.1, page 193,

for an example.

Examples of Using Unordered Maps and Multimaps

The example presented for multimaps on page 179 also works for an unordered multimap if you

replace map by unordered_map in the include directive and multimap by unordered_multimap

in the declaration of the container:

#include <unordered_map>

...

unordered_multimap<int,string> coll;

...

The only difference is that the order of the elements is undefined. However, on most platforms, the

elements will still be sorted because as a default hash function, the modulo operator is used. Thus,

a sorted order is also a valid undefined order. However, that’s not guaranteed, and if you add more

elements, the order will be different.

Here is another example using an unordered map. In this case, we use an unordered map where

the keys are strings and the values are doubles:

// stl/unordmap1.cpp

#include <unordered_map>

#include <string>

184 Chapter 6: The Standard Template Library

#include <iostream>

using namespace std;

int main()

{

unordered_map<string,double> coll { { "tim", 9.9 },

{ "struppi", 11.77 }

};

// square the value of each element:

for (pair<const string,double>& elem : coll) {

elem.second *= elem.second;

}

// print each element (key and value):

for (const auto& elem : coll) {

cout << elem.first << ": " << elem.second << endl;

}

}

After the usual includes for maps, strings, and iostreams, an unordered map is declared and initial-

ized by two elements. Here, we use nested initializer lists so that

{ "tim", 9.9 }

and

{ "struppi", 11.77 }

are the two elements used to initialize the map.

Next, we square the value of each element:

for (pair<const string,double>& elem : coll) {

elem.second *= elem.second;

}

Here again, you can see the internal type of the elements, which is a pair<> (see Section 5.1.1,

page 60) of constant strings and doubles. Thus, we could not modify the key member first in the

element:

for (pair<const string,double>& elem : coll) {

elem.first = ...; // ERROR: keys of a map are constant

}

As usual since C++11, we don’t have to specify the type of the elements explicitly, because in a

range-based for loop, it is deduced from the container. For this reason, the second loop, which

outputs all elements, uses auto. In fact, by declaring elem as const auto&, we avoid having

copies created:

6.2 Containers 185

for (const auto& elem : coll) {

cout << elem.first << ": " << elem.second << endl;

}

As a result, one possible output of the program is as follows:

struppi: 138.533

tim: 98.01

This order is not guaranteed, because the actual order is undefined. If we used an ordinary map

instead, the order of the elements would be guaranteed to print the element with key "struppi"

before the element with key "tim", because the map sorts the elements according to the key, and

the string "struppi" is less than "tim". See Section 7.8.5, page 345, for a corresponding example

using a map and also using algorithms and lambdas instead of range-based for loops.

Other Examples for Unordered Containers

The classes for unordered containers provide a couple of additional optional template arguments,

such as the hash function and the equivalence comparison. A default hash function is provided for

fundamental types and strings, but we would have to declare our own hash function for other types.

This is discussed in Section 7.9.2, page 363.

The next section gives an example for using a map as a so-called associative array. Section 7.9

discusses unordered containers in detail, with additional examples. Unordered multimaps can also

be used as dictionaries (see Section 7.9.7, page 383, for an example).

6.2.4 Associative Arrays

Both maps and unordered maps are collections of key/value pairs with unique keys. Such a collection

can also be thought of as an associative array, an array whose index is not an integer value. As a

consequence, both containers provide the subscript operator [].

Consider the following example:

// stl/assoarray1.cpp

#include <unordered_map>

#include <string>

#include <iostream>

using namespace std;

int main()

{

// type of the container:

// - unordered_map: elements are key/value pairs

// - string: keys have type string

// - float: values have type float

unordered_map<string,float> coll;

186 Chapter 6: The Standard Template Library

// insert some elements into the collection

// - using the syntax of an associative array

coll["VAT1"] = 0.16;

coll["VAT2"] = 0.07;

coll["Pi"] = 3.1415;

coll["an arbitrary number"] = 4983.223;

coll["Null"] = 0;

// change value

coll["VAT1"] += 0.03;

// print difference of VAT values

cout << "VAT difference: " << coll["VAT1"] - coll["VAT2"] << endl;

}

The declaration of the container type must specify both the type of the key and the type of the value:

unordered_map<string,float> coll;

This means that the keys are strings and the associated values are floating-point values.

According to the concept of associative arrays, you can access elements by using the subscript

operator []. Note, however, that the subscript operator does not behave like the usual subscript

operator for arrays: Not having an element for an index is not an error. A new index (or key) is taken

as a reason to create and insert a new map element that has the index as the key. Thus, you can’t

have an invalid index.

Therefore, in this example, the statement

coll["VAT1"] = 0.16;

creates a new element, which has the key "VAT1" and the value 0.16.

In fact, the following expression creates a new element that has the key "VAT1" and is initialized

with its default value (using the default constructor or 0 for fundamental data types):

coll["VAT1"]

The whole expression yields access to the value of this new element, so the assignment operator

assigns 0.16 then.

Since C++11, you can, alternatively, use at() to access values of elements while passing the

key. In this case, a key not found results in an out_of_range exception:

coll.at("VAT1") = 0.16; // out_of_range exception if no element found

With expressions such as

coll["VAT1"] += 0.03;

or

coll["VAT1"] - coll["VAT2"]

you gain read and write access to the value of these elements. Thus, the output of the program is as

follows:

VAT difference: 0.12

6.2 Containers 187

As usual, the difference between using an unordered map and a map is that the elements in an

unordered map have arbitrary order, whereas the elements in a map are sorted. But because the

complexity for element access is amortized constant for unordered maps rather than logarithmic for

maps, you should usually prefer unordered maps over maps unless you need the sorting or can’t

use an unordered map because your environment does not support features of C++11. In that case,

you simply have to change the type of the container: remove the “unordered_” in both the include

directive and the container declaration.

Section 7.8.3, page 343, and Section 7.9.5, page 374, discuss maps and unordered_maps as

associative arrays in more detail.

6.2.5 Other Containers

Strings

You can also use strings as STL containers. By strings, I mean objects of the C++ string classes

(basic_string<>, string, and wstring), which are introduced in Chapter 13. Strings are similar

to vectors but have characters as elements. Section 13.2.14, page 684, provides details.

Ordinary C-Style Arrays

Another kind of container is a type of the core C and C++ language rather than a class: an ordinary

array (“C-style array”) that has a declared fixed size or a dynamic size managed by malloc() and

realloc(). However, such ordinary arrays are not STL containers, because they don’t provide

member functions, such as size() and empty(). Nevertheless, the STL’s design allows you to call

algorithms for them.

The use of ordinary arrays is nothing new. What is new is using algorithms for them. This is

explained in Section 7.10.2, page 386.

In C++, it is no longer necessary to program C-style arrays directly. Vectors and arrays pro-

vide all properties of ordinary C-style arrays but with a safer and more convenient interface. See

Section 7.2.3, page 267, and Section 7.3.3, page 278, for details.

User-Defined Containers

In principle, you can give any container-like object a corresponding STL interface to be able to

iterate through elements or provide standard operations to manipulate its content. For example, you

might introduce a class that represents a directory where you can iterate over the files as elements and

manipulate them. The best candidates for STL-container-like interfaces are the common container

operations introduced in Section 7.1, page 254.

However, some container-like objects do not fit into the concept of the STL. For example, the

fact that STL containers have a begin and an end makes it hard for circular container types, such as

a ring buffer, to fit into the STL framework.

188 Chapter 6: The Standard Template Library

6.2.6 Container Adapters

In addition to the fundamental container classes, the C++ standard library provides so-called con-

tainer adapters, which are predefined containers that provide a restricted interface to meet special

needs. These container adapters are implemented by using the fundamental container classes. The

predefined container adapters are as follows:

• A stack (the name says it all) manages its elements by the LIFO (last-in-first-out) policy.

• A queue manages its elements by the FIFO (first-in-first-out) policy. That is, it is an ordinary

buffer.

• A priority queue is a container in which the elements may have different priorities. The priority

is based on a sorting criterion that the programmer may provide (by default, operator < is used).

A priority queue is, in effect, a buffer in which the next element is always one having the highest

priority inside the queue. If more than one element has the highest priority, the order of these

elements is undefined.

Container adapters are historically part of the STL. However, from a programmer’s viewpoint, they

are just special container classes that use the general framework of the containers, iterators, and

algorithms provided by the STL. Therefore, container adapters are described apart from the STL

core in Chapter 12.

6.3 Iterators

Since C++11, we can process all elements by using a range-based for loop. However, to find an

element, we don’t want to process all elements. Instead, we have to iterate over all elements until

we find what we are searching for. In addition, we probably want to be able to store this position

somewhere, for example, to continue with the iteration or some other processing later on. Thus, we

need a concept of an object that represents positions of elements in a container. This concept exists.

Objects that fulfill this concept are called iterators. In fact, as we will see, range-based for loops

are a convenience interface to this concept. That is, they internally use iterator objects that iterate

over all elements.

An iterator is an object that can iterate over elements (navigate from element to element). These

elements may be all or a subset of the elements of an STL container. An iterator represents a certain

position in a container. The following fundamental operations define the behavior of an iterator:

• Operator * returns the element of the current position. If the elements have members, you can

use operator -> to access those members directly from the iterator.

• Operator ++ lets the iterator step forward to the next element. Most iterators also allow stepping

backward by using operator --.

• Operators == and != return whether two iterators represent the same position.

• Operator = assigns an iterator (the position of the element to which it refers).

These operations provide exactly the interface of ordinary pointers in C and C++ when these pointers

are used to iterate over the elements of an ordinary array. The difference is that iterators may be smart

pointers — pointers that iterate over more complicated data structures of containers. The internal

behavior of iterators depends on the data structure over which they iterate. Hence, each container

type supplies its own kind of iterator. As a result, iterators share the same interface but have different

6.3 Iterators 189

types. This leads directly to the concept of generic programming: Operations use the same interface

but different types, so you can use templates to formulate generic operations that work with arbitrary

types that satisfy the interface.

All container classes provide the same basic member functions that enable them to use iterators

to navigate over their elements. The most important of these functions are as follows:

• begin() returns an iterator that represents the beginning of the elements in the container. The

beginning is the position of the first element, if any.

• end() returns an iterator that represents the end of the elements in the container. The end is the

position behind the last element. Such an iterator is also called a past-the-end iterator.

begin() end()

Figure 6.4. begin() and end() for Containers

Thus, begin() and end() define a half-open range that includes the first element but excludes the

last (Figure 6.4). A half-open range has two advantages:

1. You have a simple end criterion for loops that iterate over the elements: They simply continue as

long as end() is not reached.

2. It avoids special handling for empty ranges. For empty ranges, begin() is equal to end().

The following example demonstrating the use of iterators prints all elements of a list container (it is

the iterator-based version of the first list example in Section 6.2.1, page 173):

// stl/list1old.cpp

#include <list>

#include <iostream>

using namespace std;

int main()

{

list<char> coll; // list container for character elements

// append elements from ’a’ to ’z’

for (char c=’a’; c<=’z’; ++c) {

coll.push_back(c);

}

190 Chapter 6: The Standard Template Library

// print all elements:

// - iterate over all elements

list<char>::const_iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

cout << *pos << ’ ’;

}

cout << endl;

}

Again, after the list is created and filled with the characters ’a’ through ’z’, we print all elements.

But instead of using a range-based for loop:

for (auto elem : coll) {

cout << elem << ’ ’;

}

all elements are printed within an ordinary for loop using an iterator iterating over all elements of

the container:

list<char>::const_iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

cout << *pos << ’ ’;

}

The iterator pos is declared just before the loop. Its type is the iterator type for constant element

access of its container class:

list<char>::const_iterator pos;

In fact, every container defines two iterator types:

1. container::iterator is provided to iterate over elements in read/write mode.

2. container::const_iterator is provided to iterate over elements in read-only mode.

For example, in class list, the definitions might look like the following:

namespace std {

template <typename T>

class list {

public:

typedef ... iterator;

typedef ... const_iterator;

...

};

}

The exact type of iterator and const_iterator is implementation defined.

Inside the for loop, the iterator pos first gets initialized with the position of the first element:

pos = coll.begin()

6.3 Iterators 191

The loop continues as long as pos has not reached the end of the container elements:

pos != coll.end()

Here, pos is compared with a so-called past-the-end iterator, which represents the position right

behind the last element. While the loop runs the increment operator, ++pos navigates the iterator

pos to the next element.

All in all, pos iterates from the first element, element-by-element, until it reaches the end (Fig-

ure 6.5). If the container has no elements, the loop does not run, because coll.begin() would

equal coll.end().

begin() end()pos ++

Figure 6.5. Iterator pos Iterating over Elements of a List

In the body of the loop, the expression *pos represents the current element. In this example,

it is written to the standard output cout, followed by a space character. You can’t modify the

elements, because a const_iterator is used. Thus, from the iterator’s point of view, the elements

are constant. However, if you use a nonconstant iterator and the type of the elements is nonconstant,

you can change the values. For example:

// make all characters in the list uppercase

list<char>::iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

*pos = toupper(*pos);

}

If we use iterators to iterate over the elements of (unordered) maps and multimaps, pos would again

refer to key/value pairs. Thus, the expression

pos->second

would yield the second part of the key/value pair, which is the value of the element, whereas

pos->first

would yield its (constant) key.

++pos versus pos++

Note that the preincrement operator (prefix ++) is used here to move the iterator to the next element.

The reason is that it might have better performance than the postincrement operator. The latter

internally involves a temporary object because it must return the old position of the iterator. For

192 Chapter 6: The Standard Template Library

this reason, it generally is better to prefer ++pos over pos++. Thus, you should avoid the following

version:

for (pos = coll.begin(); pos != coll.end(); pos++) {

^^^^^ // OK, but slightly slower

...

}

These kinds of performance improvements almost always don’t matter. So, don’t interpret this

recommendation to mean that you should do everything to avoid even the smallest performance

penalties. Readable and maintainable programs are far more important than optimized performance.

The important point here is that in this case, you don’t pay a price for preferring the preincrement

over the postincrement version. For this reason, it is a good advice to prefer the preincrement and

predecrement operators in general.

cbegin() and cend()

Since C++11, we can use the keyword auto (see Section 3.1.2, page 14) to specify the exact type

of the iterator (provided that you initialize the iterator during its declaration so that its type can be

derived from the initial value). Thus, by initializing the iterator directly with begin(), you can use

auto to declare its type:

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

cout << *pos << ’ ’;

}

As you can see, one advantage of using auto is that the code is more condensed. Without auto,

declaring the iterator inside the loop looks as follows:

for (list<char>::const_iterator pos = coll.begin();

pos != coll.end();

++pos) {

cout << *pos << ’ ’;

}

The other advantage is that the loop is robust for such code modifications as changing the type of

the container. However, the drawback is that the iterator loses its constness, which might raise the

risk of unintended assignments. With

auto pos = coll.begin()

pos becomes a nonconstant iterator because begin() returns an object of type cont::iterator.

To ensure that constant iterators are still used, cbegin() and cend() are provided as container

functions since C++11. They return an object of type cont::const_iterator.

To summarize the improvements, since C++11, a loop that allows iterating over all the elements

of a container without using a range-based for loop might look as follows:

for (auto pos = coll.cbegin(); pos != coll.cend(); ++pos) {

...

}

6.3 Iterators 193

Range-Based for Loops versus Iterators

Having introduced iterators, we can explain the exact behavior of range-based for loops. For con-

tainers, in fact, a range-based for loop is nothing but a convenience interface, which is defined to

iterate over all elements of the passed range/collection. Within each loop body, the actual element is

initialized by the value the current iterator refers to.

Thus,

for (type elem : coll) {

...

}

is interpreted as

for (auto pos=coll.begin(), end=coll.end(); pos!=end; ++pos) {

type elem = *pos;

...

}

Now we can understand why we should declare elem to be a constant reference to avoid unnecessary

copies. Otherwise, elem will be initialized as a copy of *pos. See Section 3.1.4, page 17, for details.

6.3.1 Further Examples of Using Associative and

Unordered Containers

Having introduced iterators, we can present some example programs using associative containers

without using such language features of C++11 as range-based for loops, auto, and initializer lists.

In addition, the features used here can also be useful with C++11 for some special requirements.

Using Sets before C++11

The first example shows how to insert elements into a set and use iterators to print them if C++11

features are not available:

// stl/set1.cpp

#include <set>

#include <iostream>

int main()

{

// type of the collection

typedef std::set<int> IntSet;

IntSet coll; // set container for int values

194 Chapter 6: The Standard Template Library

// insert elements from 1 to 6 in arbitrary order

// - note that there are two calls of insert() with value 1

coll.insert(3);

coll.insert(1);

coll.insert(5);

coll.insert(4);

coll.insert(1);

coll.insert(6);

coll.insert(2);

// print all elements

// - iterate over all elements

IntSet::const_iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

std::cout << *pos << ’ ’;

}

std::cout << std::endl;

}

As usual, the include directive defines all necessary types and operations of sets:

#include <set>

The type of the container is used in several places, so first, a shorter type name gets defined:

typedef set<int> IntSet;

This statement defines type IntSet as a set for elements of type int. This type uses the default

sorting criterion, which sorts the elements by using operator <, so the elements are sorted in ascend-

ing order. To sort in descending order or use a completely different sorting criterion, you can pass

it as a second template parameter. For example, the following statement defines a set type that sorts

the elements in descending order:

typedef set<int,greater<int>> IntSet;

greater<> is a predefined function object discussed in Section 6.10.2, page 239. For a sorting

criterion that uses only part of the data of an object, such as the ID, see Section 10.1.1, page 476.

All associative containers provide an insert() member function to insert a new element:

coll.insert(3);

coll.insert(1);

...

Since C++11, we can simply call:

coll.insert ({ 3, 1, 5, 4, 1, 6, 2 });

Each inserted element receives the correct position automatically according to the sorting criterion.

You can’t use the push_back() or push_front() functions provided for sequence containers.

They make no sense here, because you can’t specify the position of the new element.

After all values are inserted in any order, the state of the container is as shown in Figure 6.6. The

elements are sorted into the internal tree structure of the container, so the value of the left child of an

6.3 Iterators 195

element is always less, with respect to the current sorting criterion, and the value of the right child of

an element is always greater. Duplicates are not allowed in a set, so the container contains the value

1 only once.

4

2 6

1 3 5

Figure 6.6. A Set of Six Elements

To print the elements of the container, you use the same loop as in the previous list example. An

iterator iterates over all elements and prints them:

IntSet::const_iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

cout << *pos << ’ ’;

}

4

2 6

1 3 5

pos ++

Figure 6.7. Iterator pos Iterating over Elements of a Set

Because it is defined by the container, the iterator does the right thing, even if the internal structure

of the container is more complicated. For example, if the iterator refers to the third element, operator

++ moves to the fourth element at the top. After the next call of operator ++, the iterator refers to the

fifth element at the bottom (Figure 6.7). The output of the program is as follows:

1 2 3 4 5 6

196 Chapter 6: The Standard Template Library

To use a multiset rather than a set, you need only change the type of the container; the header file

remains the same:

typedef multiset<int> IntSet;

A multiset allows duplicates, so it would contain two elements that have value 1. Thus, the output

of the program would change to the following:

1 1 2 3 4 5 6

Details of Using an Unordered Multiset

As another example, let’s look in detail at what happens when we iterate over all elements of an

unordered multiset. Consider the following example:

// stl/unordmultiset2.cpp

#include <unordered_set>

#include <iostream>

int main()

{

// unordered multiset container for int values

std::unordered_multiset<int> coll;

// insert some elements

coll.insert({1,3,5,7,11,13,17,19,23,27,1});

// print all elements

for (auto elem : coll) {

std::cout << elem << ’ ’;

}

std::cout << std::endl;

// insert one more element

coll.insert(25);

// print all elements again

for (auto elem : coll) {

std::cout << elem << ’ ’;

}

std::cout << std::endl;

}

The order of the elements is undefined. It depends on the internal layout of the hash table and its

hashing function. Even when the elements are inserted in sorted order, they have an arbitrary order

6.3 Iterators 197

inside the container.8 Adding one more element might change the order of all existing elements.

Thus, one of the possible outputs of this program is as follows:

11 23 1 1 13 3 27 5 17 7 19

23 1 1 25 3 27 5 7 11 13 17 19

As you can see, the order is indeed undefined, but might differ if you run this example on your

platform. Adding just one element might change the whole order. However, it is guaranteed that

elements with equal values are adjacent to each other.

When iterating over all elements to print them:

for (auto elem : coll) {

std::cout << elem << ’ ’;

}

this is equivalent to the following:

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

auto elem = *pos;

std::cout << elem << ’ ’;

}

hashfunc()

13

27

17

7

19

11

5

3

23 1 1

+
+

Figure 6.8. Iterator pos Iterating over Elements of an Unordered Multiset

8 Note that the order might also be sorted because this is one possible arbitrary order. In fact, if you insert 1, 2,

3, 4, and 5, this will typically be the case.

198 Chapter 6: The Standard Template Library

Again, the internal iterator pos internally used in the for loop has a type provided by the container

so that it “knows” how to iterate over all the elements. So, with this output, the internal state of the

unordered multiset might look like Figure 6.8 when the iterator is used to print all the elements the

first time.

When not allowing duplicates by switching to an unordered set:

std::unordered_set<int> coll;

the output might look as follows:

11 23 1 13 3 27 5 17 7 19

11 23 1 13 25 3 27 5 17 7 19

6.3.2 Iterator Categories

In addition to their fundamental operations, iterators can have capabilities that depend on the in-

ternal structure of the container type. As usual, the STL provides only those operations that have

good performance. For example, if containers have random access, such as vectors or deques, their

iterators are also able to perform random-access operations, such as positioning the iterator directly

at the fifth element.

Iterators are subdivided into categories based on their general abilities. The iterators of the

predefined container classes belong to one of the following three categories:

1. Forward iterators are able to iterate only forward, using the increment operator. The itera-

tors of the class forward_list are forward iterators. The iterators of the container classes

unordered_set, unordered_multiset, unordered_map, and unordered_multimap are

“at least” forward iterators (libraries are allowed to provide bidirectional iterators instead, see

Section 7.9.1, page 357).

2. Bidirectional iterators are able to iterate in two directions: forward, by using the increment

operator, and backward, by using the decrement operator. The iterators of the container classes

list, set, multiset, map, and multimap are bidirectional iterators.

3. Random-access iterators have all the properties of bidirectional iterators. In addition, they

can perform random access. In particular, they provide operators for iterator arithmetic (in

accordance with pointer arithmetic of an ordinary pointer). You can add and subtract offsets,

process differences, and compare iterators by using relational operators, such as < and >. The

iterators of the container classes vector, deque, array, and iterators of strings are random-

access iterators.

In addition, two other iterator categories are defined:

• Input iterators are able to read/process some values while iterating forward. Input stream itera-

tors are an example of such iterators (see Section 6.5.2, page 212).

• Output iterators are able to write some values while iterating forward. Inserters (Section 6.5.1,

page 210) and output stream iterators (see Section 6.5.2, page 212) are examples of such iterators.

Section 9.2, page 433, discusses all iterator categories in detail.

6.4 Algorithms 199

To write generic code that is as independent of the container type as possible, you should not

use special operations for random-access iterators. For example, the following loop works with any

container:

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

...

}

However, the following does not work with all containers:

for (auto pos = coll.begin(); pos < coll.end(); ++pos) {

...

}

The only difference is the use of operator < instead of operator != in the condition of the loop.

Operator < is provided only for random-access iterators, so this loop does not work with lists, sets,

and maps. To write generic code for arbitrary containers, you should use operator != rather than

operator <. However, doing so might lead to code that is less safe. The reason is that you may not

recognize that pos gets a position behind end() (see Section 6.12, page 245, for more details about

possible errors when using the STL). It’s up to you to decide which version to use. It might be a

question of the context or even of taste.

To avoid misunderstanding, note that I am talking about “categories,” not “classes.” A category

defines only the abilities of iterators. The type doesn’t matter. The generic concept of the STL works

with pure abstraction: anything that behaves like a bidirectional iterator is a bidirectional iterator.

6.4 Algorithms

The STL provides several standard algorithms for processing elements of collections. These algo-

rithms offer general fundamental services, such as searching, sorting, copying, reordering, modify-

ing, and numeric processing.

Algorithms are not member functions of the container classes but instead are global functions

that operate with iterators. This has an important advantage: Instead of each algorithm being imple-

mented for each container type, all are implemented only once for any container type. The algorithm

might even operate on elements of different container types. You can also use the algorithms for user-

defined container types. All in all, this concept reduces the amount of code and increases the power

and the flexibility of the library.

Note that this is not an object-oriented programming paradigm; it is a generic functional pro-

gramming paradigm. Instead of data and operations being unified, as in object-oriented program-

ming, they are separated into distinct parts that can interact via a certain interface. However, this

concept also has its price: First, the usage is not intuitive. Second, some combinations of data

structures and algorithms might not work. Even worse, a combination of a container type and an

algorithm might be possible but not useful (for example, it may lead to bad performance). Thus, it

is important to learn the concepts and the pitfalls of the STL to benefit from it without abusing it. I

provide examples and more details about this throughout the rest of this chapter.

Let’s start with a simple example of the use of STL algorithms. The following program shows

some algorithms and their usage:

200 Chapter 6: The Standard Template Library

// stl/algo1.cpp

#include <algorithm>

#include <vector>

#include <iostream>

using namespace std;

int main()

{

// create vector with elements from 1 to 6 in arbitrary order

vector<int> coll = { 2, 5, 4, 1, 6, 3 };

// find and print minimum and maximum elements

auto minpos = min_element(coll.cbegin(),coll.cend());

cout << "min: " << *minpos << endl;

auto maxpos = max_element(coll.cbegin(),coll.cend());

cout << "max: " << *maxpos << endl;

// sort all elements

sort (coll.begin(), coll.end());

// find the first element with value 3

// - no cbegin()/cend() because later we modify the elements pos3 refers to

auto pos3 = find (coll.begin(), coll.end(), // range

3); // value

// reverse the order of the found element with value 3 and all following elements

reverse (pos3, coll.end());

// print all elements

for (auto elem : coll) {

cout << elem << ’ ’;

}

cout << endl;

}

To be able to call the algorithms, you must include the header file <algorithm> (some algorithms

need special header files, see Section 11.1, page 505):

#include <algorithm>

The first two algorithms, min_element() and max_element(), are called with two parameters that

define the range of the processed elements. To process all elements of a container, you simply use

cbegin() and cend() or begin() and end(), respectively. Both algorithms return an iterator for

the position of the element found. Thus, in the statement

auto minpos = min_element(coll.cbegin(),coll.cend());

6.4 Algorithms 201

the min_element() algorithm returns the position of the minimum element. (If there is more than

one minimum element, the algorithm returns the first.) The next statement prints the element the

iterator refers to:

cout << "min: " << *minpos << endl;

Of course, you could do both in one statement:

cout << *min_element(coll.cbegin(),coll.cend()) << endl;

The next algorithm, sort(), as the name indicates, sorts the elements of the range defined by the

two arguments. As usual, you could pass an optional sorting criterion. The default sorting criterion

is operator <. Thus, in this example, all elements of the container are sorted in ascending order:

sort (coll.begin(), coll.end());

Thus, afterward, the vector contains the elements in this order:

1 2 3 4 5 6

Note that you can’t use cbegin() and cend() here, because sort() modifies the values of the

elements, which is not possible for const_iterators.

The find() algorithm searches for a value inside the given range. In this example, this algorithm

searches for the first element that is equal to the value 3 in the whole container:

auto pos3 = find (coll.begin(), coll.end(), // range

3); // value

If the find() algorithm is successful, it returns the iterator position of the element found. If the

algorithm fails, it returns the end of the range passed as second argument, which is the past-the-end

iterator of coll here. In this example, the value 3 is found as the third element, so afterward, pos3

refers to the third element of coll.

The last algorithm called in the example is reverse(), which reverses the elements of the passed

range. Here, the third element that was found by the find() algorithm and the past-the-end iterator

are passed as arguments:

reverse (pos3, coll.end());

This call reverses the order of the third element up to the last one. Because this is a modification, we

have to use a nonconstant iterator here, which explains why we called find() with begin() and

end() instead of cbegin() and cend(). Otherwise, pos3 would be a const_iterator, which

would result in an error when passing it to reverse().

The output of the program is as follows:

min: 1

max: 6

1 2 6 5 4 3

Note that a couple of features of C++11 are used in this example. If you have a platform that doesn’t

support all features of C++11, the same program might look as follows:

202 Chapter 6: The Standard Template Library

// stl/algo1old.cpp

#include <algorithm>

#include <vector>

#include <iostream>

using namespace std;

int main()

{

// create vector with elements from 1 to 6 in arbitrary order

vector<int> coll;

coll.push_back(2);

coll.push_back(5);

coll.push_back(4);

coll.push_back(1);

coll.push_back(6);

coll.push_back(3);

// find and print minimum and maximum elements

vector<int>::const_iterator minpos = min_element(coll.begin(),

coll.end());

cout << "min: " << *minpos << endl;

vector<int>::const_iterator maxpos = max_element(coll.begin(),

coll.end());

cout << "max: " << *maxpos << endl;

// sort all elements

sort (coll.begin(), coll.end());

// find the first element with value 3

vector<int>::iterator pos3;

pos3 = find (coll.begin(), coll.end(), // range

3); // value

// reverse the order of the found element with value 3 and all following elements

reverse (pos3, coll.end());

// print all elements

vector<int>::const_iterator pos;

for (pos=coll.begin(); pos!=coll.end(); ++pos) {

cout << *pos << ’ ’;

}

cout << endl;

}

6.4 Algorithms 203

The differences are as follows:

• No initializer list can be used to initialize the vector.

• Members cbegin() and cend() are not provided, so you have to use begin() and end()

instead. But you can still use const_iterators.

• Instead of using auto, you always have to declare the iterators explicitly.

• Instead of range-based for loops, you have to use iterators to output each element.

6.4.1 Ranges

All algorithms process one or more ranges of elements. Such a range might, but is not required to,

embrace all elements of a container. Therefore, to be able to handle subsets of container elements,

you pass the beginning and the end of the range as two separate arguments rather than the whole

collection as one argument.

This interface is flexible but dangerous. The caller must ensure that the first and second argu-

ments define a valid range. A range is valid if the end of the range is reachable from the beginning

by iterating through the elements. This means that it is up to the programmer to ensure that both

iterators belong to the same container and that the beginning is not behind the end. Otherwise,

the behavior is undefined, and endless loops or forbidden memory access may result. In this re-

spect, iterators are just as unsafe as ordinary pointers. But undefined behavior also means that an

implementation of the STL is free to find such kinds of errors and handle them accordingly. The

following paragraphs show that ensuring that ranges are valid is not always as easy as it sounds. See

Section 6.12, page 245, for more details about the pitfalls and safe versions of the STL.

Every algorithm processes half-open ranges. Thus, a range is defined so that it includes the

position used as the beginning of the range but excludes the position used as the end. This concept

is often described by using the traditional mathematical notations for half-open ranges:

[begin,end)
or

[begin,end[

In this book, I use the first alternative.

The half-open-range concept has the advantages that it is simple and avoids special handling for

empty collections (see Section 6.3, page 189). However, it also has some disadvantages. Consider

the following example:

// stl/find1.cpp

#include <algorithm>

#include <list>

#include <iostream>

using namespace std;

int main()

{

list<int> coll;

204 Chapter 6: The Standard Template Library

// insert elements from 20 to 40

for (int i=20; i<=40; ++i) {

coll.push_back(i);

}

// find position of element with value 3

// - there is none, so pos3 gets coll.end()

auto pos3 = find (coll.begin(), coll.end(), // range

3); // value

// reverse the order of elements between found element and the end

// - because pos3 is coll.end() it reverses an empty range

reverse (pos3, coll.end());

// find positions of values 25 and 35

list<int>::iterator pos25, pos35;

pos25 = find (coll.begin(), coll.end(), // range

25); // value

pos35 = find (coll.begin(), coll.end(), // range

35); // value

// print the maximum of the corresponding range

// - note: including pos25 but excluding pos35

cout << "max: " << *max_element (pos25, pos35) << endl;

// process the elements including the last position

cout << "max: " << *max_element (pos25, ++pos35) << endl;

}

In this example, the collection is initialized with integral values from 20 to 40. When the search for

an element with the value 3 fails, find() returns the end of the processed range (coll.end() in

this example) and assigns it to pos3. Using that return value as the beginning of the range in the

following call of reverse() poses no problem, because it results in the following call:

reverse (coll.end(), coll.end());

This is simply a call to reverse an empty range. Thus, it is an operation that has no effect (a so-called

“no-op”).

However, if find() is used to find the first and the last elements of a subset, you should consider

that passing these iterator positions as a range will exclude the last element. So, the first call of

max_element()

max_element (pos25, pos35)

finds 34 and not 35:

max: 34

6.4 Algorithms 205

To process the last element, you have to pass the position that is one past the last element:

max_element (pos25, ++pos35)

Doing this yields the correct result:

max: 35

Note that this example uses a list as the container. Thus, you must use operator ++ to get the position

that is behind pos35. If you have random-access iterators, as with vectors and deques, you also

could use the expression pos35 + 1 because random-access iterators allow iterator arithmetic (see

Section 6.3.2, page 198, and Section 9.2.5, page 438, for details).

Of course, you could use pos25 and pos35 to find something in that subrange. Again, to search

including pos35, you have to pass the position after pos35. For example:

// increment pos35 to search with its value included

++pos35;

pos30 = find(pos25,pos35, // range

30); // value

if (pos30 == pos35) {

cout << "30 is NOT in the subrange" << endl;

}

else {

cout << "30 is in the subrange" << endl;

}

All the examples in this section work only because you know that pos25 is in front of pos35.

Otherwise, [pos25,pos35) would not be a valid range. If you are not sure which element is in front,

things get more complicated, and undefined behavior may easily occur.

Suppose that you don’t know whether the element having value 25 is in front of the element

having value 35. It might even be possible that one or both values are not present. By using random-

access iterators, you can call operator < to check this:

if (pos25 < pos35) {

// only [pos25,pos35) is valid

...

}

else if (pos35 < pos25) {

// only [pos35,pos25) is valid

...

}

else {

// both are equal, so both must be end()

...

}

However, without random-access iterators, you have no simple, fast way to find out which iterator

is in front. You can only search for one iterator in the range of the beginning to the other iterator

or in the range of the other iterator to the end. In this case, you should change your algorithm as

206 Chapter 6: The Standard Template Library

follows: Instead of searching for both values in the whole source range, you should try to find out,

while searching for them, which value comes first. For example:

pos25 = find (coll.begin(), coll.end(), // range

25); // value

pos35 = find (coll.begin(), pos25, // range

35); // value

if (pos25 != coll.end() && pos35 != pos25) {

// pos35 is in front of pos25

// so, only [pos35,pos25) is valid

...

}

else {

pos35 = find (pos25, coll.end(), // range

35); // value

if (pos35 != coll.end()) {

// pos25 is in front of pos35

// so, only [pos25,pos35) is valid

...

}

else {

// 25 and/or 35 not found

...

}

}

In contrast to the previous version, you don’t search for 35 in the full range of all elements of coll.

Instead, you first search for it from the beginning to pos25. Then, if it’s not found, you search for it

in the part that contains the remaining elements after pos25. As a result, you know which iterator

position comes first and which subrange is valid.

This implementation is not very efficient. A more efficient way to find the first element that has

either value 25 or value 35 is to search exactly for that. You could do this by using find_if() and

passing a lambda (see Section 3.1.10, page 28), defining the criterion that is evaluated with each

element in coll:

pos = find_if (coll.begin(), coll.end(), // range

[] (int i) { // criterion

return i == 25 || i == 35;

});

if (pos == coll.end()) {

// no element with value 25 or 35 found

...

}

else if (*pos == 25) {

6.4 Algorithms 207

// element with value 25 comes first

pos25 = pos;

pos35 = find (++pos, coll.end(), // range

35); // value

...

}

else {

// element with value 35 comes first

pos35 = pos;

pos25 = find (++pos, coll.end(), // range

25); // value

...

}

Here, the special lambda expression

[] (int i) {

return i == 25 || i == 35;

}

is used as a criterion that allows a search of the first element that has either value 25 or value 35.

The use of lambdas in the STL is introduced in Section 6.9, page 229, and discussed in detail in

Section 10.3, page 499.

6.4.2 Handling Multiple Ranges

Several algorithms process more than one range. In this case, you usually must define both the

beginning and the end only for the first range. For all other ranges, you need to pass only their

beginnings. The ends of the other ranges follow from the number of elements in the first range. For

example, the following call of equal() compares all elements of the collection coll1 element-by-

element with the elements of coll2, beginning with its first element:

if (equal (coll1.begin(), coll1.end(), // first range

coll2.begin())) { // second range

...

}

Thus, the number of elements of coll2 that are compared with the elements of coll1 is specified

indirectly by the number of elements in coll1 (see Figure 6.9).

This leads to an important consequence: When you call algorithms for multiple ranges, make

sure that the second and additional ranges have at least as many elements as the first range. In

particular, make sure that destination ranges are big enough for algorithms that write to collections.

208 Chapter 6: The Standard Template Library

coll1.begin() coll1.end()

coll2.begin()

++

...

number of elements to process

Figure 6.9. Algorithm Iterating over Two Ranges

Consider the following program:

// stl/copybug.cpp

#include <algorithm>

#include <list>

#include <vector>

using namespace std;

int main()

{

list<int> coll1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

vector<int> coll2;

// RUNTIME ERROR:

// - overwrites nonexisting elements in the destination

copy (coll1.cbegin(), coll1.cend(), // source

coll2.begin()); // destination

...

}

Here, the copy() algorithm is called. It simply copies all elements of the first range into the desti-

nation range. As usual, the beginning and the end are defined for the first range, whereas only the

beginning is specified for the second range. However, the algorithm overwrites rather than inserts.

So, the algorithm requires that the destination has enough elements to be overwritten. If there is

not enough room, as in this case, the result is undefined behavior. In practice, this often means that

you overwrite whatever comes after the coll2.end(). If you’re in luck, you’ll get a crash, so at

least you’ll know that you did something wrong. However, you can force your luck by using a safe

version of the STL for which the undefined behavior is defined as leading to a certain error-handling

procedure (see Section 6.12.1, page 247).

6.4 Algorithms 209

To avoid these errors, you can (1) ensure that the destination has enough elements on entry, or

(2) use insert iterators. Insert iterators are covered in Section 6.5.1, page 210. I’ll first explain how

to modify the destination so that it is big enough on entry.

To make the destination big enough, you must either create it with the correct size or change its

size explicitly. Both alternatives apply only to some sequence containers (vector, deque, list,

and forward_list). However, this is not really a problem for other containers, because associative

and unordered containers cannot be used as a destination for overwriting algorithms (Section 6.7.2,

page 221, explains why). The following program shows how to increase the size of containers:

// stl/copy1.cpp

#include <algorithm>

#include <list>

#include <vector>

#include <deque>

using namespace std;

int main()

{

list<int> coll1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

vector<int> coll2;

// resize destination to have enough room for the overwriting algorithm

coll2.resize (coll1.size());

// copy elements from first into second collection

// - overwrites existing elements in destination

copy (coll1.cbegin(), coll1.cend(), // source

coll2.begin()); // destination

// create third collection with enough room

// - initial size is passed as parameter

deque<int> coll3(coll1.size());

// copy elements from first into third collection

copy (coll1.cbegin(), coll1.cend(), // source

coll3.begin()); // destination

}

Here, resize() is used to change the number of elements in the existing container coll2:

coll2.resize (coll1.size());

210 Chapter 6: The Standard Template Library

Later, coll3 is initialized with a special initial size so that it has enough room for all elements of

coll1:

deque<int> coll3(coll1.size());

Note that both resizing and initializing the size create new elements. These elements are initialized

by their default constructor because no arguments are passed to them. You can pass an additional

argument both for the constructor and for resize() to initialize the new elements.

6.5 Iterator Adapters

Iterators are pure abstractions: Anything that behaves like an iterator is an iterator. For this reason,

you can write classes that have the interface of iterators but do something completely different. The

C++ standard library provides several predefined special iterators: iterator adapters. They are more

than auxiliary classes; they give the whole concept a lot more power.

The following subsections introduce the following iterator adapters:

1. Insert iterators

2. Stream iterators

3. Reverse iterators

4. Move iterators (since C++11)

Section 9.4, page 448, covers them in detail.

6.5.1 Insert Iterators

Insert iterators, or inserters, are used to let algorithms operate in insert mode rather than in overwrite

mode. In particular, inserters solve the problem of algorithms that write to a destination that does

not have enough room: They let the destination grow accordingly.

Insert iterators redefine their interface internally as follows:

• If you assign a value to their element, they insert that value into the collection to which they

belong. Three different insert iterators have different abilities with regard to where the elements

are inserted — at the front, at the end, or at a given position.

• A call to step forward is a no-op.

With this interface, they fall under the category of output iterators, which are able to write/assign

values only while iterating forward (see Section 9.2, page 433, for details of iterator categories).

Consider the following example:

// stl/copy2.cpp

#include <algorithm>

#include <iterator>

#include <list>

#include <vector>

#include <deque>

6.5 Iterator Adapters 211

#include <set>

#include <iostream>

using namespace std;

int main()

{

list<int> coll1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// copy the elements of coll1 into coll2 by appending them

vector<int> coll2;

copy (coll1.cbegin(), coll1.cend(), // source

back_inserter(coll2)); // destination

// copy the elements of coll1 into coll3 by inserting them at the front

// - reverses the order of the elements

deque<int> coll3;

copy (coll1.cbegin(), coll1.cend(), // source

front_inserter(coll3)); // destination

// copy elements of coll1 into coll4

// - only inserter that works for associative collections

set<int> coll4;

copy (coll1.cbegin(), coll1.cend(), // source

inserter(coll4,coll4.begin())); // destination

}

This example uses all three predefined insert iterators:

1. Back inserters insert the elements at the back of their container (appends them) by calling

push_back(). For example, with the following statement, all elements of coll1 are appended

into coll2:

copy (coll1.cbegin(), coll1.cend(), // source

back_inserter(coll2)); // destination

Of course, back inserters can be used only for containers that provide push_back() as a member

function. In the C++ standard library, these containers are vector, deque, list, and strings.

2. Front inserters insert the elements at the front of their container by calling push_front(). For

example, with the following statement, all elements of coll1 are inserted into coll3:

copy (coll1.cbegin(), coll1.cend(), // source

front_inserter(coll3)); // destination

Note that this kind of insertion reverses the order of the inserted elements. If you insert 1 at the

front and then 2 at the front, the 1 is after the 2.

Front inserters can be used only for containers that provide push_front() as a member

function. In the C++ standard library, these containers are deque, list, and forward_list.

212 Chapter 6: The Standard Template Library

3. General inserters, or simply inserters, insert elements directly in front of the position that is

passed as the second argument of its initialization. A general inserter calls the insert() mem-

ber function with the new value and the new position as arguments. Note that all predefined

containers except array and forward_list have such an insert() member function. Thus,

this is the only predefined inserter for associative and unordered containers.

But wait a moment. Passing a position to insert a new element doesn’t sound useful for as-

sociative and unordered containers, does it? Within associative containers, the position depends

on the value of the elements, and in unordered containers the position of an element is unde-

fined. The solution is simple: For associative and unordered containers, the position is taken as

a hint to start the search for the correct position. However, the containers are free to ignore it.

Section 9.6, page 471, describes a user-defined inserter that is more useful for associative and

unordered containers.

Table 6.1 lists the functionality of insert iterators. Additional details are described in Section 9.4.2,

page 454.

Expression Kind of Inserter

back_inserter(container) Appends in the same order by using push_back(val)

front_inserter(container) Inserts at the front in reverse order by using push_front(val)

inserter(container,pos) Inserts at pos (in the same order) by using insert(pos,val)

Table 6.1. Predefined Insert Iterators

6.5.2 Stream Iterators

Stream iterators read from or write to a stream.9 Thus, they provide an abstraction that lets the input

from the keyboard behave as a collection from which you can read. Similarly, you can redirect the

output of an algorithm directly into a file or onto the screen.

The following example is typical for the power of the whole STL. Compared with ordinary C or

C++, the example does a lot of complex processing by using only a few statements:

// stl/ioiter1.cpp

#include <iterator>

#include <algorithm>

#include <vector>

#include <string>

#include <iostream>

using namespace std;

9 A stream is an object that represents I/O channels (see Chapter 15).

6.5 Iterator Adapters 213

int main()

{

vector<string> coll;

// read all words from the standard input

// - source: all strings until end-of-file (or error)

// - destination: coll (inserting)

copy (istream_iterator<string>(cin), // start of source

istream_iterator<string>(), // end of source

back_inserter(coll)); // destination

// sort elements

sort (coll.begin(), coll.end());

// print all elements without duplicates

// - source: coll

// - destination: standard output (with newline between elements)

unique_copy (coll.cbegin(), coll.cend(), // source

ostream_iterator<string>(cout,"\n")); // destination

}

The program has only three statements that read all words from the standard input and print a sorted

list of them. Let’s consider the three statements step-by-step. In the statement

copy (istream_iterator<string>(cin),

istream_iterator<string>(),

back_inserter(coll));

two input stream iterators are used:

1. The expression

istream_iterator<string>(cin)

creates a stream iterator that reads from the standard input stream cin. The template argument

string specifies that the stream iterator reads elements of this type (string types are covered

in Chapter 13). These elements are read with the usual input operator >>. Thus, each time the

algorithm wants to process the next element, the istream iterator transforms that desire into a call

of

cin >> string

The input operator for strings usually reads one word separated by whitespaces (see Section

13.2.10, page 677), so the algorithm reads word by word.

2. The expression

istream_iterator<string>()

calls the default constructor of istream iterators that creates a so-called end-of-stream iterator. It

represents a stream from which you can no longer read.

214 Chapter 6: The Standard Template Library

As usual, the copy() algorithm operates as long as the (incremented) first argument differs from the

second argument. The end-of-stream iterator is used as the end of the range, so the algorithm reads

all strings from cin until it can no longer read any more (owing to end-of-stream or an error). To

summarize, the source of the algorithm is “all words read from cin.” These words are copied by

inserting them into coll with the help of a back inserter.

The sort() algorithm sorts all elements:

sort (coll.begin(), coll.end());

Finally, the statement

unique_copy (coll.cbegin(), coll.cend(),

ostream_iterator<string>(cout,"\n"));

copies all elements from the collection into the destination cout. During this process, the

unique_copy() algorithm eliminates adjacent duplicate values. The expression

ostream_iterator<string>(cout,"\n")

creates an output stream iterator that writes strings to cout by calling operator << for each element.

The second argument behind cout is optional and serves as a separator between the elements. In

this example, it is a newline character, so every element is written on a separate line.

All components of the program are templates, so you can change the program easily to sort other

value types, such as integers or more complex objects. Section 9.4.3, page 460, explains more and

gives more examples about iostream iterators.

In this example, one declaration and three statements were used to sort all words read from

standard input. However, you could do the same by using only one declaration and one statement.

See Section 1, page 394, for an example.

6.5.3 Reverse Iterators

Reverse iterators let algorithms operate backward by switching the call of an increment operator

internally into a call of the decrement operator, and vice versa. All containers with bidirectional

iterators or random-access iterators (all sequence containers except forward_list and all asso-

ciative containers) can create reverse iterators via their member functions rbegin() and rend().

Since C++11, the corresponding member functions returning read-only iterators, crbegin() and

crend(), are also provided.

For forward_lists and unordered containers, no backward-iteration interface (rbegin(),

rend(), etc.) is provided. The reason is that the implementation requires only singly linked lists

to go through the elements.

6.5 Iterator Adapters 215

Consider the following example:

// stl/reviter1.cpp

#include <iterator>

#include <algorithm>

#include <vector>

#include <iostream>

using namespace std;

int main()

{

vector<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

// print all element in reverse order

copy (coll.crbegin(), coll.crend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

}

The following expression returns a read-only reverse iterator for coll:

coll.crbegin()

This iterator may be used as the beginning of a reverse iteration over the elements of the collection.

The iterator’s position is the last element of the collection. Thus, the following expression returns

the value of the last element:

*coll.crbegin()

Accordingly, the following expression returns for coll a reverse iterator that may be used as the end

of a reverse iteration.

coll.crend()

As usual for ranges, the iterator’s position is past the end of the range but from the opposite direction;

that is, it is the position before the first element in the collection.

Again, you should never use operator * (or operator ->) for a position that does not represent a

valid element. Thus, the expression

*coll.crend()

is as undefined as *coll.end() or *coll.cend().

The advantage of using reverse iterators is that all algorithms are able to operate in the opposite

direction without special code. A step to the next element with operator ++ is redefined into a step

216 Chapter 6: The Standard Template Library

backward with operator --. For example, in this case, copy() iterates over the elements of coll

from the last to the first element. So, the output of the program is as follows:

9 8 7 6 5 4 3 2 1

You can also switch “normal” iterators into reverse iterators, and vice versa. However, the referenced

value of an iterator changes in doing so. This and other details about reverse iterators are covered in

Section 9.4.1, page 448.

6.5.4 Move Iterators

Move iterators are provided since C++11. They convert any access to the underlying element into a

move operation. As a result, they allow moving elements from one container into another either in

constructors or while applying algorithms. See Section 9.4.4, page 466, for details.

6.6 User-Defined Generic Functions

The STL is an extensible framework. This means you can write your own functions and algorithms

to process elements of collections. Of course, these operations may also be generic. However, to

declare a valid iterator in these operations, you must use the type of the container, which is different

for each container type. To facilitate the writing of generic functions, each container type provides

some internal type definitions. Consider the following example:

// stl/print.hpp

#include <iostream>

#include <string>

// PRINT_ELEMENTS()

// - prints optional string optstr followed by

// - all elements of the collection coll

// - in one line, separated by spaces

template <typename T>

inline void PRINT_ELEMENTS (const T& coll,

const std::string& optstr="")

{

std::cout << optstr;

for (const auto& elem : coll) {

std::cout << elem << ’ ’;

}

std::cout << std::endl;

}

6.7 Manipulating Algorithms 217

This example defines a generic function that prints an optional string followed by all elements of the

passed container.

Before C++11, the loop over the elements had to look as follows:

typename T::const_iterator pos;

for (pos=coll.begin(); pos!=coll.end(); ++pos) {

std::cout << *pos << ’ ’;

}

Here, pos is declared as having the iterator type of the passed container type. Note that typename

is necessary here to specify that const_iterator is a type and not a static member of type T (see

the introduction of typename in Section 3.2, page 34).

In addition to iterator and const_iterator, containers provide other types to facilitate the

writing of generic functions. For example, they provide the type of the elements to enable the

handling of temporary copies of elements. See Section 9.5.1, page 468, for details.

The optional second argument of PRINT_ELEMENTS is a string that is used as a prefix before

all elements are written. Thus, by using PRINT_ELEMENTS(), you could comment or introduce the

output like this:

PRINT_ELEMENTS (coll, "all elements: ");

I introduced this function here because I use it often in the rest of the book to print all elements of

containers by using a simple call.

6.7 Manipulating Algorithms

So far, I have introduced the whole concept of the STL as a framework: Containers represent dif-

ferent concepts to manage collections of data. Algorithms are provided to perform read and write

operations on these collections. Iterators are the glue between containers and algorithms. Provided

by the containers, iterators allow you to iterate over all elements in different orders and in special

modes, such as an appending mode.

Now, however, it’s time for the “BUT” of the STL framework: In practice, there are some limits

and workarounds you should know. Many of these have to do with modifications.

Several algorithms modify destination ranges. In particular, those algorithms may remove ele-

ments. If this happens, special aspects apply, which are explained in this section. These aspects are

surprising and show the price of the STL concept that separates containers and algorithms with great

flexibility.

218 Chapter 6: The Standard Template Library

6.7.1 “Removing” Elements

The remove() algorithm removes elements from a range. However, using this algorithm for all

elements of a container operates in a surprising way. Consider the following example:

// stl/remove1.cpp

#include <algorithm>

#include <iterator>

#include <list>

#include <iostream>

using namespace std;

int main()

{

list<int> coll;

// insert elements from 6 to 1 and 1 to 6

for (int i=1; i<=6; ++i) {

coll.push_front(i);

coll.push_back(i);

}

// print all elements of the collection

cout << "pre: ";

copy (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// remove all elements with value 3

remove (coll.begin(), coll.end(), // range

3); // value

// print all elements of the collection

cout << "post: ";

copy (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

}

Someone without deeper knowledge reading this program would expect that all elements with value

3 are removed from the collection. However, the output of the program is as follows:

pre: 6 5 4 3 2 1 1 2 3 4 5 6

post: 6 5 4 2 1 1 2 4 5 6 5 6

6.7 Manipulating Algorithms 219

Thus, remove() did not change the number of elements in the collection for which it was called.

The cend() member function returns the old end — as would end() — whereas size() returns

the old number of elements. However, something has changed: The elements changed their order

as if the elements had been removed. Each element with value 3 was overwritten by the following

elements (see Figure 6.10). At the end of the collection, the old elements that were not overwritten

by the algorithm remain unchanged. Logically, these elements no longer belong to the collection.

� � � � � � � � � � � �

Figure 6.10. How remove() Operates

However, the algorithm does return the new logical end. By using the algorithm, you can access

the resulting range, reduce the size of the collection, or process the number of removed elements.

Consider the following modified version of the example:

// stl/remove2.cpp

#include <algorithm>

#include <iterator>

#include <list>

#include <iostream>

using namespace std;

int main()

{

list<int> coll;

// insert elements from 6 to 1 and 1 to 6

for (int i=1; i<=6; ++i) {

coll.push_front(i);

coll.push_back(i);

}

// print all elements of the collection

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// remove all elements with value 3

// - retain new end

220 Chapter 6: The Standard Template Library

list<int>::iterator end = remove (coll.begin(), coll.end(),

3);

// print resulting elements of the collection

copy (coll.begin(), end,

ostream_iterator<int>(cout," "));

cout << endl;

// print number of removed elements

cout << "number of removed elements: "

<< distance(end,coll.end()) << endl;

// remove ‘‘removed’’ elements

coll.erase (end, coll.end());

// print all elements of the modified collection

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

}

In this version, the return value of remove() is assigned to the iterator end:

list<int>::iterator end = remove (coll.begin(), coll.end(),

3);

This is the new logical end of the modified collection after the elements are “removed.” You can use

this return value as the new end for further operations:

copy (coll.begin(), end,

ostream_iterator<int>(cout," "));

Note that you have to use begin() here rather than cbegin() because end is defined a nonconstant

iterator, and the begin and end of a range have to get specified by the same types.

Another possibility is to process the number of “removed” elements by processing the distance

between the “logical” and the real end of the collection:

cout << "number of removed elements: "

<< distance(end,coll.end()) << endl;

Here, a special auxiliary function for iterators, distance(), is used. It returns the distance between

two iterators. If the iterators were random-access iterators, you could process the difference directly

with operator -. However, the container is a list, so it provides only bidirectional iterators. See

Section 9.3.3, page 445, for details about distance().

If you really want to remove the “removed” elements, you must call an appropriate member

function of the container. To do this, containers provide the erase() member function, which

removes all elements of the range that is specified by its arguments:

coll.erase (end, coll.end());

6.7 Manipulating Algorithms 221

Here is the output of the whole program:

6 5 4 3 2 1 1 2 3 4 5 6

6 5 4 2 1 1 2 4 5 6

number of removed elements: 2

6 5 4 2 1 1 2 4 5 6

If you really want to remove elements in one statement, you can call the following statement:

coll.erase (remove(coll.begin(),coll.end(),

3),

coll.end());

Why don’t algorithms call erase() by themselves? This question highlights the price of the flexibil-

ity of the STL. The STL separates data structures and algorithms by using iterators as the interface.

However, iterators are an abstraction to represent a position in a container. In general, iterators do

not know their containers. Thus, the algorithms, which use the iterators to access the elements of the

container, can’t call any member function for it.

This design has important consequences because it allows algorithms to operate on ranges that

are different from “all elements of a container.” For example, the range might be a subset of all

elements of a collection. The range might even be a container that provides no erase() member

function (an array is an example of such a container). So, to make algorithms as flexible as possible,

there are good reasons not to require that iterators know their container.

Note that often it is not necessary to remove the “removed” elements. Often, it is no problem to

use the returned new logical end instead of the real end of the container. In particular, you can call

all algorithms with the new logical end.

6.7.2 Manipulating Associative and Unordered Containers

Manipulation algorithms — those that remove elements and those that reorder or modify elements —

have another problem when you try to use them with associative or unordered containers: Associative

and unordered containers can’t be used as a destination. The reason is simple: If they would work

for associative or unordered containers, modifying algorithms could change the value or position of

elements, thereby violating the order maintained by the container (sorted for associative containers

or according to the hash function for unordered containers). In order to avoid compromising the

internal order, every iterator for an associative and unordered container is declared as an iterator for

a constant value or key. Thus, manipulating elements of or in associative and unordered containers

results in a failure at compile time. 10

This problem also prevents you from calling removing algorithms for associative containers,

because these algorithms manipulate elements implicitly. The values of “removed” elements are

overwritten by the following elements that are not removed.

Now the question arises: How does one remove elements in associative containers? Well, the

answer is simple: Call their member functions! Every associative and unordered container provides

10 Unfortunately, some systems provide really bad error handling. You see that something went wrong but have

problems finding out why.

222 Chapter 6: The Standard Template Library

member functions to remove elements. For example, you can call the member function erase() to

remove elements:

// stl/remove3.cpp

#include <set>

#include <algorithm>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

// unordered set with elements from 1 to 9

set<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// print all elements of the collection

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// Remove all elements with value 3

// - algorithm remove() does not work

// - instead member function erase() works

int num = coll.erase(3);

// print number of removed elements

cout << "number of removed elements: " << num << endl;

// print all elements of the modified collection

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

}

Note that containers provide different erase() member functions. Only the form that gets the

value of the element(s) to remove as a single argument returns the number of removed elements (see

Section 8.7.3, page 418). Of course, when duplicates are not allowed, the return value can only be 0

or 1, as is the case for sets, maps, unordered_sets, and unordered_maps.

The output of the program is as follows:

1 2 3 4 5 6 7 8 9

number of removed elements: 1

1 2 4 5 6 7 8 9

6.7 Manipulating Algorithms 223

6.7.3 Algorithms versus Member Functions

Even if you are able to use an algorithm, it might be a bad idea to do so. A container might have

member functions that provide much better performance.

Calling remove() for elements of a list is a good example of this. If you call remove() for

elements of a list, the algorithm doesn’t know that it is operating on a list and thus does what it

does for any container: reorder the elements by changing their values. If, for example, the algorithm

removes the first element, all the following elements are assigned to their previous elements. This

behavior contradicts the main advantage of lists: the ability to insert, move, and remove elements by

modifying the links instead of the values.

To avoid bad performance, lists provide special member functions for all manipulating algo-

rithms. You should always prefer them. Furthermore, these member functions really remove “re-

moved” elements, as this example shows:

// stl/remove4.cpp

#include <list>

#include <algorithm>

using namespace std;

int main()

{

list<int> coll;

// insert elements from 6 to 1 and 1 to 6

for (int i=1; i<=6; ++i) {

coll.push_front(i);

coll.push_back(i);

}

// remove all elements with value 3 (poor performance)

coll.erase (remove(coll.begin(),coll.end(),

3),

coll.end());

// remove all elements with value 4 (good performance)

coll.remove (4);

}

You should always prefer a member function over an algorithm if good performance is the goal. The

problem is, you have to know that a member function exists that has significantly better performance

for a certain container. No warning or error message appears if you use the remove() algorithm for

a list. However, if you prefer a member function in these cases, you have to change the code when

you switch to another container type. In the reference sections of algorithms (Chapter 11), I mention

whether a member function exists that provides better performance than an algorithm.

224 Chapter 6: The Standard Template Library

6.8 Functions as Algorithm Arguments

To increase their flexibility and power, several algorithms allow the passing of user-defined auxiliary

functions. These functions are called internally by the algorithms.

6.8.1 Using Functions as Algorithm Arguments

The simplest example is the for_each() algorithm, which calls a user-defined function for each

element of the specified range. Consider the following example:

// stl/foreach1.cpp

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

// function that prints the passed argument

void print (int elem)

{

cout << elem << ’ ’;

}

int main()

{

vector<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

// print all elements

for_each (coll.cbegin(), coll.cend(), // range

print); // operation

cout << endl;

}

The for_each() algorithm calls the passed print() function for every element in the range

[coll.cbegin(),coll.cend()). Thus, the output of the program is as follows:

1 2 3 4 5 6 7 8 9

6.8 Functions as Algorithm Arguments 225

Algorithms use auxiliary functions in several variants: some optional, some mandatory. In particular,

you can use auxiliary functions to specify a search criterion or a sorting criterion or to define a

manipulation while transferring elements from one collection to another.

Here is another example program:

// stl/transform1.cpp

#include <set>

#include <vector>

#include <algorithm>

#include <iterator>

#include <iostream>

#include "print.hpp"

int square (int value)

{

return value*value;

}

int main()

{

std::set<int> coll1;

std::vector<int> coll2;

// insert elements from 1 to 9 into coll1

for (int i=1; i<=9; ++i) {

coll1.insert(i);

}

PRINT_ELEMENTS(coll1,"initialized: ");

// transform each element from coll1 to coll2

// - square transformed values

std::transform (coll1.cbegin(),coll1.cend(), // source

std::back_inserter(coll2), // destination

square); // operation

PRINT_ELEMENTS(coll2,"squared: ");

}

In this example, square() is used to square each element of coll1 while it is transformed to coll2

(Figure 6.11). The program has the following output:

initialized: 1 2 3 4 5 6 7 8 9

squared: 1 4 9 16 25 36 49 64 81

226 Chapter 6: The Standard Template Library

� � � � �� � � 	
 � � � � � � � � 	 � � � 	� � � � � � � � 	 � � � 	

� 	 � �
 � � � � � � � 	 � � � � � � � �
�
� � � � � � � � � 	 � � � � � � � � � � � � �
�

Figure 6.11. How transform() Operates

6.8.2 Predicates

A predicate is a special kind of auxiliary function. Predicates return a Boolean value and are often

used to specify a sorting or a search criterion. Depending on their purpose, predicates are unary or

binary.

Not every unary or binary function that returns a Boolean value is a valid predicate. In addition,

the STL requires that predicates be stateless, meaning that they should always yield the same result

for the same value. This rules out functions that modify their internal state when they are called. See

Section 10.1.4, page 483, for details.

Unary Predicates

Unary predicates check a specific property of a single argument. A typical example is a function that

is used as a search criterion to find the first prime number:

// stl/prime1.cpp

#include <list>

#include <algorithm>

#include <iostream>

#include <cstdlib> // for abs()

using namespace std;

// predicate, which returns whether an integer is a prime number

bool isPrime (int number)

{

// ignore negative sign

number = abs(number);

// 0 and 1 are no prime numbers

if (number == 0 || number == 1) {

6.8 Functions as Algorithm Arguments 227

return false;

}

// find divisor that divides without a remainder

int divisor;

for (divisor = number/2; number%divisor != 0; --divisor) {

;

}

// if no divisor greater than 1 is found, it is a prime number

return divisor == 1;

}

int main()

{

list<int> coll;

// insert elements from 24 to 30

for (int i=24; i<=30; ++i) {

coll.push_back(i);

}

// search for prime number

auto pos = find_if (coll.cbegin(), coll.cend(), // range

isPrime); // predicate

if (pos != coll.end()) {

// found

cout << *pos << " is first prime number found" << endl;

}

else {

// not found

cout << "no prime number found" << endl;

}

}

In this example, the find_if() algorithm is used to search for the first element of the given range

for which the passed unary predicate yields true. Here, the predicate is the isPrime() function,

which checks whether a number is a prime number. By using this predicate, the algorithm returns

the first prime number in the given range. If it does not find any element that matches the predicate,

the algorithm returns the end of the range (its second argument). This is checked after the call. The

collection in this example has a prime number between 24 and 30, so the output of the program is as

follows:

29 is first prime number found

228 Chapter 6: The Standard Template Library

Binary Predicates

Binary predicates typically compare a specific property of two arguments. For example, to sort

elements according to your own criterion, you could provide it as a simple predicate function. This

might be necessary because the elements do not provide operator < or because you wish to use a

different criterion.

The following example sorts elements of a deque by the first name and last name of a person:

// stl/sort1.cpp

#include <algorithm>

#include <deque>

#include <string>

#include <iostream>

using namespace std;

class Person {

public:

string firstname() const;

string lastname() const;

...

};

// binary function predicate:

// - returns whether a person is less than another person

bool personSortCriterion (const Person& p1, const Person& p2)

{

// a person is less than another person

// - if the last name is less

// - if the last name is equal and the first name is less

return p1.lastname()<p2.lastname() ||

(p1.lastname()==p2.lastname() &&

p1.firstname()<p2.firstname());

}

int main()

{

deque<Person> coll;

...

sort(coll.begin(),coll.end(), // range

personSortCriterion); // sort criterion

...

}

6.9 Using Lambdas 229

Note that you can also implement a sorting criterion as a function object. This kind of implementa-

tion has the advantage that the criterion is a type, which you could use, for example, to declare sets

that use this criterion for sorting its elements. See Section 10.1.1, page 476, for such an implemen-

tation of this sorting criterion.

6.9 Using Lambdas

Lambdas, introduced with C++11, define a way to specify functional behavior inside an expression

or statement (see Section 3.1.10, page 28). As a consequence, you can define objects that represent

functional behavior and pass these objects as inline argument to algorithms to be used as predicates

or for other purposes.

For example, in the following statement:

// transform all elements to the power of 3

std::transform (coll.begin(), coll.end(), // source

coll.begin(), // destination

[](double d) { // lambda as function object

return d*d*d;

});

the expression

[](double d) { return d*d*d; }

defines a lambda expression, which represents a function object that returns a double raised to the

power of 3. As you can see, this provides the ability to specify the functional behavior passed to

transform() directly where it is called.

The Benefit of Lambdas

Using lambdas to specify behavior inside the STL framework solves a lot of drawbacks of previous

attempts. Suppose that you search in a collection for the first element with a value that is between x

and y:

// stl/lambda1.cpp

#include <algorithm>

#include <deque>

#include <iostream>

using namespace std;

int main()

{

deque<int> coll = { 1, 3, 19, 5, 13, 7, 11, 2, 17 };

230 Chapter 6: The Standard Template Library

int x = 5;

int y = 12;

auto pos = find_if (coll.cbegin(), coll.cend(), // range

[=](int i) { // search criterion

return i > x && i < y;

});

cout << "first elem >5 and <12: " << *pos << endl;

}

When calling find_if(), you pass the corresponding predicate inline as the third argument:

auto pos = find_if (coll.cbegin(), coll.cend(),

[=](int i) {

return i > x && i < y;

});

The lambda is just a function object taking an integer i and returning whether it is greater than x and

less than y:

[=](int i) {

return i > x && i < y;

}

By specifying = as a capture inside [=], you pass the symbols, which are valid where the lambda

gets declared, by value into the body of the lambda. Thus, inside the lambda, you have read access to

the variables x and y declared in main(). With [&], you could even pass the values by reference so

that inside the lambda, you could modify their values (see Section 3.1.10, page 29, for more details

about captures).

Now compare this way to search for “the first element >5 and <12” with the other approaches

provided by C++ before lambdas were introduced:

• In contrast to using handwritten loops:

// find first element > x and < y

vector<int>::iterator pos;

for (pos = coll.begin() ; pos != coll.end(); ++pos) {

if (*pos > x && *pos < y) {

break; // the loop

}

}

you benefit from using predefined algorithms and avoid a more or less ugly break.

• In contrast to using a self-written function predicate:

bool pred (int i)

{

return i > x && i < y;

}

...

6.9 Using Lambdas 231

pos = find_if (coll.begin(), coll.end(), // range

pred); // search criterion

you don’t have the problem that the details of the behavior are written somewhere else and you

have to scroll up to find out what find_if() exactly is looking for, unless you have and trust

a corresponding comment. In addition, C++ compilers optimize lambdas better than they do

ordinary functions.

What’s more, access to x and y becomes really ugly in this scenario. The usual solution before

C++11 to use a function object (see Section 6.10, page 233) demonstrates the whole ugliness of

this approach:

class Pred

{

private:

int x;

int y;

public:

Pred (int xx, int yy) : x(xx), y(yy) {

}

bool operator() (int i) const {

return i > x && i < y;

}

};

...

pos = find_if (coll.begin(), coll.end(), // range

Pred(x,y)); // search criterion

• In contrast to using binders (introduced in Section 6.10.3, page 241):

pos = find_if (coll.begin(), coll.end(), // range

bind(logical_and<bool>(), // search criterion

bind(greater<int>(),_1,x),

bind(less<int>(),_1,y)));

you don’t have problems understanding the expression defined here.

To summarize, lambdas provide the first convenient, readable, fast, and maintainable approach to

use STL algorithms.

Using Lambdas as Sorting Criterion

As another example, let’s use a lambda expression to define the criterion when sorting a vector of

Persons (see Section 6.8.2, page 228, for a corresponding program that uses a function to define the

sorting criterion):

// stl/sort2.cpp

#include <algorithm>

#include <deque>

232 Chapter 6: The Standard Template Library

#include <string>

#include <iostream>

using namespace std;

class Person {

public:

string firstname() const;

string lastname() const;

...

};

int main()

{

deque<Person> coll;

...

// sort Persons according to lastname (and firstname):

sort(coll.begin(),coll.end(), // range

[] (const Person& p1, const Person& p2) { // sort criterion

return p1.lastname()<p2.lastname() ||

(p1.lastname()==p2.lastname() &&

p1.firstname()<p2.firstname());

});

...

}

Limits of Lambdas

However, lambdas are not better in every case. Consider, for example, using a lambda to specify the

sorting criterion for associative containers:

auto cmp = [] (const Person& p1, const Person& p2) {

return p1.lastname()<p2.lastname() ||

(p1.lastname()==p2.lastname()&&

p1.firstname()<p2.firstname());

};

...

std::set<Person,decltype(cmp)> coll(cmp);

Because you need the type of the lambda for the declaration of the set, decltype (see Sec-

tion 3.1.11, page 32) must be used, which yields the type of a lambda object, such as cmp. Note

that you also have to pass the lambda object to the constructor of coll; otherwise, coll would call

the default constructor for the sorting criterion passed, and by rule lambdas have no default construc-

6.10 Function Objects 233

tor and no assignment operator.11 So, for a sorting criterion, a class defining the function objects

might still be more intuitive.

Another problem of lambdas is that they can’t have an internal state held over multiple calls of a

lambda. If you need such a state, you have declare an object or variable in the outer scope and pass

it by-reference with a capture into the lambda. In contrast, function objects allow you to encapsulate

an internal state (see Section 10.3.2, page 500, for more details and examples).

Nevertheless, you can also use lambdas to specify a hash function and/or equivalence criterion

of unordered containers. See Section 7.9.7, page 379, for an example.

6.10 Function Objects

Functional arguments for algorithms don’t have to be functions. As seen with lambdas, functional

arguments can be objects that behave like functions. Such an object is called a function object, or

functor.12 Instead of using a lambda, you can define a function object as an object of a class that

provides a function call operator. This was possible even before C++11.

6.10.1 Definition of Function Objects

Function objects are another example of the power of generic programming and the concept of pure

abstraction. You could say that anything that behaves like a function is a function. So, if you define

an object that behaves as a function, it can be used like a function.

So, what is the behavior of a function? A functional behavior is something that you can call by

using parentheses and passing arguments. For example:

function(arg1,arg2); // a function call

If you want objects to behave this way, you have to make it possible to “call” them by using paren-

theses and passing arguments. Yes, that’s possible (rarely are things not possible in C++). All you

have to do is define operator () with the appropriate parameter types:

class X {

public:

// define ‘‘function call’’ operator:

return-value operator() (arguments) const;

...

};

11 Thanks to Alisdair Meredith for pointing this out.
12 Since C++11, the standard uses the term function object for every object that can be used as a function call.

Thus, function pointers, objects of classes with operator () or with a conversion to a pointer to function, and

lambdas are function objects. Here in this book, however, I use the term for objects of classes with operator ()

defined.

234 Chapter 6: The Standard Template Library

Now you can use objects of this class to behave like a function that you can call:

X fo;

...

fo(arg1,arg2); // call operator () for function object fo

The call is equivalent to:

fo.operator()(arg1,arg2); // call operator () for function object fo

The following is a complete example. This is the function object version of a previous example (see

Section 6.8.1, page 224) that did the same with an ordinary function:

// stl/foreach2.cpp

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

// simple function object that prints the passed argument

class PrintInt {

public:

void operator() (int elem) const {

cout << elem << ’ ’;

}

};

int main()

{

vector<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

// print all elements

for_each (coll.cbegin(), coll.cend(), // range

PrintInt()); // operation

cout << endl;

}

The class PrintInt defines objects for which you can call operator () with an int argument. The

expression

PrintInt()

in the statement

6.10 Function Objects 235

for_each (coll.cbegin(), coll.cend(),

PrintInt());

creates a temporary object of this class, which is passed to the for_each() algorithm as an argu-

ment. The for_each() algorithm is written like this:

namespace std {

template <typename Iterator, typename Operation>

Operation for_each (Iterator act, Iterator end, Operation op)

{

while (act != end) { // as long as not reached the end

op(*act); // - call op() for actual element

++act; // - move iterator to the next element

}

return op;

}

}

for_each() uses the temporary function object op to call op(*act) for each element act. If op

is an ordinary function, for_each() simply calls it with *act as an argument. If op is a function

object, for_each() calls its operator () with *act as an argument. Thus, in this example program,

for_each() calls:

PrintInt::operator()(*act)

You may be wondering what all this is good for. You might even think that function objects look

strange, nasty, or nonsensical. It is true that they do complicate code. However, function objects are

more than functions, and they have some advantages:

1. Function objects are “functions with state.” Objects that behave like pointers are smart point-

ers. This is similarly true for objects that behave like functions: They can be “smart functions”

because they may have abilities beyond operator (). Function objects may have other member

functions and attributes. This means that function objects have a state. In fact, the same function-

ality, represented by two different function objects of the same type, may have different states at

the same time. This is not possible for ordinary functions. Another advantage of function objects

is that you can initialize them at runtime before you use/call them.

2. Each function object has its own type. Ordinary functions have different types only when

their signatures differ. However, function objects can have different types even when their sig-

natures are the same. In fact, each functional behavior defined by a function object has its own

type. This is a significant improvement for generic programming using templates because you

can pass functional behavior as a template parameter. Doing so enables containers of different

types to use the same kind of function object as a sorting criterion, ensuring that you don’t as-

sign, combine, or compare collections that have different sorting criteria. You can even design

hierarchies of function objects so that you can, for example, have different, special kinds of one

general criterion.

3. Function objects are usually faster than ordinary functions. The concept of templates usu-

ally allows better optimization because more details are defined at compile time. Thus, passing

function objects instead of ordinary functions often results in better performance.

236 Chapter 6: The Standard Template Library

In the rest of this subsection, I present some examples that demonstrate how function objects can

be “smarter” than ordinary functions. Chapter 10, which deals only with function objects, provides

more examples and details. In particular, Chapter 10 shows how to benefit from the ability to pass

functional behavior as a template parameter.

Suppose that you want to add a certain value to all elements of a collection. If you know the

value you want to add at compile time, you could use an ordinary function:

void add10 (int& elem)

{

elem += 10;

}

void f1()

{

vector<int> coll;

...

for_each (coll.begin(), coll.end(), // range

add10); // operation

}

If you need different values that are known at compile time, you could use a template instead:

template <int theValue>

void add (int& elem)

{

elem += theValue;

}

void f1()

{

vector<int> coll;

...

for_each (coll.begin(), coll.end(), // range

add<10>); // operation

}

If you process the value to add at runtime, things get complicated. You must pass that value to the

function before the function is called. This normally results in a global variable that is used both by

the function that calls the algorithm and by the function that is called by the algorithm to add that

value. This is messy style.

If you need such a function twice, with two different values to add, and if both values are pro-

cessed at runtime, you can’t achieve this with one ordinary function. You must either pass a tag or

write two different functions. Did you ever copy the definition of a function because it had a static

6.10 Function Objects 237

variable to keep its state and you needed the same function with another state at the same time? This

is exactly the same type of problem.

With function objects, you can write a “smarter” function that behaves in the desired way. Be-

cause it may have a state, the object can be initialized by the correct value. Here is a complete

example:13

// stl/add1.cpp

#include <list>

#include <algorithm>

#include <iostream>

#include "print.hpp"

using namespace std;

// function object that adds the value with which it is initialized

class AddValue {

private:

int theValue; // the value to add

public:

// constructor initializes the value to add

AddValue(int v) : theValue(v) {

}

// the ‘‘function call’’ for the element adds the value

void operator() (int& elem) const {

elem += theValue;

}

};

int main()

{

list<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

PRINT_ELEMENTS(coll,"initialized: ");

// add value 10 to each element

13 The auxiliary function PRINT_ELEMENTS() was introduced in Section 6.6, page 216.

238 Chapter 6: The Standard Template Library

for_each (coll.begin(), coll.end(), // range

AddValue(10)); // operation

PRINT_ELEMENTS(coll,"after adding 10: ");

// add value of first element to each element

for_each (coll.begin(), coll.end(), // range

AddValue(*coll.begin())); // operation

PRINT_ELEMENTS(coll,"after adding first element: ");

}

After the initialization, the collection contains the values 1 to 9:

initialized: 1 2 3 4 5 6 7 8 9

The first call of for_each() adds 10 to each value:

for_each (coll.begin(), coll.end(), // range

AddValue(10)); // operation

Here, the expression AddValue(10) creates an object of type AddValue that is initialized with

the value 10. The constructor of AddValue stores this value as the member theValue. Inside

for_each(), “()” is called for each element of coll. Again, this is a call of operator () for the

passed temporary function object of type AddValue. The actual element is passed as an argument.

The function object adds its value 10 to each element. The elements then have the following values:

after adding 10: 11 12 13 14 15 16 17 18 19

The second call of for_each() uses the same functionality to add the value of the first element

to each element. This call initializes a temporary function object of type AddValue with the first

element of the collection:

AddValue(*coll.begin())

The output is then as follows:

after adding first element: 22 23 24 25 26 27 28 29 30

See Section 11.4, page 520, for a modified version of this example, in which the AddValue function

object type is a template for the type of value to add.

With this technique, two different function objects can solve the problem of having a function

with two states at the same time. For example, you could simply declare two function objects and

use them independently:

AddValue addx(x); // function object that adds value x

AddValue addy(y); // function object that adds value y

for_each (coll.begin(),coll.end(), // add value x to each element

addx);

...

6.10 Function Objects 239

for_each (coll.begin(),coll.end(), // add value y to each element

addy);

...

for_each (coll.begin(),coll.end(), // add value x to each element

addx);

Similarly, you can provide additional member functions to query or to change the state of the function

object during its lifetime. See Section 10.1.3, page 482, for a good example.

Note that for some algorithms, the C++ standard library does not specify how often function

objects are called for each element, and it might happen that different copies of the function object

are passed to the elements. This might have some nasty consequences if you use function objects as

predicates. Section 10.1.4, page 483, covers this issue.

6.10.2 Predefined Function Objects

The C++ standard library contains several predefined function objects that cover fundamental oper-

ations. By using them, you don’t have to write your own function objects in several cases. A typical

example is a function object used as a sorting criterion. The default sorting criterion for operator <

is the predefined sorting criterion less<>. Thus, if you declare

set<int> coll;

it is expanded to

set<int,less<int>> coll; // sort elements with <

From there, it is easy to sort elements in the opposite order:

set<int,greater<int>> coll; // sort elements with >

Another place to apply predefined function objects are algorithms. Consider the following example:

// stl/fo1.cpp

#include <deque>

#include <algorithm>

#include <functional>

#include <iostream>

#include "print.hpp"

using namespace std;

int main()

{

deque<int> coll = { 1, 2, 3, 5, 7, 11, 13, 17, 19 };

PRINT_ELEMENTS(coll,"initialized: ");

// negate all values in coll

240 Chapter 6: The Standard Template Library

transform (coll.cbegin(),coll.cend(), // source

coll.begin(), // destination

negate<int>()); // operation

PRINT_ELEMENTS(coll,"negated: ");

// square all values in coll

transform (coll.cbegin(),coll.cend(), // first source

coll.cbegin(), // second source

coll.begin(), // destination

multiplies<int>()); // operation

PRINT_ELEMENTS(coll,"squared: ");

}

First, the header for the predefined function objects is included: <functional>

#include <functional>

Then, two predefined function objects are used to negate and square the elements in coll. In

transform (coll.cbegin(), coll.cend(), // source

coll.begin(), // destination

negate<int>()); // operation

the expression

negate<int>()

creates a function object of the predefined class template negate<> that simply returns the negated

element of type int for which it is called. The transform() algorithm uses that operation to

transform all elements of the first collection into the second collection. If source and destination

are equal, as in this case, the returned negated elements overwrite themselves. Thus, the statement

negates each element in the collection.

Similarly, the function object multiplies is used to square all elements in coll:

transform (coll.cbegin(), coll.cend(), // first source

coll.cbegin(), // second source

coll.begin(), // destination

multiplies<int>()); // operation

Here, another form of the transform() algorithm combines elements of two collections by using

the specified operation and writes the resulting elements into the third collection. Again, all col-

lections are the same, so each element gets multiplied by itself, and the result overwrites the old

value.

Thus, the program has the following output:

initialized: 1 2 3 5 7 11 13 17 19

negated: -1 -2 -3 -5 -7 -11 -13 -17 -19

squared: 1 4 9 25 49 121 169 289 361

6.10 Function Objects 241

6.10.3 Binders

You can use special function adapters, or so-called binders, to combine predefined function objects

with other values or use special cases. Here is a complete example:

// stl/bind1.cpp

#include <set>

#include <deque>

#include <algorithm>

#include <iterator>

#include <functional>

#include <iostream>

#include "print.hpp"

using namespace std;

using namespace std::placeholders;

int main()

{

set<int,greater<int>> coll1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

deque<int> coll2;

// Note: due to the sorting criterion greater<>() elements have reverse order:

PRINT_ELEMENTS(coll1,"initialized: ");

// transform all elements into coll2 by multiplying them with 10

transform (coll1.cbegin(),coll1.cend(), // source

back_inserter(coll2), // destination

bind(multiplies<int>(),_1,10)); // operation

PRINT_ELEMENTS(coll2,"transformed: ");

// replace value equal to 70 with 42

replace_if (coll2.begin(),coll2.end(), // range

bind(equal_to<int>(),_1,70), // replace criterion

42); // new value

PRINT_ELEMENTS(coll2,"replaced: ");

// remove all elements with values between 50 and 80

coll2.erase(remove_if(coll2.begin(),coll2.end(),

bind(logical_and<bool>(),

bind(greater_equal<int>(),_1,50),

bind(less_equal<int>(),_1,80))),

coll2.end());

PRINT_ELEMENTS(coll2,"removed: ");

}

242 Chapter 6: The Standard Template Library

Here, the statement

transform (coll1.cbegin(),coll1.cend(), // source

back_inserter(coll2), // destination

bind(multiplies<int>(),_1,10)); // operation

transforms all elements of coll1 into coll2 (inserting) while multiplying each element by 10.

To define the corresponding operation, bind() is used, which allows you to compose high-level

function objects out of low-level function objects and placeholders, which are numeric identifiers

that start with an underscore. By specifying

bind(multiplies<int>(),_1,10)

you define a function object that multiplies a first passed argument with 10.

You could also use such a function object to multiply any value by 10. For example, the following

statements write 990 to the standard output:

auto f = bind(multiplies<int>(),_1,10);

cout << f(99) << endl;

This function object is passed to transform(), which is expecting as its fourth argument an oper-

ation that takes one argument; namely, the actual element. As a consequence, transform() calls

“‘multiply by 10” for each actual element and inserts the result into coll2, which means that after-

ward coll2 contains all values of coll1 multiplied by 10.

Similarly, in

replace_if (coll2.begin(),coll2.end(), // range

bind(equal_to<int>(),_1,70), // replace criterion

42); // new value

the following expression is used as a criterion to specify the elements that are replaced by 42:

bind(equal_to<int>(),_1,70)

Here, bind() calls the binary predicate equal_to with the passed first parameter as first argument

and 70 as second argument. Thus, the function object specified via bind() yields true if a passed

argument (element of coll2) is equal to 70. As a result, the whole statement replaces each value

equal to 70 by 42.

The last example uses a combination of binders, where

bind(logical_and<bool>(),

bind(greater_equal<int>(),_1,50),

bind(less_equal<int>(),_1,80))

specifies for a parameter x the unary predicate “x>=50&&x<=80.” This example demonstrates that

you can use nested bind() expressions to describe even more complicated predicates and function

objects. In this case, remove_if() uses the function object to remove all values between 50 and 80

out of the collection. In fact, remove_if() changes only the order and returns the new end, whereas

coll2.erase() deletes the “removed” elements out of coll2 (see Section 6.7.1, page 218, for

details).

6.10 Function Objects 243

The output of the whole program is as follows:

initialized: 9 8 7 6 5 4 3 2 1

transformed: 90 80 70 60 50 40 30 20 10

replaced: 90 80 42 60 50 40 30 20 10

removed: 90 42 40 30 20 10

Note that the placeholders have their own namespace: std::placeholders. For this reason, a

corresponding using directive is placed at the beginning to be able to write _1 or _2 for a first or

second parameter of binders. Without any using directive, the last combination of binders would

have to be specified as follows:

std::bind(std::logical_and<bool>(),

std::bind(std::greater_equal<int>(),std::placeholders::_1,50),

std::bind(std::less_equal<int>(),std::placeholders::_1,80))

This kind of programming results in functional composition. What is interesting is that all these

function objects are usually declared inline. Thus, you use a function-like notation or abstraction,

but you get good performance.

There are other ways to define function objects. For example, to call a member function for each

element of a collection, you can specify the following:

for_each (coll.cbegin(), coll.cend(), // range

bind(&Person::save,_1)); // operation: Person::save(elem)

The function object bind binds a specified member function to call it for every element, which is

passed here with placeholder _1. Thus, for each element of the collection coll, the member function

save() of class Person is called. Of course, this works only if the elements have type Person or a

type derived from Person.

Section 10.2, page 486, lists and discusses in more detail all predefined function objects, function

adapters, and aspects of functional composition. Also given there is an explanation of how you can

write your own function objects.

Before TR1, there were other binders and adapters for functional composition, such as

bind1st(), bind2nd(), ptr_fun(), mem_fun(), and mem_fun_ref(), but they have been dep-

recated with C++11. See Section 10.2.4, page 497, for details.

6.10.4 Function Objects and Binders versus Lambdas

Lambdas are a kind of implicitly defined function object. Thus, as written in Section 6.9, page 230,

lambdas usually provide the more intuitive approach to defining functional behavior of STL algo-

rithms. In addition, lambdas should be as fast as function objects.

However, there are also some drawbacks to lambdas:

• You can’t have a hidden internal state of such a function object. Instead, all data that defines a

state is defined by the caller and passed as a capture.

• The advantage of specifying the functional behavior where it is needed partially goes away when

it is needed at multiple places. You can define a lambda and assign it to an auto object then (see

Section 6.9, page 232), but whether this is more readable than directly defining a function object

is probably a matter of taste.

244 Chapter 6: The Standard Template Library

6.11 Container Elements

Elements of containers must meet certain requirements because containers handle them in a special

way. In this section, I describe these requirements and discuss the consequences of the fact that

containers make copies of their elements internally.

6.11.1 Requirements for Container Elements

Containers, iterators, and algorithms of the STL are templates. Thus, they can process both prede-

fined or user-defined types. However, because of the operations that are called, some requirements

apply. The elements of STL containers must meet the following three fundamental requirements:

1. An element must be copyable or movable. Thus, an element type implicitly or explicitly has to

provide a copy or move constructor.

A generated copy should be equivalent to the source. This means that any test for equality

returns that both are equal and that both source and copy behave the same.

2. An element must be (move) assignable by the assignment operator. Containers and algorithms

use assignment operators to overwrite old elements with new elements.

3. An element must be destroyable by a destructor. Containers destroy their internal copies of

elements when these elements are removed from the container. Thus, the destructor must not be

private. Also, as usual in C++, a destructor must not throw; otherwise, all bets are off.

These three operations are generated implicitly for any class. Thus, a class meets the requirements

automatically, provided that no special versions of these operations are defined and no special mem-

bers disable the sanity of those operations.

Elements might also have to meet the following requirements:

• For some member functions of sequence containers, the default constructor must be available.

For example, it is possible to create a nonempty container or increase the number of elements

with no hint of the values those new elements should have. These elements are created without

any arguments by calling the default constructor of their type.

• For several operations, the test of equality with operator == must be defined and is especially

needed when elements are searched. For unordered containers, however, you can provide your

own definition of equivalence if the elements do not support operator == (see Section 7.9.7,

page 379).

• For associative containers, the operations of the sorting criterion must be provided by the ele-

ments. By default, this is the operator <, which is called by the less<> function object.

• For unordered containers, a hash function and an equivalence criterion must be provided for the

elements. See Section 7.9.2, page 363, for details.

6.12 Errors and Exceptions inside the STL 245

6.11.2 Value Semantics or Reference Semantics

Usually, all containers create internal copies of their elements and return copies of those elements.

This means that container elements are equal but not identical to the objects you put into the con-

tainer. If you modify objects as elements of the container, you modify a copy, not the original object.

Copying values means that the STL containers provide value semantics. The containers contain

the values of the objects you insert rather than the objects themselves. In practice, however, you may

also need reference semantics. This means that the containers contain references to the objects that

are their elements.

The approach of the STL to support only value semantics has both strengths and weaknesses. Its

strengths are that

• Copying elements is simple.

• References are error prone. You must ensure that references don’t refer to objects that no longer

exist. You also have to manage circular references, which might occur.

Its weaknesses are as follows:

• Copying elements might result in bad performance or may not even be possible.

• Managing the same object in several containers at the same time is not possible.

In practice, you need both approaches; you need copies that are independent of the original data

(value semantics) and copies that still refer to the original data and get modified accordingly (ref-

erence semantics). Unfortunately, there is no support for reference semantics in the C++ standard

library. However, you can implement reference semantics in terms of value semantics.

The obvious approach to implementing reference semantics is to use pointers as elements.14

However, ordinary pointers have the usual problems. For example, objects to which they refer may

no longer exist, and comparisons may not work as desired because pointers instead of the objects are

compared. Thus, you should be very careful when you use ordinary pointers as container elements.

A better approach is to use a kind of smart pointer: objects that have a pointer-like interface

but that do some additional checking or processing internally. Since TR1, in fact, the C++ stan-

dard library provides class shared_ptr for smart pointers that can share the same object (see

Section 5.2.1, page 76). In addition, you could use class std::reference_wrapper<> (see Sec-

tion 5.4.3, page 132) to let STL containers hold references. Section 7.11, page 388, provides exam-

ples for both approaches.

6.12 Errors and Exceptions inside the STL

Errors happen. They might be logical errors caused by the program (the programmer) or runtime

errors caused by the context or the environment of a program (such as low memory). Both kinds of

errors may be handled by exceptions. This section discusses how errors and exceptions are handled

inside the STL.

14 C programmers might recognize the use of pointers to get reference semantics. In C, function arguments are

able to get passed only by value, so you need pointers to enable a call-by-reference.

246 Chapter 6: The Standard Template Library

6.12.1 Error Handling

The design goal of the STL was the best performance rather than the highest security. Error checking

wastes time, so almost none is done. This is fine if you can program without making any errors

but can be a catastrophe if you can’t. Before the STL was adopted into the C++ standard library,

discussions were held about whether to introduce more error checking. The majority decided not to,

for two reasons:

1. Error checking reduces performance, and speed is still a general goal of programs. As mentioned,

good performance was one of the design goals of the STL.

2. If you prefer safety over speed, you can still get it, either by adding wrappers or by using special

versions of the STL. But when error checking is built into all basic operations, you can’t program

to avoid error checking to get better performance For example, when every subscript operation

checks whether a range is valid, you can’t write your own subscripts without checking. However,

it is possible the other way around.

As a consequence, error checking is possible but usually not required inside the STL.

The C++ standard library states that any STL use that violates preconditions results in undefined

behavior. Thus, if indexes, iterators, or ranges are not valid, the result is undefined. If you do not use

a safe version of the STL, undefined memory access typically results, which causes some nasty side

effects or even a crash. In this sense, the STL is as error prone as pointers are in C. Finding such

errors could be very hard, especially without a safe version of the STL.

In particular, the use of the STL requires that the following be met:

• Iterators must be valid. For example, they must be initialized before they are used. Note that

iterators may become invalid as a side effect of other operations. In particular, iterators become

invalid

– for vectors and deques, if elements are inserted or deleted or reallocation takes place, and

– for unordered containers, if rehashing takes place (which also might be the result of an inser-

tion).

• Iterators that refer to the past-the-end position have no element to which to refer. Thus, calling

operator * or operator -> is not allowed. This is especially true for the return values of the end(),

cend(), and rend() container member functions.

• Ranges must be valid:

– Both iterators that specify a range must refer to the same container.

– The second iterator must be reachable from the first iterator.

• If more than one source range is used, the second and later ranges usually must have at least as

many elements as the first one.

• Destination ranges must have enough elements that can be overwritten; otherwise, insert iterators

must be used.

The following example shows some possible errors:

6.12 Errors and Exceptions inside the STL 247

// stl/iterbug.cpp

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

vector<int> coll1; // empty collection

vector<int> coll2; // empty collection

// RUNTIME ERROR:

// - beginning is behind the end of the range

vector<int>::iterator pos = coll1.begin();

reverse (++pos, coll1.end());

// insert elements from 1 to 9 into coll1

for (int i=1; i<=9; ++i) {

coll1.push_back (i);

}

// RUNTIME ERROR:

// - overwriting nonexisting elements

copy (coll1.cbegin(), coll1.cend(), // source

coll2.begin()); // destination

// RUNTIME ERROR:

// - collections mistaken

// - cbegin() and cend() refer to different collections

copy (coll1.cbegin(), coll2.cend(), // source

coll1.end()); // destination

}

Note that because these errors occur at runtime, not at compile time, they cause undefined behavior.

There are many ways to make mistakes when using the STL, and the STL is not required to

protect you from yourself. Thus, it is a good idea to use a “safe” STL, at least during software

development. A first version of a safe STL was introduced by Cay Horstmann (see [SafeSTL]).

Another example is the “STLport,” which is available for free for almost any platform at [STLport].

In addition, library vendors now provide flags to enable a “safer” mode, which especially should be

enabled during development.15

15 For example, gcc provides the -D_GLIBCXX_DEBUG option for that.

248 Chapter 6: The Standard Template Library

6.12.2 Exception Handling

The STL almost never checks for logical errors. Therefore, almost no exceptions are generated by

the STL itself owing to a logical problem. In fact, there are only two function calls for which the

standard requires that it might cause an exception directly: the at() member function, which is the

checked version of the subscript operator, and reserve() if the passed size of elements exceeds

max_size(). Other than that, the standard requires that only the usual standard exceptions may

occur, such as bad_alloc for lack of memory or exceptions of user-defined operations.

When are exceptions generated, and what happens to STL components when they are? For a

long time during the standardization process of C++98, there was no defined behavior about this.

In fact, every exception resulted in undefined behavior. Even the destruction of an STL container

resulted in undefined behavior if an exception was thrown during one of its operations. Thus, the

STL was useless when you needed guaranteed and defined behavior, because it was not even possible

to unwind the stack.

How to handle exceptions was one of the last topics addressed during the standardization process

of C++98. Finding a good solution was not easy, and it took a long time for the following reasons:

1. It was very difficult to determine the degree of safety the C++ standard library should provide.

You might argue that it is always best to provide as much safety as possible. For example, you

could say that the insertion of a new element at any position in a vector ought to either succeed or

have no effect. Ordinarily, an exception might occur while copying later elements into the next

position to make room for the new element, from which a full recovery is impossible. To achieve

the stated goal, the insert operation would need to be implemented to copy every element of the

vector into new storage, which would have a serious impact on performance. If good performance

is a design goal, as is the case for the STL, you can’t provide perfect exception handling in all

cases. You have to find a compromise that meets both needs.

2. There is no doubt that it is better to have guaranteed, defined behavior for exceptions without

a significant performance penalty instead of the risk that exceptions might crash your system.

However, there was a concern that the presence of code to handle exceptions could adversely

affect performance. This would contradict the design goal of achieving the best possible perfor-

mance. During the standardization of C++98, compiler writers stated that, in principle, exception

handling can be implemented without any significant performance overhead. However, it turned

out that exception specifications could cause performance penalties, so they were replaced by

noexcept with C++11 (see Section 3.1.7, page 24).

As a result of these discussions, the C++ standard library since C++98 gives the following basic

guarantee for exception safety:16 The C++ standard library will not leak resources or violate con-

tainer invariants in the face of exceptions.

Unfortunately, this is not enough for many purposes. Often, you need a stronger guarantee that

specifies that an operation has no effect if an exception is thrown. Such operations can be considered

to be atomic with respect to exceptions. Or, to use terms from database programming, you could say

that these operations support commit-or-rollback behavior or are transaction safe.

16 Many thanks to Dave Abrahams and Greg Colvin for their work on exception safety in the C++ standard

library and for the feedback they gave me about this topic.

6.12 Errors and Exceptions inside the STL 249

Regarding this stronger guarantee, the C++ standard library now guarantees the following:

• In general, no erase(), clear(), pop_back(), pop_front(), or swap() function throws an

exception. Also, no copy constructor or assignment operator of a returned iterator throws an

exception.

• For all node-based containers (lists, forward lists, sets, multisets, maps, and multimaps), in-

cluding the unordered containers, any failure to construct a node simply leaves the container as

it was. Furthermore, removing a node can’t fail, provided that destructors don’t throw. How-

ever, for multiple-element insert operations of associative containers, the need to keep elements

sorted makes full recovery from throws impractical. Thus, all single-element insert operations

of associative and unordered containers support commit-or-rollback behavior, provided that the

hash function for unordered containers does not throw. That is, the single-element insert opera-

tions either succeed or have no effect. In addition, it is guaranteed that all erase operations for

both single and multiple elements always succeed, provided that the container’s compare or hash

function does not throw.

For lists, even multiple-element insert operations are transaction safe. In fact, all list opera-

tions except remove(), remove_if(), merge(), sort(), and unique() either succeed or have

no effect. For some of the exceptional operations, the C++ standard library provides conditional

guarantees. Thus, if you need a transaction-safe container, you should use a list.

For forward lists, insert_after(), emplace_after(), and push_front() are transac-

tion safe.17

• All array-based containers (arrays, vectors, and deques) do not fully recover when an element

gets inserted. To do this, they would have to copy all subsequent elements before any insert

operation, and handling full recovery for all copy operations would take quite a lot of time.

However, push and pop operations that operate at the end do not require that existing elements

get copied. If they throw, it is guaranteed that they have no effect. Furthermore, if elements have

a type with copy operations (copy constructor and assignment operator) that do not throw, every

container operation for these elements either succeeds or has no effect.

Note that all these guarantees are based on the requirement that destructors never throw, which

should always be the case in C++. The C++ standard library makes this promise, and so must the

application programmer.

If you need a container with full commit-or-rollback ability, you should use either a list (without

calling or special handling for remove(), remove_if(), merge(), sort(), and unique()) or

an associative/unordered container (without calling their multiple-element insert operations). This

avoids having to make copies before a modifying operation to ensure that no data gets lost. Note

that making copies of a container could be very expensive.

If you can’t use a node-based container and need the full commit-or-rollback ability, you have

to provide wrappers for each critical operation. For example, the following function would almost

safely insert a value in any container at a certain position:

17 The C++11 standard does not say this for emplace_after() and push_front(), which likely is a defect.

250 Chapter 6: The Standard Template Library

template <typename T, typename Cont, typename Iter>

void insert (Cont& coll, const Iter& pos, const T& value)

{

Cont tmp(coll); // copy container and all elements

try {

coll.insert(pos,value); // try to modify the copy

}

catch (...) { // in case of an exception

coll.swap(tmp); // - restore original container

throw; // - and rethrow the exception

}

}

Note that I wrote “almost,” because this function still is not perfect: the swap() operation throws

when, for associative containers, copying the comparison criterion throws. You see, handling excep-

tions perfectly is not easy.

6.13 Extending the STL

The STL is designed as a framework that may be extended in almost any direction.

6.13.1 Integrating Additional Types

You can supply your own containers, iterators, algorithms, or function objects, provided that they

meet certain requirements. In fact, the C++ standard library lacks some useful extensions. This

happened because at some point, the committee had to stop introducing new features and concentrate

on perfecting the existing parts; otherwise, the job would never have been completed. That was the

reason, for example, that hash tables were not part of C++98.

Useful extensions can be iterators (see Section 9.6, page 471, or Section 14.3, page 726), con-

tainers (see Section 7.10, page 385), and algorithms (for example, see Section 7.6.2, page 308, or

Section 9.5.1, page 468). Note that all these extensions follow the principle of generic programming:

• Anything that behaves like a container is a container.

• Anything that behaves like an iterator is an iterator.

Thus, whenever you have a container-like class, you can integrate it into the framework of the STL

by providing the corresponding interface (begin(), end(), some type definitions, etc.). If you

can’t add members to such a class, you can still provide a wrapper class that provides corresponding

iterators.

Note, however, that some container-like objects do not fit into the concept of the STL. For exam-

ple, the fact that STL containers have a begin and an end makes it hard for circular container types,

such as a ring buffer, to fit in the STL framework.

Section 7.1.2, page 254, lists all common container operations and marks those that are required

for STL containers. Note, however, that this doesn’t mean that you have to fit in the STL framework

6.13 Extending the STL 251

only if you meet all these requirements. It might often be enough to fulfill requirements only partially

so that some but not all behavior might work. Even some standard STL containers violate STL

container requirements. For example, forward_lists do not provide size(), and arrays do not

fulfill the general requirement that an STL container initialized with the default constructor is empty.

6.13.2 Deriving from STL Types

Another question is whether you can extend the behavior of STL types by deriving from them and

adding behavior. However, usually that’s not possible. For performance reasons, all the STL classes

have no virtual functions and are therefore not provided for polymorphism through public inheri-

tance. To add new behavior for containers, you should define a new class that internally uses STL

classes or derives privately from them.

This page intentionally left blank

Chapter 7

STL Containers

Continuing the discussion begun in Chapter 6, this chapter discusses STL containers in detail. The

chapter starts with an overview of the general abilities and operations of all container classes, with

each container class explained in detail. The explanation includes a description of their internal data

structures, their operations, and their performance. It also shows how to use the various operations

and gives examples if the usage is not trivial. Examples are given showing the typical use of each

container. The chapter then discusses the interesting question of when to use which container. By

comparing the general abilities, advantages, and disadvantages of all container types, the chapter

shows you how to find the best container to meet your needs.

The chapter is supplemented by Chapter 8, which explains all container members, types, and

operations in detail.

The C++ standard library provides some special container classes, the so-called container adap-

ters (stack, queue, priority queue). In addition, a few classes provide a container-like interface (for

example, strings, bitsets, and valarrays). All these classes are covered separately.1 Container adap-

ters and bitsets are covered in Chapter 12. The STL interface of strings is covered in Section 13.2.14,

page 684. Valarrays are described in Section 17.4, page 943.

1 Historically, container adapters are part of the STL. However, from a conceptual perspective, they are not part

of the STL framework but rather “only” use the STL.

254 Chapter 7: STL Containers

7.1 Common Container Abilities and Operations

7.1.1 Container Abilities

This section covers the common abilities of STL container classes. Most of these abilities are re-

quirements that, in general, every STL container should meet. The three core abilities are as follows:

1. All containers provide value rather than reference semantics. Containers copy and/or move ele-

ments internally when they are inserted rather than managing references to them. Thus, ideally,

each element of an STL container must be able to be copied and moved. If objects you want to

store don’t have a public copy constructor, or if copying is not useful — because, for example,

it takes too much time or elements must be part of multiple containers — you might use only

move operations, or the container elements must be pointers or pointer objects that refer to these

objects. Section 7.11, page 388, provides an example for using shared pointers to get reference

semantics.

2. The elements inside a container have a specific order. Each container type provides operations

that return iterators to iterate over the elements. This is the key interface of the STL algorithms.

Thus, if you iterate multiple times over the elements, you will find the same order, provided that

you don’t insert or delete elements. This applies even to “unordered containers,” as long as you

don’t call operations that add or delete elements or force an internal reorganization.

3. In general, operations are not “safe” in the sense that they check for every possible error. The

caller must ensure that the parameters of the operations meet the requirements these operations

have. Violating these requirements, such as using an invalid index, results in undefined behavior,

which means that anything can happen.

Usually, the STL does not throw exceptions by itself. If user-defined operations called by the

STL containers do throw, the behavior differs. See Section 6.12.2, page 248, for details.

7.1.2 Container Operations

The standard specifies a list of common container requirements that shall apply to all STL contain-

ers. However, due to the variety of containers provided with C++11, there might be exceptions so

that some containers even don’t fulfill all general container requirements, and that there are addi-

tional operations provided by all containers. Tables 7.1 and 7.2 list the operations that are common

to (almost) all containers. Column “Req” signs operations that are part of the general container

requirements. The following subsections explore some of these common operations.

Initialization

Every container class provides a default constructor, a copy constructor, and a destructor. You can

also initialize a container with elements of a given range and, since C++11, with an initializer list.

7.1 Common Container Abilities and Operations 255

Operation Req Effect

ContType c Yes Default constructor; creates an empty container without any

element (array<> gets default elements)

ContType c(c2) Yes Copy constructor; creates a new container as a copy of c2

(all elements are copied)

ContType c = c2 Yes Copy constructor; creates a new container as a copy of c2

(all elements are copied)

ContType c(rv) Yes Move constructor; creates a new container, taking the

contents of the rvalue rv (since C++11; not for array<>)

ContType c = rv Yes Move constructor; creates a new container, taking the

contents of the rvalue rv (since C++11; not for array<>)

ContType c(beg,end) – Creates a container and initializes it with copies of all

elements of [beg,end) (not for array<>)

ContType c(initlist) – Creates a container and initializes it with copies of the

values of the initializer list initlist (since C++11; not for

array<>)

ContType c = initlist – Creates a container and initializes it with copies of the

values of the initializer list initlist (since C++11)

c.~ContType() Yes Deletes all elements and frees the memory, if possible

c.empty() Yes Returns whether the container is empty (equivalent to

size()==0 but might be faster)

c.size() Yes Returns the current number of elements (not for

forward_list<>)

c.max_size() Yes Returns the maximum number of elements possible

c1 == c2 Yes Returns whether c1 is equal to c2

c1 != c2 Yes Returns whether c1 is not equal to c2 (equivalent to

!(c1==c2))

c1 < c2 – Returns whether c1 is less than c2 (not for unordered

containers)

c1 > c2 – Returns whether c1 is greater than c2 (equivalent to c2<c1;

not for unordered containers)

c1 <= c2 – Returns whether c1 is less than or equal to c2 (equivalent to

!(c2<c1); not for unordered containers)

c1 >= c2 – Returns whether c1 is greater than or equal to c2

(equivalent to !(c1<c2); not for unordered containers)

c = c2 Yes Assigns all elements of c2 to c

c = rv Yes Move assigns all elements of the rvalue rv to c (since

C++11; not for array<>)

c = initlist – Assigns all elements of the initializer list initlist (since

C++11; not for array<>)

c1.swap(c2) Yes Swaps the data of c1 and c2

swap(c1,c2) Yes Swaps the data of c1 and c2

Table 7.1. Common Operations of (Almost All) Container Classes, Part 1

256 Chapter 7: STL Containers

Operation Req Effect

c.begin() Yes Returns an iterator for the first element

c.end() Yes Returns an iterator for the position after the last element

c.cbegin() Yes Returns a constant iterator for the first element (since

C++11)

c.cend() Yes Returns a constant iterator for the position after the last

element (since C++11)

c.clear() – Removes all elements (empties the container; not for

array<>)

Table 7.2. Common Operations of (Almost All) Container Classes, Part 2

The constructor for an initializer list (see Section 3.1.3, page 15) provides a convenient way to

specify initial values. This is especially useful to initialize constant containers:

// initialize a vector with some specific values (since C++11)

const std::vector<int> v1 = { 1, 2, 3, 5, 7, 11, 13, 17, 21 };

// same with different syntax

const std::vector<int> v2 { 1, 2, 3, 5, 7, 11, 13, 17, 21 };

// initialize an unordered set with ‘‘hello’’ and two empty strings

std::unordered_set<std::string> w = { "hello", std::string(), "" };

Some special rules apply to the use of initializer lists for array<> containers (see Section 7.2.1,

page 262, for details).

The constructor for a given range provides the ability to initialize the container with elements

of another container, with a C-style array, or from standard input. This constructor is a member

template (see Section 3.2, page 34), so not only the container but also the type of the elements may

differ, provided that there is an automatic conversion from the source element type to the destination

element type. For example:

• You can initialize a container with the elements of another container:

std::list<int> l; // l is a linked list of ints

...

// copy all elements of the list as floats into a vector

std::vector<float> c(l.begin(),l.end());

Since C++11, you can also move the elements here, using a move iterator (see Section 9.4.4,

page 466):

std::list<std::string> l; // l is a linked list of strings

...

// move all elements of the list into a vector

std::vector<std::string> c(std::make_move_iterator(l.begin()),

std::make_move_iterator(l.end()));

7.1 Common Container Abilities and Operations 257

• You can initialize a container with the elements of an ordinary C-style array:

int carray[] = { 2, 3, 17, 33, 45, 77 };

...

// copy all elements of the C-style array into a set

std::set<int> c(std::begin(carray),std::end(carray));

std::begin() and std::end() for C-style arrays are defined since C++11 in <iterator>.

Note that before C++11, you had to call:

std::set<int> c(carray,carray+sizeof(carray)/sizeof(carray[0]));

• You can initialize a container from standard input:

// read all integer elements of the deque from standard input

std::deque<int> c{std::istream_iterator<int>(std::cin),

std::istream_iterator<int>()};

Note that you should use the new uniform initialization syntax with brackets (see Section 3.1.3,

page 15). Otherwise, you need extra parentheses around the initializer arguments here:

// read all integer elements of the deque from standard input

std::deque<int> c((std::istream_iterator<int>(std::cin)),

(std::istream_iterator<int>()));

The reason is that without the extra parentheses, you specify something very different, so you

will probably get some strange warnings or errors in following statements. Consider writing the

statement without extra parentheses:

std::deque<int> c(std::istream_iterator<int>(std::cin),

std::istream_iterator<int>());

In this case, c declares a function having deque<int> as return type. Its first parameter is of

type istream_iterator<int> with the name cin, and its second unnamed parameter is of

type “function taking no arguments returning istream_iterator<int>.” This construct is

valid syntactically as either a declaration or an expression. So, according to language rules, it is

treated as a declaration. The extra parentheses force the initializer not to match the syntax of a

declaration.2

In principle, these techniques are also provided to assign or to insert elements from another range.

However, for those operations, the exact interfaces either differ due to additional arguments or are

not provided for all container classes.

Finally, since C++11, you can use a move constructor (see Section 3.1.5, page 21) to initialize a

container (for array<>, it is implicitly defined):

std::vector<int> v1;

...

// move contents of v1 into v2, state of v1 undefined afterward

std::vector<int> v2 = std::move(v1);

As a result, the newly created container has the elements of the container used for initialization,

whereas the contents of the container used for the initialization is unspecified afterward. This con-

structor provides significant performance improvements because internally, the elements are moved

2 Thanks to John H. Spicer from EDG for this explanation.

258 Chapter 7: STL Containers

by switching some pointers instead of copying element by element. So whenever you no longer need

a container, which gets copied, you should use the move constructor.

Assignments and swap()

If you assign containers, you copy all elements of the source container and remove all old elements

in the destination container. Thus, assignment of containers is relatively expensive.

Since C++11, you can use the move assignment semantics instead (see Section 3.1.5, page 21).

All containers provide move assignment operators (array<> implicitly again), declared for rvalues,

which internally just swap pointers to the memory of values rather than copying all values. The

exact behavior is not specified, but the guarantee of constant complexity for this operation leads to

an implementation like this. The C++ standard library simply specifies that after a move assignment,

the container on the left-hand side of the assignment has the elements that the container on the right-

hand side of the assignment had before. The contents of the container on the right-hand side are

undefined afterward:

std::vector<int> v1;

std::vector<int> v2;

...

// move contents of v1 into v2, state of v1 undefined afterward

v2 = std::move(v1);

So, for performance reasons, you should use this way of assignment if after an assignment, the

contents of the container on the right-hand side are no longer used.

In addition and since C++98, all containers provide a swap() member function to swap contents

of two containers. In fact, it swaps only some internal pointers that refer to the data (elements,

allocator, sorting criterion, if any). So, swap() is guaranteed to have only constant complexity,

not the linear complexity of a copy assignment. Iterators and references to elements of a container

follow swapped elements. So, after swap(), iterators and references still refer to the elements they

referred to before, which, however, are in a different container then.

Note that for containers of type array<>, the behavior of swap() is slightly different. Because

you can’t internally just swap pointers, swap() has linear complexity, and iterators and references

refer to the same container but different elements afterward.

Size Operations

For (almost) all container classes, three size operations are provided:

1. empty() returns whether the number of elements is zero (begin()==end()). You should prefer

it over size()==0, because it might be implemented more efficiently than size(), and size()

is not provided for forward lists.

2. size() returns the current number of elements of the container. This operation is not provided for

forward_list<> because it couldn’t have constant complexity there.

3. max_size() returns the maximum number of elements a container might contain. This value is

implementation defined. For example, a vector typically contains all elements in a single block

7.1 Common Container Abilities and Operations 259

of memory, so there might be relevant restrictions on PCs. Otherwise, max_size() is usually

the maximum value of the type of the index.

Comparisons

For all but unordered containers, the usual comparison operators ==, !=, <, <=, >, and >= are defined

according to the following three rules:

1. Both containers must have the same type.

2. Two containers are equal if their elements are equal and have the same order. To check equality

of elements, operator == is used.

3. To check whether a container is less than another container, a lexicographical comparison is done

(see Section 11.5.4, page 548).

For unordered containers, only the operators == and != are defined. They return true when each

element in one container has an equal element in the other container. The order doesn’t matter (that’s

why they are unordered containers).

Because the operators <, <=, >, and >= are not provided for unordered container, only the op-

erators == and != are a common container requirement. Before C++11 all comparison operators

were required. Since C++11 there is an table of “optional container requirements” that covers the

remaining four comparison operators.

To compare containers with different types, you must use the comparing algorithms of Sec-

tion 11.5.4, page 542.

Element Access

All containers provide an iterator interface, which means that range-based for loops are supported

(see Section 3.1.4, page 17). Thus, the easiest way to get access to all elements since C++11 is as

follows:

for (const auto& elem : coll) {

std::cout << elem << std::endl;

}

To be able to manipulate the elements, you should skip the const:

for (auto& elem : coll) {

elem = ...;

}

To operate with positions (for example, to be able to insert, delete, or move elements around), you

can always use iterators yielded by cbegin() and cend() for read-only access:

for (auto pos=coll.cbegin(); pos!=coll.cend(); ++pos) {

std::cout << *pos << std::endl;

}

and iterators yielded by begin() and end() for write access:

for (auto pos=coll.begin(); pos!=coll.end(); ++pos) {

*pos = ...;

}

260 Chapter 7: STL Containers

Before C++11, you had to, and still can, declare the type of the iterator explicitly for read access:

colltype::const_iterator pos;

for (pos=coll.begin(); pos!=coll.end(); ++pos) {

...;

}

or for write access

colltype::iterator pos;

for (pos=coll.begin(); pos!=coll.end(); ++pos) {

...;

}

All containers except vectors and deques guarantee that iterators and references to elements remain

valid if other elements are deleted. For vectors, only the elements before the point of erase remain

valid.

If you remove all elements by using clear(), for vectors, deques, and strings any past-the-end

iterator returned by end() or cend() may become invalid.

If you insert elements, only lists, forward lists, and associative containers guarantee that iterators

and references to elements remain valid. For vectors, this guarantee is given if insertions don’t

exceed the capacity. For unordered containers, that guarantee is given to references in general but to

iterators only when no rehashing happens, which is guaranteed as long as with insertions the number

of resulting elements is less than the bucket count times the maximum load factor.

7.1.3 Container Types

All containers provide common type definitions, which are listed in Table 7.3.

Type Req Effect

size_type Yes Unsigned integral type for size values

difference_type Yes Signed integral type for difference values

value_type Yes Type of the elements

reference Yes Type of element references

const_reference Yes Type of constant element references

iterator Yes Type of iterators

const_iterator Yes Type of iterators to read-only elements

pointer – Type of pointers to elements (since C++11)

const_pointer – Type of pointers to read-only elements (since C++11)

Table 7.3. Common Types Defined by All Container Classes

7.2 Arrays 261

7.2 Arrays

An array — an instance of the container class array<> — models a static array. It wraps an ordinary

static C-style array providing the interface of an STL container (Figure 7.1). Conceptionally, an

array is a sequence of elements with constant size. Thus, you can neither add nor remove elements

to change the size. Only a replacement of element values is possible.

fixed number of elements

Figure 7.1. Structure of an Array

Class array<>, introduced to the C++ standard library with TR1, results from a useful wrapper

class for ordinary C-style arrays Bjarne Stroustrup introduced in his book [Stroustrup:C++]. It is

safer and has no worse performance than an ordinary array.

To use an array, you must include the header file <array>:

#include <array>

There, the type is defined as a class template inside namespace std:

namespace std {

template <typename T, size_t N>

class array;
}

The elements of an array may have any type T.

The second template parameter specifies the number of elements the array has throughout its

lifetime. Thus, size() always yields N.

Allocator support is not provided.

7.2.1 Abilities of Arrays

Arrays copy their elements into their internal static C-style array. The elements always have a certain

order. Thus, arrays are a kind of ordered collection. Arrays provide random access. Thus, you can

access every element directly in constant time, provided that you know its position. The iterators are

random-access iterators, so you can use any algorithm of the STL.

If you need a sequence with a fixed number of elements, class array<> has the best performance

because memory is allocated on the stack (if possible), reallocation never happens, and you have

random access.

262 Chapter 7: STL Containers

Initialization

Regarding initialization, class array<> has some unique semantics. As a first example, the default

constructor does not create an empty container, because the number of elements in the container is

always constant according to the second template parameter throughout its lifetime.

Note that array<> is the only container whose elements are default initialized when nothing is

passed to initialize the elements. This means that for fundamental types, the initial value might be

undefined rather than zero (see Section 3.2.1, page 37). For example:

std::array<int,4> x; // OOPS: elements of x have undefined value

You can provide an empty initializer list instead. In that case, all values are guaranteed to be value

initialized, which has the effect that elements of fundamental types are zero initialized:

std::array<int,4> x = {}; // OK: all elements of x have value 0 (int())

The reason is that although array<> seems to provide a constructor for initializer lists, it does not.

Instead, array<> fulfills the requirements of an aggregate.3 Therefore, even before C++11, you

could use an initializer list to initialize an array when it got created:

std::array<int,5> coll = { 42, 377, 611, 21, 44 };

The elements in the initializer list must have the same type, or there must be a type conversion to the

element type of the array defined.

If an initializer list does not have enough elements, the elements in the array are initialized via

the default constructor of the element type. In this case, it is guaranteed that for fundamental data

types the elements are zero initialized. For example:

std::array<int,10> c2 = { 42 }; // one element with value 42

// followed by 9 elements with value 0

If the number of elements in the initializer lists is higher than the size of the array, the expression is

ill-formed:

std::array<int,5> c3 = { 1, 2, 3, 4, 5, 6 }; // ERROR: too many values

Because no constructors or assignment operators for initializer lists are provided, initializing an array

during its declaration is the only way to use initializer lists. For this reason, you also can’t use the

parenthesis syntax to specify initial values (which differs from other container types):

std::array<int,5> a({ 1, 2, 3, 4, 5, 6 }); // ERROR

std::vector<int> v({ 1, 2, 3, 4, 5, 6 }); // OK

Class array<> being an aggregate also means that the member that holds all the elements is public.

However, its name is not specified in the standard; thus, any direct access to the public member that

holds all elements results in undefined behavior and is definitely not portable.

3 An aggregate is an array or a class with no user-provided constructors, no private or protected nonstatic data

members, no base classes, and no virtual functions.

7.2 Arrays 263

swap() and Move Semantics

As for all other containers, array<> provides swap() operations. Thus, you can swap elements with

a container of the same type (same element type and same number of elements). Note, however, that

an array<> can’t simply swap pointers internally. For this reason, swap() has linear complexity

and the effect that iterators and references don’t swap containers with their elements. So, iterators

and references refer to the same container but different elements afterward.

You can use move semantics, which are implicitly provided for arrays. For example:4

std::array<std::string,10> as1, as2;

...

as1 = std::move(as2);

Size

It is possible to specify a size of 0, which is an array with no elements. In that case, begin() and

end(), cbegin() and cend(), and the corresponding reverse iterators still yield the same unique

value. However, the return value of front() and back() is undefined:

std::array<Elem,0> coll; // array with no elements

std::sort(coll.begin(),coll.end()); // OK (but has no effect)

coll[5] = elem; // RUNTIME ERROR ⇒ undefined behavior

std::cout << coll.front(); // RUNTIME ERROR ⇒ undefined behavior

For data(), the return value is unspecified, which means that you can pass the return value to other

places as long as you don’t dereference it.

7.2.2 Array Operations

Create, Copy, and Destroy

Table 7.4 lists the constructors and destructors for arrays. Because class array<> is an aggregate,

these constructors are only implicitly defined. You can create arrays with and without elements for

initialization. The default constructor default initializes the elements, which means that the value

of fundamental types is undefined. If you use an initializer list but do not pass enough elements,

the remaining elements are created with their default constructor (0 for fundamental types). See

Section 7.1.2, page 254, for some remarks about possible initialization sources.

Again, note that unlike with other containers, you can’t use the parenthesis syntax with initializer

lists:

std::array<int,5> a({ 1, 2, 3, 4, 5 }); // ERROR

¨4 Thanks to Daniel Krugler for providing this example.

264 Chapter 7: STL Containers

Operation Effect

array<Elem,N> c Default constructor; creates an array with default-

initialized elements

array<Elem,N> c(c2) Copy constructor; creates a copy of another array of the

same type (all elements are copied)

array<Elem,N> c = c2 Copy constructor; creates a copy of another array of the

same type (all elements are copied)

array<Elem,N> c(rv) Move constructor; creates a new array taking the contents

of the rvalue rv (since C++11)

array<Elem,N> c = rv Move constructor; creates a new array, taking the contents

of the rvalue rv (since C++11)

array<Elem,N> c = initlist Creates an array initialized with the elements of the

initializer list

Table 7.4. Constructors of Class array<>

Nonmodifying Operations

Table 7.5 lists all nonmodifying operations of arrays. See the additional remarks in Section 7.1.2,

page 254.

Operation Effect

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to !(c1<c2))

Table 7.5. Nonmodifying Operations of Class array<>

Assignments

Table 7.6 lists the ways to assign new values. Besides the assignment operator, you can use only

fill() to assign a new value to each element, or swap() to swap values with another array. For

operator = and swap(), both arrays have to have the same type, which means that both element type

and size have to be the same.

7.2 Arrays 265

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c.fill(val) Assigns val to each element in array c

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.6. Assignment Operations of Class array<>

Note that swap() can’t guarantee constant complexity for arrays, because it is not possible to

exchange some pointers internally (see Section 7.2.1, page 263). Instead, as with the algorithm

swap_ranges() (see Section 11.6.4, page 566), for both arrays involved, all elements get new

values assigned.

Internally, all these operations call the assignment operator of the element type.

Element Access

To access all elements of an array, you must use range-based for loops (see Section 3.1.4, page 17),

specific operations, or iterators. In addition, a tuple interface is provided, so you can also use

get<>() to access a specific element (see Section 7.2.5, page 268, for details). Table 7.7 shows

all array operations for direct element access. As usual in C and C++, the first element has index

0, and the last element has index size()-1. Thus, the nth element has index n-1. For nonconstant

arrays, these operations return a reference to the element. Thus, you could modify an element by

using one of these operations, provided it is not forbidden for other reasons.

Operation Effect

c[idx] Returns the element with index idx (no range checking)

c.at(idx) Returns the element with index idx (throws range-error exception

if idx is out of range)

c.front() Returns the first element (no check whether a first element exists)

c.back() Returns the last element (no check whether a last element exists)

Table 7.7. Direct Element Access of Class array<>

The most important issue for the caller is whether these operations perform range checking.

Only at() performs range checking. If the index is out of range, at() throws an out_of_range

exception (see Section 4.3, page 41). All other functions do not check. A range error results in

undefined behavior. Calling operator [], front(), and back() for an empty array<> always

results in undefined behavior. Note however that it is only empty if declared to have a size of 0:

std::array<Elem,4> coll; // only four elements!

coll[5] = elem; // RUNTIME ERROR ⇒ undefined behavior

std::cout << coll.front(); // OK (coll has 4 element after construction)

266 Chapter 7: STL Containers

std::array<Elem,0> coll2; // always empty

std::cout << coll2.front(); // RUNTIME ERROR ⇒ undefined behavior

So, in doubt you must ensure that the index for operator [] is valid or use at():

template <typename C>

void foo (C& coll)

{

if (coll.size() > 5) {

coll[5] = ...; // OK

}

coll.at(5) = ...; // throws out_of_range exception

}

Note that this code is OK only in single-threaded environments. In multithreaded contexts, you need

synchronization mechanisms to prevent coll from being modified between the check for its size

and the access to the element (see Section 18.4.3, page 984, for details).

Iterator Functions

Arrays provide the usual operations to get iterators (Table 7.8). Array iterators are random-access

iterators (see Section 9.2, page 433, for a discussion of iterator categories). Thus, in principle, you

could use all algorithms of the STL.

Operation Effect

c.begin() Returns a random-access iterator for the first element

c.end() Returns a random-access iterator for the position after the last element

c.cbegin() Returns a constant random-access iterator for the first element (since C++11)

c.cend() Returns a constant random-access iterator for the position after the last element

(since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse iteration

(since C++11)

c.crend() Returns a constant reverse iterator for the position after the last element of a

reverse iteration (since C++11)

Table 7.8. Iterator Operations of Class array<>

The exact type of these iterators is implementation defined. For arrays, however, the iterators

returned by begin(), cbegin(), end(), and cend() are often ordinary pointers, which is fine be-

cause an array<> internally uses a C-style array for the elements and ordinary pointers provide the

interface of random-access iterators. However, you can’t count on the fact that the iterators are ordi-

nary pointers. For example, if a safe version of the STL that checks range errors and other potential

7.2 Arrays 267

problems is used, the iterator type is usually an auxiliary class. See Section 9.2.6, page 440, for a

nasty difference between iterators implemented as pointers and iterators implemented as classes.

Iterators remain valid as long as the array remains valid. However, unlike for all other containers,

swap() assigns new values to the elements that iterators, references, and pointers refer to.

7.2.3 Using arrays as C-Style Arrays

As for class vector<>, the C++ standard library guarantees that the elements of an array<> are in

contiguous memory. Thus, you can expect that for any valid index i in array a, the following yields

true:

&a[i] == &a[0] + i

This guarantee has some important consequences. It simply means that you can use an array<>

wherever you can use an ordinary C-style array. For example, you can use an array to hold data of

ordinary C-strings of type char* or const char*:

std::array<char,41> a; // create static array of 41 chars

strcpy(&a[0],"hello, world"); // copy a C-string into the array

printf("%s\n", &a[0]); // print contents of the array as C-string

Note, however, that you don’t have to use the expression &a[0] to get direct access to the elements

in the array, because the member function data() is provided for this purpose:

std::array<char,41> a; // create static array of 41 chars

strcpy(a.data(),"hello, world"); // copy a C-string into the array

printf("%s\n", a.data()); // print contents of the array as C-string

Of course, you have to be careful when you use an array<> in this way (just as you always have to

be careful when using ordinary C-style arrays and pointers). For example, you have to ensure that

the size of the array is big enough to copy some data into it and that you have an ’\0’ element at

the end if you use the contents as a C-string. However, this example shows that whenever you need

an array of type T for any reason, such as for an existing C library, you can use an array<> (or

vector<>) and use data() where the ordinary C-style interface is required.

Note that you must not pass an iterator as the address of the first element. Iterators of class

array<> have an implementation-specific type, which may be totally different from an ordinary

pointer:

printf("%s\n", a.begin()); // ERROR (might work, but not portable)

printf("%s\n", a.data()); // OK

268 Chapter 7: STL Containers

7.2.4 Exception Handling

Arrays provide only minimal support for logical error checking. The only member function for

which the standard requires that it may throw an exception is at(), which is the safe version of the

subscript operator (see Section 7.2.2, page 265).

For functions called by an array (functions for the element type or functions that are user-

supplied) no special guarantees are generally given (because you can’t insert or delete elements,

exceptions might occur only if you copy, move, or assign values). Note especially that swap()

might throw because it performs an element-wise swap, which might throw.

See Section 6.12.2, page 248, for a general discussion of exception handling in the STL.

7.2.5 Tuple Interface

Arrays provide the tuple interface (see Section 5.1.2, page 68). Thus, you can use the expressions

tuple_size<>::value to yield the number of elements, tuple_element<>::type to yield the

type of a specific element, and get() to gain access to a specific element. For example:

typedef std::array<std::string,5> FiveStrings;

FiveStrings a = { "hello", "nico", "how", "are", "you" };

std::tuple_size<FiveStrings>::value // yields 5

std::tuple_element<1,FiveStrings>::type // yields std::string

std::get<1>(a) // yields std::string("nico")

7.2.6 Examples of Using Arrays

The following example shows a simple use of class array<>:

// cont/array1.cpp

#include <array>

#include <algorithm>

#include <functional>

#include <numeric>

#include "print.hpp"

using namespace std;

int main()

{

// create array with 10 ints

array<int,10> a = { 11, 22, 33, 44 };

PRINT_ELEMENTS(a);

7.2 Arrays 269

// modify last two elements

a.back() = 9999999;

a[a.size()-2] = 42;

PRINT_ELEMENTS(a);

// process sum of all elements

cout << "sum: "

<< accumulate(a.begin(),a.end(),0)

<< endl;

// negate all elements

transform(a.begin(),a.end(), // source

a.begin(), // destination

negate<int>()); // operation

PRINT_ELEMENTS(a);

}

As you can see, you can use the general container interface operations (operator =, size(), and

operator []) to manipulate the container directly. Because member functions such as begin()

and end() for iterator access are also provided, you can also use different operations that call

begin() and end(), such as modifying and nonmodifying algorithms and the auxiliary function

PRINT_ELEMENTS(), which is introduced in Section 6.6, page 216.

The output of the program is as follows:

11 22 33 44 0 0 0 0 0 0

11 22 33 44 0 0 0 0 42 9999999

sum: 10000151

-11 -22 -33 -44 0 0 0 0 -42 -9999999

270 Chapter 7: STL Containers

7.3 Vectors

A vector models a dynamic array. Thus, a vector is an abstraction that manages its elements with a

dynamic C-style array (Figure 7.2). However, the standard does not specify that the implementation

uses a dynamic array. Rather, this follows from the constraints and specification of the complexity

of its operation.

Figure 7.2. Structure of a Vector

To use a vector, you must include the header file <vector>:

#include <vector>

There, the type is defined as a class template inside namespace std:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class vector;

}

The elements of a vector may have any type T. The optional second template parameter defines the

memory model (see Chapter 19). The default memory model is the model allocator, which is

provided by the C++ standard library.

7.3.1 Abilities of Vectors

A vector copies its elements into its internal dynamic array. The elements always have a certain

order. Thus, a vector is a kind of ordered collection. A vector provides random access. Thus, you

can access every element directly in constant time, provided that you know its position. The iterators

are random-access iterators, so you can use any algorithm of the STL.

Vectors provide good performance if you append or delete elements at the end. If you insert or

delete in the middle or at the beginning, performance gets worse. This is because every element

behind has to be moved to another position. In fact, the assignment operator would be called for

every following element.

Size and Capacity

Part of the way in which vectors give good performance is by allocating more memory than they

need to contain all their elements. To use vectors effectively and correctly, you should understand

how size and capacity cooperate in a vector.

7.3 Vectors 271

Vectors provide the usual size operations size(), empty(), and max_size() (see Section 7.1.2,

page 254). An additional “size” operation is the capacity() function, which returns the number of

elements a vector could contain in its actual memory. If you exceed the capacity(), the vector has

to reallocate its internal memory.

The capacity of a vector is important for two reasons:

1. Reallocation invalidates all references, pointers, and iterators for elements of the vector.

2. Reallocation takes time.

Thus, if a program manages pointers, references, or iterators into a vector, or if speed is a goal, it is

important to take the capacity into account.

To avoid reallocation, you can use reserve() to ensure a certain capacity before you really need

it. In this way, you can ensure that references remain valid as long as the capacity is not exceeded:

std::vector<int> v; // create an empty vector

v.reserve(80); // reserve memory for 80 elements

Another way to avoid reallocation is to initialize a vector with enough elements by passing additional

arguments to the constructor. For example, if you pass a numeric value as parameter, it is taken as

the starting size of the vector:

std::vector<T> v(5); // creates a vector and initializes it with five values

// (calls five times the default constructor of type T)

Of course, the type of the elements must provide a default constructor for this ability. For fundamen-

tal types, zero initialization (see Section 3.2.1, page 37) is guaranteed. But note that for complex

types, even if a default constructor is provided, the initialization takes time. If the only reason for

initialization is to reserve memory, you should use reserve().

The concept of capacity for vectors is similar to that for strings (see Section 13.2.5, page 669),

with one big difference: Unlike for strings, it is not possible to call reserve() for vectors to shrink

the capacity. Calling reserve() with an argument that is less than the current capacity is a no-op.

Furthermore, how to reach an optimal performance regarding speed and memory use is implementa-

tion defined. Thus, implementations might increase capacity in larger steps. In fact, to avoid internal

fragmentation, many implementations allocate a whole block of memory (such as 2K) the first time

you insert anything if you don’t call reserve() first yourself. This can waste a lot of memory if

you have many vectors with only a few small elements.

Because the capacity of vectors never shrinks, it is guaranteed that references, pointers, and

iterators remain valid even when elements are deleted, provided that they refer to a position before

the manipulated elements. However, insertions invalidate all references, pointers, and iterators when

the capacity gets exceeded.

C++11 introduced a new member function for vectors: a nonbinding request to shrink the capac-

ity to fit the current number of elements:

v.shrink_to_fit(); // request to shrink memory (since C++11)

This request is nonbinding to allow latitude for implementation-specific optimizations. Thus, you

cannot expect that afterward v.capacity==v.size() yields true.

Before C++11, there you could shrink the capacity only indirectly: Swapping the contents with

another vector swaps the capacity. The following function shrinks the capacity while preserving the

elements:

272 Chapter 7: STL Containers

template <typename T>

void shrinkCapacity(std::vector<T>& v)

{

std::vector<T> tmp(v); // copy elements into a new vector

v.swap(tmp); // swap internal vector data

}

You could even shrink the capacity without calling this function by calling the following statement:5

// shrink capacity of vector v for type T

std::vector<T>(v).swap(v);

However, note that after swap(), all references, pointers, and iterators swap their containers. They

still refer to the elements to which they referred on entry. Thus, shrinkCapacity() invalidates all

references, pointers, and iterators. The same is true for shrink_to_fit().

Operation Effect

vector<Elem> c Default constructor; creates an empty vector without any

elements

vector<Elem> c(c2) Copy constructor; creates a new vector as a copy of c2 (all

elements are copied)

vector<Elem> c = c2 Copy constructor; creates a new vector as a copy of c2 (all

elements are copied)

vector<Elem> c(rv) Move constructor; creates a new vector, taking the contents

of the rvalue rv (since C++11)

vector<Elem> c = rv Move constructor; creates a new vector, taking the contents

of the rvalue rv (since C++11)

vector<Elem> c(n) Creates a vector with n elements created by the default

constructor

vector<Elem> c(n,elem) Creates a vector initialized with n copies of element elem

vector<Elem> c(beg,end) Creates a vector initialized with the elements of the range

[beg,end)

vector<Elem> c(initlist) Creates a vector initialized with the elements of initializer

list initlist (since C++11)

vector<Elem> c = initlist Creates a vector initialized with the elements of initializer

list initlist (since C++11)

c.~vector() Destroys all elements and frees the memory

Table 7.9. Constructors and Destructor of Vectors

5 You (or your compiler) might consider this statement as being incorrect because it calls a nonconstant member

function for a temporary value. However, standard C++ allows you to call a nonconstant member function for

temporary values.

7.3 Vectors 273

7.3.2 Vector Operations

Create, Copy, and Destroy

Table 7.9 lists the constructors and destructors for vectors. You can create vectors with and without

elements for initialization. If you pass only the size, the elements are created with their default

constructor. Note that an explicit call of the default constructor also initializes fundamental types,

such as int, with zero (see Section 3.2.1, page 37). See Section 7.1.2, page 254, for some remarks

about possible initialization sources.

Nonmodifying Operations

Table 7.10 lists all nonmodifying operations of vectors.6 See additional remarks in Section 7.1.2,

page 254, and Section 7.3.1, page 270.

Operation Effect

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c.capacity() Returns the maximum possible number of elements without

reallocation

c.reserve(num) Enlarges capacity, if not enough yet6

c.shrink_to_fit() Request to reduce capacity to fit number of elements (since C++11)6

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to

!(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to

!(c1<c2))

Table 7.10. Nonmodifying Operations of Vectors

Assignments

Table 7.11 lists the ways to assign new elements while removing all ordinary elements. The set of

assign() functions matches the set of constructors. You can use different sources for assignments

6 reserve() and shrink_to_fit() manipulate the vector because they invalidate references, pointers, and

iterators to elements. However, they are mentioned here because they do not manipulate the logical contents of

the container.

274 Chapter 7: STL Containers

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c = initlist Assigns all elements of the initializer list initlist to c (since

C++11)

c.assign(n,elem) Assigns n copies of element elem

c.assign(beg,end) Assigns the elements of the range [beg,end)

c.assign(initlist) Assigns all the elements of the initializer list initlist

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.11. Assignment Operations of Vectors

(containers, arrays, standard input) similar to those described for constructors (see Section 7.1.2,

page 254). All assignment operations call the default constructor, copy constructor, assignment

operator, and/or destructor of the element type, depending on how the number of elements changes.

For example:

std::list<Elem> l;

std::vector<Elem> coll;

...

// make coll be a copy of the contents of l

coll.assign(l.begin(),l.end());

Element Access

To access all elements of a vector, you must use range-based for loops (see Section 3.1.4, page 17),

specific operations, or iterators. Table 7.12 shows all vector operations for direct element access. As

usual in C and C++, the first element has index 0, and the last element has index size()-1. Thus,

the nth element has index n-1. For nonconstant vectors, these operations return a reference to the

element. Thus, you could modify an element by using one of these operations, provided it is not

forbidden for other reasons.

Operation Effect

c[idx] Returns the element with index idx (no range checking)

c.at(idx) Returns the element with index idx (throws range-error exception

if idx is out of range)

c.front() Returns the first element (no check whether a first element exists)

c.back() Returns the last element (no check whether a last element exists)

Table 7.12. Direct Element Access of Vectors

The most important issue for the caller is whether these operations perform range checking.

Only at() performs range checking. If the index is out of range, at() throws an out_of_range

7.3 Vectors 275

exception (see Section 4.3, page 41). All other functions do not check. A range error results in

undefined behavior. Calling operator [], front(), and back() for an empty container always

results in undefined behavior:

std::vector<Elem> coll; // empty!

coll[5] = elem; // RUNTIME ERROR ⇒ undefined behavior

std::cout << coll.front(); // RUNTIME ERROR ⇒ undefined behavior

So, you must ensure that the index for operator [] is valid and that the container is not empty when

either front() or back() is called:

std::vector<Elem> coll; // empty!

if (coll.size() > 5) {

coll[5] = elem; // OK

}

if (!coll.empty()) {

cout << coll.front(); // OK

}

coll.at(5) = elem; // throws out_of_range exception

Note that this code is OK only in single-threaded environments. In multithreaded contexts, you need

synchronization mechanisms to ensure that coll is not modified between the check for its size and

the access to the element (see Section 18.4.3, page 984, for details).

Iterator Functions

Vectors provide the usual operations to get iterators (Table 7.13). Vector iterators are random-access

iterators (see Section 9.2, page 433, for a discussion of iterator categories). Thus, in principle you

could use all algorithms of the STL.

The exact type of these iterators is implementation defined. For vectors, however, the iterators

returned by begin(), cbegin(), end(), and cend() are often ordinary pointers, which is fine

because vectors usually use a C-style array for the elements and ordinary pointers provide the inter-

face of random-access iterators. However, you can’t count on the fact that the iterators are ordinary

pointers. For example, if a safe version of the STL that checks range errors and other potential prob-

lems is used, the iterator type is usually an auxiliary class. See Section 9.2.6, page 440, for a nasty

difference between iterators implemented as pointers and iterators implemented as classes.

Iterators remain valid until an element with a smaller index gets inserted or removed or until

reallocation occurs and capacity changes (see Section 7.3.1, page 270).

Inserting and Removing Elements

Table 7.14 shows the operations provided for vectors to insert or to remove elements. As usual when

using the STL, you must ensure that the arguments are valid. Iterators must refer to valid positions,

and the beginning of a range must have a position that is not behind the end.

276 Chapter 7: STL Containers

Operation Effect

c.begin() Returns a random-access iterator for the first element

c.end() Returns a random-access iterator for the position after the last element

c.cbegin() Returns a constant random-access iterator for the first element (since C++11)

c.cend() Returns a constant random-access iterator for the position after the last element

(since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse iteration

(since C++11)

c.crend() Returns a constant reverse iterator for the position after the last element of a

reverse iteration (since C++11)

Table 7.13. Iterator Operations of Vectors

As usual, it is up to the programmer to ensure that the container is not empty when pop_back() is

called. For example:

std::vector<Elem> coll; // empty!

coll.pop_back(); // RUNTIME ERROR ⇒ undefined behavior

if (!coll.empty()) {

coll.pop_back(); // OK

}

However, note that in a multithreaded context you have to ensure that coll doesn’t get modified

between the check for being empty and pop_back() (see Section 18.4.3, page 984).

Regarding performance, you should consider that inserting and removing happens faster when

• Elements are inserted or removed at the end.

• The capacity is large enough on entry.

• Multiple elements are inserted by a single call rather than by multiple calls.

Inserting or removing elements invalidates references, pointers, and iterators that refer to the follow-

ing elements. An insertion that causes reallocation invalidates all references, iterators, and pointers.

Vectors provide no operation to remove elements directly that have a certain value. You must

use an algorithm to do this. For example, the following statement removes all elements that have the

value val:

std::vector<Elem> coll;

...

// remove all elements with value val

coll.erase(remove(coll.begin(),coll.end(),

val),

coll.end());

This statement is explained in Section 6.7.1, page 218.

7.3 Vectors 277

Operation Effect

c.push_back(elem) Appends a copy of elem at the end

c.pop_back() Removes the last element (does not return it)

c.insert(pos,elem) Inserts a copy of elem before iterator position pos and returns

the position of the new element

c.insert(pos,n,elem) Inserts n copies of elem before iterator position pos and returns

the position of the first new element (or pos if there is no new

element)

c.insert(pos,beg,end) Inserts a copy of all elements of the range [beg,end) before

iterator position pos and returns the position of the first new

element (or pos if there is no new element)

c.insert(pos,initlist) Inserts a copy of all elements of the initializer list initlist before

iterator position pos and returns the position of the first new

element (or pos if there is no new element; since C++11)

c.emplace(pos,args...) Inserts a copy of an element initialized with args before

iterator position pos and returns the position of the new

element (since C++11)

c.emplace_back(args...) Appends a copy of an element initialized with args at the end

(returns nothing; since C++11)

c.erase(pos) Removes the element at iterator position pos and returns the

position of the next element

c.erase(beg,end) Removes all elements of the range [beg,end) and returns the

position of the next element

c.resize(num) Changes the number of elements to num (if size() grows new

elements are created by their default constructor)

c.resize(num,elem) Changes the number of elements to num (if size() grows new

elements are copies of elem)

c.clear() Removes all elements (empties the container)

Table 7.14. Insert and Remove Operations of Vectors

To remove only the first element that has a certain value, you must use the following statements:

std::vector<Elem> coll;

...

// remove first element with value val

std::vector<Elem>::iterator pos;

pos = find(coll.begin(),coll.end(),

val);

if (pos != coll.end()) {

coll.erase(pos);

}

278 Chapter 7: STL Containers

7.3.3 Using Vectors as C-Style Arrays

As for class array<>, the C++ standard library guarantees that the elements of a vector are in

contiguous memory. Thus, you can expect that for any valid index i in vector v, the following yields

true:

&v[i] == &v[0] + i

This guarantee has some important consequences. It simply means that you can use a vector in all

cases in which you could use a dynamic array. For example, you can use a vector to hold data of

ordinary C-strings of type char* or const char*:

std::vector<char> v; // create vector as dynamic array of chars

v.resize(41); // make room for 41 characters (including ’\0’)

strcpy(&v[0],"hello, world"); // copy a C-string into the vector

printf("%s\n", &v[0]); // print contents of the vector as C-string

Note, however, that since C++11, you don’t have to use the expression &a[0] to get direct access to

the elements in the vector, because the member function data() is provided for this purpose:

std::vector<char,41> v; // create static array of 41 chars

strcpy(v.data(),"hello, world"); // copy a C-string into the array

printf("%s\n", v.data()); // print contents of the array as C-string

Of course, you have to be careful when you use a vector in this way (just as you always have to be

careful when using ordinary C-style arrays and pointers). For example, you have to ensure that the

size of the vector is big enough to copy some data into it and that you have an ’\0’ element at the

end if you use the contents as a C-string. However, this example shows that whenever you need an

array of type T for any reason, such as for an existing C library, you can use a vector<T> and pass

the address of the first element.

Note that you must not pass an iterator as the address of the first element. Iterators of vectors

have an implementation-specific type, which may be totally different from an ordinary pointer:

printf("%s\n", v.begin()); // ERROR (might work, but not portable)

printf("%s\n", v.data()); // OK (since C++11)

printf("%s\n", &v[0]); // OK, but data() is better

7.3.4 Exception Handling

Vectors provide only minimal support for logical error checking. The only member function for

which the standard requires that it may throw an exception is at(), which is the safe version of

the subscript operator (see Section 7.3.2, page 274). In addition, the standard requires that only the

usual standard exceptions may occur, such as bad_alloc for a lack of memory or exceptions of

user-defined operations.

If functions called by a vector (functions for the element type or functions that are user-supplied)

throw exceptions, the C++ standard library provides the following guarantees:

7.3 Vectors 279

1. If an element gets inserted with push_back() and an exception occurs, this function has no

effect.

2. insert(), emplace(), emplace_back(), and push_back() either succeed or have no effect,

provided that the copy/move operations (constructors and assignment operators) of the elements

do not throw.

3. pop_back() does not throw any exceptions.

4. erase() does not throw if the copy/move operations (constructors and assignment operators) of

the elements do not throw.

5. swap() and clear() do not throw.

6. If elements are used that never throw exceptions on copy/move operations (constructors and

assignment operators), every operation is either successful or has no effect. Such elements might

be “plain old data” (POD). POD describes types that use no special C++ feature. For example,

every ordinary C structure is POD.

All these guarantees are based on the requirements that destructors don’t throw. See Section 6.12.2,

page 248, for a general discussion of exception handling in the STL.

7.3.5 Examples of Using Vectors

The following example shows a simple use of vectors:

// cont/vector1.cpp

#include <vector>

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

// create empty vector for strings

vector<string> sentence;

// reserve memory for five elements to avoid reallocation

sentence.reserve(5);

// append some elements

sentence.push_back("Hello,");

sentence.insert(sentence.end(),{"how","are","you","?"});

// print elements separated with spaces

copy (sentence.cbegin(), sentence.cend(),

ostream_iterator<string>(cout," "));

280 Chapter 7: STL Containers

cout << endl;

// print ‘‘technical data’’

cout << " max_size(): " << sentence.max_size() << endl;

cout << " size(): " << sentence.size() << endl;

cout << " capacity(): " << sentence.capacity() << endl;

// swap second and fourth element

swap (sentence[1], sentence[3]);

// insert element "always" before element "?"

sentence.insert (find(sentence.begin(),sentence.end(),"?"),

"always");

// assign "!" to the last element

sentence.back() = "!";

// print elements separated with spaces

copy (sentence.cbegin(), sentence.cend(),

ostream_iterator<string>(cout," "));

cout << endl;

// print some ‘‘technical data’’ again

cout << " size(): " << sentence.size() << endl;

cout << " capacity(): " << sentence.capacity() << endl;

// delete last two elements

sentence.pop_back();

sentence.pop_back();

// shrink capacity (since C++11)

sentence.shrink_to_fit();

// print some ‘‘technical data’’ again

cout << " size(): " << sentence.size() << endl;

cout << " capacity(): " << sentence.capacity() << endl;

}

The output of the program might look like this:

Hello, how are you ?

max_size(): 1073741823

size(): 5

capacity(): 5

7.3 Vectors 281

Hello, you are how always !

size(): 6

capacity(): 10

size(): 4

capacity(): 4

Note my use of the word might. The values of max_size() and capacity() are unspecified and

might vary from platform to platform. Here, for example, you can see that the implementation seems

to double the capacity if the capacity no longer fits and not necessarily shrinks if there is a request

to do so.

7.3.6 Class vector<bool>

For Boolean elements, the C++ standard library provides a specialization of vector<>. The goal

is to have a version that is optimized to use less size than a usual implementation of vector<>

for type bool. Such a usual implementation would reserve at least 1 byte for each element. The

vector<bool> specialization usually uses internally only 1 bit for an element, so it is typically

eight times smaller. But such an optimization also has a snag: In C++, the smallest addressable

value must have a size of at least 1 byte. Thus, such a specialization of a vector needs special

handling for references and iterators.

As a result, a vector<bool> does not meet all requirements of other vectors. For example, a

vector<bool>::reference is not a true lvalue and vector<bool>::iterator is not a random-

access iterator. Therefore, template code might work for vectors of any type except bool. In ad-

dition, vector<bool> might perform worse than normal implementations, because element opera-

tions have to be transformed into bit operations. However, how vector<bool> is implemented is

implementation specific. Thus, the performance (speed and memory) might differ.

Note that class vector<bool> is more than a specialization of vector<> for bool. It also

provides some special bit operations. You can handle bits or flags in a more convenient way.

vector<bool> has a dynamic size, so you can consider it a bitfield with dynamic size. Thus,

you can add and remove bits. If you need a bitfield with static size, you should use bitset rather

than a vector<bool>. Class bitset is covered in Section 12.5, page 650.

The additional operations of vector<bool> are shown in Table 7.15.

Operation Effect

c.flip() Negates all Boolean elements (complement of all bits)

c[idx].flip() Negates the Boolean element with index idx (complement of a

single bit)

c[idx] = val Assigns val to the Boolean element with index idx (assignment to a

single bit)

c[idx1] = c[idx2] Assigns the value of the element with index idx2 to the element

with index idx1

Table 7.15. Special Operations of vector<bool>

282 Chapter 7: STL Containers

The operation flip(), which processes the complement, can be called for all bits and a single

bit of the vector. The latter is remarkable because you might expect the operator [] to return a bool

and that calling flip() for such a fundamental type is not possible. Here, the class vector<bool>

uses a common trick, called a proxy:7 For vector<bool>, the return type of the subscript operator

(and other operators that return an element) is an auxiliary class. If you need the return value to

be bool, an automatic type conversion is used. For other operations, the member functions are

provided. The relevant part of the declaration of vector<bool> looks like this:

namespace std {

template <typename Allocator> class vector<bool,Allocator> {

public:

// auxiliary proxy type for element modifications:

class reference {

...

public:

reference& operator= (const bool) noexcept; // assignments

reference& operator= (const reference&) noexcept;

operator bool() const noexcept; // automatic type conversion to bool

void flip() noexcept; // bit complement

};

...

// operations for element access return reference proxy instead of bool:

reference operator[](size_type idx);

reference at(size_type idx);

reference front();

reference back();

...

};

}

As you can see, all member functions for element access return type reference. Thus, you could

program something like the following statements:

c.front().flip(); // negate first Boolean element

c[5] = c.back(); // assign last element to element with index 5

As usual, to avoid undefined behavior, the caller must ensure that the first, sixth, and last elements

exist here.

Note that the internal proxy type reference is used only for nonconstant containers of type

vector<bool>. The constant member functions for element access return values of type

const_reference, which is a type definition for bool.

7 A proxy allows you to keep control where usually no control is provided. This is often used to get more

security. In this case, the proxy maintains control to allow certain operations, although, in principle, the return

value behaves as bool.

7.4 Deques 283

7.4 Deques

A deque (pronounced “deck”) is very similar to a vector. It manages its elements with a dynamic

array, provides random access, and has almost the same interface as a vector. The difference is

that with a deque, the dynamic array is open at both ends. Thus, a deque is fast for insertions and

deletions at both the end and the beginning (Figure 7.3).

Figure 7.3. Logical Structure of a Deque

To provide this ability, the deque is typically implemented as a bunch of individual blocks, with the

first block growing in one direction and the last block growing in the opposite direction (Figure 7.4).

Figure 7.4. Internal Structure of a Deque

To use a deque, you must include the header file <deque>:

#include <deque>

There, the type is defined as a class template inside namespace std:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class deque;
}

284 Chapter 7: STL Containers

As with all sequence containers, the type of the elements is passed as a first template parameter.

The optional second template argument is the memory model, with allocator as the default (see

Chapter 19).

7.4.1 Abilities of Deques

The abilities of deques differ from those of vectors as follows:

• Inserting and removing elements is fast at both the beginning and the end (for vectors, it is fast

only at the end). These operations are done in amortized constant time.

• The internal structure has one more indirection to access the elements, so with deques, element

access and iterator movement are usually a bit slower.

• Iterators must be smart pointers of a special type rather than ordinary pointers because they must

jump between different blocks.

• In systems that have size limitations for blocks of memory (for example, some PC systems),

a deque might contain more elements because it uses more than one block of memory. Thus,

max_size() might be larger for deques.

• Deques provide no support to control the capacity and the moment of reallocation. In particular,

any insertion or deletion of elements other than at the beginning or end invalidates all pointers,

references, and iterators that refer to elements of the deque. However, reallocation may perform

better than for vectors because according to their typical internal structure, deques don’t have to

copy all elements on reallocation.

• Blocks of memory might get freed when they are no longer used, so the memory size of a deque

might shrink (however, whether and how this happens is implementation specific).

The following features of vectors apply also to deques:

• Inserting and deleting elements in the middle is relatively slow because all elements up to either

end may be moved to make room or to fill a gap.

• Iterators are random-access iterators.

In summary, you should prefer a deque if the following are true:

• You insert and remove elements at both ends (this is the classic case for a queue).

• You don’t refer to elements of the container.

• It is important that the container frees memory when it is no longer used (however, the standard

does not guarantee that this happens).

The interface of vectors and deques is almost the same, so trying both is very easy when no special

feature of a vector or a deque is necessary.

7.4 Deques 285

7.4.2 Deque Operations

Tables 7.16 through 7.18 list all operations provided for deques.8

Operation Effect

deque<Elem> c Default constructor; creates an empty deque without any

elements

deque<Elem> c(c2) Copy constructor; creates a new deque as a copy of c2 (all

elements are copied)

deque<Elem> c = c2 Copy constructor; creates a new deque as a copy of c2 (all

elements are copied)

deque<Elem> c(rv) Move constructor; creates a new deque, taking the contents of

the rvalue rv (since C++11)

deque<Elem> c = rv Move constructor; creates a new deque, taking the contents of

the rvalue rv (since C++11)

deque<Elem> c(n) Creates a deque with n elements created by the default

constructor

deque<Elem> c(n,elem) Creates a deque initialized with n copies of element elem

deque<Elem> c(beg,end) Creates a deque initialized with the elements of the range

[beg,end)

deque<Elem> c(initlist) Creates a deque initialized with the elements of initializer list

initlist (since C++11)

deque<Elem> c = initlist Creates a deque initialized with the elements of initializer list

initlist (since C++11)

c.~deque() Destroys all elements and frees the memory

Table 7.16. Constructors and Destructor of Deques

Deque operations differ from vector operations in only two ways:

1. Deques do not provide the functions for capacity (capacity() and reserve()).

2. Deques do provide direct functions to insert and to delete the first element (push_front() and

pop_front()).

Because the other operations are the same, they are not explained again here. See Section 7.3.2,

page 273, for a description of them.

Note, however, that shrink_to_fit() was added with C++11 as nonbinding request to shrink

the internal memory to fit the number of elements. You might argue that shrink_to_fit() makes

no sense for deques because they are allowed to free blocks of memory. However, the memory that

contains all the pointers to the blocks of memory usually does not shrink, which might change with

this call.

8 shrink_to_fit() manipulates the deque because it invalidates references, pointers, and iterators to ele-

ments. However, it is listed as a nonmodifying operation because it does not manipulate the logical contents of

the container.

286 Chapter 7: STL Containers

Operation Effect

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c.shrink_to_fit() Request to reduce capacity to fit number of elements (since C++11)8

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to

!(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to

!(c1<c2))

c[idx] Returns the element with index idx (no range checking)

c.at(idx) Returns the element with index idx (throws range-error exception if idx

is out of range)

c.front() Returns the first element (no check whether a first element exists)

c.back() Returns the last element (no check whether a last element exists)

c.begin() Returns a random-access iterator for the first element

c.end() Returns a random-access iterator for the position after the last element

c.cbegin() Returns a constant random-access iterator for the first element (since

C++11)

c.cend() Returns a constant random-access iterator for the position after the last

element (since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse

iteration (since C++11)

c.crend() Returns a constant reverse iterator for the position after the last

element of a reverse iteration (since C++11)

Table 7.17. Nonmodifying Operations of Deques

In addition, note that you still must consider the following:

1. No member functions for element access (except at()) check whether an index or an iterator is

valid.

2. An insertion or deletion of elements might cause a reallocation. Thus, any insertion or deletion

invalidates all pointers, references, and iterators that refer to other elements of the deque. The

exception is when elements are inserted at the front or the back. In this case, references and

pointers to elements stay valid, but iterators don’t.

7.4 Deques 287

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c = initlist Assigns all elements of the initializer list initlist to c (since

C++11)

c.assign(n,elem) Assigns n copies of element elem

c.assign(beg,end) Assigns the elements of the range [beg,end)

c.assign(initlist) Assigns all the elements of the initializer list initlist

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

c.push_back(elem) Appends a copy of elem at the end

c.pop_back() Removes the last element (does not return it)

c.push_front(elem) Inserts a copy of elem at the beginning

c.pop_front() Removes the first element (does not return it)

c.insert(pos,elem) Inserts a copy of elem before iterator position pos and returns

the position of the new element

c.insert(pos,n,elem) Inserts n copies of elem before iterator position pos and

returns the position of the first new element (or pos if there is

no new element)

c.insert(pos,beg,end) Inserts a copy of all elements of the range [beg,end) before

iterator position pos and returns the position of the first new

element (or pos if there is no new element)

c.insert(pos,initlist) Inserts a copy of all elements of the initializer list initlist

before iterator position pos and returns the position of the first

new element (or pos if there is no new element; since C++11)

c.emplace(pos,args...) Inserts a copy of an element initialized with args before

iterator position pos and returns the position of the new

element (since C++11)

c.emplace_back(args...) Appends a copy of an element initialized with args at the end

(returns nothing; since C++11)

c.emplace_front(args...) Inserts a copy of an element initialized with args at the

beginning (returns nothing; since C++11)

c.erase(pos) Removes the element at iterator position pos and returns the

position of the next element

c.erase(beg,end) Removes all elements of the range [beg,end) and returns the

position of the next element

c.resize(num) Changes the number of elements to num (if size() grows

new elements are created by their default constructor)

c.resize(num,elem) Changes the number of elements to num (if size() grows

new elements are copies of elem)

c.clear() Removes all elements (empties the container)

Table 7.18. Modifying Operations of Deques

288 Chapter 7: STL Containers

7.4.3 Exception Handling

In principle, deques provide the same support for exception handing that vectors do (see Sec-

tion 7.3.4, page 278). The additional operations push_front() and pop_front() behave accord-

ing to push_back() and pop_back(), respectively. Thus, the C++ standard library provides the

following behavior:

• If an element gets inserted with push_back() or push_front() and an exception occurs, these

functions have no effect.

• Neither pop_back() nor pop_front() throws any exceptions.

See Section 6.12.2, page 248, for a general discussion of exception handling in the STL.

7.4.4 Examples of Using Deques

The following program shows the abilities of deques:

// cont/deque1.cpp

#include <iostream>

#include <deque>

#include <string>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

// create empty deque of strings

deque<string> coll;

// insert several elements

coll.assign (3, string("string"));

coll.push_back ("last string");

coll.push_front ("first string");

// print elements separated by newlines

copy (coll.cbegin(), coll.cend(),

ostream_iterator<string>(cout,"\n"));

cout << endl;

// remove first and last element

coll.pop_front();

coll.pop_back();

7.4 Deques 289

// insert ‘‘another’’ into every element but the first

for (unsigned i=1; i<coll.size(); ++i) {

coll[i] = "another " + coll[i];

}

// change size to four elements

coll.resize (4, "resized string");

// print elements separated by newlines

copy (coll.cbegin(), coll.cend(),

ostream_iterator<string>(cout,"\n"));

}

The program has the following output:

first string

string

string

string

last string

string

another string

another string

resized string

290 Chapter 7: STL Containers

7.5 Lists

A list (an instance of the container class list<>) manages its elements as a doubly linked list

(Figure 7.5). As usual, the C++ standard library does not specify the kind of the implementation, but

it follows from the list’s name, constraints, and specifications.

Figure 7.5. Structure of a List

To use a list, you must include the header file <list>:

#include <list>

There, the type is defined as a class template inside namespace std:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class list;
}

The elements of a list may have any type T. The optional second template parameter defines the

memory model (see Chapter 19). The default memory model is the model allocator, which is

provided by the C++ standard library.

7.5.1 Abilities of Lists

The internal structure of a list is totally different from that of an array, a vector, or a deque. The list

object itself provides two pointers, the so-called anchors, which refer to the first and last elements.

Each element has pointers to the previous and next elements (or back to the anchor). To insert a new

element, you just manipulate the corresponding pointers (see Figure 7.6).

2 1 3 1 2

Figure 7.6. Internal Structure of a List when Appending a Value

7.5 Lists 291

Thus, a list differs in several major ways from arrays, vectors, and deques:

• A list does not provide random access. For example, to access the fifth element, you must

navigate the first four elements, following the chain of links. Thus, accessing an arbitrary element

using a list is slow. However, you can navigate through the list from both end. So accessing both

the first and the last elements is fast.

• Inserting and removing elements is fast at each position (provided you are there), and not only at

one or both ends. You can always insert and delete an element in constant time, because no other

elements have to be moved. Internally, only some pointer values are manipulated.

• Inserting and deleting elements does not invalidate pointers, references, and iterators to other

elements.

• A list supports exception handling in such a way that almost every operation succeeds or is a

no-op. Thus, you can’t get into an intermediate state in which only half of the operation is

complete.

The member functions provided for lists reflect these differences from arrays, vectors, and deques

as follows:

• Lists provide front(), push_front(), and pop_front(), as well as back(), push_back(),

and pop_back().

• Lists provide neither a subscript operator nor at(), because no random access is provided.

• Lists don’t provide operations for capacity or reallocation, because neither is needed. Each

element has its own memory that stays valid until the element is deleted.

• Lists provide many special member functions for moving and removing elements. These member

functions are faster versions of general algorithms that have the same names. They are faster

because they only redirect pointers rather than copy and move the values.

7.5.2 List Operations

Create, Copy, and Destroy

The ability to create, copy, and destroy lists is the same as it is for every sequence container. See

Table 7.19 for the list operations that do this. See also Section 7.1.2, page 254, for some remarks

about possible initialization sources.

Nonmodifying Operations

Lists provide the usual operations for size and comparisons. See Table 7.20 for a list and Sec-

tion 7.1.2, page 254, for details.

Assignments

Lists also provide the usual assignment operations for sequence containers (Table 7.21). As usual,

the insert operations match the constructors to provide different sources for initialization (see Sec-

tion 7.1.2, page 254, for details).

292 Chapter 7: STL Containers

Operation Effect

list<Elem> c Default constructor; creates an empty list without any

elements

list<Elem> c(c2) Copy constructor; creates a new list as a copy of c2 (all

elements are copied)

list<Elem> c = c2 Copy constructor; creates a new list as a copy of c2 (all

elements are copied)

list<Elem> c(rv) Move constructor; creates a new list, taking the contents of

the rvalue rv (since C++11)

list<Elem> c = rv Move constructor; creates a new list, taking the contents of

the rvalue rv (since C++11)

list<Elem> c(n) Creates a list with n elements created by the default

constructor

list<Elem> c(n,elem) Creates a list initialized with n copies of element elem

list<Elem> c(beg,end) Creates a list initialized with the elements of the range

[beg,end)

list<Elem> c(initlist) Creates a list initialized with the elements of initializer list

initlist (since C++11)

list<Elem> c = initlist Creates a list initialized with the elements of initializer list

initlist (since C++11)

c.~list() Destroys all elements and frees the memory

Table 7.19. Constructors and Destructor of Lists

Operation Effect

c.empty() Returns whether the container is empty (equivalent to size()==0 but might

be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to !(c1<c2))

Table 7.20. Nonmodifying Operations of Lists

Element Access

To access all elements of a list, you must use range-based for loops (see Section 3.1.4, page 17), spe-

cific operations, or iterators. Because it does not have random access, a list provides only front()

and back() for accessing elements directly (Table 7.22).

7.5 Lists 293

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c = initlist Assigns all elements of the initializer list initlist to c (since C++11)

c.assign(n,elem) Assigns n copies of element elem

c.assign(beg,end) Assigns the elements of the range [beg,end)

c.assign(initlist) Assigns all the elements of the initializer list initlist

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.21. Assignment Operations of Lists

Operation Effect

c.front() Returns the first element (no check whether a first element exists)

c.back() Returns the last element (no check whether a last element exists)

Table 7.22. Direct Element Access of Lists

As usual, these operations do not check whether the container is empty. If the container is empty,

calling these operations results in undefined behavior. Thus, the caller must ensure that the container

contains at least one element. For example:

std::list<Elem> coll; // empty!

std::cout << coll.front(); // RUNTIME ERROR ⇒ undefined behavior

if (!coll.empty()) {

std::cout << coll.back(); // OK

}

Note that this code is OK only in single-threaded environments. In multithreaded contexts, you need

synchronization mechanisms to ensure that coll is not modified between the check for its size and

the access to the element (see Section 18.4.3, page 984, for details).

Iterator Functions

To access all elements of a list, you must use iterators. Lists provide the usual iterator functions

(Table 7.23). However, because a list has no random access, these iterators are only bidirectional.

Thus, you can’t call algorithms that require random-access iterators. All algorithms that manipulate

the order of elements a lot, especially sorting algorithms, are in this category. However, for sorting

the elements, lists provide the special member function sort() (see Section 8.8.1, page 422).

294 Chapter 7: STL Containers

Operation Effect

c.begin() Returns a bidirectional iterator for the first element

c.end() Returns a bidirectional iterator for the position after the last element

c.cbegin() Returns a constant bidirectional iterator for the first element (since C++11)

c.cend() Returns a constant bidirectional iterator for the position after the last

element (since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a reverse

iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse

iteration (since C++11)

c.crend() Returns a constant reverse iterator for the position after the last element of

a reverse iteration (since C++11)

Table 7.23. Iterator Operations of Lists

Inserting and Removing Elements

Table 7.24 shows the operations provided for lists to insert and to remove elements. Lists provide all

functions of deques, supplemented by special implementations of the remove() and remove_if()

algorithms.

As usual when using the STL, you must ensure that the arguments are valid. Iterators must refer

to valid positions, and the beginning of a range must have a position that is not behind the end.

Inserting and removing is faster if, when working with multiple elements, you use a single call

for all elements rather than multiple calls.

For removing elements, lists provide special implementations of the remove() algorithms (see

Section 11.7.1, page 575). These member functions are faster than the remove() algorithms be-

cause they manipulate only internal pointers rather than the elements. So, unlike with vectors or

deques, you should call remove() as a member function and not as an algorithm (see Section 7.3.2,

page 276, for details). To remove all elements that have a certain value, you can do the following

(see Section 6.7.3, page 223, for further details):

std::list<Elem> coll;

...

// remove all elements with value val

coll.remove(val);

However, to remove only the first occurrence of a value, you must use an algorithm such as that

mentioned for vectors in Section 7.3.2, page 277.

You can use remove_if() to define the criterion for the removal of the elements by a function

or a function object. remove_if() removes each element for which calling the passed operation

yields true. An example of the use of remove_if() is a statement to remove all elements that have

an even value:

7.5 Lists 295

Operation Effect

c.push_back(elem) Appends a copy of elem at the end

c.pop_back() Removes the last element (does not return it)

c.push_front(elem) Inserts a copy of elem at the beginning

c.pop_front() Removes the first element (does not return it)

c.insert(pos,elem) Inserts a copy of elem before iterator position pos and returns

the position of the new element

c.insert(pos,n,elem) Inserts n copies of elem before iterator position pos and

returns the position of the first new element (or pos if there is

no new element)

c.insert(pos,beg,end) Inserts a copy of all elements of the range [beg,end) before

iterator position pos and returns the position of the first new

element (or pos if there is no new element)

c.insert(pos,initlist) Inserts a copy of all elements of the initializer list initlist

before iterator position pos and returns the position of the first

new element (or pos if there is no new element; since C++11)

c.emplace(pos,args...) Inserts a copy of an element initialized with args before

iterator position pos and returns the position of the new

element (since C++11)

c.emplace_back(args...) Appends a copy of an element initialized with args at the end

(returns nothing; since C++11)

c.emplace_front(args...) Inserts a copy of an element initialized with args at the

beginning (returns nothing; since C++11)

c.erase(pos) Removes the element at iterator position pos and returns the

position of the next element

c.erase(beg,end) Removes all elements of the range [beg,end) and returns the

position of the next element

c.remove(val) Removes all elements with value val

c.remove_if(op) Removes all elements for which op(elem) yields true

c.resize(num) Changes the number of elements to num (if size() grows

new elements are created by their default constructor)

c.resize(num,elem) Changes the number of elements to num (if size() grows

new elements are copies of elem)

c.clear() Removes all elements (empties the container)

Table 7.24. Insert and Remove Operations of Lists

// remove all even elements

coll.remove_if ([] (int i) {

return i % 2 == 0;

});

296 Chapter 7: STL Containers

Here, a lambda is used to find out which elements to remove. Because the lambda returns, whether

a passed element is even, the statement as a whole removes all even elements. See Section 11.7.1,

page 575, for additional examples of remove() and remove_if().

The following operations do not invalidate iterators and references to other members: insert(),

emplace(), emplace...(), push_front(), push_back(), pop_front(), pop_back(), and

erase().

Splice Functions and Functions to Change the Order of Elements

Linked lists have the advantage that you can remove and insert elements at any position in constant

time. If you move elements from one container to another, this advantage doubles in that you need

only redirect some internal pointers (Figure 7.7).

Figure 7.7. Splice Operations to Change the Order of List Elements

To support this ability, lists provide not only remove() but also additional modifying member

functions to change the order of and relink elements and ranges. You can call these operations to

move elements inside a single list or between two lists, provided that the lists have the same type.

Table 7.25 lists these functions. They are covered in detail in Section 8.8, page 420, with examples

on page 298.

7.5.3 Exception Handling

Lists have the best support of exception safety of the standard containers in the STL. Almost all list

operations will either succeed or have no effect. The only operations that don’t give this guarantee

in the face of exceptions are assignment operations and the member function sort() (they give

the usual “basic guarantee” that they will not leak resources or violate container invariants in the

face of exceptions). merge(), remove(), remove_if(), and unique() give guarantees under the

condition that comparing the elements (using operator == or the predicate) doesn’t throw. Thus,

to use a term from database programming, you could say that lists are transaction safe, provided

that you don’t call assignment operations or sort() and that you ensure that comparing elements

doesn’t throw. Table 7.26 lists all operations that give special guarantees in the face of exceptions.

See Section 6.12.2, page 248, for a general discussion of exception handling in the STL.

7.5 Lists 297

Operation Effect

c.unique() Removes duplicates of consecutive elements with the

same value

c.unique(op) Removes duplicates of consecutive elements, for which

op() yields true

c.splice(pos,c2) Moves all elements of c2 to c in front of the iterator

position pos

c.splice(pos,c2,c2pos) Moves the element at c2pos in c2 in front of pos of list c

(c and c2 may be identical)

c.splice(pos,c2, Moves all elements of the range [c2beg,c2end) in c2 in

c2beg,c2end) front of pos of list c (c and c2 may be identical)

c.sort() Sorts all elements with operator <

c.sort(op) Sorts all elements with op()

c.merge(c2) Assuming that both containers contain the elements

sorted, moves all elements of c2 into c so that all elements

are merged and still sorted

c.merge(c2,op) Assuming that both containers contain the elements sorted

due to the sorting criterion op(), moves all elements of c2

into c so that all elements are merged and still sorted

according to op()

c.reverse() Reverses the order of all elements

Table 7.25. Special Modifying Operations for Lists

Operation Guarantee

push_back() Either succeeds or has no effect

push_front() Either succeeds or has no effect

insert() Either succeeds or has no effect

pop_back() Doesn’t throw

pop_front() Doesn’t throw

erase() Doesn’t throw

clear() Doesn’t throw

resize() Either succeeds or has no effect

remove() Doesn’t throw if comparing the elements doesn’t throw

remove_if() Doesn’t throw if the predicate doesn’t throw

unique() Doesn’t throw if comparing the elements doesn’t throw

splice() Doesn’t throw

merge() Either succeeds or has no effect if comparing the elements doesn’t throw

reverse() Doesn’t throw

swap() Doesn’t throw

Table 7.26. List Operations with Special Guarantees in Face of Exceptions

298 Chapter 7: STL Containers

7.5.4 Examples of Using Lists

The following example in particular shows the use of the special member functions for lists:

// cont/list1.cpp

#include <list>

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

void printLists (const list<int>& l1, const list<int>& l2)

{

cout << "list1: ";

copy (l1.cbegin(), l1.cend(), ostream_iterator<int>(cout," "));

cout << endl << "list2: ";

copy (l2.cbegin(), l2.cend(), ostream_iterator<int>(cout," "));

cout << endl << endl;

}

int main()

{

// create two empty lists

list<int> list1, list2;

// fill both lists with elements

for (int i=0; i<6; ++i) {

list1.push_back(i);

list2.push_front(i);

}

printLists(list1, list2);

// insert all elements of list1 before the first element with value 3 of list2

// - find() returns an iterator to the first element with value 3

list2.splice(find(list2.begin(),list2.end(), // destination position

3),

list1); // source list

printLists(list1, list2);

// move first element of list2 to the end

list2.splice(list2.end(), // destination position

list2, // source list

list2.begin()); // source position

7.5 Lists 299

printLists(list1, list2);

// sort second list, assign to list1 and remove duplicates

list2.sort();

list1 = list2;

list2.unique();

printLists(list1, list2);

// merge both sorted lists into the first list

list1.merge(list2);

printLists(list1, list2);

}

The program has the following output:

list1: 0 1 2 3 4 5

list2: 5 4 3 2 1 0

list1:

list2: 5 4 0 1 2 3 4 5 3 2 1 0

list1:

list2: 4 0 1 2 3 4 5 3 2 1 0 5

list1: 0 0 1 1 2 2 3 3 4 4 5 5

list2: 0 1 2 3 4 5

list1: 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

list2:

See Section 7.6.4, page 312, for a corresponding example using a forward list.

300 Chapter 7: STL Containers

7.6 Forward Lists

A forward list (an instance of the container class forward_list<>), which was introduced with

C++11, manages its elements as a singly linked list (Figure 7.8). As usual, the C++ standard li-

brary does not specify the kind of the implementation, but it follows from the forward list’s name,

constraints, and specifications.

Figure 7.8. Structure of a Forward List

To use a forward list, you must include the header file <forward_list>:

#include <forward_list>

There, the type is defined as a class template inside namespace std:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class forward_list;
}

The elements of a forward list may have any type T. The optional second template parameter defines

the memory model (see Chapter 19). The default memory model is the model allocator, which is

provided by the C++ standard library.

7.6.1 Abilities of Forward Lists

Conceptionally, a forward list is a list (object of class list<>) restricted such that it is not able to

iterate backward. It provides no functionality that is not also provided by lists. As benefits, it uses

less memory and provides slightly better runtime behavior. The standard states: “It is intended that

forward_list have zero space or time overhead relative to a hand-written C-style singly linked

list. Features that would conflict with that goal have been omitted.”

Forward lists have the following limitations compared to lists:

• A forward list provides only forward iterators, not bidirectional iterators. As a consequence, no

reverse iterator support is provided, which means that types, such as reverse_iterator, and

member functions, such as rbegin(), rend(), crbegin(), and crend(), are not provided.

• A forward list does not provide a size() member function. This is a consequence of omitting

features that create time or space overhead relative to a handwritten singly linked list.

• The anchor of a forward list has no pointer to the last element. For this reason, a forward list does

not provide the special member functions to deal with the last element, back(), push_back(),

and pop_back().

7.6 Forward Lists 301

• For all member functions that modify forward lists in a way that elements are inserted or deleted

at a specific position, special versions for forward lists are provided. The reason is that you have

to pass the position of the element before the first element that gets manipulated, because there

you have to assign a new successor element. Because you can’t navigate backwards (at least not

in constant time), for all these member functions you have to pass the position of the preceding

element. Because of this difference, these member functions have a _after suffix in their name.

For example, instead of insert(), insert_after() is provided, which inserts new elements

after the element passed as first argument; that is, it appends an element at that position.

• For this reason, forward lists provide before_begin() and cbefore_begin(), which yield

the position of a virtual element before the first element (technically speaking, the anchor of the

linked list), which can be used to let built-in algorithms ending with _after exchange even the

first element.

The decision not to provide size() might be especially surprising because size() is one of the

operations required for all STL containers (see Section 7.1.2, page 254). Here, you can see the

consequences of the design goal to have “zero space or time overhead relative to a hand-written C-

style singly linked list.” The alternative would have been either to compute the size each time size()

is called, which would have linear complexity, or to provide an additional field in the forward_list

object for the size, which is updated with each and every operation that changes the number of

elements. As the design paper for the forward list, [N2543:FwdList], mentions: “It’s a cost that all

users would have to pay for, whether they need this feature or not.” So, if you need the size, either

track it outside the forward_list or use a list instead.

Other than these differences, forward lists behave just like lists:

• A forward list does not provide random access. For example, to access the fifth element, you

must navigate the first four elements, following the chain of links. Thus, using a forward list to

access an arbitrary element is slow.

• Inserting and removing elements is fast at each position, if you are there. You can always insert

and delete an element in constant time, because no other elements have to be moved. Internally,

only some pointer values are manipulated.

• Inserting and deleting elements does not invalidate iterators, references, and pointers to other

elements.

• A forward list supports exception handling in such a way that almost every operation succeeds

or is a no-op. Thus, you can’t get into an intermediate state in which only half of the operation is

complete.

• Forward lists provide many special member functions for moving and removing elements. These

member functions are faster versions of general algorithms, because they only redirect pointers

rather than copy and move the values. However, when element positions are involved, you have

to pass the preceding position, and the member function has the suffix _after in its name.

302 Chapter 7: STL Containers

7.6.2 Forward List Operations

Create, Copy, and Destroy

The ability to create, copy, and destroy forward lists is the same as it is for every sequence container.

See Table 7.27 for the forward list operations that do this. See also Section 7.1.2, page 254, for some

remarks about possible initialization sources.

Operation Effect

forward list<Elem> c Default constructor; creates an empty forward list

without any elements

forward list<Elem> c(c2) Copy constructor; creates a new forward list as a

copy of c2 (all elements are copied)

forward list<Elem> c = c2 Copy constructor; creates a new forward list as a

copy of c2 (all elements are copied)

forward list<Elem> c(rv) Move constructor; creates a new forward list, taking

the contents of the rvalue rv (since C++11)

forward list<Elem> c = rv Move constructor; creates a new forward list, taking

the contents of the rvalue rv (since C++11)

forward list<Elem> c(n) Creates a forward list with n elements created by the

default constructor

forward list<Elem> c(n,elem) Creates a forward list initialized with n copies of

element elem

forward list<Elem> c(beg,end) Creates a forward list initialized with the elements

of the range [beg,end)

forward list<Elem> c(initlist) Creates a forward list initialized with the elements

of initializer list initlist (since C++11)

forward list<Elem> c = initlist Creates a forward list initialized with the elements

of initializer list initlist (since C++11)

c.~forward list() Destroys all elements and frees the memory

Table 7.27. Constructors and Destructor of Forward Lists

Nonmodifying Operations

With one exception, forward lists provide the usual operations for size and comparisons: Forward

lists provide no size() operation. The reason is that it is not possible to store or compute the current

number of elements in constant time. And to make the fact visible that size() is an expensive oper-

ation, it is not provided. If you have to compute the number of elements, you can use distance()

(see Section 9.3.3, page 445):

#include <forward_list>

#include <iterator>

7.6 Forward Lists 303

std::forward_list<int> l;

...

std::cout << "l.size(): " << std::distance(l.begin(),l.end())

<< std::endl;

But note that distance() is a call with linear complexity here.

See Table 7.28 for a complete list of the nonmodifying operations of forward lists and Sec-

tion 7.1.2, page 254, for more details about the other operations.

Operation Effect

c.empty() Returns whether the container is empty

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to !(c1<c2))

Table 7.28. Nonmodifying Operations of Forward Lists

Assignments

Forward lists also provide the usual assignment operations for sequence containers (Table 7.29). As

usual, the insert operations match the constructors to provide different sources for initialization (see

Section 7.1.2, page 254, for details).

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c = initlist Assigns all elements of the initializer list initlist to c (since C++11)

c.assign(n,elem) Assigns n copies of element elem

c.assign(beg,end) Assigns the elements of the range [beg,end)

c.assign(initlist) Assigns all the elements of the initializer list initlist

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.29. Assignment Operations of Forward Lists

304 Chapter 7: STL Containers

Element Access

To access all elements of a forward list, you must use range-based for loops (see Section 3.1.4,

page 17), specific operations, or iterators. In contrast to lists, the only element you can access

directly is the first element, if any. For this reason, only front() is provided to access elements

directly (Table 7.30).

Operation Effect

c.front() Returns the first element (no check whether a first element exists)

Table 7.30. Direct Element Access of Forward Lists

As usual, this operation does not check whether the container is empty. If the container is empty,

calling front() results in undefined behavior. In addition, in multithreaded contexts, you need

synchronization mechanisms to ensure that coll is not modified between the check for its size and

the access to an element (see Section 18.4.3, page 984).

Iterator Functions

To access all elements of a forward list, you must use iterators. However, because you can traverse

elements only in forward order, the iterators are forward iterators, and no support for reverse iterators

is provided (Table 7.31).

Thus, you can’t call algorithms that require bidirectional iterators or random-access iterators.

All algorithms that manipulate the order of elements a lot, especially sorting algorithms, are in this

category. However, for sorting the elements, forward lists provide the special member function

sort() (see Section 8.8.1, page 422).

In addition, before_begin() and cbefore_begin() are provided to yield the position of a

virtual element before the first element, which is necessary to be able to modify the next element

even if the next element is the first element.

Operation Effect

c.begin() Returns a bidirectional iterator for the first element

c.end() Returns a bidirectional iterator for the position after the last element

c.cbegin() Returns a constant bidirectional iterator for the first element (since

C++11)

c.cend() Returns a constant bidirectional iterator for the position after the last

element (since C++11)

c.before_begin() Returns a forward iterator for the position before the first element

c.cbefore_begin() Returns a constant forward iterator for the position before the first

element

Table 7.31. Iterator Operations of Forward Lists

7.6 Forward Lists 305

Note that before_begin() and cbefore_begin() do not represent a valid position of a for-

ward list. Therefore, dereferencing these positions results in undefined behavior. Thus, using any

ordinary algorithm with before_begin() as first argument passed results in a runtime error:

// RUNTIME ERROR: before_begin() is only valid with ..._after() operations

std::copy (fwlist.before_begin(), fwlist.end(),

...);

Besides copying and assignments, the only valid operations for return values of before_begin()

are ++, ==, and !=.

Inserting and Removing Elements

Table 7.32 shows the operations provided for forward lists to insert and to remove elements. Due to

the nature of lists in general and forward lists in particular, we have to discuss them in detail.

First, the usual general hints apply:

• As usual when using the STL, you must ensure that the arguments are valid. Iterators must refer

to valid positions, and the beginning of a range must have a position that is not behind the end.

• Inserting and removing is faster if, when working with multiple elements, you use a single call

for all elements rather than multiple calls.

Then, as for lists, forward lists provide special implementations of the remove() algorithms (see

Section 11.7.1, page 575). These member functions are faster than the remove() algorithms because

they manipulate only internal pointers rather than the elements. For more details, see the description

of these operations for lists in Section 7.5.2, page 294.

Note that for all the insert, emplace, and erase member functions provided for forward lists,

you have a problem: They usually get a position of an element, where you have to insert a new

element or must delete. But this requires a modification of the preceding element, because there the

pointer to the next element has to get modified. For lists, you can just go backward to the previous

element to manipulate it, but for forward lists, you can’t. For this reason, the member functions

behave differently than for lists, which is reflected by the name of the member functions. All end

with _after, which means that they insert a new element after the one passed (i.e., they append) or

delete the element after the element passed.

In combination with before_begin() to ensure that the first element is covered, when you use

these member functions, a typical access of forward lists is as follows (see Figure 7.9):

std::forward_list<int> fwlist = { 1, 2, 3 };

// insert 77, 88, and 99 at the beginning:

fwlist.insert_after (fwlist.before_begin(), // position

{ 77, 88, 99 }); // values

Note that calling an _after member function with end() or cend() results in undefined behavior

because to append a new element at the end of a forward list, you have to pass the position of the

last element (or before_begin() if none):

// RUNTIME ERROR: appending element after end is undefined behavior

fwlist.insert_after(fwlist.end(),9999);

306 Chapter 7: STL Containers

Operation Effect

c.push_front(elem) Inserts a copy of elem at the beginning

c.pop_front() Removes the first element (does not return it)

c.insert_after(pos,elem) Inserts a copy of elem after iterator position pos and

returns the position of the new element

c.insert_after(pos,n,elem) Inserts n copies of elem after iterator position pos and

returns the position of the first new element (or pos if

there is no new element)

c.insert_after(pos,beg,end) Inserts a copy of all elements of the range [beg,end)
after iterator position pos and returns the position of the

first new element (or pos if there is no new element)

c.insert_after(pos,initlist) Inserts a copy of all elements of the initializer list initlist

after iterator position pos and returns the position of the

first new element (or pos if there is no new element)

c.emplace_after(pos,args...) Inserts a copy of an element initialized with args after

iterator position pos and returns the position of the new

element (since C++11)

c.emplace_front(args...) Inserts a copy of an element initialized with args at the

beginning (returns nothing; since C++11)

c.erase_after(pos) Removes the element after iterator position pos (returns

nothing)

c.erase_after(beg,end) Removes all elements of the range [beg,end) (returns

nothing)

c.remove(val) Removes all elements with value val

c.remove_if(op) Removes all elements for which op(elem) yields true

c.resize(num) Changes the number of elements to num (if size()

grows new elements are created by their default

constructor)

c.resize(num,elem) Changes the number of elements to num (if size()

grows new elements are copies of elem)

c.clear() Removes all elements (empties the container)

Table 7.32. Insert and Remove Operations of Forward Lists

fwlist: fwlist: 2 3 1

88 99 77

2 3 1

begin()

before_begin()

Figure 7.9. Inserting Elements at the Beginning of a Forward List

7.6 Forward Lists 307

Find and Remove or Insert

The drawbacks of having a singly linked list, where you can only traverse forward, gets even worse

when trying to find an element to insert or delete something there. The problem is that when you

find the element, you are too far, because to insert or delete something there you have to manipulate

the element before the element you are searching for. For this reason, you have to find an element

by determining whether the next element fits a specific criterion. For example:

// cont/forwardlistfind1.cpp

#include <forward_list>

#include "print.hpp"

using namespace std;

int main()

{

forward_list<int> list = { 1, 2, 3, 4, 5, 97, 98, 99 };

// find the position before the first even element

auto posBefore = list.before_begin();

for (auto pos=list.begin(); pos!=list.end(); ++pos, ++posBefore) {

if (*pos % 2 == 0) {

break; // element found

}

}

// and insert a new element in front of the first even element

list.insert_after(posBefore,42);

PRINT_ELEMENTS(list);

}

Here, pos iterates over the list to find a specific element, whereas posBefore is always before pos

to be able to return the position of the element before the element searched for (see Figure 7.10). So,

the program has the following output:

1 42 2 3 4 5 97 98 99

Alternatively, you can use the next() convenience function for iterators, which is available since

C++11 (see Section 9.3.2, page 443):

#include <iterator>

...

auto posBefore = list.before_begin();

for (; next(posBefore)!=list.end(); ++posBefore) {

if (*next(posBefore) % 2 == 0) {

break; // element found

}

}

308 Chapter 7: STL Containers

1 2 3 5 4 97 99 98 list:

begin()

before_begin()

++pos

++posBefore

Figure 7.10. Searching for a Position to Insert or Delete

If this is something you need more often, you might define your own algorithms to find a position

before the element that has a specific value or fulfills a specific condition:

// cont/findbefore.hpp

template <typename InputIterator, typename Tp>

inline InputIterator

find_before (InputIterator first, InputIterator last, const Tp& val)

{

if (first==last) {

return first;

}

InputIterator next(first);

++next;

while (next!=last && !(*next==val)) {

++next;

++first;

}

return first;

}

template <typename InputIterator, typename Pred>

inline InputIterator

find_before_if (InputIterator first, InputIterator last, Pred pred)

{

if (first==last) {

return first;

}

InputIterator next(first);

++next;

while (next!=last && !pred(*next)) {

++next;

++first;

}

return first;

}

7.6 Forward Lists 309

With these algorithms, you can use lambdas to find the corresponding position (for the complete

example, see cont/fwlistfind2.cpp):

// find the position before the first even element

auto posBefore = find_before_if (list.before_begin(), list.end(),

[] (int i) {

return i%2==0;

});

// and insert a new element in front of it

list.insert_after(posBefore,42);

You have to call find_before_if() with the position returned by before_begin(). Otherwise,

you skip the first element. To avoid undefined behavior if you pass begin(), the algorithms first

check whether the beginning of the range is equal to the end. A better approach would have been to

let forward lists provide corresponding member functions, but this is, unfortunately, not the case.

Splice Functions and Functions to Change the Order of Elements

As with lists, forward lists have the advantage that you can remove and insert elements at any position

in constant time. If you move elements from one container to another, this advantage doubles in

that you need to redirect only some internal pointers. For this reason, forward lists provide almost

the same member functions to splice lists or to change the order of elements. You can call these

operations to move elements inside a single list or between two lists, provided that the lists have the

same type. The only difference from lists is that splice_after() is provided instead of splice(),

because the position of the element in front of the element where the splice applies is passed.

Table 7.33 lists these functions. They are covered in detail in Section 8.8, page 420. The follow-

ing program demonstrates how to use the splice functions for forward lists. Here the first element

with value 3 in the forward list l1 is moved before the first element with value 99 in l2:

// cont/forwardlistsplice1.cpp

#include <forward_list>

#include "print.hpp"

using namespace std;

int main()

{

forward_list<int> l1 = { 1, 2, 3, 4, 5 };

forward_list<int> l2 = { 97, 98, 99 };

// find 3 in l1

auto pos1=l1.before_begin();

for (auto pb1=l1.begin(); pb1 != l1.end(); ++pb1, ++pos1) {

if (*pb1 == 3) {

break; // found

}

}

310 Chapter 7: STL Containers

// find 99 in l2

auto pos2=l2.before_begin();

for (auto pb2=l2.begin(); pb2 != l2.end(); ++pb2, ++pos2) {

if (*pb2 == 99) {

break; // found

}

}

// splice 3 from l1 to l2 before 99

l1.splice_after(pos2, l2, // destination

pos1); // source

PRINT_ELEMENTS(l1,"l1: ");

PRINT_ELEMENTS(l2,"l2: ");

}

Operation Effect

c.unique() Removes duplicates of consecutive elements with the

same value

c.unique(op) Removes duplicates of consecutive elements, for which

op() yields true

c.splice_after(pos,c2) Moves all elements of c2 to c right behind the iterator

position pos

c.splice_after(pos,c2,c2pos) Moves the element behind c2pos in c2 right after pos

of forward list c (c and c2 may be identical)

c.splice_after(pos,c2, Moves all elements between c2beg and c2end (both

c2beg,c2end) not included) in c2 right after pos of forward list c (c

and c2 may be identical)

c.sort() Sorts all elements with operator <

c.sort(op) Sorts all elements with op()

c.merge(c2) Assuming that both containers contain the elements

sorted, moves all elements of c2 into c so that all

elements are merged and still sorted

c.merge(c2,op) Assuming that both containers contain the elements

sorted by the sorting criterion op(), moves all elements

of c2 into c so that all elements are merged and still

sorted according to op()

c.reverse() Reverses the order of all elements

Table 7.33. Special Modifying Operations for Forward Lists

7.6 Forward Lists 311

First, in l1 we search for the position before the first element with value 3. Then, in l2 we search for

the position before the first element with value 99. Finally, with both positions splice_after() is

called, which just modifies the internal pointers in the lists (see Figure 7.11).

98 l2: 99 97

2 l1: 3 5 1 4

98 l2: 99 97

2 l1: 3 5 1 4

Figure 7.11. Effect of splice_after() with Forward Lists

Again, with our find_before() algorithms, the code looks a lot simpler:

// splice 3 from l1 to l2 before 99

l1.splice_after(l2.find_before(99), l2, // destination

l1.find_before(3)); // source

Note that source and destination for splice operations might be the same. Thus, you can move

elements inside a forward list. However, note that calling splice_after() with end() results in

undefined behavior, as all _after functions do with end():

// RUNTIME ERROR: move first element to the end is not possible that way

fwlist.splice_after(fwlist.end(), // destination position

fwlist, // source list

fwlist.begin()); // source position

7.6.3 Exception Handling

Forward lists give the same guarantees that lists give regarding exception handling, provided that the

corresponding member function is available. See Section 7.5.3, page 296, for details.

312 Chapter 7: STL Containers

7.6.4 Examples of Using Forward Lists

The following example shows the use of the special member functions for forward lists:

// cont/forwardlist1.cpp

#include <forward_list>

#include <iostream>

#include <algorithm>

#include <iterator>

#include <string>

using namespace std;

void printLists (const string& s, const forward_list<int>& l1,

const forward_list<int>& l2)

{

cout << s << endl;

cout << " list1: ";

copy (l1.cbegin(), l1.cend(), ostream_iterator<int>(cout," "));

cout << endl << " list2: ";

copy (l2.cbegin(), l2.cend(), ostream_iterator<int>(cout," "));

cout << endl;

}

int main()

{

// create two forward lists

forward_list<int> list1 = { 1, 2, 3, 4 };

forward_list<int> list2 = { 77, 88, 99 };

printLists ("initial:", list1, list2);

// insert six new element at the beginning of list2

list2.insert_after(list2.before_begin(),99);

list2.push_front(10);

list2.insert_after(list2.before_begin(), {10,11,12,13});

printLists ("6 new elems:", list1, list2);

// insert all elements of list2 at the beginning of list1

list1.insert_after(list1.before_begin(),

list2.begin(),list2.end());

printLists ("list2 into list1:", list1, list2);

// delete second element and elements after element with value 99

list2.erase_after(list2.begin());

7.6 Forward Lists 313

list2.erase_after(find(list2.begin(),list2.end(),

99),

list2.end());

printLists ("delete 2nd and after 99:", list1, list2);

// sort list1, assign it to list2, and remove duplicates

list1.sort();

list2 = list1;

list2.unique();

printLists ("sorted and unique:", list1, list2);

// merge both sorted lists into list1

list1.merge(list2);

printLists ("merged:", list1, list2);

}

The program has the following output:

initial:

list1: 1 2 3 4

list2: 77 88 99

6 new elems:

list1: 1 2 3 4

list2: 10 11 12 13 10 99 77 88 99

list2 into list1:

list1: 10 11 12 13 10 99 77 88 99 1 2 3 4

list2: 10 11 12 13 10 99 77 88 99

delete 2nd and after 99:

list1: 10 11 12 13 10 99 77 88 99 1 2 3 4

list2: 10 12 13 10 99

sorted and unique:

list1: 1 2 3 4 10 10 11 12 13 77 88 99 99

list2: 1 2 3 4 10 11 12 13 77 88 99

merged:

list1: 1 1 2 2 3 3 4 4 10 10 10 11 11 12 12 13 13 77 77 88 88 99 99 99

list2:

See Section 7.5.4, page 298, for a corresponding example using a list.

314 Chapter 7: STL Containers

7.7 Sets and Multisets

Set and multiset containers sort their elements automatically according to a certain sorting criterion.

The difference between the two types of containers is that multisets allow duplicates, whereas sets

do not (see Figure 7.12 and the earlier discussion on this topic in Chapter 6).

Set:

Multiset:

2 7 1 6 8 4 5 3

2 5 1 4 5 2 3 2

Figure 7.12. Sets and Multisets

To use a set or a multiset, you must include the header file <set>:

#include <set>

There, the types are defined as class templates inside namespace std:

namespace std {

template <typename T,

typename Compare = less<T>,

typename Allocator = allocator<T> >

class set;

template <typename T,

typename Compare = less<T>,

typename Allocator = allocator<T> >

class multiset;

}

The elements of a set or a multiset may have any type T that is comparable according to the sorting

criterion. The optional second template argument defines the sorting criterion. If a special sorting

criterion is not passed, the default criterion less is used. The function object less sorts the elements

by comparing them with operator < (see Section 10.2.1, page 487, for details about less). The

optional third template parameter defines the memory model (see Chapter 19). The default memory

model is the model allocator, which is provided by the C++ standard library.

The sorting criterion must define strict weak ordering, which is defined by the following four

properties:

7.7 Sets and Multisets 315

1. It has to be antisymmetric.

This means that for operator <: If x < y is true, then y < x is false.

This means that for a predicate op(): If op(x,y) is true, then op(y,x) is false.

2. It has to be transitive.

This means that for operator <: If x < y is true and y < z is true, then x < z is true.

This means that for a predicate op(): If op(x,y) is true and op(y,z) is true, then op(x,z)

is true.

3. It has to be irreflexive.

This means that for operator <: x < x is always false.

This means that for a predicate op(): op(x,x) is always false.

4. It has to have transitivity of equivalence, which means roughly: If a is equivalent to b and b is

equivalent to c, then a is equivalent to c.

This means that for operator <: If !(a<b) && !(b<a) is true and !(b<c) && !(c<b) is true

then !(a<c) && !(c<a) is true.

This means that for a predicate op(): If op(a,b), op(b,a), op(b,c), and op(c,b) all yield

false, then op(a,c) and op(c,a) yield false.

Note that this means that you have to distinguish between less and equal. A criterion such as operator

<= does not fulfill this requirement.

Based on these properties, the sorting criterion is also used to check equivalence. That is, two

elements are considered to be duplicates if neither is less than the other (or if both op(x,y) and

op(y,x) are false).

For multisets, the order of equivalent elements is random but stable. Thus, insertions and erasures

preserve the relative ordering of equivalent elements (guaranteed since C++11).

7.7.1 Abilities of Sets and Multisets

Like all standardized associative container classes, sets and multisets are usually implemented as

balanced binary trees (Figure 7.13). The standard does not specify this, but it follows from the

complexity of set and multiset operations.9

The major advantage of automatic sorting is that a binary tree performs well when elements with

a certain value are searched. In fact, search functions have logarithmic complexity. For example, to

search for an element in a set or a multiset of 1,000 elements, a tree search performed by a member

function needs, on average, one-fiftieth of the comparisons of a linear search (which is performed by

a search algorithm that iterates over all elements). See Section 2.2, page 10, for more details about

complexity.

However, automatic sorting also imposes an important constraint on sets and multisets: You may

not change the value of an element directly, because doing so might compromise the correct order.

9 In fact, sets and multisets are typically implemented as red-black trees, which are good for both changing the

number of elements and searching for elements. They guarantee at most two internal relinks on insertions and

that the longest path is at most twice as long as the shortest path to a leaf.

316 Chapter 7: STL Containers

7

4 9

2 5 8 11

1 3 6 10 12

Figure 7.13. Internal Structure of Sets and Multisets

Therefore, to modify the value of an element, you must remove the element having the old value and

insert a new element that has the new value. The interface reflects this behavior:

• Sets and multisets don’t provide operations for direct element access.

• Indirect access via iterators has the constraint that, from the iterator’s point of view, the element

value is constant.

7.7.2 Set and Multiset Operations

Create, Copy, and Destroy

Table 7.34 lists the constructors and destructors of sets and multisets.

You can define the sorting criterion in two ways:

1. As a template parameter. For example:

std::set<int,std::greater<int>> coll;

In this case, the sorting criterion is part of the type. Thus, the type system ensures that only

containers with the same sorting criterion can be combined. This is the usual way to specify the

sorting criterion. To be more precise, the second parameter is the type of the sorting criterion.

The concrete sorting criterion is the function object that gets created with the container. To

do this, the constructor of the container calls the default constructor of the type of the sorting

criterion. See Section 10.1.1, page 476, for an example that uses a user-defined sorting criterion.

2. As a constructor parameter. In this case, you might have a type for several sorting criteria

that allows having different initial values or states. This is useful when processing the sorting

criterion at runtime and when sorting criteria are needed that are different but of the same data

type. See Section 7.7.5, page 328, for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object less<>, is used,

which sorts the elements by using operator <.

Note that the sorting criterion is also used to check for equivalence of two elements in the same

container (i.e., to find duplicates). Thus, when the default sorting criterion is used, the check for

equivalence of two elements looks like this:

if (! (elem1<elem2 || elem2<elem1))

7.7 Sets and Multisets 317

Operation Effect

set c Default constructor; creates an empty set/multiset without any

elements

set c(op) Creates an empty set/multiset that uses op as the sorting criterion

set c(c2) Copy constructor; creates a copy of another set/multiset of the

same type (all elements are copied)

set c = c2 Copy constructor; creates a copy of another set/multiset of the

same type (all elements are copied)

set c(rv) Move constructor; creates a new set/multiset of the same type,

taking the contents of the rvalue rv (since C++11)

set c = rv Move constructor; creates a new set/multiset of the same type,

taking the contents of the rvalue rv (since C++11)

set c(beg,end) Creates a set/multiset initialized by the elements of the range

[beg,end)

set c(beg,end,op) Creates a set/multiset with the sorting criterion op initialized by

the elements of the range [beg,end)

set c(initlist) Creates a set/multiset initialized with the elements of initializer

list initlist (since C++11)

set c = initlist Creates a set/multiset initialized with the elements of initializer

list initlist (since C++11)

c.~set() Destroys all elements and frees the memory

Here, set may be one of the following types:

set Effect

set<Elem> A set that by default sorts with less<> (operator <)

set<Elem,Op> A set that by default sorts with Op

multiset<Elem> A multiset that by default sorts with less<> (operator <)

multiset<Elem,Op> A multiset that by default sorts with Op

Table 7.34. Constructors and Destructors of Sets and Multisets

This has three advantages:

1. You need to pass only one argument as the sorting criterion.

2. You don’t have to provide operator == for the element type.

3. You can have contrary definitions between equivalence and equality (however, this might be a

source of confusion).

Checking for equivalence in this way takes a bit more time because two comparisons might be

necessary to evaluate the previous expression. Note, however, that if the result of the first comparison

yields true, the second comparison is not evaluated.

318 Chapter 7: STL Containers

Note also that if two containers are compared by operator ==, the elements in both containers are

compared using their operator ==, which means that operator == has to be provided for the element

type.

The constructor for the beginning and the end of a range could be used to initialize the container

with elements from containers that have other types, from arrays, or from the standard input. See

Section 7.1.2, page 254, for details.

Nonmodifying Operations

Sets and multisets provide the usual nonmodifying operations to query the size and to make com-

parisons (Table 7.35).

Operation Effect

c.key_comp() Returns the comparison criterion

c.value_comp() Returns the comparison criterion for values as a whole (same as

key_comp())

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to

!(c1<c2))

Table 7.35. Nonmodifying Operations of Sets and Multisets

Comparisons are provided only for containers of the same type. Thus, the elements and the

sorting criterion must have the same types; otherwise, a type error occurs at compile time. For

example:

std::set<float> c1; // sorting criterion: std::less<>

std::set<float,std::greater<float> > c2;

...

if (c1 == c2) { // ERROR: different types

...

}

The check whether a container is less than another container is done by a lexicographical comparison

(see Section 11.5.4, page 548). To compare containers of different types (different sorting criteria),

you must use the comparing algorithms in Section 11.5.4, page 542.

7.7 Sets and Multisets 319

Special Search Operations

Because they are optimized for fast searching of elements, sets and multisets provide special search

functions (Table 7.36). These functions are special versions of general algorithms that have the

same name. You should always prefer the optimized versions for sets and multisets to achieve

logarithmic complexity instead of the linear complexity of the general algorithms. For example, a

search of a collection of 1,000 elements requires on average only 10 comparisons instead of 500 (see

Section 2.2, page 10).

Operation Effect

c.count(val) Returns the number of elements with value val

c.find(val) Returns the position of the first element with value val (or end() if

none found)

c.lower_bound(val) Returns the first position, where val would get inserted

(the first element >= val)

c.upper_bound(val) Returns the last position, where val would get inserted

(the first element > val)

c.equal_range(val) Returns a range with all elements with a value equal to val (i.e., the

first and last position, where val would get inserted)

Table 7.36. Special Search Operations of Sets and Multisets

The find() member function searches the first element that has the value that was passed as the

argument and returns its iterator position. If no such element is found, find() returns end() of the

container.

lower_bound() and upper_bound() return the first and last position, respectively, at which

an element with the passed value would be inserted. In other words, lower_bound() returns

the position of the first element that has the same or a greater value than the argument, whereas

upper_bound() returns the position of the first element with a greater value. equal_range()

returns both return values of lower_bound() and upper_bound() as a pair (type pair is intro-

duced in Section 5.1.1, page 60). Thus, equal_range() returns the range of elements that have the

same value as the argument. If lower_bound() or the first value of equal_range() is equal to

upper_bound() or the second value of equal_range(), no elements with the same value exist in

the set or multiset. Naturally, the range of elements having the same values could contain at most

one element in a set.

The following example shows how to use lower_bound(), upper_bound(), and

equal_range():

// cont/setrange1.cpp

#include <iostream>

#include <set>

using namespace std;

320 Chapter 7: STL Containers

int main ()

{

set<int> c;

c.insert(1);

c.insert(2);

c.insert(4);

c.insert(5);

c.insert(6);

cout << "lower_bound(3): " << *c.lower_bound(3) << endl;

cout << "upper_bound(3): " << *c.upper_bound(3) << endl;

cout << "equal_range(3): " << *c.equal_range(3).first << " "

<< *c.equal_range(3).second << endl;

cout << endl;

cout << "lower_bound(5): " << *c.lower_bound(5) << endl;

cout << "upper_bound(5): " << *c.upper_bound(5) << endl;

cout << "equal_range(5): " << *c.equal_range(5).first << " "

<< *c.equal_range(5).second << endl;

}

The output of the program is as follows:

lower_bound(3): 4

upper_bound(3): 4

equal_range(3): 4 4

lower_bound(5): 5

upper_bound(5): 6

equal_range(5): 5 6

If you use a multiset instead of a set, the program has the same output.

Assignments

As listed in Table 7.37, Sets and multisets provide only the fundamental assignment operations that

all containers provide (see Section 7.1.2, page 258).

For these operations, both containers must have the same type. In particular, the type of the

comparison criteria must be the same, although the comparison criteria themselves may be different.

See Section 7.7.5, page 328, for an example of different sorting criteria that have the same type. If

the criteria are different, they will also get assigned or swapped.

7.7 Sets and Multisets 321

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since C++11)

c = initlist Assigns all elements of the initializer list initlist to c (since C++11)

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.37. Assignment Operations of Sets and Multisets

Iterator Functions

Sets and multisets do not provide direct element access, so you have to use range-based for loops

(see Section 3.1.4, page 17) or iterators. Sets and multisets provide the usual member functions for

iterators (Table 7.38).

Operation Effect

c.begin() Returns a bidirectional iterator for the first element

c.end() Returns a bidirectional iterator for the position after the last element

c.cbegin() Returns a constant bidirectional iterator for the first element (since

C++11)

c.cend() Returns a constant bidirectional iterator for the position after the last

element (since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse

iteration (since C++11)

c.crend() Returns a constant reverse iterator for the position after the last

element of a reverse iteration (since C++11)

Table 7.38. Iterator Operations of Sets and Multisets

As with all associative container classes, the iterators are bidirectional iterators (see Section 9.2.4,

page 437). Thus, you can’t use them in algorithms that are provided only for random-access iterators,

such as algorithms for sorting or random shuffling.

More important is the constraint that, from an iterator’s point of view, all elements are consid-

ered constant. This is necessary to ensure that you can’t compromise the order of the elements by

changing their values. However, as a result, you can’t call any modifying algorithm on the elements

of a set or a multiset. For example, you can’t call the remove() algorithm, because it “removes”

by overwriting “removed” elements with the following elements (see Section 6.7.2, page 221, for

a detailed discussion of this problem). To remove elements in sets and multisets, you can use only

member functions provided by the container.

322 Chapter 7: STL Containers

Inserting and Removing Elements

Table 7.39 shows the operations provided for sets and multisets to insert and remove elements.

Operation Effect

c.insert(val) Inserts a copy of val and returns the position of the new

element and, for sets, whether it succeeded

c.insert(pos,val) Inserts a copy of val and returns the position of the new

element (pos is used as a hint pointing to where the insert

should start the search)

c.insert(beg,end) Inserts a copy of all elements of the range [beg,end)
(returns nothing)

c.insert(initlist) Inserts a copy of all elements in the initializer list initlist

(returns nothing; since C++11)

c.emplace(args...) Inserts a copy of an element initialized with args and

returns the position of the new element and, for sets,

whether it succeeded (since C++11)

c.emplace_hint(pos,args...) Inserts a copy of an element initialized with args and

returns the position of the new element (pos is used as a

hint pointing to where the insert should start the search)

c.erase(val) Removes all elements equal to val and returns the

number of removed elements

c.erase(pos) Removes the element at iterator position pos and returns

the following position (returned nothing before C++11)

c.erase(beg,end) Removes all elements of the range [beg,end) and returns

the following position (returned nothing before C++11)

c.clear() Removes all elements (empties the container)

Table 7.39. Insert and Remove Operations of Sets and Multisets

As usual when using the STL, you must ensure that the arguments are valid. Iterators must refer

to valid positions, and the beginning of a range must have a position that is not behind the end.

Inserting and removing is faster if, when working with multiple elements, you use a single call

for all elements rather than multiple calls.

For multisets, since C++11 it is guaranteed that insert(), emplace(), and erase() preserve

the relative ordering of equivalent elements, and that inserted elements are placed at the end of

existing equivalent values.

Note that the return types of the inserting functions insert() and emplace() differ as follows:

7.7 Sets and Multisets 323

• Sets provide the following interface:10

pair<iterator,bool> insert (const value_type& val);

iterator insert (const_iterator posHint,

const value_type& val);

template <typename... Args>

pair<iterator, bool> emplace (Args&&... args);

template <typename... Args>

iterator emplace_hint (const_iterator posHint,

Args&&... args);

• Multisets provide the following interface:10

iterator insert (const value_type& val);

iterator insert (const_iterator posHint,

const value_type& val);

template <typename... Args>

iterator emplace (Args&&... args);

template <typename... Args>

iterator emplace_hint (const_iterator posHint,

Args&&... args);

The difference in return types results because multisets allow duplicates, whereas sets do not. Thus,

the insertion of an element might fail for a set if it already contains an element with the same value.

Therefore, the return type for a set returns two values by using a pair structure (pair is discussed

in Section 5.1.1, page 60):

1. The member second of the pair structure returns whether the insertion was successful.

2. The member first of the pair structure returns the position of the newly inserted element or

the position of the still existing element.

In all other cases, the functions return the position of the new element or of the existing element if

the set already contains an element with the same value.

The following example shows how to use this interface to insert a new element into a set. It tries

to insert the element with value 3.3 into the set c:

std::set<double> c;

...

if (c.insert(3.3).second) {

std::cout << "3.3 inserted" << std::endl;

}

else {

std::cout << "3.3 already exists" << std::endl;

}

If you also want to process the new or old positions, the code gets more complicated:

10 Before C++11, only insert() was provided, and posHint had type iterator instead of const_iterator.

324 Chapter 7: STL Containers

// insert value and process return value

auto status = c.insert(value);

if (status.second) {

std::cout << value << " inserted as element "

}

else {

std::cout << value << " already exists as element "

}

std::cout << std::distance(c.begin(),status.first) + 1 << std::endl;

The output of two calls of this sequence might be as follows:

8.9 inserted as element 4

7.7 already exists as element 3

In this example, the type of status is as follows:

std::pair<std::set<float>::iterator,bool>

Note that the return types of the insert functions with an additional position parameter don’t differ.

These functions return a single iterator for both sets and multisets. However, these functions have the

same effect as the functions without the position parameter. They differ only in their performance.

You can pass an iterator position, but this position is processed as a hint to optimize performance. In

fact, if the element gets inserted right after the position that is passed as the first argument, the time

complexity changes from logarithmic to amortized constant (complexity is discussed in Section 2.2,

page 10). The fact that the return type for the insert functions with the additional position hint

doesn’t have the same difference as the insert functions without the position hint ensures that you

have one insert function that has the same interface for all container types. In fact, this interface is

used by general inserters. See Section 9.4.2, especially page 458, for details about inserters.

To remove an element that has a certain value, you simply call erase():

std::set<Elem> coll;

...

// remove all elements with passed value

coll.erase(value);

Note that this member function has a different name than remove() provided for lists (see Sec-

tion 7.5.2, page 294, for a discussion of remove()). It behaves differently in that it returns the

number of removed elements. When called for sets, it returns only 0 or 1.

If a multiset contains duplicates, you can’t use erase() to remove only the first element of these

duplicates. Instead, you can code as follows:

std::multiset<Elem> coll;

...

// remove first element with passed value

std::multiset<Elem>::iterator pos;

pos = coll.find(value);

if (pos != coll.end()) {

coll.erase(pos);

}

7.7 Sets and Multisets 325

Because it is faster, you should use the member function find() instead of the find() algorithm

here.

Note that before C++11, the erase() functions of associative containers returned nothing (had

return type void). The reason was performance. It might cost time to find and return the successor

in an associative container, because the container is implemented as a binary tree. However, this

greatly complicated code where you erase elements while iterating over them (see Section 7.8.2,

page 342).

Note also that for sets that use iterators as elements, calling erase() might be ambiguous

now. For this reason, C++11 gets fixed to provide overloads for both erase(iterator) and

erase(const_iterator).

For multisets, all insert(), emplace(), and erase() operations preserve the relative order of

equivalent elements. Since C++11, calling insert(val) or emplace(args...) guarantees that the

new element is inserted at the end of the range of equivalent elements.

7.7.3 Exception Handling

Sets and multisets are node-based containers, so any failure to construct a node simply leaves the

container as it was. Furthermore, because destructors in general don’t throw, removing a node can’t

fail.

However, for multiple-element insert operations, the need to keep elements sorted makes full

recovery from throws impractical. Thus, all single-element insert operations support commit-or-

rollback behavior. That is, they either succeed or have no effect. In addition, it is guaranteed that all

multiple-element delete operations always succeed or have no effect, provided that the comparison

criterion does not throw. If copying/assigning the comparison criterion may throw, swap() may

throw.

See Section 6.12.2, page 248, for a general discussion of exception handling in the STL.

7.7.4 Examples of Using Sets and Multisets

The following program demonstrates some abilities of sets:

// cont/set1.cpp

#include <iostream>

#include <set>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

// type of the collection:

// - no duplicates

// - elements are integral values

326 Chapter 7: STL Containers

// - descending order

set<int,greater<int>> coll1;

// insert elements in random order using different member functions

coll1.insert({4,3,5,1,6,2});

coll1.insert(5);

// print all elements

for (int elem : coll1) {

cout << elem << ’ ’;

}

cout << endl;

// insert 4 again and process return value

auto status = coll1.insert(4);

if (status.second) {

cout << "4 inserted as element "

<< distance(coll1.begin(),status.first) + 1 << endl;

}

else {

cout << "4 already exists" << endl;

}

// assign elements to another set with ascending order

set<int> coll2(coll1.cbegin(),coll1.cend());

// print all elements of the copy using stream iterators

copy (coll2.cbegin(), coll2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// remove all elements up to element with value 3

coll2.erase (coll2.begin(), coll2.find(3));

// remove all elements with value 5

int num;

num = coll2.erase (5);

cout << num << " element(s) removed" << endl;

// print all elements

copy (coll2.cbegin(), coll2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

}

7.7 Sets and Multisets 327

At first, an empty set is created and several elements are inserted by using different overloads of

insert():

set<int,greater<int>> coll1;

coll1.insert({4,3,5,1,6,2});

coll1.insert(5);

Note that the element with value 5 is inserted twice. However, the second insertion is ignored

because sets do not allow duplicates.

After printing all elements, the program tries again to insert the element 4. This time, it processes

the return values of insert() as discussed in Section 7.7.2, page 323.

The statement

set<int> coll2(coll1.cbegin(),coll1.cend());

creates a new set of ints with ascending order and initializes it with the elements of the old set.

Both containers have different sorting criteria, so their types differ, and you can’t assign or com-

pare them directly. However, you can use algorithms, which in general are able to handle different

container types as long as the element types are equal or convertible.

The following statement removes all elements up to the element with value 3:

coll2.erase (coll2.begin(), coll2.find(3));

Note that the element with value 3 is the end of the range, so it is not removed.

Finally, all elements with value 5 are removed:

int num;

num = coll2.erase (5);

cout << num << " element(s) removed" << endl;

The output of the whole program is as follows:

6 5 4 3 2 1

4 already exists

1 2 3 4 5 6

1 element(s) removed

3 4 6

For multisets, the same program (provided in cont/multiset1.cpp) looks a bit different and pro-

duces different results. First, in all cases type set has to get replaced by multiset (the header file

remains the same):

multiset<int,greater<int>> coll1;

...

multiset<int> coll2(coll1.cbegin(),coll1.cend());

In addition, the processing of the return value of insert() looks different. Sets allow no duplicates,

so insert() returns both the new position of the inserted element and whether the insertion was

successful:

328 Chapter 7: STL Containers

auto status = coll1.insert(4);

if (status.second) {

cout << "4 inserted as element "

<< distance(coll1.begin(),status.first) + 1 << endl;

}

else {

cout << "4 already exists" << endl;

}

For multisets, insert() only returns the new position (because multisets may contain duplicates,

the insertion can fail only if an exception gets thrown):

auto ipos = coll1.insert(4);

cout << "4 inserted as element "

<< distance(coll1.begin(),ipos) + 1 << endl;

The output of the program changes as follows:

6 5 4 3 2 1

4 already exists

1 2 3 4 5 6

1 element(s) removed

3 4 6

7.7.5 Example of Specifying the Sorting Criterion at Runtime

Normally, you define the sorting criterion as part of the type, by either passing it as a second template

argument or using the default sorting criterion less<>. Sometimes, however, you must process the

sorting criterion at runtime, or you may need different sorting criteria with the same data type. In

such cases, you need a special type for the sorting criterion: one that lets you pass your sorting

details at runtime. The following example program demonstrates how to do this:11

// cont/setcmp1.cpp

#include <iostream>

#include <set>

#include "print.hpp"

using namespace std;

// type for runtime sorting criterion

class RuntimeCmp {

public:

enum cmp_mode {normal, reverse};

¨11 Thanks to Daniel Krugler for details of this example.

7.7 Sets and Multisets 329

private:

cmp_mode mode;

public:

// constructor for sorting criterion

// - default criterion uses value normal

RuntimeCmp (cmp_mode m=normal) : mode(m) {

}

// comparison of elements

// - member function for any element type

template <typename T>

bool operator() (const T& t1, const T& t2) const {

return mode==normal ? t1<t2

: t2<t1;

}

// comparison of sorting criteria

bool operator== (const RuntimeCmp& rc) const {

return mode == rc.mode;

}

};

// type of a set that uses this sorting criterion

typedef set<int,RuntimeCmp> IntSet;

int main()

{

// create, fill, and print set with normal element order

// - uses default sorting criterion

IntSet coll1 = { 4, 7, 5, 1, 6, 2, 5 };

PRINT_ELEMENTS (coll1, "coll1: ");

// create sorting criterion with reverse element order

RuntimeCmp reverse_order(RuntimeCmp::reverse);

// create, fill, and print set with reverse element order

IntSet coll2(reverse_order);

coll2 = { 4, 7, 5, 1, 6, 2, 5 };

PRINT_ELEMENTS (coll2, "coll2: ");

// assign elements AND sorting criterion

coll1 = coll2;

coll1.insert(3);

PRINT_ELEMENTS (coll1, "coll1: ");

330 Chapter 7: STL Containers

// just to make sure...

if (coll1.value_comp() == coll2.value_comp()) {

cout << "coll1 and coll2 have the same sorting criterion"

<< endl;

}

else {

cout << "coll1 and coll2 have a different sorting criterion"

<< endl;

}

}

In this program, the class RuntimeCmp provides the general ability to specify, at runtime, the sort-

ing criterion for any type. Its default constructor sorts in ascending order, using the default value

normal. It also is possible to pass RuntimeCmp::reverse to sort in descending order.

The output of the program is as follows:

coll1: 1 2 4 5 6 7

coll2: 7 6 5 4 2 1

coll1: 7 6 5 4 3 2 1

coll1 and coll2 have the same sorting criterion

Note that coll1 and coll2 have the same type, which is not the case when passing less<> and

greater<> as sorting criteria. Note also that the assignment operator assigns the elements and

the sorting criterion; otherwise, an assignment would be an easy way to compromise the sorting

criterion.

7.8 Maps and Multimaps 331

7.8 Maps and Multimaps

Maps and multimaps are containers that manage key/value pairs as elements. These containers sort

their elements automatically, according to a certain sorting criterion that is used for the key. The

difference between the two is that multimaps allow duplicates, whereas maps do not (Figure 7.14).

Map:

Multimap:

2 3 4 7 6 5 1

1 2 3 4 3 3 1

Figure 7.14. Maps and Multimaps

To use a map or a multimap, you must include the header file <map>:

#include <map>

There, the types are defined as class templates inside namespace std:

namespace std {

template <typename Key, typename T,

typename Compare = less<Key>,

typename Allocator = allocator<pair<const Key,T> > >

class map;

template <typename Key, typename T,

typename Compare = less<Key>,

typename Allocator = allocator<pair<const Key,T> > >

class multimap;

}

The first template parameter is the type of the element’s key, and the second template parameter is

the type of the element’s associated value. The elements of a map or a multimap may have any types

Key and T that meet the following two requirements:

1. Both key and value must be copyable or movable.

2. The key must be comparable with the sorting criterion.

Note that the element type (value_type) is a pair <const Key, T>.

The optional third template parameter defines the sorting criterion. As for sets, this sorting criterion

must define a “strict weak ordering” (see Section 7.7, page 314). The elements are sorted according

to their keys, so the value doesn’t matter for the order of the elements. The sorting criterion is also

used to check for equivalence; that is, two elements are equal if neither key is less than the other.

332 Chapter 7: STL Containers

If a special sorting criterion is not passed, the default criterion less<> is used. The function object

less<> sorts the elements by comparing them with operator < (see Section 10.2.1, page 487, for

details about less).

For multimaps, the order of elements with equivalent keys is random but stable. Thus, insertions

and erasures preserve the relative ordering of equivalent elements (guaranteed since C++11).

The optional fourth template parameter defines the memory model (see Chapter 19). The default

memory model is the model allocator, which is provided by the C++ standard library.

7.8.1 Abilities of Maps and Multimaps

Like all standardized associative container classes, maps and multimaps are usually implemented

as balanced binary trees (Figure 7.15). The standard does not specify this, but it follows from the

complexity of the map and multimap operations. In fact, sets, multisets, maps, and multimaps

typically use the same internal data type. So, you could consider sets and multisets as special maps

and multimaps, respectively, for which the value and the key of the elements are the same objects.

Thus, maps and multimaps have all the abilities and operations of sets and multisets. Some minor

differences exist, however. First, their elements are key/value pairs. In addition, maps can be used

as associative arrays.

1 x 3 z 6 y

4 y

2 y 5 q

7 y

8 y 11 w

10 q

9 x

12 z

Figure 7.15. Internal Structure of Maps and Multimaps

Maps and multimaps sort their elements automatically, according to the element’s keys, and so have

good performance when searching for elements that have a certain key. Searching for elements that

have a certain value promotes bad performance. Automatic sorting imposes an important constraint

on maps and multimaps: You may not change the key of an element directly, because doing so might

compromise the correct order. To modify the key of an element, you must remove the element that

has the old key and insert a new element that has the new key and the old value (see Section 7.8.2,

page 339, for details). As a consequence, from the iterator’s point of view, the element’s key is

constant. However, a direct modification of the value of the element is still possible, provided that

the type of the value is not constant.

7.8 Maps and Multimaps 333

7.8.2 Map and Multimap Operations

Create, Copy, and Destroy

Table 7.40 lists the constructors and destructors of maps and multimaps.

Operation Effect

map c Default constructor; creates an empty map/multimap

without any elements

map c(op) Creates an empty map/multimap that uses op as the

sorting criterion

map c(c2) Copy constructor; creates a copy of another

map/multimap of the same type (all elements are copied)

map c = c2 Copy constructor; creates a copy of another

map/multimap of the same type (all elements are copied)

map c(rv) Move constructor; creates a new map/multimap of the

same type, taking the contents of the rvalue rv (since

C++11)

map c = rv Move constructor; creates a new map/multimap of the

same type, taking the contents of the rvalue rv (since

C++11)

map c(beg,end) Creates a map/multimap initialized by the elements of the

range [beg,end)

map c(beg,end,op) Creates a map/multimap with the sorting criterion op

initialized by the elements of the range [beg,end)

map c(initlist) Creates a map/multimap initialized with the elements of

initializer list initlist (since C++11)

map c = initlist Creates a map/multimap initialized with the elements of

initializer list initlist (since C++11)

c.~map() Destroys all elements and frees the memory

Here, map may be one of the following types:

map Effect

map<Key,Val> A map that by default sorts keys with less<> (operator <)

map<Key,Val,Op> A map that by default sorts keys with Op

multimap<Key,Val> A multimap that by default sorts keys with less<>

(operator <)

multimap<Key,Val,Op> A multimap that by default sorts keys with Op

Table 7.40. Constructors and Destructors of Maps and Multimaps

334 Chapter 7: STL Containers

You can define the sorting criterion in two ways:

1. As a template parameter. For example:

std::map<float,std::string,std::greater<float>> coll;

In this case, the sorting criterion is part of the type. Thus, the type system ensures that only

containers with the same sorting criterion can be combined. This is the usual way to specify the

sorting criterion. To be more precise, the third parameter is the type of the sorting criterion. The

concrete sorting criterion is the function object that gets created with the container. To do this,

the constructor of the container calls the default constructor of the type of the sorting criterion.

See Section 10.1.1, page 476, for an example that uses a user-defined sorting criterion.

2. As a constructor parameter. In this case, you might have a type for several sorting criteria, and

the initial value or state of the sorting criteria might differ. This is useful when processing the

sorting criterion at runtime or when sorting criteria are needed that are different but of the same

data type. A typical example is specifying the sorting criterion for string keys at runtime. See

Section 7.8.6, for a complete example.

If no special sorting criterion is passed, the default sorting criterion, function object less<>, is used,

which sorts the elements according to their key by using operator <. Again, the sorting criterion is

also used to check for equivalence of two elements in the same container (i.e., to find duplicates).

Only to compare two containers is operator == required.

You might prefer a type definition to avoid the boring repetition of the type whenever it is used:

typedef std::map<std::string,float,std::greater<std::string>>

StringFloatMap;

...

StringFloatMap coll;

The constructor for the beginning and the end of a range could be used to initialize the container

with elements from containers that have other types, from arrays, or from the standard input. See

Section 7.1.2, page 254, for details. However, the elements are key/value pairs, so you must ensure

that the elements from the source range have or are convertible into type pair<key,value>.

Nonmodifying and Special Search Operations

Maps and multimaps provide the usual nonmodifying operations: those that query size aspects and

make comparisons (Table 7.41).

Comparisons are provided only for containers of the same type. Thus, the key, the value, and

the sorting criterion must be of the same type. Otherwise, a type error occurs at compile time. For

example:

std::map<float,std::string> c1; // sorting criterion: less<>

std::map<float,std::string,std::greater<float> > c2;

...

if (c1 == c2) { // ERROR: different types

...

}

7.8 Maps and Multimaps 335

Operation Effect

c.key_comp() Returns the comparison criterion

c.value_comp() Returns the comparison criterion for values as a whole (an object that

compares the key in a key/value pair)

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2 (calls == for the elements)

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

c1 < c2 Returns whether c1 is less than c2

c1 > c2 Returns whether c1 is greater than c2 (equivalent to c2<c1)

c1 <= c2 Returns whether c1 is less than or equal to c2 (equivalent to !(c2<c1))

c1 >= c2 Returns whether c1 is greater than or equal to c2 (equivalent to

!(c1<c2))

Table 7.41. Nonmodifying Operations of Maps and Multimaps

Checking whether a container is less than another container is done by a lexicographical comparison

(see Section 11.5.4, page 548). To compare containers of different types (different sorting criterion),

you must use the comparing algorithms of Section 11.5.4, page 542.

Special Search Operations

As for sets and multisets, maps and multimaps provide special search member functions that perform

better because of their internal tree structure (Table 7.42).

Operation Effect

c.count(val) Returns the number of elements with key val

c.find(val) Returns the position of the first element with key val (or end() if

none found)

c.lower_bound(val) Returns the first position where an element with key val would get

inserted (the first element with a key >= val)

c.upper_bound(val) Returns the last position where an element with key val would get

inserted (the first element with a key > val)

c.equal_range(val) Returns a range with all elements with a key equal to val (i.e., the first

and last positions, where an element with key val would get inserted)

Table 7.42. Special Search Operations of Maps and Multimaps

The find() member function searches for the first element that has the appropriate key and returns

its iterator position. If no such element is found, find() returns end() of the container. You can’t

use the find() member function to search for an element that has a certain value. Instead, you have

336 Chapter 7: STL Containers

to use a general algorithm, such as the find_if() algorithm, or program an explicit loop. Here is

an example of a simple loop that does something with each element that has a certain value:

std::multimap<std::string,float> coll;

...

// do something with all elements having a certain value

std::multimap<std::string,float>::iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

if (pos->second == value) {

do_something();

}

}

Be careful when you want to use such a loop to remove elements. It might happen that you saw off

the branch on which you are sitting. See Section 7.8.2, page 342, for details about this issue.

Using the find_if() algorithm to search for an element that has a certain value is even more

complicated than writing a loop, because you have to provide a function object that compares the

value of an element with a certain value. See Section 7.8.5, page 350, for an example.

The lower_bound(), upper_bound(), and equal_range() functions behave as they do for

sets (see Section 7.7.2, page 319), except that the elements are key/value pairs.

Assignments

As listed in Table 7.43, maps and multimaps provide only the fundamental assignment operations

that all containers provide (see Section 7.1.2, page 258).

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since

C++11)

c = initlist Assigns all elements of the initializer list initlist to c

(since C++11)

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.43. Assignment Operations of Maps and Multimaps

For these operations, both containers must have the same type. In particular, the type of the compar-

ison criteria must be the same, although the comparison criteria themselves may be different. See

Section 7.8.6, page 351, for an example of different sorting criteria that have the same type. If the

criteria are different, they also get assigned or swapped.

7.8 Maps and Multimaps 337

Iterator Functions and Element Access

Maps and multimaps do not provide direct element access, so the usual way to access elements is via

range-based for loops (see Section 3.1.4, page 17) or iterators. An exception to that rule is that maps

provide at() and the subscript operator to access elements directly (see Section 7.8.3, page 343).

Table 7.44 lists the usual member functions for iterators that maps and multimaps provide.

Operation Effect

c.begin() Returns a bidirectional iterator for the first element

c.end() Returns a bidirectional iterator for the position after the last element

c.cbegin() Returns a constant bidirectional iterator for the first element (since

C++11)

c.cend() Returns a constant bidirectional iterator for the position after the last

element (since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse

iteration (since C++11)

c.crend() Returns a constant reverse iterator for the position after the last

element of a reverse iteration (since C++11)

Table 7.44. Iterator Operations of Maps and Multimaps

As for all associative container classes, the iterators are bidirectional (see Section 9.2.4, page 437).

Thus, you can’t use them in algorithms that are provided only for random-access iterators, such as

algorithms for sorting or random shuffling.

More important is the constraint that the key of all elements inside a map and a multimap is con-

sidered to be constant. Thus, the type of the elements is pair<const Key, T>. This is necessary

to ensure that you can’t compromise the order of the elements by changing their keys. However, you

can’t call any modifying algorithm if the destination is a map or a multimap. For example, you can’t

call the remove() algorithm, because it “removes” by overwriting “removed” elements with the fol-

lowing elements (see Section 6.7.2, page 221, for a detailed discussion of this problem). To remove

elements in maps and multimaps, you can use only member functions provided by the container.

The following is an example of element access via use range-based for loops:

std::map<std::string,float> coll;

...

for (auto elem& : coll) {

std::cout << "key: " << elem.first << "\t"

<< "value: " << elem.second << std::endl;

}

Inside the loop, elem becomes a reference referring to the actual element of the container coll

currently processed. Thus. elem has type pair<const std::string,float>. The expression

338 Chapter 7: STL Containers

elem.first yields the key of the actual element, whereas the expression elem.second yields the

value of the actual element.

The corresponding code using iterators, which has to be used before C++11, looks as follows:

std::map<std::string,float> coll;

...

std::map<std::string,float>::iterator pos;

for (pos = coll.begin(); pos != coll.end(); ++pos) {

std::cout << "key: " << pos->first << "\t"

<< "value: " << pos->second << std::endl;

}

Here, the iterator pos iterates through the sequence of pairs of const string and float, and you

have to use operator -> to access key and value of the actual element.12

Trying to change the value of the key results in an error:

elem.first = "hello"; // ERROR at compile time

pos->first = "hello"; // ERROR at compile time

However, changing the value of the element is no problem, as long as elem is declared as a noncon-

stant reference and the type of the value is not constant:

elem.second = 13.5; // OK

pos->second = 13.5; // OK

If you use algorithms and lambdas to operate with the elements of a map, you explicitly have to

declare the element type:

std::map<std::string,float> coll;

...

// add 10 to the value of each element:

std::for_each (coll.begin(), coll.end(),

[] (std::pair<const std::string,float>& elem) {

elem.second += 10;

});

Instead of using the following:

std::pair<const std::string,float>

you could use

std::map<std::string,float>::value_type

or

decltype(coll)::value_type

to declare the type of an element. See Section 7.8.5, page 345, for a complete example.

To change the key of an element, you have only one choice: You must replace the old element

with a new element that has the same value. Here is a generic function that does this:

12 pos->first is a shortcut for (*pos).first.

7.8 Maps and Multimaps 339

// cont/newkey.hpp

namespace MyLib {

template <typename Cont>

inline

bool replace_key (Cont& c,

const typename Cont::key_type& old_key,

const typename Cont::key_type& new_key)

{

typename Cont::iterator pos;

pos = c.find(old_key);

if (pos != c.end()) {

// insert new element with value of old element

c.insert(typename Cont::value_type(new_key,

pos->second));

// remove old element

c.erase(pos);

return true;

}

else {

// key not found

return false;

}

}

}

The insert() and erase() member functions are discussed in the next subsection.

To use this generic function, you simply pass the container, the old key, and the new key. For

example:

std::map<std::string,float> coll;

...

MyLib::replace_key(coll,"old key","new key");

It works the same way for multimaps.

Note that maps provide a more convenient way to modify the key of an element. Instead of

calling replace_key(), you can simply write the following:

// insert new element with value of old element

coll["new_key"] = coll["old_key"];

// remove old element

coll.erase("old_key");

See Section 7.8.3, page 343, for details about the use of the subscript operator with maps.

340 Chapter 7: STL Containers

Inserting and Removing Elements

Operation Effect

c.insert(val) Inserts a copy of val and returns the position of the new

element and, for maps, whether it succeeded

c.insert(pos,val) Inserts a copy of val and returns the position of the new

element (pos is used as a hint pointing to where the insert

should start the search)

c.insert(beg,end) Inserts a copy of all elements of the range [beg,end)
(returns nothing)

c.insert(initlist) Inserts a copy of all elements in the initializer list initlist

(returns nothing; since C++11)

c.emplace(args...) Inserts a copy of an element initialized with args and

returns the position of the new element and, for maps,

whether it succeeded (since C++11)

c.emplace_hint(pos,args...) Inserts a copy of an element initialized with args and

returns the position of the new element (pos is used as a

hint pointing to where the insert should start the search)

c.erase(val) Removes all elements equal to val and returns the number

of removed elements

c.erase(pos) Removes the element at iterator position pos and returns

the following position (returned nothing before C++11)

c.erase(beg,end) Removes all elements of the range [beg,end) and returns

the following position (returned nothing before C++11)

c.clear() Removes all elements (empties the container)

Table 7.45. Insert and Remove Operations of Maps and Multimaps

Table 7.45 shows the operations provided for maps and multimaps to insert and remove elements.

The remarks in Section 7.7.2, page 322, regarding sets and multisets apply here. In particular, the

return types of these operations have the same differences as they do for sets and multisets. However,

note that the elements here are key/value pairs. So, the use is getting a bit more complicated.

For multimaps, since C++11 it is guaranteed that insert(), emplace(), and erase() preserve

the relative ordering of equivalent elements, and that inserted elements are placed at the end of

existing equivalent values.

To insert a key/value pair, you must keep in mind that inside maps and multimaps, the key is

considered to be constant. You must provide either the correct type or you need to provide implicit

or explicit type conversions.

Since C++11, the most convenient way to insert elements is to pass them as an initializer list,

where the first entry is the key and the second entry is the value:

std::map<std::string,float> coll;

...

coll.insert({"otto",22.3});

7.8 Maps and Multimaps 341

Alternatively, there are three other ways to pass a value into a map or a multimap:

1. Use value_type. To avoid implicit type conversion, you could pass the correct type explic-

itly by using value_type, which is provided as a type definition by the container type. For

example:

std::map<std::string,float> coll;

...

coll.insert(std::map<std::string,float>::value_type("otto",

22.3));

or

coll.insert(decltype(coll)::value_type("otto",22.3));

2. Use pair<>. Another way is to use pair<> directly. For example:

std::map<std::string,float> coll;

...

// use implicit conversion:

coll.insert(std::pair<std::string,float>("otto",22.3));

// use no implicit conversion:

coll.insert(std::pair<const std::string,float>("otto",22.3));

In the first insert() statement, the type is not quite right, so it is converted into the real element

type. For this to happen, the insert() member function is defined as a member template (see

Section 3.2, page 34).

3. Use make_pair(). Probably the most convenient way before C++11 was to use make_pair(),

which produces a pair object that contains the two values passed as arguments (see Section 5.1.1,

page 65):

std::map<std::string,float> coll;

...

coll.insert(std::make_pair("otto",22.3));

Again, the necessary type conversions are performed by the insert() member template.

Here is a simple example of the insertion of an element into a map that also checks whether the

insertion was successful:

std::map<std::string,float> coll;

...

if (coll.insert(std::make_pair("otto",22.3)).second) {

std::cout << "OK, could insert otto/22.3" << std::endl;

}

else {

std::cout << "OOPS, could not insert otto/22.3 "

<< "(key otto already exists)" << std::endl;

}

See Section 7.7.2, page 322, for a discussion about the return values of the insert() functions and

more examples that also apply to maps. Note, again, that maps provide operator [] and at() as

another convenient way to insert (and set) elements with the subscript operator (see Section 7.8.3,

page 343).

342 Chapter 7: STL Containers

When using emplace() to insert a new element by passing the values for its construction, you

have to pass two lists of arguments: one for the key and one for the element. The most convenient

way to do this is as follows:

std::map<std::string,std::complex<float>> m;

m.emplace(std::piecewise_construct, // pass tuple elements as arguments

std::make_tuple("hello"), // elements for the key

std::make_tuple(3.4,7.8)); // elements for the value

See Section 5.1.1, page 63, for details of piecewise construction of pairs.

To remove an element that has a certain value, you simply call erase():

std::map<std::string,float> coll;

...

// remove all elements with the passed key

coll.erase(key);

This version of erase() returns the number of removed elements. When called for maps, the return

value of erase() can only be 0 or 1.

If a multimap contains duplicates and you want to remove only the first element of these dupli-

cates, you can’t use erase(). Instead, you could code as follows:

std::multimap<std::string,float> coll;

...

// remove first element with passed key

auto pos = coll.find(key);

if (pos != coll.end()) {

coll.erase(pos);

}

You should use the member function find() instead of the find() algorithm here because it is

faster (see an example with the find() algorithm in Section 7.3.2, page 277). However, you can’t

use the find() member functions to remove elements that have a certain value instead of a certain

key. See Section 7.8.2, page 335, for a detailed discussion of this topic.

When removing elements, be careful not to saw off the branch on which you are sitting. There is

a big danger that you will remove an element to which your iterator is referring. For example:

std::map<std::string,float> coll;

...

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

if (pos->second == value) {

coll.erase(pos); // RUNTIME ERROR !!!

}

}

Calling erase() for the element to which you are referring with pos invalidates pos as an iterator

of coll. Thus, if you use pos after removing its element without any reinitialization, all bets are

off. In fact, calling ++pos results in undefined behavior.

7.8 Maps and Multimaps 343

Since C++11, a solution is easy because erase() always returns the value of the following

element:

std::map<std::string,float> coll;

...

for (auto pos = coll.begin(); pos != coll.end();) {

if (pos->second == value) {

pos = coll.erase(pos); // possible only since C++11

}

else {

++pos;

}

}

Unfortunately, before C++11, it was a design decision not to return the following position, because

if not needed, it costs unnecessary time. However, this made programming tasks like this error prone

and complicated and even more costly in terms of time. Here is an example of the correct way to

remove elements to which an iterator refers before C++11:

typedef std::map<std::string,float> StringFloatMap;

StringFloatMap coll;

StringFloatMap::iterator pos;

...

// remove all elements having a certain value

for (pos = coll.begin(); pos != coll.end();) {

if (pos->second == value) {

coll.erase(pos++);

}

else {

++pos;

}

}

Note that pos++ increments pos so that it refers to the next element but yields a copy of its original

value. Thus, pos doesn’t refer to the element that is removed when erase() is called.

Note also that for sets that use iterators as elements, calling erase() might be ambiguous

now. For this reason, C++11 gets fixed to provide overloads for both erase(iterator) and

erase(const_iterator).

For multimaps, all insert(), emplace(), and erase() operations preserve the relative order

of equivalent elements. Since C++11, calling insert(val) or emplace(args...) guarantees that the

new element is inserted at the end of the range of equivalent elements.

7.8.3 Using Maps as Associative Arrays

Associative containers don’t typically provide abilities for direct element access. Instead, you must

use iterators. For maps, as well as for unordered maps (see Section 7.9, page 355), however, there

344 Chapter 7: STL Containers

is an exception to this rule. Nonconstant maps provide a subscript operator for direct element ac-

cess. In addition, since C++11, a corresponding member function at() is provided for constant and

nonconstant maps (see Table 7.46).

Operation Effect

c[key] Inserts an element with key, if it does not yet exist, and returns a reference to

the value of the element with key (only for nonconstant maps)

c.at(key) Returns a reference to the value of the element with key (since C++11)

Table 7.46. Direct Element Access of Maps

at() yields the value of the element with the passed key and throws an exception object of type

out_of_range if no such element is present.

For operator [], the index also is the key that is used to identify the element. This means that

for operator [], the index may have any type rather than only an integral type. Such an interface is

the interface of a so-called associative array.

For operator [], the type of the index is not the only difference from ordinary arrays. In addition,

you can’t have a wrong index. If you use a key as the index for which no element yet exists, a new

element gets inserted into the map automatically. The value of the new element is initialized by the

default constructor of its type. Thus, to use this feature, you can’t use a value type that has no default

constructor. Note that the fundamental data types provide a default constructor that initializes their

values to zero (see Section 3.2.1, page 37).

This behavior of an associative array has both advantages and disadvantages:

• The advantage is that you can insert new elements into a map with a more convenient interface.

For example:

std::map<std::string,float> coll; // empty collection

// insert "otto"/7.7 as key/value pair

// - first it inserts "otto"/float()

// - then it assigns 7.7

coll["otto"] = 7.7;

The statement

coll["otto"] = 7.7;

is processed here as follows:

1. Process coll["otto"] expression:

– If an element with key "otto" exists, the expression returns the value of the element by

reference.

– If, as in this example, no element with key "otto" exists, the expression inserts a new

element automatically, with "otto" as key and the value of the default constructor of the

value type as the element value. It then returns a reference to that new value of the new

element.

2. Assign value 7.7:

– The second part of the statement assigns 7.7 to the value of the new or existing element.

The map then contains an element with key "otto" and value 7.7.

7.8 Maps and Multimaps 345

• The disadvantage is that you might insert new elements by accident or mistake. For example, the

following statement does something you probably hadn’t intended or expected:

std::cout << coll["ottto"];

It inserts a new element with key "ottto" and prints its value, which is 0 by default. However,

it should have generated an error message telling you that you wrote "otto" incorrectly.

Note, too, that this way of inserting elements is slower than the usual way for maps, which is

described in Section 7.8.2, page 340. The reason is that the new value is first initialized by the

default value of its type, which is then overwritten by the correct value.

See Section 6.2.4, page 185, and Section 7.8.5, page 346, for some example code.

7.8.4 Exception Handling

Maps and multimaps provide the same behavior as sets and multisets with respect to exception safety.

This behavior is mentioned in Section 7.7.3, page 325.

7.8.5 Examples of Using Maps and Multimaps

Using Algorithms and Lambdas with a Map/Multimap

Section 6.2.3, page 183, introduced an example for an unordered multimap, which could also be used

with an ordinary (sorting) map or multimap. Here is a corresponding example using a map. This

program also demonstrates how to use algorithms and lambdas instead of range-based for loops:

// cont/map1.cpp

#include <map>

#include <string>

#include <iostream>

#include <algorithm>

using namespace std;

int main()

{

map<string,double> coll { { "tim", 9.9 },

{ "struppi", 11.77 }

} ;

// square the value of each element:

for_each (coll.begin(), coll.end(),

[] (pair<const string,double>& elem) {

elem.second *= elem.second;

});

346 Chapter 7: STL Containers

// print each element:

for_each (coll.begin(), coll.end(),

[] (const map<string,double>::value_type& elem) {

cout << elem.first << ": " << elem.second << endl;

});

}

As you can see, for a map, for_each() is called twice: once to square each element and once to

print each element. In the first call, the type of an element is declared explicitly; in the second call,

value_type is used. In the first call, the element is passed by reference to be able to modify its

value; in the second call, a constant reference is used to avoid unnecessary copies.

The program has the following output:

struppi: 138.533

tim: 98.01

Using a Map as an Associative Array

The following example shows the use of a map as an associative array. The map is used as a stock

chart. The elements of the map are pairs in which the key is the name of the stock and the value is

its price:

// cont/map2.cpp

#include <map>

#include <string>

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

// create map / associative array

// - keys are strings

// - values are floats

typedef map<string,float> StringFloatMap;

StringFloatMap stocks; // create empty container

// insert some elements

stocks["BASF"] = 369.50;

stocks["VW"] = 413.50;

stocks["Daimler"] = 819.00;

stocks["BMW"] = 834.00;

stocks["Siemens"] = 842.20;

7.8 Maps and Multimaps 347

// print all elements

StringFloatMap::iterator pos;

cout << left; // left-adjust values

for (pos = stocks.begin(); pos != stocks.end(); ++pos) {

cout << "stock: " << setw(12) << pos->first

<< "price: " << pos->second << endl;

}

cout << endl;

// boom (all prices doubled)

for (pos = stocks.begin(); pos != stocks.end(); ++pos) {

pos->second *= 2;

}

// print all elements

for (pos = stocks.begin(); pos != stocks.end(); ++pos) {

cout << "stock: " << setw(12) << pos->first

<< "price: " << pos->second << endl;

}

cout << endl;

// rename key from "VW" to "Volkswagen"

// - provided only by exchanging element

stocks["Volkswagen"] = stocks["VW"];

stocks.erase("VW");

// print all elements

for (pos = stocks.begin(); pos != stocks.end(); ++pos) {

cout << "stock: " << setw(12) << pos->first

<< "price: " << pos->second << endl;

}

}

The program has the following output:

stock: BASF price: 369.5

stock: BMW price: 834

stock: Daimler price: 819

stock: Siemens price: 842.2

stock: VW price: 413.5

stock: BASF price: 739

stock: BMW price: 1668

stock: Daimler price: 1638

348 Chapter 7: STL Containers

stock: Siemens price: 1684.4

stock: VW price: 827

stock: BASF price: 739

stock: BMW price: 1668

stock: Daimler price: 1638

stock: Siemens price: 1684.4

stock: Volkswagen price: 827

Using a Multimap as a Dictionary

The following example shows how to use a multimap as a dictionary:

// cont/multimap1.cpp

#include <map>

#include <string>

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

// create multimap as string/string dictionary

multimap<string,string> dict;

// insert some elements in random order

dict.insert ({ {"day","Tag"}, {"strange","fremd"},

{"car","Auto"}, {"smart","elegant"},

{"trait","Merkmal"}, {"strange","seltsam"},

{"smart","raffiniert"}, {"smart","klug"},

{"clever","raffiniert"} });

// print all elements

cout.setf (ios::left, ios::adjustfield);

cout << ’ ’ << setw(10) << "english "

<< "german " << endl;

cout << setfill(’-’) << setw(20) << ""

<< setfill(’ ’) << endl;

for (const auto& elem : dict) {

cout << ’ ’ << setw(10) << elem.first

<< elem.second << endl;

}

cout << endl;

7.8 Maps and Multimaps 349

// print all values for key "smart"

string word("smart");

cout << word << ": " << endl;

for (auto pos = dict.lower_bound(word);

pos != dict.upper_bound(word);

++pos) {

cout << " " << pos->second << endl;

}

// print all keys for value "raffiniert"

word = ("raffiniert");

cout << word << ": " << endl;

for (const auto& elem : dict) {

if (elem.second == word) {

cout << " " << elem.first << endl;

}

}

}

The program has the following output:

english german

car Auto

clever raffiniert

day Tag

smart elegant

smart raffiniert

smart klug

strange fremd

strange seltsam

trait Merkmal

smart:

elegant

raffiniert

klug

raffiniert:

clever

smart

See a corresponding example that uses an unordered multimap as a dictionary in Section 7.9.7,

page 383.

350 Chapter 7: STL Containers

Finding Elements with Certain Values

The following example shows how to use the global find_if() algorithm to find an element with

a certain value (in contrast to finding a key with a certain value):

// cont/mapfind1.cpp

#include <map>

#include <iostream>

#include <algorithm>

#include <utility>

using namespace std;

int main()

{

// map with floats as key and value

// - initializing keys and values are automatically converted to float

map<float,float> coll = { {1,7}, {2,4}, {3,2}, {4,3},

{5,6}, {6,1}, {7,3} };

// search an element with key 3.0 (logarithmic complexity)

auto posKey = coll.find(3.0);

if (posKey != coll.end()) {

cout << "key 3.0 found ("

<< posKey->first << ":"

<< posKey->second << ")" << endl;

}

// search an element with value 3.0 (linear complexity)

auto posVal = find_if(coll.begin(),coll.end(),

[] (const pair<float,float>& elem) {

return elem.second == 3.0;

});

if (posVal != coll.end()) {

cout << "value 3.0 found ("

<< posVal->first << ":"

<< posVal->second << ")" << endl;

}

}

The output of the program is as follows:

key 3.0 found (3:2)

value 3.0 found (4:3)

7.8 Maps and Multimaps 351

7.8.6 Example with Maps, Strings, and Sorting Criterion

at Runtime

The example here is for advanced programmers rather than STL beginners. You can take it as an

example of both the power and the problems of the STL. In particular, this example demonstrates

the following techniques:

• How to use maps, including the associative array interface

• How to write and use function objects

• How to define a sorting criterion at runtime

• How to compare strings in a case-insensitive way

// cont/mapcmp1.cpp

#include <iostream>

#include <iomanip>

#include <map>

#include <string>

#include <algorithm>

#include <cctype>

using namespace std;

// function object to compare strings

// - allows you to set the comparison criterion at runtime

// - allows you to compare case insensitive

class RuntimeStringCmp {

public:

// constants for the comparison criterion

enum cmp_mode {normal, nocase};

private:

// actual comparison mode

const cmp_mode mode;

// auxiliary function to compare case insensitive

static bool nocase_compare (char c1, char c2) {

return toupper(c1) < toupper(c2);

}

public:

// constructor: initializes the comparison criterion

RuntimeStringCmp (cmp_mode m=normal) : mode(m) {

}

// the comparison

bool operator() (const string& s1, const string& s2) const {

352 Chapter 7: STL Containers

if (mode == normal) {

return s1<s2;

}

else {

return lexicographical_compare (s1.begin(), s1.end(),

s2.begin(), s2.end(),

nocase_compare);

}

}

};

// container type:

// - map with

// - string keys

// - string values

// - the special comparison object type

typedef map<string,string,RuntimeStringCmp> StringStringMap;

// function that fills and prints such containers

void fillAndPrint(StringStringMap& coll);

int main()

{

// create a container with the default comparison criterion

StringStringMap coll1;

fillAndPrint(coll1);

// create an object for case-insensitive comparisons

RuntimeStringCmp ignorecase(RuntimeStringCmp::nocase);

// create a container with the case-insensitive comparisons criterion

StringStringMap coll2(ignorecase);

fillAndPrint(coll2);

}

void fillAndPrint(StringStringMap& coll)

{

// insert elements in random order

coll["Deutschland"] = "Germany";

coll["deutsch"] = "German";

coll["Haken"] = "snag";

coll["arbeiten"] = "work";

coll["Hund"] = "dog";

7.8 Maps and Multimaps 353

coll["gehen"] = "go";

coll["Unternehmen"] = "enterprise";

coll["unternehmen"] = "undertake";

coll["gehen"] = "walk";

coll["Bestatter"] = "undertaker";

// print elements

cout.setf(ios::left, ios::adjustfield);

for (const auto& elem : coll) {

cout << setw(15) << elem.first << " "

<< elem.second << endl;

}

cout << endl;

}

In the program, main() creates two containers and calls fillAndPrint() for them, which fills

these containers with the same elements and prints their contents. However, the containers have two

different sorting criteria:

1. coll1 uses the default function object of type RuntimeStringCmp, which compares the ele-

ments by using operator <.

2. coll2 uses a function object of type RuntimeStringCmp, which is initialized by value nocase

of class RuntimeStringCmp. nocase forces this function object to sort strings in a case-

insensitive way.

The program has the following output:

Bestatter undertaker

Deutschland Germany

Haken snag

Hund dog

Unternehmen enterprise

arbeiten work

deutsch German

gehen walk

unternehmen undertake

arbeiten work

Bestatter undertaker

deutsch German

Deutschland Germany

gehen walk

Haken snag

Hund dog

Unternehmen undertake

354 Chapter 7: STL Containers

The first block of the output prints the contents of the first container that compares with operator <.

The output starts with all uppercase keys, followed by all lowercase keys.

The second block prints all case-insensitive items, so the order changed. But note that the second

block has one item less because the uppercase word “Unternehmen” is, from a case-insensitive

point of view, equal to the lowercase word “unternehmen,”13 and we use a map that does not

allow duplicates according to its comparison criterion. Unfortunately the result is a mess because

the German key, initialized by is the translation for “enterprise,” got the value “undertake.” So a

multimap should probably be used here. Doing so makes sense because a multimap is the typical

container for dictionaries.

13 In German, all nouns are written with an initial capital letter, whereas all verbs are written in lowercase

letters.

7.9 Unordered Containers 355

7.9 Unordered Containers

The hash table, one important data structure for collections, was not part of the first version of the

C++ standard library. They were not part of the original STL and the committee decided that the

proposal for their inclusion in C++98 came too late. (At some point you have to stop introducing

features and focus on the details. Otherwise, you never finish the work.) However, with TR1,

containers with the characteristics of hash tables finally came into the standard.

Nevertheless, even before TR1, several implementations of hash tables were available in the C++

community. Libraries typically provided four kinds of hash tables: hash_set, hash_multiset,

hash_map, and hash_multimap. However, those hash tables have been implemented slightly differ-

ently. With TR1, a consolidated group of hash table-based containers was introduced. The features

provided for the standardized classes combined existing implementations and didn’t match any of

them completely. To avoid name clashes, therefore, different class names were chosen. The decision

was to provide all the existing associative containers with the prefix unordered_. This also demon-

strates the most important difference between ordinary and the new associative containers: With the

hash table-based implementations, the elements have no defined order. See [N1456:HashTable] for

details about the design decisions for all the unordered containers.

Strictly speaking, the C++ standard library calls unordered containers “unordered associative

containers.” However, I will just use “unordered containers” when I refer to them. With “associative

containers,” I still refer to the “old” associative containers, which are provided since C++98 and

implemented as binary trees (set, multiset, map, and multimap).

Unordered Set/Multiset: Unordered Map/Multimap:

Figure 7.16. Unordered Containers

Conceptionally, unordered containers contain all the elements you insert in an arbitrary order

(see Figure 7.16). That is, you can consider the container to be a bag: you can put in elements,

but when you open the bag to do something with all the elements, you access them in a random

order. So, in contrast with (multi)sets and (multi)maps, there is no sorting criterion; in contrast with

sequence containers, you have no semantics to put an element into a specific position.

As with associative containers, the individual classes differ as follows:

• Unordered sets and multisets store single values of a specific type, whereas in unordered maps

and multimaps, the elements are key/value pairs, where the key is used to store and find a specific

element, including its associated value.

• Unordered sets and maps allow no duplicates, whereas unordered multisets and multimaps do.

356 Chapter 7: STL Containers

To use an unordered set or multiset, you must include the header file <unordered_set>. To use an

unordered map or multimap, you must include the header file <unordered_map>:

#include <unordered_set>

#include <unordered_map>

There, the types are defined as class templates inside namespace std:

namespace std {

template <typename T,

typename Hash = hash<T>,

typename EqPred = equal_to<T>,

typename Allocator = allocator<T> >

class unordered_set;

template <typename T,

typename Hash = hash<T>,

typename EqPred = equal_to<T>,

typename Allocator = allocator<T> >

class unordered_multiset;

template <typename Key, typename T,

typename Hash = hash<T>,

typename EqPred = equal_to<T>,

typename Allocator = allocator<pair<const Key, T> > >

class unordered_map;

template <typename Key, typename T,

typename Hash = hash<T>,

typename EqPred = equal_to<T>,

typename Allocator = allocator<pair<const Key, T> > >

class unordered_multimap;

}

The elements of an unordered set or multiset may have any type T that is comparable.

For unordered maps and multimaps, the first template parameter is the type of the element’s key,

and the second template parameter is the type of the element’s associated value. The elements of

an unordered map or an unordered multimap may have any types Key and T that meet the following

two requirements:

1. Both key and value must be copyable or movable.

2. The key must be comparable with the equivalence criterion.

Note that the element type (value_type) is a pair<const Key,T>.

The optional second/third template parameter defines the hash function. If a special hash function

is not passed, the default hash function hash<> is used, which is provided as a function object in

<functional> for all integral types, all floating-point types, pointers, strings, and some special

7.9 Unordered Containers 357

types.14 For all other value types, you must pass your own hash function, which is explained in

Section 7.9.2, page 363, and Section 7.9.7, page 377.

The optional third/fourth template parameter defines an equivalence criterion: a predicate that is

used to find elements. It should return whether two values are equal. If a special compare criterion

is not passed, the default criterion equal_to<> is used, which compares the elements by comparing

them with operator == (see Section 10.2.1, page 487, for details about equal_to<>).

The optional fourth/fifth template parameter defines the memory model (see Chapter 19). The

default memory model is the model allocator, which is provided by the C++ standard library.

7.9.1 Abilities of Unordered Containers

All standardized unordered container classes are implemented as hash tables, which nonetheless

still have a variety of implementation options. As usual, the C++ standard library does not spec-

ify all these implementation details to allow a variety of possible implementation options, but a

few of the specified abilities of unordered containers are based on the following assumptions (see

[N1456:HashTable]):

• The hash tables use the “chaining” approach, whereby a hash code is associated with a linked

list. (This technique, also called “open hashing” or “closed addressing,” should not be confused

with “open addressing” or “closed hashing.”)

• Whether these linked lists are singly or doubly linked is open to the implementers. For this

reason, the standard guarantees only that the iterators are “at least” forward iterators.

• Various implementation strategies are possible for rehashing:

– With the traditional approach, a complete reorganization of the internal data happens from

time to time as a result of a single insert or erase operation.

– With incremental hashing, a resizing of the number of bucket or slots is performed gradually,

which is especially useful in real-time environments, where the price of enlarging a hash table

all at once can be too high.

Unordered containers allow both strategies and give no guarantee that conflicts with either of

them.

Figure 7.17 shows the typical internal layout of an unordered set or multiset according to the minimal

guarantees given by the C++ standard library. For each value to store, the hash function maps it to a

bucket (slot) in the hash table. Each bucket manages a singly linked list containing all the elements

for which the hash function yields the same value.

Figure 7.18 shows the typical internal layout of an unordered map or multimap according to

the minimal guarantees given by the C++ standard library. For each element to store, which is a

key/value pair, the hash function maps the value of the key to a bucket (slot) in the hash table. Each

bucket manages a singly linked list containing all the elements for which the hash function yields

the same value.

The major advantage of using a hash table internally is its incredible running-time behavior.

Assuming that the hashing strategy is well chosen and well implemented, you can guarantee amor-

14 error_code, thread::id, bitset<>, and vector<bool>

358 Chapter 7: STL Containers

hashfunc()

Figure 7.17. Internal Structure of Unordered Sets and Multisets

hashfunc()

Figure 7.18. Internal Structure of Unordered Maps and Multimaps

tized constant time for insertions, deletions, and element search (“amortized” because the occasional

rehashing happens that occurs can be a large operation with a linear complexity).

The expected behavior of nearly all the operations on unordered containers, including copy con-

struction and assignment, element insertion and lookup, and equivalence comparison, depends on

the quality of the hash function. If the hash function generates equal values for different elements,

7.9 Unordered Containers 359

which also happens if an unordered container that allows duplicates is populated with equivalent

values or keys, any hash table operation results in poor runtime performance. This is a fault not so

much of the data structure itself but rather of its use by unenlightened clients.

Unordered containers also have some disadvantages over ordinary associative containers:

• Unordered containers don’t provide operators <, >, <=, and >= to order multiple instances of

these containers. However, == and != are provided (since C++11).

• lower_bound() and upper_bound() are not provided.

• Because the iterators are guaranteed only to be forward iterators, reverse iterators, including

rbegin(), rend(), crbegin(), and crend(), are not supported, and you can’t use algorithms

that require bidirectional iterators, or at least this is not portable.

Because the (key) value of an element specifies its position — in this case, its bucket entry — you

are not allowed to modify the (key) value of an element directly. Therefore, much as with associative

containers, to modify the value of an element, you must remove the element that has the old value

and insert a new element that has the new value. The interface reflects this behavior:

• Unordered containers don’t provide operations for direct element access.

• Indirect access via iterators has the constraint that, from the iterator’s point of view, the element’s

(key) value is constant.

As a programmer, you can specify parameters that influence the behavior of the hash table:

• You can specify the minimum number of buckets.

• You can (and sometimes have to) provide your own hash function.

• You can (and sometimes have to) provide your own equivalence criterion: a predicate that is used

to find the right element among all entries in the bucket lists.

• You can specify a maximum load factor, which leads to automatic rehashing when it is exceeded.

• You can force rehashing.

But you can’t influence the following behavior:

• The growth factor, which is the factor automatic rehashing uses to grow or shrink the list of

buckets

• The minimum load factor, which is used to force rehashing when the number of elements in the

container shrinks

Note that rehashing is possible only after a call to insert(), rehash(), reserve(), or clear().

This is a consequence of the guarantee that erase() never invalidates iterators, references, and

pointers to the elements. Thus, if you delete hundreds of elements, the bucket size will not change.

But if you insert one element afterward, the bucket size might shrink.

Also note that in containers that support equivalent keys — unordered multisets and multimaps

— elements with equivalent keys are adjacent to each other when iterating over the elements of the

container. Rehashing and other operations that internally change the order of elements preserve the

relative order of elements with equivalent keys.

7.9.2 Creating and Controlling Unordered Containers

Hash tables are pretty complicated data structures. For this reason, you have a lot of abilities to

define or query their behavior.

360 Chapter 7: STL Containers

Create, Copy, and Destroy

Table 7.47 lists the constructors and destructors of unordered associative containers. Table 7.48 lists

the types Unord that can be used with these constructors and destructors.

Operation Effect

Unord c Default constructor; creates an empty unordered

container without any elements

Unord c(bnum) Creates an empty unordered container that internally

uses at least bnum buckets

Unord c(bnum,hf) Creates an empty unordered container that internally

uses at least bnum buckets and hf as hash function

Unord c(bnum,hf,cmp) Creates an empty unordered container that internally

uses at least bnum buckets, hf as hash function, and cmp

as predicate to identify equal values

Unord c(c2) Copy constructor; creates a copy of another unordered

container of the same type (all elements are copied)

Unord c = c2 Copy constructor; creates a copy of another unordered

container of the same type (all elements are copied)

Unord c(rv) Move constructor; creates an unordered container,

taking the contents of the rvalue rv (since C++11)

Unord c = rv Move constructor; creates an unordered container,

taking the contents of the rvalue rv (since C++11)

Unord c(beg,end) Creates an unordered container initialized by the

elements of the range [beg,end)

Unord c(beg,end,bnum) Creates an unordered container initialized by the

elements of the range [beg,end) that internally uses at

least bnum buckets

Unord c(beg,end,bnum,hf) Creates an unordered container initialized by the

elements of the range [beg,end) that internally uses at

least bnum buckets and hf as hash function

Unord c(beg,end,bnum,hf,cmp) Creates an unordered container initialized by the

elements of the range [beg,end) that internally uses at

least bnum buckets, hf as hash function, and cmp as

predicate to identify equal values

Unord c(initlist) Creates an unordered unordered container initialized by

the elements of the initializer list initlist

Unord c = initlist Creates an unordered unordered container initialized by

the elements of the initializer list initlist

c.~Unord() Destroys all elements and frees the memory

Table 7.47. Constructors and Destructors of Unordered Containers

7.9 Unordered Containers 361

Unord Effect

unordered_set<Elem> An unordered set that by default hashes with

hash<> and compares equal_to<> (operator

==)

unordered_set<Elem,Hash> An unordered set that by default hashes with

Hash and compares equal_to<> (operator ==)

unordered_set<Elem,Hash,Cmp> An unordered set that by default hashes with

Hash and compares with Cmp

unordered_multiset<Elem> An unordered multiset that by default hashes

with hash<> and compares equal_to<>

(operator ==)

unordered_multiset<Elem,Hash> An unordered multiset that by default hashes

with Hash and compares equal_to<> (operator

==)

unordered_multiset<Elem,Hash,Cmp> An unordered multiset that by default hashes

with Hash and compares with Cmp

unordered_map<Key,T> An unordered map that by default hashes with

hash<> and compares equal_to<> (operator

==)

unordered_map<Key,T,Hash> An unordered map that by default hashes with

Hash and compares equal_to<> (operator ==)

unordered_map<Key,T,Hash,Cmp> An unordered map that by default hashes with

Hash and compares with Cmp

unordered_multimap<Key,T> An unordered multimap that by default hashes

with hash<> and compares equal_to<>

(operator ==)

unordered_multimap<Key,T,Hash> An unordered multimap that by default hashes

with Hash and compares equal_to<> (operator

==)

unordered_multimap<Key,T,Hash,Cmp> An unordered multimap that by default hashes

with Hash and compares with Cmp

Table 7.48. Possible Types Unord of Unordered Containers

For the construction, you have multiple abilities to pass arguments. On one hand, you can pass

values as initial elements:

• An existing container of the same type (copy constructor)

• All elements of a range [begin,end)

• All elements of an initializer list

On the other hand, you can pass arguments that influence the behavior of the unordered container:

• The hash function (either as template or as constructor argument)

• The equivalence criterion (either as template or as constructor argument)

• The initial number of buckets (as constructor argument)

362 Chapter 7: STL Containers

Note that you can’t specify the maximum load factor as part of the type or via a constructor argument,

although this is something you might often want to set initially. To specify the maximum load factor,

you have to call a member function right after construction (see Table 7.49):

std::unordered_set<std::string> coll;

coll.max_load_factor(0.7);

The argument for max_load_factor() has to be a float. In general, a value between 0.7 and

0.8 provides a good compromise between speed and memory consumption. Note that the default

maximum load factor is 1.0, which means that, usually, collisions apply before rehash happens. For

this reason, if speed is an issue, you should always explicitly set the maximum load factor.

Layout Operations

Unordered containers also provide operations to query and influence the internal layout. Table 7.49

lists these operations.

Operation Effect

c.hash_function() Returns the hash function

c.key_eq() Returns the equivalence predicate

c.bucket_count() Returns the current number of buckets

c.max_bucket_count() Returns the maximum number of buckets possible

c.load_factor() Returns the current load factor

c.max_load_factor() Returns the current maximum load factor

c.max_load_factor(val) Sets the maximum load factor to val

c.rehash(bnum) Rehashes the container so that it has a bucket size of at least

bnum

c.reserve(num) Rehashes the container so that is has space for at least num

elements (since C++11)

Table 7.49. Layout Operations of Unordered Containers

Besides max_load_factor(), the member functions rehash() and reserve() are important.

They provide the functionality to rehash an unordered container (i.e., change the number of buckets)

with a slightly different interface: Originally, with TR1, only rehash() was provided, which is a

request to provide a hash table with a bucket size of at least the size passed. The problem was that

with this interface, you still had to take the maximum load factor into account. If the maximum

load factor is 0.7 and you want to be prepared for 100 elements, you have to divide 100 by 0.7

to compute the size that does not cause rehashing as long as no more than 100 elements have been

inserted. That is, you have to pass 143 to rehash() to avoid further rehashing for up to 100

elements. With reserve(), this computing is done internally, so you can simply pass the number

of elements the hash table should be prepared for:

coll.rehash(100); // prepare for 100/max_load_factor() elements

coll.reserve(100); // prepare for 100 elements (since C++11)

7.9 Unordered Containers 363

With bucket_count(), you can query the number of buckets an unordered container currently has.

This value can be used for a number of member functions that provide a “bucket interface” you can

use to inspect the exact internal state of an unordered container. See Section 7.9.4, page 374, for

more details about and Section 7.9.7, page 380, for an example of inspecting the internal layout of

an unordered container with the bucket interface.

Providing Your Own Hash Function

All hash tables use a hash function, which maps the values of the elements that you put into the

container to a specific bucket. The goal is that two equal values always yield the same bucket index,

whereas for different values, different bucket entries ideally should be processed. For any range of

passed values, the hash function should provide a good distribution of hash values.

The hash function has to be a function or a function object that takes a value of the element type

as parameter and returns a value of type std::size_t. Thus, the current number of buckets is not

taken into account. Mapping the return value to the range of valid bucket indexes is done internally

in the container. Thus, your goal is to provide a function that maps the different element values

equally distributed in the range [0,size_t).

Here is an example of how to provide your own hash function:

#include <functional>

class Customer {

...

};

class CustomerHash

{

public:

std::size_t operator() (const Customer& c) const {

return ...

}

};

std::unordered_set<Customer,CustomerHash> custset;

Here, CustomerHash is a function object that defines the hash function for class Customer.

Instead of passing a function object to the type of the container, you can also pass a hash function

as construction argument. Note, however, that the template type for the hash function must be set

accordingly:

std::size_t customer_hash_func (const Customer& c)

{

return ...

};

std::unordered_set<Customer,std::size_t(*)(const Customer&)>

custset(20,customer_hash_func);

364 Chapter 7: STL Containers

Here, customer_hash_func() is passed as second constructor argument with its type “pointer to

a function taking a Customer and returning a std::size_t” passed as second template argument.

If a special hash function is not passed, the default hash function hash<> is used, which is

provided as a function object in <functional> for “common” types: all integral types, all floating-

point types, pointers, strings, and some special types.15 For all other types, you have to provide your

own hash function.

Providing a good hash function is trickier than it sounds. As a rule of thumb, you might use the

default hash functions to specify your own hash functions. A naive approach would be to simply add

all hash values for those attributes that are relevant for the hash function. For example:

class CustomerHash

{

public:

std::size_t operator() (const Customer& c) const {

return std::hash<std::string>()(c.fname) +

std::hash<std::string>()(c.lname) +

std::hash<long>()(c.no);

}

};

Here, the hash value returned is just the sum of the hash value for the Customer’s attributes fname,

lname, and no. If the predefined hash functions for the types of these attributes work fine for the

given values, the result is the sum of three values in the range [0,std::size_t). According to the

common overflow rules, the resulting value should then also be reasonably well distributed.

Note, however, that experts will claim that this is still a poor hash function and that providing a

good hash function can be very tricky, In addition, providing such a hash function doesn’t seem as

easy as it should be.

A better approach is the following, which uses a hash function provided by Boost (see [Boost])

and a more convenient interface:

// cont/hashval.hpp

#include <functional>

// from boost (functional/hash):

// see http://www.boost.org/doc/libs/1_35_0/doc/html/hash/combine.html

template <typename T>

inline void hash_combine (std::size_t& seed, const T& val)

{

seed ^= std::hash<T>()(val) + 0x9e3779b9 + (seed<<6) + (seed>>2);

}

15 error_code, thread::id, bitset<>, and vector<bool>

7.9 Unordered Containers 365

// auxiliary generic functions to create a hash value using a seed

template <typename T>

inline void hash_val (std::size_t& seed, const T& val)

{

hash_combine(seed,val);

}

template <typename T, typename... Types>

inline void hash_val (std::size_t& seed,

const T& val, const Types&... args)

{

hash_combine(seed,val);

hash_val(seed,args...);

}

// auxiliary generic function to create a hash value out of a heterogeneous list of arguments

template <typename... Types>

inline std::size_t hash_val (const Types&... args)

{

std::size_t seed = 0;

hash_val (seed, args...);

return seed;

}

A convenience function implemented using variadic templates (see Section 3.1.9, page 26) allows

calling hash_val() with an arbitrary number of elements of any type to process a hash value out of

all these values. For example:

class CustomerHash

{

public:

std::size_t operator() (const Customer& c) const {

return hash_val(c.fname,c.lname,c.no);

}

};

Internally, hash_combine() is called, which some experience has shown to be a good candidate for

a generic hash function (see [HoadZobel:HashCombine]).

Especially when the input values to the hash function have specific constraints, you might want to

provide your own specific hash function. In any case, to verify the effect of your own hash function,

you may use the bucket interface (see Section 7.9.7, page 380).

See Section 7.9.7, page 377, for some complete examples about how to specify your own hash

function. You can also use lambdas to specify the hash function (see Section 7.9.7, page 379, for

details and an example).

366 Chapter 7: STL Containers

Providing Your Own Equivalence Criterion

As the third/fourth template parameter of the unordered container types, you can pass the equivalence

criterion, a predicate that is used to find equal values in the same bucket. The default predicate is

equal_to<>, which compares the elements with operator ==. For this reason, the most convenient

approach to providing a valid equivalence criterion is to provide operator == for your own type if it

is not predefined either as member or as global function. For example:

class Customer {

...

};

bool operator == (const Customer& c1, const Customer& c2) {

...

}

std::unordered_multiset<Customer,CustomerHash> custmset;

std::unordered_map<Customer,String,CustomerHash> custmap;

Instead, however, you can also provide your own equivalence criterion as the following example

demonstrates:

#include <functional>

class Customer {

...

};

class CustomerEqual

{

public:

bool operator() (const Customer& c1, Customer& c2) const {

return ...

}

};

std::unordered_set<Customer,CustomerHash,CustomerEqual> custset;

std::unordered_multimap<Customer,String,

CustomerHash,CustomerEqual> custmmap;

Here, for type Customer, a function object is defined in which you have to implement operator()

so that it compares two elements (or two keys for maps) and returns a Boolean value indicating

whether they are equal.

See Section 7.9.7, page 377, for a complete example about how to provide your own equivalence

criterion (and hash function). Again, you can also use lambdas to specify the equivalence criterion

(see Section 7.9.7, page 379, for details and an example).

7.9 Unordered Containers 367

Whenever values are considered to be equal according to the current equivalence criterion, they

should also yield the same hash values according to the current hash function. For this reason,

an unordered container that is instantiated with a nondefault equivalence predicate usually needs a

nondefault hash function as well.

7.9.3 Other Operations for Unordered Containers

The remaining operations for unordered containers are more or less the same as for associative

containers.

Nonmodifying Operations

Unordered containers provide the nonmodifying operations listed in Table 7.50.

Operation Effect

c.empty() Returns whether the container is empty (equivalent to size()==0 but

might be faster)

c.size() Returns the current number of elements

c.max_size() Returns the maximum number of elements possible

c1 == c2 Returns whether c1 is equal to c2

c1 != c2 Returns whether c1 is not equal to c2 (equivalent to !(c1==c2))

Table 7.50. Nonmodifying Operations of Unordered Containers

Note again that for comparisons, only operators == and != are provided for unordered containers.16

In worst-case scenarios, they might, however, provide quadratic complexity.

Special Search Operations

Unordered containers are optimized for fast searching of elements. To benefit from this behavior, the

containers provide special search functions (see Table 7.51). These functions are special versions of

general algorithms that have the same name. You should always prefer the optimized versions for

unordered containers to achieve constant complexity instead of the linear complexity of the general

algorithms, provided that the hash values are evenly distributed. For example, a search in a collection

of 1,000 elements requires on average only 1 comparison instead of 10 for associative containers and

500 for sequence containers (see Section 2.2, page 10).

See Section 7.7.2, page 319, for a detailed description of these member functions, including an

example program that demonstrates their application.

16 Operators == and != are not provided for unordered containers with TR1.

368 Chapter 7: STL Containers

Operation Effect

c.count(val) Returns the number of elements with value val

c.find(val) Returns the position of the first element with value val (or end() if

none found)

c.equal_range(val) Returns a range with all elements with a value equal to val (i.e., the

first and last positions, where val would get inserted)

Table 7.51. Special Search Operations of Unordered Containers

Assignments

As listed in Table 7.52, unordered containers provide only the fundamental assignment operations

that all containers provide (see Section 7.1.2, page 258).

Operation Effect

c = c2 Assigns all elements of c2 to c

c = rv Move assigns all elements of the rvalue rv to c (since

C++11)

c = initlist Assigns all elements of the initializer list initlist to c

(since C++11)

c1.swap(c2) Swaps the data of c1 and c2

swap(c1,c2) Swaps the data of c1 and c2

Table 7.52. Assignment Operations of Unordered Containers

For these operations, both containers must have the same type. In particular, the type of the hash

functions and the equivalence criteria must be the same, although the functions themselves may be

different. If the functions are different, they will also get assigned or swapped.

Iterator Functions and Element Access

Unordered containers do not provide direct element access, so you have to use range-based for loops

(see Section 3.1.4, page 17) or iterators. Because the iterators are guaranteed to be only forward ite-

rators (see Section 9.2.3, page 436), no support for bidirectional iterators or random-access iterators

is provided (Table 7.53). Thus, you can’t use them in algorithms that are provided for bidirectional

iterators or random-access iterators only, such as algorithms for sorting or random shuffling.

For unordered (multi)sets, all elements are considered constant from an iterator’s point of view.

For unordered (multi)maps, the key of all elements is considered to be constant. This is necessary to

ensure that you can’t compromise the position of the elements by changing their values. Although

there is no specific order, the value defines the bucket position according to the current hash function.

For this reason, you can’t call any modifying algorithm on the elements. For example, you can’t

call the remove() algorithm, because it “removes” by overwriting “removed” elements with the

following elements (see Section 6.7.2, page 221, for a detailed discussion of this problem). To

7.9 Unordered Containers 369

Operation Effect

c.begin() Returns a forward iterator for the first element

c.end() Returns a forward iterator for the position after the last element

c.cbegin() Returns a constant forward iterator for the first element (since C++11)

c.cend() Returns a constant forward iterator for the position after the last

element (since C++11)

c.rbegin() Returns a reverse iterator for the first element of a reverse iteration

c.rend() Returns a reverse iterator for the position after the last element of a

reverse iteration

c.crbegin() Returns a constant reverse iterator for the first element of a reverse

iteration (since C++11)

c.crend() Returns a constant reverse iterator for the position after the last

element of a reverse iteration (since C++11)

Table 7.53. Iterator Operations of Unordered Containers

remove elements in unordered sets and multisets, you can use only member functions provided by

the container.

In correspondence to maps and multimaps, the type of the elements of unordered maps and

multimap is pair<const Key, T>, which means that you need first and second to access the

key and the value of an element (see Section 7.8.2, page 337 for details):

std::unordered_map<std::string,float> coll;

...

for (auto elem& : coll) {

std::cout << "key: " << elem.first << "\t"

<< "value: " << elem.second << std::endl;

}

...

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

std::cout << "key: " << pos->first << "\t"

<< "value: " << pos->second << std::endl;

}

Trying to change the value of the key results in an error:

elem.first = "hello"; // ERROR at compile time

pos->first = "hello"; // ERROR at compile time

However, changing the value of the element is no problem, as long as elem is a nonconstant reference

and the type of the value is not constant:

elem.second = 13.5; // OK

pos->second = 13.5; // OK

370 Chapter 7: STL Containers

If you use algorithms and lambdas to operate on the elements of a map, you explicitly have to declare

the element type:

std::unordered_map<std::string,int> coll;

...

// add 10 to the value of each element:

std::for_each (coll.begin(), coll.end(),

[] (pair<const std::string,int>& elem) {

elem.second += 10;

});

Instead of using the following:

pair<const std::string,int>

you could also use

unordered_map<std::string,int>::value_type

or

decltype(coll)::value_type

to declare the type of an element. See Section 7.8.5, page 345, for a complete example with maps

that also works with unordered maps.

To change the key of an element, you have only one choice: You must replace the old element

with a new element that has the same value. This is described for maps in Section 7.8.2, page 339.

Note that unordered maps can also be used as associative arrays, so you can use the subscript

operator to access elements. See Section 7.9.5, page 374, for details.

Note also that there is an additional iterator interface to iterate over the buckets of an unordered

container. See Section 7.9.7, page 380, for details.

Inserting and Removing Elements

Table 7.54 shows the operations provided for unordered containers to insert and remove elements.

As usual when using the STL, you must ensure that the arguments are valid. Iterators must refer

to valid positions, and the beginning of a range must have a position that is not behind the end.

In general, erasing functions do not invalidate iterators and references to other elements. How-

ever, the insert() and emplace() members may invalidate all iterators when rehashing happens,

whereas references to elements always remain valid. Rehashing happens when, because of an inser-

tion, the number of resulting elements is equal to or exceeds the bucket count times the maximum

load factor (i.e., when the guarantee given by the maximum load factor would be broken). The

insert() and emplace() members do not affect the validity of references to container elements.

Inserting and removing is faster if, when working with multiple elements, you use a single call

for all elements rather than multiple calls. Note, however, that the exception guarantees are reduced

for multi-element operations (see Section 7.9.6, page 375).

Note that the return types of the inserting functions insert() and emplace() differ as follows:

7.9 Unordered Containers 371

Operation Effect

c.insert(val) Inserts a copy of val and returns the position of the new

element and, for unordered containers, whether it

succeeded

c.insert(pos,val) Inserts a copy of val and returns the position of the new

element (pos is used as a hint pointing to where the insert

should start the search)

c.insert(beg,end) Inserts a copy of all elements of the range [beg,end)
(returns nothing)

c.insert(initlist) Inserts a copy of all elements in the initializer list initlist

(returns nothing; since C++11)

c.emplace(args...) Inserts a copy of an element initialized with args and

returns the position of the new element and, for

unordered containers, whether it succeeded (since

C++11)

c.emplace_hint(pos,args...) Inserts a copy of an element initialized with args and

returns the position of the new element (pos is used as a

hint pointing to where the insert should start the search)

c.erase(val) Removes all elements equal to val and returns the

number of removed elements

c.erase(pos) Removes the element at iterator position pos and returns

the following position (returned nothing before C++11)

c.erase(beg,end) Removes all elements of the range [beg,end) and returns

the following position (returned nothing before C++11)

c.clear() Removes all elements (empties the container)

Table 7.54. Insert and Remove Operations of Unordered Containers

• Unordered sets provide the following interface:

pair<iterator,bool> insert(const value_type& val);

iterator insert(iterator posHint,

const value_type& val);

template <typename... Args>

pair<iterator,bool> emplace(Args&&... args);

template <typename... Args>

iterator emplace_hint(const_iterator posHint,

Args&&... args);

• Unordered multisets provide the following interface:

iterator insert(const value_type& val);

iterator insert(iterator posHint,

const value_type& val);

template <typename... Args>

iterator emplace(Args&&... args);

372 Chapter 7: STL Containers

template <typename... Args>

iterator emplace_hint(const_iterator posHint,

Args&&... args);

The difference in return types results because unordered multisets and multimaps allow duplicates,

whereas unordered sets and maps do not. Thus, the insertion of an element might fail for an un-

ordered set if it already contains an element with the same value. Therefore, the return type for a set

returns two values by using a pair structure (pair is discussed in Section 5.1.1, page 60):

1. The member second of the pair structure returns whether the insertion was successful.

2. The member first of the pair structure returns the position of the newly inserted element or

the position of the still existing element.

In all other cases, the functions return the position of the new element or of the existing element if

the unordered set already contains an element with the same value. See Section 7.7.2, page 323, for

some examples about these interfaces.

For unordered maps and multimaps, to insert a key/value pair, you must keep in mind that inside,

the key is considered to be constant. You must provide either the correct type or implicit or explicit

type conversions.

Since C++11, the most convenient way to insert elements is to pass them as an initializer list,

where the first entry is the key and the second entry is the value:

std::unordered_map<std::string,float> coll;

...

coll.insert({"otto",22.3});

Alternatively, there are also the three other ways to pass a value into an unordered map or multimap

that were introduced for maps and multimaps already (see Section 7.8.2, page 341, for details):

1. Use value_type:

std::unordered_map<std::string,float> coll;

...

coll.insert(std::unordered_map<std::string,float>::value_type

("otto",22.3));

coll.insert(decltype(coll)::value_type("otto",22.3));

2. Use pair<>:

std::unordered_map<std::string,float> coll;

...

coll.insert(std::pair<std::string,float>("otto",22.3));

coll.insert(std::pair<const std::string,float>("otto",22.3));

3. Use make_pair():

std::unordered_map<std::string,float> coll;

...

coll.insert(std::make_pair("otto",22.3));

Here is a simple example of the insertion of an element into an unordered map that also checks

whether the insertion was successful:

7.9 Unordered Containers 373

std::unordered_map<std::string,float> coll;

...

if (coll.insert(std::make_pair("otto",22.3)).second) {

std::cout << "OK, could insert otto/22.3" << std::endl;

}

else {

std::cout << "Oops, could not insert otto/22.3 "

<< "(key otto already exists)" << std::endl;

}

Note again that when using emplace() to insert a new element by passing the values for its con-

struction, you have to pass two lists of arguments: one for the key and one for the element. The most

convenient way to do this is as follows:

std::unordered_map<std::string,std::complex<float>> m;

m.emplace(std::piecewise_construct, // pass tuple elements as arguments

std::make_tuple("hello"), // elements for the key

std::make_tuple(3.4,7.8)); // elements for the value

See Section 5.1.1, page 63, for details of piecewise construction of pairs.

Note again that unordered maps provide another convenient way to insert and set elements with

the subscript operator (see Section 7.9.5, page 374).

To remove an element that has a certain value, you simply call erase():

std::unordered_set<Elem> coll;

...

// remove all elements with passed value

coll.erase(value);

Note that this member function has a different name than remove() provided for lists (see Sec-

tion 7.5.2, page 294, for a discussion of remove()). It behaves differently because it returns the

number of removed elements. When called for unordered maps, it returns only 0 or 1.

If an unordered multiset or multimap contains duplicates and you want to remove only the first

element of these duplicates, you can’t use erase(). Instead, you can code as follows:

std::unordered_multimap<Key,T> coll;

...

// remove first element with passed value

auto pos = coll.find(value);

if (pos != coll.end()) {

coll.erase(pos);

}

You should use the member function find() here because it is faster than the find() algorithm

(see the example in Section 7.3.2, page 277).

When removing elements, be careful not to saw off the branch on which you are sitting. See

Section 7.8.2, page 342, for a detailed description of this problem.

374 Chapter 7: STL Containers

7.9.4 The Bucket Interface

It is possible to access the individual buckets with a specific bucket interface to expose the internal

state of the whole hash table. Table 7.55 shows the operations provided to directly access buckets.

Operation Effect

c.bucket_count() Returns the current number of buckets

c.bucket(val) Returns the index of the bucket in which val would/could be

found

c.bucket_size(buckidx) Returns the number of elements in the bucket with index buckidx

c.begin(buckidx) Returns a forward iterator for the first element of the bucket with

index buckidx

c.end(buckidx) Returns a forward iterator for the position after the last element

of the bucket with index buckidx

c.cbegin(buckidx) Returns a constant forward iterator for the first element of the

bucket with index buckidx

c.cend(buckidx) Returns a constant forward iterator for the position after the last

element of the bucket with index buckidx

Table 7.55. Bucket Interface Operations of Unordered Sets and Multisets

See Section 7.9.7, page 380, for an example of how to use the bucket interface to inspect the internal

layout of an unordered container.

7.9.5 Using Unordered Maps as Associative Arrays

As with maps, unordered maps provide a subscript operator for direct element access and a corre-

sponding member function at() (see Table 7.56).

Operation Effect

c[key] Inserts an element with key, if it does not yet exist, and returns a reference to

the value of the element with key (only for nonconstant unordered maps)

c.at(key) Returns a reference to the value of the element with key (since C++11)

Table 7.56. Direct Element Access of Unordered Maps

at() yields the value of the element with the passed key and throws an exception object of type

out_of_range if no such element is present.

For operator [], the index also is the key used to identify the element. This means that for

operator [], the index may have any type rather than only an integral type. Such an interface is the

interface of a so-called associative array.

For operator [], the type of the index is not the only difference from ordinary C-style arrays.

In addition, you can’t have a wrong index. If you use a key as the index for which no element yet

7.9 Unordered Containers 375

exists, a new element gets inserted into the map automatically. The value of the new element is

initialized by the default constructor of its type. Thus, to use this feature, you can’t use a value type

that has no default constructor. Note that the fundamental data types provide a default constructor

that initializes their values to zero (see Section 3.2.1, page 37).

See Section 7.8.3, page 344, for a detailed discussion of the advantages and disadvantages this

container interface provides. See Section 6.2.4, page 185, and Section 7.8.5, page 346, for some

example code (partially using maps, which provide the same interface).

7.9.6 Exception Handling

Unordered containers are node-based containers, so any failure to construct a node simply leaves

the container as it was. However, the fact that a rehashing may occur comes into account. For this

reason, the following guarantees apply to all unordered containers:

• Single-element insertions have the commit-or-rollback behavior, provided that the hash and

equivalence functions don’t throw. Thus, if they don’t throw, the operations either succeed or

have no effect.

• erase() does not throw an exception, provided that the hash function and the equivalence crite-

rion don’t throw, which is the case for the default functions.

• No clear() function throws an exception.

• No swap() function throws an exception, provided that the copy constructor or the copy assign-

ment operator of the hash or equivalence functions don’t throw.

• rehash() has the commit-or-rollback behavior, provided that the hash and equivalence functions

don’t throw. Thus, if they don’t throw, the operations either succeed or have no effect.

See Section 6.12.2, page 248, for a general discussion of exception handling in the STL.

7.9.7 Examples of Using Unordered Containers

The following program demonstrates the fundamental abilities of unordered containers, using an

unordered set:

// cont/unordset1.cpp

#include <unordered_set>

#include <numeric>

#include "print.hpp"

using namespace std;

int main()

{

// create and initialize unordered set

unordered_set<int> coll = { 1,2,3,5,7,11,13,17,19,77 };

// print elements

// - elements are in arbitrary order

376 Chapter 7: STL Containers

PRINT_ELEMENTS(coll);

// insert some additional elements

// - might cause rehashing and create different order

coll.insert({-7,17,33,-11,17,19,1,13});

PRINT_ELEMENTS(coll);

// remove element with specific value

coll.erase(33);

// insert sum of all existing values

coll.insert(accumulate(coll.begin(),coll.end(),0));

PRINT_ELEMENTS(coll);

// check if value 19 is in the set

if (coll.find(19) != coll.end()) {

cout << "19 is available" << endl;

}

// remove all negative values

unordered_set<int>::iterator pos;

for (pos=coll.begin(); pos!= coll.end();) {

if (*pos < 0) {

pos = coll.erase(pos);

}

else {

++pos;

}

}

PRINT_ELEMENTS(coll);

}

As long as you only insert, erase, and find elements with a specific value, unordered containers

provide the best running-time behavior because all these operations have amortized constant com-

plexity. However, you can’t make any assumption about the order of the elements. For example, the

program might have the following output:

77 11 1 13 2 3 5 17 7 19

-11 1 2 3 -7 5 7 77 33 11 13 17 19

-11 1 2 3 -7 5 7 77 11 13 17 19 137

19 is available

1 2 3 5 7 77 11 13 17 19 137

7.9 Unordered Containers 377

For anything else – for example, to accumulate the values in the container or find and remove all

negative values — you have to iterate over all elements (either directly with iterators or indirectly

using a range-based for loop).

When using an unordered multiset rather than an unordered set, duplicates are allowed. For

example, the following program:

// cont/unordmultiset1.cpp

#include <unordered_set>

#include "print.hpp"

using namespace std;

int main()

{

// create and initialize, expand, and print unordered multiset

unordered_multiset<int> coll = { 1,2,3,5,7,11,13,17,19,77 };

coll.insert({-7,17,33,-11,17,19,1,13});

PRINT_ELEMENTS(coll);

// remove all elements with specific value

coll.erase(17);

// remove one of the elements with specific value

auto pos = coll.find(13);

if (pos != coll.end()) {

coll.erase(pos);

}

PRINT_ELEMENTS(coll);

}

might have the following output:

33 19 19 17 17 17 77 11 7 -7 5 3 13 13 2 -11 1 1

33 19 19 77 11 7 -7 5 3 13 2 -11 1 1

Example of Providing Your Own Hash Function and Equivalence Criterion

The following example shows how to define and specify a hash function and an equivalence criterion

for a type Customer, which is used as element type of an unordered set:

// cont/hashfunc1.cpp

#include <unordered_set>

#include <string>

#include <iostream>

#include "hashval.hpp"

#include "print.hpp"

378 Chapter 7: STL Containers

using namespace std;

class Customer {

private:

string fname;

string lname;

long no;

public:

Customer (const string& fn, const string& ln, long n)

: fname(fn), lname(ln), no(n) {}

friend ostream& operator << (ostream& strm, const Customer& c) {

return strm << "[" << c.fname << "," << c.lname << ","

<< c.no << "]";

}

friend class CustomerHash;

friend class CustomerEqual;

};

class CustomerHash

{

public:

std::size_t operator() (const Customer& c) const {

return hash_val(c.fname,c.lname,c.no);

}

};

class CustomerEqual

{

public:

bool operator() (const Customer& c1, Customer& c2) const {

return c1.no == c2.no;

}

};

int main()

{

// unordered set with own hash function and equivalence criterion

unordered_set<Customer,CustomerHash,CustomerEqual> custset;

custset.insert(Customer("nico","josuttis",42));

PRINT_ELEMENTS(custset);

}

7.9 Unordered Containers 379

The program has the following output:

[nico,josuttis,42]

Here, the hash_val() convenience function for an arbitrary number of elements of different types

introduced in Section 7.9.2, page 364, is used.

As you can see, the equivalence function does not necessarily have to evaluate the same values as

the hash function. However, as written, it should be guaranteed that values that are equal according

the equivalence criterion yield the same hash value (which indirectly is the case here assuming that

customer numbers are unique).

Without specifying an equivalence function, the declaration of custset would be:

std::unordered_set<Customer,CustomerHash> custset;

and operator == would be used as equivalence criterion, which you had to define for Customers

instead.

You could also use an ordinary function as hash function. But in that case you have to pass the

function as constructor argument, which means that you also have to pass the initial bucket count

and specify the corresponding function pointer as second template parameter (see Section 7.9.2,

page 363, for details).

Using Lambdas as Hash Function and Equivalence Criterion

You can even use lambdas to specify the hash function and/or the equivalence criterion. For example:

// cont/hashfunc2.cpp

#include <string>

#include <iostream>

#include <unordered_set>

#include "hashval.hpp"

#include "print.hpp"

using namespace std;

class Customer {

private:

string fname;

string lname;

long no;

public:

Customer (const string& fn, const string& ln, long n)

: fname(fn), lname(ln), no(n) {

}

string firstname() const {

return fname;

};

380 Chapter 7: STL Containers

string lastname() const {

return lname;

};

long number() const {

return no;

};

friend ostream& operator << (ostream& strm, const Customer& c) {

return strm << "[" << c.fname << "," << c.lname << ","

<< c.no << "]";

}

};

int main()

{

// lambda for user-defined hash function

auto hash = [] (const Customer& c) {

return hash_val(c.firstname(),c.lastname(),c.number());

};

// lambda for user-defined equality criterion

auto eq = [] (const Customer& c1, Customer& c2) {

return c1.number() == c2.number();

};

// create unordered set with user-defined behavior

unordered_set<Customer,

decltype(hash),decltype(eq)> custset(10,hash,eq);

custset.insert(Customer("nico","josuttis",42));

PRINT_ELEMENTS(custset);

}

Note that you have to use decltype to yield the type of the lambda to be able to pass it as template

argument to the declaration of the unordered container. The reason is that for lambdas, no default

constructor and assignment operator are defined. Therefore, you also have to pass the lambdas to

the constructor. This is possible only as second and third arguments. Thus, you have to specify the

initial bucket size 10 in this case.

Example of Using the Bucket Interface

The following example demonstrates an application of the bucket interface provided to inspect the

internal state of an unordered container (see Section 7.9.4, page 374). In printHashTableState(),

the whole state, including the detailed layout of an unordered container, is printed:

7.9 Unordered Containers 381

// cont/buckets.hpp

#include <iostream>

#include <iomanip>

#include <utility>

#include <iterator>

#include <typeinfo>

// generic output for pairs (map elements)

template <typename T1, typename T2>

std::ostream& operator << (std::ostream& strm, const std::pair<T1,T2>& p)

{

return strm << "[" << p.first << "," << p.second << "]";

}

template <typename T>

void printHashTableState (const T& cont)

{

// basic layout data:

std::cout << "size: " << cont.size() << "\n";

std::cout << "buckets: " << cont.bucket_count() << "\n";

std::cout << "load factor: " << cont.load_factor() << "\n";

std::cout << "max load factor: " << cont.max_load_factor() << "\n";

// iterator category:

if (typeid(typename std::iterator_traits

<typename T::iterator>::iterator_category)

== typeid(std::bidirectional_iterator_tag)) {

std::cout << "chaining style: doubly-linked" << "\n";

}

else {

std::cout << "chaining style: singly-linked" << "\n";

}

// elements per bucket:

std::cout << "data: " << "\n";

for (auto idx=0; idx != cont.bucket_count(); ++idx) {

std::cout << " b[" << std::setw(2) << idx << "]: ";

for (auto pos=cont.begin(idx); pos != cont.end(idx); ++pos) {

std::cout << *pos << " ";

}

std::cout << "\n";

}

std::cout << std::endl;

}

382 Chapter 7: STL Containers

For example, you can use this header file to print the internal layout of an unordered set:

// cont/unordinspect1.cpp

#include <unordered_set>

#include <iostream>

#include "buckets.hpp"

int main()

{

// create and initialize an unordered set

std::unordered_set<int> intset = { 1,2,3,5,7,11,13,17,19 };

printHashTableState(intset);

// insert some additional values (might cause rehashing)

intset.insert({-7,17,33,4});

printHashTableState(intset);

}

Comparing the first and second call of printHashTableState(), the program might have the

following output (details depend on the concrete layout and rehashing strategy of the standard library

used):

size: 9
buckets: 11
load factor: 0.818182
max load factor: 1
chaining style: singly-linked
data:
b[0]: 11
b[1]: 1
b[2]: 13 2
b[3]: 3
b[4]:
b[5]: 5
b[6]: 17
b[7]: 7
b[8]: 19
b[9]:
b[10]:

size: 12
buckets: 23
load factor: 0.521739
max load factor: 1
chaining style: singly-linked
data:
b[0]:
b[1]: 1
b[2]: 2
b[3]: 3
b[4]: 4
b[5]: 5 -7
b[6]:
b[7]: 7
b[8]:
b[9]:
b[10]: 33
b[11]: 11
b[12]:
b[13]: 13
b[14]:
b[15]:
b[16]:
b[17]: 17
b[18]:
b[19]: 19
b[20]:
b[21]:
b[22]:

7.9 Unordered Containers 383

As another example for the application of the bucket interface, the following program creates a

dictionary of string values mapped to other string values (compare this example with a corresponding

version for maps in Section 7.8.5, page 348):

// cont/unordmultimap1.cpp

#include <unordered_map>

#include <string>

#include <iostream>

#include <utility>

#include "buckets.hpp"

using namespace std;

int main()

{

// create and initialize an unordered multimap as dictionary

std::unordered_multimap<string,string> dict = {

{"day","Tag"},

{"strange","fremd"},

{"car","Auto"},

{"smart","elegant"},

{"trait","Merkmal"},

{"strange","seltsam"}

};

printHashTableState(dict);

// insert some additional values (might cause rehashing)

dict.insert({{"smart","raffiniert"},

{"smart","klug"},

{"clever","raffiniert"}

});

printHashTableState(dict);

// modify maximum load factor (might cause rehashing)

dict.max_load_factor(0.7);

printHashTableState(dict);

}

Again, the output of this program is implementation specific. For example, the output of this program

might be as follows (slightly modified to fit the page width):

384 Chapter 7: STL Containers

size: 6
buckets: 7
current load factor: 0.857143
max load factor: 1
chaining style: singly
data:
b[0]: [day,Tag]
b[1]: [car,Auto]
b[2]:
b[3]: [smart,elegant]
b[4]:
b[5]: [trait,Merkmal]
b[6]: [strange,fremd]

[strange,seltsam]

size: 9
buckets: 11
current load factor: 0.818182
max load factor: 1
chaining style: singly
data:
b[0]: [smart,elegant]

[smart,raffiniert]
[smart,klug]

b[1]:
b[2]:
b[3]:
b[4]:
b[5]: [clever,raffiniert]
b[6]: [strange,fremd]

[strange,seltsam]
b[7]:
b[8]:
b[9]: [trait,Merkmal] [car,Auto]
b[10]: [day,Tag]

size: 9
buckets: 17
current load factor: 0.529412
max load factor: 0.7
chaining style: singly
data:
b[0]:
b[1]:
b[2]:
b[3]:
b[4]: [car,Auto]
b[5]:
b[6]: [smart,elegant]

[smart,raffiniert]
[smart,klug]

b[7]:
b[8]: [day,Tag]
b[9]: [clever,raffiniert]
b[10]:
b[11]: [trait,Merkmal]
b[12]:
b[13]:
b[14]:
b[15]: [strange,fremd]

[strange,seltsam]
b[16]:

Whereas on another platform the output of this program might be as follows (again, slightly modified

to fit the page width):

size: 6
buckets: 11
current load factor: 0.545455
max load factor: 1
chaining style: singly
data:
b[0]:
b[1]:
b[2]: [trait,Merkmal]

[car,Auto]
b[3]: [day,Tag]
b[4]:
b[5]:
b[6]:
b[7]:
b[8]: [smart,elegant]
b[9]: [strange,seltsam]

[strange,fremd]
b[10]:

size: 9
buckets: 11
current load factor: 0.818182
max load factor: 1
chaining style: singly
data:
b[0]:
b[1]:
b[2]: [clever,raffiniert]

[trait,Merkmal]
[car,Auto]

b[3]: [day,Tag]
b[4]:
b[5]:
b[6]:
b[7]:
b[8]: [smart,elegant]

[smart,raffiniert]
[smart,klug]

b[9]: [strange,seltsam]
[strange,fremd]

b[10]:

size: 9
buckets: 13
current load factor: 0.692308
max load factor: 0.7
chaining style: singly
data:
b[0]:
b[1]: [day,Tag]
b[2]:
b[3]:
b[4]: [smart,elegant]

[smart,raffiniert]
[smart,klug]
[car,Auto]

b[5]:
b[6]:
b[7]:
b[8]:
b[9]: [clever,raffiniert]
b[10]: [strange,seltsam]

[strange,fremd]
b[11]:
b[12]: [trait,Merkmal]

[clever,raffiniert]

Note that in any case rehashing preserves the relative ordering of equivalent elements. However, the

order of equivalent elements might not match the order of their insertion.

7.10 Other STL Containers 385

7.10 Other STL Containers

The STL is a framework. In addition to the standard container classes, the STL allows you to use

other data structures as containers. You can use strings or ordinary arrays as STL containers, or you

can write and use special containers that meet special needs. Doing so has the advantage that you

can benefit from algorithms, such as sorting or merging, for your own type. Such a framework is a

good example of the Open Closed Principle: open to extension; closed to modification.17

There are three different approaches to making containers “STL-able”:

1. The invasive approach.18 You simply provide the interface that an STL container requires. In

particular, you need the usual member functions of containers, such as begin() and end(). This

approach is invasive because it requires that a container be written in a certain way.

2. The noninvasive approach.18 You write or provide special iterators that are used as an interface

between the algorithms and special containers. This approach is noninvasive. All it requires is

the ability to step through all the elements of a container, an ability that any container provides

in some way.

3. The wrapper approach. Combining the two previous approaches, you write a wrapper class

that encapsulates any data structure with an STL container-like interface.

This subsection first discusses strings as a standard container, which is an example of the invasive

approach. It then covers an important standard container that uses the noninvasive approach: ordi-

nary C-style arrays. However, you can also use the wrapper approach to access data of an ordinary

array.

Whoever wants to write an STL container might also support the ability to get parametrized

on different allocators. The C++ standard library provides some special functions and classes for

programming with allocators and uninitialized memory. See Section 19.3, page 1026, for details.

7.10.1 Strings as STL Containers

The string classes of the C++ standard library (introduced and discussed in Chapter 13) are an

example of the invasive approach of writing STL containers. Strings can be considered containers

of characters. The characters inside the string build a sequence over which you can iterate to process

the individual characters. Thus, the standard string classes provide the container interface of the

STL. They provide the begin() and end() member functions, which return random-access itera-

tors to iterate over a string. The string classes also provide some operations for iterators and iterator

adapters. For example, push_back() is provided to enable the use of back inserters.

Note that string processing from the STL’s point of view is a bit unusual. Normally you process

strings as a whole object (you pass, copy, or assign strings). However, when individual character

processing is of interest, the ability to use STL algorithms might be helpful. For example, you could

read the characters with istream iterators, or you could transform string characters by making them

17 I first heard of the Open Closed Principle from Robert C. Martin, who himself heard it from Bertrand Meyer.
18 Instead of invasive and noninvasive, the terms intrusive and nonintrusive are sometimes used.

386 Chapter 7: STL Containers

uppercase or lowercase. In addition, by using STL algorithms you can use a special comparison

criterion for strings. The standard string interface does not provide that ability.

Section 13.2.14, page 684, discusses the STL aspects of strings in more detail and gives exam-

ples.

7.10.2 Ordinary C-Style Arrays as STL Containers

You can use ordinary C-style arrays as STL containers. However, ordinary C-style arrays are not

classes, so they don’t provide member functions such as begin() and end(), and you can’t define

member functions for them. Here, either the noninvasive approach or the wrapper approach must be

used.

Using the noninvasive approach is simple. You need only objects that are able to iterate over

the elements of an array by using the STL iterator interface. Such iterators already exist: ordinary

pointers. An STL design decision was to use the pointer interface for iterators so that you could

use ordinary pointers as iterators. This again shows the generic concept of pure abstraction: Any-

thing that behaves like an iterator is an iterator. In fact, pointers are random-access iterators (see

Section 9.2.5, page 438). The following example demonstrates how to use C-style arrays as STL

containers since C++11:

// cont/cstylearray1.cpp

#include <iterator>

#include <vector>

#include <iostream>

int main()

{

int vals[] = { 33, 67, -4, 13, 5, 2 };

// use begin() and end() for ordinary C arrays

std::vector<int> v(std::begin(vals), std::end(vals));

// use global begin() and end() for containers:

std::copy (std::begin(v), std::end(v),

std::ostream_iterator<int>(std::cout," "));

std::cout << std::endl;

}

Here, we use a helper function defined in <iterator> and every container header, which allows

using a global begin() and end() for ordinary C-style arrays. As you can see, for any ordinary

C-style array, vals std::begin() and std::end() yield the corresponding begin and end to use

it in the STL framework:

7.10 Other STL Containers 387

int vals[] = { 33, 67, -4, 13, 5, 2 };

std::begin(vals) // yields vals

std::end(vals) // yields vals+NumOfElementsIn(vals)

These functions are also overloaded, so you can use STL containers or all classes that provide

begin() and end() as member functions:

std::vector<int> v;

std::begin(v) // yields v.begin()

std::end(v) // yields v.end()

The output of the program is as follows:

33 67 -4 13 5 2

Before C++11, you had to pass the raw pointers to the algorithms because begin() and end() were

not globally provided. For example:

// cont/cstylearray1old.cpp

#include <iostream>

#include <algorithm>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int coll[] = { 5, 6, 2, 4, 1, 3 };

// square all elements

transform (coll, coll+6, // first source

coll, // second source

coll, // destination

multiplies<int>()); // operation

// sort beginning with the second element

sort (coll+1, coll+6);

// print all elements

copy (coll, coll+6,

ostream_iterator<int>(cout," "));

cout << endl;

}

388 Chapter 7: STL Containers

You had to be careful to pass the correct end of the array, as is done here by using coll+6. And, as

usual, you have to make sure that the end of the range is the position after the last element.

The output of the program is as follows:

25 1 4 9 16 36

Additional examples for the use of ordinary C-style arrays are in Section 11.7.2, page 579, and in

Section 11.10.2, page 620.

7.11 Implementing Reference Semantics

In general, STL container classes provide value semantics and not reference semantics. Thus, the

containers create internal copies of the elements they contain and return copies of those elements.

Section 6.11.2, page 245, discusses the pros and cons of this approach and touches on its conse-

quences. To summarize, if you want reference semantics in STL containers — whether because

copying elements is expensive or because identical elements will be shared by different collections

— you should use a smart pointer class that avoids possible errors. In addition, using a reference

wrapper is possible.

Using Shared Pointers

As introduced in Section 5.2, page 76, the C++ standard library provides different smart pointer

classes. For sharing objects between different containers, class shared_ptr<> is the appropriate

smart pointer class. Using it for this purpose looks as follows:

// cont/refsem1.cpp

#include <iostream>

#include <string>

#include <set>

#include <deque>

#include <algorithm>

#include <memory>

class Item {

private:

std::string name;

float price;

public:

Item (const std::string& n, float p = 0) : name(n), price(p) {

}

std::string getName () const {

return name;

}

7.11 Implementing Reference Semantics 389

void setName (const std::string& n) {

name = n;

}

float getPrice () const {

return price;

}

float setPrice (float p) {

price = p;

}

};

template <typename Coll>

void printItems (const std::string& msg, const Coll& coll)

{

std::cout << msg << std::endl;

for (const auto& elem : coll) {

std::cout << ’ ’ << elem->getName() << ": "

<< elem->getPrice() << std::endl;

}

}

int main()

{

using namespace std;

// two different collections sharing Items

typedef shared_ptr<Item> ItemPtr;

set<ItemPtr> allItems;

deque<ItemPtr> bestsellers;

// insert objects into the collections

// - bestsellers are in both collections

bestsellers = { ItemPtr(new Item("Kong Yize",20.10)),

ItemPtr(new Item("A Midsummer Night’s Dream",14.99)),

ItemPtr(new Item("The Maltese Falcon",9.88)) };

allItems = { ItemPtr(new Item("Water",0.44)),

ItemPtr(new Item("Pizza",2.22)) };

allItems.insert(bestsellers.begin(),bestsellers.end());

// print contents of both collections

printItems ("bestsellers:", bestsellers);

printItems ("all:", allItems);

cout << endl;

390 Chapter 7: STL Containers

// double price of bestsellers

for_each (bestsellers.begin(), bestsellers.end(),

[] (shared_ptr<Item>& elem) {

elem->setPrice(elem->getPrice() * 2);

});

// replace second bestseller by first item with name "Pizza"

bestsellers[1] = *(find_if(allItems.begin(),allItems.end(),

[] (shared_ptr<Item> elem) {

return elem->getName() == "Pizza";

}));

// set price of first bestseller

bestsellers[0]->setPrice(44.77);

// print contents of both collections

printItems ("bestsellers:", bestsellers);

printItems ("all:", allItems);

}

The program has the following output:

bestsellers:

Kong Yize: 20.1

A Midsummer Night’s Dream: 14.99

The Maltese Falcon: 9.88

all:

Kong Yize: 20.1

A Midsummer Night’s Dream: 14.99

The Maltese Falcon: 9.88

Water: 0.44

Pizza: 2.22

bestsellers:

Kong Yize: 44.77

Pizza: 2.22

The Maltese Falcon: 19.76

all:

Kong Yize: 44.77

A Midsummer Night’s Dream: 29.98

The Maltese Falcon: 19.76

Water: 0.44

Pizza: 2.22

7.11 Implementing Reference Semantics 391

Note that using shared_ptr<> makes things significantly more complicated. For example, find()

for sets, which looks for elements that have an equal value, will now compare the internal pointers

returned by new:

allItems.find(ItemPtr(new Item("Pizza",2.22))) // can’t be successful

So, you have to use the find_if() algorithm here.

If you call an auxiliary function that saves one element of the collections (an ItemPtr) some-

where else, the value to which it refers stays valid even if the collections get destroyed or all their

elements are removed.

Using the Reference Wrapper

If it is guaranteed that the elements referred to in a container exist as long as the container exists,

another approach is possible: using class reference_wrapper<> (see Section 5.4.3, page 132).

For example, the following is possible, using class Item as introduced in the previous example:

std::vector<std::reference_wrapper<Item>> books; // elements are references

Item f("Faust",12.99);

books.push_back(f); // insert book by reference

// print books:

for (const auto& book : books) {

std::cout << book.get().getName() << ": "

<< book.get().getPrice() << std::endl;

}

f.setPrice(9.99); // modify book outside the containers

std::cout << books[0].get().getPrice() << std::endl; // print price of first book

// print books using type of the elements (no get() necessary):

for (const Item& book : books) {

std::cout << book.getName() << ": " << book.getPrice() << std::endl;

}

The advantage is that no pointer syntax is required. This, however, is also a risk because it’s not

obvious that references are used here.

Note that the following declaration isn’t possible:

vector<Item&> books;

Note also that class reference_wrapper<> provides a conversion operator to T& so that the range-

based for loop can be declared dealing with elements of type Item&. However, for a direct call of

a member function for the first element, get() is necessary.

The program has following output (see cont/refwrap1.cpp for the complete example):

Faust: 12.99

9.99

Faust: 9.99

392 Chapter 7: STL Containers

7.12 When to Use Which Container

The C++ standard library provides different container types with different abilities. The question

now is: When do you use which container type? Table 7.57 provides an overview. However, it

contains general statements that might not fit in reality. For example, if you manage only a few

elements, you can ignore the complexity because short element processing with linear complexity is

better than long element processing with logarithmic complexity (in practice, “few” might become

very large here).

As a supplement to the table, the following rules of thumb might help:

• By default, you should use a vector. It has the simplest internal data structure and provides

random access. Thus, data access is convenient and flexible, and data processing is often fast

enough.

• If you insert and/or remove elements often at the beginning and the end of a sequence, you should

use a deque. You should also use a deque if it is important that the amount of internal memory

used by the container shrinks when elements are removed. Also, because a vector usually uses

one block of memory for its elements, a deque might be able to contain more elements because

it uses several blocks.

• If you insert, remove, and move elements often in the middle of a container, consider using a

list. Lists provide special member functions to move elements from one container to another

in constant time. Note, however, that because a list provides no random access, you might

suffer significant performance penalties on access to elements inside the list if you have only the

beginning of the list.

Like all node-based containers, a list doesn’t invalidate iterators that refer to elements, as

long as those elements are part of the container. Vectors invalidate all their iterators, pointers,

and references whenever they exceed their capacity and part of their iterators, pointers, and

references on insertions and deletions. Deques invalidate iterators, pointers, and references when

they change their size, respectively.

• If you need a container that handles exceptions so that each operation either succeeds or has no

effect, you should use either a list (without calling assignment operations and sort() and, if

comparing the elements may throw, without calling merge(), remove(), remove_if(), and

unique(); see Section 7.5.3, page 296) or an associative/unordered container (without calling

the multiple-element insert operations and, if copying/assigning the comparison criterion may

throw, without calling swap() or erase()). See Section 6.12.2, page 248, for a general discus-

sion of exception handling in the STL.

• If you often need to search for elements according to a certain criterion, use an unordered set

or multiset that hashes according to this criterion. However, hash containers have no ordering,

so if you need to rely on element order, you should use a set or a multiset that sorts elements

according to the search criterion.

• To process key/value pairs, use an unordered (multi)map or, if the element order matters, a

(multi)map.

• If you need an associative array, use an unordered map or, if the element order matters, a map.

• If you need a dictionary, use an unordered multimap or, if the element order matters, a multimap.

Array Vector Deque List Forward List Associative

Containers

Unordered

Containers

Available since TR1 C++98 C++98 C++98 C++11 C++98 TR1

Typical internal data

structure

Static array Dynamic array Array of arrays Doubly linked list Singly linked list Binary tree Hash table

Element type Value Value Value Value Value Set: value

Map: key/value

Set: value

Map: key/value

Duplicates allowed Yes Yes Yes Yes Yes Only multiset

or multimap

Only multiset

or multimap

Iterator category Random

access

Random access Random access Bidirectional Forward Bidirectional

(element/key

constant)

Forward

(element/key

constant)

Growing/shrinking Never At one end At both ends Everywhere Everywhere Everywhere Everywhere

Random access

available

Yes Yes Yes No No No Almost

Search/find

elements

Slow Slow Slow Very slow Very slow Fast Very fast

Inserting/removing

invalidates iterators

— On reallocation Always Never Never Never On rehashing

Inserting/removing

references, pointers

— On reallocation Always Never Never Never Never

Allows memory

reservation

— Yes No — — — Yes (buckets)

Frees memory for

removed elements

— Only with

shrink_to_fit()

Sometimes Always Always Always Sometimes

Transaction safe

(success or no

effect)

No Push/pop at the

end

Push/pop at the

beginning and

the end

All insertions and

all erasures

All insertions and

all erasures

Single-element

insertions and

all erasures if

comparing

doesn’t throw

Single-element

insertions and

all erasures if

hashing and

comparing don’t

throw

Table 7.57. Overview of Container Abilities

394 Chapter 7: STL Containers

A problem that is not easy to solve is how to sort objects according to two different sorting criteria.

For example, you might have to keep elements in an order provided by the user while providing

search capabilities according to another criterion. As in databases, you need fast access about two

or more different criteria. In this case, you could probably use two sets or two maps that share the

same objects with different sorting criteria. However, having objects in two collections is a special

issue, covered in Section 7.11, page 388.

The automatic sorting of associative containers does not mean that these containers perform

better when sorting is needed. This is because an associative container sorts each time a new element

gets inserted. An often faster way is to use a sequence container and to sort all elements after they

are all inserted, by using one of the several sort algorithms (see Section 11.2.2, page 511).

The following two simple programs sort all strings read from the standard input and print them

without duplicates, by using two different containers:

1. Using a set:

// cont/sortset.cpp

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

#include <set>

using namespace std;

int main()

{

// create a string set

// - initialized by all words from standard input

set<string> coll((istream_iterator<string>(cin)),

istream_iterator<string>());

// print all elements

copy (coll.cbegin(), coll.cend(),

ostream_iterator<string>(cout, "\n"));

}

2. Using a vector:

// cont/sortvec.cpp

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

#include <vector>

7.12 When to Use Which Container 395

using namespace std;

int main()

{

// create a string vector

// - initialized by all words from standard input

vector<string> coll((istream_iterator<string>(cin)),

istream_iterator<string>());

// sort elements

sort (coll.begin(), coll.end());

// print all elements ignoring subsequent duplicates

unique_copy (coll.cbegin(), coll.cend(),

ostream_iterator<string>(cout, "\n"));

}

When I tried both programs with about 350,000 strings on one system, the vector version was ap-

proximately 10% faster. Inserting a call of reserve() made the vector version 5% faster. Allowing

duplicates — using a multiset instead of a set and calling copy() instead of unique_copy(),

respectively — changed things dramatically: The vector version was more than 40% faster. How-

ever, on another system, the vector versions were up to 50% slower. These measurements are not

representative, but they show that it is often worth trying different ways of processing elements.

In practice, predicting which container type is the best is often difficult. The big advantage of the

STL is that you can try different versions without much effort. The major work — implementing the

different data structures and algorithms — is done. You have only to combine them in a way that is

best for you.

This page intentionally left blank

Chapter 8

STL Container Members in Detail

This chapter discusses in detail all the operations that STL containers provide. The types and mem-

bers are grouped by functionality. For each type and operation, this chapter describes the signature,

the behavior, and the container types that provide it. Possible containers types are array, vector,

deque, list, forward list, set, multiset, map, multimap, unordered set, unordered multiset, unordered

map, unordered multimap, and string. In the following sections, container means the container

type that provides the member.

8.1 Type Definitions

container::value_type

• The type of elements.

• For (unordered) sets and multisets, it is constant.

• For (unordered) maps and multimaps, it is pair <const key-type, mapped-type>.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::reference

• The type of element references.

• Typically: container::value_type&.

• For vector<bool>, it is an auxiliary class (see Section 7.3.6, page 282).

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::const_reference

• The type of read-only element references.

• Typically: const container::value_type&.

• For vector<bool>, it is bool.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered map,

unordered multimap, string.

398 Chapter 8: STL Container Members in Detail

container::iterator

• The type of iterators.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::const_iterator

• The type of read-only iterators.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::reverse_iterator

• The type of reverse iterators.

• Provided by array, vector, deque, list, set, multiset, map, multimap, string.

container::const_reverse_iterator

• The type of read-only reverse iterators.

• Provided by array, vector, deque, list, set, multiset, map, multimap, string.

container::pointer

• The type of pointers to elements.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::const_pointer

• The type of read-only pointers to elements.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::size_type

• The unsigned integral type for size values.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::difference_type

• The signed integral type for difference values.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::key_type

• The type of the key of the elements for associative and unordered containers.

• For (unordered) sets and multisets, it is equivalent to value_type.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

8.1 Type Definitions 399

container::mapped_type

• The type of the value part of the elements of associative and unordered containers.

• Provided by map, multimap, unordered map, unordered multimap.

container::key_compare

• The type of the comparison criterion of associative containers.

• Provided by set, multiset, map, multimap.

container::value_compare

• The type of the comparison criterion for the whole element type.

• For sets and multisets, it is equivalent to key_compare.

• For maps and multimaps, it is an auxiliary class for a comparison criterion that compares only

the key part of two elements.

• Provided by set, multiset, map, multimap.

container::hasher

• The type of the hashing function of unordered containers.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::key_equal

• The type of the equality predicate of unordered containers.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::local_iterator

• The type of the bucket iterators of unordered containers.

• Available since C++11.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::const_local_iterator

• The type of read-only bucket iterators of unordered containers.

• Available since C++11.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

In addition, type allocator_type is provided for all containers except arrays (see Section 8.10.1,

page 430).

400 Chapter 8: STL Container Members in Detail

8.2 Create, Copy, and Destroy Operations

Containers provide the following constructors and destructors. In addition, most constructors al-

low you to pass an allocator as an additional argument, covered in Section 8.10, page 430. See

Section 7.1.2, page 254, for a general discussion about initializing containers.

container::container ()

• The default constructor.

• Creates a new empty container.

• For arrays, the operation is implicitly defined and creates a nonempty container where the ele-

ments might have undefined values (see Section 7.2.1, page 262).

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

explicit container::container (const CompFunc& cmpPred)

• Creates a new empty container with cmpPred used as the sorting criterion (see Section 7.7.5,

page 328, and Section 7.8.6, page 351, for examples).

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Provided by set, multiset, map, multimap.

explicit container::container (size_type bnum)

explicit container::container (size_type bnum, const Hasher& hasher)

explicit container::container (size_type bnum, const Hasher& hasher,

const KeyEqual& eqPred)

• Create a new empty container with at least bnum buckets, hasher used as hashing function, and

eqPred used as criterion to identify equal values.

• If eqPred is not passed, the default equivalence criterion of the container type is used (see Sec-

tion 7.9.2, page 366, for details).

• If hasher is not passed, the default hashing function of the container type is used (see Sec-

tion 7.9.2, page 363, for details).

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::container (initializer-list)

• Creates a new container that is initialized by the elements of initializer-list.

• For arrays, the operation is implicitly defined (see Section 7.2.1, page 262).

• Available since C++11.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

8.2 Create, Copy, and Destroy Operations 401

container::container (initializer-list, const CompFunc& cmpPred)

• Creates a container that has the sorting criterion cmpPred and is initialized by the elements of

initializer-list.

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Available since C++11.

• Provided by set, multiset, map, multimap.

container::container (initializer-list, size_type bnum)

container::container (initializer-list, size_type bnum,

const Hasher& hasher)

container::container (initializer-list, size_type bnum,

const Hasher& hasher, const KeyEqual& eqPred)

• Create a container with at least bnum buckets, hasher used as hashing function, and eqPred used

as criterion to identify equal values, initialized by the elements of initializer-list.

• If eqPred is not passed, the default equivalence criterion of the container type is used (see Sec-

tion 7.9.2, page 366, for details).

• If hasher is not passed, the default hashing function of the container type is used (see Sec-

tion 7.9.2, page 363, for details).

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::container (const container& c)

• The copy constructor.

• Creates a new container as a copy of the existing container c.

• Calls the copy constructor for every element in c.

• For arrays, the operation is implicitly defined.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container::container (container&& c)

• The move constructor.

• Creates a new container initialized with the elements of the existing container c.

• After this call, c is valid but has an unspecified value.

• For arrays, the operation is implicitly defined.

• Available since C++11.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

explicit container::container (size_type num)

• Creates a container with num elements.

• The elements are created by their default constructor.

• Provided by vector, deque, list, forward list.

402 Chapter 8: STL Container Members in Detail

container::container (size_type num, const T& value)

• Creates a container with num elements.

• The elements are created as copies of value.

• T is the type of the container elements.

• For strings, value is not passed by reference.

• Provided by vector, deque, list, forward list, string.

container::container (InputIterator beg, InputIterator end)

• Creates a container initialized by all elements of the range [beg,end).

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• See Section 7.1.2, page 256, for examples and a discussion of a problem resulting from the fact

that this is a member function.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

container::container (InputIterator beg, InputIterator end,

const CompFunc& cmpPred)

• Creates a container that has the sorting criterion cmpPred and is initialized by all elements of the

range [beg,end).

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Provided by set, multiset, map, multimap.

container::container (InputIterator beg, InputIterator end, size_type bnum)

container::container (InputIterator beg, InputIterator end, size_type bnum,

const Hasher& hasher)

container::container (InputIterator beg, InputIterator end, size_type bnum,

const Hasher& hasher, const KeyEqual& eqPred)

• Create a container with at least bnum buckets, hasher used as hashing function, and eqPred used

as criterion to identify equal values, which is initialized by all elements of the range [beg,end).

• If eqPred is not passed, the default equivalence criterion of the container type is used (see Sec-

tion 7.9.2, page 366, for details).

• If hasher is not passed, the default hashing function of the container type is used (see Sec-

tion 7.9.2, page 363, for details).

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

8.3 Nonmodifying Operations 403

container::˜container ()

• The destructor.

• Removes all elements and frees the memory.

• Calls the destructor for every element.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

8.3 Nonmodifying Operations

8.3.1 Size Operations

bool container::empty () const

• Returns whether the container is empty (contains no elements).

• It is equivalent to begin()==end() but may be faster.

• Complexity: constant.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

size_type container::size () const

• Returns the current number of elements.

• To check whether the container is empty (contains no elements), you should use empty(), which

may be faster.

• Complexity: constant.

• Provided by array, vector, deque, list, set, multiset, map, multimap, unordered set, unordered

multiset, unordered map, unordered multimap, string.

size_type container::max_size () const

• Returns the maximum number of elements a container may contain.

• This is a technical value that may depend on the memory model of the container. In particular,

because vectors usually use one memory segment, this value may be less for them than for other

containers.

• Complexity: constant.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

404 Chapter 8: STL Container Members in Detail

8.3.2 Comparison Operations

bool operator == (const container& c1, const container& c2)

bool operator != (const container& c1, const container& c2)

• Returns whether the two containers are (not) equal.

• Two containers are equal if they have the same number of elements and contain the same elements

(for all comparisons of two corresponding elements, operator == has to yield true). Except for

unordered containers, equal elements have to have the same order.

• Complexity: linear, in general. For unordered containers, quadratic in the worst case.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

bool operator < (const container& c1, const container& c2)

bool operator <= (const container& c1, const container& c2)

bool operator > (const container& c1, const container& c2)

bool operator >= (const container& c1, const container& c2)

• Returns the result of the comparison of two containers of same type.

• To check whether a container is less than another container, the containers are compared lex-

icographically (see the description of the lexicographical_compare() algorithm in Sec-

tion 11.5.4, page 548).

• Complexity: linear.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, string.

8.3.3 Nonmodifying Operations for Associative and

Unordered Containers

The member functions mentioned here are special implementations of corresponding STL algo-

rithms discussed in Section 11.5, page 524, and Section 11.9, page 596. These member functions

provide better performance because they rely on the fact that the elements of associative containers

are sorted and, in fact, they provide logarithmic complexity instead of linear complexity. For exam-

ple, to search for one of 1,000 elements, no more than ten comparisons on average are needed (see

Section 2.2, page 10).

size_type container::count (const T& value) const

• Returns the number of elements that are equivalent to value.

• This is the special version of the count() algorithm discussed in Section 11.5.1, page 524.

• T is the type of the sorted value:

– For sets and multisets, it is the type of the elements.

– For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

8.3 Nonmodifying Operations 405

iterator container::find (const T& value)

const_iterator container::find (const T& value) const

• Return the position of the first element that has a value equivalent to value.

• Return end() if no element is found.

• These are the special versions of the find() algorithm discussed in Section 11.5.3, page 528.

• T is the type of the sorted value:

– For sets and multisets, it is the type of the elements.

– For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic for associative containers and constant for unordered containers, pro-

vided that a good hash function is used.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

iterator container::lower_bound (const T& value)

const_iterator container::lower_bound (const T& value) const

• Return the first position where a copy of value would get inserted according to the sorting

criterion.

• Return end() if no such element is found.

• The return value is the position of the first element that has a value equal to or greater than value

(which might be end()).

• These are the special versions of the lower_bound() algorithm discussed in Section 11.10.1,

page 611.

• T is the type of the sorted value:

– For sets and multisets, it is the type of the elements.

– For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.

• Provided by set, multiset, map, multimap.

iterator container::upper_bound (const T& value)

const_iterator container::upper_bound (const T& value) const

• Return the last position where a copy of value would get inserted according to the sorting

criterion.

• Return end() if no such element is found.

• The return value is the position of the first element that has a value greater than value (which

might be end()).

• These are the special versions of the upper_bound() algorithm discussed in Section 11.10.1,

page 611.

• T is the type of the sorted value:

– For sets and multisets, it is the type of the elements.

– For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.

• Provided by set, multiset, map, multimap.

406 Chapter 8: STL Container Members in Detail

pair<iterator,iterator> container::equal_range (const T& value)

pair<const_iterator,const_iterator>

container::equal_range (const T& value) const

• Return a pair with the first and last positions where a copy of value would get inserted according

to the sorting criterion.

• The return value is the range of elements equal to value.

• They are equivalent to:

make_pair(lower_bound(value),upper_bound(value))

• These are the special versions of the equal_range() algorithm discussed in Section 11.10.1,

page 613.

• T is the type of the sorted value:

– For sets and multisets, it is the type of the elements.

– For maps and multimaps, it is the type of the keys.

• Complexity: logarithmic.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

8.4 Assignments

container& container::operator= (const container& c)

• Copy assignment operator.

• Assigns all elements of c; that is, it replaces all existing elements with copies of the elements

of c.

• The operator may call the assignment operator for elements that have been overwritten, the copy

constructor for appended elements, and the destructor of the element type for removed elements.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

container& container::operator= (container&& c)

• Move assignment operator.

• Moves all elements of c to *this; that is, it replaces all existing elements with the elements of c.

• After this call, c is valid but has an unspecified value.

• Available since C++11.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

8.4 Assignments 407

container& container::operator= (initializer-list)

• Assigns all elements of initializer-list; that is, it replaces all existing elements with copies of the

passed elements.

• The operator may call the assignment operator for elements that have been overwritten, the copy

constructor for appended elements, and the destructor of the element type for removed elements.

• Available since C++11.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

void container::assign (initializer-list)

• Assigns all elements of the initializer-list; that is, it replaces all existing elements with copies of

the passed elements.

• Available since C++11.

• Provided by vector, deque, list, forward list, string.

void array::fill (const T& value)

• Assigns value to all elements; that is, it replaces all existing elements with copies of the value.

• Available since C++11.

• Provided by array.

void container::assign (size_type num, const T& value)

• Assigns num occurrences of value; that is, it replaces all existing elements by num copies of

value.

• T has to be the element type.

• Provided by vector, deque, list, forward list, string.

void container::assign (InputIterator beg, InputIterator end)

• Assigns all elements of the range [beg,end); that is, it replaces all existing elements with copies

of the elements of [beg,end).

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• Provided by vector, deque, list, forward list, string.

void container::swap (container& c)

void swap (container& c1, container& c2)

• Swap the contents with c or between c1 and c2, respectively.

• Both swap:

– The container’s elements

– Their sorting criterion, equivalence predicate, and hash function object, if any.

The references, pointers, and iterators referring to elements swap their containers, because they

still refer to the same swapped elements afterward.

408 Chapter 8: STL Container Members in Detail

• Arrays can’t internally just swap pointers. Thus, swap() has linear complexity, and iterators and

references refer to the same container but different elements afterward.

• For associative containers, the function may throw only if copying or assigning the comparison

criterion may throw. For unordered containers, the function may throw only if the equivalence

predicate or the hash function object may throw. For all other containers, the function does not

throw.

• Complexity: constant, in general. For arrays it is linear.

• Due to its complexity, you should always prefer swap() over a copy assignment when you no

longer need the assigned object (see Section 7.1.2, page 258).

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

8.5 Direct Element Access

reference container::at (size_type idx)

const_reference container::at (size_type idx) const

• Return the element with the index idx (the first element has index 0).

• Passing an invalid index (less than 0 or equal to size() or greater than size()) throws an

out_of_range exception.

• The returned reference may get invalidated due to later modifications or reallocations.

• If you are sure that the index is valid, you can use operator [], which is faster.

• Provided by array, vector, deque, string.

T& map::operatorat (const key_type& key)

const T& map::operatorat (const key_type& key) const

• Return the corresponding value to key in a map.

• Throw an out_of_range exception if no element with a key equal to key exists.

• Available since C++11.

• Provided by map, unordered map.

reference container::operator[] (size_type idx)

const_reference container::operator[] (size_type idx) const

• Both return the element with the index idx (the first element has index 0).

• Passing an invalid index (less than 0 or equal to size() or greater than size()) results in

undefined behavior. Thus, the caller must ensure that the index is valid; otherwise, at() should

be used.

• The returned reference may get invalidated due to later modifications or reallocations.

• Provided by array, vector, deque, string.

8.5 Direct Element Access 409

T& map::operator[] (const key_type& key)

T& map::operator[] (key_type&& key)

• Operator [] for associative arrays.

• Return the corresponding value to key in a map.

• If no element with a key equal to key exists, these operations create a new element automatically

with this key (copied or moved) and a value that is initialized by the default constructor of the

value type. Thus, you can’t have an invalid index (only wrong behavior). See Section 6.2.4,

page 185, and Section 7.8.3, page 344, for details.

• With the second form, the state of key is undefined afterward (this form provides move semantics

for the case that the key doesn’t exist yet).

• The first form is equivalent to:

(*((insert(make_pair(key,T()))).first)).second

• The second form is available since C++11.

• Provided by map, unordered map.

reference container::front ()

const_reference container::front () const

• Both return the first element (the element with index 0).

• The caller must ensure that the container contains an element (size()>0); otherwise, the behav-

ior is undefined.

• For strings, it is provided since C++11.

• Provided by array, vector, deque, list, forward list, string.

reference container::back ()

const_reference container::back () const

• Both return the last element (the element with index size()-1).

• The caller must ensure that the container contains an element (size()>0); otherwise, the behav-

ior is undefined.

• For strings, it is provided since C++11.

• Provided by array, vector, deque, list, string.

T* container::data ()

const T* container::data () const

• Both return an ordinary C-style array with all elements (that is, a pointer to the first element).

• This function is provided to pass the elements of the array to C-style interfaces.

• For strings, only the second form is provided.

• For arrays and vectors, available since C++11.

• Provided by array, vector, string.

410 Chapter 8: STL Container Members in Detail

8.6 Operations to Generate Iterators

The following member functions return iterators to iterate over the elements of the containers.

Table 8.1 lists the iterator category (see Section 9.2, page 433) according to the various container

types.

Container Iterator Category

Array Random access

Vector Random access

Deque Random access

List Bidirectional

Forward list Forward

Set Bidirectional; element is constant

Multiset Bidirectional; element is constant

Map Bidirectional; key is constant

Multimap Bidirectional; key is constant

Unordered set Forward; element is constant

Unordered multiset Forward; element is constant

Unordered map Forward; key is constant

Unordered multimap Forward; key is constant

String Random access

Table 8.1. Required Iterator Categories of Container Types

iterator container::begin ()

const_iterator container::begin () const

const_iterator container::cbegin () const

• Return an iterator for the beginning of the container (the position of the first element).

• If the container is empty, the calls are equivalent to container::end() or

container::cend(), respectively.

• Note that unordered containers also provide begin() and cbegin() for a numeric argument to

provide the bucket interface (see Section 8.9.3, page 429, for details).

• cbegin() is available since C++11.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

iterator container::end ()

const_iterator container::end () const

const_iterator container::cend () const

• Return an iterator for the end of the container (the position after the last element).

8.7 Inserting and Removing Elements 411

• If the container is empty, the calls are equivalent to container::begin() or

container::cbegin(), respectively.

• Note that unordered containers also provide begin() and cbegin() for a numeric argument to

provide the bucket interface (see Section 8.9.3, page 430, for details).

• cend() is available since C++11.

• Provided by array, vector, deque, list, forward list, set, multiset, map, multimap, unordered set,

unordered multiset, unordered map, unordered multimap, string.

reverse_iterator container::rbegin ()

const_reverse_iterator container::rbegin () const

const_reverse_iterator container::crbegin () const

• Return a reverse iterator for the beginning of a reverse iteration over the elements of the container

(the position of the last element).

• If the container is empty, the calls are equivalent to container::rend() or

container::crend(), respectively.

• For details about reverse iterators, see Section 9.4.1, page 448.

• crbegin() is available since C++11.

• Provided by array, vector, deque, list, set, multiset, map, multimap, string.

reverse_iterator container::rend ()

const_reverse_iterator container::rend () const

const_reverse_iterator container::crend () const

• Return a reverse iterator for the end of a reverse iteration over the elements of the container (the

position before the first element).

• If the container is empty, the calls are equivalent to container::rbegin() or

container::crbegin(), respectively.

• For details about reverse iterators, see Section 9.4.1, page 448.

• crend() is available since C++11.

• Provided by array, vector, deque, list, set, multiset, map, multimap, string.

8.7 Inserting and Removing Elements

8.7.1 Inserting Single Elements

iterator container::insert (const T& value)

iterator container::insert (T&& value)

pair<iterator,bool> container::insert (const T& value)

pair<iterator,bool> container::insert (T&& value)

412 Chapter 8: STL Container Members in Detail

• Insert value into an associative or unordered container.

• The first and third forms copy value.

• The second and fourth forms move value to the container so that the value of value is unspecified

afterward.

• Containers that allow duplicates, (unordered) multisets and multimaps, have the first and second

signatures. They return the position of the new element. Since C++11, newly inserted elements

are guaranteed to be placed at the end of existing equivalent values.

• Containers that do not allow duplicates, (unordered) sets and maps, have the second and fourth

signature. If they can’t insert the value because an element with an equal value or key exists, they

return the position of the existing element and false. If they can insert the value, they return the

position of the new element and true.

• T is the type of the container elements. Thus, for (unordered) maps and multimaps, it is a

key/value pair.

• For map, multimap, unordered map, and unordered multimap, the corresponding form with move

semantic is a member template (see Section 3.2, page 34). Thus, value may have any type

convertible into the value type (key/value pair) of the container. This was introduced to allow

you to pass two strings so that the first one gets converted into a constant string (which is the key

type).

• The functions either succeed or have no effect, provided that for unordered containers the hash

function does not throw.

• For all containers, references to existing elements remain valid. For associative containers, all

iterators to existing elements remain valid. For unordered containers, iterators to existing ele-

ments remain valid if no rehashing is forced (if the number of resulting elements is equal to or

greater than the bucket count times the maximum load factor).

• The second and fourth forms are available since C++11.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

iterator container::emplace (args)

pair<iterator,bool> container::emplace (args)

• Insert a new element initialized by args into an associative or unordered container.

• Containers that allow duplicates (ordered and unordered multisets and multimaps) have the first

signature. They return the position of the new element. It is guaranteed that newly inserted

elements are placed at the end of existing equivalent values.

• Containers that do not allow duplicates (ordered and unordered sets and maps) have the second

signature. If they can’t insert the value because an element with an equal value or key exists, they

return the position of the existing element and false. If they can insert the value, they return the

position of the new element and true.

• The function either succeeds or has no effect, provided that for unordered containers the hash

function does not throw.

8.7 Inserting and Removing Elements 413

• For all containers, references to existing elements remain valid. For associative containers, all

iterators to existing elements remain valid. For unordered containers, iterators to existing ele-

ments remain valid if no rehashing is forced (if the number of resulting elements is equal to or

greater than the bucket count times the maximum load factor).

• Note that for sequence containers, the same signature is possible, where the first argument is

processed as the position where the new element gets inserted (see Section 8.7.1, page 414).

• Note that to emplace new key/value pairs for (unordered) maps and multimaps, you have to use

piecewise construction (see Section 7.8.2, page 341, for details).

• Available since C++11.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

iterator container::insert (const_iterator pos, const T& value)

iterator container::insert (const_iterator pos, T&& value)

• Insert value at the position of iterator pos.

• The first form copies value.

• The second form moves value to the container so that the value of value is unspecified afterward.

• Return the position of the new element.

• If the container does not allow duplicates (set, map, unordered set, unordered map) and already

contains an element equal to (the key of) value, the call has no effect, and the return value is the

position of the existing element.

• For associative and unordered containers, the position is used only as a hint pointing to where the

insert should start to search. If value is inserted right at pos, the function has amortized constant

complexity; otherwise, it has logarithmic complexity.

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For deques, this operation invalidates iterators and references to other elements.

• T is the type of the container elements. Thus, for (unordered) maps and multimaps, it is a

key/value pair.

• For map, multimap, unordered map, and unordered multimap, the second form with move seman-

tics is a member template (see Section 3.2, page 34). Thus, value may have any type convertible

into the value type (key/value pair) of the container. This was introduced to allow passing two

strings so that the first one gets converted into a constant string (which is the key type).

• For strings, value is passed by value.

• For vectors and deques, if the copy/move operations (constructor and assignment operator) of

the elements don’t throw, the function either succeeds or has no effect. For unordered containers,

the function either succeeds or has no effect if the hash function does not throw. For all other

standard containers, the function either succeeds or has no effect.

• The second form is available since C++11. Before C++11, type iterator was used instead of

const_iterator.

• Provided by vector, deque, list, set, multiset, map, multimap, unordered set, unordered multiset,

unordered map, unordered multimap, string.

414 Chapter 8: STL Container Members in Detail

iterator container::emplace (const_iterator pos, args)

• Inserts a new element initialized by args at the position of iterator pos.

• Returns the position of the new element.

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For deques, this operation invalidates iterators and references to other elements.

• T is the type of the container elements.

• For vectors and deques, if the copy operations (copy constructor and assignment operator) of

the elements don’t throw, the function either succeeds or has no effect. For all other standard

containers, the function either succeeds or has no effect.

• For associative containers, the same signature is possible, where pos is processed as first argu-

ment for the new element (see Section 8.7.1, page 412).

• The function either succeeds or has no effect, provided that for unordered containers the hash

function does not throw.

• Available since C++11.

• Provided by vector, deque, list.

iterator container::emplace_hint (const_iterator pos, args)

• Inserts a new element initialized by args at the position of iterator pos.

• Returns the position of the new element.

• If the container does not allow duplicates (set, map, unordered set, unordered map) and already

contains an element equal to (the key of) value, the call has no effect, and the return value is the

position of the existing element.

• The position is used only as a hint, pointing to where the insert should start to search. If the

new element is inserted at pos, the function has amortized constant complexity; otherwise, it has

logarithmic complexity.

• T is the type of the container elements. Thus, for (unordered) maps and multimaps, it is a

key/value pair.

• The function either succeeds or has no effect, provided that for unordered containers the hash

function does not throw.

• Available since C++11.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

void container::push_front (const T& value)

void container::push_front (T&& value)

• Insert value as the new first element.

• The first form copies value.

• The second form, which is available since C++11, moves value to the container, so the state of

value is undefined afterward.

• T is the type of the container elements.

8.7 Inserting and Removing Elements 415

• Both forms are equivalent to insert(begin(),value).

• For deques, this operation invalidates iterators to other elements. References to other elements

remain valid.

• This function either succeeds or has no effect.1

• Provided by deque, list, forward list.

void container::emplace_front (args)

• Inserts a new first element, which is initialized by the argument list args.

• Thus, for the element type there must be a callable constructor for args.

• For deques, this operation invalidates iterators to other elements. References to other elements

remain valid.

• This function either succeeds or has no effect.

• Available since C++11.

• Provided by deque, list, forward list.

void container::push_back (const T& value)

void container::push_back (T&& value)

• Append value as the new last element.

• The first form copies value.

• The second form, which is available since C++11, moves value to the container, so the state of

value is undefined afterward.

• T is the type of the container elements.

• Both forms are equivalent to insert(end(),value).

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For deques, this operation invalidates iterators to other elements. References to other elements

remain valid.

• For strings, value is passed by value.

• For vectors and deques, this function either succeeds or has no effect, provided that the copy/move

constructor does not throw. For lists, this function either succeeds or has no effect.

• Provided by vector, deque, list, string.

void container::emplace_back (args)

• Appends a new last element, which is initialized by the argument list args.

• Thus, for the element type, there must be a callable constructor for args.

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

1 For forward lists, the standard currently does not say this, which likely is a defect.

416 Chapter 8: STL Container Members in Detail

• For deques, this operation invalidates iterators to other elements. References to other elements

remain valid.

• This function either succeeds or has no effect, provided that for vectors and deques the copy/move

constructor does not throw.

• Available since C++11.

• Provided by vector, deque, list.

8.7.2 Inserting Multiple Elements

void container::insert (initializer-list)

• Inserts copies of the elements of initializer-list into an associative container.

• For all containers, references to existing elements remain valid. For associative containers, all

iterators to existing elements remain valid. For unordered containers, iterators to existing ele-

ments remain valid if no rehashing is forced (if the number of resulting elements is equal to or

greater than the bucket count times the maximum load factor).

• Available since C++11.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

iterator container::insert (const_iterator pos, initializer-list)

• Inserts copies of the elements of initializer-list at the position of iterator pos.

• Returns the position of the first inserted element or pos if initializer-list is empty.

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For deques, this operation invalidates iterators and references to other elements.

• For lists, the function either succeeds or has no effect.

• Available since C++11.

• Provided by vector, deque, list, string.

iterator container::insert (const_iterator pos,

size_type num, const T& value)

• Inserts num copies of value at the position of iterator pos.

• Returns the position of the first inserted element or pos if num==0 (before C++11. nothing was

returned).

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For deques, this operation invalidates iterators and references to other elements.

• T is the type of the container elements. Thus, for maps and multimaps, it is a key/value pair.

• For strings, value is passed by value.

8.7 Inserting and Removing Elements 417

• For vectors and deques, if the copy/move operations (constructor and assignment operator) of the

elements don’t throw, the function either succeeds or has no effect. For lists, the function either

succeeds or has no effect.

• Before C++11, type iterator was used instead of const_iterator and the return type was

void.

• Provided by vector, deque, list, string.

void container::insert (InputIterator beg, InputIterator end)

• Inserts copies of all elements of the range [beg,end) into the associative container.

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• For all containers, references to existing elements remain valid. For associative containers, all

iterators to existing elements remain valid. For unordered containers, iterators to existing ele-

ments remain valid if no rehashing is forced (if the number of resulting elements is equal to or

greater than the bucket count times the maximum load factor).

• The function either succeeds or has no effect, provided that for unordered containers the hash

function does not throw.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

iterator container::insert (const_iterator pos,

InputIterator beg, InputIterator end)

• Inserts copies of all elements of the range [beg,end) at the position of iterator pos.

• Returns the position of the first inserted element or pos if beg==end (before C++11, nothing was

returned).

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• For vectors, this operation invalidates iterators and references to other elements if reallocation

happens (the new number of elements exceeds the previous capacity).

• For vectors and deques, this operation might invalidate iterators and references to other elements.

• For lists, the function either succeeds or has no effect.

• Before C++11, type iterator was used instead of const_iterator and the return type was

void.

• Provided by vector, deque, list, string.

8.7.3 Removing Elements

size_type container::erase (const T& value)

• Removes all elements equivalent to value from an associative or unordered container.

• Returns the number of removed elements.

418 Chapter 8: STL Container Members in Detail

• Calls the destructors of the removed elements.

• T is the type of the sorted value:

– For (unordered) sets and multisets, it is the type of the elements.

– For (unordered) maps and multimaps, it is the type of the keys.

• The function does not invalidate iterators and references to other elements.

• The function may throw if the comparison test or hash function object throws.

• Provided by set, multiset, map, multimap, unordered set, unordered multiset, unordered map,

unordered multimap.

• For (forward) lists, remove() provides the same functionality (see Section 8.8.1, page 420). For

other containers, the remove() algorithm can be used (see Section 11.7.1, page 575).

iterator container::erase (const_iterator pos)

• Removes the element at the position of iterator pos.

• Returns the position of the following element (or end()).

• Calls the destructor of the removed element.

• The caller must ensure that the iterator pos is valid. For example:

coll.erase(coll.end()); // ERROR ⇒ undefined behavior

• For vectors and deques, this operation might invalidate iterators and references to other elements.

For all other containers, iterators and references to other elements remain valid.

• For vectors, deques, and lists, the function does not throw. For associative and unordered con-

tainers, the function may throw if the comparison test or hash function object throws.

• Before C++11, the return type was void for associative containers, and type iterator was used

instead of const_iterator.

• For sets that use iterators as elements, calling erase() might be ambiguous since C++11. For

this reason, C++11 currently gets fixed to provide overloads for both erase(iterator) and

erase(const_iterator).

• Provided by vector, deque, list, set, multiset, map, multimap, unordered set, unordered multiset,

unordered map, unordered multimap, string.

iterator container::erase (const_iterator beg, const_iterator end)

• Removes the elements of the range [beg,end).

• Returns the position of the element that was behind the last removed element on entry (or end()).

• As always for ranges, all elements, including beg but excluding end, are removed.

• Calls the destructors of the removed elements.

• The caller must ensure that beg and end define a valid range that is part of the container.

• For vectors and deques, this operation might invalidate iterators and references to other elements.

For all other containers, iterators and references to other elements remain valid.

• For vectors, deques, and lists the function does not throw. For associative and unordered con-

tainers, the function may throw if the comparison test or hash function object throws.

• Before C++11, the return type was void for associative containers and type iterator was used

instead of const_iterator.

8.7 Inserting and Removing Elements 419

• Provided by vector, deque, list, set, multiset, map, multimap, unordered set, unordered multiset,

unordered map, unordered multimap, string.

void container::pop_front ()

• Removes the first element of the container.

• Is equivalent to

container.erase(container.begin())

or for forward lists, to

container.erase_after(container.before_begin())

• If the container is empty, the behavior is undefined. Thus, the caller must ensure that the container

contains at least one element (!empty()).

• The function does not throw.

• Iterators and references to other elements remain valid.

• Provided by deque, list, forward list.

void container::pop_back ()

• Removes the last element of the container.

• Is equivalent to

container.erase(prev(container.end()))

• If the container is empty, the behavior is undefined. Thus, the caller must ensure that the container

contains at least one element (!empty()).

• The function does not throw.

• Iterators and references to other elements remain valid.

• For strings, it is provided since C++11.

• Provided by vector, deque, list, string.

void container::clear ()

• Removes all elements (empties the container).

• Calls the destructors of the removed elements.

• Invalidates all iterators and references to elements of the container.

• For vectors, deques, and strings, it even invalidates any past-the-end-iterator, which was returned

by end() or cend().

• The function does not throw (before C++11, for vectors and deques, the function could throw if

the copy constructor or assignment operator throws).

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

420 Chapter 8: STL Container Members in Detail

8.7.4 Resizing

void container::resize (size_type num)

void container::resize (size_type num, const T& value)

• Change the number of elements to num.

• If size() is num on entry, they have no effect.

• If num is greater than size() on entry, additional elements are created and appended to the end

of the container. The first form creates the new elements by calling their default constructor; the

second form creates the new elements as copies of value.

• If num is less than size() on entry, elements are removed at the end to get the new size. In this

case, they call the destructor of the removed elements.

• For vectors and deques, this operation might invalidate iterators and references to other elements.

For all other containers, iterators and references to other elements remain valid.

• For vectors and deques, these functions either succeed or have no effect, provided that the con-

structor or the assignment operator of the elements doesn’t throw. For lists and forward lists, the

functions either succeed or have no effect.

• Before C++11, value was passed by value.

• For strings, value is passed by value.

• Provided by vector, deque, list, forward list, string.

8.8 Special Member Functions for Lists and

Forward Lists

8.8.1 Special Member Functions for Lists (and Forward Lists)

void list::remove (const T& value)

void list::remove_if (UnaryPredicate op)

• remove() removes all elements with value value.

• remove_if() removes all elements for which the unary predicate

op(elem)

yields true.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Both call the destructors of the removed elements.

• The order of the remaining arguments remains stable.

• This is the special version of the remove() algorithm, which is discussed in Section 11.7.1,

page 575.

8.8 Special Member Functions for Lists and Forward Lists 421

• T is the type of the container elements.

• For further details and examples, see Section 7.5.2, page 294.

• The functions may throw only if the comparison of the elements may throw.

• Provided by list, forward list.

void list::unique ()

void list::unique (BinaryPredicate op)

• Remove subsequent duplicates of (forward) list elements so that the value of each element is

different from that of the following element.

• The first form removes all elements for which the previous values are equal.

• The second form removes all elements that follow an element e and for which the binary predicate

op(elem,e)

yields true. In other words, the predicate is not used to compare an element with its predecessor;

the element is compared with the previous element that was not removed.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Both call the destructors of the removed elements.

• These are the special versions of the unique() algorithms (see Section 11.7.2, page 578).

• The functions do not throw if the comparisons of the elements do not throw.

• Provided by list, forward list.

void list::splice (const_iterator pos, list& source)

void list::splice (const_iterator pos, list&& source)

• Move all elements of the list source into *this and insert them at the position of iterator pos.

• After the call, source is empty.

• If source and *this are identical, the behavior is undefined. Thus, the caller must ensure that

source is a different list. To move elements inside the same list, you must use the following forms

of splice().

• The caller must ensure that pos is a valid position of *this; otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• The second form is available since C++11. Before C++11, type iterator was used instead of

const_iterator.

• Provided by list.

void list::splice (const_iterator pos, list& source, const_iterator sourcePos)

void list::splice (const_iterator pos, list&& source, const_iterator sourcePos)

• Move the element at the position sourcePos of the list source into *this and insert it at the

position of iterator pos.

• source and *this may be identical. In this case, the element is moved inside the list.

422 Chapter 8: STL Container Members in Detail

• If source is a different list, it contains one element less after the operation.

• The caller must ensure that pos is a valid position of *this, that sourcePos is a valid iterator of

source, and that sourcePos is not source.end(); otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• The second form is available since C++11. Before C++11, type iterator was used instead of

const_iterator.

• Provided by list.

void list::splice (const_iterator pos, list& source,

const_iterator sourceBeg, const_iterator sourceEnd)

void list::splice (const_iterator pos, list&& source,

const_iterator sourceBeg, const_iterator sourceEnd)

• Move the elements of the range [sourceBeg,sourceEnd) of the list source to *this and insert

them at the position of iterator pos.

• source and *this may be identical. In this case, pos must not be part of the moved range, and

the elements are moved inside the list.

• If source is a different list, it contains fewer elements after the operation.

• The caller must ensure that pos is a valid position of *this and that sourceBeg and sourceEnd

define a valid range that is part of source; otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• The second form is available since C++11. Before C++11, type iterator was used instead of

const_iterator.

• Provided by list.

void list::sort ()

void list::sort (CompFunc cmpPred)

• Sort the elements.

• The first form sorts all elements with operator <.

• The second form sorts all elements by calling cmpPred to compare two elements:

op(elem1,elem2)

• The order of elements that have an equal value remains stable unless an exception is thrown.

• These are the special versions of the sort() and stable_sort() algorithms (see Section 11.9.1,

page 596).

• Provided by list, forward list.

8.8 Special Member Functions for Lists and Forward Lists 423

void list::merge (list& source)

void list::merge (list&& source)

void list::merge (list& source, CompFunc cmpPred)

void list::merge (list&& source, CompFunc cmpPred)

• Merge all elements of the (forward) list source into *this.

• After the call, source is empty.

• The first two forms use operator < as the sorting criterion.

• The last two forms use cmpPred as the optional sorting criterion and to compare two elements:

cmpPred(elem,sourceElem)

• The order of elements that have an equivalent value remains stable.

• If *this and source are sorted on entry according to the sorting criterion < or cmpPred, the

resulting (forward) list is also sorted and equivalent elements of *this precede equivalent ele-

ments of source. Strictly speaking, the standard requires that both (forward) lists be sorted on

entry. In practice, however, merging is also possible for unsorted lists. However, you should

check this before you rely on it.

• This is the special version of the merge() algorithm (see Section 11.10.2, page 614).

• If the comparisons of the elements do not throw, the functions either succeed or have no effect.

• Provided by list, forward list.

void list::reverse ()

• Reverses the order of the elements in a (forward) list.

• This is the special version of the reverse() algorithm (see Section 11.8.1, page 583).

• This function does not throw.

• Provided by list, forward list.

8.8.2 Special Member Functions for Forward Lists Only

iterator forwardlist::before_begin ()

const_iterator forwardlist::before_begin () const

const_iterator forwardlist::cbefore_begin () const

• Return an iterator for the the position before the first element.

• Because you can’t iterate backward, this member function allows you to yield the position to

insert a new or delete the first element.

• Provided by forward list.

iterator forwardlist::insert_after (const_iterator pos, const T& value)

iterator forwardlist::insert_after (const_iterator pos, T&& value)

• Insert value right after the position of iterator pos.

• The first form copies value.

424 Chapter 8: STL Container Members in Detail

• The second form moves value to the container, so the state of value is undefined afterward.

• Return the position of the new element.

• The function either succeeds or has no effect.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

iterator forwardlist::emplace_after (const_iterator pos, args)

• Inserts a new element initialized by args right after the position of iterator pos.

• Returns the position of the new element.

• The function either succeeds or has no effect.2

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

iterator forwardlist::insert_after (const_iterator pos,

size_type num, const T& value)

• Inserts num copies of value right behind the position of iterator pos.

• Returns the position of the last inserted element or pos if num==0.

• The function either succeeds or has no effect.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

iterator forwardlist::insert_after (const_iterator pos, initializer-list)

• Inserts copies of the elements of initializer-list right after the position of iterator pos.

• Returns the position of the last inserted element or pos if initializer-list is empty.

• The function either succeeds or has no effect.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Available since C++11. forward list.

iterator forwardlist::insert_after (const_iterator pos,

InputIterator beg, InputIterator end)

• Inserts copies of all elements of the range [beg,end) right after the position of iterator pos.

• Returns the position of the last inserted element or pos if beg==end.

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• The function either succeeds or has no effect.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

2 Currently, the standard does not say this, which likely is a defect.

8.8 Special Member Functions for Lists and Forward Lists 425

iterator forwardlist::erase_after (const_iterator pos)

• Removes the element right after the position of iterator pos.

• Returns the position of the following element (or end()).

• Calls the destructor of the removed element.

• Iterators and references to other elements remain valid.

• The caller must ensure that the iterator pos is valid, which excludes to pass end() and the position

before end().

• The function does not throw.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

void forwardlist::erase_after (const_iterator beg, const_iterator end)

• Removes the elements of the range (beg,end). Note that this is not a half-open range, because it

excludes both beg and end. [beg,end). For example:

coll.erase(coll.before_begin(),coll.end()); // OK: erases all elements

• Returns end.

• Calls the destructors of the removed elements.

• The caller must ensure that beg and end define a valid range that is part of the container.

• The function does not throw.

• Iterators and references to other elements remain valid.

• Provided by forward list.

void forwardlist::splice_after (const_iterator pos, forwardlist& source)

void forwardlist::splice_after (const_iterator pos, forwardlist&& source)

• Move all elements of source into *this and insert them at the position right after iterator pos.

• After the call, source is empty.

• If source and *this are identical, the behavior is undefined. Thus, the caller must ensure that

source is a different list. To move elements inside the same list, you must use the following forms

of splice_after().

• The caller must ensure that pos is a valid position of *this; otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

426 Chapter 8: STL Container Members in Detail

void forwardlist::splice_after (const_iterator pos,

forwardlist& source, const_iterator sourcePos)

void forwardlist::splice_after (const_iterator pos,

forwardlist&& source, const_iterator sourcePos)

• Move the element right after the position sourcePos of the list source into *this and insert it at

the position right after iterator pos.

• source and *this may be identical. In this case, the element is moved inside the list.

• If source is a different list, it contains one element less after the operation.

• The caller must ensure that pos is a valid position of *this, that sourcePos is a valid iterator of

source, and that sourcePos is not source.end(); otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

void forwardlist::splice_after (const_iterator pos, forwardlist& source,

const_iterator sourceBeg,

const_iterator sourceEnd)

void forwardlist::splice_after (const_iterator pos, forwardlist&& source,

const_iterator sourceBeg,

const_iterator sourceEnd)

• Move the elements of the range (sourceBeg,sourceEnd) of the list source to *this and insert

them at the position right after iterator pos. Note that the last two arguments are not a half-open

range, because it excludes both beg and end. For example, the following call moves all elements

of coll2 to the beginning of coll:

coll.splice_after(coll.before_begin(), coll2,

coll2.before_begin(), coll2.end());

• source and *this may be identical. In this case, pos must not be part of the moved range, and

the elements are moved inside the list.

• If source is a different list, it contains fewer elements after the operation.

• The caller must ensure that pos is a valid position of *this and that sourceBeg and sourceEnd

define a valid range that is part of source; otherwise, the behavior is undefined.

• Pointers, iterators, and references to members of source remain valid. Thus, they belong to this

afterward.

• This function does not throw.

• Passing end() or cend() of a container as pos results in undefined behavior.

• Provided by forward list.

8.9 Container Policy Interfaces 427

8.9 Container Policy Interfaces

8.9.1 Nonmodifying Policy Functions

size_type container::capacity () const

• Returns the number of elements the container may contain without reallocation.

• Provided by vector, string.

value_compare container::value_comp () const

• Returns the object that is used as the comparison criterion of associative containers for values as

a whole.

• For sets and multisets, it is equivalent to key_comp().

• For maps and multimaps, it is an auxiliary class for a comparison criterion that compares only

the key part of the key/value pair.

• Provided by set, multiset, map, multimap.

key_compare container::key_comp () const

• Returns the comparison criterion of associative containers.

• Provided by set, multiset, map, multimap.

key_equal container::key_eq () const

• Returns the equivalence criterion of unordered containers.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

hasher container::hash_function () const

• Returns the hash function of unordered containers.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

float container::load_factor () const

• Returns the current average number of elements per bucket of an unordered container.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

float container::max_load_factor () const

• Returns the maximum load factor of an unordered container. The container automatically re-

hashes (increases the number of buckets as necessary) to keep its load factor below or equal to

this number.

• Note that the default is 1.0, which usually should be modified (see Section 7.9.2, page 362).

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

428 Chapter 8: STL Container Members in Detail

8.9.2 Modifying Policy Functions

void container::reserve (size_type num)

• Reserves internal memory for at least num elements.

• For vectors, this call can only increase the capacity. Thus, it has no effect if num is less than

or equal to the actual capacity. To shrink the capacity of vectors, see shrink_to_fit() on

page 428 and the example in Section 7.3.1, page 271.

• For unordered containers

– This call is equivalent to rehash(ceil(num/max_load_factor)) (ceil() yields the round-

up value).

– This operation invalidates iterators, changes ordering between elements, and changes the

buckets the elements appear in. The operation does not invalidate pointers or references to

elements.

• For strings, num is optional (default: 0), and the call is a nonbinding shrink request if num is less

than the actual capacity.

• This operation might invalidate iterators and (for vectors and strings) references and pointers to

elements. However, it is guaranteed that no reallocation takes place during insertions that happen

after a call to reserve() until the time when an insertion would make the size greater than num.

Thus, reserve() can increase speed and help to keep references, pointers, and iterators valid

(see Section 7.3.1, page 271, for details).

• Throws length_error (see Section 4.3.1, page 43) if num>max_size() or an appropriate ex-

ception if the memory allocation fails.

• Available for unordered containers since C++11.

• Provided by vector, unordered set, unordered multiset, unordered map, unordered multimap,

string.

void container::shrink_to_fit ()

• Shrinks the internal memory to fit the exact number of elements.

• This call is a nonbinding request, which means that implementations can ignore this call to

allow latitude for implementation-specific optimizations. Thus, it is not guaranteed that afterward

capacity() == size() yields true.

• This operation might invalidate references, pointers, and iterators to elements.

• Available since C++11. To shrink the capacity of vectors before C++11, see Section 7.3.1,

page 271, for an example.

• Provided by vector, deque, string.

void container::rehash (size_type bnum)

• Changes the number of buckets of an unordered container to at least bnum.

• This operation invalidates iterators, changes ordering between elements, and changes the buckets

the elements appear in. The operation does not invalidate pointers or references to elements.

8.9 Container Policy Interfaces 429

• If an exception is thrown other than by the container’s hash or comparison function, the operation

has no effect.

• For unordered multisets and multimaps, rehashing preserves the relative ordering of equivalent

elements.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

void container::max_load_factor (float loadFactor)

• Sets the maximum load factor of an unordered container to loadFactor.

• loadFactor is taken as a hint so that implementations are free to adjust this value according to

their internal layout philosophy.

• This operation might cause a rehashing, which invalidates iterators, changes ordering between

elements, and changes the buckets the elements appear in. The operation does not invalidate

pointers or references to elements.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

8.9.3 Bucket Interface for Unordered Containers

size_type container::bucket_count () const

• Returns the current number of buckets of an unordered container.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

size_type container::max_bucket_count () const

• Returns the maximum possible number of buckets of an unordered container.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

size_type container::bucket (const key_type key) const

• Returns the index of the bucket in which elements with a key equivalent to key would be found,

if any such element existed.

• The return value is in the range [0,bucket_count()).

• The return value is undefined if bucket_count() is zero.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

size_type container::bucket_size (size_type bucketIdx) const

• Returns the number of elements in the bucket with index bucketIdx.

• If bucketIdx is not a valid index in the range [0,bucket_count()), the effect is undefined.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

local_iterator container::begin (size_type bucketIdx)

const_local_iterator container::begin (size_type bucketIdx) const

const_local_iterator container::cbegin (size_type bucketIdx) const

430 Chapter 8: STL Container Members in Detail

• All three return an iterator for the beginning of all elements (the position of the first element) of

the bucket with index bucketIdx.

• If the bucket is empty, the calls are equivalent to container::end(bucketIdx) or

container::cend(bucketIdx), respectively.

• If bucketIdx is not a valid index in the range [0,bucket_count()), the effect is undefined.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

local_iterator container::end (size_type bucketIdx)

const_local_iterator container::end (size_type bucketIdx) const

const_local_iterator container::cend (size_type bucketIdx) const

• All three return an iterator for the end of all elements (the position after the last element) of the

bucket with index bucketIdx.

• If the bucket is empty, the calls are equivalent to container::begin(bucketIdx) or

container::cbegin(bucketIdx), respectively.

• If bucketIdx is not a valid index in the range [0,bucket_count()), the effect is undefined.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

8.10 Allocator Support

All STL containers can be used with a special memory model that is defined by an allocator object

(see Chapter 19 for details). This section describes the members for allocator support.

8.10.1 Fundamental Allocator Members

container::allocator_type

• The type of the allocator.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

allocator_type container::get_allocator () const

• Returns the memory model of the container.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

8.10.2 Constructors with Optional Allocator Parameters

explicit container::container (const Allocator& alloc)

• Creates a new empty container that uses the memory model alloc.

8.10 Allocator Support 431

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

container::container (const CompFunc& cmpPred, const Allocator& alloc)

• Creates a new empty container, with cmpPred used as the sorting criterion and alloc used as

memory model.

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Provided by set, multiset, map, multimap.

container::container (size_type bnum, const Hasher& hasher,

const KeyEqual& eqPred, const Allocator& alloc)

• Creates a new empty container with at least bnum buckets, with hasher used as hashing function,

eqPred used as criterion to identify equal values, and alloc used as memory model.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::container (initializer-list, const Allocator& alloc)

• Creates a new container that uses the memory model alloc and is initialized by the elements of

initializer-list.

• Available since C++11.

• Provided by vector, deque, list, forward list, string.

container::container (initializer-list, const CompFunc& cmpPred,

const Allocator& alloc)

• Creates a container that has the sorting criterion cmpPred, uses the memory model alloc, and is

initialized by the elements of initializer-list.

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Available since C++11.

• Provided by set, multiset, map, multimap.

container::container (initializer-list, size_type bnum, const Hasher& hasher,

const KeyEqual& eqPred const Allocator& alloc)

• Creates a container with at least bnum buckets, hasher used as hashing function, eqPred used as

criterion to identify equal values, and alloc used as memory model, which is initialized by the

elements of initializer-list.

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

container::container (const container& c, const Allocator& alloc)

container::container (container&& c, const Allocator& alloc)

• Create a new container that uses the memory model alloc and is initialized with copied/moved

elements of the existing container c.

• Call the copy/move constructor for every element in c.

432 Chapter 8: STL Container Members in Detail

• For the second form, after this call, c is valid but has an unspecified value.

• Available since C++11.

• Provided by vector, deque, list, forward list, set, multiset, map, multimap, unordered set, un-

ordered multiset, unordered map, unordered multimap, string.

container::container (size_type num, const T& value, const Allocator& alloc)

• Creates a container with num elements and hat uses the memory model alloc.

• The elements are created as copies of value.

• T is the type of the container elements. Note that for strings, value is passed by value.

• Provided by vector, deque, list, forward list, string.

container::container (InputIterator beg, InputIterator end,

const Allocator& alloc)

• Creates a container that is initialized by all elements of the range [beg,end) and uses the memory

model alloc.

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• Provided by vector, deque, list, forward list, string.

container::container (InputIterator beg, InputIterator end,

const CompFunc& cmpPred, const Allocator& alloc)

• Creates a container that has the sorting criterion cmpPred, is initialized by all elements of the

range [beg,end), and uses the memory model alloc.

• This function is a member template (see Section 3.2, page 34). Thus, the elements of the source

range may have any type convertible into the element type of the container.

• The sorting criterion must define a strict weak ordering (see Section 7.7, page 314).

• Provided by set, multiset, map, multimap.

container::container (InputIterator beg, InputIterator end,

size_type bnum, const Hasher& hasher,

const KeyEqual& eqPred, const Allocator& alloc)

• Creates a container with at least bnum buckets, hasher used as hashing function, eqPred used as

criterion to identify equal values, and alloc used as memory model, which is initialized by all

elements of the range [beg,end).

• Provided by unordered set, unordered multiset, unordered map, unordered multimap.

Chapter 9

STL Iterators

This chapter describes iterators in detail. It covers iterator categories, iterator-specific operations,

iterator adapters, and user-defined iterators.

9.1 Header Files for Iterators

All containers define their own iterator types, so you don’t need a special header file for using iter-

ators of containers. However, several definitions for special iterators, such as reverse iterators, and

some auxiliary iterator functions are introduced by the <iterator> header file. Some implementa-

tions include this header file for any container to define its reverse iterator types. This, however, is

not portable. Thus, when you need more than ordinary container iterators and their type, you should

include this header.

9.2 Iterator Categories

Iterators are objects that can iterate over elements of a sequence via a common interface that is

adapted from ordinary pointers (see Section 6.3, page 188). Iterators follow the concept of pure

abstraction: Anything that behaves like an iterator is an iterator. However, iterators have different

abilities. These abilities are important because some algorithms require special iterator abilities. For

example, sorting algorithms require iterators that can perform random access because otherwise, the

runtime would be poor. For this reason, iterators have different categories (Figure 9.1). The abilities

of these categories are listed in Table 9.1 and discussed in the following subsections.

Reading iterators that can also write are called mutable iterators (for example, mutable forward

iterator).

9.2.1 Output Iterators

Output iterators can only step forward with write access. Thus, you can assign new values only

element-by-element. You can’t use an output iterator to iterate twice over the same range. In fact, it

434 Chapter 9: STL Iterators

Input iterator Output iterator

Forward iterator

Bidirectional iterator

Random−access iterator

Figure 9.1. Iterator Categories

Iterator Category Ability Providers

Output iterator Writes forward Ostream, inserter

Input iterator Reads forward once Istream

Forward iterator Reads forward Forward list, unordered containers

Bidirectional iterator Reads forward and List, set, multiset, map, multimap

backward

Random-access iterator Reads with random Array, vector, deque, string, C-style array

access

Table 9.1. Abilities of Iterator Categories

is even not guaranteed that you can assign a value twice without incrementing the iterator. The goal

is to write a value into a “black hole” in the following way:

while (...) {

*pos = ...; // assign a value

++pos; // advance (prepare for the next assignment)

}

Table 9.2 lists the valid operations for output iterators. The only valid use of operator * is on the left

side of an assignment statement.

No comparison operations are required for output iterators. You can’t check whether an output

iterator is valid or whether a “writing” was successful. You can only write, and write, and write

values. Usually, the end of a writing is defined by an additional requirement for specific output

iterators.

9.2 Iterator Categories 435

Expression Effect

*iter = val Writes val to where the iterator refers

++iter Steps forward (returns new position)

iter++ Steps forward (returns old position)

TYPE(iter) Copies iterator (copy constructor)

Table 9.2. Operations of Output Iterators

Often, iterators can read and write values. For this reason, all reading iterators might have the

additional ability to write. In that case, they are called mutable iterators.

A typical example of a pure output iterator is one that writes to the standard output (for example,

to the screen or a printer). If you use two output iterators to write to the screen, the second word

follows the first rather than overwriting it. Inserters are another typical example of output iterators.

Inserters are iterators that insert values into containers. If you assign a value, you insert it. If you

then write a second value, you don’t overwrite the first value; you just also insert it. Inserters are

discussed in Section 9.4.2, page 454.

All const_iterators provided by containers and their member functions cbegin() and

cend() are not output iterators, because they don’t allow you to write to where the iterator refers.

9.2.2 Input Iterators

Input iterators can only step forward element-by-element with read access. Thus, they return values

element-wise. Table 9.3 lists the operations of input iterators.

Expression Effect

*iter Provides read access to the actual element

iter ->member Provides read access to a member of the actual element

++iter Steps forward (returns new position)

iter++ Steps forward

iter1 == iter2 Returns whether two iterators are equal

iter1 != iter2 Returns whether two iterators are not equal

TYPE(iter) Copies iterator (copy constructor)

Table 9.3. Operations of Input Iterators

Input iterators can read elements only once. Thus, if you copy an input iterator and let the original

and the copy read forward, they might iterate over different values.

All iterators that refer to values to process have the abilities of input iterators. Usually, however,

they can have more. A typical example of a pure input iterator is one that reads from the standard

input, which is typically the keyboard. The same value can’t be read twice. Once a word is read

from an input stream, the next read access returns another word.

436 Chapter 9: STL Iterators

For input iterators, operators == and != are provided only to check whether an iterator is equal to

a past-the-end iterator. This is required because operations that deal with input iterators usually do

the following:

InputIterator pos, end;

while (pos != end) {

... // read-only access using *pos

++pos;

}

There is no guarantee that two different iterators that are both not past-the-end iterators compare

unequal if they refer to different positions. (This requirement is introduced with forward iterators.)

Note also that for input iterators it is not required that the postincrement operator iter++ returns

something. Usually, however, it returns the old position.

You should always prefer the preincrement operator over the postincrement operator because it

might perform better. This is because the preincrement operator does not have to return an old value

that must be stored in a temporary object. So, for any iterator pos (and any abstract data type), you

should prefer

++pos // OK and fast

rather than

pos++ // OK, but not so fast

The same applies to decrement operators, as long as they are defined (they aren’t for input iterators).

9.2.3 Forward Iterators

Forward iterators are input iterators that provide additional guarantees while reading forward.

Table 9.4 summarizes the operations of forward iterators.

Expression Effect

*iter Provides access to the actual element

iter->member Provides access to a member of the actual element

++iter Steps forward (returns new position)

iter++ Steps forward (returns old position)

iter1 == iter2 Returns whether two iterators are equal

iter1 != iter2 Returns whether two iterators are not equal

TYPE() Creates iterator (default constructor)

TYPE(iter) Copies iterator (copy constructor)

iter1 = iter2 Assigns an iterator

Table 9.4. Operations of Forward Iterators

9.2 Iterator Categories 437

Unlike for input iterators, it is guaranteed that for two forward iterators that refer to the same element,

operator == yields true and that they will refer to the same value after both are incremented. For

example:

ForwardIterator pos1, pos2;

pos1 = pos2 = begin; // both iterators refer to the same element

if (pos1 != end) {

++pos1; // pos1 is one element ahead

while (pos1 != end) {

if (*pos1 == *pos2) {

... // process adjacent duplicates

++pos1;

++pos2;

}

}

Forward iterators are provided by the following objects and types:

• Class <forward_list<>

• Unordered containers

However, for unordered containers, libraries are allowed to provide bidirectional iterators instead

(see Section 7.9.1, page 357).

A forward iterator that fulfills the requirements of an output iterator is a mutable forward iterator,

which can be used for both reading and writing.

9.2.4 Bidirectional Iterators

Bidirectional iterators are forward iterators that provide the additional ability to iterate backward

over the elements. Thus, they provide the decrement operator to step backward (Table 9.5).

Expression Effect

--iter Steps backward (returns new position)

iter-- Steps backward (returns old position)

Table 9.5. Additional Operations of Bidirectional Iterators

Bidirectional iterators are provided by the following objects and types:

• Class list<>

• Associative containers

A bidirectional iterator that fulfills the requirements of an output iterator is a mutable bidirectional

iterator, which can be used for both reading and writing.

438 Chapter 9: STL Iterators

9.2.5 Random-Access Iterators

Random-access iterators provide all the abilities of bidirectional iterators plus random access. Thus,

they provide operators for iterator arithmetic (in accordance with the pointer arithmetic of ordinary

pointers). That is, they can add and subtract offsets, process differences, and compare iterators with

relational operators, such as < and >. Table 9.6 lists the additional operations of random-access

iterators.

Expression Effect

iter[n] Provides access to the element that has index n

iter+=n Steps n elements forward (or backward, if n is negative)

iter-=n Steps n elements backward (or forward, if n is negative)

iter+n Returns the iterator of the nth next element

n+iter Returns the iterator of the nth next element

iter-n Returns the iterator of the nth previous element

iter1-iter2 Returns the distance between iter1 and iter2

iter1<iter2 Returns whether iter1 is before iter2

iter1>iter2 Returns whether iter1 is after iter2

iter1<=iter2 Returns whether iter1 is not after iter2

iter1>=iter2 Returns whether iter1 is not before iter2

Table 9.6. Additional Operations of Random-Access Iterators

Random-access iterators are provided by the following objects and types:

• Containers with random access (array, vector, deque)

• Strings (string, wstring)

• Ordinary C-style arrays (pointers)

The following program shows the special abilities of random-access iterators:

// iter/itercategory1.cpp

#include <vector>

#include <iostream>

using namespace std;

int main()

{

vector<int> coll;

// insert elements from -3 to 9

for (int i=-3; i<=9; ++i) {

coll.push_back (i);

}

9.2 Iterator Categories 439

// print number of elements by processing the distance between beginning and end

// - NOTE: uses operator - for iterators

cout << "number/distance: " << coll.end()-coll.begin() << endl;

// print all elements

// - NOTE: uses operator < instead of operator !=

vector<int>::iterator pos;

for (pos=coll.begin(); pos<coll.end(); ++pos) {

cout << *pos << ’ ’;

}

cout << endl;

// print all elements

// - NOTE: uses operator [] instead of operator *

for (int i=0; i<coll.size(); ++i) {

cout << coll.begin()[i] << ’ ’;

}

cout << endl;

// print every second element

// - NOTE: uses operator +=

for (pos = coll.begin(); pos < coll.end()-1; pos += 2) {

cout << *pos << ’ ’;

}

cout << endl;

}

The output of the program is as follows:

number/distance: 13

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

-3 -1 1 3 5 7

This example won’t work with (forward) lists, (unordered) sets, and (unordered) maps, because all

operations marked with “NOTE:” are provided only for random-access iterators. In particular, keep

in mind that you can use operator < as an end criterion in loops for random-access iterators only.

Note that in the last loop the following expression requires that coll contains at least one ele-

ment:

pos < coll.end()-1

If the collection was empty, coll.end()-1 would be the position before coll.begin(). The

comparison might still work, but, strictly speaking, moving an iterator to before the beginning results

in undefined behavior. Similarly, the expression pos += 2 might result in undefined behavior if it

moves the iterator beyond the end() of the collection. Therefore, changing the final loop to the

440 Chapter 9: STL Iterators

following is very dangerous because it results in undefined behavior if the collection contains an odd

number of elements (Figure 9.2):

for (pos = coll.begin(); pos < coll.end(); pos += 2) {

cout << *pos << ’ ’;

}

� � � � � � �

� � � � 	 � � 	 � �
� � � � � � � � �
� 	
 � � � 	 �

Figure 9.2. Incrementing Iterators by More than One Element

A random-access iterator that fulfills the requirements of an output iterator is a mutable random-

access iterator, which can be used for both reading and writing.

9.2.6 The Increment and Decrement Problem of

Vector Iterators

The use of the increment and decrement operators of iterators includes a strange problem. In general,

you can increment and decrement temporary iterators. However, for arrays, vectors, and strings,

this might not compile on some platforms. Consider the following example:

std::vector<int> coll;

...

// sort, starting with the second element

// - NONPORTABLE version

if (coll.size() > 1) {

std::sort(++coll.begin(), coll.end());

}

Depending on the platform, the compilation of ++coll.begin() might fail. However, if you use,

for example, a deque rather than a vector, the compilation always succeeds.

The reason for this strange problem lies in the fact that iterators of vectors, arrays, and strings

might be implemented as ordinary pointers. And for all fundamental data types, such as pointers,

you are not allowed to modify temporary values. For structures and classes, however, doing so

is allowed. Thus, if the iterator is implemented as an ordinary pointer, the compilation fails; if

implemented as a class, it succeeds.

9.3 Auxiliary Iterator Functions 441

As a consequence, the preceding code always works with all containers except arrays, vectors,

and strings, because you can’t implement iterators as ordinary pointers for them. But for arrays,

vectors, and strings, whether the code works depends on the implementation. Often, ordinary point-

ers are used. But if, for example, you use a “safe version” of the STL (as is more and more the case),

the iterators are implemented as classes.

To make your code portable, the utility function next() is provided since C++11 (see Sec-

tion 9.3.2, page 443), so you can write:

std::vector<int> coll;

...

// sort, starting with the second element

// - PORTABLE version since C++11

if (coll.size() > 1) {

std::sort(std::next(coll.begin()), coll.end());

}

Before C++11, you had to use an auxiliary object instead:

std::vector<int> coll;

...

// sort, starting with the second element

// - PORTABLE version before C++11

if (coll.size() > 1) {

std::vector<int>::iterator beg = coll.begin();

std::sort(++beg, coll.end());

}

The problem is not as bad as it sounds. You can’t get unexpected behavior, because the problem is

detected at compile time. But it is tricky enough to spend time solving it.

9.3 Auxiliary Iterator Functions

The C++ standard library provides some auxiliary functions for dealing with iterators: advance(),

next(), prev(), distance(), and iter_swap(). The first four give all iterators some abilities

usually provided only for random-access iterators: to step more than one element forward (or back-

ward) and to process the difference between iterators. The last auxiliary function allows you to swap

the values of two iterators.

9.3.1 advance()

The function advance() increments the position of an iterator passed as the argument. Thus, the

function lets the iterator step forward (or backward) more than one element:

442 Chapter 9: STL Iterators

#include <iterator>

void advance (InputIterator& pos, Dist n)

• Lets the input iterator pos step n elements forward (or backward).

• For bidirectional and random-access iterators, n may be negative to step backward.

• Dist is a template type. Normally, it must be an integral type because operations such as <, ++,

--, and comparisons with 0 are called.

• Note that advance() does not check whether it crosses the end() of a sequence (it can’t check

because iterators in general do not know the containers on which they operate). Thus, calling this

function might result in undefined behavior because calling operator ++ for the end of a sequence

is not defined.

Due to the use of iterator traits (see Section 9.5, page 466), the function always uses the best imple-

mentation, depending on the iterator category. For random-access iterators, it simply calls pos+=n.

Thus, for such iterators, advance() has constant complexity. For all other iterators, it calls ++pos

n times (or --pos if n is negative). Thus, for all other iterator categories, advance() has linear

complexity.

To be able to change container and iterator types, you should use advance() rather than operator

+=. In doing so, however, be aware that you risk unintended worse performance. The reason is that

you don’t recognize that the performance is worsening when you use other containers that don’t

provide random-access iterators (bad runtime is the reason why operator += is provided only for

random-access iterators). Note also that advance() does not return anything. Operator += returns

the new position, so it might be part of a larger expression. Here is an example of the use of

advance():

// iter/advance1.cpp

#include <iterator>

#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

int main()

{

list<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

list<int>::iterator pos = coll.begin();

9.3 Auxiliary Iterator Functions 443

// print actual element

cout << *pos << endl;

// step three elements forward

advance (pos, 3);

// print actual element

cout << *pos << endl;

// step one element backward

advance (pos, -1);

// print actual element

cout << *pos << endl;

}

In this program, advance() lets the iterator pos step three elements forward and one element back-

ward. Thus, the output is as follows:

1

4

3

Another way to use advance() is to ignore some input for iterators that read from an input stream.

See the example in Section 9.4.3, page 465.

9.3.2 next() and prev()

Since C++11, two additional helper functions allow you to move to following or previous iterator

positions.

#include <iterator>

ForwardIterator next (ForwardIterator pos)

ForwardIterator next (ForwardIterator pos, Dist n)

• Yields the position the forward iterator pos would have if moved forward 1 or n positions.

• For bidirectional and random-access iterators, n may be negative to yield previous positions.

• Dist is type std::iterator_traits<ForwardIterator>::difference_type.

• Calls advance(pos,n) for an internal temporary object.

• Note that next() does not check whether it crosses the end() of a sequence. Thus, it is up to

the caller to ensure that the result is valid.

444 Chapter 9: STL Iterators

#include <iterator>

BidirectionalIterator prev (BidirectionalIterator pos)

BidirectionalIterator prev (BidirectionalIterator pos, Dist n)

• Yields the position the bidirectional iterator pos would have if moved backward 1 or n positions.

• n may be negative to yield following positions.

• Dist is type. std::iterator_traits<BidirectionalIterator>::difference_type.

• Calls advance(pos,-n) for an internal temporary object.

• Note that prev() does not check whether it crosses the begin() of a sequence. Thus, it is up to

the caller to ensure that the result is valid.

This allows, for example, running over a collection while checking values of the next element:

auto pos = coll.begin();

while (pos != coll.end() && std::next(pos) != coll.end()) {

...

++pos;

}

Doing so especially helps because forward and bidirectional iterators do not provide operators +

and -. Otherwise, you always need a temporary:

auto pos = coll.begin();

auto nextPos = pos;

++nextPos;

while (pos != coll.end() && nextPos != coll.end()) {

...

++pos;

++nextPos;

}

or have to restrict code to random-access iterators only:

auto pos = coll.begin();

while (pos != coll.end() && pos+1 != coll.end()) {

...

++pos;

}

Don’t forget to ensure that there is a valid position before you use it (for this reason, we first check

whether pos is equal to coll.end() before we check the next position).

Another application of next() and prev() is to avoid expressions, such as ++coll.begin(),

to deal with the second element of a collection. The problem is that using ++coll.begin() instead

of std::next(coll.begin()) might not compile (see Section 9.2.6, page 440, for details).

A third application of next() is to work with forward_lists and before_begin() (see Sec-

tion 7.6.2, page 307, for an example).

9.3 Auxiliary Iterator Functions 445

9.3.3 distance()

The distance() function is provided to process the difference between two iterators:

#include <iterator>

Dist distance (InputIterator pos1, InputIterator pos2)

• Returns the distance between the input iterators pos1 and pos2.

• Both iterators have to refer to elements of the same container.

• If the iterators are not random-access iterators, pos2 must be reachable from pos1; that is, it must

have the same position or a later position.

• The return type, Dist, is the difference type according to the iterator type:

iterator_traits<InputIterator>::difference_type

See Section 9.5, page 466, for details.

By using iterator tags, this function uses the best implementation according to the iterator cate-

gory. For random-access iterators, this function simply returns pos2-pos1. Thus, for such iterators,

distance() has constant complexity. For all other iterator categories, pos1 is incremented until

it reaches pos2 and the number of increments is returned. Thus, for all other iterator categories,

distance() has linear complexity. Therefore, distance() has bad performance for other than

random-access iterators. You should consider avoiding it.

The implementation of distance() is described in Section 9.5.1, page 470. The following

example demonstrates its use:

// iter/distance1.cpp

#include <iterator>

#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

int main()

{

list<int> coll;

// insert elements from -3 to 9

for (int i=-3; i<=9; ++i) {

coll.push_back(i);

}

// search element with value 5

list<int>::iterator pos;

pos = find (coll.begin(), coll.end(), // range

5); // value

446 Chapter 9: STL Iterators

if (pos != coll.end()) {

// process and print difference from the beginning

cout << "difference between beginning and 5: "

<< distance(coll.begin(),pos) << endl;

}

else {

cout << "5 not found" << endl;

}

}

After find() assigns the position of the element with value 5 to pos, distance() uses this position

to process the difference between this position and the beginning. The output of the program is as

follows:

difference between beginning and 5: 8

To be able to change iterator and container types, you should use distance() instead of operator -.

However, if you use distance(), you don’t recognize that the performance is getting worse when

you switch from random-access iterators to other iterators.

To process the difference between two iterators that are not random-access iterators, you must be

careful. The first iterator must refer to an element that is not after the element of the second iterator.

Otherwise, the behavior is undefined. If you don’t know which iterator position comes first, you

have to process the distance between both iterators to the beginning of the container and process the

difference of these distances. However, you must then know to which container the iterators refer.

Otherwise, you have no chance of processing the difference of the two iterators without running

into undefined behavior. See the remarks about subranges in Section 6.4.1, page 205, for additional

aspects of this problem.

9.3.4 iter_swap()

This simple auxiliary function is provided to swap the values to which two iterators refer:

#include <algorithm>

void iter_swap (ForwardIterator1 pos1, ForwardIterator2 pos2)

• Swaps the values to which iterators pos1 and pos2 refer.

• The iterators don’t need to have the same type. However, the values must be assignable.

Here is a simple example (function PRINT_ELEMENTS() is introduced in Section 6.6, page 216):

// iter/iterswap1.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include <iterator>

9.3 Auxiliary Iterator Functions 447

#include "print.hpp"

using namespace std;

int main()

{

list<int> coll;

// insert elements from 1 to 9

for (int i=1; i<=9; ++i) {

coll.push_back(i);

}

PRINT_ELEMENTS(coll);

// swap first and second value

iter_swap (coll.begin(), next(coll.begin()));

PRINT_ELEMENTS(coll);

// swap first and last value

iter_swap (coll.begin(), prev(coll.end()));

PRINT_ELEMENTS(coll);

}

The output of the program is as follows:

1 2 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

9 1 3 4 5 6 7 8 2

Note that next() and prev() are provided since C++11, and that using operators ++ and -- instead

might not compile for each container:

vector<int> coll;

...

iter_swap (coll.begin(), ++coll.begin()); // ERROR: might not compile

...

iter_swap (coll.begin(), --coll.end()); // ERROR: might not compile

See Section 9.2.6, page 440, for details about this problem.

448 Chapter 9: STL Iterators

9.4 Iterator Adapters

This section covers iterator adapters provided by the C++ standard library. These special iterators

allow algorithms to operate in reverse, in insert mode, and with streams.

9.4.1 Reverse Iterators

Reverse iterators redefine increment and decrement operators so that they behave in reverse. Thus,

if you use these iterators instead of ordinary iterators, algorithms process elements in reverse order.

Most container classes — all except forward lists and unordered containers — as well as strings

provide the ability to use reverse iterators to iterate over their elements. Consider the following

example:

// iter/reviter1.cpp

#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

void print (int elem)

{

cout << elem << ’ ’;

}

int main()

{

// create list with elements from 1 to 9

list<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// print all elements in normal order

for_each (coll.begin(), coll.end(), // range

print); // operation

cout << endl;

// print all elements in reverse order

for_each (coll.rbegin(), coll.rend(), // range

print); // operations

cout << endl;

}

The rbegin() and rend() member functions return a reverse iterator. According to begin() and

end(), these iterators define the elements to process as a half-open range. However, they operate in

a reverse direction:

9.4 Iterator Adapters 449

• rbegin() returns the position of the first element of a reverse iteration. Thus, it returns the

position of the last element.

• rend() returns the position after the last element of a reverse iteration. Thus, it returns the

position before the first element.

Thus, the output of the program is as follows:

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

Since C++11, corresponding crbegin() and crend() member functions are provided, which return

read-only reverse iterators. Because we only read the elements, they could (and should) be used in

this example:

// print all elements in reverse order

for_each (coll.crbegin(), coll.crend(), // range

print); // operations

Iterators and Reverse Iterators

You can convert normal iterators into reverse iterators. Naturally, the iterators must be bidirectional

iterators, but note that the logical position of an iterator is moved during the conversion. Consider

the following program:

// iter/reviter2.cpp

#include <iterator>

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

// create list with elements from 1 to 9

vector<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// find position of element with value 5

vector<int>::const_iterator pos;

pos = find (coll.cbegin(), coll.cend(),

5);

// print value to which iterator pos refers

cout << "pos: " << *pos << endl;

// convert iterator to reverse iterator rpos

vector<int>::const_reverse_iterator rpos(pos);

450 Chapter 9: STL Iterators

// print value to which reverse iterator rpos refers

cout << "rpos: " << *rpos << endl;

}

This program has the following output:

pos: 5

rpos: 4

Thus, if you print the value of an iterator and convert the iterator into a reverse iterator, the value has

changed. This is not a bug; it’s a feature! This behavior is a consequence of the fact that ranges are

half open. To specify all elements of a container, you must use the position after the last argument.

However, for a reverse iterator, this is the position before the first element. Unfortunately, such a

position may not exist. Containers are not required to guarantee that the position before their first

element is valid. Consider that ordinary strings and arrays might also be containers, and the language

does not guarantee that arrays don’t start at address zero.

As a result, the designers of reverse iterators use a trick: They “physically” reverse the “half-open

principle.” Physically, in a range defined by reverse iterators, the beginning is not included, whereas

the end is. However, logically, they behave as usual. Thus, there is a distinction between the physical

position that defines the element to which the iterator refers and the logical position that defines the

value to which the iterator refers (Figure 9.3). The question is, what happens on a conversion from

an iterator to a reverse iterator? Does the iterator keep its logical position (the value) or its physical

position (the element)? As the previous example shows, the latter is the case. Thus, the value is

moved to the previous element (Figure 9.4).

	
 � �

� � 	 � � � � � � � 	 �

	
 � �

Figure 9.3. Position and Value of Reverse Iterators

You can’t understand this decision? Well, it has its advantages: You have nothing to do when you

convert a range that is specified by two iterators rather than a single iterator. All elements remain

valid. Consider the following example:

// iter/reviter3.cpp

#include <iterator>

#include <iostream>

#include <deque>

9.4 Iterator Adapters 451

� � �

	
 � �

� � � � � � � � �

� �

Figure 9.4. Conversion between Iterator pos and Reverse Iterator rpos

#include <algorithm>

using namespace std;

void print (int elem)

{

cout << elem << ’ ’;

}

int main()

{

// create deque with elements from 1 to 9

deque<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// find position of element with value 2

deque<int>::const_iterator pos1;

pos1 = find (coll.cbegin(), coll.cend(), // range

2); // value

// find position of element with value 7

deque<int>::const_iterator pos2;

pos2 = find (coll.cbegin(), coll.cend(), // range

7); // value

// print all elements in range [pos1,pos2)

for_each (pos1, pos2, // range

print); // operation

cout << endl;

452 Chapter 9: STL Iterators

// convert iterators to reverse iterators

deque<int>::const_reverse_iterator rpos1(pos1);

deque<int>::const_reverse_iterator rpos2(pos2);

// print all elements in range [pos1,pos2) in reverse order

for_each (rpos2, rpos1, // range

print); // operation

cout << endl;

}

The iterators pos1 and pos2 specify the half-open range, including the element with value 2 but

excluding the element with value 7. When the iterators describing that range are converted into

reverse iterators, the range remains valid and can be processed in reverse order. Thus, the output of

the program is as follows:

2 3 4 5 6

6 5 4 3 2

Thus, rbegin() is simply:

container::reverse_iterator(end())

and rend() is simply:

container::reverse_iterator(begin())

Of course, constant iterators are converted into type const_reverse_iterator.

Converting Reverse Iterators Back Using base()

You can convert reverse iterators back into normal iterators. To do this, reverse iterators provide the

base() member function:

namespace std {

template <typename Iterator>

class reverse_iterator ... {

...

Iterator base() const;

...

};

}

Here is an example of the use of base():

// iter/reviter4.cpp

#include <iterator>

#include <iostream>

9.4 Iterator Adapters 453

#include <list>

#include <algorithm>

using namespace std;

int main()

{

// create list with elements from 1 to 9

list<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// find position of element with value 5

list<int>::const_iterator pos;

pos = find (coll.cbegin(), coll.cend(), // range

5); // value

// print value of the element

cout << "pos: " << *pos << endl;

// convert iterator to reverse iterator

list<int>::const_reverse_iterator rpos(pos);

// print value of the element to which the reverse iterator refers

cout << "rpos: " << *rpos << endl;

// convert reverse iterator back to normal iterator

list<int>::const_iterator rrpos;

rrpos = rpos.base();

// print value of the element to which the normal iterator refers

cout << "rrpos: " << *rrpos << endl;

}

The program has the following output:

pos: 5

rpos: 4

rrpos: 5

Thus, the conversion with base()

*rpos.base()

is equivalent to the conversion in a reverse iterator. That is, the physical position (the element of the

iterator) is retained, but the logical position (the value of the element) is moved. See Section 11.5.3,

page 539. for another example of the use of base().

454 Chapter 9: STL Iterators

9.4.2 Insert Iterators

Insert iterators, also called inserters, are iterator adapters that transform an assignment of a new

value into an insertion of that new value. By using insert iterators, algorithms can insert rather than

overwrite. All insert iterators are in the output-iterator category. Thus, they provide only the ability

to assign new values (see Section 9.2.1, page 433).

Functionality of Insert Iterators

Usually, an algorithm assigns values to a destination iterator. For example, consider the copy()

algorithm (described in Section 11.6.1, page 557):

namespace std {

template <typename InputIterator, typename OutputIterator>

OutputIterator copy (InputIterator from_pos, // beginning of source

InputIterator from_end, // end of source

OutputIterator to_pos) // beginning of dest.

{

while (from_pos != from_end) {

*to_pos = *from_pos; // copy values

++from_pos; // increment iterators

++to_pos;

}

return to_pos;

}

}

The loop runs until the actual position of the source iterator has reached the end. Inside the loop,

the source iterator, from_pos, is assigned to the destination iterator, to_pos, and both iterators get

incremented.

The interesting part is the assignment of the new value:

*to_pos = value

An insert iterator transforms such an assignment into an insertion. However, two operations are

involved: First, operator * returns the current element of the iterator; second, operator = assigns the

new value. Implementations of insert iterators usually use the following two-step trick:

1. Operator * is implemented as a no-op that simply returns *this. Thus, for insert iterators, *pos

is equivalent to pos.

2. The assignment operator is implemented so that it gets transferred into an insertion. In fact, the

insert iterator calls the push_back(), push_front(), or insert() member function of the

container.

Thus, for insert iterators, you could write pos=value instead of *pos=value to insert a new value.

However, I’m talking about implementation details of input iterators. The correct expression to

assign a new value is *pos=value.

Similarly, the increment operator is implemented as a no-op that simply returns *this. Thus,

you can’t modify the position of an insert iterator. Table 9.7 lists all operations of insert iterators.

9.4 Iterator Adapters 455

Expression Effect

*iter No-op (returns iter)

iter = value Inserts value

++iter No-op (returns iter)

iter++ No-op (returns iter)

Table 9.7. Operations of Insert Iterators

Kinds of Insert Iterators

The C++ standard library provides three kinds of insert iterators: back inserters, front inserters, and

general inserters. They differ in their handling of the position at which to insert a value. In fact, each

uses a different member function, which it calls for the container to which it belongs. Thus, an insert

iterator must be always initialized with its container.

Each kind of insert iterator has a convenience function for its creation and initialization. Table 9.8

lists the kinds of insert iterators and their abilities.

Name Class Called Function Creation

Back inserter back_insert_iterator push_back(value) back_inserter(cont)

Front inserter front_insert_iterator push_front(value) front_inserter(cont)

General inserter insert_iterator insert(pos,value) inserter(cont,pos)

Table 9.8. Kinds of Insert Iterators

Of course, the container must provide the member function that the insert iterator calls; other-

wise, that kind of insert iterator can’t be used. For this reason, back inserters are available only for

vectors, deques, lists, and strings; front inserters are available only for deques and lists.

Back Inserters

A back inserter, or back insert iterator, appends a value at the end of a container by calling the

push_back() member function (see Section 8.7.1, page 415, for details about push_back()).

push_back() is available only for vectors, deques, lists, and strings, so these are the only con-

tainers in the C++ standard library for which back inserters are usable.

A back inserter must be initialized with its container at creation time. The back_inserter()

function provides a convenient way of doing this. The following example demonstrates the use of

back inserters:

// iter/backinserter1.cpp

#include <vector>

#include <algorithm>

#include <iterator>

#include "print.hpp"

using namespace std;

456 Chapter 9: STL Iterators

int main()

{

vector<int> coll;

// create back inserter for coll

// - inconvenient way

back_insert_iterator<vector<int> > iter(coll);

// insert elements with the usual iterator interface

*iter = 1;

iter++;

*iter = 2;

iter++;

*iter = 3;

PRINT_ELEMENTS(coll);

// create back inserter and insert elements

// - convenient way

back_inserter(coll) = 44;

back_inserter(coll) = 55;

PRINT_ELEMENTS(coll);

// use back inserter to append all elements again

// - reserve enough memory to avoid reallocation

coll.reserve(2*coll.size());

copy (coll.begin(), coll.end(), // source

back_inserter(coll)); // destination

PRINT_ELEMENTS(coll);

}

The output of the program is as follows:

1 2 3

1 2 3 44 55

1 2 3 44 55 1 2 3 44 55

Note that you must not forget to reserve enough space before calling copy(). The reason is that the

back inserter inserts elements, which might invalidate all other iterators referring to the same vector.

Thus, if not enough space is reserved, the algorithm invalidates the passed source iterators while

running.

Strings also provide an STL container interface, including push_back(). Therefore, you could

use back inserters to append characters in a string. See Section 13.2.14, page 688, for an example.

9.4 Iterator Adapters 457

Front Inserters

A front inserter, or front insert iterator, inserts a value at the beginning of a container by calling the

push_front() member function (see Section 8.7.1, page 414, for details about push_front()).

push_front() is available only for deques, lists, and forward lists, so these are the only containers

in the C++ standard library for which front inserters are usable.

A front inserter must be initialized with its container at creation time. The front_inserter()

function provides a convenient way of doing this. The following example demonstrates the use of

front inserters:

// iter/frontinserter1.cpp

#include <list>

#include <algorithm>

#include <iterator>

#include "print.hpp"

using namespace std;

int main()

{

list<int> coll;

// create front inserter for coll

// - inconvenient way

front_insert_iterator<list<int> > iter(coll);

// insert elements with the usual iterator interface

*iter = 1;

iter++;

*iter = 2;

iter++;

*iter = 3;

PRINT_ELEMENTS(coll);

// create front inserter and insert elements

// - convenient way

front_inserter(coll) = 44;

front_inserter(coll) = 55;

PRINT_ELEMENTS(coll);

458 Chapter 9: STL Iterators

// use front inserter to insert all elements again

copy (coll.begin(), coll.end(), // source

front_inserter(coll)); // destination

PRINT_ELEMENTS(coll);

}

The output of the program is as follows:

3 2 1

55 44 3 2 1

1 2 3 44 55 55 44 3 2 1

Note that the front inserter inserts multiple elements in reverse order. This happens because it always

inserts the next element in front of the previous one.

General Inserters

A general inserter, or general insert iterator,1 is initialized with two values: the container and the

position that is used for the insertions. Using both, a general inserter calls the insert() member

function with the specified position as argument. The inserter() function provides a convenient

way of creating and initializing a general inserter.

A general inserter is available for all standard containers except arrays and forward lists, because

these containers provide the needed insert() member function (see Section 8.7.1, page 413). How-

ever, for associative and unordered containers, the position is used only as a hint, because the value

of the element defines the correct position. See Section 8.7.1, page 413, for details.

After an insertion, the general inserter gets the position of the new inserted element. In particular,

the following statements are called:

pos = container.insert(pos,value);

++pos;

The assignment of the return value of insert() ensures that the iterator’s position is always valid.

Without the assignment of the new position for deques, vectors, and strings, the general inserter

would invalidate itself. The reason is that each insertion does, or at least might, invalidate all iterators

that refer to the container.

The following example demonstrates the use of general inserters:

// iter/inserter1.cpp

#include <set>

#include <list>

1 A general inserter is often simply called an insert iterator, or inserter. This means that the words insert

iterator and inserter have different meanings: They are a general term for all kinds of insert iterators and are

also used as names for a special insert iterator that inserts at a specified position rather than in the front or in

the back. To avoid this ambiguity, I use the term general inserter in this book.

9.4 Iterator Adapters 459

#include <algorithm>

#include <iterator>

#include "print.hpp"

using namespace std;

int main()

{

set<int> coll;

// create insert iterator for coll

// - inconvenient way

insert_iterator<set<int> > iter(coll,coll.begin());

// insert elements with the usual iterator interface

*iter = 1;

iter++;

*iter = 2;

iter++;

*iter = 3;

PRINT_ELEMENTS(coll,"set: ");

// create inserter and insert elements

// - convenient way

inserter(coll,coll.end()) = 44;

inserter(coll,coll.end()) = 55;

PRINT_ELEMENTS(coll,"set: ");

// use inserter to insert all elements into a list

list<int> coll2;

copy (coll.begin(), coll.end(), // source

inserter(coll2,coll2.begin())); // destination

PRINT_ELEMENTS(coll2,"list: ");

// use inserter to reinsert all elements into the list before the second element

copy (coll.begin(), coll.end(), // source

inserter(coll2,++coll2.begin())); // destination

PRINT_ELEMENTS(coll2,"list: ");

}

460 Chapter 9: STL Iterators

The output of the program is as follows:

set: 1 2 3

set: 1 2 3 44 55

list: 1 2 3 44 55

list: 1 1 2 3 44 55 2 3 44 55

The calls of copy() demonstrate that the general inserter maintains the order of the elements. The

second call of copy() uses a certain position inside the range that is passed as argument.

A User-Defined Inserter for Associative Containers

As mentioned previously, for associative containers, the position argument of general inserters is

used only as a hint. This hint might help to improve speed but also might cause bad performance.

For example, if the inserted elements are in reverse order, the hint may slow down programs a bit

because the search for the correct insertion point always starts at a wrong position. Thus, a bad hint

might even be worse than no hint. This is a good example of the need for supplementation of the

C++ standard library. See Section 9.6, page 471, for such an extension.

9.4.3 Stream Iterators

A stream iterator is an iterator adapter that allows you to use a stream as a source or destination of

algorithms. In particular, an istream iterator can be used to read elements from an input stream, and

an ostream iterator can be used to write values to an output stream.

A special form of a stream iterator is a stream buffer iterator, which can be used to read from or

write to a stream buffer directly. Stream buffer iterators are discussed in Section 15.13.2, page 828.

Ostream Iterators

Ostream iterators write assigned values to an output stream. By using ostream iterators, algorithms

can write directly to streams. The implementation of an ostream iterator uses the same concept

as the implementation of insert iterators (see Section 9.4.2, page 454). The only difference is that

they transform the assignment of a new value into an output operation by using operator <<. Thus,

algorithms can write directly to streams by using the usual iterator interface. Table 9.9 lists the

operations of ostream iterators.

When the ostream iterator is created, you must pass the output stream on which the values are

written. An optional string can be passed, written as a separator between single values. Without the

delimiter, the elements directly follow each other.

Ostream iterators are defined for a certain element type T:

namespace std {

template <typename T,

typename charT = char,

typename traits = char_traits<charT> >

class ostream_iterator;

}

9.4 Iterator Adapters 461

Expression Effect

ostream_iterator<T>(ostream) Creates an ostream iterator for ostream

ostream_iterator<T>(ostream,delim) Creates an ostream iterator for ostream, with the

string delim as the delimiter between the values

(note that delim has type const char*)

*iter No-op (returns iter)

iter = value Writes value to ostream: ostream<<value

(followed by delim, if set)

++iter No-op (returns iter)

iter++ No-op (returns iter)

Table 9.9. Operations of ostream Iterators

The optional second and third template arguments specify the type of stream that is used (see Sec-

tion 15.2.1, page 749, for their meaning).2

The following example demonstrates the use of ostream iterators:

// iter/ostreamiter1.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

// create ostream iterator for stream cout

// - values are separated by a newline character

ostream_iterator<int> intWriter(cout,"\n");

// write elements with the usual iterator interface

*intWriter = 42;

intWriter++;

*intWriter = 77;

intWriter++;

*intWriter = -5;

// create collection with elements from 1 to 9

vector<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

2 In older systems, the optional template arguments for the stream type are missing.

462 Chapter 9: STL Iterators

// write all elements without any delimiter

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout));

cout << endl;

// write all elements with " < " as delimiter

copy (coll.cbegin(), coll.cend(),

ostream_iterator<int>(cout," < "));

cout << endl;

}

The output of the program is as follows:

42

77

-5

123456789

1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 <

Note that the delimiter has type const char*. Thus, if you pass an object of type string, you

must call its member function c_str() (see Section 13.3.6, page 700) to get the correct type. For

example:

string delim;

...

ostream_iterator<int>(cout,delim.c_str());

Istream Iterators

Istream iterators are the counterparts of ostream iterators. An istream iterator reads elements from

an input stream. By using istream iterators, algorithms can read from streams directly. However,

istream iterators are a bit more complicated than ostream iterators (as usual, reading is more com-

plicated than writing).

At creation time, the istream iterator is initialized by the input stream from which it reads. Then,

by using the usual interface of input iterators (see Section 9.2.2, page 435), the istream iterator reads

element-by-element, using operator >>. However, reading might fail (due to end-of-file or an error),

and source ranges of algorithms need an “end position.” To handle both problems, you can use an

end-of-stream iterator, which is created with the default constructor for istream iterators. If a read

fails, every istream iterator becomes an end-of-stream iterator. Thus, after any read access, you

should compare an istream iterator with an end-of-stream iterator to check whether the iterator has

a valid value. Table 9.10 lists all operations of istream iterators.

9.4 Iterator Adapters 463

Expression Effect

istream_iterator<T>() Creates an end-of-stream iterator

istream_iterator<T>(istream) Creates an istream iterator for istream (and might read the

first value)

*iter Returns the value, read before (reads first value if not

done by the constructor)

iter->member Returns a member, if any, of the actual value, read before

++iter Reads next value and returns its position

iter++ Reads next value but returns an iterator for the previous

value

iter1== iter2 Tests iter1 and iter2 for equality

iter1!= iter2 Tests iter1 and iter2 for inequality

Table 9.10. Operations of istream Iterators

Note that the constructor of an istream iterator opens the stream and usually reads the first element.

Otherwise, it could not return the first element when operator * is called after the initialization.

However, implementations may defer the first read until the first call of operator *. So, you should

not define an istream iterator before you need it.

Istream iterators are defined for a certain element type T:

namespace std {

template <typename T,

typename charT = char,

typename traits = char_traits<charT>,

typename Distance = ptrdiff_t>

class istream_iterator;

}

The optional second and third template arguments specify the type of stream that is used (see Sec-

tion 15.2.1, page 749, for their meaning). The optional fourth template argument specifies the dif-

ference type for the iterators.3

Two istream iterators are equal if

• both are end-of-stream iterators and thus can no longer read, or

• both can read and use the same stream.

3 In older systems without default template parameters, the optional fourth template argument is required as the

second argument, and the arguments for the stream type are missing.

464 Chapter 9: STL Iterators

The following example demonstrates the operations provided for istream iterators:

// iter/istreamiter1.cpp

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

// create istream iterator that reads integers from cin

istream_iterator<int> intReader(cin);

// create end-of-stream iterator

istream_iterator<int> intReaderEOF;

// while able to read tokens with istream iterator

// - write them twice

while (intReader != intReaderEOF) {

cout << "once: " << *intReader << endl;

cout << "once again: " << *intReader << endl;

++intReader;

}

}

If you start the program with the following input:

1 2 3 f 4

the output of the program is as follows:

once: 1

once again: 1

once: 2

once again: 2

once: 3

once again: 3

As you can see, the input of character f ends the program. Due to a format error, the stream is

no longer in a good state. Therefore, the istream iterator intReader is equal to the end-of-stream

iterator intReaderEOF. So, the condition of the loop yields false.

9.4 Iterator Adapters 465

Example of Stream Iterators and advance()

The following example uses both kinds of stream iterators and the advance() helper function:

// iter/advance2.cpp

#include <iterator>

#include <iostream>

#include <string>

#include <algorithm>

using namespace std;

int main()

{

istream_iterator<string> cinPos(cin);

ostream_iterator<string> coutPos(cout," ");

// while input is not at the end of the file

// - write every third string

while (cinPos != istream_iterator<string>()) {

// ignore the following two strings

advance (cinPos, 2);

// read and write the third string

if (cinPos != istream_iterator<string>()) {

*coutPos++ = *cinPos++;

}

}

cout << endl;

}

The advance() iterator function is provided to advance the iterator to another position (see Sec-

tion 9.3.1, page 441). Used with istream iterators, advance() skips input tokens. For example, if

you have the following input:4

No one objects if you are doing

a good programming job for

someone whom you respect.

the output is as follows:

objects are good for you

4 Thanks to Andrew Koenig for the nice input of this example.

466 Chapter 9: STL Iterators

Don’t forget to check whether the istream iterator is still valid after calling advance() and be-

fore accessing its value with *cinPos. Calling operator * for an end-of-stream iterator results in

undefined behavior.

For other examples that demonstrate how algorithms use stream iterators to read from and write

to streams, see Section 6.5.2, page 212; Section 11.6.1, page 560; and Section 11.7.2, page 582.

9.4.4 Move Iterators

Since C++11, an iterator adapter is provided that converts any access to the underlying element into

a move operation. For example:

std::list<std::string> s;

...

std::vector<string> v1(s.begin(), s.end()); // copy strings into v1

std::vector<string> v2(make_move_iterator(s.begin()), // move strings into v2

make_move_iterator(s.end()));

One application of these iterators is to let algorithms move instead of copy elements from one range

into another. However, note that in general, the move() algorithm also does that (see Section 11.6.2,

page 561).

In general, using a move iterator in algorithms only makes sense when the algorithm transfers

elements of a source range to a destination range. In addition, you have to ensure that each element

is accessed only once. Otherwise, the contents would be moved more than once, which would result

in undefined behavior.

Note that the only iterator category that guarantees that elements are read or processed only

once is the input iterator category (see Section 9.2.2, page 435). Thus, using move iterators usually

makes sense only when an algorithm has a source where the input iterator category is required and

a destination that uses the output iterator category. The only exception is for_each(), which can

be used to process the moved elements of the passed range (for example, to move them into a new

container).

9.5 Iterator Traits

The various iterator categories (see Section 9.2, page 433) represent special iterator abilities. It

might be useful or even necessary to be able to overload behavior for different iterator categories.

By using iterator tags and iterator traits (both provided in <iterator>), such an overloading can be

performed.

For each iterator category, the C++ standard library provides an iterator tag that can be used as a

“label” for iterators:

9.5 Iterator Traits 467

namespace std {

struct output_iterator_tag {

};

struct input_iterator_tag {

};

struct forward_iterator_tag

: public input_iterator_tag {

};

struct bidirectional_iterator_tag

: public forward_iterator_tag {

};

struct random_access_iterator_tag

: public bidirectional_iterator_tag {

};

}

Note that inheritance is used. So, for example, any forward iterator is a kind of input iterator.

However, note that the tag for forward iterators is derived only from the tag for input iterators, not

from the tag for output iterators. Thus, any forward iterator is not a kind of output iterator. Only a

mutable forward iterator also fulfills the requirements of output iterators (see Section 9.2, page 433),

but no specific category exists for this.

If you write generic code, you might not be interested only in the iterator category. For example,

you may need the type of the elements to which the iterator refers. Therefore, the C++ standard

library provides a special template structure to define the iterator traits. This structure contains all

relevant information about an iterator and is used as a common interface for all the type definitions

an iterator should have (the category, the type of the elements, and so on):

namespace std {

template <typename T>

struct iterator_traits {

typedef typename T::iterator_category iterator_category;

typedef typename T::value_type value_type;

typedef typename T::difference_type difference_type;

typedef typename T::pointer pointer;

typedef typename T::reference reference;

};

}

In this template, T stands for the type of the iterator. Thus, you can write code that, for any iterator,

uses its category, the type of its elements, and so on. For example, the following expression yields

the value type of iterator type T:

typename std::iterator_traits<T>::value_type

This structure has two advantages:

1. It ensures that an iterator provides all type definitions.

2. It can be (partially) specialized for (sets of) special iterators.

The latter is done for ordinary pointers that also can be used as iterators:

468 Chapter 9: STL Iterators

namespace std {

template <typename T>

struct iterator_traits<T*> {

typedef T value_type;

typedef ptrdiff_t difference_type;

typedef random_access_iterator_tag iterator_category;

typedef T* pointer;

typedef T& reference;

};

}

Thus, for any type “pointer to T,” it is defined as having the random-access iterator category. A

corresponding partial specialization exists for constant pointers (const T*).

Note that output iterators can be used only to write something. Thus, in the case of an output

iterator, value_type, difference_type, pointer, and reference may be defined as void.

9.5.1 Writing Generic Functions for Iterators

Using iterator traits, you can write generic functions that derive type definitions or use different

implementation code depending on the iterator category.

Using Iterator Types

A simple example of the use of iterator traits is an algorithm that needs a temporary variable for the

elements. Such a temporary value is declared simply like this:

typename std::iterator_traits<T>::value_type tmp;

where T is the type of the iterator.

Another example is an algorithm that shifts elements cyclically:

template <typename ForwardIterator>

void shift_left (ForwardIterator beg, ForwardIterator end)

{

// temporary variable for first element

typedef typename

std::iterator_traits<ForwardIterator>::value_type value_type;

if (beg != end) {

// save value of first element

value_type tmp(*beg);

// shift following values

...

}

}

9.5 Iterator Traits 469

Using Iterator Categories

To use different implementations for different iterator categories you must follow these two steps:

1. Let your function template call another function with the iterator category as an additional argu-

ment. For example:

template <typename Iterator>

inline void foo (Iterator beg, Iterator end)

{

foo (beg, end,

std::iterator_traits<Iterator>::iterator_category());

}

2. Implement that other function for any iterator category that provides a special implementation

that is not derived from another iterator category. For example:

// foo() for bidirectional iterators

template <typename BiIterator>

void foo (BiIterator beg, BiIterator end,

std::bidirectional_iterator_tag)

{

...

}

// foo() for random-access iterators

template <typename RaIterator>

void foo (RaIterator beg, RaIterator end,

std::random_access_iterator_tag)

{

...

}

The version for random-access iterators could, for example, use random-access operations,

whereas the version for bidirectional iterators would not. Due to the hierarchy of iterator tags

(see Section 9.5, page 466), you could provide one implementation for more than one iterator

category.

Implementation of distance()

An example of following those two steps is the implementation of the auxiliary distance() it-

erator function, which returns the distance between two iterator positions and their elements (see

Section 9.3.3, page 445). The implementation for random-access iterators uses only the operator -.

For all other iterator categories, the number of increments to reach the end of the range is returned:

470 Chapter 9: STL Iterators

// general distance()

template <typename Iterator>

typename std::iterator_traits<Iterator>::difference_type

distance (Iterator pos1, Iterator pos2)

{

return distance (pos1, pos2,

std::iterator_traits<Iterator>

::iterator_category());

}

// distance() for random-access iterators

template <typename RaIterator>

typename std::iterator_traits<RaIterator>::difference_type

distance (RaIterator pos1, RaIterator pos2,

std::random_access_iterator_tag)

{

return pos2 - pos1;

}

// distance() for input, forward, and bidirectional iterators

template <typename InIterator>

typename std::iterator_traits<InIterator>::difference_type

distance (InIterator pos1, InIterator pos2,

std::input_iterator_tag)

{

typename std::iterator_traits<InIterator>::difference_type d;

for (d=0; pos1 != pos2; ++pos1, ++d) {

;

}

return d;

}

The difference type of the iterator is used as the return type. Note that the second version uses the tag

for input iterators, so this implementation is also used by forward and bidirectional iterators because

their tags are derived from input_iterator_tag.

9.6 Writing User-Defined Iterators 471

9.6 Writing User-Defined Iterators

Let’s write an iterator. As mentioned in the previous section, you need iterator traits provided for the

user-defined iterator. You can provide them in one of two ways:

1. Provide the necessary five type definitions for the general iterator_traits structure (see Sec-

tion 9.5, page 467).

2. Provide a (partial) specialization of the iterator_traits structure.

For the first way, the C++ standard library provides a special base class, iterator<>, that does the

type definitions. You need only pass the types:

class MyIterator

: public std::iterator <std::bidirectional_iterator_tag,

type, std::ptrdiff_t, type*, type&> {

...

};

The first template parameter defines the iterator category, the second defines the element type type,

the third defines the difference type, the fourth defines the pointer type, and the fifth defines the

reference type. The last three arguments are optional and have the default values ptrdiff_t, type*,

and type&. Thus, often it is enough to use the following definition:

class MyIterator

: public std::iterator <std::bidirectional_iterator_tag, type> {

...

};

The following example demonstrates how to write a user-defined iterator. It is an insert iterator

for associative and unordered containers. Unlike insert iterators of the C++ standard library (see

Section 9.4.2, page 454), no insert position is used.

Here is the implementation of the iterator class:

// iter/assoiter.hpp

#include <iterator>

// class template for insert iterator for associative and unordered containers

template <typename Container>

class asso_insert_iterator

: public std::iterator <std::output_iterator_tag,

typename Container::value_type>

{

protected:

Container& container; // container in which elements are inserted

public:

// constructor

explicit asso_insert_iterator (Container& c) : container(c) {

}

472 Chapter 9: STL Iterators

// assignment operator

// - inserts a value into the container

asso_insert_iterator<Container>&

operator= (const typename Container::value_type& value) {

container.insert(value);

return *this;

}

// dereferencing is a no-op that returns the iterator itself

asso_insert_iterator<Container>& operator* () {

return *this;

}

// increment operation is a no-op that returns the iterator itself

asso_insert_iterator<Container>& operator++ () {

return *this;

}

asso_insert_iterator<Container>& operator++ (int) {

return *this;

}

};

// convenience function to create the inserter

template <typename Container>

inline asso_insert_iterator<Container> asso_inserter (Container& c)

{

return asso_insert_iterator<Container>(c);

}

The asso_insert_iterator class is derived from the iterator class, where corresponding types

are defined. The first template argument passed is output_iterator_tag to specify the itera-

tor category. The second argument is the type of the values the iterator refers to, which is the

value_type of the container. Because output iterators can be used only to write something, this

type definition is not necessary, so you can pass void here. However, passing the value type as

demonstrated here works for any iterator category.

At creation time the iterator stores its container in its container member. Any value that gets

assigned is inserted into the container by insert(). Operators * and ++ are no-ops that simply

return the iterator itself. Thus, the iterator maintains control. If the usual iterator interface

*pos = value

is used, the *pos expression returns *this, to which the new value is assigned. That assignment is

transferred into a call of insert(value) for the container.

9.6 Writing User-Defined Iterators 473

After the definition of the inserter class, the usual convenient function asso_inserter is defined

as a convenience function to create and initialize an inserter. The following program uses such an

inserter to insert some elements into an unordered set:

// iter/assoiter1.cpp

#include <iostream>

#include <unordered_set>

#include <vector>

#include <algorithm>

#include "print.hpp"

#include "assoiter.hpp"

int main()

{

std::unordered_set<int> coll;

// create inserter for coll

// - inconvenient way

asso_insert_iterator<decltype(coll)> iter(coll);

// insert elements with the usual iterator interface

*iter = 1;

iter++;

*iter = 2;

iter++;

*iter = 3;

PRINT_ELEMENTS(coll);

// create inserter for coll and insert elements

// - convenient way

asso_inserter(coll) = 44;

asso_inserter(coll) = 55;

PRINT_ELEMENTS(coll);

// use inserter with an algorithm

std::vector<int> vals = { 33, 67, -4, 13, 5, 2 };

std::copy (vals.begin(), vals.end(), // source

asso_inserter(coll)); // destination

PRINT_ELEMENTS(coll);

}

474 Chapter 9: STL Iterators

The normal application of the asso_inserter demonstrates the copy() call:

std::copy (vals.begin(), vals.end(), // source

asso_inserter(coll)); // destination

Here, asso_inserter(coll) creates an inserter that inserts any argument passed into coll, calling

coll.insert(val).

The other statements demonstrate the behavior of the inserter in detail. The output of the program

is as follows:

1 2 3

55 44 1 2 3

-4 33 55 44 67 1 13 2 3 5

Note that this iterator could also be used by associative containers. Thus, if you replace

unordered_set by set in both the include directive and the declaration of coll, the program

would still work (although the elements in the container would be sorted then).

Chapter 10

STL Function Objects and Using

Lambdas

This chapter discusses in detail the features to pass specific functionality to algorithms and member

functions, function objects, or functors for short (introduced in Section 6.10, page 233). It covers

the full set of predefined function objects and function adapters and binders and the concept of func-

tional composition, provides examples of self-written function objects, and presents details about

the application of lambdas (introduced in Section 3.1.10, page 28, and Section 6.9, page 229).

As a consequence, you will learn details and surprising behavior of the algorithms remove_if()

and for_each().

10.1 The Concept of Function Objects

A function object, or functor, is an object that has operator () defined so that in the following

example

FunctionObjectType fo;

...

fo(...);

the expression fo() is a call of operator () for the function object fo instead of a call of the function

fo(). At first, you could consider a function object as an ordinary function that is written in a more

complicated way. Instead of writing all the function statements inside the function body:

void fo() {

statements

}

you write them inside the body of operator () of the function object class:

476 Chapter 10: STL Function Objects and Using Lambdas

class FunctionObjectType {

public:

void operator() () {

statements

}

};

This kind of definition is more complicated but has three important advantages:

1. A function object might be smarter because it may have a state (associated members that in-

fluence the behavior of the function object). In fact, you can have two instances of the same

function object class, which may have different states at the same time. This is not possible for

ordinary functions.

2. Each function object has its own type. Thus, you can pass the type of a function object to a

template to specify a certain behavior, and you have the advantage that container types with

different function objects differ.

3. A function object is usually faster than a function pointer.

See Section 6.10.1, page 235, for more details about these advantages and an example that shows

how function objects can be smarter than ordinary functions.

In the next two subsections, I present two other examples that go into more detail about func-

tion objects. The first example demonstrates how to benefit from the fact that each function object

usually has its own type. The second example demonstrates how to benefit from the state of func-

tion objects and leads to an interesting property of the for_each() algorithm, which is covered in

Section 10.1.3, page 482.

10.1.1 Function Objects as Sorting Criteria

Programmers often need a sorted collection of elements that have a special class (for example, a

collection of Persons). However, you either don’t want to or can’t use the usual operator < to sort

the objects. Instead, you sort the objects according to a special sorting criterion based on some

member function. In this regard, a function object can help. Consider the following example:

// fo/sort1.cpp

#include <iostream>

#include <string>

#include <set>

#include <algorithm>

using namespace std;

class Person {

public:

string firstname() const;

string lastname() const;

...

};

10.1 The Concept of Function Objects 477

// class for function predicate

// - operator () returns whether a person is less than another person

class PersonSortCriterion {

public:

bool operator() (const Person& p1, const Person& p2) const {

// a person is less than another person

// - if the last name is less

// - if the last name is equal and the first name is less

return p1.lastname()<p2.lastname() ||

(p1.lastname()==p2.lastname() &&

p1.firstname()<p2.firstname());

}

};

int main()

{

// create a set with special sorting criterion

set<Person,PersonSortCriterion> coll;

...

// do something with the elements

for (auto pos = coll.begin(); pos != coll.end(); ++pos) {

...

}

...

}

The set coll uses the special sorting criterion PersonSortCriterion, which is defined as a func-

tion object class. PersonSortCriterion defines operator () in such a way that it compares two

Persons according to their last names and, if they are equal, to their first names. The constructor

of coll creates an instance of class PersonSortCriterion automatically so that the elements are

sorted according to this sorting criterion.

Note that the sorting criterion PersonSortCriterion is a type. Thus, you can use it as a

template argument for the set. This would not be possible if you implement the sorting criterion as

a plain function (as was done in Section 6.8.2, page 228).

All sets with this sorting criterion have their own type. You can’t combine or assign a set that

has a “normal” or another user-defined sorting criterion. Thus, you can’t compromise the automatic

sorting of the set by any operation; however, you can design function objects that represent different

sorting criteria with the same type (see Section 7.8.6, page 351).

478 Chapter 10: STL Function Objects and Using Lambdas

10.1.2 Function Objects with Internal State

The following example shows how function objects can be used to behave as a function that may

have more than one state at the same time:

// fo/sequence1.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include <iterator>

#include "print.hpp"

using namespace std;

class IntSequence {

private:

int value;

public:

IntSequence (int initialValue) // constructor

: value(initialValue) {

}

int operator() () { // ‘‘function call’’

return ++value;

}

};

int main()

{

list<int> coll;

// insert values from 1 to 9

generate_n (back_inserter(coll), // start

9, // number of elements

IntSequence(1)); // generates values, starting with 1

PRINT_ELEMENTS(coll);

// replace second to last element but one with values starting at 42

generate (next(coll.begin()), // start

prev(coll.end()), // end

IntSequence(42)); // generates values, starting with 42

PRINT_ELEMENTS(coll);

}

10.1 The Concept of Function Objects 479

In this example, the function object IntSequence generates a sequence of integral values. Each

time operator () is called, it returns its actual value and increments it. You can pass the start value

as a constructor argument.

Two such function objects are then used by the generate() and generate_n() algorithms,

which use generated values to write them into a collection: The expression

IntSequence(1)

in the statement

generate_n (back_inserter(coll),

9,

IntSequence(1));

creates such a function object initialized with 1. The generate_n() algorithm uses it nine times to

write an element, so it generates values 1 to 9. Similarly, the expression

IntSequence(42)

generates a sequence beginning with value 42. The generate() algorithm replaces the elements

beginning with the second up to the last but one.1 The output of the program is as follows:

2 3 4 5 6 7 8 9 10

2 43 44 45 46 47 48 49 10

Using other versions of operator (), you can easily produce more complicated sequences.

By default, function objects are passed by value rather than by reference. Thus, the algorithm

does not change the state of the function object. For example, the following code generates the

sequence starting with value 1 twice:

IntSequence seq(1); // integral sequence starting with value 1

// insert sequence beginning with 1

generate_n (back_inserter(coll), 9, seq);

// insert sequence beginning with 1 again

generate_n (back_inserter(coll), 9, seq);

Passing function objects by value instead of by reference has the advantage that you can pass constant

and temporary expressions. Otherwise, passing IntSequence(1) would not be possible.

The disadvantage of passing the function object by value is that you can’t benefit from modifi-

cations of the state of the function objects. Algorithms can modify the state of the function objects,

but you can’t access and process their final states, because they make internal copies of the function

objects. However, access to the final state might be necessary, so the question is how to get a “result”

from an algorithm.

There are three ways to get a “result” or “feedback” from function objects passed to algorithms:

1 std::next() and std::prev() are provided since C++11 (see Section 9.3.2, page 443). Note that using

++coll.begin() and --coll.end() might not always compile (see Section 9.2.6, page 440).

480 Chapter 10: STL Function Objects and Using Lambdas

1. You can keep the state externally and let the function object refer to it.

2. You can pass the function objects by reference.

3. You can use the return value of the for_each() algorithm.

The last option is discussed in the next subsection.

To pass a function object by reference, you simply have to qualify the call of the algorithm so

that the function object type is a reference.2 For example:

// fo/sequence2.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include <iterator>

#include "print.hpp"

using namespace std;

class IntSequence {

private:

int value;

public:

// constructor

IntSequence (int initialValue)

: value(initialValue) {

}

// ‘‘function call’’

int operator() () {

return ++value;

}

};

int main()

{

list<int> coll;

IntSequence seq(1); // integral sequence starting with 1

// insert values from 1 to 4

// - pass function object by reference

// so that it will continue with 5

generate_n<back_insert_iterator<list<int>>,

int, IntSequence&>(back_inserter(coll), // start

4, // number of elements

¨2 Thanks to Philip Koster for pointing this out.

10.1 The Concept of Function Objects 481

seq); // generates values

PRINT_ELEMENTS(coll);

// insert values from 42 to 45

generate_n (back_inserter(coll), // start

4, // number of elements

IntSequence(42)); // generates values

PRINT_ELEMENTS(coll);

// continue with first sequence

// - pass function object by value

// so that it will continue with 5 again

generate_n (back_inserter(coll), // start

4, // number of elements

seq); // generates values

PRINT_ELEMENTS(coll);

// continue with first sequence again

generate_n (back_inserter(coll), // start

4, // number of elements

seq); // generates values

PRINT_ELEMENTS(coll);

}

The program has the following output:

2 3 4 5

2 3 4 5 43 44 45 46

2 3 4 5 43 44 45 46 6 7 8 9

2 3 4 5 43 44 45 46 6 7 8 9 6 7 8 9

In the first call of generate_n(), the function object seq is passed by reference. To do this, the

template arguments are qualified explicitly:

generate_n<back_insert_iterator<list<int>>,

int, IntSequence&>(back_inserter(coll), // start

4, // number of elements

seq); // generates values

As a result, the internal value of seq is modified after the call, and the second use of seq by the

third call of generate_n() continues the sequence of the first call. However, this call passes seq

by value:

generate_n (back_inserter(coll), // start

4, // number of elements

seq); // generates values

Thus, the call does not change the state of seq. As a result, the last call of generate_n() continues

the sequence with value 5 again.

482 Chapter 10: STL Function Objects and Using Lambdas

10.1.3 The Return Value of for_each()

The effort involved with passing a function object by reference in order to access its final state is

not necessary if you use the for_each() algorithm. for_each() has the unique ability to return

its function object (no other algorithm can do this). Thus, you can query the state of your function

object by checking the return value of for_each().

The following program is a nice example of the use of the return value of for_each(). It shows

how to process the mean value of a sequence:

// fo/foreach3.cpp

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

// function object to process the mean value

class MeanValue {

private:

long num; // number of elements

long sum; // sum of all element values

public:

// constructor

MeanValue () : num(0), sum(0) {

}

// ‘‘function call’’

// - process one more element of the sequence

void operator() (int elem) {

++num; // increment count

sum += elem; // add value

}

// return mean value

double value () {

return static_cast<double>(sum) / static_cast<double>(num);

}

};

int main()

{

vector<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8 };

10.1 The Concept of Function Objects 483

// process and print mean value

MeanValue mv = for_each (coll.begin(), coll.end(), // range

MeanValue()); // operation

cout << "mean value: " << mv.value() << endl;

}

The expression

MeanValue()

creates a function object that counts the number of elements and processes the sum of all element

values. By passing the function object to for_each(), it is called for each element of the container

coll:

MeanValue mv = for_each (coll.begin(), coll.end(),

MeanValue());

The function object is returned and assigned to mv, so you can query its state after the statement by

calling: mv.value(). Therefore, the program has the following output:

mean value: 4.5

You could even make the class MeanValue a bit smarter by defining an automatic type conversion

to double. You could then use the mean value that is processed by for_each() directly. See

Section 11.4, page 522, for such an example.

Note that lambdas provide a more convenient way to specify this behavior (see Section 10.3.2,

page 500, for a corresponding example). However, that does not mean that lambdas are always

better than function objects. Function objects are more convenient when their type is required, such

as for a declaration of a hash function, sorting, or equivalence criterion of associative or unordered

containers. The fact that a function object is usually globally introduced helps to provide them in

header files or libraries, whereas lambdas are better for specific behavior specified locally.

10.1.4 Predicates versus Function Objects

Predicates are functions or function objects that return a Boolean value (a value that is convertible

into bool). However, not every function that returns a Boolean value is a valid predicate for the

STL. This may lead to surprising behavior. Consider the following example:

// fo/removeif1.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include "print.hpp"

using namespace std;

484 Chapter 10: STL Function Objects and Using Lambdas

class Nth { // function object that returns true for the nth call

private:

int nth; // call for which to return true

int count; // call counter

public:

Nth (int n) : nth(n), count(0) {

}

bool operator() (int) {

return ++count == nth;

}

};

int main()

{

list<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

PRINT_ELEMENTS(coll,"coll: ");

// remove third element

list<int>::iterator pos;

pos = remove_if(coll.begin(),coll.end(), // range

Nth(3)); // remove criterion

coll.erase(pos,coll.end());

PRINT_ELEMENTS(coll,"3rd removed: ");

}

This program defines a function object Nth that yields true for the nth call. However, when passing

it to remove_if(), an algorithm that removes all elements for which a unary predicate yields true

(see Section 11.7.1, page 575), the result is a big surprise:3

coll: 1 2 3 4 5 6 7 8 9 10

3rd removed: 1 2 4 5 7 8 9 10

Two elements, the third and sixth elements, are removed. This happens because the usual implemen-

tation of the algorithm copies the predicate internally during the algorithm:

template <typename ForwIter, typename Predicate>

ForwIter std::remove_if(ForwIter beg, ForwIter end,

Predicate op)
{

beg = find_if(beg, end, op);

3 At least this is the output of gcc 4.5 and Visual C++ 2010, but other platforms might result in a different

output; see the following discussion.

10.1 The Concept of Function Objects 485

if (beg == end) {

return beg;

}

else {

ForwIter next = beg;

return remove_copy_if(++next, end, beg, op);

}

}

The algorithm uses find_if() to find the first element that should be removed. However, the

algorithm then uses a copy of the passed predicate op to process the remaining elements, if any.

Here, Nth in its original state is used again and also removes the third element of the remaining

elements, which is in fact the sixth element.

This behavior is not a bug. The standard does not specify how often a predicate might be copied

internally by an algorithm. Thus, to get the guaranteed behavior of the C++ standard library, you

should not pass a function object for which the behavior depends on how often it is copied or called.

Thus, if you call a unary predicate for two arguments and both arguments are equal, the predicate

should always yield the same result.

In other words: A predicate should always be stateless. That is, a predicate should not change

its state due to a call, and a copy of a predicate should have the same state as the original. To ensure

that you can’t change the state of a predicate due to a function call, you should declare operator ()

as a constant member function.

It is possible to avoid this surprising behavior and to guarantee that this algorithm works as

expected even for a function object such as Nth, without any performance penalties. You could

implement remove_if() in such a way that the call of find_if() is replaced by its contents:

template <typename ForwIter, typename Predicate>

ForwIter std::remove_if(ForwIter beg, ForwIter end,

Predicate op)
{

while (beg != end && !op(*beg)) {

++beg;

}

if (beg == end) {

return beg;

}

else {

ForwIter next = beg;

return remove_copy_if(++next, end, beg, op);

}

}

So, it might be a good idea to change the implementation of remove_if() or submit a change

request to the implementer of the library. To my knowledge, this problem arises in current imple-

mentations only with the remove_if() algorithm. If you use remove_copy_if(), all works as

expected. (Whether the C++ standard library should guarantee the expected behavior in cases such

486 Chapter 10: STL Function Objects and Using Lambdas

as those presented in this example was under discussion but never changed.) However, for portabil-

ity, you should never rely on this implementation detail. You should always declare the function call

operator of predicates as being a constant member function.

Note that with lambdas, you can share the state among all copies of the function object, so this

problem doesn’t apply. See Section 10.3.2, page 501, for details.

10.2 Predefined Function Objects and Binders

As mentioned in Section 6.10.2, page 239, the C++ standard library provides many predefined func-

tion objects and binders that allow you to compose them into more sophisticated function objects.

This ability, called functional composition, requires fundamental function objects and adapters,

which are both presented here. To use these function objects and binders, you must include the

header file <functional>:

#include <functional>

10.2.1 Predefined Function Objects

Table 10.1 lists all predefined function objects (bit_and, bit_or, and bit_xor are available since

C++11).

Expression Effect

negate<type>() - param

plus<type>() param1 + param2

minus<type>() param1 - param2

multiplies<type>() param1 * param2

divides<type>() param1 / param2

modulus<type>() param1 % param2

equal_to<type>() param1 == param2

not_equal_to<type>() param1 != param2

less<type>() param1 < param2

greater<type>() param1 > param2

less_equal<type>() param1 <= param2

greater_equal<type>() param1 >= param2

logical_not<type>() ! param

logical_and<type>() param1 && param2

logical_or<type>() param1 || param2

bit_and<type>() param1 & param2

bit_or<type>() param1 | param2

bit_xor<type>() param1 ^ param2

Table 10.1. Predefined Function Objects

10.2 Predefined Function Objects and Binders 487

less<> is the default criterion whenever objects are sorted or compared by sorting functions and

associative containers. Thus, default sorting operations always produce an ascending order (element

< nextElement). equal_to<> is the default equivalence criterion for unordered containers.

To compare internationalized strings, the C++ standard library provides the ability to use locale

objects as function objects so that they can be used as a sorting criterion for strings (see Section 16.3,

page 868, for details).

10.2.2 Function Adapters and Binders

A function adapter is a function object that enables the composition of function objects with each

other, with certain values, or with special functions (according to the composite pattern in

[GoF:DesignPatterns]). However, over time, the way function objects are composed changed. In

fact, all such features that were provided for C++98 are deprecated since C++11, which introduced

more convenient and more flexible adapters. Here, I first present the current way to compose function

objects. In Section 10.2.4, page 497, I give a very brief overview of the deprecated features.

Table 10.2 lists the function adapters provided by the C++ standard library since C++11.

Expression Effect

bind(op,args...) Binds args to op

mem_fn(op) Calls op() as a member function for an object or pointer to object

not1(op) Unary negation: !op(param)

not2(op) Binary negation: !op(param1,param2)

Table 10.2. Predefined Function Adapters

The most important adapter is bind(). It allows you to:

• Adapt and compose new function objects out of existing or predefined function objects

• Call global functions

• Call member functions for objects, pointers to objects, and smart pointers to objects

The bind() Adapter

In general, bind() binds parameters for callable objects (see Section 4.4, page 54). Thus, if a

function, member function, function object, or lambda requires some parameters, you can bind them

to specific or passed arguments. Specific arguments you simply name. For passed arguments, you

can use the predefined placeholders _1, _2, ... defined in namespace std::placeholders.

A typical application of binders is to specify parameters when using the predefined function

objects provided by the C++ standard library (see Section 10.2.1, page 486). For example:

488 Chapter 10: STL Function Objects and Using Lambdas

// fo/bind1.cpp

#include <functional>

#include <iostream>

int main()

{

auto plus10 = std::bind(std::plus<int>(),

std::placeholders::_1,

10);

std::cout << "+10: " << plus10(7) << std::endl;

auto plus10times2 = std::bind(std::multiplies<int>(),

std::bind(std::plus<int>(),

std::placeholders::_1,

10),

2);

std::cout << "+10 *2: " << plus10times2(7) << std::endl;

auto pow3 = std::bind(std::multiplies<int>(),

std::bind(std::multiplies<int>(),

std::placeholders::_1,

std::placeholders::_1),

std::placeholders::_1);

std::cout << "x*x*x: " << pow3(7) << std::endl;

auto inversDivide = std::bind(std::divides<double>(),

std::placeholders::_2,

std::placeholders::_1);

std::cout << "invdiv: " << inversDivide(49,7) << std::endl;

}

Here, four different binders that represent function objects are defined. For example, plus10, de-

fined as

std::bind(std::plus<int>(),

std::placeholders::_1,

10)

represents a function object, which internally calls plus<> (i.e., operator +), with a placeholder _1

as first parameter/operand and 10 as second parameter/operand. The placeholder _1 represents the

first argument passed to the expression as a whole. Thus, for any argument passed to this expression,

this function object yields the value of that argument +10.

To avoid the tedious repetition of the namespace placeholders, you can use a corresponding

using directive. Thus, with two using directives, you condense the whole statement:

10.2 Predefined Function Objects and Binders 489

using namespace std;

using namespace std::placeholders;

bind (plus<int>(), _1, 10) // param1+10

The binder can also be called directly. For example,

std::cout << std::bind(std::plus<int>(),_1,10)(32) << std::endl;

will write 42 to standard output and, if you pass this function object to an algorithm, the algorithm

can apply it to every element the algorithms operates with. For example:

// add 10 to each element

std::transform (coll.begin(), coll.end(), // source

coll.begin(), // destination

std::bind(std::plus<int>(),_1,10)); // operation

In the same way, you can define a binder that represents a sorting criterion. For example, to find the

first element that is greater than 42, you bind greater<> with the passed argument as first and 42

as second operator:

// find first element >42

auto pos = std::find_if (coll.begin(),coll.end(),

std::bind(std::greater<int>(),_1,42))

Note that you always have to specify the argument type of the predefined function object used. If the

type doesn’t match, a type conversion is forced, or the expression results in a compile-time error.

The remaining statements in this example program demonstrate that you can nest binders to

compose even more complicated function objects. For example, the following expression defines a

function object that adds 10 to the passed argument and then multiplies it by 2 (namespaces omitted):

bind(multiplies<int>(), // (param1+10)*2

bind(plus<int>(),_1,

10),

2);

As you can see, the expressions are evaluated from the inside to the outside.

Similarly, we can raise a value to the power of 3 by combining two multiplies<> objects with

three placeholders for the argument passed:

bind(multiplies<int>(), // (param1*param1)*param1

bind(multiplies<int>(),_1,

_1),

_1);

The final expression defines a function object, where the arguments for a division are swapped. Thus,

it divides the second argument by the first argument:

bind(divides<double>(),_2, // param2/param1

_1);

Thus, the example program as a whole has the following output:

490 Chapter 10: STL Function Objects and Using Lambdas

+10: 17

+10 *2: 34

x*x*x: 343

invdiv: 0.142857

Section 6.10.3, page 241, offers some other examples of the use of binders. Section 10.3.1, page 499,

provides the same functionality using lambdas.

Calling Global Functions

The following example demonstrates how bind() can be used to call global functions (see Sec-

tion 10.3.3, page 502, for a version with lambdas):

// fo/compose3.cpp

#include <iostream>

#include <algorithm>

#include <functional>

#include <locale>

#include <string>

using namespace std;

using namespace std::placeholders;

char myToupper (char c)

{

std::locale loc;

return std::use_facet<std::ctype<char> >(loc).toupper(c);

}

int main()

{

string s("Internationalization");

string sub("Nation");

// search substring case insensitive

string::iterator pos;

pos = search (s.begin(),s.end(), // string to search in

sub.begin(),sub.end(), // substring to search

bind(equal_to<char>(), // compar. criterion

bind(myToupper,_1),

bind(myToupper,_2)));

if (pos != s.end()) {

cout << "\"" << sub << "\" is part of \"" << s << "\""

<< endl;

}

}

10.2 Predefined Function Objects and Binders 491

Here, we use the search() algorithm to check whether sub is a substring in s, when case sensitivity

doesn’t matter. With

bind(equal_to<char>(),

bind(myToupper,_1),

bind(myToupper,_2)));

we create a function object calling:

myToupper(param1)==myToupper(param2)

where myToupper() is our own convenience function to convert the characters of the strings into

uppercase (see Section 16.4.4, page 891, for details).

Note that bind() internally copies passed arguments. To let the function object use a reference

to a passed argument, use ref() or cref() (see Section 5.4.3, page 132). For example:

void incr (int& i)

{

++i;

}

int i=0;

bind(incr,i)(); // increments a copy of i, no effect for i

bind(incr,ref(i))(); // increments i

Calling Member Functions

The following program demonstrates how bind() can be used to call member functions (see Sec-

tion 10.3.3, page 503, for a version with lambdas):

// fo/bind2.cpp

#include <functional>

#include <algorithm>

#include <vector>

#include <iostream>

#include <string>

using namespace std;

using namespace std::placeholders;

class Person {

private:

string name;

public:

Person (const string& n) : name(n) {

}

void print () const {

cout << name << endl;

}

492 Chapter 10: STL Function Objects and Using Lambdas

void print2 (const string& prefix) const {

cout << prefix << name << endl;

}

...

};

int main()

{

vector<Person> coll

= { Person("Tick"), Person("Trick"), Person("Track") };

// call member function print() for each person

for_each (coll.begin(), coll.end(),

bind(&Person::print,_1));

cout << endl;

// call member function print2() with additional argument for each person

for_each (coll.begin(), coll.end(),

bind(&Person::print2,_1,"Person: "));

cout << endl;

// call print2() for temporary Person

bind(&Person::print2,_1,"This is: ")(Person("nico"));

}

Here,

bind(&Person::print,_1)

defines a function object that calls param1.print() for a passed Person. That is, because the first

argument is a member function, the next argument defines the object for which this member function

gets called.

Any additional argument is passed to the member function. That means:

bind(&Person::print2,_1,"Person: ")

defines a function object that calls param1.print2("Person: ") for any passed Person.

Here, the passed objects are the members of coll, but in principle, you can pass objects directly.

For example:

Person n("nico");

bind(&Person::print2,_1,"This is: ")(n);

calls n.print2("This is: ").

The output of the program is as follows:

10.2 Predefined Function Objects and Binders 493

Tick

Trick

Track

Person: Tick

Person: Trick

Person: Track

This is: nico

Note that you can also pass pointers to objects and even smart pointers to bind():

std::vector<Person*> cp;

...

std::for_each (cp.begin(), cp.end(),

std::bind(&Person::print,

std::placeholders::_1));

std::vector<std::shared_ptr<Person>> sp;

...

std::for_each (sp.begin(), sp.end(),

std::bind(&Person::print,

std::placeholders::_1));

Note that you can also call modifying member functions:

class Person {

public:

...

void setName (const std::string& n) {

name = n;

}

};

std::vector<Person> coll;

...

std::for_each (coll.begin(), coll.end(), // give all Persons same name

std::bind(&Person::setName,

std::placeholders::_1,

"Paul"));

Calling virtual member functions also works. If a method of the base class is bound and the object

is of a derived class, the correct virtual function of the derived class gets called.

494 Chapter 10: STL Function Objects and Using Lambdas

The mem_fn() Adapter

For member functions, you can also use the mem_fn() adapter, whereby you can skip the placeholder

for the object the member function is called for:

std::for_each (coll.begin(), coll.end(),

std::mem_fn(&Person::print));

Thus, mem_fn() simply calls an initialized member function for a passed argument while additional

arguments are passed as parameters to the member function:

std::mem_fn(&Person::print)(n); // calls n.print()

std::mem_fn(&Person::print2)(n,"Person: "); // calls n.print2("Person: ")

However, to bind an additional argument to the function object, you again have to use bind():

std::for_each (coll.begin(), coll.end(),

std::bind(std::mem_fn(&Person::print2),

std::placeholders::_1,

"Person: "));

Binding to Data Members

You can also bind to data members. Consider the following example (namespaces omitted):4

map<string,int> coll; // map of int values associated to strings

...

// accumulate all values (member second of the elements)

int sum

= accumulate (coll.begin(), coll.end(),

0,

bind(plus<int>(),

_1,

bind(&map<string,int>::value_type::second,

_2)));

Here, accumulate() is called, which uses a binary predicate to sum up all values of all elements

(see Section 11.11.1, page 623). However, because we use a map, where the elements are key/value

pairs, to gain access to an element’s value

bind(&map<string,int>::value_type::second,_2)

binds the passed second argument of each call of the predicate to its member second.

Adapters not1() and not2()

The adapters not1() and not2() can be considered as almost deprecated.5 The only way to use

them is to negate the meaning of predefined function objects. For example:

4 This example is based on code taken from [Karlsson:Boost], page 260, with friendly permission by the author.
5 In fact, they were close to being deprecated with C++11, see [N3198:DeprAdapt]

10.2 Predefined Function Objects and Binders 495

std::sort (coll.begin(), coll.end(),

std::not2(std::less<int>()));

This looks more convenient than:

std::sort (coll.begin(), coll.end(),

std::bind(std::logical_not<bool>(),

std::bind(std::less<int>(),_1,_2)));

However, there is no real real-world scenario for not1() and not2() because you can simply use

another predefined function object here:

std::sort (coll.begin(), coll.end(),

std::greater_equal<int>());

More important, note that calling not2() with less<> is wrong anyway. You probably meant

to change the sorting from ascending to descending. But the negation of < is >=, not >. In fact,

greater_equal<> even leads to undefined behavior because sort() requires a strict weak order-

ing, which < provides, but >= does not provide because it violates the requirement to be antisymmet-

ric (see Section 7.7, page 314). Thus, you either pass

greater<int>()

or swap the order of arguments by passing

bind(less<int>(),_2,_1)

See Section 10.2.4, page 497, for other examples using not1() and not2() with deprecated func-

tion adapters.

10.2.3 User-Defined Function Objects for Function Adapters

You can also use binders for your user-defined function objects. The following example shows a

complete definition for a function object that processes the first argument raised to the power of the

second argument:

// fo/fopow.hpp

#include <cmath>

template <typename T1, typename T2>

struct fopow

{

T1 operator() (T1 base, T2 exp) const {

return std::pow(base,exp);

}

};

Note that the first argument and the return value have the same type, T1, whereas the exponent may

have a different type T2.

496 Chapter 10: STL Function Objects and Using Lambdas

The following program shows how to use the user-defined function object fopow<>(). In par-

ticular, it uses fopow<>() with the bind() function adapters:

// fo/fopow1.cpp

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

#include <functional>

#include "fopow.hpp"

using namespace std;

using namespace std::placeholders;

int main()

{

vector<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

// print 3 raised to the power of all elements

transform (coll.begin(), coll.end(), // source

ostream_iterator<float>(cout," "), // destination

bind(fopow<float,int>(),3,_1)); // operation

cout << endl;

// print all elements raised to the power of 3

transform (coll.begin(), coll.end(), // source

ostream_iterator<float>(cout," "), // destination

bind(fopow<float,int>(),_1,3)); // operation

cout << endl;

}

The program has the following output:

3 9 27 81 243 729 2187 6561 19683

1 8 27 64 125 216 343 512 729

Note that fopow<>() is realized for types float and int. If you use int for both base and exponent,

you’d call pow() with two arguments of type int, but this isn’t portable, because according to the

standard, pow() is overloaded for more than one but not all fundamental types:

transform (coll.begin(), coll.end(),

ostream_iterator<int>(cout," "),

bind1st(fopow<int,int>(),3)); // ERROR: ambiguous

See Section 17.3, page 942, for details about this problem.

10.2 Predefined Function Objects and Binders 497

10.2.4 Deprecated Function Adapters

Table 10.3 lists the predefined function adapter classes that were provided by the C++ standard

library before C++11 and are deprecated now.6 Just in case you encounter the deprecated stuff, here

are some brief examples of how to use them.

Expression Effect

bind1st(op,arg) Calls op(arg,param)

bind2nd(op,arg) Calls op(param,arg)

ptr_fun(op) Calls *op(param) or *op(param1,param2)

mem_fun(op) Calls op() as a member function for a pointer to an object

mem_fun_ref(op) Calls op() as a member function for an object

not1(op) Unary negation: !op(param)

not2(op) Binary negation: !op(param1,param2)

Table 10.3. Deprecated Predefined Function Adapters

Note that these adapters required certain type definitions in the functions objects used. To

define these types, the C++ standard library provides special base classes for function adapters:

std::unary_function<> and std::binary_function<>. These classes also are deprecated

now.

Both bind1st() and bind2nd() operate like bind(), with fixed positions that a parameter is

bound to. For example:

// find first element >42

std::find_if (coll.begin(),coll.end(), // range

std::bind2nd(std::greater<int>(),42)) // criterion

However, bind1st() and bind2nd() can’t be used to compose binders out of binders or pass

ordinary functions directly.

not1() and not2() are “almost deprecated” because they are useful only with the other depre-

cated function adapters. For example:

std::find_if (coll.begin(), coll.end(),

std::not1(std::bind2nd(std::modulus<int>(),2)));

finds the position of the first even int (%2 yields 0 for even values, which not1() negates into

true). However, this looks more convenient than using the new binders:

std::find_if (coll.begin(), coll.end(),

std::bind(std::logical_not<bool>(),

std::bind(std::modulus<int>(),

std::placeholders::_1,

2)));

6 Although not1() and not2() are not officially deprecated, you need the other deprecated function adapters

for real-world usage.

498 Chapter 10: STL Function Objects and Using Lambdas

Being able to use a lambda is really an improvement here:

std::find_if (coll.begin(), coll.end(),

[](int elem){

return elem%2==0;

});

ptr_fun() was provided to be able to call ordinary functions. For example, suppose that you have

a global function, which checks something for each parameter:

bool check(int elem);

To find the first element for which the check does not succeed, you could call the following statement:

std::find_if (coll.begin(), coll.end(), // range

std::not1(std::ptr_fun(check))); // search criterion

The second form of ptr_fun() was used when you had a global function for two parameters and,

for example, you wanted to use it as a unary function:

// find first string that is not empty

std::find_if (coll.begin(), coll.end(),

std::bind2nd(std::ptr_fun(std::strcmp),""));

Here, the strcmp() C function is used to compare each element with the empty C-string. If both

strings match, strcmp() returns 0, which is equivalent to false. So, this call of find_if() returns

the position of the first element that is not the empty string.

Both mem_fun() and mem_fun_ref() were provided to define function objects that call member

functions.7 For example:

class Person {

public:

void print () const;

...

};

const std::vector<Person> coll;

...

// call member function print() for each person

std::for_each (coll.begin(), coll.end(),

std::mem_fun_ref(&Person::print));

Note that the member functions called by mem_fun_ref() and mem_fun() and passed as arguments

to bind1st() or bind2nd() must be constant member functions.

7 These member function adapters use the auxiliary classes mem_fun_t, mem_fun_ref_t,

const_mem_fun_t, const_mem_fun_ref_t, mem_fun1_t, mem_fun1_ref_t, const_mem_fun1_t, and

const_mem_fun1_ref_t.

10.3 Using Lambdas 499

10.3 Using Lambdas

As introduced in Section 3.1.10, page 28, lambdas were introduced with C++11. They provide

a powerful and very convenient way to provide local functionality, especially to specify details of

algorithms and member functions. Although lambdas are a language feature, their use is so important

for the C++ standard library that I will go into a couple of details here.

As introduced in Section 6.9, page 229, lambdas provide significant improvements for C++ when

using the STL because now you have an intuitive, readable way to pass individual behavior to algo-

rithms and container member functions. If you need specific behavior passed to an algorithm, just

specify it like any other function right there where you need it.

The best way to demonstrate the use of lambdas is by example, especially when comparing

corresponding code not using lambdas. In the following subsections, I provide some examples of

functionality introduced before with other function objects and adapters, such as bind().

10.3.1 Lambdas versus Binders

Take, for example, fo/bind1.cpp, which is presented in Section 10.2.2, page 488. When lambdas

are used, the corresponding code looks as follows:

// fo/lambda1.cpp

#include <iostream>

int main()

{

auto plus10 = [] (int i) {

return i+10;

};

std::cout << "+10: " << plus10(7) << std::endl;

auto plus10times2 = [] (int i) {

return (i+10)*2;

};

std::cout << "+10 *2: " << plus10times2(7) << std::endl;

auto pow3 = [] (int i) {

return i*i*i;

};

std::cout << "x*x*x: " << pow3(7) << std::endl;

auto inversDivide = [] (double d1, double d2) {

return d2/d1;

};

std::cout << "invdiv: " << inversDivide(49,7) << std::endl;

}

500 Chapter 10: STL Function Objects and Using Lambdas

Just to compare one function object declaration: Declaring to “add 10 and multiply by 2” looks with

binders as follows:

auto plus10times2 = std::bind(std::multiplies<int>(),

std::bind(std::plus<int>(),

std::placeholders::_1,

10),

2);

The same functionality defined with lambdas looks as follows:

auto plus10times2 = [] (int i) {

return (i+10)*2;

};

10.3.2 Lambdas versus Stateful Function Objects

Let’s now replace a custom function object by a lambda. Consider the example to process the mean

value of elements in Section 10.1.3, page 482. A version with lambdas looks as follows:

// fo/lambda2.cpp

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

vector<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8 };

// process and print mean value

long sum = 0;

for_each (coll.begin(), coll.end(), // range

[&sum] (int elem) {

sum += elem;

});

double mv = static_cast<double>(sum)/static_cast<double>(coll.size());

cout << "mean value: " << mv << endl;

}

Here, instead of the need to define a class for the function object passed, you simply pass the re-

quired functionality. However, the state of the calculation is held outside the lambda in sum, so you

ultimately have to use sum to compute the mean value.

With a function object, this state (sum) is entirely encapsulated, and we can provide additional

member functions to deal with the state (such as to process the mean value out of sum).

10.3 Using Lambdas 501

MeanValue mv = for_each (coll.begin(), coll.end(), // range

MeanValue()); // operation

cout << "mean value: " << mv.value() << endl;

So, from a calling point of view, you can consider the user-defined function object as being more

condensed and less error-prone than the lambda version presented here.

When dealing with state, you should also be careful when using mutable. Consider the example

introduced in Section 10.1.4, page 483, in which your search criterion is a stateful function object

searching for the third element. A corresponding version using lambdas should, strictly speaking,

pass the internal counter, which represents its state, by value because the counter is not needed

outside the algorithm called. By using mutable, you could provide write access to this state then

for all “function calls”:

// fo/lambda3.cpp

#include <iostream>

#include <list>

#include <algorithm>

#include "print.hpp"

using namespace std;

int main()

{

list<int> coll = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

PRINT_ELEMENTS(coll,"coll: ");

// remove third element

list<int>::iterator pos;

int count=0; // call counter

pos = remove_if(coll.begin(),coll.end(), // range

[count] (int) mutable { // remove criterion

return ++count == 3;

});

coll.erase(pos,coll.end());

PRINT_ELEMENTS(coll,"3rd removed: ");

}

However, as described in Section 10.1.4, page 483, you can then run into the problem that two

elements, the third and the sixth, get removed, which results in the following output:

coll: 1 2 3 4 5 6 7 8 9 10

3rd removed: 1 2 4 5 7 8 9 10

Again, the reason for this output is that the lambda object gets copied by the remove_if() algorithm

while it is running, so two lambda objects exist that both remove the third element. Thus, the state

gets duplicated.

502 Chapter 10: STL Function Objects and Using Lambdas

If you pass the argument by reference and don’t use mutable, the behavior is as expected,

because both lambda objects internally used by remove_if() share the same state. Thus, with

the following:

int count=0; // call counter

pos = remove_if(coll.begin(),coll.end(), // range

[&count] (int) { // remove criterion

return ++count == 3;

});

the output is:

coll: 1 2 3 4 5 6 7 8 9 10

3rd removed: 1 2 4 5 6 7 8 9 10

10.3.3 Lambdas Calling Global and Member Functions

Of course, any lambda can call other functions, so the lambda version of fo/compose3.cpp in

Section 10.2.2, page 490, looks as follows:

// fo/lambda4.cpp

#include <iostream>

#include <algorithm>

#include <locale>

#include <string>

using namespace std;

char myToupper (char c)

{

std::locale loc;

return std::use_facet<std::ctype<char> >(loc).toupper(c);

}

int main()

{

string s("Internationalization");

string sub("Nation");

// search substring case insensitive

string::iterator pos;

pos = search (s.begin(),s.end(), // string to search in

sub.begin(),sub.end(), // substring to search

[] (char c1, char c2) { // compar. criterion

return myToupper(c1)==myToupper(c2);

});

10.3 Using Lambdas 503

if (pos != s.end()) {

cout << "\"" << sub << "\" is part of \"" << s << "\""

<< endl;

}

}

Of course, you can call member functions the same way (compare with Section 10.2.2, page 491):

// fo/lambda5.cpp

#include <functional>

#include <algorithm>

#include <vector>

#include <iostream>

#include <string>

using namespace std;

using namespace std::placeholders;

class Person {

private:

string name;

public:

Person (const string& n) : name(n) {

}

void print () const {

cout << name << endl;

}

void print2 (const string& prefix) const {

cout << prefix << name << endl;

}

...

};

int main()

{

vector<Person> coll

= { Person("Tick"), Person("Trick"), Person("Track") };

// call member function print() for each person

for_each (coll.begin(), coll.end(),

[] (const Person& p) {

p.print();

});

cout << endl;

504 Chapter 10: STL Function Objects and Using Lambdas

// call member function print2() with additional argument for each person

for_each (coll.begin(), coll.end(),

[] (const Person& p) {

p.print2("Person: ");

});

}

10.3.4 Lambdas as Hash Function, Sorting, or

Equivalence Criterion

As mentioned before, you can also use lambdas as hash functions, ordering, or sorting criteria. For

example:

class Person {

...

};

auto hash = [] (const Person& p) {

...

};

auto eq = [] (const Person& p1, Person& p2) {

...

};

// create unordered set with user-defined behavior

unordered_set<Person,decltype(hash),decltype(eq)> pset(10,hash,eq);

Note again that you have to use decltype to pass the type of the lambda to the unordered_set

because it creates its own instance of them. In addition, you have to pass a hash function and equiva-

lence criterion to the constructor because otherwise, the constructor calls the default constructor for

the hash function and equivalence criterion, which is not defined for lambdas.

Due to these inconveniences, specifying a class for the function objects here can be considered as

being more readable and even more convenient. So when state is involved, lambdas are not always

better.

See Section 7.9.7, page 379, for a complete example of how to use lambdas to specify a hash

function and an equivalence criterion for unordered containers.

Chapter 11

STL Algorithms

This chapter describes all the algorithms of the C++ standard library. It begins with an overview of

the algorithms and some general remarks about them. The chapter then presents the exact signature

of each algorithm and one or more examples of its use.

11.1 Algorithm Header Files

To use the algorithms of the C++ standard library, you must include the header file <algorithm>:

#include <algorithm>

This header file also includes some auxiliary functions: min(), max(), and minmax() were pre-

sented in Section 5.5.1, page 134. The iter_swap() iterator function was discussed in Section

9.3.4, page 446.

Some of the STL algorithms are provided for numeric processing. Thus, they are defined in

<numeric>:

#include <numeric>

In general, Chapter 17 discusses the numeric components of the C++ standard library. However, I

decided to discuss the numeric algorithms here because, in my opinion, the fact that they are STL

algorithms is more important than the fact that they are used for numeric processing.

When you use algorithms, you often also need function objects and function adapters. These

were described in Chapter 10 and are defined in <functional>:

#include <functional>

11.2 Algorithm Overview

This section presents an overview of all the C++ standard library algorithms to give you an idea of

their abilities and to be better able to find the best algorithm to solve a certain problem.

506 Chapter 11: STL Algorithms

11.2.1 A Brief Introduction

Algorithms were introduced in Chapter 6 along with the STL. In particular, Section 6.4, page 199,

and Section 6.7, page 217, discuss the role of algorithms and some important constraints about their

use. All STL algorithms process one or more iterator ranges. The first range is usually specified

by its beginning and its end. For additional ranges, you generally need to pass only the beginning

because the end follows from the number of elements of the first range. The caller must ensure that

the ranges are valid. That is, the beginning must refer to a previous or the same element of the same

container as the end. Additional ranges must have enough elements.

Algorithms work in overwrite mode rather than in insert mode. Thus, the caller must ensure that

destination ranges have enough elements. You can use special insert iterators (see Section 9.4.2,

page 454) to switch from overwrite to insert mode.

To increase their flexibility and power, several algorithms allow the user to pass user-defined

operations, which they call internally. These operations might be ordinary functions or function

objects. If these functions return a Boolean value, they are called predicates. You can use predicates

for the following tasks:

• You can pass a function, a function object, or a lambda that specifies a unary predicate as the

search criterion for a search algorithm. The unary predicate is used to check whether an element

fits the criterion. For example, you could search the first element that is less than 50.

• You can pass a function, a function object, or a lambda that specifies a binary predicate as the

sorting criterion for a sort algorithm. The binary predicate is used to compare two elements. For

example, you could pass a criterion that lets objects that represent a person sort according to the

person’s last name (see Section 10.1.1, page 476, for an example).

• You can pass a unary predicate as the criterion that specifies for which elements an operation

should apply. For example, you could specify that only elements with an odd value should be

removed.

• You can specify the numeric operation of numeric algorithms. For example, you could use

accumulate(), which normally processes the sum of elements, to process the product of all

elements.

Note that predicates should not modify their state due to a function call (see Section 10.1.4, page 483).

See Section 6.8, page 224, Section 6.9, page 229, Section 6.10, page 233, and Chapter 10 for

examples and details about functions, function objects, and lambdas that are used as algorithm para-

meters.

11.2.2 Classification of Algorithms

Different algorithms meet different needs and so can be classified by their main purposes. For

example, some algorithms operate as read only, some modify elements, and some change the order

of elements. This subsection gives you a brief idea of the functionality of each algorithm and in

which aspect it differs from similar algorithms.

The name of an algorithm gives you a first impression of its purpose. The designers of the STL

introduced two special suffixes:

11.2 Algorithm Overview 507

1. The _if suffix is used when you can call two forms of an algorithm that have the same number

of parameters either by passing a value or by passing a function or function object. In this case,

the version without the suffix is used for values, and the version with the _if suffix is used for

functions and function objects. For example, find() searches for an element that has a certain

value, whereas find_if() searches for an element that meets the criterion passed as a function,

a function object, or a lambda.

However, not all algorithms that have a parameter for functions and function objects have

the _if suffix. When the function or function-object version of an algorithm has an additional

argument, it has the same name. For example, min_element() called with two arguments

returns the minimum element in the range according to a comparison with operator <. If you

pass a third element, it is used as the comparison criterion.

2. The _copy suffix is used as an indication that elements are not only manipulated but also copied

into a destination range. For example, reverse() reverses the order of elements inside a range,

whereas reverse_copy() copies the elements into another range in reverse order.

The following subsections and sections describe the algorithms according to the following classifi-

cation:

• Nonmodifying algorithms

• Modifying algorithms

• Removing algorithms

• Mutating algorithms

• Sorting algorithms

• Sorted-range algorithms

• Numeric algorithms

Algorithms belonging to more than one category are described in the category I consider to be the

most important.

Nonmodifying Algorithms

Nonmodifying algorithms change neither the order nor the value of the elements they process. These

algorithms operate with input and forward iterators; therefore, you can call them for all standard

containers. Table 11.1 lists the nonmodifying algorithms of the C++ standard library. See page 515

for nonmodifying algorithms that are provided especially for sorted input ranges.

Historically, one of the most important algorithms was for_each(). for_each() calls an oper-

ation provided by the caller for each element. That operation is usually used to process each element

of the range individually. For example, you can pass for_each() a function that prints each element

or calls a modifying operation for each element. Note, however, that since C++11, the range-based

for loop provides this behavior more conveniently and more naturally (see Section 3.1.4, page 17,

and Section 6.2.1, page 174). Thus, for_each() might lose its importance over time.

Several of the nonmodifying algorithms perform searching. Unfortunately, the naming scheme

of searching algorithms is a mess. In addition, the naming schemes of searching algorithms and

searching string functions differ (Table 11.2). As is often the case, there are historical reasons

for this. First, the STL and string classes were designed independently. Second, the find_end(),

508 Chapter 11: STL Algorithms

Name Effect Page

for_each() Performs an operation for each element 519

count() Returns the number of elements 524

count_if() Returns the number of elements that match a criterion 524

min_element() Returns the element with the smallest value 526

max_element() Returns the element with the largest value 526

minmax_element() Returns the elements with the smallest and largest value (since

C++11)

526

find() Searches for the first element with the passed value 528

find_if() Searches for the first element that matches a criterion 528

find_if_not() Searches for the first element that matches a criterion not

(since C++11)

528

search_n() Searches for the first n consecutive elements with certain

properties

531

search() Searches for the first occurrence of a subrange 534

find_end() Searches for the last occurrence of a subrange 537

find_first_of() Searches the first of several possible elements 539

adjacent_find() Searches for two adjacent elements that are equal (by some

criterion)

540

equal() Returns whether two ranges are equal 542

is_permutation() Returns whether two unordered ranges contain equal elements

(since C++11)

544

mismatch() Returns the first elements of two sequences that differ 546

lexicographical... Returns whether a range is lexicographically less than 548

_compare() another range

is_sorted() Returns whether the elements in a range are sorted (since

C++11)

550

is_sorted_until() Returns the first unsorted element in a range (since C++11) 550

is_partitioned() Returns whether the elements in a range are partitioned in two

groups according to a criterion (since C++11)

552

partition_point() Returns the partitioning element for a range partitioned into

elements fulfilling and elements not fulfilling a predicate

(since C++11)

552

is_heap() Returns whether the elements in a range are sorted as a heap

(since C++11)

554

is_heap_until() Returns the first element in a range not sorted as a heap (since

C++11)

554

all_of() Returns whether all elements match a criterion (since C++11) 555

any_of() Returns whether at least one element matches a criterion

(since C++11)

555

none_of() Returns whether none of the elements matches a criterion

(since C++11)

555

Table 11.1. Nonmodifying Algorithms

11.2 Algorithm Overview 509

Search for String Function STL Algorithm

First occurrence of one element find() find()

Last occurrence of one element rfind() find() with reverse

iterators

First occurrence of a subrange find() search()

Last occurrence of a subrange rfind() find_end()

First occurrence of several elements find_first_of() find_first_of()

Last occurrence of several elements find_last_of() find_first_of()

with reverse iterators

First occurrence of n consecutive

elements

search_n()

Table 11.2. Comparison of Searching String Operations and Algorithms

find_first_of(), and search_n() algorithms were not part of the original STL. So, for exam-

ple, the name find_end() instead of search_end() was chosen by accident (it is easy to forget

aspects of the whole picture, such as consistency, when you are caught up in the details). Also by

accident, a form of search_n() breaks the general concept of the original STL. See Section 11.5.3,

page 532, for a description of this problem.

Modifying Algorithms

Modifying algorithms change the value of elements. Such algorithms might modify the elements

of a range directly or modify them while they are being copied into another range. If elements are

copied into a destination range, the source range is not changed. Table 11.3 lists the modifying

algorithms of the C++ standard library.

The fundamental modifying algorithms are for_each() (again) and transform(). You can

use both to modify elements of a sequence. However, their behavior differs as follows:

• for_each() accepts an operation that modifies its argument. Thus, the argument has to be

passed by reference. For example:

void square (int& elem) // call-by-reference

{

elem = elem * elem; // assign processed value directly

}

...

for_each(coll.begin(),coll.end(), // range

square); // operation

• transform() uses an operation that returns the modified argument. The trick is that it can be

used to assign the result to the original element. For example:

int square (int elem) // call-by-value

{

return elem * elem; // return processed value

}

510 Chapter 11: STL Algorithms

Name Effect Page

for_each() Performs an operation for each element 519

copy() Copies a range starting with the first element 557

copy_if() Copies elements that match a criterion (since C++11) 557

copy_n() Copies n elements (since C++11) 557

copy_backward() Copies a range starting with the last element 561

move() Moves elements of a range starting with the first element

(since C++11)

557

move_backward() Moves elements of a range starting with the last element

(since C++11)

561

transform() Modifies (and copies) elements; combines elements of 563

two ranges 564

merge() Merges two ranges 614

swap_ranges() Swaps elements of two ranges 566

fill() Replaces each element with a given value 568

fill_n() Replaces n elements with a given value 568

generate() Replaces each element with the result of an operation 569

generate_n() Replaces n elements with the result of an operation 569

iota() Replaces each element with a sequence of incremented

values (since C++11)

571

replace() Replaces elements that have a special value with another

value

571

replace_if() Replaces elements that match a criterion with another

value

571

replace_copy() Replaces elements that have a special value while

copying the whole range

573

replace_copy_if() Replaces elements that match a criterion while copying

the whole range

573

Table 11.3. Modifying Algorithms

...

transform (coll.cbegin(), coll.cend(), // source range

coll.begin(), // destination range

square); // operation

Using transform() is a bit slower because it returns and assigns the result instead of modifying the

element directly. However, it is more flexible because it can also be used to modify elements while

they are being copied into a different destination sequence. Another version of transform() can

process and combine elements of two source ranges.

Strictly speaking, merge() does not necessarily have to be part of the list of modifying algo-

rithms, because it requires that its input ranges be sorted. So, it should be part of the algorithms for

sorted ranges (see page 515). In practice, however, merge() also merges the elements of unsorted

11.2 Algorithm Overview 511

ranges. Of course, then the result is unsorted. Nevertheless, to be safe, you should call merge()

only for sorted ranges.

Note that elements of associative and unordered containers are constant to ensure that you can’t

compromise the sorted order of the elements due to an element modification. Therefore, you can’t

use these containers as a destination for modifying algorithms.

In addition to these modifying algorithms, the C++ standard library provides modifying algo-

rithms for sorted ranges. See page 515 for details.

Removing Algorithms

Removing algorithms are a special form of modifying algorithms. They can remove the elements

either in a single range or while these elements are being copied into another range. As with mod-

ifying algorithms, you can’t use an associative or unordered container as a destination, because the

elements of these containers are considered to be constant. Table 11.4 lists the removing algorithms

of the C++ standard library.

Name Effect Page

remove() Removes elements with a given value 575

remove_if() Removes elements that match a given criterion 575

remove_copy() Copies elements that do not match a given value 577

remove_copy_if() Copies elements that do not match a given criterion 577

unique() Removes adjacent duplicates (elements that are equal

to their predecessor)

578

unique_copy() Copies elements while removing adjacent duplicates 580

Table 11.4. Removing Algorithms

Note that these algorithms remove elements logically only by overwriting them with the fol-

lowing elements that were not removed. Thus, removing algorithms do not change the number of

elements in the ranges on which they operate. Instead, they return the position of the new “end” of

the range. It’s up to the caller to use that new end, such as to remove the elements physically. See

Section 6.7.1, page 218, for a detailed discussion of this behavior.

Mutating Algorithms

Mutating algorithms are algorithms that change the order of elements (and not their values) by

assigning and swapping their values. Table 11.5 lists the mutating algorithms of the C++ standard

library. As with modifying algorithms, you can’t use an associative or unordered container as a

destination, because the elements of these containers are considered to be constant.

Sorting Algorithms

Sorting algorithms are a special kind of mutating algorithm because they also change the order of

the elements. However, sorting is more complicated and therefore usually takes more time than

512 Chapter 11: STL Algorithms

Name Effect Page

reverse() Reverses the order of the elements 583

reverse_copy() Copies the elements while reversing their order 583

rotate() Rotates the order of the elements 584

rotate_copy() Copies the elements while rotating their order 585

next_permutation() Permutates the order of the elements 587

prev_permutation() Permutates the order of the elements 587

shuffle() Brings the elements into a random order (since C++11) 589

random_shuffle() Brings the elements into a random order 589

partition() Changes the order of the elements so that elements that

match a criterion are at the front

592

stable_partition() Same as partition() but preserves the relative order of

matching and nonmatching elements

592

partition_copy() Copies the elements while changing the order so that

elements that match a criterion are at the front

594

Table 11.5. Mutating Algorithms

simple mutating operations. In fact, these algorithms usually have worse than linear complexity1

and require random-access iterators (for the destination). Table 11.6 lists the sorting algorithms.

Table 11.7 lists the corresponding algorithms that allow checking whether a sequence is (partially)

sorted.

Time often is critical for sorting algorithms. Therefore, the C++ standard library provides more

than one sorting algorithm. The algorithms use different ways of sorting, and some algorithms don’t

sort all elements. For example, nth_element() stops when the nth element of the sequence is

correct according to the sorting criterion. For the other elements, it guarantees only that the previous

elements have a lesser or equal value and that the following elements have a greater or equal value.

To sort all elements of a sequence, you should consider the following algorithms:

• sort(), based historically on quicksort. Thus, this algorithm guarantees a good runtime (n ∗
log(n) complexity) on average but may have a very bad runtime (quadratic complexity) in the

worst case:

// sort all elements

// - best n*log(n) complexity on average

// - n*n complexity in worst case

sort (coll.begin(), coll.end());

If avoiding the worst-case behavior is important, you should use another algorithm, such as

partial_sort() or stable_sort().

• partial_sort(), based historically on heapsort. Thus, it guarantees n ∗ log(n) complexity

in any case. However, in most circumstances, heapsort is slower than quicksort by a factor of

two to five. So, if sort() is implemented as quicksort and partial_sort() is implemented

1 See Section 2.2, page 10, for an introduction to and a discussion of complexity.

11.2 Algorithm Overview 513

Name Effect Page

sort() Sorts all elements 596

stable_sort() Sorts while preserving order of equal elements 596

partial_sort() Sorts until the first n elements are correct 599

partial_sort_copy() Copies elements in sorted order 600

nth_element() Sorts according to the nth position 602

partition() Changes the order of the elements so that elements that

match a criterion are at the beginning

592

stable_partition() Same as partition() but preserves the relative order of

matching and nonmatching elements

592

partition_copy() Copies the elements while changing the order so that

elements that match a criterion are at the beginning

594

make_heap() Converts a range into a heap 604

push_heap() Adds an element to a heap 605

pop_heap() Removes an element from a heap 605

sort_heap() Sorts the heap (it is no longer a heap after the call) 605

Table 11.6. Sorting Algorithms

Name Effect Page

is_sorted() Returns whether the elements in a range are sorted (since

C++11)

550

is_sorted_until() Returns the first unsorted element in a range (since C++11) 550

is_partitioned() Returns whether the elements in a range are partitioned in

two groups according to a criterion (since C++11)

552

partition_point() Returns the partitioning element for a range partitioned

into elements fulfilling and elements not fulfilling a

predicate (since C++11)

552

is_heap() Returns whether the elements in a range are sorted as a

heap (since C++11)

554

is_heap_until() Returns the first element in a range not sorted as a heap

(since C++11)

554

Table 11.7. Algorithms Checking for Sortings

as heapsort, partial_sort() has the better complexity, but sort() has the better runtime in

most cases. The advantage of partial_sort() is that it guarantees n ∗ log(n) complexity in

any case, so it never reaches quadratic complexity.

In addition, partial_sort() has the special ability to stop sorting when only the first n

elements need to be sorted. To sort all the elements, you have to pass the end of the sequence as

second and last argument:

514 Chapter 11: STL Algorithms

// sort all elements

// - always n*log(n) complexity

// - but usually twice as long as sort()

partial_sort (coll.begin(), coll.end(), coll.end());

• stable_sort(), based historically on mergesort. It sorts all the elements:

// sort all elements

// - n*log(n) or n*log(n)*log(n) complexity

stable_sort (coll.begin(), coll.end());

However, it needs enough additional memory to have n ∗ log(n) complexity. Otherwise, it has

n ∗ log(n) ∗ log(n) complexity. The advantage of stable_sort() is that it preserves the order

of equal elements.

Now you have a brief idea of which sorting algorithm might best meet your needs. But the story

doesn’t end here. The standard guarantees complexity but not how it is implemented. This is an

advantage in that an implementation could benefit from algorithm innovations and use a better way

of sorting without breaking the standard. For example, the sort() algorithm in the SGI implemen-

tation of the STL is implemented by using introsort. Introsort is a new algorithm that, by default,

operates like quicksort but switches to heapsort when it is going to have quadratic complexity. The

disadvantage of the fact that the standard does not guarantee exact complexity is that an implemen-

tation could use a standard-conforming, but very bad, algorithm. For example, using heapsort to

implement sort() would be standard conforming. Of course, you simply could test which algo-

rithm fits best, but be aware that measurements might not be portable.

There are even more algorithms to sort elements. For example, the heap algorithms are pro-

vided to call the functions that implement a heap directly (a heap can be considered as a binary tree

implemented as sequential collection). The heap algorithms are provided and used as the base for

efficient implementations of priority queues (see Section 12.3, page 641). You can use them to sort

all elements of a collection by calling them as follows:

// sort all elements

// - n+n*log(n) complexity

make_heap (coll.begin(), coll.end());

sort_heap (coll.begin(), coll.end());

See Section 11.9.4, page 604, for details about heaps and heap algorithms.

The nth_element() algorithms are provided if you need only the nth sorted element or the set

of the n highest or n lowest elements (not sorted). Thus, nth_element() is a way to split elements

into two subsets according to a sorting criterion. However, you could also use partition() or

stable_partition() to do this. The differences are as follows:

• For nth_element(), you pass the number of elements you want to have in the first part (and

therefore also in the second part). For example:

// move the four lowest elements to the front

nth_element (coll.begin(), // beginning of range

coll.begin()+3, // position between first and second part

coll.end()); // end of range

11.2 Algorithm Overview 515

However, after the call, you don’t know the exact criterion that is the difference between the

first and the second parts. Both parts may, in fact, have elements with the same value as the nth

element.

• For partition(), you pass the exact sorting criterion that serves as the difference between

the first and the second parts. For example:

// move all elements less than seven to the front

vector<int>::iterator pos;

pos = partition (coll1.begin(), coll1.end(), // range

[](int elem){ // criterion

return elem<7;

});

Here, after the call, you don’t know how many elements are owned by the first and the second

parts. The return value pos refers to the first element of the second part that contains all elements

that don’t match the criterion, if any.

• stable_partition() behaves similarly to partition() but has an additional ability. It

guarantees that the order of the elements in both parts remains stable according to their relative

positions to the other elements in the same part.

You can always pass the sorting criterion to all sorting algorithms as an optional argument. The

default sorting argument is the function object less<>, so that elements are sorted in ascending

order according to their values. Note that the sorting criterion has to define a strict weak ordering on

the values. A criterion, where values are compared as equal or less, such as operator <=, does not fit

this requirement. See Section 7.7, page 314, for details.

As with modifying algorithms, you can’t use an associative container as a destination, because

the elements of the associative containers are considered to be constant.

Lists and forward lists do not provide random-access iterators, so you can’t call sorting algo-

rithms for them either. However, both provide a member function sort() to sort their elements; see

Section 8.8.1, page 422.

Sorted-Range Algorithms

Sorted-range algorithms require that the ranges on which they operate be sorted according to their

sorting criterion. Table 11.8 lists all C++ standard library algorithms that are especially written

for sorted ranges. As for associative containers, these algorithms have the advantage of a better

complexity.

The first five sorted-range algorithms in Table 11.8 are nonmodifying, searching only according

to their purpose. The other algorithms combine two sorted input ranges and write the result to a

destination range. In general, the result of these algorithms is also sorted.

Numeric Algorithms

These algorithms combine numeric elements in different ways. Table 11.9 lists the numeric algo-

rithms of the C++ standard library. If you understand the names, you get an idea of the purpose of

the algorithms. However, these algorithms are more flexible and more powerful than they may seem

at first. For example, by default, accumulate() processes the sum of all elements. When you use

516 Chapter 11: STL Algorithms

Name Effect Page

binary_search() Returns whether the range contains an element 608

includes() Returns whether each element of a range is also

an element of another range

609

lower_bound() Finds the first element greater than or equal to a

given value

611

upper_bound() Finds the first element greater than a given value 611

equal_range() Returns the range of elements equal to a given

value

613

merge() Merges the elements of two ranges 614

set_union() Processes the sorted union of two ranges 616

set_intersection() Processes the sorted intersection of two ranges 617

set_difference() Processes a sorted range that contains all elements

of a range that are not part of another range

618

set_symmetric_difference() Processes a sorted range that contains all elements

that are in exactly one of two ranges

619

inplace_merge() Merges two consecutive sorted ranges 622

partition_point() Returns the partitioning element for a range

partitioned into elements fulfilling and elements

not fulfilling a predicate (since C++11)

552

Table 11.8. Algorithms for Sorted Ranges

Name Effect Page

accumulate() Combines all element values (processes sum, product,

and so forth)

623

inner_product() Combines all elements of two ranges 625

adjacent_difference() Combines each element with its predecessor 628

partial_sum() Combines each element with all its predecessors 627

Table 11.9. Numeric Algorithms

strings as elements, you concatenate them by using this algorithm. When you switch from operator

+ to operator *, you get the product of all elements. As another example, you should know that

adjacent_difference() and partial_sum() transfer a range of absolute values into a range of

relative values and vice versa.

Both accumulate() and inner_product() process and return a single value without modify-

ing the ranges. The other algorithms write the results to a destination range that has the same number

of elements as the source range.

11.3 Auxiliary Functions 517

11.3 Auxiliary Functions

The rest of this chapter discusses the algorithms in detail and includes at least one example of each

algorithm. To simplify the examples, I use some auxiliary functions so that you can concentrate on

the essence of the examples:

// algo/algostuff.hpp

#ifndef ALGOSTUFF_HPP

#define ALGOSTUFF_HPP

#include <array>

#include <vector>

#include <deque>

#include <list>

#include <forward_list>

#include <set>

#include <map>

#include <unordered_set>

#include <unordered_map>

#include <algorithm>

#include <iterator>

#include <functional>

#include <numeric>

#include <iostream>

#include <string>

// INSERT_ELEMENTS (collection, first, last)

// - fill values from first to last into the collection

// - NOTE: NO half-open range

template <typename T>

inline void INSERT_ELEMENTS (T& coll, int first, int last)

{

for (int i=first; i<=last; ++i) {

coll.insert(coll.end(),i);

}

}

// PRINT_ELEMENTS()

// - prints optional string optcstr followed by

// - all elements of the collection coll

// - separated by spaces

template <typename T>

518 Chapter 11: STL Algorithms

inline void PRINT_ELEMENTS (const T& coll,

const std::string& optcstr="")

{

std::cout << optcstr;

for (auto elem : coll) {

std::cout << elem << ’ ’;

}

std::cout << std::endl;

}

// PRINT_MAPPED_ELEMENTS()

// - prints optional string optcstr followed by

// - all elements of the key/value collection coll

// - separated by spaces

template <typename T>

inline void PRINT_MAPPED_ELEMENTS (const T& coll,

const std::string& optcstr="")

{

std::cout << optcstr;

for (auto elem : coll) {

std::cout << ’[’ << elem.first

<< ’,’ << elem.second << "] ";

}

std::cout << std::endl;

}

#endif /*ALGOSTUFF_HPP*/

First, algostuff.hpp includes all header files that may be necessary to implement the examples,

so the program doesn’t have to do it. Second, it defines three auxiliary functions:2

1. INSERT_ELEMENTS() inserts elements into the container that is passed as the first argument.

These elements get the values from the value passed as the second argument up to the value

passed as the third argument. Both argument values are included, so this is not a half-open range.

2. PRINT_ELEMENTS() prints all elements of the container that is passed as the first argument,

separated by spaces. You can pass a second argument optionally for a string that is used as a

prefix in front of the elements (see Section 6.6, page 216).

3. PRINT_MAPPED_ELEMENTS() is the same for containers with a key/value pair: map, multimap,

unordered map, and unordered multimap.

2 Since C++11, PRINT_MAPPED_ELEMENTS() could also be defined as partial specialization of

PRINT_ELEMENTS(). However, to avoid requiring too many new language features, both functions are de-

fined separately.

11.4 The for_each() Algorithm 519

11.4 The for_each() Algorithm

The for_each() algorithm is very flexible because it allows you to access, process, and modify

each element in many different ways. Note, however, that since C++11, the range-based for loop

provides this behavior more conveniently and more naturally (see Section 3.1.4, page 17, and Sec-

tion 6.2.1, page 174). Thus, for_each() might lose its importance over time.

UnaryProc

for_each (InputIterator beg, InputIterator end, UnaryProc op)

• Calls

op(elem)

for each element in the range [beg,end).

• Returns the (internally modified) copy of op. Since C++11, the returned op is moved.

• op might modify the elements. However, see Section 11.2.2, page 509, for a comparison with

the transform() algorithm, which is able to do the same thing in a slightly different way.

• Any return value of op is ignored.

• See Section 6.10.1, page 235, for the implementation of the for_each() algorithm.

• Complexity: linear (numElems calls of op()).

The following example of for_each() passes each element to a lambda that prints the passed

element. Thus, the call prints each element:

// algo/foreach1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

// call print() for each element

for_each (coll.cbegin(), coll.cend(), // range

[](int elem){ // operation

cout << elem << ’ ’;

});

cout << endl;

}

The program has the following output:

1 2 3 4 5 6 7 8 9

520 Chapter 11: STL Algorithms

Instead of a lambda, you could also pass an ordinary function, which is called for each element:

void print (int elem)

{

cout << elem << ’ ’;

}

...

for_each (coll.cbegin(), coll.cend(), // range

print); // operation

But note again that since C++11, using a range-based for loop is often more convenient:

for (auto elem : coll) {

cout << elem << ’ ’;

}

The following example demonstrates how to modify each element:

// algo/foreach2.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

// add 10 to each element

for_each (coll.begin(), coll.end(), // range

[](int& elem){ // operation

elem += 10;

});

PRINT_ELEMENTS(coll);

// add value of first element to each element

for_each (coll.begin(), coll.end(), // range

[=](int& elem){ // operation

elem += *coll.begin();

});

PRINT_ELEMENTS(coll);

}

11.4 The for_each() Algorithm 521

The program has the following output:

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29 30

As you can see, you have to declare the elem to be a reference in order to modify it and to define a

capture, such as [=], to be able to add a copy of the first element:

for_each (coll.begin(), coll.end(), // range

[=](int& elem){ // operation

elem += *coll.begin();

});

If instead you passed a reference to the first element with the second call of for_each():

for_each (coll.begin(), coll.end(), // range

[&](int& elem){ // operation

elem += *coll.begin();

});

the value to add would change while the elements are processed, which would result in the following

output:

11 12 13 14 15 16 17 18 19

22 34 35 36 37 38 39 40 41

You could also define an ordinary function object:

// function object that adds the value with which it is initialized

template <typename T>

class AddValue {

private:

T theValue; // value to add

public:

// constructor initializes the value to add

AddValue (const T& v) : theValue(v) {

}

// the function call for the element adds the value

void operator() (T& elem) const {

elem += theValue;

}

};

and pass it to for_each():

for_each (coll.begin(), coll.end(), // range

AddValue<int>(10)); // operation

...

for_each (coll.begin(), coll.end(), // range

AddValue<int>(*coll.begin())); // operation

522 Chapter 11: STL Algorithms

The AddValue<> class defines function objects that add a value to each element that is passed to the

constructor. See Section 6.10.1, page 237, for more details about this example.

Note also that you can do the same by using the transform() algorithm (see Section 11.6.3,

page 563) in the following way:

// add 10 to each element

transform (coll.cbegin(), coll.cend(), // source range

coll.begin(), // destination range

[](int elem){ // operation

return elem + 10;

});

...

// add value of first element to each element

transform (coll.cbegin(), coll.cend(), // source range

coll.begin(), // destination range

[=](int elem){ // operation

return elem + *coll.begin();

});

See Section 11.2.2, page 509, for a general comparison between for_each() and transform().

A third example demonstrates how to use the return value of the for_each() algorithm. Because

for_each() has the special property that it returns its operation, you can process and return a result

inside the operation:

// algo/foreach3.cpp

#include "algostuff.hpp"

using namespace std;

// function object to process the mean value

class MeanValue {

private:

long num; // number of elements

long sum; // sum of all element values

public:

// constructor

MeanValue () : num(0), sum(0) {

}

// function call

// - process one more element of the sequence

void operator() (int elem) {

num++; // increment count

sum += elem; // add value

}

11.4 The for_each() Algorithm 523

// return mean value (implicit type conversion)

operator double() {

return static_cast<double>(sum) / static_cast<double>(num);

}

};

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,8);

// process and print mean value

double mv = for_each (coll.begin(), coll.end(), // range

MeanValue()); // operation

cout << "mean value: " << mv << endl;

}

The program has the following output:

mean value: 4.5

You could also use a lambda and pass the value to return by reference. However, in this scenario, a

lambda is not necessarily better, because a function object really encapsulates both sum as internal

state and the final division of dividing the sum by the number of elements. See Section 10.1.3,

page 482, for details.

524 Chapter 11: STL Algorithms

11.5 Nonmodifying Algorithms

The algorithms presented in this section enable you to access elements without modifying their

values or changing their order.

11.5.1 Counting Elements

difference_type

count (InputIterator beg, InputIterator end, const T& value)

difference_type

count_if (InputIterator beg, InputIterator end, UnaryPredicate op)

• The first form counts the elements in the range [beg,end) that are equal to value value.

• The second form counts the elements in the range [beg,end) for which the unary predicate

op(elem)

yields true.

• The type of the return value, difference_type, is the difference type of the iterator:

typename iterator_traits<InputIterator>::difference_type

(Section 9.5, page 466, introduces iterator traits.)

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• Associative and unordered containers provide a similar member function, count(), to count the

number of elements that have a certain value as key (see Section 8.3.3, page 404).

• Complexity: linear (numElems comparisons or calls of op(), respectively).

The following example counts elements according to various criteria:

// algo/count1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

int num;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// count elements with value 4

num = count (coll.cbegin(), coll.cend(), // range

4); // value

cout << "number of elements equal to 4: " << num << endl;

11.5 Nonmodifying Algorithms 525

// count elements with even value

num = count_if (coll.cbegin(), coll.cend(), // range

[](int elem){ // criterion

return elem%2==0;

});

cout << "number of elements with even value: " << num << endl;

// count elements that are greater than value 4

num = count_if (coll.cbegin(), coll.cend(), // range

[](int elem){ // criterion

return elem>4;

});

cout << "number of elements greater than 4: " << num << endl;

}

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

number of elements equal to 4: 1

number of elements with even value: 4

number of elements greater than 4: 5

Instead of using a lambda, which checks whether the element is even, you could use binders like the

following expression:

std::bind(std::logical_not<bool>(),

std::bind(std::modulus<int>(),std::placeholders::_1,2)));

or even the deprecated expression:

std::not1(std::bind2nd(std::modulus<int>(),2))

See Section 10.2.4, page 497, for more details regarding these expressions.

11.5.2 Minimum and Maximum

ForwardIterator

min_element (ForwardIterator beg, ForwardIterator end)

ForwardIterator

min_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

ForwardIterator

max_element (ForwardIterator beg, ForwardIterator end)

ForwardIterator

max_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

526 Chapter 11: STL Algorithms

pair<ForwardIterator,ForwardIterator>

minmax_element (ForwardIterator beg, ForwardIterator end)

pair<ForwardIterator,ForwardIterator>

minmax_element (ForwardIterator beg, ForwardIterator end, CompFunc op)

• These algorithms return the position of the minimum, the maximum element, or a pair of the

minimum and the maximum element in the range [beg,end).

• The versions without op compare the elements with operator <.

• op is used to compare two elements:

op(elem1,elem2)

It should return true when the first element is less than the second element.

• If more than one minimum or maximum element exists, min_element() and max_element()

return the first found; minmax_element() returns the first minimum but the last maximum

element, so max_element() and minmax_element() don’t yield the same maximum element.

• If the range is empty, the algorithms return beg or a pair<beg,beg>.

• op should not modify the passed arguments.

• Complexity: linear (numElems-1 comparisons or calls of op(), respectively, for min_element()

and max_element() and 3
2(numElems-1) comparisons or calls of op(), respectively, for

minmax_element()).

The following program prints the minimum and the maximum of the elements in coll, using

min_element() and max_element(), as well as minmax_element(), and, by using absLess(),

prints the minimum and the maximum of the absolute values:

// algo/minmax1.cpp

#include <cstdlib>

#include "algostuff.hpp"

using namespace std;

bool absLess (int elem1, int elem2)

{

return abs(elem1) < abs(elem2);

}

int main()

{

deque<int> coll;

INSERT_ELEMENTS(coll,2,6);

INSERT_ELEMENTS(coll,-3,6);

PRINT_ELEMENTS(coll);

11.5 Nonmodifying Algorithms 527

// process and print minimum and maximum

cout << "minimum: "

<< *min_element(coll.cbegin(),coll.cend())

<< endl;

cout << "maximum: "

<< *max_element(coll.cbegin(),coll.cend())

<< endl;

// print min and max and their distance using minmax_element()

auto mm = minmax_element(coll.cbegin(),coll.cend());

cout << "min: " << *(mm.first) << endl; // print minimum

cout << "max: " << *(mm.second) << endl; // print maximum

cout << "distance: " << distance(mm.first,mm.second) << endl;

// process and print minimum and maximum of absolute values

cout << "minimum of absolute values: "

<< *min_element(coll.cbegin(),coll.cend(),

absLess)

<< endl;

cout << "maximum of absolute values: "

<< *max_element(coll.cbegin(),coll.cend(),

absLess)

<< endl;

}

The program has the following output:

2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6

minimum: -3

maximum: 6

min: -3

max: 6

distance: 9

minimum of absolute values: 0

maximum of absolute values: 6

Note that the algorithms return the position of the maximum or minimum element, respectively.

Thus, you must use the unary operator * to print their values:

auto mm = minmax_element(coll.begin(),coll.end());

cout << "min: " << *(mm.first) << endl;

cout << "max: " << *(mm.second) << endl;

Note also that minmax_element() yields the last maximum, so the distance (see Section 9.3.3,

page 445) is 9. By using max_element(), the distance would be -1.

528 Chapter 11: STL Algorithms

11.5.3 Searching Elements

Search First Matching Element

InputIterator

find (InputIterator beg, InputIterator end, const T& value)

InputIterator

find_if (InputIterator beg, InputIterator end, UnaryPredicate op)

InputIterator

find_if_not (InputIterator beg, InputIterator end, UnaryPredicate op)

• The first form returns the position of the first element in the range [beg,end) that has a value

equal to value.

• The second form returns the position of the first element in the range [beg,end) for which the

unary predicate

op(elem)

yields true.

• The third form (available since C++11) returns the position of the first element in the range

[beg,end) for which the unary predicate

op(elem)

yields false.

• All algorithms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• If the range is sorted, you should use the lower_bound(), upper_bound(), equal_range(),

or binary_search() algorithms (see Section 11.10, page 608).

• Associative and unordered containers provide an equivalent member function, find() (see Sec-

tion 8.3.3, page 405), which has a better complexity (logarithmic for associative and even con-

stant for unordered containers).

• Complexity: linear (at most, numElems comparisons or calls of op(), respectively).

The following example demonstrates how to use find() to find a subrange starting with the first

element with value 4 and ending after the second 4, if any:

// algo/find1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

11.5 Nonmodifying Algorithms 529

INSERT_ELEMENTS(coll,1,9);

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// find first element with value 4

list<int>::iterator pos1;

pos1 = find (coll.begin(), coll.end(), // range

4); // value

// find second element with value 4

// - note: continue the search behind the first 4 (if any)

list<int>::iterator pos2;

if (pos1 != coll.end()) {

pos2 = find (++pos1, coll.end(), // range

4); // value

}

// print all elements from first to second 4 (both included)

// - note: now we need the position of the first 4 again (if any)

if (pos1!=coll.end() && pos2!=coll.end()) {

copy (--pos1, ++pos2,

ostream_iterator<int>(cout," "));

cout << endl;

}

}

To find the second 4, you must increment the position of the first 4. However, incrementing the

end() of a collection results in undefined behavior. Thus, if you are not sure, you should check the

return value of find() before you increment it. The program has the following output:

coll: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3 4

You can call find() twice for the same range but with two different values. However, you have to

be careful to use the results as the beginning and the end of a subrange of elements; otherwise, the

subrange might not be valid. See Section 6.4.1, page 203, for a discussion of possible problems and

for an example.

The following example demonstrates how to use find_if() and find_if_not() to find ele-

ments according to very different search criteria:

// algo/find2.cpp

#include "algostuff.hpp"

using namespace std;

using namespace std::placeholders;

530 Chapter 11: STL Algorithms

int main()

{

vector<int> coll;

vector<int>::iterator pos;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// find first element greater than 3

pos = find_if (coll.begin(), coll.end(), // range

bind(greater<int>(),_1,3)); // criterion

// print its position

cout << "the "

<< distance(coll.begin(),pos) + 1

<< ". element is the first greater than 3" << endl;

// find first element divisible by 3

pos = find_if (coll.begin(), coll.end(),

[](int elem){

return elem%3==0;

});

// print its position

cout << "the "

<< distance(coll.begin(),pos) + 1

<< ". element is the first divisible by 3" << endl;

// find first element not <5

pos = find_if_not (coll.begin(), coll.end(),

bind(less<int>(),_1,5));

cout << "first value >=5: " << *pos << endl;

}

The first call of find_if() uses a simple function object combined with the bind adapter (see

Section 10.2.2, page 487) to search for the first element that is greater than 3. The second call uses

a lambda to find the first element that is divisible by 3 without remainder.

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

the 4. element is the first greater than 3

the 3. element is the first divisible by 3

first value >=5: 5

See Section 6.8.2, page 226, for an example that lets find_if() find the first prime number.

11.5 Nonmodifying Algorithms 531

Search First n Matching Consecutive Elements

ForwardIterator

search_n (ForwardIterator beg, ForwardIterator end,

Size count, const T& value)

ForwardIterator

search_n (ForwardIterator beg, ForwardIterator end,

Size count, const T& value, BinaryPredicate op)

• The first form returns the position of the first of count consecutive elements in the range [beg,end)
that all have a value equal to value.

• The second form returns the position of the first of count consecutive elements in the range

[beg,end) for which the binary predicate

op(elem,value)

yields true (value is the passed fourth argument).

• Both forms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• These algorithms were not part of the original STL and were not introduced very carefully.

The fact that the second form uses a binary predicate instead of a unary predicate breaks the

consistency of the original STL. See the remarks on page 532.

• Complexity: linear (at most, numElems*count comparisons or calls of op(), respectively).

The following example searches for consecutive elements that have a value equal to 7 or an odd

value:

// algo/searchn1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

coll = { 1, 2, 7, 7, 6, 3, 9, 5, 7, 7, 7, 3, 6 };

PRINT_ELEMENTS(coll);

// find three consecutive elements with value 7

deque<int>::iterator pos;

pos = search_n (coll.begin(), coll.end(), // range

3, // count

7); // value

532 Chapter 11: STL Algorithms

// print result

if (pos != coll.end()) {

cout << "three consecutive elements with value 7 "

<< "start with " << distance(coll.begin(),pos) +1

<< ". element" << endl;

}

else {

cout << "no four consecutive elements with value 7 found"

<< endl;

}

// find four consecutive odd elements

pos = search_n (coll.begin(), coll.end(), // range

4, // count

0, // value

[](int elem, int value){ // criterion

return elem%2==1;

});

// print result

if (pos != coll.end()) {

cout << "first four consecutive odd elements are: ";

for (int i=0; i<4; ++i, ++pos) {

cout << *pos << ’ ’;

}

}

else {

cout << "no four consecutive elements with value > 3 found";

}

cout << endl;

}

The program has the following output:

1 2 7 7 6 3 9 5 7 7 7 3 6

three consecutive elements with value 7 start with 9. element

first four consecutive odd elements are: 3 9 5 7

There is a nasty problem with the second form of search_n(). Consider the second call of

search_n():

pos = search_n (coll.begin(), coll.end(), // range

4, // count

0, // value

11.5 Nonmodifying Algorithms 533

[](int elem, int value){ // criterion

return elem%2==1;

});

This kind of searching for elements that match a special criterion does not conform to the rest of the

STL. Following the usual concepts of the STL, the call should be as follows:

pos = search_n_if (coll.begin(), coll.end(), // range

4, // count

[](int elem){ // criterion

return elem%2==1;

});

However, the algorithm requires a unary predicate, which gets the value passed as fourth argument

to search_n() as second parameter.

Unfortunately, nobody noticed this inconsistency when these new algorithms were introduced to

the C++98 standard (they were not part of the original STL). At first, it seemed that the version with

four arguments is more convenient because you could implement something like:

// find four consecutive elements with value greater than 3

pos = search_n (coll.begin(), coll.end(), // range

4, // count

3, // value

greater<int>()); // criterion

However, as our example demonstrates, it requires a binary predicate even if you need only a unary

predicate.

The consequence is that if you have an ordinary unary predicate, such as

bool isPrime (int elem);

you either have to change the signature of your function or write a simple wrapper:

bool binaryIsPrime (int elem1, int) {

return isPrime(elem1);

}

...

pos = search_n (coll.begin(), coll.end(), // range

4, // count

0, // required dummy value

binaryIsPrime); // binary criterion

534 Chapter 11: STL Algorithms

Search First Subrange

ForwardIterator1

search (ForwardIterator1 beg, ForwardIterator1 end,

ForwardIterator2 searchBeg, ForwardIterator2 searchEnd)

ForwardIterator1

search (ForwardIterator1 beg, ForwardIterator1 end,

ForwardIterator2 searchBeg, ForwardIterator2 searchEnd,

BinaryPredicate op)

• Both forms return the position of the first element of the first subrange matching the range

[searchBeg,searchEnd) in the range [beg,end).

• In the first form, the elements of the subrange have to be equal to the elements of the whole

range.

• In the second form, for every comparison between elements, the call of the binary predicate

op(elem,searchElem)

has to yield true.

• Both forms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• See Section 6.4.1, page 203, for a discussion of how to find a subrange for which you know only

the first and the last elements.

• Complexity: linear (at most, numElems*numSearchElems comparisons or calls of op(), respec-

tively).

The following example demonstrates how to find a sequence as the first subrange of another sequence

(compare with the example of find_end() on page 537):

// algo/search1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

list<int> subcoll;

INSERT_ELEMENTS(coll,1,7);

INSERT_ELEMENTS(coll,1,7);

INSERT_ELEMENTS(subcoll,3,6);

PRINT_ELEMENTS(coll, "coll: ");

PRINT_ELEMENTS(subcoll,"subcoll: ");

11.5 Nonmodifying Algorithms 535

// search first occurrence of subcoll in coll

deque<int>::iterator pos;

pos = search (coll.begin(), coll.end(), // range

subcoll.begin(), subcoll.end()); // subrange

// loop while subcoll found as subrange of coll

while (pos != coll.end()) {

// print position of first element

cout << "subcoll found starting with element "

<< distance(coll.begin(),pos) + 1

<< endl;

// search next occurrence of subcoll

++pos;

pos = search (pos, coll.end(), // range

subcoll.begin(), subcoll.end()); // subrange

}

}

The program has the following output:

coll: 1 2 3 4 5 6 7 1 2 3 4 5 6 7

subcoll: 3 4 5 6

subcoll found starting with element 3

subcoll found starting with element 10

The next example demonstrates how to use the second form of the search() algorithm to find a

subsequence that matches a more complicated criterion. Here, the subsequence even, odd, and even

value is searched:

// algo/search2.cpp

#include "algostuff.hpp"

using namespace std;

// checks whether an element is even or odd

bool checkEven (int elem, bool even)

{

if (even) {

return elem % 2 == 0;

}

else {

return elem % 2 == 1;

}

}

536 Chapter 11: STL Algorithms

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// arguments for checkEven()

// - check for: ‘‘even odd even’’

bool checkEvenArgs[3] = { true, false, true };

// search first subrange in coll

vector<int>::iterator pos;

pos = search (coll.begin(), coll.end(), // range

checkEvenArgs, checkEvenArgs+3, // subrange values

checkEven); // subrange criterion

// loop while subrange found

while (pos != coll.end()) {

// print position of first element

cout << "subrange found starting with element "

<< distance(coll.begin(),pos) + 1

<< endl;

// search next subrange in coll

pos = search (++pos, coll.end(), // range

checkEvenArgs, checkEvenArgs+3, // subr. values

checkEven); // subr. criterion

}

}

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

subrange found starting with element 2

subrange found starting with element 4

subrange found starting with element 6

11.5 Nonmodifying Algorithms 537

Search Last Subrange

ForwardIterator1

find_end (ForwardIterator1 beg, ForwardIterator1 end,

ForwardIterator2 searchBeg, ForwardIterator2 searchEnd)

ForwardIterator1

find_end (ForwardIterator1 beg, ForwardIterator1 end,

ForwardIterator2 searchBeg, ForwardIterator2 searchEnd,

BinaryPredicate op)

• Both forms return the position of the first element of the last subrange matching the range

[searchBeg,searchEnd) in the range [beg,end).

• In the first form, the elements of the subrange have to be equal to the elements of the whole

range.

• In the second form, for every comparison between elements, the call of the binary predicate

op(elem,searchElem)

has to yield true.

• Both forms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• See Section 6.4.1, page 203, for a discussion of how to find a subrange for which you know only

the first and the last elements.

• These algorithms were not part of the original STL. Unfortunately, they were called find_end()

instead of search_end(), which would be more consistent, because the algorithm used to search

the first subrange is called search().

• Complexity: linear (at most, numElems*numSearchElems comparisons or calls of op(), respec-

tively).

The following example demonstrates how to find a sequence as the last subrange of another sequence

(compare with the example of search() on page 534):

// algo/findend1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

list<int> subcoll;

INSERT_ELEMENTS(coll,1,7);

INSERT_ELEMENTS(coll,1,7);

538 Chapter 11: STL Algorithms

INSERT_ELEMENTS(subcoll,3,6);

PRINT_ELEMENTS(coll, "coll: ");

PRINT_ELEMENTS(subcoll,"subcoll: ");

// search last occurrence of subcoll in coll

deque<int>::iterator pos;

pos = find_end (coll.begin(), coll.end(), // range

subcoll.begin(), subcoll.end()); // subrange

// loop while subcoll found as subrange of coll

deque<int>::iterator end(coll.end());

while (pos != end) {

// print position of first element

cout << "subcoll found starting with element "

<< distance(coll.begin(),pos) + 1

<< endl;

// search next occurrence of subcoll

end = pos;

pos = find_end (coll.begin(), end, // range

subcoll.begin(), subcoll.end()); // subrange

}

}

The program has the following output:

coll: 1 2 3 4 5 6 7 1 2 3 4 5 6 7

subcoll: 3 4 5 6

subcoll found starting with element 10

subcoll found starting with element 3

For the second form of this algorithm, see the second example of search() on page 535. You can

use find_end() in a similar manner.

Search First of Several Possible Elements

InputIterator

find_first_of (InputIterator beg, InputIterator end,

ForwardIterator searchBeg, ForwardIterator searchEnd)

11.5 Nonmodifying Algorithms 539

InputIterator

find_first_of (InputIterator beg, InputIterator end,

ForwardIterator searchBeg, ForwardIterator searchEnd,

BinaryPredicate op)

• The first form returns the position of the first element in the range [beg,end) that is also in the

range [searchBeg,searchEnd).

• The second form returns the position of the first element in the range [beg,end) for which any

call

op(elem,searchElem)

with all elements of [searchBeg,searchEnd) yields true.

• Both forms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• By using reverse iterators, you can find the last of several possible values.

• These algorithms were not part of the original STL.

• Before C++11, these algorithms required forward iterators instead of input iterators for the range

[beg,end).

• Complexity: linear (at most, numElems*numSearchElems comparisons or calls of op(), respec-

tively).

The following example demonstrates the use of find_first_of():

// algo/findof1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

list<int> searchcoll;

INSERT_ELEMENTS(coll,1,11);

INSERT_ELEMENTS(searchcoll,3,5);

PRINT_ELEMENTS(coll, "coll: ");

PRINT_ELEMENTS(searchcoll,"searchcoll: ");

// search first occurrence of an element of searchcoll in coll

vector<int>::iterator pos;

pos = find_first_of (coll.begin(), coll.end(), // range

searchcoll.begin(), // beginning of search set

searchcoll.end()); // end of search set

540 Chapter 11: STL Algorithms

cout << "first element of searchcoll in coll is element "

<< distance(coll.begin(),pos) + 1

<< endl;

// search last occurrence of an element of searchcoll in coll

vector<int>::reverse_iterator rpos;

rpos = find_first_of (coll.rbegin(), coll.rend(), // range

searchcoll.begin(), // beginning of search set

searchcoll.end()); // end of search set

cout << "last element of searchcoll in coll is element "

<< distance(coll.begin(),rpos.base())

<< endl;

}

The second call uses reverse iterators to find the last element that has a value equal to one element in

searchcoll. To print the position of the element, base() is called to transform the reverse iterator

into an iterator. Thus, you can process the distance from the beginning. Normally, you would have to

add 1 to the result of distance() because the first element has distance 0 but actually is element 1.

However, because base() moves the position of the value to which it refers, you have the same

effect (see Section 9.4.1, page 452, for the description of base()).

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9 10 11

searchcoll: 3 4 5

first element of searchcoll in coll is element 3

last element of searchcoll in coll is element 5

Search Two Adjacent, Equal Elements

ForwardIterator

adjacent_find (ForwardIterator beg, ForwardIterator end)

ForwardIterator

adjacent_find (ForwardIterator beg, ForwardIterator end,

BinaryPredicate op)

• The first form returns the first element in the range [beg,end) that has a value equal to the value

of the following element.

• The second form returns the first element in the range [beg,end) for which the binary predicate

op(elem,nextElem)

yields true.

• Both forms return end if no matching elements are found.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

11.5 Nonmodifying Algorithms 541

• op should not modify the passed arguments.

• Complexity: linear (at most, numElems comparisons or calls of op(), respectively).

The following program demonstrates both forms of adjacent_find():

// algo/adjacentfind1.cpp

#include "algostuff.hpp"

using namespace std;

// return whether the second object has double the value of the first

bool doubled (int elem1, int elem2)

{

return elem1 * 2 == elem2;

}

int main()

{

vector<int> coll;

coll.push_back(1);

coll.push_back(3);

coll.push_back(2);

coll.push_back(4);

coll.push_back(5);

coll.push_back(5);

coll.push_back(0);

PRINT_ELEMENTS(coll,"coll: ");

// search first two elements with equal value

vector<int>::iterator pos;

pos = adjacent_find (coll.begin(), coll.end());

if (pos != coll.end()) {

cout << "first two elements with equal value have position "

<< distance(coll.begin(),pos) + 1

<< endl;

}

// search first two elements for which the second has double the value of the first

pos = adjacent_find (coll.begin(), coll.end(), // range

doubled); // criterion

if (pos != coll.end()) {

542 Chapter 11: STL Algorithms

cout << "first two elements with second value twice the "

<< "first have pos. "

<< distance(coll.begin(),pos) + 1

<< endl;

}

}

The first call of adjacent_find() searches for equal values. The second form uses doubled() to

find the first element for which the successor has the double value. The program has the following

output:

coll: 1 3 2 4 5 5 0

first two elements with equal value have position 5

first two elements with second value twice the first have pos. 3

11.5.4 Comparing Ranges

Testing Equality

bool

equal (InputIterator1 beg, InputIterator1 end,

InputIterator2 cmpBeg)

bool

equal (InputIterator1 beg, InputIterator1 end,

InputIterator2 cmpBeg,

BinaryPredicate op)

• The first form returns whether the elements in the range [beg,end) are equal to the elements in

the range starting with cmpBeg.

• The second form returns whether each call of the binary predicate

op(elem,cmpElem)

with the corresponding elements in the range [beg,end) and in the range starting with cmpBeg

yields true.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• The caller must ensure that the range starting with cmpBeg contains enough elements.

• To determine the details of any differences, you should use the mismatch() algorithm (see

page 546).

• To determine whether two sequences contain the same elements in different order, algorithm

is_permutation() is provided since C++11 (see page 544).

• Complexity: linear (at most, numElems comparisons or calls of op(), respectively).

11.5 Nonmodifying Algorithms 543

The following example demonstrates both forms of equal(). The first call checks whether the

elements have values with equal elements. The second call uses an auxiliary predicate function to

check whether the elements of both collections have corresponding even and odd elements:

// algo/equal1.cpp

#include "algostuff.hpp"

using namespace std;

bool bothEvenOrOdd (int elem1, int elem2)

{

return elem1 % 2 == elem2 % 2;

}

int main()

{

vector<int> coll1;

list<int> coll2;

INSERT_ELEMENTS(coll1,1,7);

INSERT_ELEMENTS(coll2,3,9);

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

// check whether both collections are equal

if (equal (coll1.begin(), coll1.end(), // first range

coll2.begin())) { // second range

cout << "coll1 == coll2" << endl;

}

else {

cout << "coll1 != coll2" << endl;

}

// check for corresponding even and odd elements

if (equal (coll1.begin(), coll1.end(), // first range

coll2.begin(), // second range

bothEvenOrOdd)) { // comparison criterion

cout << "even and odd elements correspond" << endl;

}

else {

cout << "even and odd elements do not correspond" << endl;

}

}

544 Chapter 11: STL Algorithms

The program has the following output:

coll1: 1 2 3 4 5 6 7

coll2: 3 4 5 6 7 8 9

coll1 != coll2

even and odd elements correspond

Testing for Unordered Equality

bool

is_permutation (ForwardIterator1 beg1, ForwardIterator1 end1,

ForwardIterator2 beg2)

bool

is_permutation (ForwardIterator1 beg1, ForwardIterator1 end1,

ForwardIterator2 beg2,

CompFunc op)

• Both forms return whether the elements in the range [beg1,end1) are a permutation of the ele-

ments in the range starting with beg2; that is, whether they return equal elements in whatever

order.

• The first form compares the elements by using operator ==.

• The second form compares the elements by using the binary predicate

op(elem1,elem2)

which should return true when elem1 is equal to elem2.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• All Iterators must have the same value type.

• These algorithms are available since C++11.

• Complexity: at worst quadratic (numElems1 comparisons or calls of op(), if all elements are

equal and have the same order).

The following example demonstrates the use of an unordered comparison:

// algo/ispermutation1.cpp

#include "algostuff.hpp"

using namespace std;

bool bothEvenOrOdd (int elem1, int elem2)

{

return elem1 % 2 == elem2 % 2;

}

11.5 Nonmodifying Algorithms 545

int main()

{

vector<int> coll1;

list<int> coll2;

deque<int> coll3;

coll1 = { 1, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

coll2 = { 1, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

coll3 = { 11, 12, 13, 19, 18, 17, 16, 15, 14, 11 };

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

PRINT_ELEMENTS(coll3,"coll3: ");

// check whether both collections have equal elements in any order

if (is_permutation (coll1.cbegin(), coll1.cend(), // first range

coll2.cbegin())) { // second range

cout << "coll1 and coll2 have equal elements" << endl;

}

else {

cout << "coll1 and coll2 don’t have equal elements" << endl;

}

// check for corresponding number of even and odd elements

if (is_permutation (coll1.cbegin(), coll1.cend(), // first range

coll3.cbegin(), // second range

bothEvenOrOdd)) { // comparison criterion

cout << "numbers of even and odd elements match" << endl;

}

else {

cout << "numbers of even and odd elements don’t match" << endl;

}

}

The program has the following output:

coll1: 1 1 2 3 4 5 6 7 8 9

coll2: 1 9 8 7 6 5 4 3 2 1

coll3: 11 12 13 19 18 17 16 15 14 11

coll1 and coll2 have equal elements

numbers of even and odd elements match

546 Chapter 11: STL Algorithms

Search the First Difference

pair<InputIterator1,InputIterator2>

mismatch (InputIterator1 beg, InputIterator1 end,

InputIterator2 cmpBeg)

pair<InputIterator1,InputIterator2>

mismatch (InputIterator1 beg, InputIterator1 end,

InputIterator2 cmpBeg,

BinaryPredicate op)

• The first form returns the first two corresponding elements of range [beg,end) and the range

starting with cmpBeg that differ.

• The second form returns the first two corresponding elements of range [beg,end) and the range

starting with cmpBeg for which the binary predicate

op(elem,cmpElem)

yields false.

• If no difference is found, a pair<> of end and the corresponding element of the second range

is returned. Note that this does not mean that both sequences are equal, because the second

sequence might contain more elements.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• The caller must ensure that the range starting with cmpBeg contains enough elements.

• To check whether two ranges are equal, you should use algorithm equal() (see Section 11.5.4,

page 542).

• Complexity: linear (at most, numElems comparisons or calls of op(), respectively).

The following example demonstrates both forms of mismatch():

// algo/mismatch1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll1 = { 1, 2, 3, 4, 5, 6 };

list<int> coll2 = { 1, 2, 4, 8, 16, 3 };

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

11.5 Nonmodifying Algorithms 547

// find first mismatch

auto values = mismatch (coll1.cbegin(), coll1.cend(), // first range

coll2.cbegin()); // second range

if (values.first == coll1.end()) {

cout << "no mismatch" << endl;

}

else {

cout << "first mismatch: "

<< *values.first << " and "

<< *values.second << endl;

}

// find first position where the element of coll1 is not

// less than the corresponding element of coll2

values = mismatch (coll1.cbegin(), coll1.cend(), // first range

coll2.cbegin(), // second range

less_equal<int>()); // criterion

if (values.first == coll1.end()) {

cout << "always less-or-equal" << endl;

}

else {

cout << "not less-or-equal: "

<< *values.first << " and "

<< *values.second << endl;

}

}

The first call of mismatch() searches for the first corresponding elements that are not equal. The

return type is:

pair<vector<int>::const_iterator,list<int>::const_iterator>

By checking whether the first element in the returned pair equals the end of the passed range, we

check whether a mismatch exists. In that case, the values of the corresponding elements are written

to standard output.

The second call searches for the first pair of elements in which the element of the first collection

is greater than the corresponding element of the second collection and returns these elements. The

program has the following output:

coll1: 1 2 3 4 5 6

coll2: 1 2 4 8 16 3

first mismatch: 3 and 4

not less-or-equal: 6 and 3

548 Chapter 11: STL Algorithms

Testing for “Less Than”

bool

lexicographical_compare (InputIterator1 beg1, InputIterator1 end1,

InputIterator2 beg2, InputIterator2 end2)

bool

lexicographical_compare (InputIterator1 beg1, InputIterator1 end1,

InputIterator2 beg2, InputIterator2 end2,

CompFunc op)

• Both forms return whether the elements in the range [beg1,end1) are “lexicographically less

than” the elements in the range [beg2,end2).

• The first form compares the elements by using operator <.

• The second form compares the elements by using the binary predicate

op(elem1,elem2)

which should return true when elem1 is less than elem2.

• Lexicographical comparison means that sequences are compared element-by-element until any

of the following occurs:

– When two elements are not equal, the result of their comparison is the result of the whole

comparison.

– When one sequence has no more elements, the sequence that has no more elements is less

than the other. Thus, the comparison yields true if the first sequence is the one that has no

more elements.

– When both sequences have no more elements, both sequences are equal, and the result of the

comparison is false.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• Complexity: linear (at most, min(numElems1,numElems2) comparisons or calls of op(), re-

spectively).

The following example demonstrates the use of a lexicographical sorting of collections:

// algo/lexicocmp1.cpp

#include "algostuff.hpp"

using namespace std;

void printCollection (const list<int>& l)

{

PRINT_ELEMENTS(l);

}

11.5 Nonmodifying Algorithms 549

bool lessForCollection (const list<int>& l1, const list<int>& l2)

{

return lexicographical_compare

(l1.cbegin(), l1.cend(), // first range

l2.cbegin(), l2.cend()); // second range

}

int main()

{

list<int> c1, c2, c3, c4;

// fill all collections with the same starting values

INSERT_ELEMENTS(c1,1,5);

c4 = c3 = c2 = c1;

// and now some differences

c1.push_back(7);

c3.push_back(2);

c3.push_back(0);

c4.push_back(2);

// create collection of collections

vector<list<int>> cc;

cc.insert (cc.begin(), { c1, c2, c3, c4, c3, c1, c4, c2 });

// print all collections

for_each (cc.cbegin(), cc.cend(),

printCollection);

cout << endl;

// sort collection lexicographically

sort (cc.begin(), cc.end(), // range

lessForCollection); // sorting criterion

// print all collections again

for_each (cc.cbegin(), cc.cend(),

printCollection);

}

The vector cc is initialized with several collections (all lists). The call of sort() uses the binary

predicate lessForCollection() to compare two collections (see Section 11.9.1, page 596, for

a description of sort()). In lessForCollection(), the lexicographical_compare() algo-

rithm is used to compare the collections lexicographically.

550 Chapter 11: STL Algorithms

The program has the following output:

1 2 3 4 5 7

1 2 3 4 5

1 2 3 4 5 2 0

1 2 3 4 5 2

1 2 3 4 5 2 0

1 2 3 4 5 7

1 2 3 4 5 2

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 2

1 2 3 4 5 2

1 2 3 4 5 2 0

1 2 3 4 5 2 0

1 2 3 4 5 7

1 2 3 4 5 7

11.5.5 Predicates for Ranges

The following algorithms were introduced with C++11 to check a specific condition for a given

range.

Check for (Partial) Sorting

bool

is_sorted (ForwardIterator beg, ForwardIterator end)

bool

is_sorted (ForwardIterator beg, ForwardIterator end, BinaryPredicate op)

ForwardIterator

is_sorted_until (ForwardIterator beg, ForwardIterator end)

ForwardIterator

is_sorted_until (ForwardIterator beg, ForwardIterator end, BinaryPredicate op)

• is_sorted() returns whether the elements in the range [beg,end) are sorted.

• is_sorted()_until returns the position of the first element in the range [beg,end), which

breaks the sorting of this range, or end if none.

11.5 Nonmodifying Algorithms 551

• The first and third forms use operator < to compare elements. The second and fourth forms use

the binary predicate

op(elem1,elem2)

which should return true if elem1 is “less than” elem2.

• If the range is empty or has only one element, the algorithms return true or end, respectively.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• These algorithms are available since C++11.

• Complexity: linear (at most numElems-1 calls of < or op()).

The following program demonstrates the use of these algorithms:

// algo/issorted1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll1 = { 1, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

PRINT_ELEMENTS(coll1,"coll1: ");

// check whether coll1 is sorted

if (is_sorted (coll1.begin(), coll1.end())) {

cout << "coll1 is sorted" << endl;

}

else {

cout << "coll1 is not sorted" << endl;

}

map<int,string> coll2;

coll2 = { {1,"Bill"}, {2,"Jim"}, {3,"Nico"}, {4,"Liu"}, {5,"Ai"} };

PRINT_MAPPED_ELEMENTS(coll2,"coll2: ");

// define predicate to compare names

auto compareName = [](const pair<int,string>& e1,

const pair<int,string>& e2){

return e1.second<e2.second;

};

// check whether the names in coll2 are sorted

if (is_sorted (coll2.cbegin(), coll2.cend(),

compareName)) {

cout << "names in coll2 are sorted" << endl;

}

552 Chapter 11: STL Algorithms

else {

cout << "names in coll2 are not sorted" << endl;

}

// print first unsorted name

auto pos = is_sorted_until (coll2.cbegin(), coll2.cend(),

compareName);

if (pos != coll2.end()) {

cout << "first unsorted name: " << pos->second << endl;

}

}

The program has the following output:

coll1: 1 1 2 3 4 5 6 7 8 9

coll1 is sorted

coll2: [1,Bill] [2,Jim] [3,Nico] [4,Liu] [5,Ai]

names in coll2 are not sorted

first unsorted name: Liu

Note that is_sorted_until() returns the position of the first unsorted element as an iterator, so

we have to call pos->second to access the name (the value of the key/value pair).

Check for Being Partitioned

bool

is_partitioned (InputIterator beg, InputIterator end, UnaryPredicate op)

ForwardIterator

partition_point (ForwardIterator beg, ForwardIterator end, BinaryPredicate op)

• is_partitioned() returns whether the elements in the range [beg,end) are partitions, so all the

elements fulfilling the predicate op() are positioned before all elements that do not fulfill it.

• partition_point() returns the position of the first element in the partitioned range [beg,end).
Thus, for [beg,end), is_partitioned() has to yield true on entry.

• The algorithms use the binary predicate

op(elem1,elem2)

which should return true if elem1 is “less than” elem2.

• If the range is empty, partition_point() returns end.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

11.5 Nonmodifying Algorithms 553

• These algorithms are available since C++11.

• Complexity:

– is_partitioned(): linear (at most numElems calls of op()).

– partition_point(): logarithmic for random-access iterators and linear otherwise (in any

case, at most log(numElems) calls of op()).

The following program demonstrates the use of these algorithms:

// algo/ispartitioned1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll = { 5, 3, 9, 1, 3, 4, 8, 2, 6 };

PRINT_ELEMENTS(coll,"coll: ");

// define predicate: check whether element is odd:

auto isOdd = [](int elem) {

return elem%2==1;

};

// check whether coll is partitioned in odd and even elements

if (is_partitioned (coll.cbegin(), coll.cend(), // range

isOdd)) { // predicate

cout << "coll is partitioned" << endl;

// find first even element:

auto pos = partition_point (coll.cbegin(),coll.cend(),

isOdd);

cout << "first even element: " << *pos << endl;

}

else {

cout << "coll is not partitioned" << endl;

}

}

The program has the following output:

coll: 5 3 9 1 3 4 8 2 6

coll is partitioned

first even element: 4

554 Chapter 11: STL Algorithms

Check for Being a Heap (Maximum Element First)

bool

is_heap (RandomAccessIterator beg, RandomAccessIterator end)

bool

is_heap (RandomAccessIterator beg, RandomAccessIterator end, BinaryPredicate op)

RandomAccessIterator

is_heap_until (RandomAccessIterator beg, RandomAccessIterator end)

RandomAccessIterator

is_heap_until (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

• is_heap() returns whether the elements in the range [beg,end) are a heap (see Section 11.9.4,

page 604), which means that beg is (one of) the maximum element(s).

• is_heap()_until returns the position of the first element in the range [beg,end) that breaks the

sorting as a heap (is larger than the first element) or end if none.

• The first and third forms use operator < to compare elements. The second and fourth forms use

the binary predicate

op(elem1,elem2)

which should return true if elem1 is “less than” elem2.

• If the range is empty or has only one element, the algorithms return true or end, respectively.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• These algorithms are available since C++11.

• Complexity: linear (at most numElems-1 calls of < or op()).

The following demonstrates the use of these algorithms:

// algo/isheap1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll1 = { 9, 8, 7, 7, 7, 5, 4, 2, 1 };

vector<int> coll2 = { 5, 3, 2, 1, 4, 7, 9, 8, 6 };

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

11.5 Nonmodifying Algorithms 555

// check whether the collections are heaps

cout << boolalpha << "coll1 is heap: "

<< is_heap (coll1.cbegin(), coll1.cend()) << endl;

cout << "coll2 is heap: "

<< is_heap (coll2.cbegin(), coll2.cend()) << endl;

// print the first element that is not a heap in coll2

auto pos = is_heap_until (coll2.cbegin(), coll2.cend());

if (pos != coll2.end()) {

cout << "first non-heap element: " << *pos << endl;

}

}

The program has the following output:

coll1: 9 8 7 7 7 5 4 2 1

coll2: 5 3 2 1 4 7 9 8 6

coll1 is heap: true

coll2 is heap: false

first non-heap element: 4

All, Any, or None

bool

all_of (InputIterator beg, InputIterator end, UnaryPredicate op)

bool

any_of (InputIterator beg, InputIterator end, UnaryPredicate op)

bool

none_of (InputIterator beg, InputIterator end, UnaryPredicate op)

• These algorithms return whether for all, any (at least one), or none of the elements in the range

[beg,end), the unary predicate

op(elem)

yields true.

• If the range is empty, all_of() and none_of() return true, whereas any_of() returns false.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• op should not modify the passed arguments.

• These algorithms are available since C++11.

• Complexity: linear (at most numElems calls of op()).

556 Chapter 11: STL Algorithms

The following demonstrates the use of these algorithms:

// algo/allanynone1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

vector<int>::iterator pos;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// define an object for the predicate (using a lambda)

auto isEven = [](int elem) {

return elem%2==0;

};

// print whether all, any, or none of the elements are/is even

cout << boolalpha << "all even?: "

<< all_of(coll.cbegin(),coll.cend(), isEven) << endl;

cout << "any even?: "

<< any_of(coll.cbegin(),coll.cend(), isEven) << endl;

cout << "none even?: "

<< none_of(coll.cbegin(),coll.cend(), isEven) << endl;

}

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

all even?: false

any even?: true

none even?: false

11.6 Modifying Algorithms 557

11.6 Modifying Algorithms

This section describes algorithms that modify the elements of a range. There are two ways to modify

elements:

1. Modify them directly while iterating through a sequence.

2. Modify them while copying them from a source range to a destination range.

Several modifying algorithms provide both ways of modifying the elements of a range. In this case,

the name of the latter uses the _copy suffix.

You can’t use an associative or unordered container as a destination range, because the elements

in these containers are constant. If you could, it would be possible to compromise the automatic

sorting or the hash based position, respectively.

All algorithms that have a separate destination range return the position after the last copied

element of that range.

11.6.1 Copying Elements

OutputIterator

copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg)

OutputIterator

copy_if (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

UnaryPredicate op)

OutputIterator

copy_n (InputIterator sourceBeg,

Size num,

OutputIterator destBeg)

BidirectionalIterator2

copy_backward (BidirectionalIterator1 sourceBeg,

BidirectionalIterator1 sourceEnd,

BidirectionalIterator2 destEnd)

• All algorithms copy all elements of a source range ([sourceBeg,sourceEnd) or num elements

starting with sourceBeg) into the destination range starting with destBeg or ending with destEnd,

respectively.

• They return the position after the last copied element in the destination range (the first element

that is not overwritten).

• For copy(), destBeg should not be part of [sourceBeg,sourceEnd). For copy_if(), source and

destination ranges should not overlap. For copy_backward(), destEnd should not be part of

(sourceBeg,sourceEnd].

558 Chapter 11: STL Algorithms

• copy() iterates forward through the sequence, whereas copy_backward() iterates backward.

This difference matters only if the source and destination ranges overlap.

– To copy a subrange to the front, use copy(). Thus, for copy(), destBeg should have a

position in front of sourceBeg.

– To copy a subrange to the back, use copy_backward(). Thus, for copy_backward(),

destEnd should have a position after sourceEnd.

So, whenever the third argument is an element of the source range specified by the first two

arguments, use the other algorithm. Note that switching to the other algorithm means that you

switch from passing the beginning of the destination range to passing the end. See page 559 for

an example that demonstrates the differences.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• See Section 9.4.2, page 454, for the implementation of the copy() algorithm.

• Since C++11, if the source elements are no longer used, you should prefer move() over copy()

and move_backward() over and copy_backward() (see Section 11.6.2, page 561).

• Before C++11, no copy_if() and copy_n() algorithms were provided. To copy only those

elements meeting a certain criterion, you had to use remove_copy_if() (see Section 11.7.1,

page 577) with a negated predicate.

• Use reverse_copy() to reverse the order of the elements during the copy (see Section 11.8.1,

page 583). Note that reverse_copy() may be slightly more efficient than using copy() with

reverse iterators.

• To assign all elements of a container, use the assignment operator if the containers have the

same type (see Section 8.4, page 406) or the assign() member function if the containers have

different types (see Section 8.4, page 407).

• To remove elements while they are being copied, use remove_copy() and remove_copy_if()

(see Section 11.7.1, page 577).

• To modify elements while they are being copied, use transform() (see Section 11.6.3,

page 563) or replace_copy() (see Section 11.6.6, page 573).

• Use partition_copy() (see Section 11.8.6, page 594) to copy elements into two destination

ranges: one fulfilling and one not fulfilling a predicate.

• Complexity: linear (numElems assignments).

The following example shows some simple calls of copy() (see Section 11.6.2, page 562, for a

corresponding version using move() when possible):

// algo/copy1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<string> coll1 = { "Hello", "this", "is", "an", "example" };

list<string> coll2;

11.6 Modifying Algorithms 559

// copy elements of coll1 into coll2

// - use back inserter to insert instead of overwrite

copy (coll1.cbegin(), coll1.cend(), // source range

back_inserter(coll2)); // destination range

// print elements of coll2

// - copy elements to cout using an ostream iterator

copy (coll2.cbegin(), coll2.cend(), // source range

ostream_iterator<string>(cout," ")); // destination range

cout << endl;

// copy elements of coll1 into coll2 in reverse order

// - now overwriting

copy (coll1.crbegin(), coll1.crend(), // source range

coll2.begin()); // destination range

// print elements of coll2 again

copy (coll2.cbegin(), coll2.cend(), // source range

ostream_iterator<string>(cout," ")); // destination range

cout << endl;

}

In this example, back inserters (see Section 9.4.2, page 455) are used to insert the elements into the

destination range. Without using inserters, copy() would overwrite the empty collection coll2,

resulting in undefined behavior. Similarly, the example uses ostream iterators (see Section 9.4.3,

page 460) to use standard output as the destination. The program has the following output:

Hello this is an example

example an is this Hello

The following example demonstrates the difference between copy() and copy_backward():

// algo/copy2.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

// initialize source collection with ‘‘.abcdef..........’’

vector<char> source(10,’.’);

for (int c=’a’; c<=’f’; c++) {

source.push_back(c);

} source.insert(source.end(),10,’.’);

PRINT_ELEMENTS(source,"source: ");

560 Chapter 11: STL Algorithms

// copy all letters three elements in front of the ’a’

vector<char> c1(source.cbegin(),source.cend());

copy (c1.cbegin()+10, c1.cbegin()+16, // source range

c1.begin()+7); // destination range

PRINT_ELEMENTS(c1,"c1: ");

// copy all letters three elements behind the ’f’

vector<char> c2(source.cbegin(),source.cend());

copy_backward (c2.cbegin()+10, c2.cbegin()+16, // source range

c2.begin()+19); // destination range

PRINT_ELEMENTS(c2,"c2: ");

}

Note that in both calls of copy() and copy_backward(), the third argument is not part of the source

range. The program has the following output:

source: a b c d e f

c1: a b c d e f d e f

c2: a b c a b c d e f

A third example demonstrates how to use copy() as a data filter between standard input and standard

output. The program reads strings and prints them, each on one line:

// algo/copy3.cpp

#include <iostream>

#include <algorithm>

#include <iterator>

#include <string>

using namespace std;

int main()

{

copy (istream_iterator<string>(cin), // beginning of source

istream_iterator<string>(), // end of source

ostream_iterator<string>(cout,"\n")); // destination

}

11.6 Modifying Algorithms 561

11.6.2 Moving Elements

OutputIterator

move (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg)

BidirectionalIterator2

move_backward (BidirectionalIterator1 sourceBeg,

BidirectionalIterator1 sourceEnd,

BidirectionalIterator2 destEnd)

• Both algorithms move all elements of the source range [sourceBeg,sourceEnd) into the destina-

tion range starting with destBeg or ending with destEnd, respectively.

• Call for each element:

*destElem=std::move(*sourceElem)

Thus, if the element type provides move semantics, the value of the source elements becomes

undefined, so the source element should no longer be used except to reinitialize or assign a

new value to it. Otherwise, the elements are copied as with copy() or copy_backward() (see

Section 11.6.1, page 557).

• They return the position after the last copied element in the destination range (the first element

that is not overwritten).

• For move(), destBeg should not be part of [sourceBeg,sourceEnd). For move_backward(),

destEnd should not be part of (sourceBeg,sourceEnd].

• move() iterates forward through the sequence, whereas move_backward() iterates backward.

This difference matters only if the source and destination ranges overlap.

– To move a subrange to the front, use move(). Thus, for move(), destBeg should have a

position in front of sourceBeg.

– To move a subrange to the back, use move_backward(). Thus, for move_backward(),

destEnd should have a position after sourceEnd.

So, whenever the third argument is an element of the source range specified by the first two argu-

ments, use the other algorithm. Note that switching to the other algorithm means that you switch

from passing the beginning of the destination range to passing the end. See Section 11.6.1,

page 559, for an example that demonstrates the differences for the corresponding copy algo-

rithms.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• These algorithms are available since C++11.

• Complexity: linear (numElems move assignments).

The following example demonstrates some simple calls of move(). It is the improved example

of algo/copy1.cpp (see Section 11.6.1, page 558), using move() instead of copy() whenever

possible:

562 Chapter 11: STL Algorithms

// algo/move1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<string> coll1 = { "Hello", "this", "is", "an", "example" };

list<string> coll2;

// copy elements of coll1 into coll2

// - use back inserter to insert instead of overwrite

// - use copy() because the elements in coll1 are used again

copy (coll1.cbegin(), coll1.cend(), // source range

back_inserter(coll2)); // destination range

// print elements of coll2

// - copy elements to cout using an ostream iterator

// - use move() because these elements in coll2 are not used again

move (coll2.cbegin(), coll2.cend(), // source range

ostream_iterator<string>(cout," ")); // destination range

cout << endl;

// copy elements of coll1 into coll2 in reverse order

// - now overwriting (coll2.size() still fits)

// - use move() because the elements in coll1 are not used again

move (coll1.crbegin(), coll1.crend(), // source range

coll2.begin()); // destination range

// print elements of coll2 again

// - use move() because the elements in coll2 are not used again

move (coll2.cbegin(), coll2.cend(), // source range

ostream_iterator<string>(cout," ")); // destination range

cout << endl;

}

Note that the elements in coll2 have an undefined state after their first output because move() is

used. However, coll2 still has the size of 5 elements, so we can overwrite these elements with the

second call of move(). The program has the following output:

Hello this is an example

example an is this Hello

11.6 Modifying Algorithms 563

11.6.3 Transforming and Combining Elements

The transform() algorithms provide two abilities:

1. The first form has four arguments. It transforms elements from a source to a destination range.

Thus, this form copies and modifies elements in one step.

2. The second form has five arguments. It combines elements from two source sequences and writes

the results to a destination range.

Transforming Elements

OutputIterator

transform (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

UnaryFunc op)

• Calls

op(elem)

for each element in the source range [sourceBeg,sourceEnd) and writes each result of op to the

destination range starting with destBeg:

OP

• Returns the position after the last transformed element in the destination range (the first element

that is not overwritten with a result).

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• sourceBeg and destBeg may be identical. Thus, as with for_each(), you can use this algorithm

to modify elements inside a sequence. See the comparison with the for_each() algorithm

(Section 11.2.2, page 509) for this kind of use.

• To replace elements matching a criterion with a particular value, use the replace() algorithms

(see Section 11.6.6, page 571).

• Complexity: linear (numElems calls of op()).

The following program demonstrates how to use this kind of transform():

// algo/transform1.cpp

#include "algostuff.hpp"

using namespace std;

using namespace std::placeholders;

int main()

{

vector<int> coll1;

list<int> coll2;

564 Chapter 11: STL Algorithms

INSERT_ELEMENTS(coll1,1,9);

PRINT_ELEMENTS(coll1,"coll1: ");

// negate all elements in coll1

transform (coll1.cbegin(), coll1.cend(), // source range

coll1.begin(), // destination range

negate<int>()); // operation

PRINT_ELEMENTS(coll1,"negated: ");

// transform elements of coll1 into coll2 with ten times their value

transform (coll1.cbegin(), coll1.cend(), // source range

back_inserter(coll2), // destination range

bind(multiplies<int>(),_1,10)); // operation

PRINT_ELEMENTS(coll2,"coll2: ");

// print coll2 negatively and in reverse order

transform (coll2.crbegin(), coll2.crend(), // source range

ostream_iterator<int>(cout," "), // destination range

[](int elem){ // operation

return -elem;

});

cout << endl;

}

The program has the following output:

coll1: 1 2 3 4 5 6 7 8 9

negated: -1 -2 -3 -4 -5 -6 -7 -8 -9

coll2: -10 -20 -30 -40 -50 -60 -70 -80 -90

90 80 70 60 50 40 30 20 10

Combining Elements of Two Sequences

OutputIterator

transform (InputIterator1 source1Beg, InputIterator1 source1End,

InputIterator2 source2Beg,

OutputIterator destBeg,

BinaryFunc op)

• Calls

op(source1Elem,source2Elem)

for all corresponding elements from the first source range [source1Beg,source1End) and the sec-

ond source range starting with source2Beg and writes each result to the destination range starting

with destBeg:

11.6 Modifying Algorithms 565

OP

• Returns the position after the last transformed element in the destination range (the first element

that is not overwritten with a result).

• The caller must ensure that the second source range is big enough (has at least as many elements

as the source range).

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• source1Beg, source2Beg, and destBeg may be identical. Thus, you can process the results of

elements that are combined with themselves, and you can overwrite the elements of a source

with the results.

• Complexity: linear (numElems calls of op()).

The following program demonstrates how to use this form of transform():

// algo/transform2.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll1;

list<int> coll2;

INSERT_ELEMENTS(coll1,1,9);

PRINT_ELEMENTS(coll1,"coll1: ");

// square each element

transform (coll1.cbegin(), coll1.cend(), // first source range

coll1.cbegin(), // second source range

coll1.begin(), // destination range

multiplies<int>()); // operation

PRINT_ELEMENTS(coll1,"squared: ");

// add each element traversed forward with each element traversed backward

// and insert result into coll2

transform (coll1.cbegin(), coll1.cend(), // first source range

coll1.crbegin(), // second source range

back_inserter(coll2), // destination range

plus<int>()); // operation

PRINT_ELEMENTS(coll2,"coll2: ");

566 Chapter 11: STL Algorithms

// print differences of two corresponding elements

cout << "diff: ";

transform (coll1.cbegin(), coll1.cend(), // first source range

coll2.cbegin(), // second source range

ostream_iterator<int>(cout, " "), // destination range

minus<int>()); // operation

cout << endl;

}

The program has the following output:

coll1: 1 2 3 4 5 6 7 8 9

squared: 1 4 9 16 25 36 49 64 81

coll2: 82 68 58 52 50 52 58 68 82

diff: -81 -64 -49 -36 -25 -16 -9 -4 -1

11.6.4 Swapping Elements

ForwardIterator2

swap_ranges (ForwardIterator1 beg1, ForwardIterator1 end1,

ForwardIterator2 beg2)

• Swaps the elements in the range [beg1,end1) with the corresponding elements starting with beg2.

• Returns the position after the last swapped element in the second range.

• The caller must ensure that the second range is big enough.

• Both ranges must not overlap.

• To swap all elements of a container of the same type, use its swap() member function because

the member function usually has constant complexity (see Section 8.4, page 407).

• Complexity: linear (numElems swap operations).

The following example demonstrates how to use swap_ranges():

// algo/swapranges1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll1;

deque<int> coll2;

INSERT_ELEMENTS(coll1,1,9);

INSERT_ELEMENTS(coll2,11,23);

11.6 Modifying Algorithms 567

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

// swap elements of coll1 with corresponding elements of coll2

deque<int>::iterator pos;

pos = swap_ranges (coll1.begin(), coll1.end(), // first range

coll2.begin()); // second range

PRINT_ELEMENTS(coll1,"\ncoll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

if (pos != coll2.end()) {

cout << "first element not modified: "

<< *pos << endl;

}

// mirror first three with last three elements in coll2

swap_ranges (coll2.begin(), coll2.begin()+3, // first range

coll2.rbegin()); // second range

PRINT_ELEMENTS(coll2,"\ncoll2: ");

}

The first call of swap_ranges() swaps the elements of coll1 with the corresponding elements of

coll2. The remaining elements of coll2 are not modified. The swap_ranges() algorithm returns

the position of the first element not modified. The second call swaps the first and the last three

elements of coll2. One of the iterators is a reverse iterator, so the elements are mirrored (swapped

from outside to inside). The program has the following output:

coll1: 1 2 3 4 5 6 7 8 9

coll2: 11 12 13 14 15 16 17 18 19 20 21 22 23

coll1: 11 12 13 14 15 16 17 18 19

coll2: 1 2 3 4 5 6 7 8 9 20 21 22 23

first element not modified: 20

coll2: 23 22 21 4 5 6 7 8 9 20 3 2 1

568 Chapter 11: STL Algorithms

11.6.5 Assigning New Values

Assigning the Same Value

void

fill (ForwardIterator beg, ForwardIterator end,

const T& newValue)

void

fill_n (OutputIterator beg, Size num,

const T& newValue)

• fill() assigns newValue to each element in the range [beg,end).

• fill_n() assigns newValue to the first num elements in the range starting with beg. If num is

negative, fill_n() does nothing (specified only since C++11).

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Since C++11, fill_n() returns the position after the last modified element (beg+num) or beg if

num is negative (before C++11, fill_n() had return type void).

• Complexity: linear (numElems, num, or 0 assignments).

The following program demonstrates the use of fill() and fill_n():

// algo/fill1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

// print ten times 7.7

fill_n(ostream_iterator<float>(cout, " "), // beginning of destination

10, // count

7.7); // new value

cout << endl;

list<string> coll;

// insert "hello" nine times

fill_n(back_inserter(coll), // beginning of destination

9, // count

"hello"); // new value

PRINT_ELEMENTS(coll,"coll: ");

// overwrite all elements with "again"

fill(coll.begin(), coll.end(), // destination

"again"); // new value

11.6 Modifying Algorithms 569

PRINT_ELEMENTS(coll,"coll: ");

// replace all but two elements with "hi"

fill_n(coll.begin(), // beginning of destination

coll.size()-2, // count

"hi"); // new value

PRINT_ELEMENTS(coll,"coll: ");

// replace the second and up to the last element but one with "hmmm"

list<string>::iterator pos1, pos2;

pos1 = coll.begin();

pos2 = coll.end();

fill (++pos1, --pos2, // destination

"hmmm"); // new value

PRINT_ELEMENTS(coll,"coll: ");

}

The first call shows how to use fill_n() to print a certain number of values. The other calls of

fill() and fill_n() insert and replace values in a list of strings. The program has the following

output:

7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7

coll: hello hello hello hello hello hello hello hello hello

coll: again again again again again again again again again

coll: hi hi hi hi hi hi hi again again

coll: hi hmmm hmmm hmmm hmmm hmmm hmmm hmmm again

Assigning Generated Values

void

generate (ForwardIterator beg, ForwardIterator end,

Func op)

void

generate_n (OutputIterator beg, Size num,

Func op)

• generate() assigns the values that are generated by a call of

op()

to each element in the range [beg,end).

• generate_n() assigns the values that are generated by a call of

op()

to the first num elements in the range starting with beg. If num is negative, generate_n() does

nothing (specified only since C++11).

570 Chapter 11: STL Algorithms

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Since C++11, generate_n() returns the position after the last modified element (beg+num) or

beg if num is negative (before C++11, generate_n() had return type void).

• Complexity: linear (numElems, num, or 0 calls of op() and assignments).

The following program demonstrates how to use generate() and generate_n() to insert or assign

some random numbers:

// algo/generate1.cpp

#include <cstdlib>

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

// insert five random numbers

generate_n (back_inserter(coll), // beginning of destination range

5, // count

rand); // new value generator

PRINT_ELEMENTS(coll);

// overwrite with five new random numbers

generate (coll.begin(), coll.end(), // destination range

rand); // new value generator

PRINT_ELEMENTS(coll);

}

The rand() function is described in Section 17.3, page 942. The program might have the following

output:

1481765933 1085377743 1270216262 1191391529 812669700

553475508 445349752 1344887256 730417256 1812158119

The output is platform dependent because the random-number sequence that rand() generates is

not standardized.

See Section 10.1.2, page 478, for an example that demonstrates how to use generate() with

function objects so that it generates a sequence of numbers.

11.6 Modifying Algorithms 571

Assigning Sequence of Increments Values

void

iota (ForwardIterator beg, ForwardIterator end,

T startValue)

• assigns startValue, startValue+1, startValue+2, and so on.

• Provided since C++11.

• Complexity: linear (numElems assignments and increments).

The following program demonstrates how to use iota():

// algo/iota1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

array<int,10> coll;

iota (coll.begin(), coll.end(), // destination range

42); // start value

PRINT_ELEMENTS(coll,"coll: ");

}

The program has the following output:

coll: 42 43 44 45 46 47 48 49 50 51

11.6.6 Replacing Elements

Replacing Values Inside a Sequence

void

replace (ForwardIterator beg, ForwardIterator end,

const T& oldValue, const T& newValue)

void

replace_if (ForwardIterator beg, ForwardIterator end,

UnaryPredicate op, const T& newValue)

• replace() replaces each element in the range [beg,end) that is equal to oldValue with newValue.

572 Chapter 11: STL Algorithms

• replace_if() replaces each element in the range [beg,end) for which the unary predicate

op(elem)

yields true with newValue.

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Complexity: linear (numElems comparisons or calls of op(), respectively).

The following program demonstrates some examples of the use of replace() and replace_if():

// algo/replace1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

INSERT_ELEMENTS(coll,2,7);

INSERT_ELEMENTS(coll,4,9);

PRINT_ELEMENTS(coll,"coll: ");

// replace all elements with value 6 with 42

replace (coll.begin(), coll.end(), // range

6, // old value

42); // new value

PRINT_ELEMENTS(coll,"coll: ");

// replace all elements with value less than 5 with 0

replace_if (coll.begin(), coll.end(), // range

[](int elem){ // criterion for replacement

return elem<5;

},

0); // new value

PRINT_ELEMENTS(coll,"coll: ");

}

The program has the following output:

coll: 2 3 4 5 6 7 4 5 6 7 8 9

coll: 2 3 4 5 42 7 4 5 42 7 8 9

coll: 0 0 0 5 42 7 0 5 42 7 8 9

11.6 Modifying Algorithms 573

Copying and Replacing Elements

OutputIterator

replace_copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

const T& oldValue, const T& newValue)

OutputIterator

replace_copy_if (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

UnaryPredicate op, const T& newValue)

• replace_copy() is a combination of copy() and replace(). It replaces each element in the

source range [sourceBeg,sourceEnd) that is equal to oldValue with newValue while the elements

are copied into the destination range starting with destBeg.

• replace_copy_if() is a combination of copy() and replace_if(). It replaces each element

in the source range [sourceBeg,sourceEnd) for which the unary predicate

op(elem)

yields true with newValue while the elements are copied into the destination range starting with

destBeg.

• Both algorithms return the position after the last copied element in the destination range (the first

element that is not overwritten).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Complexity: linear (numElems comparisons or calls of op() and assignments, respectively).

The following program demonstrates how to use replace_copy() and replace_copy_if():

// algo/replace2.cpp

#include "algostuff.hpp"

using namespace std;

using namespace std::placeholders;

int main()

{

list<int> coll;

INSERT_ELEMENTS(coll,2,6);

INSERT_ELEMENTS(coll,4,9);

PRINT_ELEMENTS(coll);

// print all elements with value 5 replaced with 55

574 Chapter 11: STL Algorithms

replace_copy(coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

5, // old value

55); // new value

cout << endl;

// print all elements with a value less than 5 replaced with 42

replace_copy_if(coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

bind(less<int>(),_1,5), // replacement criterion

42); // new value

cout << endl;

// print each element while each odd element is replaced with 0

replace_copy_if(coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

[](int elem){ // replacement criterion

return elem%2==1;

},

0); // new value

cout << endl;

}

The program has the following output:

2 3 4 5 6 4 5 6 7 8 9

2 3 4 55 6 4 55 6 7 8 9

42 42 42 5 6 42 5 6 7 8 9

2 0 4 0 6 4 0 6 0 8 0

11.7 Removing Algorithms 575

11.7 Removing Algorithms

The following algorithms remove elements from a range according to their value or to a criterion.

These algorithms, however, cannot change the number of elements. The algorithms move logically

only by overwriting “removed” elements with the following elements that were not removed. They

return the new logical end of the range (the position after the last element not removed). See Sec-

tion 6.7.1, page 218, for details.

11.7.1 Removing Certain Values

Removing Elements in a Sequence

ForwardIterator

remove (ForwardIterator beg, ForwardIterator end,

const T& value)

ForwardIterator

remove_if (ForwardIterator beg, ForwardIterator end,

UnaryPredicate op)

• remove() removes each element in the range [beg,end) that is equal to value.

• remove_if() removes each element in the range [beg,end) for which the unary predicate

op(elem)

yields true.

• Both algorithms return the logical new end of the modified sequence (the position after the last

element not removed).

• The algorithms overwrite “removed” elements by the following elements that were not removed.

• The order of elements that were not removed remains stable.

• It is up to the caller, after calling this algorithm, to use the returned new logical end instead of

the original end end (see Section 6.7.1, page 218, for more details).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Note that remove_if() usually copies the unary predicate inside the algorithm and uses it twice.

This may lead to problems if the predicate changes its state due to the function call. See Sec-

tion 10.1.4, page 483, for details.

• Due to modifications, you can’t use these algorithms for an associative or unordered container

(see Section 6.7.2, page 221). However, these containers provide a similar member function,

erase() (see Section 8.7.3, page 417).

• Lists provide an equivalent member function, remove(), which offers better performance be-

cause it relinks pointers instead of assigning element values (see Section 8.8.1, page 420).

• Complexity: linear (numElems comparisons or calls of op(), respectively).

576 Chapter 11: STL Algorithms

The following program demonstrates how to use remove() and remove_if():

// algo/remove1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,2,6);

INSERT_ELEMENTS(coll,4,9);

INSERT_ELEMENTS(coll,1,7);

PRINT_ELEMENTS(coll,"coll: ");

// remove all elements with value 5

vector<int>::iterator pos;

pos = remove(coll.begin(), coll.end(), // range

5); // value to remove

PRINT_ELEMENTS(coll,"size not changed: ");

// erase the ‘‘removed’’ elements in the container

coll.erase(pos, coll.end());

PRINT_ELEMENTS(coll,"size changed: ");

// remove all elements less than 4

coll.erase(remove_if(coll.begin(), coll.end(), // range

[](int elem){ // remove criterion

return elem<4;

}),

coll.end());

PRINT_ELEMENTS(coll,"<4 removed: ");

}

The program has the following output:

coll: 2 3 4 5 6 4 5 6 7 8 9 1 2 3 4 5 6 7

size not changed: 2 3 4 6 4 6 7 8 9 1 2 3 4 6 7 5 6 7

size changed: 2 3 4 6 4 6 7 8 9 1 2 3 4 6 7

<4 removed: 4 6 4 6 7 8 9 4 6 7

11.7 Removing Algorithms 577

Removing Elements While Copying

OutputIterator

remove_copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

const T& value)

OutputIterator

remove_copy_if (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

UnaryPredicate op)

• remove_copy() is a combination of copy() and remove(). It copies each element in the source

range [sourceBeg,sourceEnd) that is not equal to value into the destination range starting with

destBeg.

• remove_copy_if() is a combination of copy() and remove_if(). It copies each element in

the source range [sourceBeg,sourceEnd) for which the unary predicate

op(elem)

yields false into the destination range starting with destBeg.

• Both algorithms return the position after the last copied element in the destination range (the first

element that is not overwritten).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Use partition_copy() (see Section 11.8.6, page 594), to copy elements into two destination

ranges: one fulfilling and one non fulfilling a predicate (available since C++11).

• Complexity: linear (numElems comparisons or calls of op() and assignments, respectively).

The following program demonstrates how to use remove_copy() and remove_copy_if():

// algo/remove2.cpp

#include "algostuff.hpp"

using namespace std;

using namespace std::placeholders;

int main()

{

list<int> coll1;

INSERT_ELEMENTS(coll1,1,6);

INSERT_ELEMENTS(coll1,1,9);

PRINT_ELEMENTS(coll1);

578 Chapter 11: STL Algorithms

// print elements without those having the value 3

remove_copy(coll1.cbegin(), coll1.cend(), // source

ostream_iterator<int>(cout," "), // destination

3); // removed value

cout << endl;

// print elements without those having a value greater than 4

remove_copy_if(coll1.cbegin(), coll1.cend(), // source

ostream_iterator<int>(cout," "), // destination

[](int elem){ // criterion for elements NOT copied

return elem>4;

});

cout << endl;

// copy all elements not less than 4 into a multiset

multiset<int> coll2;

remove_copy_if(coll1.cbegin(), coll1.cend(), // source

inserter(coll2,coll2.end()), // destination

bind(less<int>(),_1,4)); // elements NOT copied

PRINT_ELEMENTS(coll2);

}

The program has the following output:

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9

1 2 4 5 6 1 2 4 5 6 7 8 9

1 2 3 4 1 2 3 4

4 4 5 5 6 6 7 8 9

11.7.2 Removing Duplicates

Removing Consecutive Duplicates

ForwardIterator

unique (ForwardIterator beg, ForwardIterator end)

ForwardIterator

unique (ForwardIterator beg, ForwardIterator end,

BinaryPredicate op)

• Both forms collapse consecutive equal elements by removing the following duplicates.

• The first form removes from the range [beg,end) all elements that are equal to the previous

elements. Thus, only when the elements in the sequence are sorted, or at least when all elements

of the same value are adjacent, does it remove all duplicates.

11.7 Removing Algorithms 579

• The second form removes all elements that follow an element e and for which the binary predicate

op(e,elem)

yields true. In other words, the predicate is not used to compare an element with its predecessor;

the element is compared with the previous element that was not removed (see the following

examples).

• Both forms return the logical new end of the modified sequence (the position after the last element

not removed).

• The algorithms overwrite “removed” elements by the following elements that were not removed.

• The order of elements that were not removed remains stable.

• It is up to the caller, after calling this algorithm, to use the returned new logical end instead of

the original end end (see Section 6.7.1, page 218, for more details).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Due to modifications, you can’t use these algorithms for an associative or unordered container

(see Section 6.7.2, page 221).

• Lists provide an equivalent member function, unique(), which offers better performance be-

cause it relinks pointers instead of assigning element values (see Section 8.8.1, page 421).

• Complexity: linear (numElems comparisons or calls of op(), respectively).

The following program demonstrates how to use unique():

// algo/unique1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

// source data

int source[] = { 1, 4, 4, 6, 1, 2, 2, 3, 1, 6, 6, 6, 5, 7,

5, 4, 4 };

list<int> coll;

// initialize coll with elements from source

copy (begin(source), end(source), // source

back_inserter(coll)); // destination

PRINT_ELEMENTS(coll);

// remove consecutive duplicates

auto pos = unique (coll.begin(), coll.end());

580 Chapter 11: STL Algorithms

// print elements not removed

// - use new logical end

copy (coll.begin(), pos, // source

ostream_iterator<int>(cout," ")); // destination

cout << "\n\n";

// reinitialize coll with elements from source

copy (begin(source), end(source), // source

coll.begin()); // destination

PRINT_ELEMENTS(coll);

// remove elements if there was a previous greater element

coll.erase (unique (coll.begin(), coll.end(),

greater<int>()),

coll.end());

PRINT_ELEMENTS(coll);

}

The program has the following output:

1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4

1 4 6 1 2 3 1 6 5 7 5 4

1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4

1 4 4 6 6 6 6 7

The first call of unique() removes consecutive duplicates. The second call shows the behavior of

the second form and removes all the consecutive following elements of an element for which the

comparison with greater yields true. For example, the first 6 is greater than the following 1, 2,

2, 3, and 1, so all these elements are removed. In other words, the predicate is not used to compare

an element with its predecessor; the element is compared with the previous element that was not

removed (see the following description of unique_copy() for another example).

Removing Duplicates While Copying

OutputIterator

unique_copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg)

OutputIterator

unique_copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg,

BinaryPredicate op)

11.7 Removing Algorithms 581

• Both forms are a combination of copy() and unique().

• They copy all elements of the source range [sourceBeg,sourceEnd) that are no duplicates of their

previous elements into the destination range starting with destBeg.

• Both forms return the position after the last copied element in the destination range (the first

element that is not overwritten).

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Complexity: linear (numElems comparisons or calls of op() and assignments, respectively).

The following program demonstrates how to use unique_copy():

// algo/unique2.cpp

#include "algostuff.hpp"

using namespace std;

bool differenceOne (int elem1, int elem2)

{

return elem1 + 1 == elem2 || elem1 - 1 == elem2;

}

int main()

{

// source data

int source[] = { 1, 4, 4, 6, 1, 2, 2, 3, 1, 6, 6, 6, 5, 7,

5, 4, 4 };

// initialize coll with elements from source

list<int> coll;

copy(begin(source), end(source), // source

back_inserter(coll)); // destination

PRINT_ELEMENTS(coll);

// print elements with consecutive duplicates removed

unique_copy(coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// print elements without consecutive entries that differ by one

unique_copy(coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

differenceOne); // duplicates criterion

cout << endl;

}

582 Chapter 11: STL Algorithms

The program has the following output:

1 4 4 6 1 2 2 3 1 6 6 6 5 7 5 4 4

1 4 6 1 2 3 1 6 5 7 5 4

1 4 4 6 1 3 1 6 6 6 4 4

Note that the second call of unique_copy() does not remove the elements that differ by 1 from their

predecessor by one. Instead, it removes all elements that differ by 1 from their previous element that

is not removed. For example, after the three occurrences of 6, the following 5, 7, and 5 differ by 1

compared with 6, so they are removed. However, the following two occurrences of 4 remain in the

sequence because compared with 6, the difference is not 1.

Another example compresses sequences of spaces:

// algo/unique3.cpp

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

bool bothSpaces (char elem1, char elem2)

{

return elem1 == ’ ’ && elem2 == ’ ’;

}

int main()

{

// don’t skip leading whitespaces by default

cin.unsetf(ios::skipws);

// copy standard input to standard output

// - while compressing spaces

unique_copy(istream_iterator<char>(cin), // beginning of source: cin

istream_iterator<char>(), // end of source: end-of-file

ostream_iterator<char>(cout), // destination: cout

bothSpaces); // duplicate criterion

}

With the input of

Hello, here are sometimes more and sometimes fewer spaces.

this example produces the following output:

Hello, here are sometimes more and sometimes fewer spaces.

11.8 Mutating Algorithms 583

11.8 Mutating Algorithms

Mutating algorithms change the order of elements but not their values. Because elements of associa-

tive and unordered containers have an order defined by the container, you can’t use these algorithms

as a destination for mutating algorithms.

11.8.1 Reversing the Order of Elements

void

reverse (BidirectionalIterator beg, BidirectionalIterator end)

OutputIterator

reverse_copy (BidirectionalIterator sourceBeg, BidirectionalIterator sourceEnd,

OutputIterator destBeg)

• reverse() reverses the order of the elements inside the range [beg,end).

• reverse_copy() reverses the order of the elements while copying them from the source range

[sourceBeg,sourceEnd) to the destination range starting with destBeg.

• reverse_copy() returns the position after the last copied element in the destination range (the

first element that is not overwritten).

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• Lists provide an equivalent member function, reverse(), which offers better performance be-

cause it relinks pointers instead of assigning element values (see Section 8.8.1, page 423).

• Complexity: linear (numElems/2 swaps or numElems assignments, respectively).

The following program demonstrates how to use reverse() and reverse_copy():

// algo/reverse1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// reverse order of elements

reverse (coll.begin(), coll.end());

PRINT_ELEMENTS(coll,"coll: ");

584 Chapter 11: STL Algorithms

// reverse order from second to last element but one

reverse (coll.begin()+1, coll.end()-1);

PRINT_ELEMENTS(coll,"coll: ");

// print all of them in reverse order

reverse_copy (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

}

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

coll: 9 8 7 6 5 4 3 2 1

coll: 9 2 3 4 5 6 7 8 1

1 8 7 6 5 4 3 2 9

11.8.2 Rotating Elements

Rotating Elements inside a Sequence

ForwardIterator

rotate (ForwardIterator beg, ForwardIterator newBeg, ForwardIterator end)

• Rotates elements in the range [beg,end) so that *newBeg is the new first element after the call.

• Since C++11, returns beg+(end-newbeg), which is the new position of the first element. Before

C++11, the return type was void.

• The caller must ensure that newBeg is a valid position in the range [beg,end); otherwise, the call

results in undefined behavior.

• Complexity: linear (at most, numElems swaps).

The following program demonstrates how to use rotate():

// algo/rotate1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

11.8 Mutating Algorithms 585

// rotate one element to the left

rotate (coll.begin(), // beginning of range

coll.begin() + 1, // new first element

coll.end()); // end of range

PRINT_ELEMENTS(coll,"one left: ");

// rotate two elements to the right

rotate (coll.begin(), // beginning of range

coll.end() - 2, // new first element

coll.end()); // end of range

PRINT_ELEMENTS(coll,"two right: ");

// rotate so that element with value 4 is the beginning

rotate (coll.begin(), // beginning of range

find(coll.begin(),coll.end(),4), // new first element

coll.end()); // end of range

PRINT_ELEMENTS(coll,"4 first: ");

}

As the example shows, you can rotate to the left with a positive offset for the beginning and rotate to

the right with a negative offset to the end. However, adding the offset to the iterator is possible only

when you have random-access iterators, as you have for vectors. Without such iterators, you must

use advance() (see the example of rotate_copy() on page 586).

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

one left: 2 3 4 5 6 7 8 9 1

two right: 9 1 2 3 4 5 6 7 8

4 first: 4 5 6 7 8 9 1 2 3

Rotating Elements While Copying

OutputIterator

rotate_copy (ForwardIterator sourceBeg, ForwardIterator newBeg,

ForwardIterator sourceEnd,

OutputIterator destBeg)

• Is a combination of copy() and rotate().

• Copies the elements of the source range [sourceBeg,sourceEnd) into the destination range start-

ing with destBeg in rotated order so that *newBeg is the new first element.

• Returns destBeg+(sourceEnd-sourceBeg), which is the position after the last copied element in

the destination range.

• The caller must ensure that newBeg is an element in the range [beg,end); otherwise, the call

results in undefined behavior.

586 Chapter 11: STL Algorithms

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The source and destination ranges should not overlap.

• Complexity: linear (numElems assignments).

The following program demonstrates how to use rotate_copy():

// algo/rotate2.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

set<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll);

// print elements rotated one element to the left

set<int>::const_iterator pos = next(coll.cbegin());

rotate_copy(coll.cbegin(), // beginning of source

pos, // new first element

coll.cend(), // end of source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// print elements rotated two elements to the right

pos = coll.cend();

advance(pos,-2);

rotate_copy(coll.cbegin(), // beginning of source

pos, // new first element

coll.cend(), // end of source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// print elements rotated so that element with value 4 is the beginning

rotate_copy(coll.cbegin(), // beginning of source

coll.find(4), // new first element

coll.cend(), // end of source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

}

11.8 Mutating Algorithms 587

Unlike the previous example of rotate() (see Section 11.8.2, page 584), here a set is used instead

of a vector. This has two consequences:

1. You must use advance() (see Section 9.3.1, page 441) or next() (see Section 9.3.2, page 443)

to change the value of the iterator, because bidirectional iterators do not provide operator +.

2. You should use the find() member function instead of the find() algorithm, because the for-

mer has better performance.

The program has the following output:

1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 1

8 9 1 2 3 4 5 6 7

4 5 6 7 8 9 1 2 3

11.8.3 Permuting Elements

bool

next_permutation (BidirectionalIterator beg, BidirectionalIterator end)

bool

next_permutation (BidirectionalIterator beg, BidirectionalIterator end,

BinaryPredicate op)

bool

prev_permutation (BidirectionalIterator beg, BidirectionalIterator end)

bool

prev_permutation (BidirectionalIterator beg, BidirectionalIterator end,

BinaryPredicate op)

• next_permutation() changes the order of the elements in [beg,end) according to the next

permutation.

• prev_permutation() changes the order of the elements in [beg,end) according to the previous

permutation.

• The first forms compare the elements by using operator <.

• The second forms compare the elements by using the binary predicate

op(elem1,elem2)

which should return true if elem1 is “less than” elem2.

• Both algorithms return false if the elements got the “normal” (lexicographical) order: that is,

ascending order for next_permutation() and descending order for prev_permutation().

So, to run through all permutations, you have to sort all elements (ascending or descending),

and start a loop that calls next_permutation() or prev_permutation() as long as these

algorithms return true.3 See Section 11.5.4, page 548, for an explanation of lexicographical

sorting.

• Complexity: linear (at most, numElems/2 swaps).

3 next_permutation() and prev_permutation() could also be used to sort elements in a range. You just

call them for a range as long as they return true. However, doing so would produce really bad performance.

588 Chapter 11: STL Algorithms

The following example demonstrates how next_permutation() and prev_permutation() run

through all permutations of the elements:

// algo/permutation1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,3);

PRINT_ELEMENTS(coll,"on entry: ");

// permute elements until they are sorted

// - runs through all permutations because the elements are sorted now

while (next_permutation(coll.begin(),coll.end())) {

PRINT_ELEMENTS(coll," ");

}

PRINT_ELEMENTS(coll,"afterward: ");

// permute until descending sorted

// - this is the next permutation after ascending sorting

// - so the loop ends immediately

while (prev_permutation(coll.begin(),coll.end())) {

PRINT_ELEMENTS(coll," ");

}

PRINT_ELEMENTS(coll,"now: ");

// permute elements until they are sorted in descending order

// - runs through all permutations because the elements are sorted in descending order now

while (prev_permutation(coll.begin(),coll.end())) {

PRINT_ELEMENTS(coll," ");

}

PRINT_ELEMENTS(coll,"afterward: ");

}

The program has the following output:

on entry: 1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

11.8 Mutating Algorithms 589

afterward: 1 2 3

now: 3 2 1

3 1 2

2 3 1

2 1 3

1 3 2

1 2 3

afterward: 3 2 1

11.8.4 Shuffling Elements

Shuffling Using the Random-Number Library

void

shuffle (RandomAccessIterator beg, RandomAccessIterator end,

UniformRandomNumberGenerator&& eng)

void

random_shuffle (RandomAccessIterator beg, RandomAccessIterator end)

void

random_shuffle (RandomAccessIterator beg, RandomAccessIterator end,

RandomFunc&& op)

• The first form, available since C++11, shuffles the order of the elements in the range [beg,end),
using an engine eng as introduced by the random numbers and distributions library (see Sec-

tion 17.1.2, page 912).

• The second form shuffles the order of the elements in the range [beg,end), using an implemen-

tation-defined uniform distribution random-number generator, such as the C function rand().

• The third form shuffles the order of the elements in the range [beg,end), using op. op is called

with an integral value of difference_type of the iterator:

op(max)

which should return a random number greater than or equal to zero and less than max. Thus, it

should not return max itself.

• For shuffle(), you should not pass an engine just temporarily created. See Section 17.1.1,

page 911, for details.

• Before C++11, op was declared as RandomFunc&, so you couldn’t pass a temporary value or an

ordinary function.

• Complexity: linear (numElems-1 swaps).

Note that old global C functions, such as rand(), store their local states in a static variable. However,

this has some disadvantages: For example, the random-number generator is inherently thread unsafe,

and you can’t have two independent streams of random numbers. Therefore, function objects provide

590 Chapter 11: STL Algorithms

a better solution by encapsulating their local states as one or more member variables. For this reason,

the algorithms change the state of the passed generator while generating a new random number.

The following example demonstrates how to shuffle elements by calling random_shuffle()

without passing a random-number generator or by using shuffle():

// algo/shuffle1.cpp

#include <cstdlib>

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// shuffle all elements randomly

random_shuffle (coll.begin(), coll.end());

PRINT_ELEMENTS(coll,"shuffled: ");

// sort them again

sort (coll.begin(), coll.end());

PRINT_ELEMENTS(coll,"sorted: ");

// shuffle elements with default engine

default_random_engine dre;

shuffle (coll.begin(), coll.end(), // range

dre); // random-number generator

PRINT_ELEMENTS(coll,"shuffled: ");

}

A possible (but not portable) output of the program is as follows:

coll: 1 2 3 4 5 6 7 8 9

shuffled: 8 2 4 9 5 7 3 6 1

sorted: 1 2 3 4 5 6 7 8 9

shuffled: 8 7 5 6 2 4 9 3 1

See Section 17.1, page 907, for details about engines you can pass to shuffle().

The following example demonstrates how to shuffle elements by using your own random-number

generator passed to random_shuffle():

11.8 Mutating Algorithms 591

// algo/randomshuffle1.cpp

#include <cstdlib>

#include "algostuff.hpp"

using namespace std;

class MyRandom {

public:

ptrdiff_t operator() (ptrdiff_t max) {

double tmp;

tmp = static_cast<double>(rand())

/ static_cast<double>(RAND_MAX);

return static_cast<ptrdiff_t>(tmp * max);

}

};

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

// shuffle elements with self-written random-number generator

MyRandom rd;

random_shuffle (coll.begin(), coll.end(), // range

rd); // random-number generator

PRINT_ELEMENTS(coll,"shuffled: ");

}

The call of random() uses the self-written random-number generator rd(), an object of the auxiliary

function object class MyRandom, which uses a random-number algorithm that often is better than the

usual direct call of rand().4 Note that before C++11, you couldn’t pass a temporary object as

random-number generator:

random_shuffle (coll.begin(), coll.end(),

MyRandom()); // ERROR before C++11

Again, a possible but not portable output of the program is as follows:

coll: 1 2 3 4 5 6 7 8 9

shuffled: 1 8 6 2 4 9 3 7 5

See Section 17.1.1, page 912, for some general comments about the use of rand().

4 The way MyRandom generates random numbers is introduced and described in [Stroustrup:C++].

592 Chapter 11: STL Algorithms

11.8.5 Moving Elements to the Front

ForwardIterator

partition (ForwardIterator beg, ForwardIterator end,

UnaryPredicate op)

BidirectionalIterator

stable_partition (BidirectionalIterator beg, BidirectionalIterator end,

UnaryPredicate op)

• Both algorithms move all elements in the range [beg,end) to the front, for which the unary

predicate

op(elem)

yields true.

• Both algorithms return the first position for which op() yields false.

• The difference between partition() and stable_partition() is that the algorithm

stable_partition() preserves the relative order of elements that match the criterion and those

that do not.

• You could use this algorithm to split elements into two parts according to a sorting criterion. The

nth_element() algorithm has a similar ability. See Section 11.2.2, page 514, for a discussion

of the differences between these algorithms and nth_element().

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Before C++11, partition() required bidirectional iterators instead of forward iterators and

guaranteed at most numElems/2 swaps.

• Use partition_copy() (see Section 11.8.6, page 594) to copy elements into one destination

range for fulfilling and one for not fulfilling a predicate (available since C++11).

• Complexity:

– For partition(): linear (at most numElems/2 swaps and numElems calls of op() if bidirec-

tional iterators or random-access iterators are used; at most numElems swaps if the iterators

are only forward iterators).

– For stable_partition(): linear if there is enough extra memory (numElems swaps and

calls of op()); otherwise, n-log-n (numElems calls of op() but numElems*log(numElems)

swaps).

The following program demonstrates the use of and the difference between partition() and

stable_partition():

// algo/partition1.cpp

#include "algostuff.hpp"

using namespace std;

11.8 Mutating Algorithms 593

int main()

{

vector<int> coll1;

vector<int> coll2;

INSERT_ELEMENTS(coll1,1,9);

INSERT_ELEMENTS(coll2,1,9);

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

cout << endl;

// move all even elements to the front

vector<int>::iterator pos1, pos2;

pos1 = partition(coll1.begin(), coll1.end(), // range

[](int elem){ // criterion

return elem%2==0;

});

pos2 = stable_partition(coll2.begin(), coll2.end(), // range

[](int elem){ // criterion

return elem%2==0;

});

// print collections and first odd element

PRINT_ELEMENTS(coll1,"coll1: ");

cout << "first odd element: " << *pos1 << endl;

PRINT_ELEMENTS(coll2,"coll2: ");

cout << "first odd element: " << *pos2 << endl;

}

The program has the following output:

coll1: 1 2 3 4 5 6 7 8 9

coll2: 1 2 3 4 5 6 7 8 9

coll1: 8 2 6 4 5 3 7 1 9

first odd element: 5

coll2: 2 4 6 8 1 3 5 7 9

first odd element: 1

As this example shows, stable_partition(), unlike partition(), preserves the relative order

of the even and the odd elements.

594 Chapter 11: STL Algorithms

11.8.6 Partition into Two Subranges

pair<OutputIterator1,OutputIterator2>

partition_copy (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator1 destTrueBeg, OutputIterator2 destFalseBeg,

UnaryPredicate op)

• Splits all elements in the range [beg,end) according to the predicate op() into two subranges.

• All elements for which the unary predicate

op(elem)

yields true are copied into the range starting with destTrueBeg. All elements for which the

predicate yields false are copied into the range starting with destFalseBeg.

• The algorithm returns a pair of the position after the last copied elements of the destination ranges

(the first element that is not overwritten).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• This algorithm is available since C++11.

• Use copy_if() (see Section 11.6.1, page 557) or remove_copy_if() (see Section 11.7.1,

page 577) if you need only the elements that either fulfill or do not fulfill the predicate.

• Complexity: linear (at most numElems applications of op()).

The following program demonstrates the use of partition_copy():

// algo/partitioncopy1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll = { 1, 6, 33, 7, 22, 4, 11, 33, 2, 7, 0, 42, 5 };

PRINT_ELEMENTS(coll,"coll: ");

// destination collections:

vector<int> evenColl;

vector<int> oddColl;

// copy all elements partitioned accordingly into even and odd elements

partition_copy (coll.cbegin(),coll.cend(), // source range

back_inserter(evenColl), // destination for even elements

back_inserter(oddColl), // destination for odd elements

[](int elem){ // predicate: check for even elements

return elem%2==0;

});

11.8 Mutating Algorithms 595

PRINT_ELEMENTS(evenColl,"evenColl: ");

PRINT_ELEMENTS(oddColl, "oddColl: ");

}

The program has the following output:

coll: 1 6 33 7 22 4 11 33 2 7 0 42 5

evenColl: 6 22 4 2 0 42

oddColl: 1 33 7 11 33 7 5

596 Chapter 11: STL Algorithms

11.9 Sorting Algorithms

The STL provides several algorithms to sort elements of a range. In addition to full sorting, the STL

provides variants of partial sorting. If their result is enough, you should prefer them because they

usually have better performance.

Because (forward) lists and associative and unordered containers provide no random-access ite-

rators, you can’t use these containers (as a destination) for sorting algorithms. Instead, you might

use associative containers to have elements sorted automatically. Note, however, that sorting all

elements once is usually faster than keeping them always sorted (see Section 7.12, page 394, for

details).

11.9.1 Sorting All Elements

void

sort (RandomAccessIterator beg, RandomAccessIterator end)

void

sort (RandomAccessIterator beg, RandomAccessIterator end, BinaryPredicate op)

void

stable_sort (RandomAccessIterator beg, RandomAccessIterator end)

void

stable_sort (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

• The first forms of sort() and stable_sort() sort all elements in the range [beg,end) with

operator <.

• The second forms of sort() and stable_sort() sort all elements by using the binary predicate

op(elem1,elem2)

as the sorting criterion. It should return true if elem1 is “less than” elem2.

• Note that op has to define a strict weak ordering for the values (see Section 7.7, page 314, for

details).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• The difference between sort() and stable_sort() is that stable_sort() guarantees that

the order of equal elements remains stable.

• You can’t call these algorithms for lists or forward lists, because both do not provide random-

access iterators. However, they provide a special member function to sort elements: sort() (see

Section 8.8.1, page 422).

• sort() guarantees a good performance (n-log-n) on average. However, if avoiding worst-case

performance is important, you should use partial_sort() or stable_sort(). See the dis-

cussion about sorting algorithms in Section 11.2.2, page 511.

11.9 Sorting Algorithms 597

• Complexity:

– For sort(): n-log-n on average (approximately numElems*log(numElems) comparisons

on average).

– For stable_sort(): n-log-n if there is enough extra memory (numElems*log(numElems)

comparisons); otherwise, n-log-n*log-n (numElems*log(numElems)2 comparisons).

The following example demonstrates the use of sort():

// algo/sort1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

INSERT_ELEMENTS(coll,1,9);

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"on entry: ");

// sort elements

sort (coll.begin(), coll.end());

PRINT_ELEMENTS(coll,"sorted: ");

// sorted reverse

sort (coll.begin(), coll.end(), // range

greater<int>()); // sorting criterion

PRINT_ELEMENTS(coll,"sorted >: ");

}

The program has the following output:

on entry: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

sorted: 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

sorted >: 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1

See Section 6.8.2, page 228, for an example that demonstrates how to sort according to a member of

a class.

The following program demonstrates how sort() and stable_sort() differ. The program

uses both algorithms to sort strings only according to their number of characters by using the sorting

criterion lessLength():

598 Chapter 11: STL Algorithms

// algo/sort2.cpp

#include "algostuff.hpp"

using namespace std;

bool lessLength (const string& s1, const string& s2)

{

return s1.length() < s2.length();

}

int main()

{

// fill two collections with the same elements

vector<string> coll1 = { "1xxx", "2x", "3x", "4x", "5xx", "6xxxx",

"7xx", "8xxx", "9xx", "10xxx", "11", "12",

"13", "14xx", "15", "16", "17" };

vector<string> coll2(coll1);

PRINT_ELEMENTS(coll1,"on entry:\n ");

// sort (according to the length of the strings)

sort (coll1.begin(), coll1.end(), // range

lessLength); // criterion

stable_sort (coll2.begin(), coll2.end(), // range

lessLength); // criterion

PRINT_ELEMENTS(coll1,"\nwith sort():\n ");

PRINT_ELEMENTS(coll2,"\nwith stable_sort():\n ");

}

The program has the following output:

on entry:

1xxx 2x 3x 4x 5xx 6xxxx 7xx 8xxx 9xx 10xxx 11 12 13 14xx 15 16 17

with sort():

2x 3x 4x 17 16 15 13 12 11 9xx 7xx 5xx 1xxx 8xxx 14xx 10xxx 6xxxx

with stable_sort():

2x 3x 4x 11 12 13 15 16 17 5xx 7xx 9xx 1xxx 8xxx 14xx 6xxxx 10xxx

Only stable_sort() preserves the relative order of the elements (the leading numbers tag the order

of the elements on entry).

11.9 Sorting Algorithms 599

11.9.2 Partial Sorting

void

partial_sort (RandomAccessIterator beg, RandomAccessIterator sortEnd,

RandomAccessIterator end)

void

partial_sort (RandomAccessIterator beg, RandomAccessIterator sortEnd,

RandomAccessIterator end, BinaryPredicate op)

• The first form sorts the elements in the range [beg,end) with operator <, so range [beg,sortEnd)
contains the elements in sorted order.

• The second form sorts the elements by using the binary predicate

op(elem1,elem2)

as the sorting criterion, so range [beg,sortEnd) contains the elements in sorted order.

• Note that op has to define a strict weak ordering for the values (see Section 7.7, page 314, for

details).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• Unlike sort(), partial_sort() does not sort all elements but stops the sorting once the first

elements up to sortEnd are sorted correctly. Thus, if, after sorting a sequence, you need only the

first three elements, this algorithm saves time because it does not sort the remaining elements

unnecessarily.

• If sortEnd is equal to end, partial_sort() sorts the full sequence. It has worse performance

than sort() on average but better performance in the worst case. See the discussion about

sorting algorithms in Section 11.2.2, page 511.

• Complexity: between linear and n-log-n (approximately numElems*log(numSortedElems) com-

parisons).

The following program demonstrates how to use partial_sort():

// algo/partialsort1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

INSERT_ELEMENTS(coll,3,7);

INSERT_ELEMENTS(coll,2,6);

INSERT_ELEMENTS(coll,1,5);

PRINT_ELEMENTS(coll);

600 Chapter 11: STL Algorithms

// sort until the first five elements are sorted

partial_sort (coll.begin(), // beginning of the range

coll.begin()+5, // end of sorted range

coll.end()); // end of full range

PRINT_ELEMENTS(coll);

// sort inversely until the first five elements are sorted

partial_sort (coll.begin(), // beginning of the range

coll.begin()+5, // end of sorted range

coll.end(), // end of full range

greater<int>()); // sorting criterion

PRINT_ELEMENTS(coll);

// sort all elements

partial_sort (coll.begin(), // beginning of the range

coll.end(), // end of sorted range

coll.end()); // end of full range

PRINT_ELEMENTS(coll);

}

The program has the following output:

3 4 5 6 7 2 3 4 5 6 1 2 3 4 5

1 2 2 3 3 7 6 5 5 6 4 4 3 4 5

7 6 6 5 5 1 2 2 3 3 4 4 3 4 5

1 2 2 3 3 3 4 4 4 5 5 5 6 6 7

RandomAccessIterator

partial_sort_copy (InputIterator sourceBeg, InputIterator sourceEnd,

RandomAccessIterator destBeg, RandomAccessIterator destEnd)

RandomAccessIterator

partial_sort_copy (InputIterator sourceBeg, InputIterator sourceEnd,

RandomAccessIterator destBeg, RandomAccessIterator destEnd,

BinaryPredicate op)

• Both forms are a combination of copy() and partial_sort().

• They copy elements from the source range [sourceBeg,sourceEnd) sorted into the destination

range [destBeg,destEnd).

• The number of elements that are sorted and copied is the minimum number of elements in the

source range and in the destination range.

• Both forms return the position after the last copied element in the destination range (the first

element that is not overwritten).

11.9 Sorting Algorithms 601

• If the size of the source range [sourceBeg,sourceEnd) is not smaller than the size of the des-

tination range [destBeg,destEnd), all elements are copied and sorted. Thus, the behavior is a

combination of copy() and sort().

• Note that op has to define a strict weak ordering for the values (see Section 7.7, page 314, for

details).

• Complexity: between linear and n-log-n (approximately numElems*log(numSortedElems) com-

parisons).

The following program demonstrates some examples of partial_sort_copy():

// algo/partialsort2.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll1;

vector<int> coll6(6); // initialize with 6 elements

vector<int> coll30(30); // initialize with 30 elements

INSERT_ELEMENTS(coll1,3,7);

INSERT_ELEMENTS(coll1,2,6);

INSERT_ELEMENTS(coll1,1,5);

PRINT_ELEMENTS(coll1);

// copy elements of coll1 sorted into coll6

vector<int>::const_iterator pos6;

pos6 = partial_sort_copy (coll1.cbegin(), coll1.cend(),

coll6.begin(), coll6.end());

// print all copied elements

copy (coll6.cbegin(), pos6,

ostream_iterator<int>(cout," "));

cout << endl;

// copy elements of coll1 sorted into coll30

vector<int>::const_iterator pos30;

pos30 = partial_sort_copy (coll1.cbegin(), coll1.cend(),

coll30.begin(), coll30.end(),

greater<int>());

// print all copied elements

copy (coll30.cbegin(), pos30,

ostream_iterator<int>(cout," "));

602 Chapter 11: STL Algorithms

cout << endl;

}

The program has the following output:

3 4 5 6 7 2 3 4 5 6 1 2 3 4 5

1 2 2 3 3 3

7 6 6 5 5 5 4 4 4 3 3 3 2 2 1

The destination of the first call of partial_sort_copy() has only six elements, so the algorithm

copies only six elements and returns the end of coll6. The second call of partial_sort_copy()

copies all elements of coll1 into coll30, which has enough room for them, and thus all elements

are copied and sorted.

11.9.3 Sorting According to the nth Element

void

nth_element (RandomAccessIterator beg, RandomAccessIterator nth,

RandomAccessIterator end)

void

nth_element (RandomAccessIterator beg, RandomAccessIterator nth,

RandomAccessIterator end, BinaryPredicate op)

• Both forms sort the elements in the range [beg,end), so the correct element is at the nth position,

and all elements in front are less than or equal to this element, and all elements that follow are

greater than or equal to it. Thus, you get two subsequences separated by the element at position

n, whereby each element of the first subsequence is less than or equal to each element of the

second subsequence. This is helpful if you need only the set of the n highest or lowest elements

without having all the elements sorted.

• The first form uses operator < as the sorting criterion.

• The second form uses the binary predicate

op(elem1,elem2)

as the sorting criterion.

• Note that op has to define a strict weak ordering for the values (see Section 7.7, page 314, for

details).

• Note that op should not change its state during a function call. See Section 10.1.4, page 483, for

details.

• The partition() algorithm (see Section 11.8.5, page 592) is also provided to split elements of

a sequence into two parts according to a sorting criterion. See Section 11.2.2, page 514, for a

discussion of how nth_element() and partition() differ.

• Complexity: linear on average.

The following program demonstrates how to use nth_element():

11.9 Sorting Algorithms 603

// algo/nthelement1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

INSERT_ELEMENTS(coll,3,7);

INSERT_ELEMENTS(coll,2,6);

INSERT_ELEMENTS(coll,1,5);

PRINT_ELEMENTS(coll);

// extract the four lowest elements

nth_element (coll.begin(), // beginning of range

coll.begin()+3, // element that should be sorted correctly

coll.end()); // end of range

// print them

cout << "the four lowest elements are: ";

copy (coll.cbegin(), coll.cbegin()+4,

ostream_iterator<int>(cout," "));

cout << endl;

// extract the four highest elements

nth_element (coll.begin(), // beginning of range

coll.end()-4, // element that should be sorted correctly

coll.end()); // end of range

// print them

cout << "the four highest elements are: ";

copy (coll.cend()-4, coll.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// extract the four highest elements (second version)

nth_element (coll.begin(), // beginning of range

coll.begin()+3, // element that should be sorted correctly

coll.end(), // end of range

greater<int>()); // sorting criterion

// print them

cout << "the four highest elements are: ";

604 Chapter 11: STL Algorithms

copy (coll.cbegin(), coll.cbegin()+4,

ostream_iterator<int>(cout," "));

cout << endl;

}

The program has the following output:

3 4 5 6 7 2 3 4 5 6 1 2 3 4 5

the four lowest elements are: 2 1 2 3

the four highest elements are: 5 6 7 6

the four highest elements are: 6 7 6 5

11.9.4 Heap Algorithms

In the context of sorting, a heap is used as a particular way to sort elements. It is used by heapsort.

A heap can be considered a binary tree that is implemented as a sequential collection. Heaps have

two properties:

1. The first element is always (one of) the largest.

2. You can add or remove an element in logarithmic time.

A heap is the ideal way to implement a priority queue: a queue that sorts its elements automatically

so that the “next” element always is (one of) the largest. Therefore, the heap algorithms are used by

the priority_queue container (see Section 12.3, page 641). The STL provides four algorithms to

handle a heap:

1. make_heap() converts a range of elements into a heap.

2. push_heap() adds one element to the heap.

3. pop_heap() removes the next element from the heap.

4. sort_heap() converts the heap into a sorted collection, after which it is no longer a heap.

In addition, since C++11, is_heap() and is_heap_until() are provided to check whether a

collection is a heap or to return the first element that breaks the property of a collection to be a heap

(see Section 11.5.5, page 554).

As usual, you can pass a binary predicate as the sorting criterion. The default sorting criterion is

operator <.

Heap Algorithms in Detail

void

make_heap (RandomAccessIterator beg, RandomAccessIterator end)

void

make_heap (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

11.9 Sorting Algorithms 605

• Both forms convert the elements in the range [beg,end) into a heap.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• You need these functions only to start processing a heap for more than one element (one element

automatically is a heap).

• Complexity: linear (at most, 3*numElems comparisons).

void

push_heap (RandomAccessIterator beg, RandomAccessIterator end)

void

push_heap (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

• Both forms add the last element that is in front of end to the existing heap in the range [beg,end-1)
so that the whole range [beg,end) becomes a heap.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The caller has to ensure that, on entry, the elements in the range [beg,end-1) are a heap (according

to the same sorting criterion) and that the new element immediately follows these elements.

• Complexity: logarithmic (at most, log(numElems) comparisons).

void

pop_heap (RandomAccessIterator beg, RandomAccessIterator end)

void

pop_heap (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

• Both forms move the highest element of the heap [beg,end), which is the first element, to the last

position and create a new heap from the remaining elements in the range [beg,end-1).

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The caller has to ensure that, on entry, the elements in the range [beg,end) are a heap (according

to the same sorting criterion).

• Complexity: logarithmic (at most, 2*log(numElems) comparisons).

void

sort_heap (RandomAccessIterator beg, RandomAccessIterator end)

void

sort_heap (RandomAccessIterator beg, RandomAccessIterator end,

BinaryPredicate op)

606 Chapter 11: STL Algorithms

• Both forms convert the heap [beg,end) into a sorted sequence.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• Note that after this call, the range is no longer a heap.

• The caller has to ensure that, on entry, the elements in the range [beg,end) are a heap (according

to the same sorting criterion).

• Complexity: n-log-n (at most, numElems*log(numElems) comparisons).

Example Using Heaps

The following program demonstrates how to use the different heap algorithms:

// algo/heap1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,3,7);

INSERT_ELEMENTS(coll,5,9);

INSERT_ELEMENTS(coll,1,4);

PRINT_ELEMENTS (coll, "on entry: ");

// convert collection into a heap

make_heap (coll.begin(), coll.end());

PRINT_ELEMENTS (coll, "after make_heap(): ");

// pop next element out of the heap

pop_heap (coll.begin(), coll.end());

coll.pop_back();

PRINT_ELEMENTS (coll, "after pop_heap(): ");

// push new element into the heap

coll.push_back (17);

push_heap (coll.begin(), coll.end());

PRINT_ELEMENTS (coll, "after push_heap(): ");

11.9 Sorting Algorithms 607

// convert heap into a sorted collection

// - NOTE: after the call it is no longer a heap

sort_heap (coll.begin(), coll.end());

PRINT_ELEMENTS (coll, "after sort_heap(): ");

}

The program has the following output:

on entry: 3 4 5 6 7 5 6 7 8 9 1 2 3 4

after make_heap(): 9 8 6 7 7 5 5 3 6 4 1 2 3 4

after pop_heap(): 8 7 6 7 4 5 5 3 6 4 1 2 3

after push_heap(): 17 7 8 7 4 5 6 3 6 4 1 2 3 5

after sort_heap(): 1 2 3 3 4 4 5 5 6 6 7 7 8 17

After make_heap(), the elements are sorted as a heap:

9 8 6 7 7 5 5 3 6 4 1 2 3 4

Transform the elements into a binary tree, and you’ll see that the value of each node is less than or

equal to its parent node (Figure 11.1). Both push_heap() and pop_heap() change the elements

so that the invariant of this binary tree structure — each node not greater than its parent node —

remains stable.

�

� � � � � �

�

� � �

�

�

�

Figure 11.1. Elements of a Heap as a Binary Tree

608 Chapter 11: STL Algorithms

11.10 Sorted-Range Algorithms

Sorted-range algorithms require that the source ranges have the elements sorted according to their

sorting criterion. These algorithms may have significantly better performance than similar algo-

rithms for unsorted ranges (usually logarithmic instead of linear complexity). You can use these

algorithms with iterators that are not random-access iterators. However, in this case, the algorithms

have linear complexity because they have to step through the sequence element-by-element. Never-

theless, the number of comparisons may still have logarithmic complexity.

According to the standard, calling these algorithms for sequences that are not sorted on entry

results in undefined behavior. However, for most implementations, calling these algorithms also

works for unsorted sequences. Nevertheless, to rely on this fact is not portable.

Associative and unordered containers provide special member functions for some of the search-

ing algorithms presented here. When searching for a special value or key, you should use them.

11.10.1 Searching Elements

The following algorithms search certain values in sorted ranges.

Checking Whether One Element Is Present

bool

binary_search (ForwardIterator beg, ForwardIterator end, const T& value)

bool

binary_search (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

• Both forms return whether the sorted range [beg,end) contains an element equal to value.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• To obtain the position of an element for which you are searching, use lower_bound(),

upper_bound(), or equal_range() (see pages 611 and 613).

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• Complexity: logarithmic for random-access iterators, linear otherwise (at most, log(numElems)

+ 2 comparisons; but for other than random-access iterators, the number of operations to step

through the elements is linear, making the total complexity linear).

The following program demonstrates how to use binary_search():

// algo/binarysearch1.cpp

#include "algostuff.hpp"

using namespace std;

11.10 Sorted-Range Algorithms 609

int main()

{

list<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll);

// check existence of element with value 5

if (binary_search(coll.cbegin(), coll.cend(), 5)) {

cout << "5 is present" << endl;

}

else {

cout << "5 is not present" << endl;

}

// check existence of element with value 42

if (binary_search(coll.cbegin(), coll.cend(), 42)) {

cout << "42 is present" << endl;

}

else {

cout << "42 is not present" << endl;

}

}

The program has the following output:

1 2 3 4 5 6 7 8 9

5 is present

42 is not present

Checking Whether Several Elements Are Present

bool

includes (InputIterator1 beg, InputIterator1 end,

InputIterator2 searchBeg, InputIterator2 searchEnd)

bool

includes (InputIterator1 beg, InputIterator1 end,

InputIterator2 searchBeg, InputIterator2 searchEnd,

BinaryPredicate op)

• Both forms return whether the sorted range [beg,end) contains all elements in the sorted range

[searchBeg,searchEnd). That is, for each element in [searchBeg,searchEnd), there must be an

equal element in [beg,end). If elements in [searchBeg,searchEnd) are equal, [beg,end) must con-

tain the same number of elements. Thus, [searchBeg,searchEnd) must be a subset of [beg,end).

610 Chapter 11: STL Algorithms

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The caller has to ensure that both ranges are sorted according to the same sorting criterion on

entry.

• Complexity: linear (at most, 2*(numElems+numSearchElems) - 1 comparisons).

The following program demonstrates the usage of includes():

// algo/includes1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

vector<int> search;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll,"coll: ");

search.push_back(3);

search.push_back(4);

search.push_back(7);

PRINT_ELEMENTS(search,"search: ");

// check whether all elements in search are also in coll

if (includes (coll.cbegin(), coll.cend(),

search.cbegin(), search.cend())) {

cout << "all elements of search are also in coll"

<< endl;

}

else {

cout << "not all elements of search are also in coll"

<< endl;

}

}

The program has the following output:

coll: 1 2 3 4 5 6 7 8 9

search: 3 4 7

all elements of search are also in coll

11.10 Sorted-Range Algorithms 611

Searching First or Last Possible Position

ForwardIterator

lower_bound (ForwardIterator beg, ForwardIterator end, const T& value)

ForwardIterator

lower_bound (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

ForwardIterator

upper_bound (ForwardIterator beg, ForwardIterator end, const T& value)

ForwardIterator

upper_bound (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

• lower_bound() returns the position of the first element that has a value equal to or greater than

value. This is the first position where an element with value value could get inserted without

breaking the sorting of the range [beg,end).

• upper_bound() returns the position of the first element that has a value greater than value. This

is the last position where an element with value value could get inserted without breaking the

sorting of the range [beg,end).

• All algorithms return end if there is no such value.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• To obtain the result from both lower_bound() and upper_bound(), use equal_range(),

which returns both (see the next algorithm).

• Associative containers provide equivalent member functions that provide better performance (see

Section 8.3.3, page 405).

• Complexity: logarithmic for random-access iterators, linear otherwise (at most, log(numElems)

+ 1 comparisons; but for other than random-access iterators, the number of operations to step

through the elements is linear, making the total complexity linear).

The following program demonstrates how to use lower_bound() and upper_bound():

// algo/bounds1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

612 Chapter 11: STL Algorithms

INSERT_ELEMENTS(coll,1,9);

INSERT_ELEMENTS(coll,1,9);

coll.sort ();

PRINT_ELEMENTS(coll);

// print first and last position 5 could get inserted

auto pos1 = lower_bound (coll.cbegin(), coll.cend(),

5);

auto pos2 = upper_bound (coll.cbegin(), coll.cend(),

5);

cout << "5 could get position "

<< distance(coll.cbegin(),pos1) + 1

<< " up to "

<< distance(coll.cbegin(),pos2) + 1

<< " without breaking the sorting" << endl;

// insert 3 at the first possible position without breaking the sorting

coll.insert (lower_bound(coll.begin(),coll.end(),

3),

3);

// insert 7 at the last possible position without breaking the sorting

coll.insert (upper_bound(coll.begin(),coll.end(),

7),

7);

PRINT_ELEMENTS(coll);

}

The program has the following output:

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

5 could get position 9 up to 11 without breaking the sorting

1 1 2 2 3 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9

pos1 and pos2 have type

list<int>::const_iterator

11.10 Sorted-Range Algorithms 613

Searching First and Last Possible Positions

pair<ForwardIterator,ForwardIterator>

equal_range (ForwardIterator beg, ForwardIterator end, const T& value)

pair<ForwardIterator,ForwardIterator>

equal_range (ForwardIterator beg, ForwardIterator end, const T& value,

BinaryPredicate op)

• Both forms return the range of elements that is equal to value. The range comprises the first and

the last position an element with value value could get inserted without breaking the sorting of

the range [beg,end).

• This is equivalent to:

make_pair(lower_bound(...),upper_bound(...))

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• Associative and unordered containers provide an equivalent member function that has better

performance (see Section 8.3.3, page 406).

• Complexity: logarithmic for random-access iterators, linear otherwise (at most, 2*log(num-

Elems) + 1 comparisons; but for other than random-access iterators, the number of operations to

step through the elements is linear, making the total complexity linear).

The following program demonstrates how to use equal_range():

// algo/equalrange1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

INSERT_ELEMENTS(coll,1,9);

INSERT_ELEMENTS(coll,1,9);

coll.sort ();

PRINT_ELEMENTS(coll);

// print first and last position 5 could get inserted

pair<list<int>::const_iterator,list<int>::const_iterator> range;

range = equal_range (coll.cbegin(), coll.cend(),

5);

614 Chapter 11: STL Algorithms

cout << "5 could get position "

<< distance(coll.cbegin(),range.first) + 1

<< " up to "

<< distance(coll.cbegin(),range.second) + 1

<< " without breaking the sorting" << endl;

}

The program has the following output:

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

5 could get position 9 up to 11 without breaking the sorting

11.10.2 Merging Elements

The following algorithms merge elements of two ranges. The algorithms process the sum, the union,

the intersection, and so on.

Processing the Sum of Two Sorted Sets

OutputIterator

merge (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg)

OutputIterator

merge (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg, BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End) and

[source2Beg,source2End) so that the destination range starting with destBeg contains all ele-

ments that are in the first source range plus those that are in the second source range. For example,

calling merge() for

1 2 2 4 6 7 7 9

and

2 2 2 3 6 6 8 9

results in

1 2 2 2 2 2 3 4 6 6 6 7 7 8 9 9

• All elements in the destination range are in sorted order.

• Both forms return the position after the last copied element in the destination range (the first

element that is not overwritten).

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.

11.10 Sorted-Range Algorithms 615

• According to the standard, the caller has to ensure that both source ranges are sorted on entry.

However, in most implementations, this algorithm also merges elements of two unsorted source

ranges into an unsorted destination range. Nevertheless, for unsorted ranges, you should call

copy() twice, instead of merge(), to be portable.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The destination range should not overlap the source ranges.

• Lists and forward lists provide a special member function, merge(), to merge the elements of

two lists (see Section 8.8.1, page 423).

• To ensure that elements that are in both source ranges end up in the destination range only once,

use set_union() (see page 616).

• To process only the elements that are in both source ranges, use set_intersection() (see

page 617).

• Complexity: linear (at most, numElems1+numElems2-1 comparisons).

The following example demonstrates how to use merge():

// algo/merge1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll1;

set<int> coll2;

// fill both collections with some sorted elements

INSERT_ELEMENTS(coll1,1,6);

INSERT_ELEMENTS(coll2,3,8);

PRINT_ELEMENTS(coll1,"coll1: ");

PRINT_ELEMENTS(coll2,"coll2: ");

// print merged sequence

cout << "merged: ";

merge (coll1.cbegin(), coll1.cend(),

coll2.cbegin(), coll2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

}

The program has the following output:

coll1: 1 2 3 4 5 6

coll2: 3 4 5 6 7 8

merged: 1 2 3 3 4 4 5 5 6 6 7 8

616 Chapter 11: STL Algorithms

See page 620 for another example. It demonstrates how the various algorithms that are provided to

combine sorted sequences differ.

Processing the Union of Two Sorted Sets

OutputIterator

set_union (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg)

OutputIterator

set_union (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg, BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End) and

[source2Beg,source2End) so that the destination range starting with destBeg contains all ele-

ments that are in the first source range, in the second source range, or in both. For example,

calling set_union() for

1 2 2 4 6 7 7 9

and

2 2 2 3 6 6 8 9

results in

1 2 2 2 3 4 6 6 7 7 8 9

• All elements in the destination range are in sorted order.

• Elements that are in both ranges are in the union range only once. However, duplicates are pos-

sible if elements occur more than once in one of the source ranges. The number of occurrences

of equal elements in the destination range is the maximum of the number of their occurrences in

both source ranges.

• Both forms return the position after the last copied element in the destination range (the first

element that is not overwritten).

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The destination range should not overlap the source ranges.

• To obtain all elements of both source ranges without removing elements that are in both, use

merge() (see page 614).

• Complexity: linear (at most, 2*(numElems1+numElems2) - 1 comparisons).

See page 620 for an example of the use of set_union(). This example also demonstrates how it

differs from other algorithms that combine elements of two sorted sequences.

11.10 Sorted-Range Algorithms 617

Processing the Intersection of Two Sorted Sets

OutputIterator

set_intersection (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg)

OutputIterator

set_intersection (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg, BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End) and

[source2Beg,source2End) so that the destination range starting with destBeg contains all ele-

ments that are in both source ranges. For example, calling set_intersection() for

1 2 2 4 6 7 7 9

and

2 2 2 3 6 6 8 9

results in

2 2 6 9

• All elements in the destination range are in sorted order.

• Duplicates are possible if elements occur more than once in both source ranges. The number of

occurrences of equal elements in the destination range is the minimum number of their occur-

rences in both source ranges.

• Both forms return the position after the last merged element in the destination range.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The destination range should not overlap the source ranges.

• Complexity: linear (at most, 2*(numElems1+numElems2) - 1 comparisons).

See page 620 for an example of the use of set_intersection(). This example also demonstrates

how it differs from other algorithms that combine elements of two sorted sequences.

618 Chapter 11: STL Algorithms

Processing the Difference of Two Sorted Sets

OutputIterator

set_difference (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg)

OutputIterator

set_difference (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg, BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End) and

[source2Beg,source2End) so that the destination range starting with destBeg contains all ele-

ments that are in the first source range but not in the second source range. For example, calling

set_difference() for

1 2 2 4 6 7 7 9

and

2 2 2 3 6 6 8 9

results in

1 4 7 7

• All elements in the destination range are in sorted order.

• Duplicates are possible if elements occur more than once in the first source range. The number

of occurrences of equal elements in the destination range is the difference between the number

of their occurrences in the first source range less the number of occurrences in the second source

range. If there are more occurrences in the second source range, the number of occurrences in

the destination range is zero.

• Both forms return the position after the last merged element in the destination range.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The destination range should not overlap the source ranges.

• Complexity: linear (at most, 2*(numElems1+numElems2) - 1 comparisons).

See page 620 for an example of the use of set_difference(). This example also demonstrates

how it differs from other algorithms that combine elements of two sorted sequences.

11.10 Sorted-Range Algorithms 619

OutputIterator

set_symmetric_difference (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg)

OutputIterator

set_symmetric_difference (InputIterator source1Beg, InputIterator source1End,

InputIterator source2Beg, InputIterator source2End,

OutputIterator destBeg, BinaryPredicate op)

• Both forms merge the elements of the sorted source ranges [source1Beg,source1End) and

[source2Beg,source2End) so that the destination range starting with destBeg contains all ele-

ments that are either in the first source range or in the second source range but not in both. For

example, calling set_symmetric_difference() for

1 2 2 4 6 7 7 9

and

2 2 2 3 6 6 8 9

results in

1 2 3 4 6 7 7 8

• All elements in the destination range are in sorted order.

• Duplicates are possible if elements occur more than once in one of the source ranges. The number

of occurrences of equal elements in the destination range is the difference between the number

of their occurrences in the source ranges.

• Both forms return the position after the last merged element in the destination range.

• op is an optional binary predicate to be used as the sorting criterion:

op(elem1,elem2)

• The source ranges are not modified.

• The caller has to ensure that the ranges are sorted according to the sorting criterion on entry.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• The destination range should not overlap the source ranges.

• Complexity: linear (at most, 2*(numElems1+numElems2) - 1 comparisons).

See the following subsection for an example of the use of set_symmetric_difference(). This

example also demonstrates how it differs from other algorithms that combine elements of two sorted

sequences.

620 Chapter 11: STL Algorithms

Example of All Merging Algorithms

The following example compares the various algorithms that combine elements of two sorted source

ranges, demonstrating how they work and differ:

// algo/sorted1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> c1 = { 1, 2, 2, 4, 6, 7, 7, 9 };

deque<int> c2 = { 2, 2, 2, 3, 6, 6, 8, 9 };

// print source ranges

cout << "c1: " ;

copy (c1.cbegin(), c1.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

cout << "c2: " ;

copy (c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << ’\n’ << endl;

// sum the ranges by using merge()

cout << "merge(): ";

merge (c1.cbegin(), c1.cend(),

c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// unite the ranges by using set_union()

cout << "set_union(): ";

set_union (c1.cbegin(), c1.cend(),

c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// intersect the ranges by using set_intersection()

cout << "set_intersection(): ";

11.10 Sorted-Range Algorithms 621

set_intersection (c1.cbegin(), c1.cend(),

c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// determine elements of first range without elements of second range

// by using set_difference()

cout << "set_difference(): ";

set_difference (c1.cbegin(), c1.cend(),

c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

// determine difference the ranges with set_symmetric_difference()

cout << "set_symmetric_difference(): ";

set_symmetric_difference (c1.cbegin(), c1.cend(),

c2.cbegin(), c2.cend(),

ostream_iterator<int>(cout," "));

cout << endl;

}

The program has the following output:

c1: 1 2 2 4 6 7 7 9

c2: 2 2 2 3 6 6 8 9

merge(): 1 2 2 2 2 2 3 4 6 6 6 7 7 8 9 9

set_union(): 1 2 2 2 3 4 6 6 7 7 8 9

set_intersection(): 2 2 6 9

set_difference(): 1 4 7 7

set_symmetric_difference(): 1 2 3 4 6 7 7 8

622 Chapter 11: STL Algorithms

Merging Consecutive Sorted Ranges

void

inplace_merge (BidirectionalIterator beg1, BidirectionalIterator end1beg2,

BidirectionalIterator end2)

void

inplace_merge (BidirectionalIterator beg1, BidirectionalIterator end1beg2,

BidirectionalIterator end2, BinaryPredicate op)

• Both forms merge the consecutive sorted source ranges [beg1,end1beg2) and [end1beg2,end2)
so that the range [beg1,end2) contains the elements as a sorted summary range.

• Complexity: linear (numElems-1 comparisons) if enough memory available, or n-log-n other-

wise (numElems*log(numElems) comparisons).

The following program demonstrates the use of inplace_merge():

// algo/inplacemerge1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

list<int> coll;

// insert two sorted sequences

INSERT_ELEMENTS(coll,1,7);

INSERT_ELEMENTS(coll,1,8);

PRINT_ELEMENTS(coll);

// find beginning of second part (element after 7)

list<int>::iterator pos;

pos = find (coll.begin(), coll.end(), // range

7); // value

++pos;

// merge into one sorted range

inplace_merge (coll.begin(), pos, coll.end());

PRINT_ELEMENTS(coll);

}

The program has the following output:

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

11.11 Numeric Algorithms 623

11.11 Numeric Algorithms

This section presents the STL algorithms that are provided for numeric processing. However, you

can process other than numeric values. For example, you can use accumulate() to process the sum

of several strings. To use the numeric algorithms, you have to include the header file <numeric>:

#include <numeric>

11.11.1 Processing Results

Computing the Result of One Sequence

T

accumulate (InputIterator beg, InputIterator end,

T initValue)

T

accumulate (InputIterator beg, InputIterator end,

T initValue, BinaryFunc op)

• The first form computes and returns the sum of initValue and all elements in the range [beg,end).
In particular, it calls the following for each element:

initValue = initValue + elem

• The second form computes and returns the result of calling op for initValue and all elements in

the range [beg,end). In particular, it calls the following for each element:

initValue = op(initValue,elem)

• Thus, for the values

a1 a2 a3 a4 ...

they compute and return either

initValue + a1 + a2 + a3 + ...

or

initValue op a1 op a2 op a3 op ...

respectively.

• If the range is empty (beg==end), both forms return initValue.

• op must not modify the passed arguments.

• Complexity: linear (numElems calls of operator + or op(), respectively).

The following program demonstrates how to use accumulate() to process the sum and the product

of all elements of a range:

// algo/accumulate1.cpp

#include "algostuff.hpp"

using namespace std;

624 Chapter 11: STL Algorithms

int main()

{

vector<int> coll;

INSERT_ELEMENTS(coll,1,9);

PRINT_ELEMENTS(coll);

// process sum of elements

cout << "sum: "

<< accumulate (coll.cbegin(), coll.cend(), // range

0) // initial value

<< endl;

// process sum of elements less 100

cout << "sum: "

<< accumulate (coll.cbegin(), coll.cend(), // range

-100) // initial value

<< endl;

// process product of elements

cout << "product: "

<< accumulate (coll.cbegin(), coll.cend(), // range

1, // initial value

multiplies<int>()) // operation

<< endl;

// process product of elements (use 0 as initial value)

cout << "product: "

<< accumulate (coll.cbegin(), coll.cend(), // range

0, // initial value

multiplies<int>()) // operation

<< endl;

}

The program has the following output:

1 2 3 4 5 6 7 8 9

sum: 45

sum: -55

product: 362880

product: 0

The last output is 0 because any value multiplied by zero is zero.

11.11 Numeric Algorithms 625

Computing the Inner Product of Two Sequences

T

inner_product (InputIterator1 beg1, InputIterator1 end1,

InputIterator2 beg2, T initValue)

T

inner_product (InputIterator1 beg1, InputIterator1 end1,

InputIterator2 beg2, T initValue,

BinaryFunc op1, BinaryFunc op2)

• The first form computes and returns the inner product of initValue and all elements in the range

[beg,end) combined with the elements in the range starting with beg2. In particular, it calls the

following for all corresponding elements:

initValue = initValue + elem1 * elem2

• The second form computes and returns the result of calling op for initValue and all elements in

the range [beg,end) combined with the elements in the range starting with beg2. In particular, it

calls the following for all corresponding elements:

initValue = op1(initValue,op2(elem1,elem2))

• Thus, for the values

a1 a2 a3 ...

b1 b2 b3 ...

they compute and return either

initValue + (a1 * b1) + (a2 * b2) + (a3 * b3) + ...

or

initValue op1 (a1 op2 b1) op1 (a2 op2 b2) op1 (a3 op2 b3) op1 ...

respectively.

• If the first range is empty (beg1==end1), both forms return initValue.

• The caller has to ensure that the range starting with beg2 contains enough elements.

• op1 and op2 must not modify their arguments.

• Complexity: linear (numElems calls of operators + and * or numElems calls of op1() and op2(),

respectively).

The following program demonstrates how to use inner_product(). It processes the sum of prod-

ucts and the product of the sums for two sequences:

// algo/innerproduct1.cpp

#include "algostuff.hpp"

using namespace std;

626 Chapter 11: STL Algorithms

int main()

{

list<int> coll;

INSERT_ELEMENTS(coll,1,6);

PRINT_ELEMENTS(coll);

// process sum of all products

// (0 + 1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6)

cout << "inner product: "

<< inner_product (coll.cbegin(), coll.cend(), // first range

coll.cbegin(), // second range

0) // initial value

<< endl;

// process sum of 1*6 ... 6*1

// (0 + 1*6 + 2*5 + 3*4 + 4*3 + 5*2 + 6*1)

cout << "inner reverse product: "

<< inner_product (coll.cbegin(), coll.cend(), // first range

coll.crbegin(), // second range

0) // initial value

<< endl;

// process product of all sums

// (1 * 1+1 * 2+2 * 3+3 * 4+4 * 5+5 * 6+6)

cout << "product of sums: "

<< inner_product (coll.cbegin(), coll.cend(), // first range

coll.cbegin(), // second range

1, // initial value

multiplies<int>(), // outer operation

plus<int>()) // inner operation

<< endl;

}

The program has the following output:

1 2 3 4 5 6

inner product: 91

inner reverse product: 56

product of sums: 46080

11.11 Numeric Algorithms 627

11.11.2 Converting Relative and Absolute Values

The following two algorithms enable you to convert a sequence of relative values into a sequence of

absolute values, and vice versa.

Converting Relative Values into Absolute Values

OutputIterator

partial_sum (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg)

OutputIterator

partial_sum (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg, BinaryFunc op)

• The first form computes the partial sum for each element in the source range [sourceBeg,
sourceEnd) and writes each result to the destination range starting with destBeg.

• The second form calls op for each element in the source range [sourceBeg,sourceEnd) combined

with all previous values and writes each result to the destination range starting with destBeg.

• Thus, for the values

a1 a2 a3 ...

they compute either

a1, a1 + a2, a1 + a2 + a3, ...

or

a1, a1 op a2, a1 op a2 op a3, ...

respectively.

• Both forms return the position after the last written value in the destination range (the first ele-

ment that is not overwritten).

• The first form is equivalent to the conversion of a sequence of relative values into a sequence

of absolute values. In this regard, algorithm partial_sum() is the complement of algorithm

adjacent_difference() (see page 628).

• The source and destination ranges may be identical.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• op should not modify the passed arguments.

• Complexity: linear (numElems calls of operator + or op(), respectively).

The following program demonstrates some examples of using partial_sum():

// algo/partialsum1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll;

628 Chapter 11: STL Algorithms

INSERT_ELEMENTS(coll,1,6);

PRINT_ELEMENTS(coll);

// print all partial sums

partial_sum (coll.cbegin(), coll.cend(), // source range

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// print all partial products

partial_sum (coll.cbegin(), coll.cend(), // source range

ostream_iterator<int>(cout," "), // destination

multiplies<int>()); // operation

cout << endl;

}

The program has the following output:

1 2 3 4 5 6

1 3 6 10 15 21

1 2 6 24 120 720

See also the example of converting relative values into absolute values, and vice versa, on page 630.

Converting Absolute Values into Relative Values

OutputIterator

adjacent_difference (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg)

OutputIterator

adjacent_difference (InputIterator sourceBeg, InputIterator sourceEnd,

OutputIterator destBeg, BinaryFunc op)

• The first form computes the difference of each element in the range [sourceBeg,sourceEnd) with

its predecessor and writes the result to the destination range starting with destBeg.

• The second form calls op for each element in the range [sourceBeg,sourceEnd) with its prede-

cessor and writes the result to the destination range starting with destBeg.

• The first element only is copied.

• Thus, for the values

a1 a2 a3 a4 ...

they compute and write either the values

a1, a2 - a1, a3 - a2, a4 - a3, ...

or the values

a1, a2 op a1, a3 op a2, a4 op a3, ...

respectively.

11.11 Numeric Algorithms 629

• Both forms return the position after the last written value in the destination range (the first ele-

ment that is not overwritten).

• The first form is equivalent to the conversion of a sequence of absolute values into a sequence

of relative values. In this regard, algorithm adjacent_difference() is the complement of

algorithm partial_sum() (see page 627).

• The source and destination ranges may be identical.

• The caller must ensure that the destination range is big enough or that insert iterators are used.

• op should not modify the passed arguments.

• Complexity: linear (numElems-1 calls of operator - or op(), respectively).

The following program demonstrates some examples of using adjacent_difference():

// algo/adjacentdiff1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

deque<int> coll;

INSERT_ELEMENTS(coll,1,6);

PRINT_ELEMENTS(coll);

// print all differences between elements

adjacent_difference (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," ")); // destination

cout << endl;

// print all sums with the predecessors

adjacent_difference (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

plus<int>()); // operation

cout << endl;

// print all products between elements

adjacent_difference (coll.cbegin(), coll.cend(), // source

ostream_iterator<int>(cout," "), // destination

multiplies<int>()); // operation

cout << endl;

}

630 Chapter 11: STL Algorithms

The program has the following output:

1 2 3 4 5 6

1 1 1 1 1 1

1 3 5 7 9 11

1 2 6 12 20 30

See also the example of converting relative values into absolute values, and vice versa, in the next

subsection.

Example of Converting Relative Values into Absolute Values

The following example demonstrates how to use partial_sum() and adjacent_difference()

to convert a sequence of relative values into a sequence of absolute values, and vice versa:

// algo/relabs1.cpp

#include "algostuff.hpp"

using namespace std;

int main()

{

vector<int> coll = { 17, -3, 22, 13, 13, -9 };

PRINT_ELEMENTS(coll,"coll: ");

// convert into relative values

adjacent_difference (coll.cbegin(), coll.cend(), // source

coll.begin()); // destination

PRINT_ELEMENTS(coll,"relative: ");

// convert into absolute values

partial_sum (coll.cbegin(), coll.cend(), // source

coll.begin()); // destination

PRINT_ELEMENTS(coll,"absolute: ");

}

The program has the following output:

coll: 17 -3 22 13 13 -9

relative: 17 -20 25 -9 0 -22

absolute: 17 -3 22 13 13 -9

Chapter 12

Special Containers

The C++ standard library provides not only the containers for the STL framework but also some

containers that fit some special needs and provide simple, almost self-explanatory, interfaces. You

can group these containers into either the so-called container adapters, which adapt standard STL

containers to fit special needs, or a bitset, which is a containers for bits or Boolean values.

There are three standard container adapters: stacks, queues, and priority queues. In priority

queues, the elements are sorted automatically according to a sorting criterion. Thus, the “next”

element of a priority queue is the element with the “highest” value.

A bitset is a bitfield with an arbitrary but fixed number of bits. Note that the C++ standard library

also provides a special container with a variable size for Boolean values: vector<bool>. It is

described in Section 7.3.6, page 281.

Recent Changes with C++11

C++98 specified almost all features of the container adapters. Here is a list of the most important

features added with C++11:

• Container adapters now provide type definitions for reference and const_reference (see

Section 12.4.1, page 645).

• Container adapters now support move semantics and rvalue references:

– push() provides move semantics now (see Section 12.1.2, page 634, and Section 12.4.4,

page 647).

– Initial containers can be moved now (see Section 12.4.2, page 646).

• Container adapters provide the emplace() feature, which internally creates a new element ini-

tialized by the passed arguments (see Section 12.1.2, page 634, and Section 12.4.4, page 647).

• Container adapters now provide swap() (see Section 12.4.4, page 649).

• Constructor adapters now allow you to pass a specific allocator to their constructors (see Sec-

tion 12.4.2, page 646).

632 Chapter 12: Special Containers

12.1 Stacks

The class stack<> implements a stack (also known as LIFO). With push(), you can insert any

number of elements into the stack (Figure 12.1). With pop(), you can remove the elements in the

opposite order in which they were inserted (“last in, first out”).

pop()

push()

top()

stack

Figure 12.1. Interface of a Stack

To use a stack, you have to include the header file <stack>:

#include <stack>

In <stack>, the class stack is defined as follows:

namespace std {

template <typename T,

typename Container = deque<T>>

class stack;

}

The first template parameter is the type of the elements. The optional second template parameter

defines the container that the stack uses internally for its elements. The default container is a deque.

It was chosen because, unlike vectors, deques free their memory when elements are removed and

don’t have to copy all elements on reallocation (see Section 7.12, page 392, for a discussion of when

to use which container).

For example, the following declaration defines a stack of integers:

std::stack<int> st; // integer stack

The stack implementation simply maps the operations into appropriate calls of the container that is

used internally (Figure 12.2). You can use any sequence container class that provides the member

functions back(), push_back(), and pop_back(). For example, you could also use a vector or a

list as the container for the elements:

std::stack<int,std::vector<int>> st; // integer stack that uses a vector

12.1 Stacks 633

pop()

push()

top()

stack back()

push_back() pop_back()

container (deque)

Figure 12.2. Internal Interface of a Stack

12.1.1 The Core Interface

The core interface of stacks is provided by the member functions push(), top(), and pop():

• push() inserts an element into the stack.

• top() returns the next element in the stack.

• pop() removes an element from the stack.

Note that pop() removes the next element but does not return it, whereas top() returns the next

element without removing it. Thus, you must always call both functions to process and remove the

next element from the stack. This interface is somewhat inconvenient, but it performs better if you

want only to remove the next element without processing it. Note that the behavior of top() and

pop() is undefined if the stack contains no elements. The member functions size() and empty()

are provided to check whether the stack contains elements.

If you don’t like the standard interface of stack<>, you can easily write a more convenient

interface. See Section 12.1.3, page 635, for an example.

12.1.2 Example of Using Stacks

The following program demonstrates the use of class stack<>:

// contadapt/stack1.cpp

#include <iostream>

#include <stack>

using namespace std;

int main()

{

634 Chapter 12: Special Containers

stack<int> st;

// push three elements into the stack

st.push(1);

st.push(2);

st.push(3);

// pop and print two elements from the stack

cout << st.top() << ’ ’;

st.pop();

cout << st.top() << ’ ’;

st.pop();

// modify top element

st.top() = 77;

// push two new elements

st.push(4);

st.push(5);

// pop one element without processing it

st.pop();

// pop and print remaining elements

while (!st.empty()) {

cout << st.top() << ’ ’;

st.pop();

}

cout << endl;

}

The output of the program is as follows:

3 2 4 77

Note that when using nontrivial element types, you might consider using std::move() to insert

elements that are no longer used or emplace() to let the stack internally create the element (both

available since C++11):

stack<pair<string,string>> st;

auto p = make_pair("hello","world");

st.push(move(p)); // OK, if p is not used any more

st.emplace("nico","josuttis");

12.1 Stacks 635

12.1.3 A User-Defined Stack Class

The standard class stack<> prefers speed over convenience and safety. This is not what I usually

prefer, so I have written my own stack class, which has the following two advantages:

1. pop() returns the next element.

2. pop() and top() throw exceptions when the stack is empty.

In addition, I have skipped the members that are not necessary for the ordinary stack user, such as

the comparison operations. My stack class is defined as follows:

// contadapt/Stack.hpp

/* **

* Stack.hpp

* - safer and more convenient stack class

* **/

#ifndef STACK_HPP

#define STACK_HPP

#include <deque>

#include <exception>

template <typename T>

class Stack {

protected:

std::deque<T> c; // container for the elements

public:

// exception class for pop() and top() with empty stack

class ReadEmptyStack : public std::exception {

public:

virtual const char* what() const throw() {

return "read empty stack";

}

};

// number of elements

typename std::deque<T>::size_type size() const {

return c.size();

}

// is stack empty?

bool empty() const {

return c.empty();

}

636 Chapter 12: Special Containers

// push element into the stack

void push (const T& elem) {

c.push_back(elem);

}

// pop element out of the stack and return its value

T pop () {

if (c.empty()) {

throw ReadEmptyStack();

}

T elem(c.back());

c.pop_back();

return elem;

}

// return value of next element

T& top () {

if (c.empty()) {

throw ReadEmptyStack();

}

return c.back();

}

};

#endif /* STACK_HPP */

With this stack class, the previous stack example could be written as follows:

// contadapt/stack2.cpp

#include <iostream>

#include <exception>

#include "Stack.hpp" // use special stack class

using namespace std;

int main()

{

try {

Stack<int> st;

// push three elements into the stack

st.push(1);

st.push(2);

st.push(3);

12.1 Stacks 637

// pop and print two elements from the stack

cout << st.pop() << ’ ’;

cout << st.pop() << ’ ’;

// modify top element

st.top() = 77;

// push two new elements

st.push(4);

st.push(5);

// pop one element without processing it

st.pop();

// pop and print three elements

// - ERROR: one element too many

cout << st.pop() << ’ ’;

cout << st.pop() << endl;

cout << st.pop() << endl;

}

catch (const exception& e) {

cerr << "EXCEPTION: " << e.what() << endl;

}

}

The additional final call of pop() forces an error. Unlike the standard stack class, this one throws

an exception rather than resulting in undefined behavior. The output of the program is as follows:

3 2 4 77

EXCEPTION: read empty stack

12.1.4 Class stack<> in Detail

The stack<> interface maps more or less directly to corresponding members of the container inter-

nally used. For example:

namespace std {

template <typename T, typename Container = deque<T>>

class stack {

public:

typedef typename Container::value_type value_type;

typedef typename Container::reference reference

typedef typename Container::const_reference const_reference;

typedef typename Container::size_type size_type;

typedef Container container_type;

638 Chapter 12: Special Containers

protected:

Container c; // container

public:

bool empty() const { return c.empty(); }

size_type size() const { return c.size(); }

void push(const value_type& x) { c.push_back(x); }

void push(value_type&& x) { c.push_back(move(x)); }

void pop() { c.pop_back(); }

value_type& top() { return c.back(); }

const value_type& top() const { return c.back(); }

template <typename... Args>

void emplace(Args&&... args) {

c.emplace_back(std::forward<Args>(args)...); }

void swap (stack& s) ... { swap(c,s.c); }

...

};

}

See Section 12.4, page 645, for details of the provided members and operations.

12.2 Queues

The class queue<> implements a queue (also known as FIFO). With push(), you can insert any

number of elements (Figure 12.3). With pop(), you can remove the elements in the same order in

which they were inserted (“first in, first out”). Thus, a queue serves as a classic data buffer.

pop()push()

back() front()

queue

Figure 12.3. Interface of a Queue

To use a queue, you must include the header file <queue>:

#include <queue>

12.2 Queues 639

In <queue>, the class queue is defined as follows:

namespace std {

template <typename T,

typename Container = deque<T>>

class queue;
}

The first template parameter is the type of the elements. The optional second template parameter

defines the container that the queue uses internally for its elements. The default container is a deque.

For example, the following declaration defines a queue of strings:

std::queue<std::string> buffer; // string queue

The queue implementation simply maps the operations into appropriate calls of the container that is

used internally (Figure 12.4). You can use any sequence container class that provides the member

functions front(), back(), push_back(), and pop_front(). For example, you could also use a

list as the container for the elements:

std::queue<std::string,std::list<std::string>> buffer;

pop()push()

back() front()

queue
back() front()

push_back() pop_front()

container (deque)

Figure 12.4. Internal Interface of a Queue

12.2.1 The Core Interface

The core interface of queues is provided by the member functions push(), front(), back() and

pop():

• push() inserts an element into the queue.

• front() returns the next element in the queue (the element that was inserted first).

• back() returns the last element in the queue (the element that was inserted last).

• pop() removes an element from the queue.

640 Chapter 12: Special Containers

Note that pop() removes the next element but does not return it, whereas front() and back()

return the element without removing it. Thus, you must always call front() and pop() to pro-

cess and remove the next element from the queue. This interface is somewhat inconvenient, but it

performs better if you want to only remove the next element without processing it. Note that the be-

havior of front(), back(), and pop() is undefined if the queue contains no elements. The member

functions size() and empty() are provided to check whether the queue contains elements.

If you don’t like the standard interface of queue<>, you can easily write a more convenient

interface. See Section 12.2.3, page 641, for an example.

12.2.2 Example of Using Queues

The following program demonstrates the use of class queue<>:

// contadapt/queue1.cpp

#include <iostream>

#include <queue>

#include <string>

using namespace std;

int main()

{

queue<string> q;

// insert three elements into the queue

q.push("These ");

q.push("are ");

q.push("more than ");

// read and print two elements from the queue

cout << q.front();

q.pop();

cout << q.front();

q.pop();

// insert two new elements

q.push("four ");

q.push("words!");

// skip one element

q.pop();

// read and print two elements

cout << q.front();

12.3 Priority Queues 641

q.pop();

cout << q.front() << endl;

q.pop();

// print number of elements in the queue

cout << "number of elements in the queue: " << q.size()

<< endl;

}

The output of the program is as follows:

These are four words!

number of elements in the queue: 0

12.2.3 A User-Defined Queue Class

The standard class queue<> prefers speed over convenience and safety. This is not what program-

mers always prefer. But you can easily provide your own queue class as explained according to the

user-defined stack class (see Section 12.1.3, page 635). An corresponding example is provided on

the Web site of this book in files contadapt/Queue.hpp and contadapt/queue2.cpp.

12.2.4 Class queue<> in Detail

The queue<> interface maps more or less directly to corresponding container members (see Sec-

tion 12.1.4, page 637, for the corresponding mapping of class stack<>). See Section 12.4, page 645,

for details of the provided members and operations.

12.3 Priority Queues

The class priority_queue<> implements a queue from which elements are read according to their

priority. The interface is similar to queues. That is, push() inserts an element into the queue,

whereas top() and pop() access and remove the next element (Figure 12.5). However, the next

element is not the first inserted element. Rather, it is the element that has the highest priority. Thus,

elements are partially sorted according to their value. As usual, you can provide the sorting criterion

as a template parameter. By default, the elements are sorted by using operator < in descending order.

Thus, the next element is always the “highest” element. If more than one “highest” element exists,

which element comes next is undefined.

Priority queues are defined in the same header file as ordinary queues, <queue>:

#include <queue>

642 Chapter 12: Special Containers

pop()push()

top()

priority queue

Figure 12.5. Interface of a Priority Queue

In <queue>, the class priority_queue is defined as follows:

namespace std {

template <typename T,

typename Container = vector<T>,

typename Compare = less<typename Container::value_type>>

class priority_queue;

}

The first template parameter is the type of the elements. The optional second template parameter

defines the container that the priority queue uses internally for its elements. The default container

is a vector. The optional third template parameter defines the sorting criterion used to find the next

element with the highest priority. By default, this parameter compares the elements by using operator

<. For example, the following declaration defines a priority queue of floats:

std::priority_queue<float> pbuffer; // priority queue for floats

The priority queue implementation simply maps the operations into appropriate calls of the container

that is used internally. You can use any sequence container class that provides random-access ite-

rators and the member functions front(), push_back(), and pop_back(). Random access is

necessary for sorting the elements, which is performed by the heap algorithms of the STL (see

Section 11.9.4, page 604). For example, you could also use a deque as the container for the elements:

std::priority_queue<float,std::deque<float>> pbuffer;

To define your own sorting criterion, you must pass a function, a function object, or a lambda as a

binary predicate that is used by the sorting algorithms to compare two elements (for more about sort-

ing criteria, see Section 7.7.2, page 316, and Section 10.1.1, page 476). For example, the following

declaration defines a priority queue with reverse sorting:

std::priority_queue<float,std::vector<float>,

std::greater<float>> pbuffer;

In this priority queue, the next element is always one of the elements with the lowest value.

12.3 Priority Queues 643

12.3.1 The Core Interface

The core interface of priority queues is provided by the member functions push(), top(), and

pop():

• push() inserts an element into the priority queue.

• top() returns the next element in the priority queue.

• pop() removes an element from the priority queue.

As for the other container adapters, pop() removes the next element but does not return it, whereas

top() returns the next element without removing it. Thus, you must always call both functions to

process and remove the next element from the priority queue. And, as usual, the behavior of top()

and pop() is undefined if the priority queue contains no elements. If in doubt, you must use the

member functions size() and empty().

12.3.2 Example of Using Priority Queues

The following program demonstrates the use of class priority_queue<>:

// contadapt/priorityqueue1.cpp

#include <iostream>

#include <queue>

using namespace std;

int main()

{

priority_queue<float> q;

// insert three elements into the priority queue

q.push(66.6);

q.push(22.2);

q.push(44.4);

// read and print two elements

cout << q.top() << ’ ’;

q.pop();

cout << q.top() << endl;

q.pop();

// insert three more elements

q.push(11.1);

q.push(55.5);

q.push(33.3);

644 Chapter 12: Special Containers

// skip one element

q.pop();

// pop and print remaining elements

while (!q.empty()) {

cout << q.top() << ’ ’;

q.pop();

}

cout << endl;

}

The output of the program is as follows:

66.6 44.4

33.3 22.2 11.1

As you can see, after 66.6, 22.2, and 44.4 are inserted, the program prints 66.6 and 44.4 as the

highest elements. After three other elements are inserted, the priority queue contains the elements

22.2, 11.1, 55.5, and 33.3 (in the order of insertion). The next element is skipped simply via a

call of pop(), so the final loop prints 33.3, 22.2, and 11.1 in that order.

12.3.3 Class priority_queue<> in Detail

The priority queue uses the STL’s heap algorithms:

namespace std {

template <typename T, typename Container = vector<T>,

typename Compare = less<typename Container::value_type>>

class priority_queue {

protected:

Compare comp; // sorting criterion

Container c; // container

public:

// constructors

explicit priority_queue(const Compare& cmp = Compare(),

const Container& cont = Container())

: comp(cmp), c(cont) {

make_heap(c.begin(),c.end(),comp);

}

void push(const value_type& x) {

c.push_back(x);

push_heap(c.begin(),c.end(),comp);

}

void pop() {

pop_heap(c.begin(),c.end(),comp);

12.4 Container Adapters in Detail 645

c.pop_back();

}

bool empty() const { return c.empty(); }

size_type size() const { return c.size(); }

const value_type& top() const { return c.front(); }

...

};

}

These algorithms are described in Section 11.9.4, page 604.

Note that, unlike other container adapters, no comparison operators are defined. See Section 12.4,

page 645, for details of the provided members and operations.

12.4 Container Adapters in Detail

The following subsections describe the members and operations of the container adapters stack<>,

queue<>, and priority_queue<> in detail.

12.4.1 Type Definitions

contadapt::value_type

• The type of the elements.

• It is equivalent to container::value_type.

contadapt::reference

• The type of element references.

• It is equivalent to container::reference.

• Available since C++11.

contadapt::const_reference

• The type of read-only element references.

• It is equivalent to container::const_reference.

• Available since C++11.

contadapt::size_type

• The unsigned integral type for size values.

• It is equivalent to container::size_type.

contadapt::container_type

• The type of the container.

646 Chapter 12: Special Containers

12.4.2 Constructors

contadapt::contadapt ()

• The default constructor.

• Creates an empty stack or (priority) queue.

explicit contadapt::contadapt (const Container& cont)

explicit contadapt::contadapt (Container&& cont)

• Creates a stack or queue that is initialized by the elements of cont, which has to be an object of

the container type of the container adapter.

• With the first form, all elements of cont are copied.

• With the second form, all elements of cont are moved if the passed container provides move

semantics; otherwise, they are copied (available since C++11).

• Both forms are not provided for priority_queue<>.

Since C++11, all constructors allow you to pass an allocator as additional argument, which is used

to initialize the allocator of the internal container.

12.4.3 Supplementary Constructors for Priority Queues

explicit priority_queue::priority_queue (const CompFunc& op)

• Creates an empty priority queue with op used as the sorting criterion.

• See Section 7.7.5, page 328, and Section 7.8.6, page 351, for examples that demonstrate how to

pass a sorting criterion as a constructor argument.

priority_queue::priority_queue (const CompFunc& op const Container& cont)

• Creates a priority queue that is initialized by the elements of cont and that uses op as the sorting

criterion.

• All elements of cont are copied.

priority_queue::priority_queue (InputIterator beg, InputIterator end)

• Creates a priority queue that is initialized by all elements of the range [beg,end).

• This function is a member template (see Section 3.2, page 34), so the elements of the source

range might have any type that is convertible into the element type of the container.

12.4 Container Adapters in Detail 647

priority_queue::priority_queue (InputIterator beg, InputIterator end,

const CompFunc& op)

• Creates a priority queue that is initialized by all elements of the range [beg,end) and that uses op

as the sorting criterion.

• This function is a member template (see Section 3.2, page 34), so the elements of the source

range might have any type that is convertible into the element type of the container.

• See Section 7.7.5, page 328, and Section 7.8.6, page 351, for examples that demonstrate how to

pass a sorting criterion as a constructor argument.

priority_queue::priority_queue (InputIterator beg, InputIterator end,

const CompFunc& op, const Container& cont)

• Creates a priority queue that is initialized by all elements of the container cont plus all elements

of the range [beg,end) and that uses op as the sorting criterion.

• This function is a member template (see Section 3.2, page 34), so the elements of the source

range might have any type that is convertible into the element type of the container.

Since C++11, all constructors allow you to pass an allocator as additional argument, which is used

to initialize the allocator of the internal container.

12.4.4 Operations

bool contadapt::empty () const

• Returns whether the container adapter is empty (contains no elements).

• It is equivalent to contadapt::size()==0 but might be faster.

size_type contadapt::size () const

• Returns the current number of elements.

• To check whether the container adapter is empty (contains no elements), use empty() because

it might be faster.

void contadapt::push (const value_type& elem)

void contadapt::push (value_type&& elem)

• The first form inserts a copy of elem.

• The first form moves elem if move semantics are provided; otherwise, it copies elem (available

since C++11).

void contadapt::emplace (args)

• Inserts a new element, which is initialized by the argument list args.

• Available since C++11.

648 Chapter 12: Special Containers

reference contadapt::top ()

const_reference contadapt::top () const

reference contadapt::front ()

const_reference contadapt::front () const

• All forms, if provided, return the next element.

– For a stack, both forms of top() are provided, which return the element that was inserted

last.

– For a queue, both forms of front() are provided, which return the element that was inserted

first.

– For a priority queue, only the second form of top() is provided, which yields the element

with the maximum value. If more than one element has the maximum value, it is undefined

which element it returns.

• The caller has to ensure that the container adapter contains an element (size()>0); otherwise,

the behavior is undefined.

• The forms that return a nonconstant reference allow you to modify the next element while it is in

the stack/queue. It is up to you to decide whether this is good style.

• Before C++11, the return type was (const) value_type&, which usually should be the same.

void contadapt::pop ()

• Removes the next element from the container adapter.

– For a stack, the next element is the one that was inserted last.

– For a queue, the next element is the one that was inserted first.

– For a priority queue, the next element is the one with the maximum value. If more than one

element has the maximum value, it is undefined which element it removes.

• This function has no return value. To process this next element, you must call top() or front()

first.

• The caller must ensure that the container adapter contains an element (size()>0); otherwise,

the behavior is undefined.

reference queue::back ()

const_reference queue::back () const

• Both forms return the last element of a queue. The last element is the one that was inserted after

all other elements in the queue.

• The caller must ensure that the queue contains an element (size()>0); otherwise, the behavior

is undefined.

• The first form for nonconstant queues returns a reference. Thus, you could modify the last

element while it is in the queue. It is up to you to decide whether this is good style.

• Before C++11, the return type was (const) value_type&, which usually should be the same.

• Provided for queue<> only.

12.4 Container Adapters in Detail 649

bool comparison (const contadapt& stack1, const contadapt& stack2)

• Returns the result of the comparison of two stacks or queues of the same type.

• comparison might be any of the following operators:

operators == and !=

operators <, >, <=, and >=

• Two stacks or queues are equal if they have the same number of elements and contain the same

elements in the same order (all comparisons of two corresponding elements must yield true).

• To check whether a stack or queue is less than another, the container adapters are compared

lexicographically (see Section 11.5.4, page 548).

• Not provided for priority_queue<>.

void contadapt::swap (contadapt& c)

void swap (contadapt& c1, contadapt& c2)

• Swaps the contents of *this with c or c1 with c2, respectively. For priority queues, it also swaps

the sorting criterion.

• Calls swap() for the corresponding container (see Section 8.4, page 407).

• Available since C++11.

650 Chapter 12: Special Containers

12.5 Bitsets

Bitsets model fixed-sized arrays of bits or Boolean values. They are useful to manage sets of flags,

where variables may represent any combination of flags. C and old C++ programs usually use type

long for arrays of bits and manipulate them with the bit operators, such as &, |, and ~. The class

bitset has the advantage that bitsets may contain any number of bits, and additional operations are

provided. For example, you can assign single bits and can read and write bitsets as a sequence of 0s

and 1s.

Note that you can’t change the number of bits in a bitset. The number of bits is the template

parameter. If you need a container for a variable number of bits or Boolean values, you can use the

class vector<bool> (described in Section 7.3.6, page 281).

The class bitset is defined in the header file <bitset>:

#include <bitset>

In <bitset>, the class bitset is defined as a class template, with the number of bits as the template

parameter:

namespace std {

template <size_t Bits>

class bitset;

}

In this case, the template parameter is not a type but an unsigned integral value (see Section 3.2,

page 33, for details about this language feature).

Templates with different template arguments are different types. You can compare and combine

bitsets only with the same number of bits.

Recent Changes with C++11

C++98 specified almost all features of bitsets. Here is a list of the most important features added

with C++11:

• Bitsets now can be initialized by string literals (see Section 12.5.1, page 653).

• Conversions to and from numeric values now support type unsigned long long. For this,

to_ullong() was introduced (see Section 12.5.1, page 653).

• Conversions to and from strings now allow you to specify the character interpreted as set and

unset bit.

• Member all() is now provided to check whether all bits are set.

• To use bitsets in unordered containers, a default hash function is provided (see Section 7.9.2,

page 363).

12.5 Bitsets 651

12.5.1 Examples of Using Bitsets

Using Bitsets as Sets of Flags

The first example demonstrates how to use bitsets to manage a set of flags. Each flag has a value that

is defined by an enumeration type. The value of the enumeration type is used as the position of the

bit in the bitset. In particular, the bits represent colors. Thus, each enumeration value defines one

color. By using a bitset, you can manage variables that might contain any combination of colors:

// contadapt/bitset1.cpp

#include <bitset>

#include <iostream>

using namespace std;

int main()

{

// enumeration type for the bits

// - each bit represents a color

enum Color { red, yellow, green, blue, white, black, ...,

numColors };

// create bitset for all bits/colors

bitset<numColors> usedColors;

// set bits for two colors

usedColors.set(red);

usedColors.set(blue);

// print some bitset data

cout << "bitfield of used colors: " << usedColors << endl;

cout << "number of used colors: " << usedColors.count() << endl;

cout << "bitfield of unused colors: " << ~usedColors << endl;

// if any color is used

if (usedColors.any()) {

// loop over all colors

for (int c = 0; c < numColors; ++c) {

// if the actual color is used

if (usedColors[(Color)c]) {

...

}

}

}

}

652 Chapter 12: Special Containers

Using Bitsets for I/O with Binary Representation

A useful feature of bitsets is the ability to convert integral values into a sequence of bits, and vice

versa. This is done simply by creating a temporary bitset:

// contadapt/bitset2.cpp

#include <bitset>

#include <iostream>

#include <string>

#include <limits>

using namespace std;

int main()

{

// print some numbers in binary representation

cout << "267 as binary short: "

<< bitset<numeric_limits<unsigned short>::digits>(267)

<< endl;

cout << "267 as binary long: "

<< bitset<numeric_limits<unsigned long>::digits>(267)

<< endl;

cout << "10,000,000 with 24 bits: "

<< bitset<24>(1e7) << endl;

// write binary representation into string

string s = bitset<42>(12345678).to_string();

cout << "12,345,678 with 42 bits: " << s << endl;

// transform binary representation into integral number

cout << "\"1000101011\" as number: "

<< bitset<100>("1000101011").to_ullong() << endl;

}

Depending on the number of bits for short and long long, the program might produce the follow-

ing output:

267 as binary short: 0000000100001011

267 as binary long: 00000000000000000000000100001011

10,000,000 with 24 bits: 100110001001011010000000

12,345,678 with 42 bits: 000000000000000000101111000110000101001110

"1000101011" as number: 555

12.5 Bitsets 653

In this example, the following expression converts 267 into a bitset with the number of bits of type

unsigned short (see Section 5.3, page 116, for a discussion of numeric limits):

bitset<numeric_limits<unsigned short>::digits>(267)

The output operator for bitset prints the bits as a sequence of characters 0 and 1.

You can output bitsets directly or use their value as a string:

string s = bitset<42>(12345678).to_string();

Note that before C++11, you had to write

string s = bitset<42>(12345678).to_string<char,char_traits<char>,

allocator<char> >();

here because to_string() is a member template, and there were no default values for the template

arguments defined.

Similarly, the following expression converts a sequence of binary characters into a bitset, for

which to_ullong() yields the integral value:

bitset<100>("1000101011")

Note that the number of bits in the bitset should be smaller than sizeof(unsigned long long).

The reason is that you get an exception when the value of the bitset can’t be represented as unsigned

long long.1

Note also that before C++11, you had to convert the initial value to type string explicitly:

bitset<100>(string("1000101011"))

12.5.2 Class bitset in Detail

Due to the thickness of this book, the subsection that presents the members of class bitset<>

in detail is provided as a supplementary chapter on the Web site of this book at

http://www.cppstdlib.com.

1 Before C++11, type unsigned long was not provided, so you could call only to_ulong() here.

to_ulong() is still callable if the number of bits is smaller than sizeof(unsigned long).

http://www.cppstdlib.com

This page intentionally left blank

Chapter 13

Strings

This chapter presents the string types of the C++ standard library. It describes the basic class

template basic_string<> and its standard specializations string, wstring, u16string, and

u32string.

Strings can be a source of confusion because it is not clear what the term string means. Does

it mean an ordinary character array of type char* (with or without the const qualifier)? Is it an

instance of class string<>? Or is it a general name for objects that are kinds of strings? In this

chapter, I use the term string for objects of one of the string types in the C++ standard library:

string, wstring, u16string, or u32string. For “ordinary strings” of type char* or const

char*, I use the term C-string.

Note that with C++98 the type of string literals (such as "hello") was changed into const

char*. However, to provide backward compatibility, there is an implicit but deprecated conver-

sion to char* for them. Strictly speaking, the original type of a literal such as "hello" is const

char[6]. But this type automatically converts (decays) to const char*, so you can almost always

use (and see) const char* in declarations. Nevertheless, when working with templates, the differ-

ence might matter because for reference template parameters, decay doesn’t occur unless type trait

std::decay() is used (see Section 5.4.2, page 132).

Recent Changes with C++11

C++98 specified almost all features of the string classes. Here is a list of the most important features

added with C++11:

• Strings now provide front() and back() to access the first or last element (see Section 13.2.6,

page 671) and shrink_to_fit() to shrink capacity (see Section 13.2.5, page 670).

• Strings now provide convenience functions to convert strings to numeric values and vice versa

(see Section 13.2.13, page 681).

• data() and c_str() no longer invalidate references, iterators, and pointers to strings (see Sec-

tion 13.2.6, page 672).

• Strings now support move semantics (see Section 13.2.9, page 676) and initializer lists (see

Section 13.2.8, page 675).

656 Chapter 13: Strings

• Besides string and wstring, the basic_string<> specializations u16string and u32string

are predefined now (see Section 13.2.1, page 664).

• Strings are now indirectly required to provide an end-of-string character (’\0’ for string)

because for a string s, s[s.length()] is always valid and s.data() returns the characters

including a trailing end-of-string character (see Section 13.1.2, page 662).

• Reference-counted implementations of string classes are no longer supported (see Section

13.2.16, page 692).

13.1 Purpose of the String Classes

The string classes of the C++ standard library enable you to use strings as normal types that cause

no problems for the user. Thus, you can copy, assign, and compare strings as fundamental types

without worrying about whether there is enough memory or how long the internal memory is valid.

You simply use operators, such as assignment by using =, comparison by using ==, and concatenation

by using +. In short, the string types of the C++ standard library are designed to behave as if they

were a kind of fundamental data type that does not cause any trouble (at least in principle). Modern

data processing is mostly string processing, so this is an important step for programmers coming

from C, Fortran, or similar languages in which strings are a source of trouble.

The following sections offer two examples that demonstrate the abilities and uses of the string

classes.

13.1.1 A First Example: Extracting a Temporary Filename

The first example program uses command-line arguments to generate temporary filenames. For

example, if you start the program as

string1 prog.dat mydir hello. oops.tmp end.dat

the output is

prog.dat => prog.tmp

mydir => mydir.tmp

hello. => hello.tmp

oops.tmp => oops.xxx

end.dat => end.tmp

Usually, the generated filename has the extension .tmp, whereas the temporary filename for a name

with the extension .tmp is .xxx.

The program is written in the following way:

// string/string1.cpp

#include <iostream>

#include <string>

using namespace std;

13.1 Purpose of the String Classes 657

int main (int argc, char* argv[])

{

string filename, basename, extname, tmpname;

const string suffix("tmp");

// for each command-line argument (which is an ordinary C-string)

for (int i=1; i<argc; ++i) {

// process argument as filename

filename = argv[i];

// search period in filename

string::size_type idx = filename.find(’.’);

if (idx == string::npos) {

// filename does not contain any period

tmpname = filename + ’.’ + suffix;

}

else {

// split filename into base name and extension

// - base name contains all characters before the period

// - extension contains all characters after the period

basename = filename.substr(0, idx);

extname = filename.substr(idx+1);

if (extname.empty()) {

// contains period but no extension: append tmp

tmpname = filename;

tmpname += suffix;

}

else if (extname == suffix) {

// replace extension tmp with xxx

tmpname = filename;

tmpname.replace (idx+1, extname.size(), "xxx");

}

else {

// replace any extension with tmp

tmpname = filename;

tmpname.replace (idx+1, string::npos, suffix);

}

}

// print filename and temporary name

cout << filename << " => " << tmpname << endl;

}

}

658 Chapter 13: Strings

At first, the header file for the C++ standard string classes is included:

#include <string>

As usual, these classes are declared in namespace std.

The following declaration creates four string variables:

string filename, basename, extname, tmpname;

No argument is passed, so the default constructor for string is called for their initialization. The

default constructor initializes them as empty strings.

The following declaration creates a constant string suffix that is used in the program as the

normal suffix for temporary filenames:

const string suffix("tmp");

The string is initialized by an ordinary C-string, so it has the value tmp. Note that C-strings can

be combined with objects of class string in almost any situation in which two strings can be

combined. In particular, in the entire program, every occurrence of suffix could be replaced with

"tmp" so that a C-string is used directly.

In each iteration of the for loop, the following statement assigns a new value to the string variable

filename:

filename = argv[i];

In this case, the new value is an ordinary C-string. However, it could also be another object of class

string or a single character that has type char.

The following statement searches for the first occurrence of a period inside the string filename:

string::size_type idx = filename.find(’.’);

The find() function is one of several functions that search for something inside strings. You could

also search backward, for substrings, only in a part of a string, or for more than one character

simultaneously. All these find functions return an index of the first matching position. Yes, the

return value is an integer and not an iterator. The usual interface for strings is not based on the

concept of the STL. However, some iterator support for strings is provided (see Section 13.2.14,

page 684). The return type of all find functions is string::size_type, an unsigned integral type

that is defined inside the string class.1 As usual, the index of the first character is the value 0. The

index of the last character is the value “numberOfCharacters-1.”

If the search fails, a special value is needed to return the failure. That value is npos, which is

also defined by the string class. Thus, the following line checks whether the search for the period

failed:

if (idx == string::npos)

The type and value of npos are a big pitfall for the use of strings. Be very careful that you always

use string::size_type, not int or unsigned, for the return type when you want to check the

return value of a find function. Otherwise, the comparison with string::npos might not work. See

Section 13.2.12, page 680, for details.

1 In particular, the size_type of a string depends on the memory model of the string class. See Section 13.3.13,

page 715, for details.

13.1 Purpose of the String Classes 659

If the search for the period fails in this example, the filename has no extension. In this case,

the temporary filename is the concatenation of the original filename, the period character, and the

previously defined extension for temporary files:

tmpname = filename + ’.’ + suffix;

Thus, you can simply use operator + to concatenate two strings. It is also possible to concatenate

strings with ordinary C-strings and single characters.

If the period is found, the else part is used. Here, the index of the period is used to split the

filename into a base part and the extension. This is done by the substr() member function:

basename = filename.substr(0, idx);

extname = filename.substr(idx+1);

The first parameter of the substr() function is the starting index. The optional second argument

is the number of characters, not the end index. If the second argument is not used, all remaining

characters of the string are returned as a substring.

At all places where an index and a length are used as arguments, strings behave according to the

following two rules:

1. An argument specifying the index must have a valid value. That value must be less than the

number of characters of the string (as usual, the index of the first character is 0). In addition, the

index of the position after the last character could be used to specify the end.

In most cases, a use of an index greater than the number of characters throws out_of_range.

However, all functions that search for a character or a position allow any index. If the index

exceeds the number of characters, these functions simply return string::npos (“not found”).

2. An argument specifying the number of characters could have any value. If the size is greater

than the remaining number of characters, all remaining characters are used. In particular,

string::npos always works as a synonym for “all remaining characters.”

Thus, the following expression throws an exception if the period is not found:

filename.substr(filename.find(’.’))

But the following expression does not throw an exception:

filename.substr(0, filename.find(’.’))

If the period is not found, it results in the whole filename.

Even if the period is found, the extension that is returned by substr() might be empty because

there are no more characters after the period. This is checked by

if (extname.empty())

If this condition yields true, the generated temporary filename becomes the ordinary filename that

has the normal extension appended:

tmpname = filename;

tmpname += suffix;

Here, operator += is used to append the extension.

The filename might already have the extension for temporary files. To check this, operator == is

used to compare two strings:

if (extname == suffix)

660 Chapter 13: Strings

If this comparison yields true, the normal extension for temporary files is replaced by the extension

xxx:

tmpname = filename;

tmpname.replace (idx+1, extname.size(), "xxx");

Here, the number of characters of the string extname is returned by

extname.size()

Instead of size(), you could use length(), which does exactly the same thing. So, both size()

and length() return the number of characters. In particular, size() has nothing to do with the

memory that the string uses.2

Next, after all special conditions are considered, normal processing takes place. The program

replaces the whole extension by the ordinary extension for temporary filenames:

tmpname = filename;

tmpname.replace (idx+1, string::npos, suffix);

Here, string::npos is used as a synonym for “all remaining characters.” Thus, all remaining

characters after the period are replaced with suffix. This replacement would also work if the

filename contained a period but no extension. It would simply replace “nothing” with suffix.

The statement that writes the original filename and the generated temporary filename shows that

you can print the strings by using the usual output operators of streams (surprise, surprise):

cout << filename << " => " << tmpname << endl;

13.1.2 A Second Example: Extracting Words and

Printing Them Backward

The second example extracts single words from standard input and prints the characters of each word

in reverse order. The words are separated by the usual whitespaces (newline, space, and tab) and by

commas, periods, or semicolons:

// string/string2.cpp

#include <iostream>

#include <string>

using namespace std;

int main (int argc, char** argv)

{

const string delims(" \t,.;");

string line;

2 In this case, two member functions do the same with respect to the two different design approaches that are

merged here: length() returns the length of the string, just as strlen() does for ordinary C-strings, whereas

size() is the common member function for the number of elements according to the concept of the STL.

13.1 Purpose of the String Classes 661

// for every line read successfully

while (getline(cin,line)) {

string::size_type begIdx, endIdx;

// search beginning of the first word

begIdx = line.find_first_not_of(delims);

// while beginning of a word found

while (begIdx != string::npos) {

// search end of the actual word

endIdx = line.find_first_of (delims, begIdx);

if (endIdx == string::npos) {

// end of word is end of line

endIdx = line.length();

}

// print characters in reverse order

for (int i=endIdx-1; i>=static_cast<int>(begIdx); --i) {

cout << line[i];

}

cout << ’ ’;

// search beginning of the next word

begIdx = line.find_first_not_of (delims, endIdx);

}

cout << endl;

}

}

In this program, all characters used as word separators are defined in a special string constant:

const string delims(" \t,.;");

The newline character is also used as a delimiter. However, no special processing is necessary for it

because the program reads line by line.

The outer loop runs as far as a line can be read into the string line:

string line;

while (getline(cin,line)) {

...

}

The function getline() is a special function to read input from streams into a string. It reads every

character up to the next end-of-line, which by default is the newline character. The line delimiter

itself is extracted but not appended. By passing your special line delimiter as an optional third

662 Chapter 13: Strings

character argument, you can use getline() to read token by token, where the tokens are separated

by that special delimiter.

Inside the outer loop, the individual words are searched and printed. The first statement searches

for the beginning of the first word:

begIdx = line.find_first_not_of(delims);

The find_first_not_of() function returns the first index of a character that is not part of the

passed string argument. Thus, this function returns the position of the first character that is not one of

the separators in delims. As usual for find functions, if no matching index is found, string::npos

is returned.

The inner loop iterates as long as the beginning of a word can be found:

while (begIdx != string::npos) {

...

}

The first statement of the inner loop searches for the end of the current word:

endIdx = line.find_first_of (delims, begIdx);

The find_first_of() function searches for the first occurrence of one of the characters passed as

the first argument. In this case, an optional second argument is used that specifies where to start the

search in the string. Thus, the first delimiter after the beginning of the word is searched. If no such

character is found, the end-of-line is used:

if (endIdx == string::npos) {

endIdx = line.length();

}

Here, length() is used, which does the same thing as size(): It returns the number of characters.

In the next statement, all characters of the word are printed in reverse order:

for (int i=endIdx-1; i>=static_cast<int>(begIdx); --i) {

cout << line[i];

}

Accessing a single character of the string is done with operator []. Note that this operator does

not check whether the index of the string is valid. Thus, the programmer has to ensure that the

index is valid, as was done here. A safer way to access a character is to use the at() member

function. However, such a check costs runtime, so the check is not provided for the usual accessing

of characters of a string.

Note that for operator [], the number of characters is a valid index, returning a character repre-

senting the end of the string. This end-of-string character is initialized by the default constructor of

the character type (’\0’ for class string):3

string s;

s[s.length()] // yields ’\0’

3 Before C++11, for the nonconstant version of operator [], the current number of characters was an invalid

index. Using it did result in undefined behavior.

13.2 Description of the String Classes 663

Another nasty problem results from using the index of the string. That is, if you omit the cast of

begIdx to int, this program might run in an endless loop or might crash. Similar to the first example

program, the problem is that string::size_type is an unsigned integral type. Without the cast,

the signed value i is converted automatically into an unsigned value because it is compared with a

unsigned type. In this case, the following expression always yields true if the current word starts at

the beginning of the line:

i>=begIdx

The reason is that begIdx is then 0, and any unsigned value is greater than or equal to 0. So, an

endless loop results that might get stopped by a crash due to an illegal memory access. For this

reason, I don’t like the concept of string::size_type and string::npos. See Section 13.2.12,

page 681, for a workaround that is safer, but not perfect.

The last statement of the inner loop reinitializes begIdx to the beginning of the next word, if

any:

begIdx = line.find_first_not_of (delims, endIdx);

Here, unlike with the first call of find_first_not_of() in the example, the end of the previous

word is passed as the starting index for the search. If the previous word was the rest of the line,

endIdx is the index of the end of the line. This simply means that the search starts from the end of

the string, which returns string::npos.

Let’s try this “useful and important” program. Here is some possible input:4

pots & pans

I saw a reed

deliver no pets

nametag on diaper

The output for this input is as follows:

stop & snap

I was a deer

reviled on step

gateman no repaid

13.2 Description of the String Classes

13.2.1 String Types

Header File

All types and functions for strings are defined in the header file <string>:

#include <string>

As usual, it defines all identifiers in namespace std.

4 Thanks to Sean Okeefe for providing the last two lines.

664 Chapter 13: Strings

Class Template basic_string<>

Inside <string>, class basic_string<> is defined as a basic type for all string types:

namespace std {

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_string;
}

This class is parametrized by the character type, the traits of the character type, and the memory

model:

• The first parameter is the data type of a single character.

• The optional second parameter is a traits class, which provides all core operations for the char-

acters of the string class. Such a traits class specifies how to copy or to compare characters (see

Section 16.1.4, page 853, for details). If it is not specified, the default traits class according to

the current character type is used. See Section 13.2.15, page 689, for a user-defined traits class

that lets strings behave in a case-insensitive manner.

• The third optional argument defines the memory model that is used by the string class. As

usual, the default value is the default memory model allocator (see Section 4.6, page 57, and

Chapter 19 for details).

Concrete String Types

The C++ standard library provides a couple of specializations of class basic_string<>:

• Class string is the predefined specialization of that template for characters of type char:

namespace std {

typedef basic_string<char> string;
}

• For strings that use wider character sets, such as Unicode or some Asian character sets, three

other types are predefined (u16string and u32string are provided since C++11):

namespace std {

typedef basic_string<wchar_t> wstring;

typedef basic_string<char16_t> u16string;

typedef basic_string<char32_t> u32string;
}

See Chapter 16 for details about internationalization.

In the following sections, no distinction is made between these types of strings. The usage and the

problems are the same because all string classes have the same interface. So, “string” means any

string type: string, wstring, u16string, and u32string. The examples in this book usually

use type string because the European and Anglo-American environments are the common envi-

ronments for software development.

13.2 Description of the String Classes 665

Operation Effect

constructors Create or copy a string

destructor Destroys a string

=, assign() Assign a new value

swap() Swaps values between two strings

+=, append(), push_back() Append characters

insert() Inserts characters

erase(), pop_back() Deletes characters (pop_back() since C++11)

clear() Removes all characters (empties a string)

resize() Changes the number of characters (deletes or appends

characters at the end)

replace() Replaces characters

+ Concatenates strings

==, !=, <, <=, >, >=, compare() Compare strings

empty() Returns whether the string is empty

size(), length() Return the number of characters

max_size() Returns the maximum possible number of characters

capacity() Returns the number of characters that can be held without

reallocation

reserve() Reserves memory for a certain number of characters

shrink_to_fit() Shrinks the memory for the current number of characters

(since C++11)

[], at() Access a character

front(), back() Access the first or last character (since C++11)

>>, getline() Read the value from a stream

<< Writes the value to a stream

stoi(), stol(), stoll() Convert string to signed integral value (since C++11)

stoul(), stoull() Convert string to unsigned integral value (since C++11)

stof(), stod(), stold() Convert string to floating-point value (since C++11)

to_string(), to_wstring() Convert integral/floating-point value to string (since

C++11)

copy() Copies or writes the contents to a character array

data(), c_str() Returns the value as C-string or character array

substr() Returns a certain substring

find functions Search for a certain substring or character

begin(), end() Provide normal iterator support

cbegin(), cend() Provide constant iterator support (since C++11)

rbegin(), rend() Provide reverse iterator support

crbegin(), crend() Provide constant reverse iterator support (since C++11)

get_allocator() Returns the allocator

Table 13.1. String Operations

666 Chapter 13: Strings

13.2.2 Operation Overview

Table 13.1 (see previous page) lists all operations that are provided for strings.

String Operation Arguments

Many operations are provided to manipulate strings. In particular, the operations that manipulate the

value of a string have several overloaded versions that specify the new value with one, two, or three

arguments. All these operations use the argument scheme of Table 13.2.

Arguments Interpretation

const string & str The whole string str

const string & str, size_type idx, At most, the first num characters

size_type num of str starting with index idx

const char* cstr The whole C-string cstr

const char* chars, size_type len len characters of the character

array chars

char c The character c

size_type num, char c num occurrences of character c

const_iterator beg, const_iterator end All characters in range [beg,end)

initlist All characters in initlist (since C++11)

Table 13.2. Scheme of String Operation Arguments

Note that only the single-argument version const char* handles the character ’\0’ as a special

character that terminates the string. In all other cases, ’\0’ is not a special character:

std::string s1("nico"); // initializes s1 with: ’n’ ’i’ ’c’ ’o’

std::string s2("nico",5); // initializes s2 with: ’n’ ’i’ ’c’ ’o’ ’\0’

std::string s3(5,’\0’); // initializes s3 with: ’\0’ ’\0’ ’\0’ ’\0’ ’\0’

s1.length() // yields 4

s2.length() // yields 5

s3.length() // yields 5

Thus, in general a string might contain any character. In particular, a string might contain the con-

tents of a binary file.

Passing a null pointer as cstr results in undefined behavior.

See Table 13.3 for an overview of which operation uses which kind of arguments. All operators

can handle only objects as single values. Therefore, to assign, compare, or append a part of a string

or C-string, you must use the function that has the corresponding name.

13.2 Description of the String Classes 667

Full Part of C-string char Single num Iterator Init

String String (char*) Array char chars Range list

constructors Yes Yes Yes Yes — Yes Yes Yes

= Yes — Yes — Yes — — Yes

assign() Yes Yes Yes Yes — Yes Yes Yes

+= Yes — Yes — Yes — — Yes

append() Yes Yes Yes Yes — Yes Yes Yes

push_back() — — — — Yes — — —

insert() for idx Yes Yes Yes Yes — Yes — —

insert() for iter. — — — — Yes Yes Yes Yes

replace() for idx Yes Yes Yes Yes Yes Yes — —

replace() for iter. Yes — Yes Yes — Yes Yes Yes

find functions Yes — Yes Yes Yes — — —

+ Yes — Yes — Yes — — —

==, !=, <, <=, >, >= Yes — Yes — — — — —

compare() Yes Yes Yes Yes — — — —

Table 13.3. Available Operations Having String Parameters

Operations Not Provided

The string classes of the C++ standard library do not solve every possible string problem. In fact,

they do not provide direct solutions for regular expressions and text processing. Regular expres-

sions, however, are covered by a separate library introduced with C++11 (see Chapter 14). For text

processing (capitalization, case-insensitive comparisons), see Section 13.2.14, page 684, for some

examples.

13.2.3 Constructors and Destructor

Table 13.4 lists all the constructors and the destructor for strings.

You can’t initialize a string with a single character. Instead, you must use its address or an

additional number of occurrences or the format of an initializer list (since C++11):

std::string s(’x’); // ERROR

std::string s(1,’x’); // OK, creates a string that has one character ’x’

std::string s({’x’}); // OK, ditto (since C++11)

This means that there is an automatic type conversion from type const char* but not from type

char to type string.

The initialization by a range that is specified by iterators is described in Section 13.2.14, page 684.

668 Chapter 13: Strings

Expression Effect

string s Creates the empty string s

string s(str) Copy constructor; creates a string as a copy of the

existing string str

string s(rvStr) Move constructor; creates a string and moves the

contents of rvStr to it (rvStr has a valid state with

undefined value afterward)

string s(str,stridx) Creates a string s that is initialized by the characters of

string str starting with index stridx

string s(str,stridx,strlen) Creates a string s that is initialized by, at most, strlen

characters of string str starting with index stridx

string s(cstr) Creates a string s that is initialized by the C-string cstr

string s(chars,charslen) Creates a string s that is initialized by charslen

characters of the character array chars

string s(num,c) Creates a string that has num occurrences of character c

string s(beg,end) Creates a string that is initialized by all characters of the

range [beg,end)

string s(initlist) Creates a string that is initialized by all characters in

initlist (since C++11)

s.~string() Destroys all characters and frees the memory

Table 13.4. Constructors and Destructor of Strings

13.2.4 Strings and C-Strings

In standard C++, the type of string literals was changed from char* to const char*. However, to

provide backward compatibility, there is an implicit but deprecated conversion to char* for them.

Because string literals don’t have type string, there is a strong relationship between string class

objects and ordinary C-strings: You can use ordinary C-strings in almost every situation where

strings are combined with other string-like objects (comparing, appending, inserting, etc.). In par-

ticular, there is an automatic type conversion from const char* into strings. However, there is no

automatic type conversion from a string object to a C-string. This is for safety reasons. It prevents

unintended type conversions that result in strange behavior (type char* often has strange behavior)

and ambiguities. For example, in an expression that combines a string and a C-string, it would be

possible to convert string into char* and vice versa. Instead, there are several ways to create or

write/copy in a C-string. In particular, c_str() is provided to generate the value of a string as a

C-string as a character array that has ’\0’ as its last character. By using copy(), you can copy or

write the value to an existing C-string or character array.

Note that strings do not provide a special meaning for the character ’\0’, which is used as a

special character in an ordinary C-string to mark the end of the string. The character ’\0’ may be

part of a string just like every other character.

Note also that if you use an old-style null pointer (NULL) instead of nullptr (see Section 3.1.1,

page 14) or a char* parameter, strange behavior results. The reason is that NULL has an integral type

13.2 Description of the String Classes 669

and is interpreted as the number 0 or the character with value 0 if the operation is overloaded for a

single integral type. So you should always use nullptr or char* pointers.

There are three possible ways to convert the contents of the string into a raw array of characters

or C-string:

1. data() and c_str() return the contents of the string as an array of characters. The array

includes the end-of-string character at position [size()], so for strings, the result is a valid

C-string including ’\0’.

Note that before C++11, the return type of data() was not a valid C-string, because no ’\0’

character was guaranteed to get appended.

2. copy() copies the contents of the string into a character array provided by the caller. An ’\0’

character is not appended.

Note that data() and c_str() return an array that is owned by the string. Thus, the caller must not

modify or free the memory. For example:

std::string s("12345");

atoi(s.c_str()) // convert string into integer

f(s.data(),s.length()) // call function for a character array

// and the number of characters

char buffer[100];

s.copy(buffer,100); // copy at most 100 characters of s into buffer

s.copy(buffer,100,2); // copy at most 100 characters of s into buffer

// starting with the third character of s

You usually should use strings in the whole program and convert them into C-strings or character

arrays only immediately before you need the contents as type char*. Note that the return value of

c_str() and data() is valid only until the next call of a nonconstant member function for the same

string:

std::string s;

...

foo(s.c_str()); // s.c_str() is valid during the whole statement

const char* p;

p = s.c_str(); // p refers to the contents of s as a C-string

foo(p); // OK (p is still valid)

s += "ext"; // invalidates p

foo(p); // ERROR: argument p is not valid

13.2.5 Size and Capacity

To use strings effectively and correctly, you need to understand how the size and capacity of strings

cooperate. For strings, three “sizes” exist:

670 Chapter 13: Strings

1. size() and length() are equivalent functions that return the current number of characters

of the string.5

The empty() member function is a shortcut for checking whether the number of characters

is zero. Thus, it checks whether the string is empty. Because it might be faster, you should use

empty() instead of length() or size().

2. max_size() returns the maximum number of characters a string may contain. A string typi-

cally contains all characters in a single block of memory, so there might be relevant restrictions

on PCs. Otherwise, this value usually is the maximum value of the type of the index less one. It

is “less one” for two reasons: (a) The maximum value itself is npos, and (b) an implementation

might append ’\0’ internally at the end of the internal buffer so that it simply returns that buffer

when the string is used as a C-string (for example, by c_str()). Whenever an operation results

in a string that has a length greater than max_size(), the class throws length_error.

3. capacity() returns the number of characters a string could contain without having to reallo-

cate its internal memory.

Having sufficient capacity is important for two reasons:

1. Reallocation invalidates all references, pointers, and iterators that refer to characters of the string.

2. Reallocation takes time.

Thus, the capacity must be taken into account if a program uses pointers, references, or iterators that

refer to a string or to characters of a string, or if speed is a goal.

The member function reserve() is provided to avoid reallocations. reserve() lets you reserve

a certain capacity before you really need it to ensure that references are valid as long as the capacity

is not exceeded:

std::string s; // create empty string

s.reserve(80); // reserve memory for 80 characters

The concept of capacity for strings is, in principle, the same as for vector containers (see Sec-

tion 7.3.1, page 270). However, there is one big difference: Unlike with vectors, calling reserve()

for strings might be a call to shrink the capacity. Calling reserve() with an argument that is less

than the current capacity is, in effect, a nonbinding shrink request. If the argument is less than the

current number of characters, it is a nonbinding shrink-to-fit request. Thus, although you might want

to shrink the capacity, it is not guaranteed to happen. The default value of reserve() for string is

0. So, a call of reserve() without any argument is always a nonbinding shrink-to-fit request:

s.reserve(); // ‘‘would like to shrink capacity to fit the current size’’

Since C++11, shrink_to_fit() provides the same effect:

s.shrink_to_fit(); // ‘‘would like to shrink capacity to fit the current size’’ (C++11)

A call to shrink capacity is nonbinding because how to reach an optimal performance is implemen-

tation-defined. Implementations of the string class might have different design approaches with

5 In this case, two member functions do the same thing because length() returns the length of the string, as

strlen() does for ordinary C-strings, whereas size() is the common member function for the number of

elements according to the concept of the STL.

13.2 Description of the String Classes 671

respect to speed and memory usage. Therefore, implementations might increase capacity in larger

steps and might never shrink the capacity.

The standard, however, specifies that capacity may shrink only because of a call of reserve() or

shrink_to_fit(). Thus, it is guaranteed that references, pointers, and iterators remain valid even

when characters are deleted or modified, provided that they refer to characters having a position that

is before the manipulated characters.

13.2.6 Element Access

A string allows you to have read or write access to the characters it contains. You can access a single

character via the subscript operator [] and the at() member function. Since C++11, front() and

back() are provided to also access the first or last character, respectively.

All these operations return a reference to the character at the position of the passed index, which

is a constant character if the string is constant. As usual, the first character has index 0, and the last

character has index length()-1. However, note the following differences:

• Operator [] does not check whether the index passed as an argument is valid; at() does. If

called with an invalid index, at() throws an out_of_range exception. If operator [] is called

with an invalid index, the behavior is undefined. The effect might be an illegal memory access

that might then cause some nasty side effects or a crash (you’re lucky if the result is a crash,

because then you know that you did something wrong).

• In general, the position after the last character is valid. Thus, the current number of characters is

a valid index. The operator returns the value that is generated by the default constructor of the

character type. Thus, for objects of type string it returns the char ’\0’.6

• front() is equivalent to [0], which means that for empty strings the character representing the

end of the string (’\0’ for strings) is returned.

• For at(), the current number of characters is not a valid index.

• When called for an empty string, back() results in undefined behavior.

For example:

const std::string cs("nico"); // cs contains: ’n’ ’i’ ’c’ ’o’

std::string s("abcde"); // s contains: ’a’ ’b’ ’c’ ’d’ ’e’

std::string t; // t contains no character (is empty)

s[2] // yields ’c’ as char&

s.at(2) // yields ’c’ as char&

s.front() // yields ’a’ as char&

cs[2] // yields ’i’ as const char&

cs.back() // yields ’o’ as const char&

6 Before C++11, for the nonconstant version of operator [], the current number of characters was an invalid

index. Using it did result in undefined behavior.

672 Chapter 13: Strings

s[100] // ERROR: undefined behavior

s.at(100) // throws out_of_range

t.front() // yields ’\0’

t.back() // ERROR: undefined behavior

s[s.length()] // yields ’\0’ (undefined behavior before C++11)

cs[cs.length()] // yields ’\0’

s.at(s.length()) // throws out_of_range

cs.at(cs.length()) // throws out_of_range

To enable you to modify a character of a string, the nonconstant versions of [], at(), front(),

and back() return a character reference. Note that this reference becomes invalid on reallocation:

std::string s("abcde"); // s contains: ’a’ ’b’ ’c’ ’d’ ’e’

char& r = s[2]; // reference to third character

char* p = &s[3]; // pointer to fourth character

r = ’X’; // OK, s contains: ’a’ ’b’ ’X’ ’d’ ’e’

*p = ’Y’; // OK, s contains: ’a’ ’b’ ’X’ ’Y’ ’e’

s = "new long value"; // reallocation invalidates r and p

r = ’X’; // ERROR: undefined behavior

*p = ’Y’; // ERROR: undefined behavior

Here, to avoid runtime errors, you would have had to reserve() enough capacity before r and p

were initialized.

References, pointers, and iterators that refer to characters of a string may be invalidated by the

following operations:7

• If the value is swapped with swap()

• If a new value is read by operator>>() or getline()

• If any nonconstant member function is called, except operator [], at(), begin(), end(),

rbegin(), and rend()

See Section 13.2.14, page 684, for details about string iterators.

13.2.7 Comparisons

The usual comparison operators are provided for strings. The operands may be strings or C-strings:

std::string s1, s2;

...

7 Before C++11, data() and c_str() also could invalidate references, iterators, and pointers to strings.

13.2 Description of the String Classes 673

s1 == s2 // returns true if s1 and s2 contain the same characters

s1 < "hello" // return whether s1 is less than the C-string "hello"

If strings are compared by <, <=, >, or >=, their characters are compared lexicographically according

to the current character traits. For example, all of the following comparisons yield true:

std::string("aaaa") < std::string("bbbb")

std::string("aaaa") < std::string("abba")

std::string("aaaa") < std::string("aaaaaa")

By using the compare() member functions, you can compare substrings. The compare() member

functions can process more than one argument for each string, so you can specify a substring by its

index and its length. Note that compare() returns an integral value rather than a Boolean value.

This return value has the following meaning: 0 means equal, a value less than 0 means less than,

and a value greater than 0 means greater than. For example:

std::string s("abcd");

s.compare("abcd") // returns 0

s.compare("dcba") // returns a value < 0 (s is less)

s.compare("ab") // returns a value > 0 (s is greater)

s.compare(s) // returns 0 (s is equal to s)

s.compare(0,2,s,2,2) // returns a value < 0 ("ab" is less than "cd")

s.compare(1,2,"bcx",2) // returns 0 ("bc" is equal to "bc")

To use a different comparison criterion, you can define your own comparison criterion and use STL

comparison algorithms (see Section 13.2.14, page 684, for an example), or you can use special

character traits that make comparisons on a case-insensitive basis. However, because a string type

that has a special traits class is a different data type, you cannot combine or process these strings

with objects of type string. See Section 13.2.15, page 689, for an example.

In programs for the international market, it might be necessary to compare strings according to a

specific locale. Class locale provides the parenthesis operator as a convenient way to do this (see

Section 16.3, page 868). It uses the string collation facet, which is provided to compare strings for

sorting according to some locale conventions. See Section 16.4.5, page 904, for details.

13.2.8 Modifiers

You can modify strings by using different member functions and operators.

Assignments

To modify a string, you can use operator = to assign a new value. The assigned value may be a string,

a C-string, or a single character. In addition, you can use the assign() member functions to assign

strings when more than one argument is needed to describe the new value. For example:

const std::string aString("othello");

std::string s;

674 Chapter 13: Strings

s = aString; // assign "othello"

s = "two\nlines"; // assign a C-string

s = ’ ’; // assign a single character

s.assign(aString); // assign "othello" (equivalent to operator =)

s.assign(aString,1,3); // assign "the"

s.assign(aString,2,std::string::npos); // assign "hello"

s.assign("two\nlines"); // assign a C-string (equivalent to operator =)

s.assign("nico",5); // assign the character array: ’n’ ’i’ ’c’ ’o’ ’\0’

s.assign(5,’x’); // assign five characters: ’x’ ’x’ ’x’ ’x’ ’x’

You also can assign a range of characters that is defined by two iterators. See Section 13.2.14,

page 684, for details.

Swapping Values

As with many nontrivial types, the string type provides a specialization of the swap() function,

which swaps the contents of two strings (the global swap() function was introduced in Section 5.5.2,

page 136). The specialization of swap() for strings guarantees constant complexity, so you should

use it to swap the value of strings and to assign strings if you don’t need the assigned string after the

assignment.

Making Strings Empty

To remove all characters in a string, you have several possibilities. For example:

std::string s;

s = ""; // assign the empty string

s.clear(); // clear contents

s.erase(); // erase all characters

Inserting and Removing Characters

There are numerous member functions to insert, remove, replace, and erase characters of a string.

To append characters, you can use operator +=, append(), and push_back(). For example:

const std::string aString("othello");

std::string s;

s += aString; // append "othello"

s += "two\nlines"; // append C-string

s += ’\n’; // append single character

s += { ’o’, ’k’ }; // append an initializer list of characters (since C++11)

13.2 Description of the String Classes 675

s.append(aString); // append "othello" (equivalent to operator +=)

s.append(aString,1,3); // append "the"

s.append(aString,2,std::string::npos); // append "hello"

s.append("two\nlines"); // append C-string (equivalent to operator +=)

s.append("nico",5); // append character array: ’n’ ’i’ ’c’ ’o’ ’\0’

s.append(5,’x’); // append five characters: ’x’ ’x’ ’x’ ’x’ ’x’

s.push_back(’\n’); // append single character (equivalent to operator +=)

Operator += appends single-argument values, including initializer lists of characters since C++11.

append() is overloaded for different arguments. One version of append() lets you append a range

of characters specified by two iterators (see Section 13.2.14, page 684). The push_back() member

function is provided for back inserters so that STL algorithms are able to append characters to a

string (see Section 9.4.2, page 455, for details about back inserters and Section 13.2.14, page 688,

for an example of their use with strings).

Similar to append(), several insert() member functions enable you to insert characters.

These functions require the index of the character, after which the new characters are inserted:

const std::string aString("age");

std::string s("p");

s.insert(1,aString); // s: page

s.insert(1,"ersifl"); // s: persiflage

Note that no insert() member function is provided to pass the index and a single character. Thus,

you must pass a string or an additional number:

s.insert(0,’ ’); // ERROR

s.insert(0," "); // OK

You might also try

s.insert(0,1,’ ’); // ERROR: ambiguous

However, this results in a nasty ambiguity because insert() is overloaded for the following

signatures:

insert (size_type idx, size_type num, charT c); // position is index

insert (iterator pos, size_type num, charT c); // position is iterator

For type string, size_type is usually defined as unsigned, and iterator is often defined as

char*. In this case, the first argument 0 has two equivalent conversions. So, to get the correct

behavior, you have to write:

s.insert((std::string::size_type)0,1,’ ’); // OK

The second interpretation of the ambiguity described here is an example of the use of iterators to

insert characters. If you wish to specify the insert position as an iterator, you can do it in three

ways: insert a single character, insert a certain number of the same character, and insert a range of

characters specified by two iterators (see Section 13.2.14, page 684).

676 Chapter 13: Strings

Similar to append() and insert(), several erase() functions and pop_back() (since C++11)

remove characters, and several replace() functions replace characters. For example:

std::string s = "i18n"; // s: i18n

s.replace(1,2,"nternationalizatio"); // s: internationalization

s.erase(13); // s: international

s.erase(7,5); // s: internal

s.pop_back(); // s: interna (since C++11)

s.replace(0,2,"ex"); // s: externa

You can use resize() to change the number of characters. If the new size that is passed as an

argument is less than the current number of characters, characters are removed from the end. If

the new size is greater than the current number of characters, characters are appended at the end.

You can pass the character that is appended if the size of the string grows. If you don’t, the default

constructor for the character type is used (which is the ’\0’ character for type char).

13.2.9 Substrings and String Concatenation

You can extract a substring from any string by using the substr() member function. For example:

std::string s("interchangeability");

s.substr() // returns a copy of s

s.substr(11) // returns string("ability")

s.substr(5,6) // returns string("change")

s.substr(s.find(’c’)) // returns string("changeability")

You can use operator + to concatenate two strings or C-strings or one of those with single characters

For example, the statements

std::string s1("enter");

std::string s2("nation");

std::string i18n;

i18n = ’i’ + s1.substr(1) + s2 + "aliz" + s2.substr(1);

std::cout << "i18n means: " + i18n << std::endl;

have the following output:

i18n means: internationalization

Since C++11, operator + is also overloaded for strings that are rvalue references to support the move

semantics. Thus, if a string argument passed to operator + is no longer needed afterward, you should

use move() to pass it to the operator. For example:

string foo()

{

std::string s1("international");

std::string s2("ization");

13.2 Description of the String Classes 677

std::string s = std::move(s1) + std::move(s2); // OK

// s1 and s2 have valid state with unspecified value

return s;

}

13.2.10 Input/Output Operators

The usual I/O operators are defined for strings:

• Operator >> reads a string from an input stream.

• Operator << writes a string to an output stream.

These operators behave as they do for ordinary C-strings. In particular, operator >> operates as

follows:

1. It skips leading whitespaces if the skipws flag (see Section 15.7.7, page 789) is set.

2. It reads all characters until any of the following happens:

– The next character is a whitespace.

– The stream is no longer in a good state (for example, due to end-of-file).

– The current width() of the stream (see Section 15.7.3, page 781) is greater than 0, and

width() characters are read.

– max_size() characters are read.

3. It sets width() of the stream to 0.

Thus, in general, the input operator reads the next word while skipping leading whitespaces. A

whitespace is any character for which isspace(c,strm.getloc()) is true (isspace() is ex-

plained in Section 16.4.4, page 895).

The output operator also takes the width() of the stream into consideration. That is, if width()

is greater than 0, operator << writes at least width() characters.

Note also that since C++11, operators << and >> are declared to process rvalue references

to streams. This, for example, allows you to use temporary string streams (see Section 15.10.2,

page 806, for details).

getline()

The string classes also provide a special convenience function std::getline() for reading line

by line: This function reads all characters, including leading whitespaces, until the line delimiter or

end-of-file is reached. The line delimiter is extracted but not appended. By default, the line delimiter

is the newline character, but you can pass your own “line” delimiter as an optional argument.8 This

way, you can read token by token, separated by any arbitrary character:

std::string s;

8 You don’t have to qualify getline() with std:: because when calling a function argument dependent

lookup (ADL, also known as Koenig lookup) will always consider the namespace where the class of an argument

was defined.

678 Chapter 13: Strings

while (getline(std::cin,s)) { // for each line read from cin

...

}

while (getline(std::cin,s,’:’)) { // for each token separated by ’:’

...

}

Note that if you read token by token, the newline character is not a special character. In this case,

the tokens might contain a newline character.

Note also that since C++11, getline() is overloaded for both lvalue and rvalue stream refer-

ences, which allows using temporary string streams:

void process (const std::string& filecontents)

{

// process first line of passed string:

std::string firstLine;

std::getline(std::stringstream(filecontents), // OK since C++11

firstLine);

...

}

See Section 15.10, page 802, for details about string streams.

13.2.11 Searching and Finding

The C++ standard library provides many abilities to search and find characters or substrings in a

string:9

• By using member functions, you can search

– A single character, a character sequence (substring), or one of a certain set of characters

– Forward and backward

– Starting from any position at the beginning or inside the string

• By using the regex library (see Chapter 14), you can search for more complicated patterns of

character sequences. See Section 13.2.14, page 687, for an example.

• By using STL algorithms, you can also search for single characters or specific character se-

quences (see Section 11.2.2, page 507). Note that these algorithms allow you to use your own

comparison criterion (see Section 13.2.14, page 684, for an example).

9 Don’t be confused because I write about searching “and” finding. They are almost synonymous. The search

functions use “find” in their names. However, unfortunately, they don’t guarantee to find anything. In fact, they

“search” for something or “try to find” something. So I use the term search for the behavior of these functions

and find with respect to their names.

13.2 Description of the String Classes 679

Member Functions for Searching and Finding

All search functions have the word find inside their name. They try to find a character position given

a value that is passed as an argument. How the search proceeds depends on the exact name of the

find function. Table 13.5 lists all the search functions for strings.

String Function Effect

find() Finds the first occurrence of value

rfind() Finds the last occurrence of value (reverse find)

find_first_of() Finds the first character that is part of value

find_last_of() Finds the last character that is part of value

find_first_not_of() Finds the first character that is not part of value

find_last_not_of() Finds the last character that is not part of value

Table 13.5. Search Functions for Strings

All search functions return the index of the first character of the character sequence that matches

the search. If the search fails, they return npos. The search functions use the following argument

scheme:

• The first argument is always the value that is searched for.

• The second optional value indicates an index at which to start the search in the string.

• The optional third argument is the number of characters of the value to search.

Unfortunately, this argument scheme differs from that of the other string functions. With the other

string functions, the starting index is the first argument, and the value and its length are adjacent

arguments. In particular, each search function is overloaded with the following set of arguments:

• const string& value

searches against the characters of the string value.

• const string& value, size_type idx

searches against the characters of value, starting with index idx in *this.

• const char* value

searches against the characters of the C-string value.

• const char* value, size_type idx

searches against the characters of the C-string value, starting with index idx in *this.

• const char* value, size_type idx, size_type value_len

searches against the value_len characters of the character array value, starting with index idx in

*this. Thus, the null character (’\0’) has no special meaning here inside value.

• const char value

searches against the character value.

• const char value, size_type idx

searches against the characters value, starting with index idx in *this.

For example:

680 Chapter 13: Strings

std::string s("Hi Bill, I’m ill, so please pay the bill");

s.find("il") // returns 4 (first substring "il")

s.find("il",10) // returns 13 (first substring "il" starting from s[10])

s.rfind("il") // returns 37 (last substring "il")

s.find_first_of("il") // returns 1 (first char ’i’ or ’l’)

s.find_last_of("il") // returns 39 (last char ’i’ or ’l’)

s.find_first_not_of("il") // returns 0 (first char neither ’i’ nor ’l’)

s.find_last_not_of("il") // returns 36 (last char neither ’i’ nor ’l’)

s.find("hi") // returns npos

Note that the naming scheme of the STL search algorithms differs from that for string search func-

tions (see Section 11.2.2, page 507, for details).

13.2.12 The Value npos

If a search function fails, it returns string::npos. Consider the following example:

std::string s;

std::string::size_type idx; // be careful: don’t use any other type!

...

idx = s.find("substring");

if (idx == std::string::npos) {

...

}

The condition of the if statement yields true if and only if "substring" is not part of string s.

Be very careful when using the string value npos and its type. When you want to check the

return value, always use string::size_type, not int or unsigned for the type of the return

value; otherwise, the comparison of the return value with string::npos might not work. This

behavior is the result of the design decision that npos is defined as -1:

namespace std {

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_string {

public:

typedef typename Allocator::size_type size_type;

...

static const size_type npos = -1;

...

};

}

13.2 Description of the String Classes 681

Unfortunately, size_type, which is defined by the allocator of the string, must be an unsigned

integral type. The default allocator, allocator, uses type size_t as size_type. Because -1 is

converted into an unsigned integral type, npos is the maximum unsigned value of its type. However,

the exact value depends on the exact definition of type size_type. Unfortunately, these maximum

values differ. In fact, (unsigned long)-1 differs from (unsigned short)-1 if the size of the

types differs. Thus, the comparison

idx == std::string::npos

might yield false if idx has the value -1 and idx and string::npos have different types:

std::string s;

...

int idx = s.find("not found"); // assume it returns npos

if (idx == std::string::npos) { // ERROR: comparison might not work

...

}

One way to avoid this error is to check whether the search fails directly:

if (s.find("hi") == std::string::npos) {

...

}

However, often you need the index of the matching character position. Thus, another simple solution

is to define your own signed value for npos:

const int NPOS = -1;

Now the comparison looks a bit different and even more convenient:

if (idx == NPOS) { // works almost always

...

}

Unfortunately, this solution is not perfect, because the comparison fails if either idx has type

unsigned short or the index is greater than the maximum value of int. Because of these prob-

lems, the standard did not define it that way. However, because both might happen very rarely,

the solution works in most situations. To write portable code, however, you should always use

string::size_type for any index of your string type. For a perfect solution, you’d need some over-

loaded functions that consider the exact type of string::size_type. I still hope the standard will

provide a better solution in the future (although with C++11 nothing changed).

13.2.13 Numeric Conversions

Since C++11, the C++ standard library provides convenience functions to convert strings into nu-

meric values or to convert numeric values to strings (see Table 13.6). Note, however, that these

conversions are available only for types string and wstring, not u16string and u32string.

682 Chapter 13: Strings

String Function Effect

stoi(str,idxRet=nullptr, base=10) Converts str to an int

stol(str,idxRet=nullptr, base=10) Converts str to a long

stoul(str,idxRet=nullptr, base=10) Converts str to an unsigned long

stoll(str,idxRet=nullptr, base=10) Converts str to a long long

stoull(str,idxRet=nullptr, base=10) Converts str to an unsigned long long

stof(str,idxRet=nullptr) Converts str to a float

stod(str,idxRet=nullptr) Converts str to a double

stold(str,idxRet=nullptr) Converts str to a long double

to_string(val) Converts val to a string

to_wstring(val) Converts val to a wstring

Table 13.6. Numeric Conversions for Strings

For all function that convert strings to a numeric value, the following applies:

• They skip leading whitespaces.

• They allow you to return the index of the first character after the last processed character.

• They might throw std::invalid_argument if no conversion is possible and

std::out_of_range if the converted value is outside the range of representable values for the

return type.

• For integral values, you can optionally pass the number base to use.

For all functions that convert a numeric value to a string or wstring, val may be any of the fol-

lowing types: int, unsigned int, long, unsigned long, long long, unsigned long long,

float, double, or long double.

For example, consider the following program:

// string/stringnumconv1.cpp

#include <string>

#include <iostream>

#include <limits>

#include <exception>

int main()

{

try {

// convert to numeric type

std::cout << std::stoi (" 77") << std::endl;

std::cout << std::stod (" 77.7") << std::endl;

std::cout << std::stoi ("-0x77") << std::endl;

// use index of characters not processed

std::size_t idx;

13.2 Description of the String Classes 683

std::cout << std::stoi (" 42 is the truth", &idx) << std::endl;

std::cout << " idx of first unprocessed char: " << idx << std::endl;

// use bases 16 and 8

std::cout << std::stoi (" 42", nullptr, 16) << std::endl;

std::cout << std::stol ("789", &idx, 8) << std::endl;

std::cout << " idx of first unprocessed char: " << idx << std::endl;

// convert numeric value to string

long long ll = std::numeric_limits<long long>::max();

std::string s = std::to_string(ll); // converts maximum long long to string

std::cout << s << std::endl;

// try to convert back

std::cout << std::stoi(s) << std::endl; // throws out_of_range

}

catch (const std::exception& e) {

std::cout << e.what() << std::endl;

}

}

The program has the following output:

77

77.7

0

42

idx of first unprocessed char: 4

66

7

idx of first unprocessed char: 1

9223372036854775807

stoi argument out of range

Note that std::stoi("-0x77") yields 0 because it parses only -0, interpreting the x as the end of

the numeric value found. Note that std::stol("789",&idx,8) parses only the first character of

the string because 8 is not a valid character for octal numbers.

684 Chapter 13: Strings

13.2.14 Iterator Support for Strings

A string is an ordered collection of characters. As a consequence, the C++ standard library provides

an interface for strings that lets you use them as STL containers.10

In particular, you can call the usual member functions to get iterators that iterate over the char-

acters of a string. If you are not familiar with iterators, consider them as something that can refer to

a single character inside a string, just as ordinary pointers do for C-strings. By using these objects,

you can iterate over all characters of a string by calling several algorithms that either are provided

by the C++ standard library or are user defined. For example, you can sort the characters of a string,

reverse the order, or find the character that has the maximum value.

String iterators are random-access iterators. This means that they provide random access, and

you can use all algorithms (see Section 6.3.2, page 198, and Section 9.2, page 433, for a discussion

about iterator categories). As usual, the types of string iterators (iterator, const_iterator, and

so on) are defined by the string class itself. The exact type is implementation defined, but string

iterators are often defined simply as ordinary pointers. See Section 9.2.6, page 440, for a nasty

difference between iterators that are implemented as pointers and iterators that are implemented as

classes.

Iterators are invalidated when reallocation occurs or when certain changes are made to the values

to which they refer. See Section 13.2.6, page 672, for details.

Iterator Functions for Strings

Table 13.7 shows all the member functions that strings provide for iterators. As usual, the range spec-

ified by beg and end is a half-open range that includes beg but excludes end, written as [beg,end)
(see Section 6.3, page 188).

To support the use of back inserters for strings, the push_back() function is defined. See

Section 9.4.2, page 455, for details about back inserters and page 688 for an example of their use

with strings.

Example of Using String Iterators

A very useful thing that you can do with string iterators is to make all characters of a string lowercase

or uppercase via a single statement. For example:

// string/stringiter1.cpp

#include <string>

#include <iostream>

#include <algorithm>

#include <cctype>

#include <regex>

using namespace std;

10 The STL is introduced in Chapter 6.

13.2 Description of the String Classes 685

Expression Effect

s.begin(), s.cbegin() Returns a random-access iterator for the first character

s.end(), s.cend() Returns a random-access iterator for the position after

the last character

s.rbegin(), s.crbegin() Returns a reverse iterator for the first character of a

reverse iteration (thus, for the last character)

s.rend(), crend() Returns a reverse iterator for the position after the last

character of a reverse iteration (thus, the position before

the first character)

string s(beg,end) Creates a string that is initialized by all characters of the

range [beg,end)

s.append(beg,end) Appends all characters of the range [beg,end)

s.assign(beg,end) Assigns all characters of the range [beg,end)

s.insert(pos,c) Inserts the character c at iterator position pos and

returns the iterator position of the new character

s.insert(pos,num,c) Inserts num occurrences of the character c at iterator

position pos and returns the iterator position of the first

new character

s.insert(pos,beg,end) Inserts all characters of the range [beg,end) at iterator

position pos

s.insert(pos,initlist) Inserts all characters of the initializer list initlist at

iterator position pos (since C++11)

s.erase(pos) Deletes the character to which iterator pos refers and

returns the position of the next character

s.erase(beg,end) Deletes all characters of the range [beg,end) and returns

the next position of the next character

s.replace(beg,end,str) Replaces all characters of the range [beg,end) with the

characters of string str

s.replace(beg,end,cstr) Replaces all characters of the range [beg,end) with the

characters of the C-string cstr

s.replace(beg,end,cstr,len) Replaces all characters of the range [beg,end) with len

characters of the character array cstr

s.replace(beg,end,num,c) Replaces all characters of the range [beg,end) with num

occurrences of the character c

s.replace(beg,end, Replaces all characters of the range [beg,end) with

newBeg,newEnd) all characters of the range [newBeg,newEnd)

s.replace(beg,end, Replaces all characters of the range [beg,end) with

initlist) the values of the initializer list initlist (since C++11)

Table 13.7. Iterator Operations of Strings

686 Chapter 13: Strings

int main()

{

// create a string

string s("The zip code of Braunschweig in Germany is 38100");

cout << "original: " << s << endl;

// lowercase all characters

transform (s.cbegin(), s.cend(), // source

s.begin(), // destination

[] (char c) { // operation

return tolower(c);

});

cout << "lowered: " << s << endl;

// uppercase all characters

transform (s.cbegin(), s.cend(), // source

s.begin(), // destination

[] (char c) { // operation

return toupper(c);

});

cout << "uppered: " << s << endl;

// search case-insensitive for Germany

string g("Germany");

string::const_iterator pos;

pos = search (s.cbegin(),s.cend(), // source string in which to search

g.cbegin(),g.cend(), // substring to search

[] (char c1, char c2) { // comparison criterion

return toupper(c1) == toupper(c2);

});

if (pos != s.cend()) {

cout << "substring \"" << g << "\" found at index "

<< pos - s.cbegin() << endl;

}

}

Here, we twice use iterators provided by cbegin(), cend(), and begin() to pass them to the

transform() algorithm, which transforms all elements of an input range to a destination range by

using a transformation passed as fourth argument (see Section 6.8.1, page 225, and Section 11.6.3,

page 563, for details).

The transformation is specified as a lambda (see Section 6.9, page 229), which converts the

elements of the string (the characters) to lower- or uppercase. Note that tolower() and toupper()

are old C functions that use the global locale. If you have a different locale or more than one locale

13.2 Description of the String Classes 687

in your program, you should use the new form of tolower() and toupper(). See Section 16.4.4,

page 895, for details.

Finally, we use the search algorithm to search for a substring with our own search criterion. This

criterion is a lambda that compares the characters in a case-insensitive way.

Alternatively, we could use the regex library:

// search case-insensitive for Germany

std::regex pat("Germany", // expression to search for

regex_constants::icase); // search case-insensitive

smatch m;

if (regex_search (s,m,pat)) { // search regex pattern in s

cout << "substring \"Germany\" found at index "

<< m.position() << endl;

}

See Section 14.6, page 732, for details.

Thus, the output of the program is as follows:

original: The zip code of Braunschweig in Germany is 38100

lowered: the zip code of braunschweig in germany is 38100

uppered: THE ZIP CODE OF BRAUNSCHWEIG IN GERMANY IS 38100

substring "Germany" found at index 32

In the last output statement, you can process the difference of two string iterators to get the index of

the character position:

pos - s.cbegin()

You can use operator - because string iterators are random-access iterators. Similar to transferring

an index into the iterator position, you can simply add the value of the index.

If you use strings in sets or maps, you might need a special sorting criterion to let the collec-

tions sort the string in a case-insensitive way. See Section 7.8.6, page 351, for an example that

demonstrates how to do this.

The following program demonstrates other examples of strings using iterator functions:

// string/stringiter2.cpp

#include <string>

#include <iostream>

#include <algorithm>

using namespace std;

int main()

{

// create constant string

const string hello("Hello, how are you?");

// initialize string s with all characters of string hello

string s(hello.cbegin(),hello.cend());

688 Chapter 13: Strings

// ranged-based for loop that iterates through all the characters

for (char c : s) {

cout << c;

}

cout << endl;

// reverse the order of all characters inside the string

reverse (s.begin(), s.end());

cout << "reverse: " << s << endl;

// sort all characters inside the string

sort (s.begin(), s.end());

cout << "ordered: " << s << endl;

// remove adjacent duplicates

// - unique() reorders and returns new end

// - erase() shrinks accordingly

s.erase (unique(s.begin(),

s.end()),

s.end());

cout << "no duplicates: " << s << endl;

}

The program has the following output:

Hello, how are you?

reverse: ?uoy era woh ,olleH

ordered: ,?Haeehlloooruwy

no duplicates: ,?Haehloruwy

The following example uses back inserters to read the standard input into a string:

// string/string3.cpp

#include <string>

#include <iostream>

#include <algorithm>

#include <iterator>

#include <locale>

using namespace std;

int main()

{

string input;

13.2 Description of the String Classes 689

// don’t skip leading whitespaces

cin.unsetf (ios::skipws);

// read all characters while compressing whitespaces

const locale& loc(cin.getloc()); // locale

unique_copy(istream_iterator<char>(cin), // beginning of source

istream_iterator<char>(), // end of source

back_inserter(input), // destination

[=] (char c1, char c2) { // criterion for adj. duplicates

return isspace(c1,loc) && isspace(c2,loc);

});

// process input

// - here: write it to the standard output

cout << input;

}

By using the unique_copy() algorithm (see Section 11.7.2, page 580), all characters are read from

the input stream cin and inserted into the string input.

The passed lambda operation checks whether two characters are whitespaces. This criterion is

taken by unique_copy() to detect adjacent “duplicates,” where the second element can be removed.

Thus, while reading the input, the algorithm compresses multiple whitespaces (see Section 16.4.4,

page 895, for a discussion of isspace()).

The criterion itself takes the current local into account. To do this, loc is initialized by the locale

of cin and passed by value to the lambda (see Section 15.8, page 790, for details of getloc()).

You can find a similar example in the reference section about unique_copy() in Section 11.7.2,

page 582.

13.2.15 Internationalization

As mentioned in Section 13.2.1, page 664, the template string class basic_string<> is parame-

trized by the character type, the traits of the character type, and the memory model. Type string is

the specializations for characters of type char, whereas types wstring, u16string, and u32string

are the specializations for characters of type wchar_t, char16_t, and char32_t, respectively.

Note that you can specify the character sets used for string literals since C++11 (see Section 3.1.6,

page 23).

To specify the details of how to deal with aspects depending on the representation of a character

type, character traits are provided. An additional class is necessary because you can’t change the in-

terface of built-in types, such as char and wchar_t, and the same character type may have different

traits. The details about the traits classes are described in Section 16.1.4, page 853.

The following code defines a special traits class for strings so that they operate in a case-

insensitive way:

690 Chapter 13: Strings

// string/icstring.hpp

#ifndef ICSTRING_HPP

#define ICSTRING_HPP

#include <string>

#include <iostream>

#include <cctype>

// replace functions of the standard char_traits<char>

// so that strings behave in a case-insensitive way

struct ignorecase_traits : public std::char_traits<char> {

// return whether c1 and c2 are equal

static bool eq(const char& c1, const char& c2) {

return std::toupper(c1)==std::toupper(c2);

}

// return whether c1 is less than c2

static bool lt(const char& c1, const char& c2) {

return std::toupper(c1)<std::toupper(c2);

}

// compare up to n characters of s1 and s2

static int compare(const char* s1, const char* s2,

std::size_t n) {

for (std::size_t i=0; i<n; ++i) {

if (!eq(s1[i],s2[i])) {

return lt(s1[i],s2[i])?-1:1;

}

}

return 0;

}

// search c in s

static const char* find(const char* s, std::size_t n,

const char& c) {

for (std::size_t i=0; i<n; ++i) {

if (eq(s[i],c)) {

return &(s[i]);

}

}

return 0;

}

};

// define a special type for such strings

typedef std::basic_string<char,ignorecase_traits> icstring;

13.2 Description of the String Classes 691

// define an output operator

// because the traits type is different from that for std::ostream

inline

std::ostream& operator << (std::ostream& strm, const icstring& s)

{

// simply convert the icstring into a normal string

return strm << std::string(s.data(),s.length());

}

#endif // ICSTRING_HPP

The definition of the output operator is necessary because the standard defines I/O operators only

for streams that use the same character and traits type. But here the traits type differs, so we have to

define our own output operator. For input operators, the same problem occurs.

The following program demonstrates how to use these special kinds of strings:

// string/icstring1.cpp

#include "icstring.hpp"

int main()

{

using std::cout;

using std::endl;

icstring s1("hallo");

icstring s2("otto");

icstring s3("hALLo");

cout << std::boolalpha;

cout << s1 << " == " << s2 << " : " << (s1==s2) << endl;

cout << s1 << " == " << s3 << " : " << (s1==s3) << endl;

icstring::size_type idx = s1.find("All");

if (idx != icstring::npos) {

cout << "index of \"All\" in \"" << s1 << "\": "

<< idx << endl;

}

else {

cout << "\"All\" not found in \"" << s1 << endl;

}

}

692 Chapter 13: Strings

The program has the following output:

hallo == otto : false

hallo == hALLo : true

index of "All" in "hallo": 1

See Chapter 16 for more details about internationalization.

13.2.16 Performance

As usual, the standard does not specify how the string class is to be implemented but instead specifies

only the interface. There may be important differences in speed and memory usage, depending on

the concept and priorities of the implementation.

Note that since C++11, reference counted implementations are not permitted any longer. The

reason is that an implementation that lets strings share internal buffers doesn’t work in multithreaded

contexts.

13.2.17 Strings and Vectors

Strings and vectors behave similarly. This is no surprise because both are containers that are typically

implemented as dynamic arrays. Thus, you could consider a string as a special kind of a vector that

has characters as elements. In fact, you can use a string as an STL container (see Section 13.2.14,

page 684). However, considering a string as a special kind of vector is dangerous because there are

many fundamental differences between the two. Chief among these are their two primary goals:

1. The primary goal of vectors is to handle and to manipulate the elements of the container, not the

container as a whole. Thus, vector implementations are optimized to operate on elements inside

the container.

2. The primary goal of strings is to handle and to manipulate the container (the string) as a whole.

Thus, strings are optimized to reduce the costs of assigning and passing the whole container.

These different goals typically result in completely different implementations. For example, strings

are often implemented by using reference counting; vectors never are. Nevertheless, you can also

use vectors as ordinary C-strings. See Section 7.3.3, page 278, for details.

13.3 String Class in Detail 693

13.3 String Class in Detail

In this section, string stands for the corresponding string class: string, wstring, u16string,

u32string, or any other specialization of class basic_string<>. Type char stands for the corre-

sponding character type, which is char for string, wchar_t for wstring, char16_t for

u16string, or char32_t for u32string. Other types and values in italic type have definitions

that depend on individual definitions of the character type or traits class. The details about traits

classes are provided in Section 16.1.4, page 853.

13.3.1 Type Definitions and Static Values

string::traits_type

• The type of the character traits.

• The second template parameter of class basic_string.

• For type string, it is equivalent to char_traits<char>.

string::value_type

• The type of the characters.

• It is equivalent to traits_type::char_type.

• For type string, it is equivalent to char.

string::size_type

• The unsigned integral type for size values and indices.

• It is equivalent to allocator_type::size_type.

• For type string, it is equivalent to size_t.

string::difference_type

• The signed integral type for difference values.

• It is equivalent to allocator_type::difference_type.

• For type string, it is equivalent to ptrdiff_t.

string::reference

• The type of character references.

• It is equivalent to allocator_type::reference.

• For type string, it is equivalent to char&.

string::const_reference

• The type of constant character references.

• It is equivalent to allocator_type::const_reference.

• For type string, it is equivalent to const char&.

694 Chapter 13: Strings

string::pointer

• The type of character pointers.

• It is equivalent to allocator_type::pointer.

• For type string, it is equivalent to char*.

string::const_pointer

• The type of constant character pointers.

• It is equivalent to allocator_type::const_pointer.

• For type string, it is equivalent to const char*.

string::iterator

• The type of iterators.

• The exact type is implementation defined.

• For type string, it is typically char*.

string::const_iterator

• The type of constant iterators.

• The exact type is implementation defined.

• For type string, it is typically const char*.

string::reverse_iterator

• The type of reverse iterators.

• It is equivalent to reverse_iterator<iterator>.

string::const_reverse_iterator

• The type of constant reverse iterators.

• It is equivalent to reverse_iterator<const_iterator>.

static const size_type string::npos

• A special value that indicates either “not found” or “all remaining characters.”

• It is an unsigned integral value that is initialized by -1.

• Be careful when you use npos. See Section 13.2.12, page 680, for details.

13.3.2 Create, Copy, and Destroy Operations

string::string ()

• The default constructor.

• Creates an empty string.

string::string (const string& str)

• The copy constructor.

• Creates a new string as a copy of str.

13.3 String Class in Detail 695

string::string (string&& str)

• The move constructor.

• Creates a new string initialized with the elements of the existing string str.

• The contents of str is undefined afterward.

• Available since C++11.

string::string (const string& str, size_type str_idx)

string::string (const string& str, size_type str_idx, size_type str_num)

• Create a new string that is initialized by at most the first str_num characters of str, starting with

index str_idx.

• If str_num is missing, all characters from str_idx to the end of str are used.

• Throws out_of_range if str_idx > str.size().

string::string (const char* cstr)

• Creates a string that is initialized by the C-string cstr.

• The string is initialized by all characters of cstr up to but not including ’\0’.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (const char* chars, size_type chars_len)

• Creates a string that is initialized by chars_len characters of the character array chars.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Throws length_error if chars_len is equal to string::npos.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (size_type num, char c)

• Creates a string that is initialized by num occurrences of character c.

• Throws length_error if num is equal to string::npos.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (InputIterator beg, InputIterator end)

• Creates a string that is initialized by all characters of the range [beg,end).

• Throws length_error if the resulting size exceeds the maximum number of characters.

string::string (InputIterator beg, InputIterator end)

• Creates a string that is initialized by all characters of the range [beg,end).

• Throws length_error if the resulting size exceeds the maximum number of characters.

696 Chapter 13: Strings

string::string (initializer-list)

• Creates a new string that is initialized by the characters of initializer-list.

• Available since C++11.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string::˜string ()

• The destructor.

• Destroys all characters and frees the memory.

Most constructors allow you to pass an allocator as an additional argument (see Section 13.3.13,

page 715).

13.3.3 Operations for Size and Capacity

Size Operations

bool string::empty () const

• Returns whether the string is empty (contains no characters).

• It is equivalent to string::size()==0, but it might be faster.

size_type string::size () const

size_type string::length () const

• Both functions return the current number of characters.

• They are equivalent.

• To check whether the string is empty, you should use empty() because it might be faster.

size_type string::max_size () const

• Returns the maximum number of characters a string could contain.

• Whenever an operation results in a string that has a length greater than max_size(), the class

throws length_error.

Capacity Operations

size_type string::capacity () const

• Returns the number of characters the string could contain without reallocation.

13.3 String Class in Detail 697

void string::reserve ()

void string::reserve (size_type num)

• The first form is a nonbinding shrink-to-fit request.

• The second form reserves internal memory for at least num characters.

• If num is less than the current capacity, the call is taken as a nonbinding request to shrink the

capacity.

• If num is less than the current number of characters, the call is taken as a nonbinding request to

shrink the capacity to fit the current number of characters (equivalent to the first form).

• The capacity is never reduced below the current number of characters.

• This operation might invalidate references, pointers, and iterators to characters. However, it is

guaranteed that no reallocation takes place during insertions that happen after a call to reserve()

until the time when an insertion would make the size greater than num. Thus, reserve() can

increase speed and help to keep references, pointers, and iterators valid (see Section 13.2.5,

page 670, for details).

void string::shrink_to_fit ()

• Reduces the internal memory to fit the current numbers of characters.

• It has the same effect as reserve(0).

• The call is taken as a nonbinding request to allow latitude for implementation-specific optimiza-

tions.

• This operation might invalidate references, pointers, and iterators to characters.

• Available since C++11.

13.3.4 Comparisons

bool comparison (const string& str1, const string& str2)

bool comparison (const string& str, const char* cstr)

bool comparison (const char* cstr, const string& str)

• The first form returns the result of the comparison of two strings.

• The second and third forms return the result of the comparison of a string with a C-string.

• comparison might be any of the following:

operator ==

operator !=

operator <

operator >

operator <=

operator >=

• The values are compared lexicographically (see Section 13.2.7, page 673).

698 Chapter 13: Strings

int string::compare (const string& str) const

• Compares the string *this with the string str.

• Returns

– 0 if both strings are equal

– A value < 0 if *this is lexicographically less than str

– A value > 0 if *this is lexicographically greater than str

• For the comparison, traits::compare() is used (see Section 16.1.4, page 854).

• See Section 13.2.7, page 673, for details.

int string::compare (size_type idx, size_type len, const string& str) const

• Compares at most len characters of string *this, starting with index idx with the string str.

• Throws out_of_range if idx > size().

• The comparison is performed as just described for compare(str).

int string::compare (size_type idx, size_type len,

const string& str, size_type str_idx,

size_type str_len) const

• Compares at most len characters of string *this, starting with index idx with at most str_len

characters of string str, starting with index str_idx.

• Throws out_of_range if idx > size().

• Throws out_of_range if str_idx > str.size().

• The comparison is performed as just described for compare(str).

int string::compare (const char* cstr) const

• Compares the characters of string *this with the characters of the C-string cstr.

• The comparison is performed as just described for compare(str).

int string::compare (size_type idx, size_type len, const char* cstr) const

• Compares at most len characters of string *this, starting with index idx with all characters of

the C-string cstr.

• The comparison is performed as just described for compare(str).

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

int string::compare (size_type idx, size_type len,

const char* chars, size_type chars_len) const

• Compares at most len characters of string *this, starting with index idx with chars_len charac-

ters of the character array chars.

• The comparison is performed as just described for compare(str).

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Throws length_error if chars_len is equal to string::npos.

13.3 String Class in Detail 699

13.3.5 Character Access

char& string::operator[] (size_type idx)

const char& string::operator[] (size_type idx) const

• Both forms return the character with the index idx (the first character has index 0).

• length() or size() is a valid index, and the operator returns the value generated by the default

constructor of the character type (for string: ’\0’). Before C++11, length() or size() was

an invalid index value for nonconstant strings.

• Passing an invalid index results in undefined behavior.

• The reference returned for the nonconstant string may become invalidated due to string modifi-

cations or reallocations (see Section 13.2.6, page 672, for details).

• If the caller can’t ensure that the index is valid, at() should be used.

char& string::at (size_type idx)

const char& string::at (size_type idx) const

• Both forms return the character that has the index idx (the first character has index 0).

• For all strings, an index with length() as value is invalid.

• Passing an invalid index — less than 0 or greater than or equal to length() or size() — throws

an out_of_range exception.

• The reference returned for the nonconstant string may become invalidated due to string modifi-

cations or reallocations (see Section 13.2.6, page 672, for details).

• By ensuring that the index is valid, the caller can use operator [], which is faster.

char& string::front ()

const char& string::front () const

• Both forms return the first character.

• Calling front() for an empty string returns the value generated by the default constructor of the

character type (for string: ’\0’).

• The reference returned for the nonconstant string may become invalidated due to string modifi-

cations or reallocations (see Section 13.2.6, page 672, for details).

char& string::back ()

const char& string::back () const

• Both forms return the last character.

• Calling back() for an empty string results in undefined behavior.

• The reference returned for the nonconstant string may become invalidated due to string modifi-

cations or reallocations (see Section 13.2.6, page 672, for details).

700 Chapter 13: Strings

13.3.6 Generating C-Strings and Character Arrays

const char* string::c_str () const

const char* string::data () const

• Returns the contents of the string as a character array, including a trailing end-of-string character

’\0’. Thus, this is a valid C-string for strings.

• The return value is owned by the string. Thus, the caller must neither modify nor free or delete

the return value.

• The return value is valid only as long as the string exists and as long as only constant functions

are called for it.

• Before C++11, the return value of data() was guaranteed to contain all characters of the string

without any trailing ’\0’ character. Thus, the return value of data() was not a valid C-string.

size_type string::copy (char* buf, size_type buf_size) const

size_type string::copy (char* buf, size_type buf_size, size_type idx) const

• Both forms copy at most buf_size characters of the string (beginning with index idx, if passed)

into the character array buf.

• They return the number of characters copied.

• No null character is appended. Thus, the contents of buf might not be a valid C-string after the

call.

• The caller must ensure that buf has enough memory; otherwise, the call results in undefined

behavior.

• Throws out_of_range if idx > size().

13.3.7 Modifying Operations

Assignments

string& string::operator= (const string& str)

string& string::assign (const string& str)

• Copy assignment operator.

• Both operations assign the value of string str.

• They return *this.

string& string::operator= (string&& str)

string& string::assign (string&& str)

• Move assignment operator.

• Move the contents of str to *this.

• The contents of str are undefined afterward.

• Return *this.

• Available since C++11.

13.3 String Class in Detail 701

string& string::assign (const string& str, size_type str_idx, size_type str_num)

• Assigns at most str_num characters of str, starting with index str_idx.

• Returns *this.

• Throws out_of_range if str_idx > str.size().

string& string::operator= (const char* cstr)

string& string::assign (const char* cstr)

• Both operations assign the characters of the C-string cstr.

• They assign all characters of cstr up to but not including ’\0’.

• Both operations return *this.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::assign (const char* chars, size_type chars_len)

• Assigns chars_len characters of the character array chars.

• Returns *this.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator= (char c)

• Assigns character c as the new value.

• Returns *this.

• After this call, *this contains only this single character.

string& string::assign (size_type num, char c)

• Assigns num occurrences of character c.

• Returns *this.

• Throws length_error if num is equal to string::npos.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::assign (InputIterator beg, InputIterator end)

• Assigns all characters of the range [beg,end).

• Returns *this.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator= (initializer-list)

string& string::assign (initializer-list)

• Both operations assign the characters of initializer-list.

702 Chapter 13: Strings

• Both operations return *this.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

• Available since C++11.

void string::swap (string& str)

void swap (string& str1, string& str2)

• Both forms swap the value of two strings, either of *this and str or of str1 and str2.

• You should prefer these functions over copy assignment, if possible, because they are faster. In

fact, they are guaranteed to have constant complexity. See Section 13.2.8, page 674, for details.

Appending Characters

string& string::operator+= (const string& str)

string& string::append (const string& str)

• Both operations append the characters of str.

• They return *this.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::append (const string& str, size_type str_idx, size_type str_num)

• Appends at most str_num characters of str, starting with index str_idx.

• Returns *this.

• Throws out_of_range if str_idx > str.size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator+= (const char* cstr)

string& string::append (const char* cstr)

• Both operations append the characters of the C-string cstr.

• They return *this.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::append (const char* chars, size_type chars_len)

• Appends chars_len characters of the character array chars.

• Returns *this.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Throws length_error if the resulting size exceeds the maximum number of characters.

13.3 String Class in Detail 703

string& string::append (size_type num, char c)

• Appends num occurrences of character c.

• Returns *this.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator+= (char c)

void string::push_back (char c)

• Both operations append character c.

• Operator += returns *this.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

string& string::append (InputIterator beg, InputIterator end)

• Appends all characters of the range [beg,end).

• Returns *this.

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::operator+= (initializer-list)

void string::append (initializer-list)

• Both operations append all characters of initializer-list.

• Both operations return returns *this.

• Both operations throw length_error if the resulting size exceeds the maximum number of

characters.

• Available since C++11.

Inserting Characters

string& string::insert (size_type idx, const string& str)

• Inserts the characters of str so that the new characters start with index idx.

• Returns *this.

• Throws out_of_range if idx > size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::insert (size_type idx, const string& str,

size_type str_idx, size_type str_num)

• Inserts at most str_num characters of str, starting with index str_idx, so that the new characters

start with index idx.

• Returns *this.

• Throws out_of_range if idx > size().

• Throws out_of_range if str_idx > str.size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

704 Chapter 13: Strings

string& string::insert (size_type idx, const char* cstr)

• Inserts the characters of the C-string cstr so that the new characters start with index idx.

• Returns *this.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

• Throws out_of_range if idx > size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::insert (size_type idx, const char* chars, size_type chars_len)

• Inserts chars_len characters of the character array chars so that the new characters start with

index idx.

• Returns *this.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Throws out_of_range if idx > size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::insert (size_type idx, size_type num, char c)

iterator string::insert (const_iterator pos, size_type num, char c)

• Insert num occurrences of character c at the position specified by idx or pos, respectively.

• The first form inserts the new characters so that they start with index idx.

• The second form inserts the new characters before the character to which iterator pos refers.

• The first form returns *this.

• The second form returns the position of the first character inserted or pos if none was inserted.

• Note that the overloading of these two functions results in a possible ambiguity. If you pass 0 as

the first argument, it can be interpreted as an index, which is typically a conversion to unsigned,

or as an iterator, which is often a conversion to char*. In this case, you should pass an index

with its the exact type. For example:

std::string s;

...

s.insert(0,1,’ ’); // ERROR: ambiguous

s.insert((std::string::size_type)0,1,’ ’); // OK

• Both forms throw out_of_range if idx > size().

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

• Before C++11, pos had type iterator, and the return type of the second form was void.

iterator string::insert (const_iterator pos, char c)

• Inserts a copy of character c before the character to which iterator pos refers.

• Returns the position of the character inserted.

• Throws length_error if the resulting size exceeds the maximum number of characters.

• Before C++11, pos had type iterator.

13.3 String Class in Detail 705

iterator string::insert (const_iterator pos,

InputIterator beg, InputIterator end)

• Inserts all characters of the range [beg,end) before the character to which iterator pos refers.

• Returns the position of the first character inserted or pos if none was inserted.

• Throws length_error if the resulting size exceeds the maximum number of characters.

• Before C++11, pos had type iterator, and the return type was void.

iterator string::insert (const_iterator pos, initializer-list)

• Inserts all characters of initializer-list before the character to which iterator pos refers.

• Returns the position of the first character inserted or pos if none was inserted.

• Throws length_error if the resulting size exceeds the maximum number of characters.

Erasing Characters

void string::clear ()

string& string::erase ()

• Both functions delete all characters of the string. Thus, the string is empty after the call.

• erase() returns *this.

string& string::erase (size_type idx)

string& string::erase (size_type idx, size_type len)

• Both forms erase at most len characters of *this, starting at index idx.

• They return *this.

• If len is missing, all remaining characters are removed.

• Both forms throw out_of_range if idx > size().

iterator string::erase (const_iterator pos)

iterator string::erase (const_iterator beg, const_iterator end)

• Both forms erase the single character at iterator position pos or all characters of the range

[beg,end), respectively.

• They return the position of the first character after the last removed character (thus, the second

form returns end).

• Before C++11, pos, beg, and end had type iterator.

void string::pop_back ()

• Erases the last character.

• Calling this for an empty string results in undefined behavior.

• Available since C++11.

706 Chapter 13: Strings

Changing the Size

void string::resize (size_type num)

void string::resize (size_type num, char c)

• Both forms change the number of characters of *this to num. Thus, if num is not equal to

size(), they append or remove characters at the end according to the new size.

• If the number of characters increases, the new characters are initialized by c. If c is missing, the

characters are initialized by the default constructor of the character type (for string: ’\0’).

• Both forms throw length_error if num is equal to string::npos.

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

Replacing Characters

string& string::replace (size_type idx, size_type len, const string& str)

string& string::replace (begin_iterator beg, begin_iterator end,

const string& str)

• The first form replaces at most len characters of *this, starting with index idx, with all characters

of str.

• The second form replaces all characters of the range [beg,end) with all characters of str.

• Both forms return *this.

• Both forms throw out_of_range if idx > size().

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

• Before C++11, beg and end had type iterator.

string& string::replace (size_type idx, size_type len,

const string& str, size_type str_idx, size_type str_num)

• Replaces at most len characters of *this, starting with index idx, with at most str_num characters

of str, starting with index str_idx.

• Returns *this.

• Throws out_of_range if idx > size().

• Throws out_of_range if str_idx > str.size().

• Throws length_error if the resulting size exceeds the maximum number of characters.

string& string::replace (size_type idx, size_type len, const char* cstr)

string& string::replace (const_iterator beg, const_iterator end,

const char* cstr)

• Both forms replace at most len characters of *this, starting with index idx, or all characters of

the range [beg,end), respectively, with all characters of the C-string cstr.

13.3 String Class in Detail 707

• Both forms return *this.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

• Both forms throw out_of_range if idx > size().

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

• Before C++11, beg and end had type iterator.

string& string::replace (size_type idx, size_type len,

const char* chars, size_type chars_len)

string& string::replace (const_iterator beg, const_iterator end,

const char* chars, size_type chars_len)

• Both forms replace at most len characters of *this, starting with index idx, or all characters of

the range [beg,end), respectively, with chars_len characters of the character array chars.

• They return *this.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

• Both forms throw out_of_range if idx > size().

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

• Before C++11, beg and end had type iterator.

string& string::replace (size_type idx, size_type len, size_type num, char c)

string& string::replace (const_iterator beg, const_iterator end,

size_type num, char c)

• Both forms replace at most len characters of *this, starting with index idx, or all characters of

the range [beg,end), respectively, with num occurrences of character c.

• They return *this.

• Both forms throw out_of_range if idx > size().

• Both forms throw length_error if the resulting size exceeds the maximum number of

characters.

• Before C++11, beg and end had type iterator.

string& string::replace (const_iterator beg, const_iterator end,

InputIterator newBeg, InputIterator newEnd)

• Replaces all characters of the range [beg,end) with all characters of the range [newBeg,newEnd).

• Returns *this.

• Throws length_error if the resulting size exceeds the maximum number of characters.

• Before C++11, beg and end had type iterator.

708 Chapter 13: Strings

string& string::replace (const_iterator beg, const_iterator end,

initializer-list)

• Replaces all characters of the range [beg,end) with all characters of the initializer-list.

• Returns *this.

• Throws length_error if the resulting size exceeds the maximum number of characters.

• Available since C++11.

13.3.8 Searching and Finding

Find a Character

size_type string::find (char c) const

size_type string::find (char c, size_type idx) const

size_type string::rfind (char c) const

size_type string::rfind (char c, size_type idx) const

• These functions search for the first/last character c (starting at index idx).

• The find() functions search forward and return the first substring.

• The rfind() functions search backward and return the last substring.

• These functions return the index of the character when successful or string::npos if they fail.

Find a Substring

size_type string::find (const string& str) const

size_type string::find (const string& str, size_type idx) const

size_type string::rfind (const string& str) const

size_type string::rfind (const string& str, size_type idx) const

• These functions search for the first/last substring str (starting at index idx).

• The find() functions search forward and return the first substring.

• The rfind() functions search backward and return the last substring.

• These functions return the index of the first character of the substring when successful or

string::npos if they fail.

size_type string::find (const char* cstr) const

size_type string::find (const char* cstr, size_type idx) const

size_type string::rfind (const char* cstr) const

size_type string::rfind (const char* cstr, size_type idx) const

• These functions search for the first/last substring that is equal to the characters of the C-string

cstr (starting at index idx).

13.3 String Class in Detail 709

• The find() functions search forward and return the first substring.

• The rfind() functions search backward and return the last substring.

• These functions return the index of the first character of the substring when successful or

string::npos if they fail.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

size_type string::find (const char* chars, size_type idx,

size_type chars_len) const

size_type string::rfind (const char* chars, size_type idx,

size_type chars_len) const

• These functions search for the first/last substring that is equal to chars_len characters of the

character array chars, starting at index idx.

• find() searches forward and returns the first substring.

• rfind() searches backward and returns the last substring.

• These functions return the index of the first character of the substring when successful or

string::npos if they fail.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

Find First of Different Characters

size_type string::find_first_of (const string& str) const

size_type string::find_first_of (const string& str, size_type idx) const

size_type string::find_first_not_of (const string& str) const

size_type string::find_first_not_of (const string& str, size_type idx) const

• These functions search for the first character that is or is not also an element of the string str

(starting at index idx).

• These functions return the index of that character or substring when successful or string::npos

if they fail.

size_type string::find_first_of (const char* cstr) const

size_type string::find_first_of (const char* cstr, size_type idx) const

size_type string::find_first_not_of (const char* cstr) const

size_type string::find_first_not_of (const char* cstr, size_type idx) const

• These functions search for the first character that is or is not also an element of the C-string cstr

(starting at index idx).

• These functions return the index of that character when successful or string::npos if they fail.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

710 Chapter 13: Strings

size_type string::find_first_of (const char* chars, size_type idx,

size_type chars_len) const

size_type string::find_first_not_of (const char* chars, size_type idx,

size_type chars_len) const

• These functions search for the first character that is or is not also an element of the chars_len

characters of the character array chars, starting at index idx.

• These functions return the index of that character when successful or string::npos if they fail.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

size_type string::find_first_of (char c) const

size_type string::find_first_of (char c, size_type idx) const

size_type string::find_first_not_of (char c) const

size_type string::find_first_not_of (char c, size_type idx) const

• These functions search for the first character that has or does not have the value c (starting at

index idx).

• These functions return the index of that character when successful or string::npos if they fail.

Find Last of Different Characters

size_type string::find_last_of (const string& str) const

size_type string::find_last_of (const string& str, size_type idx) const

size_type string::find_last_not_of (const string& str) const

size_type string::find_last_not_of (const string& str, size_type idx) const

• These functions search for the last character that is or is not also an element of the string str

(starting at index idx).

• These functions return the index of that character or substring when successful or string::npos

if they fail.

size_type string::find_last_of (const char* cstr) const

size_type string::find_last_of (const char* cstr, size_type idx) const

size_type string::find_last_not_of (const char* cstr) const

size_type string::find_last_not_of (const char* cstr, size_type idx) const

• These functions search for the last character that is or is not also an element of the C-string cstr

(starting at index idx).

• These functions return the index of that character when successful or string::npos if they fail.

• Note that passing a null pointer (nullptr or NULL) results in undefined behavior.

13.3 String Class in Detail 711

size_type string::find_last_of (const char* chars, size_type idx,

size_type chars_len) const

size_type string::find_last_not_of (const char* chars, size_type idx,

size_type chars_len) const

• These functions search for the last character that is or is not also an element of the chars_len

characters of the character array chars, starting at index idx.

• These functions return the index of that character when successful or string::npos if they fail.

• Note that chars must have at least chars_len characters. The characters may have arbitrary

values. Thus, ’\0’ has no special meaning.

size_type string::find_last_of (char c) const

size_type string::find_last_of (char c, size_type idx) const

size_type string::find_last_not_of (char c) const

size_type string::find_last_not_of (char c, size_type idx) const

• These functions search for the last character that has or does not have the value c (starting at

index idx).

• These functions return the index of that character when successful or string::npos if they fail.

13.3.9 Substrings and String Concatenation

string string::substr () const

string string::substr (size_type idx) const

string string::substr (size_type idx, size_type len) const

• All forms return a substring of at most len characters of the string *this (starting with index

idx).

• If len is missing, all remaining characters are used.

• If idx and len are missing, a copy of the string is returned.

• All forms throw out_of_range if idx > size().

string operator+ (const string& str1, const string& str2)

string operator+ (string&& str1, string&& str2)

string operator+ (string&& str1, const string& str2)

string operator+ (const string& str1, string&& str2)

string operator+ (const string& str, const char* cstr)

string operator+ (string&& str, const char* cstr)

string operator+ (const char* cstr, const string& str)

string operator+ (const char* cstr, string&& str)

string operator+ (const string& str, char c)

712 Chapter 13: Strings

string operator+ (string&& str, char c)

string operator+ (char c, const string& str)

string operator+ (char c, string&& str)

• All forms concatenate all characters of both operands and return the sum string.

• Whenever an argument is an rvalue reference, the move semantics are used, which means that

the argument has an undefined value afterward.

• The operands may be any of the following:

– A string

– A C-string

– A single character

• All forms throw length_error if the resulting size exceeds the maximum number of characters.

13.3.10 Input/Output Functions

ostream& operator<< (ostream&& strm, const string& str)

• Writes the characters of str to the stream strm.

• If strm.width() is greater than 0, at least width() characters are written, and width() is set

to 0.

• ostream is the ostream type basic_ostream<char> according to the character type (see Sec-

tion 15.2.1, page 748).

• Before C++11, the stream type was an lvalue reference.

istream& operator>> (istream&& strm, string& str)

• Reads the characters of the next word from strm into the string str.

• If the skipws flag is set for strm, leading whitespaces are ignored.

• Characters are extracted until any of the following happens:

– strm.width() is greater than 0 and width() characters are stored

– strm.good() is false (which might cause an appropriate exception)

– isspace(c,strm.getloc()) is true for the next character c

– str.max_size() characters are stored

• The internal memory is reallocated accordingly.

• istream is the istream type basic_istream<char> according to the character type (see Sec-

tion 15.2.1, page 748).

• Before C++11, the stream type was an lvalue reference.

13.3 String Class in Detail 713

istream& getline (istream& strm, string& str)

istream& getline (istream&& strm, string& str)

istream& getline (istream& strm, string& str, char delim)

istream& getline (istream&& strm, string& str, char delim)

• Read the characters of the next line from strm into the string str.

• All characters, including leading whitespaces, are extracted until any of the following happens:

– strm.good() is false (which might cause an appropriate exception)

– delim or strm.widen(’\n’) is extracted

– str.max_size() characters are stored

• The line delimiter is extracted but not appended.

• The internal memory is reallocated accordingly.

• istream is the istream type basic_istream<char> according to the character type (see Sec-

tion 15.2.1, page 748).

• The overloads for rvalue references are available since C++11.

13.3.11 Numeric Conversions

int stoi (const string& str, size_t* idxRet = nullptr, int base = 10)

int stol (const string& str, size_t* idxRet = nullptr, int base = 10)

int stoul (const string& str, size_t* idxRet = nullptr, int base = 10)

int stoll (const string& str, size_t* idxRet = nullptr, int base = 10)

int stoull (const string& str, size_t* idxRet = nullptr, int base = 10)

int stof (const string& str, size_t* idxRet = nullptr, int base = 10)

int stod (const string& str, size_t* idxRet = nullptr, int base = 10)

int stold (const string& str, size_t* idxRet = nullptr, int base = 10)

• Convert str to the corresponding return type.

• str might be a string of type string or wstring.

• Skip leading whitespace.

• If idxRet!=nullptr, it returns the index of the first character not processed for the conversion.

• base allows you to specify a base number.

• Might throw std::invalid_argument if no conversion is possible and std::out_of_range

if the converted value is outside the range of representable values for the return type.

string to_string (Type val)

wstring to_wstring (Type val)

• Converts val to a string or wstring.

• Valid types for val are int, unsigned int, long, unsigned long, long long, unsigned

long long, float, double, or long double.

714 Chapter 13: Strings

13.3.12 Generating Iterators

iterator string::begin ()

const_iterator string::begin () const

const_iterator string::cbegin ()

• All forms return a random-access iterator for the beginning of the string (the position of the first

character).

• If the string is empty, the call is equivalent to end() or cend().

iterator string::end ()

const_iterator string::end () const

const_iterator string::cend ()

• All forms return a random-access iterator for the end of the string (the position after the last

character).

• Note that the character at the end is not defined. Thus, *s.end() and *s.cend() result in

undefined behavior.

• If the string is empty, the call is equivalent to begin() or cbegin().

reverse_iterator string::rbegin ()

const_reverse_iterator string::rbegin () const

const_reverse_iterator string::crbegin ()

• All forms return a random-access iterator for the beginning of a reverse iteration over the string

(the position of the last character).

• If the string is empty, the call is equivalent to rend() or crend().

• For details about reverse iterators, see Section 9.4.1, page 448.

reverse_iterator string::rend ()

const_reverse_iterator string::rend () const

const_reverse_iterator string::crend ()

• All forms return a random-access iterator for the end of the reverse iteration over the string (the

position before the first character).

• Note that the character at the reverse end is not defined. Thus, *s.rend() and *s.crend()

result in undefined behavior.

• If the string is empty, the call is equivalent to rbegin() or crbegin().

• For details about reverse iterators, see Section 9.4.1, page 448.

13.3 String Class in Detail 715

13.3.13 Allocator Support

Strings provide the usual members of classes with allocator support.

string::allocator_type

• The type of the allocator.

• Third template parameter of class basic_string<>.

• For type string, it is equivalent to allocator<char>.

allocator_type string::get_allocator () const

• Returns the memory model of the string.

Strings also provide all constructors with optional allocator arguments. The following are all the

string constructors, including their optional allocator arguments, according to the standard:11

namespace std {

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_string {

public:

// default constructor

explicit basic_string(const Allocator& a = Allocator());

// copy and move constructor (with allocator)

basic_string(const basic_string& str);

basic_string(basic_string&& str);

basic_string(const basic_string& str, const Allocator&);

basic_string(basic_string&& str, const Allocator&);

// constructor for substrings

basic_string(const basic_string& str,

size_type str_idx = 0,

size_type str_num = npos,

const Allocator& a = Allocator());

// constructor for C-strings

basic_string(const charT* cstr,

const Allocator& a = Allocator());

11 The copy constructor with allocator, the move constructors, and the constructor for initializer list are available

since C++11.

716 Chapter 13: Strings

// constructor for character arrays

basic_string(const charT* chars, size_type chars_len,

const Allocator& a = Allocator());

// constructor for num occurrences of a character

basic_string(size_type num, charT c,

const Allocator& a = Allocator());

// constructor for a range of characters

template <typename InputIterator>

basic_string(InputIterator beg, InputIterator end,

const Allocator& a = Allocator());

// constructor for an initializer list

basic_string(initializer_list<charT>,

const Allocator& a = Allocator());

...

};

}

These constructors behave as described in Section 13.3.2, page 694, with the additional ability that

you can pass your own memory model object. If the string is initialized by another string, the

allocator also gets copied.12 See Chapter 19 for more details about allocators.

12 The original standard states that the default allocator is used when a string gets copied. However, this does

not make much sense, so this is the proposed resolution to fix this behavior.

Chapter 14

Regular Expressions

This chapter introduces the library for regular expressions. That library allows you to use wildcards

and patterns to search and replace characters in strings.

In principle, you can do the following with regular expressions:

• Match the whole input against a regular expression

• Search for patterns that match a regular expression

• Tokenize a character according to a token separator specified as a regular expression

• Replace in the first or all subsequences that match a regular expression

For all these operations, you can use different grammars, which are used to define a regular expres-

sion.

I begin this chapter by introducing the various operations, then discussing different grammars,

and finally listing the regex operations in detail.

14.1 The Regex Match and Search Interface

First, let’s look at how we can check whether a sequence of characters matches or partially matches

a specific regular expression:

// regex/regex1.cpp

#include <regex>

#include <iostream>

using namespace std;

void out (bool b)

{

cout << (b ? "found" : "not found") << endl;

}

718 Chapter 14: Regular Expressions

int main()

{

// find XML/HTML-tagged value (using default syntax):

regex reg1("<.*>.*</.*>");

bool found = regex_match ("<tag>value</tag>", // data

reg1); // regular expression

out(found);

// find XML/HTML-tagged value (tags before and after the value must match):

regex reg2("<(.*)>.*</\\1>");

found = regex_match ("<tag>value</tag>", // data

reg2); // regular expression

out(found);

// find XML/HTML-tagged value (using grep syntax):

regex reg3("<\\(.*\\)>.*</\\1>",regex_constants::grep);

found = regex_match ("<tag>value</tag>", // data

reg3); // regular expression

out(found);

// use C-string as regular expression (needs explicit cast to regex):

found = regex_match ("<tag>value</tag>", // data

regex("<(.*)>.*</\\1>")); // regular expression

out(found);

cout << endl;

// regex_match() versus regex_search():

found = regex_match ("XML tag: <tag>value</tag>",

regex("<(.*)>.*</\\1>")); // fails to match

out(found);

found = regex_match ("XML tag: <tag>value</tag>",

regex(".*<(.*)>.*</\\1>.*")); // matches

out(found);

found = regex_search ("XML tag: <tag>value</tag>",

regex("<(.*)>.*</\\1>")); // matches

out(found);

found = regex_search ("XML tag: <tag>value</tag>",

regex(".*<(.*)>.*</\\1>.*")); // matches

out(found);

}

First, we include the necessary header file and global identifiers in namespace std:

#include <regex>

using namespace std;

14.1 The Regex Match and Search Interface 719

Next, a first example demonstrates how a regular expression can be defined and used to check

whether a character sequence matches a specific pattern. We declare and initialize reg1 as a regular

expression:

regex reg1("<.*>.*</.*>");

The type of the object representing the regular expression is std::regex. As with strings, this is

a specialization of class std::basic_regex<> for the character type char. For the character type

wchar_t, class std::wregex is provided.

reg1 is initialized by the following regular expression:

<.*>.*</.*>

This regular expressions checks for “<someChars>someChars</someChars>” by using the syn-

tax .*, where “.” stands for “any character except newline” and “*” stands for “zero or more

times.” Thus, we try to match the format of a tagged XML or HTML value. The character sequence

<tag>value</tag> matches this pattern, so

regex_match ("<tag>value</tag>", // data

reg1); // regular expression

yields true.

We can even specify that the leading and the trailing tags have to be the same character sequence,

which is what the next statements demonstrate:

regex reg2("<(.*)>.*</\\1>");

found = regex_match ("<tag>value</tag>", // data

reg2); // regular expression

Again, regex_match() yields true.

Here, we use the concept of “grouping.” We use “(...)” to define a so-called capture group, to

which we refer later on with the regular expression “\1”. Note, however, that we specify the regular

expression as an ordinary character sequence, so we have to specify the “character \ followed by the

character 1” as “\\1”. Alternatively, we could use a raw string, which was introduced with C++11

(see Section 3.1.6, page 23):

R"(<(.*)>.*</\1>)" // equivalent to: "<(.*)>.*</\\1>"

Such a raw string allows you to define a character sequence by writing exactly its contents as a raw

character sequence. It starts with “R"(” and ends with “)"”. To be able to have “)"” inside the

raw string, you can use a delimiter. Thus, the complete syntax of raw strings is R"delim(...)delim",

where delim is a character sequence of at most 16 basic characters except the backslash, whitespaces,

and parentheses.

What we introduce here as special characters for regular expressions is part of the grammar they

have. Note that the C++ standard library supports various grammars. The default grammar is a

“modified ECMAScript grammar,” which is introduced in detail in Section 14.8, page 738. But the

next statements show how a different grammar can be used:

regex reg3("<\\(.*\\)>.*</\\1>",regex_constants::grep);

found = regex_match ("<tag>value</tag>", // data

reg3); // regular expression

720 Chapter 14: Regular Expressions

Here, the optional second argument to the regex constructor regex_constants::grep specifies

a grammar like the UNIX grep command, where, for example, you have to mask the grouping

characters by additional backslashes (which have to be masked by backslashes in ordinary string

literals). Section 14.9, page 739, discusses the differences of the various grammars supported.

All the previous examples used a separate object to specify the regular expression. This is not

necessary; however, note that just passing a string or string literal as a regular expression is not

enough. Although an implicit type conversion is declared, the resulting statement won’t compile,

because it is ambiguous. For example:

regex_match ("<tag>value</tag>", // ERROR: ambiguous

"<(.*)>.*</\\1>")

regex_match (string("<tag>value</tag>"), // ERROR: ambiguous

"<(.*)>.*</\\1>")

regex_match ("<tag>value</tag>", // OK

regex("<(.*)>.*</\\1>"))

Finally, we come to the difference of regex_match() and regex_search:

• regex_match() checks whether the whole character sequence matches a regular expression.

• regex_search() checks whether the character sequence partially matches a regular expression.

There is no other difference. Thus,

regex_search (data, regex(pattern))

is always equivalent to

regex_match (data, regex("(.|\n)*"+pattern+"(.|\n)*"))

where “(.|\n)*” stands for any number of any character (“.” stands for any character except the

newline character and “|” stands for “or”).

Now, you might say that these statements miss important information, at least for the function

regex_search(): where a regular expression matches a given character sequence. For this and

many more features, we have to introduce new versions of regex_match() and regex_search(),

where a new parameter returns all necessary information about a match.

14.2 Dealing with Subexpressions

Consider the following example:

// regex/regex2.cpp

#include <string>

#include <regex>

#include <iostream>

#include <iomanip>

using namespace std;

14.2 Dealing with Subexpressions 721

int main()

{

string data = "XML tag: <tag-name>the value</tag-name>.";

cout << "data: " << data << "\n\n";

smatch m; // for returned details of the match

bool found = regex_search (data,

m,

regex("<(.*)>(.*)</(\\1)>"));

// print match details:

cout << "m.empty(): " << boolalpha << m.empty() << endl;

cout << "m.size(): " << m.size() << endl;

if (found) {

cout << "m.str(): " << m.str() << endl;

cout << "m.length(): " << m.length() << endl;

cout << "m.position(): " << m.position() << endl;

cout << "m.prefix().str(): " << m.prefix().str() << endl;

cout << "m.suffix().str(): " << m.suffix().str() << endl;

cout << endl;

// iterating over all matches (using the match index):

for (int i=0; i<m.size(); ++i) {

cout << "m[" << i << "].str(): " << m[i].str() << endl;

cout << "m.str(" << i << "): " << m.str(i) << endl;

cout << "m.position(" << i << "): " << m.position(i)

<< endl;

}

cout << endl;

// iterating over all matches (using iterators):

cout << "matches:" << endl;

for (auto pos = m.begin(); pos != m.end(); ++pos) {

cout << " " << *pos << " ";

cout << "(length: " << pos->length() << ")" << endl;

}

}

}

In this example, we can demonstrate the use of match_results objects, which can be passed to

regex_match() and regex_search() to get details of matches. Class std::match_results<>

is a template that has to get instantiated by the iterator type of the characters processed. The C++

standard library provides some predefined instantiations:

722 Chapter 14: Regular Expressions

• smatch: for details of matches in strings

• cmatch: for details of matches in C-strings (const char*)

• wsmatch: for details of matches in wstrings

• wcmatch: for details of matches in wide C-strings (const wchar_t*)

Thus, if we call regex_match() or regex_search() for C++ strings, type smatch has to be used;

for ordinary string literals, type cmatch has to be used.

What a match_results object yields is shown in detail by the example, where we search for

the regular expression

<(.*)>(.*)</(\1)>

in the string data, initialized by the following character sequence:

"XML tag: <tag-name>the value</tag-name>."

XML tag: <tag-name>the value</tag-name>.

Regex: <(.*)>(.*)</(\1)>

m[2] m[3] m[1]

prefix() m[0] suffix()

Figure 14.1. Regex Match Interface

After the call, the match_results object m has a state, which is visible in Figure 14.1 and provides

the following interface:

• In general, the match_results object contains:

– A sub_match object m[0] for all the matched characters

– A prefix(), a sub_match object that represents all characters before the first matched

character

– A suffix(), a sub_match object that represents all characters after the last matched

character

• In addition, for any capture group, you have access to a corresponding sub_match object m[n].

Because the regex specified here defines three capture groups, one for the introducing tag, one

for the value, and one for the ending tag, these are available in m[1], m[2], and m[3].

• size() yields the number of sub_match objects (including m[0]).

• All sub_match objects are derived from pair<> and have the position of the first character as

member first and the position after the last character as member second. In addition, str()

yields the characters as a string, length() yields the number of characters, operator << writes

the characters to a stream, and an implicit type conversion to a string is defined.

14.2 Dealing with Subexpressions 723

• In addition, the match_results object as a whole provides:

– member function str() to yield the matched string as a whole (calling str() or str(0))

or the nth matched substring (calling str(n)), which is empty if no matched substring exists

(thus, passing an n greater than size() is valid)

– member function length() to yield the length of the matched string as a whole (calling

length() or length(0)) or the length of the nth matched substring (calling length(n)),

which is 0 if no matched substring exists (thus, passing an n greater than size() is valid)

– member function position() to yield the position of the matched string as a whole (call-

ing position() or position(0)) or the position of the nth matched substring (calling

length(n))

– member functions begin(), cbegin(), end(), and cend() to iterate over the sub_match

objects m[0] to m[n]

For this reason, the program has the following output:

data: XML tag: <tag-name>the value</tag-name>.

m.empty(): false

m.size(): 4

m.str(): <tag-name>the value</tag-name>

m.length(): 30

m.position(): 9

m.prefix().str(): XML tag:

m.suffix().str(): .

m[0].str(): <tag-name>the value</tag-name>

m.str(0): <tag-name>the value</tag-name>

m.position(0): 9

m[1].str(): tag-name

m.str(1): tag-name

m.position(1): 10

m[2].str(): the value

m.str(2): the value

m.position(2): 19

m[3].str(): tag-name

m.str(3): tag-name

m.position(3): 30

matches:

<tag-name>the value</tag-name> (length: 30)

tag-name (length: 8)

the value (length: 9)

tag-name (length: 8)

724 Chapter 14: Regular Expressions

In other words, you have four ways to yield the whole matched string in a match_result<> m:

m.str() // yields whole matches string

m.str(0) // ditto

m[0].str() // ditto

*(m.begin()) // ditto

and three ways to yield the nth matches substring, if any:

m.str(1) // yields first matched substring, if any, or "" otherwise

m[1].str() // ditto

*(m.begin()+1) // yields first matched substring, if any, invalid otherwise

If you call regex_match() instead of regex_search(), the match_results interface is the same.

However, because regex_match() always matches the whole character sequence, prefix and suffix

will always be empty.

Now we have all the information we need to find all matches of a regular expression, as the

following program demonstrates:

// regex/regex3.cpp

#include <string>

#include <regex>

#include <iostream>

using namespace std;

int main()

{

string data = "<person>\n"

" <first>Nico</first>\n"

" <last>Josuttis</last>\n"

"</person>\n";

regex reg("<(.*)>(.*)</(\\1)>");

// iterate over all matches

auto pos=data.cbegin();

auto end=data.cend();

smatch m;

for (; regex_search(pos,end,m,reg); pos=m.suffix().first) {

cout << "match: " << m.str() << endl;

cout << " tag: " << m.str(1) << endl;

cout << " value: " << m.str(2) << endl;

}

}

14.2 Dealing with Subexpressions 725

Here, we use the regular expression (the backslash has to get escaped in the C++ string literal)

<(.*)>(.*)</(\1)>

to search for:

<anyNumberOfAnyChars1>anyNumberOfAnyChars2</anyNumberOfAnyChars1>

Thus, we search for XML tags (\1 means: the same as the first matched substring).

In this example, we use this regular expression by a different interface that iterates over matched

character sequences. For this reason, instead of passing the character sequence as a whole, we pass

a range of the corresponding elements. We start with the range of all characters, using cbegin()

and cend() of the string we search in:

auto pos=data.cbegin();

auto end=data.cend();

Then, after each match, we continue the search with the beginning of the remaining characters:

smatch m;

for (; regex_search(pos,end,m,reg); pos=m.suffix().first) {

...

}

So, because the string data we parse has the following value:

<person>

<first>Nico</first>

<last>Josuttis</last>

</person>

the program has the following output:

match: <first>Nico</first>

tag: first

value: Nico

match: <last>Josuttis</last>

tag: last

value: Josuttis

To reinitialize pos, we could also pass m[0].second() (the end of the matched characters) instead

of the expression m.suffix().first. Note that in both cases we have to use const_iterators.

Thus, using begin() and end() to initialize pos and end would not compile here.

Note also that the output will be different if the tags in data were not separated by a newline

character:

<person><first>Nico</first><last>Josuttis</last></person>

Then, the output would be:

match: <person><first>Nico</first><last>Josuttis</last></person>

tag: person

value: <first>Nico</first><last>Josuttis</last>

726 Chapter 14: Regular Expressions

The reason is that regex functions try to operate in a greedy manner. That is, the longest match

possible is returned. With newline characters, the tag opened with <person> could not match,

because we were looking for “.*” as value, which means “any character except newline any times.”

Without newline characters, the whole tag opened with <person> now fulfills this pattern. To ensure

that we still find the inner tags, we’d have to change the regular expression, for example, as follows:

"<(.*)>([^>]*)</(\\1)>"

For the value, we now look for “[^>]*”, which means “all but character < any times.” Therefore,

subtags do not fit any longer as part of a value.

14.3 Regex Iterators

To iterate over all matches of a regular search, we can also use regex iterators. These iterators are of

type regex_iterator<> and have the usual instantiations for strings and character sequences with

prefixes s, c, ws, or wc. Consider the following example:

// regex/regexiter1.cpp

#include <string>

#include <regex>

#include <iostream>

#include <algorithm>

using namespace std;

int main()

{

string data = "<person>\n"

" <first>Nico</first>\n"

" <last>Josuttis</last>\n"

"</person>\n";

regex reg("<(.*)>(.*)</(\\1)>");

// iterate over all matches (using a regex_iterator):

sregex_iterator pos(data.cbegin(),data.cend(),reg);

sregex_iterator end;

for (; pos!=end ; ++pos) {

cout << "match: " << pos->str() << endl;

cout << " tag: " << pos->str(1) << endl;

cout << " value: " << pos->str(2) << endl;

}

// use a regex_iterator to process each matched substring as element in an algorithm:

sregex_iterator beg(data.cbegin(),data.cend(),reg);

14.4 Regex Token Iterators 727

for_each (beg,end,[](const smatch& m) {

cout << "match: " << m.str() << endl;

cout << " tag: " << m.str(1) << endl;

cout << " value: " << m.str(2) << endl;

});

}

Here, with

sregex_iterator pos(data.cbegin(),data.cend(),reg);

we initialize a regex iterator, iterating over data to search for matches of reg. The default constructor

of this type defines a past-the-end iterator:

sregex_iterator end;

We can now use this iterator as any other bidirectional iterator (see Section 9.2.4, page 437): Opera-

tor * yields the current match, while operators ++ and -- move to the next or previous match. Thus,

the following prints all the matches, their tags, and their values (as in the previous example):

for (; pos!=end ; ++pos) {

cout << "match: " << pos->str() << endl;

cout << " tag: " << pos->str(1) << endl;

cout << " value: " << pos->str(2) << endl;

}

And, of course, you can use such an iterator in an algorithm. Thus, the following calls the lambda

passed as third argument for each match (see Section 6.9, page 229, for details about lambdas and

algorithms):

// use a regex_iterator to process each matched substring as element in an algorithm:

sregex_iterator beg(data.cbegin(),data.cend(),reg);

sregex_iterator end;

for_each (beg,end,[](const smatch& m) {

cout << "match: " << m.str() << endl;

cout << " tag: " << m.str(1) << endl;

cout << " value: " << m.str(2) << endl;

});

14.4 Regex Token Iterators

A regex iterator helps to iterate over matched subsequences. However, sometimes you also want

to process all the contents between matched expressions. That is especially the case if you want

to split a string into separate tokens, separated by something, which might even be specified as a

regular expression. Class regex_token_iterator<> having the usual instantiations for strings

and character sequences with prefixes s, c, ws, or wc provides this functionality.

728 Chapter 14: Regular Expressions

Again, to initialize it, you can pass the beginning and end of a character sequence and a regular

expression. In addition, you can specify a list of integral values, which represent elements of a

“tokenization”:

• -1 means that you are interested in all the subsequences between matched regular expressions

(token separators).

• 0 means that you are interested in all the matched regular expressions (token separators).

• Any other value n means that you are interested in the matched nth subexpression inside the

regular expressions.

Now consider the following example:

// regex/regextokeniter1.cpp

#include <string>

#include <regex>

#include <iostream>

#include <algorithm>

using namespace std;

int main()

{

string data = "<person>\n"

" <first>Nico</first>\n"

" <last>Josuttis</last>\n"

"</person>\n";

regex reg("<(.*)>(.*)</(\\1)>");

// iterate over all matches (using a regex_token_iterator):

sregex_token_iterator pos(data.cbegin(),data.cend(), // sequence

reg, // token separator

{0,2}); // 0: full match, 2: second substring

sregex_token_iterator end;

for (; pos!=end ; ++pos) {

cout << "match: " << pos->str() << endl;

}

cout << endl;

string names = "nico, jim, helmut, paul, tim, john paul, rita";

regex sep("[\t\n]*[,;.][\t\n]*"); // separated by , ; or . and spaces

sregex_token_iterator p(names.cbegin(),names.cend(), // sequence

sep, // separator

-1); // -1: values between separators

sregex_token_iterator e;

for (; p!=e ; ++p) {

14.4 Regex Token Iterators 729

cout << "name: " << *p << endl;

}

}

The program has the following output:

match: <first>Nico</first>

match: Nico

match: <last>Josuttis</last>

match: Josuttis

name: nico

name: jim

name: helmut

name: paul

name: tim

name: john paul

name: rita

Here, a regex token iterator for strings (prefix s) is initialized by the character sequence data, the

regular expression reg, and a list of two indexes (0 and 2):

sregex_token_iterator pos(data.cbegin(),data.cend(), // sequence

reg, // token separator

{0,2}); // 0: full match, 2: second substring

The list of indexes we are interested in defines that we are interested in all matches and the second

substring of each match.

The usual application of such a regex token iterator demonstrates the next iteration. Here, we

have a list of names:

string names = "nico, jim, helmut, paul, tim, john paul, rita";

Now a regular expression defines what separates these names. Here, it is a comma or a semicolon or

a period with optional whitespaces (spaces, tabs, and newlines) around:

regex sep("[\t\n]*[,;.][\t\n]*"); // separated by , ; or . and spaces

Alternatively, we could use the following regular expression (see Section 14.8, page 738):

regex sep("[[:space:]]*[,;.][[:space:]]*"); // separated by , ; or . and spaces

Because we are interested only in the values between these token separators, the program processes

each name in this list (with spaces removed).

Note that the interface of regex_token_iterator allows you to specify the tokens of interest

in various ways:

• You can pass a single integral value.

• You can pass an initializer list of integral values (see Section 3.1.3, page 15).

• You can pass a vector of integral values.

• You can pass an array of integral values.

730 Chapter 14: Regular Expressions

14.5 Replacing Regular Expressions

Finally, let’s look at the interface that allows you to replace character sequences that match a regular

expression. Consider the following example:

// regex/regexreplace1.cpp

#include <string>

#include <regex>

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

string data = "<person>\n"

" <first>Nico</first>\n"

" <last>Josuttis</last>\n"

"</person>\n";

regex reg("<(.*)>(.*)</(\\1)>");

// print data with replacement for matched patterns

cout << regex_replace (data, // data

reg, // regular expression

"<$1 value=\"$2\"/>") // replacement

<< endl;

// same using sed syntax

cout << regex_replace (data, // data

reg, // regular expression

"<\\1 value=\"\\2\"/>", // replacement

regex_constants::format_sed) // format flag

<< endl;

// use iterator interface, and

// - format_no_copy: don’t copy characters that don’t match

// - format_first_only: replace only the first match found

string res2;

regex_replace (back_inserter(res2), // destination

data.begin(), data.end(), // source range

reg, // regular expression

"<$1 value=\"$2\"/>", // replacement

regex_constants::format_no_copy // format flags

| regex_constants::format_first_only);

14.5 Replacing Regular Expressions 731

cout << res2 << endl;

}

Here again, we use a regular expression to match XML/HTML-tagged values. But this time, we

transform the input into the following output:

<person>

<first value="Nico"/>

<last value="Josuttis"/>

</person>

<person>

<first value="Nico"/>

<last value="Josuttis"/>

</person>

<first value="Nico"/>

To do this, we specify a replacement where we can use matched subexpressions with the character $

(see Table 14.1). Here, we use $1 and $2 to use the tag and the value found in the replacement:

"<$1 value=\"$2\"/>" // replacement using default syntax

Again, we can avoid having to escape the quotes by using a raw string:

R"(<$1 value="$2"/>)" // replacement using default syntax

By passing a regex constant regex_constants::format_sed, you can instead use the replacement

syntax of the UNIX command sed (see the second column in Table 14.1):

"<\\1 value=\"\\2\"/>" // replacement using sed syntax

Again, by using a raw string, we can avoid escaping backslashes:

R"(<\1 value="\2"/>)" // replacement using sed syntax specified as raw string

Default Pattern sed Pattern Meaning

$& & The matched pattern

$n \n The nth matched capture group

$‘ The prefix of the matched pattern

$’ The suffix of the matched pattern

$$ The character $

Table 14.1. Regex Replacement Symbols

732 Chapter 14: Regular Expressions

14.6 Regex Flags

We already introduced some regex constants you can use to influence the behavior of the regex

interfaces:

regex reg3("<\\(.*\\)>.*</\\1>",regex_constants::grep); // use grep grammar

regex_replace (data, reg,

string("<\\1 value=\"\\2\"/>"),

regex_constants::format_sed) // use sed replacement syntax

But there is more. Table 14.2 lists all regex constants provided by the regex library and where they

can be used. In principle, they can always be passed as the optional last argument to the regex

constructor or to the regex functions.

Here is a small program that demonstrates the usage of some flags:

// regex/regex4.cpp

#include <string>

#include <regex>

#include <iostream>

using namespace std;

int main()

{

// case-insensitive find LaTeX index entries

string pat1 = R"(\\.*index\{([^}]*)\})"; // first capture group

string pat2 = R"(\\.*index\{(.*)\}\{(.*)\})"; // 2nd and 3rd capture group

regex pat (pat1+"\n"+pat2,

regex_constants::egrep|regex_constants::icase);

// initialize string with characters from standard input:

string data((istreambuf_iterator<char>(cin)),

istreambuf_iterator<char>());

// search and print matching index entries:

smatch m;

auto pos = data.cbegin();

auto end = data.cend();

for (; regex_search (pos,end,m,pat); pos=m.suffix().first) {

cout << "match: " << m.str() << endl;

cout << " val: " << m.str(1)+m.str(2) << endl;

cout << " see: " << m.str(3) << endl;

}

}

14.6 Regex Flags 733

regex_constants Meaning

Regex Grammar:

ECMAScript Use ECMAScript grammar (default).

basic Use the basic regular expression (BRE) grammar of POSIX.

extended Use the extended regular expression (ERE) grammar of POSIX.

awk Use the grammar of the UNIX tool awk.

grep Use the grammar of the UNIX tool grep.

egrep Use the grammar of the UNIX tool egrep.

Other Creation Flags:

icase Ignore case-sensitivity.

nosubs Don’t store subsequences in match results.

optimize Optimize for matching speed rather than for regex creation speed.

collate Character ranges of the form [a-b] shall be locale sensitive.

Algorithm Flags:

match_not_null An empty sequence shall not match.

match_not_bol The first character shall not match the beginning-of-line (pattern ^).

match_not_eol The last character shall not match the end-of-line (pattern $).

match_not_bow The first character shall not match the beginning-of-word (pattern \b).

match_not_eow The last character shall not match the end-of-word (pattern \b).

match_continuous The expression shall match only a subsequence that begins with the

first character.

match_any If more than one match is possible, any match is acceptable.

match_prev_avail The positions before the first character is a valid positions (ignores

match_not_bol and match_not_bow).

Replacement Flags:

format_default Use default (ECMAScript) replacement syntax.

format_sed Use replacement syntax of the UNIX tool sed.

format_first_only Replace the first match only.

format_no_copy Don’t copy characters that don’t match.

Table 14.2. Regex Constants of Namespace std::regex_constants

The goal is to find LATEX index entries that might have one or two arguments. In addition, the entries

might use lowercase or uppercase mode. So, we have to search for either of the following:

• A backlash followed by some characters and index (lower- or uppercase) and then the index

entry surrounded by braces for something like the following:

\index{STL}%

\MAININDEX{standard template library}%

• A backlash followed by some characters and index (lower- or uppercase), and then the index

entry and a “see also” entry surrounded by braces for something like the following:

\SEEINDEX{standard template library}{STL}%

734 Chapter 14: Regular Expressions

Using the egrep grammar, we can put a newline character between these two regular expressions.

(In fact, grep and egrep can search for multiple regular expressions at the same time, specified

in separate lines.) However, we have to take greediness into account, which means that we have

to ensure that the first regular expression does not also match the sequences that should match the

second regular expression. So, instead of allowing any character inside the index entry, we have to

ensure that no braces occur. As a result, we have the following regular expressions:

\\.*index\{([^}]*)\}

\\.*index\{(.*)\}\{(.*)\}

which can be specified as raw strings:

R"(\\.*index\{([^}]*)\})"

R"(\\.*index\{(.*)\}\{(.*)\})"

or as regular string literals:

"\\\\.*index\\{([^}]*)\\}"

"\\\\.*index\\{(.*)\\}\\{(.*)\\}"

We create the final regular expression by concatenating both expressions and passing the flags to use

a grammar in which \n separates alternative patterns (see Section 14.9, page 739) and to ignore case

sensitivity:

regex pat (pat1+"\n"+pat2,

regex_constants::egrep|regex_constants::icase);

As input, we use all characters read from standard input. Here, we use a string data, which is

initialized by begin and end of all characters read (see Section 7.1.2, page 256, and Section 15.13.2,

page 830, for details):

string data((istreambuf_iterator<char>(cin)),

istreambuf_iterator<char>());

Now note that the first regular expression has one capture group, whereas the second regular expres-

sion has two capture groups. Thus, if the first regex matches, we have the index value in the first

subgroup. If the second regex matches, we have the index value in the second submatch and the

“see also” value in the third submatch. For this reason, we output the contents of the first plus the

contents of the second submatch (one has a value and the other is empty) as value found:

smatch m;

auto pos = data.begin();

auto end = data.end();

for (; regex_search (pos,end,m,pat); pos=m.suffix().first) {

cout << "match: " << m.str() << endl;

cout << " val: " << m.str(1)+m.str(2) << endl;

cout << " see: " << m.str(3) << endl;

}

Note that calling str(2) and str(3) is valid even if no match exists. str() is guaranteed to yield

an empty string in this case.

14.7 Regex Exceptions 735

With the following input:

\chapter{The Standard Template Library}

\index{STL}%

\MAININDEX{standard template library}%

\SEEINDEX{standard template library}{STL}%

This is the basic chapter about the STL.

\section{STL Components}

\hauptindex{STL, introduction}%

The \stl{} is based on the cooperation of

...

the program has the following output:

match: \index{STL}

val: STL

see:

match: \MAININDEX{standard template library}

val: standard template library

see:

match: \SEEINDEX{standard template library}{STL}

val: standard template library

see: STL

match: \hauptindex{STL, introduction}

val: STL, introduction

see:

14.7 Regex Exceptions

When regular expressions are parsed, things can become very complicated. The C++ standard li-

brary provides a special exception class to deal with regular-expression exceptions. This class is

derived from std::runtime_error (see Section 4.3.1, page 41) and provides an additional mem-

ber code() to yield an error code. This might help to find out what’s wrong if an exception is thrown

when processing regular expressions.

Unfortunately, the error codes returned by code() are implementation specific, so it doesn’t help

to print them directly. Instead, you have to use something like the following header file to deal with

regex exceptions in a reasonable way:

// regex/regexexception.hpp

#include <regex>

#include <string>

template <typename T>

std::string regexCode (T code)

{

736 Chapter 14: Regular Expressions

switch (code) {

case std::regex_constants::error_collate:

return "error_collate: "

"regex has invalid collating element name";

case std::regex_constants::error_ctype:

return "error_ctype: "

"regex has invalid character class name";

case std::regex_constants::error_escape:

return "error_escape: "

"regex has invalid escaped char. or trailing escape";

case std::regex_constants::error_backref:

return "error_backref: "

"regex has invalid back reference";

case std::regex_constants::error_brack:

return "error_brack: "

"regex has mismatched ’[’ and ’]’";

case std::regex_constants::error_paren:

return "error_paren: "

"regex has mismatched ’(’ and ’)’";

case std::regex_constants::error_brace:

return "error_brace: "

"regex has mismatched ’{’ and ’}’";

case std::regex_constants::error_badbrace:

return "error_badbrace: "

"regex has invalid range in {} expression";

case std::regex_constants::error_range:

return "error_range: "

"regex has invalid character range, such as ’[b-a]’";

case std::regex_constants::error_space:

return "error_space: "

"insufficient memory to convert regex into finite state";

case std::regex_constants::error_badrepeat:

return "error_badrepeat: "

"one of *?+{ not preceded by valid regex";

case std::regex_constants::error_complexity:

return "error_complexity: "

"complexity of match against regex over pre-set level";

case std::regex_constants::error_stack:

return "error_stack: "

"insufficient memory to determine regex match";

}

return "unknown/non-standard regex error code";

}

14.7 Regex Exceptions 737

The detailed explanation written in parentheses after the name of the error code is taken directly

from the specification of the C++ standard library. The following program demonstrates how to use

it:

// regex/regex5.cpp

#include <regex>

#include <iostream>

#include "regexexception.hpp"

using namespace std;

int main()

{

try {

// initialize regular expression with invalid syntax:

regex pat ("\\\\.*index\\{([^}]*)\\}",

regex_constants::grep|regex_constants::icase);

...

}

catch (const regex_error& e) {

cerr << "regex_error: \n"

<< " what(): " << e.what() << "\n"

<< " code(): " << regexCode(e.code()) << endl;

}

}

Because we use the grep grammar here but do escape the characters { and }, the program might

have an output such as the following:

regex_error:

what(): regular expression error

code(): error_badbrace: regex has invalid range in {} expression

738 Chapter 14: Regular Expressions

14.8 The Regex ECMAScript Grammar

The default grammar of the regex library is a “modified ECMAScript” grammar (see [ECMAScript]),

which is a much more powerful grammar than all the other grammars available. Table 14.3 lists the

most important special expressions with their meanings.

Expression Meaning

. Any character except newline

[...] One of the characters ... (may contain ranges)

[^...] None of the characters ... (may contain ranges)

[[:charclass:]] A character of the specified character class charclass (see Table 14.4)

\n, \t, \f, \r, \v A newline, tabulator, form feed, carriage return, or vertical tab

\xhh, \uhhh A hexadecimal or Unicode character

\d, \D, \s, \S, \w, \W A shortcut for a character of a character class (see Table 14.4)

* The previous character or group any times

? The previous character or group optional (none or one times)

+ The previous character or group at least one time

{n} The previous character or group n times

{n,} The previous character or group at least n times

{n,m} The previous character or group at least n and at most m times

...|... The pattern before or the pattern after |

(...) Grouping

\1, \2, \3, ... The nth group (first group has index 1)

\b A positive word boundary (beginning or end of a word)

\B A negative word boundary (no beginning or end of a word)

^ The beginning of a line (includes beginning of all characters)

$ The end of a line (includes end of all characters)

Table 14.3. Common Regex Expressions for the Default (ECMAScript) Grammar

Inside the bracket expressions, you can specify any combination of characters (including spe-

cial characters), character ranges (for example, [0-9a-z]), and character classes (for example,

[[:digit:]]). A leading ^ negates the whole expression, so the whole bracket expression means

“any character except ...”. Table 14.4 lists the possible character classes of regular expressions. Note

that the basic classes correspond to the convenience functions for character classifications in Sec-

tion 16.4.4, page 895. However, the one-letter shortcuts are supported only by regular expressions.

The character class escape sequences are supported only by the ECMAScript grammar.

Here are some examples:

[_[:alpha:]][_[:alnum:]]* // a C++ identifier

(.|\n)* // any number of any character (including newlines)

[123]?[0-9]\.1?[0-9]\.20[0-9]{2} // a date in the first century of 2000

// (German format, for example 24.12.2010)

14.9 Other Grammars 739

Character Class Shortcut Esc. Effect

[[:alnum:]] A letter or a digit

(equivalent to [[:alpha:][:digit:]])

[[:alpha:]] A letter

[[:blank:]] A space or a tab

[[:cntrl:]] A control character

[[:digit:]] [[:d:]] \d A digit

\D Not a digit (equivalent to [^[:digit:]])

[[:graph:]] A printable, nonspace character

(equivalent to [[:alnum:][:punct:]])

[[:lower:]] A lowercase letter

[[:print:]] A printable character (including whitespaces)

[[:punct:]] A punctuation character (that is, it is printable but is

not a space, digit, or letter)

[[:space:]] [[:s:]] \s A space character

\S Not a space character (equivalent to [^[:space:]])

[[:upper:]] An uppercase letter

[[:xdigit:]] A hexadecimal digit

[[:w:]] \w A letter, digit, or underscore

(equivalent to [[:alpha:][:digit:]_])

\W Not a letter or a digit or an underscore

(equivalent to [^[:alpha:][:digit:]_])

Table 14.4. Character Classes and Corresponding Escape Sequences (ECMAScript)

14.9 Other Grammars

Beside the default ECMAScript grammar, the C++ standard library provides support for five other

grammars, which you can specify by using the corresponding regex constants (see Section 14.6,

page 732). So, you can choose from the following:

• ECMAScript: the default ECMAScript grammar

• basic: the basic regular expression (BRE) grammar of POSIX

• extended: the extended regular expression (ERE) grammar of POSIX

• awk: the grammar of the UNIX tool awk

• grep: the grammar of the UNIX tool grep

• egrep: the grammar of the UNIX tool egrep

Table 14.5 lists the major differences among those grammars. As you can see, the ECMAScript

grammar is by far the most powerful one. The only feature it doesn’t support is the use of newline

characters to separate multiple patterns with “or,” as grep and egrep provide, and the ability of awk

to specify octal escape sequences.

740 Chapter 14: Regular Expressions

Feature ECMA- basic exten- awk grep egrep

Script ded

Characters for grouping () \(\) () () \(\) ()

Characters for repetitions { } \{ \} { } { } \{ \} { }

? means “zero or one” Yes - Yes Yes - Yes

+ means “at least one” Yes - Yes Yes - Yes

| means “or” Yes - Yes Yes - Yes

\n separates alternative patterns - - - - Yes Yes

\n refers to group n Yes Yes - - Yes -

Word boundaries (\b and \B) Yes - - - - -

Hex and Unicode escape sequ. Yes - - - - -

Character class escape sequences Yes - - - - -

\n, \t, \f, \r, \v Yes - - Yes - -

\a (alert) and \b (backspace) - - - Yes - -

\ooo for octal values - - - Yes - -

Table 14.5. Regex Grammar Differences

14.10 Basic Regex Signatures in Detail

Table 14.6 lists the signatures of the basic regex operations regex_match() (see Section 14.1,

page 717), regex_search() (see Section 14.1, page 717), and regex_replace() (see Section

14.5, page 730). As you can see, there are always overloads to operate on strings, which can be

both objects of class basic_string<> and ordinary C-strings, such as string literals, and iterators,

which specify the begin and end of the character sequence to process. In addition, you can always

pass format flags as an optional last argument.

Both regex_match() and regex_search() return true if a match was found. They also

allow you to optionally pass an argument matchRet that returns details of the (sub)matches found.

These arguments of type std::match_results<> (introduced in Section 14.2, page 721) must be

instantiated for an iterator type that corresponds with the character type:

• For C++ strings, it is the corresponding const iterator. For types string and wstring, the

corresponding types smatch and wsmatch are defined:

typedef match_results<string::const_iterator> smatch;

typedef match_results<wstring::const_iterator> wsmatch;

• For C-strings including string literals, it is the corresponding pointer type. For c-strings of char

and wchar_t characters, the corresponding types cmatch and wcmatch are defined:

typedef match_results<const char*> cmatch;

typedef match_results<const wchar_t*> wcmatch;

For regex_replace(), you have to pass the replacement specification repl as a string (again, it

is overloaded for both objects of class basic_string<> and ordinary C-strings, such as string

literals). The string version returns a new string with the corresponding replacements. The iterator

14.10 Basic Regex Signatures in Detail 741

Signature Effect

bool regex_match(str,regex) Check full match of regex

bool regex_match(str,regex,flags)

bool regex_match(beg,end,regex)

bool regex_match(beg,end,regex,flags)

bool regex_match(str,matchRet,regex) Check and return full match

bool regex_match(str,matchRet,regex,flags) of regex

bool regex_match(beg,end,matchRet,regex)

bool regex_match(beg,end,matchRet,regex,flags)

bool regex_search(str,regex) Search match of regex

bool regex_search(str,regex,flags)

bool regex_search(beg,end,regex)

bool regex_search(beg,end,regex,flags)

bool regex_search(str,matchRet,regex) Search and return match

bool regex_search(str,matchRet,regex,flags) of regex

bool regex_search(beg,end,matchRet,regex)

bool regex_search(beg,end,matchRet,regex,flags)

strRes regex_replace(str,regex,repl) Replace match(es) according

strRes regex_replace(str,regex,repl,flags) to regex

outPos regex_replace(outPos,beg,end,regex,repl)

outPos regex_replace(outPos,beg,end,regex,repl,flags)

Table 14.6. Regex Operation Signatures

version returns the first argument outPos, which has to be an output iterator specifying where the

replacements are written to.

Finally, note that to avoid ambiguities no implicit type conversion from strings or string literals

to type regex is provided. Thus, you always explicitly have to convert any string holding a regular

expression to type std::regex (or std::basic_regex<>).

This page intentionally left blank

Chapter 15

Input/Output Using Stream Classes

¨

The classes for I/O form an important part of the C++ standard library; a program without I/O is not

of much use. The I/O classes from the C++ standard library are not restricted to files or to screen and

keyboard but instead form an extensible framework for the formatting of arbitrary data and access to

arbitrary “external representations.”

The IOStream library, as the classes for I/O are called, is the only part of the C++ standard library

that was widely used prior to the standardization of C++98. Early distributions of C++ systems came

with a set of classes, developed at AT&T, that established a de facto standard for doing I/O. Although

these classes have undergone several changes to fit consistently into the C++ standard library and to

suit new needs, the basic principles of the IOStream library remain unchanged.

This chapter first presents a general overview of the most important components and techniques,

and then demonstrates in detail how the IOStream library can be used in practice. Its use ranges from

simple formatting to the integration of new external representations, a topic that is often addressed

improperly.

This chapter does not attempt to discuss all aspects of the IOStream library in detail; to do that

would take an entire book by itself. For details not found here, please consult one of the books that

focus on the I/O stream library or the reference manual of the C++ standard library.

Many thanks to Dietmar Kuhl, an expert on I/O and internationalization in the C++ standard

library, who gave valuable feedback and wrote initial parts of this chapter.

Recent Changes with C++11

C++98 specified almost all features of the IOStream library. Here is a list of the most important

features added with C++11:

• A few new manipulators were introduced: hexfloat and defaultfloat (see Section 15.7.6,

page 788), as well as get_time() and put_time() (see Section 16.4.3, page 890) and

get_money() and put_money() (see Section 16.4.2, page 882).

• In order to provide more information about an exception, the class for exceptions is now derived

from std::system_error rather than directly from std::exception (see Section 15.4.4,

page 762).

744 Chapter 15: Input/Output Using Stream Classes

• String stream and file stream classes now support rvalue and move semantics, so you can move

construct, move assign, and swap a string stream or a file stream. This also provides the ability to

use temporary string or file streams for I/O. See Section 15.9.2, page 795, and Section 15.10.2,

page 806,

• File streams now also allow you to pass a std::string for the filename rather than only a

const char* (see Section 15.9.1, page 794).

• The output and input operators << and >> are now also overloaded for long long and unsigned

long long.

• I/O streams now partially support concurrency (see Section 15.2.2, page 752).

• Character traits are now also provided for types char16_t and char32_t (see Section 16.1.4,

page 853).

• With the help of the new class wbuffer_convert, you can let streams read and write different

character sets, such as UTF-8 (see Section 16.4.4, page 903).

15.1 Common Background of I/O Streams

Before going into details about stream classes, I briefly discuss the generally known aspects of

streams to provide a common background. This section could be skipped by readers familiar with

iostream basics.

15.1.1 Stream Objects

In C++, I/O is performed by using streams. A stream is a “stream of data” in which character

sequences “flow.” Following the principles of object orientation, a stream is an object with properties

that are defined by a class. Output is interpreted as data flowing into a stream; input is interpreted as

data flowing out of a stream. Global objects are predefined for the standard I/O channels.

15.1.2 Stream Classes

Just as there are different kinds of I/O — for example, input, output, and file access — there are

different classes depending on the type of I/O. The following are the most important stream classes:

• Class istream defines input streams that can be used to read data.

• Class ostream defines output streams that can be used to write data.

Both classes are instantiations of the class templates basic_istream<> or basic_ostream<>,

respectively, using char as the character type. In fact, the whole IOStream library does not depend

on a specific character type. Instead, the character type used is a template argument for most of the

classes in the IOStream library. This parametrization corresponds to the string classes and is used

for internationalization (see also Chapter 16).

15.1 Common Background of I/O Streams 745

This section concentrates on output to and input from “narrow streams”: streams dealing with

char as the character type. Later in this chapter, the discussion is extended to streams that have

other character types.

15.1.3 Global Stream Objects

The IOStream library defines several global objects of type istream and ostream. These objects

correspond to the standard I/O channels:

• cin, of class istream, is the standard input channel used for user input. This stream cor-

responds to C’s stdin. Normally, this stream is connected to the keyboard by the operating

system.

• cout, of class ostream, is the standard output channel used for program output. This stream

corresponds to C’s stdout. Normally, this stream is connected to the monitor by the operating

system.

• cerr, of class ostream, is the standard error channel used for all kinds of error messages. This

stream corresponds to C’s stderr. Normally, this stream is also connected to the monitor by the

operating system. By default, cerr is not buffered.

• clog, of class ostream, is the standard logging channel. It has no C equivalent. By default,

this stream is connected to the same destination as cerr, with the difference that output to clog

is buffered.

The separation of “normal” output and error messages makes it possible to treat these two kinds of

output differently when executing a program. For example, the normal output of a program can be

redirected into a file while the error messages are still appearing on the console. Of course, this

requires that the operating system support redirection of the standard I/O channels (most operat-

ing systems do). This separation of standard channels originates from the UNIX concept of I/O

redirection.

15.1.4 Stream Operators

The shift operators >> for input and << for output are overloaded for the corresponding stream

classes. For this reason, the “shift operators” in C++ became the “I/O operators.”1 Using these

operators, it is possible to chain multiple I/O operations.

For example, for each iteration, the following loop reads two integers from the standard input as

long as only integers are entered and writes them to the standard output:

1 Because these operators insert characters into a stream or extract characters from a stream, some people also

call the I/O operators inserters and extractors.

746 Chapter 15: Input/Output Using Stream Classes

int a, b;

// as long as input of a and b is successful

while (std::cin >> a >> b) {

// output a and b

std::cout << "a: " << a << " b: " << b << std::endl;

}

15.1.5 Manipulators

At the end of most output statements, a so-called manipulator is written:

std::cout << std::endl

Manipulators are special objects that are used to, guess what, manipulate a stream. Often, manip-

ulators change only the way input is interpreted or output is formatted, like the manipulators for

the numeric bases dec, hex, and oct. Thus, manipulators for ostreams do not necessarily create

output, and manipulators for istreams do not necessary consume input. But some manipulators do

trigger some immediate action. For example, a manipulator can be used to flush the output buffer or

to skip whitespace in the input buffer.

The manipulator endl means “end line” and does two things:

1. Outputs a newline (that is, the character ’\n’)

2. Flushes the output buffer (forces a write of all buffered data for the given stream, using the stream

method flush())

The most important manipulators defined by the IOStream library are provided in Table 15.1. Sec-

tion 15.6, page 774, discusses manipulators in more detail, including those that are defined in the

IOStream library, and explains how to define your own manipulators.

Manipulator Class Meaning

endl ostream Outputs ’\n’ and flushes the output buffer

ends ostream Outputs ’\0’

flush ostream Flushes the output buffer

ws istream Reads and discards whitespaces

Table 15.1. The IOStream Library’s Most Important Manipulators

15.1.6 A Simple Example

The use of the stream classes is demonstrated by the following example. This program reads two

floating-point values and outputs their product:

15.1 Common Background of I/O Streams 747

// io/io1.cpp

#include <cstdlib>

#include <iostream>

using namespace std;

int main()

{

double x, y; // operands

// print header string

cout << "Multiplication of two floating point values" << endl;

// read first operand

cout << "first operand: ";

if (! (cin >> x)) {

// input error

// => error message and exit program with error status

cerr << "error while reading the first floating value"

<< endl;

return EXIT_FAILURE;

}

// read second operand

cout << "second operand: ";

if (! (cin >> y)) {

// input error

// => error message and exit program with error status

cerr << "error while reading the second floating value"

<< endl;

return EXIT_FAILURE;

}

// print operands and result

cout << x << " times " << y << " equals " << x * y << endl;

}

748 Chapter 15: Input/Output Using Stream Classes

15.2 Fundamental Stream Classes and Objects

15.2.1 Classes and Class Hierarchy

The stream classes of the IOStream library form a hierarchy, as shown in Figure 15.1. For class

templates, the upper row shows the name of the class template, and the lower row presents the

names of the instantiations for the character types char and wchar_t.

� �
 � � � � �
 �
� � � � � � � � � �

� �
 � � �
 � � �
 � � �
 � � � � � � � � �
� � �
 � � � � � � � � � � �
 � � � �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � � �
 � � � � � �
� � � � �
 � � � � � � � � � �
 �

� 	 � � � �
 � �

Figure 15.1. Class Hierarchy of the Fundamental Stream Classes

The classes in this class hierarchy play the following roles:

• The base class ios_base defines the properties of all stream classes independent of the char-

acter type and the corresponding character traits. Most of this class consists of components and

functions for state and format flags.

• The class template basic_ios<> is derived from ios_base and defines the common prop-

erties of all stream classes that depend on the character types and the corresponding character

traits. These properties include the definition of the buffer used by the stream. The buffer is an

object of a class derived from the template class basic_streambuf<> with the corresponding

template instantiation. It performs the actual reading and/or writing.

• The class templates basic_istream<> and basic_ostream<> derive virtually from

basic_ios<> and define objects that can be used for reading or writing, respectively. Like

basic_ios<>, these classes are templates that are parametrized with a character type and its

traits. When internationalization does not matter, the corresponding instantiations for the char-

acter type char — istream and ostream — are used.

15.2 Fundamental Stream Classes and Objects 749

• The class template basic_iostream<> derives from both basic_istream<> and

basic_ostream<>. This class template defines objects that can be used for both reading and

writing.

• The class template basic_streambuf<> is the heart of the IOStream library. This class

defines the interface to all representations that can be written to or read from by streams and is

used by the other stream classes to perform the reading and writing of characters. For access to

some external representation, classes are derived from basic_streambuf<>. See the following

subsection for details.

Purpose of the Stream Buffer Classes

The IOStream library is designed with a rigid separation of responsibilities. The classes derived from

basic_ios handle only formatting of the data.2 The reading and writing of characters is performed

by the stream buffers maintained by the basic_ios subobjects. The stream buffers supply character

buffers for reading and writing. In addition, an abstraction from the external representation, such as

files or strings, is formed by the stream buffers.

Thus, stream buffers play an important role when performing I/O with new external represen-

tations (such as sockets or graphical user interface components), redirecting streams, or combining

streams to form pipelines (for example, to compress output before writing to another stream). Also,

the stream buffer synchronizes the I/O when doing simultaneous I/O on the same external represen-

tation. The details about these techniques are explained in Section 15.12, page 819.

By using stream buffers, it is quite easy to define access to a new “external representation,”

such as a new storage device. All that has to be done is to derive a new stream buffer class from

basic_streambuf<> or an appropriate specialization and to define functions for reading and/or

writing characters for this new external representation. All options for formatted I/O are available

automatically if a stream object is initialized to use an object of the new stream buffer class. See

Section 15.13, page 826, for details of stream buffers and Section 15.13.3, page 832, for examples

of how to define new stream buffers for access to special storage devices.

Detailed Class Definitions

Like all class templates in the IOStream library, the class template basic_ios<> is parametrized by

two arguments and is defined as follows:

namespace std {

template <typename charT,

typename traits = char_traits<charT> >

class basic_ios;

}

The template arguments are the character type used by the stream classes and a class describing the

traits of the character type that are used by the stream classes.

2 In fact, they don’t even do the formatting! The formatting is delegated to corresponding facets in the locale

library. See Section 16.2.2, page 864, and Section 16.4, page 869, for details on facets.

750 Chapter 15: Input/Output Using Stream Classes

Examples of traits defined in the traits class are the value used to represent end-of-file3 and the

instructions for how to copy or move a sequence of characters. Normally, the traits for a character

type are coupled with the character type, thereby making it reasonable to define a class template that

is specialized for specific character types. Hence, the traits class defaults to char_traits<charT>

if charT is the character type argument. The C++ standard library provides specializations of the

class char_traits for the character types char, char16_t, char32_t, and wchar_t.4 For more

details about character traits, see Section 16.1.4, page 853.

There are two instantiations of the class basic_ios<> for the two character types used most

often:

namespace std {

typedef basic_ios<char> ios;

typedef basic_ios<wchar_t> wios;

}

The type ios corresponds to the base class of the “old-fashioned” IOStream library from AT&T and

can be used for compatibility in older C++ programs.

The stream buffer class used by basic_ios is defined similarly:

namespace std {

template <typename charT,

typename traits = char_traits<charT> >

class basic_streambuf;

typedef basic_streambuf<char> streambuf;
typedef basic_streambuf<wchar_t> wstreambuf;

}

Of course, the class templates basic_istream<>, basic_ostream<>, and basic_iostream<>

are also parametrized with the character type and a traits class:

namespace std {

template <typename charT,

typename traits = char_traits<charT> >

class basic_istream;

template <typename charT,

typename traits = char_traits<charT> >

class basic_ostream;

template <typename charT,

typename traits = char_traits<charT> >

class basic_iostream;

}

3 I use the term end-of-file for the “end of input data.” This corresponds with the constant EOF in C.
4 Character traits for char16_t and char32_t are provided since C++11.

15.2 Fundamental Stream Classes and Objects 751

As for the other classes, there are also type definitions for the instantiations of the two most

important character types:

namespace std {

typedef basic_istream<char> istream;

typedef basic_istream<wchar_t> wistream;

typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

typedef basic_iostream<char> iostream;

typedef basic_iostream<wchar_t> wiostream;
}

The types istream and ostream are the types normally used in the Western Hemisphere, where

8-bit character sets are enough.5 wchar_t allow to use character sets with more than 8 bits (see Sec-

tion 16.1, page 850). Note that for types char16_t and char32_t, no corresponding instantiations

are provided by the C++ standard library.

The C++ standard library provides additional stream classes for formatted I/O with files (see

Section 15.9, page 791) and strings (see Section 15.10, page 802).

15.2.2 Global Stream Objects

Several global stream objects are defined for the stream classes. These objects are for access to the

standard I/O channels mentioned previously for streams, with char as the character type and a set

of corresponding objects for the streams using wchar_t as the character type (see Table 15.2).

Type Name Purpose

istream cin Reads input from the standard input channel

ostream cout Writes “normal” output to the standard output channel

ostream cerr Writes error messages to the standard error channel

ostream clog Writes log messages to the standard logging channel

wistream wcin Reads wide-character input from the standard input channel

wostream wcout Writes “normal” wide-character output to the standard output channel

wostream wcerr Writes wide-character error messages to the standard error channel

wostream wclog Writes wide-character log messages to the standard logging channel

Table 15.2. Global Stream Objects

By default, these standard streams are synchronized with the standard streams of C. That is,

the C++ standard library ensures that the order of mixed output with C++ streams and C streams

5 The classes istream_withassign, ostream_withassign, and iostream_withassign, which are present

in some older stream libraries (derived from istream, ostream, and iostream, respectively), are not sup-

ported by the standard. The corresponding functionality is achieved differently (see Section 15.12.3, page 822).

752 Chapter 15: Input/Output Using Stream Classes

is preserved. Before it writes data, any buffer of standard C++ streams flushes the buffer of the

corresponding C streams, and vice versa. Of course, this synchronization takes some time. If it isn’t

necessary, you can turn it off by calling sync_with_stdio(false) before any input or output is

done (see Section 15.14.1, page 845).

Since C++11, some guarantees regarding concurrency are given for these stream objects: When

synchronized with the standard streams of C, using them in multiple parallel threads does not cause

undefined behavior. Thus, you can write from or read into multiple threads. Note, however, that

this might result in interleaved characters, or the thread that gets a character read is undefined. For

any other stream object or if these objects are not synchronized with C streams, concurrent reads or

writes result in undefined behavior.

15.2.3 Header Files

The definitions of the stream classes are scattered among several header files:

• <iosfwd> contains forward declarations for the stream classes. This header file is necessary

because it is no longer permissible to use a simple forward declaration, such as class ostream.

• <streambuf> contains the definitions for the stream buffer base class (basic_streambuf<>).

• <istream> contains the definitions for the classes that support input only (basic_istream<>)

and for the classes that support both input and output (basic_iostream<>).6

• <ostream> contains the definitions for the output stream class (basic_ostream<>).

• <iostream> contains declarations of the global stream objects, such as cin and cout.

Most of the headers exist for the internal organization of the C++ standard library. For the appli-

cation programmer, it should be sufficient to include <iosfwd> for the declaration of the stream

classes and <istream> or <ostream> when using the input or output functions, respectively. The

header <iostream> should be included only if the standard stream objects are to be used. For some

implementations, some code is executed at start-up for each translation unit including this header.

The code being executed is not that expensive, but it requires loading the corresponding pages of

the executable, which might be expensive. In general, only those headers defining necessary “stuff”

should be included. In particular, header files should include only <iosfwd>, and the corresponding

implementation files should then include the header with the complete definition.

For special stream features, such as parametrized manipulators, file streams, or string streams,

there are additional headers: <iomanip>, <fstream>, <sstream>, and <strstream>. The details

about these headers are provided in the sections that introduce these special features.

6 At first, <istream> might not appear to be a logical choice for declaration of the classes for input and

output. However, because there may be some initialization overhead at start-up for every translation unit that

includes <iostream> (see the following paragraph for details), the declarations for input and output were put

into <istream>.

15.3 Standard Stream Operators << and >> 753

15.3 Standard Stream Operators << and >>

In C and C++, operators << and >> are used for shifting bits of an integer to the right or the left,

respectively. The classes basic_istream<> and basic_ostream<> overload operators >> and <<

as the standard I/O operators. Thus, in C++, the “shift operators” became the “I/O operators.”7

15.3.1 Output Operator <<

The class basic_ostream — and thus also the classes ostream and wostream — defines << as an

output operator and overloads it for almost all fundamental types, excluding void and nullptr_t,

as well as for char* and void*.

The output operators for streams are defined to send their second argument to the corresponding

stream. Thus, the data is sent in the direction of the arrow:

int i = 7;

std::cout << i; // outputs: 7

float f = 4.5;

std::cout << f; // outputs: 4.5

Operator << can be overloaded such that the second argument is an arbitrary data type, thereby

allowing the integration of your own data types into the I/O system. The compiler ensures that the

correct function for outputting the second argument is called. Of course, this function should in fact

transform the second argument into a sequence of characters sent to the stream.

The C++ standard library also uses this mechanism to provide output operators for specific types,

such as strings (see Section 13.3.10, page 712), bitsets (see Section 12.5.1, page 652), and complex

numbers (see Section 17.2.3, page 933):

std::string s("hello");

s += ", world";

std::cout << s; // outputs: hello, world

std::bitset<10> flags(7);

std::cout << flags; // outputs: 0000000111

std::complex<float> c(3.1,7.4);

std::cout << c; // outputs: (3.1,7.4)

The details about writing output operators for your own data types are explained in Section 15.11,

page 810.

The fact that the output mechanism can be extended to incorporate your own data types is a

significant improvement over C’s I/O mechanism, which uses printf(): It is not necessary to

specify the type of an object to be printed. Instead, the overloading of different types ensures that

7 Some people also call the I/O operators inserters and extractors.

754 Chapter 15: Input/Output Using Stream Classes

the correct function for printing is deduced automatically. The mechanism is not limited to standard

types. Thus, the user has only one mechanism, and it works for all types.

Operator << can also be used to print multiple objects in one statement. By convention, the output

operators return their first argument. Thus, the result of an output operator is the output stream. This

allows you to chain calls to output operators as follows:

std::cout << x << " times " << y << " is " << x * y << std::endl;

Operator << is evaluated from left to right. Thus,

std::cout << x

is executed first. Note that the evaluative order of the operator does not imply any specific order in

which the arguments are evaluated; only the order in which the operators are executed is defined.

This expression returns its first operand, std::cout. So,

std::cout << " times "

is executed next. The object y, the string literal " is ", and the result of x * y are printed

accordingly. Note that the multiplication operator has a higher priority than operator <<, so you

need no parentheses around x * y. However, there are operators that have lower priority, such as

all logical operators. In this example, if x and y are floating-point numbers with the values 2.4 and

5.1, the following is printed:

2.4 times 5.1 is 12.24

Note that since C++11, concurrent output using the same stream object is possible but might result

in interleaved characters (see Section 15.2.2, page 752).

15.3.2 Input Operator >>

The class basic_istream — and thus also the classes istream and wistream — defines >> as an

input operator. Similar to basic_ostream, this operator is overloaded for almost all fundamental

types, excluding void and nullptr_t, as well as for char* and void*. The input operators for

streams are defined to store the value read in their second argument. As with operator <<, the data is

sent in the direction of the arrow:

int i;

std::cin >> i; // reads an int from standard input and stores it in i

float f;

std::cin >> f; // reads a float from standard input and stores it in f

Note that the second argument is modified. To make this possible, the second argument is passed by

nonconstant reference.

As with output operator <<, it is also possible to overload the input operator for arbitrary data

types and to chain the calls:

float f;

std::complex<double> c;

std::cin >> f >> c;

15.3 Standard Stream Operators << and >> 755

To make this possible, leading whitespace is skipped by default. However, this automatic skipping

of whitespace can be turned off (see Section 15.7.7, page 789).

Note that since C++11, concurrent input using the same stream object is possible but might

result in characters where it is not defined which thread reads which character (see Section 15.2.2,

page 752).

15.3.3 Input/Output of Special Types

The standard I/O operators are provided for almost all fundamental types (excluding void and

nullptr_t) as well as for char*, and void*. However, special rules apply to some of these types

and to user-defined types.

Numeric Types

When reading numeric values, the input must start with at least one digit. Otherwise, the numeric

value will be set to 0 and the failbit (see Section 15.4.1, page 758) is set:

int x;

std::cin >> x; // assigns 0 to x, if the next character does not fit

However, if there is no input or if the failbit is set already, calling the input operator will not

modify x. This also applies to bool.

Type bool

By default, Boolean values are printed and read numerically: false is converted into and from 0,

and true is converted into and from 1. When reading, values different from 0 and 1 are considered

to be an error. In this case, the ios::failbit is set, which might throw a corresponding exception

(see Section 15.4.4, page 762).

It is also possible to set up the formatting options of the stream to use character strings for the I/O

of Boolean values (see Section 15.7.2, page 781). This touches on the topic of internationalization:

Unless a special locale object is used, the strings "true" and "false" are used. In other locale

objects, different strings might be used. For example, a German locale object would use the strings

"wahr" and "falsch". See Chapter 16, especially Section 16.2.2, page 865, for more details.

Types char and wchar_t

When a char or a wchar_t is being read with operator >>, leading whitespace is skipped by default.

To read any character, including whitespace, you can either clear the flag skipws (see Section 15.7.7,

page 789) or use the member function get() (see Section 15.5.1, page 768).

Type char*

A C-string (that is, a char*) is read wordwise. That is, when a C-string is being read, leading

whitespace is skipped by default, and the string is read until another whitespace character or end-of-

756 Chapter 15: Input/Output Using Stream Classes

file is encountered. Whether leading whitespace is skipped automatically can be controlled with the

flag skipws (see Section 15.7.7, page 789).

Note that this behavior means that the string you read can become arbitrarily long. It is already

a common error in C programs to assume that a string can be a maximum of 80 characters long.

There is no such restriction. Thus, you must arrange for a premature termination of the input when

the string is too long. To do this, you should always set the maximum length of the string to be read.

This normally looks something like the following:

char buffer[81]; // 80 characters and ’\0’

std::cin >> std::setw(81) >> buffer;

The manipulator setw() and the corresponding stream parameter are described in detail in Sec-

tion 15.7.3, page 781.

The type string from the C++ standard library (see Chapter 13) grows as needed to accommo-

date a lengthy string. Rather than using char*, this is much easier and less error prone. In addition,

strings provide a convenient function getline() for line-by-line reading (see Section 13.2.10,

page 677). So, whenever you can, avoid the use of C-strings and use strings.

Type void*

Operators << and >> also provide the possibility of printing a pointer and reading it back in again.

An address is printed in an implementation-dependent format if a parameter of type void* is passed

to the output operator. For example, the following statement prints the contents of a C-string and its

address:

char* cstring = "hello";

std::cout << "string \"" << cstring << "\" is located at address: "

<< static_cast<void*>(cstring) << std::endl;

The result of this statement might appear as follows:

string "hello" is located at address: 0x10000018

It is even possible to read an address again with the input operator. However, note that addresses

are normally transient. The same object can get a different address in a newly started program. A

possible application of printing and reading addresses may be programs that exchange addresses for

object identification or programs that share memory.

Stream Buffers

You can use operators >> and << to read directly into a stream buffer and to write directly out of a

stream buffer respectively. This is probably the fastest way to copy files by using C++ I/O streams.

See Section 15.14.3, page 846, for examples.

User-Defined Types

In principle, it is very easy to extend this technique to your own types. However, paying attention

to all possible formatting data and error conditions takes more effort than you might think. See

15.3 Standard Stream Operators << and >> 757

Section 15.11, page 810, for a detailed discussion about extending the standard I/O mechanism for

your own types.

Monetary and Time Values

Since C++11, it is possible to use manipulators to directly read or write monetary or time values.

For example, the following program allows you to write the current date and time and reads a new

date:

// io/timemanipulator1.cpp

#include <iostream>

#include <iomanip>

#include <chrono>

#include <cstdlib>

using namespace std;

int main ()

{

// process and print current date and time:

auto now = chrono::system_clock::now();

time_t t = chrono::system_clock::to_time_t(now);

tm* nowTM = localtime(&t);

cout << put_time(nowTM,"date: %x\ntime: %X\n") << endl;

// read date:

tm* date;

cout << "new date: ";

cin >> get_time(date,"%x"); // read date

if (!cin) {

cerr << "invalid format read" << endl;

}

}

Before asking for a new date, the program might output:

date: 09/14/11

time: 11:08:52

The corresponding manipulators allow you to take international behavior into account. For details,

see Section 16.4.3, page 890, for time manipulators; Section 16.4.2, page 882, for monetary manip-

ulators; and Section 5.7, page 143, for the chrono library defining std::chrono::system_time.

758 Chapter 15: Input/Output Using Stream Classes

15.4 State of Streams

Streams maintain a state. The state identifies whether I/O was successful and, if not, the reason for

the failure.

15.4.1 Constants for the State of Streams

For the general state of streams, several constants of type iostate are defined to be used as flags

(Table 15.3). The type iostate is a member of the class ios_base. The exact type of the constants

is an implementation detail; in other words, it is not defined whether iostate is an enumeration, a

type definition for an integral type, or an instantiation of the class bitset.

Constant Meaning

goodbit Everything is OK; none of the other bits is set

eofbit End-of-file was encountered

failbit Error; an I/O operation was not successful

badbit Fatal error; undefined state

Table 15.3. Constants of Type iostate

The constant goodbit is defined to have the value 0. Thus, having goodbit set means that all

other bits are cleared. The name goodbit may be somewhat confusing because it doesn’t mean that

any bit is set.

The difference between failbit and badbit is basically that badbit indicates a more fatal

error:

• failbit is set if an operation was not processed correctly but the stream is generally OK.

Normally, this flag is set as a result of a format error during reading. For example, this flag is set

if an integer is to be read but the next character is a letter.

• badbit is set if the stream is somehow corrupted or if data is lost. For example, this flag is set

when positioning a stream that refers to a file before the beginning of a file.

Note that eofbit normally happens with failbit because the end-of-file condition is checked and

detected when an attempt is made to read beyond end-of-file. After reading the last character, the

flag eofbit is not yet set. The next attempt to read a character sets eofbit and failbit because

the read fails.

Some former implementations supported the flag hardfail. This flag is not supported in the

standard.

These constants are not defined globally. Instead, they are defined within the class ios_base.

Thus, you must always use them with the scope operator or with some object. For example:

std::ios_base::eofbit

Of course, it is also possible to use a class derived from ios_base. These constants were defined

in the class ios in old implementations. Because ios is a type derived from ios_base and its use

involves less typing, the use often looks like this:

std::ios::eofbit

15.4 State of Streams 759

These flags are maintained by the class basic_ios and are thus present in all objects of type

basic_istream or basic_ostream. However, the stream buffers don’t have state flags. One

stream buffer can be shared by multiple stream objects, so the flags represent only the state of the

stream as found in the last operation. Even this is the case only if goodbit was set prior to this

operation. Otherwise, the flags may have been set by an earlier operation.

15.4.2 Member Functions Accessing the State of Streams

The current state of the flags can be determined by the member functions, as presented in Table 15.4.

Member Function Meaning

good() Returns true if the stream is OK (goodbit is “set”)

eof() Returns true if end-of-file was hit (eofbit is set)

fail() Returns true if an error has occurred (failbit or badbit is set)

bad() Returns true if a fatal error has occurred (badbit is set)

rdstate() Returns the currently set flags

clear() Clears all flags

clear(state) Clears all and sets state flags

setstate(state) Sets additional state flags

Table 15.4. Member Functions for Stream States

The first four member functions in Table 15.4 determine certain states and return a Boolean

value. Note that fail() returns whether failbit or badbit is set. Although this is done mainly

for historical reasons, it also has the advantage that one test suffices to determine whether an error

has occurred.

In addition, the state of the flags can be determined and modified with the more general member

functions. When clear() is called without parameters, all error flags, including eofbit, are cleared

(this is the origin of the name clear):

// clear all error flags (including eofbit):

strm.clear();

If a parameter is given to clear(), the state of the stream is adjusted to be the state given by the

parameter; that is, the flags set in the parameter are set for the stream, and the other flags are cleared.

The only exception is that the badbit is always set if there is no stream buffer, which is the case if

rdbuf() == 0 (see Section 15.12.2, page 820, for details).

The following example checks whether failbit is set and clears it if necessary:

// check whether failbit is set

if (strm.rdstate() & std::ios::failbit) {

std::cout << "failbit was set" << std::endl;

// clear only failbit

strm.clear (strm.rdstate() & ~std::ios::failbit);

}

760 Chapter 15: Input/Output Using Stream Classes

This example uses the bit operators & and ~: Operator ~ returns the bitwise complement of its

argument. Thus, the following expression returns a temporary value that has all bits set except

failbit:

~ios::failbit

Operator & returns a bitwise “and” of its operands. Only the bits set in both operands remain set.

Applying bitwise “and” to all currently set flags (rdstate()) and to all bits except failbit retains

the value of all other bits while failbit is cleared.

Streams can be configured to throw exceptions if certain flags are set with clear() or

setstate() (see Section 15.4.4, page 762). Such streams always throw an exception if the cor-

responding flag is set at the end of the method used to manipulate the flags.

Note that you always have to clear error bits explicitly. In C, it was possible to read characters

after a format error. For example, if scanf() failed to read an integer, you could still read the

remaining characters. Thus, the read operation failed, but the input stream was still in a good state.

This is different in C++. If failbit is set, each following stream operation is a no-op until failbit

is cleared explicitly.

In general, the set bits reflect only what happened sometime in the past: If a bit is set after an

operation, this does not necessarily mean that this operation caused the flag to be set. Instead, the

flag might have been set before the operation. Thus, if it not known whether an error bit is set, you

should call clear() before an operation is executed to let the flags tell you what went wrong. Note

however, that operations may have different effects after clearing the flags. For example, even if

eofbit was set by an operation, this does not mean that after clearing eofbit the operation will set

eofbit again. This can be the case, for example, if the accessed file grew between the two calls.

15.4.3 Stream State and Boolean Conditions

Two functions are defined for the use of streams in Boolean expressions (Table 15.5).

Member Function Meaning

operator bool () Returns whether the stream has not run into an error

(corresponds to !fail())

operator ! () Returns whether the stream has run into an error

(corresponds to fail())

Table 15.5. Stream Operators for Boolean Expressions

With operator bool(),8 streams can be tested in control structures in a short and idiomatic

way for their current state:

8 Before C++11, the operator was declared as operator void*(), which could cause problems such as those

described in Section 15.10.1, page 805.

15.4 State of Streams 761

// while the standard input stream is OK

while (std::cin) {

...

}

For the Boolean condition in a control structure, the type does not need a direct conversion to bool.

Instead, a unique conversion to an integral type, such as int or char, or to a pointer type is sufficient.

The conversion to bool is often used to read objects and test for success in the same expression:

if (std::cin >> x) {

// reading x was successful

...

}

As discussed earlier, the following expression returns cin:

std::cin >> x

So, after x is read, the statement is

if (std::cin) {

...

}

Because cin is being used in the context of a condition, its operator void* is called, which returns

whether the stream has run into an error.

A typical application of this technique is a loop that reads and processes objects:

// as long as obj can be read

while (std::cin >> obj) {

// process obj (in this case, simply output it)

std::cout << obj << std::endl;

}

This is C’s classic filter framework for C++ objects. The loop is terminated if the failbit

or badbit is set. This happens when an error occurred or at end-of-file (the attempt to read at

end-of-file results in setting eofbit and failbit; see Section 15.4.1, page 758). By default, op-

erator >> skips leading whitespaces. This is normally exactly what is desired. However, if obj is

of type char, whitespace is normally considered to be significant. In this case, you can use the

put() and get() member functions of streams (see Section 15.5.3, page 772) or, even better, an

istreambuf_iterator (see Section 15.13.2, page 831) to implement an I/O filter.

With operator !, the inverse test can be performed. The operator is defined to return whether a

stream has run into an error; that is, the operator returns true if failbit or badbit is set. The

operator can be used like this:

if (! std::cin) {

// the stream cin is not OK

...

}

Like the implicit conversion to a Boolean value, this operator is often used to test for success in the

same expression in which an object was read:

762 Chapter 15: Input/Output Using Stream Classes

if (! (std::cin >> x)) {

// the read failed

...

}

Here, the following expression returns cin, to which operator ! is applied:

std::cin >> x

The expression after ! must be placed within parentheses because of operator precedence rules:

Without the parentheses, operator ! would be evaluated first. In other words, the expression

!std::cin >> x

is equivalent to the expression

(!std::cin) >> x

This is probably not what is intended.

Although these operators are very convenient in Boolean expressions, one oddity has to be noted:

Double “negation” does not yield the original object:

• cin is a stream object of class istream.

• !!cin is a Boolean value describing the state of cin.

As with other features of C++, it can be argued whether the use of the conversions to a Boolean

value is good style. The use of member functions, such as fail(), normally yields a more readable

program:

std::cin >> x;

if (std::cin.fail()) {

...

}

15.4.4 Stream State and Exceptions

Exception handling was introduced to C++ for the handling of errors and exceptions (see Section 4.3,

page 41). However, this was done after streams were already in wide use. To stay backward compat-

ible, by default, streams throw no exceptions. However, for the standardized streams, it is possible

to define, for every state flag, whether setting that flag will trigger an exception. This definition is

done by the exceptions() member function (Table 15.6).

Member Function Meaning

exceptions(flags) Sets flags that trigger exceptions

exceptions() Returns the flags that trigger exceptions

Table 15.6. Stream Member Functions for Exceptions

Calling exceptions() without an argument yields the current flags for which exceptions are

triggered. No exceptions are thrown if the function returns goodbit. This is the default, to maintain

15.4 State of Streams 763

backward compatibility. When exceptions() is called with an argument, exceptions are thrown

as soon as the corresponding state flags are set. If a state flag is already set when exceptions() is

called with an argument, an exception is thrown if the corresponding flag is set in the argument.

The following example configures the stream so that, for all flags, an exception is thrown:

// throw exceptions for all ‘‘errors’’

strm.exceptions (std::ios::eofbit | std::ios::failbit |

std::ios::badbit);

If 0 or goodbit is passed as an argument, no exceptions are generated:

// do not generate exceptions

strm.exceptions (std::ios::goodbit);

Exceptions are thrown when the corresponding state flags are set after calling clear() or

setstate(). An exception is even thrown if the flag was already set and not cleared:

// this call throws an exception if failbit is set on entry

strm.exceptions (std::ios::failbit);

...

// throw an exception (even if failbit was already set)

strm.setstate (std::ios::failbit);

The exceptions thrown are objects of the class std::ios_base::failure. Since C++11, this class

is derived from std::system_error (see Section 4.3.1, page 44).9

namespace std {

class ios_base::failure : public system_error {

public:

explicit failure (const string& msg,

const error_code& ec = io_errc::stream);

explicit failure (const char* msg,

const error_code& ec = io_errc::stream);

};

}

Implementations are requested to provide an error_code object that provides the specific reason

for the failure. In fact, an error caused by the operating system should have the category() "system"

and the value() that was reported by the operating system. An error arising from within the I/O

stream library should have the category() "iostream" and the value() std::io_errc::stream.

See Section 4.3.2, page 45, for details about class error_code and how to deal with it.

Not throwing exceptions as default demonstrates that exception handling is intended to be used

more for unexpected situations. It is called exception handling rather than error handling. Expected

errors, such as format errors during input from the user, are considered to be “normal” and are

usually better handled using the state flags.

The major area in which stream exceptions are useful is reading preformatted data, such as

automatically written files. But even then, problems arise if exception handling is used. For example,

9 Before C++11, class std::ios_base::failure was directly derived from class std::exception.

764 Chapter 15: Input/Output Using Stream Classes

if it is desired to read data until end-of-file, you can’t get exceptions for errors without getting an

exception for end-of-file. The reason is that the detection of end-of-file also sets the failbit,

meaning that reading an object was not successful. To distinguish end-of-file from an input error,

you have to check the state of the stream.

The next example demonstrates how this might look. It shows a function that reads floating-point

values from a stream until end-of-file is reached and returns the sum of the floating-point values read:

// io/sum1a.cpp

#include <istream>

namespace MyLib {

double readAndProcessSum (std::istream& strm)

{

using std::ios;

double value, sum;

// save current state of exception flags

ios::iostate oldExceptions = strm.exceptions();

// let failbit and badbit throw exceptions

// - NOTE: failbit is also set at end-of-file

strm.exceptions (ios::failbit | ios::badbit);

try {

// while stream is OK

// - read value and add it to sum

sum = 0;

while (strm >> value) {

sum += value;

}

}

catch (...) {

// if exception not caused by end-of-file

// - restore old state of exception flags

// - rethrow exception

if (!strm.eof()) {

strm.exceptions(oldExceptions); // restore exception flags

throw; // rethrow

}

}

// restore old state of exception flags

strm.exceptions (oldExceptions);

15.4 State of Streams 765

// return sum

return sum;

}

}

First, the function stores the set stream exceptions in oldExceptions to restore them later. Then

the stream is configured to throw an exception on certain conditions. In a loop, all values are read

and added as long as the stream is OK. If end-of-file is reached, the stream is no longer OK, and

a corresponding exception is thrown even though no exception is thrown for setting eofbit. This

happens because end-of-file is detected on an unsuccessful attempt to read more data, which also

sets the failbit. To avoid the behavior that end-of-file throws an exception, the exception is caught

locally to check the state of the stream by using eof(). The exception is propagated only if eof()

yields false.

Note that restoring the original exception flags may cause exceptions: exceptions() throws an

exception if a corresponding flag is set in the stream already. Thus, if the state did throw exceptions

for eofbit, failbit, or badbit on function entry, these exceptions are propagated to the caller.

This function can be called in the simplest case from the following main function:

// io/summain.cpp

#include <iostream>

#include <exception>

#include <cstdlib>

namespace MyLib {

double readAndProcessSum (std::istream&);

}

int main()

{

using namespace std;

double sum;

try {

sum = MyLib::readAndProcessSum(cin);

}

catch (const ios::failure& error) {

cerr << "I/O exception: " << error.what() << endl;

return EXIT_FAILURE;

}

catch (const exception& error) {

cerr << "standard exception: " << error.what() << endl;

return EXIT_FAILURE;

}

766 Chapter 15: Input/Output Using Stream Classes

catch (...) {

cerr << "unknown exception" << endl;

return EXIT_FAILURE;

}

// print sum

cout << "sum: " << sum << endl;

}

The question arises whether this is worth the effort. It is also possible to work with streams not

throwing an exception. In this case, an exception is thrown if an error is detected. This has the

additional advantage that user-defined error messages and error classes can be used:

// io/sum2a.cpp

#include <istream>

namespace MyLib {

double readAndProcessSum (std::istream& strm)

{

double value, sum;

// while stream is OK

// - read value and add it to sum

sum = 0;

while (strm >> value) {

sum += value;

}

if (!strm.eof()) {

throw std::ios::failure

("input error in readAndProcessSum()");

}

// return sum

return sum;

}

}

This looks somewhat simpler, doesn’t it?

15.5 Standard Input/Output Functions 767

I/O Exceptions before C++11

Before C++11, class std::ios_base::failure was directly derived from class std::exception

and had only a constructor taking a std::string argument:

namespace std {

class ios_base::failure : public exception {

public:

explicit failure (const string& msg);

...

};

}

This caused the following limitations:

• For the generated exception object, it was possible to call what() only to get an implementation-

specific string for the reason of the failure. No support for an exception category or value was

provided.

• Because the constructor did take only a std::string, you had to include <string> when

passing a string literal. (To enable the conversion to std::string, you need the declaration of

the corresponding string constructor.)

15.5 Standard Input/Output Functions

Instead of using the standard operators for streams (operator << and operator >>), you can use the

member functions presented in this section for reading and writing. These functions read or write

“unformatted” data, unlike operators >> or <<, which read or write “formatted” data. When read-

ing, the functions described in this section never skip leading whitespaces, which is different to

operator >>, which, by default, skips leading whitespace. This is handled by a sentry object (see

Section 15.5.4, page 772). Also, these functions handle exceptions differently from the formatted

I/O operators: If an exception is thrown, either from a called function or as a result of setting a state

flag (see Section 15.4.4, page 762), the badbit flag is set. The exception is then rethrown if the

exception mask has badbit set.

The standard I/O functions use type streamsize, which is defined in <ios>, to specify counts:

namespace std {

typedef ... streamsize;

...

}

The type streamsize usually is a signed version of size_t. It is signed because it is also used to

specify negative values.

768 Chapter 15: Input/Output Using Stream Classes

15.5.1 Member Functions for Input

In the following definitions, istream is a placeholder for the stream class used for reading. It can

stand for istream, wistream, or other instantiation of the class template basic_istream<>. The

type char is a placeholder for the corresponding character type, which is char for istream and

wchar_t for wistream. Other types or values printed in italics depend on the exact definition of the

character type or on the traits class associated with the stream.

For istreams, the C++ standard library provides several member functions to read character se-

quences. Table 15.7 compares their abilities (s refers to the character sequence the characters are

read into).

Number of Appends

Member Function Reads Until Characters Terminator Returns

get(s,num) Excluding newline or end-of-file Up to num-1 Yes istream

get(s,num,t) Excluding t or end-of-file Up to num-1 Yes istream

getline(s,num) Including newline or end-of-file Up to num-1 Yes istream

getline(s,num,t) Including t or end-of-file Up to num-1 Yes istream

read(s,num) End-of-file num No istream

readsome(s,num) End-of-file Up to num No Count

Table 15.7. Abilities of Stream Operators Reading Character Sequences

int istream::get ()

• Reads the next character.

• Returns the read character or EOF.

• In general, the return type is traits::int_type, and EOF is the value returned by

traits::eof(). For istream, the return type is int, and EOF is the constant EOF. Hence,

for istream, this function corresponds to C’s getchar() or getc().

• Note that the returned value is not necessarily of the character type but can be of a type with a

larger range of values. Otherwise, it would be impossible to distinguish EOF from characters

with the corresponding value.

istream& istream::get (char& c)

• Assigns the next character to the passed argument c.

• Returns the stream. The stream’s state tells whether the read was successful.

istream& istream::get (char* str, streamsize count)

istream& istream::get (char* str, streamsize count, char delim)

• Both forms read up to count-1 characters into the character sequence pointed to by str.

• The first form terminates the reading if the next character to be read is the newline character

of the corresponding character set. For istream, it is the character ’\n’, and for wistream,

15.5 Standard Input/Output Functions 769

it is wchar_t(’\n’) (see Section 16.1.5, page 857). In general, widen(’\n’) is used (see

Section 15.8, page 790).

• The second form terminates the reading if the next character to be read is delim.

• Both forms return the stream. The stream’s state tells whether the read was successful.

• The terminating character (delim) is not read.

• The read character sequence is terminated by a (terminating) null character.

• The caller must ensure that str is large enough for count characters.

istream& istream::getline (char* str, streamsize count)

istream& istream::getline (char* str, streamsize count, char delim)

• Both forms are identical to their previous counterparts of get(), except as follows:

– They terminate the reading including but not before the newline character or delim, respec-

tively. Thus, the newline character or delim is read if it occurs within count-1 characters, but

it is not stored in str.

– If they read lines with more than count-1 characters, they set failbit.

istream& istream::read (char* str, streamsize count)

• Reads count characters into the string str.

• Returns the stream. The stream’s state tells whether the read was successful.

• The string in str is not terminated automatically with a (terminating) null character.

• The caller must ensure that str has sufficient space to store count characters.

• Encountering end-of-file during reading is considered an error, and failbit is set in addition to

eofbit.

streamsize istream::readsome (char* str, streamsize count)

• Reads up to count characters into the string str.

• Returns the number of characters read.

• The string in str is not terminated automatically with a (terminating) null character.

• The caller must ensure that str has sufficient space to store count characters.

• In contrast to read(), readsome() reads all available characters of the stream buffer, using the

in_avail() member function of the buffer (see Section 15.13.1, page 827). This is useful when

it is undesirable to wait for the input because it comes from the keyboard or other processes.

Encountering end-of-file is not considered an error and sets neither eofbit nor failbit.

streamsize istream::gcount () const

• Returns the number of characters read by the last unformatted read operation.

770 Chapter 15: Input/Output Using Stream Classes

istream& istream::ignore ()

istream& istream::ignore (streamsize count)

istream& istream::ignore (streamsize count, int delim)

• All forms extract and discard characters.

• The first form ignores one character.

• The second form ignores up to count characters.

• The third form ignores up to count characters until delim is extracted and discarded.

• If count is std::numeric_limits<std::streamsize>::max() (the largest value of type

std::streamsize; see Section 5.3, page 115), all characters are discarded until either delim

or end-of-file is reached.

• All forms return the stream.

• Examples:

– The following call discards the rest of the line:

cin.ignore(numeric_limits<std::streamsize>::max(),’\n’);

– The following call discards the complete remainder of cin:

cin.ignore(numeric_limits<std::streamsize>::max());

int istream::peek ()

• Returns the next character to be read from the stream without extracting it. The next read will

read this character (unless the read position is modified).

• Returns EOF if no more characters can be read.

• EOF is the value returned from traits::eof(). For istream, this is the constant EOF.

istream& istream::unget ()

istream& istream::putback (char c)

• Both functions put the last character read back into the stream so that it is read again by the next

read (unless the read position is modified).

• The difference between unget() and putback() is that for putback(), a check is made

whether the character c passed is indeed the last character read.

• If the character cannot be put back or if the wrong character is put back with putback(), badbit

is set, which may throw a corresponding exception (see Section 15.4.4, page 762).

• The maximum number of characters that can be put back with these functions is unspecified.

Only one call of these functions between two reads is guaranteed to work by the standard and

thus is portable.

When C-strings are read, it is safer to use the functions from this section than to use operator >>. The

reason is that the maximum string size to be read must be passed explicitly as an argument. Although

it is possible to limit the number of characters read when using operator >> (see Section 15.7.3,

page 781), this is easily forgotten.

15.5 Standard Input/Output Functions 771

It is often better to use the stream buffer directly instead of using istream member functions.

Stream buffers provide member functions that read single characters or character sequences effi-

ciently, without overhead due to the construction of sentry objects (see Section 15.5.4, page 772,

for more information on sentry objects). Section 15.13, page 826, explains the stream buffer in-

terface in detail. Another alternative is to use the class template istreambuf_iterator<>, which

provides an iterator interface to the stream buffer (see Section 15.13.2, page 828).

Two other functions for manipulating the read position are tellg() and seekg(), which are rel-

evant mainly in conjunction with files. Their descriptions are deferred until Section 15.9.4, page 799.

15.5.2 Member Functions for Output

In the following definitions, ostream is a placeholder for the stream class used for writing. It can

stand for ostream, wostream, or other instantiation of the class template basic_ostream<>. The

type char is a placeholder for the corresponding character type, which is char for ostream and

wchar_t for wostream. Other types or values printed in italics depend on the exact definition of the

character type or on the traits class associated with the stream.

ostream& ostream::put (char c)

• Writes the argument c to the stream.

• Returns the stream. The stream’s state tells whether the write was successful.

ostream& ostream::write (const char* str, streamsize count)

• Writes count characters of the string str to the stream.

• Returns the stream. The stream’s state tells whether the write was successful.

• The (terminating) null character does not terminate the write and will be written.

• The caller must ensure that str contains at least count characters; otherwise, the behavior is

undefined.

ostream& ostream::flush ()

• Flushes the buffers of the stream: forces a write of all buffered data to the device or I/O channel

to which it belongs.

Two other functions modify the write position: tellp() and seekp(), which are relevant mainly

in conjunction with files. Their descriptions are deferred until Section 15.9.4, page 799.

As with the input functions, it may be reasonable to use the stream buffer directly (see Sec-

tion 15.14.3, page 846) or to use the class template ostreambuf_iterator<> for unformatted

writing (see Section 15.13.2, page 828). In fact, there is no point in using the unformatted output

functions except that they use sentry objects (see Section 15.5.4, page 772), which, for example,

synchronize tied output streams (see Section 15.12.1, page 819).

772 Chapter 15: Input/Output Using Stream Classes

15.5.3 Example Uses

The classic C/UNIX filter framework that simply writes all read characters looks like this in C++:

// io/charcat1.cpp

#include <iostream>

using namespace std;

int main()

{

char c;

// while it is possible to read a character

while (cin.get(c)) {

// print it

cout.put(c);

}

}

With each call of the following expression, the next character is simply assigned to c, which is

passed by reference:

cin.get(c)

The return value of get() is the stream; thus, while tests whether cin is still in a good state.10

For a better performance, you can operate directly on stream buffers. See Section 15.13.2,

page 831, for a version of this example that uses stream buffer iterators for I/O and Section 15.14.3,

page 846, for a version that copies the whole input in one statement.

15.5.4 sentry Objects

The I/O stream operators and functions use a common scheme for providing their functionality:

First, some preprocessing prepares the stream for I/O. Then the actual I/O is done, followed by some

postprocessing.

To implement this scheme, classes basic_istream and basic_ostream each define an aux-

iliary class sentry. The constructor of these classes does the preprocessing, and the destructor

10 Note that this interface is better than the usual C interface for filters. In C, you have to use getchar() or

getc(), which return both the next character or whether end-of-file was reached. This causes the problem that

you have to process the return value as int to distinguish any char value from the value for end-of-file.

15.5 Standard Input/Output Functions 773

does the corresponding postprocessing.11 Thus, all formatted and unformatted I/O operators and

functions use a sentry object before they perform their actual processing and operate as follows:

sentry se(strm); // indirect pre- and postprocessing

if (se) {

... // the actual processing

}

The sentry object takes as the constructor argument the stream strm, on which the pre- and post-

processing should be done. The remaining processing then depends on the state of this object, which

indicates whether the stream is OK. This state can be checked using the conversion of the sentry

object to bool. For input streams, the sentry object can be constructed with an optional Boolean

value that indicates whether skipping of whitespace should be avoided even though the flag skipws

is set:

sentry se(strm,true); // don’t skip whitespaces during the additional processing

The pre- and postprocessing perform all general tasks of I/O using streams. These tasks include

synchronizing several streams, checking whether the stream is OK, and skipping whitespaces, as

well as possibly implementation-specific tasks. For example, in a multithreaded environment, the

additional processing might be used for corresponding locking.

If an I/O operator operates directly on the stream buffer, a corresponding sentry object should

be constructed first.

11 These classes replace the member functions that were used in former implementations of the IOStream library

(ipfx(), isfx(), opfx(), and osfx()). Using the new classes ensures that the postprocessing is invoked even

if the I/O is aborted with an exception.

774 Chapter 15: Input/Output Using Stream Classes

15.6 Manipulators

Manipulators for streams, introduced in Section 15.1.5, page 746, are objects that modify a stream

when applied with the standard I/O operators. This does not necessarily mean that something is read

or written. The basic manipulators defined in <istream> or <ostream> are presented in Table 15.8.

Manipulator Class Meaning

endl basic_ostream Inserts a newline character into the buffer and

flushes the output buffer to its device

ends basic_ostream Inserts a (terminating) null character into the buffer

flush basic_ostream Flushes the output buffer to its device

ws basic_istream Reads and ignores whitespaces

Table 15.8. Manipulators Defined in <istream> or <ostream>

Manipulators with Arguments

Some of the manipulators process arguments. For example, you can use the following to set the

minimum field width of the next output and the fill character:

std::cout << std::setw(6) << std::setfill(’_’);

The standard manipulators with arguments are defined in the header file <iomanip>, which must be

included to work with the standard manipulators taking arguments:

#include <iomanip>

The standard manipulators taking arguments are all concerned with details of formatting, so they

are described when general formatting options (see Section 15.7, page 779), time formatting (see

Section 16.4.3, page 890), or monetary formatting (see Section 16.4.2, page 882) are introduced.

15.6.1 Overview of All Manipulators

Table 15.9 gives an overview of all manipulators provided by the C++ standard library, includ-

ing the page where you can find details. hexfloat, defaultfloat, put_time(), get_time(),

put_money(), and get_money() are provided since C++11.

15.6 Manipulators 775

Manipulator Effect Page

endl Writes a newline character and flushes the output 776

ends Writes a (terminating) null character 774

flush Flushes the output 774

ws Reads and ignores whitespaces 774

skipws Skips leading whitespaces with operator >> 789

noskipws Does not skip leading whitespaces with operator >> 789

unitbuf Flushes the output buffer after each write operation 789

nounitbuf Does not flush the output buffer after each write operation 789

setiosflags(flags) Sets flags as format flags 780

resetiosflags(m) Clears all flags of the group identified by mask m 780

setw(val) Sets the field width of the next input and output to val 783

setfill(c) Defines c as the fill character 783

left Left-adjusts values 783

right Right-adjusts values 783

internal Left-adjusts signs and right-adjusts values 783

boolalpha Forces textual representation for Boolean values 781

noboolalpha Forces numeric representation for Boolean values 781

showpos Forces writing a positive sign on positive numbers 784

noshowpos Forces not writing a positive sign on positive numbers 784

uppercase Forces uppercase letters for numeric values 784

nouppercase Forces lowercase letters for numeric values 784

oct Reads and writes integral values octal 785

dec Reads and writes integral values decimal 785

hex Reads and writes integral values hexadecimal 785

showbase Indicates numeric base of numeric values 786

noshowbase Does not indicate numeric base of numeric values 786

showpoint Always writes a decimal point for floating-point values 788

noshowpoint Does not require a decimal point for floating-point values 788

setprecision(val) Sets val as the new value for the precision of floating-point values 788

fixed Uses decimal notation for floating-point values 788

scientific Uses scientific notation for floating-point values 788

hexfloat Uses hexadecimal scientific notation for floating-point values 788

defaultfloat Uses normal floating-point notation 788

put_time(val,fmt) Writes a date/time value according to the format fmt 890

get_time(val,fmt) Reads a time/date value according to the format fmt 890

put_money(val) Writes a monetary value using the local currency symbol 882

put_money(val,intl) Writes a monetary value using the currency symbol according to

intl

882

get_money(val) Reads a monetary value using the local currency symbol 882

get_money(val,intl) Reads a monetary value using the currency symbol according to

intl

882

Table 15.9. Manipulators Provided by the C++ Standard Library

776 Chapter 15: Input/Output Using Stream Classes

15.6.2 How Manipulators Work

Manipulators are implemented using a very simple trick that not only enables the convenient manip-

ulation of streams but also demonstrates the power provided by function overloading. Manipulators

are nothing more than functions passed to the I/O operators as arguments. The functions are then

called by the operator. For example, the output operator for class ostream is basically overloaded

like this:

ostream& ostream::operator << (ostream& (*op)(ostream&))

{

// call the function passed as parameter with this stream as the argument

return (*op)(*this);

}

The argument op is a pointer to a function that takes ostream as an argument and returns ostream (it

is assumed that the ostream given as the argument is returned). If the second operand of operator <<

is such a function, this function is called with the first operand of operator << as the argument.

This may sound very complicated, but it is relatively simple. An example should make it clearer.

The manipulator — that is, the function — endl() for ostream is implemented basically like this:

std::ostream& std::endl (std::ostream& strm)

{

// write newline

strm.put(’\n’);

// flush the output buffer

strm.flush();

// return strm to allow chaining

return strm;

}

You can use this manipulator in an expression such as the following:

std::cout << std::endl

Here, operator << is called for stream cout with the endl() function as the second operand. The

implementation of operator << transforms this call into a call of the passed function with the stream

as the argument:

std::endl(std::cout)

The same effect as “writing” the manipulator can also be achieved by calling this expression directly.

An advantage to using the function notation is that it is not necessary to provide the namespace for

the manipulator:

endl(std::cout)

The reason is that, according to ADL (argument-dependent lookup, also known as Koenig lookup),

functions are looked up in the namespaces where their arguments are defined if they are not found

otherwise.

15.6 Manipulators 777

Because the stream classes are class templates parametrized with the character type, the real

implementation of endl() looks like this:

template <typename charT, typename traits>

std::basic_ostream<charT,traits>&

std::endl (std::basic_ostream<charT,traits>& strm)

{

strm.put(strm.widen(’\n’));

strm.flush();

return strm;

}

The member function widen() is used to convert the newline character into the character set cur-

rently used by the stream. See Section 15.8, page 790, for more details.

How the manipulators with arguments work exactly is implementation dependent, and there is

no standard way to implement user-defined manipulators with arguments (see the next section for an

example).

15.6.3 User-Defined Manipulators

To define your own manipulator, you simply need to write a function such as endl(). For example,

the following function defines a manipulator that ignores all characters until end-of-line:

// io/ignore1.hpp

#include <istream>

#include <limits>

template <typename charT, typename traits>

inline

std::basic_istream<charT,traits>&

ignoreLine (std::basic_istream<charT,traits>& strm)

{

// skip until end-of-line

strm.ignore(std::numeric_limits<std::streamsize>::max(),

strm.widen(’\n’));

// return stream for concatenation

return strm;

}

The manipulator simply delegates the work to the function ignore(), which in this case discards

all characters until end-of-line (ignore() was introduced in Section 15.5.1, page 770).

778 Chapter 15: Input/Output Using Stream Classes

The application of the manipulator is very simple:

// ignore the rest of the line

std::cin >> ignoreLine;

Applying this manipulator multiple times enables you to ignore multiple lines:

// ignore two lines

std::cin >> ignoreLine >> ignoreLine;

This works because a call to the function ignore(max,c) ignores all characters until the c is found

in the input stream, or max characters are read or the end of the stream was reached. However, this

character is discarded, too, before the function returns.

As written, there are multiple ways to define your own manipulator taking arguments. For exam-

ple, the following code ignores n lines:

// io/ignore2.hpp

#include <istream>

#include <limits>

class ignoreLine

{

private:

int num;

public:

explicit ignoreLine (int n=1) : num(n) {

}

template <typename charT, typename traits>

friend std::basic_istream<charT,traits>&

operator>> (std::basic_istream<charT,traits>& strm,

const ignoreLine& ign)

{

// skip until end-of-line num times

for (int i=0; i<ign.num; ++i) {

strm.ignore(std::numeric_limits<std::streamsize>::max(),

strm.widen(’\n’));

}

// return stream for concatenation

return strm;

}

};

Here, the manipulator ignoreLine is a class, which takes the argument to get initialized, and the

input operator is overloaded for objects of this class.

15.7 Formatting 779

15.7 Formatting

Two concepts influence the definition of I/O formats: Most obviously, there are format flags that

define, for example, numeric precision, the fill character, or the numeric base. Apart from this,

there exists the possibility of adjusting formats to meet special national conventions. This section

introduces the format flags. Section 15.8, page 790, and Chapter 16 describe the aspects of interna-

tionalized formatting.

15.7.1 Format Flags

The classes ios_base and basic_ios<> have several members that are used for the definition of

various I/O formats. For example, some members store the minimum field width or the precision of

floating-point numbers or the fill character. A member of type ios::fmtflags stores configuration

flags defining, for example, whether positive numbers should be preceded by a positive sign or

whether Boolean values should be printed numerically or as words.

Some of the format flags form groups. For example, the flags for octal, decimal, and hexadecimal

formats of integer numbers form a group. Special masks are defined to make dealing with such

groups easier.

Member Function Meaning

setf(flags) Sets flags as additional flags and returns the previous state of all flags

setf(flags, grp) Sets flags as the new flags of the group identified by grp and returns the

previous state of all flags

unsetf(flags) Clears flags

flags() Returns all set format flags

flags(flags) Sets flags as the new flags and returns the previous state of all flags

copyfmt(stream) Copies all format definitions from stream

Table 15.10. Member Function to Access Format Flags

Several member functions can be used to handle all the format definitions of a stream (see Ta-

ble 15.10). The functions setf() and unsetf() set or clear, respectively, one or more flags. You

can manipulate multiple flags at once by combining them, using the “binary or” operator; that is,

operator |. The function setf() can take a mask as the second argument to clear all flags in a group

before setting the flags of the first argument, which are also limited to a group. This does not happen

with the version of setf() that takes only one argument. For example:

// set flags showpos and uppercase

std::cout.setf (std::ios::showpos | std::ios::uppercase);

// set only the flag hex in the group basefield

std::cout.setf (std::ios::hex, std::ios::basefield);

// clear the flag uppercase

std::cout.unsetf (std::ios::uppercase);

780 Chapter 15: Input/Output Using Stream Classes

Using flags(), you can manipulate all format flags at once. Calling flags() without an argument

returns the current format flags. Calling flags() with an argument takes this argument as the new

state of all format flags and returns the old state. Thus, flags() with an argument clears all flags

and sets the flags that were passed. Using flags() is useful, for example, for saving the current

state of the flags to restore the original state later. The following statements demonstrate an example:

using std::ios;

using std::cout;

// save current format flags

ios::fmtflags oldFlags = cout.flags();

// do some changes

cout.setf(ios::showpos | ios::showbase | ios::uppercase);

cout.setf(ios::internal, ios::adjustfield);

cout << std::hex << x << std::endl;

// restore saved format flags

cout.flags(oldFlags);

By using copyfmt() you can copy all the format information from one stream to another. See

Section 15.11.1, page 811, for an example.

You can also use manipulators to set and clear format flags. These are presented in Table 15.11.

Manipulator Effect

setiosflags(flags) Sets flags as format flags (calls setf(flags) for the stream)

resetiosflags(mask) Clears all flags of the group identified by mask (calls setf(0,mask)

for the stream)

Table 15.11. Manipulators to Access Format Flags

The manipulators setiosflags() and resetiosflags() provide the possibility of setting or

clearing, respectively, one or more flags in a write or read statement with operator << or >>, re-

spectively. To use one of these manipulators, you must include the header file <iomanip>. For

example:

#include <iostream>

#include <iomanip>

...

std::cout << resetiosflags(std::ios::adjustfield) // clear adjustm. flags

<< setiosflags(std::ios::left); // left-adjust values

Some flag manipulations are performed by specialized manipulators. These manipulators are used

often because they are more convenient and more readable. They are discussed in the following

subsections.

15.7 Formatting 781

15.7.2 Input/Output Format of Boolean Values

The boolalpha flag defines the format used to read or to write Boolean values. It defines whether a

numeric or a textual representation is used for Boolean values (Table 15.12).

Flag Meaning

boolalpha If set, specifies the use of textual representation;

if not set, specifies the use of numeric representation

Table 15.12. Flag for Boolean Representation

If the flag is not set (the default), Boolean values are represented using numeric strings. In this case,

the value 0 is always used for false, and the value 1 is always used for true. When reading a

Boolean value as a numeric string, it is considered to be an error (setting failbit for the stream) if

the value differs from 0 or 1.

If the flag is set, Boolean values are written using a textual representation. When a Boolean value

is read, the string has to match the textual representation of either true or false. The stream’s

locale object is used to determine the strings used to represent true and false (see Section 15.8,

page 790, and Section 16.2.2, page 865). The standard "C" locale object uses the strings "true"

and "false" as representations of the Boolean values.

Special manipulators are defined for the convenient manipulation of this flag (Table 15.13).

Manipulator Meaning

boolalpha Forces textual representation (sets the flag ios::boolalpha)

noboolalpha Forces numeric representation (clears the flag ios::boolalpha)

Table 15.13. Manipulators for Boolean Representation

For example, the following statements print b first in numeric and then in textual representation:

bool b;

...

std::cout << std::noboolalpha << b << " == "

<< std::boolalpha << b << std::endl;

15.7.3 Field Width, Fill Character, and Adjustment

Two member functions are used to define the field width and the fill character: width() and fill()

(Table 15.14).

782 Chapter 15: Input/Output Using Stream Classes

Member Function Meaning

width() Returns the current field width

width(val) Sets the field width for the next formatted output to val and

returns the previous field width

fill() Returns the current fill character

fill(c) Defines c as the fill character and returns the previous fill character

Table 15.14. Member Functions for the Field Width and the Fill Character

Using Field Width, Fill Character, and Adjustment for Output

For the output, width() defines a minimum field. This definition applies only to the next formatted

field written. Calling width() without arguments returns the current field width. Calling width()

with an integral argument changes the width and returns the former value. The default value for the

minimum field width is 0, which means that the field may have any length. This is also the value to

which the field width is set after a value was written.

Note that the field width is never used to truncate output. Thus, you can’t specify a maximum

field width. Instead, you have to program it. For example, you could write to a string and output

only a certain number of characters.

The member function fill() defines the fill character that is used to fill the difference between

the formatted representation of a value and the minimum field width. The default fill character is a

space.

To adjust values within a field, three flags are defined, as shown in Table 15.15. These flags are

defined in the class ios_base together with the corresponding mask.

Mask Flag Meaning

adjustfield left Left-adjusts the value

right Right-adjusts the value

internal Left-adjusts the sign and right-adjusts the value

None Right-adjusts the value (the default)

Table 15.15. Masks to Adjust Values within a Field

Table 15.16 presents the effect of the functions and the flags used for various values. The underscore

is used as the fill character.

Adjustment width() -42 0.12 "Q" ’Q’

left 6 -42___ 0.12__ Q_____ Q_____

right 6 ___-42 __0.12 _____Q _____Q

internal 6 -___42 __0.12 _____Q _____Q

Table 15.16. Examples of Adjustments

15.7 Formatting 783

After any formatted I/O operation is performed, the default field width is restored. The values of the

fill character and the adjustment remain unchanged until they are modified explicitly.

Several manipulators are defined to handle the field width, the fill character, and the adjustment

(Table 15.17).

Manipulator Meaning

setw(val) Sets the field width of the next input and output to val (corresponds to width())

setfill(c) Defines c as the fill character (corresponds to fill())

left Left-adjusts the value

right Right-adjusts the value

internal Left-adjusts the sign and right-adjusts the value

Table 15.17. Manipulators for Adjustment

The manipulators setw() and setfill() use an argument, so you must include the header file

<iomanip> to use them. For example, the statements

#include <iostream>

#include <iomanip>

...

std::cout << std::setw(8) << std::setfill(’_’) << -3.14

<< ’ ’ << 42 << std::endl;

std::cout << std::setw(8) << "sum: "

<< std::setw(8) << 42 << std::endl;

produce this output:

___-3.14 42

___sum: ______42

Using Field Width for Input

You can also use the field width to define the maximum number of characters read when character

sequences of type char* are read. If the value of width() is not 0, at most width()-1 characters

are read.

Because ordinary C-strings can’t grow while values are read, width() or setw() should always

be used when reading them with operator >>. For example:

char buffer[81];

// read, at most, 80 characters:

cin >> setw(sizeof(buffer)) >> buffer;

This reads at most 80 characters, although sizeof(buffer) is 81 because one character is used for

the (terminating) null character, which is appended automatically. Note that the following code is a

common error:

char* s;

cin >> setw(sizeof(s)) >> s; // RUNTIME ERROR

784 Chapter 15: Input/Output Using Stream Classes

The reason is that s is declared only as a pointer without any storage for characters, and sizeof(s)

is the size of the pointer instead of the size of the storage to which it points. This is a typical

example of the problems you encounter if you use C-strings. By using strings, you won’t run into

these problems:

string buffer;

cin >> buffer; // OK

15.7.4 Positive Sign and Uppercase Letters

Two format flags are defined to influence the general appearance of numeric values: showpos and

uppercase (Table 15.18).

Flag Meaning

showpos Writes a positive sign on positive numbers

uppercase Uses uppercase letters

Table 15.18. Flags Affecting Sign and Letters of Numeric Values

Using ios::showpos dictates that a positive sign for positive numeric values be written. If

the flag is not set, only negative values are written with a sign. Using ios::uppercase dictates

that letters in numeric values be written using uppercase letters. This flag applies to integers using

hexadecimal format and to floating-point numbers using scientific notation. By default, letters are

written as lowercase, and no positive sign is written. For example, the statements

std::cout << 12345678.9 << std::endl;

std::cout.setf (std::ios::showpos | std::ios::uppercase);

std::cout << 12345678.9 << std::endl;

produce this output:

1.23457e+07

+1.23457E+07

Both flags can be set or cleared using the manipulators presented in Table 15.19.

Manipulator Meaning

showpos Forces writing a positive sign on positive numbers (sets the flag

ios::showpos)

noshowpos Forces not writing a positive sign (clears the flag ios::showpos)

uppercase Forces uppercase letters (sets the flag ios::uppercase)

nouppercase Forces lowercase letters (clears the flag ios::uppercase)

Table 15.19. Manipulators for Sign and Letters of Numeric Values

15.7 Formatting 785

15.7.5 Numeric Base

A group of three flags defines which base is used for I/O of integer values. The flags are defined in

the class ios_base with the corresponding mask (Table 15.20).

Mask Flag Meaning

basefield oct Writes and reads octal

dec Writes and reads decimal (default)

hex Writes and reads hexadecimal

None Writes decimal and reads according to the leading characters

of the integral value

Table 15.20. Flags Defining the Base of Integral Values

A change in base applies to the processing of all integer numbers until the flags are reset. By

default, decimal format is used. There is no support for binary notation. However, you can read and

write integral values in binary by using class bitset. See Section 12.5.1, page 652, for details.

If none of the base flags is set, output uses a decimal base. If more than one flag is set, decimal

is used as the base.

The flags for the numeric base also affect input. If one of the flags for the numeric base is set,

all numbers are read using this base. If no flag for the base is set when numbers are read, the base

is determined by the leading characters: A number starting with 0x or 0X is read as a hexadecimal

number. A number starting with 0 is read as an octal number. In all other cases, the number is read

as a decimal value.

There are two ways to switch these flags:

1. Clear one flag and set another:

std::cout.unsetf (std::ios::dec);

std::cout.setf (std::ios::hex);

2. Set one flag and clear all other flags in the group automatically:

std::cout.setf (std::ios::hex, std::ios::basefield);

In addition, the C++ standard library provides manipulators that make handling these flags signifi-

cantly simpler (Table 15.21).

Manipulator Meaning

oct Writes and reads octal

dec Writes and reads decimal

hex Writes and reads hexadecimal

Table 15.21. Manipulators Defining the Base of Integral Values

786 Chapter 15: Input/Output Using Stream Classes

For example, the following statements write x and y in hexadecimal and z in decimal:

int x, y, z;

...

std::cout << std::hex << x << std::endl;

std::cout << y << ’ ’ << std::dec << z << std::endl;

An additional flag, showbase, lets you write numbers according to the usual C/C++ convention for

indicating numeric bases of literal values (Table 15.22).

Flag Meaning

showbase If set, indicates the numeric base

Table 15.22. Flags to Indicate the Numeric Base

If ios::showbase is set, octal numbers are preceded by a 0, and hexadecimal numbers are

preceded by 0x or, if ios::uppercase is set, by OX. For example, the statements

std::cout << 127 << ’ ’ << 255 << std::endl;

std::cout << std::hex << 127 << ’ ’ << 255 << std::endl;

std::cout.setf(std::ios::showbase);

std::cout << 127 << ’ ’ << 255 << std::endl;

std::cout.setf(std::ios::uppercase);

std::cout << 127 << ’ ’ << 255 << std::endl;

produce this output:

127 255

7f ff

0x7f 0xff

0X7F 0XFF

Note that ios::showbase can also be manipulated using the manipulators presented in Table 15.23.

Manipulator Meaning

showbase Indicates numeric base (sets the flag ios::showbase)

noshowbase Does not indicate numeric base (clears the flag ios::showbase)

Table 15.23. Manipulators to Indicate the Numeric Base

15.7 Formatting 787

15.7.6 Floating-Point Notation

Several flags and members control the output of floating-point values. The flags, presented in Ta-

ble 15.24, define whether output is written using decimal or scientific notation. These flags are

defined in the class ios_base together with the corresponding mask. If ios::fixed is set, floating-

point values are printed using decimal notation. If ios::scientific is set, scientific — that is,

exponential — notation is used.

Mask Flag(s) Meaning

floatfield fixed Uses decimal notation

scientific Uses scientific notation

None Uses the “best” of these two notations (default)

fixed|scientific Hexadecimal scientific notation (since C++11)

Table 15.24. Flags for Floating-Point Notation

Before C++11, specifying fixed|scientific was not defined. Since C++11, this can be used to

define a hexadecimal scientific notation, which also the format specifier %a provides for printf():

a hexadecimal value to the power of 2. For example, 234.5 is written as 0x1.d5p+7 (0x1.d5 times

27, which is 1*128
1 + 13*128

16 + 5*128
256).

Using the flag showpoint, you can force the stream to write a decimal point and trailing zeros

until places according to the current precision are written (Table 15.25).

Flag Meaning

showpoint Always writes a decimal point and fills up with trailing zeros

Table 15.25. Flag to Force Decimal Point

To define the precision, the member function precision() is provided (see Table 15.26).

Member Function Meaning

precision() Returns the current precision of floating-point values

precision(val) Sets val as the new precision of floating-point values and returns the old

Table 15.26. Member Function for the Precision of Floating-Point Values

If scientific notation is used, precision() defines the number of decimal places in the fractional

part. In all cases, the remainder is not cut off but rounded. Calling precision() without arguments

returns the current precision. Calling it with an argument sets the precision to that value and returns

the previous precision. The default precision is six decimal places.

788 Chapter 15: Input/Output Using Stream Classes

By default, neither ios::fixed nor ios::scientific is set. In this case, the notation used

depends on the value written. All meaningful but, at most, precision() decimal places are written

as follows: A leading zero before the decimal point and/or all trailing zeros and potentially even

the decimal point are removed. If precision() places are sufficient, decimal notation is used;

otherwise, scientific notation is used.

Table 15.27 shows the somewhat complicated dependencies between flags and precision, using

two concrete values as an example.

As for integral values, ios::showpos can be used to write a positive sign, and ios::uppercase

can be used to dictate whether the scientific notations should use uppercase or lowercase letters.

precision() 421.0 0.0123456789

Normal 2 4.2e+02 0.012

6 421 0.0123457

With showpoint 2 4.2e+02 0.012

6 421.000 0.0123457

fixed 2 421.00 0.01

6 421.000000 0.012346

scientific 2 4.21e+02 1.23e-02

6 4.210000e+02 1.234568e-02

fixed|scientific 2 0x1.a5p+8 0x1.95p-7

6 0x1.a50000p+8 0x1.948b10p-7

Table 15.27. Example of Floating-Point Formatting

The flag ios::showpoint, the notation, and the precision can be configured using the manipulators

presented in Table 15.28.

Manipulator Meaning

showpoint Always writes a decimal point (sets the flag ios::showpoint)

noshowpoint Does not require a decimal point (clears the flag showpoint)

setprecision(val) Sets val as the new value for the precision

fixed Uses decimal notation

scientific Uses scientific notation

hexfloat Uses hexadecimal scientific notation (since C++11)

defaultfloat Uses normal notation (clears the flag floatfield, since C++11)

Table 15.28. Manipulators for Floating-Point Values

15.7 Formatting 789

For example, the statement

std::cout << std::scientific << std::showpoint

<< std::setprecision(8)

<< 0.123456789 << std::endl;

produces this output:

1.23456789e-01

Note that setprecision() is a manipulator with an argument, so you must include the header file

<iomanip> to use it.

15.7.7 General Formatting Definitions

Two more format flags complete the list of formatting flags: skipws and unitbuf (Table 15.29).

Flag Meaning

skipws Skips leading whitespaces automatically when reading a value with operator >>

unitbuf Flushes the output buffer after each write operation

Table 15.29. Other Formatting Flags

By default, ios::skipws is set, which means that leading whitespaces are skipped by operator

>>. Often, it is useful to have this flag set. For example, with it set, reading the separating spaces

between numbers explicitly is not necessary. However, this implies that reading space characters

using operator >> is not possible because leading whitespaces are always skipped.

With ios::unitbuf, the buffering of the output is controlled. When it is set, output is un-

buffered, which means that the output buffer is flushed after each write operation. By default, this

flag is not set for most streams. However, for the streams cerr and wcerr, this flag is set initially.

Both flags can be manipulated using the manipulators presented in Table 15.30.

Manipulator Meaning

skipws Skips leading whitespaces with operator >>

(sets the flag ios::skipws)

noskipws Does not skip leading whitespaces with operator >>

(clears the flag ios::skipws)

unitbuf Flushes the output buffer after each write operation

(sets the flag ios::unitbuf)

nounitbuf Does not flush the output buffer after each write operation

(clears the flag ios::unitbuf)

Table 15.30. Manipulators for Other Formatting Flags

790 Chapter 15: Input/Output Using Stream Classes

15.8 Internationalization

You can adapt I/O formats to national conventions. To do so, the class ios_base defines the member

functions presented in Table 15.31.

Member Function Meaning

imbue(loc) Sets the locale object

getloc() Returns the current locale object

Table 15.31. Member Functions for Internationalization

Each stream uses an associated locale object. The initial default locale object is a copy of the

global locale object at the construction time of the stream. The locale object defines, for example,

details about numeric formatting, such as the character used as the decimal point or the strings used

for the textual representation of Boolean values.

In contrast to the C localization facilities, you can configure each stream individually with a spe-

cific locale object. This capability can be used, for example, to read floating-point values according

to American format and to write them using German format (in German, a comma is used as the

“decimal point”). Section 16.2.1, page 860, presents an example and discusses the details.

Several characters, mainly special characters, are often needed in the character set of the stream.

For this reason, some conversion functions are provided by streams (Table 15.32).

Member Function Meaning

widen(c) Converts the char character c to a character of the stream’s character set

narrow(c,def) Converts character c from the stream’s character set to a char; if there is

no such char, def is returned

Table 15.32. Stream Functions for the Internationalization of Characters

For example, to get the newline character from the character set of the stream strm, you can use

a statement like

strm.widen(’\n’)

For additional details on locales and on internationalization in general, see Chapter 16.

15.9 File Access 791

15.9 File Access

Streams can be used to access files. This section discusses the corresponding features provided.

15.9.1 File Stream Classes

The C++ standard library provides four class templates for which the following standard specializa-

tions are predefined:

1. The class template basic_ifstream<> with the specializations ifstream and wifstream is

for read access to files (“input file stream”).

2. The class template basic_ofstream<> with the specializations ofstream and wofstream is

for write access to files (“output file stream”).

3. The class template basic_fstream<> with the specializations fstream and wfstream is for

access to files that should be both read and written.

4. The class template basic_filebuf<> with the specializations filebuf and wfilebuf is used

by the other file stream classes to perform the actual reading and writing of characters.

The classes are related to the stream base classes, as depicted in Figure 15.2, and are declared in the

header file <fstream> as follows:

namespace std {

template <typename charT,

typename traits = char_traits<charT> >

class basic_ifstream;
typedef basic_ifstream<char> ifstream;

typedef basic_ifstream<wchar_t> wifstream;

template <typename charT,

typename traits = char_traits<charT> >

class basic_ofstream;

typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;

template <typename charT,

typename traits = char_traits<charT> >

class basic_fstream;

typedef basic_fstream<char> fstream;

typedef basic_fstream<wchar_t> wfstream;

template <typename charT,

typename traits = char_traits<charT> >

class basic_filebuf;
typedef basic_filebuf<char> filebuf;

typedef basic_filebuf<wchar_t> wfilebuf;

}

792 Chapter 15: Input/Output Using Stream Classes

� �
 � � � � �
 �
� � � � � � � � � �

� �
 � � �
 � � �
 � � �
 � � � � � � � � �
� � �
 � � � � � � � � � � �
 � � � �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � � �
 � � � � � �
� � � � �
 � � � � � � � � � �
 �

� 	 � � � �
 � �

� �
 � � � � �
 � � � � � �
� � � � �
 � � � � � � � � � �
 �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � � �
 � � � � � �
� � � � �
 � � � � � � � � � �
 �

� �
 � � � � � � � � � � �
� � � � � � � � � � � � � � � �

Figure 15.2. Class Hierarchy of the File Stream Classes

Compared with the mechanism of C, a major advantage of the file stream classes for file access

is the automatic management of files. The files are automatically opened at construction time and

closed at destruction time. This is possible, of course, through appropriate definitions of correspond-

ing constructors and destructors.

For streams that are both read and written, it is important to note that it is not possible to switch

arbitrarily between reading and writing.12 Once you start to read or write a file you have to perform

a seek operation, potentially to the current position, to switch from reading to writing or vice versa.

The only exception to this rule is if you have read until end-of-file. In this case, you can continue

writing characters immediately. Violating this rule can lead to all kinds of strange effects.

12 This restriction is inherited from C. However, it is likely that implementations of the standard C++ library

make use of this restriction.

15.9 File Access 793

If a file stream object is constructed with a string or C-string as an argument, opening the file for

reading and/or writing is attempted automatically. Whether this attempt was successful is reflected

in the stream’s state. Thus, the state should be examined after construction.

The following program first opens the file charset.out, writes the current character set — all

characters for the values between 32 and 255 — into this file, and outputs its contents:

// io/fstream1.cpp

#include <string> // for strings

#include <iostream> // for I/O

#include <fstream> // for file I/O

#include <iomanip> // for setw()

#include <cstdlib> // for exit()

using namespace std;

// forward declarations

void writeCharsetToFile (const string& filename);

void outputFile (const string& filename);

int main ()

{

writeCharsetToFile("charset.out");

outputFile("charset.out");

}

void writeCharsetToFile (const string& filename)

{

// open output file

ofstream file(filename);

// file opened?

if (! file) {

// NO, abort program

cerr << "can’t open output file \"" << filename << "\""

<< endl;

exit(EXIT_FAILURE);

}

// write character set

for (int i=32; i<256; ++i) {

file << "value: " << setw(3) << i << " "

<< "char: " << static_cast<char>(i) << endl;

}

} // closes file automatically

794 Chapter 15: Input/Output Using Stream Classes

void outputFile (const string& filename)

{

// open input file

ifstream file(filename);

// file opened?

if (! file) {

// NO, abort program

cerr << "can’t open input file \"" << filename << "\""

<< endl;

exit(EXIT_FAILURE);

}

// copy file contents to cout

char c;

while (file.get(c)) {

cout.put(c);

}

} // closes file automatically

In writeCharsetToFile(), the constructor of the class ofstream takes care of opening the file

named by the given filename:

std::ofstream file(filename); // open file for writing

Unfortunately, before C++11, the file stream classes did not provide a constructor taking a string

as argument. So, before C++11, you had to write:

std::ofstream file(filename.c_str()); // open file for writing before C++11

After this declaration, it is determined whether the stream is in a good state:

if (! file) {

...

}

If opening the stream was not successful, this test will fail. After this check, a loop prints the values

32 to 255 together with the corresponding characters.

In the function outputFile(), the constructor of the class ifstream opens the file for reading.

Then the contents of the file are read and output characterwise.

At the end of both functions, the file opened locally is closed automatically when the correspond-

ing stream goes out of scope. The destructors of the classes ifstream and ofstream take care of

closing the file if it is still open at destruction time.

Instead of copying the file contents character by character, you could also output the whole

contents in one statement by passing a pointer to the stream buffer of the file as an argument to

operator <<:

15.9 File Access 795

// copy file contents to cout

std::cout << file.rdbuf();

See Section 15.14.3, page 846, for details.

15.9.2 Rvalue and Move Semantics for File Streams

¨

Since C++11, file streams provide rvalue and move semantics. In fact, ostreams provide an output

operator, and istreams provide an input iterator that accepts an rvalue reference for the stream. The

effect is that you can now use temporarily created stream objects, and they behave as expected. For

example, you can write to a temporarily created file stream:13

// io/fstream2.cpp

#include <iostream>

#include <fstream>

#include <string>

int main()

{

// write string to a temporarily created file stream (since C++11)

std::string s("hello");

std::ofstream("fstream2.tmp") << s << std::endl;

// write C-string to a temporarily created file stream

// - NOTE: wrote a pointer value before C++11

std::ofstream("fstream2.tmp", std::ios::app) << "world" << std::endl;

}

Since C++11, this writes "hello" and "world" to the file "fstream2.tmp". Before C++11, in-

stead of the first output statement you had to write the following:

std::string s("hello");

std::ofstream os("fstream2.tmp");

os << s << std::endl;

Note that before C++11, the second output statement compiled but did something very unexpected:

It wrote a pointer value to "fstream2.tmp". The reason for the old behavior was that the following

member function was called (see Section 15.3.3, page 756):

ostream& ostream::operator<< (const void* ptr);

In addition, file streams now have move and swap semantics providing a move constructor, a move

assignment operator, and swap(). So you can pass a file stream as argument or return a file stream

from a function. For example, if a file should be used longer than the scope in which it was created,

13 Thanks to Daniel Krugler for providing this example.

796 Chapter 15: Input/Output Using Stream Classes

you can return it as follows since C++11 (see Section 3.1.5, page 22, for details about returning

values with move semantics):

std::ofstream openFile (const std::string& filename)

{

std::ofstream file(filename);

...

return file;

}

std::ofstream file;

file = openFile("xyz.tmp"); // use returned file stream (since C++11)

file << "hello, world" << std::endl;

Before C++11, you had to — and as an alternative you still can — allocate the file object on the heap

and delete it later when it is no longer needed:

std::ofstream* filePtr = new std::ofstream("xyz.tmp");

...

delete filePtr;

For such a case, some smart pointer classes (see Section 5.2, page 76) should be used.

15.9.3 File Flags

A set of flags is defined in the class ios_base for precise control over the processing mode of a file

(Table 15.33). These flags are of type openmode, which is a bitmask type similar to fmtflags.

Flag Meaning

in Opens for reading (default for ifstream)

out Opens for writing (default for ofstream)

app Always appends at the end when writing

ate Positions at the end of the file after opening (“at end”)

trunc Removes the former file contents

binary Does not replace special characters

Table 15.33. Flags for Opening Files

The flag binary configures the stream to suppress conversion of special characters or character

sequences, such as end-of-line or end-of-file. In operating systems, such as Windows or OS/2, a line

end in text files is represented by two characters (CR and LF). In normal text mode (binary is not

set), newline characters are replaced by the two-character sequence, and vice versa, when reading or

writing to avoid special processing. In binary mode (binary is set), none of these conversions take

place.

The flag binary should always be used if the contents of a file do not consist of a character

sequence but are processed as binary data. An example is the copying of files by reading the file to

15.9 File Access 797

be copied character by character and writing those characters without modifying them. If the file is

processed as text, the flag should not be set, because special handling of newlines would be required.

For example, a newline would still consist of two characters.

Some implementations provide additional flags, such as nocreate (the file must exist when it is

opened) and noreplace (the file must not exist). However, these flags are not standard and thus are

not portable.

The flags can be combined by using operator |. The resulting openmode can be passed as an

optional second argument to the constructor. For example, the following statement opens a file for

appending text at the end:

std::ofstream file("xyz.out", std::ios::out|std::ios::app);

Table 15.34 correlates the various combinations of flags with the strings used in the interface of C’s

function for opening files: fopen(). The combinations with the binary and the ate flags set are

not listed. A set binary corresponds to strings with b appended, and a set ate corresponds to a

seek to the end of the file immediately after opening. Other combinations not listed in the table, such

as trunc|app, are not allowed. Note that before C++11, app, in|app, and in|out|app were not

specified.

ios_base Flags Meaning C Mode

in Reads (file must exist) "r"

out Empties and writes (creates if necessary) "w"

out|trunc Empties and writes (creates if necessary) "w"

out|app Appends (creates if necessary) "a"

app Appends (creates if necessary) "a"

in|out Reads and writes; initial position is the start (file must exist) "r+"

in|out|trunc Empties, reads, and writes (creates if necessary) "w+"

in|app Updates at end (creates if necessary) "a+"

in|out|app Updates at end (creates if necessary) "a+"

Table 15.34. Meaning of Open Modes in C++

Whether a file is opened for reading and/or for writing is independent of the corresponding stream

object’s class. The class determines only the default open mode if no second argument is used. This

means that files used only by the class ifstream or the class ofstream can be opened for reading

and writing. The open mode is passed to the corresponding stream buffer class, which opens the file.

However, the operations possible for the object are determined by the stream’s class.

The file owned by a file stream can also be opened or closed explicitly. For this, three member

functions are defined (Table 15.35). These functions are useful mainly if a file stream is created

without being initialized.

To demonstrate their use, the following example opens all files with names that are given as

arguments to the program and writes their contents (this corresponds to the UNIX program cat).

798 Chapter 15: Input/Output Using Stream Classes

Member Function Meaning

open(name) Opens a file for the stream, using the default mode

open(name,flags) Opens a file for the stream, using flags as the mode

close() Closes the streams file

is_open() Returns whether the file is opened

Table 15.35. Member Functions to Open and Close Files

// io/cat1.cpp

// header files for file I/O

#include <fstream>

#include <iostream>

using namespace std;

// for all filenames passed as command-line arguments

// - open, print contents, and close file

int main (int argc, char* argv[])

{

ifstream file;

// for all command-line arguments

for (int i=1; i<argc; ++i) {

// open file

file.open(argv[i]);

// write file contents to cout

char c;

while (file.get(c)) {

cout.put(c);

}

// clear eofbit and failbit set due to end-of-file

file.clear();

// close file

file.close();

}

}

Note that after the processing of a file, clear() must be called to clear the state flags that are set at

end-of-file. This is required because the stream object is used for multiple files. Note that open()

15.9 File Access 799

never clears any state flags. Thus, if a stream was not in a good state after closing and reopening it,

you still have to call clear() to get to a good state. This is also the case if you open a different file.

Instead of processing character by character, you could also print the entire contents of the file in

one statement by passing a pointer to the stream buffer of the file as an argument to operator <<:

// write file contents to cout

std::cout << file.rdbuf();

See Section 15.14.3, page 846, for details.

15.9.4 Random Access

Class Member Function Meaning

basic_istream<> tellg() Returns the read position

seekg(pos) Sets the read position as an absolute value

seekg(offset,rpos) Sets the read position as a relative value

basic_ostream<> tellp() Returns the write position

seekp(pos) Sets the write position as an absolute value

seekp(offset,rpos) Sets the write position as a relative value

Table 15.36. Member Functions for Stream Positions

Table 15.36 lists the member functions defined for positioning within C++ streams. These func-

tions distinguish between read and write position (g stands for get and p stands for put). Read-

position functions are defined in basic_istream<>, and write-position functions are defined in

basic_ostream<>. However, not all stream classes support positioning. For example, positioning

the streams cin, cout, and cerr is not defined. The positioning of files is defined in the base classes

because, usually, references to objects of type istream and ostream are passed around.

The functions seekg() and seekp() can be called with absolute or relative positions. To handle

absolute positions, you must use tellg() and tellp(), which return an absolute position as a value

of type pos_type. This value is not an integral value or simply the position of the character as an

index, because the logical position and the real position can differ. For example, in Windows text

files, newline characters are represented by two characters in the file, even though it is logically only

one character. Things are even worse if the file uses some multibyte representation for the characters.

The exact definition of pos_type is a bit complicated: The C++ standard library defines a global

class template fpos<> for file positions. Class fpos<> is used to define types streampos for

char and wstreampos for wchar_t streams. These types are used to define the pos_type of the

corresponding character traits (see Section 16.1.4, page 855), and this pos_type member of the

traits is used to define pos_type of the corresponding stream classes. Thus, you could also use

streampos as the type for the stream positions. However, using long or unsigned long is wrong

because streampos is not an integral type (anymore).14 For example:

14 Formerly, streampos was used for stream positions, and it was simply defined as unsigned long.

800 Chapter 15: Input/Output Using Stream Classes

// save current file position

std::ios::pos_type pos = file.tellg();

...

// seek to file position saved in pos

file.seekg(pos);

Instead of

std::ios::pos_type pos;

you could also write:

std::streampos pos;

For relative values, the offset can be relative to three positions, for which corresponding constants

are defined (Table 15.37). The constants are defined in class ios_base and are of type seekdir.

Constant Meaning

beg Position is relative to the beginning (“beginning”)

cur Position is relative to the current position (“current”)

end Position is relative to the end (“end”)

Table 15.37. Constants for Relative Positions

The type for the offset is off_type, which is an indirect definition of streamoff. Similar to

pos_type, streamoff is used to define off_type of the traits (see Section 16.1.4, page 855) and

the stream classes. However, streamoff is a signed integral type, so you can use integral values as

stream offsets. For example:

// seek to the beginning of the file

file.seekg (0, std::ios::beg);

...

// seek 20 characters forward

file.seekg (20, std::ios::cur);

...

// seek 10 characters before the end

file.seekg (-10, std::ios::end);

In all cases, care must be taken to position only within a file. If a position ends up before the

beginning of a file or beyond the end, the behavior is undefined.

The following example demonstrates the use of seekg(). It uses a function that writes the

contents of a file twice:

// io/cat2.cpp

// header files for file I/O

#include <iostream>

#include <fstream>

15.9 File Access 801

void printFileTwice (const char* filename)

{

// open file

std::ifstream file(filename);

// print contents the first time

std::cout << file.rdbuf();

// seek to the beginning

file.seekg(0);

// print contents the second time

std::cout << file.rdbuf();

}

int main (int argc, char* argv[])

{

// print all files passed as a command-line argument twice

for (int i=1; i<argc; ++i) {

printFileTwice(argv[i]);

}

}

Note that file.rdbuf() is used to print the contents of file (see Section 15.14.3, page 846).

Thus, you operate directly on the stream buffer, which can’t manipulate the state of the stream. If

you print the contents of file by using the stream interface functions, such as getline() (see

Section 15.5.1, page 768), you’d have to clear() the state of file before it could be manipulated

in any way (including changes of the read position), because these functions set ios::eofbit and

ios::failbit when end-of-file is reached.

Different functions are provided for the manipulation of the read and the write positions. How-

ever, for the standard streams, the same position is maintained for reading and writing in the same

stream buffer. This is important if multiple streams use the same stream buffer (see Section 15.12.2,

page 820, for details).

15.9.5 Using File Descriptors

Some implementations provide the possibility of attaching a stream to an already opened I/O chan-

nel. To do this, you initialize the file stream with a file descriptor.

File descriptors are integers that identify an open I/O channel. In UNIX-like systems, file descrip-

tors are used in the low-level interface to the I/O functions of the operating system. The following

file descriptors are predefined:

802 Chapter 15: Input/Output Using Stream Classes

• 0 for the standard input channel

• 1 for the standard output channel

• 2 for the standard error channel

These channels may be connected to files, the console, other processes, or some other I/O facility.

Unfortunately, the C++ standard library does not provide the possibility of attaching a stream to

an I/O channel using file descriptors. The reason is that the language is supposed to be independent

of any operating system. In practice, though, the possibility probably still exists. The only drawback

is that using it is not portable to all systems. What is missing at this point is a corresponding

specification in a standard of operating system interfaces, such as POSIX or X/OPEN. However,

such a standard is not yet planned, but at least posix is a reserved namespace since C++11.

Nevertheless, it is possible to initialize a stream by a file descriptor. See Section 15.13.3,

page 835, for a description and implementation of a possible solution.

15.10 Stream Classes for Strings

The mechanisms of stream classes can also be used to read from strings or to write to strings. String

streams provide a buffer but don’t have an I/O channel. This buffer/string can be manipulated with

special functions. A major use of this capability is the processing of I/O independent of the actual

I/O. For example, text for output can be formatted in a string and then sent to an output channel

sometime later. Another use is reading input line by line and processing each line by using string

streams.

Before the standardization of C++98, the string stream classes used type char* to represent a

string. Now, type string (or, in general, basic_string<>) is used. The old string stream classes

are also part of the C++ standard library, but they are deprecated. Thus, they should not be used in

new code and should be replaced in legacy code. Still, a brief description of these classes is found

at the end of this section.

15.10.1 String Stream Classes

The following stream classes — corresponding to the stream classes for files — are defined for

strings:

• The class template basic_istringstream<> with the specializations istringstream and

wistringstream for reading from strings (“input string stream”)

• The class template basic_ostringstream<> with the specializations ostringstream and

wostringstream for writing to strings (“output string stream”)

• The class template basic_stringstream<> with the specializations stringstream and

wstringstream for reading from and writing to strings

• The class template basic_stringbuf<> with the specializations stringbuf and wstringbuf,

used by the other string stream classes to perform the reading and writing of characters

These classes have a similar relationship to the stream base classes, as do the file stream classes. The

class hierarchy is depicted in Figure 15.3.

15.10 Stream Classes for Strings 803

� �
 � � � � �
 �
� � � � � � � � � �

� �
 � � �
 � � �
 � � �
 � � � � � � � � �
� � �
 � � � � � � � � � � �
 � � � �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � �
 � � � � � �
� � � �
 � � � � � � � � �
 �

� �
 � � � � �
 � � � � � �
� � � � �
 � � � � � � � � � �
 �

� 	 � � � �
 � �

� �
 � � � �
 � � � 	 �
 � � � � � �
� � � � � � � � � �
 � � � � � � � � � � � � �
 �

� �
 � � �
 � � � 	 �
 � � � � � �
� � � � � � � � �
 � � � � � � � � � � � �
 �

� �
 � � � �
 � � � 	 �
 � � � � � �
� � � � � � � � � �
 � � � � � � � � � � � � �
 �

� �
 � � �
 � � � 	 � � � � �
� �

Figure 15.3. Class Hierarchy of the String Stream Classes

The classes are declared in the header file <sstream> like this:

namespace std {

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_istringstream;
typedef basic_istringstream<char> istringstream;

typedef basic_istringstream<wchar_t> wistringstream;

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_ostringstream;

typedef basic_ostringstream<char> ostringstream;

typedef basic_ostringstream<wchar_t> wostringstream;

804 Chapter 15: Input/Output Using Stream Classes

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_stringstream;

typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

template <typename charT,

typename traits = char_traits<charT>,

typename Allocator = allocator<charT> >

class basic_stringbuf;
typedef basic_stringbuf<char> stringbuf;

typedef basic_stringbuf<wchar_t> wstringbuf;

}

The major function in the interface of the string stream classes is the member function str(), which

is used to manipulate the buffer of the string stream classes (Table 15.38).

Member Function Meaning

str() Returns the buffer as a string

str(string) Sets the contents of the buffer to string

Table 15.38. Fundamental Operations for String Streams

The following program demonstrates the use of string streams:

// io/sstream1.cpp

#include <iostream>

#include <sstream>

#include <bitset>

using namespace std;

int main()

{

ostringstream os;

// decimal and hexadecimal value

os << "dec: " << 15 << hex << " hex: " << 15 << endl;

cout << os.str() << endl;

// append floating value and bitset

bitset<15> b(5789);

os << "float: " << 4.67 << " bitset: " << b << endl;

15.10 Stream Classes for Strings 805

// overwrite with octal value

os.seekp(0);

os << "oct: " << oct << 15;

cout << os.str() << endl;

}

The output of this program is as follows:

dec: 15 hex: f

oct: 17 hex: f

float: 4.67 bitset: 001011010011101

First, a decimal and a hexadecimal value are written to os. Next, a floating-point value and a bitset

(written in binary) are appended. Using seekp(), the write position is moved to the beginning of the

stream. So, the following call of operator << writes at the beginning of the string, thus overwriting

the beginning of the existing string stream. However, the characters that are not overwritten remain

valid. To remove the current contents from the stream, you can use the function str() to assign new

contents to the buffer:

strm.str("");

The first lines written to os are each terminated with endl. This means that the string ends with a

newline character. Because the string is printed followed by endl, two adjacent newline characters

are written. This explains the empty lines in the output.

Before C++11, a typical programming error when dealing with string streams was to forget to

extract the string with the function str() and to write to the stream directly instead. This was,

from a compiler’s point of view, a possible and reasonable thing to do because there was an implicit

conversion to void* (see Section 15.4.3, page 760). As a result, instead of its value the state of

the stream was written in the form of an address (see Section 15.3.3, page 756). With C++11, this

conversion was replaced by an explicit conversion to bool, so passing a string stream to the output

operator << without calling str() is no longer possible.

A typical use for writing to an output string stream is to define output operators for user-defined

types (see Section 15.11.1, page 810).

Input string streams are used mainly for formatted reading from existing strings. For example, it

is often easier to read data line by line and then analyze each line individually. The following lines

read the integer x with the value 3 and the floating-point f with the value 0.7 from the string s:

int x;

float f;

std::string s = "3.7";

std::istringstream is(s);

is >> x >> f;

806 Chapter 15: Input/Output Using Stream Classes

A string stream can be created with the flags for the file open modes (see Section 15.9.3, page 796)

and/or an existing string. With the flag ios::ate, the characters written to a string stream can be

appended to an existing string:15

std::string s("value: ");

...

std::ostringstream os (s, std::ios::out|std::ios::ate);

os << 77 << " " << std::hex << 77 << std::endl;

std::cout << os.str(); // writes: value: 77 4d

std::cout << s; // writes: value:

As you can see, the string returned from str() is a copy of the string s, with a decimal and a

hexadecimal version of 77 appended. The string s itself is not modified.

15.10.2 Move Semantics for String Streams

¨

Since C++11, string streams provide rvalue and move semantics. In fact, ostreams provide an output

operator, and istreams provide an input iterator that accepts an rvalue reference for the stream. The

effect is that you can use temporarily created stream objects. For example, you can insert into a

temporarily created string stream:16

// io/sstream2.cpp

#include <iostream>

#include <sstream>

#include <string>

#include <tuple>

#include <utility>

using namespace std;

tuple<string,string,string> parseName(string name)

{

string s1, s2, s3;

istringstream(name) >> s1 >> s2 >> s3;

if (s3.empty()) {

return tuple<string,string,string>(move(s1),"",move(s2));

}

else {

return tuple<string,string,string>(move(s1),move(s2),move(s3));

}

}

15 Whether the flag ios::app has the same effect is currently not clear; so using it here instead is not portable.
16 Thanks to Daniel Krugler for providing this example.

15.10 Stream Classes for Strings 807

int main()

{

auto t1 = parseName("Nicolai M. Josuttis");

cout << "firstname: " << get<0>(t1) << endl;

cout << "middle: " << get<1>(t1) << endl;

cout << "lastname: " << get<2>(t1) << endl;

auto t2 = parseName("Nico Josuttis");

cout << "firstname: " << get<0>(t2) << endl;

cout << "middle: " << get<1>(t2) << endl;

cout << "lastname: " << get<2>(t2) << endl;

}

Before C++11, you had to implement

istringstream is(name);

is >> s1 >> s2 >> s3;

instead of

istringstream(name) >> s1 >> s2 >> s3;

In addition, string streams now have move and swap semantics, providing a move constructor, a

move assignment operator, and swap(). So, you can pass a string stream as an argument or return a

string stream from a function.

15.10.3 char* Stream Classes

The char* stream classes are retained only for backward compatibility. Their interface is error

prone, and the classes are rarely used correctly. However, they are still in use and thus are described

briefly here. Note that the standard version described here has slightly modified the old interface.

In this subsection, the term character sequence will be used instead of string because the charac-

ter sequence maintained by the char* stream classes is not always terminated with the (terminating)

null character and thus is not really a string.

The char* stream classes are defined only for the character type char. They include

• The class istrstream for reading from character sequences (input string stream)

• The class ostrstream for writing to character sequences (output string stream)

• The class strstream for reading from and writing to character sequences

• The class strstreambuf used as a stream buffer for char* streams

The char* stream classes are defined in the header file <strstream>.

An istrstream can be initialized with a character sequence (of type char*) that is either ter-

minated with the (terminating) null character 0 or for which the number of characters is passed as

the argument. A typical use is the reading and processing of whole lines:

808 Chapter 15: Input/Output Using Stream Classes

char buffer[1000]; // buffer for at most 999 characters

// read line

std::cin.get(buffer,sizeof(buffer));

// read/process line as stream

std::istrstream input(buffer);

...

input >> x;

A char* stream for writing can either maintain a character sequence that grows as needed or be

initialized with a buffer of fixed size. Using the flag ios::app or ios:ate, you can append the

characters written to a character sequence that is already stored in the buffer.

Care must be taken when using char* stream as a string. In contrast to string streams, char*

streams are not always responsible for the memory used to store the character sequence.

With the member function str(), the character sequence is made available to the caller together

with the responsibility for the corresponding memory. Unless the stream is initialized with a buffer

of fixed size — for which the stream is never responsible — the following three rules have to be

obeyed:

1. Because ownership of the memory is transferred to the caller, the character sequence has to be

released unless the stream was initialized with a buffer of fixed size. However, there is no guar-

antee how the memory was allocated,17 so it is not always safe to release it by using delete[].

Your best bet is to return the memory to the stream by calling the member function freeze()

with the argument false (the following paragraphs present an example).

2. With the call to str(), the stream is no longer allowed to modify the character sequence. It calls

the member function freeze() implicitly, which freezes the character sequence. The reason for

this is to avoid complications if the allocated buffer is not sufficiently large and new memory has

to be allocated.

3. The member function str() does not append a (terminating) null character (’\0’). This char-

acter has to be appended explicitly to the stream to terminate the character sequence. This can be

done by using the ends manipulator. Some implementations append a string (terminating) null

character automatically, but this behavior is not portable.

The following example demonstrates the use of a char* stream:

float x;

...

// create and fill char* stream

// - don’t forget ends or ’\0’ !!!

std::ostrstream buffer; // dynamic stream buffer

buffer << "float x: " << x << std::ends;

17 There is a constructor that takes two function pointers as an argument: a function to allocate memory and a

function to release memory.

15.10 Stream Classes for Strings 809

// pass resulting C-string to foo() and return memory to buffer

char* s = buffer.str();

foo(s);

buffer.freeze(false);

A frozen char* stream can be restored to its normal state for additional manipulation. To do so,

the member function freeze() has to be called with the argument false. With this operation,

ownership of the character sequence is returned to the stream object. This is the only safe way to

release the memory for the character sequence. The next example demonstrates this:

float x;

...

std::ostrstream buffer; // dynamic char* stream

// fill char* stream

buffer << "float x: " << x << std::ends;

// pass resulting C-string to foo()

// - freezes the char* stream

foo(buffer.str());

// unfreeze the char* stream

buffer.freeze(false);

// seek writing position to the beginning

buffer.seekp (0, ios::beg);

// refill char* stream

buffer << "once more float x: " << x << std::ends;

// pass resulting C-string to foo() again

// - freezes the char* stream

foo(buffer.str());

// return memory to buffer

buffer.freeze(false);

The problems related to freezing the stream are removed from the string stream classes, mainly

because the strings are copied and because the string class takes care of the used memory.

810 Chapter 15: Input/Output Using Stream Classes

15.11 Input/Output Operators for

User-Defined Types

As mentioned earlier in this chapter, a major advantage of streams over the old I/O mechanism of C

is the possibility that the stream mechanism can be extended to user-defined types. To do this, you

must overload operators << and >>. This is demonstrated using a class for fractions in the following

subsection.

15.11.1 Implementing Output Operators

In an expression with the output operator, the left operand is a stream and the right operand is the

object to be written:

stream << object

According to language rules, this can be interpreted in two ways:

1. As stream.operator<<(object)

2. As operator<<(stream,object)

The first way is used for built-in types. For user-defined types, you have to use the second way

because the stream classes are closed for extensions. All you have to do is implement global operator

<< for your user-defined type. This is rather easy unless access to private members of the objects is

necessary (which I cover later).

For example, to print an object of class Fraction with the format numerator/denominator, you

can write the following function:

// io/frac1out.hpp

#include <iostream>

inline

std::ostream& operator << (std::ostream& strm, const Fraction& f)

{

strm << f.numerator() << ’/’ << f.denominator();

return strm;

}

The function writes the numerator and the denominator, separated by the character ’/’, to the stream

that is passed as the argument. The stream can be a file stream, a string stream, or some other stream.

To support the chaining of write operations or the access to the stream’s state in the same statement,

the stream is returned by the function.

This simple form has two drawbacks:

1. Because ostream is used in the signature, the function applies only to streams with the character

type char. If the function is intended only for use in Western Europe or in North America, this

15.11 Input/Output Operators for User-Defined Types 811

is no problem. On the other hand, a more general version requires only a little extra work, so it

should at least be considered.

2. Another problem arises if a field width is set. In this case, the result is probably not what might

be expected. The field width applies to the immediately following write; in this case, to the

numerator. Thus, the statements

Fraction vat(19,100); // I’m German and we have a uniform VAT of 19%

std::cout << "VAT: \"" << std::left << std::setw(8)

<< vat << ’"’ << std::endl;

result in this output:

VAT: "19 /100"

The next version solves both of these problems:

// io/frac2out.hpp

#include <iostream>

#include <sstream>

template <typename charT, typename traits>

inline

std::basic_ostream<charT,traits>&

operator << (std::basic_ostream<charT,traits>& strm,

const Fraction& f)

{

// string stream

// - with same format

// - without special field width

std::basic_ostringstream<charT,traits> s;

s.copyfmt(strm);

s.width(0);

// fill string stream

s << f.numerator() << ’/’ << f.denominator();

// print string stream

strm << s.str();

return strm;

}

The operator has become a function template that is parametrized to suit all kinds of streams. The

problem with the field width is addressed by writing the fraction first to a string stream without

setting any specific width. The constructed string is then sent to the stream passed as the argument.

This results in the characters representing the fraction being written with only one write operation,

to which the field width is applied.

812 Chapter 15: Input/Output Using Stream Classes

As a result, the statements

Fraction vat(19,100); // I’m German ...

std::cout << "VAT: \"" << std::left << std::setw(8)

<< vat << ’"’ << std::endl;

now produce the following output:

VAT: "19/100 "

Note that a user-defined overload of operator << for types of namespace std will have limitations.

The reason is that it is not found in situations using ADL (argument-dependent lookup, also known

as Koenig lookup). This, for example, is the case when ostream iterators are used. For example:

template <typename T1, typename T2>

std::ostream& operator << (std::ostream& strm, const std::pair<T1,T2>& p)

{

return strm << "[" << p.first << "," << p.second << "]";

}

std::pair<int,long> p(42,77777);

std::cout << p << std::endl; // OK

std::vector<std::pair<int,long>> v;

...

std::copy(v.begin(),v.end(), // ERROR: doesn’t compile:

std::ostream_iterator<std::pair<int,long>>(std::cout,"\n"));

15.11.2 Implementing Input Operators

Input operators are implemented according to the same principle as output operators. However, input

incurs the likely problem of read failures. Input functions normally need special handling of cases

in which reading might fail.

When implementing a read function, you can choose between simple or flexible approaches. For

example, the following function uses a simple approach, which reads a fraction without checking for

error situations:

// io/frac1in.hpp

#include <iostream>

inline

std::istream& operator >> (std::istream& strm, Fraction& f)

{

int n, d;

strm >> n; // read value of the numerator

15.11 Input/Output Operators for User-Defined Types 813

strm.ignore(); // skip ’/’

strm >> d; // read value of the denominator

f = Fraction(n,d); // assign the whole fraction

return strm;

}

The problem with this implementation is has that it can be used only for streams with the character

type char. In addition, whether the character between the two numbers is indeed the character ’/’

is not checked.

Another problem arises when undefined values are read. When reading a zero for the denomina-

tor, the value of the read fraction is not well defined. This problem is detected in the constructor of

the class Fraction that is invoked by the expression Fraction(n,d). However, handling inside

class Fraction means that a format error automatically results in an error handling of the class

Fraction. Because it is common practice to record format errors in the stream, it might be better to

set ios_base::failbit in this case.

Finally, the fraction passed by reference might be modified even if the read operation is not

successful. This can happen, for example, when the read of the numerator succeeds, but the read of

the denominator fails. This behavior contradicts common conventions established by the predefined

input operators and thus is best avoided. A read operation should be successful or have no effect.

The following implementation is improved to avoid these problems. It is also more flexible

because it is parametrized to be applicable to all stream types:

// io/frac2in.hpp

#include <iostream>

template <typename charT, typename traits>

inline

std::basic_istream<charT,traits>&

operator >> (std::basic_istream<charT,traits>& strm, Fraction& f)

{

int n, d;

// read value of numerator

strm >> n;

// if available

// - read ’/’ and value of demonimator

if (strm.peek() == ’/’) {

strm.ignore();

strm >> d;

}

814 Chapter 15: Input/Output Using Stream Classes

else {

d = 1;

}

// if denominator is zero

// - set failbit as I/O format error

if (d == 0) {

strm.setstate(std::ios::failbit);

return strm;

}

// if everything is fine so far

// - change the value of the fraction

if (strm) {

f = Fraction(n,d);

}

return strm;

}

Here, the denominator is read only if the first number is followed by the character ’/’; otherwise,

a denominator of 1 is assumed, and the integer read is interpreted as the whole fraction. Hence, the

denominator is optional.

This implementation also tests whether a denominator with value 0 was read. In this case, the

ios_base::failbit is set, which might trigger a corresponding exception (see Section 15.4.4,

page 762). Of course, the behavior can be implemented differently if the denominator is zero. For

example, an exception could be thrown directly, or the check could be skipped so that the fraction is

initialized with zero, which would throw the appropriate exception by class Fraction.

Finally, the state of the stream is checked, and the new value is assigned to the fraction only if no

input error occurred. This final check should always be done to make sure that the value of an object

is changed only if the read was successful.

Of course, it can be argued whether it is reasonable to read integers as fractions. In addition,

there are other subtleties that may be improved. For example, the numerator must be followed by

the character ’/’ without separating whitespaces. But the denominator may be preceded by arbitrary

whitespaces because normally, these are skipped. This hints at the complexity involved in reading

nontrivial data structures.

15.11.3 Input/Output Using Auxiliary Functions

If the implementation of an I/O operator requires access to the private data of an object, the stan-

dard operators should delegate the work to auxiliary member functions. This technique also allows

polymorphic read and write functions, which might look as follows:

15.11 Input/Output Operators for User-Defined Types 815

class Fraction {

...

public:

virtual void printOn (std::ostream& strm) const; // output

virtual void scanFrom (std::istream& strm); // input

...

};

std::ostream& operator << (std::ostream& strm, const Fraction& f)

{

f.printOn (strm);

return strm;

}

std::istream& operator >> (std::istream& strm, Fraction& f)

{

f.scanFrom (strm);

return strm;

}

A typical example is the direct access to the numerator and denominator of a fraction during input:

void Fraction::scanFrom (std::istream& strm)

{

...

// assign values directly to the components

num = n;

denom = d;

}

If a class is not intended to be used as a base class, the I/O operators can be made friends of

the class. However, note that this approach reduces the possibilities significantly when inheritance

is used. Friend functions cannot be virtual; as a result, the wrong function might be called. For

example, if a reference to a base class refers to an object of a derived class and is used as an argument

for the input operator, the operator for the base class is called. To avoid this problem, derived classes

should not implement their own I/O operators. Thus, the implementation sketched previously is

more general than the use of friend functions and should be used as a standard approach, although

most examples use friend functions instead.

15.11.4 User-Defined Format Flags

When user-defined I/O operators are being written, it is often desirable to have formatting flags

specific to these operators, probably set by using a corresponding manipulator. For example, it

would be nice if the output operator for fractions, shown previously, could be configured to place

spaces around the slash that separates numerator and denominator.

816 Chapter 15: Input/Output Using Stream Classes

The stream objects support this by providing a mechanism to associate data with a stream. This

mechanism can be used to associate corresponding data — for example, using a manipulator — and

later retrieve the data. The class ios_base defines the two functions iword() and pword(), each

taking an int argument as the index, to access a specific long& or void*&, respectively. The idea

is that iword() and pword() access long or void* objects in an array of arbitrary size stored with

a stream object. Formatting flags to be stored for a stream are then placed at the same index for all

streams. The static member function xalloc() of the class ios_base is used to obtain an index

that is not yet used for this purpose.

Initially, the objects accessed with iword() or pword() are set to 0. This value can be used to

represent the default formatting or to indicate that the corresponding data was not yet accessed. Here

is an example:

// get index for new ostream data

static const int iword_index = std::ios_base::xalloc();

// define manipulator that sets this data

std::ostream& fraction_spaces (std::ostream& strm)

{

strm.iword(iword_index) = true;

return strm;

}

std::ostream& operator<< (std::ostream& strm, const Fraction& f)

{

// query the ostream data

// - if true, use spaces between numerator and denominator

// - if false, use no spaces between numerator and denominator

if (strm.iword(iword_index)) {

strm << f.numerator() << " / " << f.denominator();

}

else {

strm << f.numerator() << "/" << f.denominator();

}

return strm;

}

This example uses a simple approach to the implementation of the output operator because the main

feature to be exposed is the use of the function iword(). The format flag is considered to be a

Boolean value that defines whether spaces between numerator and denominator should be written.

In the first line, the function ios_base::xalloc() obtains an index that can be used to store

the format flag. The result of this call is stored in a constant because it is never modified. The

function fraction_spaces() is a manipulator that sets the int value that is stored at the index

iword_index in the integer array associated with the stream strm to true. The output operator

retrieves that value and writes the fraction according the value stored. If the value is false, the

default formatting using no spaces is used. Otherwise, spaces are placed around the slash.

15.11 Input/Output Operators for User-Defined Types 817

When iword() and pword() are used, references to long or void* objects are returned. These

references stay valid only until the next call of iword() or pword() for the corresponding stream

object, or until the stream object is destroyed. Normally, the results from iword() and pword()

should not be saved.18 It is assumed that the access is fast, although it is not required that the data

be represented by using an array.

The function copyfmt() copies all format information (see Section 15.7.1, page 779), including

the arrays accessed with iword() and pword(). This may pose a problem for the objects stored

with a stream using pword(). For example, if a value is the address of an object, the address is

copied instead of the object. If you copy only the address, it may happen that if the format of one

stream is changed, the format of other streams would be affected. In addition, it may be desirable

that an object associated with a stream using pword() be destroyed when the stream is destroyed.

So, a deep copy rather than a shallow copy may be necessary for such an object.

A callback mechanism is defined by ios_base to support such behavior as making a deep copy

if necessary or deleting an object when destroying a stream. The function register_callback()

can be used to register a function that is called if certain operations are performed on the ios_base

object. It is declared as follows:

namespace std {

class ios_base {

public:

// kinds of callback events

enum event { erase_event, imbue_event, copyfmt_event };

// type of callbacks

typedef void (*event_callback) (event e, ios_base& strm,

int arg);

// function to register callbacks

void register_callback (event_callback cb, int arg);

...

};

}

The function register_callback() takes a function pointer as the first argument and an int

argument as the second. The int argument is passed as the third argument when a registered function

is called and can, for example, be used to identify an index for pword() to signal which member

of the array has to be processed. The argument strm that is passed to the callback function is the

ios_base object that caused the call to the callback function. The argument e identifies the reason

why the callback function was called. The reasons for calling the callback functions are listed in

Table 15.39.

18 In general, returned pointers and references should not be saved when it is not clear that the lifetime of the

object they refer to is long enough.

818 Chapter 15: Input/Output Using Stream Classes

Event Reason

ios_base::imbue_event A locale is set with imbue()

ios_base::erase_event The stream is destroyed or copyfmt() is used

ios_base::copy_event copyfmt() is used

Table 15.39. Reasons for Callback Events

If copyfmt() is used, the callbacks are called twice for the object on which copyfmt() is called.

First, before anything is copied, the callbacks are invoked with the argument erase_event to do all

the cleanup necessary, such as deleting objects stored in the pword() array. The callbacks called are

those registered for the object. After the format flags are copied, which includes the list of callbacks

from the argument stream, the callbacks are called again, this time with the argument copy_event.

This pass can, for example, be used to arrange for deep copying of objects stored in the pword()

array. Note that the callbacks are also copied and the original list of callbacks is removed. Thus, the

callbacks invoked for the second pass are the callbacks just copied.

The callback mechanism is very primitive. It does not allow callback functions to be unregistered

except by using copyfmt() with an argument that has no callbacks registered. Also, registering a

callback function twice, even with the same argument, results in calling the callback function twice.

It is, however, guaranteed that the callbacks are called in the opposite order of registration. Thus, a

callback function registered from within another callback function is not called before the next time

the callback functions are invoked.

15.11.5 Conventions for User-Defined Input/Output Operators

Several conventions that should be followed by the implementations of your own I/O operators have

been presented. These conventions correspond to behavior that is typical for the predefined I/O

operators. To summarize, these conventions are as follows:

• The output format should allow an input operator that can read the data without loss of informa-

tion. Especially for strings, this is close to impossible because a problem with spaces arises. A

space character in the string cannot be distinguished from a space character between two strings.

• The current formatting specification of the stream should be taken into account when doing I/O.

This applies especially to the width for writing.

• If an error occurs, an appropriate state flag should be set.

• The objects should not be modified in case of an error. If multiple data is read, the data should

first be stored in auxiliary objects before the value of the object passed to the read operator is set.

• Output should not be terminated with a newline character, mainly because it is otherwise impos-

sible to write other objects on the same line.

• Even values that are too large should be read completely. After the read, a corresponding error

flag should be set, and the value returned should be some meaningful value, such as the maximum

value.

• If a format error is detected, no character should be read, if possible.

15.12 Connecting Input and Output Streams 819

15.12 Connecting Input and Output Streams

Often, you need to connect two streams. For example, you may want to ensure that text asking

for input is written on the screen before the input is read. Another example is reading from and

writing to the same stream. This is of interest mainly regarding files. A third example is the need to

manipulate the same stream using different formats. This section discusses all these techniques.

15.12.1 Loose Coupling Using tie()

You can tie a stream to an output stream. This means that the buffers of both streams are synchro-

nized in a way that the buffer of the output stream is flushed before each input or output of the other

stream. That is, for the output stream, the function flush() is called. Table 15.40 lists the member

functions defined in basic_ios to tie one stream to another.

Member Function Meaning

tie() Returns a pointer to the output stream that is tied to the stream

tie(ostream* strm) Ties the output stream to which the argument refers to the stream

and returns a pointer to the previous output stream that was tied to

the stream, if any

Table 15.40. Tieing One Stream to Another

Calling the function tie() without any argument returns a pointer to the output stream that is

currently tied to a stream. To tie a new output stream to a stream, a pointer to that output stream

must be passed as the argument to tie(). The argument is defined to be a pointer because you can

also pass nullptr (or 0 or NULL) as an argument. This argument means “no tie” and unties any tied

output stream. If no output stream is tied, tie() returns nullptr or 0. For each stream, you can

have only one output stream that is tied to this stream. However, you can tie an output stream to

different streams.

By default, the standard input is connected to the standard output by using this mechanism:

// predefined connections:

std::cin.tie (&std::cout);

std::wcin.tie (&std::wcout);

This ensures that a message asking for input is flushed before requesting the input. For example,

during the statements

std::cout << "Please enter x: ";

std::cin >> x;

the function flush() is called implicitly for cout before reading x.

To remove the connection between two streams, you pass nullptr (or 0 or NULL) to tie(). For

example:

// decouple cin from any output stream

std::cin.tie (nullptr);

820 Chapter 15: Input/Output Using Stream Classes

This might improve the performance of a program by avoiding unnecessary additional flushing of

streams (see Section 15.14.2, page 846, for a discussion of stream performance).

You can also tie one output stream to another output stream. For example, with the following

statement, the normal output is flushed before something is written to the error stream:

// tieing cout to cerr

std::cerr.tie (&std::cout);

15.12.2 Tight Coupling Using Stream Buffers

Using the function rdbuf(), you can couple streams tightly by using a common stream buffer

(Table 15.41). These functions suit several purposes, which are discussed in this and the following

subsections.

Member Function Meaning

rdbuf() Returns a pointer to the stream buffer

rdbuf(streambuf*) Installs the stream buffer pointed to by the argument and

returns a pointer to the previously used stream buffer

Table 15.41. Stream Buffer Access

The member function rdbuf() allows several stream objects to read from the same input chan-

nel or to write to the same output channel without garbling the order of the I/O. The use of multiple

stream buffers does not work smoothly, because the I/O operations are buffered. Thus, when using

different streams with different buffers for the same I/O channel, I/O may pass other I/O. An addi-

tional constructor of basic_istream and basic_ostream is used to initialize the stream with a

stream buffer passed as the argument. For example:

// io/streambuffer1.cpp

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

// stream for hexadecimal standard output

ostream hexout(cout.rdbuf());

hexout.setf (ios::hex, ios::basefield);

hexout.setf (ios::showbase);

// switch between decimal and hexadecimal output

hexout << "hexout: " << 177 << " ";

cout << "cout: " << 177 << " ";

hexout << "hexout: " << -49 << " ";

15.12 Connecting Input and Output Streams 821

cout << "cout: " << -49 << " ";

hexout << endl;

}

Note that the destructor of the classes basic_istream and basic_ostream does not delete the

corresponding stream buffer (it was not opened by these classes, anyway). Thus, you can pass a

stream device by using a pointer instead of a stream reference to the stream buffer:

// io/streambuffer2.cpp

#include <iostream>

#include <fstream>

void hexMultiplicationTable (std::streambuf* buffer, int num)

{

std::ostream hexout(buffer);

hexout << std::hex << std::showbase;

for (int i=1; i<=num; ++i) {

for (int j=1; j<=10; ++j) {

hexout << i*j << ’ ’;

}

hexout << std::endl;

}

} // does NOT close buffer

int main()

{

using namespace std;

int num = 5;

cout << "We print " << num

<< " lines hexadecimal" << endl;

hexMultiplicationTable(cout.rdbuf(),num);

cout << "That was the output of " << num

<< " hexadecimal lines " << endl;

}

The advantage of this approach is that the format does not need to be restored to its original state

after it is modified, because the format applies to the stream object, not to the stream buffer. Thus,

the corresponding output of the program is as follows:

822 Chapter 15: Input/Output Using Stream Classes

We print 5 lines hexadecimal

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa

0x2 0x4 0x6 0x8 0xa 0xc 0xe 0x10 0x12 0x14

0x3 0x6 0x9 0xc 0xf 0x12 0x15 0x18 0x1b 0x1e

0x4 0x8 0xc 0x10 0x14 0x18 0x1c 0x20 0x24 0x28

0x5 0xa 0xf 0x14 0x19 0x1e 0x23 0x28 0x2d 0x32

That was the output of 5 hexadecimal lines

However, the disadvantage of this approach is that construction and destruction of a stream object

involve more overhead than just setting and restoring some format flags. Also, note that the destruc-

tion of a stream object does not flush the buffer. To make sure that an output buffer is flushed, it has

to be flushed manually.

The fact that the stream buffer is not destroyed applies only to basic_istream and

basic_ostream. The other stream classes destroy the stream buffers they allocated originally, but

they do not destroy stream buffers set with rdbuf().

15.12.3 Redirecting Standard Streams

In the old implementation of the IOStream library, the global streams cin, cout, cerr, and clog

were objects of the classes istream_withassign and ostream_withassign. It was therefore

possible to redirect the streams by assigning streams to other streams. This possibility was removed

from the C++ standard library. However, the possibility to redirect streams was retained and ex-

tended to apply to all streams. A stream can be redirected by setting a stream buffer.

The setting of stream buffers means the redirection of I/O streams controlled by the program

without help from the operating system. For example, the following statements set things up such

that output written to cout is not sent to the standard output channel but to the file cout.txt:

std::ofstream file ("cout.txt");

std::cout.rdbuf (file.rdbuf());

The function copyfmt() can be used to assign all format information of a given stream to another

stream object:

std::ofstream file ("cout.txt");

file.copyfmt (std::cout);

std::cout.rdbuf (file.rdbuf());

Caution! The object file is local and is destroyed at the end of the block. This also destroys the

corresponding stream buffer. This differs from the “normal” streams because file streams allocate

their stream buffer objects at construction time and destroy them on destruction. Thus, in this exam-

ple, cout can no longer be used for writing. In fact, it cannot even be destroyed safely at program

termination. Thus, the old buffer should always be saved and restored later! The following example

does this in the function redirect():

// io/streamredirect1.cpp

#include <iostream>

#include <fstream>

#include <memory>

15.12 Connecting Input and Output Streams 823

using namespace std;

void redirect(ostream&);

int main()

{

cout << "the first row" << endl;

redirect(cout);

cout << "the last row" << endl;

}

void redirect (ostream& strm)

{

// save output buffer of the stream

// - use unique pointer with deleter that ensures to restore

// the original output buffer at the end of the function

auto del = [&](streambuf* p) {

strm.rdbuf(p);

};

unique_ptr<streambuf,decltype(del)> origBuffer(strm.rdbuf(),del);

// redirect ouput into the file redirect.txt

ofstream file("redirect.txt");

strm.rdbuf (file.rdbuf());

file << "one row for the file" << endl;

strm << "one row for the stream" << endl;

} // closes file AND its buffer automatically

By using a unique pointer (see Section 5.2.5, page 98), we can ensure that, even when resize() is

left due to an exception, the original output buffer stored in origBuffer gets restored.19

The output of the program is this as follows:

the first row

the last row

The contents of the file redirect.txt are afterward:

one row for the file

one row for the stream

¨19 Thanks to Daniel Krugler for pointing this out.

824 Chapter 15: Input/Output Using Stream Classes

As you can see, the output written in redirect() to cout, using the parameter name strm, is sent

to the file. The output written after the execution of redirect() in main() is sent to the restored

output channel.

15.12.4 Streams for Reading and Writing

A final example of the connection between streams is the use of the same stream for reading and

writing. Normally, a file can be opened for reading and writing by using the class fstream:

std::fstream file ("example.txt", std::ios::in | std::ios::out);

It is also possible to use two different stream objects, one for reading and one for writing. This can

be done, for example, with the following declarations:

std::ofstream out ("example.txt", ios::in | ios::out);

std::istream in (out.rdbuf());

The declaration of out opens the file. The declaration of in uses the stream buffer of out to read

from it. Note that out must be opened for both reading and writing. If it is opened only for writing,

reading from the stream will result in undefined behavior. Also note that in is not of type ifstream

but only of type istream. The file is already opened and there is a corresponding stream buffer. All

that is needed is a second stream object. As in previous examples, the file is closed when the file

stream object out is destroyed.

It is also possible to create a file stream buffer and install it in both stream objects. The code

looks like this:

std::filebuf buffer;

std::ostream out (&buffer);

std::istream in (&buffer);

buffer.open("example.txt", std::ios::in | std::ios::out);

filebuf is the usual specialization of the class basic_filebuf<> for the character type char.

This class defines the stream buffer class used by file streams.

The following program is a complete example. In a loop, four lines are written to a file. After

each writing of a line, the contents of the file are written to standard output:

// io/streamreadwrite1.cpp

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

// open file ‘‘example.dat’’ for reading and writing

filebuf buffer;

ostream output(&buffer);

istream input(&buffer);

15.12 Connecting Input and Output Streams 825

buffer.open ("example.dat", ios::in | ios::out | ios::trunc);

for (int i=1; i<=4; i++) {

// write one line

output << i << ". line" << endl;

// print all file contents

input.seekg(0); // seek to the beginning

char c;

while (input.get(c)) {

cout.put(c);

}

cout << endl;

input.clear(); // clear eofbit and failbit

}

}

The output of the program is as follows:

1. line

1. line

2. line

1. line

2. line

3. line

1. line

2. line

3. line

4. line

Although two different stream objects are used for reading and writing, the read and write positions

are tightly coupled. seekg() and seekp() call the same member function of the stream buffer.20

Thus, the read position must always be set to the beginning of the file in order for the complete

contents of the file to be written, after which the read/write position is again at the end of the file so

that new lines written are appended.

20 This function can distinguish whether the read position, the write position, or both positions are to be modi-

fied. Only the standard stream buffers maintain one position for reading and writing.

826 Chapter 15: Input/Output Using Stream Classes

It is important to perform a seek between read and write operations to the same file unless you

have reached the end of the file while reading. Without this seek, you are likely to end up with a

garbled file or with even more fatal errors.

As mentioned before, instead of processing character by character, you could also print the entire

contents in one statement by passing a pointer to the stream buffer of the file as an argument to

operator << (see Section 15.14.3, page 846, for details):

std::cout << input.rdbuf();

15.13 The Stream Buffer Classes

As mentioned in Section 15.2.1, page 749, reading and writing are not done by the streams directly

but are delegated to stream buffers.

The general interface to deal with stream buffers is pretty simple (see Section 15.12.2, page 820):

• rdbuf() yields a pointer to the stream buffer of a stream.

• The constructor and rdbuf() of streams allow setting a stream buffer at construction time or

changing the stream buffer while the stream exists. In both cases, you have to pass a pointer to

the stream buffer, which is what rdbuf() returns.

This ability can be used to let streams write to the same output device (see Section 15.12.2, page 820,

to redirect streams (see Section 15.12.3, page 822), read from and write to the same buffer (see

Section 15.12.4, page 824), or use other character encodings, such as UTF-8 or UTF-16/UCS-2, as

input and output format (see Section 16.4.4, page 903).

This section describes how the stream buffer classes operate. The discussion not only gives a

deeper understanding of what is going on when I/O streams are used but also provides the basis to

define new I/O channels. Before going into the details of stream buffer operation, the public interface

is presented for readers interested only in using stream buffers.

15.13.1 The Stream Buffer Interfaces

To the user of a stream buffer, the class basic_streambuf<> is not much more than something

that characters can be sent to or extracted from. Table 15.42 lists the public function for writing

characters.

Member Function Meaning

sputc(c) Sends the character c to the stream buffer

sputn(s, n) Sends n characters from the sequence s to the stream buffer

Table 15.42. Public Members for Writing Characters

The function sputc() returns traits_type::eof() in case of an error, where traits_type

is a type definition in the class basic_streambuf. The function sputn() writes the number of

15.13 The Stream Buffer Classes 827

characters specified by the second argument unless the stream buffer cannot consume them. It does

not care about (terminating) null characters. This function returns the number of characters written.

The interface to reading characters from a stream buffer is a little bit more complex (Table 15.43)

because for input, it is necessary to have a look at a character without consuming it. Also, it is

desirable that characters can be put back into the stream buffer when parsing. Thus, the stream

buffer classes provide corresponding functions.

Member Function Meaning

in_avail() Returns a lower bound on the characters available

sgetc() Returns the current character without consuming it

sbumpc() Returns the current character and consumes it

snextc() Consumes the current character and returns the next character

sgetn(b, n) Reads n characters and stores them in the buffer b

sputbackc(c) Returns the character c to the stream buffer

sungetc() Moves one step back to the previous character

Table 15.43. Public Members for Reading Characters

The function in_avail() can be used to determine how many characters are at least available.

This function can be used, for example, to make sure that reading does not block when reading from

the keyboard. However, more characters can be available.

Until the stream buffer has reached the end of the stream, there is a current character. The

function sgetc() is used to get the current character without moving on to the next character. The

function sbumpc() reads the current character and moves on to next character, making this the new

current character. The last function reading a single character, snextc() makes the next character

the current one and then reads this character. All three functions return traits_type::eof() to

indicate failure. The function sgetn() reads a sequence of characters into a buffer. The maximum

number of characters to be read is passed as an argument. The function returns the number of

characters read.

The two functions sputbackc() and sungetc() are used to move one step back, making the

previous character the current one. The function sputbackc() can be used to replace the previous

character by another character. These two functions should be used only with care. Often, only one

character can be put back.

Finally, there are functions to access the imbued locale object, to change the position, and to

influence buffering. Table 15.44 lists these functions.

Both pubimbue() and getloc() are used for internationalization (see Section 15.8, page 790):

pubimbue() installs a new locale object in the stream buffer, returning the previously installed

locale object; getloc() returns the currently installed locale object.

The function pubsetbuf() is intended to provide some control over the buffering strategy of

stream buffers. However, whether it is honored depends on the concrete stream buffer class. For ex-

ample, it makes no sense to use pubsetbuf() for string stream buffers. Even for file stream buffers,

the use of this function is portable only if it is called before the first I/O operation is performed and

828 Chapter 15: Input/Output Using Stream Classes

Member Function Meaning

pubimbue(loc) Imbues the stream buffer with the locale loc

getloc() Returns the current locale

pubseekpos(pos) Repositions the current position to an absolute position

pubseekpos(pos, which) Same with specifying the I/O direction

pubseekoff(offset, rpos) Repositions the current position relative to another po-

sition

pubseekoff(offset, rpos, which) Same with specifying the I/O direction

pubsetbuf(buf, n) Influences buffering

Table 15.44. Miscellaneous Public Stream Buffer Functions

if it is called as pubsetbuf(nullptr,0), which means that no buffer is to be used. This function

returns nullptr on failure and the stream buffer otherwise.

The functions pubseekoff() and pubseekpos() are used to manipulate the current position

used for reading and/or writing. The position that is manipulated depends on the last argument,

which is of type ios_base::openmode and which defaults to ios_base::in|ios_base::out if

it is not specified. If ios_base::in is set, the read position is modified. Correspondingly, the write

position is modified if ios_base::out is set. The function pubseekpos() moves the stream to

an absolute position specified as the first argument, whereas the function pubseekoff() moves the

stream relative to some other position. The offset is specified as the first argument. The position used

as starting point is specified as the second argument and can be ios_base::cur, ios_base::beg,

or ios_base::end (see Section 15.9.4, page 800, for details). Both functions return the position

to which the stream was positioned or an invalid stream position. The invalid stream position can

be detected by comparing the result with the object pos_type(off_type(-1)) (pos_type and

off_type are types for handling stream positions; see Section 15.9.4, page 799). The current posi-

tion of a stream can be obtained by using pubseekoff():

sbuf.pubseekoff(0, std::ios::cur)

15.13.2 Stream Buffer Iterators

An alternative way to use a member function for unformatted I/O is to use the stream buffer iterator

classes. These classes provide iterators that conform to input iterator or output iterator requirements

and read or write individual characters from stream buffers. This fits character-level I/O into the

algorithm library of the C++ standard library.

The class templates istreambuf_iterator<> and ostreambuf_iterator<> are used to read

or to write individual characters from or to objects of type basic_streambuf<>, respectively. The

classes are defined in the header <iterator> like this:

namespace std {

template <typename charT,

typename traits = char_traits<charT> >

class istreambuf_iterator;

15.13 The Stream Buffer Classes 829

template <typename charT,

typename traits = char_traits<charT> >

class ostreambuf_iterator;

}

These iterators are special forms of stream iterators, which are described in Section 9.4.3, page 460.

The only difference is that their elements are characters.

Output Stream Buffer Iterators

Here is how a string can be written to a stream buffer by using an ostreambuf_iterator:

// create iterator for buffer of output stream cout

std::ostreambuf_iterator<char> bufWriter(std::cout);

std::string hello("hello, world\n");

std::copy(hello.begin(), hello.end(), // source: string

bufWriter); // destination: output buffer of cout

The first line of this example constructs an output iterator of type ostreambuf_iterator from the

object cout. Instead of passing the output stream, you could also pass a pointer to the stream buffer

directly. The remainder constructs a string object and copies the characters in this object to the

constructed output iterator.

Table 15.45 lists all operations of output stream buffer iterators. The implementation is similar

to ostream iterators (see Section 9.4.3, page 460). In addition, you can initialize the iterator with a

buffer, and you can call failed() to query whether the iterator is able to write. If any prior writing

of a character failed, failed() yields true. In this case, any writing with operator = has no effect.

Expression Effect

ostreambuf_iterator<char>(ostream) Creates an output stream buffer iterator for

ostream

ostreambuf_iterator<char>(buffer_ptr) Creates an output stream buffer iterator for

the buffer to which buffer_ptr refers

*iter No-op (returns iter)

iter = c Writes character c to the buffer by calling

sputc(c) for it

++iter No-op (returns iter)

iter++ No-op (returns iter)

failed() Returns whether the output stream iterator is

not able to write anymore

Table 15.45. Operations of Output Stream Buffer Iterators

830 Chapter 15: Input/Output Using Stream Classes

Input Stream Buffer Iterators

Table 15.46 lists all operations of input stream buffer iterators. The implementation is similar to that

for istream iterators (see Section 9.4.3, page 462). In addition, you can initialize the iterator with a

buffer, and member function equal() is provided, which returns whether two input stream buffer

iterators are equal. Two input stream buffer iterators are equal when they are both end-of-stream

iterators or when neither is an end-of-stream iterator.

Expression Effect

istreambuf_iterator<char>() Creates an end-of-stream iterator

istreambuf_iterator<char>(istream) Creates an input stream buffer iterator for

istream and might read the first character

using sgetc()

istreambuf_iterator<char>(buffer_ptr) Creates an input stream buffer iterator for the

buffer to which buffer_ptr refers and might

read the first character using sgetc()

*iter Returns the current character, read with

sgetc() before (reads the first character if

not done by the constructor)

++iter Reads the next character with sbumpc() and

returns its position

iter++ Reads the next character with sbumpc() but

returns an iterator (proxy), where * yields the

previous character

iter1.equal(iter2) Returns whether both iterators are equal

iter1== iter2 Tests iter1 and iter2 for equality

iter1!= iter2 Tests iter1 and iter2 for inequality

Table 15.46. Operations of Input Stream Buffer Iterators

Somewhat obscure is what it means for two objects of type istreambuf_iterator to be equiv-

alent: Two istreambuf_iterator objects are equivalent if both iterators are end-of-stream itera-

tors or if neither of them is an end-of-stream iterator (whether the output buffer is the same doesn’t

matter). One possibility to get an end-of-stream iterator is to construct an iterator with the default

constructor. In addition, an istreambuf_iterator becomes an end-of-stream iterator when an at-

tempt is made to advance the iterator past the end of the stream (in other words, if sbumpc() returns

traits_type::eof(). This behavior has two major implications:

1. A range from the current position in a stream to the end of the stream is defined by two iterators:

istreambuf_iterator<charT,traits>(stream) for the current position and

istreambuf_iterator<charT,traits>() for the end of the stream (stream is of type

basic_istream<charT,traits> or basic_streambuf<charT,traits>).

2. It is not possible to create subranges using istreambuf_iterators.

15.13 The Stream Buffer Classes 831

Example Use of Stream Buffer Iterators

The following example is the classic filter framework that simply writes all read characters with

stream buffer iterators. It is a modified version of the example in Section 15.5.3, page 772:

// io/charcat2.cpp

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

// input stream buffer iterator for cin

istreambuf_iterator<char> inpos(cin);

// end-of-stream iterator

istreambuf_iterator<char> endpos;

// output stream buffer iterator for cout

ostreambuf_iterator<char> outpos(cout);

// while input iterator is valid

while (inpos != endpos) {

*outpos = *inpos; // assign its value to the output iterator

++inpos;

++outpos;

}

}

You can also pass stream buffer iterators to algorithms to process all characters read from an input

stream (see io/countlines1.cpp for a complete example):

int countLines (std::istream& in)

{

return std::count(std::istreambuf_iterator<char>(in),

std::istreambuf_iterator<char>(),

’\n’);

}

See Section 14.6, page 732, for an example using all characters read from standard input to initialize

a string.

832 Chapter 15: Input/Output Using Stream Classes

15.13.3 User-Defined Stream Buffers

Stream buffers are buffers for I/O. Their interface is defined by class basic_streambuf<>. For the

character types char and wchar_t, the specializations streambuf and wstreambuf, respectively,

are predefined. These classes are used as base classes when implementing the communication over

special I/O channels. However, doing this requires an understanding of the stream buffer’s operation.

The central interface to the buffers is formed by three pointers for each of the two buffers. The

pointers returned from the functions eback(), gptr(), and egptr() form the interface to the read

buffer. The pointers returned from the functions pbase(), pptr(), and epptr() form the interface

to the write buffer. These pointers are manipulated by the read and write operations, which may

result in corresponding reactions in the corresponding read or write channel. The exact operation is

examined separately for reading and writing.

User-Defined Output Buffers

A buffer used to write characters is maintained with three pointers that can be accessed by the three

functions pbase(), pptr(), and epptr() (Figure 15.4). Here is what these pointers represent:

1. pbase() (“put base”) is the beginning of the output buffer.

2. pptr() (“put pointer”) is the current write position.

3. epptr() (“end put pointer”) is the end of the output buffer. This means that epptr() points to

one past the last character that can be buffered.

The characters in the range from pbase() to pptr(), not including the character pointed to by

pptr(), are already written but not yet transported, or flushed, to the corresponding output channel.

� � �
 � � � � � � � � � � � � �

Figure 15.4. Interface to the Output Buffer

A character is written using the member function sputc(). This character is copied to the

current write position if there is a spare write position. Then the pointer to the current write position

is incremented. If the buffer is full (pptr() == epptr()), the contents of the output buffer are sent

to the corresponding output channel by calling the virtual function overflow(). This function is

responsible for sending the characters to some “external representation,” which may be internal, as in

the case of string streams. The implementation of overflow() in the base class basic_streambuf

returns only end-of-file, which indicates that no more characters could be written.

The member function sputn() can be used to write multiple characters at once. This function

delegates the work to the virtual function xsputn(), which can be implemented for more efficient

15.13 The Stream Buffer Classes 833

writing of multiple characters. The implementation of xsputn() in class basic_streambuf calls

sputc() for each character. Thus, overriding xsputn() is not necessary. Often, however, writing

multiple characters can be implemented more efficiently than writing characters one at a time. Thus,

this function can be used to optimize the processing of character sequences.

Writing to a stream buffer does not necessarily involve using the buffer. Instead, the charac-

ters can be written as soon as they are received. In this case, the value nullptr (or 0 or NULL)

has to be assigned to the pointers that maintain the write buffer. The default constructor does this

automatically.

With this information, the following example of a simple stream buffer can be implemented. This

stream buffer does not use a buffer. Thus, the function overflow() is called for each character.

Implementing this function is all that is necessary:

// io/outbuf1.hpp

#include <streambuf>

#include <locale>

#include <cstdio>

class outbuf : public std::streambuf

{

protected:

// central output function

// - print characters in uppercase mode

virtual int_type overflow (int_type c) {

if (c != EOF) {

// convert lowercase to uppercase

c = std::toupper(c,getloc());

// and write the character to the standard output

if (std::putchar(c) == EOF) {

return EOF;

}

}

return c;

}

};

In this case, each character sent to the stream buffer is written using the C function putchar().

However, before the character is written, it is turned into an uppercase character using toupper()

(see Section 16.4.4, page 895). The function getloc() is used to get the locale object associated

with the stream buffer (see also Section 15.8, page 790).

In this example, the output buffer is implemented specifically for the character type char

(streambuf is the specialization of basic_streambuf<> for the character type char). If other

character types are used, you have to implement this function using character traits, which are

834 Chapter 15: Input/Output Using Stream Classes

introduced in Section 16.1.4, page 853. In this case, the comparison of c with end-of-file looks

different: traits::eof() has to be returned instead of EOF and, if the argument c is EOF, the

value traits::not_eof(c) should be returned, where traits is the second template argument to

basic_streambuf. This might look as follows:

// io/outbuf1i18n.hpp

#include <streambuf>

#include <locale>

#include <cstdio>

template <typename charT,

typename traits = std::char_traits<charT> >

class basic_outbuf : public std::basic_streambuf<charT,traits>

{

protected:

// central output function

// - print characters in uppercase mode

virtual typename traits::int_type

overflow (typename traits::int_type c) {

if (!traits::eq_int_type(c,traits::eof())) {

// convert lowercase to uppercase

c = std::toupper(c,this->getloc());

// convert the character into a char (default: ’?’)

char cc = std::use_facet<std::ctype<charT>>

(this->getloc()).narrow(c,’?’);

// and write the character to the standard output

if (std::putchar(cc) == EOF) {

return traits::eof();

}

}

return traits::not_eof(c);

}

};

typedef basic_outbuf<char> outbuf;

typedef basic_outbuf<wchar_t> woutbuf;

Note that you have to qualify the call of getloc() by this-> now because the base class depends

on a template parameter. Also, we have to narrow the character before we pass it to putchar()

because putchar() only accepts char only (see Section 16.4.4, page 891).

15.13 The Stream Buffer Classes 835

Using this stream buffer in the following program:

// io/outbuf1.cpp

#include <iostream>

#include "outbuf1.hpp"

int main()

{

outbuf ob; // create special output buffer

std::ostream out(&ob); // initialize output stream with that output buffer

out << "31 hexadecimal: " << std::hex << 31 << std::endl;

}

produces the following output:

31 HEXADECIMAL: 1F

The same approach can be used to write to other arbitrary destinations. For example, the constructor

of a stream buffer may take a file descriptor, the name of a socket connection, or two other stream

buffers used for simultaneous writing to initialize the object. Writing to the corresponding destina-

tion requires only that overflow() be implemented. In addition, the function xsputn() should be

implemented to make writing to the stream buffer more efficient.

For convenient construction of the stream buffer, it is also reasonable to implement a special

stream class that mainly passes the constructor argument to the corresponding stream buffer. The

next example demonstrates this. It defines a stream buffer class initialized with a file descriptor to

which characters are written with the function write(), a low-level I/O function used on UNIX-like

operating systems. In addition, a class derived from ostream is defined that maintains such a stream

buffer to which the file descriptor is passed:

// io/outbuf2.hpp

#include <iostream>

#include <streambuf>

#include <cstdio>

// for write():

#ifdef _MSC_VER

#include <io.h>

#else

#include <unistd.h>

#endif

class fdoutbuf : public std::streambuf {

protected:

int fd; // file descriptor

836 Chapter 15: Input/Output Using Stream Classes

public:

// constructor

fdoutbuf (int _fd) : fd(_fd) {

}

protected:

// write one character

virtual int_type overflow (int_type c) {

if (c != EOF) {

char z = c;

if (write (fd, &z, 1) != 1) {

return EOF;

}

}

return c;

}

// write multiple characters

virtual std::streamsize xsputn (const char* s,

std::streamsize num) {

return write(fd,s,num);

}

};

class fdostream : public std::ostream {

protected:

fdoutbuf buf;

public:

fdostream (int fd) : std::ostream(0), buf(fd) {

rdbuf(&buf);

}

};

This stream buffer also implements the function xsputn() to avoid calling overflow() for each

character if a character sequence is sent to this stream buffer. This function writes the whole character

sequence with one call to the file identified by the file descriptor fd. The function xsputn() returns

the number of characters written successfully. Here is a sample application:

// io/outbuf2.cpp

#include <iostream>

#include "outbuf2.hpp"

15.13 The Stream Buffer Classes 837

int main()

{

fdostream out(1); // stream with buffer writing to file descriptor 1

out << "31 hexadecimal: " << std::hex << 31 << std::endl;

}

This program creates an output stream that is initialized with the file descriptor 1. This file descriptor,

by convention, identifies the standard output channel. Thus, in this example, the characters are

simply printed. If some other file descriptor is available — for example, for a file or a socket — it

also can be used as the constructor argument.

To implement a stream buffer that buffers, the write buffer has to be initialized using the function

setp(). This is demonstrated by the next example:

// io/outbuf3.hpp

#include <cstdio>

#include <streambuf>

// for write():

#ifdef _MSC_VER

include <io.h>

#else

include <unistd.h>

#endif

class outbuf : public std::streambuf {

protected:

static const int bufferSize = 10; // size of data buffer

char buffer[bufferSize]; // data buffer

public:

// constructor

// - initialize data buffer

// - one character less to let the bufferSizeth character cause a call of overflow()

outbuf() {

setp (buffer, buffer+(bufferSize-1));

}

// destructor

// - flush data buffer

virtual ~outbuf() {

sync();

}

838 Chapter 15: Input/Output Using Stream Classes

protected:

// flush the characters in the buffer

int flushBuffer () {

int num = pptr()-pbase();

if (write (1, buffer, num) != num) {

return EOF;

}

pbump (-num); // reset put pointer accordingly

return num;

}

// buffer full

// - write c and all previous characters

virtual int_type overflow (int_type c) {

if (c != EOF) {

// insert character into the buffer

*pptr() = c;

pbump(1);

}

// flush the buffer

if (flushBuffer() == EOF) {

// ERROR

return EOF;

}

return c;

}

// synchronize data with file/destination

// - flush the data in the buffer

virtual int sync () {

if (flushBuffer() == EOF) {

// ERROR

return -1;

}

return 0;

}

};

The constructor initializes the write buffer with setp():

setp (buffer, buffer+(size-1));

The write buffer is set up such that overflow() is already called when there is still room for one

character. If overflow() is not called with EOF as the argument, the corresponding character can

15.13 The Stream Buffer Classes 839

be written to the write position because the pointer to the write position is not increased beyond the

end pointer. After the argument to overflow() is placed in the write position, the whole buffer can

be emptied.

The member function flushBuffer() does exactly this. It writes the characters to the standard

output channel (file descriptor 1) using the function write(). The stream buffer’s member function

pbump() is used to move the write position back to the beginning of the buffer.

The function overflow() inserts the character that caused the call of overflow() into the

buffer if it is not EOF. Then, pbump() is used to advance the write position to reflect the new

end of the buffered characters. This moves the write position beyond the end position (epptr())

temporarily.

This class also features the virtual function sync(), which is used to synchronize the current

state of the stream buffer with the corresponding storage medium. Normally, all that needs to be

done is to flush the buffer. For the unbuffered versions of the stream buffer, overriding this function

was not necessary, because there was no buffer to be flushed.

The virtual destructor ensures that data is written that is still buffered when the stream buffer is

destroyed.

These are the functions that are overridden for most stream buffers. If the external representation

has some special structure, overriding additional functions may be useful. For example, the functions

seekoff() and seekpos() may be overridden to allow manipulation of the write position.

User-Defined Input Buffers

The input mechanism works basically the same as the output mechanism. However, for input there

is also the possibility of undoing the last read. The functions sungetc(), called by unget() of

the input stream, or sputbackc(), called by putback() of the input stream, can be used to re-

store the stream buffer to its state before the last read. It is also possible to read the next character

without moving the read position beyond this character. Thus, you must override more functions to

implement reading from a stream buffer than is necessary to implement writing to a stream buffer.

A stream buffer maintains a read buffer with three pointers that can be accessed through the

member functions eback(), gptr(), and egptr() (Figure 15.5):

1. eback() (“end back”) is the beginning of the input buffer, or, as the name suggests, the end of

the putback area. The character can only be put back up to this position without taking special

action.

2. gptr() (“get pointer”) is the current read position.

3. egptr() (“end get pointer”) is the end of the input buffer.

The characters between the read position and the end position have been transported from the exter-

nal representation to the program’s memory, but they still await processing by the program.

Single characters can be read using the function sgetc() or sbumpc(). These two functions

differ in that the read pointer is incremented by sbumpc() but not by sgetc(). If the buffer is

read completely (gptr() == egptr()), no character is available, and the buffer has to be refilled

by a call of the virtual function underflow(), which is responsible for the reading of data. If no

characters are available, the function sbumpc() calls the virtual function uflow() instead. The

840 Chapter 15: Input/Output Using Stream Classes

� � � � ! � � � � � � � � � � � �

Figure 15.5. Interface for Reading from Stream Buffers

default implementation of uflow() is to call underflow() and then increment the read pointer.

The default implementation of underflow() in the base class basic_streambuf is to return EOF.

This means that it is impossible to read characters with the default implementation.

The function sgetn() is used for reading multiple characters at once. This function delegates

the processing to the virtual function xsgetn(). The default implementation of xsgetn() simply

extracts multiple characters by calling sbumpc() for each character. Like the function xsputn()

for writing, xsgetn() can be implemented to optimize the reading of multiple characters.

For input, it is not sufficient simply to override one function, as it is in the case of output. Either

a buffer has to be set up, or, at the very least, underflow() and uflow() have to implemented. The

reason is that underflow() does not move past the current character, but underflow() may be

called from sgetc(). Moving on to the next character has to be done using buffer manipulation or

a call to uflow(). In any case, underflow() has to be implemented for any stream buffer capable

of reading characters. If both underflow() and uflow() are implemented, there is no need to set

up a buffer.

A read buffer is set up with the member function setg(), which takes three arguments in this

order:

1. A pointer to the beginning of the buffer (eback())

2. A pointer to the current read position (gptr())

3. A pointer to the end of the buffer (egptr())

Unlike setp(), setg() takes three arguments in order to be able to define the room for storing

characters that are put back into the stream. Thus, when the pointers to the read buffer are being set

up, it is reasonable to have at least one character that is already read but still stored in the buffer.

As mentioned, characters can be put back into the read buffer by using the functions

sputbackc() and sungetc(). sputbackc() gets the character to be put back as its argument and

ensures that this character was indeed the character read. Both functions decrement the read pointer,

if possible. Of course, this works only as long as the read pointer is not at the beginning of the read

buffer. If you attempt to put a character back after the beginning of the buffer is reached, the virtual

function pbackfail() is called. By overriding this function, you can implement a mechanism to re-

store the old read position even in this case. In the base class basic_streambuf, no corresponding

behavior is defined. Thus, in practice, it is not possible to go back an arbitrary number of characters.

For streams that do not use a buffer, the function pbackfail() should be implemented because it

is generally assumed that at least one character can be put back into the stream.

15.13 The Stream Buffer Classes 841

If a new buffer was just read, another problem arises: Not even one character can be put back if

the old data is not saved in the buffer. Thus, the implementation of underflow() often moves the

last few characters (for example, four characters) of the current buffer to the beginning of the buffer

and appends the newly read characters thereafter. This allows some characters to be moved back

before pbackfail() is called.

The following example demonstrates how such an implementation might look. In the class

inbuf, an input buffer with ten characters is implemented. This buffer is split into a maximum

of four characters for the putback area and six characters for the “normal” input buffer:

// io/inbuf1.hpp

#include <cstdio>

#include <cstring>

#include <streambuf>

// for read():

#ifdef _MSC_VER

include <io.h>

#else

include <unistd.h>

#endif

class inbuf : public std::streambuf {

protected:

// data buffer:

// - at most, four characters in putback area plus

// - at most, six characters in ordinary read buffer

static const int bufferSize = 10; // size of the data buffer

char buffer[bufferSize]; // data buffer

public:

// constructor

// - initialize empty data buffer

// - no putback area

// => force underflow()

inbuf() {

setg (buffer+4, // beginning of putback area

buffer+4, // read position

buffer+4); // end position

}

842 Chapter 15: Input/Output Using Stream Classes

protected:

// insert new characters into the buffer

virtual int_type underflow () {

// is read position before end of buffer?

if (gptr() < egptr()) {

return traits_type::to_int_type(*gptr());

}

// process size of putback area

// - use number of characters read

// - but at most four

int numPutback;

numPutback = gptr() - eback();

if (numPutback > 4) {

numPutback = 4;

}

// copy up to four characters previously read into

// the putback buffer (area of first four characters)

std::memmove (buffer+(4-numPutback), gptr()-numPutback,

numPutback);

// read new characters

int num;

num = read (0, buffer+4, bufferSize-4);

if (num <= 0) {

// ERROR or EOF

return EOF;

}

// reset buffer pointers

setg (buffer+(4-numPutback), // beginning of putback area

buffer+4, // read position

buffer+4+num); // end of buffer

// return next character

return traits_type::to_int_type(*gptr());

}

};

The constructor initializes all pointers so that the buffer is completely empty (Figure 15.6). If a

character is read from this stream buffer, the function underflow() is called. This function, always

used by this stream buffer to read the next characters, starts by checking for read characters in the

15.13 The Stream Buffer Classes 843

input buffer. If characters are present, they are moved to the putback area by using the function

memcpy(). These are, at most, the last four characters of the input buffer. Then POSIX’s low-level

I/O function read() is used to read the next character from the standard input channel. After the

buffer is adjusted to the new situation, the first character read is returned.

� � � � ! � � � � � � � � � � � �

Figure 15.6. Get Buffer after Initialization

For example, if the characters ’H’, ’a’, ’l’, ’l’, ’o’, and ’w’ are read by the first call to read(),

the state of the input buffer changes, as shown in Figure 15.7. The putback area is empty because

the buffer was filled for the first time, and there are no characters yet that can be put back.

� � � � ! � � � � � � � � � � � �

" � � � � #

Figure 15.7. Get Buffer after Reading H a l l o w

After these characters are extracted, the last four characters are moved into the putback area, and

new characters are read. For example, if the characters ’e’, ’e’, ’n’, and ’\n’ are read by the next

call of read(), the result is as shown in Figure 15.8.

� � � � ! � � � � � � � � � � � �

� � � # � � 	 $ 	

Figure 15.8. Get Buffer after Reading Four More Characters

844 Chapter 15: Input/Output Using Stream Classes

Here is an example of the use of this stream buffer:

// io/inbuf1.cpp

#include <iostream>

#include "inbuf1.hpp"

int main()

{

inbuf ib; // create special stream buffer

std::istream in(&ib); // initialize input stream with that buffer

char c;

for (int i=1; i<=20; i++) {

// read next character (out of the buffer)

in.get(c);

// print that character (and flush)

std::cout << c << std::flush;

// after eight characters, put two characters back into the stream

if (i == 8) {

in.unget();

in.unget();

}

}

std::cout << std::endl;

}

The program reads characters in a loop and writes them out. After the eighth character is read, two

characters are put back. Thus, the seventh and eighth characters are printed twice.

15.14 Performance Issues

This section addresses issues that focus on performance. In general, the stream classes should be

pretty efficient, but performance can be improved further in applications in which I/O is performance

critical.

One performance issue was mentioned in Section 15.2.3, page 752, already: You should include

only those headers that are necessary to compile your code. In particular, you should avoid including

<iostream> if the standard stream objects are not used.

15.14 Performance Issues 845

15.14.1 Synchronization with C’s Standard Streams

By default, the eight C++ standard streams — the four narrow character streams cin, cout, cerr,

and clog, and their wide-character counterparts — are synchronized with the corresponding files

from the C standard library: stdin, stdout, and stderr. By default, clog and wclog use the

same stream buffer as cerr and wcerr, respectively. Thus, they are also synchronized with stderr

by default, although there is no direct counterpart in the C standard library.

Depending on the implementation, this synchronization might imply some often unnecessary

overhead. For example, implementing the standard C++ streams using the standard C files inhibits

buffering in the corresponding stream buffers. However, the buffer in the stream buffers is necessary

for some optimizations, especially during formatted reading (see Section 15.14.2, page 845). To

allow switching to a better implementation, the static member function sync_with_stdio() is

defined for the class ios_base (Table 15.47).

Static Function Meaning

sync_with_stdio() Returns whether the standard stream objects are synchronized

with standard C streams and concurrency is supported

sync_with_stdio(false) Disables the synchronization of C++ and C streams

(has to be called before any I/O)

Table 15.47. Synchronizing Standard C++ and Standard C Streams

sync_with_stdio() takes as argument an optional Boolean value that determines whether the

synchronization with the standard C streams should be turned on. Thus, to turn the synchronization

off, you have to pass false as the argument:

std::ios::sync_with_stdio(false); // disable synchronization

Note that you have to disable the synchronization before any other I/O operation. Calling this func-

tion after any I/O has occurred results in implementation-defined behavior.

The function returns the previous value with which the function was called. If not called before,

it always returns true to reflect the default setup of the standard streams.

Note that since C++11, disabling the synchronization with the standard C streams also disables

the concurrency support, which allows you to use the standard stream object by multiple threads,

although interleaved characters are possible (see Section 4.5, page 56).

15.14.2 Buffering in Stream Buffers

Buffering I/O is important for efficiency. One reason for this is that system calls are, in general, rela-

tively expensive, and it pays to avoid them if possible. There is, however, another, more subtle reason

in C++ for doing buffering in stream buffers, at least for input: The functions for formatted I/O use

stream buffer iterators to access the streams, and operating on stream buffer iterators is slower than

operating on pointers. The difference is not that big, but it is sufficient to justify improved imple-

846 Chapter 15: Input/Output Using Stream Classes

mentations for frequently used operations, such as formatted reading of numeric values. However,

for such improvements, it is essential that stream buffers are buffered.

Thus, all I/O is done using stream buffers, which implement a mechanism for buffering. How-

ever, it is not sufficient to rely solely on this buffering, because three aspects conflict with effective

buffering:

1. It is often simpler to implement stream buffers without buffering. If the corresponding streams

are not used frequently or are used only for output, buffering is probably not that important. (For

output, the difference between stream buffer iterators and pointers is not as bad as for input; the

main problem is comparing stream buffer iterators.) However, for stream buffers that are used

extensively, buffering should definitely be implemented.

2. The flag unitbuf causes output streams to flush the stream after each output operation. Corre-

spondingly, the manipulators flush and endl also flush the stream. For the best performance,

all three should probably be avoided. However, when writing to the console, for example, it is

probably still reasonable to flush the stream after writing complete lines. If you are stuck with a

program that makes heavy use of unitbuf, flush, or endl, you might consider using a special

stream buffer that does not use sync() to flush the stream buffer but uses another function that

is called when appropriate.

3. Tieing streams with the tie() function (see Section 15.12.1, page 819) also results in additional

flushing of streams. Thus, streams should be tied only if it is really necessary.

When implementing new stream buffers, it may be reasonable to implement them without buffering

first. Then, if the stream buffer is identified as a bottleneck, it is still possible to implement buffering

without affecting anything in the remainder of the application.

15.14.3 Using Stream Buffers Directly

All member functions of the class basic_istream and basic_ostream that read or write charac-

ters operate according to the same schema: First, a corresponding sentry object is constructed, and

then the operation is performed. The construction of the sentry object results in flushing of poten-

tially tied objects, skipping of whitespace for input, and such implementation-specific operations as

locking in multithreaded environments (see Section 15.5.4, page 772).

For unformatted I/O, most of the operations are normally useless anyway. Only locking oper-

ation might be useful if the streams are used in multithreaded environments. Thus, when doing

unformatted I/O, it may be better to use stream buffers directly.

To support this behavior, you can use operators << and >> with stream buffers as follows:

• By passing a pointer to a stream buffer to operator <<, you can output all input of its device. This

is probably the fastest way to copy files by using C++ I/O streams. For example:

// io/copy1.cpp

#include <iostream>

15.14 Performance Issues 847

int main ()

{

// copy all standard input to standard output

std::cout << std::cin.rdbuf();

}

Here, rdbuf() yields the buffer of cin (see Section 15.12.2, page 820). Thus, the program

copies all standard input to standard output.

• By passing a pointer to a stream buffer to operator >>, you can read directly into a stream buffer.

For example, you could also copy all standard input to standard output in the following way:

// io/copy2.cpp

#include <iostream>

int main ()

{

// copy all standard input to standard output

std::cin >> std::noskipws >> std::cout.rdbuf();

}

Note that you have to clear the flag skipws. Otherwise, leading whitespace of the input is

skipped (see Section 15.7.7, page 789).

Even for formatted I/O, it may be reasonable to use stream buffers directly. For example, if many

numeric values are read in a loop, it is sufficient to construct just one sentry object that exists

for the whole time the loop is executed. Then, within the loop, whitespace is skipped manually —

using the ws manipulator would also construct a sentry object — and then the facet num_get (see

Section 16.4.1, page 873) is used for reading the numeric values directly.

Note that a stream buffer has no error state of its own. It also has no knowledge of the input or

output stream that might connect to it. So, calling

// copy contents of in to out

out << in.rdbuf();

can’t change the error state of in due to a failure or end-of-file.

This page intentionally left blank

Chapter 16

Internationalization

¨

As the global market has increased in importance, so too has internationalization, or i18n for short,1

for software development. As a consequence, the C++ standard library provides concepts to write

code for international programs. These concepts influence mainly the use of I/O and string process-

ing. This chapter describes these concepts. Many thanks to Dietmar Kuhl, who is an expert on I/O

and internationalization in the C++ standard library and wrote major parts of this chapter.

The C++ standard library provides a general approach to support national conventions without

being bound to specific conventions. This goes to the extent, for example, that strings are not bound

to a specific character type to support 16-bit characters in Asia. For the internationalization of

programs, two related aspects are important:

1. Different character sets have different properties, so flexible solutions are required for such prob-

lems as what is considered to be a letter or, worse, what type to use to represent characters. For

character sets with more than 256 characters, type char is not sufficient as a representation.

2. The user of a program expects to see national or cultural conventions obeyed, such as the format-

ting of dates, monetary values, numbers, and Boolean values.

For both aspects, the C++ standard library provides related solutions.

The major approach toward internationalization is to use locale objects to represent an extensible

collection of aspects to be adapted to specific local conventions. Locales are already used in C for

this purpose. In the C++ standard, this mechanism was generalized and made more flexible. In

fact, the C++ locale mechanism can be used to address all kinds of customization, depending on

the user’s environment or preferences. For example, it can be extended to deal with measurement

systems, time zones, or paper size.

Most of the mechanisms of internationalization involve only minimal, if any, additional work for

the programmer. For example, when doing I/O with the C++ stream mechanism, numeric values are

formatted according to the rules of some locale. The only work for the programmer is to instruct the

I/O stream classes to use the user’s preferences. In addition to such automatic use, the programmer

may use locale objects directly for formatting, collation, character classification, and so on.

1 The common abbreviation for internationalization, i18n, stands for the letter i, followed by 18 characters,

followed by the letter n.

850 Chapter 16: Internationalization

Strings and streams use another concept for internationalization: character traits. They define

fundamental properties and operations that differ for different character sets, such as the value of

“end-of-file” as well as functions to compare, assign, and copy strings.

Recent Changes with C++11

C++98 specified most features of the localization library. Here is a list of the most important features

added with C++11:

• For locales and facets, you can pass a std::string now, not only a const char* (see Sec-

tion 16.2.1, page 863).

• A few new manipulators were introduced: get_money(), put_money(), get_time(), and

put_time() (see Section 16.4.3, page 890, and Section 16.4.2, page 882).

• The time_get<> facet now provides a member function get() for a complete formatting string

(see Section 16.4.3, page 887).

• The facets for numeric I/O now also support long long and unsigned long long.

• The new character class mask value blank and the corresponding convenience function

isblank() were introduced (see Section 16.4.4, page 894, and Section 16.4.4, page 895).

• Character traits are now also provided for types char16_t and char32_t (see Section 16.1.4,

page 853).

• The new classes wstring_convert and wbuffer_convert support additional conversions

between different character sets (see Section 16.4.4, page 901, and Section 16.4.4, page 903).

16.1 Character Encodings and Character Sets

At the beginning of the age of computer science the character set of computers was limited to the

characters of the English alphabet. Today in the area of globalization, there are character set stan-

dards of up to 32 bits, with more than 1 million different character values.2 As a consequence, there

are different standards and approaches to deal with characters in different countries and cultures.

16.1.1 Multibyte and Wide-Character Text

Two different approaches are common to address character sets that have more than 256 characters:

multibyte representation and wide-character representation:

1. With multibyte representation, the number of bytes used for a character is variable. A 1-byte

character, such as an ISO-Latin-1 character, can be followed by a 3-byte character, such as a

Japanese ideogram.

2. With wide-character representation, the number of bytes used to represent a character is always

the same, independent of the character being represented. Typical representations use 2 or 4

2 Current 32-bit character sets use the values up to 0x10FFFF, which are 1,114,111 values.

16.1 Character Encodings and Character Sets 851

bytes. Conceptually, this does not differ from representations that use just 1 byte for locales

where ISO-Latin-1 or even ASCII is sufficient.

Multibyte representation is more compact than wide-character representation. Thus, the multibyte

representation is normally used to store data outside of programs. Conversely, it is much easier to

process characters of fixed size, so the wide-character representation is usually used inside programs.

In a multibyte string, the same byte may represent a character or even just a part of the character.

During iteration through a multibyte string, each byte is interpreted according to a current “shift

state.” Depending on the value of the byte and the current shift state, a byte may represent a certain

character or a change of the current shift state. A multibyte string always starts in a defined initial

shift state. For example, in the initial shift state, the bytes may represent ISO-Latin-1 characters until

an escape character is encountered. The character following the escape character identifies the new

shift state. For example, that character may switch to a shift state in which the bytes are interpreted

as Arabic characters until the next escape character is encountered.

16.1.2 Different Character Sets

The most important character sets are:

• US-ASCII, a 7-bit character set standardized since 1963 for teleprinters and other devices, so

that the first 16 values are “nonprintable characters,” such as carriage-return, horizontal tab,

backspace, or a bell. This character set serves as base for all other character sets, and usually the

values between 0x20 and 0x7F have the same characters in all other character sets.

• ISO-Latin-1 or ISO-8859-1 (see [ISOLatin1]), an 8-bit character set, standardized since 1987

to provide all characters of the “Western Europe” languages. Also, this character set serves as

base for all other character sets, and usually the values between 0x20 and 0x7F and from 0xA0

to 0xFF have the same characters in all other character sets.

• ISO-Latin-9 or ISO-8859-15 (see [ISOLatin9]), an 8-bit character set, standardized since 1999

to provide an improved version of all characters of the “Western Europe” languages by replacing

some less common symbols with the euro sign and other special characters.

• UCS-2, a 16-bit fixed-sized character set, providing the 65,536 most important characters of the

Universal Character Set and Unicode standards.

• UTF-8 (see [UTF8]), a multibyte character-set using between one and four octets of 8 bits to

represent all characters of the Universal Character Set and Unicode standards. It is widely used

in the world of the World Wide Web.

• UTF-16, a multibyte character-set using between one and two code units of 16 bits to represent

all characters of the Universal Character Set and Unicode standards.

• UCS-4 or UTF-32, a 32-bit fixed-sized character set, providing all standardized characters of the

Universal Character Set and Unicode standards.

Note that UTF-16 and UTF-32 might have a byte order mark (BOM) at the beginning of the whole

character sequence to mark whether big-endian (default) or little-endian byte order is used. Alter-

natively, you can explicitly specify UTF-16BE, UTF-16LE, UTF-32BE, or UTF-32LE.

852 Chapter 16: Internationalization

8-Bit ISO-8859-15

7-Bit ASCII

UTF-8

8-Bit ISO-8859-1

8-Bit Windows-1252

31 20 AC 20 C3 A4 6A 20 E2 2B 6E 20 82

UTF-16 / USC-2

20 E4 20 6A 20 A4 2B 31 6E 20

20 n.a. 20 6A 20 n.a. 2B 31 6E 20

20 E4 20 6A 20 n.a. 2B 31 6E 20

20 E4 20 6A 20 80 2B 31 6E 20

00000020 000000E4 0000006A 0000006E

€ + ä j n 1

ä j n

0020 00E4 0020 006A 0020 20AC 002B 0031 006E 0020

UTF-32 / USC-4 ... 00000020

Figure 16.1. Hexadecimal Character Codes of Different Character Sets

Figure 16.1 shows the different hexadecimal encodings of an example character sequence, using

ordinary ASCII characters, the German umlaut ä, and the euro symbole. Here, UTF-16 and UTF-32

use no byte order marks. A byte order mark would have the value 0xFEFF.

Note that UTF-16 and UCS-2 almost match for the characters up to the value 0xFFFF. Only for

very special characters not available in UCS-2, UTF-16 uses two code units of 16 bits given that

UCS-2 is a multibyte character set.

16.1.3 Dealing with Character Sets in C++

C++ provides different character types to deal with these character sets:

• char can be used for all character sets up to 8 bits, such as US-ASCII, ISO-Latin-1, and ISO-

Latin-9. In addition, it can be used for octets of UTF-8.

• char16_t (provided since C++11) can be used for UCS-2 and as code unit for UTF-16.

• char32_t (provided since C++11) can be used for UCS-4/UTF-32.

• wchar_t is the type for the values of the largest extended character set among all supported

locales. Thus, it is usually equivalent to char16_t or char32_t.

All these types are keywords, so it is possible to overload functions with all these types. Note,

however, that the support of char16_t and char32_t is limited. Although character traits provide

the ability to deal with Unicode strings, no overloads for these types for I/O are provided.

16.1 Character Encodings and Character Sets 853

Note that since C++11, you can specify string literals using different character encodings (see

Section 3.1.6, page 24, for details).

To support character and code conversions, the C++ standard library provides the following

features:

• To convert strings into wstrings and vice versa, you can use the member functions widen()

and narrow() of the ctype<> facet (see Section 16.4.4, page 891). Note that they also can be

used to convert characters of the native character set into characters of a locale’s character set,

both using the character type char.

• To convert multibyte sequences into wstrings and vice versa, you can use the class template

wstring_convert<> and the corresponding codecvt<> facets (see Section 16.4.4, page 901).

• Class codecvt<> (see Section 16.4.4, page 897) is also used by class basic_filebuf<> (see

Section 15.9.1, page 791) to convert between internal and external representations when reading

or writing files.

• To read or write multibyte character sequences, you can use class wbuffer_convert<> and the

corresponding codecvt<> facets (see Section 16.4.4, page 903).

16.1.4 Character Traits

The different representations of character sets imply variations that are relevant for the processing

of strings and I/O. For example, the value used to represent “end-of-file” or the details of comparing

characters may differ for representations.

The string and stream classes are intended to be instantiated with built-in types, especially with

char and wchar_t, and, since C++11, maybe with char16_t and char32_t. The interface of

built-in types cannot be changed. Thus, the details on how to deal with aspects that depend on the

representation are factored into a separate class, a so-called traits class. Both the string and stream

classes take a traits class as a template argument. This argument defaults to the class char_traits,

parametrized with the template argument that defines the character type of the string or stream:

namespace std {

template <typename charT,

typename traits = char_traits<charT>,
typename Allocator = allocator<charT>>

class basic_string;

}

namespace std {

template <typename charT,

typename traits = char_traits<charT>>

class basic_istream;
template <typename charT,

typename traits = char_traits<charT>>

class basic_ostream;
...

}

854 Chapter 16: Internationalization

The character traits have type char_traits<>. This type is defined in <string> and is parame-

trized on the specific character type:

namespace std {

template <typename charT>

struct char_traits {

...

};

}

The traits classes define all fundamental properties of the character type and the corresponding op-

erations necessary for the implementation of strings and streams as static components. Table 16.1

lists the members of char_traits.

Expression Meaning

char_type The character type (the template argument for char_traits)

int_type A type large enough to represent an additional, otherwise unused

value for end-of-file

pos_type A type used to represent positions in streams

off_type A type used to represent offsets between positions in streams

state_type A type used to represent the current state in multibyte streams

assign(c1,c2) Assigns character c2 to c1

eq(c1,c2) Returns whether the characters c1 and c2 are equal

lt(c1,c2) Returns whether character c1 is less than character c2

length(s) Returns the length of the string s

compare(s1,s2,n) Compares up to n characters of strings s1 and s2

copy(s1,s2,n) Copies n characters of string s2 to string s1

move(s1,s2,n) Copies n characters of string s2 to string s1, where s1 and s2 may

overlap

assign(s,n,c) Assigns the character c to n characters of string s

find(s,n,c) Returns a pointer to the first character in string s that is equal to c or

nullptr if no such character is among the first n characters

eof() Returns the value of end-of-file

to_int_type(c) Converts the character c into the corresponding representation as

int_type

to_char_type(i) Converts the representation i as int_type to a character (the result

of converting EOF is undefined)

not_eof(i) Returns the value i unless i is the value for EOF; in this case, an

implementation-dependent value different from EOF is returned

eq_int_type(i1,i2) Tests the equality of the two characters i1 and i2 represented as

int_type (the characters may be EOF)

Table 16.1. Character Traits Members

16.1 Character Encodings and Character Sets 855

The functions that process strings or character sequences are present for optimization only. They

could also be implemented by using the functions that process single characters. For example,

copy() can be implemented using assign(). However, there might be more efficient implementa-

tions when dealing with strings.

Note that counts used in the functions are exact counts, not maximum counts. That is, string-

termination characters within these sequences are ignored.

The last group of functions concerns the special processing of the character that represents end-

of-file (EOF). This character extends the character set by an artificial character to indicate special

processing. For some representations, the character type may be insufficient to accommodate this

special character because it has to have a value that differs from the values of all “normal” char-

acters of the character set. C established the convention to return a character as int instead of

as char from functions reading characters. This technique was extended in C++. The charac-

ter traits define char_type as the type to represent all characters and int_type as the type to

represent all characters plus EOF. The functions to_char_type(), to_int_type(), not_eof(),

and eq_int_type() define the corresponding conversions and comparisons. It is possible that

char_type and int_type are identical for some character traits. This can be the case if not all

values of char_type are necessary to represent characters so that a spare value can be used for

end-of-file.

pos_type and off_type are used to define file positions and offsets, respectively (see Sec-

tion 15.9.4, page 799, for details).

The C++ standard library provides specializations of char_traits<> for types char and

wchar_t and, since C++11, for char16_t and char32_t:

namespace std {

template<> struct char_traits<char>;

template<> struct char_traits<wchar_t>;

template<> struct char_traits<char16_t>;

template<> struct char_traits<char32>;

}

The specialization for char is usually implemented by using the global string functions of C that are

defined in <cstring> or <string.h>. An implementation might look as follows:

namespace std {

template<> struct char_traits<char> {

// type definitions:

typedef char char_type;

typedef int int_type;

typedef streampos pos_type;

typedef streamoff off_type;

typedef mbstate_t state_type;

// functions:

static void assign(char& c1, const char& c2) {

c1 = c2;

}

856 Chapter 16: Internationalization

static bool eq(const char& c1, const char& c2) {

return c1 == c2;

}

static bool lt(const char& c1, const char& c2) {

return c1 < c2;

}

static size_t length(const char* s) {

return strlen(s);

}

static int compare(const char* s1, const char* s2, size_t n) {

return memcmp(s1,s2,n);

}

static char* copy(char* s1, const char* s2, size_t n) {

return (char*)memcpy(s1,s2,n);

}

static char* move(char* s1, const char* s2, size_t n) {

return (char*)memmove(s1,s2,n);

}

static char* assign(char* s, size_t n, char c) {

return (char*)memset(s,c,n);

}

static const char* find(const char* s, size_t n,

const char& c) {

return (const char*)memchr(s,c,n);

}

static int eof() {

return EOF;

}

static int to_int_type(const char& c) {

return (int)(unsigned char)c;

}

static char to_char_type(const int& i) {

return (char)i;

}

static int not_eof(const int& i) {

return i!=EOF ? i : !EOF;

}

static bool eq_int_type(const int& i1, const int& i2) {

return i1 == i2;

}

};

}

16.2 The Concept of Locales 857

See Section 13.2.15, page 689, for the implementation of a user-defined traits class that lets strings

behave in a case-insensitive manner.

16.1.5 Internationalization of Special Characters

One issue with character encodings remains: How are special characters, such as the newline or the

string termination character, internationalized? The class basic_ios<> has members widen() and

narrow() that can be used for this purpose. Thus, the newline character in an encoding appropriate

for the stream strm can be written as follows:

strm.widen(’\n’) // internationalized newline character

The string-termination character in the same encoding can be created like this:

strm.widen(’\0’) // internationalized string-termination character

See the implementation of the endl manipulator in Section 15.6.2, page 777, for an example use.

The functions widen() and narrow() use a locale object: more precisely, the ctype<> facet of

this object. This facet can be used to convert all characters between char and some other character

representations. It is described in Section 16.4.4, page 891. For example, the following expression

converts the character c of type char into an object of type charType by using the locale object

loc:

std::use_facet<std::ctype<charType>>(loc).widen(c)

The details of the use of locales and their facets are described in the following sections.

16.2 The Concept of Locales

A common approach to internationalization is to use environments, called locales, to encapsulate

national or cultural conventions. The C community uses this approach. Thus, in the context of

internationalization, a locale is a collection of parameters and functions used to support national or

cultural conventions. According to X/Open conventions,3 the environment variable LANG is used to

define the locale to be used. Depending on this locale, different formats for floating-point numbers,

dates, monetary values, and so on, are used.

The format of the string defining a locale is normally this:

language[_area[.code]][@modifier]

where

• language represents the language, such as English or German. It is usually a string of two lower-

case letters, such as en or de.

• area is the area, country, or culture where this language is used. It is usually a string of two

uppercase letters, such as US or DE.

3 POSIX and X/Open are standards for operating system interfaces.

858 Chapter 16: Internationalization

• code defines the character encoding to be used. This, for example, is important in Asia, where

different character encodings are used to represent the same character set. Examples are: utf8,

ISO-8859-1, eucJP.

• modifier is allowed on some platforms to specify additional modifications, such as @euro for

using the euro symbol or @phone for sorting according to the telephone directory.

Table 16.2 presents a selection of typical language strings, especially on POSIX systems. However,

note that these strings are not portable. In fact, multiple standards are involved and proprietary values

are used. For example, to use a German locale with an ISO-Latin1-like character set including the

euro symbol, you might have to specify de_DE.ISO-8859-15 or de_DE@euro or deu_deu.1252

or deu_germany or just german. (Note that the euro symbol might have different integral values

because different character sets are used.) The following references might help:

• For the language, ISO639 (see [ISO639:LangCodes]) defines two-letter acronyms, such as en

or de, usually used by POSIX environments, and three-letter acronyms, such as eng and deu,

usually supported by Windows platforms.

• For the area, ISO3166 (see [ISO3166:CodeTab]) defines two-letter acronyms, such as US or DE,

usually used by POSIX environments. Note that Windows uses different codes here.

• See [VisualC++Locales] for the language, area, and code on Windows platforms, which use

slightly different character sets.

For programs, that these names are not standardized is normally no problem because the locale

information usually is provided by the user in some form. It is common that programs simply read

environment variables or some similar database to determine which locales to use. Thus, the burden

of finding the correct locale names is put on the users. Only if the program always uses a special

locale does the name need to be hard-coded in the program. Normally, for this case, the C locale is

sufficient, and is guaranteed to be supported by all implementations and to have the name C.

The next section presents the use of different locales in C++ programs. In particular, it introduces

locale facets, which are used to deal with specific formatting details.

C also provides an approach to handle the problem of character sets with more than 256 char-

acters. This approach is to first use the character types wchar_t, a type definition for one of the

integral types with language support for wide-character constants and wide-character string literals.

However, apart from this, only functions to convert between wide characters and narrow charac-

ters are supported. This approach was also incorporated into C++ with the character type wchar_t,

which is, unlike the C approach, a distinct type in C++. However, C++ provides more library support

than C, because everything available for char is also available for wchar_t, and any other type may

be used as a character type.

Since C++11, types char16_t and char32_t also are supported. However, this is not done

throughout the library. For example, there are no predefined I/O stream objects for these types, as

wcout is provided in correspondence to cout.

16.2.1 Using Locales

Using translations of textual messages is normally not sufficient for true internationalization. For

example, different conventions for numeric, monetary, or date formatting also have to be used. In

16.2 The Concept of Locales 859

Locale Meaning

C Default: ANSI-C conventions (English, 7 bit)

de_DE German in Germany

de_DE.ISO-8859-1 German in Germany with ISO-Latin-1 encoding

de_DE.utf8 German in Germany with UTF-8 encoding

de_AT German in Austria

de_CH German in Switzerland

en_US English in the United States

en_GB English in Great Britain

en_AU English in Australia

en_CA English in Canada

fr_FR French in France

fr_CH French in Switzerland

fr_CA French in Canada

ja_JP.jis Japanese in Japan with Japanese Industrial Standard (JIS) encoding

ja_JP.sjis Japanese in Japan with Shift JIS encoding

ja_JP.ujis Japanese in Japan with UNIXized JIS encoding

ja_JP.EUC Japanese in Japan with Extended UNIX Code encoding

ko_KR Korean in Korea

zh_CN Chinese in China

zh_TW Chinese in Taiwan

lt_LN.bit7 ISO-Latin, 7 bit

lt_LN.bit8 ISO-Latin, 8 bit

POSIX POSIX conventions (English, 7 bit)

Table 16.2. Selection of Locale Names

addition, functions manipulating letters should depend on character encoding to ensure the correct

handling of all characters that are letters in a given language.

According to the POSIX and X/Open standards, it is already possible in C programs to set a

locale by using the function setlocale(). Changing the locale influences the results of character

classification and manipulation functions, such as isupper() and toupper(), and the I/O func-

tions, such as printf().

However, the C approach has several limitations. Because the locale is a global property, using

more than one locale at the same time — for example, when reading floating-point numbers in

English and writing them in German — is either not possible or is possible only with a relatively

large effort. Also, locales cannot be extended. They provide only the facilities the implementation

chooses to provide. If something the C locales do not provide must also be adapted to national

conventions, a different mechanism has to be used to do this. Finally, it is not possible to define new

locales to support special cultural conventions.

The C++ standard library addresses all these problems with an object-oriented approach. First,

the details of a locale are encapsulated in an object of type locale. Doing this immediately provides

the possibility of using multiple locales at the same time. Operations that depend on locales are

860 Chapter 16: Internationalization

configured to use a corresponding locale object. For example, a locale object can be installed for

each I/O stream, which is then used by the different member functions to adapt to the corresponding

conventions. This is demonstrated by the following example:

// i18n/loc1.cpp

#include <iostream>

#include <locale>

#include <exception>

#include <cstdlib>

using namespace std;

int main()

{

try {

// use classic C locale to read data from standard input

cin.imbue(locale::classic());

// use a German locale to write data to standard output

// - use different locale names for Windows and POSIX

#ifdef _MSC_VER

cout.imbue(locale("deu_deu.1252"));

#else

cout.imbue(locale("de_DE"));

#endif

// read and output floating-point values in a loop

cout << "input floating-point values (classic notation): " << endl;

double value;

while (cin >> value) {

cout << value << endl;

}

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

The first imbue() statement assigns the “classic” C locale to the standard input channel:

cin.imbue(locale::classic()); // use classic C locale

For the classic C locale, formatting of numbers and dates, character classification, and so on, is

handled as it is in original C without any locales. The following expression obtains a corresponding

object of class locale:

16.2 The Concept of Locales 861

std::locale::classic()

Using the following expression instead would yield the same result:

std::locale("C")

This last expression constructs a locale object from a given name. The name "C" is a special name

and is the only one a C++ implementation is required to support. There is no requirement to support

any other locale, although it is assumed that C++ implementations also support other locales.

Alternatively, you could use the default constructor of class locale, which initializes a locale

according to the current global locale of the program, which by default is also the “classic” C locale:

cin.imbue(locale()); // use global locale (classic C locale by default)

Or you could use an empty string as locale name, which means that the “native” locale according to

the environment of the program is used:

cin.imbue(locale("")); // use native locale according to the environment

The next imbue() statements assign a German locale to the standard output channel using de_DE in

a POSIX and deu_deu.1252 in a Windows environment:4

#ifdef _MSC_VER

cout.imbue(locale("deu_deu.1252"));

#else

cout.imbue(locale("de_DE"));

#endif

This is, of course, successful only if the system supports this locale. If the name used to construct

a locale object is unknown to the implementation, an exception of type runtime_error is thrown.

For this reason, this call is surrounded by a try-catch clause.

If everything was successful, input is read according to the classic C conventions, and output is

written according to the German conventions. The loop thus reads floating-point values in the classic

English format:

47.11

and prints them using the German format:

47,11

(Yes, the Germans really use a comma as a “decimal point.”)

Normally, a program does not predefine a specific locale except when writing and reading data

in a fixed format. Instead, the locale is determined using the environment variable LANG. Another

possibility is to read the name of the locale to be used. The following program demonstrates this:

// i18n/loc2.cpp

#include <iostream>

#include <locale>

#include <string>

4 “de” and “deu” stand for “Deutschland,” the German name of Germany.

862 Chapter 16: Internationalization

#include <cstdlib>

#include <exception>

using namespace std;

int main()

{

try {

// create the default locale from the user’s environment

locale langLocale("");

// and assign it to the standard output channel

cout.imbue(langLocale);

// process the name of the locale to find out whether German is used

cout << langLocale.name() << endl;

bool isGerman = (langLocale.name().substr(0,2) == "de" ||

langLocale.name().substr(0,3) == "ger" ||

langLocale.name().substr(0,3) == "Ger");

// read locale for the input

cout << (isGerman ? "Sprachumgebung fuer Eingaben: "

: "Locale for input: ") << endl;

string s;

cin >> s;

if (!cin) {

if (isGerman) {

cerr << "FEHLER beim Einlesen der Sprachumgebung"

<< endl;

}

else {

cerr << "ERROR while reading the locale" << endl;

}

return EXIT_FAILURE;

}

locale cinLocale(s); // create locale by string (since C++11)

// and assign it to the standard input channel

cin.imbue(cinLocale);

// read and output floating-point values in a loop

cout << (isGerman ? "Gleitkommawerte: "

: "Floating-point values: ") << endl;

double value;

16.2 The Concept of Locales 863

while (cin >> value) {

cout << value << endl;

}

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

In this example, the following statement creates an object of the class locale:

locale langLocale("");

Passing an empty string as the name of the locale has a special meaning: The “native” locale from

the user’s environment is used, which is often determined by the environment variable LANG. This

locale is assigned to the standard input stream with the statement

cout.imbue(langLocale);

The following expression is used to retrieve the name of the default locale, which is returned as an

object of type string (see Chapter 13):

langLocale.name()

The following statements construct a locale from a name read from standard input:

string s;

cin >> s;

...

locale cinLocale(s); // create locale by string (since C++11)

To do this, a word is read from the standard input and used as the constructor’s argument. Note that

before C++11, the locale constructor accepted only type const char*, so before C++11, you had

to write:

locale cinLocale(s.c_str()); // create locale by string before C++11

If the read fails, the ios_base::failbit is set in the input stream, which is checked and handled

in this program:

if (!cin) {

if (isGerman) {

cerr << "FEHLER beim Einlesen der Sprachumgebung"

<< endl;

}

else {

cerr << "ERROR while reading the locale" << endl;

}

return EXIT_FAILURE;

}

864 Chapter 16: Internationalization

Again, if the string is not a valid value for the construction of a locale, a runtime_error exception

is thrown.

If a program wants to honor local conventions, it should use corresponding locale objects. The

static member function global() of the class std::locale can be used to install a global locale

object. This object is used as the default value for functions that take an optional locale object

as an argument. If the locale object set with the global() function has a name, the C functions

dealing with locales react correspondingly. If the locale set has no name, the consequences for the C

functions depend on the implementation.

Here is an example of how to set the global locale object depending on the environment in which

the program is running:

// create a locale object depending on the program’s environment and

// set it as the global object

std::locale::global(std::locale(""));

Among other things, this arranges for the corresponding registration for the C functions to be exe-

cuted. That is, the C functions are influenced as if the following call were made:

std::setlocale(LC_ALL,"")

However, setting the global locale does not replace locales already stored in objects. It modifies the

locale object copied only when a locale is created with a default constructor. For example, the stream

objects store locale objects that are not replaced by a call to locale::global(). If you want an

existing stream to use a specific locale, you have to tell the stream to use this locale by using the

imbue() function.

The global locale is used if a locale object is created with the default constructor. In this case, the

new locale behaves as if it is a copy of the global locale at the time it was constructed. The following

three lines install the default locale for the standard streams:

// register global locale object for streams

std::cin.imbue(std::locale());

std::cout.imbue(std::locale());

std::cerr.imbue(std::locale());

When using locales in C++, it is important to remember that the C++ locale mechanism is coupled

only loosely to the C locale mechanism. There is only one relation to the C locale mechanism: The

global C locale is modified if a named C++ locale object is set as the global locale. In general, you

should not assume that the C and the C++ functions operate on the same locales.

16.2.2 Locale Facets

The dependencies on national conventions are separated into several aspects that are handled by

corresponding objects. An object dealing with a specific aspect of internationalization is called a

facet. A locale object is used as a container of different facets. To access an aspect of a locale, the

type of the corresponding facet is used as the index. The type of the facet is passed explicitly as a

template argument to the function template use_facet(), accessing the desired facet. For example,

the following expression accesses the facet type numpunct<> specialized for the character type char

of the locale object loc:

std::use_facet<std::numpunct<char>>(loc)

16.2 The Concept of Locales 865

Each facet type is defined by a class that defines certain services. For example, the facet type

numpunct<> provides services used with the formatting of numeric and Boolean values. For exam-

ple, the following expression returns the string used to represent true in the locale loc:

std::use_facet<std::numpunct<char>>(loc).truename()

Note that use_facet() returns a reference to an object that is valid only as long as the locale object

exists. Thus, the following statements result in undefined behavior because fac is no longer valid

after the first expression:

const numpunct<char>& fac = use_facet<numpunct<char>>(locale("de"));

cout << "true in German: " << fac.truename() << endl; // ERROR

Table 16.3 provides an overview of the facets predefined by the C++ standard library. Each facet is

associated with a category. These categories are used by some of the constructors of locales to create

new locales as the combination of other locales.

Category Facet Type Used for Page

numeric num_get<>() Numeric input 873

num_put<>() Numeric output 871

numpunct<>() Symbols used for numeric I/O 870

monetary money_get<>() Monetary input 881

money_put<>() Monetary output 879

moneypunct<>() Symbols used for monetary I/O 874

time time_get<>() Time and date input 887

time_put<>() Time and date output 884

ctype ctype<>() Character information (toupper(), isupper()) 891

codecvt<>() Conversion between different character encodings 897

collate collate<>() String collation 904

messages messages<>() Message string retrieval 905

Table 16.3. Facet Types Predefined by the C++ Standard Library

You can define your own versions of the facets to create specialized locales. The following

example demonstrates how to do so. It defines a facet using German representations of the Boolean

values:

class germanBoolNames : public std::numpunct_byname<char> {

public:

germanBoolNames (const std::string& name)

: std::numpunct_byname<char>(name) {

}

protected:

virtual std::string do_truename () const {

return "wahr";

}

866 Chapter 16: Internationalization

virtual std::string do_falsename () const {

return "falsch";

}

};

Note that before C++11, the constructor had to declare name with type const char*.

The class germanBoolNames derives from the class numpunct_byname<>, which is defined by

the C++ standard library. This class defines punctuation properties depending on the locale used

for numeric formatting. Deriving from numpunct_byname<> instead of from numpunct<> lets you

customize the members not overridden explicitly. The values returned from these members still

depend on the name used as the argument to the constructor. If the class numpunct<> had been

used as the base class, the behavior of the other functions would be fixed. However, the class

germanBoolNames overrides the two functions used to determine the textual representation of true

and false.

To use this facet in a locale, you need to create a new locale, using a special constructor of the

class std::locale. This constructor takes a locale object as its first argument and a pointer to a

facet as its second argument. The created locale is identical to the first argument except for the facet

that is passed as the second argument. This facet is installed in the newly created locale after the first

argument is copied:

std::locale loc (std::locale(""), new germanBoolNames(""));

The new expression creates a facet that is installed in the new locale. Thus, it is registered in loc

to create a variation of locale(""). Since locales are immutable, you have to create a new locale

object if you want to install a new facet to a locale. This locale object can be used like any other

locale object. For example,

std::cout.imbue(loc);

std::cout << std::boolalpha << true << std::endl;

would have the following output (see i18n/germanbool.cpp for the complete example):

wahr

You also can create a completely new facet. In this case, the function has_facet() can be used to

determine whether such a new facet is registered for a given locale object.

16.3 Locales in Detail

A C++ locale is an immutable container for facets. It is defined in the <locale> header file.

The strange thing about locales is how the objects stored in the container are accessed. A facet in

a locale is accessed using the type of the facet as the index. Because each facet exposes a different

interface and suits a different purpose, it is desirable to have the access function to locales return a

type corresponding to the index. This is exactly what can be done with a type as the index. Using

the facet’s type as an index has the additional advantage of having a type-safe interface.

Locales are immutable. This means the facets stored in a locale cannot be changed except when

locales are being assigned. Variations of locales are created by combining existing locales and facets

to create a new locale. Table 16.4 lists the constructors for locales.

16.3 Locales in Detail 867

Expression Effect

locale() Default constructor; creates a copy of the current global locale

locale("") Creates a “native” locale according to the environment

locale(name) Creates a locale from the string name

locale(loc) Copy constructor; creates a copy of locale loc

locale(loc1,loc2,cat) Creates a copy of locale loc1, with all facets from category cat

replaced with facets from locale loc2

locale(loc,name,cat) Equivalent to locale(loc,locale(name),cat)

locale(loc,fp) Creates a copy of locale loc and installs the facet to which fp

refers

loc1.combine<F >(loc2) Creates and yields a copy of locale loc1 but with the facet of type

F taken from loc2

loc1 = loc2 Assigns locale loc2 to locale loc1

Table 16.4. Constructing and Assigning Locales

Almost all constructors create a copy of another locale. Merely copying a locale is considered

to be a cheap operation, consisting of setting a pointer and increasing a reference count. Creating a

modified locale is more expensive, because a reference count for each facet stored in the locale has

to be adjusted. Although the standard makes no guarantees about such efficient behavior, it is likely

that all implementations will be rather efficient for copying locales.

Two of the constructors listed in Table 16.4 take names of locales. The names accepted are not

standardized, with the exception of the name C (see Section 16.2, page 857). Before C++11, name

had to be a C-string.

The member function combine() needs some explanation because it uses a feature that is rarely

used. It is a member function template with an explicitly specified template argument. This means

that the template argument is not deduced implicitly from an argument, because there is no argument

from which the type can be deduced. Instead, the template argument is specified explicitly (facet

type F in this case).

The two functions that access facets in a locale object use the same technique (Table 16.5). The

major difference is that these two functions are global function templates.

Expression Effect

has_facet<F>(loc) Returns true if a facet of type F is stored in locale loc

use_facet<F>(loc) Returns a reference to the facet of type F stored in locale loc

Table 16.5. Accessing Facets

The function use_facet() returns a reference to a facet. The type of this reference is the type

passed explicitly as the template argument. If the locale passed as the argument does not contain a

corresponding facet, the function throws a bad_cast exception. The function has_facet() can be

used to test whether a particular facet is present in a given locale.

868 Chapter 16: Internationalization

The remaining operations of locales are listed in Table 16.6.

Expression Effect

loc.name() Returns the name of locale loc as string

loc1 == loc2 Returns true if loc1 and loc2 are identical locales

loc1 != loc2 Returns true if loc1 and loc2 are different locales

loc(str1,str2) Returns the Boolean result of comparing strings str1 and str2 for

ordering (whether str1 is less than str2)

locale::classic() Returns locale("C")

locale::global(loc) Installs loc as the global locale and returns the previous global locale

Table 16.6. Operations of Locales

The name of a locale is maintained if the locale was constructed from a name or one or more

named locales. If a locale has no name, name() returns the string "*". Again, the standard makes

no guarantees about the construction of a name resulting from combining two locales. Two locales

are considered to be identical if one is a copy of the other or if both locales have the same name. It

is natural to consider two objects to be identical if one is a copy of the other. But what about the

naming? The idea behind this is that the name of the locale reflects the names used to construct the

named facets. For example, the locale’s name might be constructed by joining the names of the facets

in a particular order, separating the individual names by separation characters. Using this scheme,

it would possible to identify two locale objects as identical if they are constructed by combining

the same named facets into locale objects. In other words, the standard requires that two locales

consisting of the same set of named facets be considered identical. Thus, the names will probably

be constructed carefully to support this notion of equality.

The parentheses operator makes it possible to use a locale object as a comparator for strings.

This operator uses the string comparison from the collate<> facet (see Section 16.4.5, page 904)

to compare the strings passed as the argument for ordering. It returns true if str1 is less than str2

according to the local object. Thus, the locale object can be used as an STL function object (see

Section 10.1, page 475) comparing strings. In fact, you can use a locale object as a sorting criterion

for STL algorithms that operate on strings. For example, a vector of strings can be sorted according

to the rules for string collation of the German locale as follows:

std::vector<std::string> v;

...

// sort strings according to the German locale

std::sort (v.begin(),v.end(), // range

locale("de_DE")); // sorting criterion

16.4 Facets in Detail 869

16.4 Facets in Detail

The contained facets are the important aspect of locales. All locales are guaranteed to contain certain

standard facets. The description of the individual facets in the following subsections explains which

instantiations of the corresponding facet are guaranteed. In addition to these facets, an implementa-

tion of the C++ standard library may provide additional facets in the locales. What is important is

that users can also install their own facets or replace standard ones.

Section 16.2.2, page 864, discussed how to install a facet in a locale. For example, the class

germanBoolNames was derived from the class numpunct_byname<char>, one of the standard

facets, and installed in a locale using the constructor, taking a locale and a facet as arguments.

But what do you need to create your own facet? Every class F that conforms to the following two

requirements can be used as a facet:

1. F derives publicly from class std::locale::facet. This base class mainly defines some mech-

anism for reference counting that is used internally by the locale objects. It also deletes the copy

constructor and the assignment operator, thereby making it unfeasible to copy or to assign facets.

2. F has a publicly accessible static member named id of type locale::id. This member is used

to look up a facet in a locale by using the facet’s type. The whole issue of using a type as the

index is to have a type-safe interface. Internally, a normal container with an integer as the index

is used to maintain the facets.

The standard facets conform not only to these requirements but also to two special implementa-

tion guidelines. Although conforming to these guidelines is not required, doing so is useful. The

guidelines are as follows:

1. All member functions are declared to be const. This is useful because use_facet() returns

a reference to a constant facet. Member functions that are not declared to be const can’t be

invoked.

2. All public functions are nonvirtual and delegate each request to a protected virtual function. The

protected function is named like the public one, with the addition of a leading do_. For example,

numpunct::truename() calls numpunct::do_truename(). This style is used to avoid hiding

member functions when overriding only one of several virtual member functions that has the

same name. For example, the class num_put has several functions named put(). In addition, it

gives the programmer of the base class the possibility of adding some extra code in the nonvirtual

functions, which is executed even if the virtual function is overridden.

The following description of the standard facets concerns only the public functions. To modify the

facet, you always have to override the corresponding protected functions. If you define functions

with the same interface as the public facet functions, they would overload them only because these

functions are not virtual.

For most standard facets, a “_byname” version is defined. This version derives from the standard

facet and is used to create an instantiation for a corresponding locale name. For example, the class

numpunct_byname is used to create the numpunct facet for a named locale. For example, a German

numpunct facet can be created like this:

std::numpunct_byname("de_DE")

870 Chapter 16: Internationalization

The _byname classes are used internally by the locale constructors that take a name as an argument.

For each of the standard facets supporting a name, the corresponding _byname class is used to

construct an instance of the facet.

16.4.1 Numeric Formatting

Numeric formatting converts between the internal representation of numbers and the correspond-

ing textual representations. The iostream operators delegate the conversion to the facets of the

locale::numeric category. This category is formed by three facets:

1. numpunct, which handles punctuation symbols used for numeric formatting and parsing

2. num_put, which handles numeric formatting

3. num_get, which handles numeric parsing

In short, the facet num_put does the numeric formatting described for iostreams in Section 15.7,

page 779, and num_get parses the corresponding strings. Additional flexibility not directly accessi-

ble through the interface of the streams is provided by the numpunct facet.

Numeric Punctuation

The numpunct<> facet controls the symbol used as the decimal point, the insertion of optional thou-

sands separators, and the strings used for the textual representation of Boolean values. Table 16.7

lists the members of numpunct<>.

Expression Meaning

np.decimal_point() Returns the character used as the decimal point

np.thousands_sep() Returns the character used as the thousands separator

np.grouping() Returns a string describing the positions of the thousands separators

np.truename() Returns the textual representation of true

np.falsename() Returns the textual representation of false

Table 16.7. Members of the numpunct<> Facet

The numpunct<> facet takes a character type charT as the template argument. The char-

acters returned from decimal_point() and thousand_sep() are of this type, and the func-

tions truename() and falsename() return a basic_string<charT>. The two instantiations

numpunct<char> and numpunct<wchar_t> are required.

Because long numbers are hard to read without intervening characters, the standard facets for

numeric formatting and numeric parsing support thousands separators. Often, the digits representing

an integer are grouped into triples. For example, one million is written like this:

1,000,000

Unfortunately, it is not used everywhere exactly like that. For example, a period is used instead of a

comma in German. Thus, a German would write one million like this:

1.000.000

16.4 Facets in Detail 871

This difference is covered by the thousands_sep() member. But this is not sufficient, because in

some countries, digits are not put into triples. For example, people in Nepal would write

10.00.000

using even different numbers of digits in the groups. This is where the string returned from the

function grouping() comes in. The number stored at index i gives the number of digits in the ith

group, where counting starts with zero for the rightmost group. If there are fewer characters in the

string than groups, the size of the last specified group is repeated. To create unlimited groups, you

can use the value numeric_limits<char>::max() or if there is no group at all, the empty string.

Table 16.8 lists some examples of the formatting of one million. Note that the string is interpreted

as a sequence of integral values. Thus, normal digits are usually not useful (for example, the string

"2" would usually specify groups of 50 digits because the character ’2’ has the integer value 50 in

the ASCII character set).

Value As String Result

{ 0 } "" 1000000 (default)

{ 3, 0 } "\3" 1,000,000

{ 3, 2, 3, 0 } "\3\2\3" 10,00,000

{ 2, CHAR_MAX, 0 } n.a. 10000,00

Table 16.8. Examples of Numeric Punctuation of One Million

Note that decimal_point() and thousands_sep() might return ’0’ to sign no (special) de-

fined character.

Numeric Formatting

The num_put<> facet is used for textual formatting of numbers. It is a class template that takes

two template arguments: the type charT of the characters to be produced and the type OutIt of

an output iterator to the location at which the produced characters are written. The output iterator

defaults to ostreambuf_iterator<charT>. The num_put facet provides an overloaded set of

functions, all called put() and differing only in the last argument, which specifies the value to

format (see Table 16.9).

Expression Meaning

np.put(to,fs,fill,val) Writes val to to, using the format in fs and the fill character fill

Table 16.9. Members of the num_put<> Facet

The arguments put() processes are as follows:

• to is the output iterator the time is written to. put() returns a copy of this iterator with the

position immediately after the last character written. Here, you can also pass a stream, which

will be converted into a stream iterator.

• fs is a stream object of type std::ios_base that defines the formatting. It is usually a stream,

imbued by the required locale and facets.

872 Chapter 16: Internationalization

• fill is a character to use in case a filling character is needed.

• val is the value to format, overloaded for types bool, long, long long, unsigned long,

unsigned long long, double, long double, and const void*.

The following program demonstrates how to use this facet:

// i18n/numput.cpp

#include <locale>

#include <chrono>

#include <ctime>

#include <iostream>

#include <exception>

#include <cstdlib>

using namespace std;

int main ()

{

try {

// print floating-point value with the global classic locale:

locale locC;

cout.imbue(locC);

use_facet<num_put<char>>(locC).put (cout, cout, ’ ’,

1234.5678);

cout << endl;

// print floating-point value with German locale:

#ifdef _MSC_VER

locale locG("deu_deu.1252");

#else

locale locG("de_DE");

#endif

cout.imbue(locG);

use_facet<num_put<char>>(locG).put (cout, cout, ’ ’,

1234.5678);

cout << endl;

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

As you can see, you can simply pass the output stream with the corresponding locale and facets used

for formatting as first two arguments:

16.4 Facets in Detail 873

locale locC;

cout.imbue(locC);

use_facet<num_put<char>>(locC).put (cout, cout, ’ ’,

1234.5678);

On my machine, the program has the following output:

1234.57

1.234,57

As you can see, the put() statement produces different textual representations of the passed numeric

value. In fact, with the German locale, the decimal point becomes ’,’ and the thousands separator

becomes ’.’ used after each group of three digits.

The standard requires that the two instantiations num_put<char> and num_put<wchar_t> be

stored in each locale. In addition, the C++ standard library supports all instantiations that take a

character type as the first template argument and an output iterator type as the second.

Numeric Parsing

The num_get<> facet is used to parse textual representations of numbers. Corresponding to the

facet num_put, it is a template that takes two template arguments: the character type charT and an

input iterator type InIt, which defaults to istreambuf_iterator<charT>. It provides a set of

overloaded get() functions that differ only in the last argument. The num_get<> facet provides an

set of overloaded get() functions, differing only in the last argument, which specifies the type of

the value to parse (see Table 16.10).

Expression Meaning

ng.get(beg,end,fs,err,valRet) Parses the character sequence [beg,end) according to the

format in fs and the type of valRet

Table 16.10. Members of the num_get<> Facet

You can use the facet as follows (see i18n/numget.cpp for the complete example):

std::locale loc; // locale

InIt beg = ...; // beginning of input sequence

InIt end = ...; // end of input sequence

std::ios_base& fs = ...; // stream that defines input format

std::ios_base::iostate err; // state after call

T val; // value after successful call

// get numeric input facet of the loc locale

const std::num_get<charT>& ng

= std::use_facet<std::num_get<charT,InIt>>(loc);

// read value with numeric input facet

ng.get (beg, end, fs, err, val);

874 Chapter 16: Internationalization

These statements attempt to parse a numeric value corresponding to the type T from the sequence of

characters between beg and end. The format of the expected numeric value is defined by the argu-

ment fs. If the parsing fails, err is modified to contain the value ios_base::failbit. Otherwise,

ios_base::goodbit is stored in err and the parsed value in val. The value of val is modified

only if the parsing is successful. get() returns the second parameter (end) if the sequence was used

completely. Otherwise, it returns an iterator pointing to the first character that could not be parsed

as part of the numeric value.

The num_get<> facet supports functions to read objects of the types bool, long, unsigned

short, unsigned int, unsigned long, float, double, long double, and void*. There are

some types for which there is no corresponding function in the num_put facet; for example,

unsigned short. The reason is that writing a value of type unsigned short produces the same

result as writing a value of type unsigned short promoted to an unsigned long. However, read-

ing a value as type unsigned long and then converting it to unsigned short may yield a value

different from reading it as type unsigned short directly.

The standard requires that the two instantiations num_get<char> and num_get<wchar_t> be

stored in each locale. In addition, the C++ standard library supports all instantiations that take a

character type as the first template argument and an input iterator type as the second.

16.4.2 Monetary Formatting

The category monetary consists of the facets moneypunct, money_get, and money_put. The

moneypunct<> facet defines the format of monetary values. The other two facets use this informa-

tion to format or to parse a monetary value.

Monetary Punctuation

How monetary values are printed depends on the context. The formats used in various cultural

communities differ widely. Examples of the varying details are the placement of the currency symbol

(if present at all), the notation for negative or positive values, the use of national or international

currency symbols, and the use of thousands separators. To provide the necessary flexibility, the

details of the format are factored into the facet moneypunct.

The moneypunct<> facet is a class template that takes as arguments a character type charT

and a Boolean value that defaults to false. The Boolean value indicates whether local (false) or

international (true) currency symbols are to be used. Table 16.11 lists the members of the facet

moneypunct<>.

The following program demonstrates how these values might differ for various locales:

// i18n/moneypunct.cpp

#include <string>

#include <iostream>

#include <locale>

#include <exception>

#include <cstdlib>

16.4 Facets in Detail 875

Expression Meaning

mp.decimal_point() Returns a character to be used as the decimal point

mp.thousands_sep() Returns a character to be used as the thousands separator

mp.grouping() Returns a string specifying the placement of the thousands separators

mp.curr_symbol() Returns a string with the currency symbol

mp.positive_sign() Returns a string with the positive sign

mp.negative_sign() Returns a string with the negative sign

mp.frac_digits() Returns the number of fractional digits

mp.pos_format() Returns the format to be used for non-negative values

mp.neg_format() Returns the format to be used for negative values

Table 16.11. Members of the moneypunct<> Facet

using namespace std;

// output operator for pos_format() and neg_format():

ostream& operator<< (ostream& strm, moneypunct<char>::pattern p)

{

for (int i=0; i<4; ++i) {

auto f = p.field[i];

strm << (f==money_base::none ? "none" :

f==money_base::space ? "space" :

f==money_base::symbol ? "symbol" :

f==money_base::sign ? "sign" :

f==money_base::value ? "value" :

"???") << " ";

}

return strm;

}

template <bool intl>

void printMoneyPunct (const string& localeName)

{

locale loc(localeName);

const moneypunct<char,intl>& mp

= use_facet<moneypunct<char,intl>>(loc);

cout << "moneypunct in locale \"" << loc.name() << "\":" << endl;

cout << " decimal_point: " << (mp.decimal_point()!=’\0’ ?

mp.decimal_point() : ’ ’) << endl;

cout << " thousands_sep: " << (mp.thousands_sep()!=’\0’ ?

mp.thousands_sep() : ’ ’) << endl;

cout << " grouping: ";

876 Chapter 16: Internationalization

for (int i=0; i<mp.grouping().size(); ++i) {

cout << static_cast<int>(mp.grouping()[i]) << ’ ’;

}

cout << endl;

cout << " curr_symbol: " << mp.curr_symbol() << endl;

cout << " positive_sign: " << mp.positive_sign() << endl;

cout << " negative_sign: " << mp.negative_sign() << endl;

cout << " frac_digits: " << mp.frac_digits() << endl;

cout << " pos_format: " << mp.pos_format() << endl;

cout << " neg_format: " << mp.neg_format() << endl;

}

int main ()

{

try {

printMoneyPunct<false>("C");

cout << endl;

printMoneyPunct<false>("german");

cout << endl;

printMoneyPunct<true>("german");

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

On my Windows platform, the program has the following output:

moneypunct in locale "C":

decimal_point:

thousands_sep:

grouping:

curr_symbol:

positive_sign:

negative_sign: -

frac_digits: 0

pos_format: symbol sign none value

neg_format: symbol sign none value

moneypunct in locale "German_Germany.1252":

decimal_point: ,

thousands_sep: .

grouping: 3

16.4 Facets in Detail 877

curr_symbol: e

positive_sign:

negative_sign: -

frac_digits: 2

pos_format: sign value space symbol

neg_format: sign value space symbol

moneypunct in locale "German_Germany.1252":

decimal_point: ,

thousands_sep: .

grouping: 3

curr_symbol: EUR

positive_sign:

negative_sign: -

frac_digits: 2

pos_format: symbol sign none value

neg_format: symbol sign none value

As you can see, the German format changes the decimal point and the thousands separator (used to

group three digits), and, depending on the second template parameter intl, the currency symbol

is either the euro symbol or EUR. Note also that the German format differs in a way that the euro

symbol is placed after the value, whereas EUR is placed before the value with no space. See page 880

for an application of these formats.

Monetary Punctuation in Detail

The moneypunct<> facet derives from the class money_base:

namespace std {

class money_base {

public:

enum part { none, space, symbol, sign, value };

struct pattern {

char field[4];

};

}

};

Type pattern is used to store four values of type part that form a pattern describing the layout of

a monetary value. Table 16.12 lists the five possible parts that can be placed in a pattern.

The moneypunct<> facet defines two functions that return patterns: the function neg_format()

for negative values and the function pos_format() for non-negative values. In a pattern, each of the

parts sign, symbol, and value is mandatory, and one of the parts none and space has to appear.

This does not mean, however, that a sign or a currency symbol is printed. What is printed at the

positions indicated by the parts depends on the values returned from other members of the facet and

on the formatting flags passed to the functions for formatting.

878 Chapter 16: Internationalization

Value Meaning

none At this position, spaces may appear but are not required.

space At this position, at least one space is required.

sign At this position, a sign may appear.

symbol At this position, the currency symbol may appear.

value At this position, the value appears.

Table 16.12. Parts of Monetary Layout Patterns

Only the value always appears. It is placed at the position where the part value is located in the

pattern. The value has exactly frac_digits() fractional digits, with decimal_point() used as

the decimal point unless there are no fractional digits, in which case no decimal point is used.

When reading monetary values, thousands separators are allowed but not required in the input.

When present, they are checked for correct placements according to grouping(). If grouping()

is empty, no thousands separators are allowed. The character used for the thousands separator is

the one returned from thousands_sep(). The rules for the placement of the thousands separators

are identical to the rules for numeric formatting (see Section 16.4.1, page 870). When monetary

values are printed, thousands separators are always inserted according to the string returned from

grouping(). When monetary values are read, thousands separators are optional unless the grouping

string is empty. The correct placement of thousands separators is checked after all other parsing is

successful.

Note that decimal_point() and thousand_sep() might return ’\0’ to signal no (special)

defined character.

The parts space and none control the placement of spaces. The part space is used at a position

where at least one space is required. During formatting, if ios_base::internal is specified in the

format flags, fill characters are inserted at the position of the space or the none part. Of course,

filling is done only if the minimum width specified is not used with other characters. The character

used as the space character is passed as the argument to the functions for the formatting of monetary

values. If the formatted value does not contain a space, none can be placed at the last position. The

parts space and none may not appear as the first part in a pattern, and space may not be the last

part in a pattern.

Signs for monetary values may consist of more than one character. For example, in certain

contexts, parentheses around a value are used to indicate negative values. At the position where

the sign part appears in the pattern, the first character of the sign appears. All other characters of

the sign appear at the end after all other components. If the string for a sign is empty, no character

indicating the sign appears. The character that is to be used as a sign is determined with the function

positive_sign() for non-negative values and negative_sign() for negative values.

At the position of the symbol part, the currency symbol appears. The symbol is present only

if the formatting flags used during formatting or parsing have the ios_base::showbase flag set.

The string returned from the function curr_symbol() is used as the currency symbol, which is

a local symbol to be used to indicate the currency if the second template argument is false (the

default). Otherwise, an international currency symbol is used. In this example for the German

16.4 Facets in Detail 879

locale, the international symbol EUR is used. With the second template argument to moneypunct<>

being false, the euro symbol would be used instead.

Table 16.13 illustrates all this, using the value $-1234.56 as an example. Of course, this means

that the showbase flag is set, frac_digits() returns 2, and a width of 0 is always used.

Pattern Sign Result

symbol none sign value $1234.56

symbol none sign value - $-1234.56

symbol space sign value - $ -1234.56

symbol space sign value () $ (1234.56)

sign symbol space value () ($ 1234.56)

sign value space symbol () (1234.56 $)

symbol space value sign - $ 1234.56-

sign value space symbol - -1234.56 $

sign value none symbol - -1234.56$

Table 16.13. Examples of Using the Monetary Pattern

The standard requires that the instantiations moneypunct<char>, moneypunct<wchar_t>,

moneypunct<char,true>, and moneypunct<wchar_t,true> be stored in each locale.

Monetary Formatting

The money_put<> facet is used to format monetary values. It is a template that takes a character type

charT as the first template argument and an output iterator OutIt as the second. The output iterator

defaults to ostreambuf_iterator<charT>. The overloaded member function put() produces a

sequence of characters corresponding to the specified format (see Table 16.14).

Expression Meaning

tp.put(to,intl,fs,fill,valAsDouble) Converts the monetary value passed as long double

tp.put(to,intl,fs,fill,valAsString) Converts the monetary value passed as string

Table 16.14. Members of the money_put<> Facet

As you can see, both put() members of the money_put<> facet use the following arguments:

• to is the output iterator to which the monetary value is written. put() returns a copy of this

iterator with the position immediately after the last character written. Here, you can also pass a

stream, which will be converted into a stream iterator.

• intl is a Boolean value specifying whether the international currency symbol shall be used. Thus,

it specifies the second template parameter of the moneypunct facet that is used.

• fs is a stream object of type std::ios_base that defines the formatting. It is usually a stream,

imbued by the required locale, facets, and formatting state, such as the field width and showbase

to force the currency symbol.

880 Chapter 16: Internationalization

• fill is a character to use in case a filling character is needed.

• The last argument specifies the value that is formatted. You can either pass it as long double or

as std::string. If the argument is a string, this string may consist only of decimal digits with

an optional leading minus sign. If the first character of the string is a minus sign, the value is

formatted as a negative value. After it is determined that the value is negative, the minus sign is

discarded. The number of fractional digits in the string is determined from the member function

frac_digits() of the moneypunct facet.

The following program demonstrates how to use the money_put<> facet:

// i18n/moneyput.cpp

#include <locale>

#include <iostream>

#include <exception>

#include <cstdlib>

using namespace std;

int main ()

{

try {

// use German locale:

#ifdef _MSC_VER

locale locG("deu_deu.1252");

#else

locale locG("de_DE");

#endif

const money_put<char>& mpG = use_facet<money_put<char> >(locG);

// ensure that the money_put<> facet impacts the output and currency is written:

cout.imbue(locG);

cout << showbase;

// use double as monetary value (use local symbol)

mpG.put (cout, false, cout, ’ ’, 12345.678);

cout << endl;

// use string as monetary value (use international symbol)

mpG.put (cout, true, cout, ’ ’, "12345.678");

cout << endl;

}

catch (const std::exception& e) {

cerr << "EXCEPTION: " << e.what() << endl;

return EXIT_FAILURE;

}

}

16.4 Facets in Detail 881

The program has the following output:

123,46 e

EUR123,45

According to the format of the moneypunct facet for a German locale on my machine (see page 876),

the first output format is “sign value space symbol,” using the euro currency symbol. If the interna-

tional currency symbol shall be used, it is “symbol sign none value,” which means that there is no

space between the currency symbol and the value.

Note that the unit used for the passed monetary value passed to put() is Cent in the United States

or Eurocent in Europe. When passing a long double the fractional part of the value is rounded.

When passing a string it is truncated.

The standard requires that the two instantiations money_put<char> and money_put<wchar_t>

be stored in each locale. In addition, the C++ standard library supports all instantiations that take

char or wchar_t as the first template argument and a corresponding output iterator as the second.

Monetary Parsing

The money_get<> facet is used for parsing monetary values. It is a class template that takes a

character type charT as the first template argument and an input iterator type InIt as the second.

The second template argument defaults to istreambuf_iterator<charT>. This class defines

two member functions called get() that try to parse a character sequence and, if the parse is suc-

cessful, store the result in a value of type long double or of type basic_string<charT> (see

Table 16.15).

Expression Meaning

mg.get(beg,end,intl,fs,err,

valAsDoubleRet)

Parses the character sequence [beg,end) according to intl and

the format in fs into the long double valAsDoubleRet

mg.get(beg,end,intl,fs,err,

valAsStringRet)

Parses the character sequence [beg,end) according to intl and

the format in fs into the string valAsStringRet

Table 16.15. Members of the money_get<> Facet

The character sequence to be parsed is defined by the sequence between beg and end. The parsing

stops as soon as either all elements of the used pattern are read or an error is encountered. If an error

is encountered, the ios_base::failbit is set in err, and nothing is stored in valAsDoubleRet or

valAsStringRet. If parsing is successful, the result is stored in the value of type long double or

basic_string<> that is passed by reference as the last argument. Note that a monetary value such

as $1234.56 would yield 123456 as long double and "123456" as string. Thus, the unit is Cent

in the United States or Eurocent in Europe.

The argument intl is a Boolean value that selects a local or an international currency string. The

moneypunct<> facet defining the format of the value to be parsed is retrieved using the locale object

imbued by the argument fs. For parsing a monetary value, the pattern returned from the member

neg_format() of the moneypunct<> facet is always used. At the position of none or space, the

882 Chapter 16: Internationalization

function that is parsing a monetary value consumes all available space, unless none is the last part

in a pattern. Trailing spaces are not skipped.

The get() functions return an iterator that points to immediately after the last character con-

sumed.

You can use the facet as follows:

// get monetary input facet of the loc locale

const std::money_get<charT>& mg

= std::use_facet<std::money_get<charT>>(loc);

// read value with monetary input facet

long double val;

mg.get (beg, end, intl, fs, err, val);

The standard requires that the two instantiations money_get<char> and money_get<wchar_t> be

stored in each locale. In addition, the C++ standard library supports all instantiations that take char

or wchar_t as the first template argument and a corresponding input iterator as the second.

Using Monetary Manipulators

Since C++11, you can use manipulators, defined in <iomanip>, to read and write monetary values

directly from or to a stream. These are presented in Table 16.16.

Manipulator Effect

put_money(val) Writes a monetary value val, using the local currency symbol (calls

put(strmBeg,strmEnd,false,strm,strm.fill(),val) for the

facet)

put_money(val,intl) Writes a monetary value val, using the currency symbol according

to intl (calls put(strmBeg,strmEnd,intl,strm,strm.fill(),val)

for the facet)

get_money(valRef) Reads a monetary value into valRef, using the local currency

symbol (calls get(strmBeg,strmEnd,false,strm,err,val) for

the facet)

get_money(valRef,intl) Reads a monetary value into valRef, using the currency symbol

according to intl (calls get(strmBeg,strmEnd,intl,strm,err,val)

for the facet)

Table 16.16. Manipulators for Monetary Formatting

Again, the values can be (references to) long doubles or strings, and intl defines whether to use

a local or international currency symbol, passed as second template argument to the moneypunct

facet.

16.4 Facets in Detail 883

The following program demonstrates how to use these manipulators:

// i18n/moneymanipulator.cpp

#include <locale>

#include <iostream>

#include <iomanip>

#include <exception>

#include <cstdlib>

using namespace std;

int main ()

{

try {

// use German locale:

#ifdef _MSC_VER

locale locG("deu_deu.1252");

#else

locale locG("de_DE");

#endif

// use German locale and ensure that the currency is written:

cin.imbue(locG);

cout.imbue(locG);

cout << showbase;

// read monetary value into long double (use international symbol)

long double val;

cout << "monetary value: ";

cin >> get_money(val,true);

if (cin) {

// write monetary value (use local symbol)

cout << put_money(val,false) << endl;

}

else {

cerr << "invalid format" << endl;

}

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

884 Chapter 16: Internationalization

If I input

EUR 1234,567

or just

1234,567

the output would be

1.234,56 e

16.4.3 Time and Date Formatting

The two facets time_get<> and time_put<> in the category time provide services for parsing and

formatting of times and dates. This is done by the member functions that operate on objects of type

tm. This type is defined in the header file <ctime>. The objects are not passed directly; rather, a

pointer to them is used as the argument.

Both facets in the time category depend heavily on the behavior of the function strftime(),

also defined in the header file <ctime>. This function uses a string with conversion specifiers to

produce a string from a tm object. Table 16.17 provides a brief summary of the conversion specifiers.

The same conversion specifiers are also used by the time_put facet.

Of course, the exact string produced by strftime() depends on the C locale in effect. The

examples in the table are given for the "C" locale.

Time and Date Formatting

The time_put<> facet is used for formatting times and dates. It is a class template that takes as

arguments a character type charT and an optional output iterator type OutIt. The latter defaults to

type ostreambuf_iterator (see Section 15.13.2, page 828).

The time_put<> facet defines two functions called put(), which are used to convert the date

information stored in an object of type tm into a sequence of characters written to an output iterator.

Table 16.18 lists the members of the facet time_put<>.

As you can see, all put() members of the time_put facet use the following first four arguments:

• to is the output iterator to which the time is written. put() returns a copy of this iterator with

the position immediately after the last character written. Here, you can also pass a stream, which

will be converted into a stream iterator.

• fs is a stream object of type std::ios_base that defines the formatting. It is usually a stream,

imbued by the required locale and facets.

• fill is a character to use in case a filling character is needed.

• val is the time value of type tm* storing the date to be formatted.

The first form of put() uses cvt to pass one of the conversion specifiers to strftime(), listed in

Table 16.17, to define the requested formatting.

The second form of put() allows you to provide an optional modifier. The meaning of the

argument mod is not defined by the standard. It is intended to be used as a modifier to the conversion

as found in several implementations of the strftime() function.

16.4 Facets in Detail 885

Specifier Meaning Example

%a Abbreviated weekday Mon

%A Full weekday Monday

%b Abbreviated month name Jul

%B Full month name July

%c Locale’s preferred date and time representation Jul 12 21:53:22 1998

%d Day of the month 12

%H Hour of the day using a 24-hour clock 21

%I Hour of the day using a 12-hour clock 9

%j Day of the year 193

%m Month as decimal number 7

%M Minutes 53

%p Morning or evening (AM or PM) PM

%S Seconds 22

%U Week number starting with the first Sunday 28

%W Week number starting with the first Monday 28

%w Weekday as a number (Sunday == 0) 0

%x Locale’s preferred date representation Jul 12 1998

%X Locale’s preferred time representation 21:53:22

%y The year without the century 98

%Y The year with the century 1998

%Z The time zone MEST

%% The literal % %

Table 16.17. Conversion Specifiers for strftime()

Expression Meaning

tp.put(to,fs,fill,val,cvt) Converts, using the conversion specifier cvt

tp.put(to,fs,fill,val,cvt,mod) Converts, using the conversion specifier cvt and modifier

mod

tp.put(to,fs,fill,val,cbeg,cend) Converts according to the format string [cbeg,cend)

Table 16.18. Members of the time_put<> Facet

The third form of put() uses the beginning and end of a character sequence [cbeg,cend) specify-

ing the required format by using the conversion specifiers to strftime(). This character sequence

guides the conversion very much like strftime(). It scans the string and writes every character

that is not part of a conversion specification to the output iterator to. If it encounters a conversion

specification introduced by the character %, it extracts an optional modifier and the conversion spec-

ifier and acts like the second form of put() for them. After that, put() continues to scan the string.

Note that this form of put() is somewhat unusual because it does not call a corresponding virtual

do_put() member function as introduced in Section 16.4, page 869. Instead, it calls the correspond-

886 Chapter 16: Internationalization

ing do_put() for the second form directly. Thus, the behavior of the third form can’t be overwritten

when deriving from time_put.

The following program demonstrates this for the default and for a German locale:

// i18n/timeput.cpp

#include <locale>

#include <chrono>

#include <ctime>

#include <iostream>

#include <exception>

#include <cstdlib>

using namespace std;

int main ()

{

try {

// query local time:

auto now = chrono::system_clock::now();

std::time_t t = chrono::system_clock::to_time_t(now);

tm* nowTM = std::localtime(&t);

// print local time with the global classic locale:

locale locC;

const time_put<char>& tpC = use_facet<time_put<char>>(locC);

// use single conversion specifier

tpC.put (cout, cout, ’ ’, nowTM, ’x’);

cout << endl;

// use format string:

string format = "%A %x %I%p\n"; // format: weekday date hour

tpC.put (cout, cout, ’ ’, nowTM,

format.c_str(), format.c_str()+format.size());

// print local time with German locale:

#ifdef _MSC_VER

locale locG("deu_deu.1252");

#else

locale locG("de_DE");

#endif

const time_put<char>& tpG = use_facet<time_put<char>>(locG);

tpG.put (cout, cout, ’ ’, nowTM, ’x’);

cout << endl;

16.4 Facets in Detail 887

tpG.put (cout, cout, ’ ’, nowTM,

format.c_str(), format.c_str()+format.size());

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

First, we query the local time and convert it into a struct tm*, using the std::system_clock

(see Section 5.7.3, page 149).5 Next, we create two locales (a default classic locale and a German

locale), create the time_put facets for them, and use these to output the current date and time.

The first call of put() uses ’x’ as conversion specifiers to strftime(), which means that the

locale’s preferred date representation is used:

tpC.put (cout, cout, ’ ’, nowTM, ’x’);

The second call of put() calls its third form, which uses the begin and end of a character sequence

specifying the output format “weekday date hour”:

string format = "%A %x %I%p\n";

tpC.put (cout, cout, ’ ’, nowTM,

format.c_str(), format.c_str()+format.size());

On my machine, the program had the following output:

09/13/11

Tuesday 09/13/11 03PM

13.09.2011

Dienstag 13.09.2011 03

As you can see by the last line, in German we have no corresponding AM or PM specifier.

The standard requires that the two instantiations time_put<char> and time_put<wchar_t>

be stored in each locale. In addition, the C++ standard library supports all instantiations that take

char or wchar_t as the first template argument and a corresponding output iterator as the second.

Time and Date Parsing

The time_get<> facet is a class template that takes a character type charT and an input iterator type

InIt as template arguments. The input iterator type defaults to istreambuf_iterator<charT>.

Table 16.19 lists the members defined for the time_get<> facet. All these members, except

date_order(), parse the string and store the results in the tm object pointed to by the argument t.

If the string could not be parsed correctly, either an error is reported (for example, by modifying the

argument err) or an unspecified value is stored. This means that a time produced by a program can

5 std::system_clock was introduced with C++11. Before C++11, you had to declare a std::time_t t and

call std::time(&t);

888 Chapter 16: Internationalization

be parsed reliably, but user input cannot. With the argument fs, other facets used during parsing are

determined. Whether other flags from fs have any influence on the parsing is not specified.

Expression Meaning

tg.get(beg,end,fs,err,t,fmtChar) Parses the character sequence [beg,end)
according to the conversion specifier fmtChar

(since C++11)

tg.get(beg,end,fs,err,t,fmtChar,mod) Parses the character sequence [beg,end)
according to the conversion specifier fmtChar

and the modifier mod (since C++11)

tg.get(beg,end,fs,err,t,fmtBeg,fmtEnd) Parses the character sequence [beg,end)
according to the character sequence

[fmtBeg,fmtEnd,()since C++11)

tg.get_time(beg,end,fs,err,t) Parses the character sequence [beg,end) as the

time produced by the X specifier for

strftime()

tg.get_date(beg,end,fs,err,t) Parses the character sequence [beg,end) as the

date produced by the x specifier for

strftime()

tg.get_weekday(beg,end,fs,err,t) Parses the character sequence [beg,end) as the

name of the weekday

tg.get_monthname(beg,end,fs,err,t) Parses the character sequence [beg,end) as the

name of the month

tg.get_year(beg,end,fs,err,t) Parses the character sequence [beg,end) as the

year

tg.date_order() Returns the date order used by the facet

Table 16.19. Members of the time_get<> Facet

All functions return an iterator that has the position immediately after the last character read. The

parsing stops if parsing is complete or if an error occurs (for example, because a string could not be

parsed as a date).

Available since C++11, get() reads the values according to the passed format, which is either

a conversion character without the leading % plus optional modifier or a format string, passed as

beginning and end of a character sequence.

Note the following:

• A function reading the name of a weekday or a month reads both abbreviated names and full

names. If the abbreviation is followed by a letter, which would be legal for a full name, the

function attempts to read the full name. If this fails, the parsing fails, even though an abbreviated

name was already parsed successfully.

• Whether a function that is parsing a year allows two-digit years is unspecified. The year that is

assumed for a two-digit year, if it is allowed, is also unspecified.

16.4 Facets in Detail 889

• date_order() returns the order in which the day, month, and year appear in a date string. This

is necessary for some dates because the order cannot be determined from the string representing a

date. For example, the first day in February in the year 2003 may be printed either as 3/2/1 or as

1/2/3. Class time_base, which is the base class of the facet time_get, defines an enumeration

called dateorder for possible date-order values. Table 16.20 lists these values.

Value Meaning

no_order No particular order (for example, a date may be in Julian format)

dmy The order is day, month, year

mdy The order is month, day, year

ymd The order is year, month, day

ydm The order is year, day, month

Table 16.20. Members of the Enumeration dateorder

The following example demonstrates how to use the time_get<> facet:

// i18n/timeget.cpp

#include <locale>

#include <ctime>

#include <iterator>

#include <iostream>

#include <string>

#include <exception>

#include <cstdlib>

using namespace std;

int main ()

{

try {

// use German locale:

#ifdef _MSC_VER

locale locG("deu_deu.1252");

#else

locale locG("de_DE.ISO-8859-1");

#endif

const time_get<char>& tgG = use_facet<time_get<char>>(locG);

// print date order of German locale:

typedef time_base TB;

time_get<char>::dateorder d = tgG.date_order();

cout << "dateorder: "

<< (d==TB::no_order||d==TB::mdy ? "mdy" :

890 Chapter 16: Internationalization

d==TB::dmy ? "dmy" :

d==TB::ymd ? "ymd" :

d==TB::ydm ? "ydm" : "unknown") << endl;

// read weekday (in German) and time (hh::mm))

cout << "<wochentag> <hh>:<mm>: ";

string format = "%A %H:%M";

struct tm val;

ios_base::iostate err = ios_base::goodbit;

tgG.get (istreambuf_iterator<char>(cin),

istreambuf_iterator<char>(),

cin, err, &val,

format.c_str(), format.c_str()+format.size());

if (err != ios_base::goodbit) {

cerr << "invalid format" << endl;

}

}

catch (const std::exception& e) {

cerr << "Exception: " << e.what() << endl;

return EXIT_FAILURE;

}

}

The program might print:

dateorder: dmy

<wochentag> <hh>:<mm>:

If I then input Dienstag 17:30, everything is fine. If I input Tuesday 17:30 or Dienstag

17:66, the program will output invalid format.

The standard requires that the two instantiations time_get<char> and time_get<wchar_t>

are stored in each locale. In addition, the C++ standard library supports all instantiations that take

char or wchar_t as the first template argument and a corresponding input iterator as the second.

Using Time Manipulators

Since C++11, you can use manipulators, defined in <iomanip>, to read and write time and date

values directly from or to a stream. The manipulators use the get() or put() member of the

corresponding facet. The manipulators are presented in Table 16.21. See Section 15.3.3, page 757,

for an example of how to use these manipulators.

16.4 Facets in Detail 891

Manipulator Effect

put_time(valPtr,fmt) Writes the date/time value valPtr of type struct tm* according to

the format fmt; calls for the facet:

put(strmBeg,strmEnd,strm,strm.fill(),val,fmtBeg,fmtEnd)

get_time(valPtr,fmt) Reads a time/date value into the struct tm* valPtr according to the

format fmt; calls for the facet:

get(strmBeg,strmEnd,strm,err,val,fmtBeg,fmtEnd)

Table 16.21. Manipulators for Time/Date Formatting

16.4.4 Character Classification and Conversion

The C++ standard library defines two facets to deal with characters: ctype<> and codecvt<>. Both

belong to the category locale::ctype. The ctype<> facet is used mainly for character classifica-

tion, such as testing whether a character is a letter. This facet also provides methods for conversion

between lowercase and uppercase letters and for conversion between char and the character type

for which the facet is instantiated. The codecvt<> facet is used to convert characters between dif-

ferent encodings and is used mainly by basic_filebuf to convert between external and internal

representations.

Character Classification

The ctype<> facet is a class template parametrized by a character type. Three kinds of functions

are provided by the class ctype<charT>:

1. Functions to convert between char and charT

2. Functions for character classification

3. Functions for conversion between uppercase and lowercase letters

Table 16.22 lists the members defined for the facet ctype.

The function is(beg,end,vec) is used to store a set of masks in an array. For each of the char-

acters in the range between beg and end, a mask with the attributes corresponding to the character

is stored in the array pointed to by vec. This is useful in order to avoid virtual function calls for the

classification of characters if many characters are to be classified.

toupper() and tolower() can be used to set a string uppercase or lowercase. For example:

std::locale loc;

std::string s;

for (char& c : s) {

c = std::use_facet<std::ctype<char>>(loc).toupper(c);

}

The function widen() can be used to convert a character of type char from the native character set

to the corresponding character in the character set used by a locale. Thus, it makes sense to widen a

character even if the result is also of type char. For the opposite direction, the function narrow()

can be used to convert a character from the character set used by the locale to a corresponding char

892 Chapter 16: Internationalization

Expression Effect

ct.is(m,c) Tests whether the character c matches the mask m

ct.is(beg,end,vec) For each character in the range between beg and end,

places a mask matched by the character in the corre-

sponding location of vec

ct.scan_is(m,beg,end) Returns a pointer to the first character in the range be-

tween beg and end that matches the mask m or end if

there is no such character

ct.scan_not(m,beg,end) Returns a pointer to the first character in the range be-

tween beg and end that does not match the mask m or

end if all characters match the mask

ct.toupper(c) Returns an uppercase letter corresponding to c if there is

such a letter; otherwise, c is returned

ct.toupper(beg,end) Converts each letter in the range between beg and end by

replacing the letter with the result of toupper()

ct.tolower(c) Returns a lowercase letter corresponding to c if there is

such a letter; otherwise, c is returned

ct.tolower(beg,end) Converts each letter in the range between beg and end by

replacing the letter with the result of tolower()

ct.widen(c) Returns the char converted into charT

ct.widen(beg,end,dest) For each character in the range between beg and end,

places the result of widen() at the corresponding loca-

tion in dest

ct.narrow(c,default) Returns the charT c converted into char, or the char

default if there is no suitable character

ct.narrow(beg,end,default,dest) For each character in the range between beg and end,

places the result of narrow() at the corresponding loca-

tion in dest

Table 16.22. Members of the ctype<> Facet

in the native character set, provided that there is such a char. For example, the following code

converts the decimal digits from char to wchar_t:

std::locale loc;

char narrow[] = "0123456789";

wchar_t wide[10];

std::use_facet<std::ctype<wchar_t>>(loc).widen(narrow, narrow+10,

wide);

Thus, the following convenience functions transform strings into wstrings and vice versa:

// i18n/wstring2string.hpp

#include <locale>

16.4 Facets in Detail 893

#include <string>

#include <vector>

// convert string to wstring

std::wstring to_wstring (const std::string& str,

const std::locale& loc = std::locale())

{

std::vector<wchar_t> buf(str.size());

std::use_facet<std::ctype<wchar_t>>(loc).widen(str.data(),

str.data()+str.size(),

buf.data());

return std::wstring(buf.data(),buf.size());

}

// convert wstring to string with ’?’ as default character

std::string to_string (const std::wstring& str,

const std::locale& loc = std::locale())

{

std::vector<char> buf(str.size());

std::use_facet<std::ctype<wchar_t>>(loc).narrow(str.data(),

str.data()+str.size(),

’?’, buf.data());

return std::string(buf.data(),buf.size());

}

You can call these functions as follows:

// i18n/wstring2string.cpp

#include <string>

#include <iostream>

#include "wstring2string.hpp"

int main()

{

std::string s = "hello, world\n";

std::wstring ws = to_wstring(s);

std::wcout << ws;

std::cout << to_string(ws);

}

Class ctype derives from the class ctype_base. This class is used only to define an enumeration

called mask. This enumeration defines values that can be combined to form a bitmask used for testing

character properties. The values defined in ctype_base are shown in Table 16.23. The functions

894 Chapter 16: Internationalization

for character classification all take a bitmask as an argument, which is formed by combinations of

the values defined in ctype_base. To create bitmasks as needed, you can use the operators for bit

manipulation (|, &, ^, and ~). A character matches this mask if it is any of the characters identified

by the mask.

Value Meaning

ctype_base::alnum Tests for letters and digits (equivalent to alpha|digit)

ctype_base::alpha Tests for letters

ctype_base::blank Tests for space or tabulator (since C++11)

ctype_base::cntrl Tests for control characters

ctype_base::digit Tests for decimal digits

ctype_base::graph Tests for punctuation characters, letters, and digits

(equivalent to alnum|punct)

ctype_base::lower Tests for lowercase letters

ctype_base::print Tests for printable characters

ctype_base::punct Tests for punctuation characters

ctype_base::space Tests for space characters

ctype_base::upper Tests for uppercase letters

ctype_base::xdigit Tests for hexadecimal digits

Table 16.23. Character Mask Values Used by ctype<>

Specialization of ctype<> for Type char

For better performance of the character classification functions, the facet ctype is specialized for

the character type char. This specialization does not delegate the functions dealing with character

classification (is(), scan_is(), and scan_not()) to corresponding virtual functions. Instead,

these functions are implemented inline using a table lookup. For this case, additional members are

provided (Table 16.24).6

Expression Effect

ctype<char>::table_size Returns the size of the table (>=256)

ctype<char>::classic_table() Returns the table for the “classic” C locale

ctype<char>(table,del=false) Creates the facet with table table

ct.table() Returns the current table of facet ct

Table 16.24. Additional Members of ctype<char>

6 Before C++11, ctype<char>::table() and ctype<char>::classic_table() were accidentally speci-

fied to be protected instead of public members.

16.4 Facets in Detail 895

Manipulating the behavior of these functions for specific locales is done with a corresponding

table of masks that is passed as a constructor argument:

// create and initialize the table

std::ctype_base::mask mytable[std::ctype<char>::table_size] = {

...

};

// use the table for the ctype<char> facet ct

std::ctype<char> ct(mytable,false);

This code constructs a ctype<char> facet that uses the table mytable to determine the character

class of a character. More precisely, the character class of the character c is determined by

mytable[static_cast<unsigned char>(c)]

The static member table_size is a constant defined by the library implementation and gives the

size of the lookup table. This size is at least 256 characters. The second optional argument to the

constructor of ctype<char> indicates whether the table should be deleted if the facet is destroyed.

If it is true, the table passed to the constructor is released by using delete[] when the facet is no

longer needed.

The member function table() is a protected member function that returns the table that is passed

as the first argument to the constructor. The static protected member function classic_table()

returns the table that is used for character classification in the classic C locale.

Global Convenience Functions for Character Classification

Convenient use of the ctype<> facets is provided by predefined global functions. Table 16.25 lists

all the global functions. Note that for regular expressions, the same character classifications are

possible (see Section 14.8, page 738).

For example, the following expression determines whether the character c is a lowercase letter

in the locale loc:

std::islower(c,loc)

It returns a corresponding value of type bool.

The following expression returns the character c converted into an uppercase letter if c is a

lowercase letter in the locale loc:

std::toupper(c,loc)

If c is not a lowercase letter, the first argument is returned unmodified.

The expression

std::islower(c,loc)

is equivalent to the following expression:

std::use_facet<std::ctype<char>>(loc).is(std::ctype_base::lower,c)

This expression calls the member function is() of the facet ctype<char>. is() determines

whether the character c fulfills any of the character properties that are passed as the bitmask in the

896 Chapter 16: Internationalization

Function Effect

isalnum(c, loc) Returns whether c is a letter or a digit

(equivalent to isalpha()||isdigit())

isalpha(c, loc) Returns whether c is a letter

isblank(c, loc) Returns whether c is a space or tabular (since C++11)

iscntrl(c, loc) Returns whether c is a control character

isdigit(c, loc) Returns whether c is a digit

isgraph(c, loc) Returns whether c is a printable, nonspace character

(equivalent to isalnum()||ispunct())

islower(c, loc) Returns whether c is a lowercase letter

isprint(c, loc) Returns whether c is a printable character (including whitespaces)

ispunct(c, loc) Returns whether c is a punctuation character (that is, it is printable

but is not a space, digit, or letter)

isspace(c, loc) Returns whether c is a space character

isupper(c, loc) Returns whether c is an uppercase letter

isxdigit(c, loc) Returns whether c is a hexadecimal digit

tolower(c, loc) Converts c from an uppercase letter into a lowercase letter

toupper(c, loc) Converts c from a lowercase letter into an uppercase letter

Table 16.25. Global Convenience Functions for Character Classification

first argument. The values for the bitmask are defined in the class ctype_base. See Section 13.2.14,

page 688, and Section 15.13.3, page 833, for examples of the use of these convenience functions.

The global convenience functions for character classification correspond to C functions that have

the same name but only the first argument. They are defined in <cctype> and <ctype.h> and

always use the current global C locale.7 Their use is even more convenient:

if (std::isdigit(c)) {

...

}

However, by using them, you can’t use different locales in the same program. Also, you can’t use a

user-defined ctype facet using the C function. See Section 13.2.14, page 684, for an example that

demonstrates how to use these C functions to convert all characters of a string to uppercase letters.

It is important to note that the C++ convenience functions should not be used in code sections

where performance is crucial. It is much faster to obtain the corresponding facet from the locale

and to use the functions on this object directly. If many characters are to be classified according to

the same locale, this can be improved even more, at least for non-char characters. The function

is(beg,end,vec) can be used to determine the masks for typical characters: This function deter-

mines for each character in the range [beg,end) a mask that describes the properties of the character.

7 This locale is identical to the global C++ locale only if the last call to locale::global() was with a named

locale and if there was no call to setlocale() since then. Otherwise, the locale used by the C functions is

different from the global C++ locale.

16.4 Facets in Detail 897

The resulting mask is stored in vec at the position corresponding to the character’s position. This

vector can then be used for fast lookup of the characters.

Character Encoding Conversion

The codecvt<> facet is used to convert between internal and external character encoding. For

example, it can be used to convert between Unicode and EUC (Extended UNIX Code), provided

that the implementation of the C++ standard library supports a corresponding facet.

This facet is used by the class basic_filebuf to convert between the internal representation and

the representation stored in a file. The class basic_filebuf<charT,traits> (see Section 15.9.1,

page 791) uses the instantiation codecvt<charT,char,typename traits::state_type> to do

so. The facet used is taken from the locale stored with basic_filebuf. This is the major application

of the codecvt facet. Only rarely is it necessary to use this facet directly.

Section 16.1, page 850, introduced some basics of character encodings. To understand codecvt,

you need to know that there are two approaches for the encoding of characters: One is character

encodings that use a fixed number of bytes for each character (wide-character representation), and

the other is character encodings that use a varying number of bytes per character (multibyte repre-

sentation).

It is also necessary to know that multibyte representations use so-called shift states for space

efficient representation of characters. The correct interpretation of a byte is possible only with the

correct shift state at this position. This in turn can be determined only by walking through the whole

sequence of multibyte characters (see Section 16.1, page 850, for more details).

The codecvt<> facet takes three template arguments:

1. The character type internT used for an internal representation

2. The type externT used to represent an external representation

3. The type stateT used to represent an intermediate state during the conversion

The intermediate state may consist of incomplete wide characters or the current shift state. The C++

standard makes no restriction about what is stored in the objects representing the state.

The internal representation always uses a representation with a fixed number of bytes per char-

acter. The two types char and wchar_t are intended mainly to be used within a program. The

external representation may be a representation that uses a fixed size or a multibyte representation.

When a multibyte representation is used, the second template argument is the type used to represent

the basic units of the multibyte encoding. Each multibyte character is stored in one or more objects

of this type. Normally, the type char is used for this.

The third argument is the type used to represent the current state of the conversion. It is nec-

essary, for example, if one of the character encodings is a multibyte encoding. In this case, the

processing of a multibyte character might be terminated because the source buffer is drained or the

destination buffer is full while one character is being processed. If this happens, the current state of

the conversion is stored in an object of this type.

As with the other facets, the standard requires support for very few conversions. Only the fol-

lowing two instantiations are supported by the C++ standard library:

1. codecvt<char,char,mbstate_t>, which converts the native character set to itself (this is a

degenerated version of the codecvt<> facet)

898 Chapter 16: Internationalization

2. codecvt<wchar_t,char,mbstate_t>, which converts between the native tiny character set

(char) and the native wide-character set (wchar_t)

The C++ standard does not specify the exact semantics of the second conversion. The only natural

thing to do, however, is to split each wchar_t into sizeof(wchar_t) objects of type char for the

conversion from wchar_t to char and to assemble a wchar_t from the same number of chars when

converting in the opposite direction. Note that this conversion is very different from the conversion

between char and wchar_t done by the widen() and narrow() member functions of the ctype

facet. The codecvt functions use the bits of multiple chars to form one wchar_t (or vice versa),

whereas the ctype functions convert a character into one encoding to the corresponding character

in another encoding (if there is such a character).

Like the ctype facet, codecvt derives from a base class used to define an enumeration type.

This class is named codecvt_base and defines an enumeration called result. The values of this

enumeration are used to indicate the results of codecvt’s members. The exact meanings of the

values depend on the member function used. Table 16.26 lists the member functions of the codecvt

facet.

Expression Meaning

cvt.in(s,fb,fe,fn,tb,te,tn) Converts external representation to internal representa-

tion

cvt.out(s,fb,fe,fn,tb,te,tn) Converts internal representation to external representa-

tion

cvt.unshift(s,tb,te,tn) Writes escape sequence to switch to initial shift state

cvt.encoding() Returns information about the external encoding

cvt.always_noconv() Returns true if no conversion will ever be done

cvt.length(s,fb,fe,max) Returns the number of externTs from the sequence be-

tween fb and fe to produce max internal characters

cvt.max_length() Returns the maximum number of externTs necessary to

produce one internT

Table 16.26. Members of the codecvt<> Facet

The function in() converts an external representation into an internal representation. The ar-

gument s is a reference to a stateT. At the beginning, this argument represents the shift state used

when the conversion is started. At the end, the final shift state is stored there. The shift state passed

in can differ from the initial state if the input buffer to be converted is not the first buffer being

converted. The arguments fb (from beginning) and fe (from end) are of type const internT* and

represent the beginning and the end of the input buffer. The arguments tb (to begin) and te (to end)

are of type externT* and represent the beginning and the end of the output buffer. The arguments

fn (from next, of type const externT*&) and tn (to next, of type internT*&) are references used

to return the end of the sequence converted in the input buffer and the output buffer, respectively.

Either buffer may reach the end before the other buffer reaches the end. The function returns a value

of type codecvt_base::result, as indicated in Table 16.27.

If ok is returned, the function made some progress. If fn == fe holds, the whole input buffer

was processed, and the sequence between tb and tn contains the result of the conversion. The char-

16.4 Facets in Detail 899

Value Meaning

ok All source characters were converted successfully

partial Not all source characters were converted, or more characters are needed

to produce a destination character

error A source character was encountered that cannot be converted

noconv No conversion was necessary

Table 16.27. Return Values of the Conversion Functions

acters in this sequence represent the characters from the input sequence, potentially with a finished

character from a previous conversion. If the argument s passed to in() was not the initial state, a

partial character from a previous conversion that was not completed could have been stored there.

If partial is returned, either the output buffer was full before the input buffer could be drained,

or the input buffer was drained when a character was not yet complete (for example, because the last

byte in the input sequence was part of an escape sequence switching between shift states). If fe==fn,

the input buffer was drained. In this case, the sequence between tb and tn contains all characters that

were converted completely, but the input sequence terminated with a partially converted character.

The necessary information to complete this character’s conversion during a subsequent conversion is

stored in the shift state s. If fe!=fn, the input buffer was not completely drained. In this case, te==tn

holds; thus, the output buffer is full. The next time the conversion is continued, it should start with

fn.

The return value noconv indicates a special situation. That is, no conversion was necessary to

convert the external representation into the internal representation. In this case, fn is set to fb, and tn

is set to tb. Nothing is stored in the destination sequence, because everything is already stored in the

input sequence.

If error is returned, a source character that could not be converted was encountered. This can

happen for several reasons. For example, the destination character set has no representation for a

corresponding character, or the input sequence ends up with an illegal shift state. The C++ standard

does not define any method that can be used to determine the cause of the error more precisely.

The function out() is equivalent to the function in() but converts in the opposite direction,

converting an internal representation to an external representation. The meanings of the arguments

and the values returned are the same; only the types of the arguments are swapped. That is, tb and te

now have the type const internT*, and fb and fe now have the type const externT*. The same

applies to fn and tn.

The function unshift() inserts characters necessary to complete a sequence when the current

state of the conversion is passed as the argument s. This normally means that a shift state is switched

to the initial switch state. Only the external representation is terminated. Thus, the arguments tb

and tf are of type externT*, and tn is of type externT&*. The sequence between tb and te defines

the output buffer in which the characters are stored. The end of the result sequence is stored in tn.

unshift() returns a value as shown in Table 16.28.

The function encoding() returns some information about the encoding of the external represen-

tation. If encoding() returns -1, the conversion is state dependent. If encoding() returns 0, the

number of externTs needed to produce an internal character is not constant. Otherwise, the number

900 Chapter 16: Internationalization

Value Meaning

ok The sequence was completed successfully

partial More characters need to be stored to complete the sequence

error The state is invalid

noconv No character was needed to complete the sequence

Table 16.28. Return Values of the Function unshift()

of externTs needed to produce an internT is returned. This information can be used to provide

appropriate buffer sizes.

The function always_noconv() returns true if the functions in() and out() never perform

a conversion. For example, the standard implementation of codecvt<char, char, mbstate_t>

does no conversion, so always_noconv() returns true for this facet. However, this holds only for

the codecvt facet from the "C" locale. Other instances of this facet may do a conversion.

The function length() returns the number of externTs from the sequence between fb and fe

necessary to produce max characters of type internT. If there are fewer than max complete internT

characters in the sequence between fb and fe, the number of externTs used to produce a maximum

number of internTs from the sequence is returned.

Standard Code Conversion Facets

Since, C++11, the C++ standard library guarantees to provide three code conversion facets in

<codecvt>, which are derived from codecvt<>:

• codecvt_utf8<> to convert between UTF-8 multibyte character sequences and UCS-2

sequences (if char16_t is used as character type) or UCS-4/UTF-32 sequences (if char32_t is

used as character type)

• codecvt_utf16<> to convert between UTF-16 multibyte character sequences and UCS-2

sequences (if char16_t is used as character type) or UCS-4/UTF-32 sequences (if char32_t is

used as character type)

• codecvt_utf8_utf16<> to convert between UTF-8 multibyte character sequences and

UTF-16 multibyte character sequences

Their first template parameter is the wide-character type used (char16_t, char32_t, or wchar_t).

The second template parameter is the maximum wide-character code allowed to convert without re-

porting an error (default: 0x10FFFF). The third template parameter is a flag of type

std::codecvt_mode enabling reading or writing byte order marks or forcing little-endian mode.

For example, the following facet allows to convert between UTF-8 and wide-characters of type

wchar_t consuming byte order marks, producing byte order marks, and using little-endian mode

for the wide characters:

std::codecvt_utf8<wchar_t,

0x10FFFF,

std::consume_header

| std::generate_header

| std::little_endian>

wchar2utf8facet;

16.4 Facets in Detail 901

The most convenient way to use these facets is provided by class std::wstring_convert<>.

Class wstring_convert<>

Since C++11, class wstring_convert<> allows convenient conversions between a wide-character

string and a multibyte string. Template parameters are:

• a code conversion facet

• the type of the wide-character type (default: wchar_t)

• the allocator of the wide-character string (default: allocator<wchar_t>)

• the allocator of the multibyte string (default: allocator<char>)

With the members to_bytes() and from_bytes() you can create multibyte sequences out of a

single character, a null-terminated sequence of characters, a corresponding string, or a range of char-

acters and vice versa (see Table 16.29). The return type of from_bytes() is a string of the corre-

sponding wide-character type (for example, wstring for wchar_t). The return type of to_bytes()

is a string containing the multibyte sequence of chars.

Member Function Meaning

wc.from_bytes(c) Returns wide string for char c

wc.from_bytes(cstr) Returns wide string for const char* cstr

wc.from_bytes(str) Returns wide string for string str

wc.from_bytes(cbeg,cend) Returns wide string for char range [cbeg,cend)

wc.to_bytes(c) Returns multibyte sequence for wide character c

wc.to_bytes(cstr) Returns multibyte sequence for const truncated* cstr

wc.to_bytes(str) Returns multibyte sequence for wide string str

wc.to_bytes(cbeg,cend) Returns multibyte sequence for wide-character range

[cbeg,cend)

Table 16.29. Members of Class wstring_convert<>

For example, the following convenience functions convert UTF-8 strings into wstrings and

vice versa:

// i18n/wstring2utf8.hpp

#include <codecvt>

#include <string>

// convert UTF-8 string to wstring

std::wstring utf8_to_wstring (const std::string& str)

{

std::wstring_convert<std::codecvt_utf8<wchar_t>> myconv;

return myconv.from_bytes(str);

}

902 Chapter 16: Internationalization

// convert wstring to UTF-8 string

std::string wstring_to_utf8 (const std::wstring& str)

{

std::wstring_convert<std::codecvt_utf8<wchar_t>> myconv;

return myconv.to_bytes(str);

}

The following program demonstrates the application of these functions, converting a string into

a wstring (using to_wstring(), introduced in Section 16.4.4, page 892) and transforming this

wstring into a multibyte string, which is written to standard output:

// i18n/wstring2utf8.cpp

#include <locale>

#include <string>

#include <iostream>

#include <exception>

#include <cstdlib>

#include "wstring2string.hpp"

#include "wstring2utf8.hpp"

int main()

{

try {

#ifdef _MSC_VER

// string with German umlaut and euro symbol (in Windows encoding):

std::string s = "nj: ä + \x80 1";

// convert to wide-character string (using Windows encoding):

std::wstring ws = to_wstring(s,std::locale("deu_DEU.1252"));

#else

// string with German umlaut and euro symbol (in ISO Latin-15 encoding):

std::string s = "nj: ä + \xA4 1";

// convert to wide-character string (using ISO Latin-15 encoding):

std::wstring ws = to_wstring(s,std::locale("de_DE.ISO-8859-15"));

#endif

// print string as UTF-8 sequence:

std::cout << wstring_to_utf8(ws) << std::endl;

}

catch (const std::exception& e) {

std::cerr << "Exception: " << e.what() << std::endl;

return EXIT_FAILURE;

}

}

16.4 Facets in Detail 903

String s has the format of the 8-bit Windows-1252 or ISO-8859-15 byte sequence shown in Fig-

ure 16.1 on page 852, which is written as the multibyte character sequence with the UTF-8 format

in that figure.

Class wstring_buffer

Since C++11, class wbuffer_convert<> allows creation of a stream buffer (see Section 15.13,

page 826) with underlying conversions from wide characters to multibyte characters. For example,

the following program converts UTF-8 character sequences into UTF-16/UCS-2 character

sequences:

// i18n/wbuffer.cpp

#include <string>

#include <iostream>

#include <codecvt>

using namespace std;

int main()

{

// create input stream reading UTF-8 sequences:

wbuffer_convert<codecvt_utf8<wchar_t>> utf8inBuf(cin.rdbuf());

wistream utf8in(&utf8inBuf);

// create output stream writing UTF-16 sequences:

wbuffer_convert<codecvt_utf16<wchar_t,

0xFFFF,

generate_header>>

utf16outBuf(cout.rdbuf());

wostream utf16out(&utf16outBuf);

// write each character read:

wchar_t c;

while (utf8in.get(c)) {

utf16out.put(c);

}

}

The program uses an input stream utf8in that reads UTF-8 multibyte character sequences into wide

characters and an output stream utf16out that writes these wide characters as UTF-16 multibyte

characters with leading byte order marks. That output almost matches a UCS-2 output because the

character values are limited up to value 0xFFFF.

904 Chapter 16: Internationalization

16.4.5 String Collation

The collate<> facet handles differences between conventions for the sorting of strings. For exam-

ple, in German the letter ü is treated as being equivalent to the letter u or to the letters ue for the

purpose of sorting strings. For other languages, this letter is not even a letter and is treated as a spe-

cial character, when it is treated at all. Other languages use slightly different sorting rules for certain

character sequences. The collate facet can be used to provide a sorting of strings that is familiar

to the user. Table 16.30 lists the member functions of this facet. In this table, col is an instantiation

of collate, and the arguments passed to the functions are iterators that are used to define strings.

Expression Meaning

col.compare(beg1,end1,beg2,end2) Returns

1 if the first string is greater than the second

0 if both strings are equal

-1 if the first string is smaller than the second

col.transform(beg,end) Returns a string to be compared with other trans-

formed strings

col.hash(beg,end) Returns a hash value (of type long) for the string

Table 16.30. Members of the collate<> Facet

The collate<> facet is a class template that takes a character type charT as its template ar-

gument. The strings passed to collate’s members are specified using iterators of type const

charT*. This is somewhat unfortunate because there is no guarantee that the iterators used by the

type basic_string<charT> are also pointers. Thus, strings have to be compared as follows:

std::locale loc;

std::string s1, s2;

...

// get collate facet of the loc locale

const std::collate<char>& col = std::use_facet<std::collate<char>>(loc);

// compare strings by using the collate facet

int result = col.compare(s1.data(), s1.data()+s1.size(),

s2.data(), s2.data()+s2.size());

if (result == 0) {

// s1 and s2 are equal

...

}

To check whether a string is less than another string according to a locale, you can use the function

call operator of the locale, which internally returns whether the call of compare() returns -1:

bool result = loc(s1,s2); // check s1<s2 according to locale loc

This can be used to pass a locale as sorting criterion (see Section 16.3, page 868).

16.4 Facets in Detail 905

The transform() function returns an object of type basic_string<charT>. The lexicograph-

ical order of strings returned from transform() is the same as the order of the original strings using

collate(). This ordering can be used for better performance if one string has to be compared with

many other strings. Determining the lexicographical order of strings can be much faster than using

collate() because the national sorting rules can be relatively complex.

The C++ standard library mandates support only for the two instantiations collate<char> and

collate<wchar_t>. For other character types, users must write their own specializations, poten-

tially using the standard instantiations.

16.4.6 Internationalized Messages

The messages<> facet is used to retrieve internationalized messages from a catalog of messages.

This facet is intended primarily to provide a service similar to that of the function perror(). This

function is used in POSIX systems to print a system error message for an error number stored in the

global variable errno. Of course, the service provided by messages is more flexible. Unfortunately,

it is not defined very precisely.

The messages<> facet is a class template that takes a character type charT as its template

argument. The strings returned from this facet are of type basic_string<charT>. The basic use

of this facet is to open a catalog, retrieve messages, and then close the catalog. The class messages

derives from a class messages_base, which defines a type catalog, which is a type definition

for int. An object of this type is used to identify the catalog on which the members of messages

operate. Table 16.31 lists the member functions of the messages facet.

Expression Meaning

msg.open(name,loc) Opens a catalog and returns a corresponding ID

msg.get(cat,set,msgid,def) Returns the message with ID msgid from catalog cat; if

there is no such message, def is returned instead

msg.close(cat) Closes the catalog cat

Table 16.31. Members of the messages<> Facet

The name passed as the argument to the open() function identifies the catalog in which the

message strings are stored. This catalog can be, for example, the name of a file. The loc argument

identifies a locale object that is used to access a ctype facet. This facet is used to convert the

message to the desired character type.

The exact semantics of the get() member are not defined. An implementation for POSIX sys-

tems could, for example, return the string corresponding to the error message for error msgid, but

this behavior is not required by the standard. The set argument is intended to create a substructure

within the messages. For example, it might be used to distinguish between system errors and errors

of the C++ standard library.

When a message catalog is no longer needed, it can be released by using the close() function.

Although the interface using open() and close() suggests that the messages are retrieved from a

906 Chapter 16: Internationalization

file as needed, this is by no means required. It is more likely that open() reads a file and stores the

messages in memory. A later call to close() would then release this memory.

The standard requires that the two instantiations messages<char> and messages<wchar_t>

be stored in each locale. The C++ standard library does not support any other instantiations.

Chapter 17

Numerics

This chapter describes numeric components of the C++ standard library. In particular, it presents

the components for random numbers and distributions, the classes for complex numbers, the global

numeric functions that are inherited from the C library, and value arrays.

However, the C++ standard library provides more numeric components:

1. For all fundamental numeric data types, the implementation-specific aspects of their representa-

tion are specified by numeric_limits, as described in Section 5.3, page 115.

2. Class ratio<> provides fractional arithmetics especially as a base for durations and timepoints

(see Section 5.6, page 140).

3. The STL contains some numeric algorithms, which are described in Section 11.11, page 623.

4. The C++ standard library provides a class valarray to deal with numeric arrays. However,

in practice, this class plays almost no role; so besides a short introduction in Section 17.4,

page 943, I provide details of valarrays in a supplementary chapter of the book, available at

http://www.cppstdlib.com.

17.1 Random Numbers and Distributions

Since C++11, the C++ standard library provides a random-number library that offers a wide range of

classes and types to address the needs of both novices and experts to deal with random numbers and

distributions. The library is more complex than a naive programmer might expect. At first, the library

provides many well-known distributions. But in addition, the C++ standard library provides multiple

engines, which are the sources of randomness. These engines create random unsigned values, which

are uniformly distributed between a predefined minimum and a maximum; the distributions transfer

those values into random numbers, which are linearly or nonlinearly distributed according to user-

supplied parameters.1 Thus, you shouldn’t use the values generated by the engines directly (see

Section 17.1.1, page 912, for details). There are multiple engines because nothing in a computer is

1 The correct technical term for what distributions provide is random variants rather than random numbers.

http://www.cppstdlib.com

908 Chapter 17: Numerics

truly random and you might need much effort to provide good randomness, so the engines differ in

quality, size, and speed.

Note that there is some confusion about the term random-number generator because it applies to

two different things:

1. It might be a term for a source of randomness. In fact, according to the standard, each engine

fulfills the requirements of a “uniform random-number generator.”

2. It might be a term for the mechanism to generate random numbers, which is a combination of an

engine and a distribution.

The latter is what we usually mean when we need random numbers in a program. Thus, you usually

need an engine and a distribution, which is not a big deal, as we will see with the first example.

To use the random-number library, you have to include the header file <random>.

17.1.1 A First Example

Before going into details, I provide a first example for programmers who need random numbers

or have to shuffle elements without caring in detail for the quality of the random numbers or the

shuffling. The example is as follows:

// num/random1.cpp

#include <random>

#include <iostream>

#include <algorithm>

#include <vector>

int main()

{

// create default engine as source of randomness

std::default_random_engine dre;

// use engine to generate integral numbers between 10 and 20 (both included)

std::uniform_int_distribution<int> di(10,20);

for (int i=0; i<20; ++i) {

std::cout << di(dre) << " ";

}

std::cout << std::endl;

// use engine to generate floating-point numbers between 10.0 and 20.0

// (10.0 included, 20.0 not included)

std::uniform_real_distribution<double> dr(10,20);

for (int i=0; i<8; ++i) {

std::cout << dr(dre) << " ";

}

17.1 Random Numbers and Distributions 909

std::cout << std::endl;

// use engine to shuffle elements

std::vector<int> v = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };

...

std::shuffle (v.begin(), v.end(), // range

dre); // source of randomness

for (int i=0; i<v.size(); ++i) {

std::cout << v[i] << " ";

}

std::cout << std::endl;

}

The program demonstrates the general approach of the random-numbers library. After including the

header file for the random-number library:

#include <random>

we create random numbers by combining an engine dre with two distributions di and dr:

• Engines serve as a stateful source of randomness. They are function objects that are able to

generate random unsigned values uniformly distributed according to a predefined minimum and

maximum.

• Distributions serve as a way to specify how to use these random values to create random num-

bers that are distributed over a range of values according to user-supplied parameters.

The C++ standard library provides multiple engines because there are various approaches to gen-

erating random values (algorithms and implementations differ in quality and performance). In this

case, we use a default engine for “relatively casual, inexpert, and/or lightweight use:”

std::default_random_engine dre;

According to the standard, this is “at least an acceptable engine ... on the basis of performance, size,

quality, or any combination of such factors.” But which engine is chosen here is implementation

defined. For this reason, the output of the program might differ on different platforms.

The C++ standard library also provides various distributions for different value types: linear,

normal/Gauss, exponential, gamma, Bernoulli, and so on. For the most common form, a linear

distribution, where the numbers are equally distributed over a range defined by a given minimum

and maximum value, two classes are provided, which we use here: one for integral and one for

floating-point numbers.

First, we use uniform_int_distribution, which generates integral numbers. The type of

these numbers has to be one of the types short, int, long, long long and their corresponding

unsigned types. If no type is specified, int is the default. In the constructor, the first argument

specifies the minimum value (default: 0), and the second argument specifies the maximum value

(default: numeric_limits<type>::max(); see Section 5.3, page 115). Note that both minimum

and maximum values can be generated, so this is not a half-open range. Thus, with the following

statement we define that the random numbers of di are distributed over the values from 10 til 20

(both included):

std::uniform_int_distribution<int> di(10,20);

910 Chapter 17: Numerics

The way to generate a number is to call operator () for the distribution, with the engine passed as

argument. Thus, to generate and yield the “next” random number in this distribution we simply call:

di(dre)

Note that the initial state of an engine is well defined and not random. Thus, the following statements

will output the same value twice:

std::uniform_int_distribution<int> d;

std::default_random_engine dre1;

std::cout << d(dre1) << " ";

std::default_random_engine dre2;

std::cout << d(dre2) << " ";

If you need a nonpredictable random value, you have to set the state of the generator randomly by

processing some behavior that you can’t influence with your code, such as the number of millisec-

onds between two mouse clicks. That is, you have to pass a so-called seed to the constructor of the

engine. For example:

unsigned int seed = ... // process some value really random

std::default_random_engine dre(seed); // and use it for the initial engine state

Alternatively, you can use a seed to modify the state of an existing generator by using a member

function.

In the same way, you can generate floating-point numbers. Note, however, that in this case the

minimum and maximum passed indeed specify a half-open range. The default range is [0.0,1.0).
The possible types are float, double, or long double, with double as the default type. Thus,

the following statement defines a distribution dr that generates values from 10.0 until the highest

number just below 20.0:

std::uniform_real_distribution<double> dr(10,20);

By contrast, the following statement lets d generate double values from 0.0 until 0.9999..., or

whatever the largest double below 1.0 is:

std::uniform_real_distribution<> d;

Finally, the program demonstrates how to use a random-number generator to shuffle elements of a

container or range. Since C++11, the algorithm shuffle() (see Section 11.8.4, page 589) is pro-

vided, which uses a uniform random-number generator, such as std::default_random_engine,

to shuffle the elements:

std::default_random_engine dre;

...

std::shuffle (v.begin(), v.end(), // range

dre); // source of randomness

The output of the program might look as follows:2

2 The term “might” is used because the exact definition of default_random_engine is implementation-

defined. The values here match a definition of default_random_engine as minstd_rand0.

17.1 Random Numbers and Distributions 911

10 11 18 15 15 12 10 17 17 20 14 15 19 10 10 15 17 10 14 10

16.8677 19.3044 15.2693 16.5392 17.0119 17.622 10.4746 13.2823

1 6 3 4 2 8 9 5 7

Be Careful with Temporary Engines

Note that you can but should not pass an engine just temporarily created.3 The reason is that each

time you initialize an engine, its initial state is the same. Thus, if you program something like the

following, the “shuffling” would happen twice in the same way:

std::shuffle(v.begin(),v.end(), // range

std::default_random_engine()); // random-number generator

...

std::shuffle(v.begin(),v.end(), // range

std::default_random_engine()); // random-number generator

That is, if the first element is shuffled to the end the first time, the first element will be shuffled to

the end again the next time. Thus, with each call, shuffling modifies the positions of each element in

the same way. For example:

1 2 3 4 5 6 7 8 9 // initial state

8 7 5 6 2 4 9 3 1 // after first shuffling

3 9 2 4 7 6 1 5 8 // after second shuffling with engine with equal state

Here, in this example, you can see why such shuffling is a problem, besides that the effect of shuffling

is predictable after the first call. No matter how often you call shuffle(), the 4 would never get

a position other than the fourth or sixth because, according to the current state, shuffle() simply

swaps these two positions.

You should use the following code instead so that the shuffling will happen based on different

states:

std::default_random_engine dre;

...

std::shuffle(v.begin(),v.end(), // range

dre); // random-number generator

...

std::shuffle(v.begin(),v.end(), // range

dre); // random-number generator

Now, each shuffling moves elements in a different way, which, for example, might look as follows:

1 2 3 4 5 6 7 8 9 // initial state

8 7 5 6 2 4 9 3 1 // after first shuffling

3 6 2 7 1 5 8 9 4 // after second shuffling with engine with different state

3 Thanks to Walter E. Brown for pointing this out.

912 Chapter 17: Numerics

Don’t Use Engines without Distributions

Now the naive programmer might ask: Why can’t we just take an engine and use the value it produces

as random numbers (if the range doesn’t fit, I can simply use the modulo operator %)?

An important answer to this question is given in Section 7.4.4 of Accelerated C++ by Andrew

Koenig and Barbara E. Moo (see [KoenigMoo:Accelerated]). They explain why using rand(), the

standard random-value generator of C, causes problems that engines in general have. The essence is

as follows (words and phrases in italics are quoted literally):

The technique to compute random numbers by using rand()%n in practice fails for two

reasons:

1. Many pseudo-random-number generator implementations give remainders that

aren’t very random, when the quotients passed as n are small integers. For example,

it is not uncommon for successive results of rand() to be alternately even and odd.

In that case, if n is 2, successive results of rand()%n will alternate between 0 and

1.

2. On the other hand, if the value of n is large, and the generated maximum value is

not evenly divisible by n, some remainders will appear more often than others. For

example, if the maximum is 32767 and n is 2000, 17 generated values (500, 2500,

..., 30500, 32500) would map to 500, while only 16 generated values (1500, 3500,

..., 31500) would map to 1500. And this gets worse the larger n is.

Good linear generators take this into account when mapping values generated by engines to their

range of generated numbers. Thus, to get random numbers of good quality, you should always use

both an engine and a distribution.

17.1.2 Engines

The C++ standard library provides 16 random-number engines, which you can use to process random

numbers by combining them with a distribution or for shuffling (see Figure 17.1).

As noted earlier, a random-number engine is a stateful source of randomness. Its state defines

which sequence of random values, which are not random numbers (see Section 17.1.1, page 912),

are generated. With each function call, using operator (), you yield a new random unsigned value,

while the internal state is changed to be able to yield a new random value afterward.

Note that normally the state transitions and values generated are exactly specified. Thus, with

the same state, a specific engine will create the same random values on any platform. The only

exception is the default_random_engine, which represents an implementation-specific engine. It

still creates predictable values, but the algorithms used can vary from platform to platform.

You might argue that each value an engine generates should always be random, but nothing is

truly random on a computer. If you really need a nonpredictable value, you have to set the state of

the generator randomly by processing some behavior that you can’t influence with your code, for

example, by processing the number of milliseconds between two mouse clicks.

17.1 Random Numbers and Distributions 913

Predefined Parameterizations:

Basic Engines:

Engine Adapters:

minstd_rand

minstd_rand0
linear_congruential_engine

mersenne_twister_engine

subtract_with_carry_engine

discard_block_engine

mt19937

mt19937_64

knuth_b

shuffle_order_engine

default_random_engine

ranlux24_base

ranlux48_base

ranlux24

ranlux48

independent_bits_engine

Figure 17.1. Predefined Random-Number Engines

On the other hand, the predictability of the random values has the advantage that you can run the

same “random” scenarios based on random numbers, which helps, for example, for the purpose of

testing.

The following program demonstrates this:

// num/random2.cpp

#include <random>

#include <iostream>

#include <sstream>

void printNumbers (std::default_random_engine& dre)

{

for (int i=0; i<6; ++i) {

std::cout << dre() << " ";

}

std::cout << std::endl;

}

int main()

{

// create engine and generate numbers

std::default_random_engine dre;

printNumbers(dre);

914 Chapter 17: Numerics

// create equal engine and generate numbers

std::default_random_engine dre2; // same initial state as dre

printNumbers(dre2);

// create engine with initial state specified by a seed

std::default_random_engine dre3(42);

printNumbers(dre3);

// save state of engine dre

std::stringstream engineState;

engineState << dre;

// generate numbers according to current state of dre

printNumbers(dre);

// restore saved state of engine dre and create numbers again

engineState >> dre;

printNumbers(dre);

// restore saved state of engine dre, skip 2 numbers and create numbers again

engineState.clear(); // clear EOF bit

engineState.seekg(0); // and move read position to the beginning

engineState >> dre;

dre.discard(2);

printNumbers(dre);

}

The program might have the following output:4

16807 282475249 1622650073 984943658 1144108930 470211272

16807 282475249 1622650073 984943658 1144108930 470211272

705894 1126542223 1579310009 565444343 807934826 421520601

101027544 1457850878 1458777923 2007237709 823564440 1115438165

101027544 1457850878 1458777923 2007237709 823564440 1115438165

1458777923 2007237709 823564440 1115438165 1784484492 74243042

After declaring a random-number engine (the default one in this case), we can use operator () to

generate values:

std::default_random_engine dre;

...

dre()

4 The exact output differs because the default_random_engine is implementation-defined. The values here

match a definition of default_random_engine as minstd_rand0.

17.1 Random Numbers and Distributions 915

Thus, an engine is a function object (an object that behaves like a function; see Section 6.10,

page 233).

The generated values are unsigned integral values. The exact type can usually be specified ex-

cept for default_random_engine, where the type is implementation defined. For each engine,

result_type yields the type, and the static member functions min() and max() yield the mini-

mum and maximum values that can be generated (both included).

If you declare an equal engine again, it will have the same initial state and therefore pro-

duce the same random values. To get the same state, you could also pass the engine by value to

printNumbers() twice. Because printNumbers() would operate on a temporary copy of dre

with each call, this would also generate the same numbers twice.

The next statement shows how to pass an initial seed value to change the initial state of the

engine:

std::default_random_engine dre3(42);

Here, usually, you would pass a value coming from outside the program to start with a truly random

value (for example, the duration between two clicks or a value processed out of a real-time clock).

The following statements demonstrate two other possibilities all engines have. You can use

operators << and >> to save and restore the state of an engine.5 The following statements write the

state into a string by using a string stream (see Section 15.10, page 802):

std::ostringstream engineState;

engineState << dre;

This state will be a sequence of values separated by spaces. (This is not a sequence of random

numbers!) If we change the state of dre — for example, by generating numbers — and restore the

state afterward, the engine will have the state it had when the state was saved and generate the same

values again.

With the following statement we skip two states:

dre.discard(2);

Thus, afterward, dre is in the same state as if two values had been generated instead. However,

discard() might be and often is faster than stepping through all states by calling operator ().

17.1.3 Engines in Detail

As Figure 17.1 (Section 17.1, page 913) demonstrates, we can put the engines provided by the C++

standard library into various categories:

• Basic engines, which provide various basic algorithms to generate random values:

– Class std::linear_congruential_engine

– Class std::mersenne_twister_engine

– Class std::subtract_with_carry_engine

5 This is probably the first and only serialization interface in the C++ standard library.

916 Chapter 17: Numerics

• Engine adapters, which can be initialized by a (basic) engine:

– Class std::discard_block_engine, which adapts an engine by discarding a given

number of generated values each time

– Class std::independent_bits_engine, which adapts an engine to produce random

values with a specified number of bits

– Class std::shuffle_order_engine, which adapts an engine by permutation of the

order of their generated values

• Adapters with predefined parameters:

– std::minstd_rand0

– std::minstd_rand

– std::mt19937

– std::mt19937_64

– std::ranlux24_base

– std::ranlux48_base

– std::ranlux24

– std::ranlux48

– std::knuth_b

For example, type knuth_b is a shortcut for:

shuffle_order_engine<linear_congruential_engine<uint_fast32_t,

16807,

0,

2147483647>,

256>

In addition, std::default_random_engine is an implementation-specific type definition. This

is the only engine type that does not guarantee generation of identical value sequences on different

platforms.

Operation Effect

engine e Default constructor; creates engine with default initial state

engine e(seed) Creates engine with state according to seed

engine e(e2) Copy constructor; copies engine (e and e2 will have equal state)

e.seed() Sets engine d to default initial state

e.seed(seed) Sets engine d to state according to seed

e() Returns next random value and advances its state

e.discard(n) Advances to the nth next state (like n calls of e() but might be faster)

e1 == e2 Returns whether e1 and e2 have an equal state

e1 != e2 Returns whether e1 and e2 don’t have an equal state

ostrm << e Writes the state of e to the output stream ostrm

istrm >> e Reads a new state from the input stream istrm into e

Table 17.1. Operations of Random-Number Engines

17.1 Random Numbers and Distributions 917

Table 17.1 lists the operations provided for random-number engines. All default-constructed

engines of the same type initially have the same state, which means that operator == yields true,

and both engines will produce an equal list of “random” values. Thus, you need a seed to produce

different random values.

The state written by operator << is a list of decimal values separated by a space. Although this

might look like a list of random values, it is not.

It is guaranteed that, when reading a written state by an engine of the same type, the engine

becomes the same state (operator == yields true and equal values are generated).

17.1.4 Distributions

As written, distributions transform random values generated by an engine into real and useful ran-

dom numbers. The probability of the numbers generated depends on the specific distribution used,

which can be parametrized according to the programmer’s needs. Table 17.2 gives an overview of

all distributions provided by the C++ standard library.

Category Name Data Type

Uniform distributions uniform_int_distribution IntType

uniform_real_distribution RealType

Bernoulli distributions bernoulli_distribution bool

binomial_distribution IntType

geometric_distribution IntType

negative_binomial_distribution IntType

Poisson distributions poisson_distribution IntType

exponential_distribution RealType

gamma_distribution RealType

weibull_distribution RealType

extreme_value_distribution RealType

Normal distributions normal_distribution RealType

lognormal_distribution RealType

chi_squared_distribution RealType

cauchy_distribution RealType

fisher_f_distribution RealType

student_t_distribution RealType

Sampling distributions discrete_distribution IntType

piecewise_constant_distribution RealType

piecewise_linear_distribution RealType

Table 17.2. Distributions Provided by the C++ Standard Library

918 Chapter 17: Numerics

Almost all distributions are templates parametrized by the type of the generated values. The only

exception is bernoulli_distribution, which is simply a class because it generates only bools.

The default types are:

• int for IntType

• double for RealType

The C++ standard library guarantees that the following template instantiations are provided:

• For IntType: short, int, long, long long, and their corresponding unsigned types

• For RealType: float, double, long double

Table 17.3 lists the operations provided for distributions.

Operation Effect

distr::result_type The arithmetic type of the values generated

distr d Default constructor; creates a distribution with default parameters

distr d(args) Creates a distribution parametrized by args

d(e) Returns the next value according to engine/generator e and advances

the state of e

d.min() Returns the minimum value

d.max() Returns the maximum value

d1 == d2 Returns whether d1 and d2 have an equal state

d1 != d2 Returns whether d1 and d2 don’t have an equal state

ostrm << d Writes the state of d to the output stream ostrm

istrm >> d Reads a new state from the input stream istrm into d

distr::param_type The type for the parametrization of distr

distr d(pt) Creates a distribution parametrized by param_type pt

d.param(pt) Sets the current parametrization to param_type pt

d.param() Returns the current parametrization as type param_type

d(e,pt) Returns the next value according to the engine/generator e and to the

param_type pt and advances the state of e

d.param() Returns the value of parameter param

Table 17.3. Types and Operations of Distributions

A distribution might be parametrized, so args and pt depend on the specific distribution. To deal

with this parametrization, you can

• Pass these parameters as args to the constructor

• Use a member named according to the parameter to query its value

• Use its param_type to

– Pass these parameters as one argument to the constructor

– Pass these parameters to the next value generation

– Query the value of these parameters

The param_type should itself provide a constructor to pass the parameter value(s) and named

members to query their values.

17.1 Random Numbers and Distributions 919

For example, the uniform distributions have two parameters, a and b, which correspond with mini-

mum and maximum (see Section 17.1.5, page 921). As a consequence, you can pass the arguments

individually:

uniform_int_distribution<> d(0, 20); // initialize parameters ‘‘a’’ and ‘‘b’’

d.a() // yields value of parameter ‘‘a’’

d.b() // yields value of parameter ‘‘b’’

d.param().a() // yields value of parameter ‘‘a’’

d.param().b() // yields value of parameter ‘‘b’’

Or you can use a param_type to pass them as a whole:

uniform_int_distribution<>::param_type pt(100, 200); // other parametrization

d(e,pt) // generates one value according to parametrization pt

d.param(pt); // let all generated values use parametrization pt

Only the sampling distributions use special constructors to pass vectors of values or a value gener-

ator.

Note that the maximum value passed as a parameter to distributions might sometimes be included

and sometimes be excluded.

As for random engines, the state written by operator << is a list of decimal values separated by a

space. Although this might look like a list of random numbers, it is not.

The following program demonstrates how distributions can be used:

// num/dist1.cpp

#include <random>

#include <map>

#include <string>

#include <iostream>

#include <iomanip>

template <typename Distr, typename Eng>

void distr (Distr d, Eng e, const std::string& name)

{

// print min, max and four example values

std::cout << name << ":" << std::endl;

std::cout << "- min(): " << d.min() << std::endl;

std::cout << "- max(): " << d.max() << std::endl;

std::cout << "- values: " << d(e) << ’ ’ << d(e) << ’ ’

<< d(e) << ’ ’ << d(e) << std::endl;

// count the generated values (converted to integral values)

std::map<long long,int> valuecounter;

for (int i=0; i<200000; ++i) {

valuecounter[d(e)]++;

}

920 Chapter 17: Numerics

// and print the resulting distribution

std::cout << "====" << std::endl;

for (auto elem : valuecounter) {

std::cout << std::setw(3) << elem.first << ": "

<< elem.second << std::endl;

}

std::cout << "====" << std::endl;

std::cout << std::endl;

}

int main()

{

std::knuth_b e;

std::uniform_real_distribution<> ud(0, 10);

distr(ud,e,"uniform_real_distribution");

std::normal_distribution<> nd;

distr(nd,e,"normal_distribution");

std::exponential_distribution<> ed;

distr(ed,e,"exponential_distribution");

std::gamma_distribution<> gd;

distr(gd,e,"gamma_distribution");

}

On my machine, the program has the following output (distributed over two columns):

uniform_real_distribution:
- min(): 0
- max(): 10
- values: 8.30965 1.30427 9.47764 3.83416
====

0: 20087
1: 20057
2: 19878
3: 19877
4: 20005
5: 20118
6: 20063
7: 19886
8: 20003
9: 20026

====

normal_distribution:
- min(): 2.22507e-308
- max(): 1.79769e+308
- values: -0.131724 0.117963 -0.140331 0.538967
====
-4: 9
-3: 245
-2: 4325
-1: 26843
0: 136947
1: 26987
2: 4377
3: 258
4: 9

====

17.1 Random Numbers and Distributions 921

exponential_distribution:
- min(): 0
- max(): 1.79769e+308
- values: 0.185167 2.03694 0.0536495 0.958636
====

0: 126487
1: 46436
2: 17120
3: 6294
4: 2326
5: 865
6: 283
7: 107
8: 52
9: 17

10: 6
11: 6
12: 1
====

gamma_distribution:
- min(): 0
- max(): 1.79769e+308
- values: 0.117964 1.60557 0.558526 1.21066
====

0: 126315
1: 46477
2: 17160
3: 6271
4: 2413
5: 866
6: 327
7: 109
8: 41
9: 12

10: 7
11: 1
12: 1
====

17.1.5 Distributions in Detail

The distributions, their probability (density) functions, and their parameters are as follows:

uniform_int_distribution:

P (i | a, b) = 1/(b − a + 1)

Parameters:

IntType a (default: 0)

IntType b (default: limits::max())

uniform_real_distribution:

p(x | a, b) = 1/(b − a)

Parameters:

RealType a (default: 0.0)

RealType b (default: 1.0)

bernoulli_distribution:

P (b | p) =

{

p if b = true

1 − p if b = false

Parameters:

double p (default: 0.5)

922 Chapter 17: Numerics

binomial_distribution:

P (i | t, p) =

(

t

i

)

· pi · (1 − p)t−i

Parameters:

IntType t (default: 1)

double p (default: 0.5)

geometric_distribution:

P (i | p) = p · (1 − p)i

Parameters:

double p (default: 0.5)

negative_binomial_distribution:

P (i | k, p) =

(

k + i − 1

i

)

· pk · (1 − p)i

Parameters:

IntType k (default: 1)

double p (default: 0.5)

poisson_distribution:

P (i |μ) =
e−μμi

i !
Parameters:

double mean (default: 1.0)

exponential_distribution:

p(x |λ) = λe−λx

Parameters:

RealType lambda (default: 1.0)

gamma_distribution:

p(x |α, β) =
e−x/β

βα · Γ(α)
· xα−1

Parameters:

RealType alpha (default: 1.0)

RealType beta (default: 1.0)

weibull_distribution:

p(x | a, b) =
a

b
·
(x

b

)a−1

· exp
(

−
(x

b

)a)

17.1 Random Numbers and Distributions 923

Parameters:

RealType a (default: 1.0)

RealType b (default: 1.0)

extreme_value_distribution:

p(x | a, b) =
1

b
· exp

(

a − x

b
− exp

(

a − x

b

))

Parameters:

RealType a (default: 1.0)

RealType b (default: 1.0)

normal_distribution:

p(x |μ, σ) =
1

σ
√

2π
· exp

(

− (x − μ)2

2σ2

)

Parameters:

RealType mean (default: 0.0)

RealType stddev (default: 1.0)

lognormal_distribution:

p(x |m, s) =
1

sx
√

2π
· exp

(

− (lnx − m)2

2s2

)

Parameters:

RealType m (default: 0.0)

RealType s (default: 1.0)

chi_squared_distribution:

p(x |n) =
x(n/2)−1 · e−x/2

Γ(n/2) · 2n/2

Parameters:

RealType n (default: 1)

cauchy_distribution:

p(x | a, b) =

(

πb

(

1 +

(

x − a

b

)2
))

−1

Parameters:

RealType a (default: 1.0)

RealType b (default: 1.0)

924 Chapter 17: Numerics

fisher_f_distribution:

p(x |m, n) =
Γ
(

(m + n)/2
)

Γ(m/2) Γ(n/2)
·
(m

n

)m/2

· x(m/2)−1 ·
(

1 +
mx

n

)

−(m+n)/2

Parameters:

RealType m (default: 1)

RealType n (default: 1)

student_t_distribution:

p(x |n) =
1√
nπ

· Γ
(

(n + 1)/2
)

Γ(n/2)
·
(

1 +
x2

n

)

−(n+1)/2

.

Parameters:

RealType n (default: 1)

discrete_distribution:

P (i | p0, . . . , pn−1) = pi

Parameters:

vector<double> probabilities

For these parameters, the constructors take an initializer list of doubles, a range of doubles,

and a function object that creates doubles.

piecewise_constant_distribution:

p(x | b0, . . . , bn, ρ0, . . . , ρn−1) = ρi , for bi ≤ x < bi+1

Parameters:

vector<RealType> intervals (default: inconsistent)

vector<RealType> densities (default: inconsistent)

For these parameters, the constructors take a range of interval boundaries and weights, an initial-

izer list of boundaries and a weight generator, as well as number, min, and max for boundaries

and a weight generator.

piecewise_linear_distribution:

p(x | b0, . . . , bn, ρ0, . . . , ρn) = ρi ·
bi+1 − x

bi+1 − bi
+ ρi+1 ·

x − bi

bi+1 − bi
, for bi ≤ x < bi+1

Parameters:

vector<RealType> intervals

vector<RealType> densities

For these parameters, the constructors take a range of interval boundaries and weights, an initial-

izer list of boundaries and a weight generator, as well as number, min, and max for boundaries

and a weight generator.

Further details are given in the exact descriptions in the C++ standard library.

17.2 Complex Numbers 925

17.2 Complex Numbers

The C++ standard library provides the class template complex<> to operate on complex numbers.

Complex numbers have two parts: real and imaginary. The imaginary part has the property that its

square is a negative number. In other words, the imaginary part of a complex number is the factor i,
which is the square root of -1.

Recent Changes with C++11

C++98 specified almost all features of the class complex<>. With the first standardization of C++,

almost all features of class complex were specified. In fact, except for using constexpr where

appropriate, none of the new language features of C++11 had an impact of class complex<> and its

specializations. Only a few fixes and enhancements were added:

• The following operations taking a complex number as argument were added: proj(), asin(),

acos(), atan(), asin(), acosh(), atanh().

• With real(val) and imag(val), you can now set the real and imaginary part directly.

17.2.1 Class complex<> in General

The class complex<> is declared in the header file <complex>:

#include <complex>

In <complex>, the class complex<> is defined as follows:

namespace std {

template <typename T>

class complex;

}

The template parameter T is used as the scalar type of both the real and the imaginary parts of the

complex number.

In addition, the C++ standard library provides three specializations for float, double, and long

double:

namespace std {

template<> class complex<float>;

template<> class complex<double>;

template<> class complex<long double>;

}

These types are provided to allow certain optimizations and some safer conversions from one com-

plex type to the other.

926 Chapter 17: Numerics

17.2.2 Examples Using Class complex<>

The following program demonstrates some of the abilities of class complex<> to create complex

numbers, print different representations of complex numbers, and perform some common operations

on complex numbers:

// num/complex1.cpp

#include <iostream>

#include <complex>

using namespace std;

int main()

{

// complex number with real and imaginary parts

// - real part: 4.0

// - imaginary part: 3.0

complex<double> c1(4.0,3.0);

// create complex number from polar coordinates

// - magnitude: 5.0

// - phase angle: 0.75

complex<float> c2(polar(5.0,0.75));

// print complex numbers with real and imaginary parts

cout << "c1: " << c1 << endl;

cout << "c2: " << c2 << endl;

// print complex numbers as polar coordinates

cout << "c1: magnitude: " << abs(c1)

<< " (squared magnitude: " << norm(c1) << ") "

<< " phase angle: " << arg(c1) << endl;

cout << "c2: magnitude: " << abs(c2)

<< " (squared magnitude: " << norm(c2) << ") "

<< " phase angle: " << arg(c2) << endl;

// print complex conjugates

cout << "c1 conjugated: " << conj(c1) << endl;

cout << "c2 conjugated: " << conj(c2) << endl;

// print result of a computation

cout << "4.4 + c1 * 1.8: " << 4.4 + c1 * 1.8 << endl;

// print sum of c1 and c2:

17.2 Complex Numbers 927

// - note: different types

cout << "c1 + c2: "

<< c1 + complex<double>(c2.real(),c2.imag()) << endl;

// add square root of c1 to c1 and print the result

cout << "c1 += sqrt(c1): " << (c1 += sqrt(c1)) << endl;

}

The program might have the following output (the exact output depends on the implementation-

specific properties of the type double):

c1: (4,3)

c2: (3.65844,3.40819)

c1: magnitude: 5 (squared magnitude: 25) phase angle: 0.643501

c2: magnitude: 5 (squared magnitude: 25) phase angle: 0.75

c1 conjugated: (4,-3)

c2 conjugated: (3.65844,-3.40819)

4.4 + c1 * 1.8: (11.6,5.4)

c1 + c2: (7.65844,6.40819)

c1 += sqrt(c1): (6.12132,3.70711)

A second example contains a loop that reads two complex numbers and processes the first complex

number raised to the power of the second complex number:

// num/complex2.cpp

#include <iostream>

#include <complex>

#include <cstdlib>

#include <limits>

using namespace std;

int main()

{

complex<long double> c1, c2;

while (cin.peek() != EOF) {

// read first complex number

cout << "complex number c1: ";

cin >> c1;

if (!cin) {

cerr << "input error" << endl;

return EXIT_FAILURE;

}

928 Chapter 17: Numerics

// read second complex number

cout << "complex number c2: ";

cin >> c2;

if (!cin) {

cerr << "input error" << endl;

return EXIT_FAILURE;

}

if (c1 == c2) {

cout << "c1 and c2 are equal !" << endl;

}

cout << "c1 raised to the c2: " << pow(c1,c2)

<< endl << endl;

// skip rest of line

cin.ignore(numeric_limits<int>::max(),’\n’);

}

}

Table 17.4 shows some possible input and output of this program. Note that you can input a complex

number by passing only the real part as a single value with or without parentheses or by passing the

real and imaginary parts separated by a comma in parentheses.

c1 c2 Output

2 2 c1 raised to c2: (4,0)

(16) 0.5 c1 raised to c2: (4,0)

(8,0) 0.333333333 c1 raised to c2: (2,0)

0.99 (5) c1 raised to c2: (0.95099,0)

(0,2) 2 c1 raised to c2: (-4,4.89843e-16)

(1.7,0.3) 0 c1 raised to c2: (1,0)

(3,4) (-4,3) c1 raised to c2: (4.32424e-05,8.91396e-05)

(1.7,0.3) (4.3,2.8) c1 raised to c2: (-4.17622,4.86871)

Table 17.4. Possible I/O of complex2.cpp Example

17.2.3 Operations for Complex Numbers

The class template complex<> provides the operations described in the following subsections.

17.2 Complex Numbers 929

Create, Copy, and Assign Operations

Table 17.5 lists the constructors and assignment operations for complex. The constructors provide

the ability to pass the initial values of the real and the imaginary parts. If they are not passed, they

are initialized by the default constructor of the value type.

Expression Effect

complex c Creates a complex number with 0 as the real part and 0 as the

imaginary part (0 + 0i)

complex c(1.3) Creates a complex number with 1.3 as the real part and 0 as the

imaginary part (1.3 + 0i)

complex c(1.3,4.2) Creates a complex number with 1.3 as the real part and 4.2 as

the imaginary part (1.3 + 4.2i)

complex c1(c2) Creates c1 as a copy of c2

polar(4.2) Creates a temporary complex number from polar coordinates

(4.2 as magnitude rho and 0 as phase angle theta)

polar(4.2,0.75) Creates a temporary complex number from polar coordinates

(4.2 as magnitude rho and 0.75 as phase angle theta)

conj(c) Creates a temporary complex number that is the conjugated

complex number of c (the complex number with the negated

imaginary part)

proj(c) Creates a temporary complex number from the projection of c

onto the Riemann sphere (since C++11)

c1 = c2 Assigns the values of c2 to c1

c1 += c2 Adds the value of c2 to c1

c1 -= c2 Subtracts the value of c2 from c1

c1 *= c2 Multiplies the value of c2 by c1

c1 /= c2 Divides the value of c2 into c1

Table 17.5. Constructors and Assignment Operations of Class complex<>

The assignment operators are the only way to modify the value of an existing complex number.

The computed assignment operators +=, -=, *=, and /= add, subtract, multiply, and divide the value

of the second operand to, from, by, and into the first operand.

The auxiliary polar() function provides the ability to create a complex number that is initialized

by polar coordinates (magnitude and phase angle in radians):

// create a complex number initialized from polar coordinates

std::complex<double> c2(std::polar(4.2,0.75));

A problem exists when you have an implicit type conversion during the creation. For example, this

notation works:

std::complex<float> c2(std::polar(4.2,0.75)); // OK

However, the following notation with the equal sign does not:

std::complex<float> c2 = std::polar(4.2,0.75); // ERROR

930 Chapter 17: Numerics

This problem is discussed in the next subsection.

The auxiliary conj() function provides the ability to create a complex number that is initialized

by the conjugated complex value of another complex number (a conjugated complex value is the

value with a negated imaginary part):

std::complex<double> c1(1.1,5.5);

std::complex<double> c2(conj(c1)); // initialize c2 with

// complex<double>(1.1,-5.5)

Since C++11, the auxiliary proj() function is provided, which creates a complex number computed

as a projection of another complex number onto the Riemann sphere.

Implicit Type Conversions

The constructors of the specializations for float, double, and long double are designed in such

a way that safe conversions, such as complex<float> to complex<double>, are allowed to be

implicit but less safe conversions, such as complex<long double> to complex<double>, must

be explicit:

std::complex<float> cf;

std::complex<double> cd;

std::complex<long double> cld;

...

std::complex<double> cd1 = cf; // OK: safe conversion

std::complex<double> cd2 = cld; // ERROR: no implicit conversion

std::complex<double> cd3(cld); // OK: explicit conversion

In addition, no constructors from any other complex type are defined. In particular, you can’t convert

a complex with an integral value type into a complex with value type float, double, or long

double. However, you can convert the values by passing the real and imaginary parts as separate

arguments:

std::complex<double> cd;

std::complex<int> ci;

...

std::complex<double> cd4 = ci; // ERROR: no implicit conversion

std::complex<double> cd5(ci); // ERROR: no explicit conversion

std::complex<double> cd6(ci.real(),ci.imag()); // OK

Unfortunately, the assignment operators allow less safe conversions. These operators are provided

as function templates for all types. So, you can assign any complex type as long as the value types

are convertible:6

std::complex<double> cd;

std::complex<long double> cld;

6 The fact that constructors for the complex specializations allow only safe implicit conversions, whereas the

assignment operations allow any implicit conversion, is probably a mistake in the standard.

17.2 Complex Numbers 931

std::complex<int> ci;

...

cd = ci; // OK

cd = cld; // OK

This problem also relates to polar(), conj(), and proj(). For example, the following notation

works fine:

std::complex<float> c2(std::polar(4.2,0.75)); // OK

But the notation with the equal sign does not:

std::complex<float> c2 = std::polar(4.2,0.75); // ERROR

The reason for this is that the expression

std::polar(4.2,0.75)

creates a temporary complex<double>, and the implicit conversion from complex<double> to

complex<float> is not defined.7

Value Access

Table 17.6 shows the functions provided to access the attributes of complex numbers.

Expression Effect

real(c) Returns the value of the real part (as a global function)

c.real() Returns the value of the real part (as a member function)

c.real(1.7) Assigns 1.7 as new real part (since C++11)

imag(c) Returns the value of the imaginary part (as a global function)

c.imag() Returns the value of the imaginary part (as a member function)

c.imag(1.7) Assigns 1.7 as new imaginary part (since C++11)

abs(c) Returns the absolute value of c (

√

c.real()
2

+ c.imag()
2
)

norm(c) Returns the squared absolute value of c (c.real()
2

+ c.imag()
2
)

arg(c) Returns the angle of the polar representation of c (ϕ)

(equivalent to atan2(c.imag(),c.real()) as phase angle)

Table 17.6. Operations for Value Access of Class complex<>

Note that before C++11, real() and imag() provided only read access to the real and the

imaginary parts. Changing only the real part or only the imaginary part required assigning a new

complex number. For example, the following statement set the imaginary part of c to 3.7:

std::complex<double> c;

...

c = std::complex<double>(c.real(),3.7); // since C++11: c.imag(3.7)

7 In general, the initialization syntax with = requires that an implicit type conversion is provided.

932 Chapter 17: Numerics

Comparison Operations

To compare complex numbers, you can check only for equality (Table 17.7). The operators == and

!= are defined as global functions, so one of the operands may be a scalar value. If you use a scalar

value as the operand, it is interpreted as the real part, with the imaginary part having the default value

of its type, which is usually 0.

Expression Effect

c1 == c2 Returns whether c1 is equal to c2

(c1.real()==c2.real() && c1.imag()==c2.imag())

c == 1.7 Returns whether c is equal to 1.7

(c.real()==1.7 && c.imag()==0.0)

1.7 == c Returns whether c is equal to 1.7

(c.real()==1.7 && c.imag()==0.0)

c1 != c2 Returns whether c1 differs from c2

(c1.real()!=c2.real() || c1.imag()!=c2.imag())

c != 1.7 Returns whether c differs from 1.7

(c.real()!=1.7 || c.imag()!=0.0)

1.7 != c Returns whether c differs from 1.7

(c.real()!=1.7 || c.imag()!=0.0)

Table 17.7. Comparison Operations of Class complex<>

Other comparison operations, such as operator <, are not defined. Although it is not impossible

to define an ordering for complex values, such orderings are neither very intuitive nor very useful.

Note, for example, that the magnitude of complex numbers by itself is not a good basis for ordering

complex values, because two complex values can be very different and yet have identical magnitude

(1 and -1 are two such numbers). An ad hoc criterion can be added to create a valid ordering. For

example, given two complex values c1 and c2, you could deem c1 < c2 when |c1| < |c2| or,

if both magnitudes are equal, when arg(c1) < arg(c2). However, such a criterion invariably has

little or no mathematical meaning.8

As a consequence, you can’t use complex<> as the element type of an associative container,

provided you use no user-defined sorting criterion. The reason is that associative containers use the

function object less<>, which calls operator <, to be able to sort the elements (see Section 6.11.1,

page 244).

By implementing a user-defined operator <, you could sort complex numbers and use them in

associative containers. Note that you should be very careful not to pollute the standard namespace.

For example:

8 Thanks to David Vandevoorde for pointing this out.

17.2 Complex Numbers 933

template <typename T>

bool operator< (const std::complex<T>& c1,

const std::complex<T>& c2)

{

return std::abs(c1)<std::abs(c2) ||

(std::abs(c1)==std::abs(c2) &&

std::arg(c1)<std::arg(c2));

}

Arithmetic Operations

Complex numbers provide the four basic arithmetic operations and the negative and positive signs

(Table 17.8).

Expression Effect

c1 + c2 Returns the sum of c1 and c2

c + 1.7 Returns the sum of c and 1.7

1.7 + c Returns the sum of 1.7 and c

c1 - c2 Returns the difference between c1 and c2

c - 1.7 Returns the difference between c and 1.7

1.7 - c Returns the difference between 1.7 and c

c1 * c2 Returns the product of c1 and c2

c * 1.7 Returns the product of c and 1.7

1.7 * c Returns the product of 1.7 and c

c1 / c2 Returns the quotient of c1 and c2

c / 1.7 Returns the quotient of c and 1.7

1.7 / c Returns the quotient of 1.7 and c

- c Returns the negated value of c

+ c Returns c

c1 += c2 Equivalent to c1 = c1 + c2

c1 -= c2 Equivalent to c1 = c1 - c2

c1 *= c2 Equivalent to c1 = c1 * c2

c1 /= c2 Equivalent to c1 = c1 / c2

Table 17.8. Arithmetic Operations of Class complex<>

Input/Output Operations

Class complex provides the common I/O operators << and >> (Table 17.9).

The output operator writes the complex number with respect to the current stream state with the

format:

(realpart,imagpart)

934 Chapter 17: Numerics

Expression Effect

strm << c Writes the complex number c to the output stream strm

strm >> c Reads the complex number c from the input stream strm

Table 17.9. I/O Operations of Class complex<>

In particular, the output operator is defined as equivalent to the following implementation:

template <typename T, typename charT, typename traits>

std::basic_ostream<charT,traits>&

operator << (std::basic_ostream<charT,traits>& strm,

const std::complex<T>& c)

{

// temporary value string to do the output with one argument

std::basic_ostringstream<charT,traits> s;

s.flags(strm.flags()); // copy stream flags

s.imbue(strm.getloc()); // copy stream locale

s.precision(strm.precision()); // copy stream precision

// prepare the value string

s << ’(’ << c.real() << ’,’ << c.imag() << ’)’;

// write the value string

strm << s.str();

return strm;

}

The input operator provides the ability to read a complex number with one of the following formats:

(realpart,imagpart)

(realpart)

realpart

If none of the formats fits according to the next characters in the input stream, the ios::failbit is

set, which might throw a corresponding exception (see Section 15.4.4, page 762).

Unfortunately, you can’t specify the separator of complex numbers between the real and the

imaginary parts. So, if you have a comma as a “decimal point,” as in German, I/O looks really

strange. For example, a complex number with 4.6 as the real part and 2.7 as the imaginary part

would be written as

(4,6,2,7)

See Section 17.2.2, page 927, for an example of how to use the I/O operations.

17.2 Complex Numbers 935

Transcendental Functions

Table 17.10 lists the transcendental functions (trigonometric, exponential, and so on) for complex.

Expression Effect

pow(c,3) Complex power c3

pow(c,1.7) Complex power c1.7

pow(c1,c2) Complex power c1c2

pow(1.7,c) Complex power 1.7c

exp(c) Base e exponential of c (ec)

sqrt(c) Square root of c (
√

c)

log(c) Complex natural logarithm of c with base e (ln c)

log10(c) Complex common logarithm of c with base 10 (lg c)

sin(c) Sine of c (sin c)

cos(c) Cosine of c (cos c)

tan(c) Tangent of c (tan c)

sinh(c) Hyperbolic sine of c (sinh c)

cosh(c) Hyperbolic cosine of c (cosh c)

tanh(c) Hyperbolic tangent of c (tanh c)

asin(c) Arcus sine of c (since C++11)

acos(c) Arcus cosine of c (since C++11)

atan(c) Arcus tangent of c (since C++11)

asinh(c) Arcus hyperbolic sine of c (since C++11)

acosh(c) Arcus hyperbolic cosine of c (since C++11)

atanh(c) Arcus hyperbolic tangent of c (since C++11)

Table 17.10. Transcendental Functions of Class complex<>

17.2.4 Class complex<> in Detail

This subsection describes all operations of class complex<> in detail. In the following definitions, T

is the template parameter of class complex<>, which is the type of the real and the imaginary parts

of the complex value.

Type Definitions

complex::value_type

• The type of the real and the imaginary parts.

936 Chapter 17: Numerics

Create, Copy, and Assign Operations

complex::complex ()

• The default constructor.

• Creates a complex value in which the real and the imaginary parts are initialized by an explicit

call of their default constructor. Thus, for fundamental types, the initial value of the real and the

imaginary parts is 0 (see Section 3.2.1, page 37, for the default value of fundamental types).

complex::complex (const T& re)

• Creates a complex value in which re is the value of the real part, and the imaginary part is

initialized by an explicit call of its default constructor (0 for fundamental data types).

• This constructor also defines an automatic type conversion from T to complex.

complex::complex (const T& re, const T& im)

• Creates a complex value, with re as the real part and im as the imaginary part.

complex polar (const T& rho)

complex polar (const T& rho, const T& theta)

• Both forms create and return the complex number that is initialized by polar coordinates.

• rho is the magnitude.

• theta is the phase angle in radians (default: 0).

complex conj (const complex& cmplx)

• Creates and returns the complex number that is initialized by the conjugated complex value (the

value with the negated imaginary part) of cmplx.

complex proj (const complex& cmplx)

• Creates and returns a temporary complex number from the projection of x onto the Riemann

sphere.

• The behavior is equivalent to the C function cproj().

• Available since C++11.

complex::complex (const complex& cmplx)

• The copy constructor.

• Creates a new complex as a copy of cmplx.

• Copies the real and imaginary parts.

• In general, this function is provided as both a nontemplate and a template function (see Sec-

tion 3.2, page 34, for an introduction to member templates). Thus, in general, automatic type

conversions of the element type are provided.

• However, the specializations for float, double, and long double restrict copy constructors,

so less safe conversions — from double and long double to float, as well as from long

17.2 Complex Numbers 937

double to double — are not implicitly possible. See Section 17.2.3, page 930, for more infor-

mation about the implications from this.

complex& complex::operator= (const complex& cmplx)

• Assigns the value of complex cmplx.

• Returns *this.

• This function is provided as both a nontemplate and a template function (see Section 3.2, page 34,

for an introduction to member templates). Thus, automatic type conversions of the element type

are provided. (This is also the case for the specializations that are provided by the C++ standard

library.)

complex& complex::operator+= (const complex& cmplx)

complex& complex::operator-= (const complex& cmplx)

complex& complex::operator*= (const complex& cmplx)

complex& complex::operator/= (const complex& cmplx)

• These operations add, subtract, multiply, and divide the value of cmplx to, from, by, and into

*this, respectively, and store the result in *this.

• They return *this.

• These operations are provided as both a nontemplate and a template function (see Section 3.2,

page 34, for an introduction to member templates). Thus, automatic type conversions of the

element type are provided. (This is also the case for the specializations that are provided by the

C++ standard library.)

Note that the assignment operators are the only functions that allow you to modify the value of an

existing complex.

Element Access

T complex::real () const

T real (const complex& cmplx)

T complex::imag () const

T imag (const complex& cmplx)

• These functions return the real or the imaginary part, respectively.

• Note that the return value is not a reference. Thus, you can’t use these functions to modify the

real or the imaginary parts. To change only the real part or only the imaginary part, you must

assign a new complex number (see Section 17.2.3, page 931).

T complex::real (const T& re)

T complex::imag (const T& im)

• These functions assign re or im as new real or imaginary part, respectively.

• Available since C++11. Before C++11, to modify only the real part or only the imaginary part,

you had to assign a new complex number (see Section 17.2.3, page 931).

938 Chapter 17: Numerics

T abs (const complex& cmplx)

• Returns the absolute value (magnitude) of cmplx.

• The absolute value is

√

cmplx .real()
2

+ cmplx .imag()
2
.

T norm (const complex& cmplx)

• Returns the squared absolute value (squared magnitude) of cmplx.

• The squared absolute value is cmplx .real()
2

+ cmplx .imag()
2
.

T arg (const complex& cmplx)

• Returns the angle of the polar representation (ϕ) of cmplx in radians.

• It is equivalent to atan2(cmplx.imag(),cmplx.real()) as the phase angle.

Input/Output Operations

ostream& operator<< (ostream& strm, const complex& cmplx)

• Writes the value of cmplx to the stream strm in the format

(realpart,imagpart)

• Returns strm.

• See Section 17.2.3, page 933, for the exact behavior of this operation.

istream& operator>> (istream& strm, complex& cmplx)

• Reads a new value from strm into cmplx.

• Valid input formats are

(realpart,imagpart)

(realpart)

realpart

• Returns strm.

• See Section 17.2.3, page 934, for the exact behavior of this operation.

Operators

complex operator+ (const complex& cmplx)

• The positive sign.

• Returns cmplx.

complex operator- (const complex& cmplx)

• The negative sign.

• Returns the value of cmplx with the negated real and the negated imaginary parts.

17.2 Complex Numbers 939

complex binary-op (const complex& cmplx1, const complex& cmplx2)

complex binary-op (const complex& cmplx, const T& value)

complex binary-op (const T& value, const complex& cmplx)

• All forms return a complex number with the result of binary-op.

• binary-op may be any of the following:

operator +

operator -

operator *

operator /

• If a scalar value of the element type is passed, it is interpreted as the real part, with the imaginary

part having the default value of its type, which is 0 for fundamental types.

bool comparison (const complex& cmplx1, const complex& cmplx2)

bool comparison (const complex& cmplx, const T& value)

bool comparison (const T& value, const complex& cmplx)

• Returns the result of the comparison of two complex numbers or the result of the comparison of

a complex number with a scalar value.

• comparison may be any of the following:

operator ==

operator !=

• If a scalar value of the element type is passed, it is interpreted as the real part, with the imaginary

part having the default value of its type, which is 0 for fundamental types.

• Note that no operators <, <=, >, and >= are provided.

Transcendental Functions

complex pow (const complex& base, const T& exp)

complex pow (const complex& base, const complex& exp)

complex pow (const T& base, const complex& exp)

• All forms return the complex power of base raised to the expth power, defined as:

exp(exp*log(base))

• The branch cuts are along the negative real axis.

• The value returned for pow(0,0) is implementation defined.

complex exp (const complex& cmplx)

• Returns the complex base e exponential of cmplx.

complex sqrt (const complex& cmplx)

• Returns the complex square root of cmplx in the range of the right-half plane.

• If the argument is a negative real number, the value returned lies on the positive imaginary axis.

• The branch cuts are along the negative real axis.

940 Chapter 17: Numerics

complex log (const complex& cmplx)

• Returns the complex natural base e logarithm of cmplx.

• When cmplx is a negative real number, imag(log(cmplx)) is pi.

• The branch cuts are along the negative real axis.

complex log10 (const complex& cmplx)

• Returns the complex base 10 logarithm of cmplx.

• It is equivalent to log(cmplx)/log(10).

• The branch cuts are along the negative real axis.

complex sin (const complex& cmplx)

complex cos (const complex& cmplx)

complex tan (const complex& cmplx)

complex sinh (const complex& cmplx)

complex cosh (const complex& cmplx)

complex tanh (const complex& cmplx)

complex asin (const complex& cmplx)

complex acos (const complex& cmplx)

complex atan (const complex& cmplx)

complex asinh (const complex& cmplx)

complex acosh (const complex& cmplx)

complex atanh (const complex& cmplx)

• These operations return the corresponding complex trigonometric operation on cmplx.

• The arcus (inverse) operations (those that start with a) are available since C++11.

17.3 Global Numeric Functions 941

17.3 Global Numeric Functions

The header files <cmath> and <cstdlib> provide the global numeric functions that are inherited

from C. Tables 17.11 and 17.12 list these functions.9

Function Effect

pow() Power function

exp() Exponential function

sqrt() Square root

log() Natural logarithm

log10() Base 10 logarithm

sin() Sine

cos() Cosine

tan() Tangent

sinh() Hyperbolic sine

cosh() Hyperbolic cosine

tanh() Hyperbolic tangent

asin() Arcus sine

acos() Arcus cosine

atan() Arcus tangent

atan2() Arcus tangent of a quotient

asinh() Arcus hyperbolic sine (since C++11)

acosh() Arcus hyperbolic cosine (since C++11)

atanh() Arcus hyperbolic tangent (since C++11)

ceil() Floating-point value rounded up to the next integral value

floor() Floating-point value rounded down to the next integral value

fabs() Absolute value of a floating-point value

fmod() Remainder after division for floating-point value (modulo)

frexp() Converts floating-point value to fractional and integral components

ldexp() Multiplies floating-point value by integral power of 2

modf() Extracts signed integral and fractional values from floating-point value

Table 17.11. Functions of the Header File <cmath>

In contrast to C, C++ overloads some operations for different types, which makes some numeric

functions of C obsolete. For example, C provides abs(), labs(), llabs(), fabs(), fabsf(),

and fabsl() to process the absolute value of int, long, long long, double, float(), and long

double, respectively. In C++, abs() is overloaded so that you can use abs() for all these data

types.

9 For historical reasons, some numeric functions are defined in <cstdlib> rather than in <cmath>.

942 Chapter 17: Numerics

Function Effect

abs() Absolute value of an int value

labs() Absolute value of a long

llabs() Absolute value of a long long (since C++11)

div() Quotient and remainder of int division

ldiv() Quotient and remainder of long division

lldiv() Quotient and remainder of long long division (since C++11)

srand() Random-value generator (seed new sequence)

rand() Random-value generator (next number of sequence)

Table 17.12. Numeric Functions of the Header File <cstdlib>

In particular, all numeric functions for integral values are overloaded for types int, long, and

long long, whereas all numeric functions for floating-point values are overloaded for types float,

double, and long double.

However, this has an important side effect: When you pass an integral value where only multiple

floating-point overloads exist, the expression is ambiguous:10

std::sqrt(7) // AMBIGUOUS: sqrt(float), sqrt(double), or

// sqrt(long double)?

Instead, you have to write

std::sqrt(7.0) // OK

or, if you use a variable, you must write

int x;

...

std::sqrt(float(x)) // OK

Library vendors handle this problem completely differently: Some don’t provide the overloading,

some provide standard conforming behavior (overload for all floating-point types), some overload for

all numeric types, and some allow you to switch between different policies by using the preprocessor.

Thus, in practice, the ambiguity might or might not occur. To write portable code, you should always

write the code in a way that the arguments match exactly.

10 Thanks to David Vandevoorde for pointing this out.

17.4 Valarrays 943

17.4 Valarrays

Since C++98, the C++ standard library has provided the class valarray for the processing of arrays

of numeric values.

Purpose of Valarrays

A valarray is a representation of the mathematical concept of a linear sequence of values. It has one

dimension, but you can get the illusion of higher dimensionality by special techniques of computed

indices and powerful subsetting capabilities. Therefore, a valarray can be used as a base for both

vector and matrix operations, as well as for the processing of mathematical systems of polynomial

equations with good performance.

Technically, valarrays are one-dimensional arrays with elements numbered sequentially from

zero. They provide the ability to do some numeric processing for all or a subset of the values in one

or more value arrays. For example, you can process the statement

z = a*x*x + b*x + c

with a, b, c, x, and z being arrays that contain hundreds of numeric values. In doing this, you have

the advantage of a simple notation.

Also, the processing is done with good performance because the classes provide some optimiza-

tions that avoid the creation of temporary objects while processing the whole statement. These are

based on the fact that valarrays are guaranteed to be alias free. That is, any value of a nonconstant

valarray is accessed through a unique path. Thus, operations on these values can get optimized bet-

ter because the compiler does not have to take into account that the data could be accessed through

another path.

In addition, special interfaces and auxiliary classes provide the ability to process only a certain

subset of value arrays or to do some multidimensional processing. In this way, the valarray concept

also helps to implement vector and matrix operations and classes.

The Problem of Valarrays

The valarray classes were not designed very well. In fact, nobody tried to determine whether the

final specification worked. This happened because nobody felt “responsible” for these classes. The

people who introduced valarrays to the C++ standard library left the committee long before the

standard was finished. As a consequence, valarrays are rarely used.

For this reason and due to the thickness of this book, the section that presents class valarry is

provided as a supplementary chapter at http://www.cppstdlib.com.

http://www.cppstdlib.com

This page intentionally left blank

Chapter 18

Concurrency

Modern system architectures usually support running multiple tasks and multiple threads at the same

time. Especially when multiple processor cores are provided, the execution time of programs can

significantly improve when multiple threads are used.

However, executing things in parallel also introduces new challenges. Instead of doing one state-

ment after the other, multiple statements can be performed simultaneously, which can result in such

problems as concurrently accessing the same resources, so that creations, reads, writes, and dele-

tions don’t take place in an expected order and provide unexpected results. In fact, concurrent ac-

cess to data from multiple threads easily can become a nightmare, with such problems as deadlocks,

whereby threads wait for each other, belonging to the simple cases.

Before C++11, there was no support for concurrency in the language and the C++ standard

library, although implementations were free to give some guarantees. With C++11, this has changed.

Both the core language and the library were improved to support concurrent programming (see

Section 4.5, page 55):

• The core language now defines a memory model that guarantees that updates on two different

objects used by two different threads are independent of each other, and has introduced a new

keyword thread_local for defining variables with thread-specific values.

• The library now provides support to start multiple threads, including passing arguments, re-

turn values, and exceptions across thread boundaries, as well as means to synchronize multiple

threads, so we can synchronize both the control flow and data access.

The library provides its support on different levels. For example, a high-level interface allows you to

start a thread including passing arguments and dealing with results and exceptions, which is based on

a couple of low-level interfaces for each of these aspects. On the other hand, there are also low-level

features, such as mutexes or even atomics dealing with relaxed memory orders.

This chapter introduces these library features. Note that the topic of concurrency and the descrip-

tion of the libraries provided for it can fill books. So, here, I introduce general concepts and typical

examples for the average application programmer, with the main focus on the high-level interfaces.

For any details, especially of the tricky low-level problems and features, please refer to the spe-

cific books and articles mentioned. My first and major recommendation for this whole topic of con-

currency is the book C++ Concurrency in Action by Anthony Williams (see [Williams:C++Conc]).

946 Chapter 18: Concurrency

Anthony is one of the world key experts on this topic, and this chapter would not have been possi-

ble without him. Besides a preview of his book, he provided a first implementation of the standard

concurrency library (see [JustThread]), wrote several articles, and gave valuable feedback, which all

helped me to present this topic in what, hopefully, is a useful way. But in addition, I’d like to thank

a few other concurrency experts who helped me to write this chapter: Hans Boehm, Scott Meyers,

Bartosz Milewski, Lawrence Crowl, and Peter Sommerlad.

The chapter is organized as follows:

• First, I introduce various ways to start multiple threads. After both the high-level and the low-

level interfaces are introduced, details of starting a thread are presented.

• Section 18.4, page 982, offers a detailed discussion of the problem of synchronizing threads. The

main problem is concurrent data access.

• Finally, various features to synchronize threads and concurrent data access are discussed:

– Mutexes and locks (see Section 18.5, page 989), including call_once() (see Section 18.5.3,

page 1000)

– Condition variables (see Section 18.6, page 1003)

– Atomics (see Section 18.7, page 1012)

18.1 The High-Level Interface: async() and

Futures

For novices, the best starting point to run your program with multiple threads is the high-level inter-

face of the C++ standard library provided by std::async() and class std::future<>:

• async() provides an interface to let a piece of functionality, a callable object (see Section 4.4,

page 54), run in the background as a separate thread, if possible.

• Class future<> allows you to wait for the thread to be finished and provides access to its out-

come: return value or exception, if any.

This section introduces this high-level interface in detail, extended by an introduction to class

std::shared_future<>, which allows you to wait for and process the outcome of a thread at

multiple places.

18.1.1 A First Example Using async() and Futures

Suppose that we have to compute the sum of two operands returned by two function calls. The usual

way to program that would be as follows:

func1() + func2()

This means that the processing of the operands happens sequentially. The program will first call

func1() and then call func2() or the other way round (according to language rules, the order is

undefined). In both cases, the overall processing takes the duration of func1() plus the duration of

func2() plus computing the sum.

18.1 The High-Level Interface: async() and Futures 947

These days, using the multiprocessor hardware available almost everywhere, we can do better.

We can at least try to run func1() and func2() in parallel so that the overall duration takes only

the maximum of the duration of func1() and func2() plus processing the sum.

Here is a first program doing that:

// concurrency/async1.cpp

#include <future>

#include <thread>

#include <chrono>

#include <random>

#include <iostream>

#include <exception>

using namespace std;

int doSomething (char c)

{

// random-number generator (use c as seed to get different sequences)

std::default_random_engine dre(c);

std::uniform_int_distribution<int> id(10,1000);

// loop to print character after a random period of time

for (int i=0; i<10; ++i) {

this_thread::sleep_for(chrono::milliseconds(id(dre)));

cout.put(c).flush();

}

return c;

}

int func1 ()

{

return doSomething(’.’);

}

int func2 ()

{

return doSomething(’+’);

}

int main()

{

std::cout << "starting func1() in background"

<< " and func2() in foreground:" << std::endl;

948 Chapter 18: Concurrency

// start func1() asynchronously (now or later or never):

std::future<int> result1(std::async(func1));

int result2 = func2(); // call func2() synchronously (here and now)

// print result (wait for func1() to finish and add its result to result2

int result = result1.get() + result2;

std::cout << "\nresult of func1()+func2(): " << result

<< std::endl;

}

To visualize what happens, we simulate the complex processings in func1() and func2() by call-

ing doSomething(), which from time to time prints a character passed as argument1 and finally

returns the value of the passed character as int. “From time to time” is implemented using a

random-number generator to specify intervals, which std::this_thread::sleep_for() uses as

timeouts for the current thread (see Section 17.1, page 907, for details of random numbers, and

Section 18.3.7, page 981, for details of sleep_for()). Note that we need a unique seed for the

constructor of the random-number generator (here, we use the passed character c) to ensure that the

generated random-number sequences differ.

Instead of calling:

int result = func1() + func2();

we call:

std::future<int> result1(std::async(func1));

int result2 = func2();

int result = result1.get() + result2;

So, first, we try to start func1() in the background, using std::async(), and assign the result to

an object of class std::future:

std::future<int> result1(std::async(func1));

Here, async() tries to start the passed functionality immediately asynchronously in a separate

thread. Thus, func1() ideally starts here without blocking the main() function. The returned

future object is necessary for two reasons:

1. It allows access to the “future” outcome of the functionality passed to async(). This outcome

might be either a return value or an exception. The future object has been specialized by the

return type of the functionality started. If just a background task was started that returns nothing

it has to be std::future<void>.

2. It is necessary to ensure that sooner or later, the passed functionality gets called. Note that I

wrote that async() tries to start the passed functionality. If this didn’t happen we need the

future object to force a start when we need the result or want to ensure that the functionality was

1 Output by concurrent threads is possible but might result in interleaved characters (see Section 4.5, page 56).

18.1 The High-Level Interface: async() and Futures 949

performed. Thus, you need the future object even if you are not interested in the outcome of a

functionality started in the background.

To be able to exchange data between the place that starts and controls the functionality and the

returned future object, both refer to a so-called shared state (see Section 18.3, page 973).

Of course, you can also, and usually will, use auto to declare the future (I explicitly wanted to

demonstrate its type here):

auto result1(std::async(func1));

Second, we start func2() in the foreground. This is a normal synchronous function call so that the

program blocks here:

int result2 = func2();

Thus, if func1() successfully was started by async() and didn’t end already, we now have

func1() and func2() running in parallel.

Third, we process the sum. This is the moment when we need the result of func1(). To get it,

we call get() for the returned future:

int result = result1.get() + result2;

Here, with the call of get(), one of three things might happen:

1. If func1() was started with async() in a separate thread and has already finished, you imme-

diately get its result.

2. If func1() was started but has not finished yet, get() blocks and waits for its end and yields

the result.

3. If func1() was not started yet, it will be forced to start now and, like a synchronous function

call, get() will block until it yields the result.

This behavior is important because it ensures that the program still works on a single-threaded envi-

ronment or, if for any other reason, it was not possible for async() to start a new thread.

A call of async() does not guarantee that the passed functionality gets started and finished. If a

thread is available, it will start, but if not — maybe your environment does not support multithreading

or no more threads are available — the call will be deferred until you explicitly say that you need

its outcome (calling get()) or just want the passed functionality to get done (calling wait(); see

Section 18.1.1, page 953).

Thus, the combination of

std::future<int> result1(std::async(func1));

and

result1.get()

allows you to optimize a program in a way that, if possible, func1() runs in parallel while the next

statements in the main thread are processed. If it is not possible to run it in parallel, it will be called

sequentially when get() gets called. This means that, in any case, it is guaranteed that after get(),

func1() was called either asynchronously or synchronously.

Accordingly, two kinds of outputs are possible for this program. If async() could successfully

start func1(), the output might be something like the following:

950 Chapter 18: Concurrency

starting func1() in background and func2() in foreground:

++..++++.++.+.+. ...

result of func1()+func2(): 89

If async() couldn’t start func1(), it will run after func2(), when get() gets called, so that the

program will have the following output:

starting func1() in background and func2() in foreground:

++++++++++.

result of func1()+func2(): 89

So, based on this first example, we can define a general way to make a program faster: You can

modify the program so that it might benefit from parallelization, if the underlying platform supports

it, but still works as before on single-threaded environments. For this, you have to do the following:

• #include <future>

• Pass some functionality that could run on its own in parallel as a callable object to std::async()

• Assign the result to a future<ReturnType> object

• Call get() for the future<> object when you need the result or want to ensure that the

functionality that was started has finished

Note, however, that this applies only when no data race occurs, which means that two threads

concurrently use the same data resulting in undefined behavior (see Section 18.4.1, page 982).

Note that without calling get(), there is no guarantee that func1() will ever be called. As

written, if async() couldn’t start the passed functionality immediately, it will defer the call so that

it gets called only when the outcome of the passed functionality explicitly is requested with get()

(or wait(); see page 953). But without such a request, the termination of main() will even termi-

nate the program without ever calling the background thread.

Note also that you have to ensure that you ask for the result of a functionality started with

async() no earlier than necessary. For example, the following “optimization” is probably not what

you want:

std::future<int> result1(std::async(func1));

int result = func2() + result1.get(); // might call func2() after func1() ends

Because the evaluation order on the right side of the second statement is unspecified, result1.get()

might be called before func2() so that you have sequential processing again.

To have the best effect, in general, your goal should be to maximize the distance between calling

async() and calling get(). Or, to use the terms of [N3194:Futures]: Call early and return late.

If the operation passed to async() doesn’t return anything, async() yields a future<void>,

which is a partial specialization for future<>. In that case, get() returns nothing:

std::future<void> f(std::async(func)); // try to call func asynchronously

...

f.get(); // wait for func to be done (yields void)

Note, finally, that the object passed to async() may be any type of a callable object: function,

member function, function object, or lambda (see Section 4.4, page 54). Thus, you can also pass the

functionality that should run in its own thread inline as a lambda (see Section 3.1.10, page 28):

std::async([]{ ... }) // try to perform ... asynchronously

18.1 The High-Level Interface: async() and Futures 951

Using Launch Policies

You can force async() to not defer the passed functionality, by explicitly passing a launch policy2

directing async() that it should definitely start the passed functionality asynchronously the moment

it is called:

// force func1() to start asynchronously now or throw std::system_error

std::future<long> result1= std::async(std::launch::async, func1);

If the asynchronous call is not possible here, the program will throw a std::system_error excep-

tion (see Section 4.3.1, page 43) with the error code resource_unavailable_try_again, which

is equivalent to the POSIX errno EAGAIN (see Section 4.3.2, page 45).

With the async launch policy, you don’t necessarily have to call get() anymore because, if

the lifetime of the returned future ends, the program will wait for func1() to finish. Thus, if you

don’t call get(), leaving the scope of the future object (here the end of main()) will wait for the

background task to end. Nevertheless, also calling get() here before a program ends makes the

behavior clearer.

If you don’t assign the result of std::async(std::launch::async,...) anywhere, the caller

will block until the passed functionality has finished, which would mean that this is nothing but a

synchronous call.3

Likewise, you can force a deferred execution by passing std::launch:deferred as launch

policy to async(). In fact, with the following you defer func1() until get() is called for f:

std::future<...> f(std::async(std::launch::deferred,

func1)); // defer func1 until get()

Here, it is guaranteed that func1() never gets called without get() (or wait(); see page 953).

This policy especially allows to program lazy evaluation. For example:4

auto f1 = std::async(std::launch::deferred, task1);

auto f2 = std::async(std::launch::deferred, task2);

...

auto val = thisOrThatIsTheCase() ? f1.get() : f2.get();

In addition, explicitly requesting a deferred launch policy might help to simulate the behavior of

async() on a single-threaded environment or simplify debugging (unless race conditions are the

problem).

Dealing with Exceptions

So far, we have discussed only the case when threads and background tasks run successfully. How-

ever, what happens when an exception occurs?

2 The launch policy is a scoped enumeration, so you have to qualify the values (enumerators) with

std::launch or launch (see Section 3.1.13, page 32).
3 Note that there was some controversial understanding and discussion in the standardization committee about

how to interpret the current wording if the result of async() is not used. This was the result of the discussion

and should be the behavior of all implementations.
4 Thanks to Lawrence Crowl for pointing this out and providing an example.

952 Chapter 18: Concurrency

The good news is: Nothing special; get() for futures also handles exceptions. In fact, when

get() is called and the background operation was or gets terminated by an exception, which was/is

not handled inside the thread, this exception gets propagated again. As a result, to deal with ex-

ceptions of background operations, just do the same with get() as you would do when calling the

operation synchronously.

For example, let’s start a background task with an endless loop allocating memory to insert a new

list element:5

// concurrency/async2.cpp

#include <future>

#include <list>

#include <iostream>

#include <exception>

using namespace std;

void task1()

{

// endless insertion and memory allocation

// - will sooner or later raise an exception

// - BEWARE: this is bad practice

list<int> v;

while (true) {

for (int i=0; i<1000000; ++i) {

v.push_back(i);

}

cout.put(’.’).flush();

}

}

int main()

{

cout << "starting 2 tasks" << endl;

cout << "- task1: process endless loop of memory consumption" << endl;

cout << "- task2: wait for <return> and then for task1" << endl;

auto f1 = async(task1); // start task1() asynchronously (now or later or never)

cin.get(); // read a character (like getchar())

cout << "\nwait for the end of task1: " << endl;

try {

5 Trying to consume memory until an exception occurs is bad practice, of course, which on some operating

systems might cause trouble. So beware before trying this example out.

18.1 The High-Level Interface: async() and Futures 953

f1.get(); // wait for task1() to finish (raises exception if any)

}

catch (const exception& e) {

cerr << "EXCEPTION: " << e.what() << endl;

}

}

Sooner or later, the endless loop will raise an exception (probably a bad_alloc exception; see

Section 4.3.1, page 43). This exception will terminate the thread because it isn’t caught. The future

object will keep this state until get() is called. With get(), the exception gets further propagated

inside main().

Now we can summarize the interface of async() and futures as follows: async() gives a pro-

gramming environment the chance to start in parallel some processing that is used later (where

get() is called). In other words, if you have some independent functionality f, you can benefit

from parallelization, if possible, by passing f to async() the moment you have all you need to

call f and replacing the expression where you need the result or outcome of f by a get() for the

future returned by async(). Thus, you have the same behavior but the chance of better performance

because f might run in parallel before the outcome of f is needed.

Waiting and Polling

You can call get() for a future<> only once. After get(), the future is in an invalid state, which

can be checked only by calling valid() for the future. Any call other than destruction will result in

undefined behavior (see Section 18.3.2, page 975, for details).

But futures also provide an interface to wait for a background operation to finish without process-

ing its outcome. This interface is callable more than once and might be combined with a duration or

timepoint to limit the amount of waiting time.

Just calling wait() forces the start of a thread a future represents and waits for the termination

of the background operation:

std::future<...> f(std::async(func)); // try to call func asynchronously

...

f.wait(); // wait for func to be done (might start background task)

Two other wait() functions exist for futures, but those functions do not force the thread to get

started, if it hasn’t started yet:

1. With wait_for(), you can wait for a limited time for an asynchronously running operation by

passing a duration:

std::future<...> f(std::async(func)); // try to call func asynchronously

...

f.wait_for(std::chrono::seconds(10)); // wait at most 10 seconds for func

2. With wait_until(), you can wait until a specific timepoint has reached:

std::future<...> f(std::async(func)); // try to call func asynchronously

...

f.wait_until(std::system_clock::now()+std::chrono::minutes(1));

954 Chapter 18: Concurrency

Both wait_for() and wait_until() return one of the following:

• std::future_status::deferred if async() deferred the operation and no calls to wait()

or get() have yet forced it to start (both function return immediately in this case)

• std::future_status::timeout if the operation was started asynchronously but hasn’t fin-

ished yet (if the waiting expired due to the passed timeout)

• std::future_status::ready if the operation has finished

Using wait_for() or wait_until() especially allows to program so-called speculative execution.

For example, consider a scenario where we must have a usable result of a computation within a

certain time, and it would be nice to have an accurate answer:6

int quickComputation(); // process result ‘‘quick and dirty’’

int accurateComputation(); // process result ‘‘accurate but slow’’

std::future<int> f; // outside declared because lifetime of accurateComputation()

// might exceed lifetime of bestResultInTime()

int bestResultInTime()

{

// define time slot to get the answer:

auto tp = std::chrono::system_clock::now() + std::chrono::minutes(1);

// start both a quick and an accurate computation:

f = std::async (std::launch::async, accurateComputation);

int guess = quickComputation();

// give accurate computation the rest of the time slot:

std::future_status s = f.wait_until(tp);

// return the best computation result we have:

if (s == std::future_status::ready) {

return f.get();

}

else {

return guess; // accurateComputation() continues

}

}

Note that the future f can’t be a local object declared inside bestResultInTime() because when

the time was too short to finish accurateComputation() the destructor of the future would block

until that asynchronous task has finished.

By passing a zero duration or a timepoint that has passed, you can simply “poll” to see whether

a background task has started and/or is (still) running:

future<...> f(async(task)); // try to call task asynchronously

...

6 Thanks to Lawrence Crowl for pointing this out and providing an example.

18.1 The High-Level Interface: async() and Futures 955

// do something while task has not finished (might never happen!)

while (f.wait_for(chrono::seconds(0) != future_status::ready)) {

...

}

Note, however, that such a loop might never end, because, for example, on single-threaded en-

vironments, the call will be deferred until get() is called. So you either should call async()

with the std::launch::async launch policy passed as first argument or check explicitly whether

wait_for() returns std::future_status::deferred:

future<...> f(async(task)); // try to call task asynchronously

...

// check whether task was deferred:

if (f.wait_for(chrono::seconds(0)) != future_status::deferred) {

// do something while task has not finished

while (f.wait_for(chrono::seconds(0) != future_status::ready)) {

...

}

}

...

auto r = f.get(); // force execution of task and wait for result (or exception)

Another reason for an endless loop here might be that the thread executing the loop has the processor

and the other threads are not getting any time to make the future ready. This can reduce the speed of

programs dramatically. The quickest fix is to call yield() (see Section 18.3.7, page 981) inside the

loop:

std::this_thread::yield(); // hint to reschedule to the next thread

and/or sleep for a short period of time.

See Section 5.7, page 143, for details of durations and timepoints, which can be passed as argu-

ments to wait_for() and wait_until(). Note that wait_for() and wait_until() usually will

differ when dealing with system-time adjustments (see Section 5.7.5, page 160, for details).

18.1.2 An Example of Waiting for Two Tasks

This third program demonstrates a few of the abilities just mentioned:

// concurrency/async3.cpp

#include <future>

#include <thread>

#include <chrono>

#include <random>

#include <iostream>

#include <exception>

using namespace std;

956 Chapter 18: Concurrency

void doSomething (char c)

{

// random-number generator (use c as seed to get different sequences)

default_random_engine dre(c);

uniform_int_distribution<int> id(10,1000);

// loop to print character after a random period of time

for (int i=0; i<10; ++i) {

this_thread::sleep_for(chrono::milliseconds(id(dre)));

cout.put(c).flush();

}

}

int main()

{

cout << "starting 2 operations asynchronously" << endl;

// start two loops in the background printing characters . or +

auto f1 = async([]{ doSomething(’.’); });

auto f2 = async([]{ doSomething(’+’); });

// if at least one of the background tasks is running

if (f1.wait_for(chrono::seconds(0)) != future_status::deferred ||

f2.wait_for(chrono::seconds(0)) != future_status::deferred) {

// poll until at least one of the loops finished

while (f1.wait_for(chrono::seconds(0)) != future_status::ready &&

f2.wait_for(chrono::seconds(0)) != future_status::ready) {

...;

this_thread::yield(); // hint to reschedule to the next thread

}

}

cout.put(’\n’).flush();

// wait for all loops to be finished and process any exception

try {

f1.get();

f2.get();

}

catch (const exception& e) {

cout << "\nEXCEPTION: " << e.what() << endl;

}

cout << "\ndone" << endl;

}

18.1 The High-Level Interface: async() and Futures 957

Again, we have an operation doSomething() that from time to time prints a character passed as

argument (see Section 18.1.1, page 948).

Now, with async(), we start doSomething() twice in the background, printing two different

characters using different delays generated by the corresponding random-number sequences:

auto f1 = std::async([]{ doSomething(’.’); });

auto f2 = std::async([]{ doSomething(’+’); });

Again, in multithreading environments, there would now be two operations simultaneously running

that “from time to time” print different characters.

Next, we “poll” to see whether one of the two operations has finished:7

while (f1.wait_for(chrono::seconds(0)) != future_status::ready &&

f2.wait_for(chrono::seconds(0)) != future_status::ready) {

...

this_thread::yield(); // hint to reschedule to the next thread

}

However, because this loop would never end if neither of the tasks were launched in the background

when async() was called, we first have to check whether at least one operation was not deferred:

if (f1.wait_for(chrono::seconds(0)) != future_status::deferred ||

f2.wait_for(chrono::seconds(0)) != future_status::deferred) {

...

}

Alternatively, we could call async() with the std::launch:async launch policy.

When at least one background operation has finished or none of them was started, we write a

newline character and then wait for both loops to end:

f1.get();

f2.get();

We use get() here to process any exception that might have occurred.

In a multithreading environment, the program might, for example, have the following output:

starting 2 operations asynchronously

++.++..+.+..++.+.+

..

done

Note that regarding the order of all three characters ., +, and newline, nothing is guaranteed. It might

be typical that the first character is a dot because this is the output from the first operation started —

thus, started a little bit earlier — but as you can see here, a + might also come first. The characters

. and + might be mixed, but this also is not guaranteed. In fact, if you remove the sleep_for()

statement, which enforces the delay between each printing of the passed character, the first loop is

done before the first context switch to the other thread, so the output might more likely become:

7 Without doing something useful inside the loop, this would just be busy waiting, which means that the problem

would be better solved with condition variables (see Section 18.6.1, page 1003).

958 Chapter 18: Concurrency

starting 2 operations asynchronously

.........

++++++++++

done

This output will also result if the environment doesn’t support multithreading, because in that case,

both calls of doSomething() will be called synchronously with the calls of get().

Also, it is not clear when the newline character gets printed. This might happen before any oth-

er characters are written if the execution of both background tasks is deferred until get() is called.

Then the deferred tasks will be called one after the other:

starting 2 operations asynchronously

.........++++++++++

done

The only thing we know is that newline won’t be printed before one of the loops has finished. It is

not even guaranteed that newline comes directly after the last character of one of the sequences,

because it might take some time until the end of one of the loops is recorded in the corresponding

future object and this recorded state is evaluated (note that this is not real-time processing). For this

reason, you might have an output where a couple of + characters are written after the last dot and

before the newline character:

starting 2 operations asynchronously

.+..+..+..+.+..++

+++

done

Passing Arguments

The previous example demonstrated one way to pass arguments to a background task: You simply

use a lambda (see Section 3.1.10, page 28), which calls the background functionality:

auto f1 = std::async([]{ doSomething(’.’); });

Of course, you can also pass arguments that existed before the async() statement. As usual, you

can pass them by value or by reference:

char c = ’@’;

auto f = std::async([=]{ // =: can access objects in scope by value

doSomething(c); // pass copy of c to doSomething()

});

By defining the capture as [=], you pass a copy of c and all other visible objects to the lambda, so

inside the lambda you can pass this copy of c to doSomething().

However, there are other ways to pass arguments to async() because async() provides the

usual interface for callable objects (see Section 4.4, page 54). For example, if you pass a function

pointer as the first argument to async(), you can pass multiple additional arguments, which are

passed as parameters to the function called:

18.1 The High-Level Interface: async() and Futures 959

char c = ’@’;

auto f = std::async(doSomething,c); // call doSomething(c) asynchronously

You can also pass arguments by reference, but the risk of doing so is that the values passed become

invalid before the background task even starts. This applies to both lambdas and functions directly

called:

char c = ’@’;

auto f = std::async([&]{ doSomething(c); }); // risky!

char c = ’@’;

auto f = std::async(doSomething,std::ref(c)); // risky!

If you control the lifetime of the argument passed so that it exceeds the background task, you can do

it. For example:

void doSomething (const char& c); // pass character by reference

...

char c = ’@’;

auto f = std::async([&]{ doSomething(c); }); // pass c by reference

...

f.get(); // needs lifetime of c until here

But beware: If you pass arguments by reference to be able to modify them from a separate thread,

you can easily run into undefined behavior. Consider the following example where after trying to

start an output loop for printing a character in the background you switch the character printed:

void doSomething (const char& c); // pass character by reference

...

char c = ’@’;

auto f = std::async([&]{ doSomething(c); }); // pass c by reference

...

c = ’_’; // switch output of doSomething() to underscores, if it still runs

f.get(); // needs lifetime of c until here

First, the order of accessing c here and in doSomething() is undefined. Thus, the switch of the

output character might come before, in the middle of, or after the output loop. Even worse, because

we modify c in one thread and another thread reads c, this is a nonsynchronized concurrent access

to the same object (a so-called data race, see Section 18.4.1, page 982), which results in undefined

behavior unless you protect the concurrent access by using mutexes (see Section 18.5, page 989) or

atomics (see Section 18.7, page 1012).

So, let me make clear: If you start to use async(), you should pass all objects necessary to

process the passed functionality by value so that async() uses only local copies. If copying is

too expensive, ensure that the objects are passed as constant reference and that mutable is not used.

In any other case, read Section 18.4, page 982, and make sure that you understand the implications

of your approach.

You can also pass a pointer to a member function to async(). In that case, the first argument after

the member function has to be a reference or a pointer to the object for which the member function

gets called:

960 Chapter 18: Concurrency

class X

{

public:

void mem (int num);

...

};

...

X x;

auto a = std::async(&X::mem, x, 42); // try to call x.mem(42) asynchronously

...

18.1.3 Shared Futures

As we have seen, class std::future provides the ability to process the future outcome of a concur-

rent computation. However, you can process this outcome only once. A second call of get() results

in undefined behavior (according to the C++ standard library, implementations are encouraged but

not required to throw a std::future_error).

However, it sometimes makes sense to process the outcome of a concurrent computation more

than once, especially when multiple other threads process this outcome. For this purpose, the C++

standard library provides class std::shared_future. Here, multiple get() calls are possible and

yield the same result or throw the same exception.

Consider the following example:

// concurrency/sharedfuture1.cpp

#include <future>

#include <thread>

#include <iostream>

#include <exception>

#include <stdexcept>

using namespace std;

int queryNumber ()

{

// read number

cout << "read number: ";

int num;

cin >> num;

// throw exception if none

if (!cin) {

throw runtime_error("no number read");

18.1 The High-Level Interface: async() and Futures 961

}

return num;

}

void doSomething (char c, shared_future<int> f)

{

try {

// wait for number of characters to print

int num = f.get(); // get result of queryNumber()

for (int i=0; i<num; ++i) {

this_thread::sleep_for(chrono::milliseconds(100));

cout.put(c).flush();

}

}

catch (const exception& e) {

cerr << "EXCEPTION in thread " << this_thread::get_id()

<< ": " << e.what() << endl;

}

}

int main()

{

try {

// start one thread to query a number

shared_future<int> f = async(queryNumber);

// start three threads each processing this number in a loop

auto f1 = async(launch::async,doSomething,’.’,f);

auto f2 = async(launch::async,doSomething,’+’,f);

auto f3 = async(launch::async,doSomething,’*’,f);

// wait for all loops to be finished

f1.get();

f2.get();

f3.get();

}

catch (const exception& e) {

cout << "\nEXCEPTION: " << e.what() << endl;

}

cout << "\ndone" << endl;

}

962 Chapter 18: Concurrency

In this example, one thread calls queryNumber() to query an integral value, which is then used by

other threads already running. To perform this task, the result of std::async(), which starts the

query thread, gets assigned to a shared_future object, specialized for the return value:

shared_future<int> f = async(queryNumber);

Thus, a shared future can be initialized by an ordinary future, which moves the state from the

future to the shared future. To be able to use auto for this declaration, you can, alternatively, use the

share() member function:

auto f = async(queryNumber).share();

Internally, all shared future objects share the shared state, which async() creates to store the out-

come of the passed functionality (and store the functionality itself if it is deferred).

The shared future is then passed to the other threads, starting doSomething() with the shared

future as second argument:

auto f1 = async(launch::async,doSomething,’.’,f);

auto f2 = async(launch::async,doSomething,’+’,f);

auto f3 = async(launch::async,doSomething,’*’,f);

Inside each call of doSomething(), we wait for and process the result of queryNumber() by calling

get() for the shared future passed:

void doSomething (char c, shared_future<int> f)

{

try {

int num = f.get(); // get result of queryNumber()

...

}

catch (const exception& e) {

cerr << "EXCEPTION in thread " << this_thread::get_id()

<< ": " << e.what() << endl;

}

}

If queryNumber() throws an exception, which happens if no integral value could be read, each

call of doSomething() will get this exception with f.get(), so that the corresponding exception

handling will occur.

Thus, after reading the value 5 as input, the output might be:

read number: 5

+.+.*.+*+.*.+

done

But if typing ’x’ as input, the output might be:

read number: x

EXCEPTION in thread 3: no number read

EXCEPTION in thread 4: no number read

EXCEPTION in thread 2: no number read

done

18.1 The High-Level Interface: async() and Futures 963

Note that the order of the thread outputs and the ID values are undefined (see Section 18.2.1,

page 967, for details about thread IDs).

Also note that there is a minor difference in the declaration of get() between future and

shared_future:

• For class future<>, get() is provided as follows (T is the type of the returned value):

T future<T>::get(); // general get()

T& future<T&>::get(); // specialization for references

void future<void>::get(); // specialization for void

where the first form returns the moved result or a copy of the result.

• For class shared_future<>, get() is provided as follows:

const T& shared_future<T>::get(); // general get()

T& shared_future<T&>::get(); // specialization for references

void shared_future<void>::get(); // specialization for void

where the first form returns a reference to the result value stored in the shared shared state.

Or, as [N3194:Futures] states:

“The single-use value get() is move optimized (e.g., std::vector<int> v = f.get()). ...

The const reference get() is access optimized (e.g., int i = f.get()[3]).”

This design introduces the risk of lifetime or data race issues if returned values are modified (see

Section 18.3.3, page 977, for details).

You could also pass a shared future by reference (that is, declare it as reference and use

std::ref() to pass it):

void doSomething (char c, const shared_future<int>& f)

auto f1 = async(launch::async,doSomething,’.’,std::ref(f));

Now, instead of using multiple shared future objects all sharing the same shared state, you’d use one

shared future object to perform multiple get()’s (one in each thread). However, this approach is

more risky. As a programmer you have to ensure that the lifetime of f (yes, f, not the shared state

it refers to) is not smaller than for the threads started. In addition, note that the member functions of

shared futures do not synchronize with themselves, although the shared shared state is synchronized.

So, if you do more than just read data, you might need external synchronization techniques (see Sec-

tion 18.4, page 982) to avoid data races, which would result in undefined behavior. Or as Lawrence

Crowl, one of the authors of the concurrency library, wrote in a private communication: “If the code

stays tightly coordinated, passing by reference is fine. If the code may propagate into regions with

an incomplete understanding of the purpose and restrictions, passing by value is better. Copying the

shared future is expensive, but not so expensive as to justify a latent bug in a large system.”

For further details of class shared_future see Section 18.3.3, page 976.

964 Chapter 18: Concurrency

18.2 The Low-Level Interface: Threads and Promises

Besides the high-level interface of async() and (shared) futures, the C++ standard library provides

a low-level interface to start threads and deal with them.

18.2.1 Class std::thread

To start a thread, you simply have to declare an object of class std::thread and pass the desired

task as initial argument, and then either wait for its end or detach it:

void doSomething();

std::thread t(doSomething); // start doSomething() in the background

...

t.join(); // wait for t to finish (block until doSomething() ends)

As for async(), you can pass anything that’s a callable object (function, member function, function

object, lambda; see Section 4.4, page 54) together with possible additional arguments. However,

note again that unless you really know what you are doing, you should pass all objects necessary to

process the passed functionality by value so that the thread uses only local copies (see Section 18.4,

page 982, for some of the problems that might occur otherwise).

In addition, this is a low-level interface, so the interesting thing is what this interface does not

provide compared to async() (see Section 18.1, page 946):

• Class thread doesn’t have a launch policy. The C++ standard library always tries to start the

passed functionality in a new thread. If this isn’t possible, it throws a std::system_error (see

Section 4.3.1, page 43) with the error code resource_unavailable_try_again (see Sec-

tion 4.3.2, page 45).

• You have no interface to process the result or outcome of the thread. The only thing you can get

is a unique thread ID (see Section 18.2.1, page 967).

• If an exception occurs that is not caught inside the thread, the program immediately aborts, call-

ing std::terminate() (see Section 5.8.2, page 162). To pass exceptions to a context outside

the thread exception_ptrs (see Section 4.3.3, page 52) have to be used.

• You have to declare whether, as a caller, you want to wait for the end of the thread (calling

join()) or to detach from the thread started to let it run in the background without any control

(calling detach()). If you don’t do this before the lifetime of the thread object ends or a move

assignment to it happens, the program aborts, calling std::terminate() (see Section 5.8.2,

page 162).

• If you let the thread run in the background and main() ends, all threads are terminated abruptly.

Here is a first complete example:

// concurrency/thread1.cpp

#include <thread>

#include <chrono>

18.2 The Low-Level Interface: Threads and Promises 965

#include <random>

#include <iostream>

#include <exception>

using namespace std;

void doSomething (int num, char c)

{

try {

// random-number generator (use c as seed to get different sequences)

default_random_engine dre(42*c);

uniform_int_distribution<int> id(10,1000);

for (int i=0; i<num; ++i) {

this_thread::sleep_for(chrono::milliseconds(id(dre)));

cout.put(c).flush();

...

}

}

// make sure no exception leaves the thread and terminates the program

catch (const exception& e) {

cerr << "THREAD-EXCEPTION (thread "

<< this_thread::get_id() << "): " << e.what() << endl;

}

catch (...) {

cerr << "THREAD-EXCEPTION (thread "

<< this_thread::get_id() << ")" << endl;

}

}

int main()

{

try {

thread t1(doSomething,5,’.’); // print five dots in separate thread

cout << "- started fg thread " << t1.get_id() << endl;

// print other characters in other background threads

for (int i=0; i<5; ++i) {

thread t(doSomething,10,’a’+i); // print 10 chars in separate thread

cout << "- detach started bg thread " << t.get_id() << endl;

t.detach(); // detach thread into the background

}

cin.get(); // wait for any input (return)

966 Chapter 18: Concurrency

cout << "- join fg thread " << t1.get_id() << endl;

t1.join(); // wait for t1 to finish

}

catch (const exception& e) {

cerr << "EXCEPTION: " << e.what() << endl;

}

}

Here, in main(), we start a couple of threads that perform the statements of doSomething(). Both

main() and doSomething() have corresponding try-catch clauses for the following reasons:

• In main(), creating a thread might throw a std::system_error (see Section 4.3.1, page 43)

with the error code resource_unavailable_try_again.

• In doSomething(), started as std::thread, any uncaught exception would cause the program

to terminate.

For the first thread started in main(), we later wait for it to finish:

thread t1(doSomething,5,’.’); // print five dots in separate thread

...

t1.join(); // wait for t1 to finish

The other threads are detached after they were started, so they still might be running at the end of

main():

for (int i=0; i<5; ++i) {

thread t(doSomething,10,’a’+i); // print 10 chars in separate thread

t.detach(); // detach thread into the background

}

As a consequence, the program would immediately terminate all background threads when main()

ends, which is the case when, due to cin.get(), some input could be read, and due to t1.join(),

the fifth dot as last character of the thread performing doSomething(5,’.’) was written. Because

the waiting for the input and the printing of the dots run in parallel, it doesn’t matter what happens

first.

For example, the program might have the following output if I press Return after the second dot

was printed:

- started fg thread 1

- detach started bg thread 2

- detach started bg thread 3

- detach started bg thread 4

- detach started bg thread 5

- detach started bg thread 6

ecad.dbcebabd.a

- join fg thread 1

b.ceade.bbcadbe.

18.2 The Low-Level Interface: Threads and Promises 967

Beware of Detached Threads

Detached threads can easily become a problem if they use nonlocal resources. The problem is that

you lose control of a detached thread and have no easy way to find out whether and how long it runs.

Thus, make sure that a detached thread does not access any objects after their lifetime has ended. For

this reason, passing variables and objects to a thread by reference is always a risk. Passing arguments

by value is strongly recommended.

Note, however, that the lifetime problem also applies to global and static objects, because when

the program exits, the detached thread might still run, which means that it might access global or

static objects that are already destroyed or under destruction. Unfortunately, this would result in

undefined behavior.8

So, as a general rule for detached threads, take into account the following:

• Detached threads should prefer to access local copies only.

• If a detached thread uses a global or static object, you should do one of the following:

– Ensure that these global/static objects are not destroyed before all detached threads accessing

them are finished (or finished accessing them). One approach to ensure this is to use condition

variables (see Section 18.6, page 1003), which the detached threads use to signal that they

have finished. Before leaving main() or calling exit(), you’d have to set these condition

variables then to signal that a destruction is possible.9

– End the program by calling quick_exit(), which was introduced exactly for this reason to

end a program without calling the destructors for global and static objects (see Section 5.8.2,

page 162).

Because std::cin, std::cout, and std::cerr and the other global stream objects (see Sec-

tion 15.2.2, page 751) according to the standard “are not destroyed during program execution,”

access to these objects in detached threads should introduce no undefined behavior. However, other

problems, such as interleaved characters, might occur.

Nevertheless, as a rule of thumb keep in mind that the only safe way to terminate a detached

thread is with one of the “...at_thread_exit()” functions, which force the main thread to wait for

the detached thread to truly finish. Or you can just ignore this feature, according to a reviewer who

wrote: “Detached threads is one of those things that should be moved into the chapter on dangerous

features that almost no one needs.”

Thread IDs

As you can see, the program prints thread IDs provided either by the thread object or inside a thread,

using namespace this_thread (also provided by <thread>):

void doSomething (int num, char c)

{

...

8 Thanks to Hans Boehm and Anthony Williams for pointing out this problem.
9 Ideally, you should use notify_all_at_thread_exit() (see Section 18.6.4, page 1011) to set the condition

variable to ensure that all thread local variables are destructed.

968 Chapter 18: Concurrency

cerr << "THREAD-EXCEPTION (thread "

<< this_thread::get_id() << ")" << endl;

...

}

thread t(doSomething,5,’.’); // print five dots in separate thread

cout << "- started fg thread " << t1.get_id() << endl;

This ID is a special type std::thread::id, which is guaranteed to be unique for each thread. In

addition, class id has a default constructor that yields a unique ID representing “no thread”:

std::cout << "ID of \"no thread\": " << std::thread::id()

<< std::endl;

The only operations allowed for thread IDs are comparisons and calling the output operator for a

stream. You should not make any further assumptions, such as that “no thread” has ID 0 or the

main thread has ID 1. In fact, an implementation might generate these IDs on the fly when they are

requested, not when the threads are started, so the number of the main thread depends on the number

of requests for thread IDs before. So, the following code:

std::thread t1(doSomething,5,’.’);

std::thread t2(doSomething,5,’+’);

std::thread t3(doSomething,5,’*’);

std::cout << "t3 ID: " << t3.get_id() << std::endl;

std::cout << "main ID: " << std::this_thread::get_id() << std::endl;

std::cout << "nothread ID: " << std::thread::id() << std::endl;

might print:

t3 ID: 1

main ID: 4

nothread ID: 0

or:

t3 ID: 3

main ID: 4

nothread ID: 0

or:

t3 ID: 1

main ID: 2

nothread ID: 3

or even characters as thread IDs.

Thus, the only way to identify a thread, such as a master thread, is to compare it to its saved ID

when it was started:

std::thread::id masterThreadID;

18.2 The Low-Level Interface: Threads and Promises 969

void doSomething()

{

if (std::this_thread::get_id() == masterThreadID) {

...

}

...

}

std::thread master(doSomething);

masterThreadID = master.get_id();

...

std::thread slave(doSomething);

...

Note that IDs of terminated threads might be reused again.

For further details of class thread, see Section 18.3.6, page 979.

18.2.2 Promises

Now the question arises as to how you can pass parameters and handle exceptions between threads

(which also explains how a high-level interface, such as async(), is implemented). Of course, to

pass values to a thread, you can simply pass them as arguments. And if you need a result, you can

pass return arguments by reference, just as described for async() (see Section 18.1.2, page 958).

However, another general mechanism is provided to pass result values and exceptions as out-

comes of a thread: class std::promise. A promise object is the counterpart of a future object.

Both are able to temporarily hold a shared state, representing a (result) value or an exception. While

the future object allows you to retrieve the data (using get()), the promise object enables you to

provide the data (by using one of its set_...() functions). The following example demonstrates this:

// concurrency/promise1.cpp

#include <thread>

#include <future>

#include <iostream>

#include <string>

#include <exception>

#include <stdexcept>

#include <functional>

#include <utility>

void doSomething (std::promise<std::string>& p)

{

try {

// read character and throw exceptiopn if ’x’

970 Chapter 18: Concurrency

std::cout << "read char (’x’ for exception): ";

char c = std::cin.get();

if (c == ’x’) {

throw std::runtime_error(std::string("char ")+c+" read");

}

...

std::string s = std::string("char ") + c + " processed";

p.set_value(std::move(s)); // store result

}

catch (...) {

p.set_exception(std::current_exception()); // store exception

}

}

int main()

{

try {

// start thread using a promise to store the outcome

std::promise<std::string> p;

std::thread t(doSomething,std::ref(p));

t.detach();

...

// create a future to process the outcome

std::future<std::string> f(p.get_future());

// process the outcome

std::cout << "result: " << f.get() << std::endl;

}

catch (const std::exception& e) {

std::cerr << "EXCEPTION: " << e.what() << std::endl;

}

catch (...) {

std::cerr << "EXCEPTION " << std::endl;

}

}

After including <future>, where promises also are declared, you can declare a promise object,

specialized for the value to hold or return (or void if none):

std::promise<std::string> p; // hold string result or exception

18.2 The Low-Level Interface: Threads and Promises 971

The promise internally creates a shared state (see Section 18.3, page 973), which can be used here to

store a value of the corresponding type or an exception, and can be used in a future object to retrieve

this data as the outcome of the thread.

This promise is then passed to a task running as a separate thread:

std::thread t(doSomething,std::ref(p));

By using std::ref() (see Section 5.4.3, page 132), we ensure that the promise is passed by refer-

ence so that we can manipulate its state (copying is not possible for promises).

Now, inside the thread, we can store either a value or an exception by calling set_value() or

set_exception(), respectively:

void doSomething (std::promise<std::string>& p)

{

try {

...

p.set_value(std::move(s)); // store result

}

catch (...) {

p.set_exception(std::current_exception()); // store exception

}

}

To store an exception, the convenience function std::current_exception(), which is defined in

<exception>, is used (see Section 4.3.3, page 52). It yields the currently handled exception as type

std::exception_ptr or nullptr if we currently do not handle an exception. The promise object

stores this exception internally.

The moment we store a value or an exception in a shared state, it becomes ready. Thus, you can

now retrieve its value somewhere else. But for the retrieval, we need a corresponding future object

sharing the same shared state. For this reason, inside main(), by calling get_future() for the

promise object we create a future object, which has the usual semantics introduced in Section 18.1,

page 946. We could also have created the future object before starting the thread:

std::future<std::string> f(p.get_future());

Now, with get(), we either get the stored result or the stored exception gets rethrown (internally,

calling std::rethrow_exception() for the stored exception_ptr):

f.get(); // process the outcome of the thread

Note that get() blocks until the shared state is ready, which is exactly the case when set_value()

or set_exception() was performed for the promise. It does not mean that the thread setting the

promise has ended. The thread might still perform other statements, such as even store additional

outcomes into other promises.

If you want the shared state to become ready when the thread really ends — to ensure the

cleanup of thread local objects and other stuff before the result gets processed — you have to call

set_value_at_thread_exit() or set_exception_at_thread_exit() instead:

void doSomething (std::promise<std::string>& p)

{

972 Chapter 18: Concurrency

try {

...

p.set_value_at_thread_exit(std::move(s));

}

catch (...) {

p.set_exception_at_thread_exit(std::current_exception());

}

}

Note that using promises and futures is not limited to multithreading problems. Even in single-

threaded applications, we could use a promise to hold a result/value or an exception that we want to

process later by using a future.

Note also that we can’t store both a value and an exception. Any attempt to do this would result in

a std::future_error with the error code std::future_errc::promise_already_satisfied

(see Section 4.3.1, page 43).

For further details of class promise, see Section 18.3.4, page 977.

18.2.3 Class packaged_task<>

async() gives you a handle to deal with the outcome of a task that you try to start immediately in

the background. Sometimes, however, you need to process the outcome of a background task that

you don’t necessarily start immediately. For example, another instance, such as a thread pool, might

control when and how many background tasks run simultaneously. In this case, instead of

double compute (int x, int y);

std::future<double> f = std::async(compute,7,5); // try to start a background task

...

double res = f.get(); // wait for its end and process result/exception

you can program:

double compute (int x, int y);

std::packaged_task<double(int,int)> task(compute); // create a task

std::future<double> f = task.get_future(); // get its future

...

task(7,5); // start the task (typically in a separate thread)

...

double res = f.get(); // wait for its end and process result/exception

where the task itself is usually, but not necessarily, started in a separate thread.

Thus, class std::packaged_task<>, also defined in <future>, holds both the functionality to

perform and its possible outcome (the so-called shared state of the functionality; see Section 18.3,

page 973).

For further details of class packaged_task, see Section 18.3.5, page 977.

18.3 Starting a Thread in Detail 973

18.3 Starting a Thread in Detail

Having introduced the high- and low-level interfaces to (possibly) start threads and deal with return

values or exceptions, let’s summarize the concepts and provide some details not mentioned yet.

call

std::async()
return values or exceptions automatically are

provided by a std::future<>

Starting

the Thread

Returning

Exceptions

create object of class

std::thread

set return values or exceptions in a

std::promise<>

and process it by a std::future<>

call task of class

std::packaged_task
return values or exceptions automatically are

provided by a std::future<>

Returning

Values

u
s
e

 a
 s

h
a
re

d
 s

ta
te

create object of class

std::thread
through type

std::exception_ptr
use shared variables

(synchronization required)

Figure 18.1. Layers of Thread Interfaces

Conceptionally, we have the following layers to start threads and deal with their return values or

exceptions (see Figure 18.1):

• With the low-level interface of class thread, we can start a thread. To return data, we need

shared variables (global or static or passed as argument). To return exceptions, we could use the

type std::exception_ptr, which is returned by std::current_exception() and can be

processed by std::rethrow_exception() (see Section 4.3.3, page 52).

• The concept of a shared state allows us to deal with return values or exceptions in a more conve-

nient way. With the low-level interface of a promise, we can create such a shared state, which

we can process by using a future.

• At a higher level, with class packaged_task or async(), the shared state is automatically

created and set with a return statement or an uncaught exception.

• With packaged_task, we can create an object with a shared state where we explicitly have to

program when to start the thread.

• With std::async(), we don’t have to care when the thread exactly gets started. The only thing

we know is that we have to call get() when we need the outcome.

Shared States

As you can see, a central concept used by almost all these features is a shared state. It allows the

objects that start and control a background functionality (a promise, a packaged task, or async()) to

974 Chapter 18: Concurrency

communicate with the objects that process its outcome (a future or a shared future). Thus, a shared

state is able to hold the functionality to start, some state information, and its outcome (a return value

or an exception).

A shared state is ready when it holds the outcome of its functionality (when a value or an excep-

tion is ready for retrieval). A shared state is usually implemented as a reference-counted object that

gets destroyed when the last object referring to it releases it.

18.3.1 async() in Detail

In general, as introduced in Section 18.1, page 946, std::async() is a convenience function to

start some functionality in its own thread if possible. As a result, you can parallelize functionality if

the underlying platform supports it but not lose any functionality if it doesn’t.

However, the exact behavior of async() is complex and highly depends on the launch policy,

which can be passed as the first optional argument. For this reason, each of the three standardized

forms of how async() can be called as described here from an application programmer’s point of

view:

future async (std::launch::async, F func, args...)

• Tries to start func with args as an asynchronous task (parallel thread).

• If this is not possible, it throws an exception of type std::system_error with the error code

std::errc::resource_unavailable_try_again (see Section 4.3.1, page 43).

• Unless the program aborts, the started thread is guaranteed to finish before the program ends.

• The thread will finish:

– If get() or wait() is called for the returned future

– If the last object that refers to the shared state represented by the returned future gets

destructed

• This implies that the call of async() will block until func has finished if the return value of

async() is not used.

future async (std::launch::deferred, F func, args...)

• Passes func with args as a “deferred” task, which gets synchronously called when wait() or

get() for the returned future gets called.

• If neither wait() nor get() is called, the task will never start.

future async (F func, args...)

• Is a combination of calling async() with launch policies std::launch:async and

std::launch::deferred. According to the current situation, one of the two forms gets cho-

sen. Thus, async() will defer the call of func if an immediate call in async launch policy is not

possible.

• Thus, if async() can start a new thread for func, it gets started. Otherwise, func is deferred until

get() or wait() gets called for the returned future.

18.3 Starting a Thread in Detail 975

• The only guarantee this call gives is that after calling get() or wait() for the returned future,

func will have been called and finished.

• Without calling get() or wait() for the returned future, func might never get called.

• Note that this form of async() will not throw a system_error exception if it can’t call func

asynchronously (it might throw a system error for other reasons, though).

For all these forms of async(), func might be a callable object (function, member function, function

object, lambda; see Section 4.4, page 54). See Section 18.1.2, page 958, for some examples.

Passing a launch policy of std::launch::async|std::launch::deferred to async() re-

sults in the same behavior as passing no launching policy. Passing 0 as launch policy results in

undefined behavior (this case is not covered by the C++ standard library, and different implementa-

tions behave differently).

18.3.2 Futures in Detail

Class future<>,10 introduced in Section 18.1, page 946, represents the outcome of an operation. It

can be a return value or an exception but not both. The outcome is managed in a shared state, which

in general can be created by std::async(), a std::packaged_task, or a promise. The outcome

might not exist yet; thus, the future might also hold everything necessary to generate the outcome.

If the future was returned by async() (see Section 18.3.1, page 974) and the associated task was

deferred, get() or wait() will start it synchronously. Note that wait_for() and wait_until()

do not start a deferred task.

The outcome can be retrieved only once. For this reason, a future might have a valid or invalid

state: valid means that there is an associated operation for which the result or exception was not

retrieved yet.

Table 18.1 lists the operations available for class future<>.

Note that the return value of get() depends on the type future<> is specialized with:

• If it is void, get() also has type void and returns nothing.

• If the future is parametrized with a reference type, get() returns a reference to the return value.

• Otherwise, get() returns a copy or move assigns the return value, depending on whether the

return type supports move assignment semantics.

Note that you can call get() only once, because get() invalidates the future’s state.

For a future that has an invalid state, calling anything else but the destructor, the move as-

signment operator, or valid() results in undefined behavior. For this case, the standard recom-

mends throwing an exception of type future_error (see Section 4.3.1, page 43) with the code

std::future_errc::no_state, but this is not required.

Note that neither a copy constructor nor a copy assignment operator is provided, ensuring that no

two objects can share the state of a background operation. You can move the state to another future

object only by calling the move constructor or the move assignment operator. However, the state

10 Originally, the class was named unique_future in the standardization process.

976 Chapter 18: Concurrency

Operation Effect

future f Default constructor; creates a future with an invalid state

future f(rv) Move constructor; creates a new future, which gets the state

of rv, and invalidates the state of rv

f.~future() Destroys the state and destroys *this

f = rv Move assignment; destroys the old state of f, gets the state

of rv, and invalidates the state of rv

f.valid() Yields true if f has a valid state, so you can call the

following member functions

f.get() Blocks until the background operation is done (forcing a

deferred associated functionality to start synchronously),

yields the result (if any) or raises any exception that

occurred, and invalidates its state

f.wait() Blocks until the background operation is done (forcing a

deferred associated functionality to start synchronously)

f.wait_for(dur) Blocks for duration dur or until the background operation is

done (a deferred thread is not forced to start)

f.wait_until(tp) Blocks until timepoint tp or until the background operation

is done (a deferred thread is not forced to start)

f.share() Yields a shared_future with the current state and

invalidates the state of f

Table 18.1. Operations of Class future<>

of background tasks can be shared in multiple objects by using a shared_future object, which

share() yields.

If the destructor is called for a future that is the last owner of a shared state and the associated

task has started but not finished yet, the destructor blocks until the end of the task.

18.3.3 Shared Futures in Detail

Class shared_future<> (introduced in Section 18.1.3, page 960) provides the same semantics and

interface as class future (see Section 18.3.2, page 975) with the following differences:

• Multiple calls of get() are allowed. Thus, get() does not invalidate its state.

• Copy semantics (copy constructor, copy assignment operator) are supported.

• get() is a constant member function returning a const reference to the value stored in the

shared state (which means that you have to ensure that the lifetime of the returned reference is

shorter than the shared state). For class std::future, get() is a nonconstant member function

returning a move-assigned copy (or a copy if that’s not supported), unless the class is specialized

by a reference type.

• Member share() is not provided.

18.3 Starting a Thread in Detail 977

The fact that the return value of get() is not copied creates some risks. Besides lifetime issues, data

races are possible. Data races occur with unclear order of conflicting actions on the same data, such

as nonsynchronized reads and writes from multiple threads, and result in undefined behavior (see

Section 18.4.1, page 982).

The same problem applies to exceptions. One example discussed during the standardization was

when an exception was caught by reference and then modified:

try {

shared_future<void> sp = async(f);

sp.get();

}

catch (E& e) {

e.modify(); // risk of undefined behavior due to a data race

}

This code introduces a data race if another thread processes the exception. To solve this issue, it

was proposed to require that current_exception() and rethrow_exception(), which are used

internally to pass exceptions between threads, create copies of the exceptions. However, the costs

for this change were considered too high. As a result, programmers have to know what they’re doing

when dealing with nonconstant references used in different threads.

18.3.4 Class std::promise in Detail

An object of class std::promise, introduced in Section 18.2.2, page 969, is provided to temporar-

ily hold a (return) value or an exception. Or, in general, a promise can hold a shared state (see

Section 18.3, page 973). The shared state is said to be ready if it holds a value or an exception.

Table 18.2 lists the operations available for class promise.

Note that you can call get_future() only once. A second call throws a std::future_error

with the error code std::future_errc::future_already_retrieved. In general, if no shared

state is associated, a std::future_error with the error code std::future_errc::no_state

might be thrown.

All member functions that set the value or exception are thread safe. That is, they behave as if a

mutex ensures that only one of them can update the shared state at a time.

18.3.5 Class std::packaged_task in Detail

Class std::packaged_task<> is provided to hold both some functionality to perform and its out-

come (the so-called shared state of the functionality, see Section 18.3, page 973), which might be a

return value or an exception raised by the functionality. You can initialize the packaged task with the

associated functionality. Then, you can call this functionality by calling operator () for the packaged

task. Finally, you can process the outcome by getting a future for the packaged task. Table 18.3 lists

the operations available for class packaged_task.

Any exception caused by the constructor taking the task, such as if no memory is available, is

also stored in its shared state.

978 Chapter 18: Concurrency

Operation Effect

promise p Default constructor; creates a promise with

shared state

promise p(allocator_arg,alloc) Creates a promise with shared state, which uses

alloc as allocator

promise p(rv) Move constructor; creates a new promise object,

which gets the state of rv and removes the shared

state from rv

p.~promise() Releases the shared state and if it is not ready (no

value or exception), stores a

std::future_error exception with condition

broken_promise

p = rv Move assignment; move assigns the state of rv to

p and if p was not ready, stores a

std::future_error exception with condition

broken_promise there

swap(p1,p2) Swaps states of p1 and p2

p1.swap(p2) Swaps states of p1 and p2

p.get_future() Yields a future object to retrieve the shared state

(outcome of a thread)

p.set_value(val) Sets val as (return) value and makes the state

ready (or throws std::future_error)

p.set_value_at_thread_exit(val) Sets val as (return) value and makes the state

ready at the end of the current thread (or throws

std::future_error)

p.set_exception(e) Sets e as exception and makes the state ready (or

throws std::future_error)

p.set_exception_at_thread_exit(e) Sets e as exception and makes the state ready at

the end of the current thread (or throws

std::future_error)

Table 18.2. Operations of Objects of Class promise

Trying to call the task or get_future() if no state is available throws a std::future_error

(see Section 4.3.1, page 43) with the error code std::future_errc::no_state. Calling

get_future() a second time throws an exception of type std::future_error with the error code

std::future_errc::future_already_retrieved. Calling the task a second time throws a

std::future_error with the error code std::future_errc::promise_already_satisfied.

The destructor and reset() abandon the shared state, which means that the packaged task

releases the shared state and, if the shared state was not ready yet, makes the state ready with a

std::future_error with error code std::future_errc::broken_promise stored as outcome.

As usual, the make_ready_at_thread_exit() function is provided to ensure the cleanup of

local objects and other stuff of a thread ending the task before the result gets processed.

18.3 Starting a Thread in Detail 979

Operation Effect

packaged_task pt Default constructor; creates a packaged task with

no shared state and no stored task

packaged_task pt(f) Creates an object for the task f

packaged_task pt(alloc,f) Creates an object for the task f using allocator

alloc

packaged_task pt(rv) Move constructor; moves the packaged task rv

(task and state) to pt (rv has no shared state

afterward)

pt.~packaged_task() Destroys *this (might make shared state ready)

pt = rv Move assignment; move assigns the packaged

task rv (task and state) to pt (rv has no shared

state afterward)

swap(pt1,pt2) Swaps packaged tasks

pt1.swap(pt2) Swaps packaged tasks

pt.valid() Yields true if pt has a shared state

pt.get_future() Yields a future object to retrieve the shared state

(outcome of the task)

pt(args) Calls the task (with optional arguments) and

makes the shared state ready

pt.make_ready_at_thread_exit(args) Calls the task (with optional arguments) and at

thread exit makes the shared state ready

pt.reset() Creates a new shared state for pt (might make

the old shared state ready)

Table 18.3. Operations of Class packaged_task<>

18.3.6 Class std::thread in Detail

An object of class std::thread, introduced in Section 18.2.1, page 964, is provided to start and

represent a thread. These objects are intended to map one-to-one with threads provided by the

operating system. Table 18.4 lists the operations available for class thread.

The association between a thread object and a thread starts by initializing (or move copy/assign)

a callable object (see Section 4.4, page 54) to it with optional additional arguments. The association

ends either with join() (waiting for the outcome of the thread) or with detach() (explicitly losing

the association to the thread). One or the other must be called before the lifetime of a thread object

ends or a new thread gets move assigned. Otherwise, the program aborts with std::terminate()

(see Section 5.8.2, page 162).

If the thread object has an associated thread, it is said to be joinable. In that case, joinable()

yields true, and get_id() yields a thread ID that differs from std::thread::id().

Thread IDs have their own type std::thread::id. Its default constructor yields a unique ID

representing “no thread.” thread::get_id() yields this value if no thread is associated or another

unique ID if the thread object is associated with a thread (is joinable). The only supported operations

980 Chapter 18: Concurrency

Operation Effect

thread t Default constructor; creates a nonjoinable thread object

thread t(f,...) Creates a thread object, representing f started as thread (with

additional args), or throws std::system_error

thread t(rv) Move constructor; creates a new thread object, which gets the state of

rv, and makes rv nonjoinable

t.~thread() Destroys *this; calls std::terminate() if the object is joinable

t = rv Move assignment; move assigns the state of rv to t or calls

std::terminate() if t is joinable

t.joinable() Yields true if t has an associated thread (is joinable)

t.join() Waits for the associated thread to finish (throws std::system_error

if the thread is not joinable) and makes the object nonjoinable

t.detach() Releases the association of t to its thread while the thread continues

(throws std::system_error if the thread is not joinable) and makes

the object nonjoinable

t.get_id() Returns a unique std::thread::id if joinable or

std::thread::id() if not

t.native_handle() Returns a platform-specific type native_handle_type for

nonportable extensions

Table 18.4. Operations of Objects of Class thread

for thread IDs are to compare them or to write them to an output stream. In addition, a hash function

is provided to manage thread IDs in unordered containers (see Section 7.9, page 356). A thread ID

of a terminated thread might be reused again. Don’t make any other assumptions about thread IDs

other than that, especially regarding their values. See Section 18.2.1, page 968, for details.

Note that detached threads should not access objects whose lifetimes have ended. This implies

the problem that when ending the program, you have to ensure that detached threads don’t access

global/static objects (see Section 18.2.1, page 967).

In addition, class std::thread provides a static member function to query a hint for the possible

number of parallel threads:

unsigned int std::thread::hardware_concurrency ()

• Returns the number of possible threads.

• This value is just a hint and does not guarantee to be exact.

• Returns 0 if the number is not computable or well defined.

18.3 Starting a Thread in Detail 981

18.3.7 Namespace this_thread

For any thread, including the main thread, <thread> declares namespace std::this_thread,

which provides the thread-specific global functions listed in Table 18.5.

Operation Effect

this_thread::get_id() Yields the ID of the current thread

this_thread::sleep_for(dur) Blocks the thread for duration dur

this_thread::sleep_until(tp) Blocks the thread until timepoint tp

this_thread::yield() Hint to reschedule to the next thread

Table 18.5. Thread-Specific Operations of Namespace std::this_thread

Note that sleep_for() and sleep_until() usually will differ when dealing with system-time

adjustments (see Section 5.7.5, page 160, for details).

The operation this_thread::yield() is provided to give a hint to the system that it is useful

to give up the remainder of the current thread’s time slice so that the runtime environment can

reschedule to allow other threads to run. One typical example is to give up control when you wait or

“poll” for another thread (see Section 18.1.1, page 955) or an atomic flag to be set by another thread

(see Section 18.4.3, page 986):11

while (!readyFlag) { // loop until data is ready

std::this_thread::yield();

}

As another example, when you fail to get a lock or a mutex while locking multiple locks/mutexes at

a time, you can make the application faster by using yield() prior to trying the locks/mutexes in a

different order.12

11 Thanks to Bartosz Milewski for this example.
12 Thanks to Howard Hinnant for this example.

982 Chapter 18: Concurrency

18.4 Synchronizing Threads, or the Problem of

Concurrency

Using multiple threads is almost always combined with concurrent data access. Rarely are multiple

threads run independently of one another. Threads might provide data processed by other threads or

prepare preconditions necessary to start other processes.

This is where multithreading becomes tricky. Many things can go wrong. Or, put another way,

many things can behave differently from what the naive (and even the experienced) programmer

might expect.

So, before discussing different ways to synchronize threads and concurrent data access, we have

to understand the problem. Then we can discuss the following techniques to synchronize threads:

• Mutexes and locks (see Section 18.5, page 989), including call_once() (see Section 18.5.3,

page 1000)

• Condition variables (see Section 18.6, page 1003)

• Atomics (see Section 18.7, page 1012)

18.4.1 Beware of Concurrency!

Before discussing the details of the problems of concurrency, let me formulate a first rule just in case

you want to start programming without going into the depth of this subsection. If you learn one rule

about dealing with multiple threads, it should be the following:

The only safe way to concurrently access the same data by multiple threads without

synchronization is when ALL threads only READ the data.

By “the same data” I mean data that uses the same memory location. If different threads concurrently

access different variables or objects or different members of them, there is no problem because, since

C++11, each variable except a bitfield is guaranteed to have its own memory location.13 The only

exceptions are bitfields, because different bitfields might share a memory location so that accessing

different bitfields means shared access of the same data.

However, when two or more threads concurrently access the same variable or object or member

of it and at least one of the threads performs modifications, you can easily get into deep trouble if

you don’t synchronize that access. This is what is called a data race in C++. In the C++11 standard,

a data race is defined as “two conflicting actions in different threads, at least one of which is not

atomic, and neither happens before the other.” A data race always results in undefined behavior.

As always with race conditions, the problem is that your code might often do what you intended,

but it will not always work, which is one of the nastiest problems we can face in programming. Just

by using other data, going into production mode, or switching a platform might suddenly break your

code. So it’s probably a good idea to care about concurrent data access if you use multiple threads.

13 The guarantee of separate memory locations for different objects was not given before C++11. C++98/C++03

was a standard for single-threaded applications only. So, strictly speaking, before C++11 concurrent access to

different objects resulted in undefined behavior, although in practice it usually caused no problems.

18.4 Synchronizing Threads, or the Problem of Concurrency 983

18.4.2 The Reason for the Problem of Concurrent Data Access

To understand the problems of concurrent data access, we have to understand which guarantees

C++ gives regarding the usage of concurrency. Note that a programming language such as C++

always is an abstraction to support different platforms and hardware, which provide different abilities

and interfaces according to their architecture and purpose. Thus, a standard such as C++ specifies

the effect of statements and operations and not the corresponding generated assembler code. The

standard describes the what, not the how.

In general, the behavior is not defined so precisely that there is only one way to implement it.

In fact, behavior might even explicitly be undefined. For example, the order of argument evaluation

of a function call is unspecified. A program expecting a specific evaluation order would result in

undefined behavior.

Thus, the important question is: Which guarantees does a language give? Programmers should

not expect more, even though the additional guarantees might be “obvious.” In fact, according to the

so-called as-if rule, each compiler can optimize code as long as the behavior of the program visible

from the outside behaves the same. Thus, the generated code is a black box and can vary as long as

the observable behavior remains stable. To quote the C++ standard:

An implementation is free to disregard any requirement of this International Standard as

long as the result is as if the requirement had been obeyed, as far as can be determined

from the observable behavior of the program. For instance, an actual implementation

need not evaluate part of an expression if it can deduce that its value is not used and that

no side effects affecting the observable behavior of the program are produced.

Any undefined behavior is provided to give both compiler and hardware vendors the freedom and

ability to generate the best code possible, whatever their criteria for “best” are. Yes, it applies to

both: Compilers might unroll loops, reorder statements, eliminate dead code, prefetch data, and in

modern architectures, for example, a hardware buffer might reorder loads or stores.

Reorderings can be useful to improve the speed of the program, but they might break the behavior.

To be able to benefit from fast speed where useful, safety is not the default. Thus, especially for

concurrent data access, we have to understand which guarantees are given.

18.4.3 What Exactly Can Go Wrong (the Extent of the

Problem)

To give compilers and hardware enough freedom to optimize code, C++ does not in general give a

couple of guarantees you might expect. The reason is that applying these guarantees in all cases,

not only where useful, would cost too much in performance. In fact, in C++, we might have the

following problems:

• Unsynchronized data access: When two threads running in parallel read and write the same

data, it is open which statement comes first.

984 Chapter 18: Concurrency

• Half-written data: When one thread reads data, which another thread modifies, the reading

thread might even read the data in the middle of the write of the other thread, thus reading neither

the old nor the new value.

• Reordered statements: Statements and operations might be reordered so that the behavior of

each single thread is correct, but in combination of all threads, expected behavior is broken.

Unsynchronized Data Access

The following code ensures that f() is called for the absolute value of val, negating the argument

val if it is negative:

if (val >= 0) {

f(val); // pass positive val

}

else {

f(-val); // pass negated negative val

}

In a single-threaded environment, this code works fine. However, in a multithreaded context, this

code does not necessarily work. If multiple threads have access to val, the value of val might

change between the if clause and the call of f() so that a negative value is passed to f().

For the same reason, simple code such as:

std::vector<int> v;

...

if (!v.empty()) {

std::cout << v.front() << std::endl;

}

can be a problem if v is shared between multiple threads, because between the call of empty()

and the call of front(), v might become empty resulting in undefined behavior (see Section 7.3.2,

page 275).

Note that this problem also applies to code implementing a function provided by the C++ stan-

dard library. For example, the guarantee that

v.at(5) // yield value of element with index 5

throws an exception if v does not have enough elements no longer applies if another thread might

modify v while at() is called. Thus, keep in mind the following:

Unless otherwise stated, C++ standard library functions usually don’t support

writes or reads concurrently performed with writes to the same data structure.14

14 As Hans Boehm points out, an approach to support concurrent access to library objects would not be useful

in general because if I need synchronization around data structure accesses, it’s usually not just the individual

accesses I need to protect but larger sections of code. This means that programmers need to do their own locking

anyway, and the library-provided locking would be at best redundant.

18.4 Synchronizing Threads, or the Problem of Concurrency 985

That is, unless otherwise stated, multiple calls on the same object from multiple threads will result

in undefined behavior.

However, the C++ standard library provides some guarantees regarding thread safety (see Sec-

tion 4.5, page 56). For example:

• Concurrent access to different elements of the same container is possible (except for class

vector<bool>). Thus, different threads might concurrently read and/or write different elements

of the same container. For example, each thread might process something and store the result in

“its” element of a shared vector.

• Concurrent access to a string stream, file stream, or stream buffer results in undefined behavior.

However, as we have seen in this chapter before, formatted input and output to a standard stream

that is synchronized with C I/O (see Section 15.14.1, page 845) is possible, although it might

result in interleaved characters.

Half-Written Data

Consider that we have a variable15

long long x = 0;

and one thread writing the data:

x = -1;

and one thread reading the data:

std::cout << x;

What is the output of the program; that is, which value does the second thread read when it outputs

x? Well, the following answers are possible:

• 0 (the old value of x), if the first thread has not assigned -1 yet

• -1 (the new value of x), if the first thread assigned -1 already

• Any other value, if the second thread reads x during the assignment of -1 by the first thread

The last option — any other value — can, for example, easily happen if, on a 32-bit machine, the

assignment results in two stores and the read by the second thread happens when the first store was

done but the second store was not yet done.

And beware, this does not apply to long long only. Even for a fundamental data type, such as

int or bool, the standard does not guarantee that a read or a write is atomic; that is, that a read or

write is an exclusive noninterruptable data access. A data race might be less likely, but to eliminate

the possibility, you have to take the steps.

The same applies to more complicated data structures, even if they are provided by the C++ stan-

dard library. For example, for a std::list<> (see Section 7.5, page 290), it’s up to the programmer

to ensure that it doesn’t get modified by another thread while a thread inserts or deletes an element.

Otherwise, the other thread might use an inconsistent state of the list, where, for example, the forward

pointer is modified already but the backward pointer is not.

15 This example is taken with permission from [N2480:MemMod].

986 Chapter 18: Concurrency

Reordered Statements

Let’s discuss another simple example.16 Suppose we have two shared objects, an int to pass data

from one thread to another and a Boolean readyFlag, which signals when the first thread has

provided the data:

long data;

bool readyFlag = false;

A naive approach is to synchronize the setting of the data in one thread with the consumption of

the data in another thread. Thus, the providing thread calls:

data = 42;

readyFlag = true;

and the consuming thread calls:

while (!readyFlag) { // loop until data is ready

;

}

foo(data);

Without knowing any details, almost every programmer at first would suppose that the second thread

calls foo() when data has the value 42, assuming that the call of foo() can be reached only if the

readyFlag is true, which itself can be the case only after the first thread assigned 42 to data,

because this happens before the readyFlag becomes true.

But this is not necessarily the case. In fact, the output of the second thread might be the value

data had before the first thread assigned 42 (or even any other value, because the assignment of 42

might be half-done).

That is, the compiler and/or the hardware might reorder the statements so that effectively the

following gets called:

readyFlag = true;

data = 42;

In general, such a reordering is allowed due to the rules of C++, which requires only that the observ-

able behavior inside a thread of the generated code be correct. For the behavior of the first thread, it

doesn’t matter whether we first modify readyFlag or data; from the viewpoint of this thread, they

are independent of each other. Thus, reorderings of statements are allowed as long as the visible

effect to the outside of a single thread is the same.

For the same reason, even the second thread might reorder the statements, provided that the

behavior of this thread is not affected:

foo(data);

while (!readyFlag) { // loop until data is ready

;

}

16 This example is taken from multiple articles in Bartosz Milewski’s Programming Cafe (see

[Milewski:Multicore] and [Milewski:Atomics] for details).

18.4 Synchronizing Threads, or the Problem of Concurrency 987

Note that the observable behavior might be affected by such a reordering if foo() throws. Thus, it

depends on details whether such reorderings are allowed, but in principle, the problem applies.

Again, the reason to allow such modifications is that by default, C++ compilers shall be able to

generate code that is highly optimized, and some optimizations might be to reorder statements. By

default, these optimizations are not required to care about possible other threads, which makes these

optimizations easier because local analyses are enough.

18.4.4 The Features to Solve the Problems

To solve the three major problems of concurrent data access, we need the following concepts:

• Atomicity: This means that read or write access to a variable or to a sequence of statements

happens exclusively and without any interruption, so that one thread can’t read intermediate

states caused by another thread.

• Order: We need some ways to guarantee the order of specific statements or of a group of specific

statements.

The C++ standard library provides very different ways to deal with these concepts, so that programs

benefit from additional guarantees regarding concurrent access:

• You can use futures (see Section 18.1, page 946) and promises (see Section 18.2.2, page 969),

which guarantee both atomicity and order: Setting the outcome (return value or exception) of a

shared state is guaranteed to happen before the processing of this outcome, which implies that

read and write access does not happen concurrently.

• You can use mutexes and locks (see Section 18.5, page 989) to deal with critical sections, or

protected zones, whereby you can grant exclusive access so that, for example, nothing can happen

between a check and an operation based on that check. Locks provide atomicity by blocking all

access using a second lock until a first lock on the same resource gets released. More precisely:

The release of a lock object acquired by one thread is guaranteed to happen before the acquisition

of the same lock object by another thread is successful. However, if two threads use locked access

to data, the order in which they access it may change from run to run.

• You can use condition variables (see Section 18.6, page 1003) to efficiently allow one thread to

wait for some predicate controlled by another thread to become true. This helps to deal with the

order of multiple threads by allowing one or more threads to process data or a status provided by

one or more other threads.17

• You can use atomic data types (see Section 18.7, page 1012) to ensure that each access to a

variable or object is atomic while the order of operations on the atomic types remains stable.

• You can use the low-level interface of atomic data types (see Section 18.7.4, page 1019), which

allow experts to relax the order of atomic statements or to use manual barriers for memory access

(so-called fences).

In principle, this list is sorted from high-level to low-level features. High-level features, such as

futures and promises or mutexes and locks, are easy to use and provide little risk. Low-level fea-

17 Concurrency experts won’t consider condition variables to be a tool to deal with the problem of concurrent

data access, because they’re more a tool to improve performance than to provide correctness.

988 Chapter 18: Concurrency

tures, such as atomics and especially their low-level interface, might provide better performance

because they have lower latency and therefore higher scalability, but the risk of misuse grows signif-

icantly. Nevertheless, low-level features sometimes provide simple solutions for specific high-level

problems.

With atomics, we go in the direction of lock-free programming, which even experts sometimes do

wrong. To quote Herb Sutter from [Sutter:LockFree]: “[Lock-free code is] hard even for experts. It’s

easy to write lock-free code that appears to work, but it’s very difficult to write lock-free code that is

correct and performs well. Even good magazines and refereed journals have published a substantial

amount of lock-free code that was actually broken in subtle ways and needed correction.”

volatile and Concurrency

Note that I didn’t mention volatile here as a feature for concurrent data access, although you

might have expected that for the following reasons:

• volatile is known as a C++ keyword to prevent too much optimization.

• In Java, volatile provides some guarantees about atomicity and order.

In C++, volatile “only” specifies that access to external resources, such as shared memory, should

not be optimized away. For example, without volatile, a compiler might eliminate redundant loads

of the same shared memory segment because it can’t see any modification of the segment throughout

the whole program. But in C++, volatile provides neither atomicity nor a specific order.18 Thus,

the semantics of volatile between C++ and Java now differs.

See also Section 18.5.1, page 998, for a discussion, why volatile usually is not required when

mutexes are used to read data in a loop.

18 Thanks to Scott Meyers for pointing this out to me.

18.5 Mutexes and Locks 989

18.5 Mutexes and Locks

A mutex, or mutual exclusion, is an object that helps to control the concurrent access of a resource

by providing exclusive access to it. The resource might be an object or a combination of multiple

objects. To get exclusive access to the resource, the corresponding thread locks the mutex, which

prevents other threads from locking that mutex until the first thread unlocks the mutex.

18.5.1 Using Mutexes and Locks

Consider that we want to protect concurrent access to an object val that is used at various

places:

int val;

A naive approach to synchronize this concurrent access is to introduce a mutex, which is used to

enable and control exclusive access:

int val;

std::mutex valMutex; // control exclusive access to val

Then, each access has to lock this mutex to get exclusive access. For example, one thread might

program the following (note that this is a poor solution, which we will improve):

valMutex.lock(); // request exclusive access to val

if (val >= 0) {

f(val); // val is positive

}

else {

f(-val); // pass negated negative val

}

valMutex.unlock(); // release exclusive access to val

Another thread might access the same resource as follows:

valMutex.lock(); // request exclusive access to val

++val;

valMutex.unlock(); // release exclusive access to val

It’s important that all places where concurrent access is possible use the same mutex. This applies

to both read and write accesses.

This simple approach can, however, become pretty complicated. For example, you should ensure

that an exception, which ends an exclusive access, also unlocks the corresponding mutex. Otherwise,

a resource might become locked forever. Also, deadlock scenarios are possible, with two threads

waiting for a lock of the other thread before freeing their own lock.

The C++ standard library tries to deal with these problems but can’t conceptionally solve them

all. For example, to deal with exceptions, you should not lock and unlock a mutex yourself. You

should use the RAII principle (Resource Acquisition Is Initialization), whereby the constructor ac-

990 Chapter 18: Concurrency

quires a resource so that the destructor, which is always called even when an exception causes the

end of the lifetime, releases the resource automatically. For this purpose, the C++ standard library

provides class std::lock_guard:

int val;

std::mutex valMutex; // control exclusive access to val

...

std::lock_guard<std::mutex> lg(valMutex); // lock and automatically unlock

if (val >= 0) {

f(val); // val is positive

}

else {

f(-val); // pass negated negative val

}

Note, however, that locks should be limited to the shortest period possible because they block other

code from running in parallel. Because the destructor releases the lock, you might want to insert

explicit braces so that the lock gets released before further statements are processed:

int val;

std::mutex valMutex; // control exclusive access to val

...

{

std::lock_guard<std::mutex> lg(valMutex); // lock and automatically unlock

if (val >= 0) {

f(val); // val is positive

}

else {

f(-val); // pass negated negative val

}

} // ensure that lock gets released here

...

or just:

...

{

std::lock_guard<std::mutex> lg(valMutex); // lock and automatically unlock

++val;

} // ensure that lock gets released here

...

This is just a first simple example, but you can see that the whole topic can easily become pretty com-

plicated. As usual, programmers should know what they program in concurrent mode. In addition,

different mutexes and locks are provided, which are discussed in the upcoming subsections.

18.5 Mutexes and Locks 991

A First Complete Example for Using a Mutex and a Lock

Let’s look at a first complete example:

// concurrency/mutex1.cpp

#include <future>

#include <mutex>

#include <iostream>

#include <string>

std::mutex printMutex; // enable synchronized output with print()

void print (const std::string& s)

{

std::lock_guard<std::mutex> l(printMutex);

for (char c : s) {

std::cout.put(c);

}

std::cout << std::endl;

}

int main()

{

auto f1 = std::async (std::launch::async,

print, "Hello from a first thread");

auto f2 = std::async (std::launch::async,

print, "Hello from a second thread");

print("Hello from the main thread");

}

Here, print() writes all characters of a passed string to the standard output. Thus, without a lock,

the output might be:19

HHelHello from a second thread

ello from a first thread

lo from the main thread

or:

HelloHello fHello from a second ro from am th fthe main irrethreadstad

thr

ead

19 The fact that each character is written on its own with put() forces the behavior of getting interleaved

characters when multiple parallel writes are performed. When writing each string as a whole, implementations

often will not mix characters, but even this isn’t guaranteed.

992 Chapter 18: Concurrency

To synchronize the output in a way that each call of print() exclusively writes its characters, we

introduce a mutex for the print operation and a lock guard, which locks the corresponding protected

section:

std::mutex printMutex; // enable synchronized output with print()

...

void print (const std::string& s)

{

std::lock_guard<std::mutex> l(printMutex);

...

}

Now the output is simply something like this:

Hello from a first thread

Hello from the main thread

Hello from a second thread

This output also is possible (but not guaranteed) when no lock is used.

Here, the lock() of the mutex, called by the constructor of the lock guard, blocks if the resource

is acquired already. It blocks until access to the protected section is available again. However, the

order of locks is still undefined. Thus, the three outputs might still be written in arbitrary order.

Recursive Locks

Sometimes, the ability to lock recursively is required. Typical examples are active objects or moni-

tors, which contain a mutex and take a lock inside every public method to protect data races corrupt-

ing the internal state of the object. For example, a database interface might look as follows:

class DatabaseAccess

{

private:

std::mutex dbMutex;

... // state of database access

public:

void createTable (...)

{

std::lock_guard<std::mutex> lg(dbMutex);

...

}

void insertData (...)

{

std::lock_guard<std::mutex> lg(dbMutex);

...

}

...

};

18.5 Mutexes and Locks 993

When we introduce a public member function that might call other public member functions, this

can become complicated:

void createTableAndInsertData (...)

{

std::lock_guard<std::mutex> lg(dbMutex);

...

createTable(...); // ERROR: deadlock because dbMutex is locked again

}

Calling createTableAndInsertData() will result in a deadlock because after locking dbMutex,

the call of createTable() will try to lock dbMutex again, which will block until the lock of

dbMutex is available, which will never happen because createTableAndInsertData() will block

until createTable() is done.

The C++ standard library permits the second attempt to throw a std::system_error (see Sec-

tion 4.3.1, page 43) with the error code resource_deadlock_would_occur (see Section 4.3.2,

page 45) if the platform detects such a deadlock. But this is not required and is often not the case.

By using a recursive_mutex, this behavior is no problem. This mutex allows multiple locks

by the same thread and releases the lock when the last corresponding unlock() call is called:

class DatabaseAccess

{

private:

std::recursive_mutex dbMutex;

... // state of database access

public:

void insertData (...)

{

std::lock_guard<std::recursive_mutex> lg(dbMutex);

...

}

void insertData (...)

{

std::lock_guard<std::recursive_mutex> lg(dbMutex);

...

}

void createTableAndinsertData (...)

{

std::lock_guard<std::recursive_mutex> lg(dbMutex);

...

createTable(...); // OK: no deadlock

}

...

};

994 Chapter 18: Concurrency

Tried and Timed Locks

Sometimes a program wants to acquire a lock but doesn’t want to block (forever) if this is not

possible. For this situation, mutexes provide a try_lock() member function that tries to acquire a

lock. If it succeeds, it returns true; if not, false.

To still be able to use a lock_guard so that any exit from the current scope unlocks the mutex,

you can pass an additional argument adopt_lock to its constructor:

std::mutex m;

// try to acquire a lock and do other stuff while this isn’t possible

while (m.try_lock() == false) {

doSomeOtherStuff();

}

std::lock_guard<std::mutex> lg(m,std::adopt_lock);

...

Note that try_lock() might fail spuriously. That is, it might fail (return false) even if the lock is

not taken.20

To wait only for a particular amount of time, you can use a timed mutex. The special mu-

tex classes std::timed_mutex and std::recursive_timed_mutex additionally allow calling

try_lock_for() or try_lock_until() to wait for at most a specified duration of time or until a

specified point in time has arrived. This, for example, might help if you have real-time requirements

or want to avoid possible deadlock situations. For example:

std::timed_mutex m;

// try for one second to acquire a lock

if (m.try_lock_for(std::chrono::seconds(1))) {

std::lock_guard<std::timed_mutex> lg(m,std::adopt_lock);

...

}

else {

couldNotGetTheLock();

}

Note that try_lock_for() and try_lock_until() usually will differ when dealing with system-

time adjustments (see Section 5.7.5, page 160, for details).

Dealing with Multiple Locks

Usually a thread should lock only one mutex at a time. However, it is sometimes necessary to lock

more than one mutex (for example, to transfer data from one protected resource to another). In that

20 This behavior is provided for memory-ordering reasons but is not widely known. Thanks to Hans Boehm and

Bartosz Milewski for pointing it out.

18.5 Mutexes and Locks 995

case, dealing with the lock mechanisms introduced so far can become complicated and risky: You

might get the first but not the second lock, or deadlock situations may occur if you lock the same

locks in a different order.

The C++ standard library, therefore, provides convenience functions to try to lock multiple mu-

texes. For example:

std::mutex m1;

std::mutex m2;

...

{

std::lock (m1, m2); // lock both mutexes (or none if not possible)

std::lock_guard<std::mutex> lockM1(m1,std::adopt_lock);

std::lock_guard<std::mutex> lockM2(m2,std::adopt_lock);

...

} // automatically unlock all mutexes

The global std::lock() locks all mutexes passed as arguments, blocking until all mutexes are

locked or until an exception is thrown. In the latter case, it unlocks mutexes already successfully

locked. As usual, after successful locking, you can and should use a lock guard initialized with

adopt_lock as second argument to ensure that, in any case, the mutexes are unlocked when leaving

the scope. Note that this lock() provides a deadlock-avoidance mechanism, which, however, means

that the order of locking inside a multiple lock is undefined.

In the same way, you can try to acquire multiple locks without blocking if not all locks are

available. The global std::try_lock() returns -1 if all locks were possible. If not, the return

value is the zero-based index of the first failed lock. In that case, all succeeded locks are unlocked

again. For example:

std::mutex m1;

std::mutex m2;

int idx = std::try_lock (m1, m2); // try to lock both mutexes

if (idx < 0) { // both locks succeeded

std::lock_guard<std::mutex> lockM1(m1,std::adopt_lock);

std::lock_guard<std::mutex> lockM2(m2,std::adopt_lock);

...

} // automatically unlock all mutexes

else {

// idx has zero-based index of first failed lock

std::cerr << "could not lock mutex m" << idx+1 << std::endl;

}

Note that this try_lock() does not provide a deadlock-avoidance mechanism. Instead, it guaran-

tees that the locks are tried in the order of the passed arguments.

Note also that calling lock() or try_lock() without adopting the locks by a guard is usually

not what was intended. Although the code looks like it creates locks that are released automatically

when leaving the scope, this is not the case. The mutexes will remain locked:

996 Chapter 18: Concurrency

std::mutex m1;

std::mutex m2;

...

{

std::lock (m1, m2); // lock both mutexes (or none if not possible)

// no lock adopted

...

}

... // OOPS: mutexes are still locked !!!

Class unique_lock

Besides class lock_guard<>, the C++ standard library provides class unique_lock<>, which is a

lot more flexible when dealing with locks for mutexes. Class unique_lock<> provides the same

interface as class lock_guard<>, plus the ability to program explicitly when and how to lock or

unlock its mutex. Thus, this lock object may or may not have a mutex locked (also known as owning

a mutex). This differs from a lock_guard<>, which always has an object locked throughout its

lifetime.21 In addition, for unique locks you can query whether the mutex is currently locked by

calling owns_lock() or operator bool().

The major advantage of this class still is that when the mutex is locked at destruction time, the

destructor automatically calls unlock() for it. If no mutex is locked, the destructor does nothing.

Compared to class lock_guard, class unique_lock provides the following supplementary

constructors:

• You can pass try_to_lock for a nonblocking attempt to lock a mutex:

std::unique_lock<std::mutex> lock(mutex,std::try_to_lock);

...

if (lock) { // if lock was successful

...

}

• You can pass a duration or timepoint to the constructor to try to lock for a specific period of time:

std::unique_lock<std::timed_mutex> lock(mutex,

std::chrono::seconds(1));

...

• You can pass defer_lock to initialize the lock without locking the mutex (yet):

std::unique_lock<std::mutex> lock(mutex,std::defer_lock);

...

lock.lock(); // or (timed) try_lock()

...

21 The name unique lock explains where this behavior comes from. As with unique pointers (see Section 5.2.5,

page 98), you can move locks between scopes, but it is guaranteed that only one lock at a time owns a mutex.

18.5 Mutexes and Locks 997

The defer_lock flag can, for example, be used to create one or multiple locks and lock them later:

std::mutex m1;

std::mutex m2;

std::unique_lock<std::mutex> lockM1(m1,std::defer_lock);

std::unique_lock<std::mutex> lockM2(m2,std::defer_lock);

...

std::lock (m1, m2); // lock both mutexes (or none if not possible)

In addition, class unique_lock provides the ability to release() its mutex or to transfer the own-

ership of a mutex to another lock. See Section 18.5.2, page 1000, for details.

With both a lock_guard and a unique_lock, we can now implement a naive example, where

one thread waits for another by polling a ready flag:

#include <mutex>

...

bool readyFlag;

std::mutex readyFlagMutex;

void thread1()

{

// do something thread2 needs as preparation

...

std::lock_guard<std::mutex> lg(readyFlagMutex);

readyFlag = true;

}

void thread2()

{

// wait until readyFlag is true (thread1 is done)

{

std::unique_lock<std::mutex> ul(readyFlagMutex);

while (!readyFlag) {

ul.unlock();

std::this_thread::yield(); // hint to reschedule to the next thread

std::this_thread::sleep_for(std::chrono::milliseconds(100));

ul.lock();

}

} // release lock

// do whatever shall happen after thread1 has prepared things

...

}

998 Chapter 18: Concurrency

Two comments on typical questions this code might raise:

• If you wonder why we use a mutex to control the access to read and write the readyFlag,

remember the rule introduced at the beginning of this chapter: Any concurrent access with at

least one write should be synchronized. See Section 18.4, page 982, and Section 18.7, page 1012,

for a detailed discussion about this.

• If you wonder that no volatile is necessary here to declare readyFlag to avoid that multiple

attempts in thread2() to read it are not optimized away note the following: These attempts to

read readyFlag happen inside a critical section, defined between the setting and releasing of

a lock. Such code is not allowed to get optimized in a way that the read (or a write) is moved

outside the critical section. So the reads of readyFlag must effectively happen here:

– At the beginning of the loop, between the declaration of ul and the first call of unlock()

– Inside the loop, between any call of lock() and unlock()

– At the end of the loop, between the last call of lock() and the destruction of ul, which

unlocks the mutex if locked

Nevertheless, such a polling for a fulfilled condition is usually not a good solution. A better approach

is to use condition variables. See Section 18.6.1, page 1003, for details.

18.5.2 Mutexes and Locks in Detail

Mutexes in Detail

The C++ standard library provides the following mutex classes (see Table 18.6):

• Class std::mutex is a simple mutex that can be locked only once by one thread at a time. If it

is locked, any other lock() will block until the mutex is available again and try_lock() will

fail.

• Class std::recursive_mutex is a mutex that allows multiple locks at the same time by

the same thread. The typical application of such a lock is where functions acquire a lock and

internally call another function, which also acquires the same lock again.

Operation mutex recursive_
mutex

timed_mutex recursive_
timed_mutex

lock() Acquires mutex (blocks if not available)

try_lock() Acquires mutex (returns false if not available)

unlock() Unlocks locked mutex

try_lock_for() – – Tries to acquire a lock for a duration of time

try_lock_until() – – Tries to acquire a lock until a timepoint

multiple locks No Yes

(same thread)

No Yes

(same thread)

Table 18.6. Overview of Mutexes and Their Abilities

18.5 Mutexes and Locks 999

• Class std::timed_mutex is a simple mutex that additionally allows you to pass a duration

or a timepoint that defines how long it tries to acquire a lock. For this, try_lock_for() and

try_lock_until() are provided.

• Class std::recursive_timed_mutex is a mutex that allows multiple locks by the same

thread with optional timeouts.

Table 18.7 lists the mutex operations, if available.

Operation Effect

mutex m Default constructor; creates an unlocked mutex

m.~mutex() Destroys the mutex (must not be locked)

m.lock() Locks the mutex (blocks for lock; error if locked and not

recursive)

m.try_lock() Tries to lock the mutex (returns true if lock successful)

m.try_lock_for(dur) Tries to lock for duration dur (returns true if lock

successful)

m.try_lock_until(tp) Tries to lock until timepoint tp (returns true if lock

successful)

m.unlock() Unlocks the mutex (undefined behavior if not locked)

m.native_handle() Returns a platform-specific type native_handle_type for

nonportable extensions

Table 18.7. Operations of Mutex Classes, If Available

lock() might throw a std::system_error (see Section 4.3.1, page 43) with the following error

codes (see Section 4.3.2, page 45):

• operation_not_permitted, if the thread does not have the privilege to perform the operation

• resource_deadlock_would_occur, if the platform detects that a deadlock would occur

• device_or_resource_busy, if the mutex is already locked and blocking is not possible

The behavior of a program is undefined if it unlocks a mutex object it doesn’t own, destroys a mutex

object owned by any thread, or if a thread terminates while owning a mutex object.

Note that try_lock_for() and try_lock_until() usually will differ when dealing with

system-time adjustments (see Section 5.7.5, page 160, for details).

Class lock_guard in Detail

Class std::lock_guard, introduced in Section 18.5.1, page 989, provides a very small interface to

ensure that a locked mutex gets always freed when leaving the scope (see Table 18.8). Throughout

its lifetime, it is always associated with a lock either explicitly requested or adopted at construction

time.

1000 Chapter 18: Concurrency

Operation Effect

lock_guard lg(m) Creates a lock guard for the mutex m and locks it

lock_guard lg(m,adopt_lock) Creates a lock guard for the already locked mutex m

lg.~lock_guard() Unlocks the mutex and destroys the lock guard

Table 18.8. Operations of Class lock_guard

Class unique_lock in Detail

Class std::unique_lock, introduced in Section 18.5.1, page 996, provides a lock guard for a mu-

tex that does not necessarily have to be locked (owned). It provides the interface listed in Table 18.9.

If it locks/owns a mutex at destruction time, it will unlock() it. But you can control explicitly

whether it has an associated mutex and whether this mutex is locked. You can also try to lock the

mutex with or without timeouts.

lock() might throw a std::system_error (see Section 4.3.1, page 43) with the error codes

listed for lock() for mutexes (see page 999). unlock() might throw a std::system_error with

the error code operation_not_permitted if the unique lock isn’t locked.

18.5.3 Calling Once for Multiple Threads

Sometimes multiple threads might not need some functionality that should get processed whenever

the first thread needs it. A typical example is lazy initialization: The first time one of the threads

needs something that has to get processed, you process it (but not before, because you want to save

the time to process it if it is not needed).

The usual approach with single-threaded environments is simple: A Boolean flag signals whether

the functionality was called already:

bool initialized = false; // global flag

...

if (!initialized) { // initialize if not initialized yet

initialize();

initialized = true;

}

or

static std::vector<std::string> staticData;

void foo()

{

if (staticData.empty()) {

staticData = initializeStaticData();

}

...

}

18.5 Mutexes and Locks 1001

Operation Effect

unique_lock l Default constructor; creates a lock not associated with a

mutex

unique_lock l(m) Creates a lock guard for the mutex m and locks it

unique_lock l(m,adopt_lock) Creates a lock guard for the already locked mutex m

unique_lock l(m,defer_lock) Creates a lock guard for the mutex m without locking it

unique_lock l(m,try_lock) Creates a lock guard for the mutex m and tries to lock it

unique_lock l(m,dur) Creates a lock guard for the mutex m and tries to lock it for

duration dur

unique_lock l(m,tp) Creates a lock guard for the mutex m and tries to lock it

until timepoint tp

unique_lock l(rv) Move constructor; moves lock state from rv to l (rv has no

associated mutex anymore)

l.~unique_lock() Unlocks the mutex, if any locked, and destroys the lock

guard

unique_lock l = rv Move assignment; moves the lock state from rv to l (rv has

no associated mutex anymore)

swap(l1,l2) Swaps locks

l1.swap(l2) Swaps locks

l.release() Returns a pointer to the associated mutex and releases it

l.owns_lock() Returns true if an associated mutex is locked

if (l) Checks whether an associated mutex is locked

l.mutex() Returns a pointer to the associated mutex

l.lock() Locks the associated mutex

l.try_lock() Tries to lock the associated mutex (returns true if lock

successful)

l.try_lock_for(dur) Tries to lock the associated mutex for duration dur (returns

true if lock successful)

l.try_lock_until(tp) Tries to lock the associated mutex until timepoint tp

(returns true if lock successful)

l.unlock() Unlocks the associated mutex

Table 18.9. Operations of Class unique_lock

Such code doesn’t work in a multithreaded context, because data races might occur if two or more

threads check whether the initialization didn’t happen yet and start the initialization then. Thus, you

have to protect the area for the check and the initialization against concurrent access.

As usual, you can use mutexes for it, but the C++ standard library provides a special solution

for this case. You simply use a std::once_flag and call std::call_once (also provided by

<mutex>):

std::once_flag oc; // global flag

...

std::call_once(oc,initialize); // initialize if not initialized yet

1002 Chapter 18: Concurrency

or:

static std::vector<std::string> staticData;

void foo()

{

static std::once_flag oc;

std::call_once(oc,[]{

staticData = initializeStaticData();

});

...

}

As you can see, the first argument passed to call_once() must be the corresponding once_flag.

The further arguments are the usual arguments for callable objects: function, member function,

function object, or lambda, plus optional arguments for the function called (see Section 4.4, page 54).

Thus, lazy initialization of an object used in multiple threads might look as follows:

class X {

private:

mutable std::once_flag initDataFlag;

void initData() const;

public:

data getData () const {

std::call_once(initDataFlag,&X::initData,this);

...

}

};

In principle, you can call different functions for the same once flag. The once flag that is passed

to call_once() as first argument is what ensures that the passed functionality is performed only

once. So, if the first call was successful, further calls with the same once flag won’t call the passed

functionality even if that functionality is different.

Any exception caused by the called functionality is also thrown by call_once(). In that case,

the “first” call is considered not to be successful, so the next call_once() might still execute the

passed functionality.22

22 The standard also specifies that call_once() might throw a std::system_error if the once_flag ar-

gument is no longer “valid” (i.e., destructed). However, this statement is considered to be a mistake because

passing a destructed once flag anyway is either not possible or results in undefined behavior.

18.6 Condition Variables 1003

18.6 Condition Variables

Sometimes, tasks performed by different threads have to wait for each other. Thus, you sometimes

have to synchronize concurrent operations for other reasons than to access the same data.

Now, you can argue that we have introduced such a mechanism already: Futures (see Sec-

tion 18.1, page 946) allow you to block until data by another thread is provided or another thread is

done. However, a future can pass data from one thread to another only once. In fact, a future’s major

purpose is to deal with return values or exceptions of threads.

Here we introduce and discuss condition variables, which can be used to synchronize logical

dependencies in data flow between threads multiple times.

18.6.1 Purpose of Condition Variables

Section 18.5.1, page 997, introduced a naive approach to let one thread wait for another by using

something like a ready flag, signaling when one thread has prepared or provided something for

another thread. This usually means that the waiting thread polls to notice that its required data or

precondition has arrived:

bool readyFlag;

std::mutex readyFlagMutex;

// wait until readyFlag is true:

{

std::unique_lock<std::mutex> ul(readyFlagMutex);

while (!readyFlag) {

ul.unlock();

std::this_thread::yield(); // hint to reschedule to the next thread

std::this_thread::sleep_for(std::chrono::milliseconds(100));

ul.lock();

}

} // release lock

However, such a polling for a fulfilled condition is usually not a good solution.

Or as [Williams:C++Conc] points out:

The waiting thread consumes valuable processing time repeatedly checking the flag and

when it locks the mutex the thread setting the ready flag is blocked. ... In addition, it’s

hard to get the sleep period right: too short a sleep in between checks and the thread still

wastes processing time checking, too long a sleep and the thread will carry on sleeping

even when the task it is waiting for is complete, introducing a delay.

A better approach is to use condition variables, which the C++ standard library provides in

<condition_variable>. A condition variable is a variable by which a thread can wake up one

or multiple other waiting threads.

1004 Chapter 18: Concurrency

In principle, a condition variable works as follows:

• You have to include both <mutex> and <condition_variable> to declare a mutex and a con-

dition variable:

#include <mutex>

#include <condition_variable>

std::mutex readyMutex;

std::condition_variable readyCondVar;

• The thread (or one of multiple threads) that signals the fulfillment of a condition has to call

readyCondVar.notify_one(); // notify one of the waiting threads

or

readyCondVar.notify_all(); // notify all the waiting threads

• Any thread that waits for the condition has to call

std::unique_lock<std::mutex> l(readyMutex);

readyCondVar.wait(l);

Thus, the thread providing or preparing something simply calls notify_one() or notify_all()

for the condition variable, which for one or all the waiting threads is the moment to wake up.

So far, so good. Sounds simple. But there’s more. First, note that to wait for the condition vari-

able, you need a mutex and a unique_lock, introduced in Section 18.5.1, page 996. A lock_guard

is not enough, because the waiting function might lock and unlock the mutex.

In addition, condition variables in general might have so-called spurious wakeups. That is, a

wait on a condition variable may return even if the condition variable has not been notified. To

quote Anthony Williams from [Williams:CondVar]: “Spurious wakes cannot be predicted: they are

essentially random from the user’s point of view. However, they commonly occur when the thread

library cannot reliably ensure that a waiting thread will not miss a notification. Since a missed

notification would render the condition variable useless, the thread library wakes the thread from its

wait rather than take the risk.”

Thus, a wakeup does not necessarily mean that the required condition now holds. Rather, after

a wakeup you still need some code to verify that the condition in fact has arrived. Therefore, for

example, we have to check whether provided data is really available, or we still need something like

a ready flag. To set and query this provided data or this ready flag, we can use the same mutex.

18.6.2 A First Complete Example for Condition Variables

The following code is a complete example that demonstrates how to use condition variables:

// concurrency/condvar1.cpp

#include <condition_variable>

#include <mutex>

#include <future>

#include <iostream>

18.6 Condition Variables 1005

bool readyFlag;

std::mutex readyMutex;

std::condition_variable readyCondVar;

void thread1()

{

// do something thread2 needs as preparation

std::cout << "<return>" << std::endl;

std::cin.get();

// signal that thread1 has prepared a condition

{

std::lock_guard<std::mutex> lg(readyMutex);

readyFlag = true;

} // release lock

readyCondVar.notify_one();

}

void thread2()

{

// wait until thread1 is ready (readyFlag is true)

{

std::unique_lock<std::mutex> ul(readyMutex);

readyCondVar.wait(ul, []{ return readyFlag; });

} // release lock

// do whatever shall happen after thread1 has prepared things

std::cout << "done" << std::endl;

}

int main()

{

auto f1 = std::async(std::launch::async,thread1);

auto f2 = std::async(std::launch::async,thread2);

}

After including the necessary header files, we need three things to communicate between threads:

1. An object for the data provided to process or a flag signaling that the condition is indeed satisfied

(here: readyFlag))

2. A mutex (here: readyMutex)

3. A condition variable (here readyCondVar)

1006 Chapter 18: Concurrency

The providing thread thread1() locks the mutex readyMutex, updates the condition (the object

for the data or for the ready flag), unlocks the mutex, and notifies the condition variable:

{

std::lock_guard<std::mutex> lg(readyMutex);

readyFlag = true;

} // release lock

readyCondVar.notify_one();

Note that the notification itself does not have to be inside the protected area of the lock.

A waiting (consuming/processing) thread locks the mutex with a unique_lock (Section 18.5.1,

page 996), waits for the notification while checking the condition, and releases the lock:

{

std::unique_lock<std::mutex> ul(readyMutex);

readyCondVar.wait(ul, []{ return readyFlag; });

} // release lock

Here, a wait() member for condition variables is used as follows: You pass the lock ul for the

mutex readyMutex as first argument and a lambda as callable object (see Section 4.4, page 54)

double checking the condition as second argument. The effect is that wait() internally calls a loop

until the passed callable returns true. Thus, the code has the same effect as the following code,

where the loop necessary for dealing with spurious wakeups is explicitly visible:

{

std::unique_lock<std::mutex> ul(readyMutex);

while (!readyFlag) {

readyCondVar.wait(ul);

}

} // release lock

Again note that you have to use a unique_lock and can’t use a lock_guard here, because inter-

nally, wait() explicitly unlocks and locks the mutex.

You can argue that this is a bad example for using condition variables, because futures can be

used for blocking until some data arrives. So let’s present a second example.

18.6.3 Using Condition Variables to Implement a Queue

for Multiple Threads

In this example, three threads push values into a queue that two other threads read and process:

// concurrency/condvar2.cpp

#include <condition_variable>

#include <mutex>

#include <future>

#include <thread>

#include <iostream>

#include <queue>

18.6 Condition Variables 1007

std::queue<int> queue;

std::mutex queueMutex;

std::condition_variable queueCondVar;

void provider (int val)

{

// push different values (val til val+5 with timeouts of val milliseconds into the queue

for (int i=0; i<6; ++i) {

{

std::lock_guard<std::mutex> lg(queueMutex);

queue.push(val+i);

} // release lock

queueCondVar.notify_one();

std::this_thread::sleep_for(std::chrono::milliseconds(val));

}

}

void consumer (int num)

{

// pop values if available (num identifies the consumer)

while (true) {

int val;

{

std::unique_lock<std::mutex> ul(queueMutex);

queueCondVar.wait(ul,[]{ return !queue.empty(); });

val = queue.front();

queue.pop();

} // release lock

std::cout << "consumer " << num << ": " << val << std::endl;

}

}

int main()

{

// start three providers for values 100+, 300+, and 500+

auto p1 = std::async(std::launch::async,provider,100);

auto p2 = std::async(std::launch::async,provider,300);

auto p3 = std::async(std::launch::async,provider,500);

// start two consumers printing the values

auto c1 = std::async(std::launch::async,consumer,1);

auto c2 = std::async(std::launch::async,consumer,2);

}

1008 Chapter 18: Concurrency

Here, we have a global queue (see Section 12.2, page 638) concurrently used and protected by a

mutex and a condition variable:

std::queue<int> queue;

std::mutex queueMutex;

std::condition_variable queueCondVar;

The mutex ensures that reads and writes are atomic, and the condition variable is to signal and wake

up processing threads when new values are available.

Now, three threads provide data by pushing it into the queue:

{

std::lock_guard<std::mutex> lg(queueMutex);

queue.push(val+i);

} // release lock

queueCondVar.notify_one();

With notify_one(), they wake up one of the waiting threads to process the next value. Note again

that this call does not have to be part of the protected section, so we close the block where the lock

guard is declared before.

The threads waiting for new values to process operate as follows:

int val;

{

std::unique_lock<std::mutex> ul(queueMutex);

queueCondVar.wait(ul,[]{ return !queue.empty(); });

val = queue.front();

queue.pop();

} // release lock

...

Here, according to the interface of a queue (see Section 12.2, page 638), we need three calls to get

the next value out of the queue: empty() checks whether a value is available. Calling empty() is

the double-check to deal with spurious wakeups in wait(). front() queries the next value, and

pop() removes it. All three are inside the protected region of the unique lock ul. However, the

processing of the value returned by front() happens afterward to minimize the lock duration.

A possible output of this program is:

consumer 1: 300

consumer 1: 100

consumer 2: 500

consumer 1: 101

consumer 2: 102

consumer 1: 301

consumer 2: 103

consumer 1: 104

consumer consumer 1: 105

2: 501

18.6 Condition Variables 1009

consumer 1: 302

consumer 2: 303

consumer 1: 502

consumer 2: 304

consumer 1: 503

consumer 2: 305

consumer 1: 504

consumer 2: 505

Note that the output of the two consumers is not synchronized, so characters might interleave. Note

also that the order in which concurrent waiting threads are notified is not defined.

In the same way, you can call notify_all() if multiple consumers will have to process the

same data. A typical example would be an event-driven system, where an event has to get published

to all registered consumers.

Also note that for condition variables, you have the interface of waiting for a maximum amount

of time: wait_for() waits for a duration of time, whereas wait_until() waits until a timepoint

has arrived.

18.6.4 Condition Variables in Detail

The header file <condition_variable> provides two classes for condition variables, class

condition_variable and class condition_variable_any.

Class condition_variable

As introduced in Section 18.6, page 1003, class std::condition_variable is provided by the

C++ standard library to be able to wake up one or multiple threads waiting for a specific condition

(something necessary prepared or performed or some necessary data provided). Multiple threads

can wait for the same condition variable. When a condition is fulfilled, a thread can notify one or all

of the waiting threads.

Due to spurious wakeups, notifying a thread is not enough when a condition is fulfilled. Waiting

threads have and need to use the ability to double-check that the condition holds after a wakeup.

Table 18.10 lists the interface the C++ standard library provides for class condition_variable

in detail. Class condition_variable_any provides the same interface except native_handle()

and notify_all_at_thread_exit().

If it can’t create a condition variable, the constructor might throw a std::system_error excep-

tion (see Section 4.3.1, page 43) with the error code resource_unavailable_try_again, which

is equivalent to the POSIX errno EAGAIN (see Section 4.3.2, page 45). Copies and assignments are

not allowed.

1010 Chapter 18: Concurrency

Operation Effect

condvar cv Default constructor; creates a condition variable

cv.~condvar() Destroys the condition variable

cv.notify_one() Wakes up one of the waiting threads, if any

cv.notify_all() Wakes up all waiting threads

cv.wait(ul) Waits for notification, using the unique lock ul

cv.wait(ul,pred) Waits for notification, using the unique lock ul, until

pred yields true after a wakeup

cv.wait_for(ul,duration) Waits for a notification, using the unique lock ul, for

duration

cv.wait_for(ul,duration,pred) Waits for a notification, using the unique lock ul, for

duration or until pred yields true after a wakeup

cv.wait_until(ul,timepoint) Waits for a notification, using the unique lock ul,

until timepoint

cv.wait_until(ul,timepoint,pred) Waits for a notification, using the unique lock ul,

until timepoint or until pred yields true after a

wakeup

cv.native_handle() Returns a platform-specific type

native_handle_type for nonportable extensions

notify_all_at_thread_exit(cv,ul) Wakes up all waiting threads of cv, using the unique

lock ul, at the end of the calling thread

Table 18.10. Operations of Class condition_variable

Notifications are automatically synchronized so that concurrent calls of notify_one() and

notify_all() cause no trouble.

All threads waiting for a condition variable have to use the same mutex, which has to be locked

by a unique_lock when one of the wait() members is called. Otherwise, undefined behavior

occurs.

Note that consumers of a condition variable always operate on mutexes that are usually locked.

Only the waiting functions temporarily unlock the mutex performing the following three atomic

steps:23

1. Unlocking the mutex and entering the waiting state

2. Unblocking the wait

3. Locking the mutex again

This implies that predicates passed to waiting functions are always called under the lock, so they

may safely access the object(s) protected by the mutex.24 The calls to lock and unlock the mutex

might throw the corresponding exceptions (see Section 18.5.2, page 1000).

23 The problem with a naive approach like “lock, check state, unlock, wait” is that notifications arising between

unlock and wait would get lost.
24 Thanks to Bartosz Milewski for pointing this out.

18.6 Condition Variables 1011

Called without the predicate, both wait_for() and wait_until() return the following enu-

meration class (see Section 3.1.13, page 32) values:

• std::cv_status::timeout if the absolute timeout happened

• std::cv_status::no_timeout if a notification happened

Called with a predicate as third argument, wait_for() and wait_until() return the result of the

predicate (whether the condition holds).

The global function notify_all_at_thread_exit(cv,l) is provided to call notify_all()

when the calling thread exits. For this, it temporarily locks the corresponding lock l, which must

use the same mutex all waiting threads use. To avoid deadlocks, the thread should be exited directly

after calling notify_all_at_thread_exit(). Thus, this call is only to cleanup before notifying

waiting threads, and this cleanup should never block.25

Class condition_variable_any

Besides class std::condition_variable, the C++ standard library also provides a class

std::condition_variable_any, which does not require using an object of class

std::unique_lock as lock. As the C++ standard library notes: “If a lock type other than one

of the standard mutex types or a unique_lock wrapper for a standard mutex type is used with

condition_variable_any, the user must ensure that any necessary synchronization is in place

with respect to the predicate associated with the condition_variable_any instance.” In fact, the

object has to fulfill the so-called BasicLockable requirements, which require providing synchronized

lock() and unlock() member functions.

25 A typical example would be to signal the end of a detached thread (see Section 18.2.1, page 967). By using

notify_all_at_thread_exit(), you can ensure that thread local objects are destroyed before the main

program (or master thread) processes the fact that the detached thread terminated.

1012 Chapter 18: Concurrency

18.7 Atomics

In the first example for condition variables (see Section 18.6.1, page 1003), we used a Boolean

value readyFlag to let one thread signal that something is prepared or provided for another thread.

Now, you might wonder why we still need a mutex here. If we have a Boolean value, why can’t

we concurrently let one thread change the value while another thread checks it? The moment the

providing thread sets the Boolean to true, the observing thread should be able to see that and

perform the consequential processing.

As introduced in Section 18.4, page 982, we have two problems here:

1. In general, reading and writing even for fundamental data types is not atomic. Thus, you might

read a half-written Boolean, which according to the standard results in undefined behavior.

2. The generated code might change the order of operations, so the providing thread might set the

ready flag before the data is provided, and the consuming thread might process the data before

evaluating the ready flag.

With a mutex, both problems are solved, but a mutex might be a relatively expensive operation in

both necessary resources and latency of the exclusive access. So, instead of using mutexes and lock,

it might be worth using atomics instead.

In this section, I first introduce the high-level interface of atomics, which provides atomic op-

erations using the default guarantee regarding the order of memory access. This default guarantee

provides sequential consistency, which means that in a thread, atomic operations are guaranteed to

happen in the order as programmed. Thus, problems of reordered statements as introduced in Sec-

tion 18.4.3, page 986, do not apply. At the end of this section, I present the low-level interface of

atomics: operations with relaxed order guarantees.

Note that the C++ standard library does not distinguish between a high-level and a low-level

atomics interface. The term low-level was introduced by Hans Boehm, one of the authors of the li-

brary. Sometimes, it is also called the weak, or relaxed, atomic interface, and the high-level interface

is sometimes also known as the normal, or strong, atomic interface.

18.7.1 Example of Using Atomics

Let’s transfer the example from Section 18.6.1, page 1003, into a program using atomics:

#include <atomic> // for atomic types

...

std::atomic<bool> readyFlag(false);

void thread1()

{

// do something thread2 needs as preparation

...

readyFlag.store(true);

}

18.7 Atomics 1013

void thread2()

{

// wait until readyFlag is true (thread1 is done)

while (!readyFlag.load()) {

std::this_thread::sleep_for(std::chrono::milliseconds(100));

}

// do whatever shall happen after thread1 has prepared things

...

}

First, we include the header file <atomic>, where atomics are declared:

#include <atomic>

Then, we declare an atomic object, using the std::atomic<> class template:

std::atomic<bool> readyFlag(false);

In principle, you can use any trivial, integral, or pointer type as template parameter.

Note that you always should initialize atomic objects because the default constructor does not

fully initialize it (it’s not that the initial value is undefined, it is that the lock is uninitialized).26

For static-duration atomic objects, you should use a constant to initialize them. If only the default

constructor is used, the only operation allowed next is to call a global atomic_init() operation as

follows:

std::atomic<bool> readyFlag;

...

std::atomic_init(&readyFlag,false);

This way of initialization is provided to be able to write code that also compiles in C (see Sec-

tion 18.7.3, page 1019).

The two most important statements to deal with atomics are store() and load():

• store() assigns a new value.

• load() yields the current value.

The important point is that these operations are guaranteed to be atomic, so we don’t need a mutex

to set the ready flag, as we had to without atomics. Thus, in the first thread, instead of

{

std::lock_guard<std::mutex> lg(readyMutex);

readyFlag = true;

} // release lock

we simply can program:

readyFlag.store(true);

26 Thanks to Lawrence Crowl for pointing this out.

1014 Chapter 18: Concurrency

In the second thread, instead of

{

std::unique_lock<std::mutex> l(readyFlagMutex);

while (!readyFlag) {

l.unlock();

std::this_thread::sleep_for(std::chrono::milliseconds(100));

l.lock();

}

} // release lock

we have to implement only the following:

while (!readyFlag.load()) {

std::this_thread::sleep_for(std::chrono::milliseconds(100));

}

However, when using condition variables, we still need the mutex for consuming the condition

variable:

// wait until thread1 is ready (readyFlag is true)

{

std::unique_lock<std::mutex> l(readyMutex);

readyCondVar.wait(l, []{ return readyFlag.load(); });

} // release lock

For atomic types, you can still use the “useful,” “ordinary” operations, such as assignments, auto-

matic conversions to integral types, increments, decrements, and so on:

std::atomic<bool> ab(false);

ab = true;

if (ab) {

...

}

std::atomic<int> ai(0);

int x = ai;

ai = 10;

ai++;

ai-=17;

Note, however, that to provide atomicity, some usual behavior might be slightly different. For exam-

ple, the assignment operator yields the assigned value instead of a reference to the atomic the value

was assigned to. See Section 18.7.2, page 1016, for details.

Let’s look at a complete example using atomics:

// concurrency/atomics1.cpp

#include <atomic> // for atomics

#include <future> // for async() and futures

18.7 Atomics 1015

#include <thread> // for this_thread

#include <chrono> // for durations

#include <iostream>

long data;

std::atomic<bool> readyFlag(false);

void provider ()

{

// after reading a character

std::cout << "<return>" << std::endl;

std::cin.get();

// provide some data

data = 42;

// and signal readiness

readyFlag.store(true);

}

void consumer ()

{

// wait for readiness and do something else

while (!readyFlag.load()) {

std::cout.put(’.’).flush();

std::this_thread::sleep_for(std::chrono::milliseconds(500));

}

// and process provided data

std::cout << "\nvalue : " << data << std::endl;

}

int main()

{

// start provider and consumer

auto p = std::async(std::launch::async,provider);

auto c = std::async(std::launch::async,consumer);

}

Here, thread provider() first provides some data and then uses a store() to signal that the data

is provided:

data = 42; // provide some data

readyFlag.store(true); // and signal readiness

1016 Chapter 18: Concurrency

The store() operation performs a so-called release operation on the affected memory location,

which by default ensures that all prior memory operations, whether atomic or not, become visible to

other threads before the effect of the store operation.

Accordingly, thread consumer() performs a loop of load()s and processes data then:

while (!readyFlag.load()) { // loop until ready

...

}

std::cout << data << std::endl; // and process provided data

The load() operation performs a so-called acquire operation on the affected memory location,

which by default ensures that all following memory operations, whether atomic or not, become

visible to other threads after the load operation.

As a consequence, because the setting of data happens before the provider() stores true in

the readyFlag and the processing of data happens after the consumer() has loaded true as value

of the readyFlag, the processing of data is guaranteed to happen after the data was provided.

This guarantee is provided because in all atomic operations, we use a default memory order

named memory_order_seq_cst, which stands for sequential consistent memory order. With low-

level atomics operations, we are able to relax this order guarantee (see Section 18.7.4, page 1019,

for details).

18.7.2 Atomics and Their High-Level Interface in Detail

In <atomic>, the class template std::atomic<> provides the general abilities of atomic data types.

It can be used for any trivial type. Specializations are provided for bool, all integral types, and

pointers:

template<typename T> struct atomic; // primary class template

template<> struct atomic<bool>; // explicit specializations

template<> struct atomic<int>;

...

template<typename T> struct atomic<T*>; // partial specialization for pointers

Table 18.11 lists the high-level operations provided for atomics. If possible, they map directly to

corresponding CPU instructions. Column triv flags operations provided for std::atomic<bool>

and atomics of other trivial types; column int type flags operations provided for std::atomic<>,

if an integral type is used; and column ptr type flags operations provided for std::atomic<>, if a

pointer type is used.

Note a couple of remarks regarding this table:

• In general, operations yield copies rather than references.

• The default constructor does not initialize a variable/object completely. The only legal operation

after default construction is calling atomic_init() to initialize the object (see Section 18.7.1,

page 1013).

• The constructor for a value of the corresponding type is not atomic.

• All functions except constructors are overloaded for volatile and non-volatile.

18.7 Atomics 1017

Operation triv int ptr Effect

type type

atomic a=val Yes Yes Yes Initializes a with val (not an atomic

operation)

atomic a; atomic_init(&a,val) Yes Yes Yes Ditto (without atomic_init(), a is

not initialized)

a.is_lock_free() Yes Yes Yes true if type internally does not use

locks

a.store(val) Yes Yes Yes Assigns val (returns void)

a.load() Yes Yes Yes Returns copy of the value of a

a.exchange(val) Yes Yes Yes Assigns val and returns copy of old

value of a

a.compare_exchange_strong(exp, Yes Yes Yes CAS operation (see below)

des)

a.compare_exchange_weak(exp, Yes Yes Yes Weak CAS operation

des)

a = val Yes Yes Yes Assigns and returns copy of val

a.operator atomic() Yes Yes Yes Returns copy of the value of a

a.fetch_add(val) Yes Yes Atomic t+=val (returns copy of new

value)

a.fetch_sub(val) Yes Yes Atomic t-=val (returns copy of new

value)

a += val Yes Yes Same as t.fetch_add(val)

a -= val Yes Yes Same as t.fetch_sub(val)

++a, a++ Yes Yes Calls t.fetch_add(1) and returns

copy of a or a+1

--a, a-- Yes Yes Calls t.fetch_sub(1) and returns

copy of a or a-1

a.fetch_and(val) Yes Atomic a&=val (returns copy of new

value)

a.fetch_or(val) Yes Atomic a|=val (returns copy of new

value)

a.fetch_xor(val) Yes Atomic a^=val (returns copy of new

value)

a &= val Yes Same as a.fetch_and(val)

a |= val Yes Same as a.fetch_or(val)

a ^= val Yes Same as a.fetch_xor(val)

Table 18.11. High-Level Operations of Atomics

1018 Chapter 18: Concurrency

For example, for atomic<int>, the following assignment operations are declared:

namespace std {

// specialization of std::atomic<> for int:

template<> struct atomic<int> {

public:

// ordinary assignment operators are not provided:

atomic& operator=(const atomic&) = delete;

atomic& operator=(const atomic&) volatile = delete;

// but assignment of an int is provided, which yields the passed argument:

int operator= (int) volatile noexcept;

int operator= (int) noexcept;

...

};

}

With is_lock_free(), you can check whether an atomic type internally uses locks to be atomic.

If not, you have native hardware support for the atomic operations (which is a prerequisite for using

atomics in signal handlers).

Both compare_exchange_strong() and compare_exchange_weak() are so-called compare-

and-swap (CAS) operations. CPUs often provide this atomic operation to compare the contents of a

memory location to a given value and, only if they are the same, modify the contents of that memory

location to a given new value. This guarantees that the new value is calculated based on up-to-date

information. The effect is something like the following pseudocode:

bool compare_exchange_strong (T& expected, T desired)

{

if (this->load() == expected) {

this->store(desired);

return true;

}

else {

expected = this->load();

return false;

}

}

Thus, if the value had been updated by another thread in the meantime, it returns false with the

new value in expected.

The weak form may spuriously fail so that it returns false even when the expected value is

present. But the weak form is sometimes more efficient than the strong version.

18.7 Atomics 1019

18.7.3 The C-Style Interface of Atomics

For the atomic proposal for C++, there was a corresponding proposal for C, which should provide

the same semantics but could, of course, not use such specific C++ features as templates, references,

and member functions. Therefore, the whole atomic interface has a C-style equivalent, which also

was proposed as an extension to the C standard.

For example, you can also declare an atomic<bool> as atomic_bool, and instead of store()

and load(), you can use global functions, which use a pointer to the object:

std::atomic_bool ab; // equivalent to: std::atomic<bool> ab

std::atomic_init(&ab,false); // see Section 18.7.1, page 1013

...

std::atomic_store(&ab,true); // equivalent to: ab.store(true)

...

if (std::atomic_load(&ab)) { // equivalent to: if (ab.load())

...

}

However, C added another interface, using _Atomic and _Atomic(), so the C-style interface in

general is useful only for code that needs to be both C and C++ compilable in the nearer term.

However, using the C-style atomic types is pretty common in C++. Table 18.12 lists the most im-

portant atomic type names. There are more provided for less common types, such as

atomic_int_fast32_t for atomic<int_fast32_t>.

Note that for shared pointers (see Section 5.2.1, page 76) special atomic operations are provided.

The reason is that a declaration, such as atomic<shared_ptr<T>>, is not possible, because a shared

pointer is not trivially copyable. The atomic operations follow the naming conventions of the C-style

interface. See Section 5.2.4, page 96, for details.

18.7.4 The Low-Level Interface of Atomics

The low-level interface of atomics means using the atomic operations in a way that we have no

guaranteed sequential consistency. Thus, compilers and hardware might (partially) reorder access

on atomics (see Section 18.4.3, page 986).

Beware again: Although I give an example, this area is a minefield. You need a lot of expertise to

know when memory reorderings are worth the effort, and even experts often make mistakes in this

area.27

An expert using this feature should be familiar with the material mentioned in [N2480:MemMod]

and [BoehmAdve:MemMod] or, in general, all material listed at [Boehm:C++MM].

27 Special thanks to Hans Boehm and Bartosz Milewski for their support in letting me understand this and their

help in providing the right wording. Any flaws are my fault.

1020 Chapter 18: Concurrency

Named Type Corresponding Type

atomic_bool atomic<bool>

atomic_char atomic<char>

atomic_schar atomic<signed char>

atomic_uchar atomic<unsigned char>

atomic_short atomic<short>

atomic_ushort atomic<unsigned short>

atomic_int atomic<int>

atomic_uint atomic<unsigned int>

atomic_long atomic<long>

atomic_ulong atomic<unsigned long>

atomic_llong atomic<long long>

atomic_ullong atomic<unsigned long long>

atomic_char16_t atomic<char16_t>

atomic_char32_t atomic<char32_t>

atomic_wchar_t atomic<wchar_t>

atomic_intptr_t atomic<intptr_t>

atomic_uintptr_t atomic<uintptr_t>

atomic_size_t atomic<size_t>

atomic_ptrdiff_t atomic<ptrdiff_t>

atomic_intmax_t atomic<intmax_t>

atomic_uintmax_t atomic<uintmax_t>

Table 18.12. Some Named Types of std::atomic<>

An Example for the Low-Level Interface of Atomics

Consider the second example for using atomics, introduced in Section 18.7.1, page 1014, where we

declared an atomic flag to control access to some data:

long data;

std::atomic<bool> readyFlag(false);

and a thread providing the data:

data = 42; // provide some data

readyFlag.store(true); // and signal readiness

and a thread consuming the data:

while (!readyFlag.load()) { // loop until ready

...

}

std::cout << data << std::endl; // and process provided data

Because we use the default memory order, which guarantees sequential consistency, this works as

described in Section 18.7.1, page 1015. In fact, what we really call is:

18.7 Atomics 1021

data = 42;

readyFlag.store(true,std::memory_order_seq_cst);

and

while (!readyFlag.load(std::memory_order_seq_cst)) {

...

}

std::cout << data << std::endl;

Thus, each operation has an optional argument to pass the memory order, which by default is

std::memory_order_seq_cst (sequential consistent memory order).

By passing other values as memory order, we can weaken the order guarantees. In our case, it is,

for example, enough to require that the provider not delay operations past the atomic store and that

the consumer not bring forward operations following the atomic load:

data = 42;

readyFlag.store(true,std::memory_order_release);

and

while (!readyFlag.load(std::memory_order_acquire)) {

...

}

std::cout << data << std::endl;

However, relaxing all constraints on the order of atomic operations would result in undefined

behavior:

// ERROR: undefined behavior:

data = 42;

readyFlag.store(true,std::memory_order_relaxed);

The reason is that std::memory_order_relaxed doesn’t guarantee that all prior memory oper-

ations become visible to other threads before the effect of the store operation. Thus, the provider

might write data after setting the ready flag, so the consumer might read data while it gets written,

which is a data race.

Note that you could also make data atomic and use std::memory_order_relaxed as memory

order:

std::atomic<long> data(0);

std::atomic<bool> readyFlag(false);

// providing thread:

data.store(42,std::memory_order_relaxed);

readyFlag.store(true,std::memory_order_relaxed);

// consuming thread:

while (!readyFlag.load(std::memory_order_relaxed)) {

...

}

std::cout << data.load(std::memory_order_relaxed) << std::endl;

1022 Chapter 18: Concurrency

Strictly speaking, this is not undefined behavior, because we don’t have a data race. However, this

also would not work as expected, because the resulting value of data might not be 42 yet (the

memory order is still not guaranteed). It’s behavior that results in data having an unspecified value.

Using memory_order_relaxed would be useful only if we have atomic variables where reads

and/or writes are independent of one another. An example would be a global counter, which different

threads might increment or decrement and where we need only the final value after all threads ended.

Overview of Low-Level Operations

Table 18.13 lists the supplementary low-level operations provided for atomics. As you can see, the

load, store, exchange, CAS, and fetch operations provide the supplementary ability to pass a memory

order as an additional argument.

Operation triv int type ptr type

a.store(val,mo) Yes Yes Yes

a.load(mo) Yes Yes Yes

a.exchange(val,mo) Yes Yes Yes

a.compare_exchange_strong(exp,des,mo) Yes Yes Yes

a.compare_exchange_strong(exp,des,mo1,mo2) Yes Yes Yes

a.compare_exchange_weak(exp,des,mo) Yes Yes Yes

a.compare_exchange_weak(exp,des,mo1,mo2) Yes Yes Yes

a.fetch_add(val,mo) Yes Yes

a.fetch_sub(val,mo) Yes Yes

a.fetch_and(val,mo) Yes

a.fetch_or(val,mo) Yes

a.fetch_xor(val,mo) Yes

Table 18.13. Supplementary Low-Level Operations of Atomics

Some additional functions are provided to manually control memory access. For example,

atomic_thread_fence() and atomic_signal_fence() are provided to manually program

fences, which are barriers for memory-access reordering.

No More Details

I don’t explain these low-level interfaces in more detail because this feature is for real concurrency

experts or those who want to become experts. So, you should definitely use specific resources for

that.

One good starting point is Anthony Williams book C++ Concurrency in Action (see

[Williams:C++Conc]), especially Chapters 5 and 7. Another is Hans Boehm’s list of URLs for

material about memory models (see [Boehm:C++MM]).

Chapter 19

Allocators

Allocators, introduced in Section 4.6, page 57, represent a special memory model and are an abstrac-

tion used to translate the need to use memory into a raw call for memory. This chapter describes

allocators and corresponding low-level features to deal with memory. Details are provided in a sup-

plementary section of the book, available at the book’s Web site: http://www.cppstdlib.com.

19.1 Using Allocators as an Application Programmer

For the application programmer, using different allocators should be no problem. You simply have

to pass the allocator as a template argument. For example, the following statements create different

containers and strings, using the special allocator MyAlloc<>:

// a vector with special allocator

std::vector<int,MyAlloc<int>> v;

// an int/float map with special allocator

std::map<int,float,std::less<int>,

MyAlloc<std::pair<const int,float>>> m;

// a string with special allocator

std::basic_string<char,std::char_traits<char>,MyAlloc<char>> s;

If you use your own allocator, it probably is a good idea to make some type definitions. For example:

// special string type that uses special allocator

typedef std::basic_string<char,std::char_traits<char>,

MyAlloc<char>> MyString;

// special string/string map type that uses special allocator

typedef std::map<MyString,MyString,std::less<MyString>,

MyAlloc<std::pair<const MyString,MyString>>> MyMap;

http://www.cppstdlib.com

1024 Chapter 19: Allocators

// create object of this type

MyMap mymap;

Since C++11, you can use alias templates (template typedefs; see Section 3.1.9, page 27) to define

the allocator type while leaving the element type open:

template <typename T>

using Vec = std::vector<T,MyAlloc<T>>; // vector using own allocator

Vec<int> coll; // equivalent to: std::vector<int,MyAlloc<int>>

When you use objects with other than the default allocator, you’ll see no difference.

You can check whether two allocators use the same memory model by using operators == and

!=. If it returns true, you can deallocate storage allocated from one allocator via the other. To

access the allocator, all types that are parametrized by an allocator provide the member function

get_allocator(). For example:

if (mymap.get_allocator() == s.get_allocator()) {

// OK, mymap and s use the same or interchangeable allocators

...

}

In addition, since C++11, a type trait (see Section 5.4, page 122) is provided to check whether a type

T has an allocator_type, which a passed allocator may be converted into:

std::uses_allocator<T,Alloc>::value // true if Alloc is convertible

// into T::allocator_type

19.2 A User-Defined Allocator

Allocators provide an interface to allocate, create, destroy, and deallocate objects (Table 19.1). With

allocators, containers and algorithms can be parametrized based on the way the elements are stored.

For example, you could implement allocators that use shared memory or that map the elements to a

persistent database.

Expression Effect

a.allocate(num) Allocates memory for num elements

a.construct(p,val) Initializes the element to which p refers with val

a.destroy(p) Destroys the element to which p refers

a.deallocate(p,num) Deallocates memory for num elements to which p refers

Table 19.1. Fundamental Allocator Operations

Writing your own allocator is not very hard. The most important issue is how you allocate or

deallocate the storage. For the rest, appropriate defaults are usually provided since C++11. (Before

C++11, you had to implement the rest in a pretty obvious way.) As an example, let’s look at an

allocator that behaves just like the default allocator:

19.2 A User-Defined Allocator 1025

// alloc/myalloc11.hpp

#include <cstddef> // for size_t

template <typename T>

class MyAlloc {

public:

// type definitions

typedef T value_type;

// constructors

// - nothing to do because the allocator has no state

MyAlloc () noexcept {

}

template <typename U>

MyAlloc (const MyAlloc<U>&) noexcept {

// no state to copy

}

// allocate but don’t initialize num elements of type T

T* allocate (std::size_t num) {

// allocate memory with global new

return static_cast<T*>(::operator new(num*sizeof(T)));

}

// deallocate storage p of deleted elements

void deallocate (T* p, std::size_t num) {

// deallocate memory with global delete

::operator delete(p);

}

};

// return that all specializations of this allocator are interchangeable

template <typename T1, typename T2>

bool operator== (const MyAlloc<T1>&,

const MyAlloc<T2>&) noexcept {

return true;

}

template <typename T1, typename T2>

bool operator!= (const MyAlloc<T1>&,

const MyAlloc<T2>&) noexcept {

return false;

}

1026 Chapter 19: Allocators

As the example demonstrates, you have to provide the following features:

• A type definition of the value_type, which is nothing but the passed template parameter type.

• A constructor.

• A template constructor, which copies the internal state while changing the type. Note that a

template constructor does not suppress the implicit declaration of the copy constructor (see Sec-

tion 3.2, page 36).

• A member allocate(), which provides new memory.

• A member deallocate(), which releases memory that is no longer needed.

• Constructors and a destructor, if necessary, to initialize, copy, and clean up the internal state.

• Operators == and !=.

You don’t have to provide construct() or destroy(), because their default implementations usu-

ally work fine (using placement new to initialize the memory and calling the destructor explicitly to

clean it up).

Using this base implementation, you should find it easy to implement your own allocator. You

can use the core functions allocate() and deallocate() to implement your own policy of mem-

ory allocation, such as reusing memory instead of freeing it immediately, using shared memory,

mapping the memory to a segment of an object-oriented database, or just debugging memory allo-

cations. In addition, you might provide corresponding constructors and a destructor to provide and

release what allocate() and deallocate() need to fulfill their task.

Note that before C++11, you had to provide a lot more members, which, however, were easy to

provide. See alloc/myalloc03.hpp for a corresponding complete example, which is also covered

in the supplementary section about allocator details at http://www.cppstdlib.com.

19.3 Using Allocators as a Library Programmer

This section describes the use of allocators from the viewpoint of people who use allocators to

implement containers and other components that are able to handle different allocators. This section

is based, with permission, partly on Section 19.4 of Bjarne Stroustrup’s The C++ Programming

Language, 3rd edition (see [Stroustrup:C++]).

As an example, let’s look at a naive implementation of a vector. A vector gets its allocator as a

template or a constructor argument and stores it somewhere internally:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class vector {

...

private:

Allocator alloc; // allocator

T* elems; // array of elements

size_type numElems; // number of elements

size_type sizeElems; // size of memory for the elements

...

http://www.cppstdlib.com

19.3 Using Allocators as a Library Programmer 1027

public:

// constructors

explicit vector(const Allocator& = Allocator());

explicit vector(size_type num, const T& val = T(),

const Allocator& = Allocator());

template <typename InputIterator>

vector(InputIterator beg, InputIterator end,

const Allocator& = Allocator());

vector(const vector<T,Allocator>& v);

...

};

}

The second constructor that initializes the vector by num elements of value val could be imple-

mented as follows:

namespace std {

template <typename T, typename Allocator>

vector<T,Allocator>::vector(size_type num, const T& val,

const Allocator& a)

: alloc(a) // initialize allocator

{

// allocate memory

sizeElems = numElems = num;

elems = alloc.allocate(num);

// initialize elements

for (size_type i=0; i<num; ++i) {

// initialize ith element

alloc.construct(&elems[i],val);

}

}

}

Expression Effect

uninitialized_fill(beg,end,val) Initializes [beg,end) with val

uninitialized_fill_n(beg,num,val) Initializes num elements starting from beg with

val

uninitialized_copy(beg,end,mem) Initialize the elements starting from mem with the

elements of [beg,end)

uninitialized_copy_n(beg,num,mem) Initialize num elements starting from mem with

the elements starting from beg (since C++11)

Table 19.2. Convenience Functions for Uninitialized Memory

1028 Chapter 19: Allocators

However, for the initialization of uninitialized memory, the C++ standard library provides some

convenience functions (Table 19.2). The implementation of the constructor becomes even simpler

using these functions:

namespace std {

template <typename T, typename Allocator>

vector<T,Allocator>::vector(size_type num, const T& val,

const Allocator& a)

: alloc(a) // initialize allocator

{

// allocate memory

sizeElems = numElems = num;

elems = alloc.allocate(num);

// initialize elements

uninitialized_fill_n(elems, num, val);

}

}

The member function reserve(), which reserves more memory without changing the number of

elements (see Section 7.3.1, page 271), could be implemented as follows:

namespace std {

template <typename T, typename Allocator>

void vector<T,Allocator>::reserve(size_type size)

{

// reserve() never shrinks the memory

if (size <= sizeElems) {

return;

}

// allocate new memory for size elements

T* newmem = alloc.allocate(size);

// copy old elements into new memory

uninitialized_copy(elems,elems+numElems,newmem);

// destroy old elements

for (size_type i=0; i<numElems; ++i) {

alloc.destroy(&elems[i]);

}

// deallocate old memory

alloc.deallocate(elems,sizeElems);

19.3 Using Allocators as a Library Programmer 1029

// so, now we have our elements in the new memory

sizeElems = size;

elems = newmem;

}

}

Raw Storage Iterators

In addition, class raw_storage_iterator is provided to iterate over uninitialized memory to ini-

tialize it. Therefore, you can use any algorithms with a raw_storage_iterator to initialize mem-

ory with the values that are the result of that algorithm.

For example, the following statement initializes the storage to which elems refers by the values

in range [x.begin(),x.end()):

copy (x.begin(), x.end(), // source

raw_storage_iterator<T*,T>(elems)); // destination

The first template argument (T*, here) has to be an output iterator for the type of the elements. The

second template argument (T, here) has to be the type of the elements.

Temporary Buffers

In code, you might also find the get_temporary_buffer() and return_temporary_buffer().

They are provided to handle uninitialized memory that is provided for short, temporary use inside

a function. Note that get_temporary_buffer() might return less memory than expected. There-

fore, get_temporary_buffer() returns a pair containing the address of the memory and the size

of the memory (in element units). Here is an example of how to use it:

void f()

{

// allocate memory for num elements of type MyType

pair<MyType*,std::ptrdiff_t> p

= get_temporary_buffer<MyType>(num);

if (p.second == 0) {

// could not allocate any memory for elements

...

}

else if (p.second < num) {

// could not allocate enough memory for num elements

// however, don’t forget to deallocate it

...

}

// do your processing

...

1030 Chapter 19: Allocators

// free temporarily allocated memory, if any

if (p.first != 0) {

return_temporary_buffer(p.first);

}

}

However, it is rather complicated to write exception-safe code with get_temporary_buffer() and

return_temporary_buffer(), so they are usually no longer used in library implementations.

Bibliography

This bibliography lists the resources that were mentioned, adapted, or cited in this book. These days,

many of the advancements in programming appear in electronic forums, which too are listed here.

Web sites are typically considerably more volatile than books and articles. The Internet links

listed here may not be valid in the future, so I provide the list of links for this book at my Web site,

which I expect to be stable: http://www.cppstdlib.com.

Newsgroups and Forums

The Internet also provides a diverse collection of forums or newsgroups about programming, C++,

the C++ standard library, and the STL. Some of them are moderated, which improves the quality of

the forum a lot because every submission is examined in some way for its appropriateness.

The most important newsgroups and forums are:

• Newsgroup comp.lang.c++.moderated, a moderated forum for technical discussions of

C++ (see http://groups.google.com/group/comp.lang.c++.moderated/about)

• Newsgroup comp.std.c++, a moderated forum for discussions of the C++ standard

(see http://groups.google.com/group/comp.std.c++/about)

• Forum stackoverflow.com, a moderated forum for discussions of programming, where you

can use tags, such as c++ or c++11, for C++ specific topics

(see http://stackoverflow.com/tags/c++/info)

• Newsgroup comp.lang.c++, an unmoderated forum for discussions of C++

(see http://groups.google.com/group/comp.lang.c++/about)

• Newsgroup alt.comp.lang.learn.c-c++, an unmoderated forum for beginners of C and

C++ (see http://groups.google.com/group/alt.comp.lang.learn.c-c++/about)

http://www.cppstdlib.com
http://groups.google.com/group/comp.lang.c++.moderated/about
http://groups.google.com/group/comp.std.c++/about
http://stackoverflow.com/tags/c++/info
http://groups.google.com/group/comp.lang.c++/about
http://groups.google.com/group/alt.comp.lang.learn.c-c++/about

1032 Bibliography

Books and Web Sites

[Abrahams:RValues]

Dave Abrahams. Move It With Rvalue References

http://cpp-next.com/archive/2009/09/move-it-with-rvalue-references/

[Austern:STL]

Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++ Standard

Template Library. Reading, MA: Addison-Wesley, 1998

[Becker:LibExt]

Pete Becker. The C++ Standard Library Extensions: A Tutorial and Reference. Reading, MA:

Addison-Wesley, 2007

[Becker:RValues]

Thomas Becker. C++ Rvalue References Explained

http://thbecker.net/articles/rvalue_references/section_01.html

[Boehm:C++MM]

Hans J. Boehm. Threads and memory model for C++

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/

[BoehmAdve:MemMod]

Hans J. Boehm and Sarita V. Adve. Foundations of the C++ Concurrency Memory Model

http://www.hpl.hp.com/techreports/2008/HPL-2008-56.html

[Boost]

Boost C++ Libraries

http://www.boost.org/

[Breymann:STL]

Ulrich Breymann. Komponenten entwerfen mit der STL. Bonn, Germany: Addison-Wesley, 1999

[C++Std1998]

ISO. Information Technology—Programming Languages—C++. Document Number ISO/IEC

14882-1998. ISO/IEC, 1998

[C++Std2003]

ISO. Information Technology—Programming Languages—C++, Second Edition. Document

Number ISO/IEC 14882-2003. ISO/IEC, 2003

[C++Std2011]

ISO. Information Technology—Programming Languages—C++, Third Edition. Document Num-

ber ISO/IEC 14882-2011. ISO/IEC, 2011

http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
http://www.hpl.hp.com/techreports/2008/HPL-2008-56.html
http://thbecker.net/articles/rvalue_references/section_01.html
http://www.boost.org/
http://cpp-next.com/archive/2009/09/move-it-with-rvalue-references/

Bibliography 1033

¨

~

[C++Std2011Draft]

Pete Becker, ed. Working Draft, Standard for Programming Language C++ (C++11)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

[ECMAScript]

Ecma International. ECMAScript Language Specification (ECMA-262)

http://www.ecma-international.org/publications/standards/Ecma-262.htm

[Eggink:C++IO]

Bernd Eggink. Die C++ iostreams–Library. Munchen, Germany: Hanser Verlag, 1995

[EllisStroustrup:ARM]

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual (ARM). Reading,

MA: Addison-Wesley, 1990

[HoadZobel:HashCombine]

Timothy C. Hoad and Justin Zobel. Methods for Identifying Versioned and Plagiarised Documents

http://www.cs.rmit.edu.au/jz/fulltext/jasist-tch.pdf

[GlassSchuchert:STL]

Graham Glass and Brett Schuchert. The STL <Primer>. Englewood Cliffs, NJ: Prentice-Hall, 1996

[GoF:DesignPatterns]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994

[ISO639:LangCodes]

Codes for the Representation of Names of Languages

http://www.loc.gov/standards/iso639-2/php/English_list.php

[ISO3166:CodeTab]

ISO 3166-1 decoding table

http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/

iso-3166-1_decoding_table.htm

[ISOLatin1]

ISO/IEC 8859-1

http://en.wikipedia.org/wiki/ISO_8859-1

[ISOLatin9]

ISO/IEC 8859-15

http://en.wikipedia.org/wiki/ISO_8859-15

[JustThread]

Anthony Williams. C++ Standard Thread Library

http://www.stdthread.co.uk/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.cs.rmit.edu.au/~jz/fulltext/jasist-tch.pdf
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/support/country_codes/iso_3166_code_lists/iso-3166-1_decoding_table.htm
http://en.wikipedia.org/wiki/ISO_8859-1
http://en.wikipedia.org/wiki/ISO_8859-15
http://www.stdthread.co.uk/

1034

¨

Bibliography

[Karlsson:Boost]

Bjorn Karlsson. Beyond the C++ Standard Library: An Introduction to Boost. Reading, MA:

Addison-Wesley, 2006

[KoenigMoo:Accelerated]

Andrew Koenig and Barbara E. Moo. Accelerated C++: Practical Programming by Example.

Boston, MA: Addison-Wesley, 2000

[Meyers:MoreEffective]

Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Read-

ing, MA: Addison-Wesley, 1996

[Milewski:Atomics]

Bartosz Milewski. C++ atomics and memory ordering

http://bartoszmilewski.wordpress.com/2008/12/01

[Milewski:Multicore]

Bartosz Milewski. Multicores and Publication Safety

http://bartoszmilewski.wordpress.com/2008/08/04

[MusserSaini:STL]

David R. Musser and Atul Saini. STL Tutorial and Reference Guide: C++ Programming with the

Standard Template Library. Reading, MA: Addison-Wesley, 1996

[N1456:HashTable]

Matthew Austern. A Proposal to Add Hash Tables to the Standard Library (revision 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html

[N2351:SharedPtr]

Peter Dimov and Beman Dawes. Improving shared_ptr for C++0x, Revision 2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2351.htm

[N2480:MemMod]

Hans-J. Boehm. A Less Formal Explanation of the Proposed C++ Concurrency Memory Model

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html

[N2543:FwdList]

Matt Austern. STL singly linked lists (revision 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2543.htm

[N2661:Chrono]

Howard E. Hinnant, Walter E. Brown, Jeff Garland, and Marc Paterno. A Foundation to Sleep On:

Clocks, Points in Time, and Time Durations

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1456.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2351.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2480.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2543.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.html
http://bartoszmilewski.wordpress.com/2008/12/01
http://bartoszmilewski.wordpress.com/2008/08/04

Bibliography 1035

¨

[N3051:DeprExcSpec]

Doug Gregor. Deprecating Exception Specifications

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html

[N3194:Futures]

Lawrence Crowl, Anthony Williams, and Howard Hinnant. Clarifying C++ Futures

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3194.htm

[N3198:DeprAdapt]

Daniel Krugler. Deprecating unary_function and binary_function (Revision 1)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3198.htm

[N3279:LibNoexcept]

Alisdair Meredith and John Lakos. Conservative use of noexcept in the Library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf

[Nelson:C++]

Mark Nelson. C++ Programmer’s Guide to the Standard Template Library. Foster City, CA: IDG

Books Worldwide, 1995

[Plauger:C++Lib]

P. J. Plauger. The Draft Standard C++ Library. Englewood Cliffs, NJ: Prentice Hall, 1995

[SafeSTL]

Cay S. Horstmann. Safe STL

http://www.horstmann.com/safestl.html

[STLport]

STLport

http://www.stlport.org/

[Stroustrup:C++]

Bjarne Stroustrup. The C++ Programming Language, Third Edition. Reading, MA: Addison-

Wesley, 1997

[Stroustrup:C++0x]

Bjarne Stroustrup. What is C++0x?

http://www2.research.att.com/~bs/what-is-2009.pdf

[Stroustrup:Design]

Bjarne Stroustrup. The Design and Evolution of C++. Reading, MA: Addison-Wesley, 1994

[Stroustrup:FAQ]

Bjarne Stroustrup. C++11 — the recently approved new ISO C++ standard

http://www.research.att.com/~bs/C++11FAQ.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3051.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3194.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3198.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3279.pdf
http://www.horstmann.com/safestl.html
http://www.stlport.org/
http://www2.research.att.com/~bs/what-is-2009.pdf
http://www.research.att.com/~bs/C++11FAQ.html

1036 Bibliography

[Sutter:LockFree]

Herb Sutter. Lock-Free Code: A False Sense of Security

http://drdobbs.com/cpp/210600279

[Teale:C++IO]

Steve Teale. C++ IOStreams Handbook. Reading, MA: Addison-Wesley, 1993

[UTF8]

UTF-8

http://en.wikipedia.org/wiki/UTF-8

[VisualC++Locales]

Visual C++ Language and Country/Region Strings

http://msdn.microsoft.com/en-us/library/hzz3tw78.aspx

[Williams:C++Conc]

Anthony Williams. C++ Concurrency in Action: Practical Multithreading. Greenwich, CT: Man-

ning, 2012

[Williams:CondVar]

Anthony Williams. Multithreading and Concurrency: Condition Variable Spurious Wakes

http://www.justsoftwaresolutions.co.uk/threading/?page=2

http://www.justsoftwaresolutions.co.uk/threading/?page=2
http://drdobbs.com/cpp/210600279
http://en.wikipedia.org/wiki/UTF-8
http://msdn.microsoft.com/en-us/library/hzz3tw78.aspx

Index

Note: Page numbers in bold indicate the location of the definition of the item. Page numbers in the

normal type face are other pages of interest. If the entry appears in source code the page numbers

are in the italic type face.

&

as capture 29

&=, |=, ^=

for atomics 1016

()

as operator 233

for locales 868

*

for iterators 188, 191, 435

for unique_ptrs 111

for shared_ptrs 79, 94

+

for strings 676, 711

+, -

for iterators 438

for timepoints 155

+, -, *, /

for complex 933, 938

for ratios 141

+, -, *, /, %

for durations 146

++, -- 191

for atomics 1016

for durations 146

for iterators 188, 435, 437

for iterators of arrays, vectors, strings 440

+=

for strings 674, 702

+=, -=

for atomics 1016

for iterators 438

for timepoints 155

+=, -=, *=, /=

for complex 929, 933, 937

+=, -=, *=, /=, %=

for durations 146

->

for iterators 188, 191, 435

for return types 32

for unique_ptrs 111

for shared_ptrs 94

<< 753, 754

conventions 818

for bitsets 652

for complex 927, 933, 938

for distributions 918

for pairs 62

for random-value engines 916

for stream buffers 846

for strings 677, 712

for shared_ptrs 94

user-defined 810

=

as capture 29

for arrays 265

for containers 255, 258, 406

for deques 287

1038 Index A

= (continued)

for durations 147

for forward lists 303

for iterators 188

for lists 293

for maps and multimaps 336

for pairs 61

for sets and multisets 321

for strings 673

for tuples 71

for unique_ptrs 111

for unordered containers 368

for vectors 274

for shared_ptrs 93, 97

==, !=

!= derived from == 138

for allocators 1024

for arrays 264

for complex 932, 939

for container adapters 649

for containers 255, 259, 404

for deques 286

for distributions 918

for durations 146

for error categories 49

for forward lists 303

for iterators 188, 435, 436

for lists 292

for locales 868

for maps and multimaps 335

for pairs 61

for random-value engines 916

for ratios 141

for sets and multisets 318

for strings 697

for timepoints 155

for tuples 71

for unique_ptrs 111

for unordered containers 367

for vectors 273

for shared_ptrs 94

<, <=, >, >=

> <= >= derived from < 138

for arrays 264

for complex 933

for container adapters 649

for containers 255, 259, 404

for deques 286

for durations 146

for forward lists 303

for iterators 199, 438

for lists 292

for maps and multimaps 335

for pairs 61

for ratios 141

for sets and multisets 318

for strings 697

for timepoints 155

for tuples 71

for unique_ptrs 111

for vectors 273

for shared_ptrs 94

>>

and templates 13

conventions 818

for complex 927, 933, 938

for distributions 918

for random-value engines 916

for stream buffers 846

for strings 677, 712

user-defined 810

?: 125

[]

for unordered_maps 186

for arrays 265, 408

for deques 286, 408

for iterators 438

for maps 186, 343, 408

for match results 720, 722

for strings 408, 671

for unique_ptrs 111

for unordered maps 374, 408

for vectors 274, 408

A

abort() 162

abs()

for complex 931, 938

global function 226, 942

absolute to relative values 516, 628

Index A 1039

accumulate()

algorithm 375, 623

acos()

for complex 935, 940

global function 941

acosh()

for complex 935, 940

global function 941

adapter

for containers 188, 631

add_const trait 130

add_cv trait 130

add_lvalue_reference trait 130

add_pointer trait 130

address

I/O 756

address_family_not_supported 46

address_in_use 46

address_not_available 46

add_rvalue_reference trait 130

add_volatile trait 130

adjacent_difference()

algorithm 628, 630

adjacent_find()

algorithm 540

adjustfield 782

ADL 677, 812

adopt_lock 994, 999

for unique_locks 1000

advance() 441, 442, 465, 586

algorithm 166, 199, 505

absolute to relative values 516, 628

accumulate() 375, 623

adjacent_difference() 628, 630

adjacent_find() 540

all_of() 555

and lambdas 206, 229

and maps 345

and regular expressions 727

any_of() 555

auxiliary functions 517

binary_search() 608

C++98/C++03 example 201

change order of elements 583

comparing 542

complexity 10

copy() 454, 557

copy and modify elements 563

copy_backward() 557

copy elements 557

copy_if() 557

copy_n() 557

count() 524, 831

count_if() 524

destination 217

equal() 542

equal_range() 613

fill() 568

fill_n() 568

find() 200, 528

find_end() 537

find_first_of() 538

find_if() 226, 350, 528

find_if_not() 528

for_each() 482, 519

for sorted ranges 515

function as argument 224

generate() 478, 569

generate_n() 478, 569

header file 505

heap 604

includes() 609

inner_product() 625

inplace_merge() 622

intersection 617

iota() 571

is_heap() 554

is_heap_until() 554

is_partitioned() 552

is_permutation() 544

is_sorted() 550

is_sorted_until() 550

lexicographical_compare() 548

lower_bound() 611

make_heap() 514, 604, 606, 644

manipulating 217

max_element() 200, 525

merge() 614

min_element() 200, 525

minmax_element() 526

1040 Index A

algorithm (continued)

mismatch() 546

modifying 217, 509, 557, 568

move() 561

move_backward() 561

multiple ranges 207

mutating 511, 583

next_permutation() 587

none_of() 555

nonmodifying 507, 524

nth_element() 602

numeric 515, 623

overview 505

partial_sort() 514, 599

partial_sort_copy() 600

partial_sum() 627, 630

partition() 592

partition_copy() 594

partition_point() 552

pop_heap() 605, 606, 644

prev_permutation() 587

push_heap() 605, 606, 644

random_shuffle() 589

range predicates 550

ranges 203

relative to absolute values 516, 627

remove() 575

remove_copy() 577

remove_copy_if() 577

remove_if() 483, 575

removing duplicates 578

removing elements 218, 511, 575

replace() 571

replace_copy() 573

replace_copy_if() 573

replace_if() 571

result 479

reverse() 200, 583

reverse_copy() 583

rotate() 584

rotate_copy() 585

search() 534, 684

searching elements 507, 528

search_n() 531

search_n_if() 533

set_difference() 618

set_intersection() 617

set_symmetric_difference() 619

set_union() 616

shuffle() 589, 908

sort() 200, 228, 512, 596

sorted-ranges 608

sort_heap() 514, 605, 606

sorting 511, 596

stable_partition() 592

stable_sort() 514, 596

suffix _copy 507

suffix _if 507

swap_ranges() 566

transform() 225, 240, 563, 564, 684

union elements 616

unique() 578

unique_copy() 580

unordered comparison 544

upper_bound() 611

user-defined 308, 468

versus member functions 223

<algorithm> 59, 134, 136, 200, 505

algostuff.hpp 517

aliasing constructor

for shared_ptrs 95

alias template 27, 1024

aligned_storage trait 131

aligned_union trait 131

alignment_of trait 131

allocate()

for allocators 1024

allocate_shared()

for shared_ptrs 93

allocator 57, 1023

==, != 1024

allocate() 1024

construct() 1024

deallocate() 1024

default 57

destroy() 1024

get_allocator() 1024

user-defined 1024

uses_allocator trait 128

value_type 1026

Index A 1041

allocator_arg 977

allocator_type

for containers 430

for strings 715

all_of()

algorithm 555

alnum

for ctype_base 894

alpha

for ctype_base 894

already_connected 46

always_noconv()

for codecvt facets 898

amortized complexity 10

antisymmetric 315

any_of()

algorithm 555

app stream flag 796

for string streams 806

append()

for strings 674, 702, 703

arg()

for complex 931, 938

argc 37, 797

argument-dependent lookup 677, 812

argument_list_too_long 46

argument_out_of_domain 46

argv 37, 797

array

++, -- for iterators 440

and range-based for loops 18

associative 185, 343, 374

as STL container 261, 267, 270, 278, 386

see array

see vector

begin() and end() 257, 386

fill() 407

traits 130

array 171, 261, 268

see container

= 265

==, != 264

<, <=, >, >= 264

[] 265

as C-style array 267

at() 265

back() 265

begin() 266

cbegin() 266

cend() 266

constructor 263, 264

continuity of elements 267

crbegin() 266

crend() 266

data() 267

destructor 263

element access 265

empty() 264

end() 266

exception handling 268

fill() 265

front() 265

get() 268

header file 261

initialization 262

iterators 266

max_size() 264

move semantics 263

rbegin() 266

rend() 266

size() 264

swap() 263, 265

tuple interface 268

zero sized 263

<array> 261

ASCII 851

asctime() 154, 158

as-if rule 983

asin()

for complex 935, 940

global function 941

asinh()

for complex 935, 940

global function 941

assign()

for char_traits 854

for containers 407

for deques 287

for forward lists 303

for lists 293

for strings 673, 700, 701

for vectors 274

1042 Index B

assignable 244

assignment

see =

move semantics 21

associative array 185

with map 343, 346

with unordered map 185, 374

associative container 167, 177

modifying access 221

order of duplicates 180

sorting criterion 232, 933

terminology 168

unordered

see unordered container

user-defined inserter 471

async() 946, 947, 974

and exceptions 951

arguments 958

launch policy 951, 974

polling 954

async launch policy 951, 974

at()

for arrays 265, 408

for containers 408

for deques 286, 408

for maps 186, 343, 408

for strings 671, 699

for unordered maps 186, 374, 408

for vectors 274, 408

atan()

for complex 935, 940

global function 941

atan2()

global function 941

atanh()

for complex 935, 940

global function 941

ate stream flag 796

for string streams 806

atexit() 162

concurrency 56

atomic

&=, |=, ^= 1016

++, -- 1016

+=, -= 1016

CAS operations 1018

compare_exchange_strong() 1016

compare_exchange_weak() 1016

exchange() 1016

fetch_add() 1016

fetch_and() 1016

fetch_or() 1016

fetch_sub() 1016

fetch_xor() 1016

for shared_ptrs 96

is_lock_free() 1016

load() 1012, 1016

low-level interface 1019

memory order 1016, 1020

store() 1012, 1016

versus mutexes 1012

<atomic> 1013, 1016

atomic_bool 1019

atomic_exchange()

for shared_ptrs 97

atomic_init() 1013

atomic_int 1019

atomic_is_lock_free()

for shared_ptrs 97

atomic_load()

for shared_ptrs 97

atomics 1012

atomic_store()

for shared_ptrs 97

at_quick_exit() 162

concurrency 56

atto ratio unit 142

auto 14, 192

auto_ptr 113

awk regex grammar 733, 739

B

back()

for arrays 265

for containers 409

for deques 286

for lists 293

for queues 648

for strings 671, 699

for vectors 274

back_inserter 211, 212, 455

Index B 1043

backward compatibility 9

bad()

for streams 759

bad_address 46

bad_alloc 41, 43

bad_array_new_length 41

badbit 758

bad_cast 41, 42, 43

bad_exception 41, 42

bad_file_descriptor 46

bad_function_call 41, 44, 133

bad_message 46

bad_typeid 41, 42

bad_weak_ptr 41, 44, 89

base() 452

basefield 785

basic regex grammar 733, 739

basic_filebuf 791, 824

basic_fstream 791

basic_ifstream 791

basic_ios 748

basic_istream 748

see input stream

basic_istringstream 802

basic_ofstream 791

basic_ostream 748

see output stream

basic_ostringstream 802

basic_regex<> 719

basic_streambuf 748, 832

see input buffer, output buffer

basic_string 655

see string

basic_stringbuf 802

basic_stringstream 802

before_begin()

for forward lists 304, 307, 312, 423

beg stream position 800

begin()

as global function 386

for arrays 266

for buckets 374, 380, 429

for containers 189, 256, 410

for C-style arrays 257, 386

for deques 286

for forward lists 304

for initializer lists 18

for lists 294

for maps and multimaps 337

for match results 723

for sets and multisets 321

for strings 684, 714

for unordered containers 369, 429

for vectors 276

bernoulli_distribution 917, 921

bibliography 1031

bidirectional iterator 198, 437

advance() 441

distance() 445

next() 443

prev() 443

bidirectional_iterator_tag 466

Big-O notation 10

binary stream flag 796

binary_function 497

binary numeric representation 652

binary predicate 228

binary_search()

algorithm 608

bind() 242, 487, 488, 496

and pointers 493

and references 491

for data members 494

versus lambdas 499

bind1st() 243, 497

bind2nd() 241, 243, 497, 525

binder 241, 487

deprecated 497

binomial_distribution 917, 922

bit_and<>() 486

bitfield

and concurrency 982

bitfield with dynamic size 281

see vector<bool>

bitfield with static size 650

see bitset

bit_or<>() 486

bitset 650, 651

<< 652

1044 Index C

bitset (continued)

binary numeric representation 652

header file 650

to_string() 652

to_ullong() 652

<bitset> 650

bit_xor<>() 486

blank

for ctype_base 894

bool

input 781

I/O 755

numeric limits 116

output 781

bool()

for exceptions 49

for streams 760

for unique_ptrs 100, 111

for shared_ptrs 94

boolalpha manipulator 781

boolalpha stream flag 781

Boolean conditions

in loops 760

of streams 760

Boolean vector 281

broken_pipe 46

broken_promise 47

bucket() 374

for unordered containers 429

bucket_count() 374

for unordered containers 362, 380, 429

bucket interface 429

for unordered containers 374

bucket_size() 374

for unordered containers 429

byte order mark 851

C

"C" locale 861

C++

C++03 7, 193, 202

C++0x 7

C++11 7

C++98 7, 193, 202

__cplusplus 9

history 7

TR1 7

callable object 54, 958

callback

for streams 817

call_once() 1000

capacity()

for strings 427, 670, 696

for vectors 270, 273, 427

capture group

for regular expressions 719

capture of lambdas 28, 29

carray 261

case-insensitive search 732

CAS operations

for atomics 1018

catalog

for message_base 905

category

of container iterators 410

of iterators 198, 433, 469

category()

for exceptions 49

cauchy_distribution 917, 923

cbefore_begin()

for forward lists 304, 423

cbegin() 192

for arrays 266

for buckets 374, 429

for containers 256, 410

for deques 286

for forward lists 304

for lists 294

for maps and multimaps 337

for match results 723

for sets and multisets 321

for strings 684, 714

for unordered containers 369, 429

for vectors 276

<cctype> 896

ceil()

global function 941

cend() 192

for arrays 266

Index C 1045

for buckets 374, 430

for containers 256, 410

for deques 286

for forward lists 304

for lists 294

for maps and multimaps 337

for match results 723

for sets and multisets 321

for strings 684, 714

for unordered containers 369, 430

for vectors 276

centi ratio unit 142

cerr 745, 751

redirecting 822

<cerrno> 45

<cfloat> 115, 116

char

classification 891

input 755

numeric limits 116

char*

input 755

char* stream 807

freeze() 808

str() 808

char16_t 33, 852

numeric limits 116

char32_t 33, 852

numeric limits 116

character

classification 891

encoding conversion 897

sets 851

traits 689, 853

char_traits 664, 749, 853

assign() 854

char_type 854

compare() 689, 854

copy() 854

eof() 854

eq() 689, 854

eq_int_type() 854

find() 689, 854

int_type 854

length() 854

lt() 689, 854

move() 854

not_eof() 854

off_type 854

pos_type 854

state_type 854

to_char_type() 854

to_int_type() 854

char_type

for char_traits 854

chi_squared_distribution 917, 923

<chrono> 143, 153

cin 745, 751

concurrency 752

redirecting 822

class

<<, >> 810

enum class 32

classic()

for locales 860, 868

classic_table()

for ctype facets 895

clear()

for containers 256, 260, 419

for deques 287

for forward lists 306

for lists 295

for maps and multimaps 340

for sets and multisets 322

for streams 759, 797, 800

for strings 674, 705

for unordered containers 370, 371

for vectors 277

<climits> 115, 116

clock 143, 149

adjustments 151

current time 152

duration 149

is_steady 149

now() 149

period 149

rep 149

time_point 149

to_time_t() 153

clock() 158

1046 Index C

clock_t 158

clog 745

close()

for messages facets 905

for streams 798

<cmath> 941

cntrl

for ctype_base 894

code() for exceptions 48

<codecvt> 900

codecvt facet 897

codecvt_base 898

result 898

codecvt_mode 900

codecvt_utf16 900

codecvt_utf8 900

codecvt_utf8_utf16 900

collate facet 904

collate locale category 904

collate regex constant 733

collection 165

see container

of collections 548

combine()

for locales 866

command-line arguments 37, 797

commit-or-rollback 248

common_type trait 124, 131

compare

lexicographical 548

ranges 542

compare()

for char_traits 689, 854

for collate facets 904

for strings 698

compare_exchange_strong()

for atomics 1016

compare_exchange_weak()

for atomics 1016

compare function

for unordered containers 366

comparison operators 138

comparisons

for shared_ptrs 92

for containers 259

for pairs 67

for unique_ptrs 112

compatibility 9

complex 925

+, -, *, / 933, 938

+=, -=, *=, /= 929, 933, 937

<< 927, 933, 938

==, != 932, 939

<, <=, >, >= 933

>> 927, 933, 938

abs() 931, 938

acos() 935, 940

acosh() 935, 940

and associative containers 932, 933

arg() 931, 938

asin() 935, 940

asinh() 935, 940

atan() 935, 940

atanh() 935, 940

conj() 929, 936

constructor 929, 936

cos() 935, 940

cosh() 935, 940

examples 926

exp() 935, 939

header file 925

imag() 931, 937

input 927, 933, 938

I/O 927, 933, 938

log() 935, 940

log10() 935, 940

norm() 931, 938

output 927, 933, 938

polar() 929, 936

pow() 935, 939

proj() 929, 936

real() 931, 937

sin() 935, 940

sinh() 935, 940

sqrt() 935, 939

tan() 935, 940

tanh() 935, 940

type conversions 930

value_type 935

<complex> 925

Index C 1047

complexity 10

amortized 10

compressing whitespaces 582

concurrency 55, 945

async() 946, 947, 974

atomics 1012

condition variable 1003, 1009

data race 982

deadlock 992, 995

for shared_ptrs 96

for queues 1006

for streams 56, 752

future 947, 975

guarantees 56

half-written data 985

high-level interface 946

lazy evaluation 951

lock-free programming 988

lock_guard 989, 999

locks 989

low-level interface 964

memory order 1016, 1020

mutex 989

number of possible threads 980

of containers 985

packaged task 977

polling 954

promises 969, 977

recursive_mutex 993

reordering of statements 986

shared future 976

shared state 969, 973

speculative execution 954

spurious wakeups 1004

STL 56

synchronization 982

this_thread 981

thread 964, 979

timer 947, 981

unique_lock 1000

unsynchronized data access 984

volatile 988, 998

conditional trait 131

conditions

in loops 760

condition variable 1003, 1004, 1009

condition_variable 1009

condition_variable_any 1011

constructor 1009

destructor 1009

native_handle() 1009

notify_all() 1009

notify_all_at_thread_exit() 1009

notify_one() 1009

spurious wakeups 1004

wait() 1009

wait_for() 1009

wait_until() 1009

condition_variable 1004

see condition variable

<condition_variable> 1003, 1004, 1009

condition_variable_any 1011

see condition variable

conj()

for complex 929, 936

connection_aborted 46

connection_already_in_progress 46

connection_refused 46

connection_reset 46

constant complexity 10

constant type 127

constexpr 26, 119

const_iterator

for containers 190, 260, 398

for strings 694

const_local_iterator

for unordered containers 399

const_mem_fun1_ref_t 498

const_mem_fun1_t 498

const_mem_fun_ref_t 498

const_mem_fun_t 498

const_pointer

for containers 260, 398

for strings 694

const_pointer_cast()

for shared_ptrs 94

const_reference

for container adapters 645

for containers 260, 397

for strings 693

for vector<bool> 282

1048 Index C

const_reverse_iterator 449

for containers 398

for strings 694

construct()

for allocators 1024

constructor

aliasing 95

as template 36

for priority_queues 646, 647

for shared_ptrs 78, 93, 97

for arrays 263, 264

for complex 929, 936

for condition variables 1009

for container adapters 646

for containers 255, 400, 430

for deques 285

for durations 147

for forward lists 302

for futures 975

for lists 291, 292

for locales 866

for maps 333

for multimaps 333

for multisets 316, 327

for packaged tasks 977

for pairs 61

for promises 977

for sets 316

for strings 687, 694, 695

for threads 979

for timepoints 155

for tuples 69, 71

for unique_ptrs 111

for unordered containers 360

for vectors 272, 273

move constructor 21

consume_header 900

container 165, 167, 253, 631

= 255, 258, 406

==, != 255, 404

<, <=, >, >= 255, 404

adapters 188, 631

allocator_type 430

and concurrency 985

array 261

see array

assign() 407

at() 408

back() 409

begin() 189, 256, 410

bucket interface 429

C++98/C++03 example 193

call member function for elements 243,

491

cbegin() 192, 256, 410

cend() 192, 256, 410

clear() 256, 260, 419

comparisons 259

concurrency 56

const_iterator 190, 260, 398

const_pointer 260, 398

const_reference 260, 397

const_reverse_iterator 398

constructor 255, 400, 430

count() 404

crbegin() 214, 411

crend() 214, 411

C-style arrays 386

data() 409

deque 283

see deque

destructor 255, 400, 403

difference_type 260, 398

element access 259

element requirements 244

emplace() 412, 414

emplace_back() 415

emplace_front() 415

emplace_hint() 414

empty() 255, 258, 403

end() 189, 256, 410

equal_range() 406

erase() 417, 418

find() 405

forward_list 300

see forward_list

front() 409

get_allocator() 430

initialization 254

initializer list 256

insert() 411, 413, 416, 417

internal types 260

Index C 1049

container (continued)

iterator 190

iterator 260, 398

iterator category 410

key_type 398

list 290

see list

lower_bound() 405

map 331

see map

mapped_type 399

max_size() 255, 258, 403

members 254, 397

move semantics 257, 258

multimap 331

see multimap

multiset 314

see multiset

of containers 548

overview 392

performance 394

pointer 260, 398

pop_back() 419

pop_front() 419

print elements 216

push_back() 415

push_front() 414

rbegin() 214, 411

reference 260, 397

references as elements 132, 391

reference semantics 245, 388

rend() 214, 411

requirements 254

reserve() 428

resize() 420

reverse_iterator 398

set 314

see set

shrink_to_fit() 428

size() 255, 258, 403

size operations 258

size_type 260, 398

swap() 250, 255, 258, 407

terminology 168

types 397

unordered container 355

see unordered_map

see unordered_multimap

see unordered_multiset

see unordered_set

upper_bound() 405

user-defined 385

value semantics 245

value_type 260, 397

vector 270

see vector

when which 392

container adapter

==, != 649

<, <=, >, >= 649

const_reference 645

constructor 646

container_type 645

emplace() 647

empty() 647

front() 648

pop() 648

push() 647

reference 645

size() 647

size_type 645

swap() 649

top() 648

value_type 645

container_type

for container adapters 645

conversion

absolute to relative values 516, 628

between character encodings 897

relative to absolute values 516, 627

copy()

algorithm 557

algorithm implementation 454

for char_traits 854

for strings 669, 700

copyable 244

copy and modify elements 563

copy and replace elements 573

copy_backward()

algorithm 557

1050 Index C

copy constructor

as template 36, 62

for containers 401

copyfmt()

for streams 779, 780, 811, 817, 822

copyfmt_event 817

copy_if()

algorithm 557

copy_n()

algorithm 557

cos()

for complex 935, 940

global function 941

cosh()

for complex 935, 940

global function 941

count()

algorithm 524, 831

for containers 404

for durations 147

for maps and multimaps 335

for sets and multisets 319

for unordered containers 368

count_if()

algorithm 524

cout 745, 751

concurrency 752

redirecting 822

__cplusplus 9

crbegin() 214, 449

for arrays 266

for containers 411

for deques 286

for lists 294

for maps and multimaps 337

for sets and multisets 321

for strings 714

for unordered containers 369

for vectors 276

cref() 132

and bind() 491

and make_pair() 66

and make_tuple() 70

cregex_iterator 726

cregex_token_iterator 727

crend() 214, 449

for arrays 266

for containers 411

for deques 286

for lists 294

for maps and multimaps 337

for sets and multisets 321

for strings 714

for unordered containers 369

for vectors 276

cross_device_link 46

<cstddef> 14, 161

<cstdio> 82

<cstdlib> 162, 941

c_str()

for strings 669, 700

C-string 655

<cstring> 163, 855

C-Style arrays 386

see array

ctime() 153, 158

<ctime> 157, 884

ctype facet 891

classic_table() 895

is() 891

narrow() 891

scan_is() 891

scan_not() 891

table() 895

table_size 895

tolower() 891

toupper() 891

widen() 891

ctype locale category 891

ctype_base 893

mask 893

<ctype.h> 896

cur stream position 800

current_exception() 52, 971

current time 152

curr_symbol()

for moneypunct facets 874

cyclic references 84

Index D 1051

D

data()

for arrays 267, 409

for containers 409

for strings 669, 700

for vectors 278, 409

data member adapter 494

data race 977, 982

date

conversion to/from time_point 158

dateorder

for time_base 889

date_order()

for time_get facets 888

deadlock 992

avoidance 995

deallocate()

for allocators 1024

dec manipulator 785

dec stream flag 785

deca ratio unit 142

decay trait 131

deci ratio unit 142

decimal numeric representation 785

decimal_point()

for moneypunct facets 874

for numpunct facets 870

decltype 31, 32, 125, 232, 338, 379, 504,

822

declval 125

default_delete 106

default_error_condition()

for error category 49

for exceptions 49

defaultfloat manipulator 788

default initialization 37

default_random_engine 908, 916, 947

defer_lock 996, 1000

for unique_locks 1000

deferred

future status 954

launch policy 951, 974

deleter 114

default_delete 106

for shared_ptrs 80, 82

for unique_ptrs 107

den

for ratios 140

denorm_absent 120

denorm_indeterminate 120

denorm_min()

for numeric limits 118

denorm_present 120

deprecated

binder 497

function adapter 497

deque 170, 283, 288

see container

= 287

==, != 286

<, <=, >, >= 286

[] 286

assign() 287

at() 286

back() 286

begin() 286

cbegin() 286

cend() 286

clear() 287

constructor 285

crbegin() 286

crend() 286

destructor 285

emplace() 287

emplace_back() 287

emplace_front() 287

empty() 286

end() 286

erase() 287

exception handling 288

front() 286

header file 283

insert() 287

max_size() 286

pop_back() 287

pop_front() 287

push_back() 287

push_front() 287

rbegin() 286

1052 Index D

deque (continued)

rend() 286

resize() 287

shrink_to_fit() 286

size() 286

swap() 287

<deque> 283

deriving

exceptions 54

from STL 251

destination_address_required 46

destination of algorithms 217

destroy()

for allocators 1024

destroyable 244

destructor

for shared_ptrs 93, 97

for arrays 263

for condition variables 1009

for containers 255, 400, 403

for deques 285

for forward lists 302

for futures 975

for lists 291, 292

for locales 866

for maps 333

for multimaps 333

for multisets 316

for packaged tasks 977

for pairs 61

for promises 977

for sets 316

for strings 696

for threads 979

for tuples 71

for unique_ptrs 111

for unordered containers 360

for vectors 272, 273

detach()

for threads 964, 979

detached thread 967

device_or_resource_busy 46, 999

dictionary

with multimap 348

with unordered_multimap 383

difference of two sets 618

difference_type

for containers 260, 398

for iterator_traits 467

for strings 693

difftime() 158

digit

for ctype_base 894

digits

for numeric limits 117, 652

digits10

for numeric limits 117

directory_not_empty 46

discard()

for random-value engines 915, 916

discard_block_engine 916

discrete_distribution 917, 924

distance() 445, 469

distribution 907, 917

arguments and parameters 918

overview 917, 921

serialization interface 918

uniform_int_distribution 908

uniform_real_distribution 908

div()

global function 942

divides<>() 486

dmy date order 889

domain_error 41, 43

double

I/O formats 787

numeric limits 116

doubly linked list 173, 290

see list

duplicates removing 578

duration 143, 144

++, -- 146

+, -, *, /, % 146

+=, -=, *=, /=, %= 146

= 147

==, != 146

<, <=, >, >= 146

constructor 147

count() 147

duration_cast 147

Index E 1053

for clocks 149

hours 145

max() 147

microseconds 145

milliseconds 145

min() 147

minutes 145

nanoseconds 145

period 147

rep 147

seconds 145

zero() 147

duration_cast 148, 151

for durations 147

dynamic_cast 42

dynamic_pointer_cast()

for shared_ptrs 94

E

eback()

for input buffers 839

ECMAScript regex grammar 733, 738, 739

egptr()

for input buffers 839

egrep regex grammar 732, 733, 739

element access

for arrays 265

for containers 259

for forward lists 304

for lists 292

for vectors 274

emplace()

for container adapters 647

for containers 412, 414

for deques 287

for lists 295

for maps and multimaps 340

for sets and multisets 322

for stacks 634

for unordered containers 370, 371

for vectors 277

emplace_after()

for forward lists 306, 424

emplace_back()

for containers 415

for deques 287

for lists 295

for vectors 277

emplace_front()

for containers 415

for deques 287

for forward lists 306

for lists 295

emplace_hint()

for containers 414

for maps and multimaps 340

for sets and multisets 322

for unordered containers 371

empty()

for arrays 264

for container adapters 647

for containers 175, 255, 258, 403

for deques 286

for forward lists 303

for lists 292

for maps and multimaps 335

for match results 720

for sets and multisets 318

for strings 670, 696

for unordered containers 367

for vectors 273

empty range 189

enable_if trait 131

enable_shared_from_this

for shared_ptrs 90

encoding()

for codecvt facets 898

encoding prefix for string literals 24

end()

as global function 386

for arrays 266

for buckets 374, 380, 430

for containers 189, 256, 410

for C-style arrays 257, 386

for deques 286

for forward lists 304

for initializer lists 18

for lists 294

for maps and multimaps 337

1054 Index E

end() (continued)

for match results 723

for sets and multisets 321

for strings 684, 714

for unordered containers 369, 430

for vectors 276

end stream position 800

endl manipulator 746, 774, 776, 846

end-of-file 750

end-of-stream iterator 213, 462

ends manipulator 746, 774, 808

engine for random values 909, 912

<<, >> 916

==, != 916

constructor 916

default_random_engine 908, 916

discard() 916

seed() 916

serialization interface 915, 916

state 912

without distribution 912

enumeration class 32

EOF 750, 758

internationalized 854

eof()

for char_traits 854

for streams 759

eofbit 758

epoch 143, 152

epptr()

for output buffers 832

epsilon()

for numeric limits 117

eq()

for char_traits 689, 854

eq_int_type()

for char_traits 854

equal()

algorithm 542

for istreambuf_iterator 830

equal_range()

algorithm 613

for containers 406

for maps and multimaps 335

for sets and multisets 319

for unordered containers 368

equal_to<>() 241, 486

equivalence criterion

as lambda 379

for unordered containers 357, 366, 377

erase()

for containers 325, 417, 418

for deques 287

for lists 295

for maps and multimaps 340

for multisets 327

for sets 325

for sets and multisets 322

for strings 675, 687, 705

for unordered containers 370, 371

for unordered sets 375

for unordered sets and multisets 377

for vectors 277

erase_after()

for forward lists 306, 312, 425

erase_event 817

errc 45

errno 45

<errno.h> 45

error

for codecvt_base 899

error_backref 735

error_badbrace 735

error_badrepeat 735

error_brace 735

error_brack 735

error category 50

error_code 45, 48, 49

error_collate 735

error_complexity 735

error_ctype 735

error_escape 735

error handling 41

for regular expressions 735

in the STL 246

error_paren 735

error_range 735

error_space 735

error_stack 735

evaluation order 983

Index F 1055

event 817

event_callback 817

exa ratio unit 142

example code

auxiliary functions 517

exception 41

bad_alloc 41

bad_array_new_length 41

bad_cast 41

bad_exception 41

bad_function_call 41, 133

bad_typeid 41

bad_weak_ptr 41

classes 41

code() 48

current_exception() 52, 971

deriving 54

domain_error 41

error_category 49

error_code 48, 49

exception 41

exception_ptr 971

failure 41, 45, 763

for regular expressions 735

future_error 41, 45

header files 44

invalid_argument 41

ios_base::failure 41, 45, 763

length_error 41

logic_error 41

members 44

noexcept 24

out_of_range 41

overflow_error 41

range_error 41

rethrow_exception() 52, 971

runtime_error 41

safety 248

specification 24, 25, 42

system_error 41, 45

underflow_error 41

user-defined 53, 635

what() 45, 52

exception 41

see exception

<exception> 41, 42, 971

exception handling 41

for arrays 268

for deques 288

for forward lists 311

for lists 296

for maps and multimaps 345

for sets and multisets 325

for unordered containers 375

for vectors 278

in the STL 248

unique_ptr 98

exception_ptr 52, 971

exceptions()

for streams 762

exchange()

for atomics 1016

executable_format_error 46

_Exit() 162

exit() 162

EXIT_FAILURE 162

EXIT_SUCCESS 162

exp()

for complex 935, 939

global function 941

expired()

for shared_ptrs 97

explicit

and initializer lists 16, 72

exponential_distribution 917, 922

extended regex grammar 733, 739

extending STL 250

extent trait 131

extractor

for streams 745, 753

extreme_value_distribution 917, 923

F

fabs()

global function 941

facet 864, 869

categories 865

codecvt 897

codecvt_base 898

1056 Index F

facet (continued)

collate 904

ctype 891

for character classification 891

for character encoding conversion 897

for date formatting 884

for internationalized messages 905

for monetary formatting 874

for numeric formatting 870

for string collation 904

for time formatting 884

id 869

messages 905

money_base 877

money_get 881

moneypunct 874

money_put 879

num_get 873

numpunct 870

num_put 871

overview 865

time_get 887

time_put 884

fail()

for streams 759

failbit 758

failed()

for ostreambuf_iterator 829

failure 41, 45, 763

falsename()

for numpunct facets 870

false_type 125, 142

femto ratio unit 142

fetch_add()

for atomics 1016

fetch_and()

for atomics 1016

fetch_or()

for atomics 1016

fetch_sub()

for atomics 1016

fetch_xor()

for atomics 1016

field width 781

file

access 791, 793

opening 791

positioning 799

read and write 824

filebuf 791, 824

file descriptor 801, 835

file_exists 46

filename_too_long 46

file stream 791

as return value 795

class hierarchy 791

constructor 794

move semantics 795

file_too_large 46

fill()

algorithm 568

for arrays 265, 407

for streams 782

fill character 781

fill_n()

algorithm 568

filter 761, 772

find()

algorithm 200, 528

finding subrange 205

for char_traits 689, 854

for containers 405

for maps and multimaps 335

for multisets 327

for sets 325

for sets and multisets 319

for strings 708, 709

for unordered containers 368, 373

for unordered sets 375

for unordered sets and multisets 377

return value 205

find_before() 308

find_before_if() 308

find_end()

algorithm 537

find_first_not_of()

for strings 709, 710

find_first_of()

algorithm 538

for strings 709, 710

Index F 1057

find_if()

algorithm 226, 350, 528

find_if_not()

algorithm 528

finding algorithms 507, 528

find_last_not_of()

for strings 710, 711

find_last_of()

for strings 710, 711

find limit 529

first

for pairs 61

first_type

for pairs 60

fisher_f_distribution 917, 924

fixed manipulator 788

fixed stream flag 787

flags

for streams() 934

flags()

for streams 779, 780

flip()

for vector<bool>::reference 281,

282

float

I/O formats 787

numeric limits 116

float_denorm_style 119

floatfield 787

<float.h> 115, 116

float_round_style 119

floor()

global function 941

flush() 947

for output streams 771

flush manipulator 746, 774, 846

fmod()

global function 941

for 193

range-based 17

for_each() 519

algorithm 482

and maps 345

return value 482

versus transform() 509

format_default regex constant 733

format_first_only regex constant 730, 733

format flags 779

format_no_copy regex constant 730, 733

format_sed regex constant 730, 733

formatted I/O 779

formatting

of bool 755, 781

of floating-point values 787

forward iterator 198, 436

advance() 441

distance() 445

next() 443

step forward 441

forward_iterator_tag 466

forward_list 175, 300, 312

see container

= 303

==, != 303

<, <=, >, >= 303

assign() 303

before_begin() 304, 307, 312, 423

begin() 304

cbefore_begin() 304, 423

cbegin() 304

cend() 304

clear() 306

constructor 302

destructor 302

element access 304

emplace_after() 306, 424

emplace_front() 306

empty() 303

end() 304

erase_after() 306, 312, 425

exception handling 311

front() 304

header file 300

insert_after() 306, 312, 423, 424

iterators 304

max_size() 303

merge() 310, 312

pop_front() 306

push_front() 306, 312

remove() 305, 306

1058 Index F

forward_list (continued)

remove_if() 305, 306

resize() 306

reverse() 310

size() 301

sort() 310, 312

special member functions 420

splice_after() 309, 310, 425, 426

swap() 303

unique() 310, 312

versus list 300

<forward_list> 300

fpos 799

frac_digits()

for moneypunct facets 874

fractional arithmetics 140

freeze() 808, 809

frexp()

global function 941

from_bytes() for wstring_convert<> 901

from_time_t()

for system_clock 158

front()

for arrays 265

for container adapters 648

for containers 409

for deques 286

for forward lists 304

for lists 293

for strings 671, 699

for vectors 274

front_inserter 211, 212, 455, 457

fstream 791

see file stream

<fstream> 791

function

as argument 224

as sorting criterion 228

function 31, 133

function adapter 241, 487

see function object

deprecated 497

<functional> 44, 66, 70, 132, 133, 240,

356, 364, 486, 505

functional composition 243, 487

function_not_supported 46

function object 233, 351, 475

as sorting criterion 476

bind() 487, 496

bind1st() 497

bind2nd() 497

bit_and<>() 486

bit_or<>() 486

bit_xor<>() 486

by reference 480

divides<>() 486

equal_to<>() 486

greater<>() 486

greater_equal<>() 486

header file 486

less<>() 486

less_equal<>() 486

logical_and<>() 486

logical_not<>() 486

logical_or<>() 486

mem_fn() 487

mem_fun() 497

mem_fun_ref() 497

minus<>() 486

modulus<>() 486

multiplies<>() 486

negate<>() 486

not1() 487, 497

not2() 487, 497

not_equal_to<>() 486

plus<>() 486

predefined 239, 486

ptr_fun() 497

state 478, 485

user-defined 495

versus lambdas 483, 500, 504

function template 27

functor 233, 475

see function object

future 947, 975

constructor 975

destructor 975

error category 50

get() 947, 975

share() 975

Index G 1059

shared 960, 976

valid() 975

wait() 953, 975

wait_for() 953, 975

wait_until() 953, 975

<future> 43, 950, 970, 972

future_already_retrieved 47

future_category() 50

future_errc 45

future_error 41, 43, 45

code() 48

error codes 47

future_status 954

G

gamma_distribution 917, 922

gcount()

for input streams 769

general inserter 458

generate()

algorithm 478, 569

generate_header 900

generate_n()

algorithm 478, 569

generic

error category 50

generic_category() 50

geometric_distribution 917, 922

get()

for reference_wrappers 391

for shared_ptrs 94

for arrays 268

for futures 947, 975

for input streams 768, 772, 793

for messages facets 905

for money_get facets 881

for num_get facets 873

for pairs 61

for shared futures 976

for time_get facets 888

for tuples 74

for unique_ptrs 111

future versus shared_future 963

get_allocator() 1024

for containers 430

for strings 715

get buffer 839

iterator 830

get_date()

for time_get facets 888

get_deleter()

for shared_ptrs 94

for unique_ptrs 111

getenv()

concurrency 56

get_future()

for packaged task 972

for packaged tasks 977

for promises 971, 977

get_id()

for this_thread 981

for threads 967, 979

getline()

for input streams 769

for strings 677, 713

getloc() 688

for stream buffers 827, 833

for streams 790

get_money() 882

get_monthname()

for time_get facets 888

get_temporary_buffer() 1029

get_time() 757, 890

get_weekday()

for time_get facets 888

get_year()

for time_get facets 888

giga ratio unit 142

global()

for locales 864, 868

gmtime() 158

good() 762

for streams 759

goodbit 758

gptr()

for input buffers 839

grammar

for regular expressions 738, 739

graph

for ctype_base 894

greater<>() 325, 486, 525

1060 Index H

greater_equal<>() 486

greedy 725, 733

grep regex grammar 733, 739

grouping()

for moneypunct facets 874

for numpunct facets 870

H

half-open range 189, 203

half-written data 985

happens-before relationship 1016

hardfail 758

hardware_concurrency() 980

has_denorm

for numeric limits 118, 119

has_denorm_loss

for numeric limits 118

has_facet() 867

hash()

for collate facets 904

hasher

for unordered containers 399

hash function

as lambda 379

for unordered containers 363, 377

hash_function()

for unordered containers 362, 427

hashing policy 382

hash_map 355

hash_multimap 355

hash_multiset 355

hash_set 355

hash table 355

has_infinity

for numeric limits 117

has_quiet_NaN

for numeric limits 117

has_signaling_NaN

for numeric limits 118

has_virtual_destructor trait 127

header file 40

"algostuff.hpp" 517

<algorithm> 59, 134, 136, 200, 505

<array> 261

<atomic> 1013, 1016

<bitset> 650

<cctype> 896

<cerrno> 45

<cfloat> 115, 116

<chrono> 143, 153

<climits> 115, 116

<cmath> 941

<codecvt> 900

<complex> 925

<condition_variable> 1003, 1004,

1009

<cstddef> 14, 161

<cstdio> 82

<cstdlib> 162, 941

<cstring> 163, 855

<ctime> 157, 884

<ctype.h> 896

<deque> 283

<errno.h> 45

<exception> 41, 42, 971

extension 40

<float.h> 115, 116

for priority_queues 641

for shared_ptrs 78

for algorithms 505

for arrays 261

for bitsets 650

for complex 925

for deques 283

for exceptions 44

for forward lists 300

for function objects 486

for I/O 752

for lists 290

for maps and multimaps 331

for queues 638

for sets and multisets 314

for stacks 632

for streams 752

for strings 663

for unordered containers 356

for vectors 270

<forward_list> 300

<fstream> 791

Index I 1061

<functional> 44, 66, 70, 132, 133,

240, 356, 364, 486, 505

<future> 43, 950, 970, 972

<iomanip> 774, 882, 890

<ios> 44, 767

<iosfwd> 752

<iostream> 752, 844

<iostream.h> 41

<istream> 752

<iterator> 257, 386, 433, 828

<limits> 116

<limits.h> 115, 116

<list> 290

<locale> 866

<map> 331

<memory> 44, 76, 78

<mutex> 1001, 1004

<new> 43

<numeric> 505, 623

<ostream> 752

<queue> 638, 641

<random> 908, 909

<ratio> 140

<regex> 718

<set> 314

<sstream> 803

<stack> 632

"Stack.hpp" 635

<stddef.h> 161

<stdexcept> 43, 44

<stdlib.h> 162

<streambuf> 752

<string> 663, 854

<string.h> 163, 855

<strstream> 807

<system_error> 44

<thread> 967, 981

<time.h> 157

<tuple> 66, 68

<typeinfo> 42

<type_traits> 122, 125

<unordered_map> 356

<unordered_set> 356

<utility> 20, 60, 136, 138

<vector> 270

heap algorithms 604

heapsort 512, 604

hecto ratio unit 142

hex manipulator 785

hex stream flag 785

hexadecimal numeric representation 785

hexfloat manipulator 788

high_resolution_clock 149

duration 149

is_steady 149

now() 149

period 149

rep 149

time_point 149

history of C++ 7

host_unreachable 46

hours

for durations 145

I

i18n

see internationalization

icase regex constant 733

for regular expressions 732

id

for threads 967, 979

identifier_removed 46

ifstream 791, 793

see file stream and input stream

ignore

for pairs 67

for tuples 72

ignore()

for input streams 770, 777, 927

illegal_byte_sequence 46

imag()

for complex 931, 937

imbue() 860, 934

for streams 790, 860

imbue_event 817

in()

for codecvt facets 898

in stream flag 796

inappropriate_io_control_operation

46

1062 Index I

in_avail()

for input buffers 827

include file

see header file

includes()

algorithm 609

independent_bits_engine 916

index operator

see []

infinity()

for numeric limits 117

initialization

by input streams 257

default initialization 37

for arrays 262

list 15

narrowing 15

of containers 254

uniform 15

value initialization 15

zero initialization 37

initializer_list 15, 18

and arrays 262

and C-style arrays 172

and explicit 72

and range-based for loops 18

begin() and end() 18

explicit 16

for a container 256

for tuples 72

inner_product()

algorithm 625

inplace_merge()

algorithm 622

input 743

see stream, input stream

and concurrency 56

binary numeric representation 652

field width 783

hexadecimal numeric representation 785

line-by-line 677

numeric base 785

octal numeric representation 785

of addresses 756

of bool 755, 781

of char 755

of char* 755

of complex 927, 933, 938

of numeric types 755

of objects in a loop 761

of strings 677, 712, 783

of void* 756

of wchar_t 755

operator >> 754

redirecting 822

skip input 465

standard functions 768

input buffer 839

eback() 839

egptr() 839

gptr() 839

in_avail() 827

iterator 830

pbackfail() 840

sbumpc() 827, 839

setg() 840, 841

sgetc() 827, 839

sgetn() 827, 840

snextc() 827

sputbackc() 827, 839

sungetc() 827, 839

uflow() 839

underflow() 839

xsgetn() 840

input iterator 198, 435

advance() 441

distance() 445

next() 443

step forward 441

input_iterator_tag 466

input stream 772

buffer iterators 828

buffers 826

gcount() 769

get() 768

getline() 769

ignore() 770, 777, 927

iterator 212, 462

member functions 768

peek() 770

Index I 1063

putback() 770

read() 769

readsome() 769

sentry 772

unget() 770

insert()

called by inserters 455

for containers 411, 413, 416, 417

for deques 287

for lists 295

for maps and multimaps 340, 341

for multisets 327

for sets 325

for sets and multisets 322, 323, 324

for strings 675, 703, 704, 705

for unordered containers 370, 371, 372,

382

for unordered sets 375

for unordered sets and multisets 377

for vectors 277

insert_after()

for forward lists 306, 312, 423, 424

INSERT_ELEMENTS() 517

inserter 210, 212, 454, 455, 458

for streams 745, 753

user-defined 471

inserter 212

insert iterator 210, 454

int

input 755

numeric limits 116

integral_constant 125

integral type 127

internal manipulator 783

internal stream flag 782

internationalization 849

character sets 851

of EOF 854

of I/O 790

of special characters 857

interrupted 46

intersection 617

intmax_t 140

introsort 514

intrusive approach 385

int_type

for char_traits 854

invalid_argument 41, 43, 46

invalid_seek 46

invasive approach 385

I/O 743, 746, 772

see input, output, and stream

and concurrency 56, 752

class hierarchy 748

file access 791

filter framework 761, 772

for complex 927, 933, 938

formatted 779

for tuples 74

header files 752

internationalization 790

manipulators 746, 774

operators 753

overloading operators 810

redirecting standard streams 822

user-defined 810

user-defined stream buffers 832

io_errc 45

io_error 46

<iomanip> 774, 882, 890

ios 750

see stream

<ios> 44, 767

ios_base 748

see stream

ios_base::failure 41, 44, 45, 763

code() 48

error codes 47

<iosfwd> 752

iostream 751

see stream, input stream, output stream

and concurrency 56

error category 50

<iostream> 752, 844

iostream_category() 50

<iostream.h> 41

iostream_withassign 751

iota()

algorithm 571

ipfx() 772

1064 Index I

irreflexive 315

is()

for ctype facets 891

is_abstract trait 127

is_a_directory 46

isalnum() 896

isalpha() 896

is_arithmetic trait 126

is_array trait 126

is_assignable trait 128

is_base_of trait 128

isblank() 896

is_bounded

for numeric limits 117

is_class trait 126

iscntrl() 896

is_compound trait 126

is_const trait 126

is_constructible trait 128

is_convertible trait 128

is_copy_assignable trait 127

is_copy_constructible trait 127

is_default_constructible trait 127

is_destructible trait 127

isdigit() 896

is_empty trait 127

is_enum trait 126

is_exact

for numeric limits 117

is_floating_point trait 126

is_function trait 126

is_fundamental trait 126

isfx() 772

isgraph() 896

is_heap()

algorithm 554

is_heap_until()

algorithm 554

is_iec559

for numeric limits 117

is_integer

for numeric limits 117

is_integral trait 126

is_literal_type trait 126

is_lock_free()

for atomics 1016

islower() 896

is_lvalue_reference trait 126

is_member_function_pointer trait 126

is_member_object_pointer trait 126

is_member_pointer trait 126

is_modulo

for numeric limits 117

is_move_assignable trait 127

is_move_constructible trait 127

is_nothrow_assignable 128

is_nothrow_constructible 128

is_nothrow_copy_assignable 127

is_nothrow_copy_constructible 127

is_nothrow_default_constructible 127

is_nothrow_destructible 127

is_nothrow_move_assignable 127

is_nothrow_move_constructible 127

is_object trait 126

ISO-Latin-1 851

is_open()

for streams 798

is_partitioned()

algorithm 552

is_permutation()

algorithm 544

is_pod trait 126

is_pointer trait 126

is_polymorphic trait 127

isprint() 896

ispunct() 896

is_reference trait 126

is_rvalue_reference trait 126

is_same trait 128

is_scalar trait 126

is_signed

for numeric limits 117

is_signed trait 126

is_sorted()

algorithm 550

is_sorted_until()

algorithm 550

isspace() 688, 896

is_specialized

for numeric limits 117

is_standard_layout trait 126

Index I 1065

is_steady

for clocks 149

istream 744, 751

see stream, input stream

<istream> 752

istreambuf_iterator 732, 828, 830

equal() 830

istream iterator 212, 462

end-of-stream 213, 462

skip input 465

istream_withassign 751

istringstream 802

see string stream

move semantics 806

is_trivial trait 126

is_trivially_assignable 128

is_trivially_constructible 128

is_trivially_copyable trait 126

is_trivially_copy_assignable 127

is_trivially_copy_constructible 127

is_trivially_default_constructible

127

is_trivially_destructible 127

is_trivially_move_assignable 127

is_trivially_move_constructible 127

istrstream 807

is_union trait 126

is_unsigned trait 126

isupper() 896

is_void trait 126

is_volatile trait 126

isxdigit() 896

iterator 166, 188, 189, 433

* 188, 191, 435

++, -- 188, 191, 435, 437

+, - 438

+=, -= 438

+= versus advance() 442

-> 191, 435

= 188

==, != 188, 435, 436

<, <=, >, >= 199, 438

[] 438

adapters 210, 448

advance() 442, 586

arithmetic 438

auxiliary functions 441

back_inserter 212, 455

back_inserters 455

bidirectional 198, 437

categories 198, 433, 469

check order 205

class iterator 471

convert into reverse iterator 449

distance() 445

end-of-stream 213, 462

for arrays 266

for containers 190

for forward lists 304

for lists 293

for maps 337

for match results 720

for multimaps 337

for multisets 321, 327

for regular expressions 726

for sets 321

for stream buffers 828

for streams 212, 460, 465

for strings 684

for unordered containers 368

for vectors 275

forward 198, 436

front_inserter 212, 455

front_inserters 457

general inserters 458

input 198, 435

inserter 210, 212, 455

inserters 458

iter_swap() 446

move 216, 466

mutable 435

next() 307, 443

output 198, 433

past-the-end 189

prev() 444

random access 438

random-access 198

ranges 189

raw_storage_iterator 1029

reverse 214, 448

1066 Index L

iterator (continued)

step forward 441

swapping values 446

tag 466

traits 466

user-defined 471

iterator 471

for containers 260, 398

for strings 694

<iterator> 257, 386, 433, 828

iterator adapter 210, 448

for streams 212, 460

inserter 210, 454

move 216, 466

reverse 214

user-defined 471

iterator_category 467

iterator_traits 467

iter_swap() 446

iword()

for streams 815

J

join()

for threads 964, 979

joinable()

for threads 979

K

key_comp()

for associative containers 427

for maps and multimaps 335

for sets and multisets 318

key_compare

for associative containers 399

key_eq()

for unordered containers 362, 427

key_equal

for unordered containers 399

key_type

for containers 398

kilo ratio unit 142

knuth_b 916

Koenig lookup 677, 812

L

labs()

global function 942

lambda 28, 229, 499

and algorithms 206, 229

and maps 345

and mutable 30, 501

as equivalence criterion 379

as hash function 379, 504

as return value 31

as sorting criterion 231, 232, 504

capture 28, 29

state 500

type 31

versus binders 499

versus function object 498

versus function objects 483, 500, 504

lambda as equivalence criterion

for unordered containers 379

lambda as hash function

for unordered containers 379

LANG 857

language features 13, 33

Latin-1 851

launch policy 951, 974

async 951

deferred 951

lazy evaluation 951

lazy initialization 1000

ldexp()

global function 941

ldiv()

global function 942

left manipulator 346, 783

left stream flag 782

length()

for char_traits 854

for codecvt facets 898

for match results 720, 723

for strings 670, 696

length_error 41, 43

less 572, 576

less<>() 241, 486

less_equal<>() 486

Index L 1067

lexicographical_compare() 548

lexicographical comparison 548

<limits> 116

<limits.h> 115, 116

linear complexity 10

linear_congruential_engine 915

line-by-line input 677

list 173, 290, 298

see container

= 293

==, != 292

<, <=, >, >= 292

assign() 293

back() 293

begin() 294

cbegin() 294

cend() 294

clear() 295

constructor 291, 292

crbegin() 294

crend() 294

destructor 291, 292

element access 292

emplace() 295

emplace_back() 295

emplace_front() 295

empty() 292

end() 294

erase() 295

exception handling 296

front() 293

header file 290

insert() 295

iterators 293

max_size() 292

merge() 297, 298, 423

pop_back() 295

pop_front() 295

push_back() 295, 298

push_front() 295, 298

rbegin() 294

remove() 294, 420

remove_if() 294, 420

rend() 294

resize() 295

reverse() 297, 423

size() 292

sort() 297, 298, 422

special member functions 420

splice() 297, 298, 421, 422

swap() 293

unique() 297, 298, 421

versus forward_list 300

<list> 290

literals of type string 23, 655

little_endian 900

llabs()

global function 942

lldiv()

global function 942

load()

for atomics 1012, 1016

load_factor()

for unordered containers 362, 380, 427

locale 688, 857

() 868

==, != 868

as sorting criterion 868

"C" 861

classic() 860, 868

collate category 904

combine() 866

constructor 863, 866

ctype category 891

default constructor 864

destructor 866

facets 864, 869

global() 864, 868

has_facet() 867

id 869

imbue() a stream 860

messages category 905

monetary category 874

name() 863, 868

numeric category 870

string collation 904

string comparisons 868

time category 884

use_facet() 867

<locale> 866

1068 Index M

local_iterator

for unordered containers 399

localtime() 158

lock()

for shared_ptrs 97

for unique_locks 1000

for mutexes 989, 998

for weak_ptrs 88

lock-free programming 988

lock_guard 989, 991, 999

locks 989, 991

for condition variables 1004

lock_guard 989

multiple 994, 997

recursive 992

unique_lock 996

with timer 994

log()

for complex 935, 940

global function 941

log10()

for complex 935, 940

global function 941

logarithmic complexity 10

logical_and<>() 486

logical_not<>() 486

logical_or<>() 486

logic_error 41, 43

lognormal_distribution 917, 923

long

input 755

numeric limits 116

loop

condition 760

for reading objects 761

range-based for 17

lower

for ctype_base 894

lower_bound()

algorithm 611

for containers 405

for maps and multimaps 335

for sets and multisets 319

lowercase string characters 684

lowest()

for numeric limits 117

lt()

for char_traits 689, 854

M

main() 37

make_error_code() 53

make_heap()

algorithm 514, 604, 606, 644

make_pair()

for pairs 61, 65, 341, 372

make_ready_at_thread_exit()

for packaged tasks 977

make_shared()

for shared_ptrs 78, 93

make_signed trait 130

make_tuple()

for tuples 69, 70, 71

make_unsigned trait 130

manipulator 746, 774

boolalpha 781

dec 785

defaultfloat 788

endl 746, 774, 776, 846

ends 746, 774, 808

fixed 788

flush 746, 774, 846

get_money() 882

get_time() 890

hex 785

hexfloat 788

implementation 776

internal 783

left 346, 783

noboolalpha 781

noshowbase 786

noshowpoint 788

noshowpos 784

noskipws 789

nounitbuf 789

nouppercase 784

oct 785

overview 774

put_money() 882

Index M 1069

put_time() 890

resetiosflags() 780

right 783

scientific 788

setfill() 783

setiosflags() 780

setprecision() 788

setw() 346, 755, 783, 793

showbase 786

showpoint 788

showpos 784

skipws 789, 847

unitbuf 789

uppercase 784

user-defined 777

with arguments 778

ws 746, 774

map 331, 346, 350, 351

see container

= 336

==, != 335

<, <=, >, >= 335

[] 186, 343, 408

and for_each() 345

and lambdas 345

as associative array 185, 343

at() 186, 343, 408

begin() 337

cbegin() 337

cend() 337

clear() 340

constructor 333

count() 335

crbegin() 337

crend() 337

destructor 333

element access with bind() 494

emplace() 340

emplace_hint() 340

empty() 335

end() 337

equal_range() 335

erase() 340

exception handling 345

find() 335

header file 331

insert() 340, 341

iterators 337

key_comp() 335, 427

key_compare 399

lower_bound() 335

max_size() 335

modifying access 221

piecewise construction 342

rbegin() 337

removing elements 342

rend() 337

replace key 339

size() 335

sorting criterion 232, 331, 334, 351

swap() 336

upper_bound() 335

value_comp() 335, 427

value_compare 399

value_type 331, 345

<map> 331

mapped_type

for containers 399

mask

for ctype_base 893

match_any regex constant 733

match_continuous regex constant 733

match_not_bol regex constant 733

match_not_bow regex constant 733

match_not_eol regex constant 733

match_not_eow regex constant 733

match_not_null regex constant 733

match_prev_avail regex constant 733

match regular expressions 717

match_results

for regular expressions 720

max() 134

for distributions 918

for durations 147

for numeric limits 117, 777

for timepoints 155

1070 Index M

max_align_t 161

max_bucket_count()

for unordered containers 362, 429

max_digits10

for numeric limits 117

max_element()

algorithm 200, 525

max_exponent

for numeric limits 117

max_exponent10

for numeric limits 117

maximum

of elements 525

of numeric types 115, 120

of two values 134

timepoint 152

max_length()

for codecvt facets 898

max_load_factor()

for unordered containers 362, 380, 383,

427, 429

max_size()

for arrays 264

for containers 255, 258, 403

for deques 286

for forward lists 303

for lists 292

for maps and multimaps 335

for sets and multisets 318

for strings 670, 696

for unordered containers 367

for vectors 273

mdy date order 889

mega ratio unit 142

member

as sorting criterion 228

member function

adapter 491

as template 34

member template 34

memchr() 163, 855

memcmp() 163, 855

memcpy() 163, 841, 855

mem_fn() 487, 494

mem_fun() 497

mem_fun1_ref_t 498

mem_fun1_t 498

mem_fun_ref() 243, 497

mem_fun_ref_t 498

mem_fun_t 498

memmove() 163, 855

<memory> 44, 76, 78

memory leak 98

memory order 1016, 1020

memory_order_acquire 1021

memory_order_relaxed 1021

memory_order_release 1021

memory_order_seq_cst 1016, 1020

memset() 163, 855

merge()

algorithm 614

for forward lists 310, 312

for lists 297, 298, 423

mersenne_twister_engine 915

message()

for error category 49

for exceptions 49

message_base 905

catalog 905

messages facet 905

close() 905

get() 905

open() 905

messages locale category 905

message_size 46

micro ratio unit 142

microseconds

for durations 145

milli ratio unit 142

milliseconds

for durations 145

min() 134

for distributions 918

for durations 147

for numeric limits 117

for timepoints 155

min_element()

algorithm 200, 525

min_exponent

for numeric limits 117

Index M 1071

min_exponent10

for numeric limits 117

minimum

of elements 525

of numeric types 115, 120

of two values 134

timepoint 152

minmax() 134

minmax_element()

algorithm 526

minstd_rand 916

minstd_rand0 916

minus<>() 486

minutes

for durations 145

mirror elements 566

mismatch()

algorithm 546

mktime() 158

modf()

global function 941

modifying algorithms 509, 557

modifying elements 509, 557

modulus<>() 486, 573

monetary locale category 874

money_base 877

none 878

part 877

pattern 877

sign 878

space 878

symbol 878

value 878

money_get facet 881

get() 881

moneypunct facet 874

curr_symbol() 874

decimal_point() 874

frac_digits() 874

grouping() 874

negative_sign() 874

neg_format() 874

pos_format() 874

positive_sign() 874

thousands_sep() 874

money_put facet 879

put() 879, 880

monotonic_clock 149

move() 19

algorithm 561

for char_traits 854

move assignment 21

move_backward()

algorithm 561

move constructor 21

for containers 401

move iterator 216, 466

move semantics 19

and return values 22

for arrays 263

for containers 257, 258

for file streams 795

for strings 676

for string streams 806

moving elements 561

mt19937 916

mt19937_64 916

multibyte format 850

multimap 179, 331, 348

see container

= 336

==, != 335

<, <=, >, >= 335

begin() 337

cbegin() 337

cend() 337

clear() 340

constructor 333

count() 335

crbegin() 337

crend() 337

destructor 333

element access with bind() 494

emplace() 340

emplace_hint() 340

empty() 335

end() 337

equal_range() 335

erase() 340

exception handling 345

1072 Index M

multimap (continued)

find() 335

header file 331

insert() 340, 341

iterators 337

key_comp() 335, 427

key_compare 399

lower_bound() 335

max_size() 335

modifying access 221

order of duplicates 180

order of equivalent elements 343

piecewise construction 342

rbegin() 337

removing elements 342

rend() 337

replace key 339

size() 335

sorting criterion 232, 331, 334, 351

stable order 180

swap() 336

upper_bound() 335

value_comp() 335, 427

value_compare 399

value_type 331

multiplies<>() 241, 486, 563

multiset 177, 314, 327

see container

= 321

==, != 318

<, <=, >, >= 318

begin() 321

cbegin() 321

cend() 321

clear() 322

constructor 316, 327

count() 319

crbegin() 321

crend() 321

destructor 316

emplace() 322

emplace_hint() 322

empty() 318

end() 321

equal_range() 319

erase() 322, 327

exception handling 325

find() 319, 327

header file 314

insert() 322, 323, 324, 327

iterator 327

iterators 321

key_comp() 318, 427

key_compare 399

lower_bound() 319

max_size() 318

modifying access 221

order of duplicates 180

order of equivalent elements 325

rbegin() 321

rend() 321

size() 318

sorting criterion 232, 314, 316, 328

stable order 180

swap() 321

upper_bound() 319

value_comp() 318, 427

value_compare 399

multithreading 55, 945

see concurrency

mutable

for lambdas 30

mutable iterator 435

mutating algorithms 511, 583

mutex 989, 991, 998

for condition variables 1004

lock_guard 999

multiple locks 994, 997

try_lock() 994

unique_lock 1000

versus atomics 1012

mutex()

for unique_locks 1000

<mutex> 1001, 1004

Index N 1073

N

name()

for error category 49

for locales 863, 868

namespace

ADL 677, 812

Koenig lookup 677, 812

placeholders 487

posix 39, 802

std 39

std::chrono 144

std::placeholders 243

std::regex_constants 732

std::rel_ops 138

std::this_thread 981

tr1 39

using declaration 40

using directive 40

nano ratio unit 142

nanoseconds

for durations 145

narrow()

for ctype facets 891

for streams 790

narrowing initialization 15

narrow stream 744

native_handle()

for condition variables 1009

for mutexes 999

for threads 979

negate<>() 486

negative_binomial_distribution 917,

922

negative_sign()

for moneypunct facets 874

neg_format()

for moneypunct facets 874

nested class

as template 37

network_down 46

network_reset 46

network_unreachable 46

new 43

and shared_ptrs 77

and unique_ptrs 99

<new> 43

newline

internationalized 857

newsgroups 1031

next() 307, 443

next_permutation()

algorithm 587

n-log-n complexity 10

noboolalpha manipulator 781

no_buffer_space 46

no_child_process 46

noconv

for codecvt_base 899

nocreate stream flag 797

noexcept 24, 137

no_link 46

no_lock_available 46

no_message 46

no_message_available 46

none

monetary pattern 878

none_of()

algorithm 555

nonmodifying algorithms 507, 524

no-op 204

no_order date order 889

no_protocol_option 46

noreplace stream flag 797

norm()

for complex 931, 938

normal_distribution 917, 923

noshowbase manipulator 786

noshowpoint manipulator 788

noshowpos manipulator 784

noskipws manipulator 789

no_space_on_device 46

no_state 47

no_stream_resources 46

nosubs regex constant 733

no_such_device 46

no_such_device_or_address 46

no_such_file_or_directory 46

no_such_process 46

not1 529

1074 Index O

not1() 487, 494, 497, 498

not2() 487, 494, 497

not_a_directory 46

not_a_socket 46

not_a_stream 47

not_connected 47

not_enough_memory 47

not_eof()

for char_traits 854

not_equal_to<>() 486

notify_all()

for condition variables 1004, 1009

notify_all_at_thread_exit()

for condition variables 1009

notify_one()

for condition variables 1004, 1009

not_supported 47

nounitbuf manipulator 789

nouppercase manipulator 784

now()

for clocks 149

for system_clock 152

npos

for strings 658, 680, 694

NRVO 23

nth_element()

algorithm 602

versus partition() 514

NULL 161

and strings 668

versus nullptr 14

nullptr 14

nullptr_t 14, 33, 161

num

for ratios 140

number of elements 524

numeric

algorithms 515, 623

base 785

conversions for strings 713

formatting 784, 870

global functions 941

input 755

libraries 907

limits 115

<numeric> 505, 623

numeric locale category 870

numeric conversions

for strings 681

numeric_limits 115, 652, 777

num_get facet 873

get() 873

numpunct facet 870

decimal_point() 870

falsename() 870

grouping() 870

thousands_sep() 870

truename() 870

num_put facet 871

put() 871, 872

O

oct manipulator 785

oct stream flag 785

octal numeric representation 785

offsetof() 161

off_type

for char_traits 854

for streams 800

ofstream 791, 793

see file stream and output stream

ok

for codecvt_base 899

O(n) 10

once_flag 1000

open()

for messages facets 905

for streams 798

Open Closed Principle 385

openmode

for streams 796

operation_canceled 47

operation_in_progress 47

operation_not_permitted 47, 999

operation_not_supported 47

operation_would_block 47

operator

<<, >> 753

dynamic_cast 42

Index O 1075

for I/O 753

typeid 42

opfx() 772

optimize regex constant 733

order

of duplicates in associative containers

180

of duplicates in unordered containers 183

stable 180, 183

unordered 180

ordered collection 167

osfx() 772

ostream 744, 751

see stream, output stream

<ostream> 752

ostreambuf_iterator 828, 829

failed() 829

ostream iterator 212, 460

ostream_withassign 751

ostringstream 802

see string stream

ostrstream 807

out()

for codecvt facets 898

out stream flag 796

out_of_range 41, 43

output 743

see stream, output stream

adjustment 781

and concurrency 56

binary numeric representation 652

defining floating-point notation 787

field width 781

fill character 781

for shared_ptrs 94

for pairs 62

for tuples 74

hexadecimal numeric representation 785

numeric base 785

octal numeric representation 785

of addresses 756

of bool 755, 781

of complex 927, 933, 938

of numeric values 784

of strings 677, 712

of void* 756

operator << 753

positive sign 784

redirecting 822

signs 784

standard functions 771

output buffer 832

epptr() 832

iterator 829

overflow() 832

pbase() 832

pbump() 839

pptr() 832

seekoff() 839

seekpos() 839

setp() 837

sputc() 826, 832

sputn() 826, 832

sync() 839

xsputn() 832

output iterator 198, 433

iterator traits 468

output_iterator_tag 466

output stream 772

buffer iterators 828

buffers 826

flush() 771

iterator 212, 460

member functions 771

put() 771

sentry 772

write() 771

overflow() 833

for output buffers 832

overflow_error 41, 43

overloading

of I/O operators 810

rvalue and lvalue references 22

with functions as parameter 776

owner_before()

for shared_ptrs 94, 97

owner_dead 47

owns_lock()

for unique_locks 1000

1076 Index P

P

packaged_task 972, 977

constructor 977

destructor 977

get_future() 972, 977

make_ready_at_thread_exit() 977

reset() 977

swap() 977

valid() 977

pair 60, 324

<< 62

= 61

==, != 61

<, <=, >, >= 61

and tuple 75

as element of (multi)maps 337

as element of unordered (multi)maps 369

assign to tuple 71

comparisons 67

constructor 61

destructor 61

first 61

first_type 60

get() 61

ignore 67

initialize tuple 71

make_pair() 61, 65, 341, 372

output 62

piecewise construction 63

second 61

second_type 60

swap() 61

tie() 67

tuple_cat() 73

tuple_element 62

tuple_size 62

param()

for distributions 918

part

for money_base 877

partial

for codecvt_base 899

partial_sort()

algorithm 514, 599

partial_sort_copy()

algorithm 600

partial_sum()

algorithm 627, 630

partition()

algorithm 592

versus nth_element() 514

partition_copy()

algorithm 594

partition_point()

algorithm 552

past-the-end iterator 189

pattern

for money_base 877

pbackfail()

for input buffers 840

pbase()

for output buffers 832

pbump()

for output buffers 839

peek()

for input streams 770

performance 10

of shared_ptrs 95

of containers and algorithms 394

of smart pointers 114

of streams 844

period

for clocks 149

for durations 147

permission_denied 47

perror() 905

peta ratio unit 142

pico ratio unit 142

piecewise_constant_distribution 917,

924

piecewise construction

and (multi)maps 342

and unordered (multi)maps 373

for pairs 63

piecewise_construct_t 63

piecewise_linear_distribution 917,

924

placeholders 243, 487

plus<>() 486, 629

Index P 1077

POD 279

pointer

and bind() 493

auto_ptr 113

I/O 756

iterator traits 468

NULL 161

nullptr 14

shared_ptr 76

smart 76

see smart pointer

unique_ptr 98

weak_ptr 84

pointer

for containers 260, 398

for iterator_traits 467

for strings 693

poisson_distribution 917, 922

polar()

for complex 929, 936

policy

for unordered containers 359

polling a thread or background task 954

pop()

for container adapters 648

pop_back()

for containers 419

for deques 287

for lists 295

for strings 675, 705

for vectors 277

pop_front()

for containers 419

for deques 287

for forward lists 306

for lists 295

pop_heap()

algorithm 605, 606, 644

pos_format()

for moneypunct facets 874

position()

for match results 720, 723

positioning

in files 799

positive_sign()

for moneypunct facets 874

posix namespace 39, 802

pos_type

for char_traits 854

for streams 799

pow()

for complex 935, 939

global function 495, 941

pptr()

for output buffers 832

precision() 934

for streams 787

predicate 226, 483, 506

binary 228

for ranges 550

state 485

type traits 125

unary 226

prefix()

for match results 720, 722

prev() 443, 444

prev_permutation()

algorithm 587

print

for ctype_base 894

PRINT_ELEMENTS() 216, 517

printing

see output

priority_queue 641

constructor 646, 647

header file 641

proj()

for complex 929, 936

promise 969, 977

constructor 977

destructor 977

get_future() 971, 977

set_exception() 971, 977

set_exception_at_thread_exit()

971, 977

set_value() 971, 977

set_value_at_thread_exit() 971,

977

swap() 977

promise_already_satisfied 47

1078 Index R

protocol_error 47

protocol_not_supported 47

proxy

for vector<bool> 282

ptrdiff_t 161

ptr_fun() 497

pubimbue()

for stream buffers 827

pubseekoff()

for stream buffers 827

pubseekpos()

for stream buffers 827

pubsetbuf()

for stream buffers 827

punct

for ctype_base 894

pure abstraction 199

push()

for container adapters 647

push_back()

called by inserters 455

for containers 415

for deques 287

for lists 295, 298

for strings 674, 703

for vectors 277

push_front()

called by inserters 455

for containers 414

for deques 287

for forward lists 306, 312

for lists 295, 298

push_heap()

algorithm 605, 606, 644

put()

for money_put facets 879, 880

for num_put facets 871, 872

for output streams 771, 772, 793

for time_put facets 884

putback()

for input streams 770

put buffer 832

iterator 829

putchar() 833

put_money() 882

put_time() 757, 890

pword()

for streams 815

Q

quadratic complexity 10

queue 638

back() 648

header file 638

user-defined version 641

with concurrent access 1006

<queue> 638, 641

quick_exit() 162

quicksort 512

quiet_NaN()

for numeric limits 117

R

race condition 982

radix

for numeric limits 117

rand() 570

global function 942

<random> 908, 909

random access

to container elements 169

to files 799

random-access iterator 198, 438

advance() 441

distance() 445

next() 443

prev() 443

random_access_iterator_tag 466

random-number generator 908

seed 910

serialization interface 915, 916

state 912

values versus numbers 912

random numbers 907

engines 912

generator 908

seed 910

Index R 1079

versus random values 912

random_shuffle()

algorithm 589

range 203

change order of elements 583

comparing 542

copy 557

copy and modify elements 563

counting elements 524

empty 189

for iterators 189

half-open 203

in algorithms 203

maximum 525

minimum 525

modifying 557, 568

move 561

multiple 207

mutating 583

notation 203

numeric processing 623

of values 115

removing duplicates 578

removing elements 218, 575

replacing elements 571

searching elements 507, 528

sorting 596

swapping elements 566

transform elements 563

valid 203, 205

range-based for loop 17, 193

range_error 41, 43

rank trait 131

ranlux24 916

ranlux24_base 916

ranlux48 916

ranlux48_base 916

ratio 140, 144

den 140

num 140

ratio_add 141

ratio_divide 141

ratio_equal 141

ratio_greater 141

ratio_greater_equal 141

ratio_less 141

ratio_less_equal 141

ratio_multiply 141

ratio_not_equal 141

ratio_subtract 141

type 140

units 142

<ratio> 140

ratio_add 141

ratio_divide 141

ratio_equal 141

ratio_greater 141

ratio_greater_equal 141

ratio_less 141

ratio_less_equal 141

ratio_multiply 141

ratio_not_equal 141

ratio_subtract 141

raw_storage_iterator 1029

raw string 719, 732

literals 23

rbegin() 214, 448, 452

for arrays 266

for containers 411

for deques 286

for lists 294

for maps and multimaps 337

for sets and multisets 321

for strings 714

for unordered containers 369

for vectors 276

rdbuf()

for streams 800, 820, 822, 846

rdstate()

for streams 759

reachable 203

read()

for input streams 769

global function 841

reading

see input

read_only_file_system 47

readsome()

for input streams 769

ready future status 954

1080 Index R

real()

for complex 931, 937

reallocation

for strings 670

for vectors 270

recursive locks 992

recursive_mutex 993, 998

recursive_timed_mutex 994, 998

red-black tree 315

redirecting

streams 822

ref() 132

and bind() 491

and make_pair() 66

and make_tuple() 70

reference

for rvalues 19

reference

for container adapters 645

for containers 260, 397

for iterator_traits 467

for strings 693

for vector<bool> 282

reference counting

for strings 692

references

cyclic 84

reference semantics

for containers 245, 388

reference_wrapper 132, 391

and make_pair() 66

and make_tuple() 70

regex 717

and algorithms 727

awk grammar 739

basic grammar 739

basic_regex 719

capture group 719

case-insensitive 732

constants 732

ECMAScript grammar 738, 739

egrep grammar 732, 739

error handling and exceptions 735

extended grammar 739

flags 732

grammars 738, 739

grep grammar 739

icase regex constant 732

initialization 719, 741

iterator 726

match interface 717

match_results 720

regex_match() 717, 740

regex_replace() 730, 740

regex_search() 717, 740

replace interface 730

search interface 717

subexpressions 720

sub_match 720

token iterator 727

wregex 719

regex_constants 732

regex_error 735

regex_iterator 726

regex_match()

for regular expressions 717, 740

regex_replace()

for regular expressions 730, 740

regex_search()

for regular expressions 717, 740

regex_token_iterator 727

register_callback()

for streams 817

regular expression 717

see regex

rehash()

for unordered containers 362, 428

relative to absolute values 516, 627

release()

for unique_locks 1000

for unique_ptrs 100, 111

rel_ops 138

remove()

algorithm 575

for forward lists 305, 306

for lists 294, 420

remove_all_extents trait 131

remove_const trait 130

remove_copy()

algorithm 577

Index R 1081

remove_copy_if()

algorithm 577

remove_cv trait 130

remove_extent trait 131

remove_if()

algorithm 483, 575

for forward lists 305, 306

for lists 294, 420

remove_pointer trait 130

remove_reference trait 130

remove_volatile trait 130

removing algorithms 511, 575

removing duplicates 578

removing elements 218, 511

rend() 214, 448, 452

for arrays 266

for containers 411

for deques 286

for lists 294

for maps and multimaps 337

for sets and multisets 321

for strings 714

for unordered containers 369

for vectors 276

reordering of statements 986

rep

for clocks 149

for durations 147

replace()

algorithm 571

for strings 675, 687, 706, 707, 708

replace and copy elements 573

replace_copy()

algorithm 573

replace_copy_if()

algorithm 573

replace_if()

algorithm 571

replace regular expression 730

representation

binary 652

decimal 785

hexadecimal 785

octal 785

requirements

for container elements 244

for sorting criterion 314

of containers 254

reserve()

for containers 428

for strings 670, 672, 697

for unordered containers 362

for vectors 271, 273

reset()

for shared_ptrs 78, 93, 97

for packaged tasks 977

for unique_ptrs 111

resetiosflags() manipulator 780

resize()

for containers 176, 420

for deques 287

for forward lists 306

for lists 295

for strings 676, 706

for vectors 277

resource_deadlock_would_occur 47, 999

resource leak 98

resource_unavailable_try_again 47

result

for codecvt_base 898

result_of trait 131

result_out_of_range 47

result_type

for distributions 918

rethrow_exception() 52, 971

return_temporary_buffer() 1029

return type

new syntax 29, 32

of main() 37

return value

move semantics 22

optimization (RVO) 23

reverse()

algorithm 200, 583

for forward lists 310

for lists 297, 423

for strings 687

reverse_copy()

algorithm 583

1082 Index S

reverse iterator 214, 448

base() 452

convert into iterator 452

reverse_iterator

for containers 398

for strings 694

rfind()

for strings 708, 709

right manipulator 783

right stream flag 782

rotate()

algorithm 584

rotate_copy()

algorithm 585

round_error()

for numeric limits 117

round_indeterminate 120

round_style

for numeric limits 117, 119

round_to_nearest 120

round_toward_infinity 120

round_toward_neg_infinity 120

round_toward_zero 120

runtime_error 41, 43

rvalue reference 19

overloading 22

RVO 23

S

safe STL 247

sampling distribution 917

sbumpc()

for input buffers 827, 839

scan_is()

for ctype facets 891

scan_not()

for ctype facets 891

scientific manipulator 788

scientific stream flag 787

scoped enumeration 32

search

case-insensitive 732

search()

algorithm 534, 684

searching algorithms 507, 528

search_n()

algorithm 531

search_n_if()

algorithm 533

search regular expressions 717

second

for pairs 61

seconds

for durations 145

second_type

for pairs 60

seed 910

seed()

for random-value engines 916

seekdir 800

seekg()

for streams 799, 800, 825

seekoff()

for output buffers 839

seekp() 809

for streams 799, 825

seekpos()

for output buffers 839

self-defined

see user-defined

sentry 772

sequence

see collection, container, range

sequence container 167, 169

sequential consistent memory order 1016,

1020

serialization interface

for distributions 918

for random-value engines 915, 916

set 314, 325

see container

= 321

==, != 318

<, <=, >, >= 318

begin() 321

C++98/C++03 example 193

cbegin() 321

cend() 321

clear() 322

Index S 1083

constructor 316, 325

count() 319

crbegin() 321

crend() 321

destructor 316

emplace() 322

emplace_hint() 322

empty() 318

end() 321

equal_range() 319

erase() 322, 325

exception handling 325

find() 319, 325

header file 314

insert() 322, 323, 324, 325

insert elements 323

iterators 321, 325

key_comp() 318, 427

key_compare 399

lower_bound() 319

max_size() 318

modifying access 221

rbegin() 321

rend() 321

size() 318

sorting criterion 232, 314, 316, 328

swap() 321

upper_bound() 319

user-defined sorting criterion 476

value_comp() 318, 427

value_compare 399

<set> 314

set_difference()

algorithm 618

set_exception()

for promises 971, 977

set_exception_at_thread_exit()

for promises 971, 977

setf()

for streams 779

setfill() manipulator 783

setg()

for input buffers 840, 841

set_intersection()

algorithm 617

setiosflags() manipulator 780

setlocale() 859

setp()

for output buffers 837

setprecision() manipulator 788

setstate()

for streams 759

set_symmetric_difference()

algorithm 619

set_union()

algorithm 616

set_value()

for promises 971, 977

set_value_at_thread_exit()

for promises 971, 977

setw() manipulator 346, 755, 783, 793

sgetc()

for input buffers 827, 839

sgetn()

for input buffers 827, 840

share()

for futures 975

shared_future 960, 976

see future

get() 976

shared pointer

see shared_ptr

shared_ptr 76, 92, 388

* 79, 94

-> 94

<< 94

= 93, 97

==, != 94

<, <=, >, >= 94

aliasing constructor 95

allocate_shared() 93

and arrays 80

and bind() 493

atomic_exchange() 97

atomic_is_lock_free() 97

atomic_load() 97

atomic_store() 97

bad_weak_ptr 89

bool() 94

comparisons 92

1084 Index S

shared_ptr (continued)

const_pointer_cast() 94

constructor 78, 93, 97

cyclic references 84

deleter 80, 82

destructor 93, 97

dynamic_pointer_cast() 94

enable_shared_from_this 90

expired() 97

get() 94

get_deleter() 94

header file 78

lock() 97

make_shared() 78, 93

output 94

owner_before() 94, 97

performance 95, 114

release() 94

reset() 78, 93, 97

static_pointer_cast() 94

swap() 93, 97

thread-safe interface 96

unique() 94

use_count() 94, 97

shared state 969, 973

short

numeric limits 116

showbase manipulator 786

showbase stream flag 786

showpoint manipulator 788

showpoint stream flag 787

showpos manipulator 784

showpos stream flag 784

shrink_to_fit()

for containers 428

for deques 286

for strings 670, 697

for vectors 271, 273

shuffle()

algorithm 589, 908

and temporaries 911

shuffle_order_engine 916

sign

monetary pattern 878

signaling_NaN()

for numeric limits 118

sin()

for complex 935, 940

global function 941

singleton once_flag 1000

singly linked list 175, 300

see forward_list

sinh()

for complex 935, 940

global function 941

size()

for arrays 264

for container adapters 647

for containers 255, 258, 403

for deques 286

for forward lists 301

for lists 292

for maps and multimaps 335

for match results 720, 722

for sets and multisets 318

for strings 670, 696

for unordered containers 367, 380

for vectors 270, 273

size_t 161

size_type

for container adapters 645

for containers 260, 398

for strings 658, 680, 693

skipws 688

skipws manipulator 789, 847

skipws stream flag 789

sleep_for()

for this_thread 160, 947, 981

sleep_until()

for this_thread 160, 981

smart pointer 76

auto_ptr 113

see auto_ptr

cyclic references 84

for reference semantics 388

performance 114

shared_ptr 76

see shared_ptr

unique_ptr 98

see unique_ptr

Index S 1085

weak_ptr 84

snextc()

for input buffers 827

sort()

algorithm 200, 228, 512, 596

for forward lists 310, 312

for lists 297, 298, 422

versus stable_sort() 597

sorted collection 167

sorted-range algorithms 608

sort_heap()

algorithm 514, 605, 606

sorting algorithms 511, 596

sorting criterion

as constructor parameter 316, 334

as template parameter 316, 334

at runtime 328, 351

for associative containers 232

for maps 351

for maps and multimaps 331, 334

for multimaps 351

for multisets 328

for sets 328

for sets and multisets 314, 316

for strings 351

function 228

function object 476

lambda 231

requirements 314

user-defined 228, 476

with locale 868

space

for ctype_base 894

monetary pattern 878

special characters

internationalized 857

speculative execution 954

splice()

for lists 297, 298, 421, 422

splice_after()

for forward lists 309, 310, 425, 426

spurious failure of try_lock() 994

spurious wakeups of condition variables 1004

sputbackc()

for input buffers 827, 839

sputc()

for output buffers 826, 832

sputn()

for output buffers 826, 832

sqrt()

for complex 935, 939

global function 941

srand()

global function 942

sregex_iterator 726

sregex_token_iterator 727

<sstream> 803

stable 180, 183

stable_partition()

algorithm 592

stable_sort()

algorithm 514, 596

versus sort() 597

stack 632

emplace() 634

header file 632

user-defined version 635

<stack> 632

Stack.hpp 635

standard error channel 745

redirecting 822

standard input channel 745

redirecting 822

standard operators

for I/O 753

standard output channel 745

redirecting 822

standard template library 165

see STL

state

of function objects 478

of streams 758

state_not_recoverable 47

state_type

for char_traits 854

static_pointer_cast()

for shared_ptrs 94

std namespace 39

<stddef.h> 161

stderr 745

1086 Index S

<stdexcept> 43, 44

stdin 745

<stdlib.h> 162

stdout 745

steady_clock 149

duration 149

is_steady 149

now() 149

period 149

rep 149

time_point 149

STL 165

algorithms 166, 199, 217, 505

commit-or-rollback 248

concurrency 56

container adapters 631

containers 165, 167, 253, 397

element requirements 244

error handling 246

exceptions handling 248

extending 250

function objects 233, 475

functors 233, 475

inheritance 251

iterator adapters 210, 448

iterators 166, 188, 433

manipulating algorithms 217

predicates 226, 506

ranges 203

safe STL 247

transaction safety 248

stod()

for strings 682, 713

stof()

for strings 682, 713

stoi()

for strings 682, 713

stol()

for strings 682, 713

stold()

for strings 682, 713

stoll()

for strings 682, 713

store()

for atomics 1012, 1016

stoul()

for strings 682, 713

stoull()

for strings 682, 713

str() 808

for match results 720, 723

for regex_iterator 726

for regex_token_iterator 728

for string streams 804, 934

stream 743, 746, 772

<< conventions 818

>> conventions 818

adjustfield 782

adjustment 781

and concurrency 56, 752

app flag 796

ate flag 796

bad() 759

badbit 758

basefield 785

basic_filebuf 824

beg position 800

binary flag 796

boolalpha flag 781

boolalpha manipulator 781

buffer iterators 828

buffers 826, 832

callback 817

character traits 853

class hierarchy 748

clear() 759, 797, 800

close() 798

connecting 819

copyfmt() 779, 780, 811, 817, 822

copyfmt_event 817

cur position 800

dec flag 785

dec manipulator 785

defaultfloat manipulator 788

defining floating-point notation 787

end position 800

endl manipulator 746, 774, 776, 846

end-of-file 750

ends manipulator 746, 774, 808

EOF 750

Index S 1087

eof() 759

eofbit 758

erase_event 817

event 817

event_callback 817

exceptions() 762

fail() 759

failbit 758

failure 763

field width 781

file access 791

filebuf 824

fill() 782

fill character 781

fixed flag 787

fixed manipulator 788

flags() 779, 780

floatfield 787

flush manipulator 746, 774, 846

for char* 807

for file descriptors 801, 835

format flags 779

formatting 779

formatting of bool 755, 781

fpos 799

freeze() 808

getloc() 790

good() 759

goodbit 758

hardfail 758

header files 752

hex flag 785

hex manipulator 785

hexadecimal 785

hexfloat manipulator 788

imbue() 790, 860

imbue_event 817

in flag 796

input buffers 839

input functions 768

internal flag 782

internal manipulator 783

internationalization 790

is_open() 798

iterators 460

iword() 815

left flag 782

left manipulator 346, 783

manipulators 746, 774

member functions 767

narrow() 790

noboolalpha manipulator 781

nocreate flag 797

noreplace flag 797

noshowbase manipulator 786

noshowpoint manipulator 788

noshowpos manipulator 784

noskipws manipulator 789

nounitbuf manipulator 789

nouppercase manipulator 784

numeric bases 785

oct flag 785

oct manipulator 785

octal representation 785

off_type 800

open() 798

openmode 796

operator ! 760, 761

operator bool 760

operator void* 760

out flag 796

output buffers 832

output functions 771

performance 844

positioning 799

pos_type 799

precision() 787

pword() 815

rdbuf() 800, 820, 822, 846

rdstate() 759

read and write 824

read and write position 825

redirecting standard streams 822

register_callback() 817

resetiosflags() manipulator 780

right flag 782

right manipulator 783

scientific flag 787

scientific manipulator 788

seekg() 799, 800, 825

1088 Index S

stream (continued)

seekp() 799, 825

sentry 772

setf() 779

setfill() manipulator 783

setiosflags() manipulator 780

setprecision() manipulator 788

setstate() 759

setw() manipulator 346, 755, 783, 793

showbase flag 786

showbase manipulator 786

showpoint flag 787

showpoint manipulator 788

showpos flag 784

showpos manipulator 784

skipws flag 789

skipws manipulator 789, 847

state 758

state and open() 798

str() 808

string access 802

synchronize streams 819

sync_with_stdio() 845

tellg() 799

tellp() 799

testing the state 760

tie() 819

trunc flag 796

unitbuf flag 789, 846

unitbuf manipulator 789

unsetf() 779

uppercase flag 784

uppercase manipulator 784

user-defined buffers 832

widen() 790

width() 782, 811

ws manipulator 746, 774

xalloc() 815

streambuf 750, 832

see stream buffer

<streambuf> 752

stream buffer 826

see input buffer, output buffer

<<, >> 846

for file descriptors 801, 835

getloc() 827

pubimbue() 827

pubseekoff() 827

pubseekpos() 827

pubsetbuf() 827

user-defined 832

stream iterator 212, 460, 465

end-of-stream 213, 462

skip input 465

streamoff 800

streampos 799

streamsize 767

stream_timeout 47

strftime() 158, 884

strict weak ordering 314

string 655

+ 676, 711

++, -- for iterators 440

+= 674, 702

<< 677, 712

= 673

==, != 697

<, <=, >, >= 697

>> 677, 712

[] 671

allocator_type 715

append() 674, 702, 703

assign() 673, 700, 701

at() 671, 699

automatic type conversions 667

back() 671, 699

begin() 684, 714

capacity() 427, 670, 696

cbegin() 684, 714

cend() 684, 714

char* stream 807

character traits 689, 853

classes 664

clear() 674, 705

compare() 698

compare case-insensitive 351

comparisons 672

concatenation 676

const_iterator 694

const_pointer 694

Index S 1089

const_reference 693

const_reverse_iterator 694

constructor 687, 694, 695

converting index into iterator 687

converting into char* 669, 700

converting iterator into index 687

copy() 669, 700

crbegin() 714

crend() 714

c_str() 669, 700

data() 669, 700

destructor 696

difference_type 693

empty() 670, 696

encoding prefix 24

end() 684, 714

erase() 675, 687, 705

find() 708, 709

find_first_not_of() 709, 710

find_first_of() 709, 710

find_last_not_of() 710, 711

find_last_of() 710, 711

front() 671, 699

get_allocator() 715

getline() 677, 713

header file 663

input 677, 712, 755, 783

insert() 675, 703, 704, 705

internationalization 689

iterator 694

iterators 684

length() 670, 696

literals 23, 655

locale dependent collations 904

locale dependent comparisons 673

lowercase characters 684

max_size() 670, 696

move semantics 676

npos 658, 680, 694

NULL 668

numeric conversions 681, 713

output 677, 712

pointer 693

pop_back() 675, 705

push_back() 674, 703

raw string literals 23, 719

rbegin() 714

reallocation 670

reference 693

reference counting 692

regular expressions 717

rend() 714

replace() 675, 687, 706, 707, 708

reserve() 670, 672, 697

resize() 676, 706

reverse() 687

reverse_iterator 694

rfind() 708, 709

search functions 678

shrink_to_fit() 670, 697

size() 670, 696

size_type 680, 693

sorting criterion 351

stod() 682, 713

stof() 682, 713

stoi() 682, 713

stol() 682, 713

stold() 682, 713

stoll() 682, 713

stoul() 682, 713

stoull() 682, 713

str() 811

string stream 802

substr() 676, 711

substrings 676

swap() 674, 702

tokenization 727

to_string() 682, 713

to_wstring() 682, 713

traits_type 693

uppercase characters 684

value_type 693

<string> 663, 854

stringbuf 802

<string.h> 163, 855

string stream 802

app and ate 806

class hierarchy 802

move semantics 806

str() 804

1090 Index T

stringstream 802

see string stream

string termination character

internationalized 857

strlen() 855

strstream 807

<strstream> 807

strstreambuf 807

struct tm 158

student_t_distribution 917, 924

sub_match

for regular expressions 720

subscript operator

see []

substr()

for strings 676, 711

subtract_with_carry_engine 915

suffix()

for match results 720, 722

sungetc()

for input buffers 827, 839

swap() 136

for shared_ptrs 93, 97

for arrays 263, 265

for container adapters 649

for containers 250, 255, 258, 407

for deques 287

for forward lists 303

for lists 293

for maps and multimaps 336

for packaged tasks 977

for pairs 61

for promises 977

for sets and multisets 321

for strings 674, 702

for tuples 71

for unique_ptrs 111

for unordered containers 368

for vectors 271, 274

swapping

iterator values 446

values 136

swapping elements 566

swap_ranges()

algorithm 566

symbol

monetary pattern 878

sync()

for output buffers 839

synchronization of threads 982

sync_with_stdio()

for streams 845

system

error category 50

system_category() 50

system_clock 149

duration 149

from_time_t() 158

is_steady 149

now() 149, 152

period 149

rep 149

time_point 149

to_time_t() 152, 158

system_error 41, 43, 45

code() 48

error conditions 45

<system_error> 44

T

table()

for ctype facets 895

table_size

for ctype facets 895

tags

for iterators 466

tan()

for complex 935, 940

global function 941

tanh()

for complex 935, 940

global function 941

tellg()

for streams 799

tellp()

for streams 799

template

>> 13

alias 27, 1024

Index T 1091

constructor 36

copy constructor 62

default parameter 33

function 27

member templates 34

nested class 37

nontype parameters 33

typedef 27, 1024

typename 34

variadic 26, 68

zero initialization 37

tera ratio unit 142

terminate() 162

text_file_busy 47

this_thread 981

get_id() 981

sleep_for() 947, 981

sleep_until() 981

yield() 955, 981

thousands_sep()

for moneypunct facets 874

for numpunct facets 870

thread 964, 979

constructor 979

destructor 979

detach() 979

detached 967

get_id() 967, 979

hardware_concurrency() 980

ID 967, 979

join() 979

joinable() 979

native_handle() 979

<thread> 967, 981

threads 945, 979

see concurrency, thread

synchronization 982

tie()

for pairs 67

for streams 819

for tuples 70, 71, 72

time

conversion to/from time_point 158

time() 158

time locale category 884

time_base 889

dateorder 889

dmy 889

mdy 889

no_order 889

ydm 889

ymd 889

timed_mutex 994, 998

timed_out 47

time_get facet 887

date_order() 888

get() 888

get_date() 888

get_monthname() 888

get_weekday() 888

get_year() 888

<time.h> 157

timeout future status 954

time_point 143, 152

+, - 155

+=, -= 155

==, != 155

<, <=, >, >= 155

constructor 155

conversion to/from calendar time 158

current time 152

epoch 152

for clocks 149

max() 155

min() 155

time_point_cast 155

time_since_epoch() 155

time_point_cast

for timepoints 155

time_put facet 884

put() 884

timer 160, 947, 981

for locks 994

time_since_epoch()

for timepoints 155

time_t 158, 886

tinyness_before

for numeric limits 118

tm structure 158, 886

to_bytes() for wstring_convert<> 901

1092 Index T

to_char_type()

for char_traits 854

to_int_type()

for char_traits 854

token iterator

for regular expressions 727

tolower() 684, 896

for ctype facets 891

too_many_files_open 47

too_many_files_open_in_system 47

too_many_links 47

too_many_symbolic_link_levels 47

top()

for container adapters 648

to_string() 652

for strings 682, 713

to_time_t() 757

for clocks 153

for system_clock 152, 158

to_ullong() 652

toupper() 684, 833, 896

for ctype facets 891

to_wstring()

for strings 682, 713

TR1 7

namespace 39

traits

for characters 689, 853

for iterators 466

for types 122

see type traits

traits_type

for strings 693

transaction safety 248

transform()

algorithm 225, 240, 563, 564, 684

for collate facets 904

versus for_each() 509

transitive 315

traps

for numeric limits 118

truename()

for numpunct facets 870

true_type 125, 142

trunc stream flag 796

try_lock

for unique_locks 1000

try_lock()

for unique_locks 1000

for mutexes 994, 998

multiple locks 995

spurious failures 994

try_lock_for() 994

for unique_locks 1000

for mutexes 160, 998

try_lock_until() 994

for unique_locks 1000

for mutexes 160, 998

try_to_lock 996

tuple 806

and arrays 268

and initializer lists 72

tuple 68

= 71

==, != 71

<, <=, >, >= 71

and pair 75

constructor 69, 71

destructor 71

get() 74

ignore 72

I/O 74

make_tuple() 69, 70, 71

output 74

swap() 71

tie() 70, 71, 72

tuple_cat() 73

tuple_element 73

tuple_size 73

<tuple> 66, 68

tuple_cat()

for tuples 73

tuple_element

for pairs 62

for tuples 73

tuple interface

for arrays 268

tuple_size

for pairs 62

for tuples 73

Index U 1093

type

auto 14

deduction 14

of lambdas 31

relation traits 128

type

for integral_constant 125

for ratios 140

typedef

for templates 27, 1024

typeid 42

<typeinfo> 42

typename 34, 380

type traits 122

common_type 124

predicates 125

type modifiers 129

type relations 128

<type_traits> 122, 125

U

u16string 655, 664

see string

u32string 655, 664

see string

UCS-2 UCS-4 851

uflow()

for input buffers 839

unary_function 497

unary predicate 226

underflow()

for input buffers 839

underflow_error 41, 43

underlying_type trait 131

unexpected() 42

unget()

for input streams 770

uniform initialization 15

uniform_int_distribution 908, 917, 921,

947

uniform_real_distribution 908, 917,

921

uninitialized_copy() 1027, 1028

uninitialized_copy_n() 1027

uninitialized_fill() 1027

uninitialized_fill_n() 1027, 1028

union set 616

unique()

algorithm 578

for shared_ptrs 94

for forward lists 310, 312

for lists 297, 298, 421

unique_copy()

algorithm 580

unique_future 975

unique_lock 996, 1000

for condition variables 1004

unique pointer

see unique_ptr

unique_ptr 98, 822

* 111

-> 111

= 102, 111

==, != 111

<, <=, >, >= 111

[] 111

and arrays 105

as member 103

bool() 100, 111

comparisons 112

constructor 111

deleter 107

destructor 111

get() 111

get_deleter() 111

initialization 100

ownership transfer 101

performance 114

release() 100, 111

reset() 111

swap() 111

unitbuf 846

unitbuf manipulator 789

unitbuf stream flag 789

unlock()

for unique_locks 1000

for mutexes 989, 998

1094 Index U

unordered collection 167

unordered container 167, 180

see container

begin() for buckets 374

bucket() 374

bucket_count() 374

bucket interface 374, 380, 429

bucket_size() 374

end() for buckets 374

equivalence criterion 377

hash function 377

modifying access 221

order of duplicates 183

terminology 168

user-defined inserter 471

unordered_map 183, 185, 355

see unordered container

= 368

==, != 367

[] 186, 374, 408

as associative array 185, 374

at() 186, 374, 408

begin() 369, 429

begin() for buckets 374

bucket() 429

bucket_count() 362, 380, 429

bucket interface 374

bucket_size() 429

cbegin() 369, 429

cend() 369, 430

clear() 370, 371

compare function 366

const_local_iterator 399

constructor 360

count() 368

crbegin() 369

crend() 369

destructor 360

element access with bind() 494

emplace() 370, 371

emplace_hint() 371

empty() 367

end() 369, 430

end() for buckets 374

equal_range() 368

equivalence criterion 357, 366, 377

erase() 370, 371

exception handling 375

find() 368, 373

hasher 399

hash function 363, 377

hash_function() 362, 427

header file 356

insert() 370, 371, 372, 382

iterators 368

key_eq() 362, 427

key_equal 399

lambda as equivalence criterion 379

lambda as hash function 379

load_factor() 362, 380, 427

local_iterator 399

max_bucket_count() 362, 429

max_load_factor() 362, 380, 383,

427, 429

max_size() 367

modifying access 221

piecewise construction 373

policy 359

rbegin() 369

rehash() 362, 428

removing elements 342

rend() 369

reserve() 362

size() 367, 380

swap() 368

value_type 356

<unordered_map> 356

unordered_multimap 355, 383

see unordered container

= 368

==, != 367

begin() 369, 429

begin() for buckets 374

bucket() 429

bucket_count() 362, 380, 429

bucket interface 374

bucket_size() 429

cbegin() 369, 429

cend() 369, 430

clear() 370, 371

Index U 1095

compare function 366

const_local_iterator 399

constructor 360, 383

count() 368

crbegin() 369

crend() 369

destructor 360

element access with bind() 494

emplace() 370, 371

emplace_hint() 371

empty() 367

end() 369, 430

end() for buckets 374

equal_range() 368

equivalence criterion 357, 366, 377

erase() 370, 371

exception handling 375

find() 368, 373

hasher 399

hash function 363, 377

hash_function() 362, 427

header file 356

insert() 370, 371, 372, 382

iterators 368, 383

key_eq() 362, 427

key_equal 399

lambda as equivalence criterion 379

lambda as hash function 379

load_factor() 362, 380, 427

local_iterator 399

max_bucket_count() 362, 429

max_load_factor() 362, 380, 383,

427, 429

max_size() 367

modifying access 221

order of duplicates 183

piecewise construction 373

policy 359

rbegin() 369

rehash() 362, 428

removing elements 342

rend() 369

reserve() 362

size() 367, 380

stable order 183

swap() 368

value_type 356

unordered_multiset 182, 196, 355, 377

see unordered container

= 368

==, != 367

begin() 369, 429

begin() for buckets 374

bucket() 429

bucket_count() 362, 380, 429

bucket interface 374

bucket_size() 429

cbegin() 369, 429

cend() 369, 430

clear() 370, 371

compare function 366

const_local_iterator 399

constructor 360, 377

count() 368

crbegin() 369

crend() 369

destructor 360

emplace() 370, 371

emplace_hint() 371

empty() 367

end() 369, 430

end() for buckets 374

equal_range() 368

equivalence criterion 357, 366, 377

erase() 370, 371, 377

exception handling 375

find() 368, 373, 377

hasher 399

hash function 363, 377

hash_function() 362, 427

header file 356

insert() 370, 371, 372, 377, 382

iterators 368, 377

key_eq() 362, 427

key_equal 399

lambda as equivalence criterion 379

lambda as hash function 379

load_factor() 362, 380, 427

local_iterator 399

max_bucket_count() 362, 429

1096 Index U

unordered_multiset (continued)

max_load_factor() 362, 380, 383,

427, 429

max_size() 367

modifying access 221

order of duplicates 183

policy 359

rbegin() 369

rehash() 362, 428

rend() 369

reserve() 362

size() 367, 380

stable order 183

swap() 368

value_type 356

unordered_set 198, 355, 375

see unordered container

= 368

==, != 367

begin() 369, 429

begin() for buckets 374

bucket() 429

bucket_count() 362, 380, 429

bucket interface 374

bucket_size() 429

cbegin() 369, 429

cend() 369, 430

clear() 370, 371

compare function 366

const_local_iterator 399

constructor 360, 375

count() 368

crbegin() 369

crend() 369

destructor 360

emplace() 370, 371

emplace_hint() 371

empty() 367

end() 369, 430

end() for buckets 374

equal_range() 368

equivalence criterion 357, 366, 377

erase() 370, 371, 375

exception handling 375

find() 368, 373, 375

hasher 399

hash function 363, 377

hash_function() 362, 427

header file 356

insert() 370, 371, 372, 375, 382

iterators 368, 375

key_eq() 362, 427

key_equal 399

lambda as equivalence criterion 379

lambda as hash function 379

load_factor() 362, 380, 427

local_iterator 399

max_bucket_count() 362, 429

max_load_factor() 362, 380, 383,

427, 429

max_size() 367

modifying access 221

policy 359

rbegin() 369

rehash() 362, 428

rend() 369

reserve() 362

size() 367, 380

swap() 368

value_type 356

<unordered_set> 356

unsetf() 688

for streams 779

unshift()

for codecvt facets 898

unsynchronized data access 984

upper

for ctype_base 894

upper_bound()

algorithm 611

for containers 405

for maps and multimaps 335

for sets and multisets 319

uppercase manipulator 784

uppercase stream flag 784

uppercase string characters 684

US-ASCII 851

use_count()

for shared_ptrs 94, 97

for weak_ptrs 89

Index V 1097

use_facet() 864, 867

user-defined

<<, >> 810

algorithm 308, 468

allocator 1024

container 385

exception 635

function object 495

inserter 471

iterator 471

manipulators 777

sorting criterion 228, 476

stream buffers 832

uses_allocator trait 128

using declaration 40

using directive 40

UTF-8 UTF-16 UTF-32 851

reading and writing 901, 903

utilities 59

<utility> 20, 60, 136, 138

V

valarray 943

valarray 943

valid()

for futures 975

for packaged tasks 977

valid range 203, 205

value

for integral_constant 125

monetary pattern 878

value()

for exceptions 49

value_comp()

for associative containers 427

for maps and multimaps 335

for sets and multisets 318

value_compare

for associative containers 399

value initialization 15

value pair 60

value semantics

for containers 245

value_too_large 47

value_type

for allocators 1026

for complex 935

for container adapters 645

for containers 260, 397

for insert() 341, 372

for integral_constant 125

for iterator_traits 467

for maps 345

for maps and multimaps 331

for strings 693

for unordered containers 356

variadic template 26, 68

vector 169, 270, 279

see container

++, -- for iterators 440

= 274

==, != 273

<, <=, >, >= 273

[] 274

as C-style array 278

assign() 274

at() 274

back() 274

begin() 276

capacity() 270, 273, 427

cbegin() 276

cend() 276

clear() 277

constructor 272, 273, 1027

contiguity of elements 278

crbegin() 276

crend() 276

data() 278

destructor 272, 273

element access 274

emplace() 277

emplace_back() 277

empty() 273

end() 276

erase() 277

exception handling 278

for bool 281

front() 274

header file 270

1098 Index W

vector (continued)

insert() 277

iterators 275

max_size() 273

pop_back() 277

push_back() 277

rbegin() 276

reallocation 270

removing elements 276

rend() 276

reserve() 271, 273, 1028

resize() 277

shrink capacity 271

shrink_to_fit() 271, 273

size() 270, 273

swap() 271, 274

<vector> 270

vector<bool> 281

and concurrency 985

const_reference 282

flip() 281, 282

reference 282

versions of C++ 7

void*

I/O 756

volatile

and concurrency 988, 998

W

wait()

for condition variables 1004, 1009

for futures 953, 975

wait_for() 160

for condition variables 1009

for futures 953, 975

wait_until() 160

for condition variables 1009

for futures 953, 975

wcerr 751

wchar_t 852, 858

input 755

numeric limits 116

wcin 751

wclog 751

wcout 751

wcregex_iterator 726

wcregex_token_iterator 727

weak pointer

see weak_ptr

weak_ptr 84, 96

bad_weak_ptr 89

lock() 88

use_count() 89

weibull_distribution 917, 922

wfilebuf 791

wfstream 791

what()

for exceptions 45, 52

whitespace

compressing 582

wide-character format 850

widen()

for ctype facets 891

for streams 790

width()

for streams 782, 811

wifstream 791

wios 750

wiostream 751

wistream 751

wistringstream 802

wofstream 791

wostream 751

wostringstream 802

wregex 719

write()

for output streams 771

global function 835, 837

writing

see output

wrong_protocol_type 47

ws manipulator 746, 774

wsregex_iterator 726

wsregex_token_iterator 727

wstreambuf 750, 832

see input buffer, output buffer

wstreampos 799

Index X 1099

wstring 655, 664

see string

wstringbuf 802

wstring_convert<> 901

wstringstream 802

X

xalloc()

for streams 815

xdigit

for ctype_base 894

xsgetn()

for input buffers 840

xsputn()

for output buffers 832

Y

ydm date order 889

yield()

for this_thread 955, 981

ymd date order 889

yocto ratio unit 142

yotta ratio unit 142

Z

zepto ratio unit 142

zero()

for durations 147

zero initialization 37

zetta ratio unit 142

This page intentionally left blank

Nicolai M. Josuttis

The C++ Standard Library

A Tutorial and Reference

Second Edition

Supplementary Chapter

Print book ISBN-13: 978-0-321-62321-8

Print book ISBN-10: 0-321-62321-5

Copyright c© 2012 Pearson Education, Inc.

All rights reserved.

Contents

This Supplementary Chapter provides additional material that could not be included in The C++

Standard Library, Second Edition, due to its size.

S.1 Bitsets . 1103

S.1.1 Examples of Using Bitsets . 1104

S.1.2 Class bitset<> in Detail . 1107

S.2 Valarrays . 1114

S.2.1 Getting to Know Valarrays . 1114

S.2.2 Valarray Subsets . 1121

S.2.3 Class valarray in Detail . 1136

S.2.4 Valarray Subset Classes in Detail . 1142

S.3 Allocators and Memory Functions in Detail 1148

S.3.1 Scoped Allocators . 1148

S.3.2 A User-Defined Allocator for C++98 . 1150

S.3.3 The Default Allocator . 1153

S.3.4 Allocators in Detail . 1155

S.3.5 Utilities for Uninitialized Memory in Detail 1159

S.1 Bitsets 1103

S.1 Bitsets

As introduced in Section 12.5, page 650, bitsets model fixed-sized arrays of bits or Boolean values

and are useful for managing sets of flags, where variables may represent any combination of flags.

C and old C++ programs usually use type long for arrays of bits and manipulate them with the bit

operators, such as &, |, and ~. The class bitset has the advantage that bitsets may contain any

number of bits, and additional operations are provided. For example, you can assign single bits and

can read and write bitsets as a sequence of 0s and 1s.

Note that you can’t change the number of bits in a bitset. The number of bits is the template

parameter. If you need a container for a variable number of bits or Boolean values, you can use the

class vector<bool> (described in Section 7.3.6, page 281).

The class bitset is defined in the header file <bitset>:

#include <bitset>

In <bitset>, the class bitset is defined as a class template, with the number of bits as the template

parameter:

namespace std {

template <size_t Bits>

class bitset;

}

In this case, the template parameter is not a type but an unsigned integral value (see Section 3.2,

page 33, for details about this language feature).

Templates with different template arguments are different types. You can compare and combine

bitsets only with the same number of bits.

Recent Changes with C++11

C++98 specified almost all features of bitsets. Here is a list of the most important features added

with C++11:

• Bitsets now can be initialized by string literals (see Section 12.5.1, page 653).

• Conversions to and from numeric values now support type unsigned long long. For this,

to_ullong() was introduced (see Section 12.5.1, page 653).

• Conversions to and from strings now allow you to specify the character interpreted as set and

unset bit.

• Member all() is now provided to check whether all bits are set.

• To use bitsets in unordered containers, a default hash function is provided (see Section 7.9.2,

page 363).

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1104 Supplementary Chapter

S.1.1 Examples of Using Bitsets

Using Bitsets as Sets of Flags

The first example demonstrates how to use bitsets to manage a set of flags. Each flag has a value that

is defined by an enumeration type. The value of the enumeration type is used as the position of the

bit in the bitset. In particular, the bits represent colors. Thus, each enumeration value defines one

color. By using a bitset, you can manage variables that might contain any combination of colors:

// contadapt/bitset1.cpp

#include <bitset>

#include <iostream>

using namespace std;

int main()

{

// enumeration type for the bits

// - each bit represents a color

enum Color { red, yellow, green, blue, white, black, ...,

numColors };

// create bitset for all bits/colors

bitset<numColors> usedColors;

// set bits for two colors

usedColors.set(red);

usedColors.set(blue);

// print some bitset data

cout << "bitfield of used colors: " << usedColors << endl;

cout << "number of used colors: " << usedColors.count() << endl;

cout << "bitfield of unused colors: " << ~usedColors << endl;

// if any color is used

if (usedColors.any()) {

// loop over all colors

for (int c = 0; c < numColors; ++c) {

// if the actual color is used

if (usedColors[(Color)c]) {

...

}

}

}

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.1 Bitsets 1105

Using Bitsets for I/O with Binary Representation

A useful feature of bitsets is the ability to convert integral values into a sequence of bits, and vice

versa. This is done simply by creating a temporary bitset:

// contadapt/bitset2.cpp

#include <bitset>

#include <iostream>

#include <string>

#include <limits>

using namespace std;

int main()

{

// print some numbers in binary representation

cout << "267 as binary short: "

<< bitset<numeric_limits<unsigned short>::digits>(267)

<< endl;

cout << "267 as binary long: "

<< bitset<numeric_limits<unsigned long>::digits>(267)

<< endl;

cout << "10,000,000 with 24 bits: "

<< bitset<24>(1e7) << endl;

// write binary representation into string

string s = bitset<42>(12345678).to_string();

cout << "12,345,678 with 42 bits: " << s << endl;

// transform binary representation into integral number

cout << "\"1000101011\" as number: "

<< bitset<100>("1000101011").to_ullong() << endl;

}

Depending on the number of bits for short and long long, the program might produce the follow-

ing output:

267 as binary short: 0000000100001011

267 as binary long: 00000000000000000000000100001011

10,000,000 with 24 bits: 100110001001011010000000

12,345,678 with 42 bits: 000000000000000000101111000110000101001110

"1000101011" as number: 555

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1106 Supplementary Chapter

In this example, the following expression converts 267 into a bitset with the number of bits of type

unsigned short (see Section 5.3, page 116, for a discussion of numeric limits):

bitset<numeric_limits<unsigned short>::digits>(267)

The output operator for bitset prints the bits as a sequence of characters 0 and 1.

You can output bitsets directly or use their value as a string:

string s = bitset<42>(12345678).to_string();

Note that before C++11, you had to write

string s = bitset<42>(12345678).to_string<char,char_traits<char>,

allocator<char> >();

here because to_string() is a member template, and there were no default values for the template

arguments defined.

Similarly, the following expression converts a sequence of binary characters into a bitset, for

which to_ullong() yields the integral value:

bitset<100>("1000101011")

Note that the number of bits in the bitset should be smaller than sizeof(unsigned long long).

The reason is that you get an exception when the value of the bitset can’t be represented as unsigned

long long.1

Note also that before C++11, you had to convert the initial value to type string explicitly:

bitset<100>(string("1000101011"))

1 Before C++11, type unsigned long was not provided, so you could call only to_ulong() here.

to_ulong() is still callable if the number of bits is smaller than sizeof(unsigned long).

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.1 Bitsets 1107

S.1.2 Class bitset<> in Detail

The bitset class provides the following operations.

Create, Copy, and Destroy Operations

For bitsets, some special constructors are defined. However, no special copy constructor, assignment

operator, or destructor is defined. Thus, bitsets are assigned and copied with the default operations

that copy bitwise.

bitset<bits>::bitset ()

• The default constructor.

• Creates a bitset with all bits initialized with zero.

• For example:

bitset<50> flags; // flags: 0000...000000

// thus, 50 unset bits

bitset<bits>::bitset (unsigned long long value)

• Creates a bitset that is initialized according to the bits of the integral value value.

• If the number of bits of value is too small, the leading bit positions are initialized to zero.

• Before C++11, the type of value was unsigned long.

• For example:

bitset<50> flags(7); // flags: 0000...000111

explicit bitset<bits>::bitset (const string& str)

bitset<bits>::bitset (const string& str, string::size_type str_idx)

bitset<bits>::bitset (const string& str,

string::size_type str_idx, string::size_type str_num)

bitset<bits>::bitset (const string& str,

string::size_type str_idx, string::size_type str_num,

string::charT zero)

bitset<bits>::bitset (const string& str,

string::size_type str_idx, string::size_type str_num,

string::charT zero, string::charT one)

• All forms create a bitset that is initialized by the string str or a substring of str.

• The string or substring may contain only the characters ’0’ and ’1’ or zero and one.

• str_idx is the index of the first character of str that is used for initialization.

• If str_num is missing, all characters from str_idx to the end of str are used.

• If the string or substring has fewer characters than necessary, the leading bit positions are initial-

ized to zero.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1108 Supplementary Chapter

• If the string or substring has more characters than necessary, the remaining characters are ig-

nored.

• Throw out_of_range if str_idx > str.size().

• Throw invalid_argument if one of the characters is neither ’0’/zero nor ’1’/one.

• Parameters zero and one are provided since C++11.

• Note that this constructor is a member template (see Section 3.2, page 34). For this reason, no

implicit type conversion from const char* to string for the first parameter is provided, which

before C++11, ruled out passing a string literal.

• For example:

bitset<50> flags(string("1010101")); // flags: 0000...0001010101

bitset<50> flags(string("1111000"),2,3); // flags: 0000...0000000110

explicit bitset<bits>::bitset (const charT* str)

bitset<bits>::bitset (const charT* str, string::size_type str_num)

bitset<bits>::bitset (const charT* str, string::size_type str_num,

string::charT zero)

bitset<bits>::bitset (const charT* str, string::size_type str_num,

string::charT zero, string::charT one)

• All forms create a bitset that is initialized by the character sequence str.

• The string or substring may contain only the characters ’0’ and ’1’ or zero and one.

• If str_num is missing, all characters of str are used.

• If (str_num out of) str are fewer characters than necessary, the leading bit positions are initialized

to zero.

• If str has more characters than necessary, the remaining characters are ignored.

• Throw invalid_argument if one of the characters is neither ’0’/zero nor ’1’/one.

• Parameters zero and one are provided since C++11.

• For example:

bitset<50> flags("1010101"); // flags: 0000...0001010101

Nonmanipulating Operations

size_t bitset<bits>::size () const

• Returns the number of bits (thus, bits).

size_t bitset<bits>::count () const

• Returns the number of set bits (bits with value 1).

bool bitset<bits>::all () const

• Returns whether all bits are set.

• Provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.1 Bitsets 1109

bool bitset<bits>::any () const

• Returns whether any bit is set.

bool bitset<bits>::none () const

• Returns whether no bit is set.

bool bitset<bits>::test (size_t idx) const

• Returns whether the bit at position idx is set.

• Throws out_of_range if idx >= size().

bool bitset<bits>::operator == (const bitset<bits>& bits) const

• Returns whether all bits of *this and bits have the same value.

bool bitset<bits>::operator != (const bitset<bits>& bits) const

• Returns whether any bits of *this and bits have a different value.

Manipulating Operations

bitset<bits>& bitset<bits>::set ()

• Sets all bits to true.

• Returns the modified bitset.

bitset<bits>& bitset<bits>::set (size_t idx)

• Sets the bit at position idx to true.

• Returns the modified bitset.

• Throws out_of_range if idx >= size().

bitset<bits>& bitset<bits>::set (size_t idx, bool value)

• Sets the bit at position idx according to value.

• Returns the modified bitset.

• Throws out_of_range if idx >= size().

• Before C++11, type value had type int so that 0 set the bit to false, and any value other than 0

set it to true.

bitset<bits>& bitset<bits>::reset ()

• Resets all bits to false (assigns 0 to all bits).

• Returns the modified bitset.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1110 Supplementary Chapter

bitset<bits>& bitset<bits>::reset (size_t idx)

• Resets the bit at position idx to false.

• Returns the modified bitset.

• Throws out_of_range if idx >= size().

bitset<bits>& bitset<bits>::flip ()

• Toggles all bits (sets unset bits and vice versa).

• Returns the modified bitset.

bitset<bits>& bitset<bits>::flip (size_t idx)

• Toggles the bit at position idx.

• Returns the modified bitset.

• Throws out_of_range if idx >= size().

bitset<bits>& bitset<bits>::operator ˆ= (const bitset<bits>& bits)

• The bitwise exclusive-OR operator.

• Toggles the value of all bits that are set in bits and leaves all other bits unchanged.

• Returns the modified bitset.

bitset<bits>& bitset<bits>::operator |= (const bitset<bits>& bits)

• The bitwise OR operator.

• Sets all bits that are set in bits and leaves all other bits unchanged.

• Returns the modified bitset.

bitset<bits>& bitset<bits>::operator &= (const bitset<bits>& bits)

• The bitwise AND operator.

• Resets all bits that are not set in bits and leaves all other bits unchanged.

• Returns the modified bitset.

bitset<bits>& bitset<bits>::operator <<= (size_t num)

• Shifts all bits by num positions to the left.

• Returns the modified bitset.

• The lowest num bits are set to false.

bitset<bits>& bitset<bits>::operator >>= (size_t num)

• Shifts all bits by num positions to the right.

• Returns the modified bitset.

• The highest num bits are set to false.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.1 Bitsets 1111

Access with Operator []

bitset<bits>::reference bitset<bits>::operator [] (size_t idx)

bool bitset<bits>::operator [] (size_t idx) const

• Both forms return the bit at position idx.

• The first form for nonconstant bitsets uses a proxy type to enable the use of the return value as a

modifiable value (lvalue). See the next paragraphs for details.

• The caller must ensure that idx is a valid index; otherwise, the behavior is undefined.

When it is called for nonconstant bitsets, operator [] returns a special temporary object of type

bitset<>::reference. That object is used as a proxy2 that allows certain modifications with the

bit that is accessed by operator []. In particular, the following five operations are provided for

references:

1. reference& operator= (bool)

Sets the bit according to the passed value.

2. reference& operator= (const reference&)

Sets the bit according to another reference.

3. reference& flip ()

Toggles the value of the bit.

4. operator bool () const

Converts the value into a Boolean value (automatically).

5. bool operator˜ () const

Returns the complement (toggled value) of the bit.

For example, you can write the following statements:

bitset<50> flags;

...

flags[42] = true; // set bit 42

flags[13] = flags[42]; // assign value of bit 42 to bit 13

flags[42].flip(); // toggle value of bit 42

if (flags[13]) { // if bit 13 is set,

flags[10] = ~flags[42]; // then assign complement of bit 42 to bit 10

}

Creating New Modified Bitsets

bitset<bits> bitset<bits>::operator ˜ () const

• Returns a new bitset that has all bits toggled with respect to *this.

2 A proxy allows you to keep control where usually no control is provided. This is often used to get more

security. In this case, the proxy maintains control to allow certain operations, although the return value in

principle behaves as bool.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1112 Supplementary Chapter

bitset<bits> bitset<bits>::operator << (size_t num) const

• Returns a new bitset that has all bits shifted to the left by num position.

bitset<bits> bitset<bits>::operator >> (size_t num) const

• Returns a new bitset that has all bits shifted to the right by num position.

bitset<bits> operator& (const bitset<bits>& bits1,

const bitset<bits>& bits2)

• Returns the bitwise computing of operator AND of bits1 and bits2.

• Returns a new bitset that has only those bits set in bits1 and in bits2.

bitset<bits> operator| (const bitset<bits>& bits1,

const bitset<bits>& bits2)

• Returns the bitwise computing of operator OR of bits1 and bits2.

• Returns a new bitset that has only those bits set in bits1 or in bits2.

bitset<bits> operatorˆ (const bitset<bits>& bits1,

const bitset<bits>& bits2)

• Returns the bitwise computing of operator exclusive-OR of bits1 and bits2.

• Returns a new bitset that has only those bits set in bits1 and not set in bits2 or vice versa.

Operations for Type Conversions

unsigned long bitset<bits>::to_ulong () const

• Returns the integral value that the bits of the bitset represent.

• Throws overflow_error if the integral value can’t be represented by type unsigned long.

unsigned long long bitset<bits>::to_ullong () const

• Returns the integral value that the bits of the bitset represent.

• Throws overflow_error if the integral value can’t be represented by type unsigned long

long.

• Provided since C++11.

string bitset<bits>::to_string () const

string bitset<bits>::to_string (charT zero) const

string bitset<bits>::to_string (charT zero, charT one) const

• Returns a string that contains the value of the bitset as a binary representation written with char-

acters ’0’ for unset bits and ’1’ for set bits.

• The order of the characters is equivalent to the order of the bits with descending index.

• Parameters zero and one are provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.1 Bitsets 1113

• For example:

bitset<50> b;

std::string s;

...

s = b.to_string();

• This is a function template that is parametrized only by the return type, which before C++11

had no default values. Thus, according to the language rules before C++11, you had to write the

following:

s = b.to_string<char,char_traits<char>,allocator<char> >()

Input/Output Operations

istream& operator>> (istream& strm, bitset<bits>& bits)

• Reads into bits a bitset as a character sequence of characters ’0’ and ’1’.

• Reads until any one of the following happens:

– At most, bits characters are read.

– End-of-file occurs in strm.

– The next character is neither ’0’ nor ’1’.

• Returns strm.

• If the number of bits read is less than the number of bits in the bitset, the bitset is filled with

leading zeros.

• If it can’t read any character, this operator sets ios::failbit in strm, which might throw the

corresponding exception (see Section 15.4.4, page 762).

ostream& operator<< (ostream& strm, const bitset<bits>& bits)

• Writes bits converted into a string that contains the binary representation (thus, as a sequence of

’0’ and ’1’).

• Uses to_string() (see Section S.1.2, page 1112) to create the output characters.

• Returns strm.

• See Section 12.5.1, page 652, for an example.

Hash Support

Since C++11, class bitset<> provides a specialization for a hash function:

namespace std {

template <size_t N> struct hash<bitset<N> >;

}

See Section 7.9.2, page 363, for details.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1114 Supplementary Chapter

S.2 Valarrays

Since C++98, the C++ standard library provides class valarray<> for processing arrays of numeric

values. A valarray is a representation of the mathematical concept of a linear sequence of values.

It has one dimension, but you can get the illusion of higher dimensionality by special techniques

of computed indices and powerful subsetting capabilities. Therefore, a valarray can be used as a

base both for vector and matrix operations and for processing mathematical systems of polynomial

equations with good performance.

The valarray classes enable some tricky optimizations to get good performance for the processing

of value arrays. However, it is not clear how important this component of the C++ standard library

will be in the future, because other interesting developments perform even better. One of the most

interesting examples is the Blitz system. If you are interested in numeric processing, you should

look at it. For details, see http://www.oonumerics.org/blitz/.

The valarray classes were not designed very well. In fact, nobody tried to determine whether the

final specification worked. This happened because nobody felt “responsible” for these classes. The

people who introduced valarrays to the C++ standard library left the committee long before the first

C++ standard was finished. For example, to use valarrays, you often need some inconvenient and

time-consuming type conversions (see Section S.2.2, page 1121).

Recent Changes with C++11

C++98 specified almost all features of the classes for valarrays. Here is a list of the most important

features added with C++11:

• Valarrays now support move semantics. In fact, a move constructor and a move assignment

operator are provided.

• The class now provides swap() functions (see Section S.2.3, page 1137).

• You can now use an initializer list to initialize a valarray or assign new values to it (see Sec-

tion S.2.1, page 1116).

• Class valarray now provides begin() and end() for iterating over the elements of a valarray

(see Section S.2.1, page 1119).

• Operator [] now returns a constant reference instead of a copy (see Section S.2.3, page 1139).

S.2.1 Getting to Know Valarrays

Valarrays are one-dimensional arrays with elements numbered sequentially from zero. They provide

the ability to do some numeric processing for all or a subset of the values in one or more value arrays.

For example, you can process the statement

z = a*x*x + b*x + c

with a, b, c, x, and z being arrays that contain hundreds of numeric values. In doing this, you have

the advantage of a simple notation. Also, the processing is done with good performance because the

classes provide some optimizations that avoid the creation of temporary objects while processing the

whole statement. In addition, special interfaces and auxiliary classes provide the ability to process

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

http://www.oonumerics.org/blitz/

S.2 Valarrays 1115

only a certain subset of value arrays or to do some multidimensional processing. In this way, the

valarray concept also helps to implement vector and matrix operations and classes.

The standard guarantees that valarrays are alias free. That is, any value of a nonconstant valarray

is accessed through a unique path. Thus, operations on these values can get optimized better because

the compiler does not have to take into account that the data could be accessed through another path.

Header File

Valarrays are declared in the header file <valarray>:

#include <valarray>

In particular, the following classes are declared in <valarray>:

namespace std {

template<typename T> class valarray; // numeric array of type T

class slice; // slice out of a valarray

template<typename T> class slice_array;

class gslice; // a generalized slice

template<typename T> class gslice_array;

template<typename T> class mask_array; // a masked valarray

template<typename T> class indirect_array; // an indirect valarray

}

The classes have the following meanings:

• valarray is the core class that manages an array of numeric values.

• slice and gslice are provided to define a BLAS-like3 slice as a subset of a valarray.

• slice_array, gslice_array, mask_array, and indirect_array are internal auxiliary

classes that are used to store temporary values or data. You can’t use those classes in your

programming interface directly. They are created indirectly by certain valarray operations.

All classes are templatized for the type of the elements. In principle, the type could be any data type.

However, according to the nature of valarrays, it should be a numeric data type.

Creating Valarrays

When you create a valarray, you usually pass the number of elements as a parameter:

std::valarray<int> va1(10); // valarray of ten ints with value 0

3 The Basic Linear Algebra Subprograms (BLAS) library provides computational kernels for several of the

fundamental linear algebra operations, such as matrix multiply, the solution of triangular systems, and simple

vector operations.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1116 Supplementary Chapter

std::valarray<float> va2(5.7,10); // valarray of ten floats with value 5.7

// (note the order)

If you pass one argument, it is used as the size. The elements are initialized by the default constructor

of their type. Elements of fundamental data types are initialized by zero (see Section 3.2.1, page 37,

for a description of why fundamental data types may be initialized by a default constructor). If you

pass a second value, the first is used as the initial value for the elements, whereas the second specifies

the number of elements. Note that the order of passing two arguments to the constructor differs from

that of all other classes of the C++ standard library. All STL container classes use the first numeric

argument as the number of elements and the second argument as the initial value.

Since C++11, you can also initialize a valarray with an initializer list:

std::valarray<int> va3 = { 3, 6, 18, 3, 22 };

Before C++11, you had to use an ordinary C-style array:

int array[] = { 3, 6, 18, 3, 22 };

// initialize valarray by elements of an ordinary array

std::valarray<int> va3(array,sizeof(array)/sizeof(array[0]));

// initialize by the second to the fourth element

std::valarray<int> va4(array+1,3);

The valarray creates copies of the passed values. Thus, you can pass temporary data for initialization.

Valarray Operations

For valarrays, the subscript operator is defined to access the element of a valarray. As usual, the first

element has the index 0:

va[0] = 3 * va[1] + va[2];

In addition, all ordinary numeric operators are defined: addition, subtraction, multiplication, mod-

ulo, negation, bit operators, comparison operators, and logical operators, as well as all assignment

operators. These operators are called for each valarray element that is processed by the operation.

Thus, the result of a valarray operation is a valarray that has the same number of elements as the

operands and that contains the result of the element-wise computation. For example, the statement

va1 = va2 * va3;

is equivalent to

va1[0] = va2[0] * va3[0];

va1[1] = va2[1] * va3[1];

va1[2] = va2[2] * va3[2];

...

If the number of elements of the combined valarrays differs, the result is undefined.

Of course, the operations are available only if the element’s type supports them. The exact

meaning of the operation depends on the meaning of the operation for the elements. Thus, all these

operations simply do the same for each element or pair of elements in the valarrays they process.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1117

For binary operations, one of the operands may be a single value of the element’s type. In this

case, the single value is combined with each element of the valarray that is used as the other operand.

For example, the statement

va1 = 4 * va2;

is equivalent to

va1[0] = 4 * va2[0];

va1[1] = 4 * va2[1];

va1[2] = 4 * va2[2];

...

Note that the type of the single value has to match exactly the element type of the valarray. Thus,

the previous example works only if the element type is int. The following statement would fail:

std::valarray<double> va(20);

...

va = 4 * va; // ERROR: type mismatch

The schema of binary operations also applies to comparison operators. Thus, operator == does not

return a single Boolean value that shows whether both valarrays are equal. Instead, the operator

returns a new valarray with the same number of elements of type bool, where each value is the

result of the individual comparison. For example, in the following code

std::valarray<double> va1(10);

std::valarray<double> va2(10);

std::valarray<bool> vab(10);

...

vab = (va1 == va2);

the last statement is equivalent to

vab[0] = (va1[0] == va2[0]);

vab[1] = (va1[1] == va2[1]);

vab[2] = (va1[2] == va2[2]);

...

vab[9] = (va1[9] == va2[9]);

For this reason, you can’t sort valarrays by using operator <, and you can’t use them as elements in

STL containers if the test for equality is performed with operator == (see Section 6.11.1, page 244,

for the requirements of elements of STL containers).

The following program demonstrates a simple use of valarrays:

// num/valarray1.cpp

#include <iostream>

#include <valarray>

using namespace std;

// print valarray

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1118 Supplementary Chapter

template <typename T>

void printValarray (const valarray<T>& va)

{

for (int i=0; i<va.size(); i++) {

cout << va[i] << ’ ’;

}

cout << endl;

}

int main()

{

// define two valarrays with ten elements

valarray<double> va1(10), va2(10);

// assign values 0.0, 1.1, up to 9.9 to the first valarray

for (int i=0; i<10; i++) {

va1[i] = i * 1.1;

}

// assign -1 to all elements of the second valarray

va2 = -1;

// print both valarrays

printValarray(va1);

printValarray(va2);

// print minimum, maximum, and sum of the first valarray

cout << "min(): " << va1.min() << endl;

cout << "max(): " << va1.max() << endl;

cout << "sum(): " << va1.sum() << endl;

// assign values of the first to the second valarray

va2 = va1;

// remove all elements of the first valarray

va1.resize(0);

// print both valarrays again

printValarray(va1);

printValarray(va2);

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1119

The program has the following output:

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

min(): 0

max(): 9.9

sum(): 49.5

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9

Since C++11, you can use range-based for loops to process the elements, because valarrays provide

global begin() and end() functions (see Section S.2.3, page 1139):

// print valarray (since C++11):

template <typename T>

void printValarray (const valarray<T>& va)

{

for (const T& elem: va) {

cout << elem << ’ ’;

}

cout << endl;

}

Transcendental Functions

The transcendental operations (trigonometric and exponential) are defined as equivalent to the nu-

meric operators. In general, the operations are performed with all elements in the valarrays. For

binary operations, one of the operands may be a single value instead, which is used as one operand,

with all elements of the valarrays as the other operand.

All these operations are defined as global functions instead of member functions in order to

provide automatic type conversion for subsets of valarrays for both operands (subsets of valarrays

are covered in Section S.2.2, page 1121).

Here is a second example of the use of valarrays. It demonstrates the use of transcendental

operations:

// num/valarray2.cpp

#include <iostream>

#include <valarray>

using namespace std;

// print valarray

template <typename T>

void printValarray (const valarray<T>& va)

{

for (int i=0; i<va.size(); i++) {

cout << va[i] << ’ ’;

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1120 Supplementary Chapter

cout << endl;

}

int main()

{

// create and initialize valarray with nine elements

valarray<double> va(9);

for (int i=0; i<va.size(); i++) {

va[i] = i * 1.1;

}

// print valarray

printValarray(va);

// double values in the valarray

va *= 2.0;

// print valarray again

printValarray(va);

// create second valarray initialized by the values of the first plus 10

valarray<double> vb(va+10.0);

// print second valarray

printValarray(vb);

// create third valarray as a result of processing both existing valarrays

valarray<double> vc(9);

vc = sqrt(va) + vb/2.0 - 1.0;

// print third valarray

printValarray(vc);

}

The program has the following output:

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

0 2.2 4.4 6.6 8.8 11 13.2 15.4 17.6

10 12.2 14.4 16.6 18.8 21 23.2 25.4 27.6

4 6.58324 8.29762 9.86905 11.3665 12.8166 14.2332 15.6243 16.9952

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1121

S.2.2 Valarray Subsets

The subscript operator [] is overloaded for special auxiliary objects of valarrays. These auxiliary

objects define subsets of valarrays in various ways, thus providing an elegant way to operate on

certain subsets of valarrays (with both read and write access).

The subset of a valarray is defined by using a certain subset definition as the index. For example:

va[std::slice(2,4,3)] // four elements with distance 3 starting from index 2

va[va>7] // all elements with a value greater than 7

If a subset definition, such as std::slice(2,4,3) or va>7, is used with a constant valarray, the

expression returns a new valarray with the corresponding elements. However, if such a subset def-

inition is used with a nonconstant valarray, the expression returns a temporary object of a special

auxiliary valarray class. This temporary object does not contain the subset values but rather the def-

inition of the subset. Thus, the evaluation of expressions is deferred until the values are needed to

compute a final result.

This mechanism, called lazy evaluation, has the advantage that no temporary values for expres-

sions are computed. This saves time and memory. In addition, the technique provides reference

semantics. Thus, the subsets are logical sets of references to the original values. You can use these

subsets as the destination (lvalue) of a statement. For example, you could assign one subset of a

valarray the result of a multiplication of two other subsets of the same valarray.

However, because “temporaries” are avoided, some unexpected conditions might occur when

elements in the destination subset are also used in a source subset. Therefore, any operation of

valarrays is guaranteed to work only if the elements of the destination subset and the elements of all

source subsets are distinct.

With smart definitions of subsets, you can give valarrays the semantics of two or more dimen-

sions. Thus, in a way, valarrays may be used as multidimensional arrays.

There are four ways to define subsets of valarrays:

1. Slices

2. General slices

3. Masked subsets

4. Indirect subsets

Valarray Subset Problems

Before discussing the individual subsets, I have to mention a general problem. The handling of

valarray subsets is not well designed. You can create subsets easily, but you can’t combine them

easily with other subsets. Unfortunately, you almost always need an explicit type conversion to

valarray. The reason is that the C++ standard library does not specify that valarray subsets provide

the same operations as valarrays.

For example, to multiply two subsets and assign the result to a third subset, you can’t write the

following:

// ERROR: conversions missing

va[std::slice(0,4,3)] = va[std::slice(1,4,3)] * va[std::slice(2,4,3)];

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1122 Supplementary Chapter

Instead, you have to code by using a cast:

va[std::slice(0,4,3)]

= static_cast<std::valarray<double>>(va[std::slice(1,4,3)]) *

static_cast<std::valarray<double>>(va[std::slice(2,4,3)]);

or by using an old-style cast:

va[std::slice(0,4,3)]

= std::valarray<double>(va[std::slice(1,4,3)]) *

std::valarray<double>(va[std::slice(2,4,3)]);

This is tedious and error prone. Even worse, without good optimization, it may cost performance

because each cast creates a temporary object, which could be avoided without the cast.

To make the handling a bit more convenient, you can use the following function template:

// template to convert valarray subset into valarray

template <typename T>

inline

std::valarray<typename T::value_type> VA (const T& valarray_subset)

{

return std::valarray<typename T::value_type>(valarray_subset);

}

By using this template, you could write

va[std::slice(0,4,3)] = VA(va[std::slice(1,4,3)]) *

VA(va[std::slice(2,4,3)]); // OK

However, the performance penalty remains.

If you use a certain element type, you could also use a simple type definition:

typedef valarray<double> VAD;

By using this type definition, you could also write

va[std::slice(0,4,3)] = VAD(va[std::slice(1,4,3)]) *

VAD(va[std::slice(2,4,3)]); // OK

provided that the elements of va have type double.

Slices

A slice defines a set of indices that has three properties:

1. The starting index

2. The number of elements (size)

3. The distance between elements (stride)

You can pass these three properties exactly in the same order as parameters to the constructor of

class slice. For example, the following expression specifies four elements, starting with index 2

with distance 3:

std::slice(2,4,3)

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1123

In other words, the expression specifies the following set of indices:

2 5 8 11

The stride may be negative. For example, the expression

std::slice(9,5,-2)

specifies the following indices:

9 7 5 3 1

To define the subset of a valarray, you simply use a slice as an argument of the subscript operator. For

example, the following expression specifies the subset of the valarray va that contains the elements

with the indices 2, 5, 8, and 11:

va[std::slice(2,4,3)]

It’s up to the caller to ensure that all these indices are valid.

If the subset qualified by a slice is a subset of a constant valarray, the subset is a new valarray. If

the valarray is nonconstant, the subset has reference semantics to the original valarray. The auxiliary

class slice_array is provided for this:

namespace std {

class slice;

template <typename T>

class slice_array;

template <typename T>

class valarray {

public:

// slice of a constant valarray returns a new valarray

valarray<T> operator[] (slice) const;

// slice of a variable valarray returns a slice_array

slice_array<T> operator[] (slice);

...

};

}

For slice_arrays, the following operations are defined:

• Assign a single value to all elements.

• Assign another valarray (or valarray subset).

• Call any computed assignment operation, such as operators += and *=.

For any other operation, you have to convert the subset to a valarray (see Section S.2.2, page 1121).

Note that the class slice_array<> is intended purely as an internal helper class for slices and

should be transparent to the user. Thus, all constructors and the assignment operator of class

slice_array<> are private.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1124 Supplementary Chapter

For example, the statement

va[std::slice(2,4,3)] = 2;

assigns 2 to the third, sixth, ninth, and twelfth elements of the valarray va. It is equivalent to the

following statements:

va[2] = 2;

va[5] = 2;

va[8] = 2;

va[11] = 2;

As another example, the following statement squares the values of the elements with index 2, 5, 8,

and 11:

va[std::slice(2,4,3)]

*= std::valarray<double>(va[std::slice(2,4,3)]);

As mentioned in Section S.2.2, page 1121, you can’t write

va[std::slice(2,4,3)] *= va[std::slice(2,4,3)]; // ERROR

But using the VA() function template mentioned in Section S.2.2, page 1122, you can write

va[std::slice(2,4,3)] *= VA(va[std::slice(2,4,3)]); // OK

By passing different slices of the same valarray, you can combine different subsets and store the

result in another subset of the valarray. For example, the statement

va[std::slice(0,4,3)] = VA(va[std::slice(1,4,3)]) *

VA(va[std::slice(2,4,3)]);

is equivalent to the following:

va[0] = va[1] * va[2];

va[3] = va[4] * va[5];

va[6] = va[7] * va[8];

va[9] = va[10] * va[11];

If you consider your valarray as a two-dimensional matrix, this example is nothing else but vector

multiplication (Figure S.1). However, note that the order of the individual assignments is not defined.

Therefore, the behavior is undefined if the destination subset contains elements that are used in the

source subsets.

In the same way, more complicated statements are possible. For example:

va[std::slice(0,100,3)]

= std::pow(VA(va[std::slice(1,100,3)]) * 5.0,

VA(va[std::slice(2,100,3)]));

Note again that a single value, such as 5.0 in this example, has to match the element type of the

valarray exactly.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1125

*=

va[slice(0,4,3)] va[slice(1,4,3)] va[slice(2,4,3)]= *

Figure S.1. Vector Multiplication by Valarray Slices

The following program demonstrates a complete example of using valarray slices:

// num/slice1.cpp

#include <iostream>

#include <valarray>

using namespace std;

// print valarray line-by-line

template <typename T>

void printValarray (const valarray<T>& va, int num)

{

for (int i=0; i<va.size()/num; ++i) {

for (int j=0; j<num; ++j) {

cout << va[i*num+j] << ’ ’;

}

cout << endl;

}

cout << endl;

}

int main()

{

// valarray with 12 elements

// - four rows

// - three columns

valarray<double> va(12);

// fill valarray with values

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1126 Supplementary Chapter

for (int i=0; i<12; i++) {

va[i] = i;

}

printValarray (va, 3);

// first column = second column raised to the third column

va[slice(0,4,3)] = pow (valarray<double>(va[slice(1,4,3)]),

valarray<double>(va[slice(2,4,3)]));

printValarray (va, 3);

// create valarray with three times the third element of va

valarray<double> vb(va[slice(2,4,0)]);

// multiply the third column by the elements of vb

va[slice(2,4,3)] *= vb;

printValarray (va, 3);

// print the square root of the elements in the second row

printValarray (sqrt(valarray<double>(va[slice(3,3,1)])));

// double the elements in the third row

va[slice(2,4,3)] = valarray<double>(va[slice(2,4,3)]) * 2.0;

printValarray (va, 3);

}

The program has the following output:

0 1 2

3 4 5

6 7 8

9 10 11

1 1 2

1024 4 5

5.7648e+006 7 8

1e+011 10 11

1 1 4

1024 4 10

5.7648e+006 7 16

1e+011 10 22

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1127

32 2 3.16228

1 1 8

1024 4 20

5.7648e+006 7 32

1e+011 10 44

General Slices

General slices, or gslices, are the general form of slices. Similar to slices, which provide the abil-

ity to handle a subset that is one out of two dimensions, gslices allow the handling of subsets of

multidimensional arrays. In principle, gslices have the same properties as slices:

• Starting index

• Number of elements (size)

• Distance between elements (stride)

Unlike slices, however, the number and distance of elements in a gslice are arrays of values. The

number of elements in such an array is equivalent to the number of dimensions used. For example,

a gslice having the state

start: 2

size: [4]

stride: [3]

is equivalent to a slice because the array handles one dimension. Thus, the gslice defines four

elements with distance 3, starting with index 2:

2 5 8 11

However, a gslice having the state

start: 2

size: [2 4]

stride: [10 3]

handles two dimensions. The smallest index handles the highest dimension. Thus, this gslice speci-

fies starting from index 2, twice with distance 10, four elements with distance 3:

2 5 8 11

12 15 18 21

Here is an example of a slice with three dimensions:

start: 2

size: [3 2 4]

stride: [30 10 3]

It specifies starting from index 2, three times with distance 30, twice with distance 10, four elements

with distance 3:

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1128 Supplementary Chapter

2 5 8 11

12 15 18 21

32 35 38 41

42 45 48 51

62 65 68 71

72 75 78 81

The ability to use arrays to define size and stride is the only difference between gslices and slices.

Apart from this, gslices behave the same as slices in the following five ways:

1. To define a concrete subset of a valarray, you simply pass a gslice as the argument to the subscript

operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.

3. If the valarray is nonconstant, the resulting expression is a gslice_array that represents the

elements of the valarray with reference semantics:

namespace std {

class gslice;

template <typename T>

class gslice_array;

template <typename T>

class valarray {

public:

// gslice of a constant valarray returns a new valarray

valarray<T> operator[] (const gslice&) const;

// gslice of a variable valarray returns a gslice_array

gslice_array<T> operator[] (const gslice&);

...

};

}

4. For gslice_array, the assignment and computed assignment operators are provided to modify

the elements of the subset.

5. By using type conversions, you can combine a gslice array with other valarrays and subsets of

valarrays (see Section S.2.2, page 1121).

The following program demonstrates the use of valarray gslices:

// num/gslice1.cpp

#include <iostream>

#include <valarray>

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1129

using namespace std;

// print three-dimensional valarray line-by-line

template <typename T>

void printValarray3D (const valarray<T>& va, int dim1, int dim2)

{

for (int i=0; i<va.size()/(dim1*dim2); ++i) {

for (int j=0; j<dim2; ++j) {

for (int k=0; k<dim1; ++k) {

cout << va[i*dim1*dim2+j*dim1+k] << ’ ’;

}

cout << ’\n’;

}

cout << ’\n’;

}

cout << endl;

}

int main()

{

// valarray with 24 elements

// - two groups

// - four rows

// - three columns

valarray<double> va(24);

// fill valarray with values

for (int i=0; i<24; i++) {

va[i] = i;

}

// print valarray

printValarray3D (va, 3, 4);

// we need two two-dimensional subsets of three times 3 values

// in two 12-element arrays

size_t lengthvalues[] = { 2, 3 };

size_t stridevalues[] = { 12, 3 };

valarray<size_t> length(lengthvalues,2);

valarray<size_t> stride(stridevalues,2);

// assign the second column of the first three rows

// to the first column of the first three rows

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1130 Supplementary Chapter

va[gslice(0,length,stride)]

= valarray<double>(va[gslice(1,length,stride)]);

// add and assign the third of the first three rows

// to the first of the first three rows

va[gslice(0,length,stride)]

+= valarray<double>(va[gslice(2,length,stride)]);

// print valarray

printValarray3D (va, 3, 4);

}

The program has the following output:

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

3 1 2

9 4 5

15 7 8

9 10 11

27 13 14

33 16 17

39 19 20

21 22 23

Masked Subsets

Mask arrays provide another way to define a subset of a valarray. You can mask the elements by

using a Boolean expression. For example, in the expression

va[va > 7]

the subexpression

va > 7

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1131

returns a valarray with the size of va, where a Boolean value states whether each element is greater

than 7. The subscript operator uses the Boolean valarray to specify all elements for which the

Boolean expression yields true. Thus, in the valarray va,

va[va > 7]

specifies the subset of elements that is greater than 7.

Apart from this, mask arrays behave the same as all valarray subsets in the following five ways:

1. To define a concrete subset of a valarray, you simply pass a valarray of Boolean values as the

argument to the subscript operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.

3. If the valarray is nonconstant, the resulting expression is a mask_array that represents the ele-

ments of the valarray with reference semantics:

namespace std {

template <typename T>

class mask_array;

template <typename T>

class valarray {

public:

// masking a constant valarray returns a new valarray

valarray<T> operator[] (const valarray<bool>&) const;

// masking a variable valarray returns a mask_array

mask_array<T> operator[] (const valarray<bool>&);

...

};

}

4. For mask_array, the assignment and computed assignment operators are provided to modify

the elements of the subset.

5. By using type conversions, you can combine a mask array with other valarrays and subsets of

valarrays (see Section S.2.2, page 1121).

The following program demonstrates the use of masked subsets of valarrays:

// num/maskarray1.cpp

#include <iostream>

#include <valarray>

using namespace std;

// print valarray line-by-line

template <typename T>

void printValarray (const valarray<T>& va, int num)

{

for (int i=0; i<va.size()/num; ++i) {

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1132 Supplementary Chapter

for (int j=0; j<num; ++j) {

cout << va[i*num+j] << ’ ’;

}

cout << endl;

}

cout << endl;

}

int main()

{

// valarray with 12 elements

// - four rows

// - three columns

valarray<double> va(12);

// fill valarray with values

for (int i=0; i<12; i++) {

va[i] = i;

}

printValarray (va, 3);

// assign 77 to all values that are less than 5

va[va<5.0] = 77.0;

// add 100 to all values that are greater than 5 and less than 9

va[va>5.0 && va<9.0]

= valarray<double>(va[va>5.0 && va<9.0]) + 100.0;

printValarray (va, 3);

}

The program has the following output:

0 1 2

3 4 5

6 7 8

9 10 11

77 77 77

77 77 5

106 107 108

9 10 11

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1133

Note that the type of a numeric value that is compared with the valarray has to match the type of

the valarray exactly. So, using an int value to compare it with a valarray of doubles would not

compile:

valarray<double> va(12);

...

va[va<5] = 77; // ERROR

Indirect Subsets

Indirect arrays provide the fourth and last way to define a subset of a valarray. Here, you simply

define the subset of a valarray by passing an array of indices. Note that the indices that specify the

subset don’t have to be sorted and may occur twice.

Apart from this, indirect arrays behave the same as all valarray subsets in the following five ways:

1. To define a concrete subset of a valarray, you simply pass a valarray of elements of type size_t

as the argument to the subscript operator of the valarray.

2. If the valarray is constant, the resulting expression is a new valarray.

3. If the valarray is nonconstant, the resulting expression is an indirect_array that represents

the elements of the valarray with reference semantics:

namespace std {

template <typename T>

class indirect_array;

template <typename T>

class valarray {

public:

// indexing a constant valarray returns a new valarray

valarray<T> operator[] (const valarray<size_t>&) const;

// indexing a variable valarray returns an indirect_array

indirect_array<T> operator[] (const valarray<size_t>&);

...

};

}

4. For indirect_array, the assignment and computed assignment operators are provided to mod-

ify the elements of the subset.

5. By using type conversions, you can combine an indirect array with other valarrays and subsets

of valarrays (see Section S.2.2, page 1121).

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1134 Supplementary Chapter

The following program demonstrates how to use indirect arrays:

// num/indirectarray1.cpp

#include <iostream>

#include <valarray>

using namespace std;

// print valarray as two-dimensional array

template <typename T>

void printValarray (const valarray<T>& va, int num)

{

for (int i=0; i<va.size()/num; i++) {

for (int j=0; j<num; j++) {

cout << va[i*num+j] << ’ ’;

}

cout << endl;

}

cout << endl;

}

int main()

{

// create valarray for 12 elements

valarray<double> va(12);

// initialize valarray by values 1.01, 2.02, ... 12.12

for (int i=0; i<12; i++) {

va[i] = (i+1) * 1.01;

}

printValarray(va,4);

// create array of indexes

// - note: element type has to be size_t

valarray<size_t> idx(4);

idx[0] = 8;

idx[1] = 0;

idx[2] = 3;

idx[3] = 7;

// use array of indexes to print the ninth, first, fourth, and eighth elements

printValarray(valarray<double>(va[idx]), 4);

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1135

// change the first and fourth elements and print them again indirectly

va[0] = 11.11;

va[3] = 44.44;

printValarray(valarray<double>(va[idx]), 4);

// now select the second, third, sixth, and ninth elements

// and assign 99 to them

idx[0] = 1;

idx[1] = 2;

idx[2] = 5;

idx[3] = 8;

va[idx] = 99;

// print the whole valarray again

printValarray (va, 4);

}

The valarray idx is used to define the subset of the elements in valarray va. The program has the

following output:

1.01 2.02 3.03 4.04

5.05 6.06 7.07 8.08

9.09 10.1 11.11 12.12

9.09 1.01 4.04 8.08

9.09 11.11 44.44 8.08

11.11 99 99 44.44

5.05 99 7.07 8.08

99 10.1 11.11 12.12

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1136 Supplementary Chapter

S.2.3 Class valarray in Detail

The class template valarray<> is the core part of the valarray component. It is parametrized by the

type of the elements:

namespace std {

template <typename T>

class valarray;

}

The size is not part of the type. Thus, in principle, you can process valarrays with different sizes and

can change the size. However, changing the size of a valarray is provided only to make a two-step

initialization (creating and setting the size), which is necessary to manage arrays of valarrays. Note

that the result of combining valarrays of different size is undefined.

Create, Copy, and Destroy Operations

valarray::valarray ()

• The default constructor.

• Creates an empty valarray.

• This constructor is provided only to enable the creation of arrays of valarrays. The next step is

to give them the correct size by using the resize() member function.

explicit valarray::valarray (size_t num)

• Creates a valarray that contains num elements.

• The elements are initialized by their default constructors, which is 0 for fundamental data types.

valarray::valarray (initializer-list)

• Creates a valarray that contains the values of initializer-list.

• Available since C++11.

valarray::valarray (const T& value, size_t num)

• Creates a valarray that contains num elements.

• The elements are initialized by value.

• Note that the order of parameters is unusual. All other classes of the C++ standard library provide

an interface in which num is the first parameter and value is the second parameter.

valarray::valarray (const T* array, size_t num)

• Creates a valarray that contains num elements.

• The elements are initialized by the values of the elements in array.

• The caller must ensure that array contains num elements; otherwise, the behavior is undefined.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1137

valarray::valarray (const valarray& va)

valarray::valarray (valarray&& va)

• The copy and move constructor.

• Creates a valarray as a copy of va or with the elements of va moved.

• The move constructor is provided since C++11.

valarray::˜valarray ()

• The destructor.

• Destroys all elements and frees the memory.

In addition, you can create valarrays initialized by objects of the internal auxiliary classes

slice_array, gslice_array, mask_array, and indirect_array. See pages 1142, 1144, 1145,

and 1146, respectively, for details about these classes.

Assignment Operations

valarray& valarray::operator= (const valarray& va)

valarray& valarray::operator= (valarray&& va)

• Copy or move assigns the elements of the valarray va.

• If va has a different size, the behavior is undefined.

• The value of an element on the left side of any valarray assignment operator should not depend

on the value of another element on that left side. In other words, if an assignment overwrites

values that are used on the right side of the assignment, the result is undefined. This means that

you should not use an element on the left side anywhere in the expression on the right side. The

reason is that the order of the evaluation of valarray statements is not defined. See Section S.2.2,

page 1124, and Section S.2.2, page 1121, for details.

• The move assignment operator is provided since C++11.

void valarray::swap (valarray& va2)

void swap (valarray& va1, valarray& va2)

• Both forms swap the value of two valarrays:

– The member function swaps the contents of *this and va2.

– The global function swaps the contents of va1 and va2.

• If possible, you should prefer these functions over assignment because they are faster. In fact,

they are guaranteed to have constant complexity.

• Provided since C++11.

valarray& valarray::operator= (initializer-list)

• Assigns the values of initializer-list.

• Returns *this.

• Available since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1138 Supplementary Chapter

valarray& valarray::operator= (const T& value)

• Assigns value to each element of the valarray.

• The size of the valarray is not changed. Pointers and references to the elements remain valid.

In addition, you can assign values of the internal auxiliary classes slice_array, gslice_array,

mask_array, and indirect_array. See pages 1142, 1144, 1145, and 1146, respectively, for

details about these classes.

Member Functions

Class valarray provides the following member functions.

size_t valarray::size () const

• Returns the current number of elements.

void valarray::resize (size_t num)

void valarray::resize (size_t num, T value)

• Both forms change the size of the valarray to num.

• If the size grows, the new elements are initialized by their default constructor or with value,

respectively.

• Both forms invalidate all pointers and references to elements of the valarray.

• These functions are provided only to enable the creation of arrays of valarrays. After creating

them with the default constructor, you should give them the correct size by calling this function.

T valarray::min () const

T valarray::max () const

• The first form returns the minimum value of all elements.

• The second form returns the maximum value of all elements.

• The elements are compared with operator < or >, respectively. Thus, these operators must be

provided for the element type.

• If the valarray contains no elements, the return value is undefined.

T valarray::sum () const

• Returns the sum of all elements.

• The elements are processed by operator +=. Thus, this operator has to be provided for the element

type.

• If the valarray contains no elements, the return value is undefined.

valarray valarray::shift (int num) const

• Returns a new valarray in which all elements are shifted by num positions.

• The returned valarray has the same number of elements.

• Elements of positions that were shifted are initialized by their default constructor.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1139

• The direction of the shifting depends on the sign of num:

– If num is positive, it shifts to the left/front. Thus, elements get a smaller index.

– If num is negative, it shifts to the right/back. Thus, elements get a higher index.

valarray valarray::cshift (int num) const

• Returns a new valarray in which all elements are shifted cyclically by num positions.

• The returned valarray has the same number of elements.

• The direction of the shifting depends on the sign of num:

– If num is positive, it shifts to the left/front. Thus, elements get a smaller index or are inserted

at the back.

– If num is negative, it shifts to the right/back. Thus, elements get a higher index or are inserted

at the front.

valarray valarray::apply (T op(T)) const

valarray valarray::apply (T op(const T&)) const

• Both forms return a new valarray with all elements processed by op().

• The returned valarray has the same number of elements.

• For each element of *this, it calls

op(elem)

and initializes the corresponding element in the new returned valarray by its result.

Element Access

T& valarray::operator[] (size_t idx)

const T& valarray::operator[] (size_t idx) const

• Both forms return the valarray element that has index idx (the first element has index 0).

• The nonconstant version returns a reference. So, you can modify the element that is specified and

returned by this operator. The reference is guaranteed to be valid as long as the valarray exists,

and no function is called that modifies the size of the valarray.

• Before C++11, the return type of the second form was just T.

iterator begin (valarray& va)

const_iterator begin (const valarray& va)

• Both forms return a random-access iterator for the beginning of the valarray (the position of the

first element).

• The name of the iterator type is undefined.

• If the container is empty, the calls are equivalent to valarray::end().

• Available since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1140 Supplementary Chapter

iterator end (valarray& va)

const_iterator end (const valarray& va)

• Both forms return a random-access iterator for the end of the container (the position after the last

element).

• The name of the iterator type is undefined.

• If the container is empty, the calls are equivalent to valarray::begin().

• Available since C++11.

Valarray Operators

Unary valarray operators have the following format:

valarray valarray::unary-op () const

• A unary operator returns a new valarray that contains all values of *this modified by unary-op.

• unary-op may be any of the following:

operator +

operator -

operator ~

operator !

• The return type for operator ! is valarray<bool>.

Binary valarray operators (except comparison and assignment operators) have the following format:

valarray binary-op (const valarray& va1, const valarray& va2)

valarray binary-op (const valarray& va, const T& value)

valarray binary-op (const T& value, const valarray& va)

• These operators return a new valarray with the same number of elements as va, va1, or va2. The

new valarray contains the result of computing binary-op for each value pair.

• If only one operand is passed as a single value, that operand is combined with each element of

va.

• binary-op may be any of the following:

operator +

operator -

operator *

operator /

operator %

operator ^

operator &

operator |

operator <<

operator >>

• If va1 and va2 have different numbers of elements, the result is undefined.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1141

The logical and comparison operators follow the same schema. However, their return values are a

valarray of Boolean values:

valarray<bool> logical-op (const valarray& va1, const valarray& va2)

valarray<bool> logical-op (const valarray& va, const T& value)

valarray<bool> logical-op (const T& value, const valarray& va)

• These operators return a new valarray with the same number of elements as va, va1, or va2. The

new valarray contains the result of computing logical-op for each value pair.

• If only one operand is passed as a single value, that operand is combined with each element of

va.

• logical-op may be any of the following:

operator ==

operator !=

operator <

operator <=

operator >

operator >=

operator &&

operator ||

• If va1 and va2 have different numbers of elements, the result is undefined.

Similarly, computed assignment operators are defined for valarrays:

valarray& valarray::assign-op (const valarray& va)

valarray& valarray::assign-op (const T& value)

• Both forms call for each element in *this assign-op with the corresponding element of va or

value, respectively, as the second operand.

• They return a reference to the modified valarray.

• assign-op may be any of the following:

operator +=

operator -=

operator *=

operator /=

operator %=

operator &=

operator |=

operator ^=

operator <<=

operator >>=

• If *this and va2 have different numbers of elements, the result is undefined.

• References and pointers to modified elements stay valid as long as the valarray exists, and no

function is called that modifies the size of the valarray.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1142 Supplementary Chapter

Transcendental Functions

valarray abs (const valarray& va)

valarray pow (const valarray& va1, const valarray& va2)

valarray pow (const valarray& va, const T& value)

valarray pow (const T& value, const valarray& va)

valarray exp (const valarray& va)

valarray sqrt (const valarray& va)

valarray log (const valarray& va)

valarray log10 (const valarray& va)

valarray sin (const valarray& va)

valarray cos (const valarray& va)

valarray tan (const valarray& va)

valarray sinh (const valarray& va)

valarray cosh (const valarray& va)

valarray tanh (const valarray& va)

valarray asin (const valarray& va)

valarray acos (const valarray& va)

valarray atan (const valarray& va)

valarray atan2 (const valarray& va1, const valarray& va2)

valarray atan2 (const valarray& va, const T& value)

valarray atan2 (const T& value, const valarray& va)

• All these functions return a new valarray with the same number of elements as va, va1, or va2.

The new valarray contains the result of the corresponding operation called for each element or

pair of elements.

• If va1 and va2 have different numbers of elements, the result is undefined.

S.2.4 Valarray Subset Classes in Detail

This subsection describes the subset classes for valarray in detail. However, these classes are very

simple and do not provide many operations. For this reason, I provide only their declarations and a

few remarks.

Class slice and Class slice_array

Objects of class slice_array are created by using a slice as the index of a nonconstant valarray:

namespace std {

template <typename T>

class valarray {

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1143

public:

...

slice_array<T> operator[](slice);

...

};

}

The exact definition of the public interface of class slice is as follows:

namespace std {

class slice {

public:

slice (); // empty subset

slice (size_t start, size_t size, size_t stride);

size_t start() const;

size_t size() const;

size_t stride() const;

};

}

The default constructor creates an empty subset. With the start(), size(), and stride() member

functions, you can query the properties of a slice.

The class slice_array provides the following operations:

namespace std {

template <typename T>

class slice_array {

public:

typedef T value_type;

void operator= (const T&);

void operator= (const valarray<T>&) const;

void operator*= (const valarray<T>&) const;

void operator/= (const valarray<T>&) const;

void operator%= (const valarray<T>&) const;

void operator+= (const valarray<T>&) const;

void operator-= (const valarray<T>&) const;

void operator^= (const valarray<T>&) const;

void operator&= (const valarray<T>&) const;

void operator|= (const valarray<T>&) const;

void operator<<=(const valarray<T>&) const;

void operator>>=(const valarray<T>&) const;

~slice_array();

private:

slice_array();

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1144 Supplementary Chapter

slice_array(const slice_array&);

slice_array& operator=(const slice_array&);

...

};

}

Note that class slice_array<> is intended purely as an internal helper class for slices and should be

transparent to the user. Thus, all constructors and the assignment operator of class slice_array<>

are private.

Class gslice and Class gslice_array

Objects of class gslice_array are created by using a gslice as the index of a nonconstant valar-

ray:

namespace std {

template <typename T>

class valarray {

public:

...

gslice_array<T> operator[](const gslice&);

...

};

}

The exact definition of the public interface of gslice is as follows:

namespace std {

class gslice {

public:

gslice (); // empty subset

gslice (size_t start,

const valarray<size_t>& size,

const valarray<size_t>& stride);

size_t start() const;

valarray<size_t> size() const;

valarray<size_t> stride() const;

};

}

The default constructor creates an empty subset. With the start(), size(), and stride() member

functions, you can query the properties of a gslice.

The class gslice_array provides the following operations:

namespace std {

template <typename T>

class gslice_array {

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1145

public:

typedef T value_type;

void operator= (const T&);

void operator= (const valarray<T>&) const;

void operator*= (const valarray<T>&) const;

void operator/= (const valarray<T>&) const;

void operator%= (const valarray<T>&) const;

void operator+= (const valarray<T>&) const;

void operator-= (const valarray<T>&) const;

void operator^= (const valarray<T>&) const;

void operator&= (const valarray<T>&) const;

void operator|= (const valarray<T>&) const;

void operator<<=(const valarray<T>&) const;

void operator>>=(const valarray<T>&) const;

~gslice_array();

private:

gslice_array();

gslice_array(const gslice_array<T>&);

gslice_array& operator=(const gslice_array<T>&);

...

};

}

As with slice_array<>, note that class gslice_array<> is intended purely as an internal helper

class for gslices and should be transparent to the user. Thus, all constructors and the assignment

operator of class gslice_array<> are private.

Class mask_array

Objects of class mask_array are created by using a valarray<bool> as the index of a nonconstant

valarray:

namespace std {

template <typename T>

class valarray {

public:

...

mask_array<T> operator[](const valarray<bool>&);

...

};

}

The class mask_array provides the following operations:

namespace std {

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1146 Supplementary Chapter

template <typename T>

class mask_array {

public:

typedef T value_type;

void operator= (const T&);

void operator= (const valarray<T>&) const;

void operator*= (const valarray<T>&) const;

void operator/= (const valarray<T>&) const;

void operator%= (const valarray<T>&) const;

void operator+= (const valarray<T>&) const;

void operator-= (const valarray<T>&) const;

void operator^= (const valarray<T>&) const;

void operator&= (const valarray<T>&) const;

void operator|= (const valarray<T>&) const;

void operator<<=(const valarray<T>&) const;

void operator>>=(const valarray<T>&) const;

~mask_array();

private:

mask_array();

mask_array(const mask_array<T>&);

mask_array& operator=(const mask_array<T>&);

...

};

}

Again, note that class mask_array<> is intended purely as an internal helper class and should be

transparent to the user. Thus, all constructors and the assignment operator of class mask_array<>

are private.

Class indirect_array

Objects of class indirect_array are created by using a valarray<size_t> as the index of a

nonconstant valarray:

namespace std {

template <typename T>

class valarray {

public:

...

indirect_array<T> operator[](const valarray<size_t>&);

...

};

}

The class indirect_array provides the following operations:

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.2 Valarrays 1147

namespace std {

template <typename T>

class indirect_array {

public:

typedef T value_type;

void operator= (const T&);

void operator= (const valarray<T>&) const;

void operator*= (const valarray<T>&) const;

void operator/= (const valarray<T>&) const;

void operator%= (const valarray<T>&) const;

void operator+= (const valarray<T>&) const;

void operator-= (const valarray<T>&) const;

void operator^= (const valarray<T>&) const;

void operator&= (const valarray<T>&) const;

void operator|= (const valarray<T>&) const;

void operator<<=(const valarray<T>&) const;

void operator>>=(const valarray<T>&) const;

~indirect_array();

private:

indirect_array();

indirect_array(const indirect_array<T>&);

indirect_array& operator=(const indirect_array<T>&);

...

};

}

As usual, class indirect_array<> is intended purely as an internal helper class and should be

transparent to the user. Thus, all constructors and the assignment operator of indirect_array<>

are private.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1148 Supplementary Chapter

S.3 Allocators and Memory Functions in Detail

As introduced in Section 4.6, page 57, and Chapter 19, allocators represent a special memory model

and are an abstraction used to translate the need to use memory into a raw call for memory. This

section describes the details of using allocators and memory management, including:

• Scoped allocators

• The allocator interface and the default allocator

• Providing an allocator before C++11

• Utilities for uninitialized memory

S.3.1 Scoped Allocators

With C++98, the concept of allocators had a couple of constraints:

• Container objects were not required to hold their allocator as members. Allocators were only a

part of the type. For this reason:

– Allocators having the same type were assumed to be equal so that memory allocated by one

allocator could be deallocated by another allocator of the same type.

– It was not possible to change the memory resource at runtime.

– Allocators had limitations in the ability to hold a state, such as bookkeeping information or

information about where to allocate next.

– Allocators were not swapped when the containers were swapped.

• Allocators were not handled consistently, because copy constructors copied allocators, whereas

the assignment operator did not. Thus, the copy constructor did not have the same effect as

calling the default constructor and the assignment operator afterward.

For example:

std::list<int> list1; // equivalent to:

// std::list<int,std::allocator<int>> list1;

std::list<int,MyAlloc<int>> list2;

list1 == list2; // ERROR: different types

list1 = list2; // ERROR: different types

This even applied to strings, being a kind of STL container:

typedef std::basic_string<char, std::char_traits<char>,

MyAlloc<char>> MyString;

std::list<std::string> list3;

std::list<MyString,MyAlloc<MyString>> list4;

...

list4.push_back(list3.front()); // ERROR: different element types

std::equal_range(list3.begin(),list3.end(),

list4.begin(),list4.end()); // ERROR: different element types

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1149

A couple of proposed changes to C++11 are intended to solve all these issues. For example:

• Library components are no longer allowed to assume that all allocators of a specific type compare

equal.

• Allocator traits solve some of the problems created by stateful allocators.

• A scoped allocator adapter provides the ability used to propagate the allocator from the container

to the contained elements.

These enhancements provide the tools to build a polymorphic allocator, which allows to compare or

assign two containers with different allocator types that are derived from a common allocator type

the container uses. However, due to time constraints, a standard polymorphic allocator is not part of

C++11.4

Thus, the purpose of class scoped_allocator_adaptor is to allow propagating the allocator

from the container to the contained elements. Note, however, that to provide backward compatibility,

C++11 still provides the old allocator model by default. Internally, some allocator and allocator traits

members allow switching to the new model, which class scoped_allocator_adaptor<> uses to

provide a convenient interface for this feature.

To consistently use an allocator for both the container and it elements you can program the

following:

#include <scoped_allocator>

// use standard allocator for container and all elements:

std::list<int,std::scoped_allocator_adaptor<std::allocator<int>>> list1;

// use allocator MyAlloc<> for container and all elements:

std::list<int,std::scoped_allocator_adaptor<MyAlloc<int>>> list2;

You can use an alias templates (see Section 3.1.9, page 27) instead. For example:

#include <scoped_allocator>

template <typename T, typename Alloc>

using MyList = std::list<T,std::scoped_allocator_adaptor<Alloc<T>>>;

MyList<int,MyAlloc<int>>, list2;

To use a different allocator for the elements and for the container, you have to pass the element

allocator as an additional template argument. For example:

std::list<int,std::scoped_allocator_adaptor<MyAlloc1<int>,

MyAlloc2<int>>> list;

In the same way you can pass even more allocator types to specify the allocator of the element of

the elements and so on.

4 Thanks to Pablo Halpern for providing the details for this paragraph.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1150 Supplementary Chapter

S.3.2 A User-Defined Allocator for C++98

As introduced in Section 19.2, page 1024, it is pretty easy to use your own allocator by providing

the following:

• A type definition of the value_type, which is simply the passed template parameter type.

• A template constructor, which copies the internal state while changing the type.

• A member allocate(), which provides new memory.

• A member deallocate(), which releases memory that is no longer needed.

• Constructors and a destructor, if necessary, to initialize, copy, and clean up the internal state.

• Operators == and !=.

However, before C++11, a lot of default values for user-defined allocators were not provided. As

a result, you had to provide additional members, which were more or less trivial. In correspon-

dence to the allocator provided at Section 19.2, page 1024, let’s look at an allocator that fulfills the

requirements for a C++98 allocator:

// alloc/myalloc03.hpp

#include <cstddef>

#include <memory>

#include <limits>

template <typename T>

class MyAlloc {

public:

// type definitions

typedef std::size_t size_type;

typedef std::ptrdiff_t difference_type;

typedef T* pointer;

typedef const T* const_pointer;

typedef T& reference;

typedef const T& const_reference;

typedef T value_type;

// constructors and destructor

// - nothing to do because the allocator has no state

MyAlloc() throw() {

}

MyAlloc(const MyAlloc&) throw() {

}

template <typename U>

MyAlloc (const MyAlloc<U>&) throw() {

}

~MyAlloc() throw() {

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1151

// allocate but don’t initialize num elements of type T

T* allocate (std::size_t num, const void* hint = 0) {

// allocate memory with global new

return static_cast<T*>(::operator new(num*sizeof(T)));

}

// deallocate storage p of deleted elements

void deallocate (T* p, std::size_t num) {

// deallocate memory with global delete

::operator delete(p);

}

// return address of values

T* address (T& value) const {

return &value;

}

const T* address (const T& value) const {

return &value;

}

// return maximum number of elements that can be allocated

std::size_t max_size () const throw() {

// for numeric_limits see Section 5.3, page 115

return std::numeric_limits<std::size_t>::max() / sizeof(T);

}

// initialize elements of allocated storage p with value value

void construct (T* p, const T& value) {

// initialize memory with placement new

::new((void*)p)T(value);

}

// destroy elements of initialized storage p

void destroy (T* p) {

// destroy objects by calling their destructor

p->~T();

}

// rebind allocator to type U

template <typename U>

struct rebind {

typedef MyAlloc<U> other;

};

};

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1152 Supplementary Chapter

// return that all specializations of this allocator are interchangeable

template <typename T1, typename T2>

bool operator== (const MyAlloc<T1>&,

const MyAlloc<T2>&) throw() {

return true;

}

template <typename T1, typename T2>

bool operator!= (const MyAlloc<T1>&,

const MyAlloc<T2>&) throw() {

return false;

}

As you can see, you also have to provide a couple of additional types, address() members,

max_size(), construct(), destroy(), and the rebind structure. The details of these members

are described in Section S.3.4, page 1155.

The rebind<> Member Template

Part of the allocator structure is a member template called rebind<>. This template structure pro-

vides the ability for any allocator to allocate storage of another type indirectly. For example, if

Allocator is an allocator type, then

Allocator::rebind<T2>::other

is the type of the same allocator specialized for elements of type T2.

You can use rebind<> if you implement a container and have to allocate memory for a type that

differs from the element’s type. For example, to implement a deque, you typically need memory for

arrays that manage blocks of elements (see the typical implementation of a deque in Section 7.4,

page 283). Thus, you need an allocator to allocate arrays of pointers to elements:

namespace std {

template <typename T,

typename Allocator = allocator<T> >

class deque {

...

private:

// rebind allocator for type T*

typedef typename allocator_traits<Allocator>::rebind_alloc

PtrAllocator;

Allocator alloc; // allocator for values of type T

PtrAllocator block_alloc; // allocator for values of type T*

T** elems; // array of blocks of elements

...

};

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1153

To manage the elements of a deque, you must have one allocator to handle arrays/blocks of elements

and another allocator to handle the array of element blocks. The latter has type PtrAllocator,

which is the same allocator as for the elements. By using rebind<>, the allocator for the elements

(Allocator) is bound to the type of an array of elements (T*).

Before C++11, PtrAllocator would be defined as follows:

typedef typename Allocator:: template rebind<T*>::other

PtrAllocator;

S.3.3 The Default Allocator

The default allocator, which is used if no specific allocator is passed, is declared as follows:5

namespace std {

template <typename T>

class allocator {

public:

// type definitions

typedef size_t size_type;

typedef ptrdiff_t difference_type;

typedef T* pointer;

typedef const T* const_pointer;

typedef T& reference;

typedef const T& const_reference;

typedef T value_type;

// rebind allocator to type U

template <typename U>

struct rebind {

typedef allocator<U> other;

};

// return address of values

pointer address(reference value) const noexcept;

const_pointer address(const_reference value) const noexcept;

// constructors and destructor

allocator() noexcept;

allocator(const allocator&) noexcept;

5 Before C++11, construct() and destroy() were not member templates, and construct() had a value of

type const T& as second argument.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1154 Supplementary Chapter

template <typename U>

allocator(const allocator<U>&) noexcept;

~allocator();

// return maximum number of elements that can be allocated

size_type max_size() const noexcept;

// allocate but don’t initialize num elements of type T

pointer allocate(size_type num,

allocator<void>::const_pointer hint = 0);

// initialize elements of allocated storage p with values args

template <typename U, typename... Args>

void construct(U* p, Args&&... args);

// delete elements of initialized storage p

template <typename U>

void destroy(U* p);

// deallocate storage p of deleted elements

void deallocate(pointer p, size_type num);

};

}

The default allocator uses the global operators new and delete to allocate and deallocate memory.

Thus, allocate() may throw a bad_alloc exception. However, the default allocator may be

optimized by reusing deallocated memory or by allocating more memory than needed to save time

in additional allocations. So, the exact moments when operators new and delete are called are

unspecified. See Section 19.2, page 1024, for a possible implementation of the default allocator.

The default allocator has the following specialization for type void:

namespace std {

template <>

class allocator<void> {

public:

typedef void* pointer;

typedef const void* const_pointer;

typedef void value_type;

template <typename U>

struct rebind {

typedef allocator<U> other;

};

};

}

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1155

S.3.4 Allocators in Detail

According to the specified requirements, allocators have to provide the following types and opera-

tions. Allocators that are not provided for the standard containers may have fewer requirements.

Type Definitions

allocator::value_type

• The type of the elements.

• It is usually equivalent to T for an allocator<T>.

allocator::size_type

• The type for unsigned integral values that can represent the size of the largest object in the

allocation model.

• Default: std::make_unsigned<allocator::difference_type>::type, which is usually

equivalent to std::size_t.

allocator::difference_type

• The type for signed integral values that can represent the difference between any two pointers in

the allocation model.

• Default: std::pointer_traits<allocator::pointer>::difference_type, which is

usually equivalent to std::ptrdiff_t.

allocator::pointer

• The type of a pointer to the element type.

• Default: value_type*.

allocator::const_pointer

• The type of a constant pointer to the element type.

• Default: const value_type*.

allocator::void_pointer

• The type of a pointer to type void.

• Default: void*.

• Provided since C++11.

allocator::const_void_pointer

• The type of a constant pointer to type void.

• Default: const void*.

• Provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1156 Supplementary Chapter

allocator::reference

• The type of a reference to the element type.

• It is usually equivalent to T& for an allocator<T>.

• No longer required for allocators since C++11.

allocator::const_reference

• The type of a constant reference to the element type.

• It is usually equivalent to const T& for an allocator<T>.

• No longer required for allocators since C++11.

allocator::rebind

• A template structure that provides the ability for any allocator to allocate storage of another type

indirectly.

• It has to be declared as follows (which is the default since C++11):

template <typename T>

class allocator {

public:

template <typename U>

struct rebind {

typedef allocator<U> other;

};

...

}

• See Section S.3.2, page 1152, for an explanation of the purpose of rebind<>.

allocator::propagate_on_container_copy_assignment

• Type trait to signal whether an allocator should be copied when the container is copy assigned.

• Default: false_type.

• Provided since C++11.

allocator::propagate_on_container_move_assignment

• Type trait to signal whether an allocator should be moved when the container is move assigned.

• Default: false_type.

• Provided since C++11.

allocator::propagate_on_container_swap

• Type trait to signal whether an allocator should be swapped when the container is swapped.

• Default: false_type.

• Provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1157

Operations

allocator::allocator ()

• The default constructor.

• Creates an allocator object.

• No longer required since C++11 (however, at least one non-copy/non-converting constructor

must exist).

allocator::allocator (const allocator& a)

• The copy constructor.

• Copies an allocator object so that storage allocated from the original and from the copy can be

deallocated via the other.

allocator::allocator (allocator&& a)

• The move constructor.

• If it is not provided, the copy constructor is used.

• Moves an allocator object so that storage allocated from a can be deallocated via *this.

• Provided since C++11.

allocator::˜allocator ()

• The destructor.

• Destroys an allocator object.

pointer allocator::address (reference value)

const_pointer allocator::address (const_reference value)

• The first form returns a nonconstant pointer to the nonconstant value.

• The second form returns a constant pointer to the constant value.

• No longer required since C++11.

size_type allocator::max_size ()

• Returns the largest value that can be passed meaningfully to allocate() to allocate storage.

• Default: std::numeric_limits<allocator::size_type>::max().

pointer allocator::allocate (size_type num)

pointer allocator::allocate (size_type num,

allocator<void>::const_pointer hint)

• Both forms return storage for num elements of type T.

• The elements are not constructed/initialized (no constructors are called).

• The optional second argument has an implementation-specific meaning. For example, it may be

used by an implementation to help improve performance.

• If num equals 0, the return value is unspecified.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1158 Supplementary Chapter

void allocator::deallocate (pointer p, size_type num)

• Frees the storage to which p refers.

• The storage of p has to be allocated by allocate() of the same or an equal allocator.

• The elements must have been destroyed already.

void allocator::construct (U* p, Args&&... args)

• Initializes the storage of one element to which p refers with args.

• Default: ::new((void*)p) U(std::forward<Args>(args)...).

• Before C++11, the second argument was a const T&.

void allocator::destroy (U* p)

• Destroys the object to which p refers without deallocating the storage.

• Calls the destructor for the object.

• Default: p->~U().

bool operator== (const allocator& a1, const allocator& a2)

• Returns true if allocators a1 and a2 are interchangeable.

• Two allocators are interchangeable if storage allocated from each can be deallocated via the other.

• Before C++11, to be usable by the standard containers, allocators of the same type were required

to be interchangeable, so that this function always had to return true.

bool operator!= (const allocator& a1, const allocator& a2)

• Returns true if two allocators are not interchangeable.

• It is equivalent to !(a1 == a2).

• Before C++11, to be usable by the standard containers, allocators of the same type were required

to be interchangeable, so that this function always had to return false.

allocator select_on_container_copy_construction ()

• Returns the allocator to be used to copy the allocator on container copy construction.

• Default: returns *this.

• Provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1159

S.3.5 Utilities for Uninitialized Memory in Detail

This section describes the auxiliary functions for uninitialized memory in detail. The exemplary

exception-safe implementation of these functions is based with permission on code by Greg Colvin.

void uninitialized_fill (ForwardIterator beg, ForwardIterator end,

const T& value)

• Initializes the elements in the range [beg,end) with value.

• This function either succeeds or has no effect.

• This function usually is implemented as follows:

namespace std {

template <typename ForwIter, typename T>

void uninitialized_fill(ForwIter beg, ForwIter end,

const T& value)

{

typedef typename iterator_traits<ForwIter>::value_type VT;

ForwIter save(beg);

try {

for (; beg!=end; ++beg) {

::new (static_cast<void*>(&*beg))VT(value);

}

}

catch (...) {

for (; save!=beg; ++save) {

save->~VT();

}

throw;

}

}

}

ForwardIterator uninitialized_fill_n (ForwardIterator beg,

Size num, const T& value)

• Initializes num elements starting from beg with value.

• Returns the position after the last initialized element.

• This function either succeeds or has no effect.

• This function usually is implemented as follows:

namespace std {

template <typename ForwIter, typename Size, typename T>

ForwIter uninitialized_fill_n (ForwIter beg, Size num,

const T& value)

{

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

1160 Supplementary Chapter

typedef typename iterator_traits<ForwIter>::value_type VT;

ForwIter save(beg);

try {

for (; num--; ++beg) {

::new (static_cast<void*>(&*beg))VT(value);

}

return beg;

}

catch (...) {

for (; save!=beg; ++save) {

save->~VT();

}

throw;

}

}

}

• See Section 19.3, page 1028, for an example of the use of uninitialized_fill_n().

• Before C++11, the return type was void.

ForwardIterator uninitialized_copy (InputIterator sourceBeg,

InputIterator sourceEnd,

ForwardIterator destBeg)

• Initializes the memory starting at destBeg with the elements in the range [sourceBeg,sourceEnd).

• Returns the position after the last initialized element.

• The function either succeeds or has no effect.

• The function usually is implemented as follows:

namespace std {

template <typename InputIter, typename ForwIter>

ForwIter uninitialized_copy(InputIter pos, InputIter end,

ForwIter dest)

{

typedef typename iterator_traits<ForwIter>::value_type VT;

ForwIter save(dest);

try {

for (; pos!=end; ++pos,++dest) {

::new (static_cast<void*>(&*dest))VT(*pos);

}

return dest;

}

catch (...) {

for (; save!=dest; ++save) {

save->~VT();

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

S.3 Allocators and Memory Functions in Detail 1161

}

throw;

}

}

}

• See Section 19.3, page 1028, for an example of the use of uninitialized_copy().

ForwardIterator uninitialized_copy_n (InputIterator sourceBeg,

Size num, ForwardIterator destBeg)

• Initializes num elements of the memory starting at destBeg with the elements starting with

sourceBeg.

• Returns the position after the last initialized element.

• The function either succeeds or has no effect.

• The function usually is implemented as follows:

namespace std {

template <typename ForwIter, typename Size, typename ForwIter>

ForwIter uninitialized_copy_n(InputIter pos, Size num,

ForwIter dest)

{

typedef typename iterator_traits<ForwIter>::value_type VT;

ForwIter save(dest);

try {

for (; num>0; ++pos,++dest,--num) {

::new (static_cast<void*>(&*dest))VT(*pos);

}

return dest;

}

catch (...) {

for (; save!=dest; ++save) {

save->~VT();

}

throw;

}

}

}

• Provided since C++11.

Nicolai M. Josuttis: The C++ Standard Library, 2nd Edition

	The C++ Standard Library
	Contents
	Preface to the Second Edition
	Acknowledgments for the Second Edition
	Preface to the First Edition
	Acknowledgments for the First Edition
	1 About This Book
	1.1 Why This Book
	1.2 Before Reading This Book
	1.3 Style and Structure of the Book
	1.4 How to Read This Book
	1.5 State of the Art
	1.6 Example Code and Additional Information
	1.7 Feedback

	2 Introduction to C++ and the Standard Library
	2.1 History of the C++ Standards
	2.1.1 Common Questions about the C++11 Standard
	2.1.2 Compatibility between C++98 and C++11

	2.2 Complexity and Big-O Notation

	3 New Language Features
	3.1 New C++11 Language Features
	3.1.1 Important Minor Syntax Cleanups
	3.1.2 Automatic Type Deduction with auto
	3.1.3 Uniform Initialization and Initializer Lists
	3.1.4 Range-Based for Loops
	3.1.5 Move Semantics and Rvalue References
	3.1.6 New String Literals
	3.1.7 Keyword noexcept
	3.1.8 Keyword constexpr
	3.1.9 New Template Features
	3.1.10 Lambdas
	3.1.11 Keyword decltype
	3.1.12 New Function Declaration Syntax
	3.1.13 Scoped Enumerations
	3.1.14 New Fundamental Data Types

	3.2 Old “New” Language Features
	3.2.1 Explicit Initialization for Fundamental Types
	3.2.2 Definition of main()

	4 General Concepts
	4.1 Namespace std
	4.2 Header Files
	4.3 Error and Exception Handling
	4.3.1 Standard Exception Classes
	4.3.2 Members of Exception Classes
	4.3.3 Passing Exceptions with Class exception_ptr
	4.3.4 Throwing Standard Exceptions
	4.3.5 Deriving from Standard Exception Classes

	4.4 Callable Objects
	4.5 Concurrency and Multithreading
	4.6 Allocators

	5 Utilities
	5.1 Pairs and Tuples
	5.1.1 Pairs
	5.1.2 Tuples
	5.1.3 I/O for Tuples
	5.1.4 Conversions between tuples and pairs

	5.2 Smart Pointers
	5.2.1 Class shared_ptr
	5.2.2 Class weak_ptr
	5.2.3 Misusing Shared Pointers
	5.2.4 Shared and Weak Pointers in Detail
	5.2.5 Class unique_ptr
	5.2.6 Class unique_ptr in Detail
	5.2.7 Class auto_ptr
	5.2.8 Final Words on Smart Pointers

	5.3 Numeric Limits
	5.4 Type Traits and Type Utilities
	5.4.1 Purpose of Type Traits
	5.4.2 Type Traits in Detail
	5.4.3 Reference Wrappers
	5.4.4 Function Type Wrappers

	5.5 Auxiliary Functions
	5.5.1 Processing the Minimum and Maximum
	5.5.2 Swapping Two Values
	5.5.3 Supplementary Comparison Operators

	5.6 Compile-Time Fractional Arithmetic with Class ratio<>
	5.7 Clocks and Timers
	5.7.1 Overview of the Chrono Library
	5.7.2 Durations
	5.7.3 Clocks and Timepoints
	5.7.4 Date and Time Functions by C and POSIX
	5.7.5 Blocking with Timers

	5.8 Header Files <cstddef>, <cstdlib>, and <cstring>
	5.8.1 Definitions in <cstddef>
	5.8.2 Definitions in <cstdlib>
	5.8.3 Definitions in <cstring>

	6 The Standard Template Library
	6.1 STL Components
	6.2 Containers
	6.2.1 Sequence Containers
	6.2.2 Associative Containers
	6.2.3 Unordered Containers
	6.2.4 Associative Arrays
	6.2.5 Other Containers
	6.2.6 Container Adapters

	6.3 Iterators
	6.3.1 Further Examples of Using Associative and Unordered Containers
	6.3.2 Iterator Categories

	6.4 Algorithms
	6.4.1 Ranges
	6.4.2 Handling Multiple Ranges

	6.5 Iterator Adapters
	6.5.1 Insert Iterators
	6.5.2 Stream Iterators
	6.5.3 Reverse Iterators
	6.5.4 Move Iterators

	6.6 User-Defined Generic Functions
	6.7 Manipulating Algorithms
	6.7.1 “Removing” Elements
	6.7.2 Manipulating Associative and Unordered Containers
	6.7.3 Algorithms versus Member Functions

	6.8 Functions as Algorithm Arguments
	6.8.1 Using Functions as Algorithm Arguments
	6.8.2 Predicates

	6.9 Using Lambdas
	6.10 Function Objects
	6.10.1 Definition of Function Objects
	6.10.2 Predefined Function Objects
	6.10.3 Binders
	6.10.4 Function Objects and Binders versus Lambdas

	6.11 Container Elements
	6.11.1 Requirements for Container Elements
	6.11.2 Value Semantics or Reference Semantics

	6.12 Errors and Exceptions inside the STL
	6.12.1 Error Handling
	6.12.2 Exception Handling

	6.13 Extending the STL
	6.13.1 Integrating Additional Types
	6.13.2 Deriving from STL Types

	7 STL Containers
	7.1 Common Container Abilities and Operations
	7.1.1 Container Abilities
	7.1.2 Container Operations
	7.1.3 Container Types

	7.2 Arrays
	7.2.1 Abilities of Arrays
	7.2.2 Array Operations
	7.2.3 Using arrays as C-Style Arrays
	7.2.4 Exception Handling
	7.2.5 Tuple Interface
	7.2.6 Examples of Using Arrays

	7.3 Vectors
	7.3.1 Abilities of Vectors
	7.3.2 Vector Operations
	7.3.3 Using Vectors as C-Style Arrays
	7.3.4 Exception Handling
	7.3.5 Examples of Using Vectors
	7.3.6 Class vector<bool>

	7.4 Deques
	7.4.1 Abilities of Deques
	7.4.2 Deque Operations
	7.4.3 Exception Handling
	7.4.4 Examples of Using Deques

	7.5 Lists
	7.5.1 Abilities of Lists
	7.5.2 List Operations
	7.5.3 Exception Handling
	7.5.4 Examples of Using Lists

	7.6 Forward Lists
	7.6.1 Abilities of Forward Lists
	7.6.2 Forward List Operations
	7.6.3 Exception Handling
	7.6.4 Examples of Using Forward Lists

	7.7 Sets and Multisets
	7.7.1 Abilities of Sets and Multisets
	7.7.2 Set and Multiset Operations
	7.7.3 Exception Handling
	7.7.4 Examples of Using Sets and Multisets
	7.7.5 Example of Specifying the Sorting Criterion at Runtime

	7.8 Maps and Multimaps
	7.8.1 Abilities of Maps and Multimaps
	7.8.2 Map and Multimap Operations
	7.8.3 Using Maps as Associative Arrays
	7.8.4 Exception Handling
	7.8.5 Examples of Using Maps and Multimaps
	7.8.6 Example with Maps, Strings, and Sorting Criterion at Runtime

	7.9 Unordered Containers
	7.9.1 Abilities of Unordered Containers
	7.9.2 Creating and Controlling Unordered Containers
	7.9.3 Other Operations for Unordered Containers
	7.9.4 The Bucket Interface
	7.9.5 Using Unordered Maps as Associative Arrays
	7.9.6 Exception Handling
	7.9.7 Examples of Using Unordered Containers

	7.10 Other STL Containers
	7.10.1 Strings as STL Containers
	7.10.2 Ordinary C-Style Arrays as STL Containers

	7.11 Implementing Reference Semantics
	7.12 When to Use Which Container

	8 STL Container Members in Detail
	8.1 Type Definitions
	8.2 Create, Copy, and Destroy Operations
	8.3 Nonmodifying Operations
	8.3.1 Size Operations
	8.3.2 Comparison Operations
	8.3.3 Nonmodifying Operations for Associative and Unordered Containers

	8.4 Assignments
	8.5 Direct Element Access
	8.6 Operations to Generate Iterators
	8.7 Inserting and Removing Elements
	8.7.1 Inserting Single Elements
	8.7.2 Inserting Multiple Elements
	8.7.3 Removing Elements
	8.7.4 Resizing

	8.8 Special Member Functions for Lists and Forward Lists
	8.8.1 Special Member Functions for Lists (and Forward Lists)
	8.8.2 Special Member Functions for Forward Lists Only

	8.9 Container Policy Interfaces
	8.9.1 Nonmodifying Policy Functions
	8.9.2 Modifying Policy Functions
	8.9.3 Bucket Interface for Unordered Containers

	8.10 Allocator Support
	8.10.1 Fundamental Allocator Members
	8.10.2 Constructors with Optional Allocator Parameters

	9 STL Iterators
	9.1 Header Files for Iterators
	9.2 Iterator Categories
	9.2.1 Output Iterators
	9.2.2 Input Iterators
	9.2.3 Forward Iterators
	9.2.4 Bidirectional Iterators
	9.2.5 Random-Access Iterators
	9.2.6 The Increment and Decrement Problem of Vector Iterators

	9.3 Auxiliary Iterator Functions
	9.3.1 advance()
	9.3.2 next() and prev()
	9.3.3 distance()
	9.3.4 iter_swap()

	9.4 Iterator Adapters
	9.4.1 Reverse Iterators
	9.4.2 Insert Iterators
	9.4.3 Stream Iterators
	9.4.4 Move Iterators

	9.5 Iterator Traits
	9.5.1 Writing Generic Functions for Iterators

	9.6 Writing User-Defined Iterators

	10 STL Function Objects and Using Lambdas
	10.1 The Concept of Function Objects
	10.1.1 Function Objects as Sorting Criteria
	10.1.2 Function Objects with Internal State
	10.1.3 The Return Value of for_each()
	10.1.4 Predicates versus Function Objects

	10.2 Predefined Function Objects and Binders
	10.2.1 Predefined Function Objects
	10.2.2 Function Adapters and Binders
	10.2.3 User-Defined Function Objects for Function Adapters
	10.2.4 Deprecated Function Adapters

	10.3 Using Lambdas
	10.3.1 Lambdas versus Binders
	10.3.2 Lambdas versus Stateful Function Objects
	10.3.3 Lambdas Calling Global and Member Functions
	10.3.4 Lambdas as Hash Function, Sorting, or Equivalence Criterion

	11 STL Algorithms
	11.1 Algorithm Header Files
	11.2 Algorithm Overview
	11.2.1 A Brief Introduction
	11.2.2 Classification of Algorithms

	11.3 Auxiliary Functions
	11.4 The for_each() Algorithm
	11.5 Nonmodifying Algorithms
	11.5.1 Counting Elements
	11.5.2 Minimum and Maximum
	11.5.3 Searching Elements
	11.5.4 Comparing Ranges
	11.5.5 Predicates for Ranges

	11.6 Modifying Algorithms
	11.6.1 Copying Elements
	11.6.2 Moving Elements
	11.6.3 Transforming and Combining Elements
	11.6.4 Swapping Elements
	11.6.5 Assigning New Values
	11.6.6 Replacing Elements

	11.7 Removing Algorithms
	11.7.1 Removing Certain Values
	11.7.2 Removing Duplicates

	11.8 Mutating Algorithms
	11.8.1 Reversing the Order of Elements
	11.8.2 Rotating Elements
	11.8.3 Permuting Elements
	11.8.4 Shuffling Elements
	11.8.5 Moving Elements to the Front
	11.8.6 Partition into Two Subranges

	11.9 Sorting Algorithms
	11.9.1 Sorting All Elements
	11.9.2 Partial Sorting
	11.9.3 Sorting According to the nth Element
	11.9.4 Heap Algorithms

	11.10 Sorted-Range Algorithms
	11.10.1 Searching Elements
	11.10.2 Merging Elements

	11.11 Numeric Algorithms
	11.11.1 Processing Results
	11.11.2 Converting Relative and Absolute Values

	12 Special Containers
	12.1 Stacks
	12.1.1 The Core Interface
	12.1.2 Example of Using Stacks
	12.1.3 A User-Defined Stack Class
	12.1.4 Class stack<> in Detail

	12.2 Queues
	12.2.1 The Core Interface
	12.2.2 Example of Using Queues
	12.2.3 A User-Defined Queue Class
	12.2.4 Class queue<> in Detail

	12.3 Priority Queues
	12.3.1 The Core Interface
	12.3.2 Example of Using Priority Queues
	12.3.3 Class priority_queue<> in Detail

	12.4 Container Adapters in Detail
	12.4.1 Type Definitions
	12.4.2 Constructors
	12.4.3 Supplementary Constructors for Priority Queues
	12.4.4 Operations

	12.5 Bitsets
	12.5.1 Examples of Using Bitsets
	12.5.2 Class bitset in Detail

	13 Strings
	13.1 Purpose of the String Classes
	13.1.1 A First Example: Extracting a Temporary Filename
	13.1.2 A Second Example: Extracting Words and Printing Them Backward

	13.2 Description of the String Classes
	13.2.1 String Types
	13.2.2 Operation Overview
	13.2.3 Constructors and Destructor
	13.2.4 Strings and C-Strings
	13.2.5 Size and Capacity
	13.2.6 Element Access
	13.2.7 Comparisons
	13.2.8 Modifiers
	13.2.9 Substrings and String Concatenation
	13.2.10 Input/Output Operators
	13.2.11 Searching and Finding
	13.2.12 The Value npos
	13.2.13 Numeric Conversions
	13.2.14 Iterator Support for Strings
	13.2.15 Internationalization
	13.2.16 Performance
	13.2.17 Strings and Vectors

	13.3 String Class in Detail
	13.3.1 Type Definitions and Static Values
	13.3.2 Create, Copy, and Destroy Operations
	13.3.3 Operations for Size and Capacity
	13.3.4 Comparisons
	13.3.5 Character Access
	13.3.6 Generating C-Strings and Character Arrays
	13.3.7 Modifying Operations
	13.3.8 Searching and Finding
	13.3.9 Substrings and String Concatenation
	13.3.10 Input/Output Functions
	13.3.11 Numeric Conversions
	13.3.12 Generating Iterators
	13.3.13 Allocator Support

	14 Regular Expressions
	14.1 The Regex Match and Search Interface
	14.2 Dealing with Subexpressions
	14.3 Regex Iterators
	14.4 Regex Token Iterators
	14.5 Replacing Regular Expressions
	14.6 Regex Flags
	14.7 Regex Exceptions
	14.8 The Regex ECMAScript Grammar
	14.9 Other Grammars
	14.10 Basic Regex Signatures in Detail

	15 Input/Output Using Stream Classes
	15.1 Common Background of I/O Streams
	15.1.1 Stream Objects
	15.1.2 Stream Classes
	15.1.3 Global Stream Objects
	15.1.4 Stream Operators
	15.1.5 Manipulators
	15.1.6 A Simple Example

	15.2 Fundamental Stream Classes and Objects
	15.2.1 Classes and Class Hierarchy
	15.2.2 Global Stream Objects
	15.2.3 Header Files

	15.3 Standard Stream Operators << and >>
	15.3.1 Output Operator <<
	15.3.2 Input Operator >>
	15.3.3 Input/Output of Special Types

	15.4 State of Streams
	15.4.1 Constants for the State of Streams
	15.4.2 Member Functions Accessing the State of Streams
	15.4.3 Stream State and Boolean Conditions
	15.4.4 Stream State and Exceptions

	15.5 Standard Input/Output Functions
	15.5.1 Member Functions for Input
	15.5.2 Member Functions for Output
	15.5.3 Example Uses
	15.5.4 sentry Objects

	15.6 Manipulators
	15.6.1 Overview of All Manipulators
	15.6.2 How Manipulators Work
	15.6.3 User-Defined Manipulators

	15.7 Formatting
	15.7.1 Format Flags
	15.7.2 Input/Output Format of Boolean Values
	15.7.3 Field Width, Fill Character, and Adjustment
	15.7.4 Positive Sign and Uppercase Letters
	15.7.5 Numeric Base
	15.7.6 Floating-Point Notation
	15.7.7 General Formatting Definitions

	15.8 Internationalization
	15.9 File Access
	15.9.1 File Stream Classes
	15.9.2 Rvalue and Move Semantics for File Streams
	15.9.3 File Flags
	15.9.4 Random Access
	15.9.5 Using File Descriptors

	15.10 Stream Classes for Strings
	15.10.1 String Stream Classes
	15.10.2 Move Semantics for String Streams
	15.10.3 char* Stream Classes

	15.11 Input/Output Operators for User-Defined Types
	15.11.1 Implementing Output Operators
	15.11.2 Implementing Input Operators
	15.11.3 Input/Output Using Auxiliary Functions
	15.11.4 User-Defined Format Flags
	15.11.5 Conventions for User-Defined Input/Output Operators

	15.12 Connecting Input and Output Streams
	15.12.1 Loose Coupling Using tie()
	15.12.2 Tight Coupling Using Stream Buffers
	15.12.3 Redirecting Standard Streams
	15.12.4 Streams for Reading and Writing

	15.13 The Stream Buffer Classes
	15.13.1 The Stream Buffer Interfaces
	15.13.2 Stream Buffer Iterators
	15.13.3 User-Defined Stream Buffers

	15.14 Performance Issues
	15.14.1 Synchronization with C’s Standard Streams
	15.14.2 Buffering in Stream Buffers
	15.14.3 Using Stream Buffers Directly

	16 Internationalization
	16.1 Character Encodings and Character Sets
	16.1.1 Multibyte and Wide-Character Text
	16.1.2 Different Character Sets
	16.1.3 Dealing with Character Sets in C++
	16.1.4 Character Traits
	16.1.5 Internationalization of Special Characters

	16.2 The Concept of Locales
	16.2.1 Using Locales
	16.2.2 Locale Facets

	16.3 Locales in Detail
	16.4 Facets in Detail
	16.4.1 Numeric Formatting
	16.4.2 Monetary Formatting
	16.4.3 Time and Date Formatting
	16.4.4 Character Classification and Conversion
	16.4.5 String Collation
	16.4.6 Internationalized Messages

	17 Numerics
	17.1 Random Numbers and Distributions
	17.1.1 A First Example
	17.1.2 Engines
	17.1.3 Engines in Detail
	17.1.4 Distributions
	17.1.5 Distributions in Detail

	17.2 Complex Numbers
	17.2.1 Class complex<> in General
	17.2.2 Examples Using Class complex<>
	17.2.3 Operations for Complex Numbers
	17.2.4 Class complex<> in Detail

	17.3 Global Numeric Functions
	17.4 Valarrays

	18 Concurrency
	18.1 The High-Level Interface: async() and Futures
	18.1.1 A First Example Using async() and Futures
	18.1.2 An Example of Waiting for Two Tasks
	18.1.3 Shared Futures

	18.2 The Low-Level Interface: Threads and Promises
	18.2.1 Class std::thread
	18.2.2 Promises
	18.2.3 Class packaged_task<>

	18.3 Starting a Thread in Detail
	18.3.1 async() in Detail
	18.3.2 Futures in Detail
	18.3.3 Shared Futures in Detail
	18.3.4 Class std: :promise in Detail
	18.3.5 Class std: :packaged_task in Detail
	18.3.6 Class std: :thread in Detail
	18.3.7 Namespace this_thread

	18.4 Synchronizing Threads, or the Problem of Concurrency
	18.4.1 Beware of Concurrency!
	18.4.2 The Reason for the Problem of Concurrent Data Access
	18.4.3 What Exactly Can Go Wrong (the Extent of the Problem)
	18.4.4 The Features to Solve the Problems

	18.5 Mutexes and Locks
	18.5.1 Using Mutexes and Locks
	18.5.2 Mutexes and Locks in Detail
	18.5.3 Calling Once for Multiple Threads

	18.6 Condition Variables
	18.6.1 Purpose of Condition Variables
	18.6.2 A First Complete Example for Condition Variables
	18.6.3 Using Condition Variables to Implement a Queue for Multiple Threads
	18.6.4 Condition Variables in Detail

	18.7 Atomics
	18.7.1 Example of Using Atomics
	18.7.2 Atomics and Their High-Level Interface in Detail
	18.7.3 The C-Style Interface of Atomics
	18.7.4 The Low-Level Interface of Atomics

	19 Allocators
	19.1 Using Allocators as an Application Programmer
	19.2 A User-Defined Allocator
	19.3 Using Allocators as a Library Programmer

	Bibliography
	Newsgroups and Forums
	Books and Web Sites

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	The C++ Standard Library: Supplementary Chapter
	Contents
	S.1 Bitsets
	S.1.1 Examples of Using Bitsets
	S.1.2 Class bitset<> in Detail

	S.2 Valarrays
	S.2.1 Getting to Know Valarrays
	S.2.2 Valarray Subsets
	S.2.3 Class valarray in Detail
	S.2.4 Valarray Subset Classes in Detail

	S.3 Allocators and Memory Functions in Detail
	S.3.1 Scoped Allocators
	S.3.2 A User-Defined Allocator for C++98
	S.3.3 The Default Allocator
	S.3.4 Allocators in Detail
	S.3.5 Utilities for Uninitialized Memory in Detail

